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AMGCL is a header-only C++ library for solving large sparse linear systems with algebraic multigrid (AMG) method.
AMBG is one of the most effective iterative methods for solution of equation systems arising, for example, from dis-
cretizing PDEs on unstructured grids [BrMHS85], [Stue99], [TrOS01]. The method can be used as a black-box solver
for various computational problems, since it does not require any information about the underlying geometry. AMG
is often used not as a standalone solver but as a preconditioner within an iterative solver (e.g. Conjugate Gradients,
BiCGStab, or GMRES).

The library has minimal dependencies, and provides both shared-memory and distributed memory (MPI) versions of
the algorithms. The AMG hierarchy is constructed on a CPU and then is transferred into one of the provided backends.
This allows for transparent acceleration of the solution phase with help of OpenCL, CUDA, or OpenMP technologies.
Users may provide their own backends which enables tight integration between AMGCL and the user code.

The source code is available under liberal MIT license at https://github.com/ddemidov/amgcl.
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CHAPTER 2

Contents:

2.1 Algebraic Multigrid

Here we outline the basic principles behind the Algebraic Multigrid (AMG) method [BrMHS85], [Stue99]. Consider a
system of linear algebraic equations in the form

Au=f

where A is an n x n matrix. Multigrid methods are based on the recursive use of two-grid scheme, which combines
* Relaxation, or smoothing iteration: a simple iterative method such as Jacobi or Gauss-Seidel; and

* Coarse grid correction: solving residual equation on a coarser grid. Transfer between grids is described with
transfer operators P (prolongation or interpolation) and R (restriction).

A setup phase of a generic algebraic multigrid (AMG) algorithm may be described as follows:
e Start with a system matrix A; = A.
* While the matrix A; is too big to be solved directly:
1. Introduce prolongation operator P;, and restriction operator R;.
2. Construct coarse system using Galerkin operator: A;,1 = R; A; P;.
¢ Construct a direct solver for the coarsest system Ay,.

Note that in order to construct the next level in the AMG hierarchy, we only need to define transfer operators P and
R. Also, the restriction operator is often chosen to be a transpose of the prolongation operator: R = PT.

Having constructed the AMG hierarchy, we can use it to solve the system as follows:
* Start at the finest level with initial approximation u; = u°.
* Iterate until convergence (V-cycle):
— At each level of the grid hiearchy, finest-to-coarsest:

1. Apply a couple of smoothing iterations (pre-relaxation) to the current solution u; =
Si(Ahfiaui)‘
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2. Find residual e; = f; — A;u; and restrict it to the RHS on the coarser level: f;11 = R;e;.
— Solve the corasest system directly: uy = Azl fr-
— At each level of the grid hiearchy, coarsest-to-finest:

1. Update the current solution with the interpolated solution from the coarser level: u; = wu; +
Piugya.

2. Apply a couple of smoothing iterations (post-relaxation) to the updated solution: u; =
Si(Ai7 fia u?)

More often AMG is not used standalone, but as a preconditioner with an iterative Krylov subspace method. In this
case single V-cycle is used as a preconditioning step.

So, in order to fully define an AMG method, we need to choose transfer operators P and R, and smoother S.

2.2 Design Principles

A lot of linear solver software packages are either developed in C or Fortran, or provide C-compatible application
programming interface (API). The low-level API is stable and compatible with most of the programming languages.
However, this also has some disadvantages: the fixed interfaces usually only support the predefined set of cases that
the developers have thought of in advance. For an example, BLAS specification has separate sets of functions that deal
with single, double, complex, or double complex precision values, but it is impossible to work with mixed precision
inputs or with user-defined or third-party custom types. Another common drawback of large scientific packages is
that users have to adopt the datatypes provided by the framework in order to work with it, which steepens the learning
curve and introduces additional integration costs, such as the necessity to copy the data between various formats.

AMGCL is using modern C++ programming techniques in order to create flexible and efficient API. The users may
easily extend the library or use it with their own datatypes. The following design pronciples are used throughout the
code:

* Policy-based design [Alex00] of public library classes such as amgcl: :make_solver or amgcl: :amg
allows the library users to compose their own customized version of the iterative solver and preconditioner from
the provided components and easily extend and customize the library by providing their own implementation of
the algorithms.

* Preference for free functions as opposed to member functions [MeyeOS5], combined with partial template spe-
cialization allows to extend the library operations onto user-defined datatypes and to introduce new algorithmic
components when required.

e The backend system of the library allows expressing the algorithms such as Krylov iterative solvers or multi-
grid relaxation methods in terms of generic parallel primitives which facilitates transparent acceleration of the
solution phase with OpenMP, OpenCL, or CUDA technologies.

* One level below the backends are value types: AMGCL supports systems with scalar, complex, or block value
types both in single and double precision. Arithmetic operations necessary for the library work may also be
extended onto the user-defined types using template specialization.

2.2.1 Policy-based design

2.2. Design Principles 4
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Listing 2.1: Policy-based design illustration: creating customized solvers
from AMGCL components

// CG solver preconditioned with ILUOQ
typedef amgcl::make_solver<
amgcl::relaxation::as_preconditioner<
amgcl: :backend: :builtin<double>,
amgcl::relaxation::11u0
>I
amgcl::solver: :cg<
amgcl: :backend: :builtin<double>
>

> Solverl;

// GMRES solver preconditioned with AMG
typedef amgcl::make_solver<
amgcl: :amg<
amgcl: :backend: :builtin<double>,
amgcl::coarsening: :smoothed_aggregation,
amgcl::relaxation: :spai0
>I
amgcl::solver: :gmres<
amgcl: :backend: :builtin<double>
>

> Solver2;

Auvailable solvers and preconditioners in AMGCL are composed by the library user from the provided components.
For example, the most frequently used class template amgcl: :make_solver<P, S> binds together an iterative
solver S and a preconditioner P chosen by the user. To illustrate this, Listing 2.1 defines a conjugate gradient iterative
solver preconditioned with an incomplete LU decomposition with zero fill-in in lines 2 to 10. The builtin backend
(parallelized with OpenMP) with double precision is used both for the solver and the preconditioner. This approach
allows the user not only to select any of the preconditioners/solvers provided by AMGCL, but also to use their own
custom components, as long they conform to the generic AMGCL interface. In paticular, the preconditioner class has
to provide a constructor that takes the system matrix, the preconditioner parameters (defined as a subtype of the class,
see below), and the backend parameters. The iterative solver constructor should take the size of the system matrix, the
solver parameters, and the backend parameters.

This approach is used not only at the user-facing level of the library, but in any place where using interchangeable
components makes sense. Lines 13 to 22 in Listing 2.1 show the declaration of GMRES iterative solver preconditioned
with the algebraic multigrid (AMG). Smoothed aggregation is used as the AMG coarsening strategy, and diagonal
sparse approximate inverse is used on each level of the multigrid hierarchy as a smoother. Similar to the solver and
the preconditioner, the AMG components (coarsening and relaxation) are specified as template parameters and may
be customized by the user.

Listing 2.2: Example of parameter declaration in AMGCL components

template <class P, class S>
struct make solver {
struct params {
typename P::params precond;
typename S::params solver;
}i
i

Besides compile-time composition of the AMGCL algorithms described above, the library user may need to specify
runtime parameters for the constructed algorithms. This is done with the params structure declared by each of
the components as its subtype. Each parameter usually has a reasonable default value. When a class is composed

2.2. Design Principles 5
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from several components, it includes the parameters of its dependencies into its own params struct. This allows to
provide a unified interface to the parameters of various AMGCL algorithms. Listing 2.2 shows how the parameters
are declared for the amgcl: :make_solver<P, S> class. Listing 2.3 shows an example of how the parameters for
the preconditioned GMRES solver from Listing 2.1 may be specified. Namely, the number of the GMRES iterations
before restart is set to 50, the relative residual threshold is set to 1075, and the strong connectivity threshold &, for
the smoothed aggregation is set to 102, The rest of the parameters are left with their default values.

Listing 2.3: Setting parameters for AMGCL components

// Set the solver parameters

Solver2::params prm;

prm.solver.M = 50;

prm.solver.tol = le—6;
prm.precond.coarsening.aggr.eps_strong = le-3;

// Instantiate the solver
Solver2 S (A, prm);

2.2.2 Free functions and partial template specialization

Using free functions as opposed to class methods allows to decouple the library functionality from specific
classes and enables support for third-party datatypes within the library [Meye05]. Moving the implementation
from the free function into a struct template specialization provides more control over the mapping between
the input datatype and the specific specific version of the algorithm. For example, constructors of AMGCL
classes may accept an arbitrary datatype as input matrix, as long as the implementations of several basic func-
tions supporting the datatype have been provided. Some of the free functions that need to be implemented are
amgcl: :backend: :rows (A), amgcl: :backend: :cols (A) (returning the number of rows and columns
for the matrix), or amgcl: :backend: :row_begin (A, i) (returning iterator over the nonzero values for the
matrix row). Listing 2.4 shows an implementation of amgcl: :backend: : rows () function for the case when
the input matrix is specified as a std: :tuple (n,ptr, col,val) of matrix size n, pointer vector ptr con-
taining row offsets into the column index and value vectors, and the column index and values vectors col and
val for the nonzero matrix entries. AMGCL provides adapters for several common input matrix formats, such as
Eigen::SparseMatrix from Eigen, Epetra_CrsMatrix from Trilinos Epetra, and it is easy to adapt a user-
defined datatype.

Listing 2.4: Implementation of amgcl: :backend: :rows () free
function for the CRS tuple

// Generic implementation of the rows () function.
// Works as long as the matrix type provides rows () member function.
template <class Matrix, class Enable = void>
struct rows_impl {
static size_t get (const Matrix &A) {
return A.rows ();

}i

// Returns the number of rows 1in a matrix.
template <class Matrix>
size_t rows(const Matrix &matrix) {

return rows_impl<Matrix>::get (matrix);

// Specialization of rows_impl template for a CRS tuple.
template < typename N, typename PRng, typename CRng, typename VRng >

(continues on next page)

2.2. Design Principles 6
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(continued from previous page)

struct rows_impl< std::tuple<N, PRng, CRng, VRng> >
{
static size_t get (const std::tuple<N, PRng, CRng, VRng> &A) {
return std::get<0>(A);
}
bi

2.2.3 Backends

A backend in AMGCL is a class that binds datatypes like matrix and vector with parallel primitives like matrix-vector
product, linear combination of vectors, or inner product computation. The backend system is implemented using
the free functions combined with template specialization approach from the previous section, which decouples the
implementation of common parallel primitives from the specific datatypes used in the supported backends. This allows
to adopt third-party or user-defined datatypes for use within AMGCL without any modification. For example, in order
to switch to the CUDA backend in Listing 2.1, we just need to replace amgcl: :backend: :builtin<double>
with amgcl: :backend: : cuda<double>.

Algorithm setup in AMGCL is performed using internal data structures. As soon as the setup is completed, the neces-
sary objects (mostly matrices and vectors) are transferred to the backend datatypes. Solution phase of the algorithms
is expressed in terms of the predefined parallel primitives which makes it possible to switch parallelization technology
(such as OpenMP, CUDA, or OpenCL) simply by changing the backend template parameter of the algorithm. For
example, the residual norm € = || f — Ax|| in AMGCL is computed using amgcl: :backend: : residual () and
amgcl: :backend: :inner_product () primitives:

backend: :residual (f, A, x, r);
auto e = sqgrt (backend::inner_product(r, r));

2.2.4 Value types

Value type concept allows to generalize AMGCL algorithms onto complex or non-scalar systems. A value type defines
a number of overloads for common math operations, and is used as a template parameter for a backend. Most often,
a value type is simply a builtin double or float atomic value, but it is also possible to use small statically sized
matrices when the system matrix has a block structure, which may decrease the setup time and the overall memory
footprint, increase cache locality, or improve convergence ratio.

Value types are used during both the setup and the solution phases. Common value type operations are defined
in amgcl: :math namespace, similar to how backend operations are defined in amgcl: :backend. Examples
of such operations are amgcl: :math: :norm() or amgcl: :math::adjoint (). Arithmetic operations like
multiplication or addition are defined as operator overloads. AMGCL algorithms at the lowest level are expressed in
terms of the value type interface, which makes it possible to switch precision of the algorithms, or move to complex
values, simply by adjusting template parameter of the selected backend.

The generic implementation of the value type operations also makes it possible to use efficient third party imple-
mentations of the block value arithmetics. For example, using statically sized Eigen matrices instead of builtin
amgcl::static_matrix as block value type may improve performance in case of relatively large blocks, since
the Eigen library supports SIMD vectorization.

2.2.5 Runtime interface

The compile-time configuration of AMGCL solvers is not always convenient, especially if the solvers are used inside
a software package or another library. The runtime interface allows to shift some of the configuraton decisions to
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runtime. The classes inside amgcl: : runt ime namespace correspond to their compile-time alternatives, but the
only template parameter you need to specify is the backend.

Since there is no way to know the parameter structure at compile time, the runtime classes accept parameters only in
form of boost : :property_tree: :ptree. The actual components of the method are set through the parameter
tree as well. For example, the solver above could be constructed at runtime in the following way:

#include <amgcl/backend/builtin.hpp>
#include <amgcl/make_solver.hpp>
#include <amgcl/amg.hpp>

#include <amgcl/coarsening/runtime.hpp>
#include <amgcl/relaxation/runtime.hpp>
#include <amgcl/solver/runtime.hpp>

typedef amgcl::backend::builtin<double> Backend;

typedef amgcl::make_solver<
amgcl: :amg<

Backend,

amgcl::runtime: :coarsening: :wrapper,

amgcl::runtime::relaxation: :wrapper
>I
amgcl::runtime: :solver: :wrapper<Backend>
> Solver;

boost: :property_tree: :ptree prm;

prm.put
prm.put

("solver.type", "bicgstab");
(
prm.put ("solver.maxiter", 10);
(
(

"solver.tol", 1le-3);

prm.put ("precond.coarsening.type", "smoothed_aggregation");
prm.put ("precond.relax.type", "spaiO");

Solver solve( std::tie(n, ptr, col, val), prm );

2.3 Components

AMGCL defines the following algorithmic components:

2.3.1 Backends

A backend in AMGCL is a class that binds datatypes like matrix and vector with parallel primitives like matrix-vector
product, linear combination of vectors, or inner product computation. The backend system is implemented using
free functions and partial template specializations, which allows to decouple the implementation of common parallel
primitives from the specific datatypes used in the supported backends. This makes it possible to adopt third-party or
user-defined datatypes for use within AMGCL without any modification of the core library code.

Algorithm setup in AMGCL is performed using internal data structures. As soon as the setup is completed, the neces-
sary objects (mostly matrices and vectors) are transferred to the backend datatypes. Solution phase of the algorithms
is expressed in terms of the predefined parallel primitives which makes it possible to switch parallelization technology
(such as OpenMP, CUDA, or OpenCL) simply by changing the backend template parameter of the algorithm. For
example, the norm of the residual € = || f — Az|| in AMGCL is computed with amgcl: :backend: :residual ()
and amgcl: :backend: :inner_product () primitives:

2.3. Components 8
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backend: :residual (f, A, x, r);
auto e = sqgrt (backend: :inner_product(r, r));

The backends currenly supported by AMGCL are listed below.

OpenMP (builtin) backend

template<class ValueType>
class amgcl::backend: :builtin
Include <amgcl/backend/builtin.hpp>.

This is the bultin backend that does not have any external dependencies and uses OpenMP-parallelization for its
primitives. As with any backend in AMGCL, it is defined with a value type template parameter, which specifies
the type of the system matrix elements. The backend is also used internally by AMGCL during construction
phase, and so moving the constructed datatypes (matrices and vectors) to the backend has no overhead. The
backend has no parameters (the params subtype is an empty struct).

class params

OpenMP (builtin) hybrid backend

template<class ScalarType, class BlockType>
class amgcl::backend: :builtin_hybrid
Include <amgcl/backend/builtin_hybrid.hpp>.

The hybrid builtin backend uses the scalar value type to build the hierarchy in the same way the builtin backend
does. But before the constructed matrices are moved to the backend, they are converted to the block-wise
format in order to improve the solution performance. This is especially helpful when a set of near null-space
vectors is provided to the AMG preconditioner. In this case it is impossible to use block value type during the
preconditioner construction, but the matrices still have block-wise structure.

See Using near null-space vectors and issue #215 for more details.
Similar to the builtin backend, the hybrid builtin backend has no parameters.

class params

NVIDIA CUDA backend

template<class ValueType>
class amgcl::backend: :cuda
Include <amgcl/backend/cuda.hpp>.

The backend uses the NVIDIA CUDA technology for the parallelization of its primitives. It depends on the
Thrust and cuSPARSE libraries. The code using the backend has to be compiled with NVIDIA’s nvce compiler.
The user needs to initialize the cuSPARSE library with a call to the cusparseCreate() function and pass the
returned handle to AMGCL in the backend parameters.

class params
The backend parameters

cusparseHandle_t cusparse_handle
cuSPARSE handle created with the cusparseCreate() function.

2.3. Components 9
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VexCL backend

template<class ValueType>
class amgcl::backend: :vexcl
Include <amgcl/backend/vexcl.hpp>.

The backend uses the VexCL library for the implementation of its primitives. VexCL provides OpenMP,
OpenCL, or CUDA parallelization, selected at compile time with a preprocessor definition. The user has to
initialize the VexCL context and pass it to AMGCL via the backend parameter.

class params
The backend parameters

std::vector<vex::backend::command_queue> g
VexCL command queues identifying the compute devices in the compute context.

bool fast_matrix_ setup =true
Transform the CSR matrices into the internal VexCL format on the GPU. This is faster, but temporarily
requires more memory on the GPU.

VexCL hybrid backend

template<class ScalarType, class BlockType>
class amgcl::backend: :vexcl_hybrid
Include <amgcl/backend/vexcl.hpp>.

The hybrid VexCL backend, similar to the hybrid OpenMP backend, uses scalar value type during the method
setup, and converts the constructed matrices to block-wise format before moving them to the backend.

class params
The backend parameters

std::vector<vex::backend::command_queue> q
VexCL command queues identifying the compute devices in the compute context.

bool fast_matrix_ setup = true
Transform the CSR matrices into the internal VexCL format on the GPU. This is faster, but temporarily
requires more memory on the GPU.

ViennaCL backend

template<class Mat rix>
class amgcl::backend: :viennacl
Include <amgcl/backend/viennacl.hpp>.

The backend uses the ViennaCL library for the implementation of its primitives. ViennaCL is a free
open-source linear algebra library for computations on many-core architectures (GPUs, MIC) and multi-
core CPUs. The library is written in C++ and supports CUDA, OpenCL, and OpenMP (including
switches at runtime). The template parameter for the backend specifies ViennaCL matrix class to use.
Possible choices are viannacl::compressed_matrix<T>, viennacl::ell_matrix<T>, and
viennacl: :hyb_matrix<T>. The backend has no runtime parameters.

class params
The backend parameters

2.3. Components 10


https://github.com/ddemidov/vexcl
https://github.com/ddemidov/vexcl
https://github.com/ddemidov/vexcl
http://viennacl.sourceforge.net/
http://viennacl.sourceforge.net/
http://viennacl.sourceforge.net/

AMGCL Documentation, Release 0.0.1

Eigen backend

template<class ValueType>
class amgcl::backend: :eigen
Include <amgcl/backend/eigen.hpp>.

The backend uses Eigen library datatypes for implementation of its primitives. It could be useful in case the user
already works with the Eigen library, for example, to assemble the linear system to be solved with AMGCL.
AMGCL also provides an Eigen matrix adapter, so that Eigen matrices may be transparently used with AMGCL
solvers.

class params
The backend parameters

Blaze backend

template<class ValueType>
class amgcl::backend: :blaze
Include <amgcl/backend/blaze.hpp>.

The backend uses Blaze library datatypes for implementation of its primitives. It could be useful in case the user
already works with the Blaze library, for example, to assemble the linear system to be solved with AMGCL.

class params
The backend parameters

2.3.2 Value Types

The value type concept allows to generalize AMGCL algorithms for the systems with complex or non-scalar co-
effiecients. A value type defines a number of overloads for common math operations, and is used as a template
parameter for a backend. Most often, a value type is simply a builtin double or f1loat atomic value, but it is also
possible to use std: : complex<T>, or small statically sized matrices when the system matrix has a block struc-
ture. The latter may decrease the setup time and the overall memory footprint, increase cache locality, or improve
convergence ratio.

Value types are used during both the setup and the solution phases. Common value type operations are defined
in amgcl: :math namespace, similar to how backend operations are defined in amgcl: :backend. Examples
of such operations are amgcl: :math: :norm() or amgcl: :math::adjoint (). Arithmetic operations like
multiplication or addition are defined as operator overloads. AMGCL algorithms at the lowest level are expressed in
terms of the value type interface, which makes it possible to switch precision of the algorithms, or move to complex
values simply by adjusting the template parameter of the selected backend.

The generic implementation of the value type operations also makes it possible to use efficient third party imple-
mentations of the block value arithmetics. For example, using statically sized Eigen matrices instead of the builtin
amgcl::static_matrix as block value type may improve performance in case of relatively large blocks, since
the Eigen library supports SIMD vectorization.

Scalar values

All  backends support float and double as value type. CPU-based backends (e.g.
amgcl: :backend: :builtin) may also use long double. The use of non-trivial value types depends
on whether the value type is supported by the selected backend.

2.3. Components 11
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Complex values
Data type: std: : complex<T>
Include:

e <amgcl/value_type/complex.hpp>

Supported by backends:
e amgcl::backend::builtin
* amgcl::backend: :vexcl
e amgcl: :backend: :eigen
e amgcl::backend: :blaze
Statically sized matrices
Data type: amgcl: :static_matrix<T,N, N>
Include:
e <amgcl/value_type/static_matrix.hpp>
¢ <amgcl/backend/vexcl_static_matrix.hpp> (in case VexCL is used as the backend)
Supported by backends:
* amgcl::backend: :builtin
* amgcl: :backend: :vexcl
Eigen static matrices
Data type: Eigen: :Matrix<T, N, N>
Include:

e <amgcl/value_type/eigen.hpp>

Supported by backends:
e amgcl::backend::builtin
* amgcl::backend::eigen
2.3.3 Matrix Adapters

A matrix adapter allows AMGCL to construct a solver from some common matrix formats. Internally, the CRS format
is used, but it is easy to adapt any matrix format that allows row-wise iteration over its non-zero elements.

2.3. Components 12
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Tuple of CRS arrays
Include <amgcl/adapter/crs_tuple.hpp>

It is possible to use a std: :tuple of CRS arrays as input matrix for any of the AMGCL algorithms. The CRS
arrays may be stored either as STL containers:

std: :vector<int> ptr;
std: :vector<int> col;
std: :vector<double> val;

Solver S( std::tie(n, ptr, col, wval) );

oras amgcl: :iterator_range, which makes it possible to adapt raw pointers:

int *ptr;
int *col;
double +val;

Solver S( std::make_tuple(n,
amgcl: :make_iterator_range (ptr, ptr + n + 1),
amgcl: :make_iterator_range(col, col + ptr(n]),
amgcl: :make_iterator_range(val, val + ptr[n])
) )i

n
n

Zero copy
Include <amgcl/adapter/zero_copy . hpp>

template<class Ptr, class Col, class Val>
std::shared_ptr<amgcl::backend::crs<Val>> zero_copy (size_t n, const Ptr *ptr, const Col *col, const

Val *val)
Returns a shared pointer to the sparse matrix in internal AMGCL format. The matrix may be directly used for

constructing AMGCL algorithms. Ptr and Col have to be 64bit integral datatypes (signed or unsigned). In
case the amgcl : :backend: : builtinbackend is used, no data will be copied from the CRS arrays, so it is
the user’s responsibility to make sure the pointers are alive until the AMGCL algorithm is destroyed.

Block matrix
Include <amgcl/adapter/block_matrix.hpp>
template<class BlockType, class Matrix>
block_matrix_adapter<Matrix, BlockType>block_matrix (const Matrix &A)
Converts scalar-valued matrix to a block-valued one on the fly. The adapter allows to iterate the rows of the

scalar-valued matrix as if the matrix was stored using the block values. The rows of the input matrix have to be
sorted column-wise.

Scaled system
Include <amgcl/adapter/scaled_problem.hhpp>

template<class Backend, class Matrix>

2.3. Components 13
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auto scaled_diagonal (const Matrix &A, const typename Backend::params &bprm = typename
Backend::params())
Returns a scaler object that may be used to scale the system so that the matrix has unit diagonal:

AS _ Dl/QADl/Q

where D is the matrix diagonal. This keeps the matrix symmetrical. The RHS also needs to be scaled, and the
solution of the system has to be postprocessed:

D1/2AD1/2y _ D1/2b7 T = Dl/Qy

The scaler object may be used to scale both the matrix:

auto A = std::tie(rows, ptr, col, wval);
auto scale = amgcl::adapter::scale_diagonal<Backend> (A, bprm);

// Setup solver
Solver solve(scale.matrix(A), prm, bprm);

and the RHS:

// option 1: rhs is untouched
solve (#scale.rhs (b), x);

// option 2: rhs is prescaled in-place
scale (b);
solve (b, x);

The solution vector has to be postprocessed afterwards:

// postprocess the solution in-place:
scale (x);

Reordered system
Include <amgcl/adapter/reorder. hpp>
template<class ordering = amgcl::reorder::cuthill_mckee<false>>

class amgcl::adapter: :reorder
Reorders the matrix to reduce its bandwidth. Example:

// Prepare the reordering:
amgcl: :adapter: :reorder<> perm(A);

// Create the solver using the reordered matrix:
Solver solve (perm(A), prm);

// Reorder the RHS and solve the system:
solve (perm(rhs), x_ord);

// Postprocess the solution vector to get the original ordering:
perm.inverse (x_ord, X);

Eigen matrix

Simply including <amgcl/adapter/eigen.hpp> allows to use Eigen sparse matrices in AMGCL algorithm
constructors. The Eigen matrix has to be stored with the RowMa jor ordering.
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Epetra matrix

Including <amgcl/adapter/epetra.hpp> allows to use Trilinos Epetra distributed sparse matrices in AMGCL
MPI algorithm constructors.

uBlas matrix

Including <amgcl/adapter/ublas.hpp> allows to use uBlas sparse matrices in AMGCL algorithm construc-
tors, and directly use uBlas vectors as the RHS and solution arrays.

2.3.4 lterative Solvers

An iterative solver is a Krylov subspace method that may be combined with a preconditioner in order to solve the
linear system.

All iterative solvers in AMGCL have two template parameters, Backend and InnerProduct. The Backend
template parameter specifies the backend to target, and the InnerProduct parameter is used to select the imple-
mentation of the inner product to use with the solver. The correct implementation should be automatically selected by
the library depending on whether the solver is used in a shared or distributed memory setting.

All solvers provide similar interface described below:

constructor (size_t n, const params &prm = params(), const backend_params &bprm = back-

end_params())
The solver constructor. Takes the size of the system to solve, the solver parameters and the backend parameters.

template<class Matrix, class Precond, class Vect orRHS, class VectorX>
std::tuple<size_t, scalar_type> operator () (const Matrix &A, const Precond &P, const VectorRHS

&rhs, const VectorX &x)
Computes the solution for the given system matrix A and the right-hand side rhs.

Returns the number of iterations made and the achieved relative residual as a std::tuple<size_t,
scalar_type>. The solution vector x provides initial approximation on input and holds the computed solu-
tion on output.

template<class Precond, class VectorRHS, class VectorX>
std::tuple<size_t, scalar_type> operator () (const Precond &P, const VectorRHS &rhs, const VectorX

&x)
Computes the solution for the given right-hand side rhs. The matrix that was used to create the preconditioner

P is used as the system matrix.

Returns the number of iterations made and the achieved relative residual as a std::tuple<size_t,
scalar_type>. The solution vector x provides initial approximation on input and holds the computed solu-
tion on output.

AMGCL implementats the following iterative solvers:

CG

template<class Backend, class InnerProduct = amgcl::detail::default_inner_product>
class amgcl::solver::cg

Include <amgcl/solver/cg.hpp>

The Conjugate Gradient method is an effective method for symmetric positive definite systems. It is probably
the oldest and best known of the nonstationary methods [Barr94], [Saad03].
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typedef typename Backend::value_type value_type
The value type of the system matrix

typedef typename amgcl::math::scalar_of<value_type>::itype scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.

class params
The solver parameters.

size_tmaxiter =100

The maximum number of iterations
scalar_type tol = 1e-8

Target relative residual error € = lHT

scalar_type abstol = std::numeric_limits<scalar_type>::min()
Target absolute residual error & = ||f — Az||

bool ns_search = false
Ignore the trivial solution x=0 when the RHS is zero. Useful when searching for the null-space

vectors of the system.

bool verbose = false
Output the current iteration number and relative residual during solution.

BiCGStab

template<class Backend, class InnerProduct = amgcl::detail::default_inner_product>
class amgcl::solver::bicgstab

Include <amgcl/solver/bicgstab.hpp>

The BiConjugate Gradient Stabilized method (BiCGStab) was developed to solve nonsymmetric linear systems
while avoiding the often irregular convergence patterns of the Conjugate Gradient Squared method [Barr94].

typedef typename Backend::value_type value_type
The value type of the system matrix

typedef typename amgcl::math::scalar_of<value_type>::itype scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.

class params
The solver parameters.

bool check_after =false
Always do at least one iteration
amgcl::preconditioner::side::type pside = amgcl::preconditioner::side::right
Preconditioner kind (left/right)
size_tmaxiter =100
The maximum number of iterations
scalar_type tol = 1e-8
Target relative residual error € = T

scalar_type abstol = std::numeric_limits<scalar_type>::min()
Target absolute residual error & = ||f — Az||
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bool ns_search = false
Ignore the trivial solution x=0 when the RHS is zero. Useful when searching for the null-space

vectors of the system.

bool verbose = false
Output the current iteration number and relative residual during solution.

