

Anaconda Project

Reproducible and executable project directories

Anaconda Project encapsulates data science projects and makes
them easily portable. Project automates setup steps such as
installing the right packages, downloading files, setting
environment variables and running commands.

Project makes it easy to reproduce your work, share projects with
others and run them on different platforms. It also simplifies
deployment to servers. Anaconda projects run the same way on your
machine, on another user’s machine or when deployed to a server.

Traditional build scripts such as setup.py automate building
the project—going from source code to something
runnable—while Project automates running the project—taking
build artifacts and doing any necessary setup before executing
them.

You can use Project on Windows, macOS and Linux.

Project is supported and offered by Anaconda, Inc®
and contributors under a 3-clause BSD license.

Quick Start

Check out the Getting started guide

Benefits of Project

	A README file that contains setup steps can become
outdated, or users might not read it and then you have to help
them diagnose problems. Project automates the setup steps so
that the README file need only say “Type
anaconda-project run.”

	Project facilitates collaboration by ensuring that all users
working on a project have the same dependencies in their Conda
environments. Project automates environment creation and
verifies that environments have the right versions of packages.

	You can run os.getenv("DB_PASSWORD") and configure Project
to prompt the user for any missing credentials. This allows
you to avoid including your personal passwords or secret keys
in your code.

	Project improves reproducibility. Someone who wants to
reproduce your analysis can ensure that they have the same
setup that you have on your machine.

	Project simplifies deployment of your analysis as a web
application. The configuration in anaconda-project.yml
tells hosting providers how to run your project, so no special
setup is needed when you move from your local machine to the
web.

How Project works

By adding an anaconda-project.yml configuration file to your
project directory, a single anaconda-project run command can
set up all dependencies and then launch the project. Running an
Anaconda project executes a command specified in the
anaconda-project.yml file, where you can also configure any
arbitrary commands.

Project automates project setup by establishing all prerequisite
conditions for the project’s commands to execute successfully.
These conditions could include:

	Creating a Conda environment that includes certain packages.

	Prompting the user for passwords or other configuration.

	Downloading data files.

	Starting extra processes such as a database server.

Stability

Currently, the Project API and command-line syntax are subject to
change in future releases. A project created with the current
beta version of Project may always need to be run with that
version of Project and not Project 1.0. When we think things are
solid, we will switch from beta to version 1.0, and you will be
able to rely on long-term interface stability.

Installation

Anaconda Project is included in Anaconda® versions 4.3.1 and later.

To check that you have anaconda-project:

	Open a terminal window.

	(Windows) Open your start menu, type in “cmd”, and click the Command Prompt application.

	(macOS) Open Launchpad and click the Terminal application.

	(Linux) Search for a Terminal in your Activities or Applications or (in most systems) enter Ctrl-Alt-T.

	Enter conda list. Your terminal window should looks something like the following:

(base) ~ conda list
packages in environment at /Users/jdoe/opt/anaconda3:
#
Name Version Build Channel
_ipyw_jlab_nb_ext_conf 0.1.0 py39hecd8cb5_0
anaconda 2021.11 py39_0
anaconda-client 1.9.0 py39hecd8cb5_0
anaconda-navigator 2.1.1 py39_0
anaconda-project 0.10.1 pyhd3eb1b0_0
...

	If for some reason your package list doesn’t contain anaconda-project, see the section below for instructions on
how to install it manually.

Installing Anaconda Project Manually

If you don’t have access to conda yet, installing Miniconda [https://conda.io/projects/conda/en/latest/user-guide/install/index.html] is the simplest way
to obtain it.

You can install Anaconda Project manually using the install command in your terminal window.

(base) ~ conda install anaconda-project
Collecting package metadata (current_repodata.json): done
Solving environment: done

Package Plan

 environment location: /Users/jdoe/opt/anaconda3

 added / updated specs:
 - anaconda-project

The following packages will be downloaded:

 package | build
 ---------------------------|-----------------
 anaconda-project-0.10.2 | pyhd3eb1b0_0 218 KB
 --
 Total: 218 KB

The following NEW packages will be INSTALLED:

 anaconda-project pkgs/main/noarch::anaconda-project-0.10.2-pyhd3eb1b0_0
 conda-pack pkgs/main/noarch::conda-pack-0.6.0-pyhd3eb1b0_0

Proceed ([y]/n)?

Enter ‘y’ to proceed.

Downloading and Extracting Packages
anaconda-project-0.1 | 218 KB | ##################################### | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done

Test your installation by running anaconda-project with the version
option:

anaconda-project --version

A successful installation reports the version number.

Getting started

This getting started guide walks you through using Anaconda
Project for the first time.

After completing this guide, you will be able to:

	Create a new reproducible project.

	Run the project with a single command.

	Package and share the project.

If you have not yet installed and started Project,
follow the Installation instructions.

Create a new project

The following steps will create a project called “demo_app”:

	Open a Command Prompt or terminal window.

	Initialize the project in a new directory:

$ anaconda-project init -y --directory demo_app

	Navigate into your project directory:

$ cd demo_app

	Add the package dependencies:

$ anaconda-project add-packages python=3.8 notebook hvplot=0.7.3 panel=0.12.6 xarray=0.20 pooch=1.4 netCDF4

Create an example notebook-based Panel app

In this section, we will create a new notebook called
Interactive.ipynb via either of the following methods:

	Download this quickstart [https://raw.githubusercontent.com/Anaconda-Platform/anaconda-project/master/examples/quickstart/Interactive.ipynb] example:

	Right-click the link and “Save As”, naming the file Interactive.ipynb and saving it into your new demo_app folder, or

	Use the curl command below. This can be used on a unix-like platform.

$ curl https://raw.githubusercontent.com/Anaconda-Platform/anaconda-project/master/examples/quickstart/Interactive.ipynb -o Interactive.ipynb

Note

This example is taken from a larger, more full-featured
hvPlot interactive [https://raw.githubusercontent.com/holoviz/hvplot/master/examples/user_guide/Interactive.ipynb], one that will work as well, if you would prefer
to download that.

	Alternatively, you can launch a Jupyter notebook session with:

$ anaconda-project run jupyter notebook

Click the New button and choose the Python3 option. Paste the following contents into a cell and click File|Save as…, naming the file Interactive.

import xarray as xr, hvplot.xarray, hvplot.pandas, panel as pn, panel.widgets as pnw

ds = xr.tutorial.load_dataset('air_temperature')
diff = ds.air.interactive.sel(time=pnw.DiscreteSlider) - ds.air.mean('time')
kind = pnw.Select(options=['contourf', 'contour', 'image'], value='image')
plot = diff.hvplot(cmap='RdBu_r', clim=(-20, 20), kind=kind)

hvlogo = pn.panel("https://hvplot.holoviz.org/assets/hvplot-wm.png", width=100)
pnlogo = pn.panel("https://panel.holoviz.org/_static/logo_stacked.png", width=100)
text = pn.panel("## Select a time and type of plot", width=400)

pn.Column(
 pn.Row(hvlogo, pn.Spacer(width=20), pn.Column(text, plot.widgets()), pnlogo),
 plot.panel()).servable()

You can exit the running Jupyter Notebook program using CTRL+C in your terminal or command line.

Run your project

	Register a new command to launch the notebook as a Panel [https://panel.holoviz.org] app:

$ anaconda-project add-command --type unix dashboard "panel serve Interactive.ipynb"

Note

The unix command type may be used for linux & macOS. For Windows, replace --type unix with --type windows

	Run your new project:

$ anaconda-project run dashboard --show

Your application should now be running and available at http://localhost:5006/Interactive. Once you’re finished
with it, you can close the running program using CTRL+C in your terminal or command line.

Sharing your project

To share this project with a colleague:

	Archive the project:

$ anaconda-project archive interactive.zip

	Send the archive file to your colleague.

You can also share a project by uploading it to Anaconda Cloud.
For more information, see Sharing a project.

Anyone with Project—your colleague or someone who downloads
your project from Cloud—can run your project by unzipping the
project archive file and then running a single command, without
having to do any setup:

$ anaconda-project unarchive interactive.zip
$ cd demo_app
$ anaconda-project run

Note

If your project contains more than one command, the person
using your project will need to specify which command to run.
For more information, see Running a project.

