

    
      
          
            
  
Welcome to MITgcm’s user manual


Contents:


	1. Overview
	1.1. Introduction

	1.2. Illustrations of the model in action
	1.2.1. Global atmosphere: ‘Held-Suarez’ benchmark

	1.2.2. Ocean gyres

	1.2.3. Global ocean circulation

	1.2.4. Convection and mixing over topography

	1.2.5. Boundary forced internal waves

	1.2.6. Parameter sensitivity using the adjoint of MITgcm

	1.2.7. Global state estimation of the ocean

	1.2.8. Ocean biogeochemical cycles

	1.2.9. Simulations of laboratory experiments





	1.3. Continuous equations in ‘r’ coordinates
	1.3.1. Kinematic Boundary conditions

	1.3.2. Atmosphere

	1.3.3. Ocean

	1.3.4. Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic forms

	1.3.5. Solution strategy

	1.3.6. Finding the pressure field

	1.3.7. Forcing/dissipation

	1.3.8. Vector invariant form

	1.3.9. Adjoint





	1.4. Appendix ATMOSPHERE
	1.4.1. Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates





	1.5. Appendix OCEAN
	1.5.1. Equations of Motion for the Ocean





	1.6. Appendix OPERATORS
	1.6.1. Coordinate systems









	2. Getting Started with MITgcm
	2.1. Where to find information





	3. Contributing to the MITgcm
	3.1. Bugs and feature requests

	3.2. Contributing to the code
	3.2.1. Quickstart Guide

	3.2.2. Detailed guide

	3.2.3. Style guide

	3.2.4. Automatic testing with Travis-CI





	3.3. Contributing to the manual
	3.3.1. Section headings

	3.3.2. Cross referencing

	3.3.3. Maths

	3.3.4. Units

	3.3.5. Describing subroutine inputs and outputs





	3.4. Reviewing pull requests





	4. MITgcm Example Experiments
	4.1. Full list of model examples

	4.2. Barotropic Gyre MITgcm Example
	4.2.1. Equations Solved

	4.2.2. Discrete Numerical Configuration

	4.2.3. Code Configuration





	4.3. A Rotating Tank in Cylindrical Coordinates
	4.3.1. Overview

	4.3.2. Equations Solved

	4.3.3. Discrete Numerical Configuration

	4.3.4. Code Configuration









	5. Physical Parameterizations - Packages I
	5.1. Overview
	5.1.1. Using MITgcm Packages





	5.2. Packages Related to Hydrodynamical Kernel
	5.2.1. Generic Advection/Diffusion

	5.2.2. Shapiro Filter

	5.2.3. FFT Filtering Code

	5.2.4. exch2: Extended Cubed Sphere Topology

	5.2.5. Gridalt - Alternate Grid Package





	5.3. General purpose numerical infrastructure packages
	5.3.1. OBCS: Open boundary conditions for regional modeling

	5.3.2. RBCS Package

	5.3.3. PTRACERS Package





	5.4. Ocean Packages
	5.4.1. GMREDI: Gent-McWilliams/Redi SGS Eddy Parameterization

	5.4.2. KPP: Nonlocal K-Profile Parameterization for Vertical Mixing

	5.4.3. GGL90: a TKE vertical mixing scheme

	5.4.4. OPPS: Ocean Penetrative Plume Scheme

	5.4.5. KL10: Vertical Mixing Due to Breaking Internal Waves

	5.4.6. BULK_FORCE: Bulk Formula Package

	5.4.7. EXF: The external forcing package

	5.4.8. CAL: The calendar package





	5.5. Atmosphere Packages
	5.5.1. Atmospheric Intermediate Physics: AIM

	5.5.2. Land package

	5.5.3. Fizhi: High-end Atmospheric Physics





	5.6. Sea Ice Packages
	5.6.1. THSICE: The Thermodynamic Sea Ice Package

	5.6.2. SEAICE Package









	6. References









          

      

      

    

  

    
      
          
            
  
1. Overview

This document provides the reader with the information necessary to
carry out numerical experiments using MITgcm. It gives a comprehensive
description of the continuous equations on which the model is based, the
numerical algorithms the model employs and a description of the associated
program code. Along with the hydrodynamical kernel, physical and
biogeochemical parameterizations of key atmospheric and oceanic processes
are available. A number of examples illustrating the use of the model in
both process and general circulation studies of the atmosphere and ocean are
also presented.


1.1. Introduction

MITgcm has a number of novel aspects:



	it can be used to study both atmospheric and oceanic phenomena; one hydrodynamical kernel is used to drive forward both atmospheric and oceanic models - see Figure 1.1





[image: One model for atmospheric and oceanic simulations]Figure 1.1 MITgcm has a single dynamical kernel that can drive forward either oceanic or atmospheric simulations.







	it has a non-hydrostatic capability and so can be used to study both small-scale and large scale processes - see Figure 1.2





[image: MITgcm can simulate a wide range of scales]
Figure 1.2 MITgcm has non-hydrostatic capabilities, allowing the model to address a wide range of phenomenon - from convection on the left, all the way through to global circulation patterns on the right.







	finite volume techniques are employed yielding an intuitive discretization and support for the treatment of irregular geometries using orthogonal curvilinear grids and shaved cells - see Figure 1.3





[image: Finit volume techniques]Figure 1.3 Finite volume techniques (bottom panel) are used, permitting a treatment of topography that rivals \(\sigma\) (terrain following) coordinates.







	tangent linear and adjoint counterparts are automatically maintained along with the forward model, permitting sensitivity and optimization studies.

	the model is developed to perform efficiently on a wide variety of computational platforms.






Key publications reporting on and charting the development of the model are Hill and Marshall (1995), Marshall et al. (1997a),
Marshall et al. (1997b), Adcroft and Marshall (1997), Marshall et al. (1998), Adcroft and Marshall (1999), Hill et al. (1999),
Marotzke et al. (1999), Adcroft and Campin (2004), Adcroft et al. (2004b), Marshall et al. (2004) (an overview on the model formulation can also be found in Adcroft et al. (2004c)):

Hill, C. and J. Marshall, (1995)
Application of a Parallel Navier-Stokes Model to Ocean Circulation in
Parallel Computational Fluid Dynamics,
In Proceedings of Parallel Computational Fluid Dynamics: Implementations
and Results Using Parallel Computers, 545-552.
Elsevier Science B.V.: New York [HM95]

Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997a)
Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling,
J. Geophysical Res., 102(C3), 5733-5752 [MHPA97]

Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997b)
A finite-volume, incompressible Navier Stokes model for studies of the ocean
on parallel computers, J. Geophysical Res., 102(C3), 5753-5766 [MAH+97]

Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
Representation of topography by shaved cells in a height coordinate ocean
model, Mon Wea Rev, 125, 2293-2315 [AHM97]

Marshall, J., Jones, H. and C. Hill, (1998)
Efficient ocean modeling using non-hydrostatic algorithms,
Journal of Marine Systems, 18, 115-134 [MJH98]

Adcroft, A., Hill C. and J. Marshall: (1999)
A new treatment of the Coriolis terms in C-grid models at both high and low
resolutions,
Mon. Wea. Rev., 127, 1928-1936 [AHM99]

Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
A Strategy for Terascale Climate Modeling,
In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors
in Meteorology, 406-425
World Scientific Publishing Co: UK [HAJM99]

Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
Construction of the adjoint MIT ocean general circulation model and
application to Atlantic heat transport variability,
J. Geophysical Res., 104(C12), 29,529-29,547 [MGZ+99]

A. Adcroft and J.-M. Campin, (2004a)
Re-scaled height coordinates for accurate representation of free-surface flows in ocean circulation models,
Ocean Modelling, 7, 269–284 [AC04]

A. Adcroft, J.-M. Campin, C. Hill, and J. Marshall, (2004b)
Implementation of an atmosphere-ocean general circulation model on the expanded
spherical cube,
Mon Wea Rev , 132, 2845–2863 [ACHM04]

J. Marshall, A. Adcroft, J.-M. Campin, C. Hill, and A. White, (2004)
Atmosphere-ocean modeling exploiting fluid isomorphisms, Mon. Wea. Rev., 132, 2882–2894 [MAC+04]

A. Adcroft, C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, (2004c)
Overview of the formulation and numerics of the MITgcm, In Proceedings of the ECMWF seminar series on Numerical Methods, Recent developments in numerical methods for atmosphere and ocean modelling, 139–149. URL: http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf [AHCampin+04]

We begin by briefly showing some of the results of the model in action to
give a feel for the wide range of problems that can be addressed using it.




1.2. Illustrations of the model in action

MITgcm has been designed and used to model a wide range of phenomena,
from convection on the scale of meters in the ocean to the global pattern of
atmospheric winds - see Figure 1.2. To give a flavor of the
kinds of problems the model has been used to study, we briefly describe some
of them here. A more detailed description of the underlying formulation,
numerical algorithm and implementation that lie behind these calculations is
given later. Indeed many of the illustrative examples shown below can be
easily reproduced: simply download the model (the minimum you need is a PC
running Linux, together with a FORTRAN77 compiler) and follow the examples
described in detail in the documentation.



	1.2.1. Global atmosphere: ‘Held-Suarez’ benchmark

	1.2.2. Ocean gyres

	1.2.3. Global ocean circulation

	1.2.4. Convection and mixing over topography

	1.2.5. Boundary forced internal waves

	1.2.6. Parameter sensitivity using the adjoint of MITgcm

	1.2.7. Global state estimation of the ocean

	1.2.8. Ocean biogeochemical cycles

	1.2.9. Simulations of laboratory experiments








1.3. Continuous equations in ‘r’ coordinates

To render atmosphere and ocean models from one dynamical core we exploit
‘isomorphisms’ between equation sets that govern the evolution of the
respective fluids - see Figure 1.17. One system of
hydrodynamical equations is written down and encoded. The model
variables have different interpretations depending on whether the
atmosphere or ocean is being studied. Thus, for example, the vertical
coordinate ‘\(r\)’ is interpreted as pressure, \(p\), if we are
modeling the atmosphere (right hand side of Figure 1.17) and height, \(z\), if we are modeling
the ocean (left hand side of Figure 1.17).



[image: isomorphic-equations]
Figure 1.17 Isomorphic equation sets used for atmosphere (right) and ocean (left).






The state of the fluid at any time is characterized by the distribution
of velocity \(\vec{\mathbf{v}}\), active tracers \(\theta\) and
\(S\), a ‘geopotential’ \(\phi\) and density
\(\rho =\rho (\theta ,S,p)\) which may depend on \(\theta\),
\(S\), and \(p\). The equations that govern the evolution of
these fields, obtained by applying the laws of classical mechanics and
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in
terms of a generic vertical coordinate, \(r\), so that the
appropriate kinematic boundary conditions can be applied isomorphically
see Figure 1.18.



[image: zandp-vert-coord]Figure 1.18 Vertical coordinates and kinematic boundary conditions for atmosphere (top) and ocean (bottom).







(1)\[\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}\text{  horizontal momentum}\]


(2)\[\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{  vertical momentum}\]


(3)\[\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
\partial r}=0\text{  continuity}\]


(4)\[b=b(\theta ,S,r)\text{  equation of state}\]


(5)\[\frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{  potential temperature}\]


(6)\[\frac{DS}{Dt}=\mathcal{Q}_{S}\text{  humidity/salinity}\]

Here:


\[r\text{ is the vertical coordinate}\]


\[\frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{ is the total derivative}\]


\[\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
\text{  is the ‘grad’ operator}\]

with \(\mathbf{\nabla }_{h}\) operating in the horizontal and
\(\widehat{k}
\frac{\partial }{\partial r}\) operating in the vertical, where
\(\widehat{k}\) is a unit vector in the vertical


\[t\text{ is time}\]


\[\vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the velocity}\]


\[\phi \text{ is the ‘pressure’/‘geopotential’}\]


\[\vec{\Omega}\text{ is the Earth's rotation}\]


\[b\text{ is the ‘buoyancy’}\]


\[\theta \text{ is potential temperature}\]


\[S\text{ is specific humidity in the atmosphere; salinity in the ocean}\]


\[\mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{
\mathbf{v}}\]


\[\mathcal{Q}_{\theta }\mathcal{\ }\text{ are forcing and dissipation of }\theta\]


\[\mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S\]

The \(\mathcal{F}^{\prime }s\) and \(\mathcal{Q}^{\prime }s\)
are provided by ‘physics’ and forcing packages for atmosphere and ocean.
These are described in later chapters.



	1.3.1. Kinematic Boundary conditions
	1.3.1.1. Vertical

	1.3.1.2. Horizontal





	1.3.2. Atmosphere

	1.3.3. Ocean

	1.3.4. Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic forms
	1.3.4.1. Shallow atmosphere approximation

	1.3.4.2. Hydrostatic and quasi-hydrostatic forms

	1.3.4.3. Non-hydrostatic and quasi-nonhydrostatic forms
	Non-hydrostatic Ocean

	Quasi-nonhydrostatic Atmosphere





	1.3.4.4. Summary of equation sets supported by model
	Atmosphere

	Ocean









	1.3.5. Solution strategy

	1.3.6. Finding the pressure field
	1.3.6.1. Hydrostatic pressure

	1.3.6.2. Surface pressure

	1.3.6.3. Non-hydrostatic pressure
	Boundary Conditions









	1.3.7. Forcing/dissipation
	1.3.7.1. Forcing

	1.3.7.2. Dissipation
	Momentum

	Tracers









	1.3.8. Vector invariant form

	1.3.9. Adjoint








1.4. Appendix ATMOSPHERE



	1.4.1. Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates
	1.4.1.1. Boundary conditions

	1.4.1.2. Splitting the geopotential












1.5. Appendix OCEAN



	1.5.1. Equations of Motion for the Ocean
	1.5.1.1. Compressible z-coordinate equations

	1.5.1.2. ‘Anelastic’ z-coordinate equations

	1.5.1.3. Incompressible z-coordinate equations

	1.5.1.4. Compressible non-divergent equations












1.6. Appendix OPERATORS



	1.6.1. Coordinate systems
	1.6.1.1. Spherical coordinates















          

      

      

    

  

    
      
          
            
  
1.2.1. Global atmosphere: ‘Held-Suarez’ benchmark

A novel feature of MITgcm is its ability to simulate, using one basic algorithm,
both atmospheric and oceanographic flows at both small and large scales.

Figure 1.4 shows an instantaneous plot of the 500 mb
temperature field obtained using the atmospheric isomorph of MITgcm run at
2.8° resolution on the cubed sphere. We see cold air over the pole
(blue) and warm air along an equatorial band (red). Fully developed
baroclinic eddies spawned in the northern hemisphere storm track are
evident. There are no mountains or land-sea contrast in this calculation,
but you can easily put them in. The model is driven by relaxation to a
radiative-convective equilibrium profile, following the description set out
in Held and Suarez (1994) [HS94] designed to test atmospheric hydrodynamical cores -
there are no mountains or land-sea contrast.



[image: cubic eddies figure]Figure 1.4 Instantaneous plot of the temperature field at 500 mb obtained using the atmospheric isomorph of MITgcm






As described in Adcroft et al. (2004) [ACHM04], a ‘cubed sphere’ is used to discretize the
globe permitting a uniform griding and obviated the need to Fourier filter.
The ‘vector-invariant’ form of MITgcm supports any orthogonal curvilinear
grid, of which the cubed sphere is just one of many choices.

Figure 1.5 shows the 5-year mean, zonally averaged zonal
wind from a 20-level configuration of
the model. It compares favorable with more conventional spatial
discretization approaches. The two plots show the field calculated using the
cube-sphere grid and the flow calculated using a regular, spherical polar
latitude-longitude grid. Both grids are supported within the model.



[image: hs_zave_u_figure]Figure 1.5 Five year mean, zonally averaged zonal flow for cube-sphere simulation (top) and latitude-longitude simulation (bottom) and using Held-Suarez forcing. Note the difference in the solutions over the pole — the cubed sphere is superior.










          

      

      

    

  

    
      
          
            
  
1.2.2. Ocean gyres

Baroclinic instability is a ubiquitous process in the ocean, as well as the
atmosphere. Ocean eddies play an important role in modifying the
hydrographic structure and current systems of the oceans. Coarse resolution
models of the oceans cannot resolve the eddy field and yield rather broad,
diffusive patterns of ocean currents. But if the resolution of our models is
increased until the baroclinic instability process is resolved, numerical
solutions of a different and much more realistic kind, can be obtained.

Figure 1.6 shows the surface temperature and
velocity field obtained from MITgcm run at \(\frac{1}{6}^{\circ}\)
horizontal resolution on a lat-lon grid in which the pole has
been rotated by 90° on to the equator (to avoid the
converging of meridian in northern latitudes). 21 vertical levels are
used in the vertical with a ‘lopped cell’ representation of
topography. The development and propagation of anomalously warm and
cold eddies can be clearly seen in the Gulf Stream region. The
transport of warm water northward by the mean flow of the Gulf Stream
is also clearly visible.



[image: ocean-gyres]
Figure 1.6 Instantaneous temperature map from a \(\frac{1}{6}^{\circ}\) simulation of the North Atlantic. The figure shows the temperature in the second layer (37.5 m deep).










          

      

      

    

  

    
      
          
            
  
1.2.3. Global ocean circulation

Figure 1.7 shows the pattern of ocean
currents at the surface of a 4° global ocean model run with
15 vertical levels. Lopped cells are used to represent topography on a
regular lat-lon grid extending from 70°N to
70°S. The model is driven using monthly-mean winds with
mixed boundary conditions on temperature and salinity at the surface.
The transfer properties of ocean eddies, convection and mixing is
parameterized in this model.



[image: large-scale-circ]Figure 1.7 Pattern of surface ocean currents from a global integration of the model at 4° horizontal resolution and with 15 vertical levels.






Figure 1.8 shows the meridional overturning
circulation of the global ocean in Sverdrups.



[image: large-scale-circ2]Figure 1.8 Meridional overturning stream function (in Sverdrups) from a global integration of the model at 4° horizontal resolution and with 15 vertical levels.










          

      

      

    

  

    
      
          
            
  
1.2.4. Convection and mixing over topography

Dense plumes generated by localized cooling on the continental shelf of the
ocean may be influenced by rotation when the deformation radius is smaller
than the width of the cooling region. Rather than gravity plumes, the
mechanism for moving dense fluid down the shelf is then through geostrophic
eddies. The simulation shown in Figure 1.9
(blue is cold dense fluid, red is
warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
trigger convection by surface cooling. The cold, dense water falls down the
slope but is deflected along the slope by rotation. It is found that
entrainment in the vertical plane is reduced when rotational control is
strong, and replaced by lateral entrainment due to the baroclinic
instability of the along-slope current.



[image: Non-hydrostatic plume over a shelf]
Figure 1.9 MITgcm run in a non-hydrostatic configuration to study convection over a slope.










          

      

      

    

  

    
      
          
            
  
1.2.5. Boundary forced internal waves

The unique ability of MITgcm to treat non-hydrostatic dynamics in the
presence of complex geometry makes it an ideal tool to study internal wave
dynamics and mixing in oceanic canyons and ridges driven by large amplitude
barotropic tidal currents imposed through open boundary conditions.

Figure 1.10 shows the influence of cross-slope topographic variations on internal wave breaking - the cross-slope velocity is in color, the density contoured. The internal waves are excited by application of open boundary conditions on the left. They propagate to the sloping boundary (represented using MITgcm’s finite volume spatial discretization) where they break under non-hydrostatic dynamics.



[image: slope_TU]
Figure 1.10 Simulation of internal waves forced at an open boundary (on the left) impacting a sloping shelf. The along slope velocity is shown colored, contour lines show density surfaces. The slope is represented with high-fidelity using lopped cells.










          

      

      

    

  

    
      
          
            
  
1.2.6. Parameter sensitivity using the adjoint of MITgcm

Forward and tangent linear counterparts of MITgcm are supported using an
‘automatic adjoint compiler’. These can be used in parameter sensitivity and
data assimilation studies.

As one example of application of the MITgcm adjoint, Figure 1.11
maps the gradient \(\frac{\partial J}{\partial\mathcal{H}}\) where \(J\) is the magnitude of the overturning
stream-function shown in Figure 1.8 at
60°N and \(\mathcal{H}(\lambda,\varphi)\) is the mean, local
air-sea heat flux over a 100 year period. We see that \(J\) is sensitive
to heat fluxes over the Labrador Sea, one of the important sources of
deep water for the thermohaline circulations. This calculation also
yields sensitivities to all other model parameters.



[image: adj_hf_ocean_figure]Figure 1.11 Sensitivity of meridional overturning strength to surface heat flux changes. Contours show the magnitude of the response (in Sv x 10-4 ) that a persistent +1 Wm-2 heat flux anomaly at a given grid point would produce.










          

      

      

    

  

    
      
          
            
  
1.2.7. Global state estimation of the ocean

An important application of MITgcm is in state estimation of the global
ocean circulation. An appropriately defined ‘cost function’, which measures
the departure of the model from observations (both remotely sensed and
in-situ) over an interval of time, is minimized by adjusting ‘control
parameters’ such as air-sea fluxes, the wind field, the initial conditions
etc. Figure 1.12 and Figure 1.13 show the large scale planetary
circulation and a Hopf-Muller plot of Equatorial sea-surface height.
Both are obtained from assimilation bringing the model in to
consistency with altimetric and in-situ observations over the period
1992-1997.



[image: assim_figure]
Figure 1.12 Circulation patterns from a multi-year, global circulation simulation constrained by Topex altimeter data and WOCE cruise observations. This output is from a higher resolution, shorter duration experiment with equatorially enhanced grid spacing.




[image: assim_figure2]
Figure 1.13 Equatorial sea-surface height in unconstrained (left), constrained (middle) simulations and in observations (right).










          

      

      

    

  

    
      
          
            
  
1.2.8. Ocean biogeochemical cycles

MITgcm is being used to study global biogeochemical cycles in the
ocean. For example one can study the effects of interannual changes in
meteorological forcing and upper ocean circulation on the fluxes of
carbon dioxide and oxygen between the ocean and atmosphere. Figure 1.14
shows the annual air-sea flux of oxygen and its
relation to density outcrops in the southern oceans from a single year
of a global, interannually varying simulation. The simulation is run
at 1°x1° resolution telescoping to \(\frac{1}{3}^{\circ}\) x \(\frac{1}{3}^{\circ}\) in the tropics (not shown).



[image: biogeo_figure]Figure 1.14 Annual air-sea flux of oxygen (shaded) plotted along with potential density outcrops of the surface of the southern ocean from a global 1°x1° integration with a telescoping grid (to \(\frac{1}{3}^{\circ}\) ) at the equator.










          

      

      

    

  

    
      
          
            
  
1.2.9. Simulations of laboratory experiments

Figure 1.16 shows MITgcm being used to simulate a
laboratory experiment (Figure 1.15) inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An
initially homogeneous tank of water (1 m in diameter) is driven from its
free surface by a rotating heated disk. The combined action of mechanical
and thermal forcing creates a lens of fluid which becomes baroclinically
unstable. The stratification and depth of penetration of the lens is
arrested by its instability in a process analogous to that which sets the
stratification of the ACC.



[image: lab_photo]
Figure 1.15 A 1 m diameter laboratory experiment simulating the dynamics of the Antarctic Circumpolar Current.




[image: lab-simulation]
Figure 1.16 A numerical simulation of the laboratory experiment using MITgcm.










          

      

      

    

  

    
      
          
            
  
1.3.1. Kinematic Boundary conditions


1.3.1.1. Vertical

at fixed and moving \(r\) surfaces we set (see Figure 1.18):


(1)\[\dot{r}=0 \text{ at } r=R_{fixed}(x,y)\text{  (ocean bottom, top of the atmosphere)}\]


(2)\[\dot{r}=\frac{Dr}{Dt} \text{ at } r=R_{moving}(x,y)\text{  (ocean surface, bottom of the atmosphere)}\]

Here


\[R_{moving}=R_{o}+\eta\]

where \(R_{o}(x,y)\) is the ‘\(r-\)value’ (height or pressure,
depending on whether we are in the atmosphere or ocean) of the ‘moving
surface’ in the resting fluid and \(\eta\) is the departure from
\(R_{o}(x,y)\) in the presence of motion.




1.3.1.2. Horizontal


(3)\[\vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0\]

where \(\vec{\mathbf{n}}\) is the normal to a solid boundary.







          

      

      

    

  

    
      
          
            
  
1.3.2. Atmosphere

In the atmosphere, (see Figure 1.18), we interpret:


(1)\[r=p\text{  is the pressure}\]


(2)\[\dot{r}=\frac{Dp}{Dt}=\omega \text{  is the vertical velocity in p coordinates}\]


(3)\[\phi =g\,z\text{  is the geopotential height}\]


(4)\[b=\frac{\partial \Pi }{\partial p}\theta \text{  is the buoyancy}\]


(5)\[\theta =T(\frac{p_{c}}{p})^{\kappa }\text{  is potential temperature}\]


(6)\[S=q \text{  is the specific humidity}\]

where


\[T\text{ is absolute temperature}\]


\[p\text{ is the pressure}\]


\[\begin{split}\begin{aligned}
&&z\text{ is the height of the pressure surface} \\
&&g\text{ is the acceleration due to gravity}\end{aligned}\end{split}\]

In the above the ideal gas law, \(p=\rho RT\), has been expressed in
terms of the Exner function \(\Pi (p)\) given by (7)
(see also Section 1.4.1)


(7)\[\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }\]

where \(p_{c}\) is a reference pressure and \(\kappa =R/c_{p}\)
with \(R\) the gas constant and \(c_{p}\) the specific heat of
air at constant pressure.

At the top of the atmosphere (which is ‘fixed’ in our \(r\)
coordinate):


\[R_{fixed}=p_{top}=0\]

In a resting atmosphere the elevation of the mountains at the bottom is
given by


\[R_{moving}=R_{o}(x,y)=p_{o}(x,y)\]

i.e. the (hydrostatic) pressure at the top of the mountains in a
resting atmosphere.

The boundary conditions at top and bottom are given by:


(8)\[\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)}\]


(9)\[\omega =~\frac{Dp_{s}}{Dt}\text{ at }r=R_{moving}\text{ (bottom of the atmosphere)}\]

Then the (hydrostatic form of) equations
(1)-(6) yields a consistent set of
atmospheric equations which, for convenience, are written out in
\(p-\)coordinates in Section 1.4.1 - see
eqs. (15)-(19).





          

      

      

    

  

    
      
          
            
  
1.3.3. Ocean

In the ocean we interpret:


(1)\[r=z\text{  is the height}\]


(2)\[\dot{r}=\frac{Dz}{Dt}=w\text{  is the vertical velocity}\]


(3)\[\phi=\frac{p}{\rho _{c}}\text{  is the pressure}\]


(4)\[b(\theta ,S,r)=\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
_{c}\right) \text{  is the buoyancy}\]

where \(\rho _{c}\) is a fixed reference density of water and
\(g\) is the acceleration due to gravity.

In the above:

At the bottom of the ocean: \(R_{fixed}(x,y)=-H(x,y)\).

The surface of the ocean is given by: \(R_{moving}=\eta\)

The position of the resting free surface of the ocean is given by
\(R_{o}=Z_{o}=0\).

Boundary conditions are:


(5)\[w=0~\text{at }r=R_{fixed}\text{  (ocean bottom)}\]


(6)\[w=\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{  (ocean surface)}\]

where \(\eta\) is the elevation of the free surface.

Then equations (1)- (6) yield a
consistent set of oceanic equations which, for convenience, are written
out in \(z-\)coordinates in Section 1.5.1 - see eqs. (35)
to (40).





          

      

      

    

  

    
      
          
            
  
1.3.4. Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic forms

Let us separate \(\phi\) in to surface, hydrostatic and
non-hydrostatic terms:


(1)\[\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)\]

and write (1) in the form:


(2)\[\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
_{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}}\]


(3)\[\frac{\partial \phi _{hyd}}{\partial r}=-b\]


(4)\[\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
\partial r}=G_{\dot{r}}\]

Here \(\epsilon _{nh}\) is a non-hydrostatic parameter.

The \(\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right)\) in
(2) and (4) represent advective, metric and Coriolis
terms in the momentum equations. In spherical coordinates they take the
form  [1] - see Marshall et al. (1997a) [MHPA97] for a full discussion:


(5)\[ \begin{align}\begin{aligned}G_{u} = & -\vec{\mathbf{v}}.\nabla u && \qquad \text{advection}\\& -\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} && \qquad \text{metric}\\& -\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} && \qquad \text{Coriolis}\\& +\mathcal{F}_{u} && \qquad \text{forcing/dissipation}\end{aligned}\end{align} \]


(6)\[ \begin{align}\begin{aligned}G_{v} = & -\vec{\mathbf{v}}.\nabla v && \qquad \text{advection}\\& -\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\} && \qquad \text{metric}\\& -\left\{ -2\Omega u\sin \varphi\right\} && \qquad \text{Coriolis}\\& +\mathcal{F}_{v} && \qquad \text{forcing/dissipation}\end{aligned}\end{align} \]


(7)\[ \begin{align}\begin{aligned}G_{\dot{r}} = & -\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}} && \qquad \text{advection}\\& -\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} && \qquad \text{metric}\\& +\underline{2\Omega u\cos \varphi} && \qquad \text{Coriolis}\\& +\underline{\underline{\mathcal{F}_{\dot{r}}}} && \qquad \text{forcing/dissipation}\end{aligned}\end{align} \]

In the above ‘\({r}\)’ is the distance from the center of the earth
and ‘\(\varphi\) ’ is latitude (see Figure 1.20).

Grad and div operators in spherical coordinates are defined in Coordinate systems.


1.3.4.1. Shallow atmosphere approximation

Most models are based on the ‘hydrostatic primitive equations’ (HPE’s)
in which the vertical momentum equation is reduced to a statement of
hydrostatic balance and the ‘traditional approximation’ is made in which
the Coriolis force is treated approximately and the shallow atmosphere
approximation is made. MITgcm need not make the ‘traditional
approximation’. To be able to support consistent non-hydrostatic forms
the shallow atmosphere approximation can be relaxed - when dividing
through by \(r\) in, for example, (5), we do not
replace \(r\) by \(a\), the radius of the earth.




1.3.4.2. Hydrostatic and quasi-hydrostatic forms

These are discussed at length in Marshall et al. (1997a) [MHPA97].

In the ‘hydrostatic primitive equations’ (HPE) all the underlined
terms in Eqs. (5)
\(\rightarrow\)
  
    
    
    1.3.5. Solution strategy
    
    

    
 
  
  

    
      
          
            
  
1.3.5. Solution strategy

The method of solution employed in the HPE, QH and NH models
is summarized in Figure 1.19. Under all dynamics, a
2-d elliptic equation is first solved to find the surface pressure and
the hydrostatic pressure at any level computed from the weight of fluid
above. Under HPE and QH dynamics, the horizontal momentum
equations are then stepped forward and \(\dot{r}\) found from
continuity. Under NH dynamics a 3-d elliptic equation must be solved
for the non-hydrostatic pressure before stepping forward the horizontal
momentum equations; \(\dot{r}\) is found by stepping forward the
vertical momentum equation.

There is no penalty in implementing QH over HPE except, of
course, some complication that goes with the inclusion of
\(\cos \varphi \ \) Coriolis terms and the relaxation of the shallow
atmosphere approximation. But this leads to negligible increase in
computation. In NH, in contrast, one additional elliptic equation -
a three-dimensional one - must be inverted for \(p_{nh}\). However
the ‘overhead’ of the NH model is essentially negligible in the
hydrostatic limit (see detailed discussion in Marshall et al. (1997) [MHPA97]
resulting in a non-hydrostatic algorithm that, in the hydrostatic limit,
is as computationally economic as the HPEs.



[image: diagram of basic solution strategy in MITgcm]Figure 1.19 Basic solution strategy in MITgcm. HPE and QH forms diagnose the vertical velocity, in NH a prognostic equation for the vertical velocity is integrated.










          

      

      

    

  

  
    
    
    1.3.6. Finding the pressure field
    
    

    
 
  
  

    
      
          
            
  
1.3.6. Finding the pressure field

Unlike the prognostic variables \(u\), \(v\), \(w\),
\(\theta\) and \(S\), the pressure field must be obtained
diagnostically. We proceed, as before, by dividing the total
(pressure/geo) potential in to three parts, a surface part,
\(\phi _{s}(x,y)\), a hydrostatic part \(\phi _{hyd}(x,y,r)\)
and a non-hydrostatic part \(\phi _{nh}(x,y,r)\), as in
(1), and writing the momentum equation as in (2).


1.3.6.1. Hydrostatic pressure

Hydrostatic pressure is obtained by integrating (3) vertically from \(r=R_{o}\)
where \(\phi _{hyd}(r=R_{o})=0\), to yield:


\[\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}
\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr\]

and so


(1)\[\phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr\]

The model can be easily modified to accommodate a loading term (e.g
atmospheric pressure pushing down on the ocean’s surface) by setting:


(2)\[\phi _{hyd}(r=R_{o})=loading\]




1.3.6.2. Surface pressure

The surface pressure equation can be obtained by integrating continuity,
(3), vertically from \(r=R_{fixed}\) to \(r=R_{moving}\)


\[\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
}_{h}+\partial _{r}\dot{r}\right) dr=0\]

Thus:


\[\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
_{h}dr=0\]

where \(\eta =R_{moving}-R_{o}\) is the free-surface
\(r\)-anomaly in units of \(r\). The above can be rearranged to yield, using Leibnitz’s theorem:


(3)\[\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}\]

where we have incorporated a source term.

Whether \(\phi\) is pressure (ocean model, \(p/\rho _{c}\)) or
geopotential (atmospheric model), in (2), the horizontal gradient term can be written


(4)\[\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)\]

where \(b_{s}\) is the buoyancy at the surface.

In the hydrostatic limit (\(\epsilon _{nh}=0\)), equations
(2), (3) and (4) can be solved by
inverting a 2-d elliptic equation for \(\phi _{s}\) as described in
Chapter 2. Both ‘free surface’ and ‘rigid lid’ approaches are available.




1.3.6.3. Non-hydrostatic pressure

Taking the horizontal divergence of (2) and adding
\(\frac{\partial }{\partial r}\) of (4), invoking the
continuity equation (3), we deduce that:


(5)\[\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
\vec{\mathbf{F}}\]

For a given rhs this 3-d elliptic equation must be inverted for
\(\phi _{nh}\) subject to appropriate choice of boundary conditions.
This method is usually called The Pressure Method [Harlow and Welch
(1965) [HW65]; Williams (1969) [Wil69]; Potter (1973) [Pot73]. In the hydrostatic primitive
equations case (HPE), the 3-d problem does not need to be solved.


Boundary Conditions

We apply the condition of no normal flow through all solid boundaries -
the coasts (in the ocean) and the bottom:


(6)\[\vec{\mathbf{v}}.\widehat{n}=0\]

where \(\widehat{n}\) is a vector of unit length normal to the
boundary. The kinematic condition (6) is also applied to
the vertical velocity at \(r=R_{moving}\). No-slip
\(\left( v_{T}=0\right) \ \)or slip \(\left( \partial v_{T}/\partial n=0\right) \ \)conditions are employed
on the tangential component of velocity, \(v_{T}\), at all solid
boundaries, depending on the form chosen for the dissipative terms in
the momentum equations - see below.

Eq. (6) implies, making use of (2), that:


(7)\[\widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}\]

where


\[\vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi_{s}+\mathbf{\nabla }\phi _{hyd}\right)\]

presenting inhomogeneous Neumann boundary conditions to the Elliptic
problem (5). As shown, for example, by Williams (1969) [Wil69], one
can exploit classical 3D potential theory and, by introducing an
appropriately chosen \(\delta\)-function sheet of ‘source-charge’,
replace the inhomogeneous boundary condition on pressure by a
homogeneous one. The source term \(rhs\) in (5) is the
divergence of the vector \(\vec{\mathbf{F}}.\) By simultaneously setting \(\widehat{n}.\vec{\mathbf{F}}=0\)
and \(\widehat{n}.\nabla \phi _{nh}=0\ \)on the boundary the
following self-consistent but simpler homogenized Elliptic problem is obtained:


\[\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad\]

where \(\widetilde{\vec{\mathbf{F}}}\) is a modified \(\vec{\mathbf{F}}\)
such that \(\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0\). As is implied by
(7) the modified boundary condition becomes:


(8)\[\widehat{n}.\nabla \phi _{nh}=0\]

If the flow is ‘close’ to hydrostatic balance then the 3-d inversion
converges rapidly because \(\phi _{nh}\ \)is then only a small
correction to the hydrostatic pressure field (see the discussion in
Marshall et al. (1997a,b) [MHPA97] [MAH+97].

The solution \(\phi _{nh}\ \)to (5) and
(7) does not vanish at \(r=R_{moving}\), and so
refines the pressure there.









          

      

      

    

  

  
    
    
    1.3.7. Forcing/dissipation
    
    

    
 
  
  

    
      
          
            
  
1.3.7. Forcing/dissipation


1.3.7.1. Forcing

The forcing terms \(\mathcal{F}\) on the rhs of the equations are
provided by ‘physics packages’ and forcing packages. These are described
later on.




1.3.7.2. Dissipation


Momentum

Many forms of momentum dissipation are available in the model. Laplacian
and biharmonic frictions are commonly used:


(1)\[D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
+A_{4}\nabla _{h}^{4}v\]

where \(A_{h}\) and \(A_{v}\ \)are (constant) horizontal and
vertical viscosity coefficients and \(A_{4}\ \)is the horizontal
coefficient for biharmonic friction. These coefficients are the same for
all velocity components.




Tracers

The mixing terms for the temperature and salinity equations have a
similar form to that of momentum except that the diffusion tensor can be
non-diagonal and have varying coefficients.


(2)\[D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
_{h}^{4}(T,S)\]

where \(\underline{\underline{K}}\ \)is the diffusion tensor and
the \(K_{4}\ \) horizontal coefficient for biharmonic diffusion. In
the simplest case where the subgrid-scale fluxes of heat and salt are
parameterized with constant horizontal and vertical diffusion
coefficients, \(\underline{\underline{K}}\), reduces to a diagonal
matrix with constant coefficients:


(3)\[\begin{split}\qquad \qquad \qquad \qquad K=\left(
\begin{array}{ccc}
K_{h} & 0 & 0 \\
0 & K_{h} & 0 \\
0 & 0 & K_{v}
\end{array}
\right) \qquad \qquad \qquad\end{split}\]

where \(K_{h}\ \)and \(K_{v}\ \)are the horizontal and
vertical diffusion coefficients. These coefficients are the same for all
tracers (temperature, salinity ... ).









          

      

      

    

  

  
    
    
    1.3.8. Vector invariant form
    
    

    
 
  
  

    
      
          
            
  
1.3.8. Vector invariant form

For some purposes it is advantageous to write momentum advection in
eq (1) and (2) in the (so-called) ‘vector invariant’ form:


(1)\[\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]\]

This permits alternative numerical treatments of the non-linear terms
based on their representation as a vorticity flux. Because gradients of
coordinate vectors no longer appear on the rhs of (1),
explicit representation of the metric terms in (5),
(6) and (7), can be avoided: information
about the geometry is contained in the areas and lengths of the volumes
used to discretize the model.





          

      

      

    

  

  
    
    
    1.3.9. Adjoint
    
    

    
 
  
  

    
      
          
            
  
1.3.9. Adjoint

Tangent linear and adjoint counterparts of the forward model are
described in Chapter 5.





          

      

      

    

  

  
    
    
    1.4.1. Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates
    
    

    
 
  
  

    
      
          
            
  
1.4.1. Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates

The hydrostatic primitive equations (HPE’s) in \(p-\)coordinates are:


(1)\[\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}_{h}+\mathbf{\nabla }_{p}\phi = \vec{\mathbf{\mathcal{F}}}\]


(2)\[\frac{\partial \phi }{\partial p}+\alpha = 0\]


(3)\[\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{\partial p} = 0\]


(4)\[p\alpha = RT\]


(5)\[c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} = \mathcal{Q}\]

where \(\vec{\mathbf{v}}_{h}=(u,v,0)\) is the ‘horizontal’ (on pressure surfaces) component of velocity,
\(\frac{D}{Dt}=\frac{\partial}{\partial t}+\vec{\mathbf{v}}_{h}\cdot \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}\)
is the total derivative, \(f=2\Omega \sin \varphi\) is the Coriolis
parameter, \(\phi =gz\) is the geopotential, \(\alpha =1/\rho\)
is the specific volume, \(\omega =\frac{Dp }{Dt}\) is the vertical
velocity in the \(p-\)coordinate. Equation (5) is the
first law of thermodynamics where internal energy \(e=c_{v}T\),
\(T\) is temperature, \(Q\) is the rate of heating per unit mass
and \(p\frac{D\alpha }{Dt}\) is the work done by the fluid in
compressing.

It is convenient to cast the heat equation in terms of potential
temperature \(\theta\) so that it looks more like a generic
conservation law. Differentiating (4) we get:


\[p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}\]

which, when added to the heat equation (5) and using
\(c_{p}=c_{v}+R\), gives:


(6)\[c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}\]

Potential temperature is defined:


(7)\[\theta =T(\frac{p_{c}}{p})^{\kappa }\]

where \(p_{c}\) is a reference pressure and
\(\kappa =R/c_{p}\). For convenience we will make use of the Exner
function \(\Pi (p)\) which is defined by:


(8)\[\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }\]

The following relations will be useful and are easily expressed in
terms of the Exner function:


\[c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
}{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{
\partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}
\frac{Dp}{Dt}\]

where \(b=\frac{\partial \ \Pi }{\partial p}\theta\) is the buoyancy.

The heat equation is obtained by noting that


\[c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
\frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}\]

and on substituting into (6) gives:


(9)\[\Pi \frac{D\theta }{Dt}=\mathcal{Q}\]

which is in conservative form.

For convenience in the model we prefer to step forward
(9) rather than (5).


1.4.1.1. Boundary conditions

The upper and lower boundary conditions are:


(10)\[\begin{aligned}\mbox{at the top:}\;\;p=0 &\text{,  }\omega =\frac{Dp}{Dt}=0\end{aligned}\]


(11)\[\begin{aligned}\mbox{at the surface:}\;\;p=p_{s} &\text{,  }\phi =\phi _{topo}=g~Z_{topo}\end{aligned}\]

In \(p-\)coordinates, the upper boundary acts like a solid boundary
(\(\omega=0\) ); in \(z-\)coordinates the lower boundary is analogous to a
free surface (\(\phi\) is imposed and \(\omega \neq 0\)).




1.4.1.2. Splitting the geopotential

For the purposes of initialization and reducing round-off errors, the
model deals with perturbations from reference (or ‘standard’) profiles.
For example, the hydrostatic geopotential associated with the resting
atmosphere is not dynamically relevant and can therefore be subtracted
from the equations. The equations written in terms of perturbations are
obtained by substituting the following definitions into the previous
model equations:


(12)\[\theta = \theta _{o}+\theta ^{\prime }\]


(13)\[\alpha = \alpha _{o}+\alpha ^{\prime }\]


(14)\[\phi  = \phi _{o}+\phi ^{\prime }\]

The reference state (indicated by subscript ‘o’) corresponds to
horizontally homogeneous atmosphere at rest
(\(\theta _{o},\alpha _{o},\phi_{o}\)) with surface pressure \(p_{o}(x,y)\) that satisfies
\(\phi_{o}(p_{o})=g~Z_{topo}\), defined:


\[\begin{split}\theta _{o}(p) = f^{n}(p) \\\end{split}\]


\[\begin{split}\alpha _{o}(p)  = \Pi _{p}\theta _{o} \\\end{split}\]


\[\phi _{o}(p)  = \phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp\]

The final form of the HPE’s in \(p-\)coordinates is then:


(15)\[\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } = \vec{\mathbf{\mathcal{F}}}\]


(16)\[\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime }  = 0\]


(17)\[\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
\partial p} = 0\]


(18)\[\frac{\partial \Pi }{\partial p}\theta ^{\prime } = \alpha ^{\prime }\]


(19)\[\frac{D\theta }{Dt} = \frac{\mathcal{Q}}{\Pi }\]







          

      

      

    

  

  
    
    
    1.5.1. Equations of Motion for the Ocean
    
    

    
 
  
  

    
      
          
            
  
1.5.1. Equations of Motion for the Ocean

We review here the method by which the standard (Boussinesq,
incompressible) HPE’s for the ocean written in \(z-\)coordinates are
obtained. The non-Boussinesq equations for oceanic motion are:


(1)\[\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p  = \vec{\mathbf{\mathcal{F}}}\]


(2)\[\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} = \epsilon _{nh}\mathcal{F}_{w}\]


(3)\[\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
_{h}+\frac{\partial w}{\partial z}  = 0\]


(4)\[\rho  = \rho (\theta ,S,p)\]


(5)\[\frac{D\theta }{Dt}  = \mathcal{Q}_{\theta }\]


(6)\[\frac{DS}{Dt} = \mathcal{Q}_{s}\]

These equations permit acoustics modes, inertia-gravity waves,
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline
mode. As written, they cannot be integrated forward consistently - if we
step \(\rho\) forward in (3), the answer will not be
consistent with that obtained by stepping (5) and
(6) and then using (4) to yield \(\rho\). It
is therefore necessary to manipulate the system as follows.
Differentiating the EOS (equation of state) gives:


(7)\[\frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
_{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
_{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
_{\theta ,S}\frac{Dp}{Dt}\]

Note that \(\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}\)
is the reciprocal of the sound speed (\(c_{s}\)) squared.
Substituting into (3) gives:


(8)\[\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
v}}+\partial _{z}w\approx 0\]

where we have used an approximation sign to indicate that we have
assumed adiabatic motion, dropping the \(\frac{D\theta }{Dt}\) and
\(\frac{DS}{Dt}\). Replacing (3) with (8)
yields a system that can be explicitly integrated forward:


(9)\[\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p = \vec{\mathbf{\mathcal{F}}}\]


(10)\[\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} = \epsilon _{nh}\mathcal{F}_{w}\]


(11)\[\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} = 0\]


(12)\[\rho  = \rho (\theta ,S,p)\]


(13)\[\frac{D\theta }{Dt}  = \mathcal{Q}_{\theta }\]


(14)\[\frac{DS}{Dt}  = \mathcal{Q}_{s}\]


1.5.1.1. Compressible z-coordinate equations

Here we linearize the acoustic modes by replacing \(\rho\) with
\(\rho _{o}(z)\) wherever it appears in a product (ie. non-linear
term) - this is the ‘Boussinesq assumption’. The only term that then
retains the full variation in \(\rho\) is the gravitational
acceleration:


(15)\[\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p = \vec{\mathbf{\mathcal{F}}}\]


(16)\[\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
\frac{\partial p}{\partial z}  = \epsilon _{nh}\mathcal{F}_{w}\]


(17)\[\frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{
\mathbf{v}}_{h}+\frac{\partial w}{\partial z}  = 0\]


(18)\[\rho = \rho (\theta ,S,p)\]


(19)\[\frac{D\theta }{Dt} = \mathcal{Q}_{\theta }\]


(20)\[\frac{DS}{Dt} = \mathcal{Q}_{s}\]

These equations still retain acoustic modes. But, because the
“compressible” terms are linearized, the pressure equation (17)
can be integrated implicitly with ease (the time-dependent term appears
as a Helmholtz term in the non-hydrostatic pressure equation). These are
the truly compressible Boussinesq equations. Note that the EOS must
have the same pressure dependency as the linearized pressure term, ie.
\(\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{c_{s}^{2}}\), for consistency.




1.5.1.2. ‘Anelastic’ z-coordinate equations

The anelastic approximation filters the acoustic mode by removing the
time-dependency in the continuity (now pressure-) equation
(17). This could be done simply by noting that
\(\frac{Dp}{Dt}\approx -g\rho _{o} \frac{Dz}{Dt}=-g\rho _{o}w\),
but this leads to an inconsistency between
continuity and EOS. A better solution is to change the dependency on
pressure in the EOS by splitting the pressure into a reference function
of height and a perturbation:


\[\rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })\]

Remembering that the term \(\frac{Dp}{Dt}\) in continuity comes
from differentiating the EOS, the continuity equation then becomes:


\[\frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{
Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+
\frac{\partial w}{\partial z}=0\]

If the time- and space-scales of the motions of interest are longer
than those of acoustic modes, then
\(\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt}, \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})\)
in the continuity equations and \(\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{
Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
,S}\frac{Dp_{o}}{Dt}\) in the EOS (7). Thus we set \(\epsilon_{s}=0\), removing the
dependency on \(p^{\prime }\) in the continuity equation and EOS. Expanding
\(\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w\) then leads to the anelastic continuity equation:


(21)\[\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-
\frac{g}{c_{s}^{2}}w = 0\]

A slightly different route leads to the quasi-Boussinesq continuity
equation where we use the scaling
\(\frac{\partial \rho ^{\prime }}{\partial t}+
\mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }
_{3}\cdot \rho _{o}\vec{\mathbf{v}}\) yielding:


(22)\[\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
\partial \left( \rho _{o}w\right) }{\partial z} = 0\]

Equations (21) and (22) are in fact the same equation
if:


\[\frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}\]

Again, note that if \(\rho _{o}\) is evaluated from prescribed
\(\theta _{o}\) and \(S_{o}\) profiles, then the EOS dependency
on \(p_{o}\) and the term \(\frac{g}{c_{s}^{2}}\) in continuity should
be referred to those same profiles. The full set of ‘quasi-Boussinesq’ or ‘anelastic’
equations for the ocean are then:


(23)\[\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p = \vec{\mathbf{\mathcal{F}}}\]


(24)\[\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
\frac{\partial p}{\partial z} = \epsilon _{nh}\mathcal{F}_{w}\]


(25)\[\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
\partial \left( \rho _{o}w\right) }{\partial z} = 0\]


(26)\[\rho = \rho (\theta ,S,p_{o}(z))\]


(27)\[\frac{D\theta }{Dt} = \mathcal{Q}_{\theta }\]


(28)\[\frac{DS}{Dt} = \mathcal{Q}_{s}\]




1.5.1.3. Incompressible z-coordinate equations

Here, the objective is to drop the depth dependence of \(\rho _{o}\)
and so, technically, to also remove the dependence of \(\rho\) on
\(p_{o}\). This would yield the “truly” incompressible Boussinesq
equations:


(29)\[\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p = \vec{\mathbf{\mathcal{F}}}\]


(30)\[\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}
\frac{\partial p}{\partial z} = \epsilon _{nh}\mathcal{F}_{w}\]


(31)\[\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} = 0\]


(32)\[\rho = \rho (\theta ,S)\]


(33)\[\frac{D\theta }{Dt} = \mathcal{Q}_{\theta }\]


(34)\[\frac{DS}{Dt} = \mathcal{Q}_{s}\]

where \(\rho _{c}\) is a constant reference density of water.




