

Aniffinity

Calculate affinity between anime list users

Contents:

	Getting Started

	Walkthrough

	API

	Handling exceptions

	Package info

Getting Started

	Introduction

	Getting Started

	Services

Walkthrough

	Walkthrough

API

	API

Handling exceptions

	Handling Exceptions

Package info

	Changelog

	Contributing

	Contact

	License

Introduction

What is this?

Aniffinity provides a simple way to calculate affinity (Pearson’s correlation * 100)
between a “base” user and another user on anime list services.

Note

The term “base user” refers to the user whose scores other users’ scores
will be compared to (and affinities to said scores calculated for).

Just assume the “base user” is referring to you, or whoever will be running
your script, unless you’re getting into some advanced mumbo-jumbo,
in which case you’re on your own.

For a list of anime list services that can be used with Aniffinity, see
Available Services.

Aniffinity is meant to be used in bulk, where one user (the “base”)’s scores are compared
against multiple people, but there’s nothing stopping you from using this as a one-off.

Getting Started

Install

$ pip install aniffinity

Alternatively, download this repo and run:

$ python setup.py install

To use the development version (please don’t), run:

$ pip install --upgrade https://github.com/erkghlerngm44/aniffinity/archive/master.zip

Dependencies

	json-api-doc

	requests

These should be installed when you install this package, so no need to worry about them.

Development

This section demonstrates how documentation can be built, tests run,
and how to check if you’re adhering to PEP 8 [https://www.python.org/dev/peps/pep-0008] and PEP 257 [https://www.python.org/dev/peps/pep-0257].
These should not be used unless you’re contributing to the package.

Conventions

The flake8 and pydocstyle packages can be used to check that
PEP 8 and PEP 257 are being followed respectively.

These can be installed as follows:

$ pip install .[conventions]

The following commands can then be run:

$ flake8
$ pydocstyle aniffinity

which will print any warnings/errors/other stuff. These should ideally
be fixed, but in the event that they can’t, place a # noqa: ERROR_CODE
comment on the offending line(s).

Documentation

To install the dependencies needed to build the docs, run:

$ pip install .[docs]

The docs can then be built by navigating to the docs
directory, and running:

$ make html

The built docs will now be in ./_build/html. You can either run them
by clicking and viewing them, or by running a server in that directory,
which you can view in your browser.

Note

Any warnings that show up when building will be interpreted as errors
when the tests get run on Travis, which will cause the build to fail.
You’ll want to make sure these are taken care of.

Test Suite

To install the dependencies needed for the test suite, run:

$ pip install .[tests]

It is advised to run the test suite through coverage, so a
coverage report can be generated as well. To do this, run:

$ coverage run --source aniffinity setup.py test

The tests should then run. You can view the coverage report by running:

$ coverage report

Services

Available Services

The following anime list services can be used with Aniffinity:

	Anilist [https://anilist.co]

	Aliases: AL, A

	Kitsu [https://kitsu.io] 1 2

	Aliases: K

	MyAnimeList [https://myanimelist.net] 3

	Aliases: MAL, M

Note

Do note, this package is designed for cross-service compatibility.
You are able to, say, calculate affinity (or compare scores) with
one user on AniList and another on Kitsu, for example.

There’s nothing restricting you to stick with users from one
service, unless that’s your intention.

	1

	Incredibly slow, due to constraints by the service API itself
and not this package. Nothing I can do about it, sorry.

	2

	When passing a username to Kitsu, use the “slug” (from the
“profile url”) instead of the “display name” as “display name”s
aren’t unique in Kitsu.
The “slug” refers to this part of the user’s profile URL:
https://kitsu.io/users/<SLUG>.

	3

	The MyAnimeList API being used is undocumented by them (probably
because it’s only meant to be used internally) and may change at
any time without warning. Not much I can do about that, if MAL
decides to cough up a real API in the (distant) future, I’ll
change it over to that.
Until then, if this API fails and I can’t fix it, I’ll just
remove MyAnimeList support altogether.

Walkthrough

This section will show the various ways the Aniffinity class can be
initialised with the username Foobar on the service AniList, and used to
calculate affinity or get a comparison with the user baz on the service Kitsu.

Passing Arguments to the Class and its Methods

As multiple services can be used in this package, there needs to be a way of
telling it which service to use.

