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Course Name: Applied Math 111, Introduction to Scientific Computing

Instructor: Prof. Robin Wordsworth (rwordsworth@seas.harvard.edu), 426 Geological Museum
Teaching Fellow: Jiawei Zhuang (jiaweizhuang@g.harvard.edu), Pierce Hall 108
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This website contains supplemental materials made by the TF, Jiawei Zhuang. These materials are not required for
completing this course, but just provide additional information I find useful. Might also use them for the session. Your
grade will not be affected if you choose to ignore this website.
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CHAPTER 1

Homework Notes

Additional notes (hints, clarifications) for homework.

1.1 Notes on Homework 1

In [1]: format compact

The last question asks you to use boolean_print_TT_fn.m (available on canvas) to print the truth table. Please read
this additional note if you have trouble using this function.

1.1.1 Function as an input variable

Typically you pass data (e.g. scalars, arrays. . . ) to a function. But the function boolean_print_TT_fn() accepts
another function as the input variable.

Inline function as an input variable

Let’s make two inline functions:

In [2]: func1 = @(a) a;
func2 = @(a,b) a&b;

boolean_print_TT_fn(func,1) prints the truth table for a function with a single input:

In [3]: boolean_print_TT_fn(func1,1)

_____
a|out
0|0
1|1

boolean_print_TT_fn(func,2) prints the truth table for a function with two inputs:

In [4]: boolean_print_TT_fn(func2,2)

3



AM111 Documentation, Release 0.1

_______
a|b|out
0|0| 0
0|1| 0
1|0| 0
1|1| 1

Standard function as an input variable

However, if you try to pass a standard function (i.e. defined in a separate file) to boolean_print_TT_fn(), it
will throw you some weird error:

In [5]: %%file func2_fn.m
function s=func2_fn(a,b)

s = a&b;
end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/func2_fn.m'.

In [6]: boolean_print_TT_fn(func2_fn,2)

Not enough input arguments.Error in func2_fn (line 2) s = a&b;

To fix this error, you can put @ in front of your function, as suggested here.

In [7]: boolean_print_TT_fn(@func2_fn,2)

_______
a|b|out
0|0| 0
0|1| 0
1|0| 0
1|1| 1

(That’s MATLAB-specific design. Other languages like Python treat inline and standard functions in the same way.)

1.1.2 Print truth table for half adder

Function with multiple return

A Half adder has two return values. One way to return multiple values is

In [8]: %%file multi_return.m
function [carry,s] = multi_return(a,b)

% This is not a corret adder! You should write your own!
carry = 0;
s = 1;

end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/multi_return.m'.

However, by default you only get the first output variable carry !

In [9]: multi_return(0,0)

ans =
0

To get both carry and s, you have to use two variables to hold the output results.

In [10]: [out1, out2] = multi_return(0,0)
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out1 =
0

out2 =
1

A perhaps more convenient way is to return a vector containing all outputs you need:

In [11]: %%file fake_half_adder.m
function out = fake_half_adder(a,b)

% This is not a corret adder! You should write your own!
carry = 0;
s = 1;
out = [carry,s];

end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/fake_half_adder.m'.

This time, you don’t have to write two variables to hold the output results:

In [12]: fake_half_adder(1,1)

ans =
0 1

Print truth table using boolean_print_TT_fn.m

boolean_print_TT_fn() will print the complete result only if you use a single vector as the return value for you
adder. Use 3 to get the format for half-adder.

In [13]: boolean_print_TT_fn(@multi_return,3) % not printing complete result

_____________
a|b|carry|sum
0|0| 0
0|1| 0
1|0| 0
1|1| 0

In [14]: boolean_print_TT_fn(@fake_half_adder,3) % can print complete result

_____________
a|b|carry|sum
0|0| 0 1
0|1| 0 1
1|0| 0 1
1|1| 0 1

Print truth table on your own

If you don’t want to use boolean_print_TT_fn.m, it is also quite straightforward to print the table on your own:

In [15]: disp('a,b|c,s')
for a=0:1
for b=0:1

fprintf('%d,%d|%d,%d \n',a,b,fake_half_adder(a,b))
end
end

a,b|c,s
0,0|0,1
0,1|0,1

1.1. Notes on Homework 1 5
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1,0|0,1
1,1|0,1

Type doc fprintf to see more formatting options.

1.1.3 Print truth table for full adder

Use 4 to get the format for full-adder.

In [16]: %%file fake_full_adder.m
function out = fake_full_adder(a,b,c)

carry = 0;
s = 1;
out = [carry,s];

end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/fake_full_adder.m'.

In [17]: boolean_print_TT_fn(@fake_full_adder,4)

________________
a|b|c|carry|sum
0|0|0|0 1
0|0|1|0 1
0|1|0|0 1
0|1|1|0 1
1|0|0|0 1
1|0|1|0 1
1|1|0|0 1
1|1|1|0 1

6 Chapter 1. Homework Notes



CHAPTER 2

Lecture & Session Notes

Forget the coding exercises in the class? The following notes might help.

2.1 Lecture 2: Logic Gates & Fibonacci Numbers

Date: 09/05/2017, Tuesday

In [1]: format compact

2.1.1 Logic gates

nand gate

In [2]: nand = @(a,b) ~(a&b)

nand =
function_handle with value:
@(a,b)~(a&b)

In [3]: nand(1,1) % test if it works

ans =
logical
0

print truth table

In [4]: help boolean_print_TT_fn % boolean_print_TT_fn.m is available on canvas

boolean_print_TT_fn.m
a function to print the boolean truth table for a given
supplied function 'func'

7
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INPUT
func: the supplied function (e.g. OR, NAND, XOR)
input_num: number of inputs

In [5]: boolean_print_TT_fn(nand,2)

_______
a|b|out
0|0| 1
0|1| 1
1|0| 1
1|1| 0

build “not” gate from “nand” gate

In [6]: my_not = @(a) nand(a,a) % "not" is a built-in function so we use my_not to avoid conflicts

my_not =
function_handle with value:
@(a)nand(a,a)

In [7]: boolean_print_TT_fn(my_not,1)

_____
a|out
0|1
1|0

Why nand(a,a) means not:

1. and(a,a) = a, no matter a is 0 or 1

2. nand(a,a) = not and(a,a) = not a

2.1.2 Fibonacci Sequence

generate Fibonacci sequences

In [8]: %%file fib_fn.m
function F = fib_fn(n)

F = zeros(1,n);
F(1)=1;
F(2)=1;
for j=3:n

F(j)=F(j-1)+F(j-2);
end

end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/fib_fn.m'.

In [9]: fib_fn(10)

ans =
1 1 2 3 5 8 13 21 34 55

Compare with the built-in function fibonacci( )

In [10]: fibonacci(1:10)
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ans =
1 1 2 3 5 8 13 21 34 55

golden ratio

In [11]: golden_ratio = (sqrt(5)+1)/2 % true value

golden_ratio =
1.6180

𝐹𝑛/𝐹𝑛−1 Converges to the golden ratio

In [12]: F = fib_fn(10);
F_ratio = F(2:end)./F(1:end-1)

F_ratio =
Columns 1 through 7
1.0000 2.0000 1.5000 1.6667 1.6000 1.6250 1.6154

Columns 8 through 9
1.6190 1.6176

In [13]: %plot --size 400,300
hold on
plot(F_ratio,'-o')
plot([0,10],[golden_ratio,golden_ratio])

2.2 Lecture 4: Floats & Random Numbers

Date: 09/12/2017, Tuesday

In [1]: format compact
format long % print more digits

2.2. Lecture 4: Floats & Random Numbers 9
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2.2.1 Floating point number system

Double precision:

𝑥 = ±(1 + 𝑓)2𝑒

0 ≤ 2𝑡𝑓 < 2𝑡, 𝑡 = 52

−1022 ≤ 𝑒 ≤ 1023

(See lecture slides or textbook for more explantion. This website focuses on codes.)

About parameters

How many binary bits are needed to store 𝑒:

In [2]: log2(2048)

ans =
11

Maximum value

Calculate the maximum value of 𝑥 from the formula.

In [3]: t=52;
f=(2^t-1)/2^t;
(1+f)*2^1023

ans =
1.797693134862316e+308

Compare with the built-in function

In [4]: realmax

ans =
1.797693134862316e+308

What happens if the value exceeds realmax?

In [5]: 2e308

ans =
Inf

Minimum (absolute) value

From the formula

In [6]: 2^-1022

ans =
2.225073858507201e-308

Compare with the built-in function

In [7]: realmin

ans =
2.225073858507201e-308

MATLAB allows you to go lower than realmin, but no too much.
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In [8]: for k=-321:-1:-325
fprintf('k = %d, 10^k = %e \n',k,10^k)

end

k = -321, 10ˆk = 9.980126e-322
k = -322, 10ˆk = 9.881313e-323
k = -323, 10ˆk = 9.881313e-324
k = -324, 10ˆk = 0.000000e+00
k = -325, 10ˆk = 0.000000e+00

10−323 can be scaled up:

In [9]: 1e-323 * 1e300

ans =
9.881312916824931e-24

But 10−324 can’t, as it becomes exactly 0.

In [10]: 1e-324 * 1e300

ans =
0

Machine precision

Compute machine precision

From the formula 0 ≤ 2𝑡𝑓 < 2𝑡, 𝑡 = 52

In [11]: 2^(-52)

ans =
2.220446049250313e-16

Built-in function:

In [12]: eps

ans =
2.220446049250313e-16

Another ways to get eps

In [13]: 1.0-(0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1) % equals to eps/2

ans =
1.110223024625157e-16

In [14]: 7/3-4/3-1 % equals to eps

ans =
2.220446049250313e-16

Difference between eps and realmin

realmin is about abosolute magnitude, while eps is about relative accuracy. Although a double-precision number
can represent a value as small as 10−323 (i.e. realmin), the relative error of arithmetic operations can be as large as
10−16 (i.e. eps).

Adding 10−16 to 1.0 has no effect at all.

In [15]: 1.0+1e-16-1.0

2.2. Lecture 4: Floats & Random Numbers 11
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ans =
0

Adding 10−15 to 1.0 has some effect, although the result is quite inaccurate.

In [16]: 1.0+1e-15-1.0

ans =
1.110223024625157e-15

Not a number

In [17]: 0/0

ans =
NaN

In [18]: Inf - Inf

ans =
NaN

However, Inf can sometimes be meaningful: (MATLAB-only. Not true in low-level languages.)

In [19]: 5/Inf

ans =
0

In [20]: 5/0

ans =
Inf

2.2.2 Random numbers

Linear congruential generator

In [21]: a = 22695477;
c = 1;
m = 2^32;
N = 2000;

X = zeros(N,1);
X(1) = 1000;
for j=2:N

X(j)=mod(a*X(j-1)+c,m);
end

R = X/m;

Hmm. . . looks pretty random

In [22]: %plot --size 600,200
plot(R);
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The data also looks like evenly-distributed.

In [23]: nbins = 25;
histogram(R, nbins);

2.3 Lecture 5: Random Numbers & Complex Numbers

Date: 09/14/2017, Thursday

In [1]: format compact

2.3.1 Built-in random number generator

rand returns a random number between [0,1] (uniform distribution).

In [2]: rand

ans =
0.8147

rand(N) returns a 𝑁 × 𝑁 random matrix. You can always type doc rand or help rand to see the detailed
usage.

In [3]: rand(5)

ans =
0.9058 0.2785 0.9706 0.4218 0.0357
0.1270 0.5469 0.9572 0.9157 0.8491
0.9134 0.9575 0.4854 0.7922 0.9340

2.3. Lecture 5: Random Numbers & Complex Numbers 13
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0.6324 0.9649 0.8003 0.9595 0.6787
0.0975 0.1576 0.1419 0.6557 0.7577

randi(N) returns an integer between 1 and N.

In [4]: randi(100)

ans =
75

randn uses normal distribution, instead of uniform distribution.

In [5]: randn(5)

ans =
-0.3034 -1.0689 -0.7549 0.3192 0.6277
0.2939 -0.8095 1.3703 0.3129 1.0933

-0.7873 -2.9443 -1.7115 -0.8649 1.1093
0.8884 1.4384 -0.1022 -0.0301 -0.8637

-1.1471 0.3252 -0.2414 -0.1649 0.0774

2.3.2 Complex numbers

Complex number basics

A real number (double-precision) takes 8 Bytes (64 bits). A complex number is a pair of numbers so simply takes 16
Bytes (128 bits)

In [6]: x = 3;
y = 4;
z = x+i*y;

In [7]: whos

Name Size Bytes Class Attributes

ans 5x5 200 double
x 1x1 8 double
y 1x1 8 double
z 1x1 16 double complex

Take conjugate of a complex number:

In [8]: conj(z)

ans =
3.0000 - 4.0000i

Show the number on the complex plane

In [9]: %plot --size 300,300
hold on
complex_number_plot_fn(conj(z)/5,'r') % complex_number_plot_fn is available on canvas.
complex_number_plot_fn(z/5,'b')

14 Chapter 2. Lecture & Session Notes
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3 equivalent ways to compute |𝑧|
In [10]: abs(z)

ans =
5

In [11]: sqrt(dot(z,z))

ans =
5

In [12]: norm(z)

ans =
5

The angle of z in degree:

In [13]: angle(z) / pi * 180.0

ans =
53.1301

Euler’s Formula

𝑒𝑖𝜃 = cos(𝜃) + 𝑖 sin(𝜃)

Verify that MATLAB understands 𝑒𝑖𝜃

In [14]: theta = linspace(0, 2*pi, 1e4);
z = exp(i*theta); % now z is an array, not a scalar as defined in the previou section.

In [15]: %plot --size 600,300
hold on
plot(theta,real(z))
plot(theta,imag(z))

2.3. Lecture 5: Random Numbers & Complex Numbers 15
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Mandelbrot set

Iteration with a single parameter

In [16]: c = rand-0.5 + i*(rand-0.5);

T = 50;
z_arr = zeros(T,1); % to hold the entire time series

z = 0; % initial value
z_arr(1) = z;

for t=2:T
z = z^2+c;
z_arr(t) = z;

end

In [17]: hold on
plot(real(z_arr))
plot(imag(z_arr))
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Run this code repeatedly, you will see sometimes 𝑧 will blow up, sometime not, according to the initial value of 𝑐.
Thus we want to figure out what values of 𝑐 will make 𝑧 blow up.

Iteration with the entire paremeter space

We want to construct a 2D array containing all possible values of 𝑐 on the complex plane.

Let’s make 1D grids first.

In [18]: nx = 100;
xm = 1.75;
x = linspace(-xm, xm, nx);
y = linspace(-xm, xm, nx);

In [19]: size(x), size(y)

ans =
1 100

ans =
1 100

convert 1D grid to 2D grid.

In [20]: [Cr, Ci] = meshgrid(x,y);

In [21]: size(Cr), size(Ci)

ans =
100 100

ans =
100 100

In [22]: C = Cr + i*Ci; % now C spans over the complex plane

In [23]: size(C)

ans =
100 100

Run the iteration for every value of C

2.3. Lecture 5: Random Numbers & Complex Numbers 17
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In [24]: T = 50;

Z_final = zeros(nx,nx); % to hold last value of z, at all possible points.

for ix = 1:nx
for iy = 1:nx % we also have nx points in the y-direction

% get the value of c at current point.
% note that MATLAB is case-sensitive
c = C(ix,iy);

z = 0; % initial value, doesn't matter too much
for t=2:T

z = z^2+c;
end
Z_final(ix,iy) = z; % save the last value of z

end
end

Here’s one way to visualize the result.

In [25]: pcolor(abs(Z_final)); % plot the magnitude of z

shading flat; % hide grids
colormap jet; % change colormap
colorbar; % show colorbar

% The default color range is min(z)~max(z),
% but max(z) is almost Inf so we make the range smaller
caxis([0,2]);

2.4 Lecture 6: Matrix

Date: 09/19/2017, Tuessday

In [1]: format compact

18 Chapter 2. Lecture & Session Notes
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2.4.1 Matrix operation basics

Making a magic square

In [2]: A = magic(3)

A =
8 1 6
3 5 7
4 9 2

Take transpose

In [3]: A'

ans =
8 3 4
1 5 9
6 7 2

Rotate by 90 degree. (Not so useful for linear algebra. Could be useful for image processing.)