1.5.1.4. Compressible non-divergent equations

The above “incompressible” equations are incompressible in both the flow
and the density. In many oceanic applications, however, it is important
to retain compressibility effects in the density. To do this we must
split the density thus:


\[\rho =\rho _{o}+\rho ^{\prime }\]

We then assert that variations with depth of \(\rho _{o}\) are
unimportant while the compressible effects in \(\rho ^{\prime }\)
are:


\[\rho _{o}=\rho _{c}\]


\[\rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}\]

This then yields what we can call the semi-compressible Boussinesq
equations:


(35)\[\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } = \vec{\mathbf{
\mathcal{F}}}\]


(36)\[\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
_{c}}\frac{\partial p^{\prime }}{\partial z} = \epsilon _{nh}\mathcal{F}_{w}\]


(37)\[\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} = 0\]


(38)\[\rho ^{\prime } = \rho (\theta ,S,p_{o}(z))-\rho _{c}\]


(39)\[\frac{D\theta }{Dt} = \mathcal{Q}_{\theta }\]


(40)\[\frac{DS}{Dt} = \mathcal{Q}_{s}\]

Note that the hydrostatic pressure of the resting fluid, including that
associated with \(\rho _{c}\), is subtracted out since it has no
effect on the dynamics.

Though necessary, the assumptions that go into these equations are messy
since we essentially assume a different EOS for the reference density
and the perturbation density. Nevertheless, it is the hydrostatic
(\(\epsilon_{nh}=0\)) form of these equations that are used throughout the ocean
modeling community and referred to as the primitive equations (HPE’s).







          

      

      

    

  

  
    
    
    1.6.1. Coordinate systems
    
    

    
 
  
  

    
      
          
            
  
1.6.1. Coordinate systems


1.6.1.1. Spherical coordinates

In spherical coordinates, the velocity components in the zonal,
meridional and vertical direction respectively, are given by:


\[u=r\cos \varphi \frac{D\lambda }{Dt}\]


\[v=r\frac{D\varphi }{Dt}\]


\[\dot{r}=\frac{Dr}{Dt}\]

(see Figure 1.20) Here \(\varphi\) is the latitude, \(\lambda\) the longitude,
\(r\) the radial distance of the particle from the center of the
earth, \(\Omega\) is the angular speed of rotation of the Earth and
\(D/Dt\) is the total derivative.

The ‘grad’ (\(\nabla\)) and ‘div’ (\(\nabla\cdot\)) operators
are defined by, in spherical coordinates:


\[\nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda }
,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r}
\right)\]


\[\nabla\cdot v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial
\lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}
+\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}\]









[image: diagram of spherical polar coordinates]Figure 1.20 Spherical polar coordinates: longitude \(\lambda\), latitude \(\phi\) and \(r\) the distance from the center.












          

      

      

    

  

  
    
    
    2. Getting Started with MITgcm
    
    

    
 
  
  

    
      
          
            
  
2. Getting Started with MITgcm

This chapter is divided into two main parts. The first part, which is
covered in sections ref{sec:whereToFindInfo} through
ref{sec:testing}, contains information about how to run experiments
using MITgcm. The second part, covered in sections
ref{sec:eg-baro} through ref{sec:eg-offline}, contains a set of
step-by-step tutorials for running specific pre-configured atmospheric
and oceanic experiments.

We believe the best way to familiarize yourself with the
model is to run the case study examples provided with the base
version. Information on how to obtain, compile, and run the code is
found here as well as a brief description of the model structure
directory and the case study examples. Information is also provided
here on how to customize the code when you are ready to try implementing
the configuration you have in mind.  The code and algorithm
are described more fully in chapters ref{chap:discretization} and
ref{chap:sarch}.


2.1. Where to find information







          

      

      

    

  

  
    
    
    3. Contributing to the MITgcm
    
    

    
 
  
  

    
      
          
            
  
3. Contributing to the MITgcm

The MITgcm is an open source project that relies on the participation of its users, and we welcome  contributions. This chapter sets out how you can contribute to the MITgcm.


3.1. Bugs and feature requests

If you think you’ve found a bug, the best thing to check that you’re using the latest version of the model. If the bug is still in the latest version, then think about how you might fix it and file a ticket in the GitHub issue tracker [url to be inserted once we have the proper repo]. Please include as much detail as possible. At a minimum your ticket should include:



	what the bug does;

	the location of the bug: file name and line number(s); and

	any suggestions you have for how it might be fixed.






To request a new feature, or guidance on how to implement it yourself, please open a ticket with the following details:



	a clear explanation of what the feature will do; and

	a summary of the equations to be solved.









3.2. Contributing to the code

To contribute to the source code of the model you will need to fork the repository and place a pull request on GitHub. The two following sections describe this process in different levels of detail. If you are unfamiliar with git, you may wish to skip the Quickstart guide and use the detailed instructions. All contributions are expected to conform with the Style guide.


3.2.1. Quickstart Guide

You will need a GitHub account, but that’s pretty much it!

1: Fork the project and create a local clone (copy)


You can fork by clicking the button, and create a clone either also by using the button, or in a terminal:
git clone https://github.com/user_name/MITgcm66h.git
(substitute your own user name on github)

move into the new directory:
cd MITgcm66h

Finally, we need to set up a remote that points to the original project:
git remote add upstream https://github.com/altMITgcm/MITgcm66h.git

This means that we have two “remotes” of the project, one pointing to your space (origin), and one pointing to the original (upstream). You can read and write into your “origin” version, but not into the “upstream” version.




2: Doing stuff! This usually comes in two flavours; Fixing bugs or adding a feature. Here we will assume we are fixing a bug and branch from the master, but if adding a new feature branching from develop is usually the way it works.


To fix this “bug” we check out the master branch, and make sure we’re up to date.
git checkout master
git pull upstream master && git push origin master

Next make a new branch. Naming it something useful helps.
git checkout -b bugfix/contributingHowTo

Do the work! Be sure to include useful and detailed commit messages.
To do this you should:



	edit the relevant file(s)

	use git add FILENAME to stage the file(s) ready for a commit command

	use git commit to commit the files

	type a succint (<70 character) summary of what the commit did

	leave a blank line and type a longer description of why the action in this commit was appropriate

	it is good practice to link with issues using the syntax #ISSUE_NUMBER in one or both of the above.









3: Now we push our branch into the origin remote.


git push -u origin bugfix/contributingHowTo


4: Then create a pull request (PR). In a browser, go to the fork of the project that you made. There is a button for “Compare and Pull” in your recent branches. Click the button! Now you can add a nice and succinct description of what you’ve done and flag up any issues.

5: Review by the maintainers!

To sum up from https://akrabat.com/the-beginners-guide-to-contributing-to-a-github-project/

The fundamentals are:



	Fork the project & clone locally.

	Create an upstream remote and sync your local copy before you branch.

	Branch for each separate piece of work.

	Do the work, write good commit messages, and read the guidelines in the manual.

	Push to your origin repository.

	Create a new PR in GitHub.

	Respond to any code review feedback.









3.2.2. Detailed guide

To be completed.



[image: Conceptual model of GitHub]Figure 3.1 A conceptual map of the GitHub setup. Text in serif font are labels or concepts, text in sans serif represent commands.









3.2.3. Style guide




3.2.4. Automatic testing with Travis-CI

The MITgcm uses the continuous integration service Travis-CI to test code before it is accepted into the repository. When you submit a pull request your contributions will be automatically tested. However, it is a good idea to test before submitting a pull request, so that you have time to fix any issues that are identified. To do this, you will need to activate Travis-CI for your fork of the repository.

Detailed instructions or link to be added.






3.3. Contributing to the manual

Whether you are correcting typos or describing currently undocumented packages, we welcome all contributions to the manual. The following information will help you make sure that your contribution is consistent with the style of the MITgcm documentation. (We know that not all of the current documentation follows these guidelines - we’re working on it)

Once you’ve made your changes to the manual, you should build it locally to verify that it works as expected. To do this you will need a working python installation with the following modules installed (use pip install MODULE in the terminal):



	sphinx

	sphinxcontrib-bibtex

	sphinx_rtd_theme






Then, run make html in the docs directory.


3.3.1. Section headings


	Chapter headings - these are the main headings with integer numbers - underlined with ****

	section headings - headings with number format X.Y - underlined with ====

	Subsection headings - headings with number format X.Y.Z - underlined with ---

	Subsubsection headings - headings with number format X.Y.Z.A - underlined with +++

	Paragraph headings - headings with no numbers - underlined with ###



N.B. all underlinings should be the same length as the heading. If they are too short an error will be produced.




3.3.2. Cross referencing

Labels go above the section they refer to, with the format .. _LABELNAME:. The leading underscore is important.

To reference sections/figures/tables/equations by number use this format for the reference: :numref:`sec_eg_baro`

To reference sections by name use this format: :ref:`sec_eg_baro`




3.3.3. Maths

Inline maths is done with :math:`LATEX_HERE`

Separate equations, which will be typeset on their own lines, are produced with:

.. math::
    :label: eqn_label_here

    LATEX_HERE








3.3.4. Units

Units should be typeset in normal text, and exponents added with the :sup: command.

100 N m\ :sup:`--2`





If the exponent is negative use two dashes -- to make the minus sign long enough. The backslash removes the space between the unit and the exponent.




3.3.5. Describing subroutine inputs and outputs

This information should go in an ‘adominition’ block. The source code to achieve this is:

.. admonition:: Subroutine
  :class: note

  S/R GMREDI_CALC_TENSOR (*pkg/gmredi/gmredi_calc_tensor.F*)

  :math:`\sigma_x`: **SlopeX** (argument on entry)

  :math:`\sigma_y`: **SlopeY** (argument on entry)

  :math:`\sigma_z`: **SlopeY** (argument)

  :math:`S_x`: **SlopeX** (argument on exit)

  :math:`S_y`: **SlopeY** (argument on exit)










3.4. Reviewing pull requests

The only people with write access to the main repository are a small number of core MITgcm developers. They are the people that will eventually merge your pull requests. However, before your PR gets merged, it will undergo the automated testing on Travis-CI, and it will be assessed by the MITgcm community.

Everyone can review and comment on pull requests. Even if you are not one of the core developers you can still comment on a pull request.

To test pull requests locally you should:



	add the repository of the user proposing the pull request as a remote, git remote add USERNAME https://github.com/USERNAME/MITgcm66h.git where USERNAME is replaced by the user name of the person who has made the pull request;

	download a local version of the branch from the pull request, git fetch USERNAME followed by git checkout --track USERNAME/foo;

	run tests locally; and

	possibly push fixes or changes directly to the pull request.






None of these steps, apart from the final one, require write access to the main repository. This means that anyone can review pull requests. However, unless you are one of the core developers you won’t be able to directly push changes. You will instead have to make a comment describing any problems you find.







          

      

      

    

  

  
    
    
    4. MITgcm Example Experiments
    
    

    
 
  
  

    
      
          
            
  
4. MITgcm Example Experiments

The full MITgcm distribution comes with a set of pre-configured
numerical experiments.  Some of these example experiments are tests of
individual parts of the model code, but many are fully fledged
numerical simulations. Full tutorials exist for a few of the examples,
and are documented in sections Section 4.2 -
sec_eg_tank. The other examples follow the same general
structure as the tutorial examples. However, they only include brief
instructions in a text file called {it README}.  The examples are
located in subdirectories under the directory texttt{verification}.
Each example is briefly described below.


4.1. Full list of model examples

Once you have chosen the example you want to run, you are ready to
compile the code.




4.2. Barotropic Gyre MITgcm Example


(in directory: verification/tutorial_barotropic_gyre/)


This example experiment demonstrates using the MITgcm to simulate a Barotropic, wind-forced, ocean gyre circulation. The files for this experiment can be found in the verification directory verification/tutorial_barotropic_gyre. The experiment is a numerical rendition of the gyre circulation problem similar to the problems described analytically by Stommel in 1966  [Sto48] and numerically in Holland et. al [HL5a].

In this experiment the model is configured to represent a rectangular enclosed box of fluid, \(1200 \times 1200\) km in lateral extent. The fluid is 5 km deep and is forced by a constant in time zonal wind stress, \(\tau_x\), that varies sinusoidally in the ‘north-south’ direction. Topologically the grid is Cartesian and the coriolis parameter \(f\) is defined according to a mid-latitude beta-plane equation


\[f(y) = f_{0}+\beta y\]

where \(y\) is the distance along the ‘north-south’ axis of the simulated domain. For this experiment \(f_{0}\) is set to \(10^{-4}s^{-1}\) in (1) and \(\beta = 10^{-11}s^{-1}m^{-1}\).

The sinusoidal wind-stress variations are defined according to


\[\tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y})\]

where \(L_{y}\) is the lateral domain extent (1200~km) and
\(\tau_0\) is set to \(0.1N m^{-2}\).

Figure 4.1 summarizes the configuration simulated.



[image: barotropic gyre configuration]Figure 4.1 Schematic of simulation domain and wind-stress forcing function for barotropic gyre numerical experiment. The domain is enclosed by solid walls at \(x=\) 0, 1200 km and at \(y=\) 0, 1200 km.







4.2.1. Equations Solved

The model is configured in hydrostatic form. The implicit free surface form of the
pressure equation described in [MHPA97] is
employed.
A horizontal Laplacian operator \(\nabla_{h}^2\) provides viscous
dissipation. The wind-stress momentum input is added to the momentum equation
for the ‘zonal flow’, \(u\). Other terms in the model
are explicitly switched off for this experiment configuration (see section
Section 4.2.3 ), yielding an active set of equations solved
in this configuration as follows


\[ \begin{align}\begin{aligned}\frac{Du}{Dt} - fv + g\frac{\partial \eta}{\partial x} - A_{h}\nabla_{h}^2u
 = & \frac{\tau_{x}}{\rho_{0}\Delta z}\\\frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} - A_{h}\nabla_{h}^2v
 = & 0\\\frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
 = & 0\end{aligned}\end{align} \]

where \(u\) and \(v\) and the \(x\) and \(y\) components of the
flow vector \(\vec{u}\).




4.2.2. Discrete Numerical Configuration

The domain is discretised with a uniform grid spacing in the horizontal set to \(\Delta x=\Delta y=20\) km, so that there are sixty grid cells in the \(x\) and \(y\) directions. Vertically the model is configured with a single layer with depth, \(\Delta z\), of \(5000\) m.


4.2.2.1. Numerical Stability Criteria

The Laplacian dissipation coefficient, \(A_{h}\), is set to \(400 m s^{-1}\). This value is chosen to yield a Munk layer width [Adc95],


\[M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}\]

of \(\approx\) 100km. This is greater than the model
resolution \(\Delta x\), ensuring that the frictional boundary
layer is well resolved.

The model is stepped forward with a
time step \(\delta t=1200\) secs. With this time step the stability
parameter to the horizontal Laplacian friction [Adc95]


\[S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2}\]

evaluates to 0.012, which is well below the 0.3 upper limit for stability.

The numerical stability for inertial oscillations [Adc95]


\[S_{i} = f^{2} {\delta t}^2\]

evaluates to \(0.0144\) , which is well below the 0.5 upper limit for stability.

The advective CFL [Adc95] for an extreme maximum horizontal flow speed of \({|\vec{u}|} = 2 ms^{-1}\)


\[S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x}\]

evaluates to 0.12. This is approaching the stability limit of 0.5 and limits \(\delta t\) to 1200 s.






4.2.3. Code Configuration

The model configuration for this experiment resides under the directory verification/tutorial_barotropic_gyre/.

The experiment files



	input/data

	input/data.pkg

	input/eedata

	input/windx.sin_y

	input/topog.box

	code/CPP_EEOPTIONS.h

	code/CPP_OPTIONS.h

	code/SIZE.h






contain the code customizations and parameter settings for this
experiments. Below we describe the customizations
to these files associated with this experiment.


4.2.3.1. File input/data

This file, reproduced completely below, specifies the main parameters
for the experiment. The parameters that are significant for this configuration
are



	Line 7


	viscAh=4.E2,

	this line sets the Laplacian friction coefficient to \(400 m^2s^{-1}\)





	Line 10


	beta=1.E-11,

	this line sets \(\beta\) (the gradient of the coriolis parameter, \(f\)) to \(10^{-11} s^{-1}m^{-1}\)





	Lines 15 and 16


	rigidLid=.FALSE.,

	implicitFreeSurface=.TRUE.,

	these lines suppress the rigid lid formulation of the surface pressure inverter and activate the implicit free surface form of the pressure inverter.





	Line 27


	startTime=0,

	this line indicates that the experiment should start from \(t=0\) and implicitly suppresses searching for checkpoint files associated with restarting an numerical integration from a previously saved state.





	Line 29


	endTime=12000,

	this line indicates that the experiment should start finish at \(t=12000s\). A restart file will be written at this time that will enable the simulation to be continued from this point.





	Line 30



	deltaTmom=1200,

	This line sets the momentum equation timestep to \(1200s\).








	Line 39


	usingCartesianGrid=.TRUE.,

	This line requests that the simulation be performed in a Cartesian coordinate system.





	Line 41


	delX=60*20E3,

	This line sets the horizontal grid spacing between each x-coordinate line in the discrete grid. The syntax indicates that the discrete grid should be comprise of $60$ grid lines each separated by \(20 \times 10^{3}m\) (20 km).





	Line 42


	delY=60*20E3,

	This line sets the horizontal grid spacing between each y-coordinate line in the discrete grid to \(20 \times 10^{3}m\) (20 km).





	Line 43


	delZ=5000,

	This line sets the vertical grid spacing between each z-coordinate line in the discrete grid to 5000m (5 km).





	Line 46


	bathyFile=’topog.box’

	This line specifies the name of the file from which the domain bathymetry is read. This file is a two-dimensional (\(x,y\)) map of depths. This file is assumed to contain 64-bit binary numbers giving the depth of the model at each grid cell, ordered with the x coordinate varying fastest. The points are ordered from low coordinate to high coordinate for both axes. The units and orientation of the depths in this file are the same as used in the MITgcm code. In this experiment, a depth of 0 m indicates a solid wall and a depth of -5000 m indicates open ocean. The matlab program input/gendata.m shows an example of how to generate a bathymetry file.





	Line 49


	zonalWindFile=’windx.sin_y’

	This line specifies the name of the file from which the x-direction surface wind stress is read. This file is also a two-dimensional (\(x,y\)) map and is enumerated and formatted in the same manner as the bathymetry file. The matlab program input/gendata.m includes example code to generate a valid zonalWindFile file.










other lines in the file input/data are standard values that are described in the MITgcm Getting Started and MITgcm Parameters notes.


Listing 4.1 verification/tutorial_barotropic_gyre/input/data

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	# Model parameters
# Continuous equation parameters
 &PARM01
 tRef=20.,
 sRef=10.,
 viscAz=1.E-2,
 viscAh=4.E2,
 diffKhT=4.E2,
 diffKzT=1.E-2,
 beta=1.E-11,
 tAlpha=2.E-4,
 sBeta =0.,
 gravity=9.81,
 gBaro=9.81,
 rigidLid=.FALSE.,
 implicitFreeSurface=.TRUE.,
 eosType='LINEAR',
 readBinaryPrec=64,
 &

# Elliptic solver parameters
 &PARM02
 cg2dMaxIters=1000,
 cg2dTargetResidual=1.E-7,
 &

# Time stepping parameters
 &PARM03
 startTime=0,
#endTime=311040000,
 endTime=12000.0,
 deltaTmom=1200.0,
 deltaTtracer=1200.0,
 abEps=0.1,
 pChkptFreq=2592000.0,
 chkptFreq=120000.0,
 dumpFreq=2592000.0,
 monitorSelect=2,
 monitorFreq=1.,
 &

# Gridding parameters
 &PARM04
 usingCartesianGrid=.TRUE.,
 usingSphericalPolarGrid=.FALSE.,
 delX=60*20E3,
 delY=60*20E3,
 delZ=5000.,
 &

# Input datasets
 &PARM05
 bathyFile='topog.box',
 hydrogThetaFile=,
 hydrogSaltFile=,
 zonalWindFile='windx.sin_y',
 meridWindFile=,
 &












4.2.3.2. File input/data.pkg

This file uses standard default values and does not contain
customizations for this experiment.




4.2.3.3. File input/eedata

This file uses standard default values and does not contain
customizations for this experiment.




4.2.3.4. File input/windx.sin_y

The input/windx.sin_y file specifies a two-dimensional (\(x,y\))
map of wind stress, \(\tau_{x}\), values. The units used are \(Nm^{-2}\). Although \(\tau_{x}\) is only a function of \(y\) in this experiment
this file must still define a complete two-dimensional map in order
to be compatible with the standard code for loading forcing fields
in MITgcm. The included matlab program input/gendata.m gives a complete
code for creating the input/windx.sin_y file.




4.2.3.5. File input/topog.box

The input/topog.box file specifies a two-dimensional (\(x,y\)) map of depth values. For this experiment values are either 0 m or \(-delZ\) m, corresponding respectively to a wall or to deep ocean. The file contains a raw binary stream of data that is enumerated in the same way as standard MITgcm two-dimensional, horizontal arrays. The included matlab program input/gendata.m gives a completecode for creating the input/topog.box file.




4.2.3.6. File code/SIZE.h

Two lines are customized in this file for the current experiment



	Line 39
	sNx=60,

	this line sets the lateral domain extent in grid points for the axis aligned with the x-coordinate.





	Line 40
	sNy=60,

	this line sets the lateral domain extent in grid points for the axis aligned with the y-coordinate.











Listing 4.2 verification/tutorial_barotropic_gyre/code/SIZE.h

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	C $Header$
C $Name$
C
C     /==========================================================\
C     | SIZE.h Declare size of underlying computational grid.    |
C     |==========================================================|
C     | The design here support a three-dimensional model grid   |
C     | with indices I,J and K. The three-dimensional domain     |
C     | is comprised of nPx*nSx blocks of size sNx along one axis|
C     | nPy*nSy blocks of size sNy along another axis and one    |
C     | block of size Nz along the final axis.                   |
C     | Blocks have overlap regions of size OLx and OLy along the|
C     | dimensions that are subdivided.                          |
C     \==========================================================/
C     Voodoo numbers controlling data layout.
C     sNx - No. X points in sub-grid.
C     sNy - No. Y points in sub-grid.
C     OLx - Overlap extent in X.
C     OLy - Overlat extent in Y.
C     nSx - No. sub-grids in X.
C     nSy - No. sub-grids in Y.
C     nPx - No. of processes to use in X.
C     nPy - No. of processes to use in Y.
C     Nx  - No. points in X for the total domain.
C     Ny  - No. points in Y for the total domain.
C     Nr  - No. points in R for full process domain.
      INTEGER sNx
      INTEGER sNy
      INTEGER OLx
      INTEGER OLy
      INTEGER nSx
      INTEGER nSy
      INTEGER nPx
      INTEGER nPy
      INTEGER Nx
      INTEGER Ny
      INTEGER Nr
      PARAMETER (
     &           sNx =  30,
     &           sNy =  30,
     &           OLx =   2,
     &           OLy =   2,
     &           nSx =   2,
     &           nSy =   2,
     &           nPx =   1,
     &           nPy =   1,
     &           Nx  = sNx*nSx*nPx,
     &           Ny  = sNy*nSy*nPy,
     &           Nr  =   1)

C     MAX_OLX  - Set to the maximum overlap region size of any array
C     MAX_OLY    that will be exchanged. Controls the sizing of exch
C                routine buufers.
      INTEGER MAX_OLX
      INTEGER MAX_OLY
      PARAMETER ( MAX_OLX = OLx,
     &            MAX_OLY = OLy )













4.2.3.7. File code/CPP_OPTIONS.h

This file uses standard default values and does not contain
customizations for this experiment.




4.2.3.8. File code/CPP_EEOPTIONS.h

This file uses standard default values and does not contain
customizations for this experiment.








4.3. A Rotating Tank in Cylindrical Coordinates


(in directory: verification/rotating_tank/)



4.3.1. Overview

This example configuration demonstrates using the MITgcm to simulate a
laboratory demonstration using a differentially heated rotating
annulus of water.  The simulation is configured for a laboratory scale
on a \(3^{\circ}\times1\mathrm{cm}\) cyclindrical grid with twenty-nine
vertical levels of 0.5cm each.  This is a typical laboratory setup for
illustration principles of GFD, as well as for a laboratory data
assimilation project. The files for this experiment can be found in
the verification directory under rotating_tank.

example illustration from GFD lab here




4.3.2. Equations Solved




4.3.3. Discrete Numerical Configuration

The domain is discretised with a uniform cylindrical grid spacing in
the horizontal set to \(\Delta a=1`~cm and :math:\)Delta phi=3^{circ}`, so
that there are 120 grid cells in the azimuthal direction and
thirty-one grid cells in the radial, representing a tank 62cm in
diameter.  The bathymetry file sets the depth=0 in the nine lowest
radial rows to represent the central of the annulus.  Vertically the
model is configured with twenty-nine layers of uniform 0.5cm
thickness.

something about heat flux




4.3.4. Code Configuration

The model configuration for this experiment resides under the
directory verification/rotatingi_tank/.  The experiment files



	input/data

	input/data.pkg

	input/eedata

	input/bathyPol.bin

	input/thetaPol.bin

	code/CPP\_EEOPTIONS.h

	code/CPP\_OPTIONS.h

	code/SIZE.h






contain the code customizations and parameter settings for this
experiments. Below we describe the customizations
to these files associated with this experiment.


4.3.4.1. File input/data

This file, reproduced completely below, specifies the main parameters
for the experiment. The parameters that are significant for this configuration
are



	Lines 9-10,
	viscAh=5.0E-6,

	viscAz=5.0E-6,










These lines set the Laplacian friction coefficient in the horizontal
and vertical, respectively.  Note that they are several orders of
magnitude smaller than the other examples due to the small scale of
this example.



	Lines 13-16,
	diffKhT=2.5E-6,

	diffKzT=2.5E-6,

	diffKhS=1.0E-6,

	diffKzS=1.0E-6,










These lines set horizontal and vertical diffusion coefficients for
temperature and salinity.  Similarly to the friction coefficients, the
values are a couple of orders of magnitude less than most


configurations.


	Line 17, f0=0.5, this line sets the






coriolis term, and represents a tank spinning at about 2.4 rpm.



	Lines 23 and 24
	rigidLid=.TRUE.,

	implicitFreeSurface=.FALSE.,










These lines activate  the rigid lid formulation of the surface
pressure inverter and suppress the implicit free surface form
of the pressure inverter.



	Line 40,
	nIter=0,










This line indicates that the experiment should start from $t=0$ and
implicitly suppresses searching for checkpoint files associated with
restarting an numerical integration from a previously saved state.
Instead, the file thetaPol.bin will be loaded to initialized the
temperature fields as indicated below, and other variables will be
initialized to their defaults.



	Line 43,
	deltaT=0.1,










This line sets the integration timestep to $0.1s$.  This is an
unsually small value among the examples due to the small physical
scale of the experiment.  Using the ensemble Kalman filter to produce
input fields can necessitate even shorter timesteps.



	Line 56,
	usingCylindricalGrid=.TRUE.,










This line requests that the simulation be performed in a
cylindrical coordinate system.



	Line 57,
	dXspacing=3,










This line sets the azimuthal grid spacing between each $x$-coordinate line
in the discrete grid. The syntax indicates that the discrete grid
should be comprised of $120$ grid lines each separated by $3^{circ}$.



	Line 58,
	dYspacing=0.01,










This line sets the radial cylindrical grid spacing between each
\(a\)-coordinate line in the discrete grid to \(1cm\).



	Line 59,
	delZ=29*0.005,










This line sets the vertical grid spacing between each of 29
z-coordinate lines in the discrete grid to $0.005m$ ($5$~mm).



	Line 64,
	bathyFile=’bathyPol.bin’,










This line specifies the name of the file from which the domain
‘bathymetry’ (tank depth) is read. This file is a two-dimensional
(\(a,\phi\)) map of
depths. This file is assumed to contain 64-bit binary numbers
giving the depth of the model at each grid cell, ordered with the $phi$
coordinate varying fastest. The points are ordered from low coordinate
to high coordinate for both axes.  The units and orientation of the
depths in this file are the same as used in the MITgcm code. In this
experiment, a depth of $0m$ indicates an area outside of the tank
and a depth
f \(-0.145m\) indicates the tank itself.



	Line 65,
	hydrogThetaFile=’thetaPol.bin’,










This line specifies the name of the file from which the initial values
of temperature
are read. This file is a three-dimensional
(\(x,y,z\)) map and is enumerated and formatted in the same manner as the
bathymetry file.



	Lines 66 and 67
	tCylIn  = 0

	tCylOut  = 20










These line specify the temperatures in degrees Celsius of the interior
and exterior walls of the tank – typically taken to be icewater on
the inside and room temperature on the outside.

Other lines in the file input/data are standard values
that are described in the MITgcm Getting Started and MITgcm Parameters
notes.


Listing 4.3 verification/rotating_tank/input/data

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

	# ====================
# | Model parameters |
# ====================
#
# Continuous equation parameters
 &PARM01
 tRef=29*20.0,
 sRef=29*35.0,
 viscAh=5.0E-6,
 viscAz=5.0E-6,
 no_slip_sides=.FALSE.,
 no_slip_bottom=.FALSE.,
 diffKhT=2.5E-6,
 diffKzT=2.5E-6,
 diffKhS=1.0E-6,
 diffKzS=1.0E-6,
 f0=0.5,
 eosType='LINEAR',
 sBeta =0.,
 gravity=9.81,
 rhoConst=1000.0,
 rhoNil=1000.0,
#heatCapacity_Cp=3900.0,
 rigidLid=.TRUE.,
 implicitFreeSurface=.FALSE.,
 nonHydrostatic=.TRUE.,
 readBinaryPrec=32,
 &

# Elliptic solver parameters
 &PARM02
 cg2dMaxIters=1000,
 cg2dTargetResidual=1.E-7,
 cg3dMaxIters=10,
 cg3dTargetResidual=1.E-9,
 &

# Time stepping parameters
 &PARM03
 nIter0=0,
 nTimeSteps=20,
#nTimeSteps=36000000,
 deltaT=0.1,
 abEps=0.1,
 pChkptFreq=2.0,
#chkptFreq=2.0,
 dumpFreq=2.0,
 monitorSelect=2,
 monitorFreq=0.1,
 &

# Gridding parameters
 &PARM04
 usingCylindricalGrid=.TRUE.,
 dXspacing=3.,
 dYspacing=0.01,
 delZ=29*0.005,
 ygOrigin=0.07,
 &

# Input datasets
 &PARM05
 hydrogThetaFile='thetaPolR.bin',
 bathyFile='bathyPolR.bin',
 tCylIn  = 0.,
 tCylOut = 20.,
 &












4.3.4.2. File input/data.pkg

This file uses standard default values and does not contain
customizations for this experiment.




4.3.4.3. File input/eedata

This file uses standard default values and does not contain
customizations for this experiment.




4.3.4.4. File input/thetaPol.bin

The {it input/thetaPol.bin} file specifies a three-dimensional ($x,y,z$)
map of initial values of $theta$ in degrees Celsius.  This particular
experiment is set to random values x around 20C to provide initial
perturbations.




4.3.4.5. File input/bathyPol.bin

The {it input/bathyPol.bin} file specifies a two-dimensional ($x,y$)
map of depth values. For this experiment values are either
$0m$ or {bf -delZ}m, corresponding respectively to outside or inside of
the tank. The file contains a raw binary stream of data that is enumerated
in the same way as standard MITgcm two-dimensional, horizontal arrays.




4.3.4.6. File code/SIZE.h

Two lines are customized in this file for the current experiment



	Line 39,
- sNx=120,






this line sets
the lateral domain extent in grid points for the
axis aligned with the x-coordinate.



	Line 40,
- sNy=31,






this line sets
the lateral domain extent in grid points for the
axis aligned with the y-coordinate.


Listing 4.4 verification/rotating_tank/code/SIZE.h

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	C $Header$
C $Name$
C
C     /==========================================================\
C     | SIZE.h Declare size of underlying computational grid.    |
C     |==========================================================|
C     | The design here support a three-dimensional model grid   |
C     | with indices I,J and K. The three-dimensional domain     |
C     | is comprised of nPx*nSx blocks of size sNx along one axis|
C     | nPy*nSy blocks of size sNy along another axis and one    |
C     | block of size Nz along the final axis.                   |
C     | Blocks have overlap regions of size OLx and OLy along the|
C     | dimensions that are subdivided.                          |
C     \==========================================================/
C     Voodoo numbers controlling data layout.
C     sNx - No. X points in sub-grid.
C     sNy - No. Y points in sub-grid.
C     OLx - Overlap extent in X.
C     OLy - Overlat extent in Y.
C     nSx - No. sub-grids in X.
C     nSy - No. sub-grids in Y.
C     nPx - No. of processes to use in X.
C     nPy - No. of processes to use in Y.
C     Nx  - No. points in X for the total domain.
C     Ny  - No. points in Y for the total domain.
C     Nr  - No. points in Z for full process domain.
      INTEGER sNx
      INTEGER sNy
      INTEGER OLx
      INTEGER OLy
      INTEGER nSx
      INTEGER nSy
      INTEGER nPx
      INTEGER nPy
      INTEGER Nx
      INTEGER Ny
      INTEGER Nr
      PARAMETER (
     &           sNx =  30,
     &           sNy =  23,
     &           OLx =   3,
     &           OLy =   3,
     &           nSx =   4,
     &           nSy =   1,
     &           nPx =   1,
     &           nPy =   1,
     &           Nx  = sNx*nSx*nPx,
     &           Ny  = sNy*nSy*nPy,
     &           Nr  =  29)

C     MAX_OLX  - Set to the maximum overlap region size of any array
C     MAX_OLY    that will be exchanged. Controls the sizing of exch
C                routine buufers.
      INTEGER MAX_OLX
      INTEGER MAX_OLY
      PARAMETER ( MAX_OLX = OLx,
     &            MAX_OLY = OLy )













4.3.4.7. File code/CPP_OPTIONS.h

This file uses standard default values and does not contain
customizations for this experiment.




4.3.4.8. File code/CPP_EEOPTIONS.h

This file uses standard default values and does not contain
customizations for this experiment.











          

      

      

    

  

  
    
    
    5. Physical Parameterizations - Packages I
    
    

    
 
  
  

    
      
          
            
  
5. Physical Parameterizations - Packages I

In this chapter and in the following chapter, the MITgcm ‘packages’ are
described. While you can carry out many experiments with MITgcm by starting
from case studies in section ref{sec:modelExamples}, configuring
a brand new experiment or making major changes to an experimental configuration
requires some knowledge of the packages
that make up the full MITgcm code. Packages are used in MITgcm to
help organize and layer various code building blocks that are assembled
and selected to perform a specific experiment. Each of the specific experiments
described in section ref{sec:modelExamples} uses a particular combination
of packages.

Figure 5.1 shows the full set of packages that
are available. As shown in the figure packages are classified into different
groupings that layer on top of each other. The top layer packages are
generally specialized to specific simulation types. In this layer there are
packages that deal with biogeochemical processes, ocean interior
and boundary layer processes, atmospheric processes, sea-ice, coupled
simulations and state estimation.
Below this layer are a set of general purpose
numerical and computational packages. The general purpose numerical packages
provide code for kernel numerical alogorithms
that apply to
many different simulation types. Similarly, the general purpose computational
packages implement non-numerical alogorithms that provide parallelism,
I/O and time-keeping functions that are used in many different scenarios.



[image: One model for atmospheric and oceanic simulations]Figure 5.1 Hierarchy of code layers that are assembled to make up an MITgcm simulation. Conceptually (and in terms of code organization) MITgcm consists of several layers. At the base is a layer of core software that provides a basic numerical and computational foundation for MITgcm simulations. This layer is shown marked Foundation Code at the bottom of the figure and corresponds to code in the italicised subdirectories on the figure. This layer is not organized into packages. All code above the foundation layer is organized as packages.  Much of the code in MITgcm is contained in packages which serve as a useful way of organizing and layering the different levels of functionality that make up the full MITgcm software distribution. The figure shows the different packages in MITgcm as boxes containing bold face upper case names.  Directly above the foundation layer are two layers of general purpose infrastructure software that consist of computational and numerical packages.  These general purpose packages can be applied to both online and offline simulations and are used in many different physical simulation types.  Above these layers are more specialized packages.






The following sections describe the packages shown in
Figure 5.1. Section ref{sec:pkg:using}
describes the general procedure for using any package in MITgcm.
Following that sections ref{sec:pkg:gad}-ref{sec:pkg:monitor}
layout the algorithms implemented in specific packages
and describe how to use the individual packages. A brief synopsis of the
function of each package is given in table ref{tab:package_summary_tab}.
Organizationally package code is assigned a
separate subdirectory in the MITgcm code distribution
(within the source code directory texttt{pkg}).
The name of this subdirectory is used as the package name in
table ref{tab:package_summary_tab}.


5.1. Overview



	5.1.1. Using MITgcm Packages
	5.1.1.1. Package Inclusion/Exclusion

	5.1.1.2. Package Activation

	5.1.1.3. Package Coding Standards
	Packages are Not Libraries

	File Inclusion Rules

	Conditional Compilation and PACKAGES_CONFIG.h

	Package Startup or Boot Sequence

	Adding a package to PARAMS.h and packages_boot()
















5.2. Packages Related to Hydrodynamical Kernel



	5.2.1. Generic Advection/Diffusion
	5.2.1.1. Introduction

	5.2.1.2. Key subroutines, parameters and files

	5.2.1.3. GAD Diagnostics

	5.2.1.4. Experiments and tutorials that use GAD





	5.2.2. Shapiro Filter
	5.2.2.1. Key subroutines, parameters and files

	5.2.2.2. Experiments and tutorials that use shap filter





	5.2.3. FFT Filtering Code
	5.2.3.1. Key subroutines, parameters and files

	5.2.3.2. Experiments and tutorials that use zonal filter





	5.2.4. exch2: Extended Cubed Sphere Topology
	5.2.4.1. Introduction

	5.2.4.2. Invoking exch2

	5.2.4.3. Generating Topology Files for exch2

	5.2.4.4. exch2, SIZE.h, and Multiprocessing

	5.2.4.5. Key Variables

	5.2.4.6. Key Routines

	5.2.4.7. Experiments and tutorials that use exch2





	5.2.5. Gridalt - Alternate Grid Package
	5.2.5.1. Introduction

	5.2.5.2. Equations on Both Grids

	5.2.5.3. Time stepping Sequence

	5.2.5.4. Interpolation

	5.2.5.5. Key subroutines, parameters and files

	5.2.5.6. Gridalt Diagnostics

	5.2.5.7. Dos and donts

	5.2.5.8. Gridalt Reference

	5.2.5.9. Experiments and tutorials that use gridalt












5.3. General purpose numerical infrastructure packages



	5.3.1. OBCS: Open boundary conditions for regional modeling
	5.3.1.1. Introduction

	5.3.1.2. OBCS configuration and compiling

	5.3.1.3. Run-time parameters
	Enabling the package

	Package flags and parameters





	5.3.1.4. Defining open boundary positions

	5.3.1.5. Equations and key routines
	OBCS_READPARMS:

	OBCS_CALC:

	ORLANSKI:

	OBCS_PRESCRIBE_READ:

	OBCS_CALC_STEVENS:

	OBCS_BALANCE_FLOW:

	OBCS_APPLY_*:

	OBCS_SPONGE:

	OB’s with nonlinear free surface





	5.3.1.6. Flow chart

	5.3.1.7. OBCS diagnostics

	5.3.1.8. Reference experiments

	5.3.1.9. References

	5.3.1.10. Experiments and tutorials that use obcs





	5.3.2. RBCS Package
	5.3.2.1. Introduction

	5.3.2.2. Key subroutines and parameters

	5.3.2.3. Timing of relaxation forcing fields

	5.3.2.4. Example 1: forcing with time averages starting at \(t=0\)
	Cyclic data in a single file

	Non-cyclic data, multiple files





	5.3.2.5. Example 2: forcing with snapshots starting at \(t=0\)
	Cyclic data in a single file

	Non-cyclic data, multiple files





	5.3.2.6. Do’s and Don’ts

	5.3.2.7. Reference Material

	5.3.2.8. Experiments and tutorials that use rbcs





	5.3.3. PTRACERS Package
	5.3.3.1. Introduction

	5.3.3.2. Equations

	5.3.3.3. Key subroutines and parameters

	5.3.3.4. PTRACERS Diagnostics

	5.3.3.5. Do’s and Don’ts

	5.3.3.6. Reference Material












5.4. Ocean Packages



	5.4.1. GMREDI: Gent-McWilliams/Redi SGS Eddy Parameterization
	5.4.1.1. Redi scheme: Isopycnal diffusion

	5.4.1.2. GM parameterization

	5.4.1.3. Griffies Skew Flux

	5.4.1.4. Variable \(\kappa_{GM}\)

	5.4.1.5. Tapering and stability

	5.4.1.6. Slope clipping

	5.4.1.7. Tapering: Gerdes, Koberle and Willebrand, Clim. Dyn. 1991

	5.4.1.8. Tapering: Danabasoglu and McWilliams, J. Clim. 1995

	5.4.1.9. Tapering: Large, Danabasoglu and Doney, JPO 1997

	5.4.1.10. Package Reference

	5.4.1.11. Experiments and tutorials that use gmredi





	5.4.2. KPP: Nonlocal K-Profile Parameterization for Vertical Mixing
	5.4.2.1. Introduction

	5.4.2.2. KPP configuration and compiling

	5.4.2.3. Run-time parameters
	Enabling the package

	Required MITgcm flags

	Package flags and parameters





	5.4.2.4. Equations and key routines
	KPP_CALC:

	KPP_MIX:

	BLMIX: Mixing in the boundary layer

	RI_IWMIX: Mixing in the interior

	BLDEPTH: Boundary layer depth calculation:

	KPP_CALC_DIFF_T/_S, KPP_CALC_VISC:

	KPP_TRANSPORT_T/_S/_PTR:

	Implicit time integration

	Penetration of shortwave radiation





	5.4.2.5. Flow chart

	5.4.2.6. KPP diagnostics

	5.4.2.7. Reference experiments

	5.4.2.8. References

	5.4.2.9. Experiments and tutorials that use kpp





	5.4.3. GGL90: a TKE vertical mixing scheme
	5.4.3.1. Key subroutines, parameters and files

	5.4.3.2. Experiments and tutorials that use GGL90





	5.4.4. OPPS: Ocean Penetrative Plume Scheme
	5.4.4.1. Key subroutines, parameters and files

	5.4.4.2. Experiments and tutorials that use OPPS





	5.4.5. KL10: Vertical Mixing Due to Breaking Internal Waves
	5.4.5.1. Introduction

	5.4.5.2. KL10 configuration and compiling

	5.4.5.3. Run-time parameters
	Enabling the package

	Required MITgcm flags

	Package flags and parameters





	5.4.5.4. Equations and key routines
	KL10_CALC:

	KL10_CALC_VISC:

	KL10_CALC_DIFF:





	5.4.5.5. KL10 diagnostics

	5.4.5.6. References

	5.4.5.7. Experiments and tutorials that use KL10





	5.4.6. BULK_FORCE: Bulk Formula Package
	5.4.6.1. subroutine BULKF_FIELDS_LOAD

	5.4.6.2. subroutine BULKF_FORCING

	5.4.6.3. subroutine BULKF_FORMULA_LANL

	5.4.6.4. Initializing subroutines

	5.4.6.5. Diagnostic subroutines

	5.4.6.6. Common Blocks

	5.4.6.7. Input file DATA.ICE

	5.4.6.8. Important Notes

	5.4.6.9. References

	5.4.6.10. Experiments and tutorials that use bulk_force





	5.4.7. EXF: The external forcing package
	5.4.7.1. Introduction

	5.4.7.2. EXF configuration, compiling & running
	Compile-time options





	5.4.7.3. Run-time parameters
	Enabling the package

	General flags and parameters

	Field attributes

	Example configuration





	5.4.7.4. EXF bulk formulae

	5.4.7.5. EXF input fields and units

	5.4.7.6. Key subroutines

	5.4.7.7. EXF diagnostics

	5.4.7.8. References

	5.4.7.9. Experiments and tutorials that use exf





	5.4.8. CAL: The calendar package
	5.4.8.1. Basic assumptions for the calendar tool

	5.4.8.2. Format of calendar dates

	5.4.8.3. Calendar dates and time intervals

	5.4.8.4. Using the calendar together with MITgcm

	5.4.8.5. The individual calendars

	5.4.8.6. Short routine description

	5.4.8.7. Experiments and tutorials that use cal












5.5. Atmosphere Packages



	5.5.1. Atmospheric Intermediate Physics: AIM
	5.5.1.1. Key subroutines, parameters and files

	5.5.1.2. AIM Diagnostics

	5.5.1.3. Experiments and tutorials that use aim





	5.5.2. Land package
	5.5.2.1. Introduction

	5.5.2.2. Equations and Key Parameters

	5.5.2.3. Land diagnostics

	5.5.2.4. References

	5.5.2.5. Experiments and tutorials that use land





	5.5.3. Fizhi: High-end Atmospheric Physics
	5.5.3.1. Introduction

	5.5.3.2. Equations
	Sub-grid and Large-scale Convection

	Cloud Formation

	Shortwave Radiation

	Longwave Radiation

	Cloud-Radiation Interaction

	Turbulence

	Atmospheric Boundary Layer

	Surface Energy Budget

	Surface Type

	Surface Roughness

	Albedo

	Gravity Wave Drag

	Topography and Topography Variance

	Upper Level Moisture





	5.5.3.3. Fizhi Diagnostics

	5.5.3.4. Fizhi Diagnostic Description
	Surface Zonal Wind Stress on the Atmosphere (\(Newton/m^2\))

	Surface Meridional Wind Stress on the Atmosphere (\(Newton/m^2\))

	Surface Flux of Sensible Heat (W m–2)

	Surface Flux of Latent Heat (\(Watts/m^2\))

	Heat Conduction Through Sea Ice (\(Watts/m^2\))

	Net upward Longwave Flux at the surface (\(Watts/m^2\))

	Net downard shortwave Flux at the surface (\(Watts/m^2\))

	Richardson number (\(dimensionless\))

	CT - Surface Exchange Coefficient for Temperature and Moisture (dimensionless)

	CU - Surface Exchange Coefficient for Momentum (dimensionless)

	ET - Diffusivity Coefficient for Temperature and Moisture (m^2/sec)

	EU - Diffusivity Coefficient for Momentum (m^2/sec)

	TURBU - Zonal U-Momentum changes due to Turbulence (m/sec/day)

	TURBV - Meridional V-Momentum changes due to Turbulence (m/sec/day)

	TURBT - Temperature changes due to Turbulence (deg/day)

	TURBQ - Specific Humidity changes due to Turbulence (g/kg/day)

	MOISTT - Temperature Changes Due to Moist Processes (deg/day)

	MOISTQ - Specific Humidity Changes Due to Moist Processes (g/kg/day)

	RADLW - Heating Rate due to Longwave Radiation (deg/day)

	RADSW - Heating Rate due to Shortwave Radiation (deg/day)

	PREACC - Total (Large-scale + Convective) Accumulated Precipition (mm/day)

	PRECON - Convective Precipition (mm/day)

	TUFLUX - Turbulent Flux of U-Momentum (Newton/m^2)

	TVFLUX - Turbulent Flux of V-Momentum (Newton/m^2)

	TTFLUX - Turbulent Flux of Sensible Heat (Watts/m^2)

	TQFLUX - Turbulent Flux of Latent Heat (Watts/m^2)

	CN - Neutral Drag Coefficient (dimensionless)

	WINDS - Surface Wind Speed (meter/sec)

	TG - Ground Temperature (deg K)

	TS - Surface Temperature (deg K)

	DTG - Surface Temperature Adjustment (deg K)

	QG - Ground Specific Humidity (g/kg)

	QS - Saturation Surface Specific Humidity (g/kg)

	TGRLW - Instantaneous ground temperature used as input to the Longwave radiation subroutine (deg)

	ST4 - Upward Longwave flux at the surface (Watts/m^2)

	OLR - Net upward Longwave flux at \(p=p_{top}\) (Watts/m^2)

	OLRCLR - Net upward clearsky Longwave flux at \(p=p_{top}\) (Watts/m^2)

	LWGCLR - Net upward clearsky Longwave flux at the surface (Watts/m^2)

	LWCLR - Heating Rate due to Clearsky Longwave Radiation (deg/day)

	TLW - Instantaneous temperature used as input to the Longwave radiation subroutine (deg)

	SHLW - Instantaneous specific humidity used as input to the Longwave radiation subroutine (kg/kg)

	OZLW - Instantaneous ozone used as input to the Longwave radiation subroutine (kg/kg)

	CLMOLW - Maximum Overlap cloud fraction used in LW Radiation (0-1)

	CLDTOT - Total cloud fraction used in LW and SW Radiation (0-1)

	CLMOSW - Maximum Overlap cloud fraction used in SW Radiation (0-1)

	CLROSW - Random Overlap cloud fraction used in SW Radiation (0-1)

	RADSWT - Incident Shortwave radiation at the top of the atmosphere (Watts/m^2)

	EVAP - Surface Evaporation (mm/day)

	DUDT - Total Zonal U-Wind Tendency  (m/sec/day)

	DVDT - Total Zonal V-Wind Tendency  (m/sec/day)

	DTDT - Total Temperature Tendency  (deg/day)

	DQDT - Total Specific Humidity Tendency  (g/kg/day)

	USTAR -  Surface-Stress Velocity (m/sec)

	Z0 - Surface Roughness Length (m)

	FRQTRB - Frequency of Turbulence (0-1)

	PBL - Planetary Boundary Layer Depth (mb)

	SWCLR - Clear sky Heating Rate due to Shortwave Radiation (deg/day)

	OSR - Net upward Shortwave flux at the top of the model (Watts/m^2)

	OSRCLR - Net upward clearsky Shortwave flux at the top of the model (Watts/m^2)

	CLDMAS - Convective Cloud Mass Flux (kg/m^2)

	UAVE - Time-Averaged Zonal U-Wind (m/sec)

	VAVE - Time-Averaged Meridional V-Wind (m/sec)

	TAVE - Time-Averaged Temperature (Kelvin)

	QAVE - Time-Averaged Specific Humidity (g/kg)

	PAVE - Time-Averaged Surface Pressure - PTOP (mb)

	QQAVE - Time-Averaged Turbulent Kinetic Energy (m/sec)^2

	SWGCLR - Net downward clearsky Shortwave flux at the surface (Watts/m^2)

	DIABU - Total Diabatic Zonal U-Wind Tendency  (m/sec/day)

	DIABV - Total Diabatic Meridional V-Wind Tendency  (m/sec/day)

	DIABT Total Diabatic Temperature Tendency (deg/day)

	DIABQ - Total Diabatic Specific Humidity Tendency (g/kg/day)

	VINTUQ - Vertically Integrated Moisture Flux (m/sec  g/kg)

	VINTVQ - Vertically Integrated Moisture Flux (m/sec g/kg)

	VINTUT - Vertically Integrated Heat Flux (m/sec deg)

	VINTVT - Vertically Integrated Heat Flux (m/sec deg)

	CLDFRC - Total 2-Dimensional Cloud Fracton (0-1)

	QINT - Total Precipitable Water (gm/cm^2)

	U2M  Zonal U-Wind at 2 Meter Depth (m/sec)

	V2M - Meridional V-Wind at 2 Meter Depth (m/sec)

	T2M - Temperature at 2 Meter Depth (deg K)

	Q2M - Specific Humidity at 2 Meter Depth (g/kg)

	U10M - Zonal U-Wind at 10 Meter Depth (m/sec)

	V10M - Meridional V-Wind at 10 Meter Depth (m/sec)

	T10M - Temperature at 10 Meter Depth (deg K)

	Q10M - Specific Humidity at 10 Meter Depth (g/kg)

	DTRAIN - Cloud Detrainment Mass Flux (kg/m^2)

	QFILL - Filling of negative Specific Humidity (g/kg/day)





	5.5.3.5. Key subroutines, parameters and files

	5.5.3.6. Dos and don’ts

	5.5.3.7. Fizhi Reference

	5.5.3.8. Experiments and tutorials that use fizhi












5.6. Sea Ice Packages



	5.6.1. THSICE: The Thermodynamic Sea Ice Package
	5.6.1.1. Key parameters and Routines
	subroutine ICE_FREEZE

	subroutine ICE_START

	subroutine ICE_THERM

	subroutine SFC_ALBEDO

	subroutine NEW_LAYERS_WINTON

	Initializing subroutines

	Diagnostic subroutines

	Common Blocks

	Input file DATA.ICE





	5.6.1.2. Important Notes

	5.6.1.3. THSICE Diagnostics

	5.6.1.4. References

	5.6.1.5. Experiments and tutorials that use thsice





	5.6.2. SEAICE Package
	5.6.2.1. Introduction

	5.6.2.2. SEAICE configuration, compiling & running
	Compile-time options

	Run-time parameters





	5.6.2.3. Description
	Compatibility with ice-thermodynamics thsice package

	Surface forcing

	Dynamics

	Viscous-Plastic (VP) Rheology

	LSR and JFNK solver

	Elastic-Viscous-Plastic (EVP) Dynamics

	More stable variants of Elastic-Viscous-Plastic Dynamics: EVP* , mEVP, and aEVP

	Truncated ellipse method (TEM) for yield curve

	Ice-Ocean stress

	Finite-volume discretization of the stress tensor divergence

	Thermodynamics

	Advection of thermodynamic variables

	Key subroutines

	SEAICE diagnostics

	Experiments and tutorials that use seaice



















          

      

      

    

  

  
    
    
    5.1.1. Using MITgcm Packages
    
    

    
 
  
  

    
      
          
            
  
5.1.1. Using MITgcm Packages

The set of packages that will be used within a partiucular model can be
configured using a combination of both “compile–time” and “run–time”
options. Compile–time options are those used to select which packages
will be “compiled in” or implemented within the program. Packages
excluded at compile time are completely absent from the executable
program(s) and thus cannot be later activated by any set of subsequent
run–time options.