Project downloads the data, installs the necessary packages and
runs the command.

Next steps

	Learn more about what you can do in Project, including how to download data with your project and how to
configure your project with environment variables.

	Learn more about the anaconda-project.yml format.

Configuration

Environment variables

Anaconda Project has modifiable configuration settings, which
are currently controlled exclusively by environment variables.

	ANACONDA_PROJECT_DISABLE_OVERRIDE_CHANNELS

	Starting in version 0.11.0 Anaconda Project ignores any CondaRC
configuration settings for channels: by default. Packages will only be
installed from channels listed in the anaconda-project.yml file.
Set this environment variable to a true value (1, or 'True') to disable
the override and allow the user or global CondaRC configuration to control
channels from which Anaconda Project can install packages.

	ANACONDA_PROJECT_ENVS_PATH

	This variable provides a list of directories to search for environments
to use in projects, and where to build them when needed. The format
is identical to a standard PATH variable on the host
operating system—a list of directories separated by : on Unix systems
and ; on Windows—except that empty entries are permitted. The paths
are interpreted as follows:

	If a path is empty, it is interpreted as the default value envs.

	If a path is relative, it is interpreted relative to the root directory
of the project itself (PROJECT_DIR). For example, a path entry
envs is interpreted as

	$PROJECT_DIR/envs (Unix)

	%PROJECT_DIR%\envs (Windows)

	When searching for an environment, the directories are searched in
left-to-right order.

	If an environment with the requested name is found nowhere in the path,
one will be created as a subdirectory of the first entry in the path.

For example, given a Unix machine with

ANACONDA_PROJECT_ENVS_PATH=/opt/envs::envs2:/home/user/conda/envs

Then Anaconda Project will look for an environment named default
in the following locations:

	/opt/envs/default

	$PROJECT_DIR/envs/default

	$PROJECT_DIR/envs2/default

	/home/user/conda/envs/default

If no such environment exists, one will be created as /opt/envs/default,
instead of the default location of $PROJECT_DIR/envs/default.

	ANACONDA_PROJECT_READONLY_ENVS_POLICY

	When an anaconda-project.yml specifies the use of an existing environment,
but that environment is missing one or more of the requested packages,
Anaconda Project attempts to remedy the deficiency by installing the missing
packages. If the specified environment is read-only, however, such an
installation would fail. The value of the environment variable
ANACONDA_PROJECT_READONLY_ENVS_POLICY governs what action should be
taken in such a case.

	fail

	The attempt will fail, and a message returned indicating that the requested
changes could not be made.

	clone

	A clone of the read-only environment will be made, and additional packages
will be installed into this cloned environment. Note that a clone will occur
only if additional packages are required.

	replace

	An entirely new environment will be created.

If this environment variable is empty or contains any other value than these,
the fail behavior will be assumed. Note that for clone or replace
to succeed, a writable environment location must exist somewhere in the
ANACONDA_PROJECT_ENVS_PATH path.

Read-only environments

On some systems, it is desirable to provide Anaconda Project access to one
or more read-only environments. These environments can be centrally
managed by administrators, and will speed up environment preparation
for users that elect to use them.

On Unix, a read-only environment is quite easy to enforce with standard
POSIX permissions settings. Unfortunately, our experience on Windows
systems suggests it is more challenging to enforce. For this reason,
we have adopted a simple approach that allows environments to be
explicitly marked as read-only with a flag file:

	If a file called .readonly is found in the root of an environment,
that environment will be considered read-only.

	If a file called .readonly is found in the parent of an environment
directory, the environment will be considered read-only.

	An attempt is made to write a file var/cache/anaconda-project/status
within the environment, creating the subdirectories as needed. If
successful, the environment is considered read-write; otherwise, it
is considered read-only.

This second test is particularly useful when centrally managing and entire
directory of environments. With a single .readonly flag file, all new
environments created within that directory will be treated as read-only.
Of course, for the best protection, POSIX or Windows read-only permissions
should be applied nevertheless.

User guide

	Concepts

	Tasks

	Reference

Concepts

	Project

	Configuration files

	Environment variables

	Comparing Project to conda env and environment.yml

Project

A project is a folder that contains an anaconda-project.yml
configuration file together with scripts, notebooks and other
files.

You can make any folder into a project by adding a configuration file named
anaconda-project.yml to the folder. The configuration file can include the
following sections:

	commands

	variables

	services

	downloads

	packages or dependencies

	channels

	env_specs

Data scientists use projects to encapsulate data science projects
and make them easily portable. A project is usually compressed
into a .tar.bz2 file for sharing and storing.

Anaconda Project automates setup steps, so that data scientists
that you share projects with can run your project with a single
command—anaconda-project run.

Configuration files

Projects are affected by 3 configuration files:

	anaconda-project.yml—Contains information about a project
to be shared across users and machines. If you use source
control, put anaconda-project.yml into your system.

	anaconda-project-local.yml—Contains your local
configuration state, which you do not want to share with
others. Put this file into .gitignore, .svnignore or the
equivalent in your source control system.

	anaconda-project-lock.yml—Optional. Contains information
needed to lock your package dependencies at specific versions.
Put this file into source control along with
anaconda-project.yml. For more information on
anaconda-project-lock.yml, see Reference.

To modify these files, use Project commands, Anaconda Navigator,
or any text editor.

Environment variables

Anything in the “variables” section of an
anaconda-project.yml file is considered to be an environment
variable needed by your project.

EXAMPLE: The variables section of an anaconda-project.yml
file that specifies 2 variables:

variables:
 - AMAZON_EC2_USERNAME
 - AMAZON_EC2_PASSWORD

When a user runs your project, Project asks them for values to
assign to these variables.

In your script, you can use os.getenv() to obtain these
variables. This is a much better option than hardcoding passwords
into your script, which can be a security risk.

Comparing Project to conda env and environment.yml

Project has similar functionality to the conda env command
and the environment.yml file, but it may be more convenient.
The advantage of Project for environment handling is that it
performs conda operations and records them in a configuration
file for reproducibility, all in one step.

EXAMPLE: The following command uses conda to install Bokeh and
adds bokeh=0.11 to an environment spec in
anaconda-project.yml:

anaconda-project add-packages bokeh=0.11

The effect is comparable to adding the environment spec to
environment.yml. In this way, the state of your current conda
environment and your configuration to be shared with others will
not get out of sync.

Project also automatically sets up environments for other users
when they type anaconda-project run on their machines. They
do not have to separately create, update or activate environments
before they run the code. This may be especially useful when you
change the required dependencies. With conda env, users may
forget to rerun it and update their packages, while
anaconda-project run automatically adds missing packages
every time.

In addition to creating environments, Project can perform other
kinds of setup, such as adding data files and running a database
server. In that sense, it is a superset of conda env.

Tasks

	Creating a project

	Working with packages

	Downloading data into a project

	Working with commands

	Working with environment variables

	Running a project

	Cleaning a project

	Preparing a project

	Creating a project archive

	Sharing a project

	Creating Docker Images

Creating a project

	Create a project directory:

anaconda-project init --directory directory-name

NOTE: Replace directory-name with the name of your project
directory.

EXAMPLE: To create a project directory called “iris”:

$ cd /home/alice/mystuff
$ anaconda-project init --directory iris
Create directory '/home/alice/mystuff/iris'? y
Project configuration is in /home/alice/mystuff/iris/anaconda-project.yml

You can also turn any existing directory into a project by
switching to the directory and then running
anaconda-project init without options or arguments.

	OPTIONAL: In a text editor, open anaconda-project.yml to
see what the file looks like for an empty project. As you work
with your project, the anaconda-project commands you use
will modify this file.

As of version 0.10.0 anaconda-project init will initialize an
empty environment. No packages will be listed in the pakcages: key.
To replicate this behavior on older versions run:

anaconda-project init --empty-environment

Working with packages

The anaconda-project.yml file enables specification
of required packages and multiple Conda environments, referred
to as env_specs.