In [4]: rot90(A')

ans =
4 9 2
3 5 7
8 1 6

Sum over each column

In [5]: sum(A)

ans =
15 15 15

Another equivalent way

In [6]: sum(A, 1)

ans =
15 15 15

Sum over each row

In [7]: sum(A, 2)

ans =
15
15
15

Extract the diagonal elements.

In [8]: diag(A)

ans =
8
5
2

The sum of diagonal elements is also 15, by the definition of a magic square.

In [9]: sum(diag(A))

ans =
15

Determinant

2.4. Lecture 6: Matrix 19
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In [10]: det(A)

ans =
-360

Matrix inversion 𝐴−1

In [11]: inv(A)

ans =
0.1472 -0.1444 0.0639

-0.0611 0.0222 0.1056
-0.0194 0.1889 -0.1028

2.4.2 Built-in image for magic square

In [12]: load durer
image(X)
colormap(map)
axis image

In [13]: load detail
image(X)
colormap(map)
axis image

20 Chapter 2. Lecture & Session Notes
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2.4.3 Vector norms

In [14]: x = 1:5 % make a boring vector

x =
1 2 3 4 5

Calculate p-norm from formula

In [15]: my_norm = @(x,p) (sum(abs(x).^p))^(1/p)

my_norm =
function_handle with value:
@(x,p)(sum(abs(x).ˆp))ˆ(1/p)

Check if it works.

In [16]: my_norm(x,1)

ans =
15

As p increases, the norm converges to max(|𝑥|)
In [17]: for p=1:10

my_norm(x,p)
end

ans =
15

ans =
7.4162

2.4. Lecture 6: Matrix 21
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ans =
6.0822

ans =
5.5937

ans =
5.3602

ans =
5.2321

ans =
5.1557

ans =
5.1073

ans =
5.0756

ans =
5.0541

It blows up at 𝑝 = 442 because 5442 exceeds the realmin.

In [18]: my_norm(x,441), my_norm(x,442)

ans =
5

ans =
Inf

In [19]: 5^441

ans =
1.7611e+308

In [20]: 5^442

ans =
Inf

Built-in function norm works for large numbers, though. Think about why.

In [21]: norm(x,441), norm(x,442)

ans =
5

ans =
5

2.4.4 Conditioning

4x4 magic square

In [22]: B = magic(4)

B =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

It is singular and ill-conditioned.

In [23]: inv(B)

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 4.625929e-18.
ans =

1.0e+15 *

22 Chapter 2. Lecture & Session Notes
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-0.2649 -0.7948 0.7948 0.2649
-0.7948 -2.3843 2.3843 0.7948
0.7948 2.3843 -2.3843 -0.7948
0.2649 0.7948 -0.7948 -0.2649

In [24]: det(B)

ans =
5.1337e-13

In [25]: cond(B)

ans =
4.7133e+17

Use 1-norm instead. All norms should have similar order of magnitude.

In [26]: cond(B,1)

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 4.625929e-18.
> In cond (line 46)
ans =

2.1617e+17

The condition number reaches 1/eps, leading to large numerical error.

In [27]: 1/eps

ans =
4.5036e+15

2.4.5 Sparse matrix

In [28]: A = eye(10)

A =
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

Store it in the sparse form saves memory.

In [29]: As = sparse(A)

As =
(1,1) 1
(2,2) 1
(3,3) 1
(4,4) 1
(5,5) 1
(6,6) 1
(7,7) 1
(8,8) 1
(9,9) 1
(10,10) 1

2.4. Lecture 6: Matrix 23
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Use whos A and whos As to check memory usage.

Visualize sparsity. Also works for As

In [30]: spy(A)

2.5 Lecture 8: Interpolation

Date: 09/26/2017, Tuessday

In [1]: format compact

2.5.1 A simple example

Make 3 data points

In [2]: xp = [-pi/2, 0, pi/2];
yp = [-1, 0, 1];

The two functions below both go through the 3 data points.

In [3]: f = @(x) sin(x);
g = @(x) 2*x/pi;

There are ways to plot a function symbolically/analytically (for example), but those methods have a lot of limitations
and you don’t have detailed controls on them.

So we stick to the most standard way of plotting: evaluate the function value on a lot of points to make the line look
smooth.

24 Chapter 2. Lecture & Session Notes
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In [4]: x = linspace(-2,2,1e3); % a 1000 grid points from -2 to 2

Always remember to surpress the output (by ;) when defining this kind of large array. MATLAB WILL print all the
elements in an array/matrix no matter how large it is. Sometimes your program will die just because it wants to print
1010 numbers.

Now we can plot the functions and data points.

In [5]: %plot --size 300,200
hold on
plot(xp,yp,'o')
plot(x,f(x))
plot(x,g(x))
legend('data','sin(x)','2x/\pi','Location','northwest')

2.5.2 Polynomial interpolation

In [6]: % make some data points
n = 5;
px = [0 1 2 3 4];
py = [1 2 2 6 9];

n data point can be precisely fitted by a n-1 degree polynomial 𝑝 = 𝑐1 + 𝑐2𝑥 + ... + 𝑐𝑛𝑥
𝑛−1.

The coffeicients 𝑐 = [𝑐1, 𝑐2, ...𝑐𝑛]𝑇 satisfy the equation

𝑉 𝑐 = 𝑦

where 𝑦 = [𝑦1, 𝑦2, ..., 𝑦𝑛]𝑇 is the data points you want to fit, and V is the vandermode matrix only containing powers
of 𝑥𝑘, the data points.

In [7]: % calculate the vander matrix by loop
V = zeros(n);
for j=1:5

V(:,j) = px.^(j-1);
end
V

V =
1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256
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The built-in vander is flipped left-right. Both forms are correct as long as your algorithm is consistent with the
matrix.

In [8]: vander(px)

ans =
0 0 0 0 1
1 1 1 1 1

16 8 4 2 1
81 27 9 3 1

256 64 16 4 1

Now we can solve 𝑉 𝑐 = 𝑦 by 𝑐 = 𝑉 −1𝑦. In MATLAB backslash form it is c=V\y. Note that the actual code never
computes 𝑉 −1, but use something like LU factorization/Gaussian elimination to solve the system. (it is almost always
a bad idea to compute the inverse of a matrix). But thinking about 𝑉 −1𝑦 helps you to remember the order of V and y
in the command (e.g. is it V\y or y\V ?).

The code below throws an error because y is a row vector.

In [9]: c = V\py

Error using \Matrix dimensions must agree.

You need a column vector on the right side, just like how you write the equation mathematically.

In [10]: c = V\py'

c =
1.0000
5.6667

-7.5833
3.3333

-0.4167

Now we have the coefficients 𝑐, we can write the polynomial 𝑝 = 𝑐1 + 𝑐2𝑥 + ... + 𝑐𝑛𝑥
𝑛−1 as a MATLAB function.

Here’s a naive way to evaluate the polynomial. You should write a loop instead. Also consider Horner’s method to
achieve optimal performance.

In [11]: my_ploy = @(c,x) c(1) + c(2)*x + c(3)*x.^2 + c(4)*x.^3 + c(5)*x.^4 ;

In [12]: % evaluate the function on a lot of data points
xf = linspace(-1,5,100);
yf = my_ploy(c,xf);

In [13]: %plot --size 400,200
hold on
plot(px,py,'o')
plot(xf,yf)
legend('data','interpolation','Location','southeast')
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2.6 Lecture 11: Odyssey!!!

Date: 10/05/2017, Thursday

You are expected to finish 8+1 tiny tasks. They will help you get prepared for the final project!

Related resources:

• Ryans’s Linux tutorial

• Intro-to-Odssey-S17_am111.pdf on Canvas.

• Odyssey quickstart guide

• MATLAB on Odyssey

• Parallel MATLAB on Odyssey

2.6.1 Task 1: Command line on your laptop

Preparation

Read Session 4 note, especially Ryans’s tutorial if you didn’t come to Monday’s session.

After reading Chapter 1 to Chapter 5, you should at least know the following Linux commands

• ls

• pwd

• mkdir

• cd

• mv

• rm and rm -rf

• cp and cp -r

If you choose vi/vim as your text editor, read Chapter 6. Then you should at least know the following vim commands

• i

• esc

• :wq

• :q!

Find your own tutorial if you choose other text editors.

Writing code in terminal

Task: Use vim or other command line text editer to create a matlab file hello.m with the content “disp(‘hello world!’)”

We use vim as an example.

First, create a text file by

vim hello.m
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(If hello.m already exists, then it will just open that file)

Inside vim, type i to enter the Insert Mode.

Then type the code as usual. For example

disp('hello world!')

After writting the content, type esc to go back to Command Mode.

Finally, type :wq to save and quit vim.

Again, read Chapter 6 for more vim usages!

Tips: You can check the content of hello.m by a graphic editer. On Mac, you can use open ./ to open the graphic
finder, and then open hello.m that you’ve just created. On Odyssey (See Task 2), there’s no graphic editor, so you will
also use vim to check the file content.

Running MATLAB interactively in terminal

Windows users can jump to Task 2 because I am not sure if the following stuff would work.

Find the MATLAB executable path on your laptop. On Mac it should be something like

/Applications/MATLAB_R2017a.app/bin/matlab

Running the above command will open the traditional graphic version of MATLAB.

To only use the command line, add 3 options:

/Applications/MATLAB_R2017a.app/bin/matlab -nojvm -nosplash -nodesktop

Play with this command line version of MATLAB for a while. Type exit to quit.

Set shortcut

If you are tired with typing this long command, you can set

alias matlab='/Applications/MATLAB_R2017a.app/bin/matlab'

Then you can simply type matlab to launch the program. However, this shortcut will go away if you close the
terminal. To make it a permanent configuration, add the above command to a system file called ~/.bash_profile. You
can edit it by vim for example:

vim ~/.bash_profile

Running MATLAB scripts in terminal

cd to the directory where you saved the hello.m file. You can execute it by

matlab -nojvm -nosplash -nodesktop
hello

Or you can use ‘-r’ to combine two commands together

matlab -nojvm -nosplash -nodesktop -r hello
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If you didn’t set shortcut, the full command would be

/Applications/MATLAB_R2017a.app/bin/matlab -nojvm -nosplash -nodesktop -r hello

(I actually prefer this command line version to the complicated graphic version!)

2.6.2 Task 2: Command line on Odyssey

Login

Login to Odyssey by

ssh am111uXXXX@login.rc.fas.harvard.edu

Check Odyssey website if you have any trouble.

Tips: You can open multiple terminals and login to Odyssey, if one is not enough for you.

Basic navigation

Repeat the basic Linux commands, but this time on Odyssey, not on your laptop.

You should see Mac and Linux (Odyssey) commands are almost identical.

File transfer

Use scp

You can transfer files by the built-in scp (security-copy) command. Make sure you are running this command on
your laptop, not on odyssey.

From you laptop to Odyssey (first figure out your Odyssey home directory path by pwd)

scp local_file_path username@login.rc.fas.harvard.edu:/path_shown_by_pwd_on_Odyssey

Try to transfer *hello.m* that you wrote in Task 1 to Odyssey! You will be asked to enter your password again.

From to Odyssey to your laptop is just reversing the arguments

scp username@login.rc.fas.harvard.edu:/file_path_on_odyssey local_file_path

Use scp -r for transfering directory (similar to cp -r)

Use other tools

Use Filezilla if you need to transfer a lot of file!

2.6.3 Task 3: MATLAB on Odyssey

Load MATLAB

Load MATLAB by
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module load matlab

(If you get an error, run source new-modules.sh and try again.)

It loads the lastest version by default. You can check the version by which

[username]$ which matlab
alias matlab='matlab -singleCompThread'
/n/sw/matlab-R2017a/bin/matlab

Or you can load a specific version

module load matlab/R2017a-fasrc01

Use this RC portal to find avaiable software and the corresponding loading command. Search for MATLAB. How
many different verions do you see?

Run MATLAB

After loading MATLAB, you can run it by: (same as on your laptop)

matlab -nojvm -nosplash -nodesktop

The 3 options are crucial because there’s no graphical user interface on Odyssey.

Play with it, and type exit to quit.

Run hello.m by matlab -nojvm -nosplash -nodesktop -r hello.

2.6.4 Task 4: Interactive Job on Odyssey

After logging into Odyssey, you are on a home node with very few computational resources. For any serious computing
work you need to switch to a compute node. The easiest way is to do this interactively (more about interative mode):

srun -t 0-0:30 -c 4 -N 1 --pty -p interact /bin/bash

Here we request 30 minutes of computing time (-t 0-0:30) on 4 CPUs (-c 4), on a single computer (-N 1),
using interactive mode (--pty and /bin/bash).

Warning: Don’t request too many CPUs! This will make you wait for much longer.

-p interact only means you are requesting CPUs on the interactive partition, but doesn’t mean that you want it
to run interactively. The following command starts interactive mode on the general partition (more about partition).

srun -t 0-0:30 -c 4 -N 1 --pty -p general /bin/bash

Then repeat what you’ve done in Task 3.

2.6.5 Task 5: Batch Job on Odyssey

If your job runs for hours or even days, you can submit it as a batch job, so you don’t need to keep your terminal open
all the time. You are allowed to log out and go away while the job is runnning.

Create a file called runscript.sh with the following content. (you can use vim to create such a text file)
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#!/bin/bash
#SBATCH -J Matlabjob1
#SBATCH -p general
#SBATCH -c 1 # single CPU
#SBATCH -t 00:05:00
#SBATCH --mem=400M # memory
#SBATCH -o %j.o # output filename
#SBATCH -e %j.e # error filename

## LOAD SOFTWARE ENV ##
source new-modules.sh
module purge
module load matlab/R2017a-fasrc01

## EXECUTE CODE ##
matlab -nojvm -nodisplay -nosplash -r hello

It just puts the options you’ve used in Task 4 into a text file.

Make sure runscript.sh is at the same directory as hello.m, then execute

sbatch runscript.sh

Use sacct to check job status. You should get some output files once it is finished. (more about submitting and
monitoring jobs)

Tips: always test your code in interactive mode before submitting a batch job!

2.6.6 Task 6: Use MATLAB-parallel on your laptop

Make sure you’ve installed the parallel toolbox. To start the command line version, remove the -nojvm option when
using parallel mode. (The original graphic version works as usual)

matlab -nosplash -nodesktop

Initialize parallel mode by

In [1]: parpool('local', 2)

Starting parallel pool (parpool) using the 'local' profile ...
connected to 2 workers.

ans =

Pool with properties:

Connected: true
NumWorkers: 2

Cluster: local
AttachedFiles: {}
IdleTimeout: 30 minutes (30 minutes remaining)
SpmdEnabled: true

Then run this script for several times to make sure you get speed-up by using parallel for-loop (parfor)

In [4]: n = 1e9;

X = 0;
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tic
for i = 1:n

X = X + 1;
end
T = toc;
fprintf('serial time: %f; result: %d \n',T,X)

X = 0;
tic
parfor i = 1:n

X = X + 1;
end
T = toc;
fprintf('parallel time: %f; result: %d \n',T,X)

serial time: 2.724932; result: 1000000000
parallel time: 1.748450; result: 1000000000

Tips: For command line version of MATLAB, save the code as parallel_timing.m, and then execute
parallel_timing inside MATLAB.

Finally, quit the parallel mode

In [5]: delete(gcp)

2.6.7 Task 7: Use MATLAB-parallel on Odyssey interactive mode

Repeat what you’ve done in Task 6, but on Odyssey. This might not be as straightforward as you expected!