5.1.1.1. Package Inclusion/Exclusion

There are numerous ways that one can specify compile–time package
inclusion or exclusion and they are all implemented by the genmake2
program which was previously described in Section [sec:buildingCode].
The options are as follows:


	Setting the genamake2 options –enable PKG and/or
–disable PKG specifies inclusion or exclusion. This method is
intended as a convenient way to perform a single (perhaps for a quick
test) compilation.



	By creating a text file with the name packages.conf in either the
local build directory or the -mods=DIR directory, one can specify
a list of packages (one package per line, with ’#’ as the
comment character) to be included. Since the packages.conf file
can be saved, this is the preferred method for setting and recording
(for future reference) the package configuration.



	For convenience, a list of “standard” package groups is contained in
the pkg/pkg_groups file. By selecting one of the package group
names in the packages.conf file, one automatically obtains all
packages in that group.



	By default (that is, if a packages.conf file is not found), the
genmake2 program will use the package group default
“default_pkg_list” as defined in pkg/pkg_groups file.



	To help prevent users from creating unusable package groups, the
genmake2 program will parse the contents of the
pkg/pkg_depend file to determine:


	whether any two requested packages cannot be simultaneously
included (eg. seaice and thsice are mutually exclusive),

	whether additional packages must be included in order to satisfy
package dependencies (eg. rw depends upon functionality within
the mdsio package), and

	whether the set of all requested packages is compatible with the
dependencies (and producing an error if they aren’t).



Thus, as a result of the dependencies, additional packages may be
added to those originally requested.








5.1.1.2. Package Activation

For run–time package control, MITgcm uses flags set through a
data.pkg file. While some packages (eg. debug, mnc,
exch2) may have their own usage conventions, most follow a simple
flag naming convention of the form:

usePackageName=.TRUE.





where the usePackageName variable can activate or disable the
package at runtime. As mentioned previously, packages must be included
in order to be activated. Generally, such mistakes will be detected and
reported as errors by the code. However, users should still be aware of
the dependency.




5.1.1.3. Package Coding Standards

The following sections describe how to modify and/or create new MITgcm
packages.


Packages are Not Libraries

To a beginner, the MITgcm packages may resemble libraries as used in
myriad software projects. While future versions are likely to implement
packages as libraries (perhaps using FORTRAN90/95 syntax) the current
packages (FORTRAN77) are not based upon any concept of libraries.




File Inclusion Rules

Instead, packages should be viewed only as directories containing “sets
of source files” that are built using some simple mechanisms provided by
genmake2. Conceptually, the build process adds files as they are
found and proceeds according to the following rules:


	genmake2 locates a “core” or main set of source files (the
-standarddirs option sets these locations and the default value
contains the directories eesupp and model).

	genmake2 then finds additional source files by inspecting the
contents of each of the package directories:
	As the new files are found, they are added to a list of source
files.

	If there is a file name “collision” (that is, if one of the files
in a package has the same name as one of the files previously
encountered) then the file within the newer (more recently
visited) package will superseed (or “hide”) any previous file(s)
with the same name.

	Packages are visited (and thus files discovered) in the order
that the packages are enabled within genmake2. Thus, the
files in PackB may superseed the files in PackA if
PackA is enabled before PackB. Thus, package ordering can
be significant! For this reason, genmake2 honors the order in
which packages are specified.







These rules were adopted since they provide a relatively simple means
for rapidly including (or “hiding”) existing files with modified
versions.




Conditional Compilation and PACKAGES_CONFIG.h

Given that packages are simply groups of files that may be added or
removed to form a whole, one may wonder how linking (that is, FORTRAN
symbol resolution) is handled. This is the second way that genmake2
supports the concept of packages. Basically, genmake2 creates a
Makefile that, in turn, is able to create a file called
PACKAGES_CONFIG.h that contains a set of C pre-processor (or “CPP”)
directives such as:

#undef  ALLOW_KPP
#undef  ALLOW_LAND
...
#define ALLOW_GENERIC_ADVDIFF
#define ALLOW_MDSIO
...





These CPP symbols are then used throughout the code to conditionally
isolate variable definitions, function calls, or any other code that
depends upon the presence or absence of any particular package.

An example illustrating the use of these defines is:

#ifdef ALLOW_GMREDI
      IF (useGMRedi) CALL GMREDI_CALC_DIFF(
     I        bi,bj,iMin,iMax,jMin,jMax,K,
     I        maskUp,
     O        KappaRT,KappaRS,
     I        myThid)
#endif





which is included from the file and shows how both the compile–time
ALLOW_GMREDI flag and the run–time useGMRedi are nested.

There are some benefits to using the technique described here. The first
is that code snippets or subroutines associated with packages can be
placed or called from almost anywhere else within the code. The second
benefit is related to memory footprint and performance. Since unused
code can be removed, there is no performance penalty due to unnecessary
memory allocation, unused function calls, or extra run-time IF (...)
conditions. The major problems with this approach are the potentially
difficult-to-read and difficult-to-debug code caused by an overuse of
CPP statements. So while it can be done, developers should exerecise
some discipline and avoid unnecesarily “smearing” their package
implementation details across numerous files.




Package Startup or Boot Sequence

Calls to package routines within the core code timestepping loop can
vary. However, all packages should follow a required “boot” sequence
outlined here:

1. S/R PACKAGES_BOOT()
        :
    CALL OPEN_COPY_DATA_FILE( 'data.pkg', 'PACKAGES_BOOT', ... )


2. S/R PACKAGES_READPARMS()
        :
    #ifdef ALLOW_${PKG}
      if ( use${Pkg} )
 &       CALL ${PKG}_READPARMS( retCode )
    #endif

3. S/R PACKAGES_INIT_FIXED()
        :
    #ifdef ALLOW_${PKG}
      if ( use${Pkg} )
 &       CALL ${PKG}_INIT_FIXED( retCode )
    #endif

4. S/R PACKAGES_CHECK()
        :
    #ifdef ALLOW_${PKG}
      if ( use${Pkg} )
 &       CALL ${PKG}_CHECK( retCode )
    #else
      if ( use${Pkg} )
 &       CALL PACKAGES_CHECK_ERROR('${PKG}')
    #endif

5. S/R PACKAGES_INIT_VARIABLES()
        :
    #ifdef ALLOW_${PKG}
      if ( use${Pkg} )
 &       CALL ${PKG}_INIT_VARIA( )
    #endif

 6. S/R DO_THE_MODEL_IO

    #ifdef ALLOW_${PKG}
      if ( use${Pkg} )
 &       CALL ${PKG}_OUTPUT( )
    #endif

 7. S/R PACKAGES_WRITE_PICKUP()

    #ifdef ALLOW_${PKG}
      if ( use${Pkg} )
 &       CALL ${PKG}_WRITE_PICKUP( )
    #endif








Adding a package to PARAMS.h and packages_boot()

An MITgcm package directory contains all the code needed for that
package apart from one variable for each package. This variable is the
use${Pkg} * flag. This flag, which is of type logical, **must* be
declared in the shared header file PARAMS.h in the PARM_PACKAGES
block. This convention is used to support a single runtime control file
data.pkg which is read by the startup routine packages_boot() and
that sets a flag controlling the runtime use of a package. This routine
needs to be able to read the flags for packages that were not built at
compile time. Therefore when adding a new package, in addition to
creating the per-package directory in the pkg/ subdirectory a
developer should add a use${Pkg} * flag to *PARAMS.h and a use${Pkg}
* entry to the *packages_boot() PACKAGES namelist. The only other
package specific code that should appear outside the individual package
directory are calls to the specific package API.









          

      

      

    

  

  
    
    
    5.2.1. Generic Advection/Diffusion
    
    

    
 
  
  

    
      
          
            
  
5.2.1. Generic Advection/Diffusion

The generic_advdiff package contains high-level subroutines to solve
the advection-diffusion equation of any tracer, either active (potential
temperature, salinity or water vapor) or passive (see pkg/ptracers).
(see also sections [sec:tracer:sub:equations] to
[sec:tracer:sub:advectionschemes]).


5.2.1.1. Introduction

Package “generic_advdiff” provides a common set of routines for
calculating advective/diffusive fluxes for tracers (cell centered
quantities on a C-grid).

Many different advection schemes are available: the standard centered
second order, centered fourth order and upwind biased third order
schemes are known as linear methods and require some stable
time-stepping method such as Adams-Bashforth. Alternatives such as
flux-limited schemes are stable in the forward sense and are best
combined with the multi-dimensional method provided in gad_advection.




5.2.1.2. Key subroutines, parameters and files

There are two high-level routines:


	GAD_CALC_RHS calculates all fluxes at time level “n” and is used
for the standard linear schemes. This must be used in conjuction with
Adams–Bashforth time stepping. Diffusive and parameterized fluxes are
always calculated here.

	GAD_ADVECTION calculates just the advective fluxes using the
non-linear schemes and can not be used in conjuction with
Adams–Bashforth time stepping.






5.2.1.3. GAD Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------------------------
ADVr_TH | 15 |WM      LR      |degC.m^3/s      |Vertical   Advective Flux of Pot.Temperature
ADVx_TH | 15 |UU   087MR      |degC.m^3/s      |Zonal      Advective Flux of Pot.Temperature
ADVy_TH | 15 |VV   086MR      |degC.m^3/s      |Meridional Advective Flux of Pot.Temperature
DFrE_TH | 15 |WM      LR      |degC.m^3/s      |Vertical Diffusive Flux of Pot.Temperature (Explicit part)
DIFx_TH | 15 |UU   090MR      |degC.m^3/s      |Zonal      Diffusive Flux of Pot.Temperature
DIFy_TH | 15 |VV   089MR      |degC.m^3/s      |Meridional Diffusive Flux of Pot.Temperature
DFrI_TH | 15 |WM      LR      |degC.m^3/s      |Vertical Diffusive Flux of Pot.Temperature (Implicit part)
ADVr_SLT| 15 |WM      LR      |psu.m^3/s       |Vertical   Advective Flux of Salinity
ADVx_SLT| 15 |UU   094MR      |psu.m^3/s       |Zonal      Advective Flux of Salinity
ADVy_SLT| 15 |VV   093MR      |psu.m^3/s       |Meridional Advective Flux of Salinity
DFrE_SLT| 15 |WM      LR      |psu.m^3/s       |Vertical Diffusive Flux of Salinity    (Explicit part)
DIFx_SLT| 15 |UU   097MR      |psu.m^3/s       |Zonal      Diffusive Flux of Salinity
DIFy_SLT| 15 |VV   096MR      |psu.m^3/s       |Meridional Diffusive Flux of Salinity
DFrI_SLT| 15 |WM      LR      |psu.m^3/s       |Vertical Diffusive Flux of Salinity    (Implicit part)








5.2.1.4. Experiments and tutorials that use GAD


	Offline tutorial, in tutorial_offline verification directory,
described in section [sec:eg-offline]

	Baroclinic gyre experiment, in tutorial_baroclinic_gyre
verification directory, described in section [sec:eg-fourlayer]

	Tracer Sensitivity tutorial, in tutorial_tracer_adjsens
verification directory, described in section
[sec:eg-simple-tracer-adjoint]









          

      

      

    

  

  
    
    
    5.2.2. Shapiro Filter
    
    

    
 
  
  

    
      
          
            
  
5.2.2. Shapiro Filter

(in directory: pkg/shap_filt/)


5.2.2.1. Key subroutines, parameters and files

Implementation of filter is described in section [sec:shapiro-filter].




5.2.2.2. Experiments and tutorials that use shap filter


	Held Suarez tutorial, in tutorial_held_suarez_cs verification
directory, described in section [sec:eg-hs]

	other Held Suarez verification experiments (hs94.128x64x5, hs94.1x64x5, hs94.cs-32x32x5)

	AIM verification experiments (aim.5l_cs, aim.5l_Equatorial_Channel, aim.5l_LatLon)

	fizhi verification experiments (fizhi-cs-32x32x40, fizhi-cs-aqualev20, fizhi-gridalt-hs)









          

      

      

    

  

  
    
    
    5.2.3. FFT Filtering Code
    
    

    
 
  
  

    
      
          
            
  
5.2.3. FFT Filtering Code

(in directory: pkg/zonal_filt/)


5.2.3.1. Key subroutines, parameters and files




5.2.3.2. Experiments and tutorials that use zonal filter


	Held Suarez verification experiment (hs94.128x64x5)

	AIM verification experiment (aim.5l_LatLon)









          

      

      

    

  

  
    
    
    5.2.4. exch2: Extended Cubed Sphere Topology
    
    

    
 
  
  

    
      
          
            
  
5.2.4. exch2: Extended Cubed Sphere Topology


5.2.4.1. Introduction

The exch2 package extends the original cubed sphere topology
configuration to allow more flexible domain decomposition and
parallelization.  Cube faces (also called subdomains) may be divided
into any number of tiles that divide evenly into the grid point
dimensions of the subdomain.  Furthermore, the tiles can run on
separate processors individually or in groups, which provides for
manual compile-time load balancing across a relatively arbitrary
number of processors.

The exchange parameters are declared in
\pkgexch2/W2\_EXCH2\_TOPOLOGY.h
and assigned in
pkg/exch2/w2\_e2setup.F. The
validity of the cube topology depends on the SIZE.h file as
detailed below.  The default files provided in the release configure a
cubed sphere topology of six tiles, one per subdomain, each with
32 \(\times\) 32 grid points, with all tiles running on a single processor.  Both
files are generated by Matlab scripts in
utils/exch2/matlab-topology-generator; see Section
ref{sec:topogen}
for details on creating alternate topologies.  Pregenerated examples
of these files with alternate topologies are provided under
utils/exch2/code-mods along with the appropriate SIZE.h
file for single-processor execution.




5.2.4.2. Invoking exch2

To use exch2 with the cubed sphere, the following conditions must be
met:



	The exch2 package is included when genmake2 is run.  The easiest way to do this is to add the line code{exch2} to the packages.conf file – see Section ref{sec:buildingCode} sectiontitle{Building the code} for general details.

	An example of W2\_EXCH2\_TOPOLOGY.h and w2\_e2setup.F must reside in a directory containing files symbolically linked by the genmake2 script.  The safest place to put these is the directory indicated in the -mods=DIR command line modifier (typically ../code), or the build directory.  The default versions of these files reside in pkg/exch2 and are linked automatically if no other versions exist elsewhere in the build path, but they should be left untouched to avoid breaking configurations other than the one you intend to modify.

	Files containing grid parameters, named tile00$n$.mitgrid where n=(1:6) (one per subdomain), must be in the working directory when the MITgcm executable is run.  These files are provided in the example experiments for cubed sphere configurations with 32 \(\times\) 32 cube sides – please contact MITgcm support if you want to generate files for other configurations.

	As always when compiling MITgcm, the file SIZE.h must be placed where genmake2 will find it.  In particular for exch2, the domain decomposition specified in SIZE.h must correspond with the particular configuration’s topology specified in W2\_EXCH2\_TOPOLOGY.h and w2\_e2setup.F.  Domain decomposition issues particular to exch2 are addressed in Section ref{sec:topogen} sectiontitle{Generating Topology Files for exch2} and ref{sec:exch2mpi} sectiontitle{exch2, SIZE.h, and Multiprocessing}; a more general background on the subject relevant to MITgcm is presented in Section ref{sec:specifying_a_decomposition} sectiontitle{Specifying a decomposition}.






At the time of this writing the following examples use exch2 and may
be used for guidance:



	verification/adjust_nlfs.cs-32x32x1

	verification/adjustment.cs-32x32x1

	verification/aim.5l_cs

	verification/global_ocean.cs32x15

	verification/hs94.cs-32x32x5









5.2.4.3. Generating Topology Files for exch2

Alternate cubed sphere topologies may be created using the Matlab
scripts in utils/exch2/matlab-topology-generator. Running the
m-file utils-exch2-matlab-topology-generator_driver.m
from the Matlab prompt (there are no parameters to pass) generates
exch2 topology files W2\_EXCH2\_TOPOLOGY.h and
w2\_e2setup.F in the working directory and displays a figure of
the topology via Matlab – figures ref{fig:6tile}, ref{fig:18tile},
and ref{fig:48tile} are examples of the generated diagrams.  The other
m-files in the directory are
subroutines called from driver.m and should not be run ‘’bare’’ except
for development purposes.

The parameters that determine the dimensions and topology of the
generated configuration are nr, nb, ng,
tnx and tny, and all are assigned early in the script.

The first three determine the height and width of the subdomains and
hence the size of the overall domain.  Each one determines the number
of grid points, and therefore the resolution, along the subdomain
sides in a ‘’great circle’’ around each the three spatial axes of the cube.  At the time
of this writing MITgcm requires these three parameters to be equal,
but they provide for future releases  to accomodate different
resolutions around the axes to allow subdomains with differing resolutions.

The parameters tnx and tny determine the width and height of
the tiles into which the subdomains are decomposed, and must evenly
divide the integer assigned to nr, nb and ng.
The result is a rectangular tiling of the subdomain.  Figure 5.2 shows one possible topology for a twenty-four-tile
cube, and Figure 5.4 shows one for six tiles.



[image: cube sphere topology]Figure 5.2 Plot of a cubed sphere topology with a 32 \(\times\) 192 domain divided into six 32 \(\times\) 32 subdomains, each of which is divided into eight tiles of width tnx=16 and height tny=8 for a total of forty-eight tiles. The colored borders of the subdomains represent the parameters nr (red), ng (green), and nb (blue). This tiling is used in the example verification/adjustment.cs-32x32x1/ with the option (blanklist.txt) to remove the land-only 4 tiles (11,12,13,14) which are filled in red on the plot.




[image: polar cap topology]Figure 5.3 Plot of a non-square cubed sphere topology with 6 subdomains of different size (nr=90,ng=360,nb=90), divided into one to four tiles each (tnx=90, tny=90), resulting in a total of 18 tiles.




[image: default cubed sphere topology]Figure 5.4 Plot of a cubed sphere topology with a 32 \(\times\) 192 domain divided into six 32 \(\times\) 32 subdomains with one tile each (tnx=32, tny=32).  This is the default configuration.






Tiles can be selected from the topology to be omitted from being
allocated memory and processors.  This tuning is useful in ocean
modeling for omitting tiles that fall entirely on land.  The tiles
omitted are specified in the file blanklist.txt by their tile number in the topology, separated by a newline.




5.2.4.4. exch2, SIZE.h, and Multiprocessing

Once the topology configuration files are created, each Fortran
PARAMETER  in SIZE.h must be configured to match.
Section ref{sec:specifying_a_decomposition} sectiontitle{Specifying a decomposition} provides a general description of domain
decomposition within MITgcm and its relation to file{SIZE.h}. The
current section specifies constraints that the exch2 package imposes
and describes how to enable parallel execution with MPI.

As in the general case, the parameters varlink{sNx}{sNx} and
varlink{sNy}{sNy} define the size of the individual tiles, and so
must be assigned the same respective values as code{tnx} and
code{tny} in file{driver.m}.

The halo width parameters varlink{OLx}{OLx} and varlink{OLy}{OLy}
have no special bearing on exch2 and may be assigned as in the general
case. The same holds for varlink{Nr}{Nr}, the number of vertical
levels in the model.

The parameters varlink{nSx}{nSx}, varlink{nSy}{nSy},
varlink{nPx}{nPx}, and varlink{nPy}{nPy} relate to the number of
tiles and how they are distributed on processors.  When using exch2,
the tiles are stored in the $x$ dimension, and so
code{varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
configured by exch2 cannot be split up accross processors without
regenerating the topology, code{varlink{nPy}{nPy}=1} as well.

The number of tiles MITgcm allocates and how they are distributed
between processors depends on varlink{nPx}{nPx} and
varlink{nSx}{nSx}.  varlink{nSx}{nSx} is the number of tiles per
processor and varlink{nPx}{nPx} is the number of processors.  The
total number of tiles in the topology minus those listed in
file{blanklist.txt} must equal code{nSx*nPx}.  Note that in order to
obtain maximum usage from a given number of processors in some cases,
this restriction might entail sharing a processor with a tile that
would otherwise be excluded because it is topographically outside of
the domain and therefore in file{blanklist.txt}.  For example,
suppose you have five processors and a domain decomposition of
thirty-six tiles that allows you to exclude seven tiles.  To evenly
distribute the remaining twenty-nine tiles among five processors, you
would have to run one ‘’dummy’’ tile to make an even six tiles per
processor.  Such dummy tiles are emph{not} listed in
file{blanklist.txt}.

The following is an example of file{SIZE.h} for the six-tile
configuration illustrated in figure ref{fig:6tile}
running on one processor:

PARAMETER (
&           sNx =  32,
&           sNy =  32,
&           OLx =   2,
&           OLy =   2,
&           nSx =   6,
&           nSy =   1,
&           nPx =   1,
&           nPy =   1,
&           Nx  = sNx*nSx*nPx,
&           Ny  = sNy*nSy*nPy,
&           Nr  =   5)





The following is an example for the forty-eight-tile topology in
figure ref{fig:48tile} running on six processors:

PARAMETER (
&           sNx =  16,
&           sNy =   8,
&           OLx =   2,
&           OLy =   2,
&           nSx =   8,
&           nSy =   1,
&           nPx =   6,
&           nPy =   1,
&           Nx  = sNx*nSx*nPx,
&           Ny  = sNy*nSy*nPy,
&           Nr  =   5)








5.2.4.5. Key Variables

The descriptions of the variables are divided up into scalars,
one-dimensional arrays indexed to the tile number, and two and
three-dimensional arrays indexed to tile number and neighboring tile.
This division reflects the functionality of these variables: The
scalars are common to every part of the topology, the tile-indexed
arrays to individual tiles, and the arrays indexed by tile and
neighbor to relationships between tiles and their neighbors.

Scalars:

The number of tiles in a particular topology is set with the parameter
code{NTILES}, and the maximum number of neighbors of any tiles by
code{MAX_NEIGHBOURS}.  These parameters are used for defining the
size of the various one and two dimensional arrays that store tile
parameters indexed to the tile number and are assigned in the files
generated by file{driver.m}.

The scalar parameters varlink{exch2_domain_nxt}{exch2_domain_nxt}
and varlink{exch2_domain_nyt}{exch2_domain_nyt} express the number
of tiles in the $x$ and $y$ global indices.  For example, the default
setup of six tiles (Fig. ref{fig:6tile}) has
code{exch2_domain_nxt=6} and code{exch2_domain_nyt=1}.  A
topology of forty-eight tiles, eight per subdomain (as in figure
ref{fig:48tile}), will have code{exch2_domain_nxt=12} and
code{exch2_domain_nyt=4}.  Note that these parameters express the
tile layout in order to allow global data files that are tile-layout-neutral.
They have no bearing on the internal storage of the arrays.  The tiles
are stored internally in a range from code{varlink{bi}{bi}=(1:NTILES)} in the
$x$ axis, and the $y$ axis variable varlink{bj}{bj} is assumed to
equal code{1} throughout the package.

Arrays indexed to tile number:

The following arrays are of length code{NTILES} and are indexed to
the tile number, which is indicated in the diagrams with the notation
textsf{t}$n$.  The indices are omitted in the descriptions.

The arrays varlink{exch2_tnx}{exch2_tnx} and
varlink{exch2_tny}{exch2_tny} express the $x$ and $y$ dimensions of
each tile.  At present for each tile texttt{exch2_tnx=sNx} and
texttt{exch2_tny=sNy}, as assigned in file{SIZE.h} and described in
Section ref{sec:exch2mpi} sectiontitle{exch2, SIZE.h, and
Multiprocessing}.  Future releases of MITgcm may allow varying tile
sizes.

The arrays varlink{exch2_tbasex}{exch2_tbasex} and
varlink{exch2_tbasey}{exch2_tbasey} determine the tiles’
Cartesian origin within a subdomain
and locate the edges of different tiles relative to each other.  As
an example, in the default six-tile topology (Fig. ref{fig:6tile})
each index in these arrays is set to code{0} since a tile occupies
its entire subdomain.  The twenty-four-tile case discussed above will
have values of code{0} or code{16}, depending on the quadrant of the
tile within the subdomain.  The elements of the arrays
varlink{exch2_txglobalo}{exch2_txglobalo} and
varlink{exch2_txglobalo}{exch2_txglobalo} are similar to
varlink{exch2_tbasex}{exch2_tbasex} and
varlink{exch2_tbasey}{exch2_tbasey}, but locate the tile edges within the
global address space, similar to that used by global output and input
files.

The array varlink{exch2_myFace}{exch2_myFace} contains the number of
the subdomain of each tile, in a range code{(1:6)} in the case of the
standard cube topology and indicated by textbf{textsf{f}}$n$ in
figures ref{fig:6tile} and
ref{fig:48tile}. varlink{exch2_nNeighbours}{exch2_nNeighbours}
contains a count of the neighboring tiles each tile has, and sets
the bounds for looping over neighboring tiles.
varlink{exch2_tProc}{exch2_tProc} holds the process rank of each
tile, and is used in interprocess communication.

The arrays varlink{exch2_isWedge}{exch2_isWedge},
varlink{exch2_isEedge}{exch2_isEedge},
varlink{exch2_isSedge}{exch2_isSedge}, and
varlink{exch2_isNedge}{exch2_isNedge} are set to code{1} if the
indexed tile lies on the edge of its subdomain, code{0} if
not.  The values are used within the topology generator to determine
the orientation of neighboring tiles, and to indicate whether a tile
lies on the corner of a subdomain.  The latter case requires special
exchange and numerical handling for the singularities at the eight
corners of the cube.

Arrays Indexed to Tile Number and Neighbor:

The following arrays have vectors of length code{MAX_NEIGHBOURS} and
code{NTILES} and describe the orientations between the the tiles.

The array code{exch2_neighbourId(a,T)} holds the tile number
code{Tn} for each of the tile number code{T}’s neighboring tiles
code{a}.  The neighbor tiles are indexed
code{(1:exch2_nNeighbours(T))} in the order right to left on the
north then south edges, and then top to bottom on the east then west
edges.

The code{exch2_opposingSend_record(a,T)} array holds the
index code{b} of the element in texttt{exch2_neighbourId(b,Tn)}
that holds the tile number code{T}, given
code{Tn=exch2_neighborId(a,T)}.  In other words,

exch2_neighbourId( exch2_opposingSend_record(a,T),
                   exch2_neighbourId(a,T) ) = T





This provides a back-reference from the neighbor tiles.

The arrays varlink{exch2_pi}{exch2_pi} and
varlink{exch2_pj}{exch2_pj} specify the transformations of indices
in exchanges between the neighboring tiles.  These transformations are
necessary in exchanges between subdomains because a horizontal dimension
in one subdomain
may map to other horizonal dimension in an adjacent subdomain, and
may also have its indexing reversed. This swapping arises from the
‘’folding’’ of two-dimensional arrays into a three-dimensional
cube.

The dimensions of code{exch2_pi(t,N,T)} and code{exch2_pj(t,N,T)}
are the neighbor ID code{N} and the tile number code{T} as explained
above, plus a vector of length code{2} containing transformation
factors code{t}.  The first element of the transformation vector
holds the factor to multiply the index in the same dimension, and the
second element holds the the same for the orthogonal dimension.  To
clarify, code{exch2_pi(1,N,T)} holds the mapping of the $x$ axis
index of tile code{T} to the $x$ axis of tile code{T}’s neighbor
code{N}, and code{exch2_pi(2,N,T)} holds the mapping of code{T}’s
$x$ index to the neighbor code{N}’s $y$ index.

One of the two elements of code{exch2_pi} or code{exch2_pj} for a
given tile code{T} and neighbor code{N} will be code{0}, reflecting
the fact that the two axes are orthogonal.  The other element will be
code{1} or code{-1}, depending on whether the axes are indexed in
the same or opposite directions.  For example, the transform vector of
the arrays for all tile neighbors on the same subdomain will be
code{(1,0)}, since all tiles on the same subdomain are oriented
identically.  An axis that corresponds to the orthogonal dimension
with the same index direction in a particular tile-neighbor
orientation will have code{(0,1)}.  Those with the opposite index
direction will have code{(0,-1)} in order to reverse the ordering.

The arrays varlink{exch2_oi}{exch2_oi},
varlink{exch2_oj}{exch2_oj}, varlink{exch2_oi_f}{exch2_oi_f}, and
varlink{exch2_oj_f}{exch2_oj_f} are indexed to tile number and
neighbor and specify the relative offset within the subdomain of the
array index of a variable going from a neighboring tile code{N} to a
local tile code{T}.  Consider code{T=1} in the six-tile topology
(Fig. ref{fig:6tile}), where

exch2_oi(1,1)=33
exch2_oi(2,1)=0
exch2_oi(3,1)=32
exch2_oi(4,1)=-32





The simplest case is code{exch2_oi(2,1)}, the southern neighbor,
which is code{Tn=6}.  The axes of code{T} and code{Tn} have the
same orientation and their $x$ axes have the same origin, and so an
exchange between the two requires no changes to the $x$ index.  For
the western neighbor (code{Tn=5}), code{code_oi(3,1)=32} since the
code{x=0} vector on code{T} corresponds to the code{y=32} vector on
code{Tn}.  The eastern edge of code{T} shows the reverse case
(code{exch2_oi(4,1)=-32)}), where code{x=32} on code{T} exchanges
with code{x=0} on code{Tn=2}.

The most interesting case, where code{exch2_oi(1,1)=33} and
code{Tn=3}, involves a reversal of indices.  As in every case, the
offset code{exch2_oi} is added to the original $x$ index of code{T}
multiplied by the transformation factor code{exch2_pi(t,N,T)}.  Here
code{exch2_pi(1,1,1)=0} since the $x$ axis of code{T} is orthogonal
to the $x$ axis of code{Tn}.  code{exch2_pi(2,1,1)=-1} since the
$x$ axis of code{T} corresponds to the $y$ axis of code{Tn}, but the
index is reversed.  The result is that the index of the northern edge
of code{T}, which runs code{(1:32)}, is transformed to
code{(-1:-32)}. code{exch2_oi(1,1)} is then added to this range to
get back code{(32:1)} – the index of the $y$ axis of code{Tn}
relative to code{T}.  This transformation may seem overly convoluted
for the six-tile case, but it is necessary to provide a general
solution for various topologies.

Finally, varlink{exch2_itlo_c}{exch2_itlo_c},
varlink{exch2_ithi_c}{exch2_ithi_c},
varlink{exch2_jtlo_c}{exch2_jtlo_c} and
varlink{exch2_jthi_c}{exch2_jthi_c} hold the location and index
bounds of the edge segment of the neighbor tile code{N}’s subdomain
that gets exchanged with the local tile code{T}.  To take the example
of tile code{T=2} in the forty-eight-tile topology
(Fig. ref{fig:48tile}):

exch2_itlo_c(4,2)=17
exch2_ithi_c(4,2)=17
exch2_jtlo_c(4,2)=0
exch2_jthi_c(4,2)=33





Here code{N=4}, indicating the western neighbor, which is
code{Tn=1}.  code{Tn} resides on the same subdomain as code{T}, so
the tiles have the same orientation and the same $x$ and $y$ axes.
The $x$ axis is orthogonal to the western edge and the tile is 16
points wide, so code{exch2_itlo_c} and code{exch2_ithi_c}
indicate the column beyond code{Tn}’s eastern edge, in that tile’s
halo region. Since the border of the tiles extends through the entire
height of the subdomain, the $y$ axis bounds code{exch2_jtlo_c} to
code{exch2_jthi_c} cover the height of code{(1:32)}, plus 1 in
either direction to cover part of the halo.

For the north edge of the same tile code{T=2} where code{N=1} and
the neighbor tile is code{Tn=5}:

exch2_itlo_c(1,2)=0
exch2_ithi_c(1,2)=0
exch2_jtlo_c(1,2)=0
exch2_jthi_c(1,2)=17





code{T}’s northern edge is parallel to the $x$ axis, but since
code{Tn}’s $y$ axis corresponds to code{T}’s $x$ axis, code{T}’s
northern edge exchanges with code{Tn}’s western edge.  The western
edge of the tiles corresponds to the lower bound of the $x$ axis, so
code{exch2_itlo_c} and code{exch2_ithi_c} are code{0}, in the
western halo region of code{Tn}. The range of
code{exch2_jtlo_c} and code{exch2_jthi_c} correspond to the
width of code{T}’s northern edge, expanded by one into the halo.




5.2.4.6. Key Routines

Most of the subroutines particular to exch2 handle the exchanges
themselves and are of the same format as those described in
ref{sec:cube_sphere_communication} sectiontitle{Cube sphere
communication}.  Like the original routines, they are written as
templates which the local Makefile converts from code{RX} into
code{RL} and code{RS} forms.

The interfaces with the core model subroutines are
code{EXCH_UV_XY_RX}, code{EXCH_UV_XYZ_RX} and
code{EXCH_XY_RX}.  They override the standard exchange routines
when code{genmake2} is run with code{exch2} option.  They in turn
call the local exch2 subroutines code{EXCH2_UV_XY_RX} and
code{EXCH2_UV_XYZ_RX} for two and three-dimensional vector
quantities, and code{EXCH2_XY_RX} and code{EXCH2_XYZ_RX} for two
and three-dimensional scalar quantities.  These subroutines set the
dimensions of the area to be exchanged, call code{EXCH2_RX1_CUBE}
for scalars and code{EXCH2_RX2_CUBE} for vectors, and then handle
the singularities at the cube corners.

The separate scalar and vector forms of code{EXCH2_RX1_CUBE} and
code{EXCH2_RX2_CUBE} reflect that the vector-handling subroutine
needs to pass both the $u$ and $v$ components of the physical vectors.
This swapping arises from the topological folding discussed above, where the
$x$ and $y$ axes get swapped in some cases, and is not an
issue with the scalar case. These subroutines call
code{EXCH2_SEND_RX1} and code{EXCH2_SEND_RX2}, which do most of
the work using the variables discussed above.




5.2.4.7. Experiments and tutorials that use exch2



	Held Suarez tutorial, in tutorial_held_suarez_cs verification directory, described in section ref{sec:eg-hs}












          

      

      

    

  

  
    
    
    5.2.5. Gridalt - Alternate Grid Package
    
    

    
 
  
  

    
      
          
            
  
5.2.5. Gridalt - Alternate Grid Package


5.2.5.1. Introduction

The gridalt package [Mol09] is designed to allow different components of MITgcm
to be run using horizontal and/or vertical grids which are different
from the main model grid. The gridalt routines handle the definition of
the all the various alternative grid(s) and the mappings between them
and the MITgcm grid. The implementation of the gridalt package which
allows the high end atmospheric physics (fizhi) to be run on a high
resolution and quasi terrain-following vertical grid is documented here.
The package has also (with some user modifications) been used for other
calculations within the GCM.

The rationale for implementing the atmospheric physics on a high
resolution vertical grid involves the fact that the MITgcm \(p^*\)
(or any pressure-type) coordinate cannot maintain the vertical
resolution near the surface as the bottom topography rises above sea
level. The vertical length scales near the ground are small and can vary
on small time scales, and the vertical grid must be adequate to resolve
them. Many studies with both regional and global atmospheric models have
demonstrated the improvements in the simulations when the vertical
resolution near the surface is increased (). Some of the benefit of
increased resolution near the surface is realized by employing the
higher resolution for the computation of the forcing due to turbulent
and convective processes in the atmosphere.

The parameterizations of atmospheric subgrid scale processes are all
essentially one-dimensional in nature, and the computation of the terms
in the equations of motion due to these processes can be performed for
the air column over one grid point at a time. The vertical grid on which
these computations take place can therefore be entirely independant of
the grid on which the equations of motion are integrated, and the
’tendency’ terms can be interpolated to the vertical grid on which the
equations of motion are integrated. A modified \(p^*\) coordinate,
which adjusts to the local terrain and adds additional levels between
the lower levels of the existing \(p^*\) grid (and perhaps between
the levels near the tropopause as well), is implemented. The vertical
discretization is different for each grid point, although it consist of
the same number of levels. Additional ’sponge’ levels aloft are added
when needed. The levels of the physics grid are constrained to fit
exactly into the existing \(p^*\) grid, simplifying the mapping
between the two vertical coordinates. This is illustrated as follows:



[image: vertical discretisation]Figure 5.5 Vertical discretization for MITgcm (dark grey lines) and for the atmospheric physics (light grey lines). In this implementation, all MITgcm level interfaces must coincide with atmospheric physics level interfaces.






The algorithm presented here retains the state variables on the high
resolution ’physics’ grid as well as on the coarser resolution
’dynamics‘ grid, and ensures that the two estimates of the state ’agree’
on the coarse resolution grid. It would have been possible to implement
a technique in which the tendencies due to atmospheric physics are
computed on the high resolution grid and the state variables are
retained at low resolution only. This, however, for the case of the
turbulence parameterization, would mean that the turbulent kinetic
energy source terms, and all the turbulence terms that are written in
terms of gradients of the mean flow, cannot really be computed making
use of the fine structure in the vertical.




5.2.5.2. Equations on Both Grids

In addition to computing the physical forcing terms of the momentum,
thermodynamic and humidity equations on the modified (higher resolution)
grid, the higher resolution structure of the atmosphere (the boundary
layer) is retained between physics calculations. This neccessitates a
second set of evolution equations for the atmospheric state variables on
the modified grid. If the equation for the evolution of \(U\) on
\(p^*\) can be expressed as:


\[\left . \frac{\partial U}{\partial t} \right |_{p^*}^{total} =
\left . \frac{\partial U}{\partial t} \right |_{p^*}^{dynamics} +
\left . \frac{\partial U}{\partial t} \right |_{p^*}^{physics}\]

where the physics forcing terms on \(p^*\) have been mapped from the
modified grid, then an additional equation to govern the evolution of
\(U\) (for example) on the modified grid is written:


\[\left . \frac{\partial U}{\partial t} \right |_{p^{*m}}^{total} =
\left . \frac{\partial U}{\partial t} \right |_{p^{*m}}^{dynamics} +
\left . \frac{\partial U}{\partial t} \right |_{p^{*m}}^{physics} +
\gamma ({\left . U \right |_{p^*}} - {\left . U \right |_{p^{*m}}})\]

where \(p^{*m}\) refers to the modified higher resolution grid, and
the dynamics forcing terms have been mapped from \(p^*\) space. The
last term on the RHS is a relaxation term, meant to constrain the state
variables on the modified vertical grid to ‘track’ the state variables
on the \(p^*\) grid on some time scale, governed by \(\gamma\).
In the present implementation, \(\gamma = 1\), requiring an
immediate agreement between the two ’states’.




5.2.5.3. Time stepping Sequence

If we write \(T_{phys}\) as the temperature (or any other state
variable) on the high resolution physics grid, and \(T_{dyn}\) as
the temperature on the coarse vertical resolution dynamics grid, then:


	Compute the tendency due to physics processes.

	Advance the physics state: \({{T^{n+1}}^{**}}_{phys}(l) = {T^n}_{phys}(l) + \delta T_{phys}\).

	Interpolate the physics tendency to the dynamics grid, and advance the dynamics state by physics and dynamics tendencies: \({T^{n+1}}_{dyn}(L) = {T^n}_{dyn}(L) + \delta T_{dyn}(L) + [\delta T _{phys}(l)](L)\).

	Interpolate the dynamics tendency to the physics grid, and update the physics grid due to dynamics tendencies: \({{T^{n+1}}^*}_{phys}(l)\) = \({{T^{n+1}}^{**}}_{phys}(l) + {\delta T_{dyn}(L)}(l)\).

	Apply correction term to physics state to account for divergence from dynamics state: \({T^{n+1}}_{phys}(l)\) = \({{T^{n+1}}^*}_{phys}(l) + \gamma \{  T_{dyn}(L) - [T_{phys}(l)](L) \}(l)\). Where \(\gamma=1\) here.






5.2.5.4. Interpolation

In order to minimize the correction terms for the state variables on
the alternative, higher resolution grid, the vertical interpolation
scheme must be constructed so that a dynamics-to-physics interpolation
can be exactly reversed with a physics-to-dynamics mapping. The simple
scheme employed to achieve this is:

Coarse to fine:For all physics layers l in dynamics layer L, \(T_{phys}(l) = \{T_{dyn}(L)\} = T_{dyn}(L)\).


Fine to coarse:For all physics layers l in dynamics layer L, \(T_{dyn}(L) = [T_{phys}(l)] = \int{T_{phys} dp }\).



Where \(\{\}\) is defined as the dynamics-to-physics operator and
\([ ]\) is the physics-to-dynamics operator, \(T\) stands for
any state variable, and the subscripts \(phys\) and \(dyn\)
stand for variables on the physics and dynamics grids, respectively.




5.2.5.5. Key subroutines, parameters and files

One of the central elements of the gridalt package is the routine which
is called from subroutine gridalt_initialise to define the grid to be
used for the high end physics calculations. Routine make_phys_grid
passes back the parameters which define the grid, ultimately stored in
the common block gridalt_mapping.

       subroutine make_phys_grid(drF,hfacC,im1,im2,jm1,jm2,Nr,
     . Nsx,Nsy,i1,i2,j1,j2,bi,bj,Nrphys,Lbot,dpphys,numlevphys,nlperdyn)
c***********************************************************************
c Purpose: Define the grid that the will be used to run the high-end
c          atmospheric physics.
c
c Algorithm: Fit additional levels of some (~) known thickness in
c          between existing levels of the grid used for the dynamics
c
c Need:    Information about the dynamics grid vertical spacing
c
c Input:   drF         - delta r (p*) edge-to-edge
c          hfacC       - fraction of grid box above topography
c          im1, im2    - beginning and ending i - dimensions
c          jm1, jm2    - beginning and ending j - dimensions
c          Nr          - number of levels in dynamics grid
c          Nsx,Nsy     - number of processes in x and y direction
c          i1, i2      - beginning and ending i - index to fill
c          j1, j2      - beginning and ending j - index to fill
c          bi, bj      - x-dir and y-dir index of process
c          Nrphys      - number of levels in physics grid
c
c Output:  dpphys      - delta r (p*) edge-to-edge of physics grid
c          numlevphys  - number of levels used in the physics
c          nlperdyn    - physics level number atop each dynamics layer
c
c NOTES: 1) Pressure levs are built up from bottom, using p0, ps and dp:
c              p(i,j,k)=p(i,j,k-1) + dp(k)*ps(i,j)/p0(i,j)
c        2) Output dp's are aligned to fit EXACTLY between existing
c           levels of the dynamics vertical grid
c        3) IMPORTANT! This routine assumes the levels are numbered
c           from the bottom up, ie, level 1 is the surface.
c           IT WILL NOT WORK OTHERWISE!!!
c        4) This routine does NOT work for surface pressures less
c           (ie, above in the atmosphere) than about 350 mb
c***********************************************************************





In the case of the grid used to compute the atmospheric physical forcing
(fizhi package), the locations of the grid points move in time with the
MITgcm \(p^*\) coordinate, and subroutine gridalt_update is called
during the run to update the locations of the grid points:

       subroutine gridalt_update(myThid)
c***********************************************************************
c Purpose: Update the pressure thicknesses of the layers of the
c          alternative vertical grid (used now for atmospheric physics).
c
c Calculate: dpphys    - new delta r (p*) edge-to-edge of physics grid
c                        using dpphys0 (initial value) and rstarfacC
c***********************************************************************





The gridalt package also supplies utility routines which perform the
mappings from one grid to the other. These routines are called from the
code which computes the fields on the alternative (fizhi) grid.

      subroutine dyn2phys(qdyn,pedyn,im1,im2,jm1,jm2,lmdyn,Nsx,Nsy,
     . idim1,idim2,jdim1,jdim2,bi,bj,windphy,pephy,Lbot,lmphy,nlperdyn,
     . flg,qphy)
C***********************************************************************
C Purpose:
C   To interpolate an arbitrary quantity from the 'dynamics' eta (pstar)
C               grid to the higher resolution physics grid
C Algorithm:
C   Routine works one layer (edge to edge pressure) at a time.
C   Dynamics -> Physics retains the dynamics layer mean value,
C   weights the field either with the profile of the physics grid
C   wind speed (for U and V fields), or uniformly (T and Q)
C
C Input:
C   qdyn..... [im,jm,lmdyn] Arbitrary Quantity on Input Grid
C   pedyn.... [im,jm,lmdyn+1] Pressures at bottom edges of input levels
C   im1,2 ... Limits for Longitude Dimension of Input
C   jm1,2 ... Limits for Latitude  Dimension of Input
C   lmdyn.... Vertical  Dimension of Input
C   Nsx...... Number of processes in x-direction
C   Nsy...... Number of processes in y-direction
C   idim1,2.. Beginning and ending i-values to calculate
C   jdim1,2.. Beginning and ending j-values to calculate
C   bi....... Index of process number in x-direction
C   bj....... Index of process number in x-direction
C   windphy.. [im,jm,lmphy] Magnitude of the wind on the output levels
C   pephy.... [im,jm,lmphy+1] Pressures at bottom edges of output levels
C   lmphy.... Vertical  Dimension of Output
C   nlperdyn. [im,jm,lmdyn] Highest Physics level in each dynamics level
C   flg...... Flag to indicate field type (0 for T or Q, 1 for U or V)
C
C Output:
C   qphy..... [im,jm,lmphy] Quantity at output grid (physics grid)
C
C Notes:
C   1) This algorithm assumes that the output (physics) grid levels
C      fit exactly into the input (dynamics) grid levels
C***********************************************************************





And similarly, gridalt contains subroutine phys2dyn.




5.2.5.6. Gridalt Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------------------------
DPPHYS  | 20 |SM      ML      |Pascal          |Pressure Thickness of Layers on Fizhi Grid








5.2.5.7. Dos and donts




5.2.5.8. Gridalt Reference




5.2.5.9. Experiments and tutorials that use gridalt


	Fizhi experiment, in fizhi-cs-32x32x10 verification directory









          

      

      

    

  

  
    
    
    5.3.1. OBCS: Open boundary conditions for regional modeling
    
    

    
 
  
  

    
      
          
            
  
5.3.1. OBCS: Open boundary conditions for regional modeling

Authors:
Alistair Adcroft, Patrick Heimbach, Samar Katiwala, Martin Losch


5.3.1.1. Introduction

The OBCS-package is fundamental to regional ocean modelling with the
MITgcm, but there are so many details to be considered in
regional ocean modelling that this package cannot accomodate all
imaginable and possible options. Therefore, for a regional simulation
with very particular details, it is recommended to familiarize oneself
not only with the compile- and runtime-options of this package, but
also with the code itself. In many cases it will be necessary to adapt
the obcs-code (in particular code{S/R OBCS_CALC}) to the application
in question; in these cases the obcs-package (together with the
rbcs-package, section ref{sec:pkg:rbcs}) is a very
useful infrastructure for implementing special regional models.




5.3.1.2. OBCS configuration and compiling

As with all MITgcm packages, OBCS can be turned on or off
at compile time



	using the packages.conf file by adding obcs to it,

	or using genmake2 adding -enable=obcs or -disable=obcs switches

	Required packages and CPP options:
	Two alternatives are available for prescribing open boundary values, which differ in the way how OB’s are treated in time:
	A simple time-management (e.g. constant in time, or cyclic with fixed fequency) is provided through S/R obcs_external_fields_load.

	More sophisticated ‘real-time’ (i.e. calendar time) management is available through obcs_prescribe_read.





	The latter case requires packages cal and exf to be enabled.