For example the following anaconda-project.yml file will
install python version 3.8, and latest version pandas
and notebook into the default environment when you execute
anaconda-project prepare on the command line.

name: ExampleProject

packages:
 - python=3.8
 - notebook
 - pandas

env_specs:
 default: {}

When anaconda-project prepare is run a new environment is created
called default in the envs subdirectory of your project.
See Configuration to change the default location of the Conda environments.

Adding packages

To add packages to your project that are not yet in your
packages: list there are two approaches.

	From within your project directory, run:

anaconda-project add-packages package1 package2

NOTE: Replace package1 and package2 with the names of
the packages that you want to include. You can specify as many
packages as you want.

EXAMPLE: To add the packages hvplot=0.7 and dask:

$ anaconda-project add-packages hvplot=0.7 dask
Collecting package metadata (current_repodata.json): ...working... done
Solving environment: ...working... done
...
Executing transaction: ...working... done
Using Conda environment /Users/adefusco/Desktop/iris/envs/default.
Added packages to project file: hvplot=0.7, dask.

	Instead of using the add-packages command you can edit the anaconda-project.yml
file directly using any text editor and add package names to the packages: list.
To complete the installation of these new packages into your activate environment run
anaconda-project prepare on the command line after saving the file.

In addition to adding Conda packages as shown above Pip packages
can be specified using the --pip flag:

anaconda-project add-packages --pip package1 package2

NOTE: Replace package1 and package2 with the names of
the packages that you want to include. You can specify as many
packages as you want.

EXAMPLE: To add the requests package to the default environment:

$ anaconda-project add-packages --pip requests
Collecting requests
 Using cached requests-2.25.1-py2.py3-none-any.whl (61 kB)
Requirement already satisfied: certifi>=2017.4.17 in ./envs/default/lib/python3.8/site-packages (from requests) (2020.12.5)
Collecting idna<3,>=2.5
 Using cached idna-2.10-py2.py3-none-any.whl (58 kB)
Collecting chardet<5,>=3.0.2
 Using cached chardet-4.0.0-py2.py3-none-any.whl (178 kB)
Collecting urllib3<1.27,>=1.21.1
 Using cached urllib3-1.26.4-py2.py3-none-any.whl (153 kB)
Installing collected packages: urllib3, idna, chardet, requests
Successfully installed chardet-4.0.0 idna-2.10 requests-2.25.1 urllib3-1.26.4
Using Conda environment /Users/adefusco/Desktop/testproj/envs/default.
Added packages to project file: requests.

Optionally, you can edit the anaconda-project.yml file to add packages using
the pip: key within the packages: list. For example,

name: ExampleProject

packages:
 - python=3.8
 - notebook
 - pandas
 - pip:
 - requests

env_specs:
 default: {}

Then run anaconda-project prepare to install the new packages into the environment.

Package Channels

Note

Breaking Change in version 0.11.0. All channels you wish to search through for packages must be supplied on the CLI
or in the project YAML file. To support reproducible projects that build the same way for different users, Anaconda Project will not respect channels declared in your .condarc file.

Note

Backwards compatibility fix in version 0.11.1. The defaults channel is always appended to the list of channels
even if it is not specified in the channels: list in the project file or with the -c flag using the CLI.
If the defaults channel is specified no change is made. To avoid including the defaults channel add the
channel name nodefaults.

Up till now we have not instructed Conda to install packages from specific channels, so all packages are installed from
the Conda default channels. If no channels are speicified in the project file or on the command line then the
defaults channel is used.

name: ExampleProject

packages:
 - python=3.8
 - notebook
 - pandas
 - pip:
 - requests

env_specs:
 default: {}

To install packages from one or more channels use the -c <channel-name> flag, just like
conda install. To specify multiple channels add more -c <channel-name> flags. The order
in which the flags appear is the order that Conda will check for available packages. Equivalently,
you can edit the anaconda-project.yml to supply a list of channels in the channels: key.

For example:

anaconda-project add-packages -c defaults -c conda-forge fastapi

The resulting anaconda-project.yml file is now

name: ExampleProject

packages:
 - python=3.8
 - notebook
 - pandas
 - pip:
 - requests

channels:
 - defaults
 - conda-forge

env_specs:
 default: {}

If you wish to avoid using the defaults channel you must add the channel nodefaults. This will instruct
Anaconda Project to not append the defaults channel automatically. The order in which nodefaults appears
does not matter.

For example to install packages only from the conda-forge channel:

anaconda-project add-packages -c conda-forge -c nodefaults fastapi

The resulting anaconda-project.yml file is now

name: ExampleProject

packages:
 - python=3.8
 - notebook
 - pandas
 - pip:
 - requests

channels:
 - conda-forge
 - nodefaults

env_specs:
 default: {}

Removing packages

To remove packages from the packages: list run:

anaconda-project remove-packages package1 package2

NOTE: Replace package1 and package2 with the names of
the packages that you want to include. You can specify as many
packages as you want.

EXAMPLE: To remove the package hvplot:

$ anaconda-project remove-packages hvplot
Using Conda environment /Users/adefusco/Desktop/testproj/envs/default.
Removed packages from project file: hvplot.

EXAMPLE: To remove the requests pip package from the default environment:

$ anaconda-project remove-packages --pip requests
Found existing installation: requests 2.25.1
Uninstalling requests-2.25.1:
 Successfully uninstalled requests-2.25.1
Using Conda environment /Users/adefusco/Desktop/testproj/envs/default.
Removed packages from project file: requests.

Pip package specifications

Pip packages can specified in a number of ways.

	From PyPI (or other indexes)

	Direct URL to the package archive

	Revision Control services (for example git and svn)

To install a package from a revision control service:

anaconda-project add-packages --pip git+<protocol>://<revision-control-domain>/<repository.git>[version-branch]#egg=<package-name>

Where

	<protocol> is the web protocol of the domain: i.e, http or https

	<revision-control-domain> is the URL of the service: i.e. github.com

	<repository.git> is the name of the revision control repository, you can include the branch name or release tag here.

	[version-branch] optionally install a specific version or branch of the repository

	<package> is the name of the package as declared in setup.py

NOTE: It is required that you use #egg=<package> to install a revision control hosted
package. This is considered best practice by pip [https://pip.pypa.io/en/latest/cli/pip_install/#vcs-support] and allows the pip dependency solver to
correctly identify the package if it is a dependency of another package in your project.

EXAMPLE: Add the tranquilizer package to your project directly from Github:

$ anaconda-project add-packages --pip git+https://github.com/continuumio/tranquilizer.git@0.5.0#egg=tranquilizer
Collecting tranquilizer
Cloning https://github.com/continuumio/tranquilizer.git (to revision 0.5.0) to /private/var/folders/lk/s__7f9fx15x_zrw6q5xkmm500000gp/T/pip-install-5ncd7pbt/tranquilizer_d037aa7b85d048c1acd4e2f0044c4cea
Using Conda environment /Users/adefusco/Desktop/testproj/envs/default.
Added packages to project file: git+https://github.com/continuumio/tranquilizer.git@0.5.0#egg=tranquilizer.

Alternatively for github you can use the URL of the repository archive. For example, to install
from the master branch of tranquilizer:

$ anaconda-project add-packages --pip https://github.com/continuumio/tranquilizer/archive/master.zip#egg=tranquilizer
Collecting tranquilizer
Downloading https://github.com/continuumio/tranquilizer/archive/master.zip
Using Conda environment /Users/adefusco/Desktop/testproj/envs/default.
Added packages to project file: https://github.com/continuumio/tranquilizer/archive/master.zip#egg=tranquilizer.

Downloading data into a project

Often data sets are too large to keep locally, so you may want
to download them on demand.

To set up your project to download data:

	From within your project directory, run:

anaconda-project add-download env_var URL

NOTE: Replace env_var with a name for an environment variable that
Anaconda Project will create to store the path to your downloaded data file.
Replace URL with the URL for the data to be downloaded.

Anaconda Project downloads the data file to your project
directory.

EXAMPLE: The following command downloads the iris.csv data
file from a GitHub repository into the “iris” project, and
stores its new path in the environment variable IRIS_CSV:

$ anaconda-project add-download IRIS_CSV https://raw.githubusercontent.com/bokeh/bokeh/f9aa6a8caae8c7c12efd32be95ec7b0216f62203/bokeh/sampledata/iris.csv
File downloaded to /home/alice/mystuff/iris/iris.csv
Added https://raw.githubusercontent.com/bokeh/bokeh/f9aa6a8caae8c7c12efd32be95ec7b0216f62203/bokeh/sampledata/iris.csv to the project file.