You need to request enough memory for the parallel tool box

srun -t 0-0:30 -c 4 -N 1 --mem-per-cpu 4000 --pty -p interact /bin/bash

Environment variable SLURM_CPUS_PER_TASK tells you how many CPUs are available

echo $SLURM_CPUS_PER_TASK
4

For parallel support, you need to call matlab-default instead of matlab to launch the program, as described
here.

module load matlab
matlab-default -nosplash -nodesktop

Inside MATLAB, you can again check the number of CPUs by

getenv('SLURM_CPUS_PER_TASK')
ans = '4'

Initialize parallel mode by (this is a general code for any number of CPUs)

parpool('local', str2num(getenv('SLURM_CPUS_PER_TASK')) )

The initialization might take severals minutes on Odyssey. Eventually you should see something like

ans =

Pool with properties:
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Connected: true
NumWorkers: 4

Cluster: local
AttachedFiles: {}
IdleTimeout: 30 minutes (30 minutes remaining)
SpmdEnabled: true

Then, execute the parallel_timing.m script in Task 6. You should see a speed-up like that

>> parallel_timing
serial time: 12.228084; result: 1000000000
parallel time: 2.667366; result: 1000000000

2.6.8 Task 8: MATLAB-parallel as batch Job

Sightly modify the script parallel_timing.m in Task 6. Call it parallel_timing_batch.m this time.

parpool('local', str2num(getenv('SLURM_CPUS_PER_TASK')))

n = 1e9;

X = 0;
tic
for i = 1:n

X = X + 1;
end
T = toc;
fprintf('serial time: %f; result: %d \n',T,X)

X = 0;
tic
parfor i = 1:n

X = X + 1;
end
T = toc;
fprintf('parallel time: %f; result: %d \n',T,X)

X = 0;
tic
parfor i = 1:n

X = X + 1;
end
T = toc;
fprintf('parallel time: %f; result: %d \n',T,X)

delete(gcp)

Then, change the runscript.sh in Task 5 correspondingly

#!/bin/bash
#SBATCH -J timing
#SBATCH -o timing.out
#SBATCH -e timing.err
#SBATCH -N 1
#SBATCH -c 4
#SBATCH -t 0-00:20
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#SBATCH -p general
#SBATCH --mem-per-cpu 8000

source new-modules.sh
module load matlab
srun -n 1 -c 4 matlab-default -nosplash -nodesktop -r parallel_timing_batch

Submit this job. It will take many minutes to finish. Do you get expected speed-up?

In timing.out, you should see something like

ans =

Pool with properties:

Connected: true
NumWorkers: 4

Cluster: local
AttachedFiles: {}
IdleTimeout: 30 minutes (30 minutes remaining)
SpmdEnabled: true

serial time: 7.635188; result: 1000000000
parallel time: 5.901599; result: 1000000000
parallel time: 3.516169; result: 1000000000
Parallel pool using the 'local' profile is shutting down.

Explain why the second parfor is faster then the first parfor

Tips: Using batch job for this kind of small computation is definitely an overkill, as queuing and initializing would
take much longer than actual compuation. You will probably use the interactive mode much more often in this class.

2.6.9 Bonus task: make your terminal prettier

Open ~/.bash_profile (for example vim ~/.bash_profile), add the following lines

For Mac

export CLICOLOR=1
export LSCOLORS=ExFxBxDxCxegedabagacad

For Linux (Odyssey)

alias ls="ls --color=auto"

Type source ~/.bash_profile or relaunch the terminal. Notice any difference?

2.7 Session 1: MATLAB Functions and Scripts

Date: 09/11/2017, Monday

In [1]: format compact

MATLAB’s function control can be somewhat confusing. . . Let me try to explain it.
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2.7.1 3 ways to execute MATLAB codes

You can run MATLAB codes in these ways:

• Executing codes directly in the interactive console

• Put codes in a script (an m-file), and execute the script in the console

• Put codes in a function (also an m-file), and execute the function in the console

Executing codes directly

You know how to run the codes in the interactive console:

In [2]: a=1;
b=2;
2*a+5*b

ans =
12

To avoid re-typing the formula 2*a+5*b over and over again, you can create an inline function in the interative
environment.

In [3]: f = @(a,b) 2*a+5*b

f =
function_handle with value:
@(a,b)2*a+5*b

In [4]: f(1,2)
f(2,3)

ans =
12

ans =
19

Writing a script

A script simply allows you to execute many lines of codes at once. It is not a function. There’s no input and output
variables.

To open a new script, type “edit” in the console or click on the “New” Button.

In [5]: edit

Save the following code into a file with the suffix “.m”

In [6]: %%file my_script.m
a=1;
b=2;
2*a+5*b

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/my_script.m'.

Execute the script by typing its file name in the console. Make sure your working directory is the same as the script’s
directory.

In [7]: my_script

ans =
12
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You can definitely change parameters a, b in your script and re-run the script over and over again. However, to have
a better control on input arguments, you need to write a function, a not script.

Writing a function

A function is also a file with the suffix “.m”, same as a script. But it contains the function head which defines input
and output parameters. The function name has to be the same as the file name.

In [8]: %%file my_func.m
function s=my_func(a,b)

s = 2*a+5*b;
end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/my_func.m'.

Now you can provide input arguments to your function.

In [9]: my_func(1,2)

ans =
12

2.7.2 Multi-level functions

An m-file can contain multiple functions. But only the first one can be accessed from the outside. Others are only for
internal use.

In [10]: %%file mul_by_4.m

function z=mul_by_4(x)
y = mul_by_2(x);
z = mul_by_2(y);

end

function y=mul_by_2(x)
y = 2*x;

end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/mul_by_4.m'.

You can call mul_by_4( ), but cannot call mul_by_2( ).

In [11]: mul_by_4(2)

ans =
8

In [12]: mul_by_2(2)

Error using evalUndefined function 'mul_by_2' for input arguments of type 'double'.

Note: Since R2016b, you can also add functions in scripts. However, you had better avoid this usage for backward
capability. Otherwise, people using an older version of MATLAB will have trouble running your code. Always create
a separate file for your function.

2.8 Session 2: Speed-up your code by vectorization

Date: 09/18/2017, Monday
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This session is mostly about reviewing Lecture 4 and 5. This page just introduces an additional trick to make your
code faster and cleaner.

2.8.1 For loops

You already know how to create a Mandelbrot set by writting tons of “for” loops. If not, see Lecture 5’s note.

In [1]: %%file mande_by_loops.m
function Z_final = mande_by_loops(C, T)

[nx,ny] = size(C);
Z_final = zeros(nx,ny); % to hold last value of z, at all possible points.

for ix = 1:nx
for iy = 1:ny

% get the value of c at current point.
% note that MATLAB is case-sensitive
c = C(ix,iy);
z = 0; % initial value, doesn't matter too much
for t=2:T

z = z^2+c;
end
Z_final(ix,iy) = z; % save the last value of z

end
end

end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/mande_by_loops.m'.

2.8.2 Vectorization

The above function has 3 “for” loops, but 2 of them are not necessary, because you can operate on the entire array.

In [2]: %%file mande_by_vec.m
function Z = mande_by_vec(C, T)

% vectorized over C and Z

[nx,ny] = size(C);
Z = zeros(nx,ny);
for t=2:T

Z = Z.^2+C;
end

end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/mande_by_vec.m'.

2.8.3 Performance comparision

Compared to the for-loop version, this vectorized version is much shorter, and 20x faster!

In [3]: % initialization
nx = 1000;
xm = 1.75;
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x = linspace(-xm, xm, nx);
y = linspace(-xm, xm, nx);
[Cr, Ci] = meshgrid(x,y);
C = Cr + i*Ci;

T = 50;

% use loops
tic
Z_loop = mande_by_loops(C,T);
toc

% use vectorization
tic
Z_vec = mande_by_vec(C,T);
toc

% check if results are equal
isequal(Z_vec,Z_loop)

% plot two results
subplot(211);pcolor(abs(Z_loop));
shading flat;colormap jet; colorbar;caxis([0,2]);

subplot(212);pcolor(abs(Z_vec));
shading flat;colormap jet; colorbar;caxis([0,2]);

Elapsed time is 4.883975 seconds.
Elapsed time is 0.255324 seconds.

ans =

logical

1
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MATLAB’s loop is notoriously slow because it keeps checking the variable types at every iteration. A rule of thumb
is shorter code is often faster, in terms of achieving the same functionality. ( Only for high-level languages like
MATLAB and Python. Loop is fast in low-level languages.)

2.9 Session 3: LU Factorization & Markov Process

Date: 09/25/2017, Monday

In [1]: format compact

Read Canvas - Files - lectures- linear_algebra.pdf first before looking at this material.

2.9.1 LU=PA Factorization

Gaussian elimination consists of forward elimination and backward substitution.

The backward substition part is easy – You already have an upper diagnonal matrix 𝑈 , and just need to solve 𝑈𝑥 = 𝑏.

The forward elimination part is more interesting. By doing forward elimination by hand, you transformed the original
matrix 𝐴 to an upper diagnonal matrix 𝑈 . In fact, during this forward elimination process, you not only produced
matrix 𝑈 , but also constructed two other matrices 𝐿 and 𝑃 (even if you didn’t even notice it!). They satisfy

𝐿𝑈 = 𝑃𝐴

• L is a lower triangular matrix L with all diagonal elements being 1. It contains all the multipliers used during
the forward elimination.
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• 𝑃 is a permutation matrix containing only 0 and 1. It accounts for all row-swapings during the forward
elimination.

Row operation as matrix multiplication

Basic idea

To understand how 𝐿𝑈 = 𝑃𝐴 works, you should always keep in mind that

row operation = left multiply

Or more verbosely

A row operation on matrix A = left-multiply a matrix L to A (i.e. calculate LA)

This is a crucial concept in linear algebra.

Let’s see an example:

In [2]: A = [10 -7 0; -3 2 6 ;5 -1 5]

A =
10 -7 0
-3 2 6
5 -1 5

Perform the first step of gaussian elimination, i.e. add 0.3*row1 to row2.

In [3]: A1 = A; % make a copy
A1(2,:) = A(2,:)+0.3*A(1,:)

A1 =
10.0000 -7.0000 0

0 -0.1000 6.0000
5.0000 -1.0000 5.0000

There’s another way to perform the above row-operation: left-multiply A by an elementary matrix.

In [4]: L1 = [1,0,0; 0.3,1,0; 0,0,1] % make our elementary matrix

L1 =
1.0000 0 0
0.3000 1.0000 0

0 0 1.0000

In [5]: L1*A

ans =
10.0000 -7.0000 0

0 -0.1000 6.0000
5.0000 -1.0000 5.0000

L1*A gives the same result as the previous row-operation!

Let’s repeat this idea again:

row operation = left multiply
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Find elementary matrix

How to find out the matrix L1? Just perform the row-operation to an identity matrix

In [6]: L1 = eye(3); % 3x3 identity matrix
L1(2,:) = L1(2,:)+0.3*L1(1,:) % the row-operation you want to "encode" into this matrix

L1 =
1.0000 0 0
0.3000 1.0000 0

0 0 1.0000

Then you can perform L1*A to apply this row-operation on any matrix A.

Same for the permutation operation, as it is also an elementary row operation.

In [7]: Ap = A; % make a copy
% swap raw 1 and 2
Ap(2,:) = A(1,:);
Ap(1,:) = A(2,:);
Ap

Ap =
-3 2 6
10 -7 0
5 -1 5

You can “encode” this row-swapping operation into an elementary permutation matrix.

In [8]: I = eye(3); % 3x3 identity matrix
P1 = I;

% swap raw 1 and 2
P1(2,:) = I(1,:);
P1(1,:) = I(2,:);
P1

P1 =
0 1 0
1 0 0
0 0 1

Multiplying A by P1 is equivalent to permuting A directly:

In [9]: P1*A % same as Ap

ans =
-3 2 6
10 -7 0
5 -1 5

Get L during forward elimination

For simplicity, assume you don’t need permutation steps. Then you just transform an arbrary 3x3 matrix A (non-
singular, of course) to an upper-diagnoal matrix U by 3 row operations. Such operations are equivalent to multiplying
A by 3 matrices 𝐿1, 𝐿2, 𝐿3

𝐴 → 𝐿1𝐴 → 𝐿2𝐿1𝐴 → 𝐿3𝐿2𝐿1𝐴 = 𝑈

We can rewrite it as

𝐴 = (𝐿3𝐿2𝐿1)−1𝑈
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Or

𝐴 = 𝐿𝑈, 𝐿 = (𝐿3𝐿2𝐿1)−1

It is easy to get 𝐿 as long as you know 𝐿1, 𝐿2, 𝐿3 from the operations you’ve performed.

In [10]: A % show A's value again

A =
10 -7 0
-3 2 6
5 -1 5

In [11]: L1 = [1,0,0; 0.3,1,0; 0,0,1] % repeat L1 again

L1 =
1.0000 0 0
0.3000 1.0000 0

0 0 1.0000

In [12]: L1*A % row operation by left-multiply

ans =
10.0000 -7.0000 0

0 -0.1000 6.0000
5.0000 -1.0000 5.0000

In [13]: L2 = [1,0,0; 0,1,0; -0.5,0,1] % build the next elimination step

L2 =
1.0000 0 0

0 1.0000 0
-0.5000 0 1.0000

In [14]: L2*L1*A % apply the next elimination step

ans =
10.0000 -7.0000 0

0 -0.1000 6.0000
0 2.5000 5.0000

In [15]: L3 = [1,0,0; 0,1,0; 0,25,1] % build the last elimination step

L3 =
1 0 0
0 1 0
0 25 1

In [16]: U = L3*L2*L1*A % apply the last elimination step

U =
10.0000 -7.0000 0

0 -0.1000 6.0000
0 0 155.0000

Now you’ve transformed 𝐴 to an upper-diagonal matrix 𝑈 . And you also have 𝐿:

In [16]: L = inv(L3*L2*L1)

L =
1.0000 0 0

-0.3000 1.0000 0
0.5000 -25.0000 1.0000

Or

In [17]: L = inv(L1)*inv(L2)*inv(L3)
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L =
1.0000 0 0

-0.3000 1.0000 0
0.5000 -25.0000 1.0000

Calculating 𝐿 is just putting the coefficients in 𝐿1, 𝐿2, 𝐿3 together and negating them (except diagonal elements).

Why? Again, because

row operation = left multiply

Here we are just encoding multiple row operations 𝐿−1
1 , 𝐿−1

2 , 𝐿−1
3 into a single matrix 𝐿. You get this matrix by

applying all those operations to an identity matrix.

You can think of 𝐿−1
1 as “a row operation that cancels the effect of 𝐿1“:

In [18]: inv(L1)

ans =
1.0000 0 0

-0.3000 1.0000 0
0 0 1.0000

Last, let’s verify 𝐴 = 𝐿𝑈

In [19]: L*U

ans =
10.0000 -7.0000 0
-3.0000 2.0000 6.0000
5.0000 -1.0000 5.0000

We can say that 𝐿 represents all forward elimination steps (assume no permutaion). By knowing 𝐿, you can easily get
𝑈 by 𝑈 = 𝐿−1𝐴

Get P during forward elimination

Say you have a permutation step P somewhere, for example

𝐿3𝑃𝐿2𝐿1𝐴 = 𝑈

It can be shown that 𝑃 can be “pushed rightward”

𝐿3𝐿2𝐿1(𝑃𝐴) = 𝑈

(The proof is too technical. See P159 of Trefethen L N, Bau III D. Numerical linear algebra[M]. Siam, 1997 if you
are interested).

Thus

𝐿𝑈 = 𝑃𝐴

2.9.2 Markov process

There are two towns, both have 100 people (so 200 in total). Everyday, 50% of people in town 1 will move to town 2,
while 30% of people in town 2 will move to town 1. Eventually, how many people will each town have?

The initial condition is [︂
𝑥1

𝑥2

]︂
=

[︂
100
100

]︂
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Each day [︂
𝑥1

𝑥2

]︂
→

[︂
𝑥1 − 0.5𝑥1 + 0.3𝑥2

𝑥2 + 0.5𝑥1 − 0.3𝑥2

]︂
=

[︂
0.5𝑥1 + 0.3𝑥2

0.5𝑥1 + 0.7𝑥2

]︂
=

[︂
0.5 0.3
0.5 0.7

]︂ [︂
𝑥1

𝑥2

]︂
This is a Markov process. We can get its Markov matrix (or transition matrix)

𝐴 =

[︂
0.5 0.3
0.5 0.7

]︂
Each column of A has a sum of 1 because it means probability.

In [20]: x = [100; 100] % initial condition
A = [0.5 0.3;0.5 0.7] % Markov matrix

x =
100
100

A =
0.5000 0.3000
0.5000 0.7000

At the second day, the number of people will be:

In [21]: A*x

ans =
80

120

Town2 gets more people. This is expected because town1->town2 has a higher probability than town2->town1.

How about after 10 days?