In general, the data that needs to be passed to the class and its methods are
a user’s “username” and the “service”, so that the package can decide which
service endpoint to call.

When initialising the class for the “base” user, the names of these params
will be base_user and base_service, to denote that this information
applies only to the “base” user. When using the methods inside the class,
these params will be called user and service.

Using the class method Aniffinity.calculate_affinity() to demonstrate,
which has the user and service params, the various ways of passing this
info are as follows:

Method 1: Using the respective arguments

This is by far the fastest method, with the least amount of computing
done to determine which service to use.

af.calculate_affinity("baz", service="Kitsu")

Method 2: Passing a tuple

If a tuple is passed, it must take the form (username, service).

user = ("baz", "Kitsu")
af.calculate_affinity(user)

Note

A namedtuple exists in aniffinity.models, which is created for this
very purpose. If you wish to use it, this can be created as follows:

user = models.User(username="baz", service="Kitsu")

This can then be passed where necessary.

Method 3: Passing a URL

Do note that this method is somewhat lenient, and also somewhat strict,
in the types of URL that it will take. A link to either the user's
profile, or their anime list will work.
af.calculate_affinity("https://kitsu.io/users/baz")

Method 4: Passing a string

If a string is passed that is not a URL, it should take one of the following forms:

	SERVICE:USERNAME

	SERVICE/USERNAME

Note

Note the lack of a space between the : and /. This will not work if
there are any spaces between these characters.

af.calculate_affinity("Kitsu:baz")
or
af.calculate_affinity("Kitsu/baz")

Method 5: Passing a username only

Warning

This is highly unrecommended - the behaviour of this cannot be
guaranteed, but if you are in a rush then this option does exist.

If a username and no service is passed, the package will use the default
service which, at the time of writing, is AniList [https://anilist.co].

af.calculate_affinity("baz")

Aliases

For methods 1, 2 and 4, there exist aliases for the service names, which
can be used in place of the full service name. For a list of aliases and
services, see Available Services.

Initialising the Class

The class can be initialised in either one of two ways:

Method 1: Normal initialisation

The class is initialised, with the necessary arguments passed to the
Aniffinity class.

af = Aniffinity("Foobar", service="AniList")

Method 2: Specifying the arguments after initialisation

The class is initialised, with a the necessary arguments passed sometime
later after initialisation, which may be useful in scripts where creating
globals inside functions or classes or different files is a pain.

af = Aniffinity()

This can be done anywhere, as long as it has access to ``af``,
but MUST be done before ``calculate_affinity`` or ``comparison``
are called
af.init("Foobar", service="AniList")

Rounding of the final affinity value

Note

This doesn’t affect comparison(), so don’t worry about
it if you’re just using that.

Do note that the class also has a round parameter, which is
used to round the final affinity value. This must be specified at class
initialisation if wanted, as it isn’t available in init().
A value for this can be passed as follows:

To round to two decimal places
af = Aniffinity(..., round=2)

Alternatively, the following can also work, if you decide to follow
method 2 for initialising the class
af = Aniffinity(round=2)
af.init(...)

Doing Things with the Initialised Class

The initialised class, now stored in af, can now perform the following actions:

Calculate affinity with a user

Note

Values may or may not be rounded, depending on the value you passed
for the round parameter at class initialisation.

print(af.calculate_affinity("baz", service="Kitsu"))
Affinity(value=37.06659111674594, shared=171)

Note that what is being returned is a namedtuple, containing the affinity value
and shared rated anime. This can be separated into different variables as follows:

affinity, shared = af.calculate_affinity("baz", service="Kitsu")

print(affinity)
37.06659111674594
print(shared)
171

Alternatively, the following also works (as this is a namedtuple):

affinity = af.calculate_affinity("baz", service="Kitsu")

print(affinity.value)
37.06659111674594
print(affinity.shared)
171

Comparing scores with a user

comparison = af.comparison("baz", service="Kitsu")

print(comparison)
Note: this won't be prettified for you. Run it
through a prettifier if you want it to look nice.
{
"1": [10, 6],
"5": [8, 6],
"6": [10, 7],
"15": [7, 9],
"16": [8, 5],
...
}

Note that a key-value pair returned here consist of:
"MYANIMELIST_ID": [BASE_USER_SCORE, OTHER_USER_SCORE].