(see also Section ref{sec:buildingCode}).

Parts of the OBCS code can be enabled or disabled at compile time
via CPP preprocessor flags. These options are set in
OBCS_OPTIONS.h. Table 5.1 summarizes these options.


Table 5.1 OBCS CPP options





	CPP option
	Description


	ALLOW_OBCS_NORTH
	enable Northern OB


	ALLOW_OBCS_SOUTH
	enable Southern OB


	ALLOW_OBCS_EAST
	enable Eastern OB


	ALLOW_OBCS_WEST
	enable Western OB


	 
	 


	ALLOW_OBCS_PRESCRIBE
	enable code for prescribing OB’s


	ALLOW_OBCS_SPONGE
	enable sponge layer code


	ALLOW_OBCS_BALANCE
	enable code for balancing transports through OB’s


	ALLOW_ORLANSKI
	enable Orlanski radiation conditions at OB’s


	ALLOW_OBCS_STEVENS
	enable Stevens (1990) boundary conditions at OB’s


	 
	(currently only implemented for eastern and


	 
	western boundaries and NOT for ptracers)








5.3.1.3. Run-time parameters

Run-time parameters are set in files
data.pkg, data.obcs, and data.exf
if 'real-time' prescription is requested
(i.e. package :code:`exf enabled).
These parameter files are read in S/R
packages_readparms.F, obcs_readparms.F, and
exf_readparms.F, respectively.
Run-time parameters may be broken into 3 categories:



	switching on/off the package at runtime,

	OBCS package flags and parameters,

	additional timing flags in data.exf, if selected.







Enabling the package

The OBCS package is switched on at runtime by setting
useOBCS = .TRUE. in data.pkg.




Package flags and parameters

Table 5.2 summarizes the
runtime flags that are set in data.obcs, and
their default values.


Table 5.2 pkg OBCS run-time parameters






	Flag/parameter
	default
	Description


	basic flags & parameters (OBCS_PARM01)
	 
	 


	OB_Jnorth
	0
	Nx-vector of J-indices (w.r.t. Ny) of Northern OB at each I-position (w.r.t. Nx)


	OB_Jsouth
	0
	Nx-vector of J-indices (w.r.t. Ny) of Southern OB at each I-position (w.r.t. Nx)


	OB_Ieast
	0
	Ny-vector of I-indices (w.r.t. Nx) of Eastern OB at each J-position (w.r.t. Ny)


	OB_Iwest
	0
	Ny-vector of I-indices (w.r.t. Nx) of Western OB at each J-position (w.r.t. Ny)


	useOBCSprescribe
	.FALSE.
	 


	useOBCSsponge
	.FALSE.
	 


	useOBCSbalance
	code{.FALSE.}
	 


	OBCS_balanceFacN/S/E/W
	1
	factor(s) determining the details of the balaning code


	useOrlanskiNorth/South/EastWest
	.FALSE.
	turn on Orlanski boundary conditions for individual boundary


	useStevensNorth/South/EastWest
	.FALSE.
	turn on Stevens boundary conditions for individual boundary


	OBXyFile
	 
	file name of OB field


	 
	 
	X: N(orth) S(outh) E(ast) W(est)


	 
	 
	y: t(emperature) s(salinity) u(-velocity) v(-velocity)


	 
	 
	w(-velocity) eta (sea surface height)


	 
	 
	a (sea ice area) h (sea ice thickness) sn (snow thickness) sl (sea ice salinity)


	 
	 
	 


	Orlanski parameters (OBCS_PARM02)
	 
	 


	cvelTimeScale
	2000 sec
	averaging period for phase speed


	CMAX
	0.45 m/s
	maximum allowable phase speed-CFL for AB-II


	CFIX
	0.8 m/s
	fixed boundary phase speed


	useFixedCEast
	.FALSE.
	 


	useFixedCWest
	.FALSE.
	 


	 
	 
	 


	Sponge-layer parameters (OBCS_PARM03)
	 
	 


	spongeThickness
	0
	sponge layer thickness (in grid points)


	Urelaxobcsinner
	0 sec
	relaxation time scale at the innermost sponge layer point of a meridional OB


	Vrelaxobcsinner
	0 sec
	relaxation time scale at the innermost sponge layer point of a zonal OB


	Urelaxobcsbound
	0 sec
	relaxation time scale at the outermost sponge layer point of a meridional OB


	Vrelaxobcsbound
	0 sec
	relaxation time scale at the outermost sponge layer point of a zonal OB


	 
	 
	 


	Stevens parameters (OBCS_PARM04)
	 
	 


	T/SrelaxStevens
	0 sec
	relaxation time scale for temperature/salinity


	useStevensPhaseVel
	code{.TRUE.}
	 


	useStevensAdvection
	code{.TRUE.}
	 










5.3.1.4. Defining open boundary positions

There are four open boundaries (OBs), a Northern, Southern, Eastern, and
Western. All OB locations are specified by their absolute meridional
(Northern/Southern) or zonal (Eastern/Western) indices. Thus, for each
zonal position \(i=1,\ldots,N_x\) a meridional index \(j\)
specifies the Northern/Southern OB position, and for each meridional
position \(j=1,\ldots,N_y\), a zonal index \(i\) specifies the
Eastern/Western OB position. For Northern/Southern OB this defines an
\(N_x\)-dimensional “row” array \(\tt OB\_Jnorth(Nx)\) /
\(\tt OB\_Jsouth(Nx)\), and an \(N_y\)-dimenisonal “column”
array \(\tt OB\_Ieast(Ny)\) / \(\tt OB\_Iwest(Ny)\). Positions
determined in this way allows Northern/Southern OBs to be at variable
\(j\) (or \(y\)) positions, and Eastern/Western OBs at variable
\(i\) (or \(x\)) positions. Here, indices refer to tracer points
on the C-grid. A zero (0) element in \(\tt OB\_I\ldots\),
\(\tt OB\_J\ldots\) means there is no corresponding OB in that
column/row. For a Northern/Southern OB, the OB V point is to the
South/North. For an Eastern/Western OB, the OB U point is to the
West/East. For example,

OB\_Jnorth(3)=34  means that:
T(3,34)  is a an OB point
U(3,34)  is a an OB point
V(3,34)  is a an OB point
OB\_Jsouth(3)=1  means that:
T(3,1)  is a an OB point
U(3,1)  is a an OB point
V(3,2)  is a an OB point
OB\_Ieast(10)=69   means that:
T(69,10)  is a an OB point
U(69,10)  is a an OB point
V(69,10)  is a an OB point
OB\_Iwest(10)=1   means that:
T(1,10)  is a an OB point
U(2,10)  is a an OB point
V(1,10)  is a an OB point

For convenience, negative values for Jnorth/Ieast refer to
points relative to the Northern/Eastern edges of the model
eg. \(\tt OB\_Jnorth(3)=-1\)
means that the point \(\tt (3,Ny)\) is a northern OB.

Simple examples: For a model grid with :math:` N_{x}times
N_{y} = 120times144` horizontal grid points with four open boundaries
along the four egdes of the domain, the simplest way of specifying the
boundary points in is:

  OB_Ieast = 144*-1,
# or OB_Ieast = 144*120,
  OB_Iwest = 144*1,
  OB_Jnorth = 120*-1,
# or OB_Jnorth = 120*144,
  OB_Jsouth = 120*1,





If only the first \(50\) grid points of the southern boundary are
boundary points:

OB_Jsouth(1:50) = 50*1,








5.3.1.5. Equations and key routines


OBCS_READPARMS:

Set OB positions through arrays OB_Jnorth(Nx), OB_Jsouth(Nx),
OB_Ieast(Ny), OB_Iwest(Ny), and runtime flags (see Table
[tab:pkg:obcs:runtime:sub:flags]).




OBCS_CALC:

Top-level routine for filling values to be applied at OB for
\(T,S,U,V,\eta\) into corresponding “slice” arrays \((x,z)\),
\((y,z)\) for each OB: \(\tt OB[N/S/E/W][t/s/u/v]\); e.g. for
salinity array at Southern OB, array name is \(\tt OBSt\). Values
filled are either


	constant vertical \(T,S\) profiles as specified in file data
(tRef(Nr), sRef(Nr)) with zero velocities \(U,V\),

	\(T,S,U,V\) values determined via Orlanski radiation conditions
(see below),

	prescribed time-constant or time-varying fields (see below).

	use prescribed boundary fields to compute Stevens boundary
conditions.






ORLANSKI:

Orlanski radiation conditions [Orl76], examples can be found in
verification/dome and
verification/tutorial\_plume\_on\_slope

(ref{sec:eg-gravityplume}).




OBCS_PRESCRIBE_READ:

When useOBCSprescribe = .TRUE. the model tries to read
temperature, salinity, u- and v-velocities from files specified in the
runtime parameters OB[N/S/E/W][t/s/u/v]File. These files are
the usual IEEE, big-endian files with dimensions of a section along an
open boundary:


	For North/South boundary files the dimensions are
\((N_x\times N_r\times\mbox{time levels})\), for East/West
boundary files the dimensions are
\((N_y\times N_r\times\mbox{time levels})\).

	If a non-linear free surface is used
(ref{sec:nonlinear-freesurface}), additional files
OB[N/S/E/W]etaFile for the sea surface height $eta$ with
dimension \((N_{x/y}\times\mbox{time levels})\) may be specified.

	If non-hydrostatic dynamics are used
(ref{sec:non-hydrostatic}), additional files
OB[N/S/E/W]wFile for the vertical velocity $w$ with
dimensions \((N_{x/y}\times N_r\times\mbox{time levels})\) can be
specified.

	If useSEAICE=.TRUE. then additional files
OB[N/S/E/W][a,h,sl,sn,uice,vice] for sea ice area, thickness
(HEFF), seaice salinity, snow and ice velocities
\((N_{x/y}\times\mbox{time levels})\) can be specified.



As in S/R external\_fields\_load or the exf-package, the
code reads two time levels for each variable, e.g.OBNu0 and
OBNu1, and interpolates linearly between these time levels to
obtain the value OBNu at the current model time (step). When the
exf-package is used, the time levels are controlled for each
boundary separately in the same way as the exf-fields in
data.exf, namelist EXF\_NML\_OBCS. The runtime flags
follow the above naming conventions, e.g. for the western boundary the
corresponding flags are OBCWstartdate1/2 and
OBCWperiod. Sea-ice boundary values are controlled separately
with siobWstartdate1/2 and siobWperiod.  When the
exf-package is not used, the time levels are controlled by the
runtime flags externForcingPeriod and externForcingCycle
in data, see verification/exp4 for an example.




OBCS_CALC_STEVENS:

(THE IMPLEMENTATION OF THESE BOUNDARY CONDITIONS IS NOT
COMPLETE. PASSIVE TRACERS, SEA ICE AND NON-LINEAR FREE SURFACE ARE NOT
SUPPORTED PROPERLY.)

The boundary conditions following [Ste90] require the
vertically averaged normal velocity (originally specified as a stream
function along the open boundary) \(\bar{u}_{ob}\) and the tracer fields
\(\chi_{ob}\) (note: passive tracers are currently not implemented and
the code stops when package code{ptracers} is used together with this
option). Currently, the code vertically averages the normal velocity
as specified in code{OB[E,W]u} or code{OB[N,S]v}. From these
prescribed values the code computes the boundary values for the next
timestep \(n+1\) as follows (as an example, we use the notation for an
eastern or western boundary):


	\(u^{n+1}(y,z) = \bar{u}_{ob}(y) + (u')^{n}(y,z)\), where
\((u')^{n}\) is the deviation from the vertically averaged
velocity at timestep \(n\) on the boundary. \((u')^{n}\) is
computed in the previous time step \(n\) from the intermediate
velocity \(u^*\) prior to the correction step (see section
[sec:time:sub:stepping], e.g.,
eq.([eq:ustar-backward-free-surface])). (This velocity is not
available at the beginning of the next time step \(n+1\), when
S/R
  
    
    
    5.3.2. RBCS Package
    
    

    
 
  
  

    
      
          
            
  
5.3.2. RBCS Package


5.3.2.1. Introduction

A package which provides the flexibility to relax fields (temperature,
salinity, ptracers) in any 3-D location: so could be used as a sponge
layer, or as a “source” anywhere in the domain.

For a tracer (\(T\)) at every grid point the tendency is modified so
that:


\[\frac{dT}{dt}=\frac{dT}{dt} - \frac{M_{rbc}}{\tau_T} (T-T_{rbc})\]

where \(M_{rbc}\) is a 3-D mask (no time dependence) with values
between 0 and 1. Where \(M_{rbc}\) is 1, relaxing timescale is
\(1/\tau_T\). Where it is 0 there is no relaxing. The value relaxed
to is a 3-D (potentially varying in time) field given by
\(T_{rbc}\).

A seperate mask can be used for T,S and ptracers and each of these can
be relaxed or not and can have its own timescale \(\tau_T\). These
are set in data.rbcs (see below).




5.3.2.2. Key subroutines and parameters

The only compile-time parameter you are likely to have to change is in
RBCS.h, the number of masks, PARAMETER(maskLEN = 3 ), see below.

The runtime parameters are set in data.rbcs:

Set in RBCS_PARM01:
- rbcsForcingPeriod: time interval between forcing fields (in seconds), zero means constant-in-time forcing.
- rbcsForcingCycle: repeat cycle of forcing fields (in seconds), zero means non-cyclic forcing.
- rbcsForcingOffset: time offset of forcing fields (in seconds, default 0); this is relative to time averages starting at \(t=0\), i.e., the first forcing record/file is placed at \({\rm rbcsForcingOffset+rbcsForcingPeriod}/2\); see below for examples.
- rbcsSingleTimeFiles: true or false (default false), if true, forcing fields are given 1 file per rbcsForcingPeriod.
- deltaTrbcs: time step used to compute the iteration numbers for rbcsSingleTimeFiles=T.
- rbcsIter0: shift in iteration numbers used to label files if rbcsSingleTimeFiles=T (default 0, see below for examples).
- useRBCtemp: true or false (default false)
- useRBCsalt: true or false (default false)
- useRBCptracers: true or false (default false), must be using ptracers to set true
- tauRelaxT: timescale in seconds of relaxing in temperature (\(\tau_T\) in equation above). Where mask is 1, relax rate will be 1/tauRelaxT. Default is 1.
- tauRelaxS: same for salinity.
- relaxMaskFile(irbc): filename of 3-D file with mask (\(M_{rbc}\) in equation above. Need a file for each irbc. 1=temperature, 2=salinity, 3=ptracer01, 4=ptracer02 etc. If the mask numbers end (see maskLEN) are less than the number tracers, then relaxMaskFile(maskLEN) is used for all remaining ptracers.
- relaxTFile: name of file where temperatures that need to be relaxed to (\(T_{rbc}\) in equation above) are stored. The file must contain 3-D records to match the model domain. If rbcsSingleTimeFiles=F, it must have one record for each forcing period. If T, there must be a separate file for each period and a 10-digit iteration number is appended to the file name (see Table
  
    
    
    5.3.3. PTRACERS Package
    
    

    
 
  
  

    
      
          
            
  
5.3.3. PTRACERS Package


5.3.3.1. Introduction

This is a ‘’passive’’ tracer package. Passive here means that the tracers
don’t affect the density of the water (as opposed to temperature and
salinity) so no not actively affect the physics of the ocean. Tracers
are initialized, advected, diffused and various outputs are taken care
of in this package. For methods to add additional sources and sinks of
tracers use the pkg/gchem (section [sec:pkg:gchem]).

Can use up tp 3843 tracers. But can not use pkg/diagnostics with more
than about 90 tracers. Use utils/matlab/ioLb2num.m and num2ioLb.m to
find correspondence between tracer number and tracer designation in the
code for more than 99 tracers (since tracers only have two digit
designations).




5.3.3.2. Equations




5.3.3.3. Key subroutines and parameters

The only code you should have to modify is: PTRACERS_SIZE.h where
you need to set in the number of tracers to be used in the experiment:
PTRACERS_num.

Run time parameters set in data.ptracers:


	PTRACERS_Iter0 which is the integer timestep when the tracer experiment is initialized. If nIter0 \(=\) PTRACERS_Iter0 then the tracers are initialized to zero or from initial files. If nIter0 \(>\) PTRACERS_Iter0 then tracers (and previous timestep tendency terms) are read in from a the ptracers pickup file. Note that tracers of zeros will be carried around if nIter0 \(<\) PTRACERS_Iter0.

	PTRACERS_numInUse: number of tracers to be used in the run (needs to be \(<=\) PTRACERS_num set in PTRACERS_SIZE.h)

	PTRACERS_dumpFreq: defaults to dumpFreq (set in data)

	PTRACERS_taveFreq: defaults to taveFreq (set in data)

	PTRACERS_monitorFreq: defaults to monitorFreq (set in data)

	PTRACERS_timeave_mnc: needs useMNC, timeave_mnc, default to false

	PTRACERS_snapshot_mnc: needs useMNC, snapshot_mnc, default to false

	PTRACERS_monitor_mnc: needs useMNC, monitor_mnc, default to false

	PTRACERS_pickup_write_mnc: needs useMNC, pickup_write_mnc, default to false

	PTRACERS_pickup_read_mnc: needs useMNC, pickup_read_mnc, default to false

	PTRACERS_useRecords: defaults to false. If true, will write all tracers in a single file, otherwise each tracer in a seperate file.



The following can be set for each tracer (tracer number iTrc):


	PTRACERS_advScheme(iTrc) will default to saltAdvScheme (set in data). For other options see Table [tab:advectionShemes:sub:summary].

	PTRACERS_ImplVertAdv(iTrc): implicit vertical advection flag, default to .FALSE.

	PTRACERS_diffKh(iTrc): horizontal Laplacian Diffusivity, dafaults to diffKhS (set in data).

	PTRACERS_diffK4(iTrc): Biharmonic Diffusivity, defaults to diffK4S (set in data).

	PTRACERS_diffKr(iTrc): vertical diffusion, defaults to un-set.

	PTRACERS_diffKrNr(k,iTrc): level specific vertical diffusion, defaults to diffKrNrS. Will be set to PTRACERS_diffKr if this is set.

	PTRACERS_ref(k,iTrc): reference tracer value for each level k, defaults to 0. Currently only used for dilution/concentration of tracers at surface if PTRACERS_EvPrRn(iTrc) is set and convertFW2Salt (set in data) is set to something other than -1 (note default is convertFW2Salt=35).

	PTRACERS_EvPrRn(iTrc): tracer concentration in freshwater. Needed for calculation of dilution/concentration in surface layer due to freshwater addition/evaporation. Defaults to un-set in which case no dilution/concentration occurs.

	PTRACERS_useGMRedi(iTrc): apply GM or not. Defaults to useGMREdi.

	PTRACERS_useKPP(iTrc): apply KPP or not. Defaults to useKPP.

	PTRACERS_initialFile(iTrc): file with initial tracer concentration. Will be used if PTRACERS_Iter0 \(=\) nIter0. Default is no name, in which case tracer is initialised as zero. If PTRACERS_Iter0 \(<\) nIter0, then tracer concentration will come from pickup_ptracer.

	PTRACERS_names(iTrc): tracer name. Needed for netcdf. Defaults to nothing.

	PTRACERS_long_names(iTrc): optional name in long form of tracer.

	PTRACERS_units(iTrc): optional units of tracer.






5.3.3.4. PTRACERS Diagnostics

Note that these will only work for 90 or less tracers (some problems
with the numbering/designation over this number)

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------------------------
TRAC01  | 15 |SM P    MR      |mol C/m         |Mass-Weighted Dissolved Inorganic Carbon
UTRAC01 | 15 |UU   171MR      |mol C/m.m/s     |Zonal Mass-Weighted Transp of Dissolved Inorganic Carbon
VTRAC01 | 15 |VV   170MR      |mol C/m.m/s     |Merid Mass-Weighted Transp of Dissolved Inorganic Carbon
WTRAC01 | 15 |WM      MR      |mol C/m.m/s     |Vert  Mass-Weighted Transp of Dissolved Inorganic Carbon
ADVrTr01| 15 |WM      LR      |mol C/m.m^3/s   |Vertical   Advective Flux of Dissolved Inorganic Carbon
ADVxTr01| 15 |UU   175MR      |mol C/m.m^3/s   |Zonal      Advective Flux of Dissolved Inorganic Carbon
ADVyTr01| 15 |VV   174MR      |mol C/m.m^3/s   |Meridional Advective Flux of Dissolved Inorganic Carbon
DFrETr01| 15 |WM      LR      |mol C/m.m^3/s   |Vertical Diffusive Flux of Dissolved Inorganic Carbon (Explicit part)
DIFxTr01| 15 |UU   178MR      |mol C/m.m^3/s   |Zonal      Diffusive Flux of Dissolved Inorganic Carbon
DIFyTr01| 15 |VV   177MR      |mol C/m.m^3/s   |Meridional Diffusive Flux of Dissolved Inorganic Carbon
DFrITr01| 15 |WM      LR      |mol C/m.m^3/s   |Vertical Diffusive Flux of Dissolved Inorganic Carbon (Implicit part)
TRAC02  | 15 |SM P    MR      |mol eq/         |Mass-Weighted Alkalinity
UTRAC02 | 15 |UU   182MR      |mol eq/.m/s     |Zonal Mass-Weighted Transp of Alkalinity
VTRAC02 | 15 |VV   181MR      |mol eq/.m/s     |Merid Mass-Weighted Transp of Alkalinity
WTRAC02 | 15 |WM      MR      |mol eq/.m/s     |Vert  Mass-Weighted Transp of Alkalinity
ADVrTr02| 15 |WM      LR      |mol eq/.m^3/s   |Vertical   Advective Flux of Alkalinity
ADVxTr02| 15 |UU   186MR      |mol eq/.m^3/s   |Zonal      Advective Flux of Alkalinity
ADVyTr02| 15 |VV   185MR      |mol eq/.m^3/s   |Meridional Advective Flux of Alkalinity
DFrETr02| 15 |WM      LR      |mol eq/.m^3/s   |Vertical Diffusive Flux of Alkalinity (Explicit part)
DIFxTr02| 15 |UU   189MR      |mol eq/.m^3/s   |Zonal      Diffusive Flux of Alkalinity
DIFyTr02| 15 |VV   188MR      |mol eq/.m^3/s   |Meridional Diffusive Flux of Alkalinity
DFrITr02| 15 |WM      LR      |mol eq/.m^3/s   |Vertical Diffusive Flux of Alkalinity (Implicit part)
TRAC03  | 15 |SM P    MR      |mol P/m         |Mass-Weighted Phosphate
UTRAC03 | 15 |UU   193MR      |mol P/m.m/s     |Zonal Mass-Weighted Transp of Phosphate
VTRAC03 | 15 |VV   192MR      |mol P/m.m/s     |Merid Mass-Weighted Transp of Phosphate
WTRAC03 | 15 |WM      MR      |mol P/m.m/s     |Vert  Mass-Weighted Transp of Phosphate
ADVrTr03| 15 |WM      LR      |mol P/m.m^3/s   |Vertical   Advective Flux of Phosphate
ADVxTr03| 15 |UU   197MR      |mol P/m.m^3/s   |Zonal      Advective Flux of Phosphate
ADVyTr03| 15 |VV   196MR      |mol P/m.m^3/s   |Meridional Advective Flux of Phosphate
DFrETr03| 15 |WM      LR      |mol P/m.m^3/s   |Vertical Diffusive Flux of Phosphate (Explicit part)
DIFxTr03| 15 |UU   200MR      |mol P/m.m^3/s   |Zonal      Diffusive Flux of Phosphate
------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------------------------
DIFyTr03| 15 |VV   199MR      |mol P/m.m^3/s   |Meridional Diffusive Flux of Phosphate
DFrITr03| 15 |WM      LR      |mol P/m.m^3/s   |Vertical Diffusive Flux of Phosphate (Implicit part)
TRAC04  | 15 |SM P    MR      |mol P/m         |Mass-Weighted Dissolved Organic Phosphorus
UTRAC04 | 15 |UU   204MR      |mol P/m.m/s     |Zonal Mass-Weighted Transp of Dissolved Organic Phosphorus
VTRAC04 | 15 |VV   203MR      |mol P/m.m/s     |Merid Mass-Weighted Transp of Dissolved Organic Phosphorus
WTRAC04 | 15 |WM      MR      |mol P/m.m/s     |Vert  Mass-Weighted Transp of Dissolved Organic Phosphorus
ADVrTr04| 15 |WM      LR      |mol P/m.m^3/s   |Vertical   Advective Flux of Dissolved Organic Phosphorus
ADVxTr04| 15 |UU   208MR      |mol P/m.m^3/s   |Zonal      Advective Flux of Dissolved Organic Phosphorus
ADVyTr04| 15 |VV   207MR      |mol P/m.m^3/s   |Meridional Advective Flux of Dissolved Organic Phosphorus
DFrETr04| 15 |WM      LR      |mol P/m.m^3/s   |Vertical Diffusive Flux of Dissolved Organic Phosphorus (Explicit part)
DIFxTr04| 15 |UU   211MR      |mol P/m.m^3/s   |Zonal      Diffusive Flux of Dissolved Organic Phosphorus
DIFyTr04| 15 |VV   210MR      |mol P/m.m^3/s   |Meridional Diffusive Flux of Dissolved Organic Phosphorus
DFrITr04| 15 |WM      LR      |mol P/m.m^3/s   |Vertical Diffusive Flux of Dissolved Organic Phosphorus (Implicit part)
TRAC05  | 15 |SM P    MR      |mol O/m         |Mass-Weighted Dissolved Oxygen
UTRAC05 | 15 |UU   215MR      |mol O/m.m/s     |Zonal Mass-Weighted Transp of Dissolved Oxygen
VTRAC05 | 15 |VV   214MR      |mol O/m.m/s     |Merid Mass-Weighted Transp of Dissolved Oxygen
WTRAC05 | 15 |WM      MR      |mol O/m.m/s     |Vert  Mass-Weighted Transp of Dissolved Oxygen
ADVrTr05| 15 |WM      LR      |mol O/m.m^3/s   |Vertical   Advective Flux of Dissolved Oxygen
ADVxTr05| 15 |UU   219MR      |mol O/m.m^3/s   |Zonal      Advective Flux of Dissolved Oxygen
ADVyTr05| 15 |VV   218MR      |mol O/m.m^3/s   |Meridional Advective Flux of Dissolved Oxygen
DFrETr05| 15 |WM      LR      |mol O/m.m^3/s   |Vertical Diffusive Flux of Dissolved Oxygen (Explicit part)
DIFxTr05| 15 |UU   222MR      |mol O/m.m^3/s   |Zonal      Diffusive Flux of Dissolved Oxygen
DIFyTr05| 15 |VV   221MR      |mol O/m.m^3/s   |Meridional Diffusive Flux of Dissolved Oxygen
DFrITr05| 15 |WM      LR      |mol O/m.m^3/s   |Vertical Diffusive Flux of Dissolved Oxygen (Implicit part)








5.3.3.5. Do’s and Don’ts




5.3.3.6. Reference Material







          

      

      

    

  

  
    
    
    5.4.1. GMREDI: Gent-McWilliams/Redi SGS Eddy Parameterization
    
    

    
 
  
  

    
      
          
            
  
5.4.1. GMREDI: Gent-McWilliams/Redi SGS Eddy Parameterization

There are two parts to the Redi/GM parameterization of geostrophic
eddies. The first, the Redi scheme [Red82], aims to mix tracer properties along
isentropes (neutral surfaces) by means of a diffusion operator oriented
along the local isentropic surface. The second part, GM [GM90][GWMM95] , adiabatically
re-arranges tracers through an advective flux where the advecting flow
is a function of slope of the isentropic surfaces.

The first GCM implementation of the Redi scheme was by [Cox87] in the GFDL ocean
circulation model. The original approach failed to distinguish between
isopycnals and surfaces of locally referenced potential density (now
called neutral surfaces) which are proper isentropes for the ocean. As
will be discussed later, it also appears that the Cox implementation is
susceptible to a computational mode. Due to this mode, the Cox scheme
requires a background lateral diffusion to be present to conserve the
integrity of the model fields.

The GM parameterization was then added to the GFDL code in the form of a
non-divergent bolus velocity. The method defines two stream-functions
expressed in terms of the isoneutral slopes subject to the boundary
condition of zero value on upper and lower boundaries. The horizontal
bolus velocities are then the vertical derivative of these functions.
Here in lies a problem highlighted by [GGP+98]: the bolus velocities involve
multiple derivatives on the potential density field, which can
consequently give rise to noise. Griffies et al. point out that the GM
bolus fluxes can be identically written as a skew flux which involves
fewer differential operators. Further, combining the skew flux
formulation and Redi scheme, substantial cancellations take place to the
point that the horizontal fluxes are unmodified from the lateral
diffusion parameterization.


5.4.1.1. Redi scheme: Isopycnal diffusion

The Redi scheme diffuses tracers along isopycnals and introduces a term
in the tendency (rhs) of such a tracer (here \(\tau\)) of the form:


\[\bf{\nabla} \cdot \kappa_\rho \bf{K}_{Redi}  \bf{\nabla} \tau\]

where \(\kappa_\rho\) is the along isopycnal diffusivity and
\(\bf{K}_{Redi}\) is a rank 2 tensor that projects the gradient of
\(\tau\) onto the isopycnal surface. The unapproximated projection
tensor is:


\[\begin{split}\bf{K}_{Redi} = \frac{1}{1 + |S|^2} \left(
\begin{array}{ccc}
1 + S_y^2& -S_x S_y & S_x \\
-S_x S_y  & 1 + S_x^2 & S_y \\
S_x & S_y & |S|^2 \\
\end{array}
\right)\end{split}\]

Here, \(S_x = -\partial_x \sigma / \partial_z \sigma\) and
\(S_y =
-\partial_y \sigma / \partial_z \sigma\) are the components of the
isoneutral slope.

The first point to note is that a typical slope in the ocean interior is
small, say of the order \(10^{-4}\). A maximum slope might be of
order \(10^{-2}\) and only exceeds such in unstratified regions
where the slope is ill defined. It is therefore justifiable, and
customary, to make the small slope approximation, \(|S| << 1\). The
Redi projection tensor then becomes:


\[\begin{split}\bf{K}_{Redi} = \left(
\begin{array}{ccc}
1 & 0 & S_x \\
0 & 1 & S_y \\
S_x & S_y & |S|^2 \\
\end{array}
\right)\end{split}\]




5.4.1.2. GM parameterization

The GM parameterization aims to represent the “advective” or “transport”
effect of geostrophic eddies by means of a “bolus” velocity,
\(\bf{u}^\star\). The divergence of this advective flux is added to
the tracer tendency equation (on the rhs):


\[- \bf{\nabla} \cdot \tau \bf{u}^\star\]

The bolus velocity \(\bf{u}^\star\) is defined as the rotational of
a streamfunction
\(\bf{F}^\star\)=\((F_x^\star,F_y^\star,0)\):


\[\begin{split}\bf{u}^\star = \nabla \times \bf{F}^\star =
\left( \begin{array}{c}
- \partial_z  F_y^\star \\
+ \partial_z  F_x^\star \\
\partial_x F_y^\star - \partial_y F_x^\star
\end{array} \right),\end{split}\]

and thus is automatically non-divergent. In the GM parameterization, the
streamfunction is specified in terms of the isoneutral slopes
\(S_x\) and \(S_y\):


\[\begin{split}\begin{aligned}
F_x^\star & = & -\kappa_{GM} S_y \\
F_y^\star & = &  \kappa_{GM} S_x\end{aligned}\end{split}\]

with boundary conditions \(F_x^\star=F_y^\star=0\) on upper and
lower boundaries. In the end, the bolus transport in the GM
parameterization is given by:


\[\begin{split}\bf{u}^\star = \left(
\begin{array}{c}
u^\star \\
v^\star \\
w^\star
\end{array}
\right) = \left(
\begin{array}{c}
- \partial_z (\kappa_{GM} S_x) \\
- \partial_z (\kappa_{GM} S_y) \\
\partial_x  (\kappa_{GM} S_x) + \partial_y (\kappa_{GM} S_y)
\end{array}
\right)\end{split}\]

This is the form of the GM parameterization as applied by Donabasaglu,
1997, in MOM versions 1 and 2.

Note that in the MITgcm, the variables containing the GM bolus
streamfunction are:


\[\begin{split}\left(
\begin{array}{c}
GM\_PsiX \\
GM\_PsiY
\end{array}
\right) = \left(
\begin{array}{c}
\kappa_{GM} S_x \\
\kappa_{GM} S_y
\end{array}
\right)= \left(
\begin{array}{c}
F_y^\star \\
-F_x^\star
\end{array}
\right).\end{split}\]




5.4.1.3. Griffies Skew Flux

[Gri98] notes that the discretisation of bolus velocities involves multiple
layers of differencing and interpolation that potentially lead to noisy
fields and computational modes. He pointed out that the bolus flux can
be re-written in terms of a non-divergent flux and a skew-flux:


\[\begin{split}\begin{aligned}
\bf{u}^\star \tau
& = &
\left( \begin{array}{c}
- \partial_z ( \kappa_{GM} S_x ) \tau \\
- \partial_z ( \kappa_{GM} S_y ) \tau \\
(\partial_x \kappa_{GM} S_x + \partial_y \kappa_{GM} S_y)\tau
\end{array} \right)
\\
& = &
\left( \begin{array}{c}
- \partial_z ( \kappa_{GM} S_x \tau) \\
- \partial_z ( \kappa_{GM} S_y \tau) \\
\partial_x ( \kappa_{GM} S_x \tau) + \partial_y ( \kappa_{GM} S_y \tau)
\end{array} \right)
+ \left( \begin{array}{c}
 \kappa_{GM} S_x \partial_z \tau \\
 \kappa_{GM} S_y \partial_z \tau \\
- \kappa_{GM} S_x \partial_x \tau - \kappa_{GM} S_y \partial_y \tau
\end{array} \right)\end{aligned}\end{split}\]

The first vector is non-divergent and thus has no effect on the tracer
field and can be dropped. The remaining flux can be written:


\[\bf{u}^\star \tau = - \kappa_{GM} \bf{K}_{GM} \bf{\nabla} \tau\]

where


\[\begin{split}\bf{K}_{GM} =
\left(
\begin{array}{ccc}
0 & 0 & -S_x \\
0 & 0 & -S_y \\
S_x & S_y & 0
\end{array}
\right)\end{split}\]

is an anti-symmetric tensor.

This formulation of the GM parameterization involves fewer derivatives
than the original and also involves only terms that already appear in
the Redi mixing scheme. Indeed, a somewhat fortunate cancellation
becomes apparent when we use the GM parameterization in conjunction with
the Redi isoneutral mixing scheme:


\[\kappa_\rho \bf{K}_{Redi} \bf{\nabla} \tau
- u^\star \tau =
( \kappa_\rho \bf{K}_{Redi} + \kappa_{GM} \bf{K}_{GM} ) \bf{\nabla} \tau\]

In the instance that \(\kappa_{GM} = \kappa_{\rho}\) then


\[\begin{split}\kappa_\rho \bf{K}_{Redi} + \kappa_{GM} \bf{K}_{GM} =
\kappa_\rho
\left( \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 S_x & 2 S_y & |S|^2
\end{array}
\right)\end{split}\]

which differs from the variable Laplacian diffusion tensor by only two
non-zero elements in the \(z\)-row.


Subroutine

S/R GMREDI_CALC_TENSOR (pkg/gmredi/gmredi_calc_tensor.F)

\(\sigma_x\): SlopeX (argument on entry)

\(\sigma_y\): SlopeY (argument on entry)

\(\sigma_z\): SlopeY (argument)

\(S_x\): SlopeX (argument on exit)

\(S_y\): SlopeY (argument on exit)






5.4.1.4. Variable \(\kappa_{GM}\)

[VMHS97] suggest making the eddy coefficient, \(\kappa_{GM}\), a function of
the Eady growth rate, \(|f|/\sqrt{Ri}\). The formula involves a
non-dimensional constant, \(\alpha\), and a length-scale \(L\):


\[\kappa_{GM} = \alpha L^2 \overline{ \frac{|f|}{\sqrt{Ri}} }^z\]

where the Eady growth rate has been depth averaged (indicated by the
over-line). A local Richardson number is defined
\(Ri = N^2 / (\partial
u/\partial z)^2\) which, when combined with thermal wind gives:


\[\frac{1}{Ri} = \frac{(\frac{\partial u}{\partial z})^2}{N^2} =
\frac{ ( \frac{g}{f \rho_o} | {\bf \nabla} \sigma | )^2 }{N^2} =
\frac{ M^4 }{ |f|^2 N^2 }\]

where \(M^2\) is defined
\(M^2 = \frac{g}{\rho_o} |{\bf \nabla} \sigma|\). Substituting into
the formula for \(\kappa_{GM}\) gives:


\[\kappa_{GM} = \alpha L^2 \overline{ \frac{M^2}{N} }^z =
\alpha L^2 \overline{ \frac{M^2}{N^2} N }^z =
\alpha L^2 \overline{ |S| N }^z\]




5.4.1.5. Tapering and stability

Experience with the GFDL model showed that the GM scheme has to be
matched to the convective parameterization. This was originally
expressed in connection with the introduction of the KPP boundary layer
scheme [LMD94] but in fact, as subsequent experience with the MIT model has
found, is necessary for any convective parameterization.


Subroutine

S/R GMREDI_SLOPE_LIMIT (pkg/gmredi/gmredi_slope_limit.F)

\(\sigma_x, s_x\): SlopeX (argument)

\(\sigma_y, s_y\): SlopeY (argument)

\(\sigma_z\): dSigmadRReal (argument)

\(z_\sigma^{*}\): dRdSigmaLtd (argument)




[image: Tapering for GM scheme]Figure 5.6 Taper functions used in GKW91 and DM95.




[image: Tapering for GM scheme]Figure 5.7 Effective slope as a function of ‘true’ slope using Cox slope clipping, GKW91 limiting and DM95 limiting.






5.4.1.6. Slope clipping

Deep convection sites and the mixed layer are indicated by homogenized,
unstable or nearly unstable stratification. The slopes in such regions
can be either infinite, very large with a sign reversal or simply very
large. From a numerical point of view, large slopes lead to large
variations in the tensor elements (implying large bolus flow) and can be
numerically unstable. This was first recognized by [Cox87] who implemented
“slope clipping” in the isopycnal mixing tensor. Here, the slope
magnitude is simply restricted by an upper limit:


\[\begin{split}\begin{aligned}
|\nabla \sigma| & = & \sqrt{ \sigma_x^2 + \sigma_y^2 } \\
S_{lim} & = & - \frac{|\nabla \sigma|}{ S_{max} }
\;\;\;\;\;\;\;\; \mbox{where $S_{max}$ is a parameter} \\
\sigma_z^\star & = & \min( \sigma_z , S_{lim} ) \\
{[s_x,s_y]} & = & - \frac{ [\sigma_x,\sigma_y] }{\sigma_z^\star}\end{aligned}\end{split}\]

Notice that this algorithm assumes stable stratification through the
“min” function. In the case where the fluid is well stratified
(\(\sigma_z < S_{lim}\)) then the slopes evaluate to:


\[{[s_x,s_y]} = - \frac{ [\sigma_x,\sigma_y] }{\sigma_z}\]

while in the limited regions (\(\sigma_z > S_{lim}\)) the slopes
become:


\[{[s_x,s_y]} = \frac{ [\sigma_x,\sigma_y] }{|\nabla \sigma|/S_{max}}\]

so that the slope magnitude is limited \(\sqrt{s_x^2 + s_y^2} =
S_{max}\).

The slope clipping scheme is activated in the model by setting
GM_taper_scheme = ’clipping’ in data.gmredi.

Even using slope clipping, it is normally the case that the vertical
diffusion term (with coefficient \(\kappa_\rho{\bf K}_{33} =
\kappa_\rho S_{max}^2\)) is large and must be time-stepped using an
implicit procedure (see section on discretisation and code later). Fig.
[fig-mixedlayer] shows the mixed layer depth resulting from a) using the
GM scheme with clipping and b) no GM scheme (horizontal diffusion). The
classic result of dramatically reduced mixed layers is evident. Indeed,
the deep convection sites to just one or two points each and are much
shallower than we might prefer. This, it turns out, is due to the over
zealous re-stratification due to the bolus transport parameterization.
Limiting the slopes also breaks the adiabatic nature of the GM/Redi
parameterization, re-introducing diabatic fluxes in regions where the
limiting is in effect.




5.4.1.7. Tapering: Gerdes, Koberle and Willebrand, Clim. Dyn. 1991

The tapering scheme used in [GKW91] addressed two issues with the clipping
method: the introduction of large vertical fluxes in addition to
convective adjustment fluxes is avoided by tapering the GM/Redi slopes
back to zero in low-stratification regions; the adjustment of slopes is
replaced by a tapering of the entire GM/Redi tensor. This means the
direction of fluxes is unaffected as the amplitude is scaled.

The scheme inserts a tapering function, \(f_1(S)\), in front of the
GM/Redi tensor:


\[f_1(S) = \min \left[ 1, \left( \frac{S_{max}}{|S|}\right)^2 \right]\]

where \(S_{max}\) is the maximum slope you want allowed. Where the
slopes, \(|S|<S_{max}\) then \(f_1(S) = 1\) and the tensor is
un-tapered but where \(|S| \ge S_{max}\) then \(f_1(S)\) scales
down the tensor so that the effective vertical diffusivity term
\(\kappa f_1(S) |S|^2 =
\kappa S_{max}^2\).

The GKW91 tapering scheme is activated in the model by setting
GM_taper_scheme = ’gkw91’ in data.gmredi.




5.4.1.8. Tapering: Danabasoglu and McWilliams, J. Clim. 1995

The tapering scheme used by followed a similar procedure but used a
different tapering function, \(f_1(S)\):


\[f_1(S) = \frac{1}{2} \left( 1+\tanh \left[ \frac{S_c - |S|}{S_d} \right] \right)\]

where \(S_c = 0.004\) is a cut-off slope and \(S_d=0.001\) is a
scale over which the slopes are smoothly tapered. Functionally, the
operates in the same way as the GKW91 scheme but has a substantially
lower cut-off, turning off the GM/Redi SGS parameterization for weaker
slopes.

The DM95 tapering scheme is activated in the model by setting
GM_taper_scheme = ’dm95’ in data.gmredi.




5.4.1.9. Tapering: Large, Danabasoglu and Doney, JPO 1997

The tapering used in [LDDM97] is based on the DM95 tapering scheme, but also
tapers the scheme with an additional function of height, \(f_2(z)\),
so that the GM/Redi SGS fluxes are reduced near the surface:


\[f_2(z) = \frac{1}{2} \left( 1 + \sin(\pi \frac{z}{D} - \frac{\pi}{2})\right)\]

where \(D = L_\rho |S|\) is a depth-scale and \(L_\rho=c/f\)
with \(c=2\)
  
    
    
    5.4.2. KPP: Nonlocal K-Profile Parameterization for Vertical Mixing
    
    

    
 
  
  

    
      
          
            
  
5.4.2. KPP: Nonlocal K-Profile Parameterization for Vertical Mixing

Authors: Dimitris Menemenlis and Patrick Heimbach


5.4.2.1. Introduction

The nonlocal K-Profile Parameterization (KPP) scheme of [LMD94] unifies the
treatment of a variety of unresolved processes involved in vertical
mixing. To consider it as one mixing scheme is, in the view of the
authors, somewhat misleading since it consists of several entities to
deal with distinct mixing processes in the ocean’s surface boundary
layer, and the interior:


	mixing in the interior is goverened by shear instability (modeled as
function of the local gradient Richardson number), internal wave
activity (assumed constant), and double-diffusion (not implemented
here).

	a boundary layer depth \(h\) or hbl is determined at each
grid point, based on a critical value of turbulent processes
parameterized by a bulk Richardson number;

	mixing is strongly enhanced in the boundary layer under the
stabilizing or destabilizing influence of surface forcing (buoyancy
and momentum) enabling boundary layer properties to penetrate well
into the thermocline; mixing is represented through a polynomial
profile whose coefficients are determined subject to several
contraints;

	the boundary-layer profile is made to agree with similarity theory of
turbulence and is matched, in the asymptotic sense (function and
derivative agree at the boundary), to the interior thus fixing the
polynomial coefficients; matching allows for some fraction of the
boundary layer mixing to affect the interior, and vice versa;

	a “non-local” term \(\hat{\gamma}\) or ghat which is
independent of the vertical property gradient further enhances mixing
where the water column is unstable



The scheme has been extensively compared to observations (see e.g. [LDDM97]) and
is now common in many ocean models.

The current code originates in the NCAR NCOM 1-D code and was kindly
provided by Bill Large and Jan Morzel. It has been adapted first to the
MITgcm vector code and subsequently to the current parallel code.
Adjustment were mainly in conjunction with WRAPPER requirements (domain
decomposition and threading capability), to enable automatic
differentiation of tangent linear and adjoint code via TAMC.

The following sections will describe the KPP package configuration and
compiling ([sec:pkg:kpp:comp]), the settings and choices of runtime
parameters ([sec:pkg:kpp:runtime]), more detailed description of
equations to which these parameters relate ([sec:pkg:kpp:equations]),
and key subroutines where they are used ([sec:pkg:kpp:flowchart]), and
diagnostics output of KPP-derived diffusivities, viscosities and
boundary-layer/mixed-layer depths ([sec:pkg:kpp:diagnostics]).




5.4.2.2. KPP configuration and compiling

As with all MITgcm packages, KPP can be turned on or off at compile time


	using the packages.conf file by adding kpp to it,

	or using genmake2 adding -enable=kpp or -disable=kpp
switches

	Required packages and CPP options:
No additional packages are required, but the MITgcm kernel flag
enabling the penetration of shortwave radiation below the surface
layer needs to be set in CPP_OPTIONS.h as follows:
#define SHORTWAVE_HEATING



(see Section [sec:buildingCode]).

Parts of the KPP code can be enabled or disabled at compile time via CPP
preprocessor flags. These options are set in KPP_OPTIONS.h. Table
Table 5.4 summarizes them.


Table 5.4 CPP flags for KPP





	CPP option
	Description




	_KPP_RL
	 


	FRUGAL_KPP
	 


	KPP_SMOOTH_SHSQ
	 


	KPP_SMOOTH_DVSQ
	 


	KPP_SMOOTH_DENS
	 


	KPP_SMOOTH_VISC
	 


	KPP_SMOOTH_DIFF
	 


	KPP_ESTIMATE_UREF
	 


	INCLUDE_DIAGNOSTICS_INTERFACE_CODE
	 


	KPP_GHAT
	 


	EXCLUDE_KPP_SHEAR_MIX
	 








5.4.2.3. Run-time parameters

Run-time parameters are set in files data.pkg and data.kpp which
are read in kpp_readparms.F. Run-time parameters may be broken into
3 categories: (i) switching on/off the package at runtime, (ii) required
MITgcm flags, (iii) package flags and parameters.


Enabling the package

The KPP package is switched on at runtime by setting useKPP = .TRUE. in data.pkg.




Required MITgcm flags

The following flags/parameters of the MITgcm dynamical kernel need to
be set in conjunction with KPP:







	implicitViscosity = .TRUE.
	enable implicit vertical viscosity


	implicitDiffusion = .TRUE.
	enable implicit vertical diffusion








Package flags and parameters

Table 5.5 summarizes the runtime flags
that are set in data.pkg, and their default values.


Table 5.5 Runtime flags for KPP






	Flag/parameter
	default
	Description




	I/O related parameters


	kpp_freq
	deltaTClock
	Recomputation frequency for KPP fields


	kpp_dumpFreq
	dumpFreq
	Dump frequency of KPP field snapshots


	kpp_taveFreq
	taveFreq
	Averaging and dump frequency of KPP fields


	KPPmixingMaps
	.FALSE.
	include KPP diagnostic maps in STDOUT


	KPPwriteState
	.FALSE.
	write KPP state to file


	KPP_ghatUseTotalDiffus
	.FALSE.
	if .T. compute non-local term using


	 
	 
	total vertical diffusivity


	 
	 
	if .F. use KPP vertical diffusivity


	General KPP parameters


	minKPPhbl
	delRc(1)
	Minimum boundary layer depth


	epsilon
	0.1
	nondimensional extent of the surface layer


	vonk
	0.4
	von Karman constant


	dB_dz
	5.2E-5 s–2
	maximum dB/dz in mixed layer hMix


	concs
	98.96
	 


	concv
	1.8
	 


	Boundary layer parameters (S/R bldepth)


	Ricr
	0.3
	critical bulk Richardson number


	cekman
	0.7
	coefficient for Ekman depth


	cmonob
	1.0
	coefficient for Monin-Obukhov depth


	concv
	1.8
	ratio of interior to entrainment depth
buoyancy frequency


	hbf
	1.0
	fraction of depth to which absorbed solar
radiation contributes
to surface buoyancy forcing


	Vtc
	 
	non-dim. coeff. for velocity scale of
turbulant velocity shear ( = function
of concv,concs,epsilon,vonk,Ricr)


	Boundary layer mixing parameters (S/R blmix)


	cstar
	
	




	proportionality coefficient for nonlocal
transport


	cg
	 
	non-dimensional coefficient for counter-gradient
term
( = function of cstar,vonk,concs,epsilon)


	Interior mixing parameters (S/R Ri_iwmix)


	Riinfty
	0.7
	gradient Richardson number limit for shear
instability


	BVDQcon
	-0.2E-4 s–2
	Brunt-Väisalä squared


	difm0
	0.005 m2 s–1
	viscosity max. due to shear instability


	difs0
	0.005 m\(^2\)/s
	tracer diffusivity max. due to shear instability


	dift0
	0.005 m\(^2\)/s
	heat diffusivity max. due to shear instability


	difmcon
	0.1
	viscosity due to convective instability


	difscon
	0.1
	tracer diffusivity due to convective instability


	diftcon
	0.1
	heat diffusivity due to convective instability


	Rrho0
	not used
	limit for double diffusive density ratio


	dsfmax
	not used
	maximum diffusivity in case of salt fingering










5.4.2.4. Equations and key routines

We restrict ourselves to writing out only the essential equations that
relate to main processes and parameters mentioned above. We closely
follow the notation of [LMD94].


KPP_CALC:

Top-level routine.




KPP_MIX:

Intermediate-level routine




BLMIX: Mixing in the boundary layer

The vertical fluxes \(\overline{wx}\) of momentum and tracer
properties \(X\) is composed of a gradient-flux term (proportional
to the vertical property divergence \(\partial_z X\)), and a
“nonlocal” term \(\gamma_x\) that enhances the gradient-flux mixing
coefficient \(K_x\)


\[\overline{wx}(d) \, = \, -K_x \left(
\frac{\partial X}{\partial z} \, - \, \gamma_x \right)\]


	Boundary layer mixing profile
It is expressed as the product of the boundary layer depth
\(h\), a depth-dependent turbulent velocity scale
\(w_x(\sigma)\) and a non-dimensional shape function
\(G(\sigma)\)


\[K_x(\sigma) \, = \, h \, w_x(\sigma) \, G(\sigma)\]

with dimensionless vertical coordinate \(\sigma = d/h\). For
details of :math:` w_x(sigma)` and \(G(\sigma)\) we refer to .



