Welcome to anaStruct’s documentation!¶
Indices and tables¶
Installation¶
You will need Python and a few packages as pre-requisites of the anaStruct on your system.
Install the Python¶
Linux¶
Python is normally delivered on any Linux distribution. So you basically just need to call the python keyword which is stored on your operating system’s path. To call version 3 of python on Linux you can use python3 in the terminal. You can check installation status and version of the python on your system.
python3 --version
In case you are missing the python on your system, you can install it from the repositories of your system. For instance, on Ubuntu, you can easily install python 3.9 with the following commands:
sudo apt-get update
sudo apt-get install python3.9
Windows¶
On windows (and for other OS’s too) you can download the installation source of the version you prefer from the Python’s website. You can choose between the various versions and cpu architectures.
Mac¶
For Mac OS install Python 3 using homebrew
brew install python
Install the prerequisites¶
You will need the NumPy and SciPy. packages to be able to use the anaStruct package. However, if you are using the pip to install the package, it will take care of all dependencies and their versions.
Install the anaStruct¶
You can install anaStruct with pip! If you like to use the computational backend of the package without having the plotting features, simply run the code below in the terminal. Pip will install a headless version of anaStruct (with no plotting abilities).
python -m pip install anastruct
Otherwise you can have a full installation using the following code in your terminal.
python -m pip install anastruct[plot]
In case you need a specific version of the package, that’s possible too. Simple declare the version condition over the code in terminal.
python -m pip install anastruct==1.4.1
Alternatively, you can build the package from the source by cloning the source from the git repository. Updates are made regularly released on PyPi, and if you’d like the bleeding edge newest features and fixes, or if you’d like to contribute to the development of anaStruct, then install from github.
pip install git+https://github.com/ritchie46/anaStruct.git
Getting started¶
anaStruct is a Python implementation of the 2D Finite Element method for structures. It allows you to do structural analysis of frames and frames. It helps you to compute the forces and displacements in the structural elements.
Besides linear calculations, there is also support for non-linear nodes and geometric non linearity.
Structure object¶
You start a model by instantiating a SystemElements object. All the models state, i.e. elements, materials and forces are kept by this object.
- class anastruct.fem.system.SystemElements(figsize=(12, 8), EA=15000.0, EI=5000.0, load_factor=1.0, mesh=50)[source]¶
Modelling any structure starts with an object of this class.
- Variables
EA – Standard axial stiffness of elements, default=15,000
EI – Standard bending stiffness of elements, default=5,000
figsize – (tpl) Matplotlibs standard figure size
element_map – (dict) Keys are the element ids, values are the element objects
node_map – (dict) Keys are the node ids, values are the node objects.
node_element_map – (dict) maps node ids to element objects.
loads_point – (dict) Maps node ids to point loads.
loads_q – (dict) Maps element ids to q-loads.
loads_moment – (dict) Maps node ids to moment loads.
loads_dead_load – (set) Element ids that have a dead load applied.
- __init__(figsize=(12, 8), EA=15000.0, EI=5000.0, load_factor=1.0, mesh=50)[source]¶
E = Young’s modulus
A = Area
I = Moment of Inertia
- Parameters
figsize (
Tuple
[float
,float
]) – Set the standard plotting size.EA (
float
) – Standard E * A. Set the standard values of EA if none provided when generating an element.EI (
float
) – Standard E * I. Set the standard values of EA if none provided when generating an element.load_factor (
float
) – Multiply all loads with this factor.mesh (
int
) – Plotting mesh. Has no influence on the calculation.
Example¶
from anastruct import SystemElements
ss = SystemElements()
This ss object now has access to several methods which modify the state of the model. We can for instance create a structure.
ss.add_element(location=[[0, 0], [3, 4]])
ss.add_element(location=[[3, 4], [8, 4]])
Now we have elements, we need to define the supporting conditions of our structure.
ss.add_support_hinged(node_id=1)
ss.add_support_fixed(node_id=3)
Finally we can add a load on the structure and compute the results.
ss.q_load(element_id=2, q=-10)
ss.solve()
We can take a look at the results of the calculation by plotting different units we are interested in.
ss.show_structure()

ss.show_reaction_force()

ss.show_axial_force()

ss.show_shear_force()

ss.show_bending_moment()

ss.show_displacement()

Elements¶
The SystemElements
class has several methods that help you model a structure. These methods are;
add_truss_element
add_element
add_multiple_elements
discretize
A structure is defined by elements, which have their own state.
The elements are stored in SystemElement.element_map
. This is a dictionary with keys representing the element ids, and values being the element objects. The element objects are implicitly created by the SystemElements
object.
The state of an element can be interesting when post-processing results. For now we’ll focus on the modelling part. Below you see the different methods for modelling a structure.
Standard elements¶
Standard elements have bending and axial stiffness and therefore will implement shear force, bending moment, axial force, extension, and deflection. Standard elements can be added with the following methods.
Add a single element¶
- SystemElements.add_element(location, EA=None, EI=None, g=0, mp=None, spring=None, **kwargs)[source]¶
- Parameters
location (
Union
[Sequence
[Sequence
[float
]],Sequence
[Vertex
],Sequence
[float
],Vertex
]) –The two nodes of the element or the next node of the element.
- Example
location=[[x, y], [x, y]] location=[Vertex, Vertex] location=[x, y] location=Vertex
EA (
Optional
[float
]) – EAEI (
Optional
[float
]) – EIg (
float
) – Weight per meter. [kN/m] / [N/m]mp (
Optional
[Dict
[int
,float
]]) –- Set a maximum plastic moment capacity. Keys are integers representing
the nodes. Values are the bending moment capacity.
- Example
mp={1: 210e3, 2: 180e3}
spring (
Optional
[Dict
[int
,float
]]) –Set a rotational spring or a hinge (k=0) at node 1 or node 2.
- Example
spring={1: k 2: k} # Set a hinged node: spring={1: 0}
- Return type
int
- Returns
Elements ID.
Example¶
ss = SystemElements(EA=15000, EI=5000)
ss.add_element(location=[[0, 0], [0, 5]])
ss.add_element(location=[[0, 5], [5, 5]])
ss.add_element(location=[[5, 5], [5, 0]])
ss.show_structure()