Note

MyAnimeList IDs are used here as a cross-service-compatible identifier
is needed to match up each anime across services, as the anime ids
used in different services may differ from each other.

If you wish to use the anime ids for the service you specify, set
the param <TO_BE_IMPLEMENTED> to <TO_BE_IMPLEMENTED>

This data can now be manipulated in whatever way you like, to suit your needs.
I like to just get the arrays on their own, zip them and plot a graph with it.

Extras

Warning

These send a request over to each service in a short amount of time,
with no wait inbetween them. If you’re getting in trouble with them
for breaking their rate limit, you might have a few problems getting
these to work without exceptions.RateLimitExceededError
getting raised.

Note

Don’t use these if you’re planning on calculating affinity or getting a comparison
again with one of the users you’ve specified when using these.

It’s better to create an instance of the Aniffinity class with
said user, and using that with the other user(s) that way.

That instance will hold said users’ scores, so they won’t have to be retrieved
again. See the other examples.

For each of these functions below, assume the following variables were set in advance:

user1 = models.User("Foobar", service="AniList")
user2 = models.User("Baz", service="Kitsu")

Note

As there are no params to specify which service to use for each user,
specify this information for both user1 and user2 by passing
a tuple for each of these, containing (username, service).

One-off affinity calculations

This is mainly used if you don’t want the “base user“‘s scores saved to a variable,
and you’re only interested in the affinity with one person.

Note that ``round`` can also be specified here if needed.
affinity, shared = calculate_affinity(user1, user2)

print(affinity)
37.06659111674594
print(shared)
171

One-off comparison of scores

This is mainly used if you don’t want the “base user“‘s scores saved to a variable,
and you’re only interested in getting a comparison of scores with another user.

print(comparison(user1, user2))

Note: this won't be prettified for you. Run it
through a prettifier if you want it to look nice.
{
"1": [10, 6],
"5": [8, 6],
"6": [10, 7],
"15": [7, 9],
"16": [8, 5],
...
}

API

	
class aniffinity.Aniffinity(base_user=None, base_service=None, round=10, **kws)

	The Aniffinity class.

The purpose of this class is to store a “base user“‘s scores, so
affinity with other users can be calculated easily.

For the username Josh on the service AniList, the class can
be initialised as follows:

from aniffinity import Aniffinity

af = Aniffinity("Josh", base_service="AniList")

There are multiple ways of specifying this information, and multiple
ways to initialise this class. For more info, read the documentation.

The instance, stored in af, will now hold Josh’s scores.

comparison() and calculate_affinity() can now be called,
to perform operations on this data.

	
__init__(base_user=None, base_service=None, round=10, **kws)

	Initialise an instance of Aniffinity.

The information required to retrieve a users’ score from a service
are their “username” and “service”. For a list of “service”s,
read the documentation.

Note

As this applies to the “base” user, the params used are
base_user and base_service respectively.

There are multiple ways of specifying the above information,
and multiple aliases for services that can be used as shorthand.
As docstrings are annoying to write, please refer to the
documentation for a list of these. For an example of the simplest
method to use, refer to the docstring for the Aniffinity
class.

Note

To avoid dealing with dodgy globals, this class MAY be
initialised without the base_user argument, in the global
scope (if you wish), but init() MUST be called sometime
afterwards, with a base_user and base_service passed,
before affinity calculations take place.

Example (for the username Josh on the service AniList):

from aniffinity import Aniffinity

af = Aniffinity()

ma.init("Josh", base_service="AniList")

The class should then be good to go.

	Parameters

	
	base_user (str or tuple) – Base user

	base_service (str or None) – The service to use. If no value is specified
for this param, specify the service in the base_user param,
either as part of a url, or in a tuple

	round (int or False) – Decimal places to round affinity values to.
Specify False for no rounding

	wait_time (int) – Wait time in seconds between paginated
requests (default: 2)

	
calculate_affinity(user, service=None)

	Get the affinity between the “base user” and user.

Note

The data returned will be a namedtuple, with the affinity
and shared rated anime. This can easily be separated
as follows:

affinity, shared = af.calculate_affinity(...)