	Nonlocal mixing term
The nonlocal transport term \(\gamma\) is nonzero only for
tracers in unstable (convective) forcing conditions. Thus, depending
on the stability parameter \(\zeta = d/L\) (with depth \(d\),
Monin-Obukhov length scale \(L\)) it has the following form:


\[\begin{split}\begin{aligned}
\begin{array}{cl}
\gamma_x \, = \, 0 & \zeta \, \ge \, 0 \\
~ & ~ \\
\left.
\begin{array}{c}
\gamma_m \, = \, 0 \\
 ~ \\
\gamma_s \, = \, C_s
\frac{\overline{w s_0}}{w_s(\sigma) h} \\
 ~ \\
\gamma_{\theta} \, = \, C_s
\frac{\overline{w \theta_0}+\overline{w \theta_R}}{w_s(\sigma) h} \\
\end{array}
\right\}
&
\zeta \, < \, 0 \\
\end{array}\end{aligned}\end{split}\]





In practice, the routine peforms the following tasks:


	compute velocity scales at hbl

	find the interior viscosities and derivatives at hbl

	compute turbulent velocity scales on the interfaces

	compute the dimensionless shape functions at the interfaces

	compute boundary layer diffusivities at the interfaces

	compute nonlocal transport term

	find diffusivities at kbl-1 grid level






RI_IWMIX: Mixing in the interior

Compute interior viscosity and diffusivity coefficients due to


	shear instability (dependent on a local gradient Richardson number),

	to background internal wave activity, and

	to static instability (local Richardson number \(<\) 0).



TO BE CONTINUED.




BLDEPTH: Boundary layer depth calculation:

The oceanic planetary boundary layer depth, hbl, is determined as
the shallowest depth where the bulk Richardson number is equal to the
critical value, Ricr.

Bulk Richardson numbers are evaluated by computing velocity and buoyancy
differences between values at zgrid(kl) < 0 and surface reference
values. In this configuration, the reference values are equal to the
values in the surface layer. When using a very fine vertical grid, these
values should be computed as the vertical average of velocity and
buoyancy from the surface down to epsilon*zgrid(kl).

When the bulk Richardson number at k exceeds Ricr, hbl is linearly
interpolated between grid levels zgrid(k) and zgrid(k-1).

The water column and the surface forcing are diagnosed for
stable/ustable forcing conditions, and where hbl is relative to grid
points (caseA), so that conditional branches can be avoided in later
subroutines.

TO BE CONTINUED.




KPP_CALC_DIFF_T/_S, KPP_CALC_VISC:

Add contribution to net diffusivity/viscosity from KPP
diffusivity/viscosity.

TO BE CONTINUED.




KPP_TRANSPORT_T/_S/_PTR:

Add non local KPP transport term (ghat) to diffusive
temperature/salinity/passive tracer flux. The nonlocal transport term is
nonzero only for scalars in unstable (convective) forcing conditions.

TO BE CONTINUED.




Implicit time integration

TO BE CONTINUED.




Penetration of shortwave radiation

TO BE CONTINUED.






5.4.2.5. Flow chart

C     !CALLING SEQUENCE:
c ...
c  kpp_calc (TOP LEVEL ROUTINE)
c  |
c  |-- statekpp: o compute all EOS/density-related arrays
c  |             o uses S/R FIND_ALPHA, FIND_BETA, FIND_RHO
c  |
c  |-- kppmix
c  |   |--- ri_iwmix (compute interior mixing coefficients due to constant
c  |   |              internal wave activity, static instability,
c  |   |              and local shear instability).
c  |   |
c  |   |--- bldepth (diagnose boundary layer depth)
c  |   |
c  |   |--- blmix (compute boundary layer diffusivities)
c  |   |
c  |   |--- enhance (enhance diffusivity at interface kbl - 1)
c  |   o
c  |
c  |-- swfrac
c  o








5.4.2.6. KPP diagnostics

Diagnostics output is available via the diagnostics package (see Section
[sec:pkg:diagnostics]). Available output fields are summarized here:

------------------------------------------------------
 <-Name->|Levs|grid|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------
 KPPviscA| 23 |SM  |m^2/s           |KPP vertical eddy viscosity coefficient
 KPPdiffS| 23 |SM  |m^2/s           |Vertical diffusion coefficient for salt & tracers
 KPPdiffT| 23 |SM  |m^2/s           |Vertical diffusion coefficient for heat
 KPPghat | 23 |SM  |s/m^2           |Nonlocal transport coefficient
 KPPhbl  |  1 |SM  |m               |KPP boundary layer depth, bulk Ri criterion
 KPPmld  |  1 |SM  |m               |Mixed layer depth, dT=.8degC density criterion
 KPPfrac |  1 |SM  |                |Short-wave flux fraction penetrating mixing layer








5.4.2.7. Reference experiments

lab_sea:

natl_box:




5.4.2.8. References




5.4.2.9. Experiments and tutorials that use kpp


	Labrador Sea experiment, in lab_sea verification directory









          

      

      

    

  

  
    
    
    5.4.3. GGL90: a TKE vertical mixing scheme
    
    

    
 
  
  

    
      
          
            
  
5.4.3. GGL90: a TKE vertical mixing scheme

(in directory: pkg/ggl90/)


5.4.3.1. Key subroutines, parameters and files

see [GGL90]




5.4.3.2. Experiments and tutorials that use GGL90


	Vertical mixing verification experiment (vermix/input.ggl90)









          

      

      

    

  

  
    
    
    5.4.4. OPPS: Ocean Penetrative Plume Scheme
    
    

    
 
  
  

    
      
          
            
  
5.4.4. OPPS: Ocean Penetrative Plume Scheme

(in directory: pkg/opps/)


5.4.4.1. Key subroutines, parameters and files

See [PR97]




5.4.4.2. Experiments and tutorials that use OPPS


	Vertical mixing verification experiment (vermix/input.opps)









          

      

      

    

  

  
    
    
    5.4.5. KL10: Vertical Mixing Due to Breaking Internal Waves
    
    

    
 
  
  

    
      
          
            
  
5.4.5. KL10: Vertical Mixing Due to Breaking Internal Waves

(in directory: pkg/kl10/)

Authors: Jody M. Klymak


5.4.5.1. Introduction

The [KL10] parameterization for breaking internal waves is meant to represent
mixing in the ocean “interior” due to convective instability. Many
mixing schemes in the presence of unstable stratification simply turn on
an arbitrarily large diffusivity and viscosity in the overturning
region. This assumes the fluid completely mixes, which is probably not a
terrible assumption, but it also makes estimating the turbulence
dissipation rate in the overturning region meaningless.

The KL10 scheme overcomes this limitation by estimating the viscosity
and diffusivity from a combination of the Ozmidov relation and the
Osborn relation, assuming a turbulent Prandtl number of one. The Ozmidov
relation says that outer scale of turbulence in an overturn will scale
with the strength of the turbulence \(\epsilon\), and the
stratification \(N\), as


\[\label{eq:pkg:kl10:Lo}
  L_O^2 \approx \epsilon N^{-3}.\]

The Osborn relation relates the strength of the dissipation to the
vertical diffusivity as


\[K_{v}=\Gamma \epsilon N^{-2},\]

where \(\Gamma\approx 0.2\) is the mixing ratio of buoyancy flux to
thermal dissipation due to the turbulence. Combining the two gives us


\[K_{v} \approx \Gamma L_O^2 N.\]

The ocean turbulence community often approximates the Ozmidov scale by
the root-mean-square of the Thorpe displacement, \(\delta_z\), in an
overturn [Tho77]. The Thorpe displacement is the distance one would have to
move a water parcel for the water column to be stable, and is readily
measured in a measured profile by sorting the profile and tracking how
far each parcel moves during the sorting procedure. This method gives an
imperfect estimate of the turbulence, but it has been found to agree on
average over a large range of overturns [WG94][SG94][Mou96].

The algorithm coded here is a slight simplification of the usual Thorpe
method for estimating turbulence in overturning regions. Usually,
overturns are identified and \(N\) is averaged over the overturn.
Here, instead we estimate


\[K_{v}(z) \approx \Gamma \delta_z^2\, N_s(z).\]

where \(N_s(z)\) is the local sorted stratification. This saves
complexity in the code and adds a slight inaccuracy, but we don’t
believe is biased.

We assume a turbulent Prandtl number of 1, so \(A_v=K_{v}\).

We also calculate and output a turbulent dissipation from this scheme.
We do not simply evaluate the overturns for \(\epsilon\) using
([eq:pkg:kl10:Lo]). Instead we compute the vertical shear terms that the
viscosity is acting on:


\[\epsilon_v = A_v \left(\left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2 \right).\]

There are straightforward caveats to this approach, covered in [KL10].


	If your resolution is too low to resolve the breaking internal waves,
you won’t have any turbulence.

	If the model resolution is too high, the estimates of
\(\epsilon_v\) will start to be exaggerated, particularly if the
run in non-hydrostatic. That is because there will be significant
shear at small scales that represents the turbulence being
parameterized in the scheme. At very high resolutions direct
numerical simulation or more sophisticated large-eddy schemes should
be used.

	We find that grid cells of approximately 10 to 1 aspect ratio are a
good rule of thumb for achieving good results are usual oceanic
scales. For a site like the Hawaiian Ridge, and Luzon Strait, this
means 10-m vertical resolusion and approximately 100-m horizontal.
The 10-m resolution can be relaxed if the stratification drops, and
we often WKB-stretch the grid spacing with depth.

	The dissipation estimate is useful for pinpoiting the location of
turbulence, but again, is grid size dependent to some extent, and
should be treated with a grain of salt. It will also not include any
numerical dissipation such as you may find with higher order
advection schemes.






5.4.5.2. KL10 configuration and compiling

As with all MITgcm packages, KL10 can be turned on or off at compile
time


	using the packages.conf file by adding kl10 to it,

	or using genmake2 adding -enable=kl10 or -disable=kl10
switches

	Required packages and CPP options:
No additional packages are required.



(see Section [sec:buildingCode]).

KL10 has no compile-time options (KL10_OPTIONS.h is empty).




5.4.5.3. Run-time parameters

Run-time parameters are set in files data.pkg and data.kl10
which are read in kl10_readparms.F. Run-time parameters may be
broken into 3 categories: (i) switching on/off the package at runtime,
(ii) required MITgcm flags, (iii) package flags and parameters.


Enabling the package

The KL10 package is switched on at runtime by setting
useKL10 = .TRUE. in data.pkg.




Required MITgcm flags

The following flags/parameters of the MITgcm dynamical kernel need to
be set in conjunction with KL10:







	implicitViscosity = .TRUE.
	enable implicit vertical viscosity


	implicitDiffusion = .TRUE.
	enable implicit vertical diffusion








Package flags and parameters

Table 5.6 summarizes the runtime
flags that are set in data.kl10, and their default values.


Table 5.6 KL10 runtime parameters.






	Flag/parameter
	default
	Description




	KLviscMax
	300
  
    
    
    5.4.6. BULK_FORCE: Bulk Formula Package
    
    

    
 
  
  

    
      
          
            
  
5.4.6. BULK_FORCE: Bulk Formula Package

author: Stephanie Dutkiewicz

Instead of forcing the model with heat and fresh water flux data, this
package calculates these fluxes using the changing sea surface
temperature. We need to read in some atmospheric data: air
temperature, air humidity, down shortwave radiation, down longwave
radiation, precipitation, wind speed. The current setup also reads in
wind stress, but this can be changed so that the stresses are
calculated from the wind speed.

The current setup requires that there is the thermodynamic-seaice
package (pkg/thsice, also refered below as seaice) is also used. It
would be useful though to have it also setup to run with some very
simple parametrization of the sea ice.

The heat and fresh water fluxes are calculated in bulkf_forcing.F
called from forward_step.F. These fluxes are used over open water,
fluxes over seaice are recalculated in the sea-ice package. Before the
call to bulkf_forcing.F we call bulkf_fields_load.F to find the
current atmospheric conditions. The only other changes to the model code
come from the initializing and writing diagnostics of these fluxes.


5.4.6.1. subroutine BULKF_FIELDS_LOAD

Here we find the atmospheric data needed for the bulk formula
calculations. These are read in at periodic intervals and values are
interpolated to the current time. The data file names come from
data.blk. The values that can be read in are: air temperature, air
humidity, precipitation, down solar radiation, down long wave radiation,
zonal and meridional wind speeds, total wind speed, net heat flux, net
freshwater forcing, cloud cover, snow fall, zonal and meridional wind
stresses, and SST and SSS used for relaxation terms. Not all these files
are necessary or used. For instance cloud cover and snow fall are not
used in the current bulk formula calculation. If total wind speed is not
supplied, wind speed is calculate from the zonal and meridional
components. If wind stresses are not read in, then the stresses are
calculated from the wind speed. Net heat flux and net freshwater can be
read in and used over open ocean instead of the bulk formula
calculations (but over seaice the bulkf formula is always used). This is
“hardwired” into bulkf_forcing and the “ch” in the variable names
suggests that this is “cheating”. SST and SSS need to be read in if
there is any relaxation used.




5.4.6.2. subroutine BULKF_FORCING

In bulkf_forcing.F, we calculate heat and fresh water fluxes (and
wind stress, if necessary) for each grid cell. First we determine if the
grid cell is open water or seaice and this information is carried by
iceornot. There is a provision here for a different designation if
there is snow cover (but currently this does not make any difference).
We then call bulkf_formula_lanl.F which provides values for: up long
wave radiation, latent and sensible heat fluxes, the derivative of these
three with respect to surface temperature, wind stress, evaporation. Net
long wave radiation is calculated from the combination of the down long
wave read in and the up long wave calculated.

We then find the albedo of the surface - with a call to sfc_albedo if
there is sea-ice (see the seaice package for information on the
subroutine). If the grid cell is open ocean the albedo is set as 0.1.
Note that this is a parameter that can be used to tune the results. The
net short wave radiation is then the down shortwave radiation minus the
amount reflected.

If the wind stress needed to be calculated in bulkf_formula_lanl.F,
it was calculated to grid cell center points, so in bulkf_forcing.F
we regrid to u and v points. We let the model know if it has
read in stresses or calculated stresses by the switch readwindstress
which is can be set in data.blk, and defaults to .TRUE..

We then calculate Qnet and EmPmR that will be used as the fluxes
over the open ocean. There is a provision for using runoff. If we are
“cheating” and using observed fluxes over the open ocean, then there is
a provision here to use read in Qnet and EmPmR.

The final call is to calculate averages of the terms found in this
subroutine.




5.4.6.3. subroutine BULKF_FORMULA_LANL

This is the main program of the package where the heat fluxes and
freshwater fluxes over ice and open water are calculated. Note that this
subroutine is also called from the seaice package during the iterations
to find the ice surface temperature.

Latent heat (\(L\)) used in this subroutine depends on the state of
the surface: vaporization for open water, fusion and vaporization for
ice surfaces. Air temperature is converted from Celsius to Kelvin. If
there is no wind speed (\(u_s\)) given, then the wind speed is
calculated from the zonal and meridional components.

We calculate the virtual temperature:


\[T_o = T_{air} (1+\gamma q_{air})\]

where \(T_{air}\) is the air temperature at \(h_T\),
\(q_{air}\) is humidity at \(h_q\) and \(\gamma\) is a
constant.

The saturated vapor pressure is calculate (QQ ref):


\[q_{sat} = \frac{a}{p_o} e^{L (b-\frac{c}{T_{srf}})}\]

where \(a,b,c\) are constants, \(T_{srf}\) is surface
temperature and \(p_o\) is the surface pressure.

The two values crucial for the bulk formula calculations are the
difference between air at sea surface and sea surface temperature:


\[\Delta T = T_{air} - T_{srf} +\alpha h_T\]

where \(\alpha\) is adiabatic lapse rate and \(h_T\) is the
height where the air temperature was taken; and the difference between
the air humidity and the saturated humidity


\[\Delta q = q_{air} - q_{sat}.\]

We then calculate the turbulent exchange coefficients following Bryan et
al (1996) and the numerical scheme of Hunke and Lipscombe (1998). We
estimate initial values for the exchange coefficients, \(c_u\),
\(c_T\) and \(c_q\) as


\[\frac{\kappa}{ln(z_{ref}/z_{rou})}\]

where \(\kappa\) is the Von Karman constant, \(z_{ref}\) is a
reference height and \(z_{rou}\) is a roughness length scale which
could be a function of type of surface, but is here set as a constant.
Turbulent scales are:


\[\begin{split}\begin{aligned}
u^* & = & c_u u_s \nonumber\\
T^* & = & c_T \Delta T \nonumber\\
q^* & = & c_q \Delta q \nonumber\end{aligned}\end{split}\]

We find the “integrated flux profile” for momentum and stability if
there are stable QQ conditions (\(\Upsilon>0\)) :


\[\psi_m = \psi_s = -5 \Upsilon\]

and for unstable QQ conditions (\(\Upsilon<0\)):


\[\begin{split}\begin{aligned}
\psi_m & = & 2 ln(0.5(1+\chi)) + ln(0.5(1+\chi^2)) - 2 \tan^{-1} \chi + \pi/2
\nonumber \\
\psi_s & = & 2 ln(0.5(1+\chi^2)) \nonumber\end{aligned}\end{split}\]

where


\[\Upsilon = \frac{\kappa g z_{ref}}{u^{*2}} (\frac{T^*}{T_o} +
\frac{q^*}{1/\gamma + q_a})\]

and \(\chi=(1-16\Upsilon)^{1/2}\).

The coefficients are updated through 5 iterations as:


\[\begin{split}\begin{aligned}
c_u & = & \frac {\hat{c_u}}{1+\hat{c_u}(\lambda - \psi_m)/\kappa} \nonumber \\
c_T & = & \frac {\hat{c_T}}{1+\hat{c_T}(\lambda - \psi_s)/\kappa} \nonumber \\
c_q & = & c'_T\end{aligned}\end{split}\]

where \(\lambda =ln(h_T/z_{ref})\).

We can then find the bulk formula heat fluxes:

Sensible heat flux:


\[Q_s=\rho_{air} c_{p_{air}} u_s c_u c_T \Delta T\]

Latent heat flux:


\[Q_l=\rho_{air} L u_s c_u c_q \Delta q\]

Up long wave radiation


\[Q_{lw}^{up}=\epsilon \sigma T_{srf}^4\]

where \(\epsilon\) is emissivity (which can be different for open
ocean, ice and snow), \(\sigma\) is Stefan-Boltzman constant.

We calculate the derivatives of the three above functions with respect
to surface temperature


\[\begin{split}\begin{aligned}
\frac{dQ_s}{d_T} & = & \rho_{air} c_{p_{air}} u_s c_u c_T \nonumber \\
\frac{dQ_l}{d_T} & = & \frac{\rho_{air} L^2 u_s c_u c_q c}{T_{srf}^2} \nonumber \\
\frac{dQ_{]lw}^{up}}{d_T} & = &  4 \epsilon \sigma t_{srf}^3 \nonumber\end{aligned}\end{split}\]

And total derivative \(\frac{dQ_o}{dT}= \frac{dQ_s}{dT} +
\frac{dQ_l}{dT} + \frac{dQ_{lw}^{up}}{dT}\).

If we do not read in the wind stress, it is calculated here.




5.4.6.4. Initializing subroutines

bulkf_init.F: Set bulkf variables to zero.

bulkf_readparms.F: Reads data.blk




5.4.6.5. Diagnostic subroutines

bulkf_ave.F: Keeps track of means of the bulkf variables

bulkf_diags.F: Finds averages and writes out diagnostics




5.4.6.6. Common Blocks

BULKF.h: BULKF Variables, data file names, and logicals readwindstress and
readsurface

BULKF_DIAGS.h: matrices for diagnostics: averages of fields from bulkf_diags.F

BULKF_ICE_CONSTANTS.h: all the parameters needed by the ice model and in the bulkf formula
calculations.




5.4.6.7. Input file DATA.ICE

We read in the file names of atmospheric data used in the bulk formula
calculations. Here we can also set the logicals: readwindstress if
we read in the wind stress rather than calculate it from the wind speed;
and readsurface to read in the surface temperature and salinity if
these will be used as part of a relaxing term.




5.4.6.8. Important Notes


	heat fluxes have different signs in the ocean and ice models.

	StartIceModel must be changed in data.ice: 1 (if starting from no ice), 0 (if using pickup.ic file).






5.4.6.9. References

Bryan F.O., B.G Kauffman, W.G. Large, P.R. Gent, 1996: The NCAR CSM flux
coupler. Technical note TN-425+STR, NCAR.

Hunke, E.C and W.H. Lipscomb, circa 2001: CICE: the Los Alamos Sea Ice
Model Documentation and Software User’s Manual. LACC-98-16v.2.
(note: this documentation is no longer available as CICE has
progressed to a very different version 3)




5.4.6.10. Experiments and tutorials that use bulk_force


	Global ocean experiment in global_ocean.cs32x15 verification
directory, input from input.thsice directory.









          

      

      

    

  

  
    
    
    5.4.7. EXF: The external forcing package
    
    

    
 
  
  

    
      
          
            
  
5.4.7. EXF: The external forcing package

Authors: Patrick Heimbach and Dimitris Menemenlis


5.4.7.1. Introduction

The external forcing package, in conjunction with the calendar package
(cal), enables the handling of real-time (or “model-time”) forcing
fields of differing temporal forcing patterns. It comprises
climatological restoring and relaxation. Bulk formulae are implemented
to convert atmospheric fields to surface fluxes. An interpolation
routine provides on-the-fly interpolation of forcing fields an arbitrary
grid onto the model grid.

CPP options enable or disable different aspects of the package (Section
[sec:pkg:exf:config]). Runtime options, flags, filenames and
field-related dates/times are set in data.exf (Section
[sec:pkg:exf:runtime]). A description of key subroutines is given in
Section [sec:pkg:exf:subroutines]. Input fields, units and sign
conventions are summarized in Section
[sec:pkg:exf:fields:sub:units], and available diagnostics output is
listed in Section [sec:pkg:exf:diagnostics].




5.4.7.2. EXF configuration, compiling & running


Compile-time options

As with all MITgcm packages, EXF can be turned on or off at compile time


	using the packages.conf file by adding exf to it,

	or using genmake2 adding -enable=exf or -disable=exf
switches

	required packages and CPP options:
EXF requires the calendar package cal to be enabled; no
additional CPP options are required.



(see Section [sec:buildingCode]).

Parts of the EXF code can be enabled or disabled at compile time via CPP
preprocessor flags. These options are set in either EXF_OPTIONS.h or
in ECCO_CPPOPTIONS.h. Table 5.7 summarizes these
options.


Table 5.7 EXF CPP options





	CPP option
	Description




	EXF_VERBOSE
	verbose mode (recommended only for testing)


	ALLOW_ATM_TEMP
	compute heat/freshwater fluxes from atmos. state input


	ALLOW_ATM_WIND
	compute wind stress from wind speed input


	ALLOW_BULKFORMULAE
	is used if ALLOW_ATM_TEMP or
ALLOW_ATM_WIND is enabled


	EXF_READ_EVAP
	read evaporation instead of computing it


	ALLOW_RUNOFF
	read time-constant river/glacier run-off field


	ALLOW_DOWNWARD_RADIATION
	compute net from downward or downward from net radiation


	USE_EXF_INTERPOLATION
	enable on-the-fly bilinear or bicubic
interpolation of input fields


	used in conjunction with relaxation to prescribed (climatological) fields


	ALLOW_CLIMSST_RELAXATION
	relaxation to 2-D SST climatology


	ALLOW_CLIMSSS_RELAXATION
	relaxation to 2-D SSS climatology


	these are set outside of EXF in CPP_OPTIONS.h


	SHORTWAVE_HEATING
	enable shortwave radiation


	ATMOSPHERIC_LOADING
	enable surface pressure forcing










5.4.7.3. Run-time parameters

Run-time parameters are set in files data.pkg and data.exf which
is read in exf_readparms.F. Run-time parameters may be broken into 3
categories: (i) switching on/off the package at runtime, (ii) general
flags and parameters, and (iii) attributes for each forcing and
climatological field.


Enabling the package

A package is switched on/off at runtime by setting (e.g. for EXF)
useEXF = .TRUE. in data.pkg.




General flags and parameters


Table 5.8 EXF runtime options






	Flag/parameter
	default
	Description




	useExfCheckRange
	.TRUE.
	check range of input fields and stop if out of range


	useExfYearlyFields
	.FALSE.
	append current year postfix of form _YYYY on filename


	twoDigitYear
	.FALSE.
	instead of appending _YYYY append  YY


	repeatPeriod
	0.0
	\(\gt\) 0: cycle through all input fields at the same period (in seconds)


	= 0: use period assigned to each field


	exf_offset_atemp
	0.0
	set to 273.16 to convert from deg. Kelvin (assumed input) to Celsius


	windstressmax
	2.0
	max. allowed wind stress N m–2


	exf_albedo
	0.1
	surface albedo used to compute downward vs. net radiative fluxes


	climtempfreeze
	-1.9
	???


	ocean_emissivity
	 
	longwave ocean-surface emissivity


	ice_emissivity
	 
	longwave seaice emissivity


	snow_emissivity
	 
	longwave  snow  emissivity


	exf_iceCd
	1.63E-3
	drag coefficient over sea-ice


	exf_iceCe
	1.63E-3
	evaporation transfer coeff. over sea-ice


	exf_iceCh
	1.63E-3
	sensible heat transfer coeff. over sea-ice


	exf_scal_BulkCdn
	
	




	overall scaling of neutral drag coeff.


	useStabilityFct_overIce
	.FALSE.
	compute turbulent transfer coeff. over sea-ice


	readStressOnAgrid
	.FALSE.
	read wind-streess located on model-grid, A-grid point


	readStressOnCgrid
	.FALSE.
	read wind-streess located on model-grid, C-grid point


	useRelativeWind
	.FALSE.
	subtract [U/V]VEL or [U/VICE from U/V]WIND before
computing [U/V]STRESS


	zref
	
	




	reference height


	hu
	
	




	height of mean wind


	ht
	
	




	height of mean temperature and rel. humidity


	umin
	0.5
	minimum absolute wind speed for computing Cd


	atmrho
	1.2
	mean atmospheric density [kg/m^3]


	atmcp
	
	




	mean atmospheric specific heat [J/kg/K]


	cdrag_[n]
	???
	n = 1,2,3; parameters for drag coeff. function


	cstanton_[n]
	???
	n = 1,2; parameters for Stanton number function


	cdalton
	???
	parameter for Dalton number function


	flamb
	
	




	latent heat of evaporation [J/kg]


	flami
	
	




	latent heat of melting of pure ice [J/kg]


	zolmin
	-100.
	minimum stability parameter


	cvapor_fac
	
	




	 


	cvapor_exp
	5107.4
	 


	cvapor_fac_ice
	
	




	 


	cvapor_fac_ice
	5897.8
	 


	humid_fac
	0.606
	parameter for virtual temperature calculation


	gamma_blk
	0.010
	adiabatic lapse rate


	saltsat
	0.980
	reduction of saturation vapor pressure over salt-water


	psim_fac
	
	




	 


	exf_monFreq
	monitorFreq
	output frequency [s]


	exf_iprec
	32
	precision of input fields (32-bit or 64-bit)


	exf_yftype
	‘RL’
	precision of arrays (‘RL’ vs. ‘RS’)








Field attributes

All EXF fields are listed in Section
[sec:pkg:exf:fields:sub:units]. Each field has a number of
attributes which can be customized. They are summarized in Table
[tab:pkg:exf:runtime:sub:attributes]. To obtain an attribute for a
specific field, e.g. uwind prepend the field name to the listed
attribute, e.g. for attribute period this yields uwindperiod:


\[\begin{split}\begin{aligned}
  \begin{array}{cccccc}
    ~ & \texttt{field} & \& & \texttt{attribute} & \longrightarrow & \texttt{parameter} \\
    \text{e.g.} & \text{uwind} & \& & \text{period} & \longrightarrow & \text{uwindperiod} \\
  \end{array}\end{aligned}\end{split}\]


Table 5.9 EXF runtime attributes
       Note there is one exception for the default of atempconst = celsius2K = 273.16






	attribute
	Default
	Description




	field file
	‘ ‘
	filename; if left empty no file will be read; const will be used instead


	field const
	
	




	constant that will be used if no file is read


	field startdate1
	
	




	format: YYYYMMDD; start year (YYYY), month (MM), day (YY)


	 
	 
	of field to determine record number


	field startdate2
	
	




	format: HHMMSS; start hour (HH), minute (MM), second(SS)


	 
	 
	of field to determine record number


	field period
	
	




	interval in seconds between two records


	exf_inscal_field
	 
	optional rescaling of input fields to comply with EXF units


	exf_outscal_field
	 
	optional rescaling of EXF fields when mapped onto MITgcm fields


	used in conjunction with EXF_USE_INTERPOLATION


	field _lon0
	xgOrigin+delX/2
	starting longitude of input


	field _lon_inc
	delX
	increment in longitude of input


	field _lat0
	ygOrigin+delY/2
	starting latitude of input


	field _lat_inc
	delY
	increment in latitude of input


	field _nlon
	Nx
	number of grid points in longitude of input


	field _nlat
	Ny
	number of grid points in longitude of input








Example configuration

The following block is taken from the data.exf file of the
verification experiment global_with_exf/. It defines attributes for
the heat flux variable hflux:

hfluxfile       = 'ncep_qnet.bin',
hfluxstartdate1 = 19920101,
hfluxstartdate2 = 000000,
hfluxperiod     = 2592000.0,
hflux_lon0      = 2
hflux_lon_inc   = 4
hflux_lat0      = -78
hflux_lat_inc   = 39*4
hflux_nlon      = 90
hflux_nlat      = 40





EXF will read a file of name ’ncep_qnet.bin’. Its first record
represents January 1st, 1992 at 00:00 UTC. Next record is 2592000
seconds (or 30 days) later. Note that the first record read and used by
the EXF package corresponds to the value ’startDate1’ set in data.cal.
Therefore if you want to start the EXF forcing from later in the
’ncep_qnet.bin’ file, it suffices to specify startDate1 in data.cal as
a date later than 19920101 (for example, startDate1 = 19940101, for
starting January 1st, 1994). For this to work, ’ncep_qnet.bin’ must
have at least 2 years of data because in this configuration EXF will
read 2 years into the file to find the 1994 starting value.
Interpolation on-the-fly is used (in the present case trivially on the
same grid, but included nevertheless for illustration), and input field
grid starting coordinates and increments are supplied as well.






5.4.7.4. EXF bulk formulae

T.B.D. (cross-ref. to parameter list table)




5.4.7.5. EXF input fields and units

The following list is taken from the header file EXF_FIELDS.h. It
comprises all EXF input fields.

Output fields which EXF provides to the MITgcm are fields fu,
fv, Qnet, Qsw, EmPmR, and pload. They are defined in
FFIELDS.h.

c----------------------------------------------------------------------
c               |
c     field     :: Description
c               |
c----------------------------------------------------------------------
c     ustress   :: Zonal surface wind stress in N/m^2
c               |  > 0 for increase in uVel, which is west to
c               |      east for cartesian and spherical polar grids
c               |  Typical range: -0.5 < ustress < 0.5
c               |  Southwest C-grid U point
c               |  Input field
c----------------------------------------------------------------------
c     vstress   :: Meridional surface wind stress in N/m^2
c               |  > 0 for increase in vVel, which is south to
c               |      north for cartesian and spherical polar grids
c               |  Typical range: -0.5 < vstress < 0.5
c               |  Southwest C-grid V point
c               |  Input field
c----------------------------------------------------------------------
c     hs        :: sensible heat flux into ocean in W/m^2
c               |  > 0 for increase in theta (ocean warming)
c----------------------------------------------------------------------
c     hl        :: latent   heat flux into ocean in W/m^2
c               |  > 0 for increase in theta (ocean warming)
c----------------------------------------------------------------------
c     hflux     :: Net upward surface heat flux in W/m^2
c               |  (including shortwave)
c               |  hflux = latent + sensible + lwflux + swflux
c               |  > 0 for decrease in theta (ocean cooling)
c               |  Typical range: -250 < hflux < 600
c               |  Southwest C-grid tracer point
c               |  Input field
c----------------------------------------------------------------------
c     sflux     :: Net upward freshwater flux in m/s
c               |  sflux = evap - precip - runoff
c               |  > 0 for increase in salt (ocean salinity)
c               |  Typical range: -1e-7 < sflux < 1e-7
c               |  Southwest C-grid tracer point
c               |  Input field
c----------------------------------------------------------------------
c     swflux    :: Net upward shortwave radiation in W/m^2
c               |  swflux = - ( swdown - ice and snow absorption - reflected )
c               |  > 0 for decrease in theta (ocean cooling)
c               |  Typical range: -350 < swflux < 0
c               |  Southwest C-grid tracer point
c               |  Input field
c----------------------------------------------------------------------
c     uwind     :: Surface (10-m) zonal wind velocity in m/s
c               |  > 0 for increase in uVel, which is west to
c               |      east for cartesian and spherical polar grids
c               |  Typical range: -10 < uwind < 10
c               |  Southwest C-grid U point
c               |  Input or input/output field
c----------------------------------------------------------------------
c     vwind     :: Surface (10-m) meridional wind velocity in m/s
c               |  > 0 for increase in vVel, which is south to
c               |      north for cartesian and spherical polar grids
c               |  Typical range: -10 < vwind < 10
c               |  Southwest C-grid V point
c               |  Input or input/output field
c----------------------------------------------------------------------
c     wspeed    :: Surface (10-m) wind speed in m/s
c               |  >= 0 sqrt(u^2+v^2)
c               |  Typical range: 0 < wspeed < 10
c               |  Input or input/output field
c----------------------------------------------------------------------
c     atemp     :: Surface (2-m) air temperature in deg K
c               |  Typical range: 200 < atemp < 300
c               |  Southwest C-grid tracer point
c               |  Input or input/output field
c----------------------------------------------------------------------
c     aqh       :: Surface (2m) specific humidity in kg/kg
c               |  Typical range: 0 < aqh < 0.02
c               |  Southwest C-grid tracer point
c               |  Input or input/output field
c----------------------------------------------------------------------
c     lwflux    :: Net upward longwave radiation in W/m^2
c               |  lwflux = - ( lwdown - ice and snow absorption - emitted )
c               |  > 0 for decrease in theta (ocean cooling)
c               |  Typical range: -20 < lwflux < 170
c               |  Southwest C-grid tracer point
c               |  Input field
c----------------------------------------------------------------------
c     evap      :: Evaporation in m/s
c               |  > 0 for increase in salt (ocean salinity)
c               |  Typical range: 0 < evap < 2.5e-7
c               |  Southwest C-grid tracer point
c               |  Input, input/output, or output field
c----------------------------------------------------------------------
c     precip    :: Precipitation in m/s
c               |  > 0 for decrease in salt (ocean salinity)
c               |  Typical range: 0 < precip < 5e-7
c               |  Southwest C-grid tracer point
c               |  Input or input/output field
c----------------------------------------------------------------------
c    snowprecip :: snow in m/s
c               |  > 0 for decrease in salt (ocean salinity)
c               |  Typical range: 0 < precip < 5e-7
c               |  Input or input/output field
c----------------------------------------------------------------------
c     runoff    :: River and glacier runoff in m/s
c               |  > 0 for decrease in salt (ocean salinity)
c               |  Typical range: 0 < runoff < ????
c               |  Southwest C-grid tracer point
c               |  Input or input/output field
c               |  !!! WATCH OUT: Default exf_inscal_runoff !!!
c               |  !!! in exf_readparms.F is not 1.0        !!!
c----------------------------------------------------------------------
c     swdown    :: Downward shortwave radiation in W/m^2
c               |  > 0 for increase in theta (ocean warming)
c               |  Typical range: 0 < swdown < 450
c               |  Southwest C-grid tracer point
c               |  Input/output field
c----------------------------------------------------------------------
c     lwdown    :: Downward longwave radiation in W/m^2
c               |  > 0 for increase in theta (ocean warming)
c               |  Typical range: 50 < lwdown < 450
c               |  Southwest C-grid tracer point
c               |  Input/output field
c----------------------------------------------------------------------
c     apressure :: Atmospheric pressure field in N/m^2
c               |  > 0 for ????
c               |  Typical range: ???? < apressure < ????
c               |  Southwest C-grid tracer point
c               |  Input field
c----------------------------------------------------------------------








5.4.7.6. Key subroutines

Top-level routine: exf_getforcing.F

C     !CALLING SEQUENCE:
c ...
c  exf_getforcing (TOP LEVEL ROUTINE)
c  |
c  |-- exf_getclim (get climatological fields used e.g. for relax.)
c  |   |--- exf_set_climsst  (relax. to 2-D SST field)
c  |   |--- exf_set_climsss  (relax. to 2-D SSS field)
c  |   o
c  |
c  |-- exf_getffields <- this one does almost everything
c  |   |   1. reads in fields, either flux or atmos. state,
c  |   |      depending on CPP options (for each variable two fields
c  |   |      consecutive in time are read in and interpolated onto
c  |   |      current time step).
c  |   |   2. If forcing is atmos. state and control is atmos. state,
c  |   |      then the control variable anomalies are read here via ctrl_get_gen
c  |   |      (atemp, aqh, precip, swflux, swdown, uwind, vwind).
c  |   |      If forcing and control are fluxes, then
c  |   |      controls are added later.
c  |   o
c  |
c  |-- exf_radiation
c  |   |    Compute net or downwelling radiative fluxes via
c  |   |    Stefan-Boltzmann law in case only one is known.
c  |   o
c  |-- exf_wind
c  |   |   Computes wind speed and stresses, if required.
c  |   o
c  |
c  |-- exf_bulkformulae
c  |   |   Compute air-sea buoyancy fluxes from
c  |   |   atmospheric state following Large and Pond, JPO, 1981/82
c  |   o
c  |
c  |-- < hflux is sum of sensible, latent, longwave rad. >
c  |-- < sflux is sum of evap. minus precip. minus runoff  >
c  |
c  |-- exf_getsurfacefluxes
c  |   If forcing and control is flux, then the
c  |   control vector anomalies are read here via ctrl_get_gen
c  |   (hflux, sflux, ustress, vstress)
c  |
c  |-- < update tile edges here >
c  |
c  |-- exf_check_range
c  |   |   Check whether read fields are within assumed range
c  |   |   (may capture mismatches in units)
c  |   o
c  |
c  |-- < add shortwave to hflux for diagnostics >
c  |
c  |-- exf_diagnostics_fill
c  |   |   Do EXF-related diagnostics output here.
c  |   o
c  |
c  |-- exf_mapfields
c  |   |   Forcing fields from exf package are mapped onto
c  |   |   mitgcm forcing arrays.
c  |   |   Mapping enables a runtime rescaling of fields
c  |   o
C  o





Radiation calculation: exf_radiation.F

Wind speed and stress calculation: exf_wind.F

Bulk formula: exf_bulkformulae.F

Generic I/O: exf_set_gen.F

Interpolation: exf_interp.F

Header routines




5.4.7.7. EXF diagnostics

Diagnostics output is available via the diagnostics package (see Section
[sec:pkg:diagnostics]). Available output fields are summarized below.

---------+----+----+----------------+-----------------
 <-Name->|Levs|grid|<--  Units   -->|<- Tile (max=80c)
---------+----+----+----------------+-----------------
 EXFhs   |  1 | SM | W/m^2          | Sensible heat flux into ocean, >0 increases theta
 EXFhl   |  1 | SM | W/m^2          | Latent heat flux into ocean, >0 increases theta
 EXFlwnet|  1 | SM | W/m^2          | Net upward longwave radiation, >0 decreases theta
 EXFswnet|  1 | SM | W/m^2          | Net upward shortwave radiation, >0 decreases theta
 EXFlwdn |  1 | SM | W/m^2          | Downward longwave radiation, >0 increases theta
 EXFswdn |  1 | SM | W/m^2          | Downward shortwave radiation, >0 increases theta
 EXFqnet |  1 | SM | W/m^2          | Net upward heat flux (turb+rad), >0 decreases theta
 EXFtaux |  1 | SU | N/m^2          | zonal surface wind stress, >0 increases uVel
 EXFtauy |  1 | SV | N/m^2          | meridional surface wind stress, >0 increases vVel
 EXFuwind|  1 | SM | m/s            | zonal 10-m wind speed, >0 increases uVel
 EXFvwind|  1 | SM | m/s            | meridional 10-m wind speed, >0 increases uVel
 EXFwspee|  1 | SM | m/s            | 10-m wind speed modulus ( >= 0 )
 EXFatemp|  1 | SM | degK           | surface (2-m) air temperature
 EXFaqh  |  1 | SM | kg/kg          | surface (2-m) specific humidity
 EXFevap |  1 | SM | m/s            | evaporation, > 0 increases salinity
 EXFpreci|  1 | SM | m/s            | evaporation, > 0 decreases salinity
 EXFsnow |  1 | SM | m/s            | snow precipitation, > 0 decreases salinity
 EXFempmr|  1 | SM | m/s            | net upward freshwater flux, > 0 increases salinity
 EXFpress|  1 | SM | N/m^2          | atmospheric pressure field








5.4.7.8. References




5.4.7.9. Experiments and tutorials that use exf


	Global Ocean experiment, in global_with_exf verification directory

	Labrador Sea experiment, in lab_sea verification directory









          

      

      

    

  

  
    
    
    5.4.8. CAL: The calendar package
    
    

    
 
  
  

    
      
          
            
  
5.4.8. CAL: The calendar package

Authors: Christian Eckert and Patrick Heimbach

This calendar tool was originally intended to enable the use of absolute
dates (Gregorian Calendar dates) in MITgcm. There is, however, a fair
number of routines that can be used independently of the main MITgcm
executable. After some minor modifications the whole package can be used
either as a stand-alone calendar or in connection with any dynamical
model that needs calendar dates. Some straightforward extensions are
still pending e.g. the availability of the Julian Calendar, to be able
to resolve fractions of a second, and to have a time- step that is
longer than one day.


5.4.8.1. Basic assumptions for the calendar tool

It is assumed that the SMALLEST TIME INTERVAL to be resolved is ONE
SECOND.

Further assumptions are that there is an INTEGER NUMBER OF MODEL STEPS
EACH DAY, and that AT LEAST ONE STEP EACH DAY is made.

Not each individual routine depends on these assumptions; there are only
a few places where they enter.




5.4.8.2. Format of calendar dates

In this calendar tool a complete date specification is defined as the
following integer array:

c           integer date(4)
c
c           ( yyyymmdd, hhmmss, leap_year, dayofweek )
c
c             date(1) = yyyymmdd    <-- Year-Month-Day
c             date(2) =   hhmmss    <-- Hours-Minutes-Seconds
c             date(3) = leap_year   <-- Leap Year/No Leap Year
c             date(4) = dayofweek   <-- Day of the Week
c
c             leap_year is either equal to 1 (normal year)
c                              or equal to 2 (leap year)
c
c             dayofweek has a range of 1 to 7.





In case the Gregorian Calendar is used, the first day of the week is
Friday, since day of the Gregorian Calendar was Friday, 15 Oct. 1582. As
a date array this date would be specified as

c               refdate(1) = 15821015
c               refdate(2) =        0
c               refdate(3) =        1
c               refdate(4) =        1








5.4.8.3. Calendar dates and time intervals

Subtracting calendar dates yields time intervals. Time intervals have
the following format:

c         integer datediff(4)
c
c           datediff(1) = # Days
c           datediff(2) = hhmmss
c           datediff(3) =      0
c           datediff(4) =     -1





Such time intervals can be added to or can be subtracted from calendar
dates. Time intervals can be added to and be subtracted from each other.




5.4.8.4. Using the calendar together with MITgcm

Each routine has as an argument the thread number that it is belonging
to, even if this number is not used in the routine itself.

In order to include the calendar tool into the MITgcm setup the MITgcm
subroutine “initialise.F” or the routine “initilise_fixed.F”, depending
on the MITgcm release, has to be modified in the following way:

c         #ifdef ALLOW_CALENDAR
c         C--   Initialise the calendar package.
c         #ifdef USE_CAL_NENDITER
c               CALL cal_Init(
c              I               startTime,
c              I               endTime,
c              I               deltaTclock,
c              I               nIter0,
c              I               nEndIter,
c              I               nTimeSteps,
c              I               myThid
c              &             )
c         #else
c               CALL cal_Init(
c              I               startTime,
c              I               endTime,
c              I               deltaTclock,
c              I               nIter0,
c              I               nTimeSteps,
c              I               myThid
c              &             )
c         #endif
c               _BARRIER
c         #endif





It is useful to have the CPP flag ALLOW_CALENDAR in order to switch
from the usual MITgcm setup to the one that includes the calendar tool.
The CPP flag USE_CAL_NENDITER has been introduced in order to enable
the use of the calendar for MITgcm releases earlier than checkpoint 25
which do not have the global variable *nEndIter*.




5.4.8.5. The individual calendars

Simple model calendar:

This calendar can be used by defining

c                  TheCalendar='model'





in the calendar’s data file “data.cal”.

In this case a year is assumed to have 360 days. The model year is
divided into 12 months with 30 days each.

Gregorian Calendar:

This calendar can be used by defining

c                  TheCalendar='gregorian'





in the calendar’s data file “data.cal”.




5.4.8.6. Short routine description

c      o  cal_Init          - Initialise the calendar. This is the interface
c                             to MITgcm.
c
c      o  cal_Set           - Sets the calendar according to the user
c                             specifications.
c
c      o  cal_GetDate       - Given the model's current timestep or the
c                             model's current time return the corresponding
c                             calendar date.
c
c      o  cal_FullDate      - Complete a date specification (leap year and
c                             day of the week).
c
c      o  cal_IsLeap        - Determine whether a given year is a leap year.
c
c      o  cal_TimePassed    - Determine the time passed between two dates.
c
c      o  cal_AddTime       - Add a time interval either to a time interval
c                             or to a date.
c
c      o  cal_TimeInterval  - Given a time interval return the corresponding
c                             date array.
c
c      o  cal_SubDates      - Determine the time interval between two dates
c                             or between two time intervals.
c
c      o  cal_ConvDate      - Decompose a date array or a time interval
c                             array into its components.
c
c      o  cal_CopyDate      - Copy a date array or a time interval array to
c                             another array.
c
c      o  cal_CompDates     - Compare two calendar dates or time intervals.
c
c      o  cal_ToSeconds     - Given a time interval array return the number
c                             of seconds.
c
c      o  cal_WeekDay       - Return the weekday as a string given the
c                             calendar date.
c
c      o  cal_NumInts       - Return the number of time intervals between two
c                             given dates.
c
c      o  cal_StepsPerDay   - Given an iteration number or the current
c                             integration time return the number of time
c                             steps to integrate in the current calendar day.
c
c      o  cal_DaysPerMonth  - Given an iteration number or the current
c                             integration time return the number of days
c                             to integrate in this calendar month.
c
c      o  cal_MonthsPerYear - Given an iteration number or the current
c                             integration time return the number of months
c                             to integrate in the current calendar year.
c
c      o  cal_StepsForDay   - Given the integration day return the number
c                             of steps to be integrated, the first step,
c                             and the last step in the day specified. The
c                             first and the last step refer to the total
c                             number of steps (1, ... , cal_IntSteps).
c
c      o  cal_DaysForMonth  - Given the integration month return the number
c                             of days to be integrated, the first day,
c                             and the last day in the month specified. The
c                             first and the last day refer to the total
c                             number of steps (1, ... , cal_IntDays).
c
c      o  cal_MonthsForYear - Given the integration year return the number
c                             of months to be integrated, the first month,
c                             and the last month in the year specified. The
c                             first and the last step refer to the total
c                             number of steps (1, ... , cal_IntMonths).
c
c      o  cal_Intsteps      - Return the number of calendar years that are
c                             affected by the current integration.
c
c      o  cal_IntDays       - Return the number of calendar days that are
c                             affected by the current integration.
c
c      o  cal_IntMonths     - Return the number of calendar months that are
c                             affected by the current integration.
c
c      o  cal_IntYears      - Return the number of calendar years that are
c                             affected by the current integration.
c
c      o  cal_nStepDay      - Return the number of time steps that can be
c                             performed during one calendar day.
c
c      o  cal_CheckDate     - Do some simple checks on a date array or on a
c                             time interval array.
c
c      o  cal_PrintError    - Print error messages according to the flags
c                             raised by the calendar routines.
c
c      o  cal_PrintDate     - Print a date array in some format suitable for
c                             MITgcm's protocol output.
c
c      o  cal_TimeStamp     - Given the time and the iteration number return
c                             the date and print all the above numbers.
c
c      o  cal_Summary       - List all the setttings of the calendar tool.








5.4.8.7. Experiments and tutorials that use cal


	Global ocean experiment in global_with_exf verification directory.

	Labrador Sea experiment in lab_sea verification directory.









          

      

      

    

  

  
    
    
    5.5.1. Atmospheric Intermediate Physics: AIM
    
    

    
 
  
  

    
      
          
            
  
5.5.1. Atmospheric Intermediate Physics: AIM

Note: The folowing document below describes the aim_v23 package that
is based on the version v23 of the SPEEDY code ().