Add multiple elements¶
- SystemElements.add_multiple_elements(location, n=None, dl=None, EA=None, EI=None, g=0, mp=None, spring=None, **kwargs)[source]¶
Add multiple elements defined by the first and the last point.
- Parameters
location (
Union
[Sequence
[Sequence
[float
]],Sequence
[Vertex
],Sequence
[float
],Vertex
]) – See ‘add_element’ methodn (
Optional
[int
]) – Number of elements.dl (
Optional
[float
]) – Distance between the elements nodes.EA (
Optional
[float
]) – See ‘add_element’ methodEI (
Optional
[float
]) – See ‘add_element’ methodg (
float
) – See ‘add_element’ methodmp (
Optional
[Dict
[int
,float
]]) – See ‘add_element’ methodspring (
Optional
[Dict
[int
,float
]]) – See ‘add_element’ method
Keyword Args:
- Parameters
element_type – See ‘add_element’ method
first – Different arguments for the first element
last – Different arguments for the last element
steelsection – Steel section name like IPE 300
orient – Steel section axis for moment of inertia - ‘y’ and ‘z’ possible
b – Width of generic rectangle section
h – Height of generic rectangle section
d – Diameter of generic circle section
sw – If true self weight of section is considered as dead load
E – Modulus of elasticity for section material
gamma –
Weight of section material per volume unit. [kN/m3] / [N/m3]s
- Example
last={'EA': 1e3, 'mp': 290}
- Returns
(list) Element IDs
Example add_multiple_elements¶
ss = SystemElements(EI=5e3, EA=1e5)
ss.add_multiple_elements([[0, 0], [0, 10]], 10)
ss.show_structure()

- SystemElements.add_element_grid(x, y, EA=None, EI=None, g=None, mp=None, spring=None, **kwargs)[source]¶
Add multiple elements defined by two containers with coordinates.
- Parameters
x (
Union
[List
[float
],ndarray
]) – x coordinates.y (
Union
[List
[float
],ndarray
]) – y coordinates.EA (
Union
[List
[float
],ndarray
,None
]) – See ‘add_element’ methodEI (
Union
[List
[float
],ndarray
,None
]) – See ‘add_element’ methodg (
Union
[List
[float
],ndarray
,None
]) – See ‘add_element’ methodmp (
Optional
[Dict
[int
,float
]]) – See ‘add_element’ methodspring (
Optional
[Dict
[int
,float
]]) – See ‘add_element’ method
- Paramg **kwargs**kwargs
See ‘add_element’ method
- Returns
None
Example add_element_grid¶
from anastruct import SystemElements
import numpy as np
# <3
t = np.linspace(-1, 1)
x = np.sin(t) * np.cos(t) * np.log(np.abs(t))
y = np.abs(t)**0.3 * np.cos(t)**0.5 + 1
# Scaling to positive interval
x = (x - x.min()) / (x - x.min()).max()
y = (y - y.min()) / (y - y.min()).max()
ss = SystemElements()
ss.add_element_grid(x, y)
ss.show_structure()

Truss elements¶
Truss elements don’t have bending stiffness and will therefore not implement shear force, bending moment and deflection. It does model axial force and extension.
add_truss_element¶
- SystemElements.add_truss_element(location, EA=None, **kwargs)[source]¶
Add an element that only has axial force.
- Parameters
location (
Union
[Sequence
[Sequence
[float
]],Sequence
[Vertex
],Sequence
[float
],Vertex
]) –The two nodes of the element or the next node of the element.
- Example
location=[[x, y], [x, y]] location=[Vertex, Vertex] location=[x, y] location=Vertex
EA (
Optional
[float
]) – EA
- Return type
int
- Returns
Elements ID.
Discretization¶
You can discretize an element in multiple smaller elements with the discretize method.
- SystemElements.discretize(n=10)[source]¶
Takes an already defined
SystemElements
object and increases the number of elements.- Parameters
n (
int
) – Divide the elements into n sub-elements.
Insert node¶
Most of the nodes are defined when creating an element by passing the vertices (x, y coordinates) as the location parameter. It is also to add a node to elements that already exist via the insert_node method.
- SystemElements.insert_node(element_id, location=None, factor=None)[source]¶
Insert a node into an existing structure. This can be done by adding a new Vertex at any given location, or by setting a factor of the elements length. E.g. if you want a node at 40% of the elements length, you pass factor = 0.4.
Note: this method completely rebuilds the SystemElements object and is therefore slower then building a model with add_element methods.
- Parameters
element_id (
int
) – Id number of the element you want to insert the node.location (
Union
[Sequence
[float
],Vertex
,None
]) –The nodes of the element or the next node of the element.
- Example
location=[x, y] location=Vertex
- Param
factor: Value between 0 and 1 to determine the new node location.
Supports¶
The following kinds of support conditions are possible.
hinged (the node is able to rotate, but cannot translate)
roll (the node is able to rotate and translation is allowed in one direction)
fixed (the node cannot translate and not rotate)
spring (translation and rotation are allowed but only with a linearly increasing resistance)
add_support_hinged¶
- SystemElements.add_support_hinged(node_id)[source]¶
Model a hinged support at a given node.
- Parameters
node_id (
Union
[int
,Sequence
[int
]]) – Represents the nodes ID
Example¶
ss.add_element(location=[5, 1])
ss.add_support_hinged(node_id=[1, 2])
ss.show_structure()