In [22]: x10 = A^10*x

x10 =
75.0000
125.0000

11 days?

In [23]: x11 = A*x10

x11 =
75.0000
125.0000

There’s no difference between day 10 and day 11, which means the population reaches equilibrium. This is called the
power method for finding the state vector for this transition matrix.

This power method is intuitive but not very efficient. For a fancier method for Pset3, see Canvas - Files -
scripts_and_code - lin_algebra - pagerank_demo_template.m.

2.10 Session 4: Linux Command Line

Date: 10/02/2017, Monday

This week we are going to use Harvard’s Odyssey supercomputer. It is a Linux system, just like most remote servers.
Before playing with Odyssey I strongly recommend you to get familiar with Linux basics.

Why command line, not graphical interface?

1. Command line is more like programming so it allows you to do much more, such as renaming 1000 files.
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2. When controlling a remote server, the internet bandwidth is typically not enough for showing the graphical user
interface. But with command line you only need to transfer texts, not images.

Linux commmand line is an absolutely essential skill for any programmers (much more important than MATLAB
), so learn it!

2.10.1 Trying Linux command on your Laptop

On Mac

Mac has a built-in app called Terminial. You can find it by searching for “Terminial” in Spotlight Search
(command+space, or control+space for older OS). Mac command line is almost the same as Linux com-
mand line, so you can practice Linux commands on Mac without having to connect to Odyssey. This default terminal
is already pretty good for beginners. If you want more advanced terminals, try iTerm2.

For connecting to remote servers, simply execute ssh username@ip_address in the terminal.

On Windows

Window’s own command line is very different from Linux’s. On Windows 10, you can follow this official tutorial to
install the Linux subsystem, so you can play with Linux on your laptop. If you are using an older windows system,
you can try some online Linux “playground” like https://www.tutorialspoint.com/unix_terminal_online.php.

For connecting to remote servers, you can use the old putty or try more advanced ones like MobaXterm.

2.10.2 Linux Command Basics

There are a bunch of Linux tutorials online. I particularly like this one. You should at least read Chapter 1 - Chapter 5.

2.10.3 Text Editors

By default, there are 3 text editors available: vim, emacs and nano. Just pick up one of them. I personally use vim but
it has the steepest learning curve. There are many discussions on which one to choose (for example, this article).

2.11 Session 5: MATLAB backslash & some pitfalls

Date: 10/16/2017, Monday

In [1]: format compact

2.11.1 Different behaviors of backslash

You’ve already used the backslash \ a lot to solve linear systems. But if you look at MATLAB backslash documen-
tation you will find it can do much more than solving linear systems. This powerful feature can sometimes be very
confusing if you are not careful.
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Standard linear system

First see a standard problem: a 4x4, full rank square matrix 𝐴 and a 4-element column vector 𝑏. We want to solve

𝐴𝑥 = 𝑏

In [2]: b = rand(4,1)

b =
0.8147
0.9058
0.1270
0.9134

In [3]: A = rand(4,4)

A =
0.6324 0.9575 0.9572 0.4218
0.0975 0.9649 0.4854 0.9157
0.2785 0.1576 0.8003 0.7922
0.5469 0.9706 0.1419 0.9595

Well, not big deal. . .

In [4]: x = A\b

x =
-0.0486
0.9204

-0.0630
0.0579

We can verify the result:

In [5]: A*x - b % almost zero

ans =
1.0e-15 *

0
0

-0.0555
-0.1110

Incorrect shape

You should already notice that 𝑏 must be a column vector.

In [6]: x = A\b' % row vector doesn't work

Error using \Matrix dimensions must agree.

Also, 𝐴 and 𝑏 must have the same number of rows, because 𝐴 and 𝑏 come from the following linear system with 𝑛
rows (equations) and 𝑚 columns (variables):⎧⎪⎪⎨⎪⎪⎩

a11𝑥1 + 𝑎12𝑥2 + ... + 𝑎1𝑚𝑥𝑚 = 𝑏1
a21𝑥1 + 𝑎22𝑥2 + ... + 𝑎1𝑚𝑥𝑚 = 𝑏2
...
a𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ... + 𝑎1𝑚𝑥𝑚 = 𝑏𝑛

In [7]: A = rand(3,4) % A has 3 rows but b has 4 rows
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A =
0.6557 0.9340 0.7431 0.1712
0.0357 0.6787 0.3922 0.7060
0.8491 0.7577 0.6555 0.0318

In [8]: A\b % doesn't work

Error using \Matrix dimensions must agree.

Looks like 𝐴 has to be a square matrix, but see below. . .

Over-detemined linear system

In fact, A doesn’t have to be a square matrix, just like a linear system doesn’t need to have the same number of rows
(equations) and columns (variables).

Here we create an over-determined system⎧⎪⎪⎨⎪⎪⎩
a11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1
a21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2
a31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑏3
a41𝑥1 + 𝑎42𝑥2 + 𝑎43𝑥3 = 𝑏4

An over-determined system means A is tall and narrow (more rows than columns)

In [9]: A = rand(4,3) % more equations (rows) than variables (columns)

A =
0.2769 0.6948 0.4387
0.0462 0.3171 0.3816
0.0971 0.9502 0.7655
0.8235 0.0344 0.7952

In [10]: x = A\b % backslash works

x =
0.9798
0.2901
0.2142

MATLAB does return a set of (𝑥1, 𝑥2, 𝑥3). But you know this can’t be the solution because you can’t fulfill 4 equations
by just 3 degrees of freedom.

In [11]: A*x - b % not zero, so x is not a solution

ans =
-0.2479
-0.6868
0.4078
0.0738

So what’s x? It is actually a least-square fit, same as the result from the normal equation

𝐴𝑇𝐴𝑥 = 𝐴𝑇 𝑏

In [12]: (A'*A)\(A'*b) % solve normal equation

ans =
0.9798
0.2901
0.2142

In MATLAB, simply using A\b is actually more accurate than (A'*A)\(A'*b) for solving least squares, especially
for large matrices. That’s because the condition number of 𝐴𝑇𝐴 could be very large.
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In [13]: cond(A)
cond(A'*A)

ans =
8.7242

ans =
76.1114

We find 𝑐𝑜𝑛𝑑(𝐴𝑇𝐴) = 𝑐𝑜𝑛𝑑(𝐴)2. It is not quite large in this tiny case but could explode for large matrices

So how to avoid the normal equation?

Recall that, for a standard, full rank system 𝐴𝑥 = 𝑏, the code A\b doesn’t compute 𝐴−1𝑏 at all, because 𝐴−1 is often
ill-conditioned. It uses LU factorization which is better-conditioned.

Similarly, for an over-determined 𝐴𝑥 = 𝑏, the code A\b doesn’t compute 𝐴𝑇𝐴 at all. It uses QR factorization or
similar techniques to make the problem better-conditioned.

Under-determined linear system

Now let’s look at an under-determined system⎧⎪⎪⎨⎪⎪⎩
a11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 + 𝑎14𝑥4 + 𝑎15𝑥5 = 𝑏1
a21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 + 𝑎24𝑥4 + 𝑎25𝑥5 = 𝑏2
a31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 + 𝑎34𝑥4 + 𝑎35𝑥5 = 𝑏3
a41𝑥1 + 𝑎42𝑥2 + 𝑎43𝑥3 + 𝑎44𝑥4 + 𝑎45𝑥5 = 𝑏4

An under-determined system means A is short and wide (more columns than rows)

In [14]: A = rand(4,5) % less equations (rows) than variables (columns)

A =
0.1869 0.7094 0.6551 0.9597 0.7513
0.4898 0.7547 0.1626 0.3404 0.2551
0.4456 0.2760 0.1190 0.5853 0.5060
0.6463 0.6797 0.4984 0.2238 0.6991

In [15]: x = A\b % backslash still works

x =
-0.1886
1.4263
0.2995

-0.3730
0

We can see x is the solution to 𝐴𝑥 = 𝑏:

In [16]: A*x - b % almost zero

ans =
1.0e-15 *
0.4441
0.3331
0.0278
0.1110

However, we know that an under-determined system has infinite number of solutions. But MATLAB just returns one
value. What’s special about this value?

It turns out that the x we get here has the smallest norm ||𝑥||2 among all possible solutions.

In [17]: norm(x) % smaller than any other possible solutions
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ans =
1.5162

2.11.2 Another multiple-behavior example

Because the backslash operator \ has different behaviors under different circumstances, you have to be very careful.
Sometimes your matrix shape might be wrong, but MATLAB will still return a result. But in that case you might be
solving a least square problem instead of a full-rank linear system!

MATLAB has quite a lot of multi-behavior (“poly-algorithm”) functions. Another example is the built-in lu() function
for LU factorization.

In [18]: A = rand(4,4) % to be LU-factorized

A =
0.8909 0.1493 0.8143 0.1966
0.9593 0.2575 0.2435 0.2511
0.5472 0.8407 0.9293 0.6160
0.1386 0.2543 0.3500 0.4733

Just calling lu() with no return, you get a single matrix with 𝐿 and 𝑈 stacked together.

In [19]: lu(A)

ans =
0.9593 0.2575 0.2435 0.2511
0.5704 0.6938 0.7903 0.4728
0.9287 -0.1295 0.6905 0.0246
0.1445 0.3129 0.0978 0.2867

Using [L,U] to hold the return, you get two separate matrices. Notice that L is not a strict lower-triangular matrix,
because it also incorporates the pivoting matrix 𝑃

In [20]: [L,U] = lu(A)

L =
0.9287 -0.1295 1.0000 0
1.0000 0 0 0
0.5704 1.0000 0 0
0.1445 0.3129 0.0978 1.0000

U =
0.9593 0.2575 0.2435 0.2511

0 0.6938 0.7903 0.4728
0 0 0.6905 0.0246
0 0 0 0.2867

Using [L,U,P] to hold the return, you get all three matrices. Now L is strictly lower-triangular.

In [21]: [L,U,P] = lu(A)

L =
1.0000 0 0 0
0.5704 1.0000 0 0
0.9287 -0.1295 1.0000 0
0.1445 0.3129 0.0978 1.0000

U =
0.9593 0.2575 0.2435 0.2511

0 0.6938 0.7903 0.4728
0 0 0.6905 0.0246
0 0 0 0.2867

P =
0 1 0 0
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0 0 1 0
1 0 0 0
0 0 0 1

You can ignore the returning P by ~, but keep in mind that the returning L is different from that in cell [20], although
the code looks very similar.

In [22]: [L,U,~] = lu(A)

L =
1.0000 0 0 0
0.5704 1.0000 0 0
0.9287 -0.1295 1.0000 0
0.1445 0.3129 0.0978 1.0000

U =
0.9593 0.2575 0.2435 0.2511

0 0.6938 0.7903 0.4728
0 0 0.6905 0.0246
0 0 0 0.2867

2.12 Session 6: Three ways of differentiation

Date: 10/23/2017, Monday

In [1]: format compact

There are 3 major ways to compute the derivative 𝑓 ′(𝑥)

• Symbolic differentiation

• Numerical differentiation

• Automatic differentiation

You are already familiar with the first two. The last one is not required by this class, but it is just too good to miss. It
is the core of modern deep learning engines like Google’s TensorFlow, which is used for training AlphaGo Zero. Here
we only give a very basic introduction. Enthusiasts can read Baydin A G, Pearlmutter B A, Radul A A, et al. Automatic
differentiation in machine learning: a survey

Let’s compare the pros and cons of each method.

2.12.1 Symbolic differentiation

MATLAB toolbox

MATLAB provides symbolic tool box for symbolic differentiation. It can assist your mathetical analysis and can be
used to verify the numerical differentiation results.

In [2]: syms x

Consider this function

𝑓(𝑥) =
1 − 𝑒−𝑥

1 + 𝑒−𝑥

In [3]: f0 = (1-exp(-x))/(1+exp(-x))

f0 =
-(exp(-x) - 1)/(exp(-x) + 1)

The first-order derivative is
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In [4]: f1 = diff(f0,x)

f1 =
exp(-x)/(exp(-x) + 1) - (exp(-x)*(exp(-x) - 1))/(exp(-x) + 1)ˆ2

We can keep calculating higher-order derivatives

In [5]: f2 = diff(f1,x)

f2 =
(2*exp(-2*x))/(exp(-x) + 1)ˆ2 - exp(-x)/(exp(-x) + 1) + (exp(-x)*(exp(-x) - 1))/(exp(-x) + 1)ˆ2 - (2*exp(-2*x)*(exp(-x) - 1))/(exp(-x) + 1)ˆ3

In [6]: f3 = diff(f2,x)

f3 =
exp(-x)/(exp(-x) + 1) - (6*exp(-2*x))/(exp(-x) + 1)ˆ2 + (6*exp(-3*x))/(exp(-x) + 1)ˆ3 - (exp(-x)*(exp(-x) - 1))/(exp(-x) + 1)ˆ2 + (6*exp(-2*x)*(exp(-x) - 1))/(exp(-x) + 1)ˆ3 - (6*exp(-3*x)*(exp(-x) - 1))/(exp(-x) + 1)ˆ4

In [7]: f4 = diff(f3,x)

f4 =
(14*exp(-2*x))/(exp(-x) + 1)ˆ2 - exp(-x)/(exp(-x) + 1) - (36*exp(-3*x))/(exp(-x) + 1)ˆ3 + (24*exp(-4*x))/(exp(-x) + 1)ˆ4 + (exp(-x)*(exp(-x) - 1))/(exp(-x) + 1)ˆ2 - (14*exp(-2*x)*(exp(-x) - 1))/(exp(-x) + 1)ˆ3 + (36*exp(-3*x)*(exp(-x) - 1))/(exp(-x) + 1)ˆ4 - (24*exp(-4*x)*(exp(-x) - 1))/(exp(-x) + 1)ˆ5

In [8]: f5 = diff(f4,x)

f5 =
exp(-x)/(exp(-x) + 1) - (30*exp(-2*x))/(exp(-x) + 1)ˆ2 + (150*exp(-3*x))/(exp(-x) + 1)ˆ3 - (240*exp(-4*x))/(exp(-x) + 1)ˆ4 + (120*exp(-5*x))/(exp(-x) + 1)ˆ5 - (exp(-x)*(exp(-x) - 1))/(exp(-x) + 1)ˆ2 + (30*exp(-2*x)*(exp(-x) - 1))/(exp(-x) + 1)ˆ3 - (150*exp(-3*x)*(exp(-x) - 1))/(exp(-x) + 1)ˆ4 + (240*exp(-4*x)*(exp(-x) - 1))/(exp(-x) + 1)ˆ5 - (120*exp(-5*x)*(exp(-x) - 1))/(exp(-x) + 1)ˆ6

We see the expression becomes more and more complicated for higher-order derivatives, even though the original 𝑓(𝑥)
is fairly simple.

You can imagine that symbolic diff can be quite inefficient for complicated functions and higher-order derivatives.

Convert symbol to function

We can convert MATLAB symbols to functions, and use them to compute numerical values.

In [9]: f0_func = matlabFunction(f0)

f0_func =
function_handle with value:

@(x)-(exp(-x)-1.0)./(exp(-x)+1.0)

f0 is converted to a normal MATLAB function. It is different from just copying the symbolic expression to MATLAB
codes, as it is vectorized over input x (notice the ./).

Same for f0’s derivatives:

In [10]: f1_func = matlabFunction(f1);
f2_func = matlabFunction(f2);
f3_func = matlabFunction(f3);
f4_func = matlabFunction(f4);
f5_func = matlabFunction(f5);

Let’s plot all the derivatives.

In [11]: xx = linspace(-3,3,40); % for plot

In [12]: %plot -s 400,300
hold on
plot(xx,f0_func(xx))
plot(xx,f1_func(xx))
plot(xx,f2_func(xx))
plot(xx,f3_func(xx))
plot(xx,f4_func(xx))
plot(xx,f5_func(xx))
legend('f0','f1','f2','f3','f4','f5','Location','SouthEast')
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2.12.2 Numerical differentiation

Is it possible to use the numerical differentiation we learned in class to approximate the 5-th order derivative? Let’s
try.

In [13]: y0 = f0_func(xx); % get numerical data

In [14]: dx = xx(2)-xx(1) % get step size

dx =
0.1538

We use the center difference, which is much more accurate than forward or backward difference.

