

 Navigation

 	
 index

 	
 next |

 	FOSHttpCacheBundle 1.0.0 documentation

FOSHttpCacheBundle

This is the documentation for the FOSHttpCacheBundle [https://github.com/FriendsOfSymfony/FOSHttpCacheBundle].
Use the FOSHttpCacheBundle to:

	Set path-based cache expiration headers via your app configuration;

	Set up an invalidation scheme without writing PHP code;

	Tag your responses and invalidate cache based on tags;

	Send invalidation requests with minimal impact on performance with the FOSHttpCache [https://github.com/FriendsOfSymfony/FOSHttpCache] library;

	Differentiate caches based on user type (e.g. roles);

	Easily implement your own HTTP cache client.

Contents

	Overview
	Installation

	Requirements

	Configuration

	Functionality

	License

	Features
	Caching Headers

	Invalidation

	Tagging

	User Context

	Helpers

	Testing

	Symfony HttpCache

	Reference
	Configuration

	Annotations

	The Cache Manager

	Glossary

	Testing
	Testing the Bundle

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

Overview

Installation

This bundle is available on Packagist [https://packagist.org/packages/friendsofsymfony/http-cache-bundle]. You can install it using Composer:

$ composer require friendsofsymfony/http-cache-bundle:~1.0

Then add the bundle to your application:

<?php
// app/AppKernel.php

public function registerBundles()
{
 $bundles = array(
 // ...
 new FOS\HttpCacheBundle\FOSHttpCacheBundle(),
 // ...
);
}

For most features, you also need to configure a caching proxy [http://foshttpcache.readthedocs.org/en/latest/proxy-configuration.html#proxy-configuration].

Requirements

SensioFrameworkExtraBundle

If you want to use this bundle’s annotations, install the
SensioFrameworkExtraBundle [http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/index.html]:

$ composer require sensio/framework-extra-bundle

And include it in your project:

 <?php
// app/AppKernel.php

public function registerBundles()
{
 $bundles = array(
 // ...
 new FOS\HttpCacheBundle\FOSHttpCacheBundle(),
 new Sensio\Bundle\FrameworkExtraBundle\SensioFrameworkExtraBundle(),
 // ...
);

ExpressionLanguage

If you wish to use expressions [http://symfony.com/doc/current/components/expression_language/index.html] in your annotations , you also need Symfony’s
ExpressionLanguage [http://symfony.com/doc/current/components/expression_language/introduction.html] component. If you’re not using full-stack Symfony 2.4 or
later, you need to explicitly add the component:

$ composer require symfony/expression-language

Configuration

Now you can configure the bundle under the fos_http_cache key. The
Features section introduces the bundle’s features. The
Configuration section lists all configuration options.

Functionality

This table shows where you can find specific functions.

	Functionality
	Annotations
	Configuration
	Manually

	Set Cache-Control headers
	(SensioFrameworkExtraBundle [http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/index.html])
	rules
	(Symfony [http://symfony.com/doc/current/book/http_cache.html#the-cache-control-header])

	Tag and invalidate
	@Tag
	rules
	cache manager

	Invalidate routes
	@InvalidateRoute
	invalidators
	cache manager

	Invalidate paths
	@InvalidatePath
	invalidators
	cache manager

License

This bundle is released under the MIT license.

Copyright (c) 2010-2015 Liip, http://www.liip.ch <contact@liip.ch>
 Driebit, http://www.driebit.nl <info@driebit.nl>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished
to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

Features

This part introduces the bundle’s features. Each feature section links to the
corresponding reference section.

	Caching Headers

	Invalidation
	Cache Manager

	Configuration

	Annotations

	Console Commands

	Tagging
	Basic Configuration

	Setting and Invalidating Tags
	Cache Manager

	Configuration

	Annotations

	User Context
	How It Works

	Configuration

	Generating Hashes

	Caching Hash Responses

	Helpers
	Flash Message Subscriber

	Testing
	ProxyTestCase
	Test Client

	Controlling Your Caching Proxy

	Symfony HttpCache
	Extending the correct HttpCache

	Subscribers

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Features

Caching Headers

Prerequisites: None

You can configure HTTP caching headers based on request and response properties.
This configuration approach is more convenient than manually setting cache headers [http://symfony.com/doc/current/book/http_cache.html#the-cache-control-header]
and an alternative to setting caching headers through annotations [http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/cache.html].

Set caching headers under the cache_control configuration section,
which consists of a set of rules. When the request matches all criteria under
match, the headers under headers will be set on the response.

A Response may already have cache headers set, e.g. by the controller method.
By default, the options that already exist are not overwritten, but additional
headers are added. You can force to overwrite the headers globally by setting
cache_control.defaults.overwrite: true to true, or on a per rule basis with
overwrite: true under headers.

This is an example configuration. For more, see the
cache_control configuration reference.

app/config/config.yml
fos_http_cache:
 cache_control:
 defaults:
 overwrite: true
 rules:
 # only match login.example.com
 -
 match:
 host: ^login.example.com$
 headers:
 cache_control: { public: false, max_age: 0, s_maxage: 0 }
 last_modified: "-1 hour"
 vary: [Accept-Encoding, Accept-Language]

 # match all actions of a specific controller
 -
 match:
 attributes: { _controller: ^AcmeBundle:Default:.* }
 additional_cacheable_status: [400]
 headers:
 cache_control: { public: true, max_age: 15, s_maxage: 30 }
 last_modified: "-1 hour"

 -
 match:
 path: ^/$
 headers:
 cache_control: { public: true, max_age: 64000, s_maxage: 64000 }
 last_modified: "-1 hour"
 vary: [Accept-Encoding, Accept-Language]

 # match everything to set defaults
 -
 match:
 path: ^/
 headers:
 overwrite: false
 cache_control: { public: true, max_age: 15, s_maxage: 30 }
 last_modified: "-1 hour"

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Features

Invalidation

Works with:

	Varnish [http://foshttpcache.readthedocs.org/en/latest/varnish-configuration.html#varnish-configuration]

	Nginx [http://foshttpcache.readthedocs.org/en/latest/nginx-configuration.html#nginx-configuration]

Preparation:

In order to invalidate cached objects, requests are sent to your caching proxy,
so first:

	configure your proxy [http://foshttpcache.readthedocs.org/en/latest/proxy-configuration.html#proxy-configuration]

	enable a proxy client

By invalidating a piece of content, you tell your HTTP caching proxy (Varnish
or Nginx) to no longer serve it to clients. When next requested, the proxy will
fetch a fresh copy from the backend application and serve that instead. By
refreshing a piece of content, a fresh copy will be fetched right away.

Tip

Invalidation can result in better performance compared to the validation
caching model, but is more complex. Read the
Introduction to Cache Invalidation [http://foshttpcache.readthedocs.org/en/latest/invalidation-introduction.html#invalidation-introduction]
of the FOSHttpCache documentation to learn about the differences and decide
which model is right for you.

