
amqppy
Release 0.0.19

Dec 29, 2017

Contents

1 Installing amqppy 3

2 Home of amqppy 5

3 Using amqppy 7

4 Indices and tables 13

i

ii

amqppy, Release 0.0.19

amqppy is a very simplified AMQP client stacked over Pika. It has been tested with RabbitMQ, however it should
also work with other AMQP 0-9-1 brokers.

The motivation of amqppy is to provide a very simplified and minimal AMQP client interface which can help Python
developers to implement easily messaging patterns such as:

• Topic Publisher-Subscribers

• RPC Request-Reply

Others derivative messaging patterns can be implemented tunning some parameters of the Topic and Rpc objects.

Contents 1

https://github.com/pika/pika
https://www.rabbitmq.com
https://www.rabbitmq.com/tutorials/tutorial-five-python.html
https://www.rabbitmq.com/tutorials/tutorial-six-python.html
https://www.rabbitmq.com/getstarted.html

amqppy, Release 0.0.19

2 Contents

CHAPTER 1

Installing amqppy

amqppy is available for download via PyPI and may be installed using easy_install or pip:

pip install amqppy

To install from source, run “python setup.py install” in the root source directory.

3

amqppy, Release 0.0.19

4 Chapter 1. Installing amqppy

CHAPTER 2

Home of amqppy

https://github.com/marceljanerfont/amqppy

5

https://github.com/marceljanerfont/amqppy

amqppy, Release 0.0.19

6 Chapter 2. Home of amqppy

CHAPTER 3

Using amqppy

3.1 Usage Examples

It requires an accessible RabbitMQ and a Python environment with the amqppy package installed.

3.1.1 Topic Publisher-Subscribers

This is one of the most common messaging pattern where the publisher publishes message to an AMQP exchange and
the subscriber receives only the messages that are of interest. The subscriber’s interest is modeled by the Topic or in
terms of AMQP by the rounting_key.

Image from RabbitMQ Topic tutorial.

7

https://www.rabbitmq.com/tutorials/tutorial-five-python.html

amqppy, Release 0.0.19

Topic Subscriber

Firstly, we need to start the Topic Subscriber (also known as Consumer). In amqppy the class
amqppy.consumer.Worker has this duty.

import amqppy
BROKER = 'amqp://guest:guest@localhost:5672//'

def on_topic_status(exchange, routing_key, headers, body):
print('Received message from topic \'amqppy.publisher.topic.status\': {}'.

→˓format(body))

subscribe to a topic: 'amqppy.publisher.topic.status'
worker = amqppy.Worker(BROKER)
worker.add_topic(exchange='amqppy.test',

routing_key='amqppy.publisher.topic.status',
on_topic_callback=on_topic_status)

it will wait until worker is stopped or an uncaught exception
worker.run()

The subscriber worker will invoke the on_topic_callback every time a message is published with a topic that matches
with the specified routing_key: ‘amqppy.publisher.topic.status’. Note that routing_key can contain wildcards there-
fore, one subscriber might be listening a set of Topics.

Once the topic subscriber is running we able to launch the publisher.

Topic Publisher

import amqppy
BROKER = 'amqp://guest:guest@localhost:5672//'

publish my current status
amqppy.Topic(BROKER).publish(exchange='amqppy.test',

routing_key='amqppy.publisher.topic.status',
body='RUNNING')

The topic publisher will send a message to the AMQP exchange with the Topic routing_key:
‘amqppy.publisher.topic.status’, therefore, all the subscribed subscribers will receive the message unless they do not
share the same queue. In case they share the same queue a round-robin dispatching policy would be applied among sub-
scribers/consumers like happens in ‘work queues <https://www.rabbitmq.com/tutorials/tutorial-two-python.html>‘_*.

3.1.2 RPC Request-Reply

This pattern is commonly known as Remote Procedure Call or RPC. And is widely used when we need to run a
function request on a remote computer and wait for the result reply.

