
AMQP PHP Consumer Documentation
Release 1.0

reBuy reCommerce GmbH

Aug 03, 2018

Contents

1 Getting started 3
1.1 Installation . 3
1.2 Configuration . 3

2 Creating Consumers 5

3 Create and Configure the ConsumerManager 7
3.1 Create AMQP Connection . 7
3.2 Create a JMS Serializer . 7
3.3 Create the Annotation Parser . 8
3.4 Tying it all together . 8

4 Events 11
4.1 Implemented Subscriber . 11

5 Error Handlers 13
5.1 Implemented error handlers . 13

6 Contributing 15
6.1 Testing the Library . 15
6.2 Building the Documentation . 15

i

ii

AMQP PHP Consumer Documentation, Release 1.0

This is the documentation for the amqp-php-consumer library.

This library allows you to define consumers for AMQP with doctrine annotations. For consuming messages the
AMQP-Library videlalvaro/php-amqplib is used.

Contents:

Contents 1

https://github.com/rebuy-de/amqp-php-consumer
https://github.com/doctrine/annotations
https://github.com/videlalvaro/php-amqplib

AMQP PHP Consumer Documentation, Release 1.0

2 Contents

CHAPTER 1

Getting started

1.1 Installation

The amqp-php-consumer library is available on Packagist. You can install it using Composer:

$ composer require rebuy/amqp-php-consumer

Note: This library follows Semantic Versioning. Except for major versions, we aim to not introduce BC breaks in
new releases. You should still test your application after upgrading though. What is a bug fix for somebody could
break something for others when they where (probably unawares) relying on that bug.

1.2 Configuration

There are two things you need to do to get started:

1. create one ore more consumer

2. create a consumer manager

3

https://packagist.org/packages/rebuy/amqp-php-consumer
http://getcomposer.org
http://semver.org/

AMQP PHP Consumer Documentation, Release 1.0

4 Chapter 1. Getting started

CHAPTER 2

Creating Consumers

Let’s assume you have an amqp message which will be published when an order has been created. This message has
the routing key order-created with the payload {"order_id": $SOME_ID}. In this example we create a
consumer which sends an email to the customer when this message will be published.

First of all, you have to create a PHP class which represents this message:

namespace My\Consumer;

use JMS\Serializer\Annotation\Type;
use Rebuy\Amqp\Consumer\Message\MessageInterface;

class OrderCreatedMessage implements MessageInterface
{

/**
* @Type("integer")

*
* @var int

*/
public $orderId;

public static function getRoutingKey()
{

return 'order-created';
}

}

Note: Since this library uses the jms/serializer component to deserialize the payload for all messages, we have to
define a @Type for the property $orderId.

With this message we are able to create our consumer which will send an email to the customer:

class OrderConsumer
{

(continues on next page)

5

http://jmsyst.com/libs/serializer

AMQP PHP Consumer Documentation, Release 1.0

(continued from previous page)

private $orderService;
private $emailService;

public function __construct($orderService, $emailService)
{

$this->orderService = $orderService;
$this->emailService = $emailService;

}

/**
* @Consumer(name="order-created-send-email")

*/
public function sendMail(OrderCreatedMessage $message)
{

$order = $this->orderService->loadOrder($message->orderId);
$this->emailService->sendOrderCreatedEmail($order);

}
}

Note: You can create multiple consumers which consume the same message, but they must use a different name,
otherwise an ConsumerException is thrown.

Now that you have created a consumer, you can go on to the next section and create the consumer manager

6 Chapter 2. Creating Consumers

CHAPTER 3

Create and Configure the ConsumerManager

The consumer manager is responsible for registering a consumer and starting the consuming process.

3.1 Create AMQP Connection

You need to create an AMQP connection with an AMQP channel which will then be used by the comsuner manager:

$connection = new PhpAmqpLib\Connection\AMQPSocketConnection('localhost', 5672,
→˓'username', 'password');
$channel = $connection->channel();

$passive = false;
$durable = true;
$autoDelete = false;
$type = 'topic';

$channel->exchange_declare('your-exchange-name', $type, $passive, $durable,
→˓$autoDelete);

If you need other values than the ones defined, feel free to adjust them, but it is necessary to declare the exchange
before you can go on.

3.2 Create a JMS Serializer

In order to deserialize the payload of an AMQP message we have to create a Serializer object The easiest way to do
so is by using the SerializerBuilder from the JMS library:

use Rebuy\Amqp\Consumer\Serializer\JMSSerializerAdapter;
use JMS\Serializer\SerializerBuilder;

(continues on next page)

7

AMQP PHP Consumer Documentation, Release 1.0

(continued from previous page)

$serializer = SerializerBuilder::create()->build();
$serializerAdapter = new JMSSerializerAdapter($serializer);

If you’d rather want to use the symfony serializer, do the following:

use Rebuy\Amqp\Consumer\Serializer\SymfonySerializerAdapter;
use Symfony\Component\Serializer\Serializer;
use Symfony\Component\Serializer\Encoder\XmlEncoder;
use Symfony\Component\Serializer\Encoder\JsonEncoder;
use Symfony\Component\Serializer\Normalizer\ObjectNormalizer;

