
alot Documentation
Release 0.10

Patrick Totzke

Aug 24, 2023

Contents

1 Installation 3
1.1 Manual installation . 3
1.2 Generating the Docs . 4

2 Usage 5
2.1 Command-Line Invocation . 5
2.2 UNIX Signals . 6
2.3 First Steps in the UI . 6
2.4 Commands . 6
2.5 Cryptography . 15

3 Configuration 19
3.1 Configuration Options . 19
3.2 Accounts . 30
3.3 Contacts Completion . 34
3.4 Key Bindings . 35
3.5 Hooks . 38
3.6 Theming . 41

4 API and Development 45
4.1 Overview . 45
4.2 Email Database . 45
4.3 User Interface . 46
4.4 User Settings . 47
4.5 Utils . 55
4.6 Commands . 58
4.7 Crypto . 60

5 Frequently Asked Questions 63

6 Manpage 65
6.1 Synopsis . 65
6.2 Description . 65
6.3 Options . 65
6.4 Commands . 66
6.5 Usage . 66
6.6 UNIX Signals . 66

i

6.7 See Also . 66

Python Module Index 67

Index 69

ii

alot Documentation, Release 0.10

Alot is a terminal-based mail user agent for the notmuch mail system. It features a modular and command prompt
driven interface to provide a full MUA experience as an alternative to the Emacs mode shipped with notmuch.

Contents 1

alot Documentation, Release 0.10

2 Contents

CHAPTER 1

Installation

These days, alot can be installed directly using your favourite package manager. On a recent Debian (-derived) systems
for instance, just do sudo apt install alot and you’re done.

Note: Alot uses mailcap to look up mime-handler for inline rendering and opening of attachments. To avoid surprises
you should at least have an inline renderer (copiousoutput) set up for text/html in your ~/.mailcap:

text/html; w3m -dump -o document_charset=%{charset} '%s'; nametemplate=%s.html;
→˓copiousoutput

On more recent versions of w3m, links can be parsed and appended with reference numbers:

text/html; w3m -dump -o document_charset=%{charset} -o display_link_number=1 '%s';
→˓nametemplate=%s.html; copiousoutput

See the manpage mailcap(5) or RFC 1524 for more details on your mailcap setup.

1.1 Manual installation

Alot depends on recent versions of notmuch and urwid. Note that due to restrictions on argparse and subprocess, you
need to run python 3.5 (see faq). A full list of dependencies is below:

• libmagic and python bindings, 5.04

• configobj, 4.7.0

• libnotmuch and it’s python bindings, 0.27

• urwid toolkit, 1.3.0

• urwidtrees, 1.0

• gpg and it’s python bindings, 1.9.0

3

http://en.wikipedia.org/wiki/Mailcap
https://tools.ietf.org/html/rfc1524.html
http://darwinsys.com/file/
http://www.voidspace.org.uk/python/configobj.html
http://notmuchmail.org/
http://excess.org/urwid/
https://github.com/pazz/urwidtrees
http://www.gnupg.org/related_software/gpgme

alot Documentation, Release 0.10

• twisted, 18.4.0

On Debian/Ubuntu these are packaged as:

python3-setuptools python3-magic python3-configobj python3-notmuch python3-urwid
→˓python3-urwidtrees python3-gpg python3-twisted python3-dev swig

On Fedora/Redhat these are packaged as:

python-setuptools python-magic python-configobj python-notmuch python-urwid python-
→˓urwidtrees python-gpg python-twisted

To set up and install the latest development version:

git clone https://github.com/pazz/alot
poetry install --no-root

Make sure ~/.local/bin is in your PATH. For system-wide installation omit the –user flag and call with the
respective permissions.

1.2 Generating the Docs

This requires sphinx, 1.3 to be installed. To generate the documentation from the source directory simply do:

make -C docs html

A man page can be generated using:

make -C docs man

Both will end up in their respective subfolders in docs/build.

In order to remove the command docs and automatically re-generate them from inline docstrings, use the make target
cleanall, as in:

make -C docs cleanall html

Note: On Debian you need to overide the variable PYTHON used in the makefile so that it uses “python3”, not
“python”, which by default links to version 2.7* of the interpreter.

make PYTHON="python3" -C docs cleanall html

4 Chapter 1. Installation

https://twistedmatrix.com
http://sphinx.pocoo.org/

CHAPTER 2

Usage

2.1 Command-Line Invocation

Synopsis

alot [options . . .] [subcommand]

Options

-r, --read-only open notmuch database in read-only mode

-c FILENAME, --config=FILENAME configuration file (default: ~/.config/alot/config)

-n FILENAME, --notmuch-config=FILENAME notmuch configuration file (default: see notmuch-
config(1))

-C COLOURS, --colour-mode=COLOURS number of colours to use on the terminal; must be 1, 16
or 256 (default: configuration option colourmode or 256)

-p PATH, --mailindex-path=PATH path to notmuch index

-d LEVEL, --debug-level=LEVEL debug level; must be one of debug, info, warning or error (default:
info)

-l FILENAME, --logfile=FILENAME log file (default: /dev/null)

-h, --help display help and exit

-v, --version output version information and exit

Commands

alot can be invoked with an optional subcommand from the command line. Those have their own parameters (see e.g.
alot search –help). The following commands are available.