Cache Manager

To invalidate single paths, URLs and routes manually, use the
invalidatePath($path, $headers) and invalidateRoute($route, $params, $headers) methods on
the cache manager:

$cacheManager = $container->get('fos_http_cache.cache_manager');

// Invalidate a path
$cacheManager->invalidatePath('/users')->flush();

// Invalidate a URL
$cacheManager->invalidatePath('http://www.example.com/users')->flush();

// Invalidate a route
$cacheManager->invalidateRoute('user_details', array('id' => 123))->flush();

// Invalidate a route or path with headers
$cacheManager->invalidatePath('/users', array('X-Foo' => 'bar'))->flush();
$cacheManager->invalidateRoute('user_details', array('id' => 123), array('X-Foo' => 'bar'))->flush();

To invalidate multiple representations matching a regular expression, call
invalidateRegex($path, $contentType, $hosts):

$cacheManager->invalidateRegex('.*', 'image/png', array('example.com'));

To refresh paths and routes, you can use refreshPath($path, $headers) and
refreshRoute($route, $params, $headers) in a similar manner. See
The Cache Manager for more information.

Tip

If you want to add a header (such as Authorization) to all
invalidation requests, you can use a
custom Guzzle client [http://foshttpcache.readthedocs.org/en/latest/proxy-clients.html#custom-guzzle-client] instead.

Configuration

You can add invalidation rules to your application configuration:

app/config/config.yml
fos_http_cache:
 invalidation:
 rules:
 -
 match:
 attributes:
 _route: "villain_edit|villain_delete"
 routes:
 villains_index: ~ # e.g., /villains
 villain_details: ~ # e.g., /villain/{id}

Now when a request to either route villain_edit or route villain_delete
returns a succesful response, both routes vilains_index and
villain_details will be purged. See the
invalidation configuration reference.

Annotations

Set the @InvalidatePath and @InvalidateRoute annotations to trigger
invalidation from your controllers:

use FOS\HttpCacheBundle\Configuration\InvalidatePath;

/**
 * @InvalidatePath("/articles")
 * @InvalidatePath("/articles/latest")
 * @InvalidateRoute("overview", params={"type" = "latest"})")
 * @InvalidateRoute("detail", params={"id" = {"expression"="id"}})")
 */
public function editAction($id)
{
}

See the Annotations reference.

Console Commands

This bundle provides commands to trigger cache invalidation from the command
line. You could also send invalidation requests with a command line tool like
curl or, in the case of varnish, varnishadm. But the commands simplify the task
and will automatically talk to all configured cache instances.

	fos:httpcache:invalidate:path accepts one or more paths and invalidates
each of them. See invalidatePath.

	fos:httpcache:refresh:path accepts one or more paths and refreshes each of
them. See Refreshing.

	fos:httpcache:invalidate:regex expects a regular expression and invalidates
all cache entries matching that expression. To invalidate your entire cache,
you can specify . (dot) which will match everything.
See invalidatePath.

	fos:httpcache:invalidate:tag accepts one or more tags and invalidates all
cache entries matching any of those tags. See Tagging.

If you need more complex interaction with the cache manager, best write your
own commands and use the cache manager to implement
your specific logic.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Features

Tagging

Works with: Varnish [http://foshttpcache.readthedocs.org/en/latest/varnish-configuration.html#varnish-tagging]

If your application has many intricate relationships between cached items,
which makes it complex to invalidate them by route, cache tagging will be
useful. It helps you with invalidating many-to-many relationships between
content items.

Cache tagging, or more precisely Tagged Cache Invalidation [http://blog.kevburnsjr.com/tagged-cache-invalidation], a simpler
version of Linked Cache Invalidation [http://tools.ietf.org/html/draft-nottingham-linked-cache-inv-03] (LCI), allows you to:

	assign tags to your applications’s responses (e.g., articles, article-42)

	invalidate the responses by tag [http://foshttpcache.readthedocs.org/en/latest/cache-invalidator.html#tags] (e.g., invalidate
all responses that are tagged article-42)

Basic Configuration

First configure your proxy [http://foshttpcache.readthedocs.org/en/latest/varnish-configuration.html#varnish-tagging] for tagging.
Then enable tagging in your application configuration:

fos_http_cache:
 cache_manager:
 tags:
 enabled: true

For more information, see tags.

Setting and Invalidating Tags

You can tag responses in three ways: with the cache manager, configuration and
annotations.

Cache Manager

Use tagResponse($response, $tags) to set tags on a response:

use Symfony\Component\HttpFoundation\Response;

class NewsController
{
 public function articleAction($id)
 {
 $response = new Response('Some news article');
 $this->cacheManager->tagResponse($response, array('news', 'news-' . $id));

 return $response;
 }
}

Then call invalidateTags($tags) to invalidate the tags you set:

class NewsController
{
 // ...

 public function editAction($id)
 {
 // ...

 $this->cacheManager->invalidateTags(array('news-' . $id))->flush();

 // ...
 }
}

See the Cache Manager reference for full details.

Configuration

Alternatively, you can configure rules
for setting and invalidating tags:

// app/config/config.yml
fos_http_cache:
 tags:
 rules:
 -
 match:
 path: ^/news/article
 tags: [news]

Now if a safe request matches the criteria under match, the response
will be tagged with news. When an unsafe request matches, the tag news
will be invalidated.

Annotations

Add the @Tag annotations to your controllers to set and invalidate tags:

use FOS\HttpCacheBundle\Configuration\Tag;

class NewsController
{
 /**
 * @Tag("news", expression="'news-'~id")
 */
 public function articleAction($id)
 {
 // Assume $id equals 123
 }
}

If articleAction handles a safe request, a tag news-123 is set
on the response. If a client tries to update or delete news article 123 with an
unsafe request to articleAction, such as POST or DELETE, tag news-123
is invalidated.

See the @Tag reference for full details.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Features

User Context

Works with:

	Varnish [http://foshttpcache.readthedocs.org/en/latest/varnish-configuration.html#varnish-user-context]

	Symfony HttpCache

If your application serves different content depending on the user’s group
or context (guest, editor, admin), you can cache that content per user context.
Each user context (group) gets its own unique hash, which is then used to vary
content on. The event subscriber responds to hash requests and sets the Vary
header. This way, you can differentiate your content between user groups while
not having to store caches for each individual user.

Note

Please read the User Context [http://foshttpcache.readthedocs.org/en/latest/user-context.html#user-context]
chapter in the FOSHttpCache documentation before continuing.

How It Works

These five steps resemble the Overview in the FOSHttpCache documentation.

	A client [http://foshttpcache.readthedocs.org/en/latest/invalidation-introduction.html#term-client] requests /foo.

	The caching proxy [http://foshttpcache.readthedocs.org/en/latest/invalidation-introduction.html#term-caching-proxy] receives the request and holds it.
It first sends a hash request to the context hash route.

	The application [http://foshttpcache.readthedocs.org/en/latest/invalidation-introduction.html#term-application] receives the hash request. An event
subscriber (UserContextSubscriber) aborts the request immediately after
the Symfony2 firewall was applied. The application calculates the hash
(HashGenerator) and then sends a response with the hash in a custom
header (X-User-Context-Hash by default).