BiCGStab(L)

template<class Backend, class InnerProduct = amgcl::detail::default_inner_product>
class amgcl::solver: :bicgstabl

Include <amgcl/solver/bicgstabl . hpp>

This is a generalization of the BiCGStab method [SIDi93], [Fokk96]. For L = 1, this algorithm coincides with
BiCGStab. In some situations it may be profitable to take L > 2. Although the steps of BiCGStab(L) are more
expensive for larger L, numerical experiments indicate that, in certain situations, due to a faster convergence,
for instance, BiCGStab(4) performs better than BiCGStab(2).

typedef typename Backend::value_type value_type
The value type of the system matrix

typedef typename amgcl::math::scalar_of<value_type>::type scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.

class params
The solver parameters.

intL=2
The order of the method

scalar_type delta =0
Threshold used to decide when to refresh computed residuals.

bool convex = true
Use a convex function of the MinRes and OR polynomials after the BiCG step instead of default

MinRes
amgcl::preconditioner::side::type pside = amgcl::preconditioner::side::right
Preconditioner kind (left/right)
size_tmaxiter = 100
The maximum number of iterations
scalar_type tol = le-8
Target relative residual error € = W

scalar_type abstol = std::numeric_limits<scalar_type>::min()
Target absolute residual error € = ||f — Az

bool ns_search = false
Ignore the trivial solution x=0 when the RHS is zero. Useful when searching for the null-space

vectors of the system.

bool verbose = false
Output the current iteration number and relative residual during solution.
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GMRES

template<class Backend, class InnerProduct = amgcl::detail::default_inner_product>
class amgcl::solver::gmres

Include <amgcl/solver/gmres.hpp>

The Generalized Minimal Residual method is an extension of MINRES (which is only applicable to symmetric
systems) to unsymmetric systems. Like MINRES, it generates a sequence of orthogonal vectors, but in the
absence of symmetry this can no longer be done with short recurrences; instead, all previously computed vectors
in the orthogonal sequence have to be retained. For this reason, “restarted” versions of the method are used
[Barr94].

typedef typename Backend::value_type value_type
The value type of the system matrix

typedef typename amgcl::math::scalar_of<value_type>::type scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.

class params
The solver parameters.

intM =30
The number of iterations before restart

amgcl::preconditioner::side::type pside = amgcl::preconditioner::side::right
Preconditioner kind (left/right)

size_tmaxiter = 100
The maximum number of iterations

scalar_type tol = le-8
Target relative residual error € = IHT

scalar_type abstol = std::numeric_limits<scalar_type>::min()
Target absolute residual error € = ||f — Az

bool ns_search = false
Ignore the trivial solution x=0 when the RHS is zero. Useful when searching for the null-space
vectors of the system.

bool verbose = false
Output the current iteration number and relative residual during solution.

“Loose” GMRES (LGMRES)

template<class Backend, class InnerProduct = amgcl::detail::default_inner_product>
class amgcl::solver::lgmres

Include <amgcl/solver/lgmres . hpp>

The residual vectors at the end of each restart cycle of restarted GMRES often alternate direction in a cyclic
fashion, thereby slowing convergence. LGMRES is an implementation of a technique for accelerating the
convergence of restarted GMRES by disrupting this alternating pattern. The new algorithm resembles a full
conjugate gradient method with polynomial preconditioning, and its implementation requires minimal changes
to the standard restarted GMRES algorithm [BaJMO05].
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typedef typename Backend::value_type value_type
The value type of the system matrix

typedef typename amgcl::math::scalar_of<value_type>::itype scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.

class params
The solver parameters.

unsigned K = 3
Number of vectors to carry between inner GMRES iterations. According to [BaJMO05], good values
are in the range of 1-3. However, if you want to use the additional vectors to accelerate solving
multiple similar problems, larger values may be beneficial.

bool always_reset =true
Reset augmented vectors between solves. If the solver is used to repeatedly solve similar problems,
then keeping the augmented vectors between solves may speed up subsequent solves. This flag, when
set, resets the augmented vectors at the beginning of each solve.

int M =30
The number of iterations before restart

amgcl::preconditioner::side::type pside = amgcl::preconditioner::side::right
Preconditioner kind (left/right)

size_tmaxiter =100
The maximum number of iterations

scalar_type tol = le-8
Target relative residual error € = W

scalar_type abstol = std::numeric_limits<scalar_type>::min()
Target absolute residual error € = || f — Az

bool ns_search = false
Ignore the trivial solution x=0 when the RHS is zero. Useful when searching for the null-space
vectors of the system.

bool verbose = false
Output the current iteration number and relative residual during solution.

Flexible GMRES (FGMRES)

template<class Backend, class InnerProduct = amgcl::detail::default_inner_product>
class amgcl::solver::fgmres

Include <amgcl/solver/fgmres . hpp>

Often, the application of the preconditioner P is a result of some unspecified computation, possibly another
iterative process. In such cases, it may well happen that P is not a constant operator. The preconditioned iterative
solvers may not converge if P is not constant. There are a number of variants of iterative procedures developed
in the literature that can accommodate variations in the preconditioner, i.e., that allow the preconditioner to vary
from step to step. Such iterative procedures are called “flexible” iterations. The method implements flexible
variant of the GMRES algorithm [Saad03].

typedef typename Backend::value_type value_type
The value type of the system matrix
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typedef typename amgcl::math::scalar_of<value_type>::itype scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.

class params
The solver parameters.

int M =30
The number of iterations before restart

size_tmaxiter = 100
The maximum number of iterations

scalar_type tol = le-8
Target relative residual error € = lHT

scalar_type abstol = std::numeric_limits<scalar_type>::min()
Target absolute residual error & = ||f — Az||

bool ns_search = false
Ignore the trivial solution x=0 when the RHS is zero. Useful when searching for the null-space
vectors of the system.

bool verbose = false
Output the current iteration number and relative residual during solution.

IDR(s)

template<class Backend, class InnerProduct = amgcl::detail::default_inner_product>
class amgcl::solver: :idrs

Include <amgcl/solver/idrs.hpp>

This is a very stable and efficient IDR(s) variant as described in [GiSol1]. The Induced Dimension Reduction
method, IDR(s), is a robust and efficient short-recurrence Krylov subspace method for solving large nonsym-
metric systems of linear equations.

IDR(s) compared to BI-CGSTAB/BiCGStab():
* Faster.
* More robust.
* More flexible.

typedef typename Backend::value_type value_type
The value type of the system matrix

typedef typename amgcl::math::scalar_of<value_type>::type scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.

class params
The solver parameters.

unsigned s =4
Dimension of the shadow space in IDR(s).

scalar_type omega = 0.7
Computation of omega.
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* If omega = 0, a standard minimum residual step is performed.
 If omega > 0, omega is increased if the cosine of the angle between Ar and r < omega.

bool smoothing = false
Specifies if residual smoothing must be applied.

bool replacement = false
Residual replacement. Determines the residual replacement strategy. If true, the recursively computed
residual is replaced by the true residual.

size_tmaxiter = 100
The maximum number of iterations

scalar_type tol = 1e-8
Target relative residual error € = llf—Ael|

scalar_type abstol = std::numeric_limits<scalar_type>::min()
Target absolute residual error & = ||f — Az||

bool ns_search = false
Ignore the trivial solution x=0 when the RHS is zero. Useful when searching for the null-space
vectors of the system.

bool verbose = false
Output the current iteration number and relative residual during solution.

Richardson iteration

template<class Backend, class InnerProduct = amgcl::detail::default_inner_product>
class amgcl::solver::richardson

Include <amgcl/solver/richardson.hpp>

The preconditioned Richardson iterative method

o =2t L wP(f — AxY)

typedef typename Backend::value_type value_type
The value type of the system matrix

typedef typename amgcl::math::scalar_of<value_type>::itype scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.

class params
The solver parameters.

scalar_type damping = 1.0
The damping factor w

size_tmaxiter =100

The maximum number of iterations
scalar_type tol = le-8

Target relative residual error € = lIIT

scalar_type abstol = std::numeric_limits<scalar_type>::min()
Target absolute residual error € = ||f — Az
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bool ns_search = false
Ignore the trivial solution x=0 when the RHS is zero. Useful when searching for the null-space
vectors of the system.

bool verbose = false
Output the current iteration number and relative residual during solution.

PreOnly

template<class Backend, class InnerProduct = amgcl::detail::default_inner_product>
class amgcl::solver: :preonly

Include <amgcl/solver/preonly.hpp>

Only apply the preconditioner once. This is not very useful as a standalone solver, but may be used in composite
preconditioners as a nested solver, so that the composite preconditioner itself remains linear and may be used
with a non-flexible iterative solver.

typedef typename Backend::value_type value_type
The value type of the system matrix

typedef typename amgcl::math::scalar_of<value_type>::itype scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.

class params
The solver parameters.

2.3.5 Preconditioners

Aside from the AMG, AMGCL implements preconditioners for some common problem types. For example, there is
a Schur complement pressure correction preconditioner for Navie-Stokes type problems, or CPR preconditioner for
reservoir simulations. Also, it is possible to use single level relaxation method as a preconditioner.

General preconditioners

These preconditioners do not take the origin or structure of matrix into account, and may be useful both on their own,
as well as building blocks for the composite preconditioners.

AMG

template<class Backend, template<class> class Coarsening, template<class> class Relax>
class amgcl::amg

Include <amgcl/amg. hpp>

AMG is one the most effective methods for the solution of large sparse unstructured systems of equations,
arising, for example, from discretization of PDEs on unstructured grids [TrOSO1]. The method may be used
as a black-box solver for various computational problems, since it does not require any information about the
underlying geometry.

The three template parameters allow the user to select the exact components of the method:
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* The Backend to transfer the constructed hierarchy to,
* The Coarsening strategy for the hierarchy construction, and
* The Relaxation scheme (smoother to use during the solution phase).

typedef typename Backend::params backend_params
The backend parameters

typedef typename Backend::value_type value_type
The value type of the system matrix

typedef typename amgcl::math::scalar_of<value_type>::type scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.

typedef Coarsening<Backend> coarsening type
The coarsening class instantiated for the specified backend

typedef Relax<Backend> relax_type
The relaxation class instantiated for the specified backend

class params
The AMG parameters. The coarsening and the relaxation parameters are encapsulated as part of the AMG
parameters.

typedef typename coarsening_type::params coarsening_params
The type of the coarsening parameters

typedef typename relax_type::params relax_params
The type of the relaxation parameters

coarsening_params coarsening
The coarsening parameters

relax_params relax
The relaxation parameters

unsigned coarse_enough = Backend::direct_solver::coarse_enough()
Specifies when a hierarchy level is coarse enough to be solved directly. If the number of variables at
the level is lower than this threshold, then the hierarchy construction is stopped and the linear system
is solved directly at this level. The default value comes from the direct solver class defined as part of
the backend.

bool direct_ coarse =true
Use direct solver at the coarsest level. When set, the coarsest level is solved with a direct solver.
Otherwise a smoother is used as a solver. This may be useful when the system is singular, but is still
possible to solve with an iterative solver.

unsigned max_levels = std::numeric_limits<unsigned>::max()
The maximum number of levels. If this number is reached even when the size of the last level is
greater that coarse_enough, then the hierarchy construction is stopped. The coarsest level will
not be solved directly, but will use a smoother.

unsigned npre =1
The number of pre-relaxations.

unsigned npost =1
The number of post-relaxations.

unsigned ncycle =1
The shape of AMG cycle (1 for V-cycle, 2 for W-cycle, etc).
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unsigned pre_cycles =1
The number of cycles to make as part of preconditioning.

bool allow_rebuild = false
Keep transfer operator matrices (P and R) in internal format to allow for quick rebuild of the hierar-
chy. See amgcl: :amg::rebuild().

template<class Mat rix>

void rebuild (const Matrix &A, const backend_params &bprm = backend_params())
Rebuild the hierarchy using the new system matrix. Requires allow_rebuild to be set in parameters.
The transfer operators created during the initial setup are reused in order to create the coarse system
matrices: A2V = RA™" P,

Single-level relaxation

template<class Backend, template<class> class Relax>
class amgcl::relaxation::as_preconditioner

Include <amgcl/relaxation/as_preconditioner.hpp>

Allows to use a relaxation method as a standalone preconditioner.

Relax<backend> smoother;
The relaxation class instantiated for the specified backend

typedef typename smoother::params params
The relaxation params are inherited as the parameters for the preconditioner

Dummy

template<class Backend>
class amgcl::preconditioner: :dummy

Include <amgcl/preconditioner/dummy . hpp>
The dummy preconditioner, equivalent to an identity matrix. May be used to test the convergence of unprecon-
ditioned iterative solvers.

class params
There are no parameters

Composite preconditioners

The preconditioners in this section take the into account the block structure of the system and properties of the indi-
vidual blocks. Most often the preconditioners are used for the solution of saddle point or Stokes-like systems, where
the system matrix may be represented in the following form:

(éz BClT) <Z) - (Z:) @1
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CPR

template<class PPrecond, class SPrecond>
class amgcl::preconditioner: :cpr

Include <amgcl/preconditioner/cpr.hpp>

The Constrained Pressure Residual (CPR) preconditioner [Stue07]. The CPR preconditioners are based on the
idea that coupled system solutions are mainly determined by the solution of their elliptic components (i.e.,
pressure). Thus, the procedure consists of extracting and accurately solving pressure subsystems. Residuals
associated with this solution are corrected with an additional preconditioning step that recovers part of the
global information contained in the original system.

The template parameters PPrecond and SPrecond for the CPR preconditioner specify which preconditioner
to use with the pressure subblock (the C' matrix in (2.1)), and with the complete system.

The system matrix should be ordered by grid nodes, so that the pressure and suturation/concentration unknowns
belonging to the same grid node are compactly located together in the vector of unknowns. The pressure should
be the first unknown in the block of unknowns associated with a grid node.

class params
The CPR preconditioner parameters

typedef typename SPrecond::value_type value_type
The value type of the system matrix

typedef typename PPrecond::params pprecond_params
The type of the pressure preconditioner parameters

typedef typename SPrecond::params sprecond_params
The type of the global preconditioner parameters

pprecond_params pprecond
The pressure preconditioner parameters

sprecond_params sprecond
The global preconditioner parameters

intblock_size=2
The number of unknowns associated with each grid node. The default value is 2 when the system
matrix has scalar value type. Otherwise, the block size of the system matrix value type is used.

size_t active_rows =0
When non-zero, only unknowns below this number are considered to be pressure. May be used when
a system matrix contains unstructured tail block (for example, the unknowns associated with wells).

CPR (DRS)

template<class PPrecond, class SPrecond>
class amgcl::preconditioner: :cpr_drs

Include <amgcl/preconditioner/cpr.hpp>

The Constrained Pressure Residual (CPR) preconditioner with weighted dynamic row sum (WDRS) [Griel4],
[BrCCl15].
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The template parameters PPrecond and SPrecond for the CPR WDRS preconditioner specify which pre-
conditioner to use with the pressure subblock (the C' matrix in (2.1)), and with the complete system.

The system matrix should be ordered by grid nodes, so that the pressure and suturation/concentration unknowns
belonging to the same grid node are compactly located together in the vector of unknowns. The pressure should
be the first unknown in the block of unknowns associated with a grid node.

class params
The CPR preconditioner parameters

typedef typename SPrecond::value_type value_type
The value type of the system matrix

typedef typename PPrecond::params pprecond_params
The type of the pressure preconditioner parameters

typedef typename SPrecond::params sprecond_params
The type of the global preconditioner parameters

pprecond_params pprecond
The pressure preconditioner parameters

sprecond_params sprecond
The global preconditioner parameters

intblock _size=2
The number of unknowns associated with each grid node. The default value is 2 when the system
matrix has scalar value type. Otherwise, the block size of the system matrix value type is used.

size_tactive_rows =0
When non-zero, only unknowns below this number are considered to be pressure. May be used when
a system matrix contains unstructured tail block (for example, the unknowns associated with wells).

double eps_dd =0.2
Controls the severity of the violation of diagonal dominance. See [Grie14] for more details.

double eps_ps =0.02
Controls the pressure/saturation coupling. See [Griel4] for more details.

std::vector<double> weights
The weights for the weighted DRS method. See [BrCC15] for more details.

Schur Pressure Correction

template<class USolver, class PSolver>
class amgcl::preconditioner: :schur_ pressure_correction

Include <amgcl/preconditioner/schur_pressure_correction.hpp>

The system (2.1) may be rewritten as

A BF\ (u\ by
0 S )\p) \b,—BA b,

where S = C'— By A~ B is the Schur complement. The Schur complement pressure correction preconditioner
uses this representation and an approximation to the Schur complement matrix in order to decouple the pressure
and the velocity parts of the system [EIHSO8].

The two template parameters for the method, USolver and PSolver, specify the preconditioned solvers for
the A and S blocks.
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class params
The parameters for the Schur pressure correction preconditioner

typedef typename USolver::params usolver_params
The type of the USolver parameters

typedef typename PSolver::params psolver_params
The type of the PSolver parameters

usolver_params usolver
The USolver parameters

psolver_params psolver
The PSolver parameters

std::vector<char> pmask
The indicator vector, containing 1 for pressure unknowns, and O otherwise.

int type =1
The variant of the block preconditioner to use.
* When type = 1:

Sp=b, — ByA~'b,

Au=b, — Blp
e When type = 2:
Sp=1b,
Au="b, — Blp

bool approx_schur = false
When set, approximate A~" as diag(A)~! during computation of the matrix-less Schur complement
when solving the Sp = b,, system. Otherwise, the full solve using USolver is used.

intadjust_p=1
Adjust the matrix used to construct the preconditioner for the Schur complement system.
e When adjust_p 0, use the unmodified C' matrix;
e When adjust_p = 1, use C — diag(Badiag(A)~'BY);
e When adjust_p = 2,use C — Bodiag(A)~'BY.

bool simplec_dia = true
When set, use m instead of diag(A) ! as the approximation for A~! (similar to the SIMPLEC
3 144,
algorithm).
int verbose =0
e When verbose >= 1, show the number of iterations and the relative residual achieved after
each nested solve.
* When verbose >= 2, save the A and C submatrices as Kuu . mt x and Kpp . mt x.

2.3.6 Relaxation

A relaxation method or a smoother is used on each level of the AMG hierarchy during solution phase.

Damped Jacobi

template<class Backend>
class amgcl::relaxation::damped_jacobi
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Include <amgcl/relaxation/damped_jacobi.hpp>

The damped Jacobi relaxation

class params
Damped Jacobi relaxation parameters

typedef typename Backend::value_type value_type
The value type of the system matrix

typedef typename amgcl::math::scalar_of<value_type>::type scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.

scalar_type damping = (.72
The damping factor

Gauss-Seidel

template<class Backend>
class amgcl::relaxation::gauss_seidel

Include <amgcl/relaxation/gauss_seidel.hpp>

The Gauss-Seidel relaxation. The relaxation is only available for the backends where the matrix supports row-
wise iteration over its non-zero values.

class params
Gauss-Seidel relaxation parameters

bool serial = false
Use the serial version of the algorithm

Chebyshev

template<class Backend>
class amgcl::relaxation::chebyshev

Include <amgcl/relaxation/chebyshev.hpp>

Chebysheyv iteration is an iterative method for the solution of a system of linear equations, and unlike Jacobi, it
is not a stationary method. However, it does not require inner products like many other nonstationary methods
(most Krylov methods). These inner products can be a performance bottleneck on certain distributed memory ar-
chitectures. Furthermore, Chebysheyv iteration is, like Jacobi, easier to parallelize than for instance Gauss—Seidel
smoothers. The Chebysheyv iteration requires some information about the spectrum of the matrix. For symmet-
ric matrices, it needs an upper bound for the largest eigenvalue and a lower bound for the smallest eigenvalue
[GhKK12].

class params
Chebyshev relaxation parameters

unsigned degree =5
The degree of Chebyshev polynomial
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float higher = 1.0
The highest eigen value safety upscaling. use boosting factor for a more conservative upper bound
estimate [ABHTO03].

float lower =1.0/30
Lowest-to-highest eigen value ratio.

int power_iters =0
The number of power iterations to apply for the spectral radius estimation. When 0, use Gershgorin
disk theorem to estimate the spectral radius.

bool scale = false
Scale the system matrix

Incomplete LU relaxation

The incomplete LU factorization process computes a sparse lower triangular matrix L and a sparse upper triangular
matrix U so that the residual matrix R = LU — A satisfies certain constraints, such as having zero entries in some
locations. The relaxations in this section use various approaches to computation of the triangular factors L and U, but
share the triangular system solution implementation required in order to apply the relaxation. The parameters for the
triangular solution algorithm are defined as follows:

template<class Backend>
class amgcl::relaxation::detail::ilu_solve

ILUO

For the builtin OpenMP backend the incomplete triangular factors are solved using the OpenMP-parallel level
scheduling approach. For the GPGPU backends, the triangular factors are solved approximately, using multiple
damped Jacobi iterations [ChPal5].

class params

bool serial = false
Use the serial version of the algorithm. This parameter is only used with the
amgcl: :backend: :builtin backend.

unsigned iters =2
The number of Jacobi iterations to approximate the triangular system solution. This parameter is only
used with GPGPU backends.

scalar_type damping = 1.0
The damping factor for the triangular solve approximation. This parameter is only used with GPGPU
backends.

template<class Backend>
class amgcl::relaxation::ilu0

Include <amgcl/relaxation/ilu0.hpp>
The incomplete LU factorization with zero fill-in [Saad03]. The zero pattern for the triangular factors L and U
is taken to be exactly the zero pattern of the system matrix A.

class params
ILUO relaxation parameters
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typedef typename Backend::value_type value_type
The value type of the system matrix

typedef typename amgcl::math::scalar_of<value_type>::itype scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.

scalar_type damping = 1.0
The damping factor

typename amgcl::relaxation::detail::ilu_solve<Backend>::params solve
The parameters for the triangular factor solver

ILUK

template<class Backend>
class amgcl::relaxation::iluk

Include <amgcl/relaxation/iluk.hpp>

The ILU(k) relaxation.

The incomplete LU factorization with the level of fill-in [Saad03]. The accuracy of the ILUO incomplete factor-
ization may be insufficient to yield an adequate rate of convergence. More accurate incomplete LU factorizations
are often more efficient as well as more reliable. These more accurate factorizations will differ from ILU(0) by
allowing some fill-in. Thus, ILUK(k) keeps the ‘k-th order fill-ins’ [Saad03].

The ILU(1) factorization results from taking the zero pattern for triangular factors to be the zero pattern of the
product LyUy of the factors Ly, Uy obtained from ILU(0). This process is repeated to obtain the higher level of
fill-in factorizations.

class params
ILUK relaxation parameters

typedef typename Backend::value_type value_type
The value type of the system matrix

typedef typename amgcl::math::scalar_of<value_type>::itype scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.
intk=1
The level of fill-in
scalar_type damping = 1.0
The damping factor

typename amgcl::relaxation::detail::ilu_solve<Backend>::params solve
The parameters for the triangular factor solver

ILUP

template<class Backend>
class amgcl::relaxation::ilup

2.3. Components 30



AMGCL Documentation, Release 0.0.1

ILUT

Include <amgcl/relaxation/ilup.hpp>

The ILUP(k) relaxation.

This variant of the ILU relaxation is similar to ILUK, but differs in the way the zero pattern for the triangular
factors is determined. Instead of the recursive definition using the product LU of the factors from the previous
level of fill-in, ILUP uses the powers of the boolean matrix S sharing the zero pattern with the system matrix A
[MiKu03]. ILUP(0) coinsides with ILUO, ILUP(1) has the same zero pattern as S2, etc.

class params
ILUP relaxation parameters

typedef typename Backend::value_type value_type
The value type of the system matrix

typedef typename amgcl::math::scalar_of<value_type>::itype scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.

intk=1
The level of fill-in
scalar_type damping = 1.0
The damping factor

typename amgcl::relaxation::detail::ilu_solve<Backend>::params solve
The parameters for the triangular factor solver

template<class Backend>
class amgcl::relaxation::ilut

Include <amgcl/relaxation/ilut.hpp>

The ILUT (p, 7) relaxation.

Incomplete factorizations which rely on the levels of fill are blind to numerical values because elements that
are dropped depend only on the structure of A. This can cause some difficulties for realistic problems that arise
in many applications. A few alternative methods are available which are based on dropping elements in the
Gaussian elimination process according to their magnitude rather than their locations. With these techniques,
the zero pattern P is determined dynamically.

A generic ILU algorithm with threshold can be derived from the IKJ version of Gaussian elimination by includ-
ing a set of rules for dropping small elements. In the factorization ILUT(p, 7), the following rule is used:

1. an element is dropped (i.e., replaced by zero) if it is less than the relative tolerance 7; obtained by multi-
plying 7 by the original 2-norm of the i-th row.

2. Only the pl; largest elements are kept in the L part of the row and the pu; largest elements in the U part
of the row in addition to the diagonal element, which is always kept. [; and u; are the number of nonzero
elements in the i-th row of the system matrix A below and above the diagonal.

class params
ILUT relaxation parameters

typedef typename Backend::value_type value_type
The value type of the system matrix
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typedef typename amgcl::math::scalar_of<value_type>::itype scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.

scalar_typep =2
The fill factor
scalar_type tau = le-2
The minimum magnitude of non-zero elements relative to the current row norm.

scalar_type damping = 1.0
The damping factor

typename amgcl::relaxation::detail::ilu_solve<Backend>::params solve
The parameters for the triangular factor solver

Sparse Approximate Inverse relaxation

Sparse approximate inverse (SPAI) smoothers based on the SPAI algorithm by Grote and Huckle [GrHu97]. The SPAI
algorithm computes an approximate inverse M explicitly by minimizing I — M A in the Frobenius norm. Both the
computation of M and its application as a smoother are inherently parallel. Since an effective sparsity pattern of M
is in general unknown a priori, the computation cost can be greately reduced by choosing an a priori sparsity pattern
for M. For SPAI-0 and SPAI-1 the sparsity pattern of M is fixed: M is diagonal for SPAI-0, whereas for SPAI-1 the
sparsity pattern of M is that of A [BrGr02].

SPAIO

template<class Backend>
class amgcl::relaxation::spai0

SPAIM

Include <amgcl/relaxation/spai0.hpp>

The SPAI-0 variant of the sparse approximate inverse smother [BrGr02].

class params

The SPAI-0 has no parameters

template<class Backend>
class amgcl::relaxation::spail

Include <amgcl/relaxation/spail.hpp>

The SPAI-1 variant of the sparse approximate inverse smother [BrGr02].

class params

The SPAI-1 has no parameters
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Scalar to Block convertor

template<class BlockBackend, template<class> class Relax>
class amgcl::relaxation::as_block

Include <amgcl/relaxation/as_block.hpp>

Wrapper for the specified relaxation. Converts the input matrix from scalar to block format before constructing
an amgcl smoother. See the Using near null-space vectors tutorial.

template <class Backend>
class type
The resulting relaxation class.

2.3.7 Coarsening Strategies

A coarsening strategy defines various options for creating coarse systems in the AMG hierarchy. A coarsening strategy
takes the system matrix A at the current level, and returns prolongation operator P and the corresponding restriction
operator R.

Ruge-Stuben

template<class Backend>
class amgcl::coarsening: :ruge_stuben

Include <amgcl/coarsening/ruge_stuben>

The classic Ruge-Stuben coarsening with direct interpolation [Stue99].

class params

float eps_strong =0.25
Parameter €, defining strong couplings.

Variable ¢ is defined to be strongly negatively coupled to another variable, 7, if

—@i; > €5t Max |a;p| withfixed 0 < egp < 1.
a;,<0

In practice, a value of €44, = 0.25 is usually taken.

bool do_trunc = true
Prolongation operator truncation. Interpolation operators, and, hence coarse operators may increase
substantially towards coarser levels. Without truncation, this may become too costly. Truncation
ignores all interpolatory connections which are smaller (in absolute value) than the largest one by a
factor of £4,.. The remaining weights are rescaled so that the total sum remains unchanged. In practice,
a value of €;,, = 0.2 is usually taken.

float eps_trunc =0.2
Truncation parameter 4.
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Aggregation-based coarsening

The aggregation-base class of coarsening methods split the nodes at the fine grid into disjoint sets of nodes, the so-
called aggregates that act as nodes on the coarse grid. The prolongation operators are then built by first constructing a
tentative prolongator using the knowledge of zero energy modes of the principal part of the differential operator with
natural boundary conditions (e.g., near null-space vectors, or rigid body modes for elasticity). In case of smoothed
aggregation the prolongation operator is then smoothed by a carefully selected iteration.

All of the aggregation based methods take the aggregation and the nullspace parameters:

class amgcl::coarsening: :pointwise_aggregates
Pointwise aggregation. When the system matrix has a block structure, it is converted to a poinwise matrix (single
value per block), and the aggregates are created for this reduced matrix instead.

class params
The aggregation parameters.

float eps_strong =0.08
Parameter €4y0ng defining strong couplings. Connectivity is defined in a symmetric way, that is,
2
two variables i and j are considered to be connected to each other if —
0< Estrong < 1.

I > £gtrong With fixed

aii;]]
intblock_size=1
The block size in case the system matrix has a block structure.

class amgcl::coarsening: :nullspace_params
The nullspace parameters.

intcols =0
The number of near nullspace vectors.

std::vector<double> B
The near nullspace vectors. The vectors are represented as columns of a 2D matrix stored in row-major
order.

Aggregation

template<class Backend>
class amgcl::coarsening::aggregation

Include <amgcl/coarsening/aggregation.hpp>

The non-smoothed aggregation coarsening [Stue99].

class params
The aggregation coarsening parameters

amgcl: :coarsening: :pointwise_aggregates: :params aggr;
The aggregation parameters

amgcl::coarsening::nullspace_params nullspace
The near nullspace parameters

float over_ interp=1.5
Over-interpolation factor o [Stue99]. In case of aggregation coarsening, coarse-grid correction of
smooth error, and by this the overall convergence, can often be substantially improved by using
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“over-interpolation”, that is, by multiplying the actual correction (corresponding to piecewise con-
stant interpolation) by some factor o > 1. Equivalently, this means that the coarse-level Galerkin
operator is re-scaled by 1/a:

1
AL I — a],f’AhII’}.

Smoothed Aggregation

template<class Backend>
class amgcl::coarsening: :smoothed aggregation

Include <amgcl/coarsening/smoothed_aggregation.hpp>

The smoothed aggregation coarsening [VaMB96].

class params
The smoothed aggregation coarsening parameters

amgcl: :coarsening: :pointwise_aggregates: :params aggr;
The aggregation parameters

amgcl::coarsening::nullspace_params nullspace
The near nullspace parameters

float relax = 1.0
The relaxation factor 7. Used as a scaling for the damping factor w. When
estimate_spectral_radius is set, then

w=rx(4/3)/p.
where p is the spectral radius of the system matrix. Otherwise
w=rx*(2/3).

The tentative prolongation P from the non-smoothed aggregation is improved by smoothing to get
the final prolongation matrix P. Simple Jacobi smoother is used here, giving the prolongation matrix

P=(I-wDA")P.