	OPTIONAL: In a text editor, open anaconda-project.yml to
see the new entry in the downloads section.

Working with commands

	Adding a command to a project

	Specifying multi-line commands

	Using commands that need different environments

	Using commands to automatically start processes

	Viewing a list of commands in a project

	Running a project command

Run all of the commands on this page from within the project
directory.

Adding a command to a project

A project contains some sort of code, such as Python files,
which have a .py extension.

You could run your Python code with the command:

python file.py

NOTE: Replace file with the name of your file.

However, to gain the benefits of Anaconda Project, use Project
to add code files to your project:

	Put the code file, application file, or notebook file into
your project directory.

	Add a command to run your file:

anaconda-project add-command name "command"

NOTE: Replace name with a name of your choosing for the
command. Replace command with the command string.

EXAMPLE:: To add a command called “notebook” that runs the
IPython notebook mynotebook.ipynb:

anaconda-project add-command notebook mynotebook.ipynb

EXAMPLE: To add a command called “plot” that runs a Bokeh
app located outside of your project directory:

anaconda-project add-command plot app-path-filename

NOTE: Replace app-path-filename with the path and
filename of the Bokeh app. By default, Bokeh looks for the
file main.py, so if your app is called main.py, you do
not need to include the filename.

	When prompted for the type of command, type:

	B if the command string is a Bokeh app to run.

	N if the command string is a Notebook to run.

	C if the command string is a Command line instruction to run, such as
using Python to run a Python .py file.

EXAMPLE: To add a command called “hello” that runs
python hello.py:

$ anaconda-project add-command hello "python hello.py"
Is `hello` a (B)okeh app, (N)otebook, or (C)ommand line? C
Added a command 'hello' to the project. Run it with
`anaconda-project run hello`.

	OPTIONAL: In a text editor, open anaconda-project.yml to
see the new command listed in the commands section.

Specifying multi-line commands

Commands added to the anaconda-project.yml file can span
multiple lines of execution by using the YAML | string specifier.
For example a single command can be defined in the anaconda-project.yml
file to run multiple linting tools.

commands:
 unix: |
 yapf --in-place
 flake8
 pep256

Using commands that need different environments

You can have multiple conda environment specifications in a
project, which is useful if some of your commands use a
different version of Python or otherwise have distinct
dependencies. Add these environment specs with
anaconda-project add-env-spec.

Using commands to automatically start processes

Project can automatically start processes that your commands
depend on. Currently it only supports starting Redis, for
demonstration purposes.

To see Project automatically start the Redis process:

anaconda-project add-service redis

More types of services will be supported soon. If there are
particular services that you would find useful, let us
know.

Viewing a list of commands in a project

To list all of the commands in a project:

anaconda-project list-commands

EXAMPLE:

$ anaconda-project list-commands
Commands for project: /home/alice/mystuff/iris

Name Description
==== ===========
hello python hello.py
plot Bokeh app iris_plot
showdata python showdata.py

Running a project command

Running a project command is the same as Running a project.

Working with environment variables

	Using variables in scripts

	Adding a variable

	Adding an encrypted variable

	Adding a variable with a default value

	Changing a variable’s value

	Removing a variable’s value

	Removing a variable

Run all of the commands on this page from within the project
directory.

Anaconda Project sets some environment variables
automatically:

	PROJECT_DIR specifies the location of your project directory.

	CONDA_ENV_PATH is set to the file system location of the
current conda environment.

	PATH includes the binary directory from the current conda
environment.

These variables always exist and can always be used in your
Python code.

Using variables in scripts

Use Python’s os.getenv() function to obtain variables from within
your scripts.

EXAMPLE: The following script, called showdata.py, prints out
data:

import os
import pandas as pd

project_dir = os.getenv("PROJECT_DIR")
env = os.getenv("CONDA_DEFAULT_ENV")
iris_csv = os.getenv("IRIS_CSV")

flowers = pd.read_csv(iris_csv)

print(flowers)
print("My project directory is {} and my conda environment is {}".format(project_dir, env))

If you tried to run this example script with
python showdata.py, it would not work if pandas was not
installed and the environment variables were not set.

Adding a variable

If a command needs a user-supplied parameter, you can
require—or just allow—users to provide values for these
before the command runs.

NOTE: Encrypted variables such as passwords are treated
differently from other custom variables. See Adding an encrypted variable.

	Add the unencrypted variable to your project:

anaconda-project add-variable VARIABLE

NOTE: Replace VARIABLE with the name of the variable that you
want to add.

EXAMPLE: To add a variable called COLUMN_TO_SHOW:

anaconda-project add-variable COLUMN_TO_SHOW

	OPTIONAL: In a text editor, open anaconda-project.yml to
see the new variable listed in the variables section.

	OPTIONAL: Use the command anaconda-project list-variables
to see the new variables listed.

	Include the new variable in your script in the same way as you
would for any other variable.

The first time a user runs your project, they are prompted to
provide a value for your custom variable. On subsequent runs,
the user will not be prompted.

All environment variables are available for jinja2 [https://jinja.palletsprojects.com/] templating as shown
in the HTTP Commands section.

Adding an encrypted variable

Use variables for passwords and other secret information so that
each user can input their own private information.

Encrypted variable values are kept in the system keychain, while
other variable values are kept in the
anaconda-project-local.yml file. In all other respects,
working with encrypted variables is the same as for unencrypted
variables.

Any variable ending in _PASSWORD, _SECRET, or
_SECRET_KEY is automatically encrypted.

To create an encrypted variable:

anaconda-project add-variable VARIABLE_encrypt-flag

NOTE: Replace VARIABLE with the name of the variable that you
want to add. Replace _encrypt-flag with _PASSWORD,
_SECRET or _SECRET_KEY.

EXAMPLE: To create an encrypted variable called DB_PASSWORD:

anaconda-project add-variable DB_PASSWORD

Adding a variable with a default value

You can set a default value for a variable, which is stored with
the variable in anaconda-project.yml. If you set a default,
users are not prompted to provide a value, but they can override
the default value if they want to.

To add a variable with a default value:

anaconda-project add-variable --default=default_value VARIABLE

NOTE: Replace default_value with the default value to be set
and VARIABLE with the name of the variable to create.

EXAMPLE: To add the variable COLUMN_TO_SHOW with the default
value petal_width:

anaconda-project add-variable --default=petal_width COLUMN_TO_SHOW

If you or a user sets the variable in
anaconda-project-local.yml, the default is ignored. However,
you can unset the local override so that the default is used:

anaconda-project unset-variable VARIABLE

NOTE: Replace VARIABLE with the variable name.

EXAMPLE: To unset the COLUMN_TO_SHOW variable:

anaconda-project unset-variable COLUMN_TO_SHOW

Changing a variable’s value

The variable values entered by a user are stored in the user’s
anaconda-project-local.yml file. To change a variable’s value
in the user’s file:

anaconda-project set-variable VARIABLE=value

NOTE: Replace VARIABLE with the variable name and value
with the new value for that variable.

EXAMPLE: To set COLUMN_TO_SHOW to petal_length:

anaconda-project set-variable COLUMN_TO_SHOW=petal_length

Removing a variable’s value

Use the unset-variable command to remove the value that has
been set for a variable. Only the value is removed. The project
still requires a value for the variable in order to run.

Removing a variable

Use the remove-variable command to remove the variable
from anaconda-project.yml so that the project no longer
requires the variable value in order to run.

Running a project

Run all of the commands on this page from within the project
directory.

To run a project:

	If necessary, extract the files from the project archive
file—.zip, .tar.gz or .tar.bz2.

	If you do not know the exact name of the command you want to
run, list the commands in the
project.

	If there is only one command in the project, run:

anaconda-project run

	If there are multiple commands in the project, include the
command name:

anaconda-project run command-name

NOTE: Replace command-name with the actual command name.