Alternatively, the following also works:

affinity = af.calculate_affinity(...)

with the affinity and shared available as affinity.value and
affinity.shared respectively.

Note

The final affinity value may or may not be rounded, depending on
the value of _round, set at class initialisation.

	Parameters

	
	user (str or tuple) – The user to calculate affinity with.

	service (str or None) – The service to use. If no value is specified
for this param, specify the service in the user param,
either as part of a url, or in a tuple

	Returns

	(float affinity, int shared)

	Return type

	tuple

	
comparison(user, service=None)

	Get a comparison of scores between the “base user” and user.

A Key-Value returned will consist of the following:

{
 "ANIME_ID": [BASE_USER_SCORE, OTHER_USER_SCORE],
 ...
}

Example:

{
 "30831": [3, 8],
 "31240": [4, 7],
 "32901": [1, 5],
 ...
}

Note

The ANIME_ID s will be the MyAnimeList anime ids. As annoying
as it is, cross-compatibility is needed between services to get
this module to work, and MAL ids are the best ones to use as other
APIs are able to specify it. If you wish to use the anime ids for
the service you specified, set the param
<TO BE IMPLEMENTED> to <TO BE IMPLEMENTED>.

	Parameters

	
	user (str or tuple) – The user to compare the base users’ scores to.

	service (str or None) – The service to use. If no value is specified
for this param, specify the service in the user param,
either as part of a url, or in a tuple

	Returns

	Mapping of id to score as described above

	Return type

	dict

	
init(base_user, base_service=None)

	Retrieve a “base user“‘s list, and store it in _base_scores.

	Parameters

	
	base_user (str or tuple) – Base user

	base_service (str or None) – The service to use. If no value is specified
for this param, specify the service in the base_user param,
either as part of a url, or in a tuple

Handling Exceptions

Which exceptions can be raised?

The types of exceptions that can be raised when calculating affinities are:

	
exception aniffinity.exceptions.NoAffinityError

	Raised when either the shared rated anime between the base user
and another user is less than 11, the user does not have any rated
anime, or the standard deviation of either users’ scores is zero.

	
exception aniffinity.exceptions.InvalidUserError

	Raised when username specified does not exist in the service,
or the service does not exist.

	
exception aniffinity.exceptions.RateLimitExceededError

	Raised when the service is blocking your request, because you’re going
over their rate limit. Slow down and try again.

If you’re planning on using this package in an automated or unsupervised script,
you’ll want to make sure you account for these getting raised, as not doing so
will mean you’ll be bumping into a lot of exceptions, unless you can guarantee
none of the above will get raised. For an example snippet of code that can
demonstrate this, see Exception Handling Snippet.

AniffinityException

exceptions.NoAffinityError and exceptions.InvalidUserError
are descendants of:

	
exception aniffinity.exceptions.AniffinityException

	Base class for Aniffinity exceptions.

which means if that base exception gets raised, you know you won’t be able to
calculate affinity with that person for some reason, so your script should
just move on.

What to do if RateLimitExceededError gets raised

exceptions.RateLimitExceededError rarely gets raised if you abide
by the rate limits of the services you are using. This may be something like
one request a second, or one request every two seconds. If it does get raised,
the following should happen:

	Halt the script for a few seconds. I recommend five.

	Try again.

	If you get roadblocked again, just give up.

Note

The name of the service ratelimiting you will be in the exception
message, should this be of any use to you.

Exception Handling Snippet

The above can be demonstrated via something along these lines. Do note that
this probably isn’t the best method, but it works.

This should be placed in the section where you are attempting to calculate
affinity, or get a comparison, with another user.

time.sleep(2)

success = False

for _ in range(2):
 try:
 affinity, shared = af.calculate_affinity("Baz", service="Kitsu")

 # Rate limit exceeded. Halt your script and try again
 except aniffinity.exceptions.RateLimitExceededError:
 time.sleep(5)
 continue

 # Any other aniffinity exception.
 # Affinity can't be calculated for some reason.
 # ``AniffinityException`` is the base exception class for
 # all aniffinity exceptions
 except aniffinity.exceptions.AniffinityException:
 break

 # Exceptions not covered by aniffinity. Not sure what
 # you could do here. Feel free to handle however you like
 except Exception as e:
 print("Exception: `{}`".format(e))
 break

 # Success!
 else:
 success = True
 break

``success`` will still be ``False`` if affinity can't been calculated.
If this is the case, you'll want to stop doing anything with this person
and move onto the next, so use the statement that will best accomplish this,
given the layout of your script
if not success:
 return

Assume from here on that ``affinity`` and ``shared`` hold their corresponding
values, and feel free to do whatever you want with them

Feel free to use a while loop instead of the above. I’m just a bit wary of them,
in case something happens and the script gets stuck in an infinite loop. Your choice.