Here A = (afj) is the filtered matrix given by

. ifie N
afj=q0 PIE iz,
0 otherwise

n
CLZ = Q45 — Z (aij —af;),

j=1,5#i
where N is the set of variables strongly coupled to variable 7, and D denotes the diagonal of A*".
bool estimate_spectral_radius = false

Estimate the matrix spectral radius. This usually improves the convergence rate and results in faster
solves, but costs some time during setup.

int power_iters =0
The number of power iterations to apply for the spectral radius estimation. Use Gershgorin disk
theorem when power_iters = 0.
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Smoothed Aggregation with Energy Minimization

template<class Backend>
class amgcl::coarsening: :smoothed_aggr_emin

Include <amgcl/coarsening/smoothed_aggr_emin.hpp>

The smoothed aggregation with energy minimization coarsening [SaTu08].

class params
The smoothed aggregation with energy minimization coarsening parameters

amgcl: :coarsening: :pointwise_aggregates: :params aggr;
The aggregation parameters

amgcl::coarsening::nullspace_params nullspace
The near nullspace parameters

Block to Scalar convertor

template<template<class> class Coarsening>
class amgcl::coarsening::as_scalar

Include <amgcl/coarsening/as_scalar.hpp>

Wrapper for the specified coarsening. Converts the input matrix from block to scalar format, applies the base
coarsening, converts the resulting transfer operators back to block format. See the Using near null-space vectors
tutorial.

template <class Backend>

class type
The resulting coarsening class.

2.3.8 Coupling Solvers with Preconditioners

These classes provide a convenient way to couple an iterative solver and a preconditioner. This may be used both for
convenience and as a building block for a composite preconditioner.

make_solver

template<class Precond, class IterSolver>
class amgcl::make_solver

Include <amgcl/make_solver.hpp>

The class has two template parameters: Precond and IterSolver, which specify the preconditioner and
the iterative solver to use. During construction of the class, instances of both components are constructed and
are ready to use as a whole.

typedef typename Backend::params backend_params
The backend parameters
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typedef typename Backend::value_type value_type
The value type of the system matrix

typedef typename amgcl::math::scalar_of<value_type>::itype scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.

class params
The coupled solver parameters

typename Precond::params precond
The preconditioner parameters

IterSolver::params solver
The iterative solver parameters

template<class Mat rix>
make_solver (const Matrix &A, const params &prm = params(), const backend_params &bprm

= backend_params())
The constructor

template<class Matrix, class VectorRHS, class VectorX>
std::tuple<size_t, scalar_type> operator () (const Matrix &A, const VectorRHS &rhs, VectorX

&x) const
Computes the solution for the given system matrix A and the right-hand side rhs. Returns the number

of iterations made and the achieved residual as a std: :tuple. The solution vector x provides initial
approximation on input and holds the computed solution on output.

The system matrix may differ from the matrix used during initialization. This may be used for the solution
of non-stationary problems with slowly changing coefficients. There is a strong chance that a precondi-
tioner built for a time step will act as a reasonably good preconditioner for several subsequent time steps
[DeSh12].

template<class Vect orRHS, class VectorX>

std::tuple<size_t, scalar_type> operator () (const VectorRHS &rhs, VectorX &x) const
Computes the solution for the given right-hand side rhs. Returns the number of iterations made and the
achieved residual as a std: : tuple. The solution vector x provides initial approximation on input and
holds the computed solution on output.

const Precond &precond () const
Returns reference to the constructed preconditioner

const [terSolver &solver () const
Returns reference to the constructed iterative solver

make_block_solver

template<class Precond, class IterSolver>
class amgcl: :make_block_solver

Include <amgcl/make_block_solver.hpp>

Creates coupled solver which targets a block valued backend, but may be initialized with a scalar system matrix,
and used with scalar vectors.

The scalar system matrix is transparently converted to the block-valued on using the
amgcl::adapter::block_matrix () adapter in the class constructor, and the scalar vectors are
reinterpreted to the block-valued ones upon application.
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This class may be used as a building block in a composite preconditioner, when one (or more) of the subsystems
has block values, but has to be computed as a scalar matrix.

The interface is the same as that of amgc1: :make_solver.

deflated_solver

template<class Precond, class IterSolver>
class amgcl::deflated_solver

Include <amgcl/deflated_solver.hpp>

Creates preconditioned deflated solver. Deflated Krylov subspace methods are supposed to solve problems
with large jumps in the coefficients on layered domains. It appears that the convergence of a deflated solver is
independent of the size of the jump in the coefficients. The specific variant of the deflation method used here is
A-DEF?2 from [TNVEO09].

typedef typename Backend::params backend_params
The backend parameters

typedef typename Backend::value_type value_type
The value type of the system matrix

typedef typename amgcl::math::scalar_of<value_type>::itype scalar_type
The scalar type corresponding to the value type. For example, when the value type is
std: :complex<double>, then the scalar type is double.

class params
The deflated solver parameters

int nvec =0
The number of deflation vectors

scalar_type *wec = nullptr
The deflation vectors stored as a [nvec x n] matrix in row-major order

typename Precond::params precond
The preconditioner parameters

IterSolver::params solver
The iterative solver parameters

2.4 Tutorial

In this section we demonstrate the solution of some common types of problems. The first three problems are matrices
from the SuiteSparse Matrix Collection, which is a widely used set of sparse matrix benchmarks. The Stokes problem
may be downloaded from the dataset accompanying the [DeMW?20] paper. The solution timings used in the sections
below were obtained on an Intel Core i5-3570K CPU. The timings for the GPU backends were obtained with the
NVIDIA GeForce GTX 1050 Ti GPU.

2.4.1 Poisson problem

This system may be downloaded from the poisson3Db page (use the Matrix Market download option). The system
matrix has 85,623 rows and 2,374,949 nonzeros (which is on average is about 27 non-zero elements per row). The
matrix has an interesting structure, presented on the figure below:
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A Poisson problem should be an ideal candidate for a solution with an AMG preconditioner, but before we start writing
any code, let us check this with the examples/solver utility provided by AMGCL. It can take the input matrix and the
RHS in the Matrix Market format, and allows to play with various solver and preconditioner options.

Note: The examples/solver is convenient not only for testing the systems obtained elsewhere. You can also save your
own matrix and the RHS vector into the Matrix Market format with amgcl: :io: :mm_write () function. This
way you can find the AMGCL options that work for your problem without the need to rewrite the code and recompile
the program.

The default options of BiCGStab iterative solver preconditioned with a smoothed aggregation AMG (a simple diagonal
SPAI(0) relaxation is used on each level of the AMG hierarchy) should work very well for a Poisson problem:

$ solver -A poisson3Db.mtx —-f poisson3Db_b.mtx

Solver
Type: BiCGstab
Unknowns : 85623

Memory footprint: 4.57 M

Preconditioner

Number of levels: 3

Operator complexity: 1.20

Grid complexity: 1.08

Memory footprint: 58.93 M

level unknowns nonzeros memory
0 85623 2374949 50.07 M (83.20%)
1 6361 446833 7.78 M (15.65%)
2 384 32566 1.08 M ( 1.145%)

Iterations: 24

Error: 8.33789%9e-09

[Profile: 2.351 s] (100.00%)
[ reading: 1.623 s] ( 69.01%)
[ setup: 0.136 s] ( 5.78%)
[ solve: 0.592 s] ( 25.17%)

As we can see from the output, the solution converged in 24 iterations to the default relative error of 1e-8. The solver
setup took 0.136 seconds and the solution time is 0.592 seconds. The iterative solver used 4.57M of memory, and the
preconditioner required 58.93M. This looks like a well-performing solver already, but we can try a couple of things just
in case. We can not use the simpler CG solver, because the matrix is reported as a non-symmetric on the poisson3Db
page. Using the GMRES solver seems to work equally well (the solution time is just slightly lower, but the solver
requires more memory to store the orthogonal vectors). The number of iterations seems to have grown, but keep in
mind that each iteration of BiCGStab requires two matrix-vector products and two preconditioner applications, while
GMRES only makes one of each:

$ solver —-A poisson3Db.mtx —f poisson3Db_b.mtx solver.type=gmres

Solver
Type: GMRES (30)
Unknowns: 85623

Memory footprint: 20.91 M

(continues on next page)
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(continued from previous page)

Preconditioner

Number of levels: 3

Operator complexity: 1.20

Grid complexity: 1.08

Memory footprint: 58.93 M

level unknowns nonzeros memory
0 85623 2374949 50.07 M (83.20%)
1 6361 446833 7.78 M (15.65%)
2 384 32566 1.08 M ( 1.14%)

Iterations: 39

Error: 9.50121e-09

[Profile: 2.282 s] (100.00%)
[ reading: 1.612 s] ( 70.66%)
[ setup: 0.135 s] ( 5.93%)
[ solve: 0.533 s] ( 23.38%)

We can also try differrent relaxation options for the AMG preconditioner. But as we can see below, the simplest
SPAI(0) works well enough for a Poisson problem. The incomplete LU decomposition with zero fill-in makes less
iterations, but is more expensive to setup:

$ solver -A poisson3Db.mtx —-f poisson3Db_b.mtx precond.relax.type=1i1lu0
Solver

Type: BiCGStab
Unknowns: 85623
Memory footprint: 4.57 M

Preconditioner

Number of levels: 3

Operator complexity: 1.20

Grid complexity: 1.08

Memory footprint: 103.44 M

level unknowns nonzeros memory
0 85623 2374949 87.63 M (83.20%)
1 6361 446833 14.73 M (15.65%)
2 384 32566 1.08 M ( 1.14%)

Iterations: 12

Error: 7.99207e-09

[Profile: 2.510 s] (100.00%)
[ self: 0.005 s] ( 0.19%)
[ reading: 1.614 s] ( 64.30%)
[ setup: 0.464 s] ( 18.51%)
[ solve: 0.427 s] ( 17.01%)

On the other hand, the Chebyshev relaxation has cheap setup but its application is expensive as it involves multiple
matrix-vector products. So, even though it requires less iterations, the overall solution time does not improve that
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much:

$ solver —-A poisson3Db.mtx —-f poisson3Db_b.mtx precond.relax.type=chebyshev

Solver

Type:
Unknowns:
Memory footprint:

Preconditioner

Number of levels:

856

BiCGStab

23

4.57 M

3

Operator complexity: 1.20

Grid complexity: 1.08

Memory footprint: 59.63 M

level unknowns nonzeros memory
0 85623 2374949 50.72 M (83.20%)
1 6361 446833 7.83 M (15.65%)
2 384 32566 1.08 M ( 1.14%)

Iterations: 8

Error: 5.21588e-09

[Profile: 2.316 s] (100.00%)

[ reading: 1.607 s] ( 69.39%)

[ setup: 0.134 s] ( 5.78%)

[ solve: 0.574 s] ( 24.80%)

Now that we have the feel of the problem, we can actually write some code. The complete source may be found in
tutorial/l.poisson3Db/poisson3Db.cpp and is presented below:

Listing 2.5: The source code for the solution of the poisson3Db problem.

#include <vector>

#include <iostream>

<amgcl/backend/builtin.hpp>
<amgcl/adapter/crs_tuple.hpp>
<amgcl/make_solver.hpp>

<amgcl/amg.hpp>
<amgcl/coarsening/smoothed_aggregation.hpp>
<amgcl/relaxation/spai0.hpp>
<amgcl/solver/bicgstab.hpp>

#include
#include
#include
#include
#include
#include
#include

#include
#include

<amgcl/io/mm.hpp>
<amgcl/profiler.hpp>

int main(int argc, char xargv([]) {
// The matrix and the RHS file names should be in the command line
if (argc < 3) {
std::cerr <<
return 1;

options:

"Usage: " << argv[0] << " <matrix.mtx> <rhs.mtx>" << std::endl;

// The profiler:
amgcl::profiler<> prof ("poisson3Db");

(continues on next page)
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// Read the system matrix and the RHS:
ptrdiff t rows, cols;
std::vector<ptrdiff t> ptr, col;

std: :vector<double> val, rhs;

prof.tic("read");

std::tie(rows, cols) = amgcl::io::mm_reader (argv[1l]) (ptr,
std::cout << "Matrix " << argv[l] << ": " << rows << "x"
std::tie(rows, cols) = amgcl::io::mm_reader (argv[2]) (rhs)
std::cout << "RHS " << argv[2] << ": " << rows << "x" <<

prof.toc ("read");

col, val);
<< cols << std::endl;

’

cols << std::endl;

// We use the tuple of CRS arrays to represent the system matrix.
// Note that std::tie creates a tuple of references, so no data is actually

// copied here:
auto A = std::tie(rows, ptr, col, wval);

// Compose the solver type

// the solver backend:

typedef amgcl::backend::builtin<double> SBackend;

// the preconditioner backend:
#ifdef MIXED PRECISION

typedef amgcl::backend::builtin<float> PBackend;
#else

typedef amgcl::backend::builtin<double> PBackend;
#endif

typedef amgcl::make_solver<
amgcl: :amg<
PBackend,
amgcl::coarsening: :smoothed_aggregation,
amgcl::relaxation: :spai0
>/

amgcl::solver: :bicgstab<SBackend>
> Solver;

// Initialize the solver with the system matrix:
prof.tic("setup");

Solver solve (A);

prof.toc("setup");

// Show the mini-report on the constructed solver:
std::cout << solve << std::endl;

// Solve the system with the zero initial approximation:
int iters;

double error;

std: :vector<double> x(rows, 0.0);

prof.tic("solve");
std::tie(iters, error) = solve (A, rhs, x);
prof.toc("solve");

// Output the number of iterations, the relative error,
// and the profiling data:

(continues on next page)
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std::cout << "Iters: " << iters << std::endl
<< "Error: " << error << std::endl
<< prof << std::endl;

In lines 4-10 we include the necessary AMGCL headers: the builtin backend uses the OpenMP threading
model; the crs_tuple matrix adaper allows to use a std::tuple of CRS arrays as an input matrix; the
amgcl: :make_solver class binds together a preconditioner and an iterative solver; amgcl : :amg class is
the AMG preconditioner; amgcl: :coarsening: : smoothed _aggregation defines the smoothed aggreation
coarsening strategy; amgcl::relaxation: :spai0 is the sparse approximate inverse relaxation used on each
level of the AMG hierarchy; and amgcl: :solver: :bicgstab is the BiCGStab iterative solver. In lines 12-13
we include the Matrix Market reader and the AMGCL profiler.

After checking the validity of the command line arguments (lines 16-20), and initializing the profiler (line 23), we
read the system matrix and the RHS vector from the Matrix Market files specified on the command line (lines 30-36).

Now we are ready to actually solve the system. First, we define the backends that we use with the itera-
tive solver and the preconditioner (lines 44-51). The backend have to belong to the same class (in this case,
amgcl: :backend: :builtin), but may have different value type precision. Here we use a double precision
backend for the iterative solver, but choose either a double or a single precision for the preconditioner backend, de-
pending on whether the preprocessor macro MIXED_PRECISION was defined during compilation. Using a single
precision preconditioner may be both more memory efficient and faster, since the iterative solvers performance is
usually memory-bound.

The defined backends are used in the solver definition (lines 53—60). Here we are using the amgc1 : :make_solver
class to couple the AMG preconditioner with the BiCGStab iterative solver. We istantiate the solver in line 64.

In line 76 we solve the system for the given RHS vector, starting with a zero initial approximation (the x vector acts
as an initial approximation on input, and contains the solution on output).

Below is the output of the program when compiled with a double precision preconditioner. The results are close to
what we have seen with the examples/solver utility above, which is a good sign:

$ ./poisson3Db poisson3Db.mtx poisson3Db_b.mtx
Matrix poisson3Db.mtx: 85623x85623
RHS poisson3Db_b.mtx: 85623x1

Solver
Type: BiCGStab
Unknowns: 85623

Memory footprint: 4.57 M

Preconditioner

Number of levels: 3
Operator complexity: 1.20
Grid complexity: 1.08
Memory footprint: 58.93 M

level unknowns nonzeros memory

0 85623 2374949 50.07 M (83.20%)
1 6361 446833 7.78 M (15.65%)
2 384 32566 1.08 M ( 1.14%)

Iters: 24
Error: 8.33789%9e-09

(continues on next page)
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[poisson3Db: 2.412 s] (100.00%)
[ read: 1.618 s] ( 67.08%)
[ setup: 0.143 s] ( 5.94%)
[ solve: 0.651 s] ( 26.98%)

Looking at the output of the mixed precision version, it is apparent that it uses less memory for the preconditioner
(43.59M as opposed to 58.93M in the double-precision case), and is slightly faster during both the setup and the
solution phases:

$ ./poisson3Db_mixed poisson3Db.mtx poisson3Db_b.mtx
Matrix poisson3Db.mtx: 85623x85623
RHS poisson3Db_b.mtx: 85623x1

Solver
Type: BiCGStab
Unknowns: 85623

Memory footprint: 4.57 M

Preconditioner

Number of levels: 3
Operator complexity: 1.20
Grid complexity: 1.08
Memory footprint: 43.59 M

level unknowns nonzeros memory
0 85623 2374949 37.23 M (83.20%)
1 6361 446833 5.81 M (15.65%)
2 384 32566 554.90 K ( 1.14%)

Iters: 24
Error: 7.33493e-09

[poisson3Db: 2.234 s] (100.00%)
[ read: 1.559 s] ( 69.78%)
[ setup: 0.125 s] ( 5.59%)
[ solve: 0.550 s] ( 24.62%)

We may also try to switch to the CUDA backend in order to accelerate the solution using an NVIDIA GPU. We
only need to use the amgc1 : : backend: : cuda instead of the builtin backend, and we also need to initialize
the CUSPARSE library and pass the handle to AMGCL as the backend parameters. Unfortunately, we can not use
the mixed precision approach, as CUSPARSE does not support that (we could use the VexCL backend though, see
Poisson problem (MPI version)). The source code is very close to what we have seen above and is available at
tutorial/1.poisson3Db/poisson3Db_cuda.cu. The listing below has the differences highligted:

Listing 2.6: The source code for the solution of the poisson3Db problem
using the CUDA backend.

#include <vector>
#include <iostream>

#include <amgcl/backend/cuda.hpp>
#include <amgcl/adapter/crs_tuple.hpp>
#include <amgcl/make_solver.hpp>

(continues on next page)
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#include <amgcl/amg.hpp>

#include <amgcl/coarsening/smoothed_aggregation.hpp>
#include <amgcl/relaxation/spai0.hpp>

#include <amgcl/solver/bicgstab.hpp>

#include <amgcl/io/mm.hpp>

#include <amgcl/profiler.hpp>

int main(int argc, char xargv[]) {

// The matrix and the RHS file names should be in the command line options:

if (argc < 3) |
std::cerr << "Usage: " << argv[0] << " <matrix.mtx> <rhs.mtx>" << std::endl;
return 1;

// Show the name of the GPU we are using:
int device;

cudaDeviceProp prop;

cudaGetDevice (&device) ;
cudaGetDeviceProperties (&prop, device);
std::cout << prop.name << std::endl;

// The profiler:
amgcl: :profiler<> prof ("poisson3Db");

// Read the system matrix and the RHS:
ptrdiff t rows, cols;
std::vector<ptrdiff t> ptr, col;

std: :vector<double> val, rhs;

prof.tic("read");

std::tie(rows, cols) = amgcl::io::mm_reader (argv[1l]) (ptr, col, val);

std::cout << "Matrix " << argv[l] << ": " << rows << "x" << cols << std::endl;
std::tie(rows, cols) = amgcl::io::mm_reader (argv[2]) (rhs);

std::cout << "RHS " << argv[2] << ": " << rows << "x" << cols << std::endl;

prof.toc ("read");

// We use the tuple of CRS arrays to represent the system matrix.

// Note that std::tie creates a tuple of references, so no data is actually
// copied here:

auto A = std::tie(rows, ptr, col, wval);

// Compose the solver type
typedef amgcl::backend::cuda<double> Backend;
typedef amgcl::make_solver<
amgcl: :amg<
Backend,
amgcl: :coarsening: :smoothed_aggregation,
amgcl::relaxation::spai0
>l
amgcl::solver: :bicgstab<Backend>
> Solver;

// We need to initialize the CUSPARSE library and pass the handle to AMGCL
// in backend parameters:
Backend: :params bprm;

(continues on next page)
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cusparseCreate (&bprm.cusparse_handle) ;

// There 1is no way to pass the backend parameters without passing the
// solver parameters, so we also need to create those. But we can leave
// them with the default values:

Solver: :params prm;

// Initialize the solver with the system matrix:
prof.tic("setup");

Solver solve (A, prm, bprm);

prof.toc("setup");

// Show the mini-report on the constructed solver:
std::cout << solve << std::endl;

// Solve the system with the zero initial approximation.

// The RHS and the solution vectors should reside in the GPU memory:
int iters;

double error;

thrust: :device_vector<double> f (rhs);

thrust: :device_vector<double> x(rows, 0.0);

prof.tic("solve");
std::tie(iters, error) = solve(f, x);
prof.toc("solve™);

// Output the number of iterations, the relative error,
// and the profiling data:
std::cout << "Iters: " << iters << std::endl

<< "Error: " << error << std::endl

<< prof << std::endl;

Using the consumer level GeForce GTX 1050 Ti GPU, the solution phase is almost 4 times faster than with the
OpenMP backend. On the contrary, the setup is slower, because we now need to additionally initialize the GPU-
side structures. Overall, the complete solution is about twice faster (comparing with the double precision OpenMP
version):

$ ./poisson3Db_cuda poisson3Db.mtx poisson3Db_b.mtx
GeForce GTX 1050 Ti

Matrix poisson3Db.mtx: 85623x85623

RHS poisson3Db_b.mtx: 85623x1

Solver
Type: BiCGStab
Unknowns: 85623

Memory footprint: 4.57 M

Preconditioner

Number of levels: 3

Operator complexity: 1.20

Grid complexity: 1.08

Memory footprint: 44.81 M

level unknowns nonzeros memory

(continues on next page)
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0 85623 2374949 37.86 M (83.20%)

1 6361 446833 5.86 M (15.65%)

2 384 32566 1.09 M ( 1.14%)
Iters: 24

Error: 8.33789%9e-09

[poisson3Db: 2.253 s] (100.00%)
[ self: 0.223 s]1 ( 9.90%)
[ read: 1.676 s] ( 74.39%)
[ setup: 0.183 s] ( 8.12%)
[ solve: 0.171 s] ( 7.59%)

2.4.2 Poisson problem (MPI version)

In section Poisson problem we looked at the solution of the 3D Poisson problem (available for download at poisson3Db
page) using the shared memory approach. Lets solve the same problem using the Message Passing Interface (MPI),
or the distributed memory approach. We already know that using the smoothed aggregation AMG with the simple
SPAI(0) smoother is working well, so we may start writing the code immediately. The following is the complete
MPI-based implementation of the solver (tutorial/1.poisson3Db/poisson3Db_mpi.cpp). We discuss it in more details
below.

Listing 2.7: The MPI solution of the poisson3Db problem

#include <vector>
#include <iostream>

#include <amgcl/backend/builtin.hpp>
#include <amgcl/adapter/crs_tuple.hpp>

#include <amgcl/mpi/distributed matrix.hpp>

#include <amgcl/mpi/make_solver.hpp>

#include <amgcl/mpi/amg.hpp>

#include <amgcl/mpi/coarsening/smoothed_aggregation.hpp>
#include <amgcl/mpi/relaxation/spai0.hpp>

#include <amgcl/mpi/solver/bicgstab.hpp>

#include <amgcl/io/binary.hpp>
#include <amgcl/profiler.hpp>

#if defined(AMGCL _HAVE_PARMETIS)

#

include <amgcl/mpi/partition/parmetis.hpp>

#elif defined (AMGCIL_HAVE_SCOTCH)

# include <amgcl/mpi/partition/ptscotch.hpp>

#endif
et
int main(int argc, char xargv([]) {

// The matrix and the RHS file names should be in the command line options:

if (argc < 3) |
std::cerr << "Usage: " << argv[0] << " <matrix.bin> <rhs.bin>" << std::endl;
return 1;

(continues on next page)
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amgcl::mpi::init mpi (&argc, &argv);
amgcl: :mpi::communicator world (MPI_COMM_WORLD) ;

// The profiler:
amgcl: :profiler<> prof ("poisson3Db MPI");

// Read the system matrix and the RHS:

prof.tic("read");

// Get the global size of the matrix:

ptrdiff t rows = amgcl::io::crs_size<ptrdiff t> (argv[l]);
ptrdiff t cols;

// Split the matrix into approximately equal chunks of rows

ptrdiff t chunk = (rows + world.size - 1) / world.size;
ptrdiff t row_beg = std::min(rows, chunk * world.rank);
ptrdiff t row_end = std::min(rows, row_beg + chunk);
chunk = row_end - row_beg;

// Read our part of the system matrix and the RHS.
std::vector<ptrdiff t> ptr, col;

std: :vector<double> val, rhs;

amgcl::io::read_crs(argv[l], rows, ptr, col, val, row_beg, row_end);
amgcl::io::read_dense (argv([2], rows, cols, rhs, row_beg, row_end);
prof.toc ("read");

if (world.rank == 0)
std::cout
<< "World size: " << world.size << std::endl
<< "Matrix " << argv[l] << ": " << rows << "x" << rows << std::endl
<< "RHS " << argv[2] << ": " << rows << "x" << cols << std::endl;

// Compose the solver type
typedef amgcl::backend::builtin<double> DBackend;
typedef amgcl::backend::builtin<float> FBackend;
typedef amgcl: :mpi::make_solver<
amgcl: :mpi: :amg<
FBackend,
amgcl: :mpi::coarsening: :smoothed_aggregation<FBackend>,
amgcl: :mpi::relaxation: :spaiO<FBackend>
>/
amgcl: :mpi::solver: :bicgstab<DBackend>
> Solver;

// Create the distributed matrix from the local parts.
auto A = std::make_shared<amgcl::mpi::distributed_matrix<DBackend>> (
world, std::tie(chunk, ptr, col, val));

// Partition the matrix and the RHS vector.
// If neither ParMETIS not PT-SCOTCH are not available,
// just keep the current naive partitioning.

#1if defined (AMGCL_HAVE_PARMETIS) || defined(AMGCI,_HAVE_SCOTCH)

#

#

#

if defined (AMGCL_HAVE_PARMETIS)

typedef amgcl::mpi::partition::parmetis<DBackend> Partition;
elif defined (AMGCI_HAVE_SCOTCH)

typedef amgcl::mpi::partition::ptscotch<DBackend> Partition;
endif

(continues on next page)
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if (world.size > 1) {
prof.tic("partition");
Partition part;

// part (A) returns the distributed permutation matrix:
auto P = part (*A);
auto R = transpose (*P);

// Reorder the matrix:
A = product (*R, xproduct (xA, =*P));

// and the RHS vector:

std: :vector<double> new_rhs (R->loc_rows ());
R->move_to_backend (typename DBackend: :params());
amgcl: :backend: :spmv (1, *R, rhs, 0, new_rhs);
rhs.swap (new_rhs) ;

// Update the number of the local rows
// (it may have changed as a result of permutation):
chunk = A->loc_rows () ;
prof.toc ("partition");
}
#endif

// Initialize the solver:
prof.tic("setup");

Solver solve (world, A);
prof.toc("setup");

// Show the mini-report on the constructed solver:
if (world.rank == 0)
std::cout << solve << std::endl;

// Solve the system with the zero initial approximation:
int iters;

double error;

std: :vector<double> x (chunk, 0.0);

prof.tic("solve");
std::tie(iters, error) = solve(*A, rhs, Xx);
prof.toc("solve");

// Output the number of iterations, the relative error,
// and the profiling data:

if (world.rank == 0)
std: :cout
<< "Iters: " << iters << std::endl
<< "Error: " << error << std::endl

<< prof << std::endl;

In lines 4-21 we include the required components. Here we are using the builtin (OpenMP-based) backend and the
CRS tuple adapter. Next we include MPI-specific headers that provide the distributed-memory implementation of
AMGCL algorithms. This time, we are reading the system matrix and the RHS vector in the binary format, and
include <amgcl/io/binary.hpp> header intead of the usual <amgcl/io/mm. hpp>. The binary format is not
only faster to read, but it also allows to read the matrix and the RHS vector in chunks, which is what we need for the
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distributed approach.

After checking the validity of the command line parameters, we initialize the MPI context and communicator in lines
31-32:

amgcl::mpi::init mpi (&argc, &argv);
amgcl: :mpi::communicator world (MPI_COMM_WORLD) ;

The amgcl: :mpi::init is a convenience RAII wrapper for MPI_Init (). It will call MPI_Finalize () in
the destructor when its instance (mpi) goes out of scope at the end of the program. We don’t have to use the wrapper,
but it simply makes things easier. amgcl: :mpi::communicator is an equally thin wrapper for MPI_Comm.
amgcl: :mpi::communicator and MPI_Comm may be used interchangeably both with the AMGCL MPI inter-
face and the native MPI functions.

The system has to be divided (partitioned) between multiple MPI processes. The simplest way to do this is presented
on the following figure:

0 10000 20000 30000 40000 50000 60000 70000 80000

0 <= P T e~

30000

40000

50000

60000

70000

80000

Fig. 2.2: Poisson3Db matrix partitioned between the 4 MPI processes
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Assuming we are using 4 MPI processes, the matrix is split into 4 continuous chunks of rows, so that each MPI process
owns approximately 25% of the matrix. This works well enough for a small number of processes, but as the size of the
compute cluster grows, the simple partitioning becomes less and less efficient. Creating efficient partitioning is outside
of AMGCL scope, but AMGCL does provide wrappers for the ParMETIS and PT-SCOTCH libraries specializing in
this. The difference between the naive and the optimal partitioning is demonstrated on the next figure:

Naive domain partitioning Optimal domain partitioning

0.0 0.0
0 1 2 3 0 1 2 3
0.2 - 0.2 0 1 4 5
4 5 6 7 4 5 6 7
0.4 4 0.4 A
2 3 6 7
8 9 10 11 8 9 10 11
0.6 A 0.6
8 9 12 13
0.8 12 13 14 15 0.84 12 13 14 15
10 11 14 15
1.0 T T T T 1.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Naive matrix partitioning Optimal matrix partitioning
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Fig. 2.3: Naive vs optimal partitioning of a 4 x 4 grid between 4 MPI processes.

