
Angular Folder Structure

Sep 07, 2019

Getting Started

1 Directory Tree Structure 3
1.1 Structure Overview . 3
1.2 Media Directory . 4
1.3 Core Module . 5
1.4 Data Module . 5
1.5 Layout Directory . 6
1.6 Module Directory . 7
1.7 Shared Module . 9
1.8 Styles Directory . 9
1.9 Default Directory Structure . 12
1.10 Neolithic Directory Structure . 12
1.11 Path Alias . 14
1.12 Furthur Reading . 15
1.13 Demonstration Application . 15
1.14 Install Locally . 15

2 Contributing 17

i

ii

Angular Folder Structure

Based on best practices from the community, other github Angular projects, developer experience from production
Angular projects, and contributors, this project goal is to create a skeleton structure which is flexible for projects big
or small.

This project defines directory structure in an Angular application and it is a working application. The code for this
project can be found at https://github.com/mathisGarberg/angular-folder-structure

Getting Started 1

https://github.com/mathisGarberg/angular-folder-structure

Angular Folder Structure

2 Getting Started

CHAPTER 1

Directory Tree Structure

This is a default Angular application directory tree:

.
e2e

src
src

app
assets
environments

This tree represents the directories this repository proposes be added to a default Angular application:

.
media
src

app
core
data
layout
modules
shared

styles

Each part of this tree is optional so please read through the Directory Structure Parts carefully to understand them all.

1.1 Structure Overview

The angular-folder-structure project goal is to create a skeleton structure which is flexible for projects big or small.

The Angular style guide has this to say on the subject of directory structure:

Have a near-term view of implementation and a long-term vision. Start small but keep in mind where the
app is heading down the road.

3

Angular Folder Structure

All of the app’s code goes in a folder named src. All feature areas are in their own folder, with their own
NgModule.

—Angular - Style Guide

While such instructions are nice to hear they don’t give real-world skeleton exprience. But we’ve taken this advice to
heart to build our skeleton and document all the parts in line with the official documentation.

1.1.1 Creating an Application

Start your project using the ng command:

ng new

You will be prompted for the project name. Create a name in lower case with dashes between the words like
album-collection-organizer

Next you will be asked to add Angular Routing. We recommend you select Yes (which is not the default).

Next you will be asked to select the Style Sheet Format. We recommend you select SCSS

ng will now create a default skeleton applicaiton and install your vendors.

1.1.2 Adding Structure

The rest of this documentaion covers new structure which is built on top of the ng generated skeleton. Every part of
angular-folder-structure is optional so we suggest you review each part in this documentation to see if it is
appropriate for your project.

This is documentation for angular-folder-structure. If you find this useful please add your star to the project.

1.2 Media Directory

~/media

The media directory is used to store supporting files for the application. Things like requiremenets docs, text outlines,
etc. This is the junk drawer for the project.

1.2.1 Install

mkdir media

This is documentation for angular-folder-structure. If you find this useful please add your star to the project.

4 Chapter 1. Directory Tree Structure

https://angular.io/guide/styleguide#application-structure-and-ngmodules
https://github.com/mathisGarberg/angular-folder-structure
https://github.com/mathisGarberg/angular-folder-structure/tree/master/media
https://github.com/mathisGarberg/angular-folder-structure

Angular Folder Structure

1.3 Core Module

~/src/app/core

This module is for classes used by app.module. Resources which are always loaded such as route guards, HTTP
interceptors, and application level services, such as the ThemeService ang logging belong in this directory.

Note: This module is recommended for a path alias to @app

1.3.1 Install

ng generate module Core

This is documentation for angular-folder-structure. If you find this useful please add your star to the project.

1.4 Data Module

~/src/app/data

The data module is a top level directory and holds the schema (models/entities) and services (repositories) for data
consumed by the application.

By default there are two subdirectories:

~/src/app/data
/schema
/service

The schema directory holds the class definition files for data structures. An example data structure:

export class Project {
link: string;
title: string;
thumbnail: string;

}

The service directory holds the services for fetching data. The service files are not necessarily a 1:1 match with schema
files. An example service file:

import { Injectable } from '@angular/core';
import { Observable } from 'rxjs';

import { Project } from '../schema/project';
import { ApiService } from './api.service';

const routes = {
projects: '/projects',
project: (id: number) => `/projects/${id}`

};

(continues on next page)

1.3. Core Module 5

https://github.com/mathisGarberg/angular-folder-structure/tree/master/src/app/core
path-alias.html
https://github.com/mathisGarberg/angular-folder-structure
https://github.com/mathisGarberg/angular-folder-structure/tree/master/src/app/data