	The caching proxy receives the hash response, copies the hash header to the
client’s original request for /foo and restarts that request.

	If the response to /foo should differ per user context, the application
sets a Vary: X-User-Context-Hash header. The appropriate user context
dependent representation of /foo will then be returned to the client.

Configuration

First configure your caching proxy and application.
Then you can enable the subscriber with the default settings:

app/config/config.yml
fos_http_cache:
 user_context:
 enabled: true

Generating Hashes

When a context hash request is received, the HashGenerator is used to build
the context information. The generator does so by calling on one or more
context providers.

The bundle includes a simple role_provider that determines the hash from the
user’s roles. To enable it:

app/config/config.yml
fos_http_cache:
 user_context:
 role_provider: true

Alternatively, you can create a custom context provider.

Caching Hash Responses

To improve User Context Caching performance, you should cache the hash responses.
You can do so by configuring hash_cache_ttl.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Features

Helpers

	Flash Message Subscriber

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Features

 	Helpers

Flash Message Subscriber

Prerequisites: none

When flash messages are rendered into the content of a page, you can’t cache
the page anymore. When enabled, this subscriber reads all flash messages into a
cookie, leading to them not being there anymore when rendering the template.
This will return the page with a set-cookie header which you of course must
make sure to not cache in varnish. By default, varnish will simply not cache
the whole response when there is a set-cookie header. (Maybe you could do
something more clever — if you do, please provide a VCL example.)

The flash message subscriber is automatically enabled if you configure any of
the options under flash_message.

app/config.yml
fos_http_cache:
 flash_message:
 enabled: true

On the client side, you need some JavaScript code that reads out the flash
messages from the cookie and writes them into the DOM, then deletes the cookie
to only show the flash message once. Something along these lines:

function getCookie(cname)
{
 var name = cname + "=";
 var ca = document.cookie.split(';');
 for(var i=0; i<ca.length; i++) {
 var c = ca[i].trim();
 if (c.indexOf(name)==0) {
 return c.substring(name.length,c.length);
 }
 }

 return false;
}

function showFlash()
{
 var cookie = getCookie("flashes"); // fos_http_cache.flash_message.name

 if (!cookie) {
 return;
 }

 var flashes = JSON.parse(cookie);

 // show flashes in your DOM...

 document.cookie = "flashes=; expires=Thu, 01 Jan 1970 00:00:01 GMT;";
}

// register showFlash on the page ready event.

Your VCL configuration should filter out this cookie [https://www.varnish-cache.org/trac/wiki/VCLExampleRemovingSomeCookies]
on subsequent requests, in case the JavaScript failed to remove it.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Features

Testing

Works with:

	Varnish [http://foshttpcache.readthedocs.org/en/latest/varnish-configuration.html#varnish-configuration]

	Nginx [http://foshttpcache.readthedocs.org/en/latest/nginx-configuration.html#nginx-configuration]

Preparation:

	Configure caching proxy [http://foshttpcache.readthedocs.org/en/latest/proxy-configuration.html#proxy-configuration]

	Your application must be reachable from the caching proxy through HTTP, so you
need to have a web server running. If you already have a web server installed
for development, you can use that. Alternatively, on PHP 5.4 or newer, you can
use PHP’s built-in web server, for instance through
FOS\HttpCache\Tests\Functional\WebServerListener.

ProxyTestCase

If you wish to test your application caching and invalidation strategies
against a live Varnish or Nginx instance, extend your test classes from
ProxyTestCase. ProxyTestCase is an abstract base test class that
in its turn extends Symfony’s WebTestCase. It offers some convenience
methods for cache testing:

class YourTest extends ProxyTestCase
{
 public function testCachingHeaders()
 {
 // Retrieve an URL from your application
 $response = $this->getResponse('/your/page');

 // Assert the response was a cache miss (came from the backend
 // application)
 $this->assertMiss($response);

 // Assume the URL /your/page sets caching headers. If we retrieve
 // it again, we should have a cache hit (response delivered by the
 // caching proxy):
 $response = $this->getResponse('/your/page');
 $this->assertHit($response);
 }
}

Test Client

The getResponse() method calls getHttpClient() to retrieve a test client. You
can use this client yourself to customise the requests. Note that the test
client must be enabled in your configuration.
By default, it is enabled when you access your application in debug mode and
you have configured a proxy client
with base_url.

Controlling Your Caching Proxy

You can also use ProxyTestCase to control your caching proxy. First
configure the proxy server:

// app/config/config_test.yml
fos_http_cache:
 test:
 proxy_server:
 varnish:
 binary: /usr/sbin/varnishd
 port: 8080
 config_file: /etc/varnish/your-config.vcl

See also

test configuration.

The custom @clearCache PHPUnit annotation will start the proxy server
(if it was not yet running) and clear any previously cached content. This
enables you to write isolated test cases:

use FOS\HttpCacheBundle\Test\ProxyTestCase;

class YourTest extends ProxyTestCase
{
 /**
 * @clearCache
 */
 public function testMiss()
 {
 // We can be sure this is a miss, because even if the content was
 // cached before, it has been cleared from the caching proxy.
 $this->assertMiss($this->getResponse('/your/page'));
 }
}

You can annotate single test methods as well as classes with @clearCache.
An annotated test class will restart and clear the caching proxy for each test
case contained in the class.

You can also manually control your caching proxy:

use FOS\HttpCacheBundle\Test\ProxyTestCase;

class YourTest extends ProxyTestCase
{
 public function testMiss()
 {
 // Start caching proxy
 $this->getProxy()->start();

 // Clear proxy cache
 $this->getProxy()->clear();

 $this->assertMiss($this->getResponse('/your/page'));

 // Stop caching proxy
 $this->getProxy()->stop();
 }
}

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Features

Symfony HttpCache

Symfony comes with a built-in reverse proxy written in PHP, known as
HttpCache. While it is certainly less efficient
than using Varnish or Nginx, it can still provide considerable performance
gains over an installation that is not cached at all. It can be useful for
running an application on shared hosting for instance
(see the Symfony HttpCache documentation [http://symfony.com/doc/current/book/http_cache.html#symfony-reverse-proxy]).

You can use features of this library with the Symfony HttpCache. The basic
concept is to use event subscribers on the HttpCache class.

Warning

Symfony HttpCache support is currently limited to following features:

	User context

Extending the correct HttpCache

Instead of extending Symfony\Bundle\FrameworkBundle\HttpCache\HttpCache, your
AppCache should extend FOS\HttpCacheBundle\SymfonyCache\EventDispatchingHttpCache:

require_once __DIR__.'/AppKernel.php';

use FOS\HttpCacheBundle\SymfonyCache\EventDispatchingHttpCache;

class AppCache extends EventDispatchingHttpCache
{
}

Tip

If your class already needs to extend a different class, simply copy the event
handling code from the EventDispatchingHttpCache into your AppCache class.
The drawback is that you need to manually check whether you need to adjust your
AppCache each time you update the FOSHttpCache library.