The figure shows the finite-diffrence discretization of a 2D Poisson problem on a 4 x 4 grid in a unit square. The
nonzero pattern of the system matrix is presented on the lower left plot. If the grid nodes are numbered row-wise, then
the naive partitioning of the system matrix for the 4 MPI processes is shown on the upper left plot. The subdomains
belonging to each of the MPI processes correspond to the continuous ranges of grid node indices and are elongated
along the X axis. This results in high MPI communication traffic, as the number of the interface nodes is high relative
to the number of interior nodes. The upper right plot shows the optimal partitioning of the domain for the 4 MPI
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processes. In order to keep the rows owned by a single MPI process adjacent to each other (so that each MPI process
owns a continuous range of rows, as required by AMGCL), the grid nodes have to be renumbered. The labels in the
top left corner of each grid node show the original numbering, and the lower-rigth labels show the new numbering.
The renumbering of the matrix may be expressed as the permutation matrix P, where P;; = 1 if the j-th unknown in
the original ordering is mapped to the ¢-th unknown in the new ordering. The reordered system may be written as

PTAPy=PTf

The reordered matrix P” AP and the corresponding partitioning are shown on the lower right plot. Note that off-
diagonal blocks on each MPI process have as much as twice fewer non-zeros compared to the naive partitioning of the
matrix. The solution x in the original ordering may be obtained with x = Py.

In lines 37-54 we read the system matrix and the RHS vector using the naive ordering (a nicer ordering of the un-
knowns will be determined later):

// Read the system matrix and the RHS:

prof.tic("read");

// Get the global size of the matrix:

ptrdiff t rows = amgcl::io::crs_size<ptrdiff t>(argv([1l]);
ptrdiff t cols;

// Split the matrix into approximately equal chunks of rows

ptrdiff t chunk = (rows + world.size - 1) / world.size;
ptrdiff t row_beg = std::min(rows, chunk * world.rank);
ptrdiff t row_end = std::min(rows, row_beg + chunk);
chunk = row_end - row_beg;

// Read our part of the system matrix and the RHS.
std::vector<ptrdiff t> ptr, col;

std: :vector<double> val, rhs;

amgcl::io::read_crs(argv[l], rows, ptr, col, val, row_beg, row_end);
amgcl::io::read_dense(argv[2], rows, cols, rhs, row_beg, row_end);
prof.toc("read");

First, we read the total (global) number of rows in the matrix from the binary file using the
amgcl::io::crs_size () function. Next, we divide the global rows between the MPI processes, and read our
portions of the matrix and the RHS using amgcl: :i0::read_crs () andamgcl::io: :read_dense () func-
tions. The row_beg and row_end parameters to the functions specify the regions (in row numbers) to read. The
column indices are kept in global numbering.

In lines 62-72 we define the backend and the solver types:

// Compose the solver type
typedef amgcl::backend::builtin<double> DBackend;
typedef amgcl::backend::builtin<float> FBackend;
typedef amgcl: :mpi::make_solver<
amgcl: :mpi: :amg<
FBackend,
amgcl: :mpi: :coarsening: :smoothed_aggregation<FBackend>,
amgcl: :mpi::relaxation: :spaiO<FBackend>
>I
amgcl: :mpi::solver: :bicgstab<DBackend>
> Solver;

The structure of the solver is the same as in the shared memory case in the Poisson problem tutorial, but we are
using the components from the amgcl: :mpi namespace. Again, we are using the mixed-precision approach and the
preconditioner backend is defined with a single-precision value type.

In lines 74-76 we create the distributed matrix from the local strips read by each of the MPI processes:
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// Create the distributed matrix from the local parts.
auto A = std::make_shared<amgcl::mpi::distributed_matrix<DBackend>> (
world, std::tie(chunk, ptr, col, wval));

We could directly use the tuple of the CRS arrays std: :tie (chunk, ptr, col, wval) to construct the solver
(the distributed matrix would be created behind the scenes for us), but here we need to explicitly create the matrix for
a couple of reasons. First, since we are using the mixed-precision approach, we need the double-precision distributed
matrix for the solution step. And second, the matrix will be used to repartition the system using either ParMETIS or
PT-SCOTCH libraries in lines 78-110:

// Partition the matrix and the RHS vector.

// If neither ParMETIS not PT-SCOTCH are not available,

// just keep the current naive partitioning.
#1f defined (AMGCI,_HAVE_PARMETIS) || defined(AMGCI_HAVE_SCOTCH)
# 1f defined (AMGCI_HAVE_PARMETIS)

typedef amgcl: :mpi::partition::parmetis<DBackend> Partition;
# elif defined(AMGCI_HAVE_SCOTCH)

typedef amgcl::mpi::partition::ptscotch<DBackend> Partition;
# endif

if (world.size > 1) {
prof.tic("partition");
Partition part;

// part (A) returns the distributed permutation matrix:
auto P = part (*A);
auto R = transpose (*P);

// Reorder the matrix:
A = product (xR, =xproduct (xA, *P));

// and the RHS vector:

std: :vector<double> new_rhs (R->loc_rows ());
R->move_to_backend (typename DBackend: :params());
amgcl: :backend: :spmv(l, *R, rhs, 0, new_rhs);
rhs.swap (new_rhs);

// Update the number of the local rows
// (it may have changed as a result of permutation):
chunk = A->loc_rows () ;
prof.toc ("partition");
}
#endif

We determine if either ParMETIS or PT-SCOTCH is available in lines 81-86, and use the corresponding wrapper
provided by the AMGCL. The wrapper computes the permutation matrix P, which is used to reorder both the system
matrix and the RHS vector. Since the reordering may change the number of rows owned by each MPI process, we
update the number of local rows stored in the chunk variable.

// Initialize the solver:
prof.tic("setup");

Solver solve (world, A);
prof.toc("setup");

// Show the mini-report on the constructed solver:
if (world.rank == 0)
std::cout << solve << std::endl;

(continues on next page)
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// Solve the system with the zero initial approximation:
int iters;

double error;

std: :vector<double> x (chunk, 0.0);
prof.tic("solve");
std::tie(iters, error) =
prof.toc("solve");

solve (*A, rhs, x);

At this point we are ready to initialize the solver (line 115), and solve the system (line 128). Here is the output of the
compiled program. Note that the environment variable OMP_NUM_THREADS is set to 1 in order to not oversubscribe
the available CPU cores:

$ export OMP_NUM_THREADS=1
$ mpirun -np 4 ./poisson3Db_mpi poisson3Db.bin poisson3Db_b.bin
World size: 4

Matrix poisson3Db.bin: 85623x85623

RHS poisson3Db_b.bin: 85623x1

Partitioning[ParMETIS] 4 -> 4

Type: BiCGStab

Unknowns: 21671

Memory footprint: 1.16 M

Number of levels: 3

Operator complexity: 1.20

Grid complexity: 1.08

level unknowns nonzeros
0 85623 2374949 (83.06%) [4]
1 6377 450473 (15.75%) [4]
2 401 34039 ( 1.19%) [4]

Iters: 24

Error: 6.09835e-09

[poisson3Db MPTI: 1.273 s] (100.00%)

[ self: 0.044 s] ( 3.49%)

[ partition: 0.626 s] ( 49.14%)

[ read: 0.012 s] ( 0.93%)

[ setup: 0.152 s] ( 11.92%)

[ solve: 0.439 s] ( 34.52%)

Similarly to how it was done in the Poisson problem section, we can use the GPU backend in order to speed
up the solution step. Since the CUDA backend does not support the mixed-precision approach, we will use the
VexCL backend, which allows to employ CUDA, OpenCL, or OpenMP compute devices. The source code (tuto-
rial/1.poisson3Db/poisson3Db_mpi_vexcl.cpp) is very similar to the version using the builtin backend and is shown
below with the differences highlighted.

<vector>
<iostream>

#include
#include

#include
#include

<amgcl/backend/vexcl.hpp>
<amgcl/adapter/crs_tuple.hpp>

(continues on next page)
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#include <amgcl/mpi/distributed_matrix.hpp>

#include <amgcl/mpi/make_solver.hpp>

#include <amgcl/mpi/amg.hpp>

#include <amgcl/mpi/coarsening/smoothed_aggregation.hpp>
#include <amgcl/mpi/relaxation/spai0.hpp>

#include <amgcl/mpi/solver/bicgstab.hpp>

#include <amgcl/io/binary.hpp>
#include <amgcl/profiler.hpp>

#if defined (AMGCL _HAVE_PARMETIS)

#

include <amgcl/mpi/partition/parmetis.hpp>

#elif defined (AMGCL_HAVE_SCOTCH)

#

include <amgcl/mpi/partition/ptscotch.hpp>

#endif

int main (int argc, char xargv[]) {

// The matrix and the RHS file names should be in the command line options:

if (argc < 3) {
std::cerr << "Usage: " << argv|[0] << " <matrix.bin> <rhs.bin>" << std::endl;
return 1;

amgcl::mpi::init mpi (&argc, &argv);
amgcl: :mpi::communicator world (MPI_COMM_WORLD) ;

// Create VexCL context. Use vex::Filter::Exclusive so that different MPIT
// processes get different GPUs. Each process gets a single GPU:
vex::Context ctx(vex::Filter::Exclusive (vex::Filter::Count(1l)));

for(int 1 = 0; i < world.size; ++1) {
// unclutter the output:
if (i == world.rank)
std::cout << world.rank << ": " << ctx.queue(0) << std::endl;

MPI_BRarrier (world);

// The profiler:
amgcl::profiler<> prof ("poisson3Db MPI (VexCL)");

// Read the system matrix and the RHS:

prof.tic("read");

// Get the global size of the matrix:

ptrdiff t rows = amgcl::io::crs_size<ptrdiff t> (argv[l]);
ptrdiff t cols;

// Split the matrix into approximately equal chunks of rows
ptrdiff t chunk = (rows + world.size - 1) / world.size;
ptrdiff t row_beg = std::min(rows, chunk * world.rank);
ptrdiff t row_end = std::min(rows, row_beg + chunk);

chunk = row_end - row_beg;

// Read our part of the system matrix and the RHS.
std::vector<ptrdiff t> ptr, col;

std: :vector<double> val, rhs;

amgcl::io::read_crs(argv[l], rows, ptr, col, val, row_beg, row_end);
amgcl::io::read_dense(argv([2], rows, cols, rhs, row_beg, row_end);

(continues on next page)
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prof.toc ("read");

// Copy the RHS vector to the backend:
vex: :vector<double> f (ctx, rhs);

if (world.rank == 0)
std::cout
<< "World size: " << world.size << std::endl
<< "Matrix " << argv[l] << ": " << rows << "x" << rows << std::endl
<< "RHS " << argv[2] << ": " << rows << "x" << cols << std::endl;

// Compose the solver type

typedef amgcl::backend::vexcl<double> DBackend;

typedef amgcl::backend::vexcl<float> FBackend;

typedef amgcl::mpi::make_solver<

amgcl: :mpi: :amg<

FBackend,
amgcl: :mpi::coarsening: :smoothed_aggregation<FBackend>,
amgcl: :mpi::relaxation: :spaiO<FBackend>

>I

amgcl: :mpi::solver: :bicgstab<DBackend>

> Solver;

// Create the distributed matrix from the local parts.
auto A = std::make_shared<amgcl::mpi::distributed_matrix<DBackend>> (
world, std::tie(chunk, ptr, col, wval));

// Partition the matrix and the RHS vector.
// If neither ParMETIS not PT-SCOTCH are not available,
// just keep the current naive partitioning.

#1f defined (AMGCL_HAVE_PARMETIS) || defined(AMGCI,_HAVE_SCOTCH)

if defined (AMGCL_HAVE_PARMETIS)

typedef amgcl::mpi::partition::parmetis<DBackend> Partition;
elif defined (AMGCI_HAVE_SCOTCH)

typedef amgcl::mpi::partition::ptscotch<DBackend> Partition;
endif

if (world.size > 1) {
prof.tic("partition™);
Partition part;

// part (A) returns the distributed permutation matrix:
auto P = part (xA);
auto R = transpose (*P);

// Reorder the matrix:
A = product (¥R, =*product (xA, *P));

// and the RHS vector:

vex: :vector<double> new_rhs(ctx, R->loc_rows());
R->move_to_backend (typename DBackend: :params());
amgcl: :backend: :spmv (1, *R, £, 0, new_rhs);
f.swap (new_rhs);

// Update the number of the local rows
// (it may have changed as a result of permutation) :
chunk = A->loc_rows () ;

(continues on next page)
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prof.toc("partition");

}
#endif

// Initialize the solver:
Solver: :params prm;
DBackend: :params bprm;
bprm.q = ctx;

prof.tic("setup");
Solver solve (world, A, prm, bprm);
prof.toc("setup");

// Show the mini-report on the constructed solver:
if (world.rank == 0)
std::cout << solve << std::endl;

// Solve the system with the zero initial approximation:
int iters;

double error;

vex: :vector<double> x (ctx, chunk);

x = 0.0;

prof.tic("solve");
std::tie(iters, error) = solve(*A, f, x);
prof.toc("solve");

// Output the number of iterations, the relative error,
// and the profiling data:

if (world.rank == 0)
std::cout
<< "ITters: " << iters << std::endl
<< "Error: " << error << std::endl

<< prof << std::endl;

Basically, we replace the builtin backend with the vexcl one, initialize the VexCL context and reference the
context in the backend parameters. The RHS and the solution vectors are need to be transfered/allocated on the GPUs.
Below is the output of the VexCL version using the OpenCL technology. Note that the system the tests were performed
on has only two GPUs, so the test used just two MPI processes. The environment variable OMP_NUM_THREADS was
set to 2 in order to fully utilize all available CPU cores:

$ export OMP_NUM_THREADS=2

$ mpirun -np 2 ./poisson3Db_mpi_vexcl_cl poisson3Db.bin poisson3Db_b.bin
0: GeForce GTX 960 (NVIDIA CUDA)

1: GeForce GTX 1050 Ti (NVIDIA CUDA)
World size: 2

Matrix poisson3Db.bin: 85623x85623
RHS poisson3Db_b.bin: 85623x1
Partitioning[ParMETIS] 2 —-> 2

Type: BiCGStab

Unknowns: 43255

Memory footprint: 2.31 M

Number of levels: 3
Operator complexity: 1.20

(continues on next page)
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Grid complexity: 1.08

level unknowns nonzeros
0 85623 2374949 (83.03%) [2]
1 6381 451279 (15.78%) [2]
2 396 34054 ( 1.19%) [2]

Iters: 24

Error: 9.14603e-09

[poisson3Db MPI (VexCL) : 1.132 s] (100.00%)
[ self: 0.040 s] ( 3.56%)
[ partition: 0.607 s] ( 53.58%)
[ read: 0.015 s] ( 1.31%)
[ setup: 0.287 s] ( 25.31%)
[ solve: 0.184 s] ( 16.24%)

2.4.3 Structural problem

This system may be downloaded from the Serena page (use the Matrix Market download option). According to
the description, the system represents a 3D gas resevoir simulation for CO2 sequestration, and was obtained from a
structural problem discretizing a gas reservoir with tetrahedral Finite Elements. The medium is strongly heterogeneous
and characterized by a complex geometry consisting of alternating sequences of thin clay and sand layers. More details
available in [FGJT10]. Note that the RHS vector for the Serena problem is not provided, and we use the RHS vector
filled with ones.

The system matrix is symmetric, and has 1,391,349 rows and 64,131,971 nonzero values, which corresponds to an
average of 46 nonzeros per row. The matrix portrait is shown on the figure below.

As in the case of Poisson problem tutorial, we start experimenting with the examples/solver utility provided by
AMGCL. The default options do not seem to work this time. The relative error did not reach the required thresh-
old of 1e-8 and the solver exited after the default limit of 100 iterations:

$ solver —-A Serena.mtx

Solver
Type: BiCGSstab
Unknowns: 1391349

Memory footprint: 74.31 M

Preconditioner

Number of levels: 4

Operator complexity: 1.22

Grid complexity: 1.08

Memory footprint: 1.45 G

level unknowns nonzeros memory
0 1391349 64531701 1.22 G (82.01%)
1 98824 13083884 218.40 M (16.63%)
2 5721 1038749 16.82 M ( 1.32%)
3 279 29151 490.75 K ( 0.045%)

(continues on next page)
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Iterations: 100

Error: 0.000874761

[Profile: 74.102 s] (100.00%)
[ reading: 18.505 s] ( 24.97%)
[ setup: 2.101 s] ( 2.84%)
[ solve: 53.489 s] ( 72.18%)

The system is quite large and just reading from the text-based Matrix Market format takes 18.5 seconds. No one has
that amount of free time on their hands, so lets convert the matrix into the binary format with the examples/mm2bin
utility. This should make the experiments slightly less painful:

mm2bin -1 Serena.mtx -o Serena.bin
Wrote 1391349 by 1391349 sparse matrix, 64531701 nonzeros

The —B option tells the solver that the input is in binary format now. Lets also increase the maximum iteration limit
this time to see if the solver manages to converge at all:

$ solver -B —-A Serena.bin solver.maxiter=1000

Solver
Type: BiCGStab
Unknowns: 1391349

Memory footprint: 74.31 M

Preconditioner

Number of levels: 4

Operator complexity: 1.22

Grid complexity: 1.08

Memory footprint: 1.45 G

level unknowns nonzeros memory
0 1391349 64531701 1.22 G (82.01%)
1 98824 13083884 218.40 M (16.63%)
2 5721 1038749 16.82 M ( 1.32%)
3 279 29151 490.75 K ( 0.04%)

Iterations: 211

Error: 8.54558e-09

[Profile: 114.703 s] (100.00%)
[ reading: 0.550 s] ( 0.48%)
[ setup: 2.114 s] ( 1.84%)
[ solve: 112.034 s] ( 97.67%)

The input matrix is read much faster now, and the solver does converge, but the convergence rate is not great. Looking
closer at the Serena matrix portrait figure, the matrix seems to have block structure with 3 x 3 blocks. This is usually
the case when the system has been obtained via discretization of a system of coupled PDEs, or has vector unknowns.
We have to guess here, but since the problem is described as “structural”, then each block probably corresponds to the
3D displacement vector of a single grid node. We can communicate this piece of information to AMGCL using the
block_size parameter of the aggregation method:

$ solver -B —-A Serena.bin solver.maxiter=1000 \
precond.coarsening.aggr.block_size=3

(continues on next page)
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Solver
Type: BiCGStab
Unknowns: 1391349

Memory footprint: 74.31 M

Preconditioner

Number of levels: 4

Operator complexity: 1.31

Grid complexity: 1.08

Memory footprint: 1.84 G

level unknowns nonzeros memory
0 1391349 64531701 1.50 G (76.48%)
1 109764 17969220 316.66 M (21.30%)
2 6291 1788507 29.51 M ( 2.12%)
3 429 82719 1.23 M ( 0.10%)

Iterations: 120

Error: 9.73074e-09

[Profile: 73.296 s] (100.00%)

[ reading: 0.587 s] ( 0.80%)

[ setup: 2.709 s] ( 3.70%)

[ solve: 69.994 s] ( 95.49%)

This has definitely improved the convergence! We also know that the matrix is symmetric, so lets switch the solver
from the default BiCGStab to the slightly less expensive CG:

$ solver -B —-A Serena.bin \
solver.type=cg \
solver.maxiter=1000 \
precond.coarsening.aggr.block_size=3

Solver
Type: CG
Unknowns: 1391349

Memory footprint: 42.46 M

Preconditioner

Number of levels: 4

Operator complexity: 1.31

Grid complexity: 1.08

Memory footprint: 1.84 G

level unknowns nonzeros memory
0 1391349 64531701 1.50 G (76.48%)
1 109764 17969220 316.66 M (21.30%)
2 6291 1788507 29.51 M ( 2.12%)
3 429 82719 1.23 M ( 0.10%)

Iterations: 177

(continues on next page)
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Error: 8.6598e-09

[Profile: 55.250 s] (100.00%)
[ reading: 0.550 s] ( 1.00%)
[ setup: 2.801 s] ( 5.07%)
[ solve: 51.894 s] ( 93.92%)

This reduces the solution time, even though the number of iterations has grown. Each iteration of BiCGStab costs about
twice as much as a CG iteration, because BiCGStab does two matrix-vector products and preconditioner applications
per iteration, while CG only does one.

The problem description states that the medium is strongly heterogeneous and characterized by a complex geometry
consisting of alternating sequences of thin clay and sand layers. This may result in high contrast between matrix
coefficients in the neighboring rows, which is confirmed by the plot of the matrix diagonal in Serena matrix portrait:
the diagonal coefficients span more than 10 orders of magnitude! Scaling the matrix (so that it has the unit diagonal)
should help with the convergence. The —s option tells the solver to do that:

$ solver -B —-A Serena.bin -s \
solver.type=cg solver.maxiter=200 \
precond.coarsening.aggr.block_size=3

Solver
Type: CG
Unknowns: 1391349

Memory footprint: 42.46 M

Preconditioner

Number of levels: 4

Operator complexity: 1.29

Grid complexity: 1.08

Memory footprint: 1.82 G

level unknowns nonzeros memory
0 1391349 64531701 1.51 G (77.81%)
1 100635 16771185 294.81 M (20.22%)
2 5643 1571157 25.92 M ( 1.89%)
3 342 60264 802.69 K ( 0.07%)

Iterations: 112

Error: 9.84457e-09

[Profile: 36.021 s] (100.00%)

[ self: 0.204 s] ( 0.57%)

[ reading: 0.564 s] ( 1.57%)

[ setup: 2.684 s] ( 7.45%)

[ solve: 32.568 s] ( 90.42%)

And the convergence has indeed been improved! Finally, when the matrix has block structure, as in this case, it
often pays to use the block-valued backend, so that the system matrix has three times fewer rows and columns, but
each nonzero entry is a statically sized 3 x 3 matrix. This should be done instead of specifying the block_size
aggregation parameter, as the aggregation now naturally operates with the 3 x 3 blocks:

$ solver -B —A Serena.bin solver.type=cg solver.maxiter=200 -s -b3
Solver

(continues on next page)
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Type: CG
Unknowns: 463783
Memory footprint: 42.46 M

Preconditioner

Number of levels: 4

Operator complexity: 1.27

Grid complexity: 1.08

Memory footprint: 1.04 G

level unknowns nonzeros memory
0 463783 7170189 891.53 M (78.80%)
1 33052 1772434 159.22 M (19.48%)
2 1722 151034 12.72 M ( 1.66%)
3 98 5756 612.72 K ( 0.06%)

Iterations: 162

Error: 9.7497e-09

[Profile: 31.122 s] (100.00%)

[ self: 0.204 s] ( 0.66%)

[ reading: 0.550 s] ( 1.77%)

[ setup: 1.013 s] ( 3.26%)

[ solve: 29.354 s] ( 94.32%)

Note that the preconditioner now requires 1.04G of memory as opposed to 1.82G in the scalar case. The setup is about
2.5 times faster, and the solution phase performance has been slightly improved, even though the number of iteration
has grown. This is explained by the fact that the matrix is now symbolically smaller, and is easier to analyze during
setup. The matrix also occupies less memory for the CRS arrays, and is more cache-friendly, which helps to speed up
the solution phase. This seems to be the best we can get with this system, so let us implement this version. We will
also use the mixed precision approach in order to get as much performance as possible from the solution. The listing
below shows the complete solution and is also available in tutorial/2.Serena/serena.cpp.

Listing 2.8: The source code for the solution of the Serena problem.

#include <vector>
#include <iostream>

#include <amgcl/backend/builtin.hpp>

#include <amgcl/adapter/crs_tuple.hpp>

#include <amgcl/make_solver.hpp>

#include <amgcl/amg.hpp>

#include <amgcl/coarsening/smoothed_aggregation.hpp>
#include <amgcl/relaxation/spai0.hpp>

#include <amgcl/solver/cqg.hpp>

#include <amgcl/value_ type/static_matrix.hpp>
#include <amgcl/adapter/block _matrix.hpp>

#include <amgcl/io/mm.hpp>
#include <amgcl/profiler.hpp>

int main(int argc, char xargv([]) {
// The command line should contain the matrix file name:

(continues on next page)
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if (argc < 2) {
std::cerr <<

return 1;

"Usage: " << argv[0] << "

// The profiler:
amgcl: :profiler<> prof ("Serena");

// Read the system matrix:
ptrdiff t rows, cols;
std::vector<ptrdiff t> ptr,
std: :vector<double> val;

col;

prof.tic("read");

<matrix.mtx>" << std::endl;

std::tie(rows, cols) = amgcl::io::mm_reader (argv[l]) (ptr, col, val);
std::cout << "Matrix " << argv[l] << ": " << rows << "x" << cols << std::endl;
prof.toc ("read");
// The RHS is filled with ones:
std::vector<double> f (rows, 1.0);
// Scale the matrix so that it has the unit diagonal.
// First, find the diagonal values:
std: :vector<double> D (rows, 1.0);
for (ptrdiff t 1 = 0; 1 < rows; ++1i) {
for (ptrdiff t j = ptr(i], e = ptrli+tl]; J < e; ++3) {
if (col[j] == i) |
D[i] = 1 / sqgrt(valljl);
break;
}
}
}
// Then, apply the scaling in-place:
for (ptrdiff t i = 0; 1 < rows; ++i) {
for (ptrdiff t j = ptr[i], e = ptrl[i+l]; J < e; ++3) {
val[j] »= D[i] = D[col[]]];
}
£[i] »= D[i];

// We use the tuple of CRS arrays to represent the system matrix.

// Note that std::tie creates a tuple of references,

// copied here:

auto A = std::tie(rows, ptr, col, wval);

// Compose the solver type

typedef amgcl::static_matrix<double,
—double precision

typedef amgcl::static_matrix<double, 3, 1>
—value type

typedef amgcl::static_matrix<float, 3, 3>

—single precision

3, 3>

typedef amgcl::backend::builtin<dmat_type>
typedef amgcl::backend::builtin<smat_type>

so no data is actually

dmat_type; // matrix value type in

dvec_type; // the corresponding vector,

smat_type; // matrix value type in

SBackend; // the solver backend
PBackend; // the preconditioner backend

(continues on next page)
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typedef amgcl::make_solver<

amgcl: :amg<
PBackend,
amgcl::coarsening: :smoothed_aggregation,
amgcl::relaxation: :spai0
>I

amgcl: :solver: :cg<SBackend>

> Solver;

// Solver parameters
Solver: :params prm;
prm.solver.maxiter = 500;

// Initialize the solver with the system matrix.

// Use the block_matrix adapter to convert the matrix into
// the block format on the fly:

prof.tic("setup");

auto Ab = amgcl::adapter::block_matrix<dmat_type> (A);
Solver solve (Ab, prm);

prof.toc ("setup");

// Show the mini-report on the constructed solver:
std::cout << solve << std::endl;

// Solve the system with the zero initial approximation:
int iters;

double error;

std: :vector<double> x(rows, 0.0);

// Reinterpret both the RHS and the solution vectors as block-valued:

auto f_ptr = reinterpret_cast<dvec_typex> (f.data());
auto x_ptr = reinterpret_cast<dvec_typex> (x.datal());
auto F = amgcl::make_iterator_range (f_ptr, f_ptr + rows )

/ 3);
auto X = amgcl::make_iterator_range (x_ptr, x_ptr + rows / 3);
prof.tic("solve");
std::tie(iters, error) = solve(Ab, F, X);
prof.toc("solve");

// Output the number of iterations, the relative error,
// and the profiling data:
std::cout << "Iters: " << iters << std::endl

<< "Error: " << error << std::endl

<< prof << std::endl;

In addition the the includes described in Poisson problem, we also include the headers for the
amgcl: :static_matrix value type, and the amgcl: :adapter: :block_matrix () adapter that transpar-
ently converts a scalar matrix to the block format. In lines 42-58 we apply the scaling according to the following
formula:

As — D_l/QAD_l/Q, fs _ D—1/2f

where A, and f are the scaled matrix and the RHS vector, and D is the diagonal of the matrix A. After solving the
scaled system A,y = f, the solution to the original system may be found as = = D~ /2y,

In lines 66—68 we define the block value types for the matrix and the RHS and solution vectors. dmat_type and
smat_type are 3 X 3 static matrices used as value types with the double precision solver backend and the single
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precision preconditioner backend. dvec_type is a double precision 3 x 1 matrix (or a vector) used as a value type
for the RHS and the solution.

The solver class definition in lines 73—80 is almost the same as in the Poisson problem case, with the exception that
we are using the CG iterative solver this time. In lines 83-84 we define the solver parameters. Namely, we increase
the maximum iterations limit to 500 iterations.

In lines 90-91 we instantiate the solver, using the block_matrix adapter in order to convert the scalar matrix into
the block format. The adapter operates on a row-by-row basis and does not create a temporary copy of the matrix.

In lines 103-106 we convert the scalar RHS and solution vectors to the block-valued ones. We use the fact
that 3 consecutive elements of a scalar array may be reinterpreted as a single 3 x 1 static matrix. Using the
reinterpret_cast trick we can get the block-valued view into the RHS and the solution vectors data without
extra memory copies.

Here is the output of the program:

$ ./serena Serena.mtx
Matrix Serena.mtx: 1391349x1391349

Solver
Type: CG
Unknowns: 463783

Memory footprint: 42.46 M

Preconditioner

Number of levels: 4

Operator complexity: 1.27

Grid complexity: 1.08

Memory footprint: 585.33 M

level unknowns nonzeros memory
0 463783 7170189 490.45 M (78.80%)
1 33052 1772434 87.58 M (19.48%)
2 1722 151034 7.00 M ( 1.66%)
3 98 5756 306.75 K ( 0.06%)

Iters: 162

Error: 9.74929e-09

[Serena: 48.427 s] (100.00%)
[ self: 0.166 s] ( 0.34%)
[ read: 21.115 s] ( 43.60%)
[ setup: 0.749 s] ( 1.55%)
[ solve: 26.397 s] ( 54.51%)

Note that due to the use of mixed precision the preconditioner consumes 585.33M of memory as opposed to 1.08G
from the example above. The setup and the solution are faster that the full precision version by about 30% and 10%
correspondingly.

Let us see if using a GPU backend may further improve the performance. The CUDA backend does not support
block value types, so we will use the VexCL backend (which, in turn, may use either OpenCL, CUDA, or OpenMP).
The listing below contains the complete source for the solution (available at tutorial/2.Serena/serena_vexcl.cpp). The
differences with the builtin backend version are highlighted.
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Listing 2.9: The solution of the Serena problem with the VexCL backend.