EXAMPLE: To run a command called “showdata”, which could
download data, install needed packages and run the command:

anaconda-project run showdata

	For a command that runs a Bokeh app, you can include options
for bokeh serve in the run command.

EXAMPLE: The following command passes the --show option
to the bokeh serve command, to tell Bokeh to open a
browser window:

anaconda-project run plot --show

When you run a project for the first time, there is a short delay
as the new dedicated project is created, and then the command is
executed. The command will run much faster on subsequent runs
because the dedicated project is already created.

In your project directory, you now have an envs subdirectory.
By default every project has its own packages in its own sandbox
to ensure that projects do not interfere with one another.

Cleaning a project

Your projects contain files that Anaconda Project creates
automatically, such as any downloaded data and the
envs/default directory.

Use the clean command to remove such files and make a clean,
reproducible project.

Run the following command from within the project directory:

anaconda-project clean

Project removes automatically created files and downloaded data.

To restore these files:

	Prepare the project.

OR

	Run the project.

Preparing a project

When you run a project, Anaconda Project automatically
generates certain files and downloads necessary data. The
prepare command allows you to initiate that process without
running the project.

To prepare a project, run the prepare command from within
your project directory:

anaconda-project prepare

Creating a project archive

To share a project with others, you likely want to put it into an
archive file, such as a .zip file. Anaconda Project can create
.zip, .tar.gz and .tar.bz2 archives. The archive format matches
the file extension that you provide.

Excluding files from the archive

The anaconda-project archive command automatically omits the
files that Project can reproduce automatically, which includes
the envs/ directory and any downloaded data files defined in the
downloads section of the anaconda-project.yml file.

See Packagaging Environments below to bundle Conda
environments in the archive.

The archive also excludes anaconda-project-local.yml, which is intended to
hold local configuration state only.

To manually exclude any other files that you do not want to be
in the archive, create a .projectignore file or a
.gitignore file.

Note

If you anticipate that this project will be managed as a Git
repository, use of .gitignore is preferred over
.projectignore. However, use of .gitignore outside
of a Git repository is not supported.

Creating the archive file

To create a project archive, run the following command from
within your project directory:

anaconda-project archive filename.zip

NOTE: Replace filename with the name for your archive file.
If you want to create a .tar.gz or .tar.bz2 archive instead of a
zip archive, replace zip with the appropriate file extension.

EXAMPLE: To create a zip archive called “iris”:

anaconda-project archive iris.zip

Project creates the archive file.

If you list the files in the archive, you will see that
automatically generated files are not listed.

EXAMPLE:

$ unzip -l iris.zip
Archive: iris.zip
 Length Date Time Name
--------- ---------- ----- ----
 16 06-10-2016 10:04 iris/hello.py
 281 06-10-2016 10:22 iris/showdata.py
 222 06-10-2016 09:46 iris/.projectignore
 4927 06-10-2016 10:31 iris/anaconda-project.yml
 557 06-10-2016 10:33 iris/iris_plot/main.py
--------- -------
 6003 5 files

Extracting the archive file

Anaconda Project archives can be extracted using packages
provided by the OS or using the anaconda-project unarchive command.

The unarchive command can extract bundles in any of the supported
formats (.zip, .tar.gz, and .tar.bz2):

anaconda-project unarchive <bundle>

Experimental: Packaging environments

Available since version 0.10.0

There are cases where it may be preferable to package the
Conda environments directly into the archive. For example,
you may want to support uses where the target system cannot
connect to the repository to download and install packages.

To bundle the environments into the archive use the --pack-envs
flag. This will utilize conda-pack [https://conda.github.io/conda-pack/index.html]
to add each env_spec to the Anaconda Project bundle.

With the --pack-envs the prepare command is run automatically
to ensure that all env_specs are up-to-date before building
the bundle.

Note

When using --pack-envs your Anaconda Project bundles may be
very large.

The bundle can be extracted using either anaconda-project unarchive
or OS packages for Zip, tar.gz, and tar.bz2 files.

If a pack-envs bundle is extracted on a platform (Mac, Linux, Windows) that
does not match the platform used to create the bundle the env_specs will be
re-created when you run anaconda-project prepare or anaconda-project run.

Sharing a project

To share a project with other people:

	Archive the project.

	Send the file to another user—for example, by email, by
copying the file to a shared network location, and so on.

OR

Upload the file to Anaconda Cloud by running the following
command from within the project directory:

anaconda-project upload

NOTE: You need a free Cloud account to upload projects to
Cloud.

	The user retrieves the archive file and runs the project.

Creating Docker Images

Available since version 0.10.0

Use the dockerize command to create a Docker image from
the project. Images created from Anaconda Projects are
configured to execute a single defined command
in the anaconda-project.yml file chosen at build time.

The dockerize command uses source-to-image (s2i) [https://github.com/openshift/source-to-image#source-to-image-s2i]
to build Docker images using the s2i-anaconda-project builder images [https://github.com/Anaconda-Platform/s2i-anaconda-project]
that have been uploaded to Docker Hub.

Images built with dockerize will have a fully prepared env_spec for the desired
command and expose port 8086 if the command listens for HTTP requests.

Prerequisites

In order to utilize the dockerize command you will need to
have Docker and source-to-image (s2i) installed.

	Docker [https://docs.docker.com/get-docker/]

	source-to-image [https://github.com/openshift/source-to-image#source-to-image-s2i]

You can install s2i using Conda

conda install -c ctools source-to-image

Quickstart

	Build a docker image to run a supplied command

anaconda-project dockerize --command <command-name> -t <image name>

	Run the Docker image and publish port 8086

docker run -p 8086:8086 <image name>

It is necessary to add -p 8086:8086 in order to publish port 8086 from the anaconda-project container
out to the host. The second entry in the -p flag must be 8086 while the first entry
can be any valid unused port on the host. See the Docker container networking docs for more details. [https://docs.docker.com/config/containers/container-networking/]

Build Docker images

By default running the dockerize command will create a
Docker image to execute the default command.

The default command is determined in the following order

	The command named default

	The first command listed in the project file if no command is named default

The s2i-anaconda-project builder images have Miniconda and anaconda-project installed. When the dockerize
command is run the following steps are performed.

	The project is archived to a temporary directory to ensure that files listed in your .projectignore (including
the local envs directory) are not copied into the Docker image.

	The s2i build command is run from the temporary directory to construct a new Docker image from the builder image.

The steps in the s2i build process are

	The temporary project directory is added to the image.

	The s2i assemble script [https://github.com/Anaconda-Platform/s2i-anaconda-project/blob/master/s2i/bin/assemble] is run to prepare the env_spec for the desired command.

	Conda clean is run to reduce the size of the output Docker image.

Options

The dockerize command accepts several optional arguments

	--command

	The named command to execute in the RUN layer of the Docker image.
Default: default
See the HTTP commands section below.

	-t or --tag

	The name of the output Docker image in the format name:tag. By default
Default: “<project-name>:latest”, where <project-name> is taken from the name
tag in the anaconda-project.yml file.

	--builder-image

	The s2i builder image name to use.
Default: conda/s2i-anaconda-project-ubi8
By default this is image is pulled from DockerHub when dockerize is run.
See the Custom Builder Image section below to construct your own builder images.

	s2i build arguments

	Any further arguments or those supplied after -- will be given to the s2i build command.
See the s2i build documentation for available build flags. [https://github.com/openshift/source-to-image/blob/master/docs/cli.md#build-flags]

Builder images

The default builder image for anaconda-project dockerize is conda/s2i-anaconda-project-ubi8. To see
other available builder images on DockerHub click here [https://hub.docker.com/search?q=conda%2Fs2i-anaconda-project&type=image].

HTTP options

When the docker image is run the s2i run script [https://github.com/Anaconda-Platform/s2i-anaconda-project/blob/master/s2i/bin/run]
is executed with the supplied command. The full run command is

anaconda-project run $CMD --anaconda-project-port 8086 --anaconda-project-address 0.0.0.0 --anaconda-project-no-browser --anaconda-project-use-xheaders

This ensures that the command communicates over port 8086 if it supports the HTTP Commands.

If your desired command is not an HTTP command or you wish not to use the Jinja2 template features you must add
supports_http_options: false to the command specification in the anaconda-project.yml file. When
supports_http_options is set to false the HTTP arguments are completely ignored when the command is executed.