5.5.1.1. Key subroutines, parameters and files




5.5.1.2. AIM Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------------------------
DIABT   |  5 |SM      ML      |K/s             |Pot. Temp.  Tendency (Mass-Weighted) from Diabatic Processes
DIABQ   |  5 |SM      ML      |g/kg/s          |Spec.Humid. Tendency (Mass-Weighted) from Diabatic Processes
RADSW   |  5 |SM      ML      |K/s             |Temperature Tendency due to Shortwave Radiation (TT_RSW)
RADLW   |  5 |SM      ML      |K/s             |Temperature Tendency due to Longwave  Radiation (TT_RLW)
DTCONV  |  5 |SM      MR      |K/s             |Temperature Tendency due to Convection (TT_CNV)
TURBT   |  5 |SM      ML      |K/s             |Temperature Tendency due to Turbulence in PBL (TT_PBL)
DTLS    |  5 |SM      ML      |K/s             |Temperature Tendency due to Large-scale condens. (TT_LSC)
DQCONV  |  5 |SM      MR      |g/kg/s          |Spec. Humidity Tendency due to Convection (QT_CNV)
TURBQ   |  5 |SM      ML      |g/kg/s          |Spec. Humidity Tendency due to Turbulence in PBL (QT_PBL)
DQLS    |  5 |SM      ML      |g/kg/s          |Spec. Humidity Tendency due to Large-Scale Condens. (QT_LSC)
TSR     |  1 |SM P    U1      |W/m^2           |Top-of-atm. net Shortwave Radiation (+=dw)
OLR     |  1 |SM P    U1      |W/m^2           |Outgoing Longwave  Radiation (+=up)
RADSWG  |  1 |SM P    L1      |W/m^2           |Net Shortwave Radiation at the Ground (+=dw)
RADLWG  |  1 |SM      L1      |W/m^2           |Net Longwave  Radiation at the Ground (+=up)
HFLUX   |  1 |SM      L1      |W/m^2           |Sensible Heat Flux (+=up)
EVAP    |  1 |SM      L1      |g/m^2/s         |Surface Evaporation (g/m2/s)
PRECON  |  1 |SM P    L1      |g/m^2/s         |Convective  Precipitation (g/m2/s)
PRECLS  |  1 |SM      M1      |g/m^2/s         |Large Scale Precipitation (g/m2/s)
CLDFRC  |  1 |SM P    M1      |0-1             |Total Cloud Fraction (0-1)
CLDPRS  |  1 |SM PC167M1      |0-1             |Cloud Top Pressure (normalized)
CLDMAS  |  5 |SM P    LL      |kg/m^2/s        |Cloud-base Mass Flux  (kg/m^2/s)
DRAG    |  5 |SM P    LL      |kg/m^2/s        |Surface Drag Coefficient (kg/m^2/s)
WINDS   |  1 |SM P    L1      |m/s             |Surface Wind Speed  (m/s)
TS      |  1 |SM      L1      |K               |near Surface Air Temperature  (K)
QS      |  1 |SM P    L1      |g/kg            |near Surface Specific Humidity  (g/kg)
ENPREC  |  1 |SM      M1      |W/m^2           |Energy flux associated with precip. (snow, rain Temp)
ALBVISDF|  1 |SM P    L1      |0-1             |Surface Albedo (Visible band) (0-1)
DWNLWG  |  1 |SM P    L1      |W/m^2           |Downward Component of Longwave Flux at the Ground (+=dw)
SWCLR   |  5 |SM      ML      |K/s             |Clear Sky Temp. Tendency due to Shortwave Radiation
LWCLR   |  5 |SM      ML      |K/s             |Clear Sky Temp. Tendency due to Longwave  Radiation
TSRCLR  |  1 |SM P    U1      |W/m^2           |Clear Sky Top-of-atm. net Shortwave Radiation (+=dw)
OLRCLR  |  1 |SM P    U1      |W/m^2           |Clear Sky Outgoing Longwave  Radiation  (+=up)
SWGCLR  |  1 |SM P    L1      |W/m^2           |Clear Sky Net Shortwave Radiation at the Ground (+=dw)
LWGCLR  |  1 |SM      L1      |W/m^2           |Clear Sky Net Longwave  Radiation at the Ground (+=up)
UFLUX   |  1 |UM   184L1      |N/m^2           |Zonal Wind Surface Stress  (N/m^2)
VFLUX   |  1 |VM   183L1      |N/m^2           |Meridional Wind Surface Stress  (N/m^2)
DTSIMPL |  1 |SM P    L1      |K               |Surf. Temp Change after 1 implicit time step








5.5.1.3. Experiments and tutorials that use aim


	Global atmosphere experiment in aim.5l_cs verification directory.









          

      

      

    

  

  
    
    
    5.5.2. Land package
    
    

    
 
  
  

    
      
          
            
  
5.5.2. Land package


5.5.2.1. Introduction

This package provides a simple land model based on Rong Zhang
[e-mail:roz@gfdl.noaa.gov] 2 layers model (see documentation below).

It is primarily implemented for AIM (_v23) atmospheric physics but
could be adapted to work with a different atmospheric physics. Two
subroutines (aim_aim2land.F aim_land2aim.F in pkg/aim_v23) are
used as interface with AIM physics.

Number of layers is a parameter (land_nLev in LAND_SIZE.h) and can
be changed.

Note on Land Model
date: June 1999
author: Rong Zhang




5.5.2.2. Equations and Key Parameters

This is a simple 2-layer land model. The top layer depth
\(z1=0.1m\), the second layer depth \(z2=4m\).

Let \(T_{g1},T_{g2}\) be the temperature of each layer,
\(W_{1,}W_{2}\) be the soil moisture of each layer. The field
capacity \(f_{1,}\) \(f_{2}\) are the maximum water amount in
each layer, so \(W_{i}\) is the ratio of available water to field
capacity. \(f_{i}=\gamma z_{i},\gamma =0.24\) is the field capapcity
per meter soil\(,\) so \(f_{1}=0.024m,\) \(f_{2}=0.96m.\)

The land temperature is determined by total surface downward heat flux
\(F,\)


\[z_{1}C_{1}\frac{dT_{g1}}{dt}=F-\lambda \frac{T_{g1}-T_{g2}}{(z_{1}+z_{2})/2}\]


\[z_{2}C_{2}\frac{dT_{g2}}{dt}=\lambda \frac{T_{g1}-T_{g2}}{(z_{1}+z_{2})/2}\]

here \(C_{1},C_{2}\) are the heat capacity of each layer ,
\(\lambda ` is the thermal conductivity,
:math:\)lambda =0.42Wm^{-1}K^{-1}.`


\[C_{1}=C_{w}W_{1}\gamma +C_{s}\]


\[C_{2}=C_{w}W_{2}\gamma +C_{s}\]

\(C_{w},C_{s}\) are the heat capacity of water and dry soil
respectively. \(%
C_{w}=4.2\times 10^{6}Jm^{-3}K^{-1},C_{s}=1.13\times 10^{6}Jm^{-3}K^{-1}.\)

The soil moisture is determined by precipitation \(P(m/s)\),surface
evaporation \(E(m/s)\) and runoff \(R(m/s).\)


\[\frac{dW_{1}}{dt}=\frac{P-E-R}{f_{1}}+\frac{W_{2}-W_{1}}{\tau }\]

\(\tau =2\) \(days\) is the time constant for diffusion of
moisture between layers.


\[\frac{dW_{2}}{dt}=\frac{f_{1}}{f_{2}}\frac{W_{1}-W_{2}}{\tau }\]

In the code, \(R=0\) gives better result, \(W_{1},W_{2}\) are
set to be within [0, 1]. If \(W_{1}\) is greater than 1, then let
\(\delta W_{1}=W_{1}-1,W_{1}=1\) and
\(W_{2}=W_{2}+p\delta W_{1}\frac{f_{1}}{f_{2}}\), i.e. the runoff of
top layer is put into second layer. \(p=0.5\) is the fraction of top
layer runoff that is put into second layer.

The time step is 1 hour, it takes several years to reach equalibrium
offline.




5.5.2.3. Land diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------------------------
GrdSurfT|  1 |SM      Lg      |degC            |Surface Temperature over land
GrdTemp |  2 |SM      MG      |degC            |Ground Temperature at each level
GrdEnth |  2 |SM      MG      |J/m3            |Ground Enthalpy at each level
GrdWater|  2 |SM P    MG      |0-1             |Ground Water (vs Field Capacity) Fraction at each level
LdSnowH |  1 |SM P    Lg      |m               |Snow Thickness over land
LdSnwAge|  1 |SM P    Lg      |s               |Snow Age over land
RUNOFF  |  1 |SM      L1      |m/s             |Run-Off per surface unit
EnRunOff|  1 |SM      L1      |W/m^2           |Energy flux associated with run-Off
landHFlx|  1 |SM      Lg      |W/m^2           |net surface downward Heat flux over land
landPmE |  1 |SM      Lg      |kg/m^2/s        |Precipitation minus Evaporation over land
ldEnFxPr|  1 |SM      Lg      |W/m^2           |Energy flux (over land) associated with Precip (snow,rain)








5.5.2.4. References

Hansen J. et al. Efficient three-dimensional global models for climate
studies: models I and II. Monthly Weather Review, vol.111, no.4, pp.
609-62, 1983




5.5.2.5. Experiments and tutorials that use land


	Global atmosphere experiment in aim.5l_cs verification directory.









          

      

      

    

  

  
    
    
    5.5.3. Fizhi: High-end Atmospheric Physics
    
    

    
 
  
  

    
      
          
            
  
5.5.3. Fizhi: High-end Atmospheric Physics


5.5.3.1. Introduction

The fizhi (high-end atmospheric physics) package includes a collection
of state-of-the-art physical parameterizations for atmospheric
radiation, cumulus convection, atmospheric boundary layer turbulence,
and land surface processes. The collection of atmospheric physics
parameterizations were originally used together as part of the GEOS-3
(Goddard Earth Observing System-3) GCM developed at the NASA/Goddard
Global Modelling and Assimilation Office (GMAO).




5.5.3.2. Equations

Moist Convective Processes:


Sub-grid and Large-scale Convection

Sub-grid scale cumulus convection is parameterized using the Relaxed
Arakawa Schubert (RAS) scheme of [MS92], which is a linearized Arakawa
Schubert type scheme. RAS predicts the mass flux from an ensemble of
clouds. Each subensemble is identified by its entrainment rate and level
of neutral bouyancy which are determined by the grid-scale properties.

The thermodynamic variables that are used in RAS to describe the grid
scale vertical profile are the dry static energy, \(s=c_pT +gz\),
and the moist static energy, \(h=c_p T + gz + Lq\). The conceptual
model behind RAS depicts each subensemble as a rising plume cloud,
entraining mass from the environment during ascent, and detraining all
cloud air at the level of neutral buoyancy. RAS assumes that the
normalized cloud mass flux, \(\eta\), normalized by the cloud base
mass flux, is a linear function of height, expressed as:


\[\pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
-\frac{c_p}{g}\theta\lambda\]

where we have used the hydrostatic equation written in the form:


\[\pp{z}{P^{\kappa}} = -\frac{c_p}{g}\theta\]

The entrainment parameter, \(\lambda\), characterizes a particular
subensemble based on its detrainment level, and is obtained by assuming
that the level of detrainment is the level of neutral buoyancy, ie., the
level at which the moist static energy of the cloud, \(h_c\), is
equal to the saturation moist static energy of the environment,
\(h^*\). Following [MS92], \(\lambda\) may be written as


\[\lambda = \frac{h_B - h^*_D}{ \frac{c_p}{g} \int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}},\]

where the subscript \(B\) refers to cloud base, and the subscript
\(D\) refers to the detrainment level.

The convective instability is measured in terms of the cloud work
function \(A\), defined as the rate of change of cumulus kinetic
energy. The cloud work function is related to the buoyancy, or the
difference between the moist static energy in the cloud and in the
environment:


\[A = \int_{P_D}^{P_B} \frac{\eta}{1 + \gamma}
\left[ \frac{h_c-h^*}{P^{\kappa}} \right] dP^{\kappa}\]

where \(\gamma\) is \(\frac{L}{c_p}\pp{q^*}{T}\) obtained from
the Claussius Clapeyron equation, and the subscript \(c\) refers to
the value inside the cloud.

To determine the cloud base mass flux, the rate of change of \(A\)
in time due to dissipation by the clouds is assumed to approximately
balance the rate of change of \(A\) due to the generation by the
large scale. This is the quasi-equilibrium assumption, and results in
an expression for \(m_B\):


\[m_B = \frac{- \left. \frac{dA}{dt} \right|_{ls}}{K}\]

where \(K\) is the cloud kernel, defined as the rate of change of
the cloud work function per unit cloud base mass flux, and is currently
obtained by analytically differentiating the expression for \(A\) in
time. The rate of change of \(A\) due to the generation by the large
scale can be written as the difference between the current
\(A(t+\Delta t)\) and its equillibrated value after the previous
convective time step \(A(t)\), divided by the time step.
\(A(t)\) is approximated as some critical \(A_{crit}\), computed
by Lord (1982) from \(in situ\) observations.

The predicted convective mass fluxes are used to solve grid-scale
temperature and moisture budget equations to determine the impact of
convection on the large scale fields of temperature (through latent
heating and compensating subsidence) and moisture (through precipitation
and detrainment):


\[\left.{\pp{\theta}{t}}\right|_{c} = \alpha \frac{ m_B}{c_p P^{\kappa}} \eta \pp{s}{p}\]

and


\[ \begin{align}\begin{aligned}\left.{\pp{q}{t}}\right|_{c} = \alpha \frac{ m_B}{L} \eta (\pp{h}{p}-\pp{s}{p})\\where :math:`\theta = \frac{T}{P^{\kappa}}`, :math:`P = (p/p_0)`, and\end{aligned}\end{align} \]

\(\alpha\) is the relaxation parameter.

As an approximation to a full interaction between the different
allowable subensembles, many clouds are simulated frequently, each
modifying the large scale environment some fraction \(\alpha\) of
the total adjustment. The parameterization thereby “relaxes” the large
scale environment towards equillibrium.

In addition to the RAS cumulus convection scheme, the fizhi package
employs a Kessler-type scheme for the re-evaporation of falling rain [SM88],
which correspondingly adjusts the temperature assuming \(h\) is
conserved. RAS in its current formulation assumes that all cloud water
is deposited into the detrainment level as rain. All of the rain is
available for re-evaporation, which begins in the level below
detrainment. The scheme accounts for some microphysics such as the
rainfall intensity, the drop size distribution, as well as the
temperature, pressure and relative humidity of the surrounding air. The
fraction of the moisture deficit in any model layer into which the rain
may re-evaporate is controlled by a free parameter, which allows for a
relatively efficient re-evaporation of liquid precipitate and larger
rainout for frozen precipitation.

Due to the increased vertical resolution near the surface, the lowest
model layers are averaged to provide a 50 mb thick sub-cloud layer for
RAS. Each time RAS is invoked (every ten simulated minutes), a number of
randomly chosen subensembles are checked for the possibility of
convection, from just above cloud base to 10 mb.

Supersaturation or large-scale precipitation is initiated in the fizhi
package whenever the relative humidity in any grid-box exceeds a
critical value, currently 100 %. The large-scale precipitation
re-evaporates during descent to partially saturate lower layers in a
process identical to the re-evaporation of convective rain.




Cloud Formation

Convective and large-scale cloud fractons which are used for
cloud-radiative interactions are determined diagnostically as part of
the cumulus and large-scale parameterizations. Convective cloud
fractions produced by RAS are proportional to the detrained liquid water
amount given by


\[F_{RAS} = \min\left[ \frac{l_{RAS}}{l_c}, 1.0 \right]\]

where \(l_c\) is an assigned critical value equal to \(1.25\)
g/kg. A memory is associated with convective clouds defined by:


\[F_{RAS}^n = \min\left[ F_{RAS} + (1-\frac{\Delta t_{RAS}}{\tau})F_{RAS}^{n-1}, 1.0 \right]\]

where \(F_{RAS}\) is the instantanious cloud fraction and
\(F_{RAS}^{n-1}\) is the cloud fraction from the previous RAS
timestep. The memory coefficient is computed using a RAS cloud
timescale, \(\tau\), equal to 1 hour. RAS cloud fractions are
cleared when they fall below 5 %.

Large-scale cloudiness is defined, following Slingo and Ritter (1985),
as a function of relative humidity:


\[F_{LS} = \min\left[ { \left( \frac{RH-RH_c}{1-RH_c} \right) }^2, 1.0 \right]\]

where

RHc & = & 1-s(1-s)(2-+2 s)r
s & = & p/psurf
r & = & ( )
RHmin & = & 0.75
& = & 0.573285 .

These cloud fractions are suppressed, however, in regions where the
convective sub-cloud layer is conditionally unstable. The functional
form of \(RH_c\) is shown in Figure 5.9



[image: critical relative humidity for clouds]Figure 5.9 Critical Relative Humidity for Clouds.






The total cloud fraction in a grid box is determined by the larger of
the two cloud fractions:


\[F_{CLD} = \max \left[ F_{RAS},F_{LS} \right] .\]

Finally, cloud fractions are time-averaged between calls to the
radiation packages.

Radiation:

The parameterization of radiative heating in the fizhi package includes
effects from both shortwave and longwave processes. Radiative fluxes are
calculated at each model edge-level in both up and down directions. The
heating rates/cooling rates are then obtained from the vertical
divergence of the net radiative fluxes.

The net flux is


\[F = F^\uparrow - F^\downarrow\]

where \(F\) is the net flux, \(F^\uparrow\) is the upward flux
and \(F^\downarrow\) is the downward flux.

The heating rate due to the divergence of the radiative flux is given by


\[\pp{\rho c_p T}{t} = - \pp{F}{z}\]

or


\[ \begin{align}\begin{aligned}\pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma}\\where :math:`g` is the accelation due to gravity and :math:`c_p` is the\end{aligned}\end{align} \]

heat capacity of air at constant pressure.

The time tendency for Longwave Radiation is updated every 3 hours. The
time tendency for Shortwave Radiation is updated once every three hours
assuming a normalized incident solar radiation, and subsequently
modified at every model time step by the true incident radiation. The
solar constant value used in the package is equal to 1365 \(W/m^2\)
and a \(CO_2\) mixing ratio of 330 ppm. For the ozone mixing ratio,
monthly mean zonally averaged climatological values specified as a
function of latitude and height [RSG87] are linearly interpolated to the
current time.




Shortwave Radiation

The shortwave radiation package used in the package computes solar
radiative heating due to the absoption by water vapor, ozone, carbon
dioxide, oxygen, clouds, and aerosols and due to the scattering by
clouds, aerosols, and gases. The shortwave radiative processes are
described by [Cho90][Cho92]. This shortwave package uses the Delta-Eddington
approximation to compute the bulk scattering properties of a single
layer following King and Harshvardhan (JAS, 1986). The transmittance and
reflectance of diffuse radiation follow the procedures of Sagan and
Pollock (JGR, 1967) and [LH74].

Highly accurate heating rate calculations are obtained through the use
of an optimal grouping strategy of spectral bands. By grouping the UV
and visible regions as indicated in Table 5.10, the
Rayleigh scattering and the ozone absorption of solar radiation can be
accurately computed in the ultraviolet region and the photosynthetically
active radiation (PAR) region. The computation of solar flux in the
infrared region is performed with a broadband parameterization using the
spectrum regions shown in Table 5.11. The solar radiation
algorithm used in the fizhi package can be applied not only for climate
studies but also for studies on the photolysis in the upper atmosphere
and the photosynthesis in the biosphere.


Table 5.10 UV and Visible Spectral Regions used in shortwave radiation package.






	UV and Visible Spectral Regions


	Region
	Band
	Wavelength (micron)




	UV-C
	
	




	.175 - .225


	 
	
	




	.225 - .245


	 
	 
	.260 - .280


	 
	
	




	.245 - .260


	UV-B
	
	




	.280 - .295


	 
	
	




	.295 - .310


	 
	
	




	.310 - .320


	UV-A
	
	




	.320 - .400


	PAR
	
	




	.400 - .700






Table 5.11 Infrared Spectral Regions used in shortwave radiation package.






	Infrared Spectral Regions


	Band
	Wavenumber (cm–1)
	Wavelength (micron)




	1
	1000-4400
	2.27-10.0


	2
	4400-8200
	1.22-2.27


	3
	8200-14300
	0.70-1.22





Within the shortwave radiation package, both ice and liquid cloud
particles are allowed to co-exist in any of the model layers. Two sets
of cloud parameters are used, one for ice paticles and the other for
liquid particles. Cloud parameters are defined as the cloud optical
thickness and the effective cloud particle size. In the fizhi package,
the effective radius for water droplets is given as 10 microns, while 65
microns is used for ice particles. The absorption due to aerosols is
currently set to zero.

To simplify calculations in a cloudy atmosphere, clouds are grouped into
low (\(p>700\) mb), middle (700 mb \(\ge p > 400\) mb), and high
(\(p < 400\) mb) cloud regions. Within each of the three regions,
clouds are assumed maximally overlapped, and the cloud cover of the
group is the maximum cloud cover of all the layers in the group. The
optical thickness of a given layer is then scaled for both the direct
(as a function of the solar zenith angle) and diffuse beam radiation so
that the grouped layer reflectance is the same as the original
reflectance. The solar flux is computed for each of eight cloud
realizations possible within this low/middle/high classification, and
appropriately averaged to produce the net solar flux.




Longwave Radiation

The longwave radiation package used in the fizhi package is thoroughly
described by . As described in that document, IR fluxes are computed due
to absorption by water vapor, carbon dioxide, and ozone. The spectral
bands together with their absorbers and parameterization methods,
configured for the fizhi package, are shown in Table 5.12.


Table 5.12 IR Spectral Bands, Absorbers, and Parameterization Method (from [CMJSuarez94])







	IR Spectral Bands


	Band
	Spectral Range (cm–1)
	Absorber
	Method




	1
	0-340
	H\(_2\)O line
	T


	2
	340-540
	H\(_2\)O line
	T


	3a
	540-620
	H\(_2\)O line
	K


	3b
	620-720
	H\(_2\)O continuum
	S


	3b
	720-800
	CO\(_2\)
	T


	4
	800-980
	H\(_2\)O line
	K


	 
	 
	H\(_2\)O continuum
	S


	 
	 
	H\(_2\)O line
	K


	5
	980-1100
	H\(_2\)O continuum
	S


	 
	 
	O\(_3\)
	T


	6
	1100-1380
	H\(_2\)O line
	K


	 
	 
	H\(_2\)O continuum
	S


	7
	1380-1900
	H\(_2\)O line
	T


	8
	1900-3000
	H\(_2\)O line
	K


	K: \(k\)-distribution method with linear pressure scaling


	T: Table look-up with temperature and pressure scaling


	S: One-parameter temperature scaling





The longwave radiation package accurately computes cooling rates for the
middle and lower atmosphere from 0.01 mb to the surface. Errors are
\(<\) 0.4 C day\(^{-1}\) in cooling rates and \(<\) 1% in
fluxes. From Chou and Suarez, it is estimated that the total effect of
neglecting all minor absorption bands and the effects of minor infrared
absorbers such as nitrous oxide (N:math:_2O), methane
(CH:math:_4), and the chlorofluorocarbons (CFCs), is an underestimate
of \(\approx\) 5 W/m\(^2\) in the downward flux at the surface
and an overestimate of \(\approx\) 3 W/m\(^2\) in the upward
flux at the top of the atmosphere.

Similar to the procedure used in the shortwave radiation package, clouds
are grouped into three regions catagorized as low/middle/high. The net
clear line-of-site probability \((P)\) between any two levels,
\(p_1\) and \(p_2 \quad (p_2 > p_1)\), assuming randomly
overlapped cloud groups, is simply the product of the probabilities
within each group:


\[P_{net} = P_{low} \times P_{mid} \times P_{hi} .\]

Since all clouds within a group are assumed maximally overlapped, the
clear line-of-site probability within a group is given by:


\[P_{group} = 1 - F_{max} ,\]

where \(F_{max}\) is the maximum cloud fraction encountered between
\(p_1\) and \(p_2\) within that group. For groups and/or levels
outside the range of \(p_1\) and \(p_2\), a clear line-of-site
probability equal to 1 is assigned.




Cloud-Radiation Interaction

The cloud fractions and diagnosed cloud liquid water produced by moist
processes within the fizhi package are used in the radiation packages to
produce cloud-radiative forcing. The cloud optical thickness associated
with large-scale cloudiness is made proportional to the diagnosed
large-scale liquid water, \(\ell\), detrained due to
super-saturation. Two values are used corresponding to cloud ice
particles and water droplets. The range of optical thickness for these
clouds is given as


\[0.0002 \le \tau_{ice} (mb^{-1}) \le 0.002  \quad\mbox{for}\quad  0 \le \ell \le 2 \quad\mbox{mg/kg} ,\]


\[0.02 \le \tau_{h_2o} (mb^{-1}) \le 0.2  \quad\mbox{for}\quad  0 \le \ell \le 10 \quad\mbox{mg/kg} .\]

The partitioning, \(\alpha\), between ice particles and water
droplets is achieved through a linear scaling in temperature:


\[0 \le \alpha \le 1 \quad\mbox{for}\quad  233.15 \le T \le 253.15 .\]

The resulting optical depth associated with large-scale cloudiness is
given as


\[\tau_{LS} = \alpha \tau_{h_2o} + (1-\alpha)\tau_{ice} .\]

The optical thickness associated with sub-grid scale convective clouds
produced by RAS is given as


\[\tau_{RAS} = 0.16 \quad mb^{-1} .\]

The total optical depth in a given model layer is computed as a weighted
average between the large-scale and sub-grid scale optical depths,
normalized by the total cloud fraction in the layer:


\[\tau = \left( \frac{F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} }{ F_{RAS}+F_{LS} } \right) \Delta p,\]

where \(F_{RAS}\) and \(F_{LS}\) are the time-averaged cloud
fractions associated with RAS and large-scale processes described in
Section [sec:fizhi:clouds]. The optical thickness for the longwave
radiative feedback is assumed to be 75 \(\%\) of these values.

The entire Moist Convective Processes Module is called with a frequency
of 10 minutes. The cloud fraction values are time-averaged over the
period between Radiation calls (every 3 hours). Therefore, in a
time-averaged sense, both convective and large-scale cloudiness can
exist in a given grid-box.




Turbulence

Turbulence is parameterized in the fizhi package to account for its
contribution to the vertical exchange of heat, moisture, and momentum.
The turbulence scheme is invoked every 30 minutes, and employs a
backward-implicit iterative time scheme with an internal time step of 5
minutes. The tendencies of atmospheric state variables due to turbulent
diffusion are calculated using the diffusion equations:


\[{\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
 = {\pp{}{z} }{(K_m \pp{u}{z})}\]


\[{\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
 = {\pp{}{z} }{(K_m \pp{v}{z})}\]


\[{\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}\]


\[{\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
 = {\pp{}{z} }{(K_h \pp{q}{z})}\]

Within the atmosphere, the time evolution of second turbulent moments is
explicitly modeled by representing the third moments in terms of the
first and second moments. This approach is known as a second-order
closure modeling. To simplify and streamline the computation of the
second moments, the level 2.5 assumption of Mellor and Yamada (1974) and [Yam77]
is employed, in which only the turbulent kinetic energy (TKE),


\[{\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}},\]

is solved prognostically and the other second moments are solved
diagnostically. The prognostic equation for TKE allows the scheme to
simulate some of the transient and diffusive effects in the turbulence.
The TKE budget equation is solved numerically using an implicit backward
computation of the terms linear in \(q^2\) and is written:


\[{\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ \frac{5}{3} {{\lambda}_1} q { \pp {}{z}
({\h}q^2)} })} =
{- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
{ \pp{V}{z} }} + {\frac{g}{\Theta_0}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}}
- \frac{ q^3}{{\Lambda}_1} }\]

where \(q\) is the turbulent velocity, \({u^{\prime}}\),
\({v^{\prime}}\), \({w^{\prime}}\) and
\({{\theta}^{\prime}}\) are the fluctuating parts of the velocity
components and potential temperature, \(U\) and \(V\) are the
mean velocity components, \({\Theta_0}^{-1}\) is the coefficient of
thermal expansion, and \({{\lambda}_1}\) and \({{\Lambda} _1}\)
are constant multiples of the master length scale, \(\ell\), which
is designed to be a characteristic measure of the vertical structure of
the turbulent layers.

The first term on the left-hand side represents the time rate of change
of TKE, and the second term is a representation of the triple
correlation, or turbulent transport term. The first three terms on the
right-hand side represent the sources of TKE due to shear and bouyancy,
and the last term on the right hand side is the dissipation of TKE.

In the level 2.5 approach, the vertical fluxes of the scalars
\(\theta_v\) and \(q\) and the wind components \(u\) and
\(v\) are expressed in terms of the diffusion coefficients
\(K_h\) and \(K_m\), respectively. In the statisically
realizable level 2.5 turbulence scheme of [HL88], these diffusion coefficients
are expressed as


\[\begin{split}K_h
 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
\\ \frac{ q^2 }{ q_e } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.\end{split}\]

and


\[\begin{split}K_m
 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}
\\ \frac{ q^2 }{ q_e } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.\end{split}\]

where the subscript \(e\) refers to the value under conditions of
local equillibrium (obtained from the Level 2.0 Model), \(\ell\) is
the master length scale related to the vertical structure of the
atmosphere, and \(S_M\) and \(S_H\) are functions of \(G_H\)
and \(G_M\), the dimensionless buoyancy and wind shear parameters,
respectively. Both \(G_H\) and \(G_M\), and their equilibrium
values \(G_{H_e}\) and \(G_{M_e}\), are functions of the
Richardson number:


\[{\bf RI} = \frac{ \frac{g}{\theta_v} \pp{\theta_v}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
 =  \frac{c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 } .\]

Negative values indicate unstable buoyancy and shear, small positive
values (\(<0.2\)) indicate dominantly unstable shear, and large
positive values indicate dominantly stable stratification.

Turbulent eddy diffusion coefficients of momentum, heat and moisture in
the surface layer, which corresponds to the lowest GCM level (see —
missing table —), are calculated using stability-dependant functions
based on Monin-Obukhov theory:


\[{K_m} (surface) = C_u \times u_* = C_D W_s\]

and


\[ \begin{align}\begin{aligned}{K_h} (surface) =  C_t \times u_* = C_H W_s\\where :math:`u_*=C_uW_s` is the surface friction velocity, :math:`C_D`\end{aligned}\end{align} \]

is termed the surface drag coefficient, \(C_H\) the heat transfer
coefficient, and \(W_s\) is the magnitude of the surface layer wind.

\(C_u\) is the dimensionless exchange coefficient for momentum from
the surface layer similarity functions:


\[{C_u} = \frac{u_* }{ W_s} = \frac{ k }{ \psi_{m} }\]

where k is the Von Karman constant and \(\psi_m\) is the surface
layer non-dimensional wind shear given by


\[ \begin{align}\begin{aligned}\psi_{m} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{m} }{ \zeta} d \zeta} .\\Here :math:`\zeta` is the non-dimensional stability parameter, and\end{aligned}\end{align} \]

\(\phi_m\) is the similarity function of \(\zeta\) which
expresses the stability dependance of the momentum gradient. The
functional form of \(\phi_m\) is specified differently for stable
and unstable layers.

\(C_t\) is the dimensionless exchange coefficient for heat and
moisture from the surface layer similarity functions:


\[{C_t} = -\frac{( \overline{w^{\prime}\theta^{\prime}}) }{ u_* \Delta \theta } =
-\frac{( \overline{w^{\prime}q^{\prime}}) }{ u_* \Delta q } =
\frac{ k }{ (\psi_{h} + \psi_{g}) }\]

where \(\psi_h\) is the surface layer non-dimensional temperature
gradient given by


\[ \begin{align}\begin{aligned}\psi_{h} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{h} }{ \zeta} d \zeta} .\\Here :math:`\phi_h` is the similarity function of :math:`\zeta`, which\end{aligned}\end{align} \]

expresses the stability dependance of the temperature and moisture
gradients, and is specified differently for stable and unstable layers
according to [HS95].

\(\psi_g\) is the non-dimensional temperature or moisture gradient
in the viscous sublayer, which is the mosstly laminar region between the
surface and the tops of the roughness elements, in which temperature and
moisture gradients can be quite large. Based on [YK74]:


\[\psi_{g} = \frac{ 0.55 (Pr^{2/3} - 0.2) }{ \nu^{1/2} }
(h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}\]

where Pr is the Prandtl number for air, \(\nu\) is the molecular
viscosity, \(z_{0}\) is the surface roughness length, and the
subscript ref refers to a reference value. \(h_{0} = 30z_{0}\)
with a maximum value over land of 0.01

The surface roughness length over oceans is is a function of the
surface-stress velocity,


\[{z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + \frac{c_5 }{ u_*}\]

where the constants are chosen to interpolate between the reciprocal
relation of [Kon75] for weak winds, and the piecewise linear relation of [LP81] for
moderate to large winds. Roughness lengths over land are specified from
the climatology of [DS89].

For an unstable surface layer, the stability functions, chosen to
interpolate between the condition of small values of \(\beta\) and
the convective limit, are the KEYPS function [Pan73] for momentum, and its
generalization for heat and moisture:


\[{\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
{\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .\]

The function for heat and moisture assures non-vanishing heat and
moisture fluxes as the wind speed approaches zero.

For a stable surface layer, the stability functions are the
observationally based functions of [Cla70], slightly modified for the momemtum
flux:


\[{\phi_m} = \frac{ 1 + 5 {{\zeta}_1} }{ 1 + 0.00794 {\zeta}_1
(1+ 5 {\zeta}_1) } \hspace{1cm} ; \hspace{1cm}
{\phi_h} = \frac{ 1 + 5 {{\zeta}_1} }{ 1 + 0.00794 {\zeta}
(1+ 5 {{\zeta}_1}) } .\]

The moisture flux also depends on a specified evapotranspiration
coefficient, set to unity over oceans and dependant on the
climatological ground wetness over land.

Once all the diffusion coefficients are calculated, the diffusion
equations are solved numerically using an implicit backward operator.




Atmospheric Boundary Layer

The depth of the atmospheric boundary layer (ABL) is diagnosed by the
parameterization as the level at which the turbulent kinetic energy is
reduced to a tenth of its maximum near surface value. The vertical
structure of the ABL is explicitly resolved by the lowest few (3-8)
model layers.




Surface Energy Budget

The ground temperature equation is solved as part of the turbulence
package using a backward implicit time differencing scheme:


\[C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE\]

where \(R_{sw}\) is the net surface downward shortwave radiative
flux and \(R_{lw}\) is the net surface upward longwave radiative
flux.

\(H\) is the upward sensible heat flux, given by:


\[{H} =  P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{NLAY})
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t\]

where \(\rho\) = the atmospheric density at the surface,
\(c_{p}\) is the specific heat of air at constant pressure, and
\(\theta\) represents the potential temperature of the surface and
of the lowest \(\sigma\)-level, respectively.

The upward latent heat flux, \(LE\), is given by


\[{LE} =  \rho \beta L C_{H} W_s (q_{surface} - q_{NLAY})
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t\]

where \(\beta\) is the fraction of the potential evapotranspiration
actually evaporated, L is the latent heat of evaporation, and
\(q_{surface}\) and \(q_{NLAY}\) are the specific humidity of
the surface and of the lowest \(\sigma\)-level, respectively.

The heat conduction through sea ice, \(Q_{ice}\), is given by


\[{Q_{ice}} = \frac{C_{ti} }{ H_i} (T_i-T_g)\]

where \(C_{ti}\) is the thermal conductivity of ice, \(H_i\) is
the ice thickness, assumed to be \(3 \hspace{.1cm} m\) where sea ice
is present, \(T_i\) is 273 degrees Kelvin, and \(T_g\) is the
surface temperature of the ice.

\(C_g\) is the total heat capacity of the ground, obtained by
solving a heat diffusion equation for the penetration of the diurnal
cycle into the ground (), and is given by:


\[C_g = \sqrt{ \frac{\lambda C_s }{ 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
\frac{86400}{2\pi} } \, \, .\]

Here, the thermal conductivity, \(\lambda\), is equal to
\(2\times10^{-3}\) \(\frac{ly}{sec}
\frac{cm}{K}\), the angular velocity of the earth, \(\omega\), is
written as \(86400\) \(sec/day\) divided by \(2 \pi\)
\(radians/
day\), and the expression for \(C_s\), the heat capacity per unit
volume at the surface, is a function of the ground wetness, \(W\).

Land Surface Processes:




Surface Type

The fizhi package surface Types are designated using the Koster-Suarez
[KS91][KS92] Land Surface Model (LSM) mosaic philosophy which allows multiple
“tiles”, or multiple surface types, in any one grid cell. The
Koster-Suarez LSM surface type classifications are shown in Table 5.13. The surface types and the percent of the grid cell
occupied by any surface type were derived from the surface
classification of [DT94], and information about the location of permanent ice
was obtained from the classifications of [DS89]. The surface type map for a
\(1^\circ\) grid is shown in Figure 5.10. The
determination of the land or sea category of surface type was made from
NCAR’s 10 minute by 10 minute Navy topography dataset, which includes
information about the percentage of water-cover at any point. The data
were averaged to the model’s grid resolutions, and any grid-box whose
averaged water percentage was \(\geq 60 \%\) was defined as a water
point. The Land-Water designation was further modified subjectively to
ensure sufficient representation from small but isolated land and water
regions.


Table 5.13 Surface Type Designation





	Type
	Vegetation Designation




	1
	Broadleaf Evergreen Trees


	2
	Broadleaf Deciduous Trees


	3
	Needleleaf Trees


	4
	Ground Cover


	5
	Broadleaf Shrubs


	6
	Dwarf Trees (Tundra)


	7
	Bare Soil


	8
	Desert (Bright)


	9
	Glacier


	10
	Desert (Dark)


	100
	Ocean






[image: surface type combinations]Figure 5.10 Surface type combinations






Surface Roughness

The surface roughness length over oceans is computed iteratively with
the wind stress by the surface layer parameterization [HS95]. It employs an
interpolation between the functions of [LP81] for high winds and of [Kon75] for weak
winds.




Albedo

The surface albedo computation, described in , employs the “two stream”
approximation used in Sellers’ (1987) Simple Biosphere (SiB) Model which
distinguishes between the direct and diffuse albedos in the visible and
in the near infra-red spectral ranges. The albedos are functions of the
observed leaf area index (a description of the relative orientation of
the leaves to the sun), the greenness fraction, the vegetation type, and
the solar zenith angle. Modifications are made to account for the
presence of snow, and its depth relative to the height of the vegetation
elements.




Gravity Wave Drag

The fizhi package employs the gravity wave drag scheme of [ZSL95]. This scheme
is a modified version of Vernekar et al. (1992), which was based on
Alpert et al. (1988) and Helfand et al. (1987). In this version, the
gravity wave stress at the surface is based on that derived by
Pierrehumbert (1986) and is given by:


\[|\vec{\tau}_{sfc}| = \frac{\rho U^3}{N \ell^*} \left( \frac{F_r^2}{1+F_r^2}\right) \, \, ,\]

where \(F_r = N h /U\) is the Froude number, \(N\) is the Brunt
- Väisälä frequency, \(U\) is the surface wind speed, \(h\) is
the standard deviation of the sub-grid scale orography, and
\(\ell^*\) is the wavelength of the monochromatic gravity wave in
the direction of the low-level wind. A modification introduced by Zhou
et al. allows for the momentum flux to escape through the top of the
model, although this effect is small for the current 70-level model. The
subgrid scale standard deviation is defined by \(h\), and is not
allowed to exceed 400 m.

The effects of using this scheme within a GCM are shown in [TS96]. Experiments
using the gravity wave drag parameterization yielded significant and
beneficial impacts on both the time-mean flow and the transient
statistics of the a GCM climatology, and have eliminated most of the
worst dynamically driven biases in the a GCM simulation. An examination
of the angular momentum budget during climate runs indicates that the
resulting gravity wave torque is similar to the data-driven torque
produced by a data assimilation which was performed without gravity wave
drag. It was shown that the inclusion of gravity wave drag results in
large changes in both the mean flow and in eddy fluxes. The result is a
more accurate simulation of surface stress (through a reduction in the
surface wind strength), of mountain torque (through a redistribution of
mean sea-level pressure), and of momentum convergence (through a
reduction in the flux of westerly momentum by transient flow eddies).

Boundary Conditions and other Input Data:

Required fields which are not explicitly predicted or diagnosed during
model execution must either be prescribed internally or obtained from
external data sets. In the fizhi package these fields include: sea
surface temperature, sea ice estent, surface geopotential variance,
vegetation index, and the radiation-related background levels of: ozone,
carbon dioxide, and stratospheric moisture.

Boundary condition data sets are available at the model’s resolutions
for either climatological or yearly varying conditions. Any frequency of
boundary condition data can be used in the fizhi package; however, the
current selection of data is summarized in Table 5.14. The
time mean values are interpolated during each model timestep to the
current time.


Table 5.14 Boundary conditions and other input data used in the fizhi package. Also noted are the current years and frequencies available.






	Fizhi Input Datasets


	Sea Ice Extent
	monthly
	1979-current, climatology


	Sea Ice Extent
	weekly
	1982-current, climatology


	Sea Surface Temperature
	monthly
	1979-current, climatology


	Sea Surface Temperature
	weekly
	1982-current, climatology


	Zonally Averaged Upper-Level Moisture
	monthly
	climatology


	Zonally Averaged Ozone Concentration
	monthly
	climatology








Topography and Topography Variance

Surface geopotential heights are provided from an averaging of the Navy
10 minute by 10 minute dataset supplied by the National Center for
Atmospheric Research (NCAR) to the model’s grid resolution. The original
topography is first rotated to the proper grid-orientation which is
being run, and then averages the data to the model resolution.

The standard deviation of the subgrid-scale topography is computed by
interpolating the 10 minute data to the model’s resolution and
re-interpolating back to the 10 minute by 10 minute resolution. The
sub-grid scale variance is constructed based on this smoothed dataset.




Upper Level Moisture

The fizhi package uses climatological water vapor data above 100 mb from
the Stratospheric Aerosol and Gas Experiment (SAGE) as input into the
model’s radiation packages. The SAGE data is archived as monthly zonal
means at \(5^\circ\) latitudinal resolution. The data is
interpolated to the model’s grid location and current time, and blended
with the GCM’s moisture data. Below 300 mb, the model’s moisture data is
used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb, a
linear interpolation (in pressure) is performed using the data from SAGE
and the GCM.






5.5.3.3. Fizhi Diagnostics

Fizhi Diagnostic Menu: [sec:pkg:fizhi:diagnostics]









	NAME
	UNITS
	LEVELS
	DESCRIPTION


	UFLUX
	N m–2
	1
	Surface U-Wind Stress on the atmosphere


	VFLUX
	N m–2
	1
	Surface V-Wind Stress on the atmosphere


	HFLUX
	W m–2
	1
	Surface Flux of Sensible Heat


	EFLUX
	W m–2
	1
	Surface Flux of Latent Heat


	QICE
	W m–2
	1
	Heat Conduction through Sea-Ice


	RADLWG
	W m–2
	1
	Net upward LW flux at the ground


	RADSWG
	W m–2
	1
	Net downward SW flux at the ground


	RI
	dimensionless
	Nrphys
	Richardson Number


	CT
	dimensionless
	1
	Surface Drag coefficient for T and Q


	CU
	dimensionless
	1
	Surface Drag coefficient for U and V


	ET
	m2 s–1
	Nrphys
	Diffusivity coefficient for T and Q


	EU
	m2 s–1
	Nrphys
	Diffusivity coefficient for U and V


	TURBU
	m s–1 day–1
	Nrphys
	U-Momentum Changes due to Turbulence


	TURBV
	m s–1 day–1
	Nrphys
	V-Momentum Changes due to Turbulence


	TURBT
	deg day–1
	Nrphys
	Temperature Changes due to Turbulence


	TURBQ
	g/kg/day
	Nrphys
	Specific Humidity Changes due to Turbulence


	MOISTT
	deg day–1
	Nrphys
	Temperature Changes due to Moist Processes


	MOISTQ
	g/kg/day
	Nrphys
	Specific Humidity Changes due to Moist Processes


	RADLW
	deg day–1
	Nrphys
	Net Longwave heating rate for each level


	RADSW
	deg day–1
	Nrphys
	Net Shortwave heating rate for each level


	PREACC
	mm/day
	1
	Total Precipitation


	PRECON
	mm/day
	1
	Convective Precipitation


	TUFLUX
	N m–2
	Nrphys
	Turbulent Flux of U-Momentum


	TVFLUX
	N m–2
	Nrphys
	Turbulent Flux of V-Momentum


	TTFLUX
	W m–2
	Nrphys
	Turbulent Flux of Sensible Heat













	NAME
	UNITS
	LEVELS
	DESCRIPTION


	TQFLUX
	W m–2
	Nrphys
	Turbulent Flux of Latent Heat


	CN
	dimensionless
	1
	Neutral Drag Coefficient


	WINDS
	m s–1
	1
	Surface Wind Speed


	DTSRF
	deg
	1
	Air/Surface virtual temperature difference


	TG
	deg
	1
	Ground temperature


	TS
	deg
	1
	Surface air temperature (Adiabatic from lowest model layer)


	DTG
	deg
	1
	Ground temperature adjustment


	QG
	g kg–1
	1
	Ground specific humidity


	QS
	g kg–1
	1
	Saturation surface specific humidity


	TGRLW
	deg
	1
	Instantaneous ground temperature used as input to the Longwave radiation subroutine


	ST4
	W m–2
	1
	Upward Longwave flux at the ground (\(\sigma T^4\))


	OLR
	W m–2
	1
	Net upward Longwave flux at the top of the model


	OLRCLR
	W m–2
	1
	Net upward clearsky Longwave flux at the top of the model


	LWGCLR
	W m–2
	1
	Net upward clearsky Longwave flux at the ground


	LWCLR
	deg day–1
	Nrphys
	Net clearsky Longwave heating rate for each level


	TLW
	deg
	Nrphys
	Instantaneous temperature used as input to the Longwave radiation subroutine


	SHLW
	g g–1
	Nrphys
	Instantaneous specific humidity used as input to the Longwave radiation subroutine


	OZLW
	g g–1
	Nrphys
	Instantaneous ozone used as input to the Longwave radiation subroutine


	CLMOLW
	\(0-1\)
	Nrphys
	Maximum overlap cloud fraction used in the Longwave radiation subroutine


	CLDTOT
	\(0-1\)
	Nrphys
	Total cloud fraction used in the Longwave and Shortwave radiation subroutines


	LWGDOWN
	W m–2
	1
	Downwelling Longwave radiation at the ground


	GWDT
	deg day–1
	Nrphys
	Temperature tendency due to Gravity Wave Drag


	RADSWT
	W m–2
	1
	Incident Shortwave radiation at the top of the atmosphere


	TAUCLD
	per 100 mb
	Nrphys
	Counted Cloud Optical Depth (non-dimensional) per 100 mb


	TAUCLDC
	Number
	Nrphys
	Cloud Optical Depth Counter













	NAME
	UNITS
	LEVELS
	Description


	CLDLOW
	0-1
	Nrphys
	Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)


	EVAP
	mm/day
	1
	Surface evaporation


	DPDT
	hPa/day
	1
	Surface Pressure time-tendency


	UAVE
	m/sec
	Nrphys
	Average U-Wind


	VAVE
	m/sec
	Nrphys
	Average V-Wind


	TAVE
	deg
	Nrphys
	Average Temperature


	QAVE
	g/kg
	Nrphys
	Average Specific Humidity


	OMEGA
	hPa/day
	Nrphys
	Vertical Velocity


	DUDT
	m/sec/day
	Nrphys
	Total U-Wind tendency


	DVDT
	m/sec/day
	Nrphys
	Total V-Wind tendency


	DTDT
	deg/day
	Nrphys
	Total Temperature tendency


	DQDT
	g/kg/day
	Nrphys
	Total Specific Humidity tendency


	VORT
	10^{-4}/sec
	Nrphys
	Relative Vorticity


	DTLS
	deg/day
	Nrphys
	Temperature tendency due to Stratiform Cloud Formation


	DQLS
	g/kg/day
	Nrphys
	Specific Humidity tendency due to Stratiform Cloud Formation


	USTAR
	m/sec
	1
	Surface USTAR wind


	Z0
	m
	1
	Surface roughness


	FRQTRB
	0-1
	Nrphys-1
	Frequency of Turbulence


	PBL
	mb
	1
	Planetary Boundary Layer depth


	SWCLR
	deg/day
	Nrphys
	Net clearsky Shortwave heating rate for each level


	OSR
	W m–2
	1
	Net downward Shortwave flux at the top of the model


	OSRCLR
	W m–2
	1
	Net downward clearsky Shortwave flux at the top of the model


	CLDMAS
	kg / m^2
	Nrphys
	Convective cloud mass flux


	UAVE
	m/sec
	Nrphys
	Time-averaged \(u\)-Wind













	NAME
	UNITS
	LEVELS
	DESCRIPTION


	VAVE
	m/sec
	Nrphys
	Time-averaged \(v\)-Wind


	TAVE
	deg
	Nrphys
	Time-averaged Temperature`


	QAVE
	g/g
	Nrphys
	Time-averaged Specific Humidity


	RFT
	deg/day
	Nrphys
	Temperature tendency due Rayleigh Friction


	PS
	mb
	1
	Surface Pressure


	QQAVE
	(m/sec)2
	Nrphys
	Time-averaged Turbulent Kinetic Energy


	SWGCLR
	W m–2
	1
	Net downward clearsky Shortwave flux at the ground


	PAVE
	mb
	1
	Time-averaged Surface Pressure


	DIABU
	m/sec/day
	Nrphys
	Total Diabatic forcing on \(u\)-Wind


	DIABV
	m/sec/day
	Nrphys
	Total Diabatic forcing on \(v\)-Wind


	DIABT
	deg/day
	Nrphys
	Total Diabatic forcing on Temperature


	DIABQ
	g/kg/day
	Nrphys
	Total Diabatic forcing on Specific Humidity


	RFU
	m/sec/day
	Nrphys
	U-Wind tendency due to Rayleigh Friction


	RFV
	m/sec/day
	Nrphys
	V-Wind tendency due to Rayleigh Friction


	GWDU
	m/sec/day
	Nrphys
	U-Wind tendency due to Gravity Wave Drag


	GWDU
	m/sec/day
	Nrphys
	V-Wind tendency due to Gravity Wave Drag


	GWDUS
	N m–2
	1
	U-Wind Gravity Wave Drag Stress at Surface


	GWDVS
	N m–2
	1
	V-Wind Gravity Wave Drag Stress at Surface


	GWDUT
	N m–2
	1
	U-Wind Gravity Wave Drag Stress at Top


	GWDVT
	N m–2
	1
	V-Wind Gravity Wave Drag Stress at Top


	LZRAD
	mg/kg
	Nrphys
	Estimated Cloud Liquid Water used in Radiation













	NAME
	UNITS
	LEVELS
	DESCRIPTION


	SLP
	mb
	1
	Time-averaged Sea-level Pressure


	CLDFRC
	0-1
	1
	Total Cloud Fraction


	TPW
	gm cm–2
	1
	Precipitable water


	U2M
	m/sec
	1
	U-Wind at 2 meters


	V2M
	m/sec
	1
	V-Wind at 2 meters


	T2M
	deg
	1
	Temperature at 2 meters


	Q2M
	g/kg
	1
	Specific Humidity at 2 meters


	U10M
	m/sec
	1
	U-Wind at 10 meters


	V10M
	m/sec
	1
	V-Wind at 10 meters


	T10M
	deg
	1
	Temperature at 10 meters


	Q10M
	g/kg
	1
	Specific Humidity at 10 meters


	DTRAIN
	kg m–2
	Nrphys
	Detrainment Cloud Mass Flux


	QFILL
	g/kg/day
	Nrphys
	Filling of negative specific humidity


	DTCONV
	deg/sec
	Nr
	Temp Change due to Convection


	DQCONV
	g/kg/sec
	Nr
	Specific Humidity Change due to Convection


	RELHUM
	percent
	Nr
	Relative Humidity


	PRECLS
	g/m^2/sec
	1
	Large Scale Precipitation


	ENPREC
	J/g
	1
	Energy of Precipitation (snow, rain Temp)








5.5.3.4. Fizhi Diagnostic Description

In this section we list and describe the diagnostic quantities available
within the GCM. The diagnostics are listed in the order that they appear
in the Diagnostic Menu, Section [sec:pkg:fizhi:diagnostics]. In all
cases, each diagnostic as currently archived on the output datasets is
time-averaged over its diagnostic output frequency:


\[{\bf DIAGNOSTIC} = \frac{1}{TTOT} \sum_{t=1}^{t=TTOT} diag(t)\]

where \(TTOT = \frac{ {\bf NQDIAG} }{\Delta t}\), NQDIAG is the
output frequency of the diagnostic, and \(\Delta t\) is the timestep
over which the diagnostic is updated.