#include <vector>
#include <iostream>

#include <amgcl/backend/vexcl.hpp>

#include <amgcl/backend/vexcl_static_matrix.hpp>
#include <amgcl/adapter/crs_tuple.hpp>

#include <amgcl/make_solver.hpp>

#include <amgcl/amg.hpp>

#include <amgcl/coarsening/smoothed_aggregation.hpp>
#include <amgcl/relaxation/spai0.hpp>

#include <amgcl/solver/cqg.hpp>

#include <amgcl/value_type/static_matrix.hpp>
#include <amgcl/adapter/block_matrix.hpp>

#include <amgcl/io/mm.hpp>
#include <amgcl/profiler.hpp>

int main(int argc, char xargv[]) {
// The command line should contain the matrix file name:
if (argc < 2) |
std::cerr << "Usage: " << argv[0] << " <matrix.mtx>" << std::endl;
return 1;

// Create VexCL context. Set the environment variable OCI_DEVICE to
// control which GPU to use in case multiple are available,

// and use single device:

vex::Context ctx(vex::Filter::Env && vex::Filter::Count (1));
std::cout << ctx << std::endl;

// Enable support for block-valued matrices in the VexCL kernels:

vex: :scoped_program_header hl (ctx, amgcl::backend::vexcl_static_matrix_declaration

—<double, 3> () ) ;

vex: :scoped_program_header h2 (ctx, amgcl::backend::vexcl_static_matrix_declaration

—<float,3>());

// The profiler:
amgcl::profiler<> prof ("Serena (VexCL)");

// Read the system matrix:
ptrdiff t rows, cols;
std::vector<ptrdiff t> ptr, col;
std: :vector<double> val;

prof.tic("read");

std::tie(rows, cols) = amgcl::io::mm_reader (argv[1l]) (ptr, col, val);
std::cout << "Matrix " << argv[l] << ": " << rows << "x" << cols << std:
prof.toc ("read");

// The RHS is filled with ones:
std::vector<double> f (rows, 1.0);

// Scale the matrix so that it has the unit diagonal.
// First, find the diagonal values:
std::vector<double> D (rows, 1.0);

(continues on next page)
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for (ptrdiff t i = 0; i < rows; ++i) {
for (ptrdiff t j = ptr[i], e = ptr[i+l]; J < e; ++3j) {

if (collj] == 1) {
D[i] = 1 / sqgrt(vall3jl);
break;

// Then, apply the scaling in-place:
for (ptrdiff t i = 0; 1 < rows; ++i) {
for (ptrdiff t j = ptr[i], e = ptr[i+l]; J < e; ++3J) {
val[]j] = D[i] = D[col[]j]];
}
£[i] »= D[i];

// We use the tuple of CRS arrays to represent the system matrix.

// Note that std::tie creates a tuple of references, so no data is actually
// copied here:

auto A = std::tie(rows, ptr, col, wval);

// Compose the solver type
typedef amgcl::static_matrix<double, 3, 3> dmat_type; // matrix value type in_,

—double precision

typedef amgcl::static_matrix<double, 3, 1> dvec_type; // the corresponding vector,

—value type

typedef amgcl::static_matrix<float, 3, 3> smat_type; // matrix value type 1in_,

—single precision

typedef amgcl::backend::vexcl<dmat_type> SBackend; // the solver backend
typedef amgcl::backend::vexcl<smat_type> PBackend; // the preconditioner backend

typedef amgcl::make_solver<

amgcl: :amg<
PBRackend,
amgcl::coarsening: :smoothed_aggregation,
amgcl::relaxation: :spai0
>l

amgcl: :solver: :cg<SBackend>

> Solver;

// Solver parameters
Solver: :params prm;
prm.solver.maxiter = 500;

// Set the VexCL context in the backend parameters
SBackend: :params bprm;
bprm.q = ctx;

// Initialize the solver with the system matrix.

// We use the block_matrix adapter to convert the matrix into the block
// format on the fly:

prof.tic("setup");

auto Ab = amgcl::adapter::block_matrix<dmat_type> (A);

Solver solve (Ab, prm, bprm);

prof.toc ("setup");

(continues on next page)
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// Show the mini-report on the constructed solver:
std::cout << solve << std::endl;

// Solve the system with the zero initial approximation:
int iters;

double error;

std::vector<double> x (rows, 0.0);

// Since we are using mixed precision, we have to transfer the system matrix to,
—~the GPU:
prof.tic ("GPU matrix");
auto A_gpu = SBackend::copy_matrix(
std: :make_shared<amgcl: :backend: :crs<dmat_type>> (Ab), bprm);
prof.toc ("GPU matrix");

// We reinterpret both the RHS and the solution vectors as block-valued,
// and copy them to the VexCL vectors:

auto f_ptr = reinterpret_cast<dvec_typex> (f.data());

auto x_ptr = reinterpret_cast<dvec_typex> (x.data());

vex: :vector<dvec_type> F(ctx, rows / 3, f_ptr);

vex: :vector<dvec_type> X (ctx, rows / 3, x_ptr);

prof.tic("solve");
std::tie(iters, error) = solve(*A_gpu, F, X);
prof.toc("solve");

// Output the number of iterations, the relative error,
// and the profiling data:
std::cout << "Iters: " << iters << std::endl

<< "Error: " << error << std::endl

<< prof << std::endl;

In the include section, we replace the header for the builtin backend with the one for the VexCL backend, and also
include the header with support for block values in VexCL (lines 4-5). In lines 28-29 we initialize the VexCL context,
and in lines 32-33 we enable the VexCL support for 3 x 3 static matrices in both double and single precision.

In lines 81-82 we define the solver and preconditioner backends as VexCL backends with the corresponding matrix
value types. In lines 98-99 we reference the VexCL context in the backend parameters.

Since we are using the GPU backend, we have to explicitly form the block valued matrix and transfer it to the GPU.
This is done in lines 119-120. In lines 127-128 we copy the RHS and the solution vectors to the GPU, and we solve
the system in line 131.

The output of the program is shown below:

S ./serena_vexcl_cuda Serena.mtx
1. GeForce GTX 1050 Ti

Matrix Serena.mtx: 1391349x1391349

Solver
Type: CG
Unknowns : 463783

Memory footprint: 42.46 M

(continues on next page)
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Preconditioner

Number of levels: 4

Operator complexity: 1.27

Grid complexity: 1.08

Memory footprint: 585.33 M

level unknowns nonzeros memory
0 463783 7170189 490.45 M (78.80%)
1 33052 1772434 87.58 M (19.48%)
2 1722 151034 7.00 M ( 1.66%)
3 98 5756 309.04 K ( 0.06%)

Iters: 162

Error: 9.74928e-09

[Serena (VexCL): 27.208 s] (100.00%)
[ self: 0.180 s] ( 0.66%)
[ GPU matrix: 0.604 s] ( 2.22%)
[ read: 18.699 s] ( 68.73%)
[ setup: 1.308 s] ( 4.81%)
[ solve: 6.417 s] ( 23.59%)

The setup time has increased from 0.7 seconds for the builtin backend to 1.3 seconds, and we also see the additional
0.6 seconds for transferring the matrix to the GPU. But the solution time has decreased from 26.4 to 6.4 seconds,
which is about 4 times faster.

2.4.4 Structural problem (MPI version)

In this section we look at how to use the MPI version of the AMGCL solver with the Serena system. We have already
determined in the Structural problem section that the system is best solved with the block-valued backend, and needs
to be scaled so that it has the unit diagonal. The MPI solution will be very closer to the one we have seen in the Poisson
problem (MPI version) section. The only differences are:

* The system needs to be scaled so that it has the unit diagonal. This is complicated by the fact that the matrix
product D~1/2AD~1/2 has to done in the distributed memory environment.

» The solution has to use the block-valued backend, and the partitioning needs to take this into account. Namely,
the partitioning should not split any of the 3 x 3 blocks between MPI processes.

* Even though the system is symmetric, the convergence of the CG solver in the distributed case stalls at the
relative error of about 10, Switching to the BiCGStab solver helps with the convergence.

The next listing is the MPI version of the Serena system solver (tutorial/2.Serena/serena_mpi.cpp). In the following
paragraphs we highlight the differences between this version and the code in the Poisson problem (MPI version) and
Structural problem sections.

Listing 2.10: The MPI solution of the Serena problem

#include <vector>
#include <iostream>

#include <amgcl/backend/builtin.hpp>
#include <amgcl/value_type/static_matrix.hpp>
#include <amgcl/adapter/crs_tuple.hpp>

(continues on next page)
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#include <amgcl/adapter/block_matrix.hpp>
<amgcl/mpi/distributed_matrix.hpp>
<amgcl/mpi/make_solver.hpp>

<amgcl/mpi/amg.hpp>
<amgcl/mpi/coarsening/smoothed_aggregation.hpp>
<amgcl/mpi/relaxation/spai0.hpp>
<amgcl/mpi/solver/bicgstab.hpp>

#include
#include
#include
#include
#include
#include

#include
#include

<amgcl/io/binary.hpp>
<amgcl/profiler.hpp>

#if defined (AMGCL_HAVE_PARMETIS)

# 1include <amgcl/mpi/partition/parmetis.hpp>
#elif defined (AMGCI_HAVE_SCOTCH)

# include <amgcl/mpi/partition/ptscotch.hpp>
#endif

// Block size
const int B =

int main(int argc, char xargv([]) {
// The command line should contain the matrix file name:
if (argc < 2) {
std::cerr <<
return 1;

"Usage: " << argv[0] << " <matrix.bin>" << std:

amgcl::mpi::init mpi (&argc, &argv);
amgcl: :mpi::communicator world (MPI_COMM_WORLD) ;

// The profiler:
amgcl::profiler<> prof ("Serena MPI");

prof.tic("read");

// Get the global size of the matrix:

ptrdiff t rows = amgcl::io::crs_size<ptrdiff t> (argv[l]);

// Split the matrix into approximately equal chunks of rows, and

// make sure each chunk size is divisible by the block size.

ptrdiff t chunk = (rows + world.size - 1) / world.size;
if (chunk % B) chunk += B - chunk % B;

chunk = world.rank);
row_beg + chunk);

ptrdiff t row_beg =
ptrdiff t row_end =
chunk = row_end -

std::min (rows,
std::min (rows,
row_beg;

// Read our part of the system matrix.
std::vector<ptrdiff t> ptr, col;
std: :vector<double> val;

:endl;

amgcl::io::read_crs(argv[l], rows, ptr, col, val, row_beg, row_end);
prof.toc ("read");
if (world.rank == 0) std::cout

<< "World size: " << world.size << std::endl

<< "Matrix " << argv[l] << ": " << rows << "x" << rows

<< std::endl;

(continues on next page)
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// Declare the backend and the solver types

typedef amgcl::static_matrix<double, B, B> dmat_type;
typedef amgcl::static_matrix<double, B, 1> dvec_type;
typedef amgcl::static_matrix<float, B, B> fmat_type;
typedef amgcl::backend::builtin<dmat_type> DBackend;
typedef amgcl::backend::builtin<fmat_type> FBackend;

typedef amgcl::mpi::make_solver<
amgcl: :mpi: :amg<
FBackend,
amgcl::mpi::coarsening::smoothed_aggregation<FBackend>,
amgcl: :mpi::relaxation: :spaiO<FBackend>
>I
amgcl: :mpi::solver: :bicgstab<DBackend>
> Solver;

// Solver parameters
Solver: :params prm;
prm.solver.maxiter = 200;

// We need to scale the matrix, so that it has the unit diagonal.

// Since we only have the local rows for the matrix, and we may need the
// remote diagonal values, it 1is more convenient to represent the scaling
// with the matrix-matrix product (As = D"-1/2 A D"-1/2).
prof.tic("scale");

// Find the local diagonal values,

// and form the CRS arrays for a diagonal matrix.

std: :vector<double> dia (chunk, 1.0);

std::vector<ptrdiff t> d_ptr(chunk + 1), d_col (chunk);

for (ptrdiff t i = 0, I = row_beg; i < chunk; ++i, ++I) {

d_ptr[i] = 1i;
d_col[i] = I;
for (ptrdiff t j = ptr[i], e = ptrl[i+tl]; J < e; ++3) {
if (col[3j] == I) {
dia[i] = 1 / sqgrt(vall3jl);
break;
}
}
}
d_ptr.back() = chunk;

// Create the distributed diagonal matrix:
amgcl::mpi::distributed_matrix<DBackend> D (world,
amgcl: :adapter: :block_matrix<dmat_type> (
std::tie(chunk, d_ptr, d_col, dia)));

// The scaled matrix is formed as product D = A % D,

// where A is the local chunk of the matrix

// converted to the block format on the fly.

auto A = product (D, xproduct (
amgcl::mpi::distributed_matrix<DBackend> (world,

amgcl: :adapter: :block_matrix<dmat_type> (
std::tie(chunk, ptr, col, val))),

D));

prof.toc("scale");

(continues on next page)
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// Since the RHS in this case 1is filled with ones,

// the scaled RHS is equal to dia.

// Reinterpret the pointer to dia data to get the RHS in the block format:
auto f_ptr = reinterpret_cast<dvec_typex>(dia.datal());

std: :vector<dvec_type> rhs(f_ptr, f_ptr + chunk / B);

// Partition the matrix and the RHS vector.

// If neither ParMETIS not PT-SCOTCH are not available,

// just keep the current naive partitioning.
#1f defined (AMGCL_HAVE_PARMETIS) || defined(AMGCI,_HAVE_SCOTCH)
# 1f defined (AMGCI_HAVE_PARMETIS)

typedef amgcl::mpi::partition::parmetis<DBackend> Partition;
# elif defined (AMGCI_HAVE_SCOTCH)

typedef amgcl::mpi::partition::ptscotch<DBackend> Partition;
# endif

if (world.size > 1) {
prof.tic("partition™);
Partition part;

// part (A) returns the distributed permutation matrix:
auto P = part (*A);
auto R = transpose (*P);

// Reorder the matrix:
A = product (¥R, =*product (xA, *P));

// and the RHS vector:

std: :vector<dvec_type> new_rhs (R->loc_rows());
R->move_to_backend() ;

amgcl: :backend::spmv(l, %R, rhs, 0, new_rhs);
rhs.swap (new_rhs);

// Update the number of the local rows
// (it may have changed as a result of permutation).
// Note that A->loc_rows () returns the number of blocks,
// as the matrix uses block values.
chunk = A->loc_rows () ;
prof.toc("partition™);
}
#endif

// Initialize the solver:
prof.tic("setup");

Solver solve(world, A, prm);
prof.toc("setup");

// Show the mini-report on the constructed solver:
if (world.rank == 0) std::cout << solve << std::endl;

// Solve the system with the zero initial approximation:

int iters;

double error;

std: :vector<dvec_type> x(chunk, amgcl::math::zero<dvec_type>());

prof.tic("solve");
std::tie(iters, error) = solve(*A, rhs, x);

(continues on next page)
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prof.toc("solve");

// Output the number of iterations, the relative error,
// and the profiling data:

if (world.rank == 0) std::cout
<< "Tterations: " << iters << std::endl
<< "Error: " << error << std::endl

<< prof << std::endl;

‘We make sure that the paritioning takes the block structure of the matrix into account by keeping the number of rows

in the initial naive partitioning divisible by 3 (here the constant B is equal to 3):

// Split the matrix into approximately equal chunks of rows, and
// make sure each chunk size is divisible by the block size.
ptrdiff t chunk = (rows + world.size - 1) / world.size;

if (chunk % B) chunk += B - chunk % B;

ptrdiff t row_beg = std::min(rows, chunk * world.rank);
ptrdiff t row_end = std::min(rows, row_beg + chunk);
chunk = row_end - row_beg;

We also create all the distributed matrices using the block values, so the partitioning naturally is block-aware
using the mixed precision approach, so the preconditioner backend is defined with the single precision:

. We are

// Declare the backend and the solver types

typedef amgcl::static_matrix<double, B, B> dmat_type;
typedef amgcl::static_matrix<double, B, 1> dvec_type;
typedef amgcl::static_matrix<float, B, B> fmat_type;
typedef amgcl::backend::builtin<dmat_type> DBackend;
typedef amgcl::backend::builtin<fmat_type> FBackend;

typedef amgcl: :mpi::make_solver<
amgcl: :mpi: :amg<

FBackend,

amgcl: :mpi::coarsening: :smoothed_aggregation<FBackend>,

amgcl: :mpi::relaxation: :spaiO<FBackend>

>I
amgcl: :mpi::solver: :bicgstab<DBackend>
> Solver;

The scaling is done similarly to how we apply the reordering: first, we find the diagonal of the local diagonal
block on each of the MPI processes, and then we create the distributed diagonal matrix with the inverted square
root of the system matrix diagonal. After that, the scaled matrix A, = D~'/24D~1/2 is computed using the
amgcl: :mpi: :product () function. The scaled RHS vector f, = D~/2f in principle may be found using
the amgcl: :backend: : spmv () primitive, but, since the RHS vector in this case is simply filled with ones, the

scaled RHS f, = D~1/2,

// We need to scale the matrix, so that it has the unit diagonal.

// Since we only have the local rows for the matrix, and we may need the
// remote diagonal values, it is more convenient to represent the scaling
// with the matrix-matrix product (As = D"-1/2 A D"-1/2).
prof.tic("scale");

// Find the local diagonal values,

// and form the CRS arrays for a diagonal matrix.

std: :vector<double> dia (chunk, 1.0);

(continues on

next page)
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std::vector<ptrdiff t> d_ptr(chunk + 1), d_col (chunk);
for (ptrdiff t i = 0, I = row_beg; i < chunk; ++i, ++I) {

d_ptr[i] = 1i;
d_col[i] = I;
for (ptrdiff t j = ptr(i], e = ptrl[i+tl]; J < e; ++3) {
if (col[j] == I) {
dia[i] = 1 / sqgrt(valljl);
break;
}
}
}
d_ptr.back () = chunk;

// Create the distributed diagonal matrix:
amgcl: :mpi::distributed_matrix<DBackend> D (world,
amgcl: :adapter: :block_matrix<dmat_type> (

std::tie(chunk, d_ptr, d_col, dia)));

// The scaled matrix is formed as product D = A % D,

// where A is the local chunk of the matrix

// converted to the block format on the fly.

auto A = product (D, =*product (
amgcl::mpi::distributed_matrix<DBackend> (world,

amgcl: :adapter: :block_matrix<dmat_type> (
std::tie(chunk, ptr, col, wval))),

D));

prof.toc("scale");

// Since the RHS in this case is filled with ones,

// the scaled RHS is equal to dia.

// Reinterpret the pointer to dia data to get the RHS in the block format:
auto f_ptr = reinterpret_cast<dvec_typex>(dia.datal());
std::vector<dvec_type> rhs(f_ptr, f_ptr + chunk / B);

Here is the output from the compiled program:

$ export OMP_NUM_THREADS=1

$ mpirun -np 4 ./serena_mpi Serena.bin
World size: 4

Matrix Serena.bin: 1391349x1391349
Partitioning[ParMETIS] 4 —-> 4

Type: BiCGStab

Unknowns: 118533

Memory footprint: 18.99 M

Number of levels: 4

Operator complexity: 1.27

Grid complexity: 1.07

level unknowns nonzeros
0 463783 7170189 (79.04%) [4]
1 32896 1752778 (19.32%) [4]
2 1698 144308 ( 1.59%) [4]
3 95 4833 ( 0.05%) [4]

Iterations: 80

(continues on next page)
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Error: 9.34355e-09

[Serena MPI: 24.840 s] (100.00%)
[ partition: 1.159 s] ( 4.67%)
[ read: 0.265 s] ( 1.07%)
[ scale: 0.583 s] ( 2.35%)
[ setup: 0.811 s] ( 3.26%)
[ solve: 22.017 s] ( 88.64%)

The version that uses the VexCL backend should be familiar at this point. Below is the source code (tuto-

rial/2.Serena/serena_mpi_vexcl.cpp) where the differences with the builtin backend version are highlighted:

Listing 2.11: The MPI solution of the Serena problem using the VexCL
backend

#include <vector>
#include <iostream>

#include <amgcl/backend/vexcl.hpp>

#include <amgcl/backend/vexcl_static _matrix.hpp>
#include <amgcl/value_type/static_matrix.hpp>
#include <amgcl/adapter/crs_tuple.hpp>

#include <amgcl/adapter/block_matrix.hpp>

#include <amgcl/mpi/distributed_matrix.hpp>

#include <amgcl/mpi/make_solver.hpp>

#include <amgcl/mpi/amg.hpp>

#include <amgcl/mpi/coarsening/smoothed_aggregation.hpp>
#include <amgcl/mpi/relaxation/spai0.hpp>

#include <amgcl/mpi/solver/bicgstab.hpp>

#include <amgcl/io/binary.hpp>
#include <amgcl/profiler.hpp>

#if defined (AMGCI,_HAVE_PARMETIS)

# include <amgcl/mpi/partition/parmetis.hpp>
#elif defined (AMGCIL_HAVE_SCOTCH)

# 1include <amgcl/mpi/partition/ptscotch.hpp>
#endif

// Block size
const int B = 3;

int main (int argc, char xargv[]) {
// The command line should contain the matrix file name:
if (argc < 2) |
std::cerr << "Usage: " << argv[0] << " <matrix.bin>" << std::endl;
return 1;

amgcl::mpi::init mpi (&argc, &argv);
amgcl: :mpi::communicator world (MPI_COMM_WORLD) ;

// Create VexCL context. Use vex::Filter::Exclusive so that different MPI
// processes get different GPUs. Each process gets a single GPU:

(continues on next page)
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vex::Context ctx(vex::Filter::Exclusive (vex::Filter::Env &&_
—vex::Filter::Count (1)));

for(int i = 0; i < world.size; ++i) {
// unclutter the output:
if (i == world.rank)
std::cout << world.rank << ": " << ctx.queue(0) << std::endl;

MPI_BRarrier (world) ;

// Enable support for block-valued matrices in the VexCL kernels:

vex: :scoped_program_header hl (ctx, amgcl::backend::vexcl_static_matrix_declaration
—<double,B>());

vex: :scoped_program_header h2 (ctx, amgcl::backend::vexcl_static_matrix_declaration
—<float,B>());

// The profiler:
amgcl::profiler<> prof ("Serena MPI (VexCL)");

prof.tic("read");
// Get the global size of the matrix:
ptrdiff t rows = amgcl::io::crs_size<ptrdiff t> (argv[l]);

// Split the matrix into approximately equal chunks of rows, and
// make sure each chunk size is divisible by the block size.
ptrdiff t chunk = (rows + world.size - 1) / world.size;

if (chunk % B) chunk += B - chunk % B;

ptrdiff t row_beg = std::min(rows, chunk * world.rank);
ptrdiff t row_end = std::min(rows, row_beg + chunk);
chunk = row_end - row_beg;

// Read our part of the system matrix.

std::vector<ptrdiff t> ptr, col;

std: :vector<double> val;

amgcl::io::read_crs(argv[l], rows, ptr, col, val, row_beg, row_end);
prof.toc("read");

if (world.rank == 0) std::cout
<< "World size: " << world.size << std::endl
<< "Matrix " << argv[1l] << ": " << rows << "x" << rows << std::endl;

// Declare the backend and the solver types

typedef amgcl::static_matrix<double, B, B> dmat_type;
typedef amgcl::static_matrix<double, B, 1> dvec_type;
typedef amgcl::static_matrix<float, B, B> fmat_type;
typedef amgcl::backend::vexcl<dmat_type> DBackend;
typedef amgcl::backend::vexcl<fmat_type> FBackend;

typedef amgcl: :mpi::make_solver<

amgcl: :mpi: :amg<
FBackend,
amgcl: :mpi: :coarsening: :smoothed_aggregation<FBackend>,
amgcl: :mpi::relaxation: :spaiO<FBackend>
>I

amgcl: :mpi::solver: :bicgstab<DBackend>

> Solver;

(continues on next page)
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// Solver parameters
Solver: :params prm;
prm.solver.maxiter = 200;

// Set the VexCL context in the backend parameters
DBackend: :params bprm;
bprm.q = ctx;

// We need to scale the matrix, so that it has the unit diagonal.

// Since we only have the local rows for the matrix, and we may need the
// remote diagonal values, it 1s more convenient to represent the scaling
// with the matrix-matrix product (As = D"-1/2 A D"-1/2).
prof.tic("scale");

// Find the local diagonal values,

// and form the CRS arrays for a diagonal matrix.

std: :vector<double> dia (chunk, 1.0);

std::vector<ptrdiff t> d_ptr(chunk + 1), d_col (chunk);

for (ptrdiff t i = 0, I = row_beg; i < chunk; ++i, ++I) {

d_ptr[i] = 1i;
d_col[i] = I;
for (ptrdiff t j = ptr[i], e = ptrl[i+tl]; J < e; ++3) {
if (col[j] == I) {
dia[i] = 1 / sqgrt(vall[3jl);
break;
}
}
}
d_ptr.back () = chunk;

// Create the distributed diagonal matrix:
amgcl::mpi::distributed_matrix<DBackend> D (world,
amgcl: :adapter: :block_matrix<dmat_type> (
std::tie(chunk, d_ptr, d_col, dia)));

// The scaled matrix is formed as product D x A x D,
// where A is the local chunk of the matrix
// converted to the block format on the fly.
auto A = product (D, xproduct (
amgcl: :mpi::distributed_matrix<DBackend> (world,
amgcl: :adapter: :block_matrix<dmat_type> (
std::tie(chunk, ptr, col, wval))),
D));
prof.toc("scale");

// Since the RHS in this case 1is filled with ones,

// the scaled RHS is equal to dia.

// Reinterpret the pointer to dia data to get the RHS in the block format:
auto f_ptr = reinterpret_cast<dvec_typex>(dia.datal());
vex::vector<dvec_type> rhs(ctx, chunk / B, f_ptr);

// Partition the matrix and the RHS vector.
// If neither ParMETIS not PT-SCOTCH are not available,
// just keep the current naive partitioning.

#1if defined (AMGCL_HAVE_PARMETIS) || defined(AMGCL_HAVE_SCOTCH)

if defined (AMGCL_HAVE_PARMETIS)
typedef amgcl::mpi::partition::parmetis<DBackend> Partition;
elif defined (AMGCL _HAVE_SCOTCH)

(continues on next page)
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#

typedef amgcl::mpi::partition::ptscotch<DBackend> Partition;
endif

if (world.size > 1) {
prof.tic("partition");
Partition part;

// part (A) returns the distributed permutation matrix:
auto P = part (*A);
auto R = transpose (*P);

// Reorder the matrix:
A = product (#R, *product (xA, *P));

// and the RHS vector:

vex::vector<dvec_type> new_rhs(ctx, R->loc_rows());
R->move_to_backend (bprm) ;

amgcl: :backend: :spmv(l, *R, rhs, 0, new_rhs);
rhs.swap (new_rhs) ;

// Update the number of the local rows

// (it may have changed as a result of permutation).

// Note that A->loc_rows () returns the number of blocks,
// as the matrix uses block values.

chunk = A->loc_rows () ;

prof.toc ("partition");

}

#endif

// Initialize the solver:
prof.tic("setup");

Solver solve (world, A, prm, bprm);
prof.toc("setup");

// Show the mini-report on the constructed solver:
if (world.rank == 0) std::cout << solve << std::endl;

// Solve the system with the zero initial approximation:
int iters;

double error;

vex::vector<dvec_type> x(ctx, chunk);

x = amgcl::math::zero<dvec_type>();

prof.tic("solve");
std::tie(iters, error) = solve(*A, rhs, x);
prof.toc("solve);

// Output the number of iterations, the relative error,
// and the profiling data:

if (world.rank == 0) std::cout
<< "Iterations: " << iters << std::endl
<< "Error: " << error << std::endl

<< prof << std::endl;

Here is the output of the MPI version with the VexCL backend:
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$ export OMP_NUM_THREADS=1

$ mpirun -np 2 ./serena_mpi_vexcl_cl Serena.bin
0: GeForce GTX 960 (NVIDIA CUDA)

1: GeForce GTX 1050 Ti (NVIDIA CUDA)

World size: 2

Matrix Serena.bin: 1391349x1391349
Partitioning[ParMETIS] 2 -> 2

Type: BiCGStab

Unknowns: 231112

Memory footprint: 37.03 M

Number of levels: 4

Operator complexity: 1.27

Grid complexity: 1.07

level unknowns nonzeros
0 463783 7170189 (79.01%) [2]
1 32887 1754795 (19.34%) [2]
2 1708 146064 ( 1.61%) [2]
3 85 4059 ( 0.04%) [2]

Iterations: 83

Error: 9.80582e-09

[Serena MPI (VexCL) : 10.943 s] (100.00%)

[ partition: 1.357 s] ( 12.40%)

[ read: 0.370 s] ( 3.38%)

[ scale: 0.729 s] ( 6.66%)

[ setup: 1.966 s] ( 17.97%)

[ solve: 6.512 s] ( 59.51%)

2.4.5 Fully coupled poroelastic problem

This system may be downloaded from the CoupCons3D page (use the Matrix Market download option). According
to the description, the system has been obtained through a Finite Element transient simulation of a fully coupled
consolidation problem on a three-dimensional domain using Finite Differences for the discretization in time. More
details available in [FePG09] and [FeJP12]. The RHS vector for the CoupCons3D problem is not provided, and we
use the RHS vector filled with ones.

The system matrix is non-symmetric and has 416,800 rows and 17,277,420 nonzero values, which corresponds to an
average of 41 nonzeros per row. The matrix portrait is shown on the figure below.