5

alot Documentation, Release 0.10

search start in a search buffer using the query string provided as parameter (see notmuch-search-terms(7))

compose compose a new message

bufferlist start with only a bufferlist buffer open

taglist start with only a taglist buffer open

namedqueries start with list of named queries

pyshell start the interactive python shell inside alot

2.2 UNIX Signals

SIGUSR1 Refreshes the current buffer.

SIGINT Shuts down the user interface.

2.3 First Steps in the UI

The arrow keys, page-up/down, j, k and Space can be used to move the focus. Escape cancels prompts and Enter
selects. Hit : at any time and type in commands to the prompt.

The interface shows one buffer at a time, you can use Tab and Shift-Tab to switch between them, close the current
buffer with d and list them all with ;.

The buffer type or mode (displayed at the bottom left) determines which prompt commands are available. Usage
information on any command can be listed by typing help YOURCOMMAND to the prompt. The keybindings for the
current mode are listed upon pressing ?.

2.4 Commands

Alot interprets user input as command line strings given via its prompt or bound to keys in the config. Command
lines are semi-colon separated command strings, each of which starts with a command name and possibly followed by
arguments.

See the sections below for which commands are available in which (UI) mode. global commands are available inde-
pendently of the mode.

Global commands globally available commands

Commands in ‘bufferlist’ mode commands while listing active buffers

Commands in ‘envelope’ mode commands during message composition

Commands in ‘namedqueries’ mode commands while listing all named queries from the notmuch database

Commands in ‘search’ mode commands available when showing thread search results

Commands in ‘taglist’ mode commands while listing all tagstrings present in the notmuch database

Commands in ‘thread’ mode commands available while displaying a thread

6 Chapter 2. Usage

alot Documentation, Release 0.10

2.4.1 Global commands

The following commands are available globally:

bclose
close a buffer

optional arguments

—redraw redraw current buffer after command has finished

—force never ask for confirmation

bnext
focus next buffer

bprevious
focus previous buffer

buffer
focus buffer with given index

argument buffer index to focus

bufferlist
open a list of active buffers

call
execute python code

argument python command string to call

compose
compose a new email

argument None

optional arguments

—sender sender

—template path to a template message file

—tags comma-separated list of tags to apply to message

—subject subject line

—to recipients

—cc copy to

—bcc blind copy to

—attach attach files

—omit_signature do not add signature

—spawn spawn editor in new terminal

confirmsequence
prompt to confirm a sequence of commands

argument Additional message to prompt

exit
shut down cleanly

2.4. Commands 7

alot Documentation, Release 0.10

flush
flush write operations or retry until committed

help
display help for a command (use ‘bindings’ to display all keybindings interpreted in current mode)

argument command or ‘bindings’

move
move focus in current buffer

argument up, down, [half]page up, [half]page down, first, last

namedqueries
opens named queries buffer

prompt
prompts for commandline and interprets it upon select

argument initial content

pyshell
open an interactive python shell for introspection

refresh
refresh the current buffer

reload
reload all configuration files

removequery
removes a “named query” from the database

argument alias to remove

optional arguments

—no-flush postpone a writeout to the index (defaults to: ‘True’)

repeat
repeat the command executed last time

savequery
store query string as a “named query” in the database

positional arguments 0: alias to use for query string 1: query string to store

optional arguments

—no-flush postpone a writeout to the index (defaults to: ‘True’)

search
open a new search buffer. Search obeys the notmuch search.exclude_tags setting.

argument search string

optional arguments

—sort sort order; valid choices are: ‘oldest_first’,’newest_first’,’message_id’,’unsorted’

shellescape
run external command

argument command line to execute

optional arguments

8 Chapter 2. Usage

alot Documentation, Release 0.10

—spawn run in terminal window

—thread run in separate thread

—refocus refocus current buffer after command has finished

taglist
opens taglist buffer

optional arguments

—tags tags to display

2.4.2 Commands in ‘bufferlist’ mode

The following commands are available in bufferlist mode:

close
close focussed buffer

open
focus selected buffer

2.4.3 Commands in ‘envelope’ mode

The following commands are available in envelope mode:

attach
attach files to the mail

argument file(s) to attach (accepts wildcards)

detach
remove attachments from current envelope

argument name of the attachment to remove (accepts wildcards)

display
change which body alternative to display

argument part to show

edit
edit mail

optional arguments

—spawn spawn editor in new terminal

—refocus refocus envelope after editing (defaults to: ‘True’)

—part which alternative to edit (“html” or “plaintext”); valid choices are: ‘html’,’plaintext’