By default, the event dispatching cache kernel registers all subscribers it knows
about. You can disable subscribers, or customize how they are instantiated.

If you do not need all subscribers, or need to register some yourself to
customize their behaviour, overwrite getOptions and return the right bitmap
in fos_default_subscribers. Use the constants provided by the cache kernel:

public function getOptions()
{
 return array(
 'fos_default_subscribers' => self::SUBSCRIBER_NONE,
);
}

To register subscribers that you need to instantiate yourself, overwrite
getDefaultSubscribers:

use FOS\HttpCache\SymfonyCache\UserContextSubscriber;

// ...

public function getDefaultSubscribers()
{
 // get enabled subscribers with default settings
 $subscribers = parent::getDefaultSubscribers();

 $subscribers[] = new UserContextSubscriber(array(
 'session_name_prefix' => 'eZSESSID',
));

 $subscribers[] = new CustomSubscriber();

 return $subscribers;
}

Subscribers

Each feature has its subscriber. Subscribers are provided by the FOSHttpCache [https://github.com/FriendsOfSymfony/FOSHttpCache]
library. You can find the documentation for the subscribers in the
FOSHttpCache Symfony Cache documentation section <foshttpcache:symfony-cache-configuration>.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

Reference

This part is a full description of all available configuration options,
annotations and public methods.

	Configuration
	proxy_client

	cache_manager

	cache_control

	invalidation

	tags

	user_context

	Flash Message Configuration

	debug

	match

	test

	Annotations
	@InvalidatePath

	@InvalidateRoute

	@Tag

	The Cache Manager
	invalidatePath

	Refreshing

	tagResponse()

	invalidateTags()

	Flushing

	Glossary

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Reference

Configuration

The configuration reference describes all app/config/config.yml options
for the bundle.

	proxy_client
	varnish

	nginx

	default

	Custom Guzzle Client

	Caching Proxy Configuration

	cache_manager
	enabled

	generate_url_type

	cache_control
	rules

	invalidation
	enabled

	rules

	tags
	enabled

	header

	rules

	user_context
	Configuration

	Custom Context Providers

	Flash Message Configuration
	enabled

	name

	path

	host

	secure

	debug
	enabled

	header

	match
	host

	path

	methods

	ips

	attributes

	additional_cacheable_status

	match_response

	test
	proxy_server

	client

	cache_header

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Reference

 	Configuration

proxy_client

The proxy client sends invalidation requests to your caching proxy. It must be
configured for the Cache Manager to work,
which wraps the proxy client and is the usual entry point for application
interaction with the caching proxy. The proxy client is also available as a
service (fos_http_cache.proxy_client) that you can use directly.

varnish

app/config/config.yml
fos_http_cache:
 proxy_client:
 varnish:
 servers: 123.123.123.1:6060, 123.123.123.2
 base_url: yourwebsite.com

servers

type: array

Comma-separated list of IP addresses or host names of your
caching proxy servers. The port those servers will be contacted
defaults to 80; you can specify a different port with :<port>.

base_url

type: string

The hostname (or base URL) where users access your web application. The base
URL may contain a path. If you access your web application on a port other than
80, include that port:

app/config/config.yml
fos_http_cache:
 proxy_client:
 varnish:
 base_url: yourwebsite.com:8000

Warning

Double-check base_url, for if it is mistyped, no content will be
invalidated.

See the FOSHttpCache library docs [http://foshttpcache.readthedocs.org/en/latest/varnish-configuration.html#varnish-configuration]
on how to configure Varnish.

nginx

app/config/config.yml
fos_http_cache:
 proxy_client:
 nginx:
 servers: 123.123.123.1:6060, 123.123.123.2
 base_url: yourwebsite.com
 purge_location: /purge

For servers and base_url, see above.

purge_location

type: string

Separate location that purge requests will be sent to.

See the FOSHttpCache library docs [http://foshttpcache.readthedocs.org/en/latest/nginx-configuration.html#nginx-configuration]
on how to configure Nginx.

default

type: enum options: varnish, nginx

app/config/config.yml
fos_http_cache:
 proxy_client:
 default: varnish

The default proxy client that will be used by the cache manager.
You can use Nginx and Varnish in parallel. If you need to cache and
invalidate pages in both, you can configure both in this bundle.
The cache manager however will only use the default client.

Custom Guzzle Client

By default, the proxy client instantiates a Guzzle client [http://guzzle3.readthedocs.org/] to talk with the
caching proxy. If you need to customize the requests, for example to send a
basic authentication header, you can configure a service and specify that in
the guzzle_client option. A sample service definition for using basic
authentication looks like this:

app/config/config.yml
acme.varnish.guzzle.client:
 class: Guzzle\Service\Client
 calls:
 - [setDefaultOption, [auth, [%varnish.username%, %varnish.password%, basic]]]

Caching Proxy Configuration

You need to configure your caching proxy (Varnish or Nginx) to work with this
bundle. Please refer to the FOSHttpCache library’s documentation [http://foshttpcache.readthedocs.org/en/latest/proxy-configuration.html#proxy-configuration]
for more information.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Reference

 	Configuration

cache_manager

The cache manager is the primary interface to invalidate caches. It is enabled
by default if a Proxy Client is configured.

app/config/config.yml
fos_http_cache:
 cache_manager:
 enabled: true
 generate_url_type: true

enabled

type: enum options: auto, true, false

Whether the cache manager service should be enabled. By default, it is enabled
if a proxy client is configured. It can not be enabled without a proxy client.

generate_url_type

type: enum options: auto, true, false, relative, network

The $referenceType to be used when generating URLs in the invalidateRoute and
refreshRoute calls. True results in absolute URLs including the current domain,
false generates a path without domain, needing a base_url to be configured
on the proxy client. When set to auto, the value is determined based on base_url
of the default proxy client.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Reference

 	Configuration

cache_control

The configuration contains a number of rules. When a request matches the
parameters described in the match section, the headers as defined under
headers will be set on the response, if they are not already set. Rules are
checked in the order specified, where the first match wins.