Surface Zonal Wind Stress on the Atmosphere (\(Newton/m^2\))

The zonal wind stress is the turbulent flux of zonal momentum from the
surface.


\[{\bf UFLUX} =  - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u\]

where \(\rho\) = the atmospheric density at the surface,
\(C_{D}\) is the surface drag coefficient, \(C_u\) is the
dimensionless surface exchange coefficient for momentum (see diagnostic
number 10), \(W_s\) is the magnitude of the surface layer wind, and
\(u\) is the zonal wind in the lowest model layer.




Surface Meridional Wind Stress on the Atmosphere (\(Newton/m^2\))

The meridional wind stress is the turbulent flux of meridional
momentum from the surface.


\[{\bf VFLUX} =  - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u\]

where \(\rho\) = the atmospheric density at the surface,
\(C_{D}\) is the surface drag coefficient, \(C_u\) is the
dimensionless surface exchange coefficient for momentum (see diagnostic
number 10), \(W_s\) is the magnitude of the surface layer wind, and
\(v\) is the meridional wind in the lowest model layer.




Surface Flux of Sensible Heat (W m–2)

The turbulent flux of sensible heat from the surface to the atmosphere
is a function of the gradient of virtual potential temperature and the
eddy exchange coefficient:


\[{\bf HFLUX} =  P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t\]

where \(\rho\) = the atmospheric density at the surface,
\(c_{p}\) is the specific heat of air, \(C_{H}\) is the
dimensionless surface heat transfer coefficient, \(W_s\) is the
magnitude of the surface layer wind, \(C_u\) is the dimensionless
surface exchange coefficient for momentum (see diagnostic number 10),
\(C_t\) is the dimensionless surface exchange coefficient for heat
and moisture (see diagnostic number 9), and \(\theta\) is the
potential temperature at the surface and at the bottom model level.




Surface Flux of Latent Heat (\(Watts/m^2\))

The turbulent flux of latent heat from the surface to the atmosphere
is a function of the gradient of moisture, the potential
evapotranspiration fraction and the eddy exchange coefficient:


\[{\bf EFLUX} =  \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t\]

where \(\rho\) = the atmospheric density at the surface,
\(\beta\) is the fraction of the potential evapotranspiration
actually evaporated, L is the latent heat of evaporation, \(C_{H}\)
is the dimensionless surface heat transfer coefficient, \(W_s\) is
the magnitude of the surface layer wind, \(C_u\) is the
dimensionless surface exchange coefficient for momentum (see diagnostic
number 10), \(C_t\) is the dimensionless surface exchange
coefficient for heat and moisture (see diagnostic number 9), and
\(q_{surface}\) and \(q_{Nrphys}\) are the specific humidity at
the surface and at the bottom model level, respectively.




Heat Conduction Through Sea Ice (\(Watts/m^2\))

Over sea ice there is an additional source of energy at the surface due
to the heat conduction from the relatively warm ocean through the sea
ice. The heat conduction through sea ice represents an additional energy
source term for the ground temperature equation.


\[{\bf QICE} = \frac{C_{ti}}{H_i} (T_i-T_g)\]

where \(C_{ti}\) is the thermal conductivity of ice, \(H_i\) is
the ice thickness, assumed to be \(3 \hspace{.1cm} m\) where sea ice
is present, \(T_i\) is 273 degrees Kelvin, and \(T_g\) is the
temperature of the sea ice.

NOTE: QICE is not available through model version 5.3, but is
available in subsequent versions.




Net upward Longwave Flux at the surface (\(Watts/m^2\))


\[\begin{split}\begin{aligned}
{\bf RADLWG} & =  & F_{LW,Nrphys+1}^{Net} \\
             & =  & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow\end{aligned}\end{split}\]

where Nrphys+1 indicates the lowest model edge-level, or
\(p = p_{surf}\). \(F_{LW}^\uparrow\) is the upward Longwave
flux and \(F_{LW}^\downarrow\) is the downward Longwave flux.




Net downard shortwave Flux at the surface (\(Watts/m^2\))


\[\begin{split}\begin{aligned}
{\bf RADSWG} & =  & F_{SW,Nrphys+1}^{Net} \\
             & =  & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow\end{aligned}\end{split}\]

where Nrphys+1 indicates the lowest model edge-level, or
\(p = p_{surf}\). \(F_{SW}^\downarrow\) is the downward
Shortwave flux and \(F_{SW}^\uparrow\) is the upward Shortwave flux.




Richardson number (\(dimensionless\))

The non-dimensional stability indicator is the ratio of the buoyancy
to the shear:


\[{\bf RI} = \frac{ \frac{g}{\theta_v} \pp {\theta_v}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
 =  \frac{c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }\]

where we used the hydrostatic equation:


\[{\pp{\Phi}{P^ \kappa}} = c_p \theta_v\]

Negative values indicate unstable buoyancy AND shear, small positive
values (\(<0.4\)) indicate dominantly unstable shear, and large
positive values indicate dominantly stable stratification.




CT - Surface Exchange Coefficient for Temperature and Moisture (dimensionless)

The surface exchange coefficient is obtained from the similarity
functions for the stability dependant flux profile relationships:


\[{\bf CT} = -\frac{( \overline{w^{\prime}\theta^{\prime}} ) }{ u_* \Delta \theta } =
-\frac{( \overline{w^{\prime}q^{\prime}} ) }{ u_* \Delta q } =
\frac{ k }{ (\psi_{h} + \psi_{g}) }\]

where \(\psi_h\) is the surface layer non-dimensional temperature
change and \(\psi_g\) is the viscous sublayer non-dimensional
temperature or moisture change:


\[\psi_{h} = \int_{\zeta_{0}}^{\zeta} \frac{\phi_{h} }{ \zeta} d \zeta \hspace{1cm} and
\hspace{1cm} \psi_{g} = \frac{ 0.55 (Pr^{2/3} - 0.2) }{ \nu^{1/2} }
(h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}\]

and: \(h_{0} = 30z_{0}\) with a maximum value over land of 0.01

\(\phi_h\) is the similarity function of \(\zeta\), which
expresses the stability dependance of the temperature and moisture
gradients, specified differently for stable and unstable layers
according to . k is the Von Karman constant, \(\zeta\) is the
non-dimensional stability parameter, Pr is the Prandtl number for air,
\(\nu\) is the molecular viscosity, \(z_{0}\) is the surface
roughness length, \(u_*\) is the surface stress velocity (see
diagnostic number 67), and the subscript ref refers to a reference
value.




CU - Surface Exchange Coefficient for Momentum (dimensionless)

The surface exchange coefficient is obtained from the similarity
functions for the stability dependant flux profile relationships:


\[{\bf CU} = \frac{u_* }{ W_s} = \frac{ k }{ \psi_{m} }\]

where \(\psi_m\) is the surface layer non-dimensional wind shear:


\[\psi_{m} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{m} }{ \zeta} d \zeta}\]

\(\phi_m\) is the similarity function of \(\zeta\), which
expresses the stability dependance of the temperature and moisture
gradients, specified differently for stable and unstable layers
according to . k is the Von Karman constant, \(\zeta\) is the
non-dimensional stability parameter, \(u_*\) is the surface stress
velocity (see diagnostic number 67), and \(W_s\) is the magnitude of
the surface layer wind.




ET - Diffusivity Coefficient for Temperature and Moisture (m^2/sec)

In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the
turbulent heat or moisture flux for the atmosphere above the surface
layer can be expressed as a turbulent diffusion coefficient \(K_h\)
times the negative of the gradient of potential temperature or moisture.
In the [HL88] adaptation of this closure, \(K_h\) takes the form:


\[\begin{split}{\bf ET} = K_h = -\frac{( \overline{w^{\prime}\theta_v^{\prime}}) }{ \pp{\theta_v}{z} }
 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
\\ \frac{ q^2 }{ q_e } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.\end{split}\]

where \(q\) is the turbulent velocity, or
\(\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
energy}\), \(q_e\) is the turbulence velocity derived from the more
simple level 2.0 model, which describes equilibrium turbulence,
\(\ell\) is the master length scale related to the layer depth,
\(S_H\) is a function of \(G_H\) and \(G_M\), the
dimensionless buoyancy and wind shear parameters, respectively, or a
function of \(G_{H_e}\) and \(G_{M_e}\), the equilibrium
dimensionless buoyancy and wind shear parameters. Both \(G_H\) and
\(G_M\), and their equilibrium values \(G_{H_e}\) and
\(G_{M_e}\), are functions of the Richardson number.

For the detailed equations and derivations of the modified level 2.5
closure scheme, see [HL88].

In the surface layer, \({\bf {ET}}\) is the exchange coefficient
for heat and moisture, in units of \(m/sec\), given by:


\[{\bf ET_{Nrphys}} =  C_t * u_* = C_H W_s\]

where \(C_t\) is the dimensionless exchange coefficient for heat and
moisture from the surface layer similarity functions (see diagnostic
number 9), \(u_*\) is the surface friction velocity (see diagnostic
number 67), \(C_H\) is the heat transfer coefficient, and
\(W_s\) is the magnitude of the surface layer wind.




EU - Diffusivity Coefficient for Momentum (m^2/sec)

In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the
turbulent heat momentum flux for the atmosphere above the surface layer
can be expressed as a turbulent diffusion coefficient \(K_m\) times
the negative of the gradient of the u-wind. In the [HL88] adaptation of this
closure, \(K_m\) takes the form:


\[\begin{split}{\bf EU} = K_m = -\frac{( \overline{u^{\prime}w^{\prime}} ) }{ \pp{U}{z} }
 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
\\ \frac{ q^2 }{ q_e } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.\end{split}\]

where \(q\) is the turbulent velocity, or
\(\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
energy}\), \(q_e\) is the turbulence velocity derived from the more
simple level 2.0 model, which describes equilibrium turbulence,
\(\ell\) is the master length scale related to the layer depth,
\(S_M\) is a function of \(G_H\) and \(G_M\), the
dimensionless buoyancy and wind shear parameters, respectively, or a
function of \(G_{H_e}\) and \(G_{M_e}\), the equilibrium
dimensionless buoyancy and wind shear parameters. Both \(G_H\) and
\(G_M\), and their equilibrium values \(G_{H_e}\) and
\(G_{M_e}\), are functions of the Richardson number.

For the detailed equations and derivations of the modified level 2.5
closure scheme, see [HL88].

In the surface layer, \({\bf {EU}}\) is the exchange coefficient
for momentum, in units of \(m/sec\), given by:


\[{\bf EU_{Nrphys}} = C_u * u_* = C_D W_s\]

where \(C_u\) is the dimensionless exchange coefficient for momentum
from the surface layer similarity functions (see diagnostic number 10),
\(u_*\) is the surface friction velocity (see diagnostic number 67),
\(C_D\) is the surface drag coefficient, and \(W_s\) is the
magnitude of the surface layer wind.




TURBU - Zonal U-Momentum changes due to Turbulence (m/sec/day)

The tendency of U-Momentum due to turbulence is written:


\[{\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
 = {\pp{}{z} }{(K_m \pp{u}{z})}\]

The Helfand and Labraga level 2.5 scheme models the turbulent flux of
u-momentum in terms of \(K_m\), and the equation has the form of a
diffusion equation.




TURBV - Meridional V-Momentum changes due to Turbulence (m/sec/day)

The tendency of V-Momentum due to turbulence is written:


\[{\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
 = {\pp{}{z} }{(K_m \pp{v}{z})}\]


The Helfand and Labraga level 2.5 scheme models the turbulent flux of



v-momentum in terms of \(K_m\), and the equation has the form of a
diffusion equation.




TURBT - Temperature changes due to Turbulence (deg/day)

The tendency of temperature due to turbulence is written:


\[{\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}\]

The Helfand and Labraga level 2.5 scheme models the turbulent flux of
temperature in terms of \(K_h\), and the equation has the form of a
diffusion equation.




TURBQ - Specific Humidity changes due to Turbulence (g/kg/day)

The tendency of specific humidity due to turbulence is written:


\[{\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
 = {\pp{}{z} }{(K_h \pp{q}{z})}\]

The Helfand and Labraga level 2.5 scheme models the turbulent flux of
temperature in terms of \(K_h\), and the equation has the form of a
diffusion equation.




MOISTT - Temperature Changes Due to Moist Processes (deg/day)


\[{\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}\]

where:


\[ \begin{align}\begin{aligned}  \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha \frac{m_B}{c_p} \Gamma_s \right)_i
  \hspace{.4cm} and
  \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = \frac{L}{c_p} (q^*-q)\\and\end{aligned}\end{align} \]


\[\Gamma_s = g \eta \pp{s}{p}\]

The subscript \(c\) refers to convective processes, while the
subscript \(ls\) refers to large scale precipitation processes, or
supersaturation rain. The summation refers to contributions from each
cloud type called by RAS. The dry static energy is given as \(s\),
the convective cloud base mass flux is given as \(m_B\), and the
cloud entrainment is given as \(\eta\), which are explicitly defined
in para_phys_pkg_fizhi_mc, the description of the convective
parameterization. The fractional adjustment, or relaxation parameter,
for each cloud type is given as \(\alpha\), while \(R\) is the
rain re-evaporation adjustment.




MOISTQ - Specific Humidity Changes Due to Moist Processes (g/kg/day)


\[{\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}\]

where:


\[\left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha \frac{m_B}{L}(\Gamma_h-\Gamma_s) \right)_i
\hspace{.4cm} and
\hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)\]

and


\[\Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}\]

The subscript \(c\) refers to convective processes, while the
subscript \(ls\) refers to large scale precipitation processes, or
supersaturation rain. The summation refers to contributions from each
cloud type called by RAS. The dry static energy is given as \(s\),
the moist static energy is given as \(h\), the convective cloud base
mass flux is given as \(m_B\), and the cloud entrainment is given as
\(\eta\), which are explicitly defined in para_phys_pkg_fizhi_mc,
the description of the convective parameterization. The fractional
adjustment, or relaxation parameter, for each cloud type is given as
\(\alpha\), while \(R\) is the rain re-evaporation adjustment.




RADLW - Heating Rate due to Longwave Radiation (deg/day)

The net longwave heating rate is calculated as the vertical divergence
of the net terrestrial radiative fluxes. Both the clear-sky and
cloudy-sky longwave fluxes are computed within the longwave routine. The
subroutine calculates the clear-sky flux, \(F^{clearsky}_{LW}\),
first. For a given cloud fraction, the clear line-of-sight probability
\(C(p,p^{\prime})\) is computed from the current level pressure
\(p\) to the model top pressure, \(p^{\prime} = p_{top}\), and
the model surface pressure, \(p^{\prime} = p_{surf}\), for the
upward and downward radiative fluxes. (see Section
[sec:fizhi:radcloud]). The cloudy-sky flux is then obtained as:


\[F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},\]

Finally, the net longwave heating rate is calculated as the vertical
divergence of the net terrestrial radiative fluxes:


\[\pp{\rho c_p T}{t} = - \p{z} F_{LW}^{NET} ,\]

or


\[{\bf RADLW} = \frac{g}{c_p \pi} \p{\sigma} F_{LW}^{NET} .\]

where \(g\) is the accelation due to gravity, \(c_p\) is the
heat capacity of air at constant pressure, and


\[F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow\]




RADSW - Heating Rate due to Shortwave Radiation (deg/day)

The net Shortwave heating rate is calculated as the vertical divergence
of the net solar radiative fluxes. The clear-sky and cloudy-sky
shortwave fluxes are calculated separately. For the clear-sky case, the
shortwave fluxes and heating rates are computed with both CLMO (maximum
overlap cloud fraction) and CLRO (random overlap cloud fraction) set to
zero (see Section [sec:fizhi:radcloud]). The shortwave routine is then
called a second time, for the cloudy-sky case, with the true
time-averaged cloud fractions CLMO and CLRO being used. In all cases, a
normalized incident shortwave flux is used as input at the top of the
atmosphere.

The heating rate due to Shortwave Radiation under cloudy skies is
defined as:


\[\pp{\rho c_p T}{t} = - \p{z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},\]

or


\[{\bf RADSW} = \frac{g}{c_p \pi} \p{\sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .\]

where \(g\) is the accelation due to gravity, \(c_p\) is the
heat capacity of air at constant pressure, RADSWT is the true incident
shortwave radiation at the top of the atmosphere (See Diagnostic #48),
and


\[F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow\]




PREACC - Total (Large-scale + Convective) Accumulated Precipition (mm/day)

For a change in specific humidity due to moist processes,
\(\Delta q_{moist}\), the vertical integral or total precipitable
amount is given by:


\[{\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta  q_{moist}
\frac{dp}{g} = \frac{1}{g} \int_0^1 \Delta q_{moist} dp\]

A precipitation rate is defined as the vertically integrated moisture
adjustment per Moist Processes time step, scaled to \(mm/day\).




PRECON - Convective Precipition (mm/day)

For a change in specific humidity due to sub-grid scale cumulus
convective processes, \(\Delta q_{cum}\), the vertical integral or
total precipitable amount is given by:


\[{\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta  q_{cum}
\frac{dp}{g} = \frac{1}{g} \int_0^1 \Delta q_{cum} dp\]

A precipitation rate is defined as the vertically integrated moisture
adjustment per Moist Processes time step, scaled to \(mm/day\).




TUFLUX - Turbulent Flux of U-Momentum (Newton/m^2)

The turbulent flux of u-momentum is calculated for
:math:`diagnostic hspace{.2cm} purposes


hspace{.2cm} only` from the eddy coefficient for momentum:



\[{\bf TUFLUX} =  {\rho } {(\overline{u^{\prime}w^{\prime}})} =
{\rho } {(- K_m \pp{U}{z})}\]

where \(\rho\) is the air density, and \(K_m\) is the eddy
coefficient.




TVFLUX - Turbulent Flux of V-Momentum (Newton/m^2)

The turbulent flux of v-momentum is calculated for
\(diagnostic \hspace{.2cm} purposes
\hspace{.2cm} only\) from the eddy coefficient for momentum:


\[{\bf TVFLUX} =  {\rho } {(\overline{v^{\prime}w^{\prime}})} =
 {\rho } {(- K_m \pp{V}{z})}\]

where \(\rho\) is the air density, and \(K_m\) is the eddy
coefficient.




TTFLUX - Turbulent Flux of Sensible Heat (Watts/m^2)

The turbulent flux of sensible heat is calculated for
\(diagnostic \hspace{.2cm} purposes
\hspace{.2cm} only\) from the eddy coefficient for heat and moisture:


\[{\bf TTFLUX} = c_p {\rho }
P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
 = c_p  {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}\]

where \(\rho\) is the air density, and \(K_h\) is the eddy
coefficient.




TQFLUX - Turbulent Flux of Latent Heat (Watts/m^2)

The turbulent flux of latent heat is calculated for
\(diagnostic \hspace{.2cm} purposes
\hspace{.2cm} only\) from the eddy coefficient for heat and moisture:


\[{\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
{L {\rho }(- K_h \pp{q}{z})}\]

where \(\rho\) is the air density, and \(K_h\) is the eddy
coefficient.




CN - Neutral Drag Coefficient (dimensionless)

The drag coefficient for momentum obtained by assuming a neutrally
stable surface layer:


\[{\bf CN} = \frac{ k }{ \ln(\frac{h }{z_0}) }\]

where \(k\) is the Von Karman constant, \(h\) is the height of
the surface layer, and \(z_0\) is the surface roughness.

NOTE: CN is not available through model version 5.3, but is available
in subsequent versions.




WINDS - Surface Wind Speed (meter/sec)

The surface wind speed is calculated for the last internal turbulence
time step:


\[{\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}\]

where the subscript \(Nrphys\) refers to the lowest model level.

The air/surface virtual temperature difference measures the stability of
the surface layer:


\[{\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}\]

where


\[\theta_{v{Nrphys+1}} = \frac{ T_g }{ P^{\kappa}_{surf} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})\]

\(\beta\) is the surface potential evapotranspiration coefficient
(\(\beta=1\) over oceans), \(q^*(T_g,P_s)\) is the saturation
specific humidity at the ground temperature and surface pressure, level
\(Nrphys\) refers to the lowest model level and level
\(Nrphys+1\) refers to the surface.




TG - Ground Temperature (deg K)

The ground temperature equation is solved as part of the turbulence
package using a backward implicit time differencing scheme:


\[{\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE\]

where \(R_{sw}\) is the net surface downward shortwave radiative
flux, \(R_{lw}\) is the net surface upward longwave radiative flux,
\(Q_{ice}\) is the heat conduction through sea ice, \(H\) is the
upward sensible heat flux, \(LE\) is the upward latent heat flux,
and \(C_g\) is the total heat capacity of the ground. \(C_g\) is
obtained by solving a heat diffusion equation for the penetration of the
diurnal cycle into the ground (), and is given by:


\[C_g = \sqrt{ \frac{\lambda C_s }{ 2 \omega } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
\frac{86400.}{2\pi} } \, \, .\]

Here, the thermal conductivity, \(\lambda\), is equal to
\(2x10^{-3}\) \(\frac{ly}{sec}
\frac{cm}{K}\), the angular velocity of the earth, \(\omega\), is
written as \(86400\) \(sec/day\) divided by \(2 \pi\)
\(radians/
day\), and the expression for \(C_s\), the heat capacity per unit
volume at the surface, is a function of the ground wetness, \(W\).




TS - Surface Temperature (deg K)

The surface temperature estimate is made by assuming that the model’s
lowest layer is well-mixed, and therefore that \(\theta\) is
constant in that layer. The surface temperature is therefore:


\[{\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}\]




DTG - Surface Temperature Adjustment (deg K)

The change in surface temperature from one turbulence time step to the
next, solved using the Ground Temperature Equation (see diagnostic
number 30) is calculated:


\[{\bf DTG} = {T_g}^{n} - {T_g}^{n-1}\]

where superscript \(n\) refers to the new, updated time level, and
the superscript \(n-1\) refers to the value at the previous
turbulence time level.




QG - Ground Specific Humidity (g/kg)

The ground specific humidity is obtained by interpolating between the
specific humidity at the lowest model level and the specific humidity of
a saturated ground. The interpolation is performed using the potential
evapotranspiration function:


\[{\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})\]

where \(\beta\) is the surface potential evapotranspiration
coefficient (\(\beta=1\) over oceans), and \(q^*(T_g,P_s)\) is
the saturation specific humidity at the ground temperature and surface
pressure.




QS - Saturation Surface Specific Humidity (g/kg)

The surface saturation specific humidity is the saturation specific
humidity at the ground temprature and surface pressure:


\[{\bf QS} = q^*(T_g,P_s)\]




TGRLW - Instantaneous ground temperature used as input to the Longwave radiation subroutine (deg)


\[{\bf TGRLW}  = T_g(\lambda , \phi ,n)\]

where \(T_g\) is the model ground temperature at the current time
step \(n\).




ST4 - Upward Longwave flux at the surface (Watts/m^2)


\[{\bf ST4} = \sigma T^4\]

where \(\sigma\) is the Stefan-Boltzmann constant and T is the
temperature.




OLR - Net upward Longwave flux at \(p=p_{top}\) (Watts/m^2)


\[{\bf OLR}  =  F_{LW,top}^{NET}\]

where top indicates the top of the first model layer. In the GCM,
\(p_{top}\) = 0.0 mb.




OLRCLR - Net upward clearsky Longwave flux at \(p=p_{top}\) (Watts/m^2)


\[{\bf OLRCLR}  =  F(clearsky)_{LW,top}^{NET}\]

where top indicates the top of the first model layer. In the GCM,
\(p_{top}\) = 0.0 mb.




LWGCLR - Net upward clearsky Longwave flux at the surface (Watts/m^2)


\[\begin{split}\begin{aligned}
{\bf LWGCLR} & =  & F(clearsky)_{LW,Nrphys+1}^{Net} \\
             & =  & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow\end{aligned}\end{split}\]

where Nrphys+1 indicates the lowest model edge-level, or
\(p = p_{surf}\). \(F(clearsky)_{LW}^\uparrow\) is the upward
clearsky Longwave flux and the \(F(clearsky)_{LW}^\downarrow\) is
the downward clearsky Longwave flux.




LWCLR - Heating Rate due to Clearsky Longwave Radiation (deg/day)

The net longwave heating rate is calculated as the vertical divergence
of the net terrestrial radiative fluxes. Both the clear-sky and
cloudy-sky longwave fluxes are computed within the longwave routine. The
subroutine calculates the clear-sky flux, \(F^{clearsky}_{LW}\),
first. For a given cloud fraction, the clear line-of-sight probability
\(C(p,p^{\prime})\) is computed from the current level pressure
\(p\) to the model top pressure, \(p^{\prime} = p_{top}\), and
the model surface pressure, \(p^{\prime} = p_{surf}\), for the
upward and downward radiative fluxes. (see Section
[sec:fizhi:radcloud]). The cloudy-sky flux is then obtained as:


\[F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},\]

Thus, LWCLR is defined as the net longwave heating rate due to the
vertical divergence of the clear-sky longwave radiative flux:


\[\pp{\rho c_p T}{t}_{clearsky} = - \p{z} F(clearsky)_{LW}^{NET} ,\]

or


\[{\bf LWCLR} = \frac{g}{c_p \pi} \p{\sigma} F(clearsky)_{LW}^{NET} .\]

where \(g\) is the accelation due to gravity, \(c_p\) is the
heat capacity of air at constant pressure, and


\[F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow\]




TLW - Instantaneous temperature used as input to the Longwave radiation subroutine (deg)


\[{\bf TLW}  = T(\lambda , \phi ,level, n)\]

where \(T\) is the model temperature at the current time step
\(n\).




SHLW - Instantaneous specific humidity used as input to the Longwave radiation subroutine (kg/kg)


\[{\bf SHLW}  = q(\lambda , \phi , level , n)\]

where \(q\) is the model specific humidity at the current time step
\(n\).




OZLW - Instantaneous ozone used as input to the Longwave radiation subroutine (kg/kg)


\[{\bf OZLW}  = {\rm OZ}(\lambda , \phi , level , n)\]

where \(\rm OZ\) is the interpolated ozone data set from the
climatological monthly mean zonally averaged ozone data set.




CLMOLW - Maximum Overlap cloud fraction used in LW Radiation (0-1)

CLMOLW is the time-averaged maximum overlap cloud fraction that has been
filled by the Relaxed Arakawa/Schubert Convection scheme and will be
used in the Longwave Radiation algorithm. These are convective clouds
whose radiative characteristics are assumed to be correlated in the
vertical. For a complete description of cloud/radiative interactions,
see Section [sec:fizhi:radcloud].


\[{\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi,  level )\]




CLDTOT - Total cloud fraction used in LW and SW Radiation (0-1)

CLDTOT is the time-averaged total cloud fraction that has been
filled by the Relaxed Arakawa/Schubert and Large-scale Convection
schemes and will be used in the Longwave and Shortwave Radiation
packages. For a complete description of cloud/radiative interactions,
see Section [sec:fizhi:radcloud].


\[{\bf CLDTOT} = F_{RAS} + F_{LS}\]

where \(F_{RAS}\) is the time-averaged cloud fraction due to
sub-grid scale convection, and \(F_{LS}\) is the time-averaged cloud
fraction due to precipitating and non-precipitating large-scale moist
processes.




CLMOSW - Maximum Overlap cloud fraction used in SW Radiation (0-1)

CLMOSW is the time-averaged maximum overlap cloud fraction that has been
filled by the Relaxed Arakawa/Schubert Convection scheme and will be
used in the Shortwave Radiation algorithm. These are convective clouds
whose radiative characteristics are assumed to be correlated in the
vertical. For a complete description of cloud/radiative interactions,
see Section [sec:fizhi:radcloud].


\[{\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi,  level )\]




CLROSW - Random Overlap cloud fraction used in SW Radiation (0-1)

CLROSW is the time-averaged random overlap cloud fraction that has been
filled by the Relaxed Arakawa/Schubert and Large-scale Convection
schemes and will be used in the Shortwave Radiation algorithm. These are
convective and large-scale clouds whose radiative characteristics are
not assumed to be correlated in the vertical. For a complete description
of cloud/radiative interactions, see Section [sec:fizhi:radcloud].


\[{\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi,  level )\]




RADSWT - Incident Shortwave radiation at the top of the atmosphere (Watts/m^2)


\[{\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z\]

where \(S_0\), is the extra-terrestial solar contant, \(R_a\) is
the earth-sun distance in Astronomical Units, and \(cos \phi_z\) is
the cosine of the zenith angle. It should be noted that RADSWT, as
well as OSR and OSRCLR, are calculated at the top of the
atmosphere (p=0 mb). However, the OLR and OLRCLR diagnostics are
currently calculated at \(p= p_{top}\) (0.0 mb for the GCM).




EVAP - Surface Evaporation (mm/day)

The surface evaporation is a function of the gradient of moisture, the
potential evapotranspiration fraction and the eddy exchange coefficient:


\[{\bf EVAP} =  \rho \beta K_{h} (q_{surface} - q_{Nrphys})\]

where \(\rho\) = the atmospheric density at the surface,
\(\beta\) is the fraction of the potential evapotranspiration
actually evaporated (\(\beta=1\) over oceans), \(K_{h}\) is the
turbulent eddy exchange coefficient for heat and moisture at the surface
in \(m/sec\) and \(q{surface}\) and \(q_{Nrphys}\) are the
specific humidity at the surface (see diagnostic number 34) and at the
bottom model level, respectively.




DUDT - Total Zonal U-Wind Tendency  (m/sec/day)

DUDT is the total time-tendency of the Zonal U-Wind due to Hydrodynamic,
Diabatic, and Analysis forcing.


\[{\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}\]




DVDT - Total Zonal V-Wind Tendency  (m/sec/day)

DVDT is the total time-tendency of the Meridional V-Wind due to
Hydrodynamic, Diabatic, and Analysis forcing.


\[{\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}\]




DTDT - Total Temperature Tendency  (deg/day)

DTDT is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
and Analysis forcing.


\[\begin{split}\begin{aligned}
{\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
           & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis} \end{aligned}\end{split}\]




DQDT - Total Specific Humidity Tendency  (g/kg/day)

DQDT is the total time-tendency of Specific Humidity due to Hydrodynamic,
Diabatic, and Analysis forcing.


\[{\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
+ \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}\]




USTAR -  Surface-Stress Velocity (m/sec)

The surface stress velocity, or the friction velocity, is the wind speed
at the surface layer top impeded by the surface drag:


\[{\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
C_u = \frac{k}{\psi_m}\]

\(C_u\) is the non-dimensional surface drag coefficient (see
diagnostic number 10), and \(W_s\) is the surface wind speed (see
diagnostic number 28).




Z0 - Surface Roughness Length (m)

Over the land surface, the surface roughness length is interpolated to
the local time from the monthly mean data of . Over the ocean, the
roughness length is a function of the surface-stress velocity,
\(u_*\).


\[{\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5}{u_*}\]

where the constants are chosen to interpolate between the reciprocal
relation of for weak winds, and the piecewise linear relation of for
moderate to large winds.




FRQTRB - Frequency of Turbulence (0-1)

The fraction of time when turbulence is present is defined as the
fraction of time when the turbulent kinetic energy exceeds some minimum
value, defined here to be \(0.005 \hspace{.1cm}m^2/sec^2\). When
this criterion is met, a counter is incremented. The fraction over the
averaging interval is reported.




PBL - Planetary Boundary Layer Depth (mb)

The depth of the PBL is defined by the turbulence parameterization to be
the depth at which the turbulent kinetic energy reduces to ten percent
of its surface value.


\[{\bf PBL} = P_{PBL} - P_{surface}\]

where \(P_{PBL}\) is the pressure in \(mb\) at which the
turbulent kinetic energy reaches one tenth of its surface value, and
\(P_s\) is the surface pressure.




SWCLR - Clear sky Heating Rate due to Shortwave Radiation (deg/day)

The net Shortwave heating rate is calculated as the vertical divergence
of the net solar radiative fluxes. The clear-sky and cloudy-sky
shortwave fluxes are calculated separately. For the clear-sky case, the
shortwave fluxes and heating rates are computed with both CLMO (maximum
overlap cloud fraction) and CLRO (random overlap cloud fraction) set to
zero (see Section [sec:fizhi:radcloud]). The shortwave routine is then
called a second time, for the cloudy-sky case, with the true
time-averaged cloud fractions CLMO and CLRO being used. In all cases, a
normalized incident shortwave flux is used as input at the top of the
atmosphere.

The heating rate due to Shortwave Radiation under clear skies is defined
as:


\[\pp{\rho c_p T}{t} = - \p{z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},\]

or


\[{\bf SWCLR} = \frac{g}{c_p } \p{p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .\]

where \(g\) is the accelation due to gravity, \(c_p\) is the
heat capacity of air at constant pressure, RADSWT is the true incident
shortwave radiation at the top of the atmosphere (See Diagnostic #48),
and


\[F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow\]




OSR - Net upward Shortwave flux at the top of the model (Watts/m^2)


\[{\bf OSR}  =  F_{SW,top}^{NET}\]

where top indicates the top of the first model layer used in the
shortwave radiation routine. In the GCM, \(p_{SW_{top}}\) = 0 mb.




OSRCLR - Net upward clearsky Shortwave flux at the top of the model (Watts/m^2)


\[{\bf OSRCLR}  =  F(clearsky)_{SW,top}^{NET}\]

where top indicates the top of the first model layer used in the
shortwave radiation routine. In the GCM, \(p_{SW_{top}}\) = 0 mb.




CLDMAS - Convective Cloud Mass Flux (kg/m^2)

The amount of cloud mass moved per RAS timestep from all convective
clouds is written:


\[{\bf CLDMAS} = \eta m_B\]

where \(\eta\) is the entrainment, normalized by the cloud base mass
flux, and \(m_B\) is the cloud base mass flux. \(m_B\) and
\(\eta\) are defined explicitly in para_phys_pkg_fizhi_mc, the
description of the convective parameterization.




UAVE - Time-Averaged Zonal U-Wind (m/sec)

The diagnostic UAVE is simply the time-averaged Zonal U-Wind over
the NUAVE output frequency. This is contrasted to the instantaneous
Zonal U-Wind which is archived on the Prognostic Output data stream.


\[{\bf UAVE} = u(\lambda, \phi, level , t)\]

Note, UAVE is computed and stored on the staggered C-grid.




VAVE - Time-Averaged Meridional V-Wind (m/sec)

The diagnostic VAVE is simply the time-averaged Meridional V-Wind
over the NVAVE output frequency. This is contrasted to the
instantaneous Meridional V-Wind which is archived on the Prognostic
Output data stream.


\[{\bf VAVE} = v(\lambda, \phi, level , t)\]

Note, VAVE is computed and stored on the staggered C-grid.




TAVE - Time-Averaged Temperature (Kelvin)

The diagnostic TAVE is simply the time-averaged Temperature over
the NTAVE output frequency. This is contrasted to the instantaneous
Temperature which is archived on the Prognostic Output data stream.


\[{\bf TAVE} = T(\lambda, \phi, level , t)\]




QAVE - Time-Averaged Specific Humidity (g/kg)

The diagnostic QAVE is simply the time-averaged Specific Humidity
over the NQAVE output frequency. This is contrasted to the
instantaneous Specific Humidity which is archived on the Prognostic
Output data stream.


\[{\bf QAVE} = q(\lambda, \phi, level , t)\]




PAVE - Time-Averaged Surface Pressure - PTOP (mb)

The diagnostic PAVE is simply the time-averaged Surface Pressure -
PTOP over the NPAVE output frequency. This is contrasted to the
instantaneous Surface Pressure - PTOP which is archived on the
Prognostic Output data stream.


\[\begin{split}\begin{aligned}
{\bf PAVE} & =  & \pi(\lambda, \phi, level , t) \\
           & =  & p_s(\lambda, \phi, level , t) - p_T\end{aligned}\end{split}\]




QQAVE - Time-Averaged Turbulent Kinetic Energy (m/sec)^2

The diagnostic QQAVE is simply the time-averaged prognostic
Turbulent Kinetic Energy produced by the GCM Turbulence parameterization
over the NQQAVE output frequency. This is contrasted to the
instantaneous Turbulent Kinetic Energy which is archived on the
Prognostic Output data stream.


\[{\bf QQAVE} = qq(\lambda, \phi, level , t)\]

Note, QQAVE is computed and stored at the “mass-point” locations
on the staggered C-grid.




SWGCLR - Net downward clearsky Shortwave flux at the surface (Watts/m^2)


\[\begin{split}\begin{aligned}
{\bf SWGCLR} & =  & F(clearsky)_{SW,Nrphys+1}^{Net} \\
             & =  & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow\end{aligned}\end{split}\]

where Nrphys+1 indicates the lowest model edge-level, or
\(p = p_{surf}\). \(F(clearsky){SW}^\downarrow\) is the downward
clearsky Shortwave flux and \(F(clearsky)_{SW}^\uparrow\) is the
upward clearsky Shortwave flux.




DIABU - Total Diabatic Zonal U-Wind Tendency  (m/sec/day)

DIABU is the total time-tendency of the Zonal U-Wind due to Diabatic
processes and the Analysis forcing.


\[{\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}\]




DIABV - Total Diabatic Meridional V-Wind Tendency  (m/sec/day)

DIABV is the total time-tendency of the Meridional V-Wind due to Diabatic
processes and the Analysis forcing.


\[{\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}\]




DIABT Total Diabatic Temperature Tendency (deg/day)

DIABT is the total time-tendency of Temperature due to Diabatic processes and
the Analysis forcing.


\[\begin{split}\begin{aligned}
{\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
           & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis} \end{aligned}\end{split}\]

If we define the time-tendency of Temperature due to Diabatic
processes as


\[\begin{split}\begin{aligned}
\pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
                     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}\end{aligned}\end{split}\]

then, since there are no surface pressure changes due to Diabatic
processes, we may write


\[\pp{T}{t}_{Diabatic} = \frac{p^\kappa}{\pi}\pp{\pi \theta}{t}_{Diabatic}\]

where \(\theta = T/p^\kappa\). Thus, DIABT may be written as


\[{\bf DIABT} = \frac{p^\kappa}{\pi} \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)\]




DIABQ - Total Diabatic Specific Humidity Tendency (g/kg/day)

DIABQ is the total time-tendency of Specific Humidity due to Diabatic
processes and the Analysis forcing.


\[{\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}\]

If we define the time-tendency of Specific Humidity due to Diabatic
processes as


\[\pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}\]

then, since there are no surface pressure changes due to Diabatic
processes, we may write


\[ \begin{align}\begin{aligned}\pp{q}{t}_{Diabatic} = \frac{1}{\pi}\pp{\pi q}{t}_{Diabatic}\\Thus, **DIABQ** may be written as\end{aligned}\end{align} \]


\[{\bf DIABQ} = \frac{1}{\pi} \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)\]




VINTUQ - Vertically Integrated Moisture Flux (m/sec  g/kg)

The vertically integrated moisture flux due to the zonal u-wind is
obtained by integrating \(u q\) over the depth of the atmosphere at
each model timestep, and dividing by the total mass of the column.


\[{\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz  } { \int_{surf}^{top} \rho dz  }\]

Using
\(\rho \delta z = -\frac{\delta p}{g} = - \frac{1}{g} \delta p\), we
have


\[{\bf VINTUQ} = { \int_0^1 u q dp  }\]




VINTVQ - Vertically Integrated Moisture Flux (m/sec g/kg)

The vertically integrated moisture flux due to the meridional v-wind
is obtained by integrating \(v q\) over the depth of the atmosphere
at each model timestep, and dividing by the total mass of the column.


\[{\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz  } { \int_{surf}^{top} \rho dz  }\]

Using
\(\rho \delta z = -\frac{\delta p}{g} = - \frac{1}{g} \delta p\), we
have


\[{\bf VINTVQ} = { \int_0^1 v q dp  }\]




VINTUT - Vertically Integrated Heat Flux (m/sec deg)

The vertically integrated heat flux due to the zonal u-wind is
obtained by integrating \(u T\) over the depth of the atmosphere at
each model timestep, and dividing by the total mass of the column.


\[{\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz  } { \int_{surf}^{top} \rho dz  }\]

Or,


\[{\bf VINTUT} = { \int_0^1 u T dp  }\]




VINTVT - Vertically Integrated Heat Flux (m/sec deg)

The vertically integrated heat flux due to the meridional v-wind is
obtained by integrating \(v T\) over the depth of the atmosphere at
each model timestep, and dividing by the total mass of the column.


\[{\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz  } { \int_{surf}^{top} \rho dz  }\]

Using :math:`rho delta z = -frac{delta p}{g} `, we have


\[{\bf VINTVT} = { \int_0^1 v T dp  }\]




CLDFRC - Total 2-Dimensional Cloud Fracton (0-1)

If we define the time-averaged random and maximum overlapped cloudiness
as CLRO and CLMO respectively, then the probability of clear sky
associated with random overlapped clouds at any level is (1-CLRO) while
the probability of clear sky associated with maximum overlapped clouds
at any level is (1-CLMO). The total clear sky probability is given by
(1-CLRO)*(1-CLMO), thus the total cloud fraction at each level may be
obtained by 1-(1-CLRO)*(1-CLMO).

At any given level, we may define the clear line-of-site probability by
appropriately accounting for the maximum and random overlap cloudiness.
The clear line-of-site probability is defined to be equal to the product
of the clear line-of-site probabilities associated with random and
maximum overlap cloudiness. The clear line-of-site probability
\(C(p,p^{\prime})\) associated with maximum overlap clouds, from the
current pressure \(p\) to the model top pressure,
\(p^{\prime} = p_{top}\), or the model surface pressure,
\(p^{\prime} = p_{surf}\), is simply 1.0 minus the largest maximum
overlap cloud value along the line-of-site, ie.


\[1-MAX_p^{p^{\prime}} \left( CLMO_p \right)\]

Thus, even in the time-averaged sense it is assumed that the maximum
overlap clouds are correlated in the vertical. The clear line-of-site
probability associated with random overlap clouds is defined to be the
product of the clear sky probabilities at each level along the
line-of-site, ie.


\[\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)\]

The total cloud fraction at a given level associated with a line-
of-site calculation is given by


\[1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
    \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)\]

The 2-dimensional net cloud fraction as seen from the top of the
atmosphere is given by


\[{\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
    \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)\]

For a complete description of cloud/radiative interactions, see
Section [sec:fizhi:radcloud].




QINT - Total Precipitable Water (gm/cm^2)

The Total Precipitable Water is defined as the vertical integral of the
specific humidity, given by:


\[\begin{split}\begin{aligned}
{\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
           & = & \frac{\pi}{g} \int_0^1 q dp\end{aligned}\end{split}\]

where we have used the hydrostatic relation
:math:`rho delta z = -frac{delta p}{g} `.




U2M  Zonal U-Wind at 2 Meter Depth (m/sec)

The u-wind at the 2-meter depth is determined from the similarity
theory:


\[{\bf U2M} = \frac{u_*}{k} \psi_{m_{2m}} \frac{u_{sl}}{W_s} =
\frac{ \psi_{m_{2m}} }{ \psi_{m_{sl}} }u_{sl}\]

where \(\psi_m(2m)\) is the non-dimensional wind shear at two
meters, and the subscript \(sl\) refers to the height of the top of
the surface layer. If the roughness height is above two meters,
\({\bf U2M}\) is undefined.




V2M - Meridional V-Wind at 2 Meter Depth (m/sec)

The v-wind at the 2-meter depth is a determined from the similarity
theory:


\[{\bf V2M} = \frac{u_*}{k} \psi_{m_{2m}} \frac{v_{sl}}{W_s} =
\frac{ \psi_{m_{2m}} }{ \psi_{m_{sl}} }v_{sl}\]

where \(\psi_m(2m)\) is the non-dimensional wind shear at two
meters, and the subscript \(sl\) refers to the height of the top of
the surface layer. If the roughness height is above two meters,
\({\bf V2M}\) is undefined.




T2M - Temperature at 2 Meter Depth (deg K)

The temperature at the 2-meter depth is a determined from the similarity
theory:


\[{\bf T2M} = P^{\kappa} (\frac{\theta*}{k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
P^{\kappa}(\theta_{surf} + \frac{ \psi_{h_{2m}}+\psi_g }{ \psi_{h_{sl}}+\psi_g }
(\theta_{sl} - \theta_{surf}) )\]

where:


\[\theta_* = - \frac{ (\overline{w^{\prime}\theta^{\prime}}) }{ u_* }\]

where \(\psi_h(2m)\) is the non-dimensional temperature gradient
at two meters, \(\psi_g\) is the non-dimensional temperature
gradient in the viscous sublayer, and the subscript \(sl\) refers to
the height of the top of the surface layer. If the roughness height is
above two meters, \({\bf T2M}\) is undefined.




Q2M - Specific Humidity at 2 Meter Depth (g/kg)

The specific humidity at the 2-meter depth is determined from the
similarity theory:


\[{\bf Q2M} = P^{\kappa} \frac({q_*}{k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
P^{\kappa}(q_{surf} + \frac{ \psi_{h_{2m}}+\psi_g }{ \psi_{h_{sl}}+\psi_g }
(q_{sl} - q_{surf}))\]

where:


\[q_* = - \frac{ (\overline{w^{\prime}q^{\prime}}) }{ u_* }\]

where \(\psi_h(2m)\) is the non-dimensional temperature gradient
at two meters, \(\psi_g\) is the non-dimensional temperature
gradient in the viscous sublayer, and the subscript \(sl\) refers to
the height of the top of the surface layer. If the roughness height is
above two meters, \({\bf Q2M}\) is undefined.




U10M - Zonal U-Wind at 10 Meter Depth (m/sec)

The u-wind at the 10-meter depth is an interpolation between the surface
wind and the model lowest level wind using the ratio of the
non-dimensional wind shear at the two levels:


\[{\bf U10M} = \frac{u_*}{k} \psi_{m_{10m}} \frac{u_{sl}}{W_s} =
\frac{ \psi_{m_{10m}} }{ \psi_{m_{sl}} }u_{sl}\]

where \(\psi_m(10m)\) is the non-dimensional wind shear at ten
meters, and the subscript \(sl\) refers to the height of the top of
the surface layer.




V10M - Meridional V-Wind at 10 Meter Depth (m/sec)

The v-wind at the 10-meter depth is an interpolation between the surface
wind and the model lowest level wind using the ratio of the
non-dimensional wind shear at the two levels:


\[{\bf V10M} = \frac{u_*}{k} \psi_{m_{10m}} \frac{v_{sl}}{W_s} =
\frac{ \psi_{m_{10m}} }{ \psi_{m_{sl}} }v_{sl}\]

where \(\psi_m(10m)\) is the non-dimensional wind shear at ten
meters, and the subscript \(sl\) refers to the height of the top of
the surface layer.




T10M - Temperature at 10 Meter Depth (deg K)

The temperature at the 10-meter depth is an interpolation between the
surface potential temperature and the model lowest level potential
temperature using the ratio of the non-dimensional temperature gradient
at the two levels:


\[{\bf T10M} = P^{\kappa} (\frac{\theta*}{k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
P^{\kappa}(\theta_{surf} + \frac{\psi_{h_{10m}}+\psi_g}{\psi_{h_{sl}}+\psi_g}
(\theta_{sl} - \theta_{surf}))\]

where:


\[\theta_* = - \frac{ (\overline{w^{\prime}\theta^{\prime}}) }{ u_* }\]

where \(\psi_h(10m)\) is the non-dimensional temperature gradient
at two meters, \(\psi_g\) is the non-dimensional temperature
gradient in the viscous sublayer, and the subscript \(sl\) refers to
the height of the top of the surface layer.




Q10M - Specific Humidity at 10 Meter Depth (g/kg)

The specific humidity at the 10-meter depth is an interpolation between
the surface specific humidity and the model lowest level specific
humidity using the ratio of the non-dimensional temperature gradient at
the two levels:


\[{\bf Q10M} = P^{\kappa} (\frac{q_*}{k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
P^{\kappa}(q_{surf} + \frac{\psi_{h_{10m}}+\psi_g}{\psi_{h_{sl}}+\psi_g}
(q_{sl} - q_{surf}))\]

where:


\[q_* =  - \frac{ (\overline{w^{\prime}q^{\prime}}) }{ u_* }\]

where \(\psi_h(10m)\) is the non-dimensional temperature gradient
at two meters, \(\psi_g\) is the non-dimensional temperature
gradient in the viscous sublayer, and the subscript \(sl\) refers to
the height of the top of the surface layer.




DTRAIN - Cloud Detrainment Mass Flux (kg/m^2)

The amount of cloud mass moved per RAS timestep at the cloud
detrainment level is written:


\[{\bf DTRAIN} = \eta_{r_D}m_B\]

where \(r_D\) is the detrainment level, \(m_B\) is the cloud
base mass flux, and \(\eta\) is the entrainment, defined in para_phys_pkg_fizhi_mc.




QFILL - Filling of negative Specific Humidity (g/kg/day)

Due to computational errors associated with the numerical scheme used
for the advection of moisture, negative values of specific humidity may
be generated. The specific humidity is checked for negative values after
every dynamics timestep. If negative values have been produced, a
filling algorithm is invoked which redistributes moisture from below.
Diagnostic QFILL is equal to the net filling needed to eliminate
negative specific humidity, scaled to a per-day rate:


\[{\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}\]

where


\[q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}\]






5.5.3.5. Key subroutines, parameters and files




5.5.3.6. Dos and don’ts




5.5.3.7. Fizhi Reference




5.5.3.8. Experiments and tutorials that use fizhi


	Global atmosphere experiment with realistic SST and topography in
fizhi-cs-32x32x10 verification directory.

	Global atmosphere aqua planet experiment in fizhi-cs-aqualev20
verification directory.