encrypt
request encryption of message before sendout

argument keyid of the key to encrypt with

optional arguments

—trusted only add trusted keys

html2txt
convert html to plaintext alternative

2.4. Commands 9

alot Documentation, Release 0.10

argument converter command to use

refine
prompt to change the value of a header

argument header to refine

removehtml
remove HTML alternative from the envelope

retag
set message tags

argument comma separated list of tags

rmencrypt
do not encrypt to given recipient key

argument keyid of the key to encrypt with

save
save draft

send
send mail

set
set header value

positional arguments 0: header to refine 1: value

optional arguments

—append keep previous values

sign
mark mail to be signed before sending

argument which key id to use

tag
add tags to message

argument comma separated list of tags

toggleencrypt
toggle if message should be encrypted before sendout

argument keyid of the key to encrypt with

optional arguments

—trusted only add trusted keys

toggleheaders
toggle display of all headers

togglesign
toggle sign status

argument which key id to use

toggletags
flip presence of tags on message

argument comma separated list of tags

10 Chapter 2. Usage

alot Documentation, Release 0.10

txt2html
convert plaintext to html alternative

argument converter command to use

unencrypt
remove request to encrypt message before sending

unset
remove header field

argument header to refine

unsign
mark mail not to be signed before sending

untag
remove tags from message

argument comma separated list of tags

2.4.4 Commands in ‘namedqueries’ mode

The following commands are available in namedqueries mode:

select
search for messages with selected query

argument additional filter to apply to query

2.4.5 Commands in ‘search’ mode

The following commands are available in search mode:

move
move focus in search buffer

argument last

refine
refine query

argument search string

optional arguments

—sort sort order; valid choices are: ‘oldest_first’,’newest_first’,’message_id’,’unsorted’

refineprompt
prompt to change this buffers querystring

retag
set tags to all messages in the selected thread

argument comma separated list of tags

optional arguments

—no-flush postpone a writeout to the index (defaults to: ‘True’)

—all retag all messages that match the current query

2.4. Commands 11

alot Documentation, Release 0.10

retagprompt
prompt to retag selected thread’s or message’s tags

savequery
store query string as a “named query” in the database. This falls back to the current search query in search
buffers.

positional arguments 0: alias to use for query string 1: query string to store

optional arguments

—no-flush postpone a writeout to the index (defaults to: ‘True’)

select
open thread in a new buffer

sort
set sort order

argument sort order; valid choices are: ‘oldest_first’,’newest_first’,’message_id’,’unsorted’

tag
add tags to all messages in the selected thread

argument comma separated list of tags

optional arguments

—no-flush postpone a writeout to the index (defaults to: ‘True’)

—all tag all messages that match the current search query

toggletags
flip presence of tags on the selected thread: a tag is considered present and will be removed if at least one
message in this thread is tagged with it

argument comma separated list of tags

optional arguments

—no-flush postpone a writeout to the index (defaults to: ‘True’)

untag
remove tags from all messages in the selected thread

argument comma separated list of tags

optional arguments

—no-flush postpone a writeout to the index (defaults to: ‘True’)

—all untag all messages that match the current query

2.4.6 Commands in ‘taglist’ mode

The following commands are available in taglist mode:

select
search for messages with selected tag

12 Chapter 2. Usage

alot Documentation, Release 0.10

2.4.7 Commands in ‘thread’ mode

The following commands are available in thread mode:

bounce
directly re-send selected message

editnew
edit message in as new

optional arguments

—spawn open editor in new window

fold
fold message(s)

argument query used to filter messages to affect

forward
forward message

optional arguments

—attach attach original mail

—spawn open editor in new window

indent
change message/reply indentation

argument None

move
move focus in current buffer

argument up, down, [half]page up, [half]page down, first, last, parent, first reply, last reply, next sibling,
previous sibling, next, previous, next unfolded, previous unfolded, next NOTMUCH_QUERY, previous
NOTMUCH_QUERY

pipeto
pipe message(s) to stdin of a shellcommand

argument shellcommand to pipe to

optional arguments

—all pass all messages

—format output format; valid choices are: ‘raw’,’decoded’,’id’,’filepath’ (defaults to: ‘raw’)

—separately call command once for each message

—background don’t stop the interface

—add_tags add ‘Tags’ header to the message

—shell let the shell interpret the command

—notify_stdout display cmd’s stdout as notification

print
print message(s)

optional arguments

—all print all messages

2.4. Commands 13

alot Documentation, Release 0.10

—raw pass raw mail string

—separately call print command once for each message

—add_tags add ‘Tags’ header to the message

remove
remove message(s) from the index

optional arguments

—all remove whole thread

reply
reply to message

optional arguments

—all reply to all

—list reply to list

—spawn open editor in new window

retag
set message(s) tags.

argument comma separated list of tags

optional arguments

—all tag all messages in thread

—no-flush postpone a writeout to the index (defaults to: ‘True’)

retagprompt
prompt to retag selected thread’s or message’s tags

save
save attachment(s)

argument path to save to

optional arguments

—all save all attachments

select

select focussed element:

• if it is a message summary, toggle visibility of the message;

• if it is an attachment line, open the attachment

• if it is a mimepart, toggle visibility of the mimepart

tag
add tags to message(s)

argument comma separated list of tags

optional arguments

—all tag all messages in thread

—no-flush postpone a writeout to the index (defaults to: ‘True’)

14 Chapter 2. Usage

alot Documentation, Release 0.10

toggleheaders
display all headers

argument query used to filter messages to affect

togglemimepart
switch between html and plain text message

argument query used to filter messages to affect

togglemimetree
disply mime tree of the message

argument query used to filter messages to affect

togglesource
display message source

argument query used to filter messages to affect

toggletags
flip presence of tags on message(s)

argument comma separated list of tags

optional arguments

—all tag all messages in thread

—no-flush postpone a writeout to the index (defaults to: ‘True’)

unfold
unfold message(s)

argument query used to filter messages to affect

untag
remove tags from message(s)

argument comma separated list of tags

optional arguments

—all tag all messages in thread

—no-flush postpone a writeout to the index (defaults to: ‘True’)

2.5 Cryptography

Alot has built in support for constructing signed and/or encrypted mails according to PGP/MIME (RFC 3156, RFC
3156) via gnupg. It does however rely on a running gpg-agent to handle password entries.