A global setting and a per rule overwrite option allow to overwrite the
cache headers even if they are already set.

app/config/config.yml
fos_http_cache:
 cache_control:
 defaults:
 overwrite: false
 rules:
 # only match login.example.com
 -
 match:
 host: ^login.example.com$
 headers:
 overwrite: true
 cache_control:
 public: false
 max_age: 0
 s_maxage: 0
 last_modified: "-1 hour"
 vary: [Accept-Encoding, Accept-Language]

 # match all actions of a specific controller
 -
 match:
 attributes: { _controller: ^Acme\\TestBundle\\Controller\\DefaultController::.* }
 additional_cacheable_status: [400]
 headers:
 cache_control:
 public: true
 max_age: 15
 s_maxage: 30
 last_modified: "-1 hour"

 -
 match:
 path: ^/$
 headers:
 cache_control:
 public: true
 max_age: 64000
 s_maxage: 64000
 last_modified: "-1 hour"
 vary: [Accept-Encoding, Accept-Language]

 # match everything to set defaults
 -
 match:
 path: ^/
 headers:
 cache_control:
 public: true
 max_age: 15
 s_maxage: 30
 last_modified: "-1 hour"

rules

type: array

A set of cache control rules consisting of match criteria and header instructions.

match

type: array

A match definition that when met, will execute the rule effect.
See match.

headers

type: array

YAML alias for same headers for different matches

If you have many rules that should end up with the same headers, you
can use YAML “aliases” within the same configuration file to avoid
redundant configuration. The &alias notation creates an alias, the
<< : *alias notation inserts the aliased configuration. You can then
still overwrite parts of the aliased configuration. An example would be:

rules:
 -
 match:
 path: ^/products.*
 headers: &public
 cache_control:
 public: true
 max_age: 600
 s_maxage: 300
 reverse_proxy_ttl: 3600
 -
 match:
 path: ^/brands.*
 headers:
 << : *public
 cache_control:
 max_age: 1800

In the headers section, you define what headers to set on the response if
the request was matched.

Headers are merged. If the response already has certain cache directives
set, they are not overwritten. The configuration can thus specify defaults
that may be changed by controllers or services that handle the response, or
@Cache annotations.

The listener that applies the rules is triggered at priority 10, which
makes it handle before the @Cache annotations from the
SensioFrameworkExtraBundle are evaluated. Those annotations unconditionally
overwrite cache directives.

The only exception is responses that only have the no-cache
directive. This is the default value for the cache control and there is no
way to determine if it was manually set. If the full header is only
no-cache, the whole cache control is overwritten.

You can prevent the cache control on specific requests by injecting the
service fos_http_cache.event_listener.cache_control and calling
setSkip() on it. If this method is called, no cache rules are applied.

cache_control

type: array

The map under cache_control is set in a call to Response::setCache().
The names are specified with underscores in yml, but translated to - for
the Cache-Control header.

You can use the standard cache control directives:

	max_age time in seconds;

	s_maxage time in seconds for proxy caches (also public caches);

	private true or false;

	public true or false;

	no_cache true or false (use exclusively to support HTTP 1.0);

app/config/config.yml
fos_http_cache:
 cache_control:
 rules:
 -
 headers:
 cache_control:
 public: true
 max_age: 64000
 s_maxage: 64000

If you use no_cache, you should not set any other options. This will make
Symfony properly handle HTTP 1.0, setting the Pragma: no-cache and
Expires: -1 headers. If you add other cache_control options, Symfony will
not do this handling. Note that Varnish 3 does not respect no-cache by
default. If you want it respected, add your own logic to vcl_fetch.

Note

The cache-control headers are described in detail in RFC 2616 [http://tools.ietf.org/html/rfc2616.html#section-14.9].

Extra Cache Control Directives

You can also set headers that Symfony considers non-standard, some coming from
RFCs extending HTTP/1.1. The following options are supported:

	must_revalidate (RFC 2616 [http://tools.ietf.org/html/rfc2616.html#section-14.9])

	proxy_revalidate (RFC 2616 [http://tools.ietf.org/html/rfc2616.html#section-14.9])

	no_transform (RFC 2616 [http://tools.ietf.org/html/rfc2616.html#section-14.9])

	stale_if_error: seconds (RFC 5861 [http://tools.ietf.org/html/rfc5861.html])

	stale_while_revalidate: seconds (RFC 5861 [http://tools.ietf.org/html/rfc5861.html])

The stale directives need a parameter specifying the time in seconds how long
a cache is allowed to continue serving stale content if needed. The other
directives are flags that are included when set to true.

app/config/config.yml
fos_http_cache:
 cache_control:
 rules:
 -
 path: ^/$
 headers:
 cache_control:
 stale_while_revalidate: 9000
 stale_if_error: 3000
 must_revalidate: true
 proxy_revalidate: true
 no_transform: true

last_modified

type: string

The input to the last_modified is used for the Last-Modified header.
This value must be a valid input to DateTime.

app/config/config.yml
fos_http_cache:
 cache_control:
 rules:
 -
 headers:
 last_modified: "-1 hour"

Hint

Setting an arbitrary last modified time allows clients to send
If-Modified-Since requests. Varnish can handle these to serve data
from the cache if it was not invalidated since the client requested it.

vary

type: string

You can set the vary option to an array that defines the contents of the
Vary header when matching the request. This adds to existing Vary headers,
keeping previously set Vary options.

app/config/config.yml
fos_http_cache:
 cache_control:
 rules:
 -
 headers:
 vary: My-Custom-Header

reverse_proxy_ttl

type: integer

Set a X-Reverse-Proxy-TTL header for reverse proxy time-outs not driven by s-maxage.

By default, reverse proxies use the s-maxage of your Cache-Control header
to know how long it should cache a page. But by default, the s-maxage is also
sent to the client. Any caches on the internet, for example at an internet
provider or in the office of a surfer, might look at s-maxage and
cache the page if it is public. This can be a problem, notably when you do
explicit cache invalidation. You might want your reverse
proxy to keep a page in cache for a long time, but outside caches should not
keep the page for a long duration.

One option could be to set a high s-maxage for the proxy and simply rewrite
the response to remove or reduce the s-maxage. This is not a good solution
however, as you start to duplicate your caching rule definitions.

This bundle helps you to build a better solution: You can specify the option
reverse_proxy_ttl in the headers section to get a special header that you can
then use on the reverse proxy:

app/config/config.yml
fos_http_cache:
 cache_control:
 rules:
 -
 headers:
 reverse_proxy_ttl: 3600
 cache_control:
 public: true
 s_maxage: 60

This example adds the header X-Reverse-Proxy-TTL: 3600 to your responses.
Varnish by default knows nothing about this header. To make this solution work,
you need to extend your varnish vcl_fetch configuration:

sub vcl_fetch {
 if (beresp.http.X-Reverse-Proxy-TTL) {
 C{
 char *ttl;
 ttl = VRT_GetHdr(sp, HDR_BERESP, "\024X-Reverse-Proxy-TTL:");
 VRT_l_beresp_ttl(sp, atoi(ttl));
 }C
 unset beresp.http.X-Reverse-Proxy-TTL;
 }
}

Note that there is a beresp.ttl field in VCL but unfortunately it can only
be set to absolute values and not dynamically. Thus we have to revert to a C
code fragment.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Reference

 	Configuration

invalidation

Configure invalidation to invalidate
routes when some other routes are requested.

app/config/config.yml
fos_http_cache:
 invalidation:
 enabled: true # Defaults to 'auto'
 rules:
 -
 match:
 attributes:
 _route: "villain_edit|villain_delete"
 routes:
 villains_index: ~ # e.g., /villains
 villain_details: # e.g., /villain/{id}
 ignore_extra_params: false # Defaults to true

enabled

type: enum, default: auto, options: true, false, auto

Enabled by default if you have configured the cache manager with
a proxy client.

rules

type: array

A set of invalidation rules. Each rule consists of a match definition and
one or more routes that will be invalidated. Rules are checked in the order
specified, where the first match wins. The routes are invalidated when:

	the HTTP request matches all criteria defined under match

	the HTTP response is successful.

match

type: array

A match definition that when met, will execute the rule effect.
See match.

routes

type: array

A list of route names that will be invalidated.

ignore_extra_params

type: boolean default: true

Parameters from the request are mapped by name onto the route to be
invalidated. By default, any request parameters that are not part of the
invalidated route are ignored. Set ignore_extra_params to false
to set those parameters anyway.