add_support_roll¶
- SystemElements.add_support_roll(node_id, direction='x', angle=None, rotate=True)[source]¶
Adds a rolling support at a given node.
- Parameters
node_id (
Union
[Sequence
[int
],int
]) – Represents the nodes IDdirection (
Union
[Sequence
[Union
[str
,int
]],str
,int
]) – Represents the direction that is free: ‘x’, ‘y’angle (
Union
[Sequence
[Optional
[float
]],float
,None
]) – Angle in degrees relative to global x-axis. If angle is given, the support will be inclined.rotate (
Union
[Sequence
[bool
],bool
]) – If set to False, rotation at the roller will also be restrained.
Example¶
ss.add_element(location=[5, 5])
ss.add_support_roll(node_id=2, direction=1)
ss.add_support_roll(node_id=1, direction=2)
ss.show_structure()

add_support_fixed¶
- SystemElements.add_support_fixed(node_id)[source]¶
Add a fixed support at a given node.
- Parameters
node_id (
Union
[Sequence
[int
],int
]) – Represents the nodes ID
Example¶
ss.add_element(location=[0, 2.5])
ss.add_support_fixed(node_id=1)
ss.show_structure()

add_support_spring¶
Example¶
ss.add_element(location=[5, 5])
ss.add_support_spring(node_id=1, translation=3, k=1000)
ss.add_support_spring(node_id=-1, translation=2, k=1000)
ss.show_structure()

- SystemElements.add_support_spring(node_id, translation, k, roll=False)[source]¶
Add a translational support at a given node.
- Parameters
translation (
Union
[Sequence
[int
],int
]) –Represents the prevented translation.
Note
1 = translation in x2 = translation in z3 = rotation in ynode_id (
Union
[Sequence
[int
],int
]) – Integer representing the nodes ID.k (
Union
[Sequence
[float
],float
]) – Stiffness of the springroll (
Union
[Sequence
[bool
],bool
]) – If set to True, only the translation of the spring is controlled.
Loads¶
anaStruct allows the following loads on a structure. There are loads on nodes and loads on elements. Element loads are implicitly placed on the loads and recalculated during post processing.
Node loads¶
Point loads¶
Point loads are defined in x- and/ or y-direction, or by defining a load with an angle.
- SystemElements.point_load(node_id, Fx=0.0, Fy=0.0, rotation=0)[source]¶
Apply a point load to a node.
- Parameters
node_id (
Union
[int
,Sequence
[int
]]) – Nodes ID.Fx (
Union
[float
,Sequence
[float
]]) – Force in global x direction.Fy (
Union
[float
,Sequence
[float
]]) – Force in global x direction.rotation (
Union
[float
,Sequence
[float
]]) – Rotate the force clockwise. Rotation is in degrees.
Example¶
ss.add_element(location=[0, 1])
ss.point_load(ss.id_last_node, Fx=10, rotation=45)
ss.show_structure()

Bending moments¶
Moment loads apply a rotational force on the nodes.
- SystemElements.moment_load(node_id, Ty)[source]¶
Apply a moment on a node.
- Parameters
node_id (
Union
[int
,Sequence
[int
]]) – Nodes ID.Ty (
Union
[float
,Sequence
[float
]]) – Moments acting on the node.
Example¶
ss.add_element([5, 0])
ss.moment_load(node_id=ss.id_last_node, Ty=20)
ss.show_structure()

Element loads¶
Q-loads are distributed loads. They can act perpendicular to the elements direction, parallel to the elements direction, and in global x and y directions.
q-loads¶
- SystemElements.q_load(q, element_id, direction='element', rotation=None, q_perp=None)[source]¶
Apply a q-load to an element.
- Parameters
element_id (
Union
[int
,Sequence
[int
]]) – representing the element IDq (
Union
[float
,Sequence
[float
]]) – value of the q-loaddirection (
Union
[str
,Sequence
[str
]]) – “element”, “x”, “y”, “parallel”rotation (
Union
[float
,Sequence
[float
],None
]) – Rotate the force clockwise. Rotation is in degreesq_perp (
Union
[float
,Sequence
[float
],None
]) – value of any q-load perpendicular to the indication direction/rotation
Example¶
ss.add_element([5, 0])
ss.q_load(q=-1, element_id=ss.id_last_element, direction='element')
ss.show_structure()