Configuring Conda

In addition to the channel configuration available in the anaconda-project.yml
file you may need to supply custom Conda configuration parameters [https://docs.conda.io/projects/conda/en/latest/user-guide/configuration/use-condarc.html]
in order to build the Docker image.

To provide a custom Conda configuration, place a .condarc file at the top-level
of your project directory.

For example, you can use the .condarc to configure access to
Anaconda Team Edition [https://team-docs.anaconda.com/en/latest/user/conda.html] or Anaconda Commercial Edition [https://docs.anaconda.com/anaconda-commercial/quickstart/#setting-up-condarc-for-commercial-edition].

Custom builder images

If you want to customize the builder images you can clone the s2i-anaconda-project repository [https://github.com/Anaconda-Platform/s2i-anaconda-project],
build the images. The custom builder images can be provided to anaconda-project dockerize using the --builder-image
flag.

Reference

The anaconda-project command works with project directories, which can
contain scripts, notebooks, data files, and anything that is related to your
project.

Any directory can be made into a project by adding a configuration file
named anaconda-project.yml.

.yml files are in the YAML format and follow the YAML syntax.

TIP: Read more about YAML syntax at http://yaml.org/start.html

TIP: You may want to go through the anaconda-project tutorial
before digging into the details in this document.

anaconda-project.yml, anaconda-project-local.yml, anaconda-project-lock.yml

Anaconda projects are affected by three configuration files,
anaconda-project.yml, anaconda-project-local.yml, and
anaconda-project-lock.yml.

The file anaconda-project.yml contains information about a project that
is intended to be shared across users and machines. If you use
source control, the file anaconda-project.yml should probably be put in
source control.

The file anaconda-project-local.yml, on the other hand, goes in
.gitignore (or .svnignore or equivalent), because it
contains your local configuration state that you do not
want to share with others.

The file anaconda-project-lock.yml is optional and contains
information needed to lock your package dependencies at specific
versions. This “lock file” should go in source control along with
anaconda-project.yml.

These files can be manipulated with anaconda-project commands,
or with Anaconda Navigator, or you can edit them with any text
editor.

Commands and Requirements

In the anaconda-project.yml file you can define commands and
requirements that the commands need in order to run.

For example, let’s say you have a script named analyze.py
in your project directory along with a file anaconda-project.yml:

myproject/
 analyze.py
 anaconda-project.yml

The file anaconda-project.yml tells conda how to run your project:

commands:
 default:
 unix: "python analyze.py"
 windows: "python analyze.py"

There are separate command lines for Unix shells (Linux and
macOS) and for Windows. You may target only one platform, and
are not required to provide command lines for other platforms.

When you send your project to someone else, they can type
anaconda-project run to run your script. The best part
is that anaconda-project run makes sure that all
prerequisites are set up before it runs the script.

Let’s say your script requires a certain conda package to be
installed. Add the redis-py package to anaconda-project.yml as a
dependency using either the packages or dependencies key:

packages:
 - redis-py

Now when someone runs anaconda-project run the script is
automatically run in a conda environment that has redis-py
installed.

Here’s another example. Let’s say your script requires a huge
data file that you don’t want to put in source control and
you don’t want to email. You can add a requirement that the file will be
downloaded locally:

downloads:
 MYDATAFILE:
 url: http://example.com/bigdatafile
 sha1: da39a3ee5e6b4b0d3255bfef95601890afd80709

Now when someone runs anaconda-project run, the file is
downloaded if it hasn’t been downloaded already, and the
environment variable MYDATAFILE is set to the local
filename of the data. In your analyze.py file you can write
something like this:

import os
filename = os.getenv('MYDATAFILE')
if filename is None:
 raise Exception("Please use 'anaconda-project run' to start this script")
with open(filename, 'r') as input:
 data = input.read()
 # and so on

anaconda-project supports many other requirements,
too. Instead of writing long documentation about how to set up
your script before others can run it, simply put the requirements in
a anaconda-project.yml file and let anaconda-project check and execute
the setup automatically.

Multiple Commands

An anaconda-project.yml can list multiple commands. Each command has a
name, and anaconda-project run COMMAND_NAME runs the command named
COMMAND_NAME.

anaconda-project list-commands lists commands, along with a
description of each command. To customize a command’s description,
add a description: field in anaconda-project.yml, like this:

commands:
 mycommand:
 unix: "python analyze.py"
 windows: "python analyze.py"
 description: "This command runs the analysis"

Special command types

Bokeh apps and notebooks have a shorthand syntax:

commands:
 foo:
 bokeh_app: foo
 description: "Runs the bokeh app in the foo subdirectory"
 bar:
 notebook: bar.ipynb
 description: "Opens the notebook bar.ipynb"

Notebook-specific options

Notebook commands can annotate that they contain a function
registered with Anaconda Fusion:

commands:
 bar:
 notebook: bar.ipynb
 description: "Notebook exporting an Anaconda Fusion function."
 registers_fusion_function: true

If your notebook contains @fusion.register when you
anaconda-project init or anaconda-project add-command,
registers_fusion_function: true will be added automatically.

HTTP Commands

anaconda-project can be used to pack up web applications and
run them on a server. Web applications include Bokeh
applications, notebooks, APIs, and anything else that communicates with HTTP.

To make an anaconda-project command into a deployable web
application, it has to support a list of command-line
options.

Any command with notebook: or bokeh_app: automatically
supports these options, because anaconda-project translates
them into the native options supplied by the Bokeh and Jupyter
command lines.

Shell commands (those with unix: or windows:) must support the
semantics of these command-line options appropriately. They do not
have to support the exact command line syntax used by anaconda project
run as shell commands support jinja2 [https://jinja.palletsprojects.com] templating. For instance:

commands:
 myapp:
 unix: launch_flask_app.py --port {{port}} --host {{host}} --address {{address}}
 description: "Launches a Flask web app"

Here, {{port}}, {{host}} and {{address}} are jinja2
variables that are templated into the --port, --host and
--address arguments of a hypothetical launch_flask_app.py
script. These arguments are just a few of the variables made available
from the --anaconda-project- flags you can use when executing
anaconda-project run:

	--anaconda-project-host=HOST:PORT can be specified multiple
times and indicates a permitted value for the HTTP Host header. The
value may include a port as well. There will be one
--anaconda-project-host option for each host that browsers can
connect to. This option specifies the application’s public
hostname:port and does not affect the address or port the application
listens on. The last host specified is made available as the host
jinja2 variable while the full list of hosts is available as the
hosts variable.

	--anaconda-project-port=PORT indicates the local port the
application should listen on; unlike the port which may be
included in the --anaconda-project-host option, this port
will not always be the one that browsers connect to. In a
typical deployment, applications listen on a local-only port
while a reverse proxy such as nginx listens on a public port
and forwards traffic to the local port. In this scenario, the public
port is part of --anaconda-project-host and the local port is
provided as --anaconda-project-port. This setting is available
for templating as the port jinja2 variable.}

	--anaconda-project-address=IP indicates the IP address the
application should listen on. Unlike the host which may be
included in the --anaconda-project-host option, this address may
not be the one that browsers connect to. This setting is available
for templating as the address jinja2 variable.

	--anaconda-project-url-prefix=PREFIX gives a path prefix that
should be the first part of the paths to all
routes in your application. For example,
if you usually have a page /foo.html, and the prefix is /bar,
you would now have a page /bar/foo.html. This setting is
available for templating as the url_prefix jinja2 variable.

	--anaconda-project-no-browser means “don’t open a web
browser when the command is run.” If your command never opens a web
browser anyway, you should accept but ignore this option. This
setting is available for templating as the no_browser jinja2
variable. When this switch is present, the value of no_browser is
True.

	--anaconda-project-iframe-hosts=HOST:PORT gives a value to
be included in the Content-Security-Policy header
as a value for frame-ancestors when you serve an HTTP
response. The effect of this is to allow the page to be embedded in
an iframe by the supplied HOST:PORT. This setting is available for
templating as the iframe-hosts jinja2 variable.