Note: You need to have gpg-agent running to use GPG with alot!

gpg-agent will handle passphrase entry in a secure and configurable way, and it will cache your passphrase for some
time so you don’t have to enter it over and over again. For details on how to set this up we refer to gnupg’s manual.

2.5. Cryptography 15

https://tools.ietf.org/html/rfc3156.html
https://tools.ietf.org/html/rfc3156.html
https://tools.ietf.org/html/rfc3156.html
http://www.gnupg.org/documentation/manuals/gnupg/

alot Documentation, Release 0.10

Signing outgoing emails

You can use the commands sign, unsign and togglesign in envelope mode to determine if you want this mail signed
and if so, which key to use. To specify the key to use you may pass a hint string as argument to the sign or togglesign
command. This hint would typically be a fingerprint or an email address associated (by gnupg) with a key.

Signing (and hence passwd entry) will be done at most once shortly before a mail is sent.

In case no key is specified, alot will leave the selection of a suitable key to gnupg so you can influence that by setting
the default-key option in ~/.gnupg/gpg.conf accordingly.

You can set the default to-sign bit and the key to use for each account individually using the options sign_by_default
and gpg_key.

Encrypt outgoing emails

You can use the commands encrypt, unencrypt and and toggleencrypt and in envelope mode to ask alot to encrypt the
mail before sending. The encrypt command accepts an optional hint string as argument to determine the key of the
recipient.

You can set the default to-encrypt bit for each account individually using the option encrypt_by_default.

Note: If you want to access encrypt mail later it is useful to add yourself to the list of recipients when encrypting
with gpg (not the recipients whom mail is actually send to). The simplest way to do this is to use the encrypt-to option
in the ~/.gnupg/gpg.conf. But you might have to specify the correct encryption subkey otherwise gpg seems to
throw an error.

The arrow keys, page-up/down, j, k and Space can be used to move the focus. Escape cancels prompts and Enter
selects. Hit : at any time and type in commands to the prompt.

The interface shows one buffer at a time, you can use Tab and Shift-Tab to switch between them, close the current
buffer with d and list them all with ;.

The buffer type or mode (displayed at the bottom left) determines which prompt commands are available. Usage
information on any command can be listed by typing help YOURCOMMAND to the prompt. The keybindings for the
current mode are listed upon pressing ?.

alot [options . . .] [subcommand]

2.5.1 Cryptography

Alot has built in support for constructing signed and/or encrypted mails according to PGP/MIME (RFC 3156, RFC
3156) via gnupg. It does however rely on a running gpg-agent to handle password entries.

Note: You need to have gpg-agent running to use GPG with alot!

gpg-agent will handle passphrase entry in a secure and configurable way, and it will cache your passphrase for some
time so you don’t have to enter it over and over again. For details on how to set this up we refer to gnupg’s manual.

Signing outgoing emails

You can use the commands sign, unsign and togglesign in envelope mode to determine if you want this mail signed
and if so, which key to use. To specify the key to use you may pass a hint string as argument to the sign or togglesign

16 Chapter 2. Usage

https://tools.ietf.org/html/rfc3156.html
https://tools.ietf.org/html/rfc3156.html
https://tools.ietf.org/html/rfc3156.html
http://www.gnupg.org/documentation/manuals/gnupg/

alot Documentation, Release 0.10

command. This hint would typically be a fingerprint or an email address associated (by gnupg) with a key.

Signing (and hence passwd entry) will be done at most once shortly before a mail is sent.

In case no key is specified, alot will leave the selection of a suitable key to gnupg so you can influence that by setting
the default-key option in ~/.gnupg/gpg.conf accordingly.

You can set the default to-sign bit and the key to use for each account individually using the options sign_by_default
and gpg_key.

Encrypt outgoing emails

You can use the commands encrypt, unencrypt and and toggleencrypt and in envelope mode to ask alot to encrypt the
mail before sending. The encrypt command accepts an optional hint string as argument to determine the key of the
recipient.

You can set the default to-encrypt bit for each account individually using the option encrypt_by_default.

Note: If you want to access encrypt mail later it is useful to add yourself to the list of recipients when encrypting
with gpg (not the recipients whom mail is actually send to). The simplest way to do this is to use the encrypt-to option
in the ~/.gnupg/gpg.conf. But you might have to specify the correct encryption subkey otherwise gpg seems to
throw an error.

2.5. Cryptography 17

alot Documentation, Release 0.10

18 Chapter 2. Usage

CHAPTER 3

Configuration

Alot reads a config file in “INI” syntax: It consists of key-value pairs that use “=” as separator and ‘#’ is comment-
prefixes. Sections and subsections are defined using square brackets.

The default location for the config file is ~/.config/alot/config.

All configs are optional, but if you want to send mails you need to specify at least one account in your config.