A more detailed explanation:
assume route villain_edit resolves to /villain/{id}/edit.
When a client successfully edits the details for villain with id 123 (at
/villain/123/edit), the index of villains (at /villains) can be
invalidated (purged) without trouble. But which villain details page should we
purge? The current request parameters are automatically matched against
invalidate route parameters of the same name. In the request to
/villain/123/edit, the value of the id parameter is 123. This value
is then used as the value for the id parameter of the villain_details
route. In the end, the page villain/123 will be purged.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Reference

 	Configuration

tags

Create tag rules in your application configuration to set tags on responses
and invalidate them. See the tagging feature chapter
for an introduction.

enabled

type: enum, default: auto, options: true, false, auto

Enabled by default if you have configured the cache manager with
a proxy client.

Enables tag annotations and rules. If you want to use tagging, it is recommended
that you set this to true so you are notified of missing dependencies:

app/config/config.yml
fos_http_cache:
 tags:
 enabled: true

header

type: string default: X-Cache-Tags

Custom HTTP header that tags are stored in.

rules

type: array

Write your tagging rules by combining a match definition with a tags
array. Rules are checked in the order specified, where the first match wins.
These tags will be set on the response when all of the following are true:

	the HTTP request matches all criteria defined under match

	the HTTP request is safe (GET or HEAD)

	the HTTP response is considered cacheable (override with
additional_cacheable_status and match_response).

When the definition matches an unsafe request (so 2 is false), the tags will be
invalidated instead.

match

type: array

A match definition that when met, will execute the rule effect.
See match.

tags

type: array

Tags that should be set on responses to safe requests; or invalidated for
unsafe requests.

app/config/config.yml
fos_http_cache:
 tags:
 rules:
 -
 match:
 path: ^/news
 tags: [news-section]

tag_expressions

type: array

You can dynamically refer to request attributes using
expressions. Assume a route
/articles/{id}. A request to path /articles/123 will set/invalidate
tag articles-123 with the following configuration:

app/config/config.yml
fos_http_cache:
 tags:
 rules:
 -
 match:
 path: ^/articles
 tags: [articles]
 tag_expressions: ["'article-'~id"]

The expression has access to all request attributes and the request itself
under the name request.

You can combine tags and tag_expression in one rule.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Reference

 	Configuration

user_context

This chapter describes how to configure user context caching. See
the User Context Feature chapter for
an introduction to the subject.

Configuration

Caching Proxy Configuration

Varnish

Set up Varnish caching proxy as explained in the
user context documentation [http://foshttpcache.readthedocs.org/en/latest/user-context.html#user-context].

Symfony reverse proxy

Set up Symfony reverse proxy as explained in the Symfony HttpCache documentation.

Context Hash Route

Then add the route you specified in the hash lookup request to the Symfony2
routing configuration, so that the user context event subscriber can get
triggered:

app/config/routing.yml
user_context_hash:
 path: /user-context-hash

Important

If you are using Symfony2 security [http://symfony.com/doc/current/book/security.html]
for the hash generation, make sure that this route is inside the firewall
for which you are doing the cache groups.

Note

This route is never actually used, as the context event subscriber will act
before a controller would be called. But the user context is handled only
after security happened. Security in turn only happens after the routing.
If the routing does not find a route, the request is aborted with a ‘not
found’ error and the listener is never triggered.

The event subscriber has priority 7 which makes it act right after the
security listener which has priority 8. The reason to use a listener
here rather than a controller is that many expensive operations happen
later in the handling of the request. Having this listener avoids those.

enabled

type: enum default: auto options: true, false, auto

Set to true to explicitly enable the subscriber. The subscriber is
automatically enabled if you configure any of the user_context options.

app/config/config.yml
fos_http_cache:
 user_context:
 enabled: true

hash_header

type: string default: X-User-Context-Hash

The name of the HTTP header that the event subscriber will store the
context hash in when responding to hash requests. Every other response will
vary on this header.

match

accept

type: string default: application/vnd.fos.user-context-hash

HTTP Accept header that hash requests use to get the context hash. This must
correspond to your caching proxy configuration.

method

type: string

HTTP method used by context hash requests, most probably either GET or
HEAD. This must correspond to your caching proxy configuration.

matcher_service

type: string default: fos_http_cache.user_context.request_matcher

Id of a service that determines whether a request is a context hash request.
The service must implement Symfony\Component\HttpFoundation\RequestMatcherInterface.
If set, accept and method will be ignored.

hash_cache_ttl

type: integer default: 0

Time in seconds that context hash responses will be cached. Value 0 means
caching is disabled. For performance reasons, it makes sense to cache the hash
generation response; after all, each content request may trigger a hash
request. However, when you decide to cache hash responses, you must invalidate
them when the user context changes, particularly when the user logs in or out.
This bundle provides a logout handler that takes care of this for you.

logout_handler

The logout handler will invalidate any cached user hashes when the user logs
out.

For the handler to work:

	your caching proxy should be configured for BANs [http://foshttpcache.readthedocs.org/en/latest/proxy-configuration.html#proxy-configuration]

	Symfony’s default behaviour of regenerating the session id when users log in
and out must be enabled (invalidate_session).

Add the handler to your firewall configuration:

app/config/security.yml
security:
 firewalls:
 secured_area:
 logout:
 invalidate_session: true
 handlers:
 - fos_http_cache.user_context.logout_handler

enabled

type: enum default: auto options: true, false, auto

Defauts to auto, which enables the logout handler service if a
proxy client is configured.
Set to true to explicitly enable the logout handler. This will throw an
exception if no proxy client is configured.

user_identifier_headers

type: array default: ['Cookie', 'Authorization']

Determines which HTTP request headers the context hash responses will vary on.

If the hash only depends on the Authorization header and should be cached
for 15 minutes, configure:

app/config/config.yml
fos_http_cache:
 user_context:
 user_identifier_headers:
 - Authorization
 hash_cache_ttl: 900

role_provider

type: boolean default: false

One of the most common scenarios is to differentiate the content based on the
roles of the user. Set role_provider to true to determine the hash from
the user’s roles. If there is a security context that can provide the roles,
all roles are added to the hash:

app/config/config.yml
fos_http_cache
 user_context:
 role_provider: true

Custom Context Providers

Custom providers need to:

	implement FOS\HttpCache\UserContext\ContextProviderInterface

	be tagged with fos_http_cache.user_context_provider.