𝑓 ′(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥− ℎ)

2ℎ

For simplicity, we just throw away the end points x(1) and x(end). So the resulted gradient array y1 is shorter
than y0 by 2 elements. You can also use forward or backward diff to approximate the derivates at the end points. But
here we only focus on internal points.

In [15]: y1 = (y0(3:end) - y0(1:end-2)) / (2*dx);
length(y1)

ans =
38

The numerical diff highly agrees with the symbolic one!

In [16]: %plot -s 400,200
hold on
plot(xx,f1_func(xx))
plot(xx(2:end-1),y1,'k.')
legend('analytical','numerical','Location','Best')
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Then we go to 2-nd order:

In [17]: y2 = (y1(3:end) - y1(1:end-2)) / (2*dx);
length(y2)

ans =
36

In [18]: %plot -s 400,200
hold on
plot(xx,f2_func(xx))
plot(xx(3:end-2),y2,'.k')

Also doing well. 3-rd order?

In [19]: y3 = (y2(3:end) - y2(1:end-2)) / (2*dx);
length(y3)

ans =
34

In [20]: %plot -s 400,200
hold on
plot(xx,f3_func(xx))
plot(xx(4:end-3),y3,'.k')
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Looks like center diff is doing a really good job.

4-th order?

In [21]: y4 = (y3(3:end) - y3(1:end-2)) / (2*dx);
length(y4)

ans =
32

In [22]: %plot -s 400,200
hold on
plot(xx,f4_func(xx))
plot(xx(5:end-4),y4,'.k')

Some points start to deviate, but not too much.

5-th order?

In [23]: y5 = (y4(3:end) - y4(1:end-2)) / (2*dx);
length(y5)

ans =
30

In [24]: %plot -s 400,200
hold on
plot(xx,f5_func(xx))
plot(xx(6:end-5),y5,'.k')
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Now we get some noticeable error! The relative error at the peak is ~10%.

In [25]: format long
max(y5) % numerical
max(f5_func(xx)) % analytical

ans =
0.455250196326829

ans =
0.493735580546680

Even though the center diff is doing a really good job for low-order derivatives, the error accumulates as the order gets
higher. The situation will be even worse for forward or backward diff. Also, the 𝑓(𝑥) we choose here is pretty smooth.
For a steep 𝑓(𝑥), numerical differentiation tends to perform badly.

You might want to use symbolic differentiation instead, but it could be very slow for complicated functions. Is there a
better method?

2.12.3 Automatic differentiation

Theoretical explanation

Automatic differentiation (“autodiff” for short) kind of gets the best of both worlds.

• It is not numerical differentiation. Autodiff has no truncation error. The result is as accurate as symbolic method.

• It is not symbolic differentiation. Autodiff doens’t compute the complicated symbolic/analytical expression, so
it is much faster than the symbolic way.

How can this magic happen? The easiest explanation is using dual numbers.

Consider 𝑓(𝑥) = 𝑥2. Instead of using a real number like 1.0 or 1.5 as the function input, we use a dual number

𝑥 + 𝜖

where 𝑥 is still a normal number but 𝜖 is a special number with property

𝜖2 = 0

It is analogous to the imaginary unit 𝑖. You can add or multiply 𝑖 as usual, but whenever you encounter 𝑖2, replace it
by -1. Similarly, you can add or multiply 𝜖 as usual, but when ever you encounter 𝜖2, replace it by 0.

𝑓(𝑥 + 𝜖) = 𝑥2 + 2𝑥𝜖 + 𝜖2 = 𝑥2 + 2𝑥𝜖

The coefficient of 𝜖 is?
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2𝑥 !! which is just 𝑓 ′(𝑥)

We didn’t perform any “differentiating” at all. Just by carrying an additional “number” 𝜖 through a function,
we got the derivative of that function as well.

Let’s see another example 𝑓(𝑥) = 𝑥3

(𝑥 + 𝜖)3 = 𝑥3 + 3𝑥2𝜖 + 3𝑥𝜖2 + 𝜖3 = 𝑥3 + 3𝑥2𝜖

The coeffcient is 3𝑥2, which is just the derivative of 𝑥3.

If the function is not a polynomial? Say 𝑓(𝑥) = 𝑒𝑥

𝑒𝑥+𝜖 = 𝑒𝑥𝑒𝜖 = 𝑒𝑥(1 + 𝜖 +
1

2
𝜖2 + ...) = 𝑒𝑥(1 + 𝜖)

The coeffcient of 𝜖 is 𝑒𝑥, which is the derivative of 𝑒𝑥. (If you wonder how can a computer know the Taylor expansion
of 𝑒𝜖, think about how can a computer calculate 𝑒𝑥)

Code example

MATLAB doesn’t have a good autodiff tool, so we use a Python package autograd developed by Harvard Intelligent
Probabilistic Systems Group.

You don’t need to try this package right now (since this is not a Python class), but just keep in mind that if you
need a fast and accurate way to compute derivative, there are such tools exist.

Don’t worry if you don’t know Python. We will explain as it goes.

In [1]: %matplotlib inline
import matplotlib.pyplot as plt # contains all plotting functions
import autograd.numpy as np # contains all basic numerical functions
from autograd import grad # autodiff tool

We still differentiate 𝑓(𝑥) = 1−𝑒−𝑥

1+𝑒−𝑥 as in the MATLAB section.

In [2]: # Define a Python function
# Python has no "end" statement
# It uses code indentation to determine the end of each block
def f0(x):

y = np.exp(-x)
return (1.0 - y) / (1.0 + y)

In [3]: # grad(f0) returns the gradient of f0
# f1 is not a symbolic expression!
# It is just a normal numerical function,
# but it returns the exact gradient thanks to the autodiff magic
f1 = grad(f0)
f2 = grad(f1)
f3 = grad(f2)
f4 = grad(f3)
f5 = grad(f4)

In [4]: xx = np.linspace(-3, 3, 40) # for plot

In [5]: # plot all derivatives
# as in cell[12] of the MATLAB section
plt.plot(xx, f0(xx), label='f0')
plt.plot(xx, f1(xx), label='f1')
plt.plot(xx, f2(xx), label='f2')
plt.plot(xx, f3(xx), label='f3')
plt.plot(xx, f4(xx), label='f4')
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plt.plot(xx, f5(xx), label='f5')
plt.legend();

The peak of the 5-th order derivative is the same as the result given by MATLAB symbolic tool box. There’s no
truncation error here.

In [6]: f5(xx).max() # the result is exact.

Out[6]: 0.49373558054667849

While being able to give the exact result, autodiff is much faster than the symbolic way!

Another code example: differentiating custom programs

Another advantage of autodiff is that it can differentiate arbitrary programs, not just mathematical expressions.
Many complicated functions cannot be expressed by a combination of basic functions (e.g. the Bessel function in
HW5), and in this case symbolic diff will have trouble.

However, the theory of autodiff is simply “carrying an additional number through your program”, so as long as you
can code the program, you can differentiate it. The dual number will just go through all while and if statements as
usual.

Let’s make a weird funcition.

In [7]: def custom_func(x):
assert x > 0 # raise an error for negative x

y = 0 # initial value

# Again, Python has no "end" statement
# It uses code indentation to determine the end of this while block
while y+x < 10:

y += x

return y

This function initializes y as 0 and keeps accumulating the input x to y, until y reaches 10. In other words
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• y is a multiple of x, i.e. y=N*x.

• y is smaller than but very close to 10

For 𝑥 = 1, 𝑓(𝑥) = 9𝑥 = 9, because 10𝑥 will exceed 10.

In [8]: custom_func(1.0)

Out[8]: 9.0

For 𝑥 = 1.2, 𝑓(𝑥) = 8𝑥 = 9.6, because 9𝑥 = 10.8 will exceed 10.

In [9]: custom_func(1.2)

Out[9]: 9.6

We can still take derivative of this weird function.

In [10]: custom_grad = grad(custom_func) # autodiff magic

For 𝑥 = 1, 𝑓(𝑥) = 9𝑥, so 𝑓 ′(𝑥) = 9

In [11]: print(custom_grad(1.0))

9.0

For 𝑥 = 1.2, 𝑓(𝑥) = 8𝑥, so 𝑓 ′(𝑥) = 8

In [12]: print(custom_grad(1.2))

8.0

Symbolic diff will have a big trouble with this kind of function.

2.12.4 So why use numerical differentiation?

If autodiff is so powerful, why do we need other methods? Well, you need symbolic diff for pure mathematical
analysis. But how about numerical diff?

Well, the major application of numerical diff (forward difference, etc.) is not getting the derivative of a known function
𝑓(𝑥). It is for solving differential equations

𝑓 ′(𝑥) = Φ(𝑓, 𝑥)

In this case, 𝑓(𝑥) is not known (your goal is to find it), so symbol diff or autodiff can’t help you. Numerical diff gives
you a way to solve this ODE

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
≈ 𝑓 ′(𝑥) = Φ(𝑓, 𝑥)

2.13 Session 7: Error convergence of numerical methods

Date: 10/30/2017, Monday

In [1]: format compact
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2.13.1 Error convergence of general numerical methods

Many numerical methods has a “step size” or “interval size” ℎ, no mattter numerical differentiation, numerical inter-
gration or ODE solving. We denote 𝑓(ℎ) as the numerical approximation to the exact answer 𝑓𝑡𝑟𝑢𝑒. Note that 𝑓 can
be a derivate, an integral or an ODE solution.

In general, the numerical error gets smaller when ℎ is reduced. We say a method has 𝑂(ℎ𝑘) convergence if

𝑓(ℎ) − 𝑓𝑡𝑟𝑢𝑒 = 𝐶 · ℎ𝑘 + 𝐶1 · ℎ𝑘+1 + ...

As ℎ → 0, we will have 𝑓(ℎ) → 𝑓𝑡𝑟𝑢𝑒. Higher-order methods (i.e. larger 𝑘) leads to faster convergence.

2.13.2 Error convergence of numerical differentiation

Consider 𝑓(𝑥) = 𝑒𝑥, we use finite difference to approximate 𝑔(𝑥) = 𝑓 ′(𝑥) = 𝑒𝑥. We only consider 𝑥 = 1 here.

In [2]: f = @(x) exp(x); % the function we want to differentiate

In [3]: x0 = 1; % only consider this point
g_true = exp(x0) % analytical solution

g_true =
2.7183

We try both forward and center schemes, with different step sizes ℎ.

In [4]: h_list = 0.01:0.01:0.1; % test different step size h
n = length(h_list);
g_forward = zeros(1,n); % to hold forward difference results
g_center = zeros(1,n); % to hold center difference results

for i = 1:n % loop over different step sizes
h = h_list(i); % get step size

% forward difference
g_forward(i) = (f(x0+h) - f(x0))/h;

% center difference
g_center(i) = (f(x0+h) - f(x0-h))/(2*h);

end

The first element in g_forward is quite accurate, but the error grows as the step size ℎ gets larger.

In [5]: g_forward

g_forward =
Columns 1 through 7
2.7319 2.7456 2.7595 2.7734 2.7874 2.8015 2.8157

Columns 8 through 10
2.8300 2.8444 2.8588

Center difference scheme is much more accurate.

In [6]: g_center

g_center =
Columns 1 through 7
2.7183 2.7185 2.7187 2.7190 2.7194 2.7199 2.7205

Columns 8 through 10
2.7212 2.7220 2.7228

Compute the absolute error of each scheme
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In [7]: error_forward = abs(g_forward - g_true)
error_center = abs(g_center - g_true)

error_forward =
Columns 1 through 7
0.0136 0.0274 0.0412 0.0551 0.0691 0.0832 0.0974

Columns 8 through 10
0.1117 0.1261 0.1406

error_center =
Columns 1 through 7
0.0000 0.0002 0.0004 0.0007 0.0011 0.0016 0.0022

Columns 8 through 10
0.0029 0.0037 0.0045

Make a ℎ ↔ 𝑒𝑟𝑟𝑜𝑟 plot.

In [8]: %plot -s 600,200
subplot(121); plot(h_list, error_forward,'-o')
title('forward');xlabel('h');ylabel('error')
subplot(122); plot(h_list, error_center,'-o')
title('center');xlabel('h');ylabel('error')

• Forward scheme gives a straight line because it is a first-order method and 𝑒𝑟𝑟𝑜𝑟(ℎ) ≈ 𝐶 · ℎ

• Center scheme gives a parabola because it is a second-order method and 𝑒𝑟𝑟𝑜𝑟(ℎ) ≈ 𝐶 · ℎ2

2.13.3 Diagnosing the order of convergence

But by only looking at the 𝑒𝑟𝑟𝑜𝑟(ℎ) plot, how can you know the curve is a parabola? Can’t it be a cubic 𝐶 · ℎ3?

Recall that in HW4 you were fitting a function 𝑅 = 𝑏𝑊 𝑎. To figure out the coefficients 𝑎 and 𝑏, you need to take the
log. The same thing here.

If 𝑒𝑟𝑟𝑜𝑟 = 𝐶 · ℎ𝑘, then

log(𝑒𝑟𝑟𝑜𝑟) = log𝐶 + 𝑘 log ℎ

The slope of the 𝑙𝑜𝑔(𝑒𝑟𝑟𝑜𝑟) ↔ 𝑙𝑜𝑔(ℎ) plot is 𝑘, i.e. the order of the numerical method.

In [9]: %plot -s 600,200
subplot(121); loglog(h_list, error_forward,'-o')
title('forward');xlabel('log(h)');ylabel('log(error)')
subplot(122); loglog(h_list, error_center,'-o')
title('center');xlabel('log(h)');ylabel('log(error)')
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To figure out the slope we can do linear regression. You can solve a least square problem as in HW4&5, but here we
use a shortcut as described in this example. polyfit(x, y, 1) returns the slope and intercept.

In [10]: polyfit(log(h_list), log(error_forward), 1)

ans =
1.0132 0.3662

In [11]: polyfit(log(h_list), log(error_center), 1)

ans =
2.0002 -0.7909

The slopes are 1 and 2, respectively. So we’ve verified that forward-diff is 1st-order accurate while center-diff is
2nd-order accurate.

If the analytical solution is not known, you can use the most accurate solution (with the smallest h) as the true
solution to figure out the slope. If your numerical scheme is converging to the true solution, then the estimate of
order will still be OK. The risk is your numerical scheme might be converging to a wrong solution, and in this case it
makes no sense to talk about error convergence.

2.13.4 ℎ needs to be small

𝑒𝑟𝑟𝑜𝑟(ℎ) ≈ 𝐶 · ℎ𝑘 only holds for small ℎ. When ℎ is sufficiently small, we say that it is in the asymptotic regime. All
the error analysis only holds in the asymptotic regime, and makes little sense when ℎ is very large.

Let’s make the step size 100 times larger and see what happens.

In [12]: h_list = 1:1:10; % h is 100x larger than before

% -- the codes below are exactly the same as before --

n = length(h_list);
g_forward = zeros(1,n); % to hold forward difference results
g_center = zeros(1,n); % to hold center difference results

for i = 1:n % loop over different step sizes
h = h_list(i); % get step size

% forward difference
g_forward(i) = (f(x0+h) - f(x0))/h;

% center difference
g_center(i) = (f(x0+h) - f(x0-h))/(2*h);

end
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error_forward = abs(g_forward - g_true);
error_center = abs(g_center - g_true);

In [13]: %plot -s 600,200
subplot(121); loglog(h_list, error_forward,'-o')
title('forward');xlabel('log(h)');ylabel('log(error)')
subplot(122); loglog(h_list, error_center,'-o')
title('center');xlabel('log(h)');ylabel('log(error)')

Now the error is super large and the log-log plot is not a straight line. So keep in mind that for most numerical schemes
we always assume small ℎ.

So how small is “small”? It depends on the scale of your problem and how rapidly 𝑓(𝑥) changes. If the problem is
defined in 𝑥 ∈ [0, 0.001], then ℎ = 0.001 is not small at all!

2.13.5 Error convergence of numerical intergration

Now consider

𝐼 =

∫︁ 1

0

𝑓(𝑥)

We still use 𝑓(𝑥) = 𝑒𝑥 for convenience, as the integral of 𝑒𝑥 is still 𝑒𝑥.