3.1 Configuration Options

The following lists all available config options with their type and default values. The type of an option is used to
validate a given value. For instance, if the type says “boolean” you may only provide “True” or “False” as values in
your config file, otherwise alot will complain on startup. Strings may be quoted but do not need to be.

ask_subject

Type boolean

Default True

attachment_prefix

directory prefix for downloading attachments

Type string

Default “~”

auto_remove_unread

automatically remove ‘unread’ tag when focussing messages in thread mode

Type boolean

Default True

19

alot Documentation, Release 0.10

auto_replyto_mailinglist

Automatically switch to list reply mode if appropriate

Type boolean

Default False

bounce_force_address

Always use the accounts main address when constructing “Resent-From” headers for bounces. Set
this to False to use the address string as received in the original message.

Type boolean

Default False

bounce_force_realname

Always use the proper realname when constructing “Resent-From” headers for bounces. Set this to
False to use the realname string as received in the original message.

Type boolean

Default True

bufferclose_focus_offset

offset of next focused buffer if the current one gets closed

Type integer

Default -1

bufferlist_statusbar

Format of the status-bar in bufferlist mode. This is a pair of strings to be left and right aligned in the
status-bar that may contain variables:

• {buffer_no}: index of this buffer in the global buffer list

• {total_messages}: total numer of messages indexed by notmuch

• {pending_writes}: number of pending write operations to the index

Type mixed_list

Default [{buffer_no}: bufferlist], {input_queue} total messages: {total_messages}

bug_on_exit

confirm exit

Type boolean

Default False

colourmode

number of colours to use on the terminal

Type option, one of [‘1’, ‘16’, ‘256’]

20 Chapter 3. Configuration

alot Documentation, Release 0.10

Default 256

complete_matching_abook_only

in case more than one account has an address book: Set this to True to make tab completion for
recipients during compose only look in the abook of the account matching the sender address

Type boolean

Default False

compose_ask_tags

prompt for initial tags when compose

Type boolean

Default False

displayed_headers

headers that get displayed by default

Type string list

Default From, To, Cc, Bcc, Subject

edit_headers_blacklist

see edit_headers_whitelist

Type string list

Default Content-Type, MIME-Version, References, In-Reply-To

edit_headers_whitelist

Which header fields should be editable in your editor used are those that match the whitelist and
don’t match the blacklist. in both cases ‘*’ may be used to indicate all fields.

Type string list

Default *,

editor_cmd

editor command if unset, alot will first try the EDITOR env variable, then /usr/bin/editor

Type string

Default None

editor_in_thread

call editor in separate thread. In case your editor doesn’t run in the same window as alot, setting true
here will make alot non-blocking during edits

Type boolean

Default False

3.1. Configuration Options 21

alot Documentation, Release 0.10

editor_spawn

use terminal_cmd to spawn a new terminal for the editor? equivalent to always providing the
–spawn=yes parameter to compose/edit commands

Type boolean

Default False

editor_writes_encoding

file encoding used by your editor

Type string

Default “UTF-8”

envelope_edit_default_alternative

always edit the given body text alternative when editing outgoing messages in envelope mode. al-
ternative, and not the html source, even if that is currently displayed. If unset, html content will be
edited unless the current envelope shows the plaintext alternative.

Type option, one of [‘plaintext’, ‘html’]

Default None

envelope_headers_blacklist

headers that are hidden in envelope buffers by default

Type string list

Default In-Reply-To, References

envelope_html2txt

Use this command to turn a html message body to plaintext in envelope mode. The command will
receive the html on stdin and should produce text on stdout (as pandoc -f html -t markdown does for
example).

Type string

Default None

envelope_statusbar

Format of the status-bar in envelope mode. This is a pair of strings to be left and right aligned in
the status-bar. Apart from the global variables listed at bufferlist_statusbar these strings may contain
variables:

• {to}: To-header of the envelope

• {displaypart}: which body part alternative is currently in view (can be ‘plaintext,’src’, or ‘html’)

Type mixed_list

Default [{buffer_no}: envelope ({displaypart})], {input_queue} total messages: {total_messages}

envelope_txt2html

22 Chapter 3. Configuration

alot Documentation, Release 0.10

Use this command to construct a html alternative message body text in envelope mode. If unset, we
send only the plaintext part, without html alternative. The command will receive the plaintex on stdin
and should produce html on stdout. (as pandoc -t html does for example).

Type string

Default None

exclude_tags

A list of tags that will be excluded from search results by default. Using an excluded tag in
a query will override that exclusion. .. note:: when set, this config setting will overrule the
‘search.exclude_tags’ in the notmuch config.

Type string list

Default None

flush_retry_timeout

timeout in seconds after a failed attempt to writeout the database is repeated. Set to 0 for no retry.

Type integer

Default 5

followup_to

When one of the recipients of an email is a subscribed mailing list, set the “Mail-Followup-To”
header to the list of recipients without yourself

Type boolean

Default False

forward_force_address

Always use the accounts main address when constructing “From” headers for forwards. Set this to
False to use the address string as received in the original message.

Type boolean

Default False

forward_force_realname

Always use the proper realname when constructing “From” headers for forwards. Set this to False to
use the realname string as received in the original message.