Remove loads¶
Plotting¶
The SystemElements object implements several plotting methods for retrieving standard plotting results. Every plotting method has got the same parameters. The plotter is based on a Matplotlib backend and it is possible to get the figure and do modifications of your own. The x and y coordinates of the model should all be positive value for the plotter to work properly.
Note that plotting capabilities do require that anaStruct be installed with the “plot” sub-module (e.g. pip install anastruct[plot] )
Structure¶
- SystemElements.show_structure(verbosity=0, scale=1.0, offset=(0, 0), figsize=None, show=True, supports=True, values_only=False, annotations=False)[source]¶
Plot the structure.
- Parameters
factor – Influence the plotting scale.
verbosity (
int
) – 0: All information, 1: Suppress information.scale (
float
) – Scale of the plot.offset (
Tuple
[float
,float
]) – Offset the plots location on the figure.figsize (
Optional
[Tuple
[float
,float
]]) – Change the figure size.show (
bool
) – Plot the result or return a figure.values_only (
bool
) – Return the values that would be plotted as tuple containing two arrays: (x, y)annotations (
bool
) – if True, structure annotations are plotted. It includes section name. Note: only works when verbosity is equal to 0.
Bending moments¶
- SystemElements.show_bending_moment(factor=None, verbosity=0, scale=1, offset=(0, 0), figsize=None, show=True, values_only=False)[source]¶
Plot the bending moment.
- Parameters
factor (
Optional
[float
]) – Influence the plotting scale.verbosity (
int
) – 0: All information, 1: Suppress information.scale (
float
) – Scale of the plot.offset (
Tuple
[float
,float
]) – Offset the plots location on the figure.figsize (
Optional
[Tuple
[float
,float
]]) – Change the figure size.show (
bool
) – Plot the result or return a figure.values_only (
bool
) – Return the values that would be plotted as tuple containing two arrays: (x, y)
Axial forces¶
- SystemElements.show_axial_force(factor=None, verbosity=0, scale=1, offset=(0, 0), figsize=None, show=True, values_only=False)[source]¶
Plot the axial force.
- Parameters
factor (
Optional
[float
]) – Influence the plotting scale.verbosity (
int
) – 0: All information, 1: Suppress information.scale (
float
) – Scale of the plot.offset (
Tuple
[float
,float
]) – Offset the plots location on the figure.figsize (
Optional
[Tuple
[float
,float
]]) – Change the figure size.show (
bool
) – Plot the result or return a figure.values_only (
bool
) – Return the values that would be plotted as tuple containing two arrays: (x, y)
Shear forces¶
- SystemElements.show_shear_force(factor=None, verbosity=0, scale=1, offset=(0, 0), figsize=None, show=True, values_only=False)[source]¶
Plot the shear force.
- Parameters
factor (
Optional
[float
]) – Influence the plotting scale.verbosity (
int
) – 0: All information, 1: Suppress information.scale (
float
) – Scale of the plot.offset (
Tuple
[float
,float
]) – Offset the plots location on the figure.figsize (
Optional
[Tuple
[float
,float
]]) – Change the figure size.show (
bool
) – Plot the result or return a figure.values_only (
bool
) – Return the values that would be plotted as tuple containing two arrays: (x, y)
Reaction forces¶
- SystemElements.show_reaction_force(verbosity=0, scale=1, offset=(0, 0), figsize=None, show=True)[source]¶
Plot the reaction force.
- Parameters
verbosity (
int
) – 0: All information, 1: Suppress information.scale (
float
) – Scale of the plot.offset (
Tuple
[float
,float
]) – Offset the plots location on the figure.figsize (
Optional
[Tuple
[float
,float
]]) – Change the figure size.show (
bool
) – Plot the result or return a figure.
Displacements¶
- SystemElements.show_displacement(factor=None, verbosity=0, scale=1, offset=(0, 0), figsize=None, show=True, linear=False, values_only=False)[source]¶
Plot the displacement.
- Parameters
factor (
Optional
[float
]) – Influence the plotting scale.verbosity (
int
) – 0: All information, 1: Suppress information.scale (
float
) – Scale of the plot.offset (
Tuple
[float
,float
]) – Offset the plots location on the figure.figsize (
Optional
[Tuple
[float
,float
]]) – Change the figure size.show (
bool
) – Plot the result or return a figure.linear (
bool
) – Don’t evaluate the displacement values in between the elementsvalues_only (
bool
) – Return the values that would be plotted as tuple containing two arrays: (x, y)
Save figure¶
When the show parameter is set to False a Matplotlib figure is returned and the figure can be saved with proper titles.
from anastruct import SystemElements
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0, 10)
y = np.sin(x)
ss = SystemElements()
ss.add_element_grid(x, y)
ss.add_support_hinged(node_id=[1, -1])
fig = ss.show_structure(show=False)
plt.title('A sine wave')
plt.savefig('my-figure.png')