Angular Folder Structure

(continued from previous page)

@Injectable({
providedIn: 'root'

})
export class ProjectService {

constructor(
private apiService: ApiService) {}

getAll(): Observable<Array<Project>> {
return this.apiService.get(routes.projects);

}

getSingle(id: number): Observable<Project> {
return this.apiService.get(routes.project(id));

}
}

1.4.1 Multiple Data Sources

If your application consumes data from more than one source then the data directory should be restructured to contain
subdirectories for each data source. Do not create multiple modules for each data source:

~/src/app/data
/data-source-one
/schema
/service

/data-source-two
/schema
/service

/data.module.ts

1.4.2 Schema Naming Standard

A schema file is very much like an entity file in an Object Relational Mapper. This schema file is central to your
application’s consumption of data and therefore does not need cursory decorators such as calling it ProjectSchema or
ProjectModel. Schemas are special because they are the only plain-named class in the application.

1.4.3 Install

ng generate module Data

This is documentation for angular-folder-structure. If you find this useful please add your star to the project.

1.5 Layout Directory

~/src/app/layout

The layout directory is a container of components which are declared in the AppModule. The directory contains page-
level components of content such as a common footer, navigation, and header. It also contains page layouts for the
different sections of your application.

6 Chapter 1. Directory Tree Structure

https://github.com/mathisGarberg/angular-folder-structure
https://github.com/mathisGarberg/angular-folder-structure/tree/master/src/app/layout

Angular Folder Structure

Components like footer and navigation are handled the Angular way by importing them into a template:

<app-nav></app-nav>

Layouts are handled in a rather clever way. By using child routes a top level route can define a layout to be used for
its children. Each module has its own routing so the top level AppRoutingModule includes the module as a child
of a route. This code block is taken from app-routing.module.ts and trimmed of extra content:

{
path: '',
component: ContentLayoutComponent,
children: [
{

path: 'dashboard',
loadChildren: () =>

import('./modules/home/home.module').then(m => m.HomeModule)
}

]
}

When a route is called at /dashboard the ContentLayoutComponent is used as a layout and handling of the
routing is handed off to the HomeModule. The ContentLayoutComponent has a router-outlet:

<div [class]="theme">
<div class="mat-app-background">
<app-nav></app-nav>

<div class="container">
<router-outlet></router-outlet>

</div>

<app-footer (changeTheme)="onThemeChange($event)"></app-footer>
</div>

</div>

This router-outlet is used to display a route and component defined in the routing of the
HomeRoutingModule:

So the routes are /dashboard and /dashboard/projects/:id and they use the ContentLayoutComponent
for their layout.

1.5.1 Install

mkdir src/app/layout
ng generate component layout/Header
ng generate component layout/Footer

This is documentation for angular-folder-structure. If you find this useful please add your star to the project.

1.6 Module Directory

~/src/app/modules

1.6. Module Directory 7

https://github.com/mathisGarberg/angular-folder-structure
https://github.com/mathisGarberg/angular-folder-structure/tree/master/src/app/modules

Angular Folder Structure

The modules directory contains a collection of modules which are each independent of each other. This allows Angular
to load only the module it requires to display the request thereby saving bandwidth and speeding the entire application.

In order to accomplish this each module must have its own routing which is a loadChildren route resource defined
in the AppRoutingModule. This is also covered in the layout documentation

A route can have children and each child can have a loadChildren property. From app-routing.module.ts:

{
path: '',
component: ContentLayoutComponent,
canActivate: [NoAuthGuard], // Should be replaced with actual auth guard
children: [
{
path: 'dashboard',
loadChildren: () =>

import('./modules/home/home.module').then(m => m.HomeModule)
},
{
path: 'about',
loadChildren: () =>

import('./modules/about/about.module').then(m => m.AboutModule)
},
{
path: 'contact',
loadChildren: () =>

import('./modules/contact/contact.module').then(m => m.ContactModule)
}
]

},

Each child must have its own base path from which it can load children from a module in the modules directory.
Here is the routing for the About page:

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';

import { AboutComponent } from './pages/about/about.component';

const routes: Routes = [
{
path: '',
component: AboutComponent

}
];

@NgModule({
imports: [RouterModule.forChild(routes)],
exports: [RouterModule]

})
export class AboutRoutingModule { }

It is necessary to add the child routes to the RouterModule through forChild.

Besides routing any module inside the modules directory can be as simple or complicated as you wish.

8 Chapter 1. Directory Tree Structure

layout.html

Angular Folder Structure

1.6.1 Install

mkdir src/app/modules

For each new module run ng generate module modules/NewModule

This is documentation for angular-folder-structure. If you find this useful please add your star to the project.