In [14]: f = @(x) exp(x); % the function we want to integrate

In [15]: I_true = exp(1)-exp(0)

I_true =
1.7183

We use composite midpoint scheme to approximate 𝐼 . We test different interval size ℎ. Note that we need to first
define the number of intervals 𝑚, and then get the corresponding ℎ, because 𝑚 has to be an integer.

In [16]: m_list = 10:10:100; % number of points
h_list = 1./m_list; % interval size

n = length(m_list);
I_list = zeros(1,n); % to hold intergration results

for i=1:n % loop over different interval sizes (or number of intevals)
m = m_list(i);
h = h_list(i);

% get edge points
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x_edge = linspace(0, 1, m+1);

% edge to middle
x_mid = (x_edge(1:end-1) + x_edge(2:end))/2;

% composite midpoint intergration scheme
I_list(i) = h*sum(f(x_mid));

end

The result is quite accurate.

In [17]: I_list

I_list =
Columns 1 through 7
1.7176 1.7181 1.7182 1.7182 1.7183 1.7183 1.7183

Columns 8 through 10
1.7183 1.7183 1.7183

The error is at the order of 10−3.

In [18]: error_I = abs(I_list-I_true)

error_I =
1.0e-03 *
Columns 1 through 7
0.7157 0.1790 0.0795 0.0447 0.0286 0.0199 0.0146

Columns 8 through 10
0.0112 0.0088 0.0072

Again, a log-log plot will provide more insights about the order of convergence.

In [19]: %plot -s 600,200
subplot(121);plot(h_list, error_I, '-o')
title('error -- h');xlabel('h');ylabel('error')
subplot(122);loglog(h_list, error_I, '-o')
title('log(error) -- log(h)');xlabel('log(h)');ylabel('log(error)')

The slope is 2, so the method is second order accurate.

In [20]: polyfit(log(h_list), log(error_I), 1)

ans =
1.9999 -2.6372

We’ve just applied the same error analysis method on both differentiation and integration. The same method
also applies to ODE solving.
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2.13.6 Error convergence of ODE solving

Consider a simple ODE

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑦(𝑡), 𝑦(0) = 1

The exact solution is 𝑦(𝑡) = 𝑒𝑡. We use the forward Euler scheme to solve it.

𝑦(𝑡 + ℎ) − 𝑦(𝑡)

ℎ
≈ 𝑦(𝑡)

The iteration is given by

𝑦(𝑡 + ℎ) = 𝑦(𝑡) + ℎ · 𝑦(𝑡) = (1 + ℎ)𝑦(𝑡)

Let’s only consider 𝑡 ∈ [0, 1]. More specifically, we’ll only look at the final state 𝑦(1), so we don’t need to record
every step.

In [21]: y1_true = exp(1) % true y(1)

y1_true =
2.7183

Same as in the integration section, we need to first define the number of total iterations 𝑚, and then get the corre-
sponding step size ℎ. This ensures we will land exactly at 𝑡 = 1, not its neighbours.

In [22]: y0 = 1; % initial condition

m_list = 10:10:100; % number of iterations to get to t=1
h_list = 1./m_list; % step size

n = length(m_list);
y1_list = zeros(1,n); % to hold the final point

for i=1:n % loop over different step sizes
m = m_list(i); % get the number of iterations
h = h_list(i); % get step size

y1 = y0; % start with y(0)

% Euler scheme begins here
for t=1:m

y1 = (1+h)*y1; % no need to record intermediate results here
end

y1_list(i) = y1; % only record the final point

end

As ℎ shrinks, our simulated 𝑦(1) gets closer to the true result.

In [23]: y1_list

y1_list =
Columns 1 through 7
2.5937 2.6533 2.6743 2.6851 2.6916 2.6960 2.6991

Columns 8 through 10
2.7015 2.7033 2.7048

In [24]: error_y1 = abs(y1_list-y1_true)
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error_y1 =
Columns 1 through 7
0.1245 0.0650 0.0440 0.0332 0.0267 0.0223 0.0192

Columns 8 through 10
0.0168 0.0149 0.0135

𝑒𝑟𝑟𝑜𝑟 ↔ ℎ plot is a straight line, so we know the method is fist order accurate. The log-log plot is not quite necessary
here.

In [25]: %plot -s 600,200
subplot(121);plot(h_list, error_y1, '-o')
title('error -- h');xlabel('h');ylabel('error')
subplot(122);loglog(h_list, error_y1, '-o')
title('log(error) -- log(h)');xlabel('log(h)');ylabel('log(error)')

Of course we can still calculate the slope of the log-log plot, to double check the forward Euler scheme is a first-order
method.

In [26]: polyfit(log(h_list), log(error_y1), 1)

ans =
0.9687 0.1613

The take-away is, you can think about the order of a method in a more general sense. We’ve covered numerical
differentiation, intergration and ODE here, and similar analysis also applies to root-finding, PDE, optimization,
etc. . .

2.14 Session 8: ODE stability; stiff system

Date: 11/06/2017, Monday

In [1]: format compact

2.14.1 ODE Stability

Problem statement

Consider a simple ODE

𝑑𝑦

𝑑𝑡
= −𝑎𝑦, 𝑦(0) = 𝑦0

where 𝑎 is a positive real number.
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It can be solved analytically:

𝑦(𝑡) = 𝑦0𝑒
−𝑎𝑡

So the analytical solution decays exponentially. A numerical solution is allowed to have some error, but it should also
be decaying. If the solution is instead growing, we say it is unstable.

Explicit scheme

Forward Eulerian scheme for this problem is

𝑦𝑘+1 − 𝑦𝑘
ℎ

= −𝑎𝑦𝑘

The iteration is given by

𝑦𝑘+1 = (1 − ℎ𝑎)𝑦𝑘

The solution at the k-th time step can be written out explicitly

𝑦𝑘 = (1 − ℎ𝑎)𝑘𝑦0

We all know that when ℎ gets smaller the numerical solution will converge to the true result. But here we are interested
in relatively large ℎ, i.e. we wonder what’s the largest possible ℎ we can use while still getting an OK result.

Here are the solutions with different ℎ.

In [2]: %plot -s 400,300

% set parameters, can use different value
a = 1;
y0 = 1;
tspan = 10;

% build function
f_true = @(t) y0*exp(-a*t); % true answer
f_forward = @(k,h) (1-h*a).^k * y0; % forward Euler solution

% plot true result
t_ar = linspace(0, tspan); % for plotting
y_true = f_true(t_ar);
plot(t_ar, y_true)
hold on

% plot Forward Euler solution
for h=[2.5, 1.5, 0.5] % try different step size

kmax = round(tspan/h);
k_ar = 0:kmax;
t_ar = k_ar*h;

% we are not doing Forward Euler iteration here
% since the expression is known, we can directly
% get the entire time series
y_forward = f_forward(k_ar, h);

plot(t_ar, y_forward, '-o')
end
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% tweak details
ylim([-1,1]);
xlabel('t');ylabel('y');
legend('true solution', 'h=2.5', 'h=1.5', 'h=0.5' , 'Location', 'Best')

There all 3 typical regimes, determined by the magnitude of [1 − ℎ𝑎] inside the expression 𝑦𝑘 = (1 − ℎ𝑎)𝑘𝑦0.

1. Small ℎ: 0 ≤ [1 − ℎ𝑎] < 1

In this case, (1 − ℎ𝑎)𝑘 will decay with 𝑘 and always be positve.

We can solve for the range of ℎ:

ℎ ≤ 1/𝑎

This corresponds to h=0.5 in the above figure.

2. Medium ℎ: −1 ≤ [1 − ℎ𝑎] < 0

In this case, the absolute value of (1 − ℎ𝑎)𝑘 will decay with 𝑘, but it oscillates between negative and postive. This is
not desirable, but not that bad, as our solution doesn’t blow up.

We can solve for the range of ℎ:

1/𝑎 < ℎ ≤ 2/𝑎

This corresponds to h=1.5 in the above figure.

3. Large ℎ: [1 − ℎ𝑎] < −1

In this case, the absolute value of (1 − ℎ𝑎)𝑘 will increase with 𝑘. That’s the worst case because the true solution will
be decaying, but our numerical solution insteads gives exponential growth. Here our numerical scheme is totally
wrong, not just inaccurate.

We can solve for the range of ℎ:

ℎ > 2/𝑎

This corresponds to h=2.5 in the above figure.

The take-away is, to obtain a stable solution, the time step size ℎ needs to be small enough. The time step
requirement depends on 𝑎, i.e. how fast the system is changing. If 𝑎 is large, i.e. the system is changing rapidly,
then ℎ has to be small enough (ℎ < 1/𝑎 or ℎ < 2/𝑎, depends on what your want) to capture this fast change.
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Implicit scheme

But sometimes we really want to use a large step size. For example, we might only care about the steady state where 𝑡
is very large, so we would like to quickly jump to the steady state with very few number of iterations. Implicit method
allows us to use a large time step while still keep the solution stable.

Backward Eulerian scheme for this problem is

𝑦𝑘+1 − 𝑦𝑘
ℎ

= −𝑎𝑦𝑘+1

In general, the right hand-side would be some function 𝑓(𝑦𝑘+1), and we need to solve a nonlinear equation to obtain
𝑦𝑘+1. This is why this method is called implicit. But in this problem here we happen to have a linear function, so we
can still write out the iteration explicitly.

𝑦𝑘+1 =
𝑦𝑘

1 + ℎ𝑎

The solution at the k-th time step can be written as

𝑦𝑘 =
𝑦0

(1 + ℎ𝑎)𝑘

Here are the solutions with different ℎ.

In [3]: %plot -s 400,300

% set parameters, can use different value
a = 1;
y0 = 1;
tspan = 10;

% build function
f_true = @(t) y0*exp(-a*t); % true answer
f_backward = @(k,h) (1+h*a).^(-k) * y0; % backward Euler solution

% plot true result
t_ar = linspace(0, tspan); % for plotting
y_true = f_true(t_ar);
plot(t_ar, y_true)
hold on

% plot Forward Euler solution
for h=[2.5, 1.5, 0.5] % try different step size

kmax = round(tspan/h);
k_ar = 0:kmax;
t_ar = k_ar*h;

% we are not doing Forward Euler iteration here
% since the expression is known, we can directly
% get the entire time series
y_backward = f_backward(k_ar, h);

plot(t_ar, y_backward, '-o')
end

% tweak details
ylim([-0.2,1]);
xlabel('t');ylabel('y');
legend('true solution', 'h=2.5', 'h=1.5', 'h=0.5' , 'Location', 'Best')
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Since 1
1+ℎ𝑎 is always smaller than 1 for any positive ℎ and postive 𝑎, 𝑦𝑘 = 𝑦𝑘

(1+ℎ𝑎)𝑘
will always decay. So we don’t

have the instability problem as in the explicit method. A large ℎ simply gives inaccurate results, but not terribly
wrong results.

According to no free lunch theorm, implicit methods must have some additional costs (half joking. that’s another
theorm). The cost for an implicit method is solving a nonlinear system. In general we will have 𝑓(𝑦, 𝑡) on the
right-hand side of the ODE, not simply −𝑎𝑦.

General form

Using −𝑎𝑦 on the right-hand side allows a simple analysis, but the idea of ODE stability/instability applies to general
ODEs. For example considering a system like

𝑑𝑦

𝑑𝑡
= −𝑓(𝑡)𝑦 (2.1)

You can use the typical magnitude of 𝑓(𝑡) as the “𝑎” in the previous analysis.

Even for

𝑑𝑦

𝑑𝑡
= −𝑓(𝑡)𝑦2 (2.2)

You can consider the typical magnitude of 𝑦𝑓(𝑡)

2.14.2 Stiff system

Consider an ODE system

𝑑𝑦1
𝑑𝑡

= −𝑎1𝑦1 (2.3)

𝑑𝑦2
𝑑𝑡

= −𝑎2𝑦2 (2.4)

Using an explicit method, the time step requirement for the first equation is ℎ < 1/𝑎1, while the requirement for the
second one is ℎ < 1/𝑎2. If 𝑎1 >> 𝑎2, we have to use a quite small ℎ to accomodate the first requirement, but that’s
an overkill for the second equation. You will be using too many unnecessary time steps to solve 𝑦2
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We can define the stiff ratio 𝑟 = 𝑎1

𝑎2
. A system is very stiff if 𝑟 is very large. With explicit methods you often need an

unnecessarily large amount of time steps to ensure stability. Implicit methods are particularly useful for a stiff system
because it has no instability problem.

You might want to solve two equations separately so we can use a larger time step for the second equation to save
computing power. But it’s not that easy because in real examples the two equations are often intertwined:

𝑑𝑦1
𝑑𝑡

= −𝑎1𝑦1 − 𝑎3𝑦2 (2.5)

𝑑𝑦2
𝑑𝑡

= −𝑎2𝑦2 − 𝑎4𝑦1 (2.6)

2.15 Session 9: Partial differential equation

Date: 11/13/2017, Monday

In [1]: format compact

I assume you’ve learnt very little about PDEs in basic math class, so I would first talk about PDEs from a programmer’s
perpesctive and come to the math when necessary.

PDE from a programmer’s view: You already know that ODE is the evolution of a single value. From the current
alue 𝑦𝑡 you can solve for the next value 𝑦𝑡+1. PDE is the evolution of an array. From the current array (𝑥1, 𝑥2, ..., 𝑥𝑚)𝑡
you can solve for the array at the next time step (𝑥1, 𝑥2, ..., 𝑥𝑚)𝑡+1. Typically, the array represents some physical field
in the space, like 1D temperature distribution.

2.15.1 Naive advection “solver”

Consider a spatial domain 𝑥 ∈ [0, 1]. We discretize it by 11 points including the boundary.

In [2]: x = linspace(0,1,11)
nx = length(x)

x =
Columns 1 through 7

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
Columns 8 through 11
0.7000 0.8000 0.9000 1.0000

nx =
11

The initial physical field (e.g. the concentration of some chemicals) is 5.0 for 𝑥 ∈ [0.2, 0.3] and zero elsewhere. Let’s
create the initial condition array.

In [3]: u0 = zeros(1,nx); % zero by default
u0(3:4) = 5.0; % non-zero between 0.2~0.3

In [4]: %plot -s 400,200
plot(x, u0, '-o')
ylim([0,6]);
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Say the chemical is blew by the wind towards the right. At the next time step the field is shifted rightward by 1 grid
point.

To represent the solution at the next time step, we could create a new array u_next and set u_next(4:5) = 5.
0, based on our knowledge that u0(3:4) = 5.0. However, we want to write code that works for any initiatial
condition, so the code would look like:

In [5]: % initialization
u = u0;
u_next = zeros(1,nx); % initialize to 0

% shift rightward
u_next(2:end) = u(1:end-1);

% just plotting
hold on
plot(x, u, '-o')
plot(x, u_next, '-o')
ylim([0,6]);
legend('initial condition', 'advected')

Space-time diagram

We can keep shifting the field and record the solution at 5 time steps.

In [6]: u = u0; % reset solution
u_next = zeros(1,nx); % reset solution
u_ts = zeros(5,nx); % to record the entire time series

u_ts(1,:) = u; % record initial condition
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for t=2:5
u_next(2:end) = u(1:end-1); % shift rightward
u = u_next; % swap arrays for the next iteration
u_ts(t,:) = u; % record current step

end

% just plotting
hold on
for t=1:5

plot(x, u_ts(t, :), '-o')
end
ylim([0,6]);
legend('t=0', 't=1', 't=2', 't=3', 't=4')

The plot looks quite convoluted with multiple time steps. . . A better way to visualize it is to plot the time series in a
2D x-t plain.

In [7]: contourf(x,0:4,u_ts)
colorbar()
xlabel('x');ylabel('time')
title("space-time diagram")

Here we can clearly see the “chemical field” is moving rightward through time.

2.15.2 Advection equation

We call this rightward shift an advection process. Just like the diffusion process introduced in the class, advection
happens everywhere in the physical world. In general, the physical field won’t be shifted by exact one grid point.
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Instead, we can have arbitrary wind speed, changing with space and time. To represent this general advection process,
we can write a partial differential equation:

Advection equation with initial condition 𝑢0(𝑥)

𝜕𝑢

𝜕𝑡
+ 𝑐

𝜕𝑢

𝜕𝑥
= 0, 𝑢(𝑥, 0) = 𝑢0(𝑥)

This means a phyical field 𝑢(𝑥, 𝑡) is advected by wind speed 𝑐. In general, the wind speed 𝑐(𝑥, 𝑡) can change with
space and time. But if 𝑐 is a constant, then the analytical solution is

𝑢(𝑥, 𝑡) = 𝑢0(𝑥− 𝑐𝑡)

You can verify this solution by bringing it back to the PDE.