Calculation¶
Once all the elements, supports and loads are in place, solving the calculation is as easy as calling the solve method.
- SystemElements.solve(force_linear=False, verbosity=0, max_iter=200, geometrical_non_linear=False, **kwargs)[source]¶
Compute the results of current model.
- Parameters
force_linear (
bool
) – Force a linear calculation. Even when the system has non linear nodes.verbosity (
int
) –Log calculation outputs. 1. silence.
max_iter (
int
) – Maximum allowed iterations.geometrical_non_linear (
int
) – Calculate second order effects and determine the buckling factor.
- Returns
Displacements vector.
- Development **kwargs:
- param naked
Whether or not to run the solve function without doing post processing.
- param discretize_kwargs
When doing a geometric non linear analysis you can reduce or increase the number of elements created that are used for determining the buckling_factor
Non linear¶
The model will automatically do a non linear calculation if there are non linear nodes present in the SystemElements state. You can however force the model to do a linear calculation with the force_linear parameter.
Geometrical non linear¶
To start a geometrical non linear calculation you’ll need to set the geometrical_non_linear to True. It is also wise to pass a discretize_kwargs dictionary.
ss.solve(geometrical_non_linear=True, discretize_kwargs=dict(n=20))
With this dictionary you can set the amount of discretization elements generated during the geometrical non linear calculation. This calculation is an approximation and gets more accurate with more discretization elements.
Load cases and load combinations¶
Load cases¶
You can group different loads in a single load case and add these to a SystemElements object. Let’s look at an example. First we create a frame girder.
from anastruct import SystemElements
from anastruct import LoadCase, LoadCombination
import numpy as np
ss = SystemElements()
height = 10
x = np.cumsum([0, 4, 7, 7, 4])
y = np.zeros(x.shape)
x = np.append(x, x[::-1])
y = np.append(y, y + height)
ss.add_element_grid(x, y)
ss.add_element([[0, 0], [0, height]])
ss.add_element([[4, 0], [4, height]])
ss.add_element([[11, 0], [11, height]])
ss.add_element([[18, 0], [18, height]])
ss.add_support_hinged([1, 5])
ss.show_structure()

Now we can add a loadcase for all the wind loads.
lc_wind = LoadCase('wind')
lc_wind.q_load(q=-1, element_id=[10, 11, 12, 13, 5])
print(lc_wind)
output
Loadcase wind:
{'q_load-1': {'direction': 'element',
'element_id': [10, 11, 12, 13, 5],
'q': -1}}
And apply to the load case to our system.
# add the load case to the SystemElements object
ss.apply_load_case(lc_wind)
ss.show_structure()

Load combinations¶
We can also combine load cases in a load combination with the LoadCombination class. First remove the previous load case from the system, create a LoadCombination object and add the LoadCase objects to the LoadCombination object.
# reset the structure
ss.remove_loads()
# create another load case
lc_cables = LoadCase('cables')
lc_cables.point_load(node_id=[2, 3, 4], Fy=-100)
combination = LoadCombination('ULS')
combination.add_load_case(lc_wind, 1.5)
combination.add_load_case(lc_cables, factor=1.2)
Now we can make a separate calculation for every load case and for the whole load combination. We solve the combination by calling the solve method and passing our SystemElements model. The solve method returns a dictionary where the keys are the load cases and the values are the unique SystemElement objects for every load case. There is also a key combination in the results dictionary.
results = combination.solve(ss)
for k, ss in results.items():
results[k].show_structure()
results[k].show_displacement(show=False)
plt.title(k)
plt.show()
Load case wind


Load case cables


Combination

Load case class¶
- class anastruct.fem.util.load.LoadCase(name)[source]¶
Group different loads in a load case
- dead_load(element_id, g)[source]¶
Apply a dead load in kN/m on elements.
- Parameters
element_id – (int/ list) representing the element ID
g – (flt/ list) Weight per meter. [kN/m] / [N/m]
- moment_load(node_id, Ty)[source]¶
Apply a moment on a node.
- Parameters
node_id – (int/ list) Nodes ID.
Ty – (flt/ list) Moments acting on the node.
Load combination class¶
- class anastruct.fem.util.load.LoadCombination(name)[source]¶
-
- add_load_case(lc, factor)[source]¶
Add a load case to the load combination.
- Parameters
lc – (
anastruct.fem.util.LoadCase
)factor – (flt) Multiply all the loads in this LoadCase with this factor.
- solve(system, force_linear=False, verbosity=0, max_iter=200, geometrical_non_linear=False, **kwargs)[source]¶
Evaluate the Load Combination.
- Parameters
system – (
anastruct.fem.system.SystemElements
) Structure to apply loads on.force_linear – (bool) Force a linear calculation. Even when the system has non linear nodes.
verbosity – (int) 0: Log calculation outputs. 1: silence.
max_iter – (int) Maximum allowed iterations.
geometrical_non_linear – (bool) Calculate second order effects and determine the buckling factor.
- Returns
(ResultObject)
- Development **kwargs:
- param naked
(bool) Whether or not to run the solve function without doing post processing.
- param discretize_kwargs
When doing a geometric non linear analysis you can reduce or increase the number of elements created that are used for determining the buckling_factor
Post processing¶
Besides plotting the result, it is also possible to query numerical results. We’ll go through them with a simple example.
from anastruct import SystemElements
import matplotlib.pyplot as plt
import numpy as np
ss = SystemElements()
element_type = 'truss'
# create triangles
x = np.arange(1, 10) * np.pi
y = np.cos(x)
y -= y.min()
ss.add_element_grid(x, y, element_type=element_type)
# add top girder
ss.add_element_grid(x[1:-1][::2], np.ones(x.shape) * y.max(), element_type=element_type)
# add bottom girder
ss.add_element_grid(x[::2], np.ones(x.shape) * y.min(), element_type=element_type)
# supports
ss.add_support_hinged(1)
ss.add_support_roll(-1, 2)
# loads
ss.point_load(node_id=np.arange(2, 9, 2), Fy=-100)
ss.solve()
ss.show_structure()