The updateUserContext(UserContext $context) method is called when the hash
is generated.

acme.demo_bundle.my_service:
 class: "%acme.demo_bundle.my_service.class%"
 tags:
 - { name: fos_http_cache.user_context_provider }

<service id="acme.demo_bundle.my_service" class="%acme.demo_bundle.my_service.class%">
 <tag name="fos_http_cache.user_context_provider" />
</service>

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Reference

 	Configuration

Flash Message Configuration

The flash message listener is a
tool to avoid rendering the flash message into the content of a page. It is
another building brick for caching pages for logged in users.

app/config/config.yml
fos_http_cache:
 flash_message:
 enabled: true
 name: flashes
 path: /
 host: null
 secure: false

enabled

type: boolean default: false

This event subscriber is disabled by default. You can set enabled to true if
the default values for all options are good for you. When you configure any of
the options, the subscriber is automatically enabled.

name

type: string default: flashes
Set the name of the cookie.

path

type: string default: /

The cookie path to use.

host

type: string

Set the host for the cookie, e.g. to share among subdomains.

secure

type: boolean default: false

Whether the cookie may only be passed through HTTPS.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Reference

 	Configuration

debug

Enable the debug parameter to set a custom header (X-Cache-Debug)
header on each response. You can then
configure your caching proxy [http://foshttpcache.readthedocs.org/en/latest/varnish-configuration.html#varnish-debugging] to add
debug information when that header is present:

app/config/config.yml
fos_http_cache:
 debug:
 enabled: true
 header: Please-Send-Debug-Infos

enabled

type: enum default: auto options: true, false, auto

The default value is %kernel.debug%, triggering the header when you are in
dev mode but not in prod mode.

header

type: string default: X-Cache-Debug

Custom HTTP header that triggers the caching proxy to set debugging information
on the response.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Reference

 	Configuration

match

The cache, invalidation and
tag rule configurations all use match sections
to limit the configuration to specific requests and responses.

Each match section contains one or more match criteria for requests.
All criteria are regular expressions. For instance:

match:
 host: ^login.example.com$
 path: ^/$

host

type: string

A regular expression to limit the caching rules to specific hosts, when you
serve more than one host from your Symfony application.

Tip

To simplify caching of a site that at the same time has frontend
editing, put the editing on a separate (sub-)domain. Then define a first
rule matching that domain with host and set max-age: 0 to make sure
your caching proxy never caches the editing domain.

path

type: string

For example, path: ^/ will match every request. To only match the home
page, use path: ^/$.

methods

type: array

Can be used to limit caching rules to specific HTTP methods like GET requests.
Note that the rule effect is not applied to unsafe methods, not
even when you set the methods here:

match:
 methods: [PUT, DELETE]

ips

type: array

An array that can be used to limit the rules to a specified set of request
client IP addresses.

Note

If you use a caching proxy and want specific IPs to see different headers,
you need to forward the client IP to the backend. Otherwise, the backend
only sees the caching proxy IP. See Trusting Proxies [http://symfony.com/doc/current/components/http_foundation/trusting_proxies.html] in the Symfony
documentation.

attributes

type: array

An array of request attributes to match against. Each attribute is interpreted
as a regular expression.

_controller

type: string

Controller name regular expression. Note that this is the controller name used
in the route, so it depends on your route configuration whether you need
Acme\\TestBundle\\Controller\\NameController::hello or acme_test.controller.name:helloAction
for controllers as services [http://symfony.com/doc/current/cookbook/controller/service.html].

Warning

Symfony always expands the short notation in route definitions. Even if you
define your route as AcmeTestBundle:Name:hello you still need to use
the long form here. If you use a service however, the compiled route still
uses the service name and you need to match on that. If you mixed both, you
can do a regular expression like ^(Acme\\TestBundle|acme_test.controller).

_route

type: string

Route name regular expression. To match a single route:

match:
 attributes:
 route: ^articles_index$

To match multiple routes:

match:
 attributes:
 route: ^articles.*|news$

Note that even for the request attributes, your criteria are interpreted as
regular expressions.

match:
 attributes: { _controller: ^AcmeBundle:Default:.* }

additional_cacheable_status

type: array

A list of additional HTTP status codes of the response for which to also apply
the rule.

match:
 additional_cacheable_status: [400, 403]

match_response

type: string

Note

match_response requires the ExpressionLanguage component.

An ExpressionLanguage expression to decide whether the response should have
the effect applied. If not set, headers are applied if the request is
safe. The expression can access the Response object with the
response variable. For example, to handle all failed requests, you can do:

-
 match:
 match_response: response.getStatusCode() >= 400
 # ...

You cannot set both match_response and additional_cacheable_status
inside the same rule.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Reference

 	Configuration

test

Configures a proxy server and test client that can be used when
testing your application against a caching proxy.

// app/config/config_test.yml
fos_http_cache:
 test:
 proxy_server:
 varnish:
 config_file: /etc/varnish/your-config.vcl
 port: 8080
 binary: /usr/sbin/varnish
 client:
 varnish:
 enabled: true
 nginx:
 enabled: false

proxy_server

Configures a service that can be used to start, stop and clear your caching
proxy from PHP. This service is meant to be used in integration tests; don’t
use it in production mode.

varnish

config_file

type: string required

Path to a VCL file. For example Varnish configurations, see
Caching Proxy Configuration [http://foshttpcache.readthedocs.org/en/latest/proxy-configuration.html#proxy-configuration].

binary

type: string default: varnishd

Path to the proxy binary (if the binary is named differently or not available
in your PATH).

port

type: integer default: 6181

Port the caching proxy server listens on.

ip

type: string default: 127.0.0.1

IP the caching proxy server runs on.

nginx

config_file

type: string required

Path to an Nginx configuration file. For an example Nginx configuration, see
Caching Proxy Configuration [http://foshttpcache.readthedocs.org/en/latest/proxy-configuration.html#proxy-configuration].

binary

type: string default: nginx

Path to the proxy binary.

port

type: integer default: 8080

Port the caching proxy server listens on.

ip

type: string default: 127.0.0.1

IP the caching proxy server runs on.

client

Configures the proxy test client for Varnish and/or Nginx.

type: array

enabled

type: enum default: auto options: true, false, auto

The default value is %kernel.debug%, enabling the client when you are in
test or dev mode but not in prod mode.

cache_header

type: string default: X-Cache

HTTP header that shows whether the response was a cache hit (HIT) or
a miss (MISS). This header must be set by your caching proxy [http://foshttpcache.readthedocs.org/en/latest/proxy-configuration.html#proxy-configuration]
for the test assertions to work.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Reference

Annotations

Annotate your controller actions to invalidate routes and paths when those
actions are executed.

Note

Annotations need the SensioFrameworkExtraBundle including registering the
Doctrine AnnotationsRegistry. Some features also need the
ExpressionLanguage. Make sure to
install the dependencies first.

@InvalidatePath

Invalidate a path:

use FOS\HttpCacheBundle\Configuration\InvalidatePath;

/**
 * @InvalidatePath("/articles")
 * @InvalidatePath("/articles/latest")
 */
public function editAction()
{
}

See Invalidation for more information.