Type boolean

Default True

forward_subject_prefix

String prepended to subject header on forward only if original subject doesn’t start with ‘Fwd:’ or
this prefix

Type string

3.1. Configuration Options 23

alot Documentation, Release 0.10

Default “Fwd: “

handle_mouse

enable mouse support - mouse tracking will be handled by urwid

Note: If this is set to True mouse events are passed from the terminal to urwid/alot. This means
that normal text selection in alot will not be possible. Most terminal emulators will still allow you to
select text when shift is pressed.

Type boolean

Default False

history_size

The number of command line history entries to save

Note: You can set this to -1 to save all entries to disk but the history file might get very long.

Type integer

Default 50

honor_followup_to

When group-reply-ing to an email that has the “Mail-Followup-To” header set, use the content of this
header as the new “To” header and leave the “Cc” header empty

Type boolean

Default False

hooksfile

where to look up hooks

Type string

Default “~/.config/alot/hooks.py”

initial_command

initial command when none is given as argument:

Type string

Default “search tag:inbox AND NOT tag:killed”

input_timeout

timeout in (floating point) seconds until partial input is cleared

Type float

Default 1.0

24 Chapter 3. Configuration

tag:inbox
tag:killed

alot Documentation, Release 0.10

interpret_ansi_background

display background colors set by ANSI character escapes

Type boolean

Default True

mailinglists

The list of addresses associated to the mailinglists you are subscribed to

Type string list

Default ,

msg_summary_hides_threadwide_tags

In a thread buffer, hide from messages summaries tags that are commom to all messages in that
thread.

Type boolean

Default True

namedqueries_statusbar

Format of the status-bar in named query list mode. This is a pair of strings to be left and right
aligned in the status-bar. These strings may contain variables listed at bufferlist_statusbar that will
be substituted accordingly.

Type mixed_list

Default [{buffer_no}: namedqueries], {query_count} named queries

notify_timeout

time in secs to display status messages

Type integer

Default 2

periodic_hook_frequency

The number of seconds to wait between calls to the loop_hook

Type integer

Default 300

prefer_plaintext

prefer plaintext alternatives over html content in multipart/alternative

Type boolean

Default False

print_cmd

3.1. Configuration Options 25

alot Documentation, Release 0.10

how to print messages: this specifies a shell command used for printing. threads/messages are piped
to this command as plain text. muttprint/a2ps works nicely

Type string

Default None

prompt_suffix

Suffix of the prompt used when waiting for user input

Type string

Default “:”

quit_on_last_bclose

shut down when the last buffer gets closed

Type boolean

Default False

quote_prefix

String prepended to line when quoting

Type string

Default “> “

reply_account_header_priority

The list of headers to match to determine sending account for a reply. Headers are searched in the
order in which they are specified here, and the first header containing a match is used. If multiple
accounts match in that header, the one defined first in the account block is used.

Type string list

Default From, To, Cc, Envelope-To, X-Envelope-To, Delivered-To

reply_force_address

Always use the accounts main address when constructing “From” headers for replies. Set this to
False to use the address string as received in the original message.

Type boolean

Default False

reply_force_realname

Always use the proper realname when constructing “From” headers for replies. Set this to False to
use the realname string as received in the original message.

Type boolean

Default True

reply_subject_prefix

26 Chapter 3. Configuration

alot Documentation, Release 0.10

String prepended to subject header on reply only if original subject doesn’t start with ‘Re:’ or this
prefix

Type string

Default “Re: “

search_statusbar

Format of the status-bar in search mode. This is a pair of strings to be left and right aligned in the
status-bar. Apart from the global variables listed at bufferlist_statusbar these strings may contain
variables:

• {querystring}: search string

• {result_count}: number of matching messages

• {result_count_positive}: ‘s’ if result count is greater than 0.

Type mixed_list

Default [{buffer_no}: search] for “{querystring}”, {input_queue} {result_count} of {to-
tal_messages} messages

search_threads_move_last_limit

Maximum number of results in a search buffer before ‘move last’ builds the thread list in reversed
order as a heuristic. The resulting order will be different for threads with multiple matching messages.
When set to 0, no limit is set (can be very slow in searches that yield thousands of results)

Type integer

Default 200

search_threads_rebuild_limit

maximum amount of threads that will be consumed to try to restore the focus, upon triggering a
search buffer rebuild when set to 0, no limit is set (can be very slow in searches that yield thousands
of results)

Type integer

Default 0

search_threads_sort_order

default sort order of results in a search

Type option, one of [‘oldest_first’, ‘newest_first’, ‘message_id’, ‘unsorted’]

Default newest_first

show_statusbar

display status-bar at the bottom of the screen?

Type boolean

Default True

tabwidth

3.1. Configuration Options 27

alot Documentation, Release 0.10

number of spaces used to replace tab characters

Type integer

Default 8

taglist_statusbar

Format of the status-bar in taglist mode. This is a pair of strings to be left and right aligned in the
status-bar. These strings may contain variables listed at bufferlist_statusbar that will be substituted
accordingly.

Type mixed_list

Default [{buffer_no}: taglist], {input_queue} total messages: {total_messages}

template_dir

templates directory that contains your message templates. It will be used if you give compose –tem-
plate a filename without a path prefix.

Type string

Default “$XDG_CONFIG_HOME/alot/templates”

terminal_cmd

set terminal command used for spawning shell commands

Type string

Default “x-terminal-emulator -e”

theme

name of the theme to use

Type string

Default None

themes_dir

directory containing theme files.