	--anaconda-project-use-xheaders tells your application that it’s
behind a reverse proxy and can trust “X-” headers, such as
X-Forwarded-For or X-Host. This setting is available for
templating as the use_xheaders jinja2 variable. When this switch
is present, the value of use_xheaders is True.

As an alternative to the templating approach, you may choose to write
launch_flask_app.py in such a way that it supports the above command
line flags and switches directly. In this case, you need to specify
supports_http_options: true:

commands:
 myapp:
 unix: {{PROJECT_DIR}}/launch_flask_app.py
 supports_http_options: true
 description: "Launches a Flask web app"

This example illustrates that in addition to the jinja2 variables
described above, all environment variables are also available for
templating, including PROJECT_DIR and conda related environment
variables such as CONDA_PREFIX and CONDA_DEFAULT_ENV.

Environments and Channels

You can configure packages in a top level packages or dependencies
section of the anaconda-project.yml file, as we discussed earlier:

packages:
 - redis-py

You can also add specific conda channels to be searched for
packages:

channels:
 - conda-forge

anaconda-project creates an environment in envs/default by
default. But if you prefer, you can have multiple named
environments available in the envs directory. To do that,
specify an env_specs: section of your anaconda-project.yml file:

env_specs:
 default:
 packages:
 - foo
 - bar
 channels:
 - conda-forge
 python27:
 description: "Uses Python 2 instead of 3"
 packages:
 - python < 3
 channels:
 - https://example.com/somechannel

An environment specification or “env spec” is a description
of an environment, describing the packages that the project
requires to run. By default, env specs are instantiated as
actual Conda environments in the envs directory inside
your project.

In the above example we create two env specs, which will
be instantiated as two environments, envs/default and
envs/python27.

To run a project using a specific env spec, use the --env-spec option:

anaconda-project run --env-spec myenvname

If you have top level channels or packages sections in
your anaconda-project.yml file (not in the env_specs: section),
those channels and packages are added to all env specs.

The default env spec can be specified for each command, like this:

commands:
 mycommand:
 unix: "python ${PROJECT_DIR}/analyze.py"
 windows: "python %PROJECT_DIR%\analyze.py"
 env_spec: my_env_spec_name

Env specs can also inherit from one another. List a single
env spec or a list of env specs to inherit from,
something like this:

env_specs:
 test_packages:
 description: "Packages used for testing"
 packages:
 - pytest
 - pytest-cov
 app_dependencies:
 description: "Packages used by my app"
 packages:
 - bokeh
 app_test_dependencies:
 description: "Packages used to test my app"
 inherit_from: [test_packages, app_dependencies]

commands:
 default:
 unix: start_my_app.py
 env_spec: app_dependencies
 test:
 unix: python -m pytest myapp/tests
 env_spec: app_test_dependencies

pip packages

Underneath any packages: or dependencies: section, you can add a pip:
section with a list of pip requirement specifiers.

packages:
 - condapackage1
 - pip:
 - pippackage1
 - pippackage2

Locking package versions

Any env spec can be “locked”, which means it specifies exact
versions of all packages to be installed, kept in
anaconda-project-lock.yml.

Hand-creating anaconda-project-lock.yml isn’t
recommended. Instead, create it with the anaconda-project lock
command, and update the versions in the configuration file with
anaconda-project update.

Locked versions are distinct from the “logical” versions in
anaconda-project.yml. For example, your
anaconda-project.yml might list that you require
bokeh=0.12. The anaconda-project lock command expands
that to an exact version of Bokeh such as
bokeh=0.12.4=py27_0. It will also list exact versions of all
Bokeh’s dependencies transitively, so you’ll have a longer
list of packages in anaconda-project-lock.yml. For example:

locking_enabled: true

env_specs:
 default:
 locked: true
 env_spec_hash: eb23ad7bd050fb6383fcb71958ff03db074b0525
 platforms:
 - linux-64
 - win-64
 packages:
 all:
 - backports=1.0=py27_0
 - backports_abc=0.5=py27_0
 - bokeh=0.12.4=py27_0
 - futures=3.0.5=py27_0
 - jinja2=2.9.5=py27_0
 - markupsafe=0.23=py27_2
 - mkl=2017.0.1=0
 - numpy=1.12.1=py27_0
 - pandas=0.19.2=np112py27_1
 - pip=9.0.1=py27_1
 - python-dateutil=2.6.0=py27_0
 - python=2.7.13=0
 - pytz=2016.10=py27_0
 - pyyaml=3.12=py27_0
 - requests=2.13.0=py27_0
 - singledispatch=3.4.0.3=py27_0
 - six=1.10.0=py27_0
 - ssl_match_hostname=3.4.0.2=py27_1
 - tornado=4.4.2=py27_0
 - wheel=0.29.0=py27_0
 unix:
 - openssl=1.0.2k=1
 - readline=6.2=2
 - setuptools=27.2.0=py27_0
 - sqlite=3.13.0=0
 - tk=8.5.18=0
 - yaml=0.1.6=0
 - zlib=1.2.8=3
 win:
 - setuptools=27.2.0=py27_1
 - vs2008_runtime=9.00.30729.5054=0

By locking your versions, you can make your project more portable.
When you share it with someone else or deploy it on a server or
try to use it yourself in a few months, you’ll get the same
package versions you’ve already used for testing. If you don’t
lock your versions, you may find that your project stops working
due to changes in its dependencies.

When you’re ready to test the latest versions of your
dependencies, run anaconda-project update to update the
versions in anaconda-project-lock.yml to the latest available.

If you check anaconda-project-lock.yml into revision control
(such as git), then when you check out old versions of your project
you’ll also get the dependencies those versions were tested with.
And you’ll be able to see changes in your dependencies over time
in your revision control history.

Additionally, all pip packages added to the anaconda-project.yml file
or installed as dependencies will be added to the anaconda-project-lock.yml
file similar to the output of pip freeze. For example, see the following
anaconda-project-lock.yml file that matches the following package specification.

packages:
 - python=3.8
 - pip:
 - requests

locking_enabled: true

env_specs:
 default:
 locked: true
 env_spec_hash: 292a009a194f1ca1d3432c824df6ff51a7aef388
 platforms:
 - linux-64
 - osx-64
 - win-64
 packages:
 all:
 - wheel=0.36.2=pyhd3eb1b0_0
 linux-64:
 - _libgcc_mutex=0.1=main
 - ca-certificates=2021.4.13=h06a4308_1
 - certifi=2020.12.5=py38h06a4308_0
 - ld_impl_linux-64=2.33.1=h53a641e_7
 - libffi=3.3=he6710b0_2
 - libgcc-ng=9.1.0=hdf63c60_0
 - libstdcxx-ng=9.1.0=hdf63c60_0
 - ncurses=6.2=he6710b0_1
 - openssl=1.1.1k=h27cfd23_0
 - pip=21.0.1=py38h06a4308_0
 - python=3.8.8=hdb3f193_5
 - readline=8.1=h27cfd23_0
 - setuptools=52.0.0=py38h06a4308_0
 - sqlite=3.35.4=hdfb4753_0
 - tk=8.6.10=hbc83047_0
 - xz=5.2.5=h7b6447c_0
 - zlib=1.2.11=h7b6447c_3
 osx-64:
 - ca-certificates=2021.4.13=hecd8cb5_1
 - certifi=2020.12.5=py38hecd8cb5_0
 - libcxx=10.0.0=1
 - libffi=3.3=hb1e8313_2
 - ncurses=6.2=h0a44026_1
 - openssl=1.1.1k=h9ed2024_0
 - pip=21.0.1=py38hecd8cb5_0
 - python=3.8.8=h88f2d9e_5
 - readline=8.1=h9ed2024_0
 - setuptools=52.0.0=py38hecd8cb5_0
 - sqlite=3.35.4=hce871da_0
 - tk=8.6.10=hb0a8c7a_0
 - xz=5.2.5=h1de35cc_0
 - zlib=1.2.11=h1de35cc_3
 win-64:
 - ca-certificates=2021.4.13=haa95532_1
 - certifi=2020.12.5=py38haa95532_0
 - openssl=1.1.1k=h2bbff1b_0
 - pip=21.0.1=py38haa95532_0
 - python=3.8.8=hdbf39b2_5
 - setuptools=52.0.0=py38haa95532_0
 - sqlite=3.35.4=h2bbff1b_0
 - vc=14.2=h21ff451_1
 - vs2015_runtime=14.27.29016=h5e58377_2
 - wincertstore=0.2=py38_0
 pip:
 - chardet==4.0.0
 - idna==2.10
 - requests==2.25.1
 - urllib3==1.26.4

Specifying supported platforms

Whenever you lock or update a project, dependencies are resolved
for all platforms that the project supports. This allows you to do your
work on Windows and deploy to Linux, for example.

anaconda-project lock by default adds a platforms:
[linux-64,osx-64,win-64] line to anaconda-project.yml. If
you don’t need to support these three platforms, or want different
ones, change this line. Updates will be faster if you support
fewer platforms. Also, some projects only work on certain
platforms.