Once again, lets start our experiments with the examples/solver utility after converting the matrix into binary format
with examples/mm?2bin. The default options do not seem to work for this problem:

$ solver -B —-A CoupCons3D.bin

Solver
Type: BiCGStab
Unknowns: 416800

Memory footprint: 22.26 M

Preconditioner

Number of levels: 4

(continues on next page)
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Operator complexity: 1.11

Grid complexity: 1.09

Memory footprint: 447.17 M

level unknowns nonzeros memory
0 416800 22322336 404.08 M (90.13%)
1 32140 2214998 38.49 M ( 8.94%)
2 3762 206242 3.58 M ( 0.83%)
3 522 22424 1.03 M ( 0.09%)

Iterations: 100

Error: 0.705403

[Profile: 16.981 s] (100.00%)
[ reading: 0.187 s] ( 1.10%)
[ setup: 0.584 s] ( 3.44%)
[ solve: 16.209 s] ( 95.45%)

What seems to works is using the higher quality relaxation (incomplete LU decomposition with zero fill-in):

$ solver -B —A CoupCons3D.bin precond.relax.type=ilul

Solver
Type: BiCGStab
Unknowns: 416800

Memory footprint: 22.26 M

Preconditioner

Number of levels: 4

Operator complexity: 1.11

Grid complexity: 1.09

Memory footprint: 832.12 M

level unknowns nonzeros memory
0 416800 22322336 751.33 M (90.13%)
1 32140 2214998 72.91 M ( 8.94%)
2 3762 206242 6.85 M ( 0.83%)
3 522 22424 1.03 M ( 0.09%)

Iterations: 47

Error: 4.8263e-09

[Profile: 13.664 s] (100.00%)
[ reading: 0.188 s] ( 1.38%)
[ setup: 1.708 s] ( 12.50%)
[ solve: 11.765 s] ( 86.11%)

From the matrix diagonal plot in CoupCons3D matrix portrait it is clear that the system, as in Structural problem case,
has high contrast coefficients. Scaling the matrix so it has the unit diagonal should help here as well:

$ solver -B —-A CoupCons3D.bin precond.relax.type=ilulQ -s
Solver

(continues on next page)
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Type: BiCGStab
Unknowns: 416800
Memory footprint: 22.26 M

Preconditioner

Number of levels: 3

Operator complexity: 1.10

Grid complexity: 1.08

Memory footprint: 834.51 M

level unknowns nonzeros memory
0 416800 22322336 751.33 M (90.54%)
1 32140 2214998 73.06 M ( 8.98%)
2 2221 116339 10.12 M ( 0.47%)

Iterations: 11

Error: 9.79966e-09

[Profile: 4.826 s] (100.00%)
[ self: 0.064 s] ( 1.34%)
[ reading: 0.188 s] ( 3.90%)
[ setup: 1.885 s] ( 39.06%)
[ solve: 2.689 s] ( 55.71%)

Another thing to note from the CoupCons3D matrix portrait is that the system matrix has block structure, with two
diagonal subblocks. The upper left subblock contains 333,440 unknowns and seems to have a block structure of its own
with small 4 x 4 blocks, and the lower right subblock is a simple diagonal matrix with 83,360 unknowns. Fortunately,
83,360 is divisible by 4, so we should be able to treat the whole system as if it had 4 x 4 block structure:

$ solver -B —-A CoupCons3D.bin precond.relax.type=ilu0 -s -b4

Solver
Type: BiCGStab
Unknowns : 104200

Memory footprint: 22.26 M

Preconditioner

Number of levels: 3

Operator complexity: 1.18

Grid complexity: 1.11

Memory footprint: 525.68 M

level unknowns nonzeros memory
0 104200 1395146 445.04 M (84.98%)
1 10365 235821 70.07 M (14.36%)
2 600 10792 10.57 M ( 0.66%)

Iterations: 4

Error: 2.90461e-09
[Profile: 1.356 s] (100.00%)
[ self: 0.063 s] ( 4.62%)

(continues on next page)
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[ reading: 0.188 s] ( 13.84%)
[ setup: 0.478 s] ( 35.23%)
[ solve: 0.628 s] ( 46.30%)

This is much better! Looks like switching to the block-valued backend not only improved the setup and solution
performance, but also increased the convergence speed. This version is about 12 times faster than the first working
approach. Lets see how this translates to the code, with the added bonus of using the mixed precision solution. The
source below shows the complete solution and is also available in tutorial/3.CoupCons3D/coupcons3d.cpp. The only
differences (highlighted in the listing) with the solution from Structural problem are the choices of the iterative solver
and the smoother, and the block size.

Listing 2.12: The source code for the solution of the CoupCons3D prob-
lem.

#include <vector>
#include <iostream>

#include <amgcl/backend/builtin.hpp>

#include <amgcl/adapter/crs_tuple.hpp>

#include <amgcl/make_solver.hpp>

#include <amgcl/amg.hpp>

#include <amgcl/coarsening/smoothed _aggregation.hpp>
#include <amgcl/relaxation/ilu0.hpp>

#include <amgcl/solver/bicgstab.hpp>

#include <amgcl/value_ type/static_matrix.hpp>
#include <amgcl/adapter/block_matrix.hpp>

#include <amgcl/io/mm.hpp>
#include <amgcl/profiler.hpp>

int main(int argc, char xargv([]) {
// The command line should contain the matrix file name:
if (argc < 2) {
std::cerr << "Usage: " << argv[0] << " <matrix.mtx>" << std::endl;
return 1;

// The profiler:
amgcl: :profiler<> prof ("Serena");

// Read the system matrix:
ptrdiff t rows, cols;
std::vector<ptrdiff t> ptr, col;
std: :vector<double> val;

prof.tic("read");

std::tie(rows, cols) = amgcl::io::mm_reader (argv[l]) (ptr, col, val);

std::cout << "Matrix " << argv[l] << ": " << rows << "x" << cols << std::endl;
prof.toc("read");

// The RHS is filled with ones:
std::vector<double> f (rows, 1.0);

// Scale the matrix so that it has the unit diagonal.
// First, find the diagonal values:
std: :vector<double> D (rows, 1.0);

(continues on next page)
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for (ptrdiff t i = 0; i < rows; ++i) {
for (ptrdiff t j = ptr[i], e = ptr[i+l]; J < e; ++3j) {

if (collj] == 1) {
D[i] = 1 / sqgrt(vall3jl);
break;

// Then, apply the scaling in-place:
for (ptrdiff t i = 0; 1 < rows; ++i) {
for (ptrdiff t j = ptr[i], e = ptr[i+l]; J < e; ++3J) {
val[]j] = D[i] = D[col[]j]];
}
£[i] »= D[i];

// We use the tuple of CRS arrays to represent the system matrix.

// Note that std::tie creates a tuple of references, so no data is actually
// copied here:

auto A = std::tie(rows, ptr, col, wval);

// Compose the solver type
typedef amgcl::static_matrix<double, 4, 4> dmat_type; // matrix value type 1in

—double precision

typedef amgcl::static_matrix<double, 4, 1> dvec_type; // the corresponding vector,,

—value type

typedef amgcl::static_matrix<float, 4, 4> smat_type; // matrix value type in

—single precision

typedef amgcl::backend::builtin<dmat_type> SBackend; // the solver backend
typedef amgcl::backend::builtin<smat_type> PBackend; // the preconditioner backend

typedef amgcl::make_solver<

amgcl: :amg<
PBRackend,
amgcl::coarsening: :smoothed_aggregation,
amgcl: :relaxation::11u0
>l

amgcl::solver: :bicgstab<SBackend>

> Solver;

// Initialize the solver with the system matrix.

// Use the block_matrix adapter to convert the matrix into
// the block format on the fly:

prof.tic("setup");

auto Ab = amgcl::adapter::block_matrix<dmat_type> (A);
Solver solve (Ab);

prof.toc("setup");

// Show the mini-report on the constructed solver:
std::cout << solve << std::endl;

// Solve the system with the zero initial approximation:
int iters;

double error;

std: :vector<double> x(rows, 0.0);

(continues on next page)
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// Reinterpret both the RHS and the solution vectors as block-valued:

auto f_ptr = reinterpret_cast<dvec_typex> (f.data());
auto x_ptr = reinterpret_cast<dvec_typex> (x.datal());
auto F = amgcl::make_iterator_range(f_ptr, f_ptr + rows / 4);
auto X = amgcl::make_iterator_range (x_ptr, x_ptr + rows / 4);

prof.tic("solve");
std::tie(iters, error) = solve(Ab, F, X);
prof.toc("solve");

// Output the number of iterations, the relative error,
// and the profiling data:
std::cout << "Iters: " << iters << std::endl

<< "Error: " << error << std::endl

<< prof << std::endl;

The output from the compiled program is given below. The main improvement here is the reduced memory footprint
of the single-precision preconditioner: it takes 279.83M as opposed to 525.68M in the full precision case. The setup
and the solution are slightly faster as well:

$ ./coupcons3d CoupCons3D.mtx
Matrix CoupCons3D.mtx: 416800x416800

Solver
Type: BiCGStab
Unknowns: 104200

Memory footprint: 22.26 M

Preconditioner

Number of levels: 3

Operator complexity: 1.18

Grid complexity: 1.11

Memory footprint: 279.83 M

level unknowns nonzeros memory
0 104200 1395146 237.27 M (84.98%)
1 10365 235821 37.27 M (14.36%)
2 600 10792 5.29 M ( 0.66%)

Iters: 4

Error: 2.90462e-09

[Serena: 14.415 s] (100.00%)
[ self: 0.057 s] ( 0.39%)
[ read: 13.426 s] ( 93.14%)
[ setup: 0.345 s] ( 2.39%)
[ solve: 0.588 s] ( 4.08%)

We can also use the VexCL backend to accelerate the solution using the GPU. Again, this is very close to the approach
described in Structural problem (see tutorial/3.CoupCons3D/coupcons3d_vexcl.cpp). However, the ILU(0) relaxation
is an intrinsically serial algorithm, and is not effective with the fine grained parallelism of the GPU. Instead, the
solutions of the lower and upper parts of the incomplete LU decomposition in AMGCL are approximated with several
Jacobi iterations [ChPal5]. This makes the relaxation relatively more expensive than on the CPU, and the speedup
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from using the GPU backend is not as prominent:

$ ./coupcons3d_vexcl_cuda CoupCons3D.mtx
1. GeForce GTX 1050 Ti

Matrix CoupCons3D.mtx: 416800x416800

Solver
Type: BiCGStab
Unknowns: 104200

Memory footprint: 22.26 M

Preconditioner

Number of levels: 3

Operator complexity: 1.18

Grid complexity: 1.11

Memory footprint: 281.49 M

level unknowns nonzeros memory
0 104200 1395146 238.79 M (84.98%)
1 10365 235821 37.40 M (14.36%)
2 600 10792 5.31 M ( 0.66%)

Iters: 5

Error: 6.30647e-09

[Serena: 14.432 s] (100.00%)
[ self: 0.060 s] ( 0.41%)
[ GPU matrix: 0.213 s] ( 1.47%)
[ read: 13.381 s] ( 92.72%)
[ setup: 0.549 s] ( 3.81%)
[ solve: 0.229 s] ( 1.59%)

Note: We used the fact that the matrix size is divisible by 4 in order to use the block-valued backend. If it was
not the case, we could use the Schur pressure correction preconditioner to split the matrix into two large subsys-
tems, and use the block-valued solver for the upper left subsystem. See an example of such a solution in tuto-
rial/3.CoupCons3D/coupcons3d_spc.cpp. The performance is worse than what we were able to achive above, but
still is better than the first working version:

$ ./coupcons3d_spc CoupCons3D.mtx 333440
Matrix CoupCons3D.mtx: 416800x416800

Solver
Type: BiCGStab
Unknowns: 416800

Memory footprint: 22.26 M

Preconditioner

Schur complement (two-stage preconditioner)
Unknowns: 416800 (83360)
Nonzeros: 22322336
Memory: 549.90 M

[ U]

(continues on next page)
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Solver
Type: PreOnly
Unknowns: 83360

Memory footprint: 0.00 B

memory

o o° od° oe

Preconditioner
Number of levels: 4
Operator complexity: 1.21
Grid complexity: 1.23
Memory footprint: 206.09 M
level unknowns nonzeros
0 83360 1082798
1 14473 184035
2 4105 39433
3 605 5761
[ P ]
Solver
Type: PreOnly
Unknowns: 83360
Memory footprint: 0.00 B
Preconditioner
Relaxation as preconditioner
Unknowns: 83360
Nonzeros: 2332064
Memory: 27.64 M
Iters: 7
Error: 5.0602e-09
[CoupCons3D: 14.427 s] (100.00%)
[ read: 13.010 s] ( 90.18%)
[ setup: 0.336 s] ( 2.33%)
[ solve: 1.079 s] ( 7.48%)

2.4.6 Stokes-like problem

In this section we consider a saddle point system which was obtained by discretization of the steady incompress-
ible Stokes flow equations in a unit cube with a locally divergence-free weak Galerkin finite element method. The
UCube(4) system studied here may be downloaded from the the dataset accompanying the paper [DeMW20]. We will
use the UCube(4) system from the dataset. The system matrix is symmetric and has 554,496 rows and 14,292,884
nonzero values, which corresponds to an average of 26 nonzero entries per row. The matrix sparsity portrait is shown

on the figure below.
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As with any Stokes-like problem, the system has a general block-wise structure:

A BF] [x, _|bu

Pl
In this case, the upper left subblock A corresponds the the flow unknowns, and itself has block-wise structure with
small 3 x 3 blocks. The lower right subblock C corresponds to the pressure unknowns. There is a lot of research
dedicated to the efficient solution of such systems, see [BeGLO5] for an extensive overview. The direct approach of
using a monolithic preconditioner usually does not work very well, but we may try it to have a reference point. The

AMG preconditioning does not yield a converging solution, but a single level ILU(0) relaxation seems to work with a
CG iterative solver:

S solver —-B -A ucube_4_A.bin —-f ucube_4_b.bin \
solver.type=cg solver.maxiter=500 \
precond.class=relaxation precond.type=ilu0

Solver
Type: CG
Unknowns: 554496

Memory footprint: 16.92 M

Preconditioner

Relaxation as preconditioner
Unknowns: 554496
Nonzeros: 14292884
Memory: 453.23 M

Iterations: 270

Error: 6.84763e-09

[Profile: 9.300 s] (100.00%)
[ reading: 0.133 s] ( 1.43%)
[ setup: 0.561 s] ( 6.03%)
[ solve: 8.599 s] ( 92.46%)

A preconditioner that takes the structure of the system into account should be a better choice performance-wise.
AMGCL provides an implementation of the Schur complement pressure correction preconditioner. The precondition-
ing step consists of solving two linear systems:

Sx, =b, — ByA 'b,,

2.2)
Ax, =b, — Bl'b,,.

Here S is the Schur complement S = C' — By A~ BT, Note that forming the Schur complement matrix explicitly is
prohibitively expensive, and the following approximation is used to create the preconditioner for the first equation in
2.2):

S = C — diag (B, diag(4) ' BY) .

There is no need to solve the equations (2.2) exactly. It is enough to perform a single application of the corresponding
preconditioner as an approximation to S~! and A~'. This means that the overall preconditioner is linear, and we may
use a non-flexible iterative solver with it. The approximation matrix S has a simple band diagonal structure, and a
diagonal SPAI(0) preconditioner should have reasonable performance.

Similar to the examples/solver, the examples/schur_pressure_correction utility allows to play with the Schur pressure
correction preconditioner options before trying to write any code. We found that using the non-smoothed aggregation
with ILU(0) smoothing on each level for the flow subsystem (usolver) and single-level SPAI(0) relaxation for the
Schur complement subsystem (psolver) works best. We also disable lumping of the diagonal of the A matrix in
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the Schur complement approximation with the precond. simplec_dia=false option, and enable block-valued
backend for the flow susbsystem with the ——ub 3 option. The -m '>456192" option sets the pressure mask
pattern. It tells the solver that all unknowns starting with the 456192-th belong to the pressure subsystem:

$ schur_pressure_correction -B —-A ucube_4_A.bin —-f ucube_4_b.bin -m '>456192"' \
-p solver.type=cg solver.maxiter=200 \

precond.simplec_dia=false \
precond.usolver.solver.type=preonly \
precond.usolver.precond.coarsening.type=aggregation \
precond.usolver.precond.relax.type=1i1lul \
precond.psolver.solver.type=preonly \
precond.psolver.precond.class=relaxation \

-—ub 3
Solver
Type: CG
Unknowns: 554496

Memory footprint: 16.92 M

Preconditioner

Schur complement (two-stage preconditioner)
Unknowns: 554496 (98304)
Nonzeros: 14292884
Memory: 587.45 M

[ U]

Solver

Type: PreOnly
Unknowns : 152064

Memory footprint: 0.00 B

Preconditioner

Number of levels: 4

Operator complexity: 1.25

Grid complexity: 1.14

Memory footprint: 233.07 M

level unknowns nonzeros memory
0 152064 982416 188.13 M (80.25%)
1 18654 197826 35.07 M (16.16%)
2 2619 35991 6.18 M ( 2.94%)
3 591 7953 3.69 M ( 0.65%)

[ P ]

Solver

Type: PreOnly

Unknowns: 98304

Memory footprint: 0.00 B

Preconditioner

Relaxation as preconditioner

(continues on next page)
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Unknowns: 98304
Nonzeros: 274472
Memory: 5.69 M

Iterations: 35

Error: 8.57921e-09

[Profile: 3.872 s] (100.00%)
[ reading: 0.131 s] ( 3.38%)
[ schur_complement: 3.741 s] ( 96.62%)
[ self: 0.031 s] ( 0.79%)
[ setup: 0.301 s]1 ( 7.78%)
[ solve: 3.409 s] ( 88.05%)

Lets see how this translates to the code. Below is the complete listing of the solver (tutorial/4.Stokes/stokes_ucube.cpp)

which uses the mixed precision approach.

Listing 2.13: The source code for the solution of the UCube(4) problem.

#include <iostream>
#include <string>

#include <amgcl/backend/builtin.hpp>

#include <amgcl/adapter/crs_tuple.hpp>

#include <amgcl/value_type/static_matrix.hpp>
#include <amgcl/adapter/block _matrix.hpp>
#include <amgcl/preconditioner/schur_pressure_correction.hpp>
#include <amgcl/make_solver.hpp>

#include <amgcl/make_block_solver.hpp>

#include <amgcl/amg.hpp>

#include <amgcl/solver/cg.hpp>

#include <amgcl/solver/preonly.hpp>

#include <amgcl/coarsening/aggregation.hpp>
#include <amgcl/relaxation/ilu0.hpp>

#include <amgcl/relaxation/spai0.hpp>

#include <amgcl/relaxation/as_preconditioner.hpp>

#include <amgcl/io/binary.hpp>
#include <amgcl/profiler.hpp>

int main(int argc, char xargv([]) {
// The command line should contain the matrix and the RHS file names,
// and the number of unknowns in the flow subsytem:
if (argc < 4) |
std::cerr << "Usage: " << argv[0] << " <matrix.bin> <rhs.bin> <nu>" <<
—std::endl;
return 1;

// The profiler:
amgcl: :profiler<> prof ("UCubed");

// Read the system matrix:
ptrdiff t rows, cols;

(continues on next page)
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std::vector<ptrdiff t> ptr, col;
std: :vector<double> val, rhs;

prof.tic("read");

amgcl::io::read_crs(argv[l], rows, ptr, col, wval);
amgcl::io::read_dense(argv([2], rows, cols, rhs);

std::cout << "Matrix " << argv[l] << ": " << rows << "x" << rows << std::endl;
std::cout << "RHS " << argv[2] << ": " << rows << "x" << cols << std::endl;
prof.toc("read");

// The number of unknowns in the U subsystem
ptrdiff t nu = std::stoi(argv[3]);

// We use the tuple of CRS arrays to represent the system matrix.

// Note that std::tie creates a tuple of references, so no data is actually
// copied here:

auto A = std::tie(rows, ptr, col, wval);

// Compose the solver type
typedef amgcl::backend::builtin<double> SBackend; // the outer iterative solver,,

—backend

typedef amgcl::backend::builtin<float> PBackend; // the PSolver backend
typedef amgcl: :backend::builtin<
amgcl::static_matrix<float, 3,3>> UBackend; // the USolver backend

typedef amgcl::make_solver<
amgcl: :preconditioner: :schur_pressure_correction<
amgcl: :make_block_solver<
amgcl: :amg<
UBackend,
amgcl::coarsening: :aggregation,
amgcl::relaxation::11u0
>I
amgcl::solver: :preonly<UBackend>
>I
amgcl: :make_solver<
amgcl::relaxation::as_preconditioner<

PBackend,
amgcl::relaxation: :spai0
>

4
amgcl::solver: :preonly<PBackend>
>

>I

amgcl: :solver: :cg<SBackend>

> Solver;

// Solver parameters

Solver: :params prm;

prm.precond.simplec_dia = false;

prm.precond.pmask.resize (rows) ;

for (ptrdiff t i = 0; i < rows; ++i) prm.precond.pmask[i] = (i >= nu);

// Initialize the solver with the system matrix.
prof.tic("setup");

Solver solve (A, prm);

prof.toc("setup");

(continues on next page)
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// Show the mini-report on the constructed solver:
std::cout << solve << std::endl;

// Solve the system with the zero initial approximation:
int iters;

double error;

std: :vector<double> x (rows, 0.0);

prof.tic("solve");

std::tie(iters, error) = solve(A, rhs, x);
prof.toc("solve");

// Output the number of iterations, the relative error,
// and the profiling data:
std::cout << "Iters: " << iters << std::endl

<< "Error: " << error << std::endl

<< prof << std::endl;

Schur pressure correction is composite preconditioner. Its definition includes definition of two nested iterative solvers,
one for the “flow” (U) subsystem, and the other for the “pressure” (P) subsystem. In lines 55-58 we define the
backends used in the outer iterative solver, and in the two nested solvers. Note that both backends for nested solvers
use single precision values, and the flow subsystem backend has block value type:

typedef amgcl::backend::builtin<double> SBackend; // the outer iterative solver,
—backend
typedef amgcl::backend::builtin<float> PBackend; // the PSolver backend
typedef amgcl::backend::builtin<
amgcl::static_matrix<float, 3,3>> UBackend; // the USolver backend

In lines 60-79 we define the solver type. The flow solver is defined in lines 62-69, and the pressure solver — in lines
70-77. Both are using amgc1: :solver: :preonly as “iterative” solver, which in fact only applies the specified
preconditioner once. The flow solver is defined with amgc1: :make block_solver, which automatically con-
verts its input matrix A to the block format during the setup and reinterprets the scalar RHS and solution vectors as
having block values during solution:

typedef amgcl::make_solver<
amgcl: :preconditioner: :schur_pressure_correction<
amgcl: ::make_block_solver<
amgcl: :amg<
UBackend,
amgcl::coarsening: :aggregation,
amgcl::relaxation: :11u0
>I
amgcl::solver: :preonly<UBackend>
>I
amgcl: :make_solver<
amgcl::relaxation::as_preconditioner<
PBackend,
amgcl::relaxation: :spai0
>!
amgcl::solver: :preonly<PBackend>
>
>I

amgcl::solver: :cg<SBackend>
> Solver;

In the solver parameters we disable lumping of the matrix A diagonal for the Schur complement approimation (line
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83) and fill the pressure mask to indicate which unknowns correspond to the pressure subsystem (lines 84—85):

// Solver parameters

Solver: :params prm;

prm.precond.simplec_dia = false;
prm.precond.pmask.resize (rows);

for (ptrdiff t i = 0; 1 < rows; ++1i) prm.precond.pmask[i] =

>= nu) ;

Here is the output from the compiled program. The preconditioner uses 398M or memory, as opposed to 587M in the
case of the full precision preconditioner used in the examples/schur_pressure_correction, and both the setup and the

solution are about 50% faster due to the use of the mixed precision approach:

S ./stokes_ucube ucube_4 A.bin ucube_4 b.bin 456192
Matrix ucube_4_A.bin: 554496x554496
RHS ucube_4_Db.bin: 554496x1

Solver
Type: CG
Unknowns: 554496

Memory footprint: 16.92 M

Preconditioner

Schur complement (two-stage preconditioner)
Unknowns: 554496 (98304)
Nonzeros: 14292884
Memory: 398.39 M

[ U]

Solver

Type: PreOnly
Unknowns: 152064

Memory footprint: 0.00 B

Preconditioner

Number of levels: 4

Operator complexity: 1.25

Grid complexity: 1.14

Memory footprint: 130.49 M

level unknowns nonzeros memory
0 152064 982416 105.64 M (80.25%)
1 18654 197826 19.56 M (16.16%)
2 2619 35991 3.44 M ( 2.94%)
3 591 7953 1.85 M ( 0.65%)

[ P ]

Solver

Type: PreOnly

Unknowns: 98304

Memory footprint: 0.00 B

Preconditioner

(continues on next page)
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Relaxation as preconditioner
Unknowns: 98304
Nonzeros: 274472
Memory: 4.27 M

Iters: 35
Error: 8.57996e-09

[UCubed: 2.502 s] (100.00%)
[ read: 0.129 s] ( 5.16%)
[ setup: 0.240 s] ( 9.57%)
[ solve: 2.132 s] ( 85.19%)

Converting the solver to the VexCL backend in order to accelerate the solution with GPGPU is straightforward. Below
is the complete source code of the solver (tutorial/4.Stokes/stokes_ucube_vexcl.cpp), with the differences between the
OpenMP and the VexCL versions highlighted. Note that the GPU version of the ILU(0) smoother approximates the
lower and upper triangular solves in the incomplete LU decomposition with a couple of Jacobi iterations [ChPal5].
Here we set the number of iterations to 4 (line 94).

Listing 2.14: The source code for the solution of the UCube(4) problem
with the VexCL backend.

#include <iostream>
#include <string>

#include <amgcl/backend/vexcl.hpp>

#include <amgcl/backend/vexcl_static_matrix.hpp>
#include <amgcl/adapter/crs_tuple.hpp>

#include <amgcl/value_type/static_matrix.hpp>
#include <amgcl/adapter/block_matrix.hpp>
#include <amgcl/preconditioner/schur_pressure_correction.hpp>
#include <amgcl/make_solver.hpp>

#include <amgcl/make_block_solver.hpp>

#include <amgcl/amg.hpp>

#include <amgcl/solver/cg.hpp>

#include <amgcl/solver/preonly.hpp>

#include <amgcl/coarsening/aggregation.hpp>
#include <amgcl/relaxation/ilu0.hpp>

#include <amgcl/relaxation/spai0.hpp>

#include <amgcl/relaxation/as_preconditioner.hpp>

#include <amgcl/io/binary.hpp>
#include <amgcl/profiler.hpp>

int main(int argc, char xargv([]) {
// The command line should contain the matrix and the RHS file names,
// and the number of unknowns in the flow subsytem:
if (argc < 4) |
std::cerr << "Usage: " << argv[0] << " <matrix.bin> <rhs.bin> <nu>" <<
—std::endl;
return 1;

(continues on next page)
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// Create VexCL context. Set the environment variable OCI_DEVICE to
// control which GPU to use in case multiple are available,

// and use single device:

vex::Context ctx(vex::Filter::Env && vex::Filter::Count (1));
std::cout << ctx << std::endl;

// Enable support for block-valued matrices in the VexCL kernels:
vex: :scoped_program_header header (ctx, amgcl::backend::vexcl_static_matrix_
—declaration<float, 3>());

// The profiler:
amgcl: :profiler<> prof ("UCubed (VexCL)");

// Read the system matrix:
ptrdiff t rows, cols;
std::vector<ptrdiff t> ptr, col;
std: :vector<double> val, rhs;

prof.tic("read");

amgcl::io::read_crs(argv[l], rows, ptr, col, wval);
amgcl::io::read_dense(argv([2], rows, cols, rhs);

std::cout << "Matrix " << argv[l] << ": " << rows << "x" << rows << std::endl;
std::cout << "RHS " << argv[2] << ": " << rows << "x" << cols << std::endl;
prof.toc("read");

// The number of unknowns in the U subsystem
ptrdiff t nu = std::stoi(argv[3]);

// We use the tuple of CRS arrays to represent the system matrix.

