

Welcome to Amulet Map Editor’s documentation!

Contents:

	api module
	data_structures module

	paths module

	box module

	world module

	world_loader module

	Design Notes
	Block Definitions

	World Design

	command_line module

	version_definitions module

	world_utils module

Indices and tables

	Index

	Module Index

	Search Page

api module

API Documentation

	data_structures module

	paths module

	box module

	world module

	world_loader module

data_structures module

paths module

	
COMMANDS_DIR

	Points to the directory where 3rd party commands are loaded from when running in command-line mode

	
FORMATS_DIR

	Points to the directory where world format loaders are loaded from

	
DEFINITIONS_DIR

	Points to the directory where block/entity/tile entity definitions are loaded from

box module

world module

world_loader module

Design Notes

Design Documentation

	Block Definitions
	Intro

	Versioned Blocks

	Identifying and Loading Worlds

	World Design
	Intro

	The “Amulet Format”

	Format Loaders

Block Definitions

Relevant classes: version_definitions.definition_manager.DefinitionManager

Intro

One of the biggest problems with Minecraft: Java Edition 1.13 is that it switched the structure
of the world save data from using pairs of numerical IDs to define blocks in the world. Previously
these IDs were constant and represented a single block. However, 1.13 changed it so blocks were
identified by blockstates as strings. Some blocks, like Noteblocks for example, went from storing
their data as NBT to using blockstates, this caused an issue where not all blocks have a clear
(ID, data) <-> blockstate translation. This has prompted us to use blockstate strings as
block identifiers in the editor and only numerical IDs where absolutely needed.

Versioned Blocks

Each supported Minecraft version must define all blocks and provide the following information:

	The blockstate string that the version uses (IE: minecraft:stone[variant=stone] for Java 1.12)
as a dictionary/JSON key for the rest of the following information. If there’s information inside
the square brackets, the blockstate identifiers should be a child key with the base blockstate
(stone) being the parent key.

	The ID of that blockstate for that version (IE: [1,0] for Java 1.12, minecraft:stone for
Java 1.13)

	The map_to key that links the version defined block to a block that we have internally defined

	Optional: The nbt key if the block originally stored it’s data as NBT before 1.13 and
switched to blockstates in 1.13+ (IE: Noteblocks) !!Incomplete!!

Identifying and Loading Worlds

Each version definition is required to have a identify() and load() function in a python file with the same name as
the directory containing it and the version definitions, but with underscores instead of dots (IE: 1.12 definitions
would have 1_12.py). The identify function doesn’t do any loading but is given the directory path to the world and using
the directory structure and NBT structure in the level.dat. This function returns True if it matches criteria to be
loaded by that format loader, if not, False is to be returned.

load()’s function is to load a world with the
appropriate format loader for the version definitions (IE: 1.12 loads via anvil and 1.13 loads via anvil2).
When calling load(), the path to the world directory is given (it can be assumed that the accompanying identify()
function has been called and has returned True) and the method is to return the resulting api.world.World object created from
the world format loader.

This python file is also expected to have a global variable named FORMAT, which allows Amulet to output what format
loader will be used when loading the world to the user.

World Design

Relevant Classes: api.world.World, api.world.WorldFormat

Intro

In order to make world loading simpler and more flexible to future changes with Minecraft,
the Amulet Map Editor only loads/edits a proprietary format. By doing this, to support
a Minecraft world format, the only things required are separate block/entity/tile entity definitions
and a “conversion” wrapper, which converts the world data on disc to the “Amulet format”

The “Amulet Format”

The “Amulet Format” in a basic form is a wrapper and temporary storage of world data for editing.
For blocks, the format expects the blocks to be integer-based, however, these integers are dynamic
and are assigned to blocks as new ones are found with newly loaded chunks. IE: minecraft:stone
won’t always have an integer ID of 1, but may have one of 20 if it isn’t encountered any time earlier
when loading other chunks.

Despite using integer based IDs, these IDs are used only internally, any method that exposes blocks
will normalize the ID to the internal string ID used by the editor (these string IDs are based off
of the blockstates present in 1.13). The only way to reference a block will be through this way, integer
IDs are entirely dynamic and should never be used except for loading/saving chunks.

Format Loaders

Each world format loader is separated into their own containers and don’t do any editing of
their own. Each format loader handles reading the world data then converting the blocks/entities/
tile entities into a format that the Amulet Format expects. Each format loader must inherit from
api.world.WorldFormat

When loading, format loaders are first called via a class method load() which is expected to
return a api.world.World instance. The method receives the path to directory of the world.
Once the world is loaded, the format loader is only used to load and translate new data from the disc.

When saving, format loaders shouldn’t make any assumptions about the previous format of the world
since the Amulet Format doesn’t keep track of that data. Due to this, while saving various attributes
should be check and either saved or ignored depending on what data is present.

command_line module

version_definitions module

world_utils module

Index

 C
 | D
 | F

C

 	
 	COMMANDS_DIR (built-in variable)

D

 	
 	DEFINITIONS_DIR (built-in variable)

F

 	
 	FORMATS_DIR (built-in variable)

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Amulet Map Editor’s documentation!

 		
 api module

 		
 data_structures module

 		
 paths module

 		
 box module

 		
 world module

 		
 world_loader module

 		
 Design Notes

 		
 Block Definitions

 		
 Intro

 		
 Versioned Blocks

 		
 Identifying and Loading Worlds

 		
 World Design

 		
 Intro

 		
 The “Amulet Format”

 		
 Format Loaders

 		
 command_line module

 		
 version_definitions module

 		
 world_utils module