Type string

Default “$XDG_CONFIG_HOME/alot/themes”

thread_authors_me

Word to replace own addresses with. Works in combination with thread_authors_replace_me

Type string

Default “Me”

thread_authors_order_by

When constructing the unique list of thread authors, order by date of author’s first or latest message
in thread

28 Chapter 3. Configuration

alot Documentation, Release 0.10

Type option, one of [‘first_message’, ‘latest_message’]

Default first_message

thread_authors_replace_me

Replace own email addresses with “me” in author lists Uses own addresses and aliases in all config-
ured accounts.

Type boolean

Default True

thread_focus_linewise

Split message body linewise and allows to (move) the focus to each individual line. Setting this to
False will result in one potentially big text widget for the whole message body.

Type boolean

Default True

thread_indent_replies

number of characters used to indent replies relative to original messages in thread mode

Type integer

Default 2

thread_statusbar

Format of the status-bar in thread mode. This is a pair of strings to be left and right aligned in the
status-bar. Apart from the global variables listed at bufferlist_statusbar these strings may contain
variables:

• {tid}: thread id

• {subject}: subject line of the thread

• {authors}: abbreviated authors string for this thread

• {message_count}: number of contained messages

• {thread_tags}: displays all tags present in the current thread.

• {intersection_tags}: displays tags common to all messages in the current thread.

• {mimetype}: content type of the mime part displayed in the focused message.

Type mixed_list

Default [{buffer_no}: thread] {subject}, [{mimetype}] {input_queue} total messages: {to-
tal_messages}

thread_subject

What should be considered to be “the thread subject”. Valid values are:

• ‘notmuch’ (the default), will use the thread subject from notmuch, which depends on the selected
sorting method

• ‘oldest’ will always use the subject of the oldest message in the thread as the thread subject

3.1. Configuration Options 29

alot Documentation, Release 0.10

Type option, one of [‘oldest’, ‘notmuch’]

Default notmuch

timestamp_format

timestamp format in strftime format syntax

Type string

Default None

user_agent

value of the User-Agent header used for outgoing mails. setting this to the empty string will cause
alot to omit the header all together. The string ‘{version}’ will be replaced by the version string of
the running instance.

Type string

Default “alot/{version}”

3.1.1 Notmuch options

The following lists the notmuch options that alot reads.

search.exclude_tags

A list of tags that will be excluded from search results by default. Using an excluded tag in a query
will override that exclusion.

Type semicolon separated list

Default empty list

3.2 Accounts

In order to be able to send mails, you have to define at least one account subsection in your config: There needs to be
a section “accounts”, and each subsection, indicated by double square brackets defines an account.

Here is an example configuration

[accounts]
[[work]]

realname = Bruce Wayne
address = b.wayne@wayneenterprises.com
alias_regexp = b.wayne\+.+@wayneenterprises.com
gpg_key = D7D6C5AA
sendmail_command = msmtp --account=wayne -t
sent_box = maildir:///home/bruce/mail/work/Sent
~, $VAR and ${VAR} expansion also work
draft_box = maildir://~/mail/work/Drafts

[[secret]]
realname = Batman
address = batman@batcave.org

(continues on next page)

30 Chapter 3. Configuration

http://docs.python.org/library/datetime.html#strftime-strptime-behavior

alot Documentation, Release 0.10

(continued from previous page)

aliases = batman@batmobile.org,
sendmail_command = msmtp --account=batman -t
signature = ~/.batman.vcf
signature_as_attachment = True

Warning: Sending mails is only supported via a sendmail shell command for now. If you want to use a sendmail
command different from sendmail -t, specify it as sendmail_command.

The following entries are interpreted at the moment:

address

your main email address

Type string

alias_regexp

a regex for catching further aliases (like + extensions).

Type string

Default None

aliases

used to clear your addresses/ match account when formatting replies

Type string list

Default ,

case_sensitive_username

Whether the server treats the address as case-senstive or case-insensitve (True for the former, False
for the latter)

Note: The vast majority (if not all) SMTP servers in modern use treat usernames as case insenstive,
you should only set this if you know that you need it.

Type boolean

Default False

draft_box

where to store draft mails, e.g. maildir:///home/you/mail/Drafts, maildir://$MAILDIR/Drafts or
maildir://~/mail/Drafts. You can use mbox, maildir, mh, babyl and mmdf in the protocol part of
the URL.

Note: You will most likely want drafts indexed by notmuch to be able to later access them within
alot. This currently only works for maildir containers in a path below your notmuch database path.

3.2. Accounts 31

alot Documentation, Release 0.10

Type mail_container

Default None

draft_tags

list of tags to automatically add to draft messages

Type string list

Default draft

encrypt_by_default

Alot will try to GPG encrypt outgoing messages by default when this is set to all or trusted. If set to
all the message will be encrypted for all recipients for who a key is available in the key ring. If set to
trusted it will be encrypted to all recipients if a trusted key is available for all recipients (one where
the user id for the key is signed with a trusted signature).

Note: If the message will not be encrypted by default you can still use the toggleencrypt, encrypt
and unencrypt commands to encrypt it.