Node results system¶
- SystemElements.get_node_results_system(node_id=0)[source]¶
These are the node results. These are the opposite of the forces and displacements working on the elements and may seem counter intuitive.
- Parameters
node_id (
int
) – representing the node’s ID. If integer = 0, the results of all nodes are returned- Return type
Union
[List
[Tuple
[Any
,Any
,Any
,Any
,Any
,Any
,Any
]],Dict
[str
,Union
[int
,float
]]]- Returns
if node_id == 0:Returns a list containing tuples with the results:[(id, Fx, Fy, Ty, ux, uy, phi_y), (id, Fx, Fy...), () .. ]
if node_id > 0:
Example¶
We can use this method to query the reaction forces of the supports.
print(ss.get_node_results_system(node_id=1)['Fy'], ss.get_node_results_system(node_id=-1)['Fy'])
output
199.9999963370603 200.00000366293816
Node displacements¶
- SystemElements.get_node_displacements(node_id=0)[source]¶
- Parameters
node_id (
int
) – Represents the node’s ID. If integer = 0, the results of all nodes are returned.- Return type
Union
[List
[Tuple
[Any
,Any
,Any
,Any
]],Dict
[str
,Any
]]- Returns
if node_id == 0:Returns a list containing tuples with the results:[(id, ux, uy, phi_y), (id, ux, uy, phi_y), ... (id, ux, uy, phi_y) ]
if node_id > 0: (dict)
Example¶
We can also query node displacements on a node level (So not opposite, as with the system node results.) To get the maximum displacements at node 5 (the middle of the girder) we write.
print(ss.get_node_displacements(node_id=5))
output
{'id': 5, 'ux': 0.25637068208810526, 'uy': -2.129555426623823, 'phi_y': 7.11561178433554e-09}
Range of node displacements¶
- SystemElements.get_node_result_range(unit)[source]¶
Query a list with node results.
- Return type
List
[float
]
Example¶
To get the deflection of all nodes in the girder, we use the get_node_result_range method.
deflection = ss.get_node_result_range('uy')
print(deflection)
plt.plot(deflection)
plt.show()
output
[-0.0, -0.8704241688181067, -1.5321803865868588, -1.9886711039126856, -2.129555426623823, -1.9886710728856773, -1.5321805004461058, -0.8704239570876975, -0.0]

Element results¶
- SystemElements.get_element_results(element_id=0, verbose=False)[source]¶
- Parameters
element_id (
int
) – representing the elements ID. If elementID = 0 the results of all elements are returned.verbose (
bool
) – If set to True the numerical results for the deflection and the bending moments are returned.
- Return type
Union
[List
[Dict
[str
,Any
]],Dict
[str
,Any
]]- Returns
if node_id == 0:Returns a list containing tuples with the results:[(id, length, alpha, u, N_1, N_2), (id, length, alpha, u, N_1, N_2), ... (id, length, alpha, u, N_1, N_2)]
if node_id > 0: (dict)
Example¶
Axial force, shear force and extension are properties of the elements and not of the nodes. To get this information, we need to query the results from the elements.
Let’s find the value of the maximum axial compression force, which is in element 10.
print(ss.get_element_results(element_id=10)['N'])
output
-417.395490645013
Range of element results¶
- SystemElements.get_element_result_range(unit)[source]¶
Useful when added lots of elements. Returns a list of all the queried unit.
- Parameters
unit (
str
) –‘shear’
’moment’
’axial’
- Return type
List
[float
]
Example¶
We can of course think of a structure where we do not know where the maximum axial compression force will occur. So let’s check if our assumption is correct and that the maximum force is indeed in element 10.
We query all the axial forces. The returned item is an ordered list. Because Python starts counting from zero, and our elements start counting from one, we’ll need to add one to get the right element. Here we’ll see that the minimum force (compression is negative) is indeed in element 10.
print(np.argmin(ss.get_element_result_range('axial')) + 1)
output
10
Element/ node interaction¶
Once you structures will get more and more complex, it will become harder to keep count of element id and node ids. The SystemElements class therefore has several methods that help you:
Find a node id based on a x- and y-coordinate
Find the nearest node id based on a x- and y-coordinate
Get all the coordinates of all nodes.
Find node id based on coordinates¶
Find nearest node id based on coordinates¶
Query node coordinates¶
Vertex¶
Besides coordinates as a list such as [[x1, y1], [x2, y2]] anaStruct also has a utility node class called Vertex Objects from this class can used to model elements and allow simple arithmetic on coordinates. Modelling with Vertex objects can make it easier to model structures.
from anastruct import SystemElements, Vertex
point_1 = Vertex(0, 0)
point_2 = point_1 + [10, 0]
point_3 = point_2 + [-5, 5]
ss = SystemElements()
ss.add_element([point_1, point_2])
ss.add_element(point_3)
ss.add_element(point_1)
ss.show_structure()

Saving¶
What do you need to save? You’ve got a script that represents your model. Just run it!
If you do need to save a model, you can save it with standard python object pickling.
import pickle
from anastruct import SystemElements
ss = SystemElements()
# save
with open('my_structure.pkl', 'wb') as f:
pickle.dump(ss, f)
# load
with open('my_structure.pkl', 'rb') as f:
ss = pickle.load(f)
Examples¶
Examples below a side variety of the structures which aim to show capabilities of the package. The same as any other packages, anaStruct should be called and imported.
import anastruct as anas
And for a mater of minimalism and making calls and coding more efficient, different classes can be called separately.
1anas.LoadCase
2anas.LoadCombination
3anas.SystemElements
4anas.Vertex
Simple example - Truss¶
1ss = SystemElements(EA=5000)
2ss.add_truss_element(location=[[0, 0], [0, 5]])
3ss.add_truss_element(location=[[0, 5], [5, 5]])
4ss.add_truss_element(location=[[5, 5], [5, 0]])
5ss.add_truss_element(location=[[0, 0], [5, 5]], EA=5000 * math.sqrt(2))
6
7ss.add_support_hinged(node_id=1)
8ss.add_support_hinged(node_id=4)
9
10ss.point_load(Fx=10, node_id=2)
11
12ss.solve()
13ss.show_structure()
14ss.show_reaction_force()
15ss.show_axial_force()
16ss.show_displacement(factor=10)