8 Chapter 3. Using amqppy

https://www.rabbitmq.com/tutorials/tutorial-five-python.html
https://www.rabbitmq.com/tutorials/tutorial-two-python.html

amqppy, Release 0.0.19

Image from RabbitMQ RPC tutorial

RPC Reply

An object of type amqppy.consumer.Worker listens incoming RPC requests and computes the RPC re-
ply in the on_request_callback. In the example below, the RPC consumer listens on Request rount-
ing_key:’amqppy.requester.rpc.division’ and the division would be returned as the RPC reply.

import amqppy
BROKER = 'amqp://guest:guest@localhost:5672//'

def on_rpc_request_division(exchange, routing_key, headers, body):
args = json.loads(body)
return args['dividend'] / args['divisor']

subscribe to a rpc request: 'amqppy.requester.rpc.division'
worker = amqppy.Worker(BROKER)
worker.add_request(exchange='amqppy.test',

routing_key='amqppy.requester.rpc.division',
on_request_callback=on_rpc_request_division)

it will wait until worker is stopped or an uncaught exception
worker.run()

RPC Request

The code below shows how to do a RPC Request using an instance of class amqppy.publisher.Rpc

import amqppy
BROKER = 'amqp://guest:guest@localhost:5672//'

do a Rpc request 'amqppy.requester.rpc.division'
result = amqppy.Rpc(BROKER).request(exchange='amqppy.test',

routing_key='amqppy.requester.rpc.division',
body=json.dumps({'dividend': 3.23606797749979,

→˓'divisor': 2.0}))
print('RPC result: {}.'.format(result))

3.1. Usage Examples 9

https://www.rabbitmq.com/tutorials/tutorial-six-python.html

amqppy, Release 0.0.19

3.2 Core Class and Module Documentation

3.2.1 Topic

The Topic class for Topic publications.

class amqppy.publisher.Topic(broker)
This class creates a connection to the message broker and provides a method to publish messages on one topic
also known as routing_key in AMQP terms. The class instance will create on single connection to the broker
for all the topic published.

Parameters broker (str) – The URL for connection to RabbitMQ. Eg:
‘amqp://serviceuser:password@rabbit.host:5672//’

publish(exchange, routing_key, body, headers=None, persistent=True)
Publish a message to the given exchange and a routing key.

Parameters

• exchange (str) – The exchange you want to publish the message.

• rounting_key (str) – The rounting key to bind on

• body (str) – The body of the message you want to publish. It should be of type unicode
or string encoded with UTF-8.

• headers (dict) – Message headers.

• persistent (bool) – Makes message persistent. The message would not be lost after
RabbitMQ restart.

3.2.2 Rpc

The Rpc class for Rpc requests.

class amqppy.publisher.Rpc(broker)
The duty of Rpc class is to make RPC requests and returns its responses. RPC pattern tutorial. The class instance
will create on single connection to the broker for all the RPC requests.

Parameters broker (str) – The URL for connection to RabbitMQ. Eg:
‘amqp://serviceuser:password@rabbit.host:5672//’

request(exchange, routing_key, body, timeout=10.0)
Makes a RPC request and returns its response. RPC pattern tutorial. This call creates and destroys a
connection every time, if you want to save connections, please use the class Rpc.

Parameters

• rounting_key (str) – The routing key to bind on

• body (str) – The body of the message request you want to request. It should be of type
unicode or string encoded with UTF-8.

• exchange (str) – The exchange you want to publish the message.

• timeout (bool) – Maximum seconds to wait for the response.

10 Chapter 3. Using amqppy

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://www.rabbitmq.com/tutorials/tutorial-six-python.html
https://docs.python.org/3/library/stdtypes.html#str
https://www.rabbitmq.com/tutorials/tutorial-six-python.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

amqppy, Release 0.0.19

3.2.3 Worker

The Worker class for Topic subscription and Rpc Replies.

class amqppy.consumer.Worker(broker, heartbeat_sec=None)
This class handles a worker that listens for incoming Topics and Rpc requests.

Parameters broker (str) – The URL for connection to RabbitMQ. Eg:
‘amqp://serviceuser:password@rabbit.host:5672//’

add_request(routing_key, on_request_callback, exchange=’amqppy’, durable=False,
auto_delete=True, exclusive=False)

Registers a new consumer for a RPC reply task. These tasks will be executed when a RPC request is
invoked by publisher.Rpc.request().