1.7 Shared Module

~/src/app/shared

The shared module contains classes and resources which are used in more than one dynamically loaded module. By
always loading with the application the shared components are ready whenever a module requests them.

The shared module is a good place to import and export the FormsModule and the ReactiveFormsModule. It
is also good for the FontAwesomeModule and any other resource used by some modules some of the time but not
all modules all of the time.

Note: This module is recommended for a path alias to @shared

1.7.1 Install

ng generate module Shared

This is documentation for angular-folder-structure. If you find this useful please add your star to the project.

1.8 Styles Directory

~/src/styles

The ~/src/styles directory is used to store scss style sheets for the application. It can contain themes, Bootstrap,
Angular Material, and any other styles.

~/src/styles.scss is installed in the default Angular skeleton. It should contain @import statments for all your global
application scss files. For instance it can import theme files stored in the ~/src/styles directory.

1.8.1 Themes

The ~/src/styles/themes directory should contain the application-wide themes. This application includes two
theme-files, black-theme.scss and light-theme.scss.

A theme file generates the color-palette that composes the final theme and is constructed of three main palettes:
primary, accent and warn. These palettes are defined using the mat-palette mixin, which accepts a mat-color and a
hue-number that represents different shades of the chosen color. In terms of code, this is what we have:

1.7. Shared Module 9

https://github.com/mathisGarberg/angular-folder-structure
https://github.com/mathisGarberg/angular-folder-structure/tree/master/src/app/shared
path-alias.html
https://github.com/mathisGarberg/angular-folder-structure
https://github.com/mathisGarberg/angular-folder-structure/tree/master/src/styles
https://github.com/mathisGarberg/angular-folder-structure/tree/master/src/styles.scss

Angular Folder Structure

$my-black-primary: mat-palette($mat-grey, 700, 300, 900);
$my-black-accent: mat-palette($mat-blue-grey, 400);
$my-black-warn: mat-palette($mat-red, 500);

$my-black-theme: mat-dark-theme(
$my-black-primary,
$my-black-accent,
$my-black-warn

);

The themes are included in the styles.scss file along with the mat-core mixin, which adds the base styles to material
components.

@import '~@angular/material/theming';

@import './styles/themes/black-theme.scss';
@import './styles/themes/light-theme.scss';

@include mat-core();

.my-light-theme {
@include angular-material-theme($my-light-theme);

}

.my-dark-theme {
@include angular-material-theme($my-dark-theme);

}

The downside here is that the approach above only will style material components and not custom ones.

To achieve this, we’ve added a file called project-container.component.scss-theme.scss. This file
imports the material theme and defines a mixin that styles the content with the appropriate color values - pulling
color-palettes from the theme.

@import '~@angular/material/theming';

@mixin my-project-container-component-theme($theme) {
$accent: map-get($theme, accent);

.active {
color: mat-color($accent, default-contrast);
background-color: mat-color($accent);

&:hover {
color: mat-color($accent, default-contrast);
background-color: mat-color($accent);

}
}

}

Then those files are referred to in the styles.scss files:

@import 'app/modules/home/page/project-item/project-container.component.scss-theme.
→˓scss';

@mixin custom-components-theme($theme) {
// ...

(continues on next page)

10 Chapter 1. Directory Tree Structure

Angular Folder Structure

(continued from previous page)

@include my-project-container-component-theme($theme);
}

.my-light-theme {
// ...
@include custom-components-theme($my-light-theme);

}

.my-dark-theme {
// ...
@include custom-components-theme($my-black-theme);

}

The application content needs to be placed inside either a mat-sidenav-container element or have the
mat-app-background class applied to work. This application follows the last approach by appending this
class to the div that wraps the app-content in the src/app/layout/content-layout/content-layout.
component.html file:

<div class="my-dark-theme">
<div class="mat-app-background">
<app-nav></app-nav>

<div class="container">
<router-outlet></router-outlet>

</div>

<app-footer></app-footer>
</div>

</div>

The height of the viewport the theme should affects is also defined:

.mat-app-background {
height: 100%;

}

1.8.2 Bootstrap

The ~/src/styles directory can be used for compiling bootstrap and storing other scss resources. To install a
custom bootstrap download the source files, extract bootstrap into ~/src/styles/bootstrap, then modify the
bootstrap/scss/_variables.scss. Include boostrap in the styles.scss:

@import './styles/bootstrap/scss/bootstrap.scss';

1.8.3 Install

mkdir src/styles

This is documentation for angular-folder-structure. If you find this useful please add your star to the project.