Intermediate¶
1from anastruct import SystemElements
2import numpy as np
3
4ss = SystemElements()
5element_type = 'truss'
6
7# Create 2 towers
8width = 6
9span = 30
10k = 5e3
11
12# create triangles
13y = np.arange(1, 10) * np.pi
14x = np.cos(y) * width * 0.5
15x -= x.min()
16
17for length in [0, span]:
18 x_left_column = np.ones(y[::2].shape) * x.min() + length
19 x_right_column = np.ones(y[::2].shape[0] + 1) * x.max() + length
20
21 # add triangles
22 ss.add_element_grid(x + length, y, element_type=element_type)
23 # add vertical elements
24 ss.add_element_grid(x_left_column, y[::2], element_type=element_type)
25 ss.add_element_grid(x_right_column, np.r_[y[0], y[1::2], y[-1]], element_type=element_type)
26
27 ss.add_support_spring(
28 node_id=ss.find_node_id(vertex=[x_left_column[0], y[0]]),
29 translation=2,
30 k=k)
31 ss.add_support_spring(
32 node_id=ss.find_node_id(vertex=[x_right_column[0], y[0]]),
33 translation=2,
34 k=k)
35
36# add top girder
37ss.add_element_grid([0, width, span, span + width], np.ones(4) * y.max(), EI=10e3)
38
39# Add stability elements at the bottom.
40ss.add_truss_element([[0, y.min()], [width, y.min()]])
41ss.add_truss_element([[span, y.min()], [span + width, y.min()]])
42
43for el in ss.element_map.values():
44 # apply wind load on elements that are vertical
45 if np.isclose(np.sin(el.angle), 1):
46 ss.q_load(
47 q=1,
48 element_id=el.id,
49 direction='x'
50 )
51
52ss.show_structure()
53ss.solve()
54ss.show_displacement(factor=2)
55ss.show_bending_moment()