Parameters

• rounting_key (str) – It defines the subscription interest. In terms of AMQP the
routing key to bind on

• on_request_callback (method) – Called when a Rpc request is invoked, it should
return the reply.

• exchange (str) – The exchange you want to publish the message.

• durable (bool) – Queue messages survives a reboot of RabbitMQ.

• auto_delete (bool) – Queues will auto-delete after use.

• exclusive (bool) – Ensures that is the unique consumer

add_topic(routing_key, on_topic_callback, queue=None, exclusive=False, exchange=’amqppy’,
durable=False, auto_delete=True, no_ack=True, **kwargs)

Registers a new consumer for a Topic subscriber. These tasks will be executed when a Topic is published
by publisher.Topic.publish().

Parameters

• rounting_key (str) – The routing key to bind on.

• on_topic_callback (method) – Called when a topic is published.

• queue (str) – The name of the queue. If it is not provided the queue will be named the
same as the ‘routing_key’.

• exclusive (bool) – Only one consumer is allowed.

• exchange (str) – The exchange you want to publish the message.

• durable (bool) – Queue messages survives a reboot of RabbitMQ.

• auto_delete (bool) – Queues will auto-delete after use.

• no_ack (bool) – Tell the broker that ACK reply is not needed. If it is False, an ACK will
be sent automatically each time a message is consumed unless a amqppy.AbortConsume
or amqppy.DeadLetterMessage is raised.

run()
Start worker to listen. This will block the execution until the worker is stopped or an uncaught Exception

run_async()
Start asynchronously worker to listen. The execution thread will follow after this call, hence is not blocked.

stop()
Stops listening and close all channels and the connection

3.2. Core Class and Module Documentation 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

amqppy, Release 0.0.19

3.2.4 Exceptions

class amqppy.RpcRemoteException
It would be raised in the publisher.Rpc.request() when remote reply fails

class amqppy.ResponseTimeout
It would be raised in the publisher.Rpc.request() when remote reply exceeds its allowed execution time, the
timeout.

class amqppy.PublishNotRouted
It would be raised in the publisher.Rpc.request() or publisher.Topic.publish() when there is no consumer listening
those Topics or Rpc requests.

class amqppy.ExclusiveQueue
It would be raised in the consumer.Worker.add_topic() or consumer.Worker.add_request() when tries to consume
from a queue where there is already a consumer listening. That happens when add_topic or add_request is called
with ‘exclusive=True’.

class amqppy.ExchangeNotFound
It will be raised when AMQP Exchange does not exist.

class amqppy.AbortConsume
This exception can be raised by the Topic callback or RPC reply callback. And indicates to amqppy to do not
send ACK for that consuming message. For this, is required ‘no_ack=False’ in consumer.Worker.add_topic() or
consumer.Worker.add_request()

class amqppy.DeadLetterMessage
This exception can be raised by the Topic callback or RPC reply callback. And indicates to amqppy to move
this message is being consumed to the DeadLetter Queue. See: ‘https://www.rabbitmq.com/dlx.html’

12 Chapter 3. Using amqppy

https://www.rabbitmq.com/dlx.html

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

13

amqppy, Release 0.0.19

14 Chapter 4. Indices and tables

Index

A
AbortConsume (class in amqppy), 12
add_request() (amqppy.consumer.Worker method), 11
add_topic() (amqppy.consumer.Worker method), 11

D
DeadLetterMessage (class in amqppy), 12

E
ExchangeNotFound (class in amqppy), 12
ExclusiveQueue (class in amqppy), 12

P
publish() (amqppy.publisher.Topic method), 10
PublishNotRouted (class in amqppy), 12

R
request() (amqppy.publisher.Rpc method), 10
ResponseTimeout (class in amqppy), 12
Rpc (class in amqppy.publisher), 10
RpcRemoteException (class in amqppy), 12
run() (amqppy.consumer.Worker method), 11
run_async() (amqppy.consumer.Worker method), 11

S
stop() (amqppy.consumer.Worker method), 11

T
Topic (class in amqppy.publisher), 10

W
Worker (class in amqppy.consumer), 11

15

	Installing amqppy
	Home of amqppy
	Using amqppy
	Indices and tables