To see the above snippet in action, visit
erkghlerngm44/r-anime-soulmate-finder [https://github.com/erkghlerngm44/r-anime-soulmate-finder/blob/v4.2.0/soulmate_finder/__main__.py#L80-L113].

Changelog

v0.2.0 (2019-04-24)

	Make .calcs.pearson raise a ZeroDivisionError when the standard
deviation of one/both sets of data is zero. This will be caught by
Aniffinity.calculate_affinity and will then raise the usual
NoAffinityError, so scripts using this package will not need to
be modified.

	Fix the faulty URL resolving in the resolving function. Valid usernames
starting with “http” will now be handled correctly, instead of having an
exception raised when no accompanying service is specified.

	Move the user/service resolving functions to resolver.py, and rename
these functions to more meaningful names. Additionally, make these functions
non-protected, adding in official support for them.

	Change the repr of the Aniffinity class to make it more accurate.

	Update various docstrings to make more sense and be more accurate.

	Bump the version for the dependency json-api-doc to v0.7.x.

	Handle the Decimal handling in .calcs.pearson better, by converting
all of the values in each list to strings before passing them to
decimal.Decimal.

	Round affinity values by default to 10dp, so floating-point issues no longer
need to be accounted for. This can be bypassed by the user, should they wish
to do so.

	Don’t convert the scores lists to list-s to make them non-lazy, as this
is already done.

	Allow the username & service to be specified as a string, in the
form service:username.

	Resolve the user before raising exceptions, allowing the exception
messages to include the service as well as the username.

	Include the relevant usernames in the “standard deviation is zero”
exception message in NoAffinityError.

v0.1.2 (2019-04-15)

	No code changes have been made. This release is to confirm that Travis has
been fixed. (third time lucky, hopefully)

v0.1.1 (2019-04-15)

	No code changes have been made. This release is to confirm that Travis has
been fixed.

v0.1.0 (2019-04-15)

	Discontinue Python 2 support.

	Rename this package to Aniffinity and replace all occurances with this.

	Add AniList and Kitsu endpoints and support.

	Rename exception MALRateLimitExceededError to RateLimitExceededError.

	Add in a way to specify which service to use, either through the service
param, using a tuple with the username and service, or passing the URL to a
users’ profile.

	Create the User namedtuple.

	Make AniList the default service to use (as it’s the most stable).

	Rename the affinity field in the Affinity namedtuple to value.

	Rename exception InvalidUsernameError to InvalidUserError.

	Force the _base_scores id keys to strings.

	Change the MyAnimeList API to an official-yet-unofficial semi-working one.

	Speed up the creation of the comparison dict.

	Add the service name to all service-specific exceptions.

	Add the wait_time arg to the Aniffinity class to slow down paginated
requests.

For older changes, read the changelog [https://github.com/erkghlerngm44/malaffinity/blob/master/CHANGELOG.rst]
at erkghlerngm44/malaffinity [https://github.com/erkghlerngm44/malaffinity].

[image:]

Contributing

In the unlikely event that someone finds this package, and in the even unlikelier
event that someone wants to contribute,
send me a pull request [https://github.com/erkghlerngm44/aniffinity/pulls]
or create an issue [https://github.com/erkghlerngm44/aniffinity/issues].

Note

Please Contact and notify me if you use the above, as this isn’t my
main GitHub account, so I won’t be checking it that much. I’ll probably see
it weeks/months later if you don’t.

Feel free to use those for anything regarding the package, they’re there to be used,
I guess.

How to Contribute

	Fork the repo [https://github.com/erkghlerngm44/aniffinity].

	git clone https://github.com/YOUR_USERNAME/aniffinity.git

	cd aniffinity

	git checkout -b new_feature

	Make changes.

	git commit -am "Commit message"

	git push origin new_feature

	Navigate to https://github.com/YOUR_USERNAME/aniffinity

	Create a pull request.