          

      

      

    

  

  
    
    
    5.6.1. THSICE: The Thermodynamic Sea Ice Package
    
    

    
 
  
  

    
      
          
            
  
5.6.1. THSICE: The Thermodynamic Sea Ice Package

Important note: This document has been written by Stephanie
Dutkiewicz and describes an earlier implementation of the sea-ice
package. This needs to be updated to reflect the recent changes (JMC).

This thermodynamic ice model is based on the 3-layer model by Winton
(2000). and the energy-conserving LANL CICE model (Bitz and Lipscomb,
1999). The model considers two equally thick ice layers; the upper layer
has a variable specific heat resulting from brine pockets, the lower
layer has a fixed heat capacity. A zero heat capacity snow layer lies
above the ice. Heat fluxes at the top and bottom surfaces are used to
calculate the change in ice and snow layer thickness. Grid cells of the
ocean model are either fully covered in ice or are open water. There is
a provision to parametrize ice fraction (and leads) in this package.
Modifications are discussed in small font following the subroutine
descriptions.


5.6.1.1. Key parameters and Routines

The ice model is called from thermodynamics.F, subroutine
ice_forcing.F is called in place of external_forcing_surf.F.

In ice_forcing.F, we calculate the freezing potential of the ocean
model surface layer of water:


\[{\bf frzmlt} = (T_f - SST) \frac{c_{sw} \rho_{sw} \Delta z}{\Delta t}\]

where \(c_{sw}\) is seawater heat capacity, \(\rho_{sw}\) is the
seawater density, \(\Delta z\) is the ocean model upper layer
thickness and \(\Delta t\) is the model (tracer) timestep. The
freezing temperature, \(T_f=\mu S\) is a function of the salinity.


	Provided there is no ice present and frzmlt is less than 0, the surface tendencies of wind, heat and freshwater are calculated as usual (ie. as in external_forcing_surf.F).

	If there is ice present in the grid cell we call the main ice model routine ice_therm.F (see below). Output from this routine gives net heat and freshwater flux affecting the top of the ocean.



Subroutine ice_forcing.F uses these values to find the sea surface
tendencies in grid cells. When there is ice present, the surface stress
tendencies are set to zero; the ice model is purely thermodynamic and
the effect of ice motion on the sea-surface is not examined.

Relaxation of surface \(T\) and \(S\) is only allowed
equatorward of relaxlat (see DATA.ICE below), and no relaxation
is allowed under the ice at any latitude.

(Note that there is provision for allowing grid cells to have both
open water and seaice; if compact is between  0 and 1)


subroutine ICE_FREEZE

This routine is called from thermodynamics.F after the new temperature
calculation, calc_gt.F, but before calc_gs.F. In ice_freeze.F,
any ocean upper layer grid cell with no ice cover, but with temperature
below freezing, \(T_f=\mu S\) has ice initialized. We calculate
frzmlt from all the grid cells in the water column that have a
temperature less than freezing. In this routine, any water below the
surface that is below freezing is set to \(T_f\). A call to
ice_start.F is made if frzmlt \(>0\), and salinity tendancy
is updated for brine release.

(There is a provision for fractional ice: In the case where the grid cell has less ice coverage than icemaskmax we allow ice_start.F to be called)




subroutine ICE_START

The energy available from freezing the sea surface is brought into this
routine as esurp. The enthalpy of the 2 layers of any new ice is
calculated as:


\[\begin{split}\begin{aligned}
q_1 & = & -c_{i}*T_f + L_i \nonumber \\
q_2 & = & -c_{f}T_{mlt}+ c_{i}(T_{mlt}-T{f}) + L_i(1-\frac{T_{mlt}}{T_f})
\nonumber\end{aligned}\end{split}\]

where \(c_f\) is specific heat of liquid fresh water, \(c_i\) is
the specific heat of fresh ice, \(L_i\) is latent heat of freezing,
\(\rho_i\) is density of ice and \(T_{mlt}\) is melting
temperature of ice with salinity of 1. The height of a new layer of ice
is


\[h_{i new} = \frac{{\bf esurp} \Delta t}{qi_{0av}}\]

where \(qi_{0av}=-\frac{\rho_i}{2} (q_1+q_2)\).

The surface skin temperature \(T_s\) and ice temperatures
\(T_1\), \(T_2\) and the sea surface temperature are set at
\(T_f\).

(There is provision for fractional ice: new ice is formed over open
water; the first freezing in the cell must have a height of himin0;
this determines the ice fraction compact. If there is already ice in
the grid cell, the new ice must have the same height and the new ice
fraction is


\[i_f=(1-\hat{i_f}) \frac{h_{i new}}{h_i}\]

where \(\hat{i_f}\) is ice fraction from previous timestep and
\(h_i\) is current ice height. Snow is redistributed over the new
ice fraction. The ice fraction is not allowed to become larger than
iceMaskmax and if the ice height is above hihig then freezing
energy comes from the full grid cell, ice growth does not occur under
orginal ice due to freezing water.)




subroutine ICE_THERM

The main subroutine of this package is ice_therm.F where the ice
temperatures are calculated and the changes in ice and snow thicknesses
are determined. Output provides the net heat and fresh water fluxes that
force the top layer of the ocean model.

If the current ice height is less than himin then the ice layer is
set to zero and the ocean model upper layer temperature is allowed to
drop lower than its freezing temperature; and atmospheric fluxes are
allowed to effect the grid cell. If the ice height is greater than
himin we proceed with the ice model calculation.

We follow the procedure of Winton (1999) – see equations 3 to 21 – to
calculate the surface and internal ice temperatures. The surface
temperature is found from the balance of the flux at the surface
\(F_s\), the shortwave heat flux absorbed by the ice, fswint,
and the upward conduction of heat through the snow and/or ice,
\(F_u\). We linearize \(F_s\) about the surface temperature,
\(\hat{T_s}\), at the previous timestep (where \(\hat{ }\)
indicates the value at the previous timestep):


\[F_s (T_s) = F_s(\hat{T_s}) + \frac{\partial F_s(\hat{T_s)}}{\partial T_s}
(T_s-\hat{T_s})\]

where,


\[F_s  =  F_{sensible}+F_{latent}+F_{longwave}^{down}+F_{longwave}^{up}+ (1-
\alpha) F_{shortwave}\]

and


\[\frac{d F_s}{dT} = \frac{d F_{sensible}}{dT} + \frac{d F_{latent}}{dT}
+\frac{d F_{longwave}^{up}}{dT}.\]

\(F_s\) and \(\frac{d F_s}{dT}\) are currently calculated from
the BULKF package described separately, but could also be provided
by an atmospheric model. The surface albedo is calculated from the ice
height and/or surface temperature (see below, srf_albedo.F) and the
shortwave flux absorbed in the ice is


\[{\bf fswint} = (1-e^{\kappa_i h_i})(1-\alpha) F_{shortwave}\]

where \(\kappa_i\) is bulk extinction coefficient.

The conductive flux to the surface is


\[F_u=K_{1/2}(T_1-T_s)\]

where \(K_{1/2}\) is the effective conductive coupling of the
snow-ice layer between the surface and the mid-point of the upper layer
of ice :math:`
K_{1/2}=frac{4 K_i K_s}{K_s h_i + 4 K_i h_s}
. :math:`K_i and \(K_s\) are constant thermal conductivities of
seaice and snow.

From the above equations we can develop a system of equations to find
the skin surface temperature, \(T_s\) and the two ice layer
temperatures (see Winton, 1999, for details). We solve these equations
iteratively until the change in \(T_s\) is small. When the surface
temperature is greater then the melting temperature of the surface, the
temperatures are recalculated setting \(T_s\) to 0. The enthalpy of
the ice layers are calculated in order to keep track of the energy in
the ice model. Enthalpy is defined, here, as the energy required to melt
a unit mass of seaice with temperature \(T\). For the upper layer
(1) with brine pockets and the lower fresh layer (2):


\[\begin{split}\begin{aligned}
q_1 & = & - c_f T_f + c_i (T_f-T)+ L_{i}(1-\frac{T_f}{T})
\nonumber \\
q_2 & = & -c_i T+L_i \nonumber\end{aligned}\end{split}\]

where \(c_f\) is specific heat of liquid fresh water, \(c_i\) is
the specific heat of fresh ice, and \(L_i\) is latent heat of
melting fresh ice.

From the new ice temperatures, we can calculate the energy flux at the
surface available for melting (if \(T_s\)=0) and the energy at the
ocean-ice interface for either melting or freezing.


\[\begin{split}\begin{aligned}
E_{top} &  =  & (F_s- K_{1/2}(T_s-T_1) ) \Delta t
\nonumber \\
E_{bot} &= & (\frac{4K_i(T_2-T_f)}{h_i}-F_b) \Delta t
\nonumber\end{aligned}\end{split}\]

where \(F_b\) is the heat flux at the ice bottom due to the sea
surface temperature variations from freezing. If \(T_{sst}\) is
above freezing, \(F_b=c_{sw} \rho_{sw}
\gamma (T_{sst}-T_f)u^{*}\), \(\gamma\) is the heat transfer
coefficient and \(u^{*}=QQ\) is frictional velocity between ice and
water. If \(T_{sst}\) is below freezing,
\(F_b=(T_f - T_{sst})c_f \rho_f \Delta z /\Delta t\) and set
\(T_{sst}\) to \(T_f\). We also include the energy from lower
layers that drop below freezing, and set those layers to \(T_f\).

If \(E_{top}>0\) we melt snow from the surface, if all the snow is
melted and there is energy left, we melt the ice. If the ice is all gone
and there is still energy left, we apply the left over energy to heating
the ocean model upper layer (See Winton, 1999, equations 27-29).
Similarly if \(E_{bot}>0\) we melt ice from the bottom. If all the
ice is melted, the snow is melted (with energy from the ocean model
upper layer if necessary). If \(E_{bot}<0\) we grow ice at the
bottom


\[\Delta h_i = \frac{-E_{bot}}{(q_{bot} \rho_i)}\]

where \(q_{bot}=-c_{i} T_f + L_i\) is the enthalpy of the new ice,
The enthalpy of the second ice layer, \(q_2\) needs to be modified:


\[q_2 = \frac{ \hat{h_i}/2 \hat{q_2} + \Delta h_i q_{bot} }
        {\hat{h_i}/{2}+\Delta h_i}\]

If there is a ice layer and the overlying air temperature is below
0\(^o\)C then any precipitation, \(P\) joins the snow layer:


\[\Delta h_s  = -P \frac{\rho_f}{\rho_s} \Delta t,\]

\(\rho_f\) and \(\rho_s\) are the fresh water and snow
densities. Any evaporation, similarly, removes snow or ice from the
surface. We also calculate the snow age here, in case it is needed for
the surface albedo calculation (see srf_albedo.F below).

For practical reasons we limit the ice growth to hilim and snow is
limited to hslim. We converts any ice and/or snow above these limits
back to water, maintaining the salt balance. Note however, that heat is
not conserved in this conversion; sea surface temperatures below the ice
are not recalculated.

If the snow/ice interface is below the waterline, snow is converted to
ice (see Winton, 1999, equations 35 and 36). The subroutine
new_layers_winton.F, described below, repartitions the ice into
equal thickness layers while conserving energy.

The subroutine ice_therm.F now calculates the heat and fresh water
fluxes affecting the ocean model surface layer. The heat flux:


\[q_{net}= {\bf fswocn} - F_{b} - \frac{{\bf esurp}}{\Delta t}\]

is composed of the shortwave flux that has passed through the ice layer
and is absorbed by the water, fswocn\(=QQ\), the ocean flux to
the ice \(F_b\), and the surplus energy left over from the melting,
esurp. The fresh water flux is determined from the amount of fresh
water and salt in the ice/snow system before and after the timestep.

(There is a provision for fractional ice: If ice height is above
hihig then all energy from freezing at sea surface is used only in
the open water aparts of the cell (ie. \(F_b\) will only have the
conduction term). The melt energy is partitioned by frac_energy
between melting ice height and ice extent. However, once ice height
drops below himon0 then all energy melts ice extent.)




subroutine SFC_ALBEDO

The routine ice_therm.F calls this routine to determine the surface
albedo. There are two calculations provided here:


	from LANL CICE model


\[\alpha = f_s \alpha_s + (1-f_s) (\alpha_{i_{min}}
         + (\alpha_{i_{max}}- \alpha_{i_{min}}) (1-e^{-h_i/h_{\alpha}}))\]

where \(f_s\) is 1 if there is snow, 0 if not; the snow albedo,
\(\alpha_s\) has two values depending on whether \(T_s<0\) or
not; \(\alpha_{i_{min}}\) and \(\alpha_{i_{max}}\) are ice
albedos for thin melting ice, and thick bare ice respectively, and
\(h_{\alpha}\) is a scale height.



	From GISS model (Hansen et al 1983)


\[\alpha = \alpha_i e^{-h_s/h_a} + \alpha_s (1-e^{-h_s/h_a})\]

where \(\alpha_i\) is a constant albedo for bare ice, \(h_a\) is
a scale height and \(\alpha_s\) is a variable snow albedo.


\[\alpha_s = \alpha_1 + \alpha_2 e^{-\lambda_a a_s}\]

where \(\alpha_1\) is a constant, \(\alpha_2\) depends on
\(T_s\), \(a_s\) is the snow age, and \(\lambda_a\) is a
scale frequency. The snow age is calculated in ice_therm.F and is
given in equation 41 in Hansen et al (1983).








subroutine NEW_LAYERS_WINTON

The subroutine new_layers_winton.F repartitions the ice into equal
thickness layers while conserving energy. We pass to this subroutine,
the ice layer enthalpies after melting/growth and the new height of the
ice layers. The ending layer height should be half the sum of the new
ice heights from ice_therm.F. The enthalpies of the ice layers are
adjusted accordingly to maintain total energy in the ice model. If layer
2 height is greater than layer 1 height then layer 2 gives ice to layer
1 and:


\[q_1=f_1 \hat{q_1} + (1-f1) \hat{q_2}\]

where \(f_1\) is the fraction of the new to old upper layer heights.
\(T_1\) will therefore also have changed. Similarly for when ice
layer height 2 is less than layer 1 height, except here we need to to be
careful that the new \(T_2\) does not fall below the melting
temperature.




Initializing subroutines

ice_init.F: Set ice variables to zero, or reads in pickup information from
pickup.ic (which was written out in checkpoint.F)

ice_readparms.F: Reads data.ice




Diagnostic subroutines

ice_ave.F: Keeps track of means of the ice variables

ice_diags.F: Finds averages and writes out diagnostics




Common Blocks

ICE.h: Ice Varibles, also relaxlat and startIceModel

ICE_DIAGS.h: matrices for diagnostics: averages of fields from ice_diags.F

BULKF_ICE_CONSTANTS.h (in BULKF package): all the parameters need by the ice model




Input file DATA.ICE

Here we need to set StartIceModel: which is 1 if the model starts
from no ice; and 0 if there is a pickup file with the ice matrices
(pickup.ic) which is read in ice_init.F and written out in
checkpoint.F. The parameter relaxlat defines the latitude poleward
of which there is no relaxing of surface \(T\) or \(S\) to
observations. This avoids the relaxation forcing the ice model at these
high latitudes.

(Note: hicemin is set to 0 here. If the provision for allowing grid
cells to have both open water and seaice is ever implemented, this would
be greater than 0)






5.6.1.2. Important Notes


	heat fluxes have different signs in the ocean and ice models.

	StartIceModel must be changed in data.ice: 1 (if starting from no ice), 0 (if using pickup.ic file).






5.6.1.3. THSICE Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------------------------
SI_Fract|  1 |SM P    M1      |0-1             |Sea-Ice fraction  [0-1]
SI_Thick|  1 |SM PC197M1      |m               |Sea-Ice thickness (area weighted average)
SI_SnowH|  1 |SM PC197M1      |m               |Snow thickness over Sea-Ice (area weighted)
SI_Tsrf |  1 |SM  C197M1      |degC            |Surface Temperature over Sea-Ice (area weighted)
SI_Tice1|  1 |SM  C197M1      |degC            |Sea-Ice Temperature, 1srt layer (area weighted)
SI_Tice2|  1 |SM  C197M1      |degC            |Sea-Ice Temperature, 2nd  layer (area weighted)
SI_Qice1|  1 |SM  C198M1      |J/kg            |Sea-Ice enthalpy, 1srt layer (mass weighted)
SI_Qice2|  1 |SM  C198M1      |J/kg            |Sea-Ice enthalpy, 2nd  layer (mass weighted)
SIalbedo|  1 |SM PC197M1      |0-1             |Sea-Ice Albedo [0-1] (area weighted average)
SIsnwAge|  1 |SM P    M1      |s               |snow age over Sea-Ice
SIsnwPrc|  1 |SM  C197M1      |kg/m^2/s        |snow precip. (+=dw) over Sea-Ice (area weighted)
SIflxAtm|  1 |SM      M1      |W/m^2           |net heat flux from the Atmosphere (+=dw)
SIfrwAtm|  1 |SM      M1      |kg/m^2/s        |fresh-water flux to the Atmosphere (+=up)
SIflx2oc|  1 |SM      M1      |W/m^2           |heat flux out of the ocean (+=up)
SIfrw2oc|  1 |SM      M1      |m/s             |fresh-water flux out of the ocean (+=up)
SIsaltFx|  1 |SM      M1      |psu.kg/m^2      |salt flux out of the ocean (+=up)
SItOcMxL|  1 |SM      M1      |degC            |ocean mixed layer temperature
SIsOcMxL|  1 |SM P    M1      |psu             |ocean mixed layer salinity








5.6.1.4. References

Bitz, C.M. and W.H. Lipscombe, 1999: An Energy-Conserving Thermodynamic Model of Sea Ice. Journal of Geophysical Research, 104, 15,669 – 15,677.

Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy and L.Travis, 1983: Efficient Three-Dimensional Global Models for Climate Studies: Models I and II. Monthly Weather Review, 111, 609 – 662.

Hunke, E.C and W.H. Lipscomb, circa 2001: CICE: the Los Alamos Sea Ice Model Documentation and Software User’s Manual. LACC-98-16v.2. (note: this documentation is no longer available as CICE has progressed to a very different version 3)

Winton, M, 2000: A reformulated Three-layer Sea Ice Model. Journal of Atmospheric and Ocean Technology, 17, 525 – 531.




5.6.1.5. Experiments and tutorials that use thsice


	Global atmosphere experiment in aim.5l_cs verification directory,
input from input.thsice directory.

	Global ocean experiment in global_ocean.cs32x15 verification
directory, input from input.thsice directory.









          

      

      

    

  

  
    
    
    5.6.2. SEAICE Package
    
    

    
 
  
  

    
      
          
            
  
5.6.2. SEAICE Package

Authors: Martin Losch, Dimitris Menemenlis, An Nguyen, Jean-Michel
Campin, Patrick Heimbach, Chris Hill and Jinlun Zhang


5.6.2.1. Introduction

Package “seaice” provides a dynamic and thermodynamic interactive
sea-ice model.

CPP options enable or disable different aspects of the package
(Section para_phys_pkg_seaice_compile). Run-Time options, flags, filenames and
field-related dates/times are set in data.seaice (Section para_phys_pkg_seaice_runtime).
A description of key subroutines is given in Section
para_phys_pkg_seaice_subroutines. Input fields, units and sign conventions
are summarized in Section [sec:pkg:seaice:fields:sub:units], and
available diagnostics output is listed in Section
[sec:pkg:seaice:diagnostics].




5.6.2.2. SEAICE configuration, compiling & running


Compile-time options

As with all MITgcm packages, SEAICE can be turned on or off at compile
time


	using the packages.conf file by adding seaice to it,

	or using genmake2 adding -enable=seaice or -disable=seaice switches

	required packages and CPP options:
SEAICE requires the external forcing package exf to be enabled; no
additional CPP options are required.



(see Section [sec:buildingCode]).

Parts of the SEAICE code can be enabled or disabled at compile time via
CPP preprocessor flags. These options are set in SEAICE_OPTIONS.h. Table 5.15 summarizes the most important ones. For more
options see the default pkg/seaice/SEAICE_OPTIONS.h.


Table 5.15 Some of the most relevant CPP preporocessor flags in the seaice-package.





	CPP option
	Description




	SEAICE_DEBUG
	Enhance STDOUT for debugging


	SEAICE_ALLOW_DYNAMICS
	sea-ice dynamics code


	SEAICE_CGRID
	LSR solver on C-grid (rather than original B-grid)


	SEAICE_ALLOW_EVP
	enable use of EVP rheology solver


	SEAICE_ALLOW_JFNK
	enable use of JFNK rheology solver


	SEAICE_EXTERNAL_FLUXES
	use EXF-computed fluxes as starting point


	SEAICE_ZETA_SMOOTHREG
	use differentialable regularization for viscosities


	SEAICE_VARIABLE_FREEZING_POINT
	enable linear dependence of the freezing point on salinity (by default undefined)


	ALLOW_SEAICE_FLOODING
	enable snow to ice conversion for submerged sea-ice


	SEAICE_VARIABLE_SALINITY
	enable sea-ice with variable salinity (by default undefined)


	SEAICE_SITRACER
	enable sea-ice tracer package (by default undefined)


	SEAICE_BICE_STRESS
	B-grid only for backward compatiblity: turn on ice-stress on ocean


	EXPLICIT_SSH_SLOPE
	B-grid only for backward compatiblity: use ETAN for tilt computations rather than geostrophic velocities








Run-time parameters

Run-time parameters (see Table 5.16) are set in
files data.pkg (read in packages_readparms.F), and data.seaice (read in seaice_readparms.F).


Enabling the package

A package is switched on/off at run-time by setting (e.g. for SEAICE useSEAICE = .TRUE. in data.pkg).




General flags and parameters

Table 5.16 lists most run-time parameters.


Table 5.16 Run-time parameters and default values






	Name
	Default value
	Description


	SEAICEwriteState
	T
	write sea ice state to file


	SEAICEuseDYNAMICS
	T
	use dynamics


	SEAICEuseJFNK
	F
	use the JFNK-solver


	SEAICEuseTEM
	F
	use truncated ellipse method


	SEAICEuseStrImpCpl
	F
	use strength implicit coupling in LSR/JFNK


	SEAICEuseMetricTerms
	T
	use metric terms in dynamics


	SEAICEuseEVPpickup
	T
	use EVP pickups


	SEAICEuseFluxForm
	F
	use flux form for 2nd central difference advection scheme


	SEAICErestoreUnderIce
	F
	enable restoring to climatology under ice


	useHB87stressCoupling
	F
	turn on ice-ocean stress coupling following


	usePW79thermodynamics
	T
	flag to turn off zero-layer-thermodynamics for testing


	SEAICEadvHeff/Area/Snow/Salt
	T
	flag to turn off advection of scalar state variables


	SEAICEuseFlooding
	T
	use flood-freeze algorithm


	SEAICE_no_slip
	F
	switch between free-slip and no-slip boundary conditions


	SEAICE_deltaTtherm
	dTracerLev(1)
	thermodynamic timestep


	SEAICE_deltaTdyn
	dTracerLev(1)
	dynamic timestep


	SEAICE_deltaTevp
	0
	EVP sub-cycling time step, values \(>\) 0 turn on EVP


	SEAICEuseEVPstar
	F
	use modified EVP* instead of EVP


	SEAICEuseEVPrev
	F
	use yet another variation on EVP*


	SEAICEnEVPstarSteps
	UNSET
	number of modified EVP* iteration


	SEAICE_evpAlpha
	UNSET
	EVP* parameter


	SEAICE_evpBeta
	UNSET
	EVP* parameter


	SEAICEaEVPcoeff
	UNSET
	aEVP parameter


	SEAICEaEVPcStar
	4
	aEVP parameter   [KDL16]


	SEAICEaEVPalphaMin
	5
	aEVP parameter   [KDL16]


	SEAICE_elasticParm
	\(\frac{1}{3}\)
	EVP paramter \(E_0\)


	SEAICE_evpTauRelax
	\(\Delta{t}_{EVP}\)
	relaxation time scale \(T\) for EVP waves


	SEAICEnonLinIterMax
	10
	maximum number of JFNK-Newton iterations (non-linear)


	SEAICElinearIterMax
	10
	maximum number of JFNK-Krylov iterations (linear)


	SEAICE_JFNK_lsIter
	(off)
	start line search after “lsIter” Newton iterations


	SEAICEnonLinTol
	1.0E-05
	non-linear tolerance parameter for JFNK solver


	JFNKgamma_lin_min/max
	0.10/0.99
	tolerance parameters for linear JFNK solver


	JFNKres_tFac
	UNSET
	tolerance parameter for FGMRES residual


	SEAICE_JFNKepsilon
	1.0E-06
	step size for the FD-Jacobian-times-vector


	SEAICE_dumpFreq
	dumpFreq
	dump frequency


	SEAICE_taveFreq
	taveFreq
	time-averaging frequency


	SEAICE_dump_mdsio
	T
	write snap-shot using MDSIO


	SEAICE_tave_mdsio
	T
	write TimeAverage using MDSIO


	SEAICE_dump_mnc
	F
	write snap-shot using MNC


	SEAICE_tave_mnc
	F
	write TimeAverage using MNC


	SEAICE_initialHEFF
	0.00000E+00
	initial sea-ice thickness


	SEAICE_drag
	2.00000E-03
	air-ice drag coefficient


	OCEAN_drag
	1.00000E-03
	air-ocean drag coefficient


	SEAICE_waterDrag
	5.50000E+00
	water-ice drag


	SEAICE_dryIceAlb
	7.50000E-01
	winter albedo


	SEAICE_wetIceAlb
	6.60000E-01
	summer albedo


	SEAICE_drySnowAlb
	8.40000E-01
	dry snow albedo


	SEAICE_wetSnowAlb
	7.00000E-01
	wet snow albedo


	SEAICE_waterAlbedo
	1.00000E-01
	water albedo


	SEAICE_strength
	2.75000E+04
	sea-ice strength \(P^{*}\)


	SEAICE_cStar
	20.0000E+00
	sea-ice strength paramter \(C^{*}\)


	SEAICE_rhoAir
	1.3 (or value)
	density of air (kg/m:math:^3)


	SEAICE_cpAir
	1004 (or value)
	specific heat of air (J/kg/K)


	SEAICE_lhEvap
	2,500,000 (or val    ue)
	latent heat of evaporation


	SEAICE_lhFusion
	334,000 (or value    )
	latent heat of fusion


	SEAICE_lhSublim
	2,834,000
	latent heat of sublimation


	SEAICE_dalton
	1.75E-03
	sensible heat transfer coefficient


	SEAICE_iceConduct
	2.16560E+00
	sea-ice conductivity


	SEAICE_snowConduct
	3.10000E-01
	snow conductivity


	SEAICE_emissivity
	5.50000E-08
	Stefan-Boltzman


	SEAICE_snowThick
	1.50000E-01
	cutoff snow thickness


	SEAICE_shortwave
	3.00000E-01
	penetration shortwave radiation


	SEAICE_freeze
	-1.96000E+00
	freezing temp. of sea water


	SEAICE_saltFrac
	0.0
	salinity newly formed ice (fraction of ocean surface salinity)


	SEAICE_frazilFrac
	0.0
	Fraction of surface level negative heat content anomalies (relative to the local freezing poin


	SEAICEstressFactor
	1.00000E+00
	scaling factor for ice-ocean stress


	Heff/Area/HsnowFile/Hsalt
	UNSET
	initial fields for variables HEFF/AREA/HSNOW/HSALT


	LSR_ERROR
	1.00000E-04
	sets accuracy of LSR solver


	DIFF1
	0.0
	parameter used in advect.F


	HO
	5.00000E-01
	demarcation ice thickness (AKA lead closing paramter \(h_0\))


	MAX_HEFF
	1.00000E+01
	maximum ice thickness


	MIN_ATEMP
	-5.00000E+01
	minimum air temperature


	MIN_LWDOWN
	6.00000E+01
	minimum downward longwave


	MAX_TICE
	3.00000E+01
	maximum ice temperature


	MIN_TICE
	-5.00000E+01
	minimum ice temperature


	IMAX_TICE
	10
	iterations for ice heat budget


	SEAICE_EPS
	1.00000E-10
	reduce derivative singularities


	SEAICE_area_reg
	1.00000E-5
	minimum concentration to regularize ice thickness


	SEAICE_hice_reg
	0.05 m
	minimum ice thickness for regularization


	SEAICE_multDim
	1
	number of ice categories for thermodynamics


	SEAICE_useMultDimSnow
	F
	use SEAICE_multDim snow categories








Input fields and units



	HeffFile: Initial sea ice thickness averaged over grid cell in meters; initializes variable HEFF;

	AreaFile: Initial fractional sea ice cover, range \([0,1]\); initializes variable AREA;

	HsnowFile: Initial snow thickness on sea ice averaged over grid cell in meters; initializes variable HSNOW;

	HsaltFile: Initial salinity of sea ice averaged over grid cell in g/m\(^2\); initializes variable HSALT;













5.6.2.3. Description

[TO BE CONTINUED/MODIFIED]

The MITgcm sea ice model (MITgcm/sim) is based on a variant of the
viscous-plastic (VP) dynamic-thermodynamic sea ice model [ZH97] first
introduced by [Hib79][Hib80]. In order to adapt this model to the requirements of
coupled ice-ocean state estimation, many important aspects of the
original code have been modified and improved [LMC+10]:


	the code has been rewritten for an Arakawa C-grid, both B- and C-grid
variants are available; the C-grid code allows for no-slip and
free-slip lateral boundary conditions;

	three different solution methods for solving the nonlinear momentum
equations have been adopted: LSOR [ZH97], EVP [HD97], JFNK [LTSedlacek+10][LFLV14];

	ice-ocean stress can be formulated as in [HB87] or as in [CMF08];

	ice variables are advected by sophisticated, conservative advection
schemes with flux limiting;

	growth and melt parameterizations have been refined and extended in
order to allow for more stable automatic differentiation of the code.



The sea ice model is tightly coupled to the ocean compontent of the
MITgcm. Heat, fresh water fluxes and surface stresses are computed from
the atmospheric state and – by default – modified by the ice model at
every time step.

The ice dynamics models that are most widely used for large-scale
climate studies are the viscous-plastic (VP) model [Hib79], the cavitating
fluid (CF) model [FWDH92], and the elastic-viscous-plastic (EVP) model [HD97].
Compared to the VP model, the CF model does not allow ice shear in
calculating ice motion, stress, and deformation. EVP models approximate
VP by adding an elastic term to the equations for easier adaptation to
parallel computers. Because of its higher accuracy in plastic solution
and relatively simpler formulation, compared to the EVP model, we
decided to use the VP model as the default dynamic component of our ice
model. To do this we extended the line successive over relaxation (LSOR)
method of [ZH97] for use in a parallel configuration. An EVP model and a
free-drift implemtation can be selected with runtime flags.


Compatibility with ice-thermodynamics thsice package

Note, that by default the seaice-package includes the orginial so-called
zero-layer thermodynamics following with a snow cover as in . The
zero-layer thermodynamic model assumes that ice does not store heat and,
therefore, tends to exaggerate the seasonal variability in ice
thickness. This exaggeration can be significantly reduced by using ’s
  
    
    
    6. References
    
    

    
 
  
  

    
      
          
            
  
6. References

References






	[Adc95]	A.
  
    
    
    Index
    
    

    
 
  
  

    
      
          
            

Index



 




          

      

      

    

  

  
    
    
    Barotropic Gyre MITgcm Example
    
    

    
 
  
  

    
      
          
            
  
Barotropic Gyre MITgcm Example


(in directory: verification/tutorial_barotropic_gyre/)


This example experiment demonstrates using the MITgcm to simulate a Barotropic, wind-forced, ocean gyre circulation. The files for this experiment can be found in the verification directory verification/tutorial_barotropic_gyre. The experiment is a numerical rendition of the gyre circulation problem similar to the problems described analytically by Stommel in 1966  [Sto48] and numerically in Holland et. al [HL5a].

In this experiment the model is configured to represent a rectangular enclosed box of fluid, \(1200 \times 1200\) km in lateral extent. The fluid is 5 km deep and is forced by a constant in time zonal wind stress, \(\tau_x\), that varies sinusoidally in the ‘north-south’ direction. Topologically the grid is Cartesian and the coriolis parameter \(f\) is defined according to a mid-latitude beta-plane equation


(1)\[f(y) = f_{0}+\beta y\]

where \(y\) is the distance along the ‘north-south’ axis of the simulated domain. For this experiment \(f_{0}\) is set to \(10^{-4}s^{-1}\) in (1) and \(\beta = 10^{-11}s^{-1}m^{-1}\).

The sinusoidal wind-stress variations are defined according to


(2)\[\tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y})\]

where \(L_{y}\) is the lateral domain extent (1200~km) and
\(\tau_0\) is set to \(0.1N m^{-2}\).

Figure 4.1 summarizes the configuration simulated.



[image: barotropic gyre configuration]
Schematic of simulation domain and wind-stress forcing function for barotropic gyre numerical experiment. The domain is enclosed by solid walls at \(x=\) 0, 1200 km and at \(y=\) 0, 1200 km.







Equations Solved

The model is configured in hydrostatic form. The implicit free surface form of the
pressure equation described in [MHPA97] is
employed.
A horizontal Laplacian operator \(\nabla_{h}^2\) provides viscous
dissipation. The wind-stress momentum input is added to the momentum equation
for the ‘zonal flow’, \(u\). Other terms in the model
are explicitly switched off for this experiment configuration (see section
Section 4.2.3 ), yielding an active set of equations solved
in this configuration as follows


(3)\[ \begin{align}\begin{aligned}\frac{Du}{Dt} - fv + g\frac{\partial \eta}{\partial x} - A_{h}\nabla_{h}^2u
 = & \frac{\tau_{x}}{\rho_{0}\Delta z}\\\frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} - A_{h}\nabla_{h}^2v
 = & 0\\\frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
 = & 0\end{aligned}\end{align} \]

where \(u\) and \(v\) and the \(x\) and \(y\) components of the
flow vector \(\vec{u}\).




Discrete Numerical Configuration

The domain is discretised with a uniform grid spacing in the horizontal set to \(\Delta x=\Delta y=20\) km, so that there are sixty grid cells in the \(x\) and \(y\) directions. Vertically the model is configured with a single layer with depth, \(\Delta z\), of \(5000\) m.


Numerical Stability Criteria

The Laplacian dissipation coefficient, \(A_{h}\), is set to \(400 m s^{-1}\). This value is chosen to yield a Munk layer width [Adc95],


(4)\[M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}\]

of \(\approx\) 100km. This is greater than the model
resolution \(\Delta x\), ensuring that the frictional boundary
layer is well resolved.

The model is stepped forward with a
time step \(\delta t=1200\) secs. With this time step the stability
parameter to the horizontal Laplacian friction [Adc95]


(5)\[S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2}\]

evaluates to 0.012, which is well below the 0.3 upper limit for stability.

The numerical stability for inertial oscillations [Adc95]


(6)\[S_{i} = f^{2} {\delta t}^2\]

evaluates to \(0.0144\) , which is well below the 0.5 upper limit for stability.

The advective CFL [Adc95] for an extreme maximum horizontal flow speed of \({|\vec{u}|} = 2 ms^{-1}\)


(7)\[S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x}\]

evaluates to 0.12. This is approaching the stability limit of 0.5 and limits \(\delta t\) to 1200 s.






Code Configuration

The model configuration for this experiment resides under the directory verification/tutorial_barotropic_gyre/.

The experiment files



	input/data

	input/data.pkg

	input/eedata

	input/windx.sin_y

	input/topog.box

	code/CPP_EEOPTIONS.h

	code/CPP_OPTIONS.h

	code/SIZE.h






contain the code customizations and parameter settings for this
experiments. Below we describe the customizations
to these files associated with this experiment.


File input/data

This file, reproduced completely below, specifies the main parameters
for the experiment. The parameters that are significant for this configuration
are



	Line 7


	viscAh=4.E2,

	this line sets the Laplacian friction coefficient to \(400 m^2s^{-1}\)





	Line 10


	beta=1.E-11,

	this line sets \(\beta\) (the gradient of the coriolis parameter, \(f\)) to \(10^{-11} s^{-1}m^{-1}\)





	Lines 15 and 16


	rigidLid=.FALSE.,

	implicitFreeSurface=.TRUE.,

	these lines suppress the rigid lid formulation of the surface pressure inverter and activate the implicit free surface form of the pressure inverter.





	Line 27


	startTime=0,

	this line indicates that the experiment should start from \(t=0\) and implicitly suppresses searching for checkpoint files associated with restarting an numerical integration from a previously saved state.





	Line 29


	endTime=12000,

	this line indicates that the experiment should start finish at \(t=12000s\). A restart file will be written at this time that will enable the simulation to be continued from this point.





	Line 30



	deltaTmom=1200,

	This line sets the momentum equation timestep to \(1200s\).








	Line 39


	usingCartesianGrid=.TRUE.,

	This line requests that the simulation be performed in a Cartesian coordinate system.





	Line 41


	delX=60*20E3,

	This line sets the horizontal grid spacing between each x-coordinate line in the discrete grid. The syntax indicates that the discrete grid should be comprise of $60$ grid lines each separated by \(20 \times 10^{3}m\) (20 km).





	Line 42


	delY=60*20E3,

	This line sets the horizontal grid spacing between each y-coordinate line in the discrete grid to \(20 \times 10^{3}m\) (20 km).





	Line 43


	delZ=5000,

	This line sets the vertical grid spacing between each z-coordinate line in the discrete grid to 5000m (5 km).





	Line 46


	bathyFile=’topog.box’

	This line specifies the name of the file from which the domain bathymetry is read. This file is a two-dimensional (\(x,y\)) map of depths. This file is assumed to contain 64-bit binary numbers giving the depth of the model at each grid cell, ordered with the x coordinate varying fastest. The points are ordered from low coordinate to high coordinate for both axes. The units and orientation of the depths in this file are the same as used in the MITgcm code. In this experiment, a depth of 0 m indicates a solid wall and a depth of -5000 m indicates open ocean. The matlab program input/gendata.m shows an example of how to generate a bathymetry file.





	Line 49


	zonalWindFile=’windx.sin_y’

	This line specifies the name of the file from which the x-direction surface wind stress is read. This file is also a two-dimensional (\(x,y\)) map and is enumerated and formatted in the same manner as the bathymetry file. The matlab program input/gendata.m includes example code to generate a valid zonalWindFile file.










other lines in the file input/data are standard values that are described in the MITgcm Getting Started and MITgcm Parameters notes.




File input/data.pkg

This file uses standard default values and does not contain
customizations for this experiment.




File input/eedata

This file uses standard default values and does not contain
customizations for this experiment.




File input/windx.sin_y

The input/windx.sin_y file specifies a two-dimensional (\(x,y\))
map of wind stress, \(\tau_{x}\), values. The units used are \(Nm^{-2}\). Although \(\tau_{x}\) is only a function of \(y\) in this experiment
this file must still define a complete two-dimensional map in order
to be compatible with the standard code for loading forcing fields
in MITgcm. The included matlab program input/gendata.m gives a complete
code for creating the input/windx.sin_y file.




File input/topog.box

The input/topog.box file specifies a two-dimensional (\(x,y\)) map of depth values. For this experiment values are either 0 m or \(-delZ\) m, corresponding respectively to a wall or to deep ocean. The file contains a raw binary stream of data that is enumerated in the same way as standard MITgcm two-dimensional, horizontal arrays. The included matlab program input/gendata.m gives a completecode for creating the input/topog.box file.




File code/SIZE.h

Two lines are customized in this file for the current experiment



	Line 39
	sNx=60,

	this line sets the lateral domain extent in grid points for the axis aligned with the x-coordinate.





	Line 40
	sNy=60,

	this line sets the lateral domain extent in grid points for the axis aligned with the y-coordinate.













File code/CPP_OPTIONS.h

This file uses standard default values and does not contain
customizations for this experiment.




File code/CPP_EEOPTIONS.h

This file uses standard default values and does not contain
customizations for this experiment.









          

      

      

    

  

  
    
    
    A Rotating Tank in Cylindrical Coordinates
    
    

    
 
  
  

    
      
          
            
  
A Rotating Tank in Cylindrical Coordinates


(in directory: verification/rotating_tank/)



Overview

This example configuration demonstrates using the MITgcm to simulate a
laboratory demonstration using a differentially heated rotating
annulus of water.  The simulation is configured for a laboratory scale
on a \(3^{\circ}\times1\mathrm{cm}\) cyclindrical grid with twenty-nine
vertical levels of 0.5cm each.  This is a typical laboratory setup for
illustration principles of GFD, as well as for a laboratory data
assimilation project. The files for this experiment can be found in
the verification directory under rotating_tank.

example illustration from GFD lab here




Equations Solved




Discrete Numerical Configuration

The domain is discretised with a uniform cylindrical grid spacing in
the horizontal set to \(\Delta a=1`~cm and :math:\)Delta phi=3^{circ}`, so
that there are 120 grid cells in the azimuthal direction and
thirty-one grid cells in the radial, representing a tank 62cm in
diameter.  The bathymetry file sets the depth=0 in the nine lowest
radial rows to represent the central of the annulus.  Vertically the
model is configured with twenty-nine layers of uniform 0.5cm
thickness.

something about heat flux




Code Configuration

The model configuration for this experiment resides under the
directory verification/rotatingi_tank/.  The experiment files



	input/data

	input/data.pkg

	input/eedata

	input/bathyPol.bin

	input/thetaPol.bin

	code/CPP\_EEOPTIONS.h

	code/CPP\_OPTIONS.h

	code/SIZE.h






contain the code customizations and parameter settings for this
experiments. Below we describe the customizations
to these files associated with this experiment.


File input/data

This file, reproduced completely below, specifies the main parameters
for the experiment. The parameters that are significant for this configuration
are



	Lines 9-10,
	viscAh=5.0E-6,

	viscAz=5.0E-6,










These lines set the Laplacian friction coefficient in the horizontal
and vertical, respectively.  Note that they are several orders of
magnitude smaller than the other examples due to the small scale of
this example.



	Lines 13-16,
	diffKhT=2.5E-6,

	diffKzT=2.5E-6,

	diffKhS=1.0E-6,

	diffKzS=1.0E-6,










These lines set horizontal and vertical diffusion coefficients for
temperature and salinity.  Similarly to the friction coefficients, the
values are a couple of orders of magnitude less than most


configurations.


	Line 17, f0=0.5, this line sets the






coriolis term, and represents a tank spinning at about 2.4 rpm.



	Lines 23 and 24
	rigidLid=.TRUE.,

	implicitFreeSurface=.FALSE.,










These lines activate  the rigid lid formulation of the surface
pressure inverter and suppress the implicit free surface form
of the pressure inverter.



	Line 40,
	nIter=0,










This line indicates that the experiment should start from $t=0$ and
implicitly suppresses searching for checkpoint files associated with
restarting an numerical integration from a previously saved state.
Instead, the file thetaPol.bin will be loaded to initialized the
temperature fields as indicated below, and other variables will be
initialized to their defaults.



	Line 43,
	deltaT=0.1,










This line sets the integration timestep to $0.1s$.  This is an
unsually small value among the examples due to the small physical
scale of the experiment.  Using the ensemble Kalman filter to produce
input fields can necessitate even shorter timesteps.



	Line 56,
	usingCylindricalGrid=.TRUE.,










This line requests that the simulation be performed in a
cylindrical coordinate system.



	Line 57,
	dXspacing=3,










This line sets the azimuthal grid spacing between each $x$-coordinate line
in the discrete grid. The syntax indicates that the discrete grid
should be comprised of $120$ grid lines each separated by $3^{circ}$.



	Line 58,
	dYspacing=0.01,










This line sets the radial cylindrical grid spacing between each
\(a\)-coordinate line in the discrete grid to \(1cm\).



	Line 59,
	delZ=29*0.005,










This line sets the vertical grid spacing between each of 29
z-coordinate lines in the discrete grid to $0.005m$ ($5$~mm).



	Line 64,
	bathyFile=’bathyPol.bin’,










This line specifies the name of the file from which the domain
‘bathymetry’ (tank depth) is read. This file is a two-dimensional
(\(a,\phi\)) map of
depths. This file is assumed to contain 64-bit binary numbers
giving the depth of the model at each grid cell, ordered with the $phi$
coordinate varying fastest. The points are ordered from low coordinate
to high coordinate for both axes.  The units and orientation of the
depths in this file are the same as used in the MITgcm code. In this
experiment, a depth of $0m$ indicates an area outside of the tank
and a depth
f \(-0.145m\) indicates the tank itself.



	Line 65,
	hydrogThetaFile=’thetaPol.bin’,










This line specifies the name of the file from which the initial values
of temperature
are read. This file is a three-dimensional
(\(x,y,z\)) map and is enumerated and formatted in the same manner as the
bathymetry file.



	Lines 66 and 67
	tCylIn  = 0

	tCylOut  = 20










These line specify the temperatures in degrees Celsius of the interior
and exterior walls of the tank – typically taken to be icewater on
the inside and room temperature on the outside.

Other lines in the file input/data are standard values
that are described in the MITgcm Getting Started and MITgcm Parameters
notes.




File input/data.pkg

This file uses standard default values and does not contain
customizations for this experiment.




File input/eedata

This file uses standard default values and does not contain
customizations for this experiment.




File input/thetaPol.bin

The {it input/thetaPol.bin} file specifies a three-dimensional ($x,y,z$)
map of initial values of $theta$ in degrees Celsius.  This particular
experiment is set to random values x around 20C to provide initial
perturbations.




File input/bathyPol.bin

The {it input/bathyPol.bin} file specifies a two-dimensional ($x,y$)
map of depth values. For this experiment values are either
$0m$ or {bf -delZ}m, corresponding respectively to outside or inside of
the tank. The file contains a raw binary stream of data that is enumerated
in the same way as standard MITgcm two-dimensional, horizontal arrays.




File code/SIZE.h

Two lines are customized in this file for the current experiment



	Line 39,
- sNx=120,






this line sets
the lateral domain extent in grid points for the
axis aligned with the x-coordinate.



	Line 40,
- sNy=31,






this line sets
the lateral domain extent in grid points for the
axis aligned with the y-coordinate.




File code/CPP_OPTIONS.h

This file uses standard default values and does not contain
customizations for this experiment.




File code/CPP_EEOPTIONS.h

This file uses standard default values and does not contain
customizations for this experiment.









          

      

      

    

  
_images/zandpcoord.png
z-p Isomorphism

Ocean (z coordinates) Ze3p Atmosphere (p coordinates)
dv+fxv+VP=F Ped dv+fxv+V ®=F
gp+d,P=0 P a+ad &=0
Viv+dw=0 W M V,y+d,0=0
de=0Q 0 de=0
ds=S5 s ¢>q dg=3S5
In+Vm+Hy=P-E n+Heop, J,p.+ Vopy=0






_images/scales.png
. o b
*~100 km * ~1 000km ~10000km
>~
~——— ~10 km
~1 km

r——

~100 m





nav.xhtml

    
      Table of Contents


      
        		Welcome to MITgcm's user manual


        		Overview
          
          		Introduction


          		Illustrations of the model in action
            
            		Global atmosphere: ‘Held-Suarez’ benchmark


            		Ocean gyres


            		Global ocean circulation


            		Convection and mixing over topography


            		Boundary forced internal waves


            		Parameter sensitivity using the adjoint of MITgcm


            		Global state estimation of the ocean


            		Ocean biogeochemical cycles


            		Simulations of laboratory experiments


            


          


          		Continuous equations in ‘r’ coordinates
            
            		Kinematic Boundary conditions


            		Atmosphere


            		Ocean


            		Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic forms


            		Solution strategy


            		Finding the pressure field


            		Forcing/dissipation


            		Vector invariant form


            		Adjoint


            


          


          		Appendix ATMOSPHERE
            
            		Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates


            


          


          		Appendix OCEAN
            
            		Equations of Motion for the Ocean


            


          


          		Appendix OPERATORS
            
            		Coordinate systems


            


          


          


        


        		Getting Started with MITgcm
          
          		Where to find information


          


        


        		Contributing to the MITgcm
          
          		Bugs and feature requests


          		Contributing to the code
            
            		Quickstart Guide


            		Detailed guide


            		Style guide


            		Automatic testing with Travis-CI


            


          


          		Contributing to the manual
            
            		Section headings


            		Cross referencing


            		Maths


            		Units


            		Describing subroutine inputs and outputs


            


          


          		Reviewing pull requests


          


        


        		MITgcm Example Experiments
          
          		Full list of model examples


          		Barotropic Gyre MITgcm Example
            
            		Equations Solved


            		Discrete Numerical Configuration


            		Code Configuration


            


          


          		A Rotating Tank in Cylindrical Coordinates
            
            		Overview


            		Equations Solved


            		Discrete Numerical Configuration


            		Code Configuration


            


          


          


        


        		Physical Parameterizations - Packages I
          
          		Overview
            
            		Using MITgcm Packages


            


          


          		Packages Related to Hydrodynamical Kernel
            
            		Generic Advection/Diffusion


            		Shapiro Filter


            		FFT Filtering Code


            		exch2: Extended Cubed Sphere Topology


            		Gridalt - Alternate Grid Package


            


          


          		General purpose numerical infrastructure packages
            
            		OBCS: Open boundary conditions for regional modeling


            		RBCS Package


            		PTRACERS Package


            


          


          		Ocean Packages
            
            		GMREDI: Gent-McWilliams/Redi SGS Eddy Parameterization


            		KPP: Nonlocal K-Profile Parameterization for Vertical Mixing


            		GGL90: a TKE vertical mixing scheme


            		OPPS: Ocean Penetrative Plume Scheme


            		KL10: Vertical Mixing Due to Breaking Internal Waves


            		BULK_FORCE: Bulk Formula Package


            		EXF: The external forcing package


            		CAL: The calendar package


            


          


          		Atmosphere Packages
            
            		Atmospheric Intermediate Physics: AIM


            		Land package


            		Fizhi: High-end Atmospheric Physics


            


          


          		Sea Ice Packages
            
            		THSICE: The Thermodynamic Sea Ice Package


            		SEAICE Package


            


          


          


        


        		References


      


    
  

_images/labflow.png





_images/lab.png
100

90

80

70

60

50

40

30

20

10

10

20

30

40

50

60

70

80

90

100

30

28

126

124

22

20





_images/plume.gif





_images/ssh_sim_assim_obs.png
700

400

(from 1/1/1997)

Day
W
o
o

200

100

(a) Simulation (b) Assimilation (c) Observation (T/P)

| il 1

0 ‘ L B 3
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250

Longitude Longitude Longitude





_images/atl6.png
LAT

—120 —380 —40 0
LON






_images/globes.png





_static/comment-bright.png





_static/comment-close.png





_static/comment.png





_sta