The platforms: line does nothing when a project is unlocked.

Platform names are the same ones used by conda. Possible
values in platforms: include linux-64, linux-32,
win-64, win-32, osx-64, osx-32, linux-armv6l,
linux-armv7l, linux-ppc64le, and so on.

In anaconda-project.yml a platforms: list at the root of
the file will be inherited by all env specs, and then each env
spec can add (but not subtract) additional platforms. It works the
same way as the channels: list in this
respect. inherit_from: will also cause platforms to be
inherited.

Enabling and disabling locked versions

If you delete anaconda-project-lock.yml, the project will
become “unlocked.”

If you have an anaconda-project-lock.yml, the
locking_enabled: field indicates whether env specs are locked
by default. Individual env spec sections in
anaconda-project-lock.yml can then specify locked: true or
locked: false to override the default on a per-env-spec basis.

anaconda-project unlock turns off locking for all env specs and
anaconda-project lock turns on locking for all env specs.

Updating locked versions after editing an env spec

If you use commands such as anaconda-project add-packages or
anaconda-project add-env-spec to edit your
anaconda-project.yml, then anaconda-project-lock.yml will
automatically be kept updated.

However, if you edit anaconda-project.yml by hand and change an
env spec, you’ll need to run anaconda-project update to update
anaconda-project-lock.yml to match.

If locking isn’t enabled for the project or for the env spec,
there’s no need to anaconda-project update after editing your
env spec.

Requiring environment variables to be set

Anything in the variables: section of a anaconda-project.yml file
is considered an environment variable needed by your project.
When someone runs your project, anaconda-project asks
them to set these variables.

For example:

variables:
 - AMAZON_EC2_USERNAME
 - AMAZON_EC2_PASSWORD

Now in your script, you can use os.getenv() to get these variables.

NOTE: This is a much better option than hardcoding passwords into your
script, which can be a security risk.

Variables that contain credentials

Variables that end in _PASSWORD, _ENCRYPTED,
_SECRET_KEY, or _SECRET are treated sensitively by
default. This means that if anaconda-project stores a value
for them in anaconda-project.yml or anaconda-project-local.yml or elsewhere,
that value is encrypted. NOTE: anaconda-project-local.yml stores and
encrypts the value that you enter when prompted.

To force a variable to be encrypted or not encrypted, add the
encrypted option to it in anaconda-project.yml, like this:

variables:
 # let's encrypt the password but not the username
 AMAZON_EC2_USERNAME: { encrypted: false }
 AMAZON_EC2_PASSWORD: { encrypted: true }

NOTE: The value of the environment variable is NOT encrypted
when passed to your script; the encryption happens only when we
save the value to a config file.

Variables with default values

If you make the variables: section a dictionary instead of a
list, you can give your variables default values. Anything
in the environment or in anaconda-project-local.yml overrides
these defaults. To omit a default for a variable, set
its value to either null or {}.

For example:

variables:
 ALPHA: "default_value_of_alpha"
 BRAVO: null # no default for BRAVO
 CHARLIE: {} # no default for CHARLIE
 # default as part of options dict, needed if you also
 # want to set some options such as 'encrypted: true'
 DELTA: { default: "default_value_of_delta" }
 ECHO: { default: "default_value_of_echo", encrypted: true }

Variables can have custom description strings

A variable can have a ‘description’ field, which will be used in UIs
which display the variable.

For example:

variables:
 SALES_DB_PASSWORD: {
 description: "The password for the sales database. Ask jim@example.com if you don't have one."
 }

Variables that are always set

anaconda-project ensures that the following variables are always set:

	PROJECT_DIR is set to the top level directory of your project

	CONDA_ENV_PATH is set to the filesystem location of the current conda environment

	PATH includes the binary directory from the current conda environment

These variables always exist and can always be used in your Python code.
For example, to get a file from your project directory, try this in your
Python code (notebook or script):

import os
project_dir = os.getenv("PROJECT_DIR")
my_file = os.path.join(project_dir, "my/file.txt")

Services

TIP: Services are a proof-of-concept demo feature for now.

Services can be automatically started, and their address
can be provided to your code by using an environment variable.

For example, you can add a services section to your anaconda-project.yml file:

services:
 REDIS_URL: redis

Now when someone else runs your project, anaconda-project
offers to start a local instance of redis-server automatically.

There is also a long form of the above service configuration:

services:
 REDIS_URL: { type: redis }

and you can set a default and any options a service may have:

services:
 REDIS_URL:
 type: redis
 default: "redis://localhost:5895"

Right now there is only one supported service (Redis) as a
demo. We expect to support more soon.

File Downloads

The downloads: section of the anaconda-project.yml file lets you define
environment variables that point to downloaded files. For example:

downloads:
 MYDATAFILE:
 url: http://example.com/bigdatafile
 sha1: da39a3ee5e6b4b0d3255bfef95601890afd80709

Rather than sha1, you can use whatever integrity hash you have;
supported hashes are md5, sha1, sha224, sha256,
sha384, sha512.

NOTE: The download is checked for integrity ONLY if you specify a hash.

You can also specify a filename to download to, relative to your
project directory. For example:

downloads:
 MYDATAFILE:
 url: http://example.com/bigdatafile
 filename: myfile.csv

This downloads to myfile.csv, so if your project is in
/home/mystuff/foo and the download succeeds, MYDATAFILE
is set to /home/mystuff/foo/myfile.csv.

If you do not specify a filename, anaconda-project picks a
reasonable default based on the URL.

To avoid the automated download, it’s also possible for someone to
run your project with an existing file path in the environment.
On Linux or Mac, that looks like:

MYDATAFILE=/my/already/downloaded/file.csv anaconda-project run

Conda can auto-unzip a zip file as it is downloaded. This is the
default if the URL path ends in “.zip” unless the filename
also ends in “.zip”. For URLs that do not end in “.zip”, or to
change the default, you can specify the “unzip” flag:

downloads:
 MYDATAFILE:
 url: http://example.com/bigdatafile
 unzip: true

The filename is used as a directory and the zip file is unpacked
into the same directory, unless the zip contains a
single file or directory with the same name as filename. In that
case, then the two are consolidated.

EXAMPLE: If your zip file contains a single directory
foo with file bar inside that, and you specify downloading
to filename foo, then you’ll get PROJECT_DIR/foo/bar, not
PROJECT_DIR/foo/foo/bar.

Describing the Project

By default, anaconda-project names your project with the same
name as the directory in which it is located. You can give it a
different name in anaconda-project.yml:

name: myproject

You can also have an icon file, relative to the project directory:

icon: images/myicon.png

No need to edit anaconda-project.yml directly

You can edit anaconda-project.yml with the anaconda-project command.

To add a download to anaconda-project.yml:

anaconda-project add-download MYFILE http://example.com/myfile

To add a package:

anaconda-project add-packages redis-py

To ask for a running Redis instance:

anaconda-project add-service redis

Help and support

To ask questions or submit bug reports, use the
Github Issue Tracker [https://github.com/Anaconda-Platform/anaconda-project/issues].

Paid support

Anaconda Project is an open source project that originated at
Anaconda, Inc. [https://www.anaconda.com/]
Continuum offers paid training [https://www.continuum.io/training] and support [https://www.continuum.io/support].

Send feedback

Help us make this documentation better. Send feedback about the
Project documentation to documentation@continuum.io.

Index

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Anaconda Project