We ask, “what’s the chemical concentration at a spatial point 𝑥 = 𝑥𝑗 , when 𝑡 = 𝑡𝑛“? According to the solution,
the answer is, “it is the same as the concentration at 𝑥 = 𝑥𝑗 − 𝑐𝑡𝑛 when 𝑡 = 0“. This is physically intuitive. The
chemical originally at 𝑥 = 𝑥𝑗 − 𝑐𝑡𝑛 was traveling rightward at speed 𝑐, so after time period 𝑡𝑛 it would reach 𝑥 = 𝑥𝑗 .
Thus in order to find the concentration at 𝑥 = 𝑥𝑗 right now, what we can do is going backward in time to find where
does the current chemical come from.

This solution-finding process means going downward&leftward along the contour line in space-time diagram shown
before.

Numerical approximation to advection equation

In practice, 𝑐 is often not a constant, so we can’t easily find an anlytical solution and must rely on numerical methods.

Use first-order finite difference approximation for both 𝜕𝑢
𝜕𝑡 and 𝜕𝑢

𝜕𝑥 :

𝑢𝑛+1
𝑗 − 𝑢𝑛

𝑗

∆𝑡
+ 𝑐

𝑢𝑛
𝑗 − 𝑢𝑛

𝑗−1

∆𝑥
= 0

Let 𝛼 = 𝑐Δ𝑡
Δ𝑥 , the iteration can be written as

𝑢𝑛+1
𝑗 = 𝑢𝑛

𝑗 − 𝛼(𝑢𝑛
𝑗 − 𝑢𝑛

𝑗−1) (2.7)

= (1 − 𝛼)𝑢𝑛
𝑗 + 𝛼𝑢𝑛

𝑗−1 (2.8)

Note that, to approximate 𝜕𝑢
𝜕𝑥 , we use 𝑢𝑗−𝑢𝑗−1

Δ𝑥 instead of 𝑢𝑗+1−𝑢𝑗

Δ𝑥 . There’s an important physical reason for that.
Here we assume 𝑐 is positive (rightward wind), so the chemical should come from the leftside (𝑢𝑗−1), not the rightside
(𝑢𝑗+1).

Finally, notice that when 𝛼 = 1 we effectively get the previous naive “shifting” scheme.

One step integration

We set 𝑐 = 0.1 and ∆𝑡 = 0.5, so after one time step the chemical would be advected by half grid point (recall that our
grid interval is 0.1).

Coding up the scheme is straightforward. The major difference from ODE solving is your are updating an array, not a
single scalar.

In [8]: % set parameters
c = 0.1; % wind velocity
dx = x(2)-x(1)
dt = 0.5;
alpha = c*dt/dx
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% initialization
u = u0;
u_next = zeros(1,nx);

% one-step PDE integration
for j=2:nx

u_next(j) = (1-alpha)*u(j) + alpha*u(j-1);
% think about what to do for j=1?
% we will talk about boundaries later

end

% plotting
hold on
plot(x, u, '-o')
plot(x, u_next, '-o')
ylim([0,6]);
legend('t=0', 't=0.5')

dx =
0.1000

alpha =
0.5000

Multiple steps

To integrate for multiple steps, we just add another loop for time.

In [9]: % re-initialize
u = u0;
u_next = zeros(1,nx);

% PDE integration for 2 time steps
for t = 1:2 % loop for time

for j=2:nx % loop for space
u_next(j) = (1-alpha)*u(j) + alpha*u(j-1);

end
u = u_next;

end

% plotting
hold on
plot(x, u0, '-o')
plot(x, u, '-o')
ylim([0,6]);
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legend('t=0', 't=1')

We got a pretty huge error here. After 𝑡 = 0.5 × 2 = 1, the solution should just be shifted by one grid point, like in
the previous naive PDE “solver”. Here the center of the chemical field seems alright (changed from 0.25 to 0.35), but
the chemical gets diffused pretty badly. That’s due to the numerical error of the first-order scheme.

Does decreasing time step size help?

In ODE solving, we can always reduce time step size to improve accuracy. Does the same trick help here?

In [10]: c = 0.1;
dx = x(2)-x(1);
dt = 0.1; % use a much smaller time step
nt = round(1/dt) % calculate the number of time steps needed
alpha = c*dt/dx

% === exactly the same as before ===
u = u0;
u_next = zeros(1,nx);

for t = 1:nt
for j=2:nx

u_next(j) = (1-alpha)*u(j) + alpha*u(j-1);
end
u = u_next;

end

hold on
plot(x, u0, '-o')
plot(x, u, '-o')
ylim([0,6]);
legend('t=0', 't=1')

nt =
10

alpha =
0.1000
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Oops, there is no improvement.

That’s because we have both time discretization error 𝑂(∆𝑡) spatial discretization error 𝑂(∆𝑥) in PDE solving.
The total error for our scheme is 𝑂(∆𝑡) + 𝑂(∆𝑥). Simply decreasing the time step size is not enough. To improve
accuracy you also need to increase the number of spatial grid points (nx).

Another way to improve accuracy is to use high-order scheme. But designing high-order advection scheme is quite
challenging. You can find tons of papers by searching something like “high-order advection scheme”.

2.15.3 Boundary condition

So far we’ve ignored the boundary condition. Because the field is shifting rightward, the leftmost grid point is able to
receive information from the “outside”. Think about a pipe where new chemicals keep coming in from the left.

Our previous specification of the advection equation is not complete. The complete version is:

Advection equation with initial condition 𝑢0(𝑥) and left boundary condition 𝑢𝑙𝑒𝑓𝑡(𝑡)

𝜕𝑢

𝜕𝑡
+ 𝑐

𝜕𝑢

𝜕𝑥
= 0

𝑢(𝑥, 0) = 𝑢0(𝑥)

𝑢(0, 𝑡) = 𝑢𝑙𝑒𝑓𝑡(𝑡)

Here we assume 𝑢𝑙𝑒𝑓𝑡(𝑡) = 5. In the code, you just need to add one line.

In [11]: c = 0.1;
dx = x(2)-x(1);
dt = 0.1;
nt = round(1/dt);
alpha = c*dt/dx;

u = u0;
u_next = zeros(1,nx);

for t = 1:nt

u_next(1) = 5.0; % the only change!!
for j=2:nx

u_next(j) = (1-alpha)*u(j) + alpha*u(j-1);
end
u = u_next;

end

hold on
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plot(x, u0, '-o')
plot(x, u, '-o')
ylim([0,6]);
legend('t=0', 't=1')

We can now see new chemicals are “injected” from the left side.

2.15.4 Stability

Numerical experiment

PDE solvers also have stability requirements, just like ODE solvers. The general idea is the time step needs to be
small enough, compared to the spatial step. This holds for advection, diffusion, wave and various forms of PDEs,
although the exact formula for time step requirement can be different depending on the problem.

Here we use a much larger time step to see what happens.

In [12]: c = 0.1;
dx = x(2)-x(1);
dt = 2; % a much larger time step
alpha = c*dt/dx

u = u0;
u_next = zeros(1,nx);

for t = 1:10
for j=2:nx

u_next(j) = (1-alpha)*u(j) + alpha*u(j-1);
end
u = u_next;

if t == 1 % record the first time step
u1 = u;

end
end

hold on
plot(x, u0, '-o')
plot(x, u1, '-o')
plot(x, u, '--')
ylim([-40,40]);
legend('initial', 't=2', 't=20')
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alpha =
2

The simulation blows very quickly.

Intuitive explanation

In the previous experiment we have 𝛼 = 2, so one of the coeffcients in the formula becomes negative:

𝑢𝑛+1
𝑗 = (1 − 𝛼)𝑢𝑛

𝑗 + 𝛼𝑢𝑛
𝑗−1 = (−1) × 𝑢𝑛

𝑗 + 2 × 𝑢𝑛
𝑗−1

Negative coefficients are meaningless here, because a grid point 𝑥𝑗 shouldn’t get “negative contribution” from
a nearby grid point 𝑥𝑗−1. It makes no sense to advect “negative density” or “negative concentration”.

To keep both coefficients (𝛼 and 1 − 𝛼) postive, we require 0 ≤ 𝛼 ≤ 1. Recall 𝛼 = 𝑐Δ𝑡
Δ𝑥 , so we essentially require the

time step to be small.

This is just an intuitive explanation. To rigorously derive the stability requirement, you would need some heavy math
as shown below.

Stability analysis (theoretical)

The time step requirement can be derived by von Neumann Stability Analysis (also see PDE_solving.pdf on canvas).

The idea is we want to know how does the magnitude of 𝑢𝑛
𝑗 change with time, under the iteration (first-order advection

scheme for example):

𝑢𝑛+1
𝑗 = (1 − 𝛼)𝑢𝑛

𝑗 + 𝛼𝑢𝑛
𝑗−1

It is troublesome to track the entire array [𝑢𝑛
1 , 𝑢

𝑛
2 , ..., 𝑢

𝑛
𝑚]. Instead we want a single value to represent the magnitude

of the array. The general idea is to perform Fourier expansion on the spatial field 𝑢(𝑥). From Fourier analysis we
know any 1D field can viewed as the sum of waves of different wavelength:

𝑢(𝑥) =

∞∑︁
𝑘=−∞

𝑇𝑘𝑒
𝑖𝑘𝑥

Thus we can track how a single component, 𝑇𝑘𝑒
𝑖𝑘𝑥, evolves with time. We omit the subscript 𝑘 and add the time index

𝑛, so the component at the n-th time step can be written as 𝑇 (𝑛)𝑒𝑖𝑘𝑥. The iteration for this component is

𝑇 (𝑛 + 1)𝑒𝑖𝑘𝑥 = (1 − 𝛼)𝑇 (𝑛)𝑒𝑖𝑘𝑥 + 𝛼𝑇 (𝑛)𝑒𝑖𝑘(𝑥−Δ𝑥)
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Divide both sides by 𝑒𝑖𝑘𝑥

𝑇 (𝑛 + 1) = (1 − 𝛼)𝑇 (𝑛) + 𝛼𝑇 (𝑛)𝑒−𝑖𝑘Δ𝑥

𝑇 (𝑛 + 1)

𝑇 (𝑛)
= 1 − 𝛼 + 𝛼𝑒−𝑖𝑘Δ𝑥

Define amplification factor 𝐴 = 𝑇 (𝑛+1)
𝑇 (𝑛) . We want |𝐴| ≤ 1 so the solution won’t blow up, just like what we did in

the ODE stability analysis.

We thus require

|1 − 𝛼 + 𝛼𝑒−𝑖𝑘Δ𝑥| ≤ 1

So we’ve transformed the requirement on an array to the requirement on a scalar.

We want this inequality to be true for any 𝑘. It will finally lead to a requirement for 𝛼, which is the same as the
previous intuitive analysis that 0 ≤ 𝛼 ≤ 1. Fully working this out needs some math, see this post for example.

2.15.5 High-order PDE

The wave equation is a typical 2nd-order PDE

𝜕2𝑢

𝜕𝑡2
− 𝑐2

𝜕2𝑢

𝜕𝑥2
= 0

Compared to the advection equation, the major differences are

• The wave can go both rightward and leftward, at speed 𝑐 or −𝑐.

• It needs both left and right boundary condition. Periodic boundary conditions are often used.

• It needs both 0th-order and 1st-order initial conditions, i.e. 𝑢(𝑥, 𝑡)|𝑡=0 and 𝜕𝑢
𝜕𝑡 |𝑡=0. Otherwise you can’t start

your intergration, because a 2nd-order time derivative means 𝑢𝑛+1 would rely on both 𝑢𝑛 and 𝑢𝑛−1. 0th-order
initial condition only gives you one time step, but you need two time steps to get started.

2.16 Session 10: Fast Fourier Transform

Date: 11/27/2017, Monday

In [1]: format compact

2.16.1 Generate input signal

Fourier transform is widely used in signal processing. Let’s looks at the simplest cosine signal first.

Define

𝑦1(𝑡) = 0.3 + 0.7 cos(2𝜋𝑓1𝑡)

It has a magnitude of 0.7, with a constant bias term 0.3. We choose the frequency 𝑓1 = 0.5.

In [2]: t = -5:0.1:4.9; % time axis
N = length(t) % size of the signal

f1 = 0.5; % signal frequency
y1 = 0.3 + 0.7*cos(2*pi*f1*t); % the signal
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N =
100

In [3]: %plot -s 800,200
hold on
plot(t, y1)
plot(t, 0.3*ones(N,1), '--k')
title('simple signal')
xlabel('t [s]')
legend('signal', 'mean')

2.16.2 Perform Fourier transform on the signal

You can hand code the Fourier matrix as in the class, but here we use the built-in function for convenience.

In [4]: F1 = fft(y1);
length(F1) % same as the length of the signal

ans =
100

There are two different conventions for the normalization factor in the Fourier matrix. One is having the normalization
factor 1√

𝑁
in the both the Fourier matrix 𝐴 and the inverse transform matrix 𝐵

𝐴 =
1√
𝑁

⎡⎢⎢⎢⎢⎢⎣
1 1 1 · · · 1
1 𝜔 𝜔2 · · · 𝜔𝑁−1

1 𝜔2 𝜔4 · · · 𝜔2(𝑁−1)

...
...

...
. . .

...
1 𝜔𝑁−1 𝜔2(𝑁−1) · · · 𝜔(𝑁−1)(𝑁−1)

⎤⎥⎥⎥⎥⎥⎦

𝐵 =
1√
𝑁

⎡⎢⎢⎢⎢⎢⎣
1 1 1 · · · 1
1 𝜔−1 𝜔−2 · · · 𝜔−(𝑁−1)

1 𝜔−2 𝜔−4 · · · 𝜔−2(𝑁−1)

...
...

...
. . .

...
1 𝜔−(𝑁−1) 𝜔−2(𝑁−1) · · · 𝜔−(𝑁−1)(𝑁−1)

⎤⎥⎥⎥⎥⎥⎦
MATLAB uses a different convention that

𝐴 =

⎡⎢⎢⎢⎢⎢⎣
1 1 1 · · · 1
1 𝜔 𝜔2 · · · 𝜔𝑁−1

1 𝜔2 𝜔4 · · · 𝜔2(𝑁−1)

...
...

...
. . .

...
1 𝜔𝑁−1 𝜔2(𝑁−1) · · · 𝜔(𝑁−1)(𝑁−1)

⎤⎥⎥⎥⎥⎥⎦
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𝐵 =
1

𝑁

⎡⎢⎢⎢⎢⎢⎣
1 1 1 · · · 1
1 𝜔−1 𝜔−2 · · · 𝜔−(𝑁−1)

1 𝜔−2 𝜔−4 · · · 𝜔−2(𝑁−1)

...
...

...
. . .

...
1 𝜔−(𝑁−1) 𝜔−2(𝑁−1) · · · 𝜔−(𝑁−1)(𝑁−1)

⎤⎥⎥⎥⎥⎥⎦
The difference doesn’t matter too much as long as you use one of them consistently. In both cases there is

𝐹 = 𝐴𝑌 (Discrete Fourier transfrom) (2.9)
𝑌 = 𝐵𝐹 (Inverse transfrom) (2.10)

Full spectrum

The spectrum F1 (the result of the Fourier transfrom) is typically an array of complex numbers. To plot it we need to
use absolute magnitude.

In [5]: %plot -s 800,200
plot(abs(F1),'- .')
title('unnormalized full spectrum')

The first term in F1 indicates the magnitude of the constant term (zero frequency). Diving by N gives us the actual
value.

In [6]: F1(1)/N % equal to the constant bias term specified at the beginning

ans =
0.3000

Besides the constant bias F1(1), there are two non-zero pointings in F1, indicating the cosine signal itself. The
magnitude 0.7 is evenly distributed to two points.