Advanced¶
Take a look at this blog post. Here anaStruct was used to do a non linear water accumulation analysis. Water accumulation blog post.
1# import dependencies
2import matplotlib.pyplot as plt
3from anastruct.basic import converge
4from anastruct.material.profile import HEA, IPE
5from anastruct.fem.system import SystemElements, Vertex
6from anastruct.material.units import to_kNm2, to_kN
7
8# constants
9E = 2.1e5 # Construction steels Young's modulus
10b = 5 # c.t.c distance portals
11q_water = 10
12
13# axes height levels
14h_1 = 0
15h_2 = 0.258
16h_3 = 0.046
17h_4 = 0.274
18h_5 = 0.032
19h_6 = 0.15
20
21# beam spans
22span_1 = span_2 = 21.9
23span_3 = 8.9
24
25# Vertices at the axes
26p1 = Vertex(0, h_1)
27p2 = Vertex(span_1 * 0.5, h_2)
28p3 = Vertex(span_1, h_3)
29p4 = Vertex(span_1 + span_2 * 0.5, h_4)
30p5 = Vertex(span_1 + span_2, h_5)
31p6 = Vertex(span_1 + span_2 + span_3, h_6)
32
33def structure():
34 """
35 Build the structure from left to right, starting at axis 1.
36
37 variables:
38 EA = Young's modulus * Area
39 EI = Young's modulus * moment of Inertia
40 g = Weight [kN/ m]
41 elements = reference of the element id's that were created
42 dl = c.t.c distance different nodes.
43 """
44
45 dl = 0.2
46
47
48 ## SPAN 1 AND 2
49
50 # The elements between axis 1 and 3 are an IPE 450 member.
51 EA = to_kN(E * IPE[450]['A']) # Y
52 EI = to_kNm2(E * IPE[450]["Iy"])
53 g = IPE[450]['G'] / 100
54
55 # New system.
56 ss = SystemElements(mesh=3, plot_backend="mpl")
57
58 # span 1
59 first = dict(
60 spring={1: 9e3},
61 mp={1: 70},
62 )
63
64 elements = ss.add_multiple_elements(location=[p1, p2], dl=dl, first=first, EA=EA, EI=EI, g=g)
65 elements += ss.add_multiple_elements(location=p3, dl=dl, EA=EA, EI=EI, g=g)
66
67 # span 2
68 first = dict(
69 spring={1: 40e3},
70 mp={1: 240}
71 )
72 elements += ss.add_multiple_elements(location=p4, dl=dl, first=first, EA=EA, EI=EI, g=g)
73 elements += ss.add_multiple_elements(location=p5, dl=dl, EA=EA, EI=EI, g=g)
74
75
76 ## SPAN 3
77
78 # span 3
79 # different IPE
80 g = IPE[240]['G'] / 100
81 EA = to_kN(E * IPE[240]['A'])
82 EI = to_kNm2(E * IPE[240]["Iy"])
83 first = dict(
84 spring={1: 15e3},
85 mp={1: 25},
86 )
87
88 elements += ss.add_multiple_elements(location=p6, first=first, dl=dl, EA=EA, EI=EI, g=g)
89
90 # Add a dead load of -2 kN/m to all elements.
91 ss.q_load(-2, elements, direction="y")
92
93
94 ## COLUMNS
95
96 # column height
97 h = 7.2
98
99 # left column
100 EA = to_kN(E * IPE[220]['A'])
101 EI = to_kNm2(E * HEA[220]["Iy"])
102 left = ss.add_element([[0, 0], [0, -h]], EA=EA, EI=EI)
103
104 # right column
105 EA = to_kN(E * IPE[180]['A'])
106 EI = to_kNm2(E * HEA[180]["Iy"])
107 right = ss.add_element([p6, Vertex(p6.x, -h)], EA=EA, EI=EI)
108
109
110 ## SUPPORTS
111
112 # node ids for the support
113 id_left = max(ss.element_map[left].node_map.keys())
114 id_top_right = min(ss.element_map[right].node_map.keys())
115 id_btm_right = max(ss.element_map[right].node_map.keys())
116
117 # Add supports. The location of the supports is defined with the nodes id.
118 ss.add_support_hinged((id_left, id_btm_right))
119
120 # Retrieve the node ids at axis 2 and 3
121 id_p3 = ss.find_node_id(p3)
122 id_p5 = ss.find_node_id(p5)
123
124 ss.add_support_roll(id_top_right, direction=1)
125
126 # Add translational spring supports at axes 2 and 3
127 ss.add_support_spring(id_p3, translation=2, k=2e3, roll=True)
128 ss.add_support_spring(id_p5, translation=2, k=3e3, roll=True)
129 return ss
130
131ss = structure()
132ss.show_structure(verbosity=1, scale=0.6)
133
134def water_load(ss, water_height, deflection=None):
135 """
136 :param ss: (SystemElements) object.
137 :param water_height: (flt) Water level.
138 :param deflection: (array) Computed deflection.
139 :return (flt) The cubic meters of water on the structure
140 """
141
142 # The horizontal distance between the nodes.
143 dl = np.diff(ss.nodes_range('x'))
144
145 if deflection is None:
146 deflection = np.zeros(len(ss.node_map))
147
148 # Height of the nodes
149 y = np.array(ss.nodes_range('y'))
150
151 # An array with point loads.
152 # cubic meters * weight water
153 force_water = (water_height - y[:-3] - deflection[:-3]) * q_water * b * dl[:-2]
154
155 cubics = 0
156 n = force_water.shape[0]
157 for k in ss.node_map:
158 if k > n:
159 break
160 point_load = force_water[k - 1]
161
162 if point_load > 0:
163 ss.point_load(k, Fx=0, Fz=-point_load)
164 cubics += point_load / q_water
165
166 return cubics
167
168def det_water_height(c, deflection=None):
169 """
170 :param c: (flt) Cubic meters.
171 :param deflection: (array) Node deflection values.
172 :return (SystemElement, flt) The structure and the redistributed water level is returned.
173 """
174 wh = 0.1
175
176 while True:
177 ss = structure()
178 cubics = water_load(ss, wh, deflection)
179
180 factor = converge(cubics, c)
181 if 0.9999 <= factor <= 1.0001:
182 return ss, wh
183
184 wh *= factor
185
186cubics = [0]
187water_heights = [0]
188
189a = 0
190deflection = None
191max_water_level = 0
192
193# Iterate from 8 m3 to 15 m3 of water.
194
195for cubic in range(80, 150, 5): # This loop computes the results per m3 of storaged water.
196 wh = 0.05
197 lastwh = 0.2
198 cubic /= 10
199
200 print(f"Starting analysis of {cubic} m3")
201
202 c = 1
203 for _ in range(100): # This loop redistributes the water until the water level converges.
204
205 # redistribute the water
206 ss, wh = det_water_height(cubic, deflection)
207
208 # Do a non linear calculation!!
209 ss.solve(max_iter=100, verbosity=1)
210 deflection = ss.get_node_result_range("uy")
211
212 # Some breaking conditions
213 if min(deflection) < -1:
214 print(min(deflection), "Breaking due to exceeding max deflection")
215 break
216 if 0.9999 < lastwh / wh < 1.001:
217 print(f"Convergence in {c} iterations.")
218 cubics.append(cubic)
219 water_heights.append(wh)
220 break
221
222 lastwh = wh
223 c += 1
224
225 if wh > max_water_level:
226 max_water_level = wh
227 else:
228 a += 1
229 if a >= 2:
230 print("Breaking. Water level isn't rising.")
231 break
232
233plt.plot(ss.nodes_range('x')[:-2], [el.bending_moment[0] for el in list(ss.element_map.values())[:-1]])
234a = 0
235plt.plot([0, p6.x], [a, a], color="black")
236
237c = "red"
238a = 240
239plt.plot([p3.x - 5, p3.x + 5], [a, a], color=c)
240a = 25
241plt.plot([p5.x - 5, p5.x + 5], [a, a], color=c)
242a = 70
243plt.plot([p1.x - 5, p1.x + 5], [a, a], color=c)
244
245plt.ylabel("Bending moment [kNm]")
246plt.xlabel("Span [m]")
247plt.show()
248
249plt.plot(ss.nodes_range('x')[:-2], ss.nodes_range('y')[:-2])
250plt.plot(ss.nodes_range('x')[:-2], [a + b for a, b in zip(ss.nodes_range('y')[:-2], ss.get_node_result_range("uy")[:-2])])
251
252plt.ylabel("Height level roof when accumulating [m]")
253plt.xlabel("Span [m]")
254plt.show()