Notes and Stuff

I had a whole section on conventions to follow and other stuff, but that
seemed a bit weird, so I just scratched it. If someone out there wants to
contribute to this package in any way, shape or form, have at it. I’d prefer
the changes to be non-breaking (i.e. existing functionality is not affected),
but breaking changes are still welcome.

I only ask that you try to adhere to PEP 8 [https://www.python.org/dev/peps/pep-0008] and PEP 257 [https://www.python.org/dev/peps/pep-0257] (if you can), and
try to achieve 100% coverage in tests (again, if you can). For information on how
to check if you’re adhering to those conventions, see Conventions.

For information on how to build docs and run tests, see Documentation and
Test Suite respectively.

This package is based off a
class [https://github.com/erkghlerngm44/r-anime-soulmate-finder/blob/v1.0.0/affinity_gatherer.py#L25-L112]
I wrote for erkghlerngm44/r-anime-soulmate-finder, and while I have tried to
modify it for general uses (and tried to clean the bad code up a bit), there are
still a few iffy bits around. I’d appreciate any PRs to fix this up.

That’s it, I guess. Contact me if you need help or anything.

[image:]

Contact

On the off chance that someone wants to contact me, I can be reached via the following
(ordered from fastest to slowest in terms of time it’ll take to get a response from me):

	Reddit (/u/erkghlerngm44 [https://www.reddit.com/message/compose/?to=erkghlerngm44])

	Discord (erkghlerngm44#9210)

	Email (erkghlerngm44@protonmail.com)

Note

Emailing me is pretty much pointless, since I rarely check that address.
Contact me on Reddit or Discord if you need anything.

[image:]

License

Licensed under MIT.

MIT License

Copyright (c) 2017 erkghlerngm44

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

[image:]

Index

 _
 | A
 | C
 | I
 | N
 | P
 | R

_

 	
 	__init__() (aniffinity.Aniffinity method)

A

 	
 	Aniffinity (class in aniffinity)

 	
 	AniffinityException

C

 	
 	calculate_affinity() (aniffinity.Aniffinity method)

 	
 	comparison() (aniffinity.Aniffinity method)

I

 	
 	init() (aniffinity.Aniffinity method)

 	
 	InvalidUserError

N

 	
 	NoAffinityError

P

 	
 	
 Python Enhancement Proposals

 	PEP 257, [1]

 	PEP 8, [1]

R

 	
 	RateLimitExceededError

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/TmJI6c7.gif

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Aniffinity

 		
 Introduction

 		
 What is this?

 		
 Getting Started

 		
 Install

 		
 Dependencies

 		
 Development

 		
 Conventions

 		
 Documentation

 		
 Test Suite

 		
 Services

 		
 Available Services

 		
 Walkthrough

 		
 Passing Arguments to the Class and its Methods

 		
 Method 1: Using the respective arguments

 		
 Method 2: Passing a tuple

 		
 Method 3: Passing a URL

 		
 Method 4: Passing a string

 		
 Method 5: Passing a username only

 		
 Aliases

 		
 Initialising the Class

 		
 Method 1: Normal initialisation

 		
 Method 2: Specifying the arguments after initialisation

 		
 Rounding of the final affinity value

 		
 Doing Things with the Initialised Class

 		
 Calculate affinity with a user

 		
 Comparing scores with a user

 		
 Extras

 		
 One-off affinity calculations

 		
 One-off comparison of scores

 		
 API

 		
 Handling Exceptions

 		
 Which exceptions can be raised?

 		
 AniffinityException

 		
 What to do if RateLimitExceededError gets raised

 		
 Exception Handling Snippet

 		
 Changelog

 		
 v0.2.0 (2019-04-24)

 		
 v0.1.2 (2019-04-15)

 		
 v0.1.1 (2019-04-15)

 		
 v0.1.0 (2019-04-15)

 		
 Contributing

 		
 How to Contribute

 		
 Notes and Stuff

 		
 Contact

 		
 License

_images/45faiA0.gif

_images/MF49NXZ.gif

_images/0rLm2Sg.gif