In [7]: F1(2+4)/N, F1(end-4)/N % adding up to 0.7

ans =
-0.3500 - 0.0000i

ans =
-0.3500 + 0.0000i

Plotting F1/N shows more clearly the magnitude of signals at different frequencies:

In [8]: %plot -s 800,200
plot(abs(F1)/N,'- .')
title('(normalized) full spectrum')
ylabel('signal amplitude')

2.16. Session 10: Fast Fourier Transform 81



AM111 Documentation, Release 0.1

Half-sided spectrum

From the matrix 𝐴 it is easy to show that, the first element F(1) in the resulting spectrum is always a real number
indicating the constant bias term, while the rest of the array F(2:end) is symmetric, i.e. F(2) == F(end), F(3)
== F(end-1). ( F(2) is actually the conjugate of F(end), but we only care about magnitude here. )

Due to such symmetricity, we can simply plot half of the array (scaled by 2) without loss of information.

In [9]: M = N/2 % need to cast to integer if N is an odd number

M =
50

In [10]: %plot -s 800,200
plot(abs(F1(1:M+1))/N*2, '- .')
title('(normalized) half-sided spectrum')
ylabel('signal amplitude')

2.16.3 Understanding units!

The Discrete Fourier Transform, by defintion, is simply a matrix multiplication which acts on pure numbers. But real
physical signals have units. You cannot just treat the resulting array F1 as some unitless frequency. If the signal is a
time series then you need to deal with seconds and hertz; if it is a wave in the space then you need to deal with the
wave length in meters.

In order to understand the unit of the resulting spectrum F1, let’s look at the original time series y1 first.

The “time step” of the signal is

In [11]: dt = t(2)-t(1) % [s]

dt =
0.1000

This is the finest temporal resolution the signal can have. It corresponds the highest frequency:

In [12]: f_max = 1/dt % [Hz]
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f_max =
10.0000

On the contrary, the longest time range (dt*N, the time span of the entire signal) corresponds to the lowest frequency:

In [13]: df = f_max/N % [Hz]

df =
0.1000

With the lowest frequency df being the “step size” in the frequency axis, the value of the frequency axis is simply the
array [0, df, 2*df, . . . ]. Now we can use correct values and units for the x-axis of the spectrum plot.

In [14]: %plot -s 800,200
plot(df*(0:M), abs(F1(1:M+1))/N*2,'- .')
title('half-sided spectrum with correct unit of x-axis')
ylabel('signal amplitude')
xlabel('frequency [Hz]')

The peak is at 0.5 Hz, consistent with our original signal which has a period of 2 s, since 0.5 Hz = 1/(2s). Thus
our unit specification is correct.

2.16.4 Deal with negative frequency

The right half of the spectrum array (F1(M+2:end), not plotted in the above figure) corresponds to negative fre-
quency [-M*df, . . . , -2*df, -df]. Thus each element in the entire F1 array corresponds to each element in the frequency
array [0, df, 2*df, . . . , M*df, -M*df, . . . , -2*df, -df].

You can perform fftshift on the resulting spectrum F1 to swap its left and right parts, so it will align with
the motonically increasing axis [-M*df, . . . , -2*df, -df, 0, df, 2*df, . . . , M*df]. That feels more natural from a
mathematical point of view.

In [15]: F_shifted = fftshift(F1);
plot(abs(F_shifted),'- .')
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2.16.5 Perform inverse transform

Performing inverse transform is simply ifft(F1). Recall that MATLAB performs the 1
𝑁 scaling during the inverse

transform step.

We use norm to check if ifft(F1) is close enough to y1.

In [16]: norm(ifft(F1) - y1) % almost zero

ans =
1.2269e-15

2.16.6 Mix two signals

Fourier transform and inverse transform are very useful in signal filering. Let’s first add a high-frequency noise to our
original signal.

In [17]: f2 = 5; % higher frequency
y2 = 0.2*sin(f2*pi*t); % noise
y = y1 + y2; % add up original signal and noise

In [18]: %plot -s 800,400
subplot(311);plot(t, y2, 'r');
ylim([-1,1]);title('noise')

subplot(312);plot(t, y1);
ylim([-0.6,1.2]);title('original signal')

subplot(313);plot(t, y, 'k');
ylim([-0.6,1.2]);title('signal + noise')

After the Fourier transform, we see two new peaks at a relatively higher frequency.

In [19]: F = fft(y);

In [20]: %plot -s 800,200
plot(abs(F), '- .')
title('spectrum with high-frequency noise')
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Again, the noise magnitude 0.2 is evenly distributed to positive and negative frequencies. Here we got complex
conjugates:

In [21]: F(2+24)/N, F(end-24)/N % magnitude of noises

ans =
-0.0000 + 0.1000i

ans =
-0.0000 - 0.1000i

2.16.7 Filter out high-frequency noise

Let’s wipe out this annoying noise. It’s very difficult to do so in the original signal, but very easy to do in the spectrum.

In [22]: F_filtered = F; % make a copy
F_filtered(26) = 0; % remove the high-frequency noise
F_filtered(76) = 0; % same for negative frequency

In [23]: plot(abs(F_filtered), '- .')
title('filtered spectrum')

Then we can transform the spectrum back to the signal.

In [24]: y_filtered = ifft(F_filtered);

If the filtering is done symmetrically (i.e. do the same thing for positive and negative frequencies), the recovered signal
will only contain real numbers.

In [35]: %plot -s 800,200
plot(t, y_filtered)
title('de-noised signal')
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The de-noised signal is almost the same as the original noise-free signal:

In [36]: norm(y_filtered - y1) % almost zero

ans =
5.6847e-15

2.16.8 Filter has to be symmetric

What happens if the filtering done asymmetrically?

In [37]: F_wrong_filtered = F; % make another copy
F_wrong_filtered(76) = 0; % only do negative frequency

In [39]: plot(abs(F_wrong_filtered), '- .')
title('asymmetrically-filtered spectrum')

The recovered signal now contains imaginary parts. That’s unphysical!

In [40]: y_wrong_filtered = ifft(F_wrong_filtered);

In [42]: y_wrong_filtered(1:5)' % print the first several elements

ans =
-0.4000 - 0.1000i
-0.4657 + 0.0000i
-0.2663 + 0.1000i
-0.0114 - 0.0000i
0.0837 - 0.1000i

In [43]: norm(imag(y_wrong_filtered)) % not zero

ans =
0.7071

You can plot the real part only. It is something between the unfiltered and filtered signals, i.e. the filtering here is
incomplete.

In [45]: hold on
plot(t, y, 'k')
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plot(t, real(y_wrong_filtered), 'b')
plot(t, y1, 'r')
legend('signal with noise', 'incomplete fliltering', 'signal without noise')

These notes combine codes and results together. You can just copy the codes to your MATLAB console or script.

If you wonder how I wrote codes in this format and want to try it yourself, see the section below.
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CHAPTER 3

MATLAB in Jupyter Notebooks

This course is taught in MATLAB. One thing you could try is to run MATLAB codes in Jupyter Notebooks. Jupyter
Notebook is a must-learn tool for data scientists, and it is also becoming popular in the traditional scientific computing
community. It is a great tool for interactive computing and allows you to combine codes, simulation results, and
descriptions such as latex equations in a single file.

See how to install and use it at:

3.1 Install Jupyter-MATLAB

Prerequisites

• We assume that you are comfortable with Linux command line. If not, checkout out Ryans’ tutorial for example.

• We also assume that you already have MATLAB installed and working. This tutorial is tested successfully with
MATLAB R2017a on Mac/Linux/Windows.

3.1.1 Install the standard Jupyter-Python notebook

Jupyter relies on Python, so the first thing is to install Anaconda, a popular distribution of scientific Python. Experi-
enced users prefer Miniconda to only install necessary packages, but the standard Anaconda is more convenient for
beginners, especially on Windows.

Once you have conda installed, you should test the standard IPython notebook. For example, in the notebook execute

In [1]: %%python
# I am in a MATLAB kernel so need to add the above IPython magic to use the python kernel instead.
# You can skip this magic in a standard python kernel
print('hello from Python')

hello from Python
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3.1.2 On Mac/Linux

(1) Python-side configuration

Open the terminal, execute the following command to check your installation of anaconda and python:

which conda pip python

All of them should be inside anaconda’s directory “. . . /anaconda3/bin”

MATLAB R2017a only interfaces with Python3.5, so we need to create a new virtual environment:

conda create -vv -n jmatlab python=3.5 jupyter

Enter this Python environment. Stay in this environment when executing any terminal commands (pip, python,
jupyter) for rest of this tutorial.

source activate jmatlab

Then, install the Matlab kernel for Jupyter.

pip install matlab_kernal

python -m matlab_kernel install

Check if the kernel is installed correctly

jupyter kernelspec list

You should see both Python and MATLAB.

(2) MATLAB-side configuration

Now we need to expose the MATLAB executable to Jupyter.

Find your MATLAB directory. On Mac it will be like “/Applications/MATLAB_R2017a.app”.

Go to the “extern/engines/python” subdirectory and install the Python engine.

cd “/Applications/MATLAB_R2017a.app/extern/engines/python”

python setup.py install

(3) Start Jupyter notebook

cd your_working_directory

jupyter notebook

Now you should see both Python and MATLAB options when launching a new notebook. Check if the MATLAB
kernel is working by:

In [2]: disp('hello from MATLAB')

hello from MATLAB

See Use MATLAB in Jupyter Notebooks for more usages.
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3.1.3 On Windows

Windows is always tricker when it comes to configuring software, but all you need is basically translating Linux
commands into Windows commands.

Commonly used Linux/Mac <-> Windows command mappings are:

• cd folder/subfolder <-> cd folder\subfolder (type e: to change the disk E)

• pwd <-> cd

• ls <-> dir

You might also need to set environment variables if commands like “python” and “conda” cannot be recognized. Add
the following directories to the PATH variable:

• path_to_Anaconda_dir\

• path_to_Anaconda_dir\Scripts\

All steps are exactly the same as in the Mac/Linux section. Windows is indeed a litte bit annoying, but it doesn’t
prevent Jupyter+MATLAB from working. Please contact me if you have any troubles.

3.2 Use MATLAB in Jupyter Notebooks

Jupyter Notebook is a great tool for interactive computing. It allows you to combine codes, simulation results, and
descriptions such as latex equations in a single file. It works for many langueges including MATLAB, the choice of
this class.

For installation, see Install Jupyter-MATLAB.

3.2.1 Jupyter basics

The most commonly used Jupyter commands are

• enter – (in command mode) enter edit mode

• shift+enter – (in edit mode) execute current cell

• esc – (in edit mode) enter command mode, so you can use arrow keys to move to other cells

• b – (in command mode) insert empty cell below

• x – (in command mode) cut current cell

• v – (in command mode) paste the cell you’ve cut

• esc+m/y – change current code cell to markdown cell / reverse

For all commands see “Help” - “Keyboard shortcuts” in the toolbar.

3.2.2 Printing formats

The default output format is “loose”, which takes a lot of space.

In [1]: format loose
for i=1:2

i+1
end
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ans =

2

ans =

3

“compact” is a better option for notebook.

In [2]: format compact
for i=1:2

i+1
end

ans =
2

ans =
3

3.2.3 Use help functions

“help” will print docs inside the notebook, same as Python’s help( )

In [3]: help sin

SIN Sine of argument in radians.
SIN(X) is the sine of the elements of X.

See also ASIN, SIND.

Reference page in Doc Center
doc sin

Other functions named sin

codistributed/sin gpuArray/sin sym/sin

“?” will prompt a small text window, same as IPython magic “?”. (not shown on the webpage)

In [4]: ?sin

“doc” will prompt MATLAB’s detailed documentations. (not shown on the webpage)

In [5]: doc sin

3.2.4 Plotting

Make a cool surface for plotting :)

In [6]: tx = linspace (-8, 8, 41);
ty = tx;
[xx, yy] = meshgrid (tx, ty);
r = sqrt (xx .^ 2 + yy .^ 2) + eps;
tz = sin (r) ./ r;

The “%plot inline” magic (default) will plot inside the notebook, same as “%matplotlib inline” in IPython.
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In [7]: %plot inline
mesh(tx, ty, tz);

The “%plot native” magic will plot in an external window as the original MATLAB’s interface, which allows you to
rotate, zoom in/out (not shown on the webpage).

In [8]: %plot native
mesh(tx, ty, tz);

You can still use “close all” to close the window that was opened by cell above.

In [9]: close all

“?%plot” will show more plotting options including how to control the figure size (not shown on the webpage)

In [10]: ?%plot

3.2.5 User-defined functions

For Python programmers it is so common to define a custom function inside a notebook and reuse it over and over
again.

A ridiculous design of MATLAB is the function has to be in a separate file, with the function name being the file name.
Local functions are allowed since R2016b, but it has many restrictions and doesn’t work in either Jupyter Notebook
or MATLAB’s own Live Script.

Inline functions

By default, matlab only allows inline functions within a script.

3.2. Use MATLAB in Jupyter Notebooks 93

https://www.mathworks.com/help/matlab/matlab_prog/local-functions-in-scripts.html


AM111 Documentation, Release 0.1

In [11]: f=@(x) x^3+x-1;

We can easily find the root of such a function.

In [12]: fzero(f,[0 1],optimset('Display','iter'))

Func-count x f(x) Procedure
2 1 1 initial
3 0.5 -0.375 bisection
4 0.636364 -0.105935 interpolation
5 0.68491 0.00620153 interpolation
6 0.682225 -0.000246683 interpolation
7 0.682328 -5.43508e-07 interpolation
8 0.682328 1.50102e-13 interpolation
9 0.682328 0 interpolation

Zero found in the interval [0, 1]
ans =

0.6823

Standard functions

But inline functions must only contain a single statement, too limited in most cases.

If you try to define a standard function, it will fail:

In [13]: function p = multi_line_func(a,b)
a = a+1;
b = b+1;
p = a+b;

end

Error: Function definitions are not permitted in this context.

Fortunately, Jupyter’s “%%file” magic allows us to write a code cell to a file.

In [14]: %%file multi_line_func.m

function p = multi_line_func(a,b)
% in-file comments can be added like this
a = a+1;
b = b+1;
p = a+b;

end

Created file '/Users/zhuangjw/Research/Computing/personal_web/matlab_code/multi_line_func.m'.

The output file and this Notebook will be in the same directory, so you can call it directly, as if this function is defined
inside the notebook.

In [15]: multi_line_func(1,1)

ans =
4

By doing this, you get Python-like working environment – create a function, test it with several input parameters, go
back to edit the function and test it again. This REPL workflow will greatly speed-up your prototyping.

It might take 1~2 seconds for a function cell to take effect, because we are writting files to disk. But you don’t need
to restart the kernel to activate any modifications to your function.
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warning: you should avoid adding a MATLAB comment (start with %) at the beginning of a cell, because it might be
interpreted as Jupyter magic and thus confuse the kernel.

3.2.6 Markdown cells

Markdown cells are a great way to add descriptions to your codes. Here are examples stolen from the official document.
See Jupyter notebook’s document for details.

Latex equations

How to write an inline eqution: $e^{i\pi} + 1 = 0$

Result: 𝑒𝑖𝜋 + 1 = 0

How to write a standalone equation:

$$e^x=\sum_{i=0}^\infty \frac{1}{i!}x^i$$

Result:

𝑒𝑥 =

∞∑︁
𝑖=0

1

𝑖!
𝑥𝑖

Tables

How to make a table:

| This | is |
|------|------|
| a | table|

Result:

This is
a table

Not-executing codes

You can put your codes inside a markdown cell, to only show the codes without executing them.

Here’s the way to get syntax highlighting for python codes:

```python
python codes
```

“MATLAB” is not a highlighting option, but you can use “OCTAVE”, an open-source clone of MATLAB, to get the
same effect.

```OCTAVE
disp("Hello World")
for i=1:2
i+1

end
```
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Result:

disp("Hello World")
for i=1:2

i+1
end

Headings

Headings are an important way to structure your notebook.

# Heading 1
## Heading 2
### Heading 3
#### Heading 4

Some basic understanding of Linux command line and Python will be useful for installation. If you are just new to
programming, you should simply use MATLAB’s original, basic user interface and come back to this tutorial
later when you are interested.

If you feel good about this tool, you can choose to submit notebooks for your homework, Again, your grade will not
be affected by the file format of your homework.
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