// Note that std::tie creates a tuple of references, so no data is actually
// copied here:

auto A = std::tie(rows, ptr, col, wval);

// Compose the solver type
typedef amgcl::backend::vexcl<double> SBackend; // the outer iterative solver,,
—backend
typedef amgcl::backend::vexcl<float> PBackend; // the PSolver backend
typedef amgcl::backend::vexcl<
amgcl::static_matrix<float, 3,3>> UBackend; // the USolver backend

typedef amgcl::make_solver<
amgcl: :preconditioner: :schur_pressure_correction<
amgcl: :make_block_solver<
amgcl: :amg<
UBackend,
amgcl::coarsening: :aggregation,
amgcl::relaxation: :11u0
>I
amgcl::solver: :preonly<UBackend>
>I
amgcl: :make_solver<
amgcl::relaxation: :as_preconditioner<

PBackend,
amgcl::relaxation: :spai0
>

4
amgcl::solver: :preonly<PBackend>
>

(continues on next page)
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>I
amgcl: :solver: :cg<SBackend>
> Solver;

// Solver parameters
Solver: :params prm;

prm.precond.simplec_dia = false;
prm.precond.usolver.precond.relax.solve.iters = 4;
prm.precond.pmask.resize (rows) ;

for (ptrdiff t i = 0; i < rows; ++i) prm.precond.pmask[i] = (i >= nu);

// Set the VexCL context in the backend parameters
SBackend: :params bprm;
bprm.q = ctx;

// Initialize the solver with the system matrix.
prof.tic("setup");

Solver solve (A, prm, bprm);

prof.toc("setup");

// Show the mini-report on the constructed solver:
std::cout << solve << std::endl;

// Since we are using mixed precision, we have to transfer the system matrix to,,
—~the GPU:

prof.tic ("GPU matrix");

auto A_gpu = SBackend::copy_matrix(std::make_shared<amgcl: :backend: :crs<double>>
— (A), bprm);

prof.toc ("GPU matrix");

// Solve the system with the zero initial approximation:
int iters;

double error;

vex: :vector<double> f (ctx, rhs);

vex::vector<double> x(ctx, rows);

x = 0.0;

prof.tic("solve");
std::tie(iters, error) = solve(*A_gpu, £, x);
prof.toc("solve");

// Output the number of iterations, the relative error,
// and the profiling data:
std::cout << "Iters: " << iters << std::endl

<< "Error: " << error << std::endl

<< prof << std::endl;

The output of the VexCL version is shown below. The solution phase is about twice as fast as the OpenMP version:

S ./stokes_ucube_vexcl cuda ucube_4 A.bin ucube_4_b.bin 456192
1. GeForce GTX 1050 Ti

Matrix ucube_4 A.bin: 554496x554496
RHS ucube_4_Db.bin: 554496x1
Solver

(continues on next page)
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Type: CG
Unknowns: 554496
Memory footprint: 16.92 M

Preconditioner

Schur complement (two-stage preconditioner)
Unknowns: 554496 (98304)
Nonzeros: 14292884
Memory: 399.66 M

[ U]

Solver

Type: PreOnly
Unknowns: 152064

Memory footprint: 0.00 B

Preconditioner

Number of levels: 4

Operator complexity: 1.25

Grid complexity: 1.14

Memory footprint: 131.76 M

level unknowns nonzeros memory
0 152064 982416 106.76 M (80.25%)
1 18654 197826 19.68 M (16.16%)
2 2619 35991 3.45 M ( 2.94%)
3 591 7953 1.86 M ( 0.65%)

[ P ]

Solver

Type: PreOnly

Unknowns: 98304

Memory footprint: 0.00 B

Preconditioner

Relaxation as preconditioner
Unknowns: 98304
Nonzeros: 274472
Memory: 4.27 M

Iters: 36
Error: 7.26253e-09

[UCubed (VexCL) : 1.858 s] (100.00%)
[ self: 0.004 s] ( 0.20%)
[ GPU matrix: 0.213 s] ( 11.46%)
[ read: 0.128 s] ( 6.87%)
[ setup: 0.519 s] ( 27.96%)
[ solve: 0.994 s] ( 53.52%)
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2.4.7 Using near null-space vectors

Using near null-space vectors may greately improve the quality of the aggregation AMG preconditioner. For the
elasticity or structural problems the near-null space vectors may be computed as rigid body modes from the coordinates
of the discretization grid nodes. In this tutorial we will use the system obtained by discretization of a 3D elasticity
problem modeling a connecting rod:

0.01454
0.01394
0.01
001155
0.010598
0.005
0.008564
0.007
0.008

0.005576

0.00458

0.002584

0.002988

0.001552

0.00053%6

Fig. 2.7: The connecting rod geometry with the computed displacements

The dataset was kindly provided by David Herrero Pérez (@davidherreroperez) in the issue #135 on Github and is
available for download at doi:10.5281/zenodo.4299865. The system matrix is symmetric, has block structure with
small 3 x 3 blocks, and has 81,657 rows and 3,171,111 nonzero values (about 39 nonzero entries per row on average).
The matrix portrait is shown on the figure below:

It is possible to solve the system using the CG iterative solver preconditioned with the smoothed aggregation AMG,
but the convergence is not that great:

$ solver -A A.mtx -f b.mtx solver.type=cg solver.maxiter=1000

Solver
Type: CG
Unknowns: 81657

Memory footprint: 2.49 M

(continues on next page)
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Preconditioner

Number of levels: 3

Operator complexity: 1.14

Grid complexity: 1.07

Memory footprint: 70.09 M

level unknowns nonzeros memory
0 81657 3171111 62.49 M (87.98%)
1 5067 417837 7.16 M (11.59%)
2 305 15291 450.07 K ( 0.42%)

Iterations: 698

Error: 8.96391e-09

[Profile: 11.717 s] (100.00%)
[ reading: 2.123 s] ( 18.12%)
[ setup: 0.122 s] ( 1.04%)
[ solve: 9.472 s] ( 80.84%)

We can improve the solution time by taking the block structure of the system into account in the aggregation algorithm:

$ solver -A A.mtx -f b.mtx solver.type=cg solver.maxiter=1000 \
precond.coarsening.aggr.block_size=3

Solver
Type: CG
Unknowns: 81657

Memory footprint: 2.49 M

Preconditioner

Number of levels: 3

Operator complexity: 1.29

Grid complexity: 1.10

Memory footprint: 92.40 M

level unknowns nonzeros memory
0 81657 3171111 75.83 M (77.71%)
1 7773 858051 15.70 M (21.03%)
2 555 51327 890.16 K ( 1.26%)

Iterations: 197

Error: 8.76043e-09

[Profile: 5.525 s] (100.00%)
[ reading: 2.170 s] ( 39.28%)
[ setup: 0.173 s] ( 3.14%)
[ solve: 3.180 s] ( 57.56%)

However, since this is an elasticity problem and we know the coordinates for the discretization mesh, we can compute
the rigid body modes and provide them as the near null-space vectors for the smoothed aggregation AMG method.
AMGCL has a convenience function amgcl: :coarsening: :rigid_body_modes () that takes the 2D or 3D
coordinates and converts them into the rigid body modes. The examples/solver utility allows to specify the file con-
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taining the coordinates on the command line:

$ solver -A A.mtx -f b.mtx solver.type=cg \
precond.coarsening.aggr.eps_strong=0 -C C.mtx

Solver
Type: CG
Unknowns: 81657

Memory footprint: 2.49 M

Preconditioner

Number of levels: 3

Operator complexity: 1.52

Grid complexity: 1.10

Memory footprint: 132.15 M

level unknowns nonzeros memory
0 81657 3171111 102.70 M (65.77%)
1 7704 1640736 29.33 M (34.03%)
2 144 9576 122.07 K ( 0.20%)

Iterations: 63

Error: 8.4604e-09

[Profile: 3.764 s] (100.00%)
[ reading: 2.217 s] ( 58.89%)
[ setup: 0.350 s] ( 9.30%)
[ solve: 1.196 s] ( 31.78%)

In the 3D case we get 6 near null-space vectors corresponding to the rigid body modes. Note that this makes the
preconditioner more expensive memory-wise: the memory footprint of the preconditioner has increased to 132M from
70M in the simplest case and 92M in the case using the block structure of the matrix. But this pays up in terms of
performance: the number of iterations dropped from 197 to 63 and the solution time decreased from 3.2 seconds to
1.2 seconds.

In principle, it is also possible to approximate the near null-space vectors by solving the homogeneous system Az =
0, starting with a random initial solution x. We may use the computed = as a near-null space vector, solve the
homogeneous system again from a different random start, and do this until we have enough near null-space vectors.
The examples/ns_search.cpp example shows how to do this. However, this process is quite expensive, because we
need to solve the system multiple times, starting with a badly tuned solver at that. It is probably only worth the time
in case one needs to solve the same system efficiently for multiple right-hand side vectors. Below is an example of
searching for the 6 near null-space vectors:

$ ns_search -A A.mtx -f b.mtx solver.type=cg solver.maxiter=1000 \
precond.coarsening.aggr.eps_strong=0 -n6 -o N6.mtx

Solver
Type: CG
Unknowns: 81657

Memory footprint: 2.49 M

(continues on next page)
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Preconditioner

Number of levels: 2

Operator complexity: 1.01

Grid complexity: 1.02

Memory footprint: 62.79 M

level unknowns nonzeros memory
0 81657 3171111 60.56 M (98.58%)
1 1284 45576 2.24 M ( 1.42%)

Iterations: 932
Error: 8.66233e-09

Solver
Type: CG
Unknowns: 81657

Memory footprint: 2.49 M

Preconditioner

Number of levels: 2

Operator complexity: 1.01

Grid complexity: 1.02

Memory footprint: 62.79 M

level unknowns nonzeros memory
0 81657 3171111 60.56 M (98.58%)
1 1284 45576 2.24 M ( 1.42%)

Iterations: 750
Error: 9.83476e-09

Solver
Type: CG
Unknowns: 81657

Memory footprint: 2.49 M

Preconditioner

Number of levels: 2

Operator complexity: 1.06

Grid complexity: 1.03

Memory footprint: 76.72 M

level unknowns nonzeros memory

(continues on next page)
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0 81657 3171111 68.98 M (94.56%)
1 2568 182304 7.74 M ( 5.44%)

Iterations: 528
Error: 8.74633e-09

Solver
Type: CG
Unknowns: 81657

Memory footprint: 2.49 M

Preconditioner

Number of levels: 3

Operator complexity: 1.13

Grid complexity: 1.05

Memory footprint: 84.87 M

level unknowns nonzeros memory
0 81657 3171111 77.41 M (88.49%)
1 3852 410184 7.42 M (11.45%)
2 72 2394 31.36 K ( 0.07%)

Iterations: 391
Error: 9.04425e-09

Solver
Type: CG
Unknowns: 81657

Memory footprint: 2.49 M

Preconditioner

Number of levels: 3

Operator complexity: 1.23

Grid complexity: 1.06

Memory footprint: 99.01 M

level unknowns nonzeros memory
0 81657 3171111 85.84 M (81.22%)
1 5136 729216 13.11 M (18.68%)
2 96 4256 55.00 K ( 0.11%)

Iterations: 238
Error: 9.51092e-09

(continues on next page)
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—-— Searching for vector 5

Solver
Type: CG
Unknowns: 81657

Memory footprint: 2.49 M

Preconditioner

Number of levels: 3

Operator complexity: 1.36

Grid complexity: 1.08

Memory footprint: 114.78 M

level unknowns nonzeros memory
0 81657 3171111 94.27 M (73.45%)
1 6420 1139400 20.42 M (26.39%)
2 120 6650 85.24 K ( 0.15%)

Iterations: 175
Error: 9.43207e-09

Solver
Type: CG
Unknowns: 81657

Memory footprint: 2.49 M

Preconditioner

Number of levels: 3

Operator complexity: 1.52

Grid complexity: 1.10

Memory footprint: 132.15 M

level unknowns nonzeros memory
0 81657 3171111 102.70 M (65.77%)
1 7704 1640736 29.33 M (34.03%)
2 144 9576 122.07 K ( 0.20%)

Iterations: 100

Error: 8.14427e-09

[Profile: 48.503 s] (100.00%)
[ apply: 2.373 s] ( 4.89%)
[ setup: 0.422 s] ( 0.87%)
[ solve: 1.949 s] ( 4.02%)
[ read: 2.113 s] ( 4.36%)
[ search: 43.713 s] ( 90.12%)
[ vector O: 12.437 s] ( 25.64%)
[ setup: 0.101 s] ( 0.21%)

(continues on next page)
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[ solve: 12.335 s] ( 25.43%)
[ vector 1: 9.661 s] ( 19.92%)
[ setup: 0.115 s] ( 0.24%)
[ solve: 9.545 s] ( 19.68%)
[ vector 2: 7.584 s] ( 15.64%)
[ setup: 0.217 s] ( 0.45%)
[ solve: 7.365 s] ( 15.18%)
[ vector 3: 6.137 s] ( 12.65%)
[ setup: 0.180 s] ( 0.37%)
[ solve: 5.954 s] ( 12.28%)
[ vector 4: 4.353 s] ( 8.97%)
[ setup: 0.246 s] ( 0.51%)
[ solve: 4.100 s] ( 8.45%)
[ vector 5: 3.541 s] ( 7.30%)
[ setup: 0.337 s] ( 0.69%)
[ solve: 3.200 s] ( 6.60%)
[ write: 0.303 s] ( 0.63%)

Note that the number of iterations required to find the next vector is gradually decreasing, as the quality of the solver
increases. The 6 orthogonalized vectors are saved to the output file N6 . mt x and are also used to solve the original
system. We can also use the file with the examples/solver:

$ solver -A A.mtx -f b.mtx solver.type=cg \
precond.coarsening.aggr.eps_strong=0 -N N6.mtx

Solver
Type: CG
Unknowns: 81657

Memory footprint: 2.49 M

Preconditioner

Number of levels: 3

Operator complexity: 1.52

Grid complexity: 1.10

Memory footprint: 132.15 M

level unknowns nonzeros memory
0 81657 3171111 102.70 M (65.77%)
1 7704 1640736 29.33 M (34.03%)
2 144 9576 122.07 K ( 0.20%)

Iterations: 100

Error: 8.14427e-09

[Profile: 4.736 s] (100.00%)
[ reading: 2.407 s] ( 50.83%)
[ setup: 0.354 s] ( 7.47%)
[ solve: 1.974 s] ( 41.69%)

This is an improvement with respect to the version that only uses the blockwize structure of the matrix, but is about
50% less effective than the version using the grid coordinates in order to compute the rigid body modes.

The listing below shows the complete source code computing the near null-space vectors from the
mesh coordinates and using the vectors in order to improve the quality of the preconditioner. We
include the <amgcl/coarsening/rigid_body_modes.hpp> header to bring the definition of the
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amgcl::coarsening: :rigid_body_modes () function in line 9, and use the function to convert the 3D
ordinates into the 6 near null-space vectors (rigid body modes) in lines 65-66. In lines 37-38 we check that

co-
the

coordinate file has the correct dimensions (since each grid node has three displacement components associated with
the node, the coordinate file should have three times less rows than the system matrix). The rest of the code should be

quite familiar.

Listing 2.15: The solution of the connecting rod problem using the near
null-space vectors.

#include <vector>
#include <iostream>

#include <amgcl/backend/builtin.hpp>

#include <amgcl/adapter/crs_tuple.hpp>

#include <amgcl/make_solver.hpp>

#include <amgcl/amg.hpp>

#include <amgcl/coarsening/smoothed_aggregation.hpp>
#include <amgcl/coarsening/rigid_body_modes.hpp>
#include <amgcl/relaxation/spai0.hpp>

#include <amgcl/solver/cqg.hpp>

#include <amgcl/io/mm.hpp>
#include <amgcl/profiler.hpp>

int main(int argc, char xargv[]) {

// The command line should contain the matrix, the RHS, and the coordinate files:

if (argc < 4) |
std::cerr << "Usage: " << argv[0] << " <A.mtx> <b.mtx> <coo.mtx>" << |
—std::endl;
return 1;

// The profiler:
amgcl: :profiler<> prof ("Nullspace");

// Read the system matrix, the RHS, and the coordinates:
ptrdiff t rows, cols, ndim, ncoo;

std::vector<ptrdiff t> ptr, col;

std: :vector<double> val, rhs, coo;

prof.tic("read");

std::tie(rows, rows) = amgcl::io::mm_reader (argv[1l]) (ptr, col, val);
std::tie(rows, cols) = amgcl::io::mm_reader (argv[2]) (rhs);
std::tie(ncoo, ndim) = amgcl::io::mm_reader (argv[3]) (coo);
prof.toc("read");

amgcl: :precondition (ncoo *» ndim == rows && (ndim == || ndim == 3),

"The coordinate file has wrong dimensions");

std::cout << "Matrix " << argv[l] << ": " << rows << "x" << rows << std::endl;
std::cout << "RHS " << argv[2] << ": " << rows << "x" << cols << std::endl;
std::cout << "Coords " << argv[3] << ": " << ncoo << "x" << ndim << std::endl;

// Declare the solver type
typedef amgcl::backend::builtin<double> SBackend; // the solver backend
typedef amgcl::backend::builtin<float> PBackend; // the preconditioner backend

typedef amgcl::make_solver<

(continues on next page)
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amgcl: :amg<
PBackend,
amgcl::coarsening: :smoothed_aggregation,
amgcl::relaxation: :spai0

>I

amgcl: :solver: :cg<SBackend>
> Solver;

// Solver parameters:
Solver: :params prm;
prm.precond.coarsening.aggr.eps_strong = 0;

// Convert the coordinates to the rigid body modes.

// The function returns the number of near null-space vectors

// (3 in 2D case, 6 in 3D case) and writes the vectors to the

// std::vector<double> specified as the last argument:

prm.precond.coarsening.nullspace.cols = amgcl::coarsening::rigid_body_modes (
ndim, coo, prm.precond.coarsening.nullspace.B);

// We use the tuple of CRS arrays to represent the system matrix.
auto A = std::tie(rows, ptr, col, wval);

// Initialize the solver with the system matrix.
prof.tic("setup");

Solver solve (A, prm);

prof.toc ("setup");

// Show the mini-report on the constructed solver:
std::cout << solve << std::endl;

// Solve the system with the zero initial approximation:
int iters;

double error;

std: :vector<double> x(rows, 0.0);

prof.tic("solve");
std::tie(iters, error) = solve(A, rhs, x);
prof.toc("solve");

// Output the number of iterations, the relative error,
// and the profiling data:
std::cout << "Iters: " << iters << std::endl

<< "Error: " << error << std::endl

<< prof << std::endl;

The output of the compiled program is shown below:

$ ./nullspace A.mtx b.mtx C.mtx
Matrix A.mtx: 81657x81657

RHS b.mtx: 81657x1

Coords C.mtx: 27219x3

Solver
Type: CG
Unknowns: 81657

Memory footprint: 2.49 M

(continues on next page)
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Preconditioner

Number of levels: 3
Operator complexity: 1.52
Grid complexity: 1.10
Memory footprint: 98.76 M

level unknowns nonzeros memory
0 81657 3171111 76.73 M (65.77%)
1 7704 1640736 21.97 M (34.03%)
2 144 9576 61.60 K ( 0.20%)

Iters: 63
Error: 8.46024e-09

[Nullspace: 3.653 s] (100.00%)
[ read: 2.173 s] ( 59.48%)
[ setup: 0.326 s] ( 8.94%)
[ solve: 1.150 s] ( 31.48%)

As was noted above, using the near null-space vectors makes the preconditioner less memory-efficient: since the 6
rigid-body modes are used as null-space vectors, every fine-grid aggregate is converted to 6 unknowns on the coarser
level. The following figure shows the structure of the system matrix on the second level of the hierarchy, and it is
obvious that the matrix has 6 x 6 block structure:

It should be possible to represent both the initial matrix and the matrices on each level of the hiearachy using the 3 x 3
block value type, as we did in the Structural problem example. Unfortunaltely, AMGCL is not yet able to utilize near
null-space vectors with block-valued backends.

One possible solution to this problem, suggested by Piotr Hellstein (@dokotor) in GitHub issue #215, is to convert the
matrices to the block-wise storage format after the hiearchy has been constructed. This has been implemented in form
of the hybrid OpenMP and VexCL backends.

The listing below shows an example of wusing the hybrid OpenMP backend (tuto-
rial/5.Nullspace/nullspace_hybrid.cpp). The only difference with the scalar code is the definition of the block
value type and the use of the hybrid backend (lines 46—49).

Listing 2.16: Using hybrid OpenMP backend while providing near null-
space vectors.

#include <vector>
#include <iostream>

#include <amgcl/backend/builtin_hybrid.hpp>

#include <amgcl/value_type/static _matrix.hpp>
#include <amgcl/adapter/crs_tuple.hpp>

#include <amgcl/make_solver.hpp>

#include <amgcl/amg.hpp>

#include <amgcl/coarsening/smoothed_aggregation.hpp>
#include <amgcl/coarsening/rigid_body_modes.hpp>
#include <amgcl/relaxation/spai0.hpp>

#include <amgcl/solver/cg.hpp>

#include <amgcl/io/mm.hpp>
#include <amgcl/profiler.hpp>

(continues on next page)
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Fig. 2.9: The nonzero portrait of the system matrix on the second level of the AMG hierarchy.
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int main(int argc, char xargv([]) {
// The command line should contain the matrix, the RHS, and the coordinate files:
if (argc < 4) {
std::cerr << "Usage: " << argv[0] << " <A.mtx> <b.mtx> <coo.mtx>" << |
—std::endl;
return 1;

// The profiler:
amgcl: :profiler<> prof ("Nullspace");

// Read the system matrix, the RHS, and the coordinates:
ptrdiff t rows, cols, ndim, ncoo;

std::vector<ptrdiff t> ptr, col;

std: :vector<double> val, rhs, coo;

prof.tic("read");

std::tie(rows, rows) = amgcl::io::mm_reader (argv[l]) (ptr, col, val);
std::tie(rows, cols) = amgcl::io::mm_reader (argv[2]) (rhs);
std::tie(ncoo, ndim) = amgcl::io::mm_reader (argv[3]) (coo);

prof.toc ("read");

amgcl: :precondition(ncoo * ndim == rows && (ndim == || ndim == 3),

"The coordinate file has wrong dimensions");

std::cout << "Matrix " << argv[l] << ": " << rows << "x" << rows << std::endl;
std::cout << "RHS " << argv[2] << ": " << rows << "x" << cols << std::endl;
std::cout << "Coords " << argv[3] << ": " << ncoo << "x" << ndim << std::endl;

// Declare the solver type

typedef amgcl::static_matrix<double, 3, 3> DBlock;

typedef amgcl::static_matrix<float, 3, 3> FBlock;

typedef amgcl::backend::builtin_hybrid<DBlock> SBackend; // the solver backend

typedef amgcl::backend::builtin_hybrid<FBlock> PBackend; // the preconditioner,
—backend

typedef amgcl::make_solver<

amgcl: :amg<
PBackend,
amgcl: :coarsening: :smoothed_aggregation,
amgcl::relaxation: :spai0
>I

amgcl: :solver: :cg<SBackend>

> Solver;

// Solver parameters:
Solver: :params prm;
prm.precond.coarsening.aggr.eps_strong = 0;

// Convert the coordinates to the rigid body modes.

// The function returns the number of near null-space vectors

// (3 in 2D case, 6 1in 3D case) and writes the vectors to the

// std::vector<double> specified as the last argument:

prm.precond.coarsening.nullspace.cols = amgcl::coarsening::rigid_body_modes (
ndim, coo, prm.precond.coarsening.nullspace.B);

(continues on next page)
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// We use the tuple of CRS arrays to represent the system matrix.
auto A = std::tie(rows, ptr, col, wval);

// Initialize the solver with the system matrix.
prof.tic("setup");

Solver solve (A, prm);

prof.toc ("setup");

// Show the mini-report on the constructed solver:
std::cout << solve << std::endl;

// Solve the system with the zero initial approximation:
int iters;

double error;

std: :vector<double> x(rows, 0.0);

prof.tic("solve");
std::tie(iters, error) = solve(A, rhs, x);
prof.toc("solve");

// Output the number of iterations, the relative error,
// and the profiling data:
std::cout << "Iters: " << iters << std::endl

<< "Error: " << error << std::endl

<< prof << std::endl;

This results in the following output. Note that the memory footprint of the preconditioner dropped from 98M to 41M
(by 58%), and the solution time dropped from 1.150s to 0.707s (by 38%):

$ ./nullspace_hybrid A.mtx b.mtx C.mtx
Matrix A.mtx: 81657x81657

RHS b.mtx: 81657x1

Coords C.mtx: 27219x3

Solver
Type: CG
Unknowns: 81657

Memory footprint: 2.49 M

Preconditioner

Number of levels: 3

Operator complexity: 1.52

Grid complexity: 1.10

Memory footprint: 40.98 M

level unknowns nonzeros memory
0 81657 3171111 31.90 M (65.77%)
1 7704 1640736 9.01 M (34.03%)
2 144 9576 61.60 K ( 0.20%)

Iters: 63

Error: 8.4562e-09

(continues on next page)
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[Nullspace: 3.304 s] (100.00%)
[ self: 0.003 s] ( 0.10%)
[ read: 2.245 s] ( 67.94%)
[ setup: 0.349 s] ( 10.57%)
[ solve: 0.707 s] ( 21.38%)

Another possible solution is to use a block-valued backend both for constructing the hierarchy and for
the solution phase. In order to allow for the coarsening scheme to use the near null-space vectors, the
amgcl::coarsening: :as_scalar coarsening wrapper may be used. The wrapper converts the input matrix to
scalar format, applies the base coarsening strategy to the scalar matrix, and converts the computed transfer operators
back to block format. This approach results in faster setup times, since every other operation besides coarsening is
performed using block arithmetics.

The listing below shows an example of using the amgcl::coarsening::as_scalar wrapper (tuto-
rial/5.Nullspace/nullspace_block.cpp). The system matrix is converted to block format in line 78 in the same way
it was done in the Structural problem tutorial. The RHS and the solution vectors are reinterpreted to contain block
values in lines 94-95. The SPAIO relaxation here resulted in the increased number of interations, so we used the ILU(0)
relaxaion.

Listing 2.17: Using amgcl::coarsening::as_scalar coarsening wrapper
with a block-valued backend.

#include <vector>
#include <iostream>

#include <amgcl/backend/builtin.hpp>

#include <amgcl/value_type/static _matrix.hpp>
#include <amgcl/adapter/crs_tuple.hpp>

#include <amgcl/adapter/block _matrix.hpp>
#include <amgcl/make_solver.hpp>

#include <amgcl/amg.hpp>

#include <amgcl/coarsening/smoothed _aggregation.hpp>
#include <amgcl/coarsening/rigid_body_modes.hpp>
#include <amgcl/coarsening/as_scalar.hpp>
#include <amgcl/relaxation/ilu0.hpp>

#include <amgcl/solver/cqg.hpp>

#include <amgcl/io/mm.hpp>
#include <amgcl/profiler.hpp>

int main (int argc, char xargv[]) {
// The command line should contain the matrix, the RHS, and the coordinate files:
if (argc < 4) {
std::cerr << "Usage: " << argv[0] << " <A.mtx> <b.mtx> <coo.mtx>" << |
—std::endl;
return 1;

// The profiler:
amgcl: :profiler<> prof ("Nullspace");

// Read the system matrix, the RHS, and the coordinates:
ptrdiff t rows, cols, ndim, ncoo;

std::vector<ptrdiff t> ptr, col;

std: :vector<double> val, rhs, coo;

(continues on next page)
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prof.tic("read");
std::tie(rows, rows) = amgcl::io::mm_reader (argv[1l]) (ptr, col, val);
std::tie(rows, cols) = amgcl::io::mm_reader (argv[2]) (rhs);
std::tie(ncoo, ndim) = amgcl::io::mm_reader (argv[3]) (coo);
prof.toc ("read");
amgcl::precondition(ncoo * ndim == rows && (ndim == || ndim == 3),

"The coordinate file has wrong dimensions");
std::cout << "Matrix " << argv[l] << ": " << rows << "x" << rows << std::endl;
std::cout << "RHS " << argv[2] << ": " << rows << "x" << cols << std::endl;
std::cout << "Coords " << argv[3] << ": " << ncoo << "x" << ndim << std::endl;

// Declare the solver type

typedef amgcl::static_matrix<double, 3, 3> DBlock;

typedef amgcl::static_matrix<float, 3, 3> FBlock;

typedef amgcl::backend::builtin<DBlock> SBackend; // the solver backend

typedef amgcl::backend::builtin<FBlock> PBackend; // the preconditioner backend

typedef amgcl::make_solver<
amgcl: :amg<
PBackend,
amgcl::coarsening: :as_scalar<
amgcl: :coarsening: :smoothed_aggregation
>::type,
amgcl::relaxation::1i1u0
>I
amgcl::solver: :cg<SBackend>
> Solver;

// Solver parameters:

Solver: :params prm;

prm.solver.maxiter = 500;
prm.precond.coarsening.aggr.eps_strong = 0;

// Convert the coordinates to the rigid body modes.

// The function returns the number of near null-space vectors

// (3 in 2D case, 6 1in 3D case) and writes the vectors to the

// std::vector<double> specified as the last argument:

prm.precond.coarsening.nullspace.cols = amgcl::coarsening: :rigid_body_modes (
ndim, coo, prm.precond.coarsening.nullspace.B);

// We use the tuple of CRS arrays to represent the system matrix.
auto A = std::tie(rows, ptr, col, wval);
auto Ab = amgcl::adapter::block_matrix<DBlock> (A);

// Initialize the solver with the system matrix.
prof.tic("setup");

Solver solve (Ab, prm);

prof.toc("setup");

// Show the mini-report on the constructed solver:
std::cout << solve << std::endl;

// Solve the system with the zero initial approximation:
int iters;
double error;

(continues on next page)
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std: :vector<double> x (rows, 0.0);

// Reinterpret both the RHS and the solution vectors as block-valued:
auto F = amgcl::backend::reinterpret_as_rhs<DBlock> (rhs);
auto X = amgcl::backend::reinterpret_as_rhs<DBlock> (x);

prof.tic("solve");
std::tie(iters, error) = solve(Ab, F, X);
prof.toc("solve");

// Output the number of iterations, the relative error,
// and the profiling data:
std::cout << "Iters: " << iters << std::endl

<< "Error: " << error << std::endl

<< prof << std::endl;

This results are presented below. Note that even though the more advanced ILU(0) smoother was used, the setup time
has been reduced, since ILU(0) was constructed using block arithmetics.:

$ ./nullspace_block A.mtx b.mtx C.mtx
Matrix A.mtx: 81657x81657

RHS b.mtx: 81657x1

Coords C.mtx: 27219x3

Solver
Type: CG
Unknowns: 27219

Memory footprint: 2.49 M

Preconditioner

Number of levels: 3

Operator complexity: 1.52

Grid complexity: 1.10

Memory footprint: 63.24 M

level unknowns nonzeros memory
0 27219 352371 46.45 M (65.77%)
1 2568 182304 16.73 M (34.03%)
2 48 1064 60.85 K ( 0.20%)

Iters: 32

Error: 7.96226e-09

[Nullspace: 2.885 s] (100.00%)
[ read: 2.160 s] ( 74.87%)
[ setup: 0.249 s] ( 8.64%)
[ solve: 0.473 s] ( 16.39%)

2.4.8 Using near null-space vectors (MPI version)

Let us look at how to use the near null-space vectors in the MPI version of the solver for the elasticity problem (see
Using near null-space vectors). The following points need to be kept in mind:
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* The near null-space vectors need to be partitioned (and reordered) similar to the RHS vector.

* Since we are using coordinates of the discretization grid nodes for the computation of the rigid body modes, in
order to be able to do this locally we need to partition the system in such a way that DOFs from a single grid
node are owned by the same MPI process. In this case this means we need to do a block-wise partitioning with
a 3 x 3 blocks.