1.8. Styles Directory 11

https://github.com/mathisGarberg/angular-folder-structure

Angular Folder Structure

1.9 Default Directory Structure

This is the directory structure this repository recommends. It is listed here in one place as a reference.

1.9.1 About

Inspired by the original blog post, this structure uses all the directory structure parts and is a strait-forward installation.

1.9.2 Tree Structure

.
e2e

src
media
src

app
core (@app)
data
layout
modules
shared (@shared)

assets
environments (@env) [@env links to environment file]
styles

themes

1.9.3 Install

These instructions are to install this directory structure to a brand new ng created application:

mkdir media
ng generate module Core
ng generate module Shared
ng generate module Data
mkdir src/app/layout
mkdir src/app/modules
mkdir src/styles && mkdir src/styles/themes
json --version || npm install -g json
json -f tsconfig.json -I -c "this.compilerOptions.paths = {}"
json -f tsconfig.json -I -e "this.compilerOptions.paths['@app/*'] = ['app/core/*']" \

-e "this.compilerOptions.paths['@shared/*'] = ['app/shared/*']" \
-e "this.compilerOptions.paths['@env/*'] = ['environment/*']"

This is documentation for angular-folder-structure. If you find this useful please add your star to the project.

1.10 Neolithic Directory Structure

– Tom H Anderson <tom.h.anderson@gmail.com>

This is an alternative to the primary directory structure this repository promotes.

12 Chapter 1. Directory Tree Structure

https://github.com/mathisGarberg/angular-folder-structure
mailto:tom.h.anderson@gmail.com

Angular Folder Structure

1.10.1 About

This directory structure corrects ng creation of all files inside the app directory. The default ng structure forces all
code to exist as a subdirectory to app without giving a clear space for files which should exist beneath the app dir.

This directory structure moves ~/src/app to ~/src/modules/app then creates a symlink from ~/src to ~/
src/app (not shown and hidden from vscode) so ng will still place new files where they belong. By moving app to
a subdirectory of the modules it clears space for files which truly belong under the app module. This removes the
requirement of a core module.

All modules exist in the same directory. This removes the special handling for the app module and flattens the
modules.

1.10.2 Tree Structure

.
e2e

src
media
src

assets
environments (@env) [@env links to environment file]
modules

app (@app)
layout

data (@data)
shared (@shared)

styles
themes

1.10.3 Install

These instructions are to install this directory structure to a brand new ng created application:

mkdir media
mkdir src/module
mkdir src/styles && mkdir src/styles/themes
mv src/app src/module
mkdir src/module/app/layout
cd src && ln -s . app & cd .
sed -i .bak 's/.\/app/.\/module\/app/g' src/main.ts
ng generate module module/Shared
ng generate module module/Data
json --version || npm install -g json
json -f tsconfig.json -I -c "this.compilerOptions.paths = {}"
json -f tsconfig.json -I -e "this.compilerOptions.paths['@app/*'] = ['app/module/app/*
→˓']" \
-e "this.compilerOptions.paths['@shared/*'] = ['app/module/shared/*']" \
-e "this.compilerOptions.paths['@env/*'] = ['environment/*']" \
-e "this.compilerOptions.paths['@data/*'] = ['app/module/data/*']"

mkdir -p .vscode
test -f .vscode/settings.json || echo "{}" > .vscode/settings.json
json -f .vscode/settings.json -I -e "this['files.exclude'] = {'**src/app': true}"

This is documentation for angular-folder-structure. If you find this useful please add your star to the project.

1.10. Neolithic Directory Structure 13

https://github.com/mathisGarberg/angular-folder-structure

Angular Folder Structure

1.11 Path Alias

Path aliases simplify paths by giving a link to the path rather than using the the fully qualified path name. Using them
will make your code easier to read and maintain.

1.11.1 Create Aliases

Run this command to install the json program which we will use to modify tsconfig.json:

npm install -g json

To create an alias run this command from your root application directory:

json -f tsconfig.json -I -e "this.compilerOptions.paths['@app/*'] = ['app/core/*']"

The @app is the alias. The path, app/core/* in this example, is the path from the root src directory to the
directory you would like to alias.

1.11.2 Recommended Aliases

Recommended are aliases to core, shared, modules and environment. These aliases will simplify your develop-
ment:

json -f tsconfig.json -I -e "this.compilerOptions.paths['@app/*'] = ['app/core/*']"
json -f tsconfig.json -I -e "this.compilerOptions.paths['@shared/*'] = ['app/shared/*
→˓']"
json -f tsconfig.json -I -e "this.compilerOptions.paths['@modules/*'] = ['app/modules/
→˓*']"
json -f tsconfig.json -I -e "this.compilerOptions.paths['@env'] = ['environments/
→˓environment']"

Note the alias for @env goes directly to the environment file.