@InvalidateRoute

Invalidate a route with parameters:

use FOS\HttpCacheBundle\Configuration\InvalidateRoute;

/**
 * @InvalidateRoute("articles")
 * @InvalidateRoute("articles", params={"type" = "latest"})
 */
public function editAction()
{
}

You can also use expressions [http://symfony.com/doc/current/components/expression_language/index.html] in the route parameter values. This obviously
requires the ExpressionLanguage component. To invalidate
route articles with the number parameter set to 123, do:

/**
 * @InvalidateRoute("articles", params={"number" = {"expression"="id"}})
 */
public function editAction(Request $request, $id)
{
 // Assume $request->attributes->get('id') returns 123
}

The expression has access to all request attributes and the request itself
under the name request.

See Invalidation for more information.

@Tag

You can make this bundle tag your response automatically using the @Tag
annotation. Safe operations like GET that produce a successful
response will lead to that response being tagged; modifying operations like
POST, PUT, or DELETE will lead to the tags being invalidated.

When indexAction() returns a successful response for a safe (GET or HEAD)
request, the response will get the tag news. The tag is set in a custom
HTTP header (X-Cache-Tags, by default).

Any non-safe request to the editAction that returns a successful response
will trigger invalidation of both the news and the news-123 tags.

Set/invalidate a tag:

/**
 * @Tag("news-article")
 */
public function showAction()
{
 // ...
}

GET /news/show will

Multiple tags are possible:

/**
 * @Tag("news")
 * @Tag("news-list")
 */
public function indexAction()
{
 // ...
}

If you prefer, you can combine tags in one annotation:

/**
 * @Tag({"news", "news-list"})
 */

You can also use expressions [http://symfony.com/doc/current/components/expression_language/index.html] in tags. This obviously
requires the ExpressionLanguage component. The following
example sets the tag news-123 on the Response:

/**
 * @Tag(expression="'news-'~id")
 */
public function showAction($id)
{
 // Assume request parameter $id equals 123
}

Or, using a param converter [http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/converters.html]:

/**
 * @Tag(expression="'news-'~article.getId()")
 */
public function showAction(Article $article)
{
 // Assume $article->getId() returns 123
}

See Tagging for an introduction to tagging.
If you wish to change the HTTP header used for storing tags, see
tags.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Reference

The Cache Manager

Use the CacheManager to explicitly invalidate or refresh paths, URLs, routes or
headers.

By invalidating a piece of content, you tell your caching proxy to no longer
serve it to clients. When next requested, the proxy will fetch a fresh copy
from the backend application and serve that instead.

By refreshing a piece of content, a fresh copy will be fetched right away.

Note

These terms are explained in more detail in
An Introduction to Cache Invalidation [http://foshttpcache.readthedocs.org/en/latest/invalidation-introduction.html#invalidation-introduction].

invalidatePath

Important

Make sure to configure your proxy [http://foshttpcache.readthedocs.org/en/latest/proxy-configuration.html#proxy-configuration] for purging first.

Invalidate a path:

$cacheManager->invalidatePath('/users')->flush();

Note

The flush() method is explained below.

Invalidate a URL:

$cacheManager->invalidatePath('http://www.example.com/users');

Invalidate a route:

$cacheManager = $container->get('fos_http_cache.cache_manager');
$cacheManager->invalidateRoute('user_details', array('id' => 123));

Invalidate a regular expression [http://foshttpcache.readthedocs.org/en/latest/cache-invalidator.html#invalidate-regex]:

$cacheManager = $container->get('fos_http_cache.cache_manager');
$cacheManager->invalidateRegex('.*', 'image/png', array('example.com'));

The cache manager offers a fluent interface:

$cacheManager
 ->invalidateRoute('villains_index')
 ->invalidatePath('/bad/guys')
 ->invalidateRoute('villain_details', array('name' => 'Jaws')
 ->invalidateRoute('villain_details', array('name' => 'Goldfinger')
 ->invalidateRoute('villain_details', array('name' => 'Dr. No')
;

Refreshing

Note

Make sure to configure your proxy [http://foshttpcache.readthedocs.org/en/latest/proxy-configuration.html#proxy-configuration] for purging first.

Refresh a path:

$cacheManager = $container->get('fos_http_cache.cache_manager');
$cacheManager->refreshPath('/users');

Refresh a URL:

$cacheManager = $container->get('fos_http_cache.cache_manager');
$cacheManager->refreshPath('http://www.example.com/users');

Refresh a Route:

$cacheManager = $container->get('fos_http_cache.cache_manager');
$cacheManager->refreshRoute('user_details', array('id' => 123));

tagResponse()

Use the Cache Manager to tag responses:

// $response is a \Symfony\Component\HttpFoundation\Response object
$cacheManager->tagResponse($response, array('some-tag', 'other-tag'));

The tags are appended to already existing tags, unless you set the $replace
option to true:

$cacheManager->tagResponse($response, array('different'), true);

invalidateTags()

Invalidate cache tags:

$cacheManager->invalidateTags(array('some-tag', 'other-tag'));

Flushing

Internally, the invalidation requests are queued and only sent out to your HTTP
proxy when the manager is flushed. The manager is flushed automatically at the
right moment:

	when handling a HTTP request, after the response has been sent to the client
(Symfony’s kernel.terminate event [http://symfony.com/doc/current/components/http_kernel/introduction.html#the-kernel-terminate-event])

	when running a console command, after the command has finished (Symfony’s
console.terminate event [http://symfony.com/doc/current/components/console/events.html#the-consoleevents-terminate-event]).

You can also flush the cache manager manually:

$cacheManager->flush();

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

 	Reference

Glossary

	Cacheable

	A response is considered cacheable when the status code is one of
200, 203, 300, 301, 302, 404, 410. This range of status codes can be
extended with additional_cacheable_status or overridden with
match_response.

	Safe

	A request is safe if its HTTP method is GET or HEAD. Safe methods
only retrieve data and do not change the application state, and
therefore can be served with a response from the cache.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	FOSHttpCacheBundle 1.0.0 documentation

Testing

Testing the Bundle

To run this bundle’s tests, clone the repository, install vendors, and invoke
PHPUnit:

$ git clone https://github.com/FriendsOfSymfony/FOSHttpCacheBundle.git
$ cd FOSHttpCacheBundle
$ composer install --dev
$ phpunit

Tip

See the FOSHttpCache library’s docs [http://foshttpcache.readthedocs.org/en/latest/testing-your-application.html#testing-your-application]
on how to write integration tests that validate your caching code and
configuration against a caching proxy.

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	FOSHttpCacheBundle 1.0.0 documentation

Index

 C
 | R
 | S

C

 	

 	Cacheable

R

 	

 	
 RFC

 	

 	RFC 2616#section-14.9, [1], [2], [3]

 	RFC 5861, [1]

S

 	

 	Safe

 Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

 _static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/up.png

_static/plus.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		FOSHttpCacheBundle 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, David de Boer, David Buchmann.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