* It is more convenient to partition the coordinate matrix and then to compute the rigid body modes.
The listing below shows the complete source code for the MPI elasticity solver (tuto-

rial/5.Nullspace/nullspace_mpi.cpp)

Listing 2.18: The MPI solution of the elasticity problem

#include <vector>
#include <iostream>

#include <amgcl/backend/builtin.hpp>
#include <amgcl/adapter/crs_tuple.hpp>
#include <amgcl/coarsening/rigid_body_modes.hpp>

#include <amgcl/mpi/distributed_matrix.hpp>

#include <amgcl/mpi/make_solver.hpp>

#include <amgcl/mpi/amg.hpp>

#include <amgcl/mpi/coarsening/smoothed_aggregation.hpp>
#include <amgcl/mpi/relaxation/spai0.hpp>

#include <amgcl/mpi/solver/cqg.hpp>

#include <amgcl/io/binary.hpp>
#include <amgcl/profiler.hpp>

#1if defined (AMGCI,_HAVE_PARMETIS)

# 1include <amgcl/mpi/partition/parmetis.hpp>
#elif defined (AMGCI_HAVE_SCOTCH)

# 1include <amgcl/mpi/partition/ptscotch.hpp>
#endif

int main(int argc, char xargv([]) {
// The command line should contain the matrix, the RHS, and the coordinate files:
if (argc < 4) {
std::cerr << "Usage: " << argv[0] << " <A.bin> <b.bin> <coo.bin>" <<,
—std::endl;
return 1;

amgcl::mpi::init mpi (&argc, &argv);
amgcl: :mpi::communicator world (MPI_COMM_WORLD) ;

// The profiler:
amgcl: :profiler<> prof ("Nullspace");

// Read the system matrix, the RHS, and the coordinates:
prof.tic("read");

// Get the global size of the matrix:

ptrdiff t rows = amgcl::io::crs_size<ptrdiff t> (argv[l]);

// Split the matrix into approximately equal chunks of rows, and
// make sure each chunk size is divisible by 3.
ptrdiff t chunk = (rows + world.size - 1) / world.size;

(continues on next page)
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if (chunk % 3) chunk += 3 - chunk % 3;

ptrdiff t row_beg = std::min(rows, chunk * world.rank);
ptrdiff t row_end = std::min(rows, row_beg + chunk);
chunk = row_end - row_beg;

// Read our part of the system matrix, the RHS and the coordinates.
std::vector<ptrdiff t> ptr, col;

std: :vector<double> val, rhs, coo;

amgcl::io::read_crs(argv[l], rows, ptr, col, wval, row_beg, row_end);

ptrdiff t n, m;
amgcl::io::read_dense(argv(2], n, m, rhs, row_beg, row_end);
amgcl::precondition(n == rows && m == 1, "The RHS file has wrong dimensions");

amgcl::io::read_dense(argv[3], n, m, coo, row_beg / 3, row_end / 3);

amgcl::precondition(n * 3 == rows && m == 3, "The coordinate file has wrong,
—~dimensions") ;

prof.toc ("read");

if (world.rank == 0) {
std::cout
<< "Matrix " << argv[l] << ": " << rows << "x" << rows << std::endl
<< "RHS " << argv[2] << ": " << rows << "x1" << std::endl
<< "Coords " << argv[3] << ": " << rows / 3 << "x3" << std::endl;

// Declare the backends and the solver type
typedef amgcl::backend::builtin<double> SBackend; // the solver backend
typedef amgcl::backend::builtin<float> PBackend; // the preconditioner backend

typedef amgcl: :mpi::make_solver<

amgcl: :mpi: :amg<
PBackend,
amgcl: :mpi::coarsening: :smoothed_aggregation<PBackend>,
amgcl: :mpi::relaxation: :spaiO<PBackend>
>I

amgcl: :mpi::solver: :cg<PBackend>

> Solver;

// The distributed matrix
auto A = std::make_shared<amgcl: :mpi::distributed_matrix<SBackend>> (
world, std::tie(chunk, ptr, col, wval));

// Partition the matrix, the RHS vector, and the coordinates.
// If neither ParMETIS not PT-SCOTCH are not available,
// just keep the current naive partitioning.
#1f defined (AMGCI,_HAVE_PARMETIS) || defined(AMGCI_HAVE_SCOTCH)
# 1f defined(AMGCIL_HAVE_PARMETIS)
typedef amgcl::mpi::partition::parmetis<SBackend> Partition;
# elif defined(AMGCL_HAVE_SCOTCH)
typedef amgcl::mpi::partition::ptscotch<SBackend> Partition;
# endif

if (world.size > 1) {
auto t = prof.scoped_tic("partition");
Partition part;

(continues on next page)
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// part (A) returns the distributed permutation matrix.

// Keep the DOFs belonging to the same grid nodes together
// (use block-wise partitioning with block size 3).

auto P = part (%A, 3);

auto R = transpose (*P);

// Reorder the matrix:
A = product (¥R, =xproduct (xA, *P));

// Reorder the RHS vector and the coordinates:
R->move_to_backend() ;

std: :vector<double> new_rhs (R->loc_rows ());
std: :vector<double> new_coo (R->1loc_rows ());
amgcl: :backend: :spmv (1, *R, rhs, 0, new_rhs);
amgcl: :backend::spmv(l, %R, coo, 0, new_coo);
rhs.swap (new_rhs);

COO.swap (new_coo) ;

// Update the number of the local rows
// (it may have changed as a result of permutation).
chunk = A->loc_rows () ;

}

#endif

// Solver parameters:

Solver: :params prm;

prm.solver.maxiter = 500;
prm.precond.coarsening.aggr.eps_strong = 0;

// Convert the coordinates to the rigid body modes.

// The function returns the number of near null-space vectors
// (3 in 2D case, 6 in 3D case) and writes the vectors to the
// std::vector<double> specified as the last argument:

prm.precond.coarsening.aggr.nullspace.cols = amgcl::coarsening:

3, coo, prm.precond.coarsening.aggr.nullspace.B);

// Initialize the solver with the system matrix.
prof.tic("setup");

Solver solve(world, A, prm);

prof.toc ("setup");

// Show the mini-report on the constructed solver:
if (world.rank == 0) std::cout << solve << std::endl;

// Solve the system with the zero initial approximation:
int iters;

double error;

std: :vector<double> x (chunk, 0.0);

prof.tic("solve");
std::tie(iters, error) = solve(xA, rhs, x);
prof.toc("solve");

// Output the number of iterations, the relative error,
// and the profiling data:
if (world.rank == 0) {

:rigid_body_modes (

(continues on next page)
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std::cout
<< "Iters: " << iters << std::endl
<< "Error: " << error << std::endl

<< prof << std::endl;

In lines 44—-49 we split the system into approximately equal chunks of rows, while making sure the chunk sizes are
divisible by 3 (the number of DOFs per grid node). This is a naive paritioning that will be improved a bit later:

We read the parts of the system matrix, the RHS vector, and the grid node coordinates that belong to the current MPI
process in lines 52-61. The backends for the iterative solver and the preconditioner and the solver type are declared in
lines 72-82. In lines 85-86 we create the distributed version of the matrix from the local CRS arrays. After that, we
are ready to partition the system using AMGCL wrapper for either ParMETIS or PT-SCOTCH libraries (lines 91-123).
Note that we are reordering the coordinate matrix coo in the same way the RHS vector is reordered, even though the
coordinate matrix has three times less rows than the system matrix. We can do this because the coordinate matrix
is stored in the row-major order, and each row of the matrix has three coordinates, which means the total number
of elements in the matrix is equal to the number of elements in the RHS vector, and we can apply our block-wise
partitioning to the coordinate matrix.

The coordinates for the current MPI domain are converted into the rigid body modes in lines 135-136, after which we
are ready to setup the solver (line 140) and solve the system (line 152). Below is the output of the compiled program:

$ export OMP_NUM_THREADS=1

$ mpirun -np 4 nullspace_mpi A.bin b.bin C.bin
Matrix A.bin: 81657x81657

RHS b.bin: 81657x1

Coords C.bin: 27219x3

Partitioning[ParMETIS] 4 -> 4

Type: CG

Unknowns: 19965

Memory footprint: 311.95 K

Number of levels: 3

Operator complexity: 1.53

Grid complexity: 1.10

level unknowns nonzeros
0 81657 3171111 (65.31%) [4]
1 7824 1674144 (34.48%) [4]
2 144 10224 ( 0.21%) [4]

Iters: 104

Error: 9.26388e-09

[Nullspace: 2.833 s] (100.00%)
[ self: 0.070 s] ( 2.48%)
[ partition: 0.230 s] ( 8.10%)
[ read: 0.009 s] ( 0.32%)
[ setup: 1.081 s] ( 38.15%)
[ solve: 1.443 s] ( 50.94%)
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2.5 Examples

2.5.1 Solving Poisson’s equation

The easiest way to solve a problem with AMGCL is to use the amgcl: :make solver class. It has two template
parameters: the first one specifies a preconditioner to use, and the second chooses an iterative solver. The class
constructor takes the system matrix in one of supported formats and parameters for the chosen algorithms and for the
backend.

Let us consider a simple example of Poisson’s equation in a unit square. Here is how the problem may be solved
with AMGCL. We will use BiCGStab solver preconditioned with smoothed aggregation multigrid with SPAI(0) for
relaxation (smoothing). First, we include the necessary headers. Each of those brings in the corresponding component
of the method:

#include <amgcl/make_solver.hpp>

#include <amgcl/solver/bicgstab.hpp>

#include <amgcl/amg.hpp>

#include <amgcl/coarsening/smoothed_aggregation.hpp>
#include <amgcl/relaxation/spai0.hpp>

#include <amgcl/adapter/crs_tuple.hpp>

Next, we assemble sparse matrix for the Poisson’s equation on a uniform 1000x1000 grid. See below for the definition
of the poisson () function:

std: :vector<int> ptr, col;
std: :vector<double> val, rhs;
int n = poisson (1000, ptr, col, val, rhs);

For this example, we select the bui 1t in backend with double precision numbers as value type:

typedef amgcl::backend::builtin<double> Backend;

Now we can construct the solver for our system matrix. We use the convenient adapter for std: :tuple here and
just tie together the matrix size and its CRS components:

typedef amgcl::make_solver<
// Use AMG as preconditioner:
amgcl: :amg<
Backend,
amgcl::coarsening: :smoothed_aggregation,
amgcl::relaxation: :spai0
>!
// And BiCGStab as iterative solver:
amgcl::solver: :bicgstab<Backend>
> Solver;

Solver solve( std::tie(n, ptr, col, val) );

Once the solver is constructed, we can apply it to the right-hand side to obtain the solution. This may be repeated
multiple times for different right-hand sides. Here we start with a zero initial approximation. The solver returns a
boost tuple with number of iterations and norm of the achieved residual:

std: :vector<double> x(n, 0.0);

int iters;
double error;
std::tie(iters, error) = solve(rhs, x);
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That’s it! Vector x contains the solution of our problem now.

2.5.2 Input formats

We used STL vectors to store the matrix components in the above axample. This may seem too restrictive if you
want to use AMGCL with your own types. But the crs_tuple adapter will take anything that the Boost.Range library
recognizes as a random access range. For example, you can wrap raw pointers to your data into a boost::iterator_range:

Solver solve( boost::make_tuple(

n,

boost::make_iterator_range (ptr.data(), ptr.data() + ptr.size()),
boost: :make_iterator_range(col.data(), col.data() + col.size()),
boost::make_iterator_range(val.data(), val.data() + val.size())

) )i

Same applies to the right-hand side and the solution vectors. And if that is still not general enough, you can provide
your own adapter for your matrix type. See Matrix Adapters for further information on this.

2.5.3 Setting parameters

Any component in AMGCL defines its own parameters by declaring a param subtype. When a class wraps
several subclasses, it includes parameters of its children into its own param. For example, parameters for the
amgcl: :make_solver<Precond, Solver> are declared as

struct params {
typename Precond: :params precond;
typename Solver::params solver;

}i

Knowing that, we can easily set the parameters for individual components. For example, we can set the desired
tolerance for the iterative solver in the above example like this:

Solver: :params prm;
prm.solver.tol = le-3;
Solver solve( std::tie(n, ptr, col, val), prm );

Parameters may also be initialized with a boost::property_tree::ptree. This is especially convenient when the runtime
interface is used, and the exact structure of the parameters is not known at compile time:

boost: :property_tree::ptree prm;
prm.put ("solver.tol", le-3);
Solver solve( std::tie(n, ptr, col, val), prm );

2.5.4 Assembling matrix for Poisson’s equation

The section provides an example of assembling the system matrix and the right-hand side for a Poisson’s equation in
a unit square Q2 = [0, 1] x [0, 1]:

“Au=1ue u=0, uei

The solution to the problem looks like this:

Here is how the problem may be discretized on a uniform n x n grid:
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#include <vector>

// Assembles matrix for Poisson's equation with homogeneous

// boundary conditions on a n x n grid.

// Returns number of rows in the assembled matrix.

// The matrix is returned in the CRS components ptr, col, and val.
// The right-hand side is returned in rhs.

int poisson(

int n,
std::vector<int> &ptr,
std::vector<int> &col,

std: :vector<double> &val,
std: :vector<double> &rhs

)

int n2 = n * n; // Number of points in the grid.
double h = 1.0 / (n - 1); // Grid spacing.

ptr.clear(); ptr.reserve(n2 + 1); ptr.push_back(0);
col.clear(); col.reserve(n2 * 5); // We use 5-point stencil, so the matrix
val.clear(); val.reserve(n2 * 5); // will have at most nZ2 = 5 nonzero elements.

rhs.resize (n2);

for(int 7 = 0, k = 0; j < n; ++3) {
for(int i = 0; i < n; ++1i, ++k) {
if (1 == ['i==n -1 1|l 3J==01]3==n-1) {
// Boundary point. Use Dirichlet condition.
col.push_back (k) ;
val.push_back (1.0);

rhs[k] = 0.0;
} else {
// Interior point. Use 5-point finite difference stencil.
col.push_back(k - n);
val.push_back(-1.0 / (h * h));

col.push_back(k - 1);
val.push_back(-1.0 / (h * h));

col.push_back (k) ;
val.push_back (4.0 / (h = h));

col.push_back(k + 1);
val.push_back(-1.0 / (h * h));

col.push_back(k + n);
val.push_back(-1.0 / (h * h));

rhs[k] = 1.0;

ptr.push_back (col.size());

return n2;
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2.6 Benchmarks

The performance of the shared memory and the distributed memory versions of AMGCL algorithms was tested on
two example problems in a three dimensional space. The source code for the benchmarks is available at https://github.
com/ddemidov/amgcl_benchmarks.

The first example is the classical 3D Poisson problem. Namely, we look for the solution of the problem
—Au =1,

in the unit cube 2 = [0, 1]® with homogeneous Dirichlet boundary conditions. The problem is discretized with the
finite difference method on a uniform mesh.

The second test problem is an incompressible 3D Navier-Stokes problem discretized on a non uniform 3D mesh with
a finite element method:

8—u—|—u-Vu+Vp:b,

ot
V-u=0.

The discretization uses an equal-order tetrahedral Finite Elements stabilized with an ASGS-type (algebraic subgrid-
scale) approach. This results in a linear system of equations with a block structure of the type

5 5)6)-6)

where each of the matrix subblocks is a large sparse matrix, and the blocks G and D are non-square. The overall
system matrix for the problem was assembled in the Kratos multi-physics package developed in CIMNE, Barcelona.

2.6.1 Shared Memory Benchmarks

In this section we test performance of the library on a shared memory system. We also compare the results with
PETSC and Trilinos ML distributed memory libraries and CUSP GPGPU library. The tests were performed on a dual
socket system with two Intel Xeon E5-2640 v3 CPUs. The system also had an NVIDIA Tesla K80 GPU installed,
which was used for testing the GPU based versions.

3D Poisson problem

The Poisson problem is discretized with the finite difference method on a uniform mesh, and the resulting linear system
contained 3375000 unknowns and 23490000 nonzeros.

The figure below presents the multicore scalability of the problem. Here AMGCL uses the built in OpenMP back-
end, while PETSC and Trilinos use MPI for parallelization. We also show results for the CUDA backend of AMGCL
library compared with the CUSP library. All libraries use the Conjugate Gradient iterative solver preconditioned
with a smoothed aggregation AMG. Trilinos and PETSC use default options for smoothers (symmetric Gauss-Seidel
and damped Jacobi accordingly) on each level of the hierarchy, AMGCL uses SPAIO, and CUSP uses Gauss-Seidel
smoother.

The CPU-based results show that AMGCL performs on par with Trilinos, and both of the libraries outperform PETSC
by a large margin. Also, AMGCL is able to setup the solver about 20-100% faster than Trilinos, and 47 times faster
than PETSC. This is probably due to the fact that both Trilinos and PETSC target distributed memory machines and
hence need to do some complicated bookkeeping under the hood. PETSC shows better scalability than both Trilinos
and AMGCL, which scale in a similar fashion.

On the GPU, AMGCL performs slightly better than CUSP. If we consider the solution time (without setup), then both
libraries are able to outperform CPU-based versions by a factor of 3-4. The total solution time of AMGCL with CUDA
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3D Poisson problem

Q

£ £

-+~ 1 ] +

5 10 o

o +J

: 3
1 2 4 8 16

25
G =Y © G o
107 - 20 A

o 0

£ S

) +w 15

3 2

8 =

- 1o o—o\._./o
./o o o o
I______T ______ T ______I______-I 5 T T T T T
1 2 4 8 16 1 2 4 8 16
Cores/MPI processes Cores/MPI processes
—o— AMGCL  —e— Trilinos --- CUSP
—o— PETSC --- AMGCL/CUDA

2.6. Benchmarks 127



AMGCL Documentation, Release 0.0.1

backend is only 30% better than that of either AMGCL with OpenMP backend or Trilinos ML. This is due to the fact
that the setup step in AMGCL is always performed on the CPU and in case of the CUDA backend has an additional
overhead of moving the constructed hierarchy into the GPU memory.

3D Navier-Stokes problem

The system matrix resulting from the problem discretization has block structure with blocks of 4-by-4 elements,
and contains 713456 unknowns and 41277920 nonzeros. The assembled problem is available to download at https:
//doi.org/10.5281/zenodo.1231818.

There are at least two ways to solve the system. First, one can treat the system as a monolithic one, and provide some
minimal help to the preconditioner in form of near null space vectors. Second option is to employ the knowledge about
the problem structure, and to combine separate preconditioners for individual fields (in this particular case, for pressure
and velocity). In case of AMGCL both options were tested, where the monolithic system was solved with static 4x4
matrices as value type, and the field-split approach was implemented using the schur_pressure_correction
preconditioner. Trilinos ML only provides the first option; PETSC implement both options, but we only show results
for the second, superior option here. CUSP library does not provide field-split preconditioner and does not allow to
specify near null space vectors, so it was not tested for this problem.

The figure below shows multicore scalability results for the Navier-Stokes problem. Lines labelled with ‘block’
correspond to the cases when the problem is treated as a monolithic system, and ‘split’ results correspond to the
field-split approach.

2.6.2 Distributed Memory Benchmarks

Here we demonstrate performance and scalability of the distributed memory algorithms provided by AMGCL on the
example of a Poisson problem and a Navier-Stokes problem in a three dimensional space. To provide a reference, we
compare performance of the AMGCL library with that of the well-established Trilinos ML package. The benchmarks
were run on MareNostrum 4, PizDaint, and SuperMUC clusters which we gained access to via PRACE program
(project 2010PA4058). The MareNostrum 4 cluster has 3456 compute nodes, each equipped with two 24 core Intel
Xeon Platinum 8160 CPUs, and 96 GB of RAM. The peak performance of the cluster is 6.2 Petaflops. The PizDaint
cluster has 5320 hybrid compute nodes, where each node has one 12 core Intel Xeon E5-2690 v3 CPU with 64
GB RAM and one NVIDIA Tesla P100 GPU with 16 GB RAM. The peak performance of the PizDaint cluster is 25.3
Petaflops. The SuperMUC cluster allowed us to use 512 compute nodes, each equipped with two 14 core Intel Haswell
Xeon E5-2697 v3 CPUs, and 64 GB of RAM.

3D Poisson problem

The figure below shows weak scaling of the solution on the SuperMUC cluster. Here the problem size is chosen
to be proportional to the number of CPU cores with about 100% unknowns per core. Both AMGCL and Trilinos
implementations use a CG iterative solver preconditioned with smoothed aggregation AMG. AMGCL uses SPAI(0)
for the smoother, and Trilinos uses ILU(0), which are the corresponding defaults for the libraries. The plots in the
figure show total computation time, time spent on constructing the preconditioner, solution time, and the number of
iterations. The AMGCL library results are labelled ‘OMP=n’, where n=1,14,28 corresponds to the number of OpenMP
threads controlled by each MPI process. The Trilinos library uses single-threaded MPI processes.

Next figure shows strong scaling results for smoothed aggregation AMG preconditioned on the SuperMUC cluster.
The problem size is fixed to 2562 unknowns and ideally the compute time should decrease as we increase the number
of CPU cores. The case of ideal scaling is depicted for reference on the plots with thin gray dotted lines.

The AMGCL implementation uses a BiCGStab(2) iterative solver preconditioned with subdomain deflation, as it
showed the best behaviour in our tests. Smoothed aggregation AMG is used as the local preconditioner. The Trilinos
implementation uses a CG solver preconditioned with smoothed aggregation AMG with default ‘SA’ settings, or
domain decomposition method with default ‘DD-ML’ settings.
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3D Navier-Stokes problem
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Weak scaling of the Poisson problem on the SuperMUC cluster

102 102 -
(0] ]
E )
AR T Yool
I 10 % 10
(@] + ]
- 3 ]
100 T T T T T T T 100 T T T T T T T
1 7 1428 112 448 1792 1 7 1428 112 448 1792
102 50
40 A
o 0
_g 1 5 30 1
g 19 g
S 8201
10 -
100 T T T T T T T O T T T T T T T
1 7 1428 112 448 1792 1 7 1428 112 448 1792

—e— AMGCL, omp=1 —o— AMGCL, omp=28
—o— AMGCL, omp=14 —8— Trilinos

2.6. Benchmarks 130



AMGCL Documentation, Release 0.0.1

Strong scaling of the Poisson problem on the SuperMUC cluster
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The figure below shows weak scaling of the solution on the MareNostrum 4 cluster. Here the problem size is chosen
to be proportional to the number of CPU cores with about 1002 unknowns per core. The rows in the figure from top
to bottom show total computation time, time spent on constructing the preconditioner, solution time, and the number
of iterations. The AMGCL library results are labelled ‘OMP=n’, where n=1,4,12,24 corresponds to the number of
OpenMP threads controlled by each MPI process. The Trilinos library uses single-threaded MPI processes. The
Trilinos data is only available for up to 1536 MPI processes, which is due to the fact that only 32-bit version of
the library was available on the cluster. The AMGCL data points for 19200 cores with ‘OMP=1" are missing because
factorization of the deflated matrix becomes too expensive for this configuration. AMGCL plots in the left and the right
columns correspond to the linear deflation and the constant deflation correspondingly. The Trilinos and Trilinos/DD-
ML lines correspond to the smoothed AMG and domain decomposition variants accordingly and are depicted both in
the left and the right columns for convenience.

In the case of ideal scaling the timing plots on this figure would be strictly horizontal. This is not the case here:
instead, we see that both AMGCL and Trilinos loose about 6-8% efficiency whenever the number of cores doubles.
The AMGCL algorithm performs about three times worse that the AMG-based Trilinos version, and about 2.5 times
better than the domain decomposition based Trilinos version. This is mostly governed by the number of iterations each
version needs to converge.

We observe that AMGCL scalability becomes worse at the higher number of cores. We refer to the following table for
the explanation:

Cores | Setup Solve | lterations
Total | Factorize E

Linear deflation, OMP=1

384 4.23 0.02 54.08 74

1536 6.01 0.64 57.19 76

6144 13.92 | 8.41 48.40 54

Constant deflation, OMP=1

384 3.11 0.00 61.41 94

1536 4.52 0.01 73.98 112

6144 5.67 0.16 64.13 90

Linear deflation, OMP=12

384 8.35 0.00 72.68 96

1536 7.95 0.00 82.22 106

6144 16.08 | 0.03 77.00 96

19200 | 42.09 | 1.76 90.74 104

Constant deflation, OMP=12

384 7.02 0.00 72.25 106

1536 6.64 0.00 102.53 | 148

6144 15.02 | 0.00 75.82 102

19200 | 36.08 | 0.03 119.25 | 158

The table presents the profiling data for the solution of the Poisson problem on the MareNostrum 4 cluster. The first two
columns show time spent on the setup of the preconditioner and the solution of the problem; the third column shows the
number of iterations required for convergence. The ‘Setup’ column is further split into subcolumns detailing the total
setup time and the time required for factorization of the coarse system. It is apparent from the table that factorization
of the coarse (deflated) matrix starts to dominate the setup phase as the number of subdomains (or MPI processes)
grows, since we use a sparse direct solver for the coarse problem. This explains the fact that the constant deflation
scales better, since the deflation matrix is four times smaller than for a corresponding linear deflation case.

The advantage of the linear deflation is that it results in a better approximation of the problem on a coarse scale and
hence needs less iterations for convergence and performs slightly better within its scalability limits, but the constant
deflation eventually outperforms linear deflation as the scale grows.

Next figure shows weak scaling of the Poisson problem on the PizDaint cluster. The problem size here is chosen
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Weak scaling of the Poisson problem on the MareNostrum 4 cluster
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so that each node owns about 2002 unknowns. On this cluster we are able to compare performance of the OpenMP
and CUDA backends of the AMGCL library. Intel Xeon E5-2690 v3 CPU is used with the OpenMP backend, and
NVIDIA Tesla P100 GPU is used with the CUDA backend on each compute node. The scaling behavior is similar to
the MareNostrum 4 cluster. We can see that the CUDA backend is about 9 times faster than OpenMP during solution
phase and 4 times faster overall. The discrepancy is explained by the fact that the setup phase in AMGCL is always
performed on the CPU, and in the case of CUDA backend it has the additional overhead of moving the generated
hierarchy into the GPU memory. It should be noted that this additional cost of setup on a GPU (and the cost of setup
in general) often can amortized by reusing the preconditioner for different right-hand sides. This is often possible for
non-linear or time dependent problems. The performance of the solution step of the AMGCL version with the CUDA
backend here is on par with the Trilinos ML package. Of course, this comparison is not entirely fair to Trilinos, but it
shows the advantages of using CUDA technology.

The following figure shows strong scaling results for the MareNostrum 4 cluster. The problem size is fixed to 5123
unknowns and ideally the compute time should decrease as we increase the number of CPU cores. The case of ideal
scaling is depicted for reference on the plots with thin gray dotted lines.

Here, AMGCL demonstrates scalability slightly better than that of the Trilinos ML package. At 384 cores the AMGCL
solution for OMP=1 is about 2.5 times slower than Trilinos/AMG, and 2 times faster than Trilinos/DD-ML. As is
expected for a strong scalability benchmark, the drop in scalability at higher number of cores for all versions of the tests
is explained by the fact that work size per each subdomain becomes too small to cover both setup and communication
costs.

The profiling data for the strong scaling case is shown in the table below, and it is apparent that, as in the weak scaling
scenario, the deflated matrix factorization becomes the bottleneck for the setup phase performance.

Cores | Setup Solve | lterations
Total [ Factorize E

Linear deflation, OMP=1

384 1.27 0.02 12.39 | 101

1536 0.97 0.45 2.93 78

6144 9.09 8.44 3.61 58

Constant deflation, OMP=1

384 1.14 0.00 16.30 | 150

1536 0.38 0.01 3.71 130

6144 0.82 0.16 1.19 85

Linear deflation, OMP=12

384 2.90 0.00 16.57 | 130

1536 1.43 0.00 4.15 116

6144 0.68 0.03 1.35 84

19200 | 1.66 1.29 1.80 77

Constant deflation, OMP=12

384 2.49 0.00 18.25 | 160

1536 0.62 0.00 491 163

6144 0.35 0.00 1.37 110

19200 | 0.32 0.02 1.89 129

An interesting observation is that convergence of the method improves with growing number of MPI processes. In
other words, the number of iterations required to reach the desired tolerance decreases with as the number of sub-
domains grows, since the deflated system is able to describe the main problem better and better. This is especially
apparent from the strong scalability results, where the problem size remains fixed, but is also observable in the weak
scaling case for ‘OMP=1".
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Weak scaling of the Poisson problem on PizDaint cluster
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Strong scaling of the Poisson problem on the MareNostrum 4 cluster
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3D Navier-Stokes problem

The system matrix in these tests contains 4773588 unknowns and 281089456 nonzeros. The assembled system is
available to download at https://doi.org/10.5281/zenodo.1231961. AMGCL library uses field-split approach with the
mpi::schur_pressure_correction preconditioner. Trilinos ML does not provide field-split type precondi-
tioners, and uses the nonsymmetric smoothed aggregation variant (NSSA) applied to the monolithic problem. Default
NSSA parameters were employed in the tests.

The figure below shows scalability results for the Navier-Stokes problem on the SuperMUC cluster. In case of
AMGCL, the pressure part of the system is preconditioned with a smoothed aggregation AMG. Since we are solving
a fixed-size problem, this is essentially a strong scalability test.

Strong scaling of the Navier-Stokes problem on the SuperMUC cluster
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The next figure shows scalability results for the Navier-Stokes problem on the MareNostrum 4 cluster. Since we are
solving a fixed-size problem, this is essentially a strong scalability test.

Both AMGCL and ML preconditioners deliver a very flat number of iterations with growing number of MPI processes.
As expected, the field-split preconditioner pays off and performs better than the monolithic approach in the solution
of the problem. Overall the AMGCL implementation shows a decent, although less than optimal parallel scalability.
This is not unexpected since the problem size quickly becomes too little to justify the use of more parallel resources
(note that at 192 processes, less than 25000 unknowns are assigned to each MPI subdomain). Unsurprisingly, in this
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Strong scaling of the Navier-Stokes problem on MareNostrum 4 cluster
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context the use of OpenMP within each domain pays off and allows delivering a greater level of scalability.

2.7 Compilation issues

AMGCL is a header-only library, so one does not need to compile it in order to use the library. However, there are
some dependencies coming with the library:

1. The runtime interface of AMGCL depends on the header-only Boost.property_tree library that allows the solvers
and preconditioners to accept dynamically formed parameters. When the runtime interface is not used, it is pos-
sible to get rid of the Boost.property_tree dependency by defining the preprocessor macro AMGCIL,_NO_BOOST.

2. AMGCL uses OpenMP during the setup of the provided solvers and preconditioners, and also for the
amgcl: :backend: :builtin backend. OpenMP is supported by most, if not all, of the relatively mod-
ern C++ compilers, so that should not be a problem. One just has to remember to enable the OpenMP support
during the compilation of the project that uses AMGCL.

3. Each of the AMGCL backends brings its own set of dependencies. For example, the
amgcl: :backend: :vexcl backend depends on the header-only VexCL library, which in turn de-
pends on some Boost libraries and either on CUDA or OpenCL support. The amgcl: :backend: : cuda
backend depends on the CUDA support and the CUSPARSE and Thrust libraries.

If your project already uses CMake as the build system, then using AMGCL should be easy. Here is a concise example
that shows how to compile a project using AMGCL with the builtin backend:

cmake_minimum_required (VERSION 3.1)
project (example)

find_package (amgcl)

add_executable (example example.cpp)
target_link_libraries (example amgcl::amgcl)

And here is an example of adding the support for the VexCL backend:

cmake_minimum_required (VERSION 3.1)
project (example)

find_package (amgcl)
find_package (VexCL)

add_executable (example example.cpp)
target_link_libraries (example amgcl::amgcl VexCL: :0penCL)

find_package (amgcl) may be used when the cmake support for AMGCL was installed either system-wide, or
in the current user home directory. If that is not the case, one can simply copy the amgcl folder into a subdirectory of
the main project and replace the find_package (amgcl) line with add_subdirectory (amgcl).

Finally, in order to compile the AMGCL tests and examples, the following script may be used:

git clone https://github.com/ddemidov/amgcl

cd ./amgcl

cmake -Bbuild -DAMGCL_BUILD_TESTS=ON -DAMGCL_BUILD_EXAMPLES=ON .
cmake —-build build

After this, the compiled tests and examples may be found in the build folder.
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