1.11.3 Using Aliases

When you have aliases defined such as @shared you can shortcut your use statements by using the alias:

import { SharedModule } from '../../shared/shared.module';

becomes:

import { SharedModule } from '@shared/shared.module';

The environment @env alias to a file is used this way:

import { environment } from '@env';

This is documentation for angular-folder-structure. If you find this useful please add your star to the project.

14 Chapter 1. Directory Tree Structure

core.html
shared.html
modules.html
https://github.com/mathisGarberg/angular-folder-structure

Angular Folder Structure

1.12 Furthur Reading

• Read the original blog post which started this module: How to define a highly scalable folder structure for your
Angular project

• Path Aliasing is a popular way to make your import statements more tidy and is used in this demonstration
application.

• Some Best Practices which follow the advice here closely.

1.12.1 Alternative Directory Structure Projects

These projects have similar goals to this project and understanding them will give a wider view of directory structure:
the problem and solutions.

• angular-starter This is a very popular starter kit with lots of tools built in. It is designed to be used when
starting a new application. Common directory parts include ~/src/styles.

• $ngx ROCKET Extensible Angular 8+ enterprise-grade project generator based on angular-cli with best prac-
tices from the community. Includes PWA, Cordova & Electron support, coding guides and more!

• angular-ngrx-material-starter Angular, NgRx, Angular CLI & Angular Material Starter Project

• Angular-Full-Stack Angular Full Stack project built using Angular 2+, Express, Mongoose and Node. Whole
stack in TypeScript.

This is documentation for angular-folder-structure. If you find this useful please add your star to the project.

1.13 Demonstration Application

See this application running on our demonstation application

This is documentation for angular-folder-structure. If you find this useful please add your star to the project.

1.14 Install Locally

You can install this application locally and run it. Assuming you already have typescript, npm, and ng installed,
clone this repository, cd to the directory and run npm install:

git clone https://github.com/mathisGarberg/angular-folder-structure.git
cd angular-folder-structure
npm install

Included with this package are some custom npm scripts. Here is a list of npm run commands and their descriptions:

npm start -> Run dev. server on http://localhost:4200/
npm run build -> Lint code and build app for production in dist folder
npm run test -> Run unit tests via Karma in watch mode
npm test:ci -> Lint code and run unit tests once for continuous integration
npm run e2e -> Run e2e tests using Protractor
npm run lint -> Lint code

1.12. Furthur Reading 15

https://itnext.io/choosing-a-highly-scalable-folder-structure-in-angular-d987de65ec7
https://itnext.io/choosing-a-highly-scalable-folder-structure-in-angular-d987de65ec7
https://christianlydemann.com/simpler-typescript-paths-with-path-aliases/
https://medium.com/@tomastrajan/6-best-practices-pro-tips-for-angular-cli-better-developer-experience-7b328bc9db81
https://github.com/PatrickJS/angular-starter
https://github.com/ngx-rocket/generator-ngx-rocket
https://github.com/tomastrajan/angular-ngrx-material-starter
https://github.com/DavideViolante/Angular-Full-Stack
https://github.com/mathisGarberg/angular-folder-structure
https://mathisgarberg.github.io/angular-folder-structure/
https://github.com/mathisGarberg/angular-folder-structure

Angular Folder Structure

1.14.1 Run Locally

To run the application type ng serve then browse to http://localhost:4200/

This is documentation for angular-folder-structure. If you find this useful please add your star to the project.

16 Chapter 1. Directory Tree Structure

http://localhost:4200/
https://github.com/mathisGarberg/angular-folder-structure

CHAPTER 2

Contributing

We welcome contributions of all kinds to this repository. Submit a PR or create an issue for anything you can help us
improve.

For documentation contributions we recommend you install restructuredText into your copy of vscode so you can lint
and preview your work before it is submitted.

This is documentation for angular-folder-structure. If you find this useful please add your star to the project.

17

https://docs.restructuredtext.net/index.html
https://github.com/mathisGarberg/angular-folder-structure

	Directory Tree Structure
	Structure Overview
	Media Directory
	Core Module
	Data Module
	Layout Directory
	Module Directory
	Shared Module
	Styles Directory
	Default Directory Structure
	Neolithic Directory Structure
	Path Alias
	Furthur Reading
	Demonstration Application
	Install Locally

	Contributing