$encoders = [new XmlEncoder(), new JsonEncoder()];
$normalizers = [new ObjectNormalizer()];

$serializer = new Serializer($normalizers, $encoders);
$serializerAdapter = new SymfonySerializerAdapter($serializer);

3.3 Create the Annotation Parser

The annotation parser is responsible for parsing all the consumer annotations and creating a ConsumerContainer. The
container is an abstraction of the consumer method and holds all information which are necessary to consume the
message:

$reader = new Doctrine\Common\Annotations\AnnotationReader();
$parser = new Rebuy\Amqp\Consumer\Annotation\Parser($reader);

Tip: You can also use a FileCacheReader instead of the AnnotationReader. Example: $reader = new
FileCacheReader(new AnnotationReader(), '/path/to/cache');

3.4 Tying it all together

We have now everything we need to create the consumer manager, register consumers and start the consuming process:

$manager = new Rebuy\Amqp\Consumer\ConsumerManager($channel, $exchangeName,
→˓$serializerAdapter, $parser);
$manager->registerConsumer(new MyConsumer());

$manager->wait()

Caution: The consuming process might stop under the following conditions:

• An exception in one of the consumers is thrown

• No message has been processed in the last 900 seconds (this value can be altered with the method
ConsumerManager#setIdleTimeout)

8 Chapter 3. Create and Configure the ConsumerManager

AMQP PHP Consumer Documentation, Release 1.0

Note: The wait method is a blocking process. This method waits for new messages and passes every message to its
desired consumer (if one exists).

3.4. Tying it all together 9

AMQP PHP Consumer Documentation, Release 1.0

10 Chapter 3. Create and Configure the ConsumerManager

CHAPTER 4

Events

There are currently two events dispatched when consuming a message:

• Rebuy\Amqp\Consumer\ConsumerEvents::PRE_CONSUME: Before the message is consumed

• Rebuy\Amqp\Consumer\ConsumerEvents::POST_CONSUME: After the message has been consumed

These events are dispatched by an symfony2 event dispatcher. If you want to listen to one of these events, you have to
create a subsriber/listener, add it to the event dispatcher and set the dispatcher to the manager:

$dispatcher = new Symfony\Component\EventDispatcher\EventDispatcher();
$dispatcher->addListener(Rebuy\Amqp\Consumer\ConsumerEvents::PRE_CONSUME,
→˓$myListener);
$dispatcher->addSubscriber(new MySubscriber());

$manager = new Rebuy\Amqp\Consumer\ConsumerManager(...);
$manager->setEventDispatcher($dispatcher);

4.1 Implemented Subscriber

Some useful subscribers are already shipped with this library:

• TimingSubscriber: Uses symfony/stopwatch and league/statsd for writing timing metrics to statds

• LogSubscriber: Uses a LoggerInterface to log a debug message for every consumed message

11

https://github.com/symfony/stopwatch
https://github.com/thephpleague/statsd
https://github.com/php-fig/log

AMQP PHP Consumer Documentation, Release 1.0

12 Chapter 4. Events

CHAPTER 5

Error Handlers

You can register several error handlers which will be called when an exception in
the consuming process is thrown. Every error handler must implement the interface
Rebuy\Amqp\Consumer\Handler\ErrorHandlerInterface, this interface only requires one method
handle(ConsumerContainerException $ex).

An error handler can be registered in the following way:

$manager = new Rebuy\Amqp\Consumer\ConsumerManager(...);
$manager->registerErrorHandler(new MyErrorHandler());

Danger: As soon as one error handler is registered, the consuming of the message is considered successful. If
you want to stop the consuming process, you must throw the passed exception (or an own exception) by yourself.

5.1 Implemented error handlers

Currently there are two error handlers implemented in this library:

• RequeuerHandler: Requeues the message so it can be processed at a later time

• LoggerHandler: Uses a LoggerInterface to log a warning message (this handler is only useful in combination
with the RequeuerHandler)

13

https://github.com/php-fig/log

AMQP PHP Consumer Documentation, Release 1.0

14 Chapter 5. Error Handlers

CHAPTER 6

Contributing

We are happy for contributions. Before you invest a lot of time however, best open an issue on github to discuss your
idea. Then we can coordinate efforts if somebody is already working on the same thing.

6.1 Testing the Library

This chapter describes how to run the tests that are included with this library.

First clone the repository, install the vendors, then run the tests:

$ git clone https://github.com/rebuy/amqp-php-consumer.git
$ cd amqp-php-consumer
$ composer install --dev
$ bin/phpunit

6.2 Building the Documentation

First install Sphinx, then build the docs:

$ cd doc
$ make html

15

http://sphinx-doc.org/latest/install.html

	Getting started
	Installation
	Configuration

	Creating Consumers
	Create and Configure the ConsumerManager
	Create AMQP Connection
	Create a JMS Serializer
	Create the Annotation Parser
	Tying it all together

	Events
	Implemented Subscriber

	Error Handlers
	Implemented error handlers

	Contributing
	Testing the Library
	Building the Documentation