Deprecated since version 0.4: The values True and False are interpreted as all and none respectively.
0, 1, true, True, false, False, yes, Yes, no, No, will be removed before 1.0, please move to all, none,
or trusted.

Type option, one of [‘all’, ‘none’, ‘trusted’, ‘True’, ‘False’, ‘true’, ‘false’, ‘Yes’, ‘No’, ‘yes’, ‘no’,
‘1’, ‘0’]

Default none

encrypt_to_self

If this is true when encrypting a message it will also be encrypted with the key defined for this
account.

Warning: Before 0.6 this was controlled via gpg.conf.

Type boolean

Default True

gpg_key

The GPG key ID you want to use with this account.

Type string

Default None

message_id_domain

Domain to use in automatically generated Message-ID headers. The default is the local hostname.

Type string

Default None

32 Chapter 3. Configuration

alot Documentation, Release 0.10

passed_tags

list of tags to automatically add to passed messages

Type string list

Default passed

realname

used to format the (proposed) From-header in outgoing mails

Type string

replied_tags

list of tags to automatically add to replied messages

Type string list

Default replied

sendmail_command

sendmail command. This is the shell command used to send out mails via the sendmail protocol

Type string

Default “sendmail -t”

sent_box

where to store outgoing mails, e.g. maildir:///home/you/mail/Sent, maildir://$MAILDIR/Sent or
maildir://~/mail/Sent. You can use mbox, maildir, mh, babyl and mmdf in the protocol part of the
URL.

Note: If you want to add outgoing mails automatically to the notmuch index you must use maildir
in a path within your notmuch database path.

Type mail_container

Default None

sent_tags

list of tags to automatically add to outgoing messages

Type string list

Default sent

sign_by_default

Outgoing messages will be GPG signed by default if this is set to True.

Type boolean

Default False

3.2. Accounts 33

alot Documentation, Release 0.10

signature

path to signature file that gets attached to all outgoing mails from this account, optionally renamed
to signature_filename.

Type string

Default None

signature_as_attachment

attach signature file if set to True, append its content (mimetype text) to the body text if set to False.

Type boolean

Default False

signature_filename

signature file’s name as it appears in outgoing mails if signature_as_attachment is set to True

Type string

Default None

3.3 Contacts Completion

For each account you can define an address book by providing a subsection named abook. Crucially, this section needs
an option type that specifies the type of the address book. The only types supported at the moment are “shellcommand”
and “abook”. Both respect the ignorecase option which defaults to True and results in case insensitive lookups.

shellcommand
Address books of this type use a shell command in combination with a regular expression to look up contacts.

The value of command will be called with the search prefix as only argument for lookups. Its output is searched
for email-name pairs using the regular expression given as regexp, which must include named groups “email”
and “name” to match the email address and realname parts respectively. See below for an example that uses
abook

[accounts]
[[youraccount]]

...
[[[abook]]]

type = shellcommand
command = abook --mutt-query
regexp = '^(?P<email>[^@]+@[^\t]+)\t+(?P<name>[^\t]+)'
ignorecase = True

See here for alternative lookup commands. The few others I have tested so far are:

goobook for cached google contacts lookups. Works with the above default regexp

command = goobook query
regexp = '^(?P<email>[^@]+@[^\t]+)\t+(?P<name>[^\t]+)'

nottoomuch-addresses completes contacts found in the notmuch index:

34 Chapter 3. Configuration

http://abook.sourceforge.net/
http://notmuchmail.org/emacstips/#index12h2
http://code.google.com/p/goobook/
http://www.iki.fi/too/nottoomuch/nottoomuch-addresses/

alot Documentation, Release 0.10

command = nottoomuch-addresses.sh
regexp = \"(?P<name>.+)\"\s*<(?P<email>.*.+?@.+?)>

notmuch-abook completes contacts found in database of notmuch-abook:

command = notmuch_abook.py lookup
regexp = ^((?P<name>[^(\\s+\<)]*)\s+<)?(?P<email>[^@]+?@[^>]+)>?$

notmuch address Since version 0.19, notmuch itself offers a subcommand address, that returns email ad-
dresses found in the notmuch index. Combined with the date: syntax to query for mails within a certain
timeframe, this allows to search contacts that you’ve sent emails to (output all addresses from the To, Cc
and Bcc headers):

command = 'notmuch address --format=json --output=recipients date:1Y.. AND
→˓from:my@address.org'
regexp = '\[?{"name": "(?P<name>.*)", "address": "(?P<email>.+)", "name-addr
→˓": ".*"}[,\]]?'
shellcommand_external_filtering = False

If you want to search for senders in the From header (which should be must faster according to notmuch
address docs), then use the following command:

command = 'notmuch address --format=json date:1Y..'

notmuch-addlookup If you have the ‘notmuch-addrlookup’ tool installed you can hook it to ‘alot’ with the
following:

command = 'notmuch-addrlookup '
regexp = '(?P<name>.*).*<(?P<email>.+)>'

Don’t hesitate to send me your custom regexp values to list them here.

abook
Address books of this type directly parse abooks contact files. You may specify a path using the
“abook_contacts_file” option, which defaults to ~/.abook/addressbook. To use the default path, sim-
ply do this:

[accounts]
[[youraccount]]

...
[[[abook]]]

type = abook

3.4 Key Bindings

If you want to bind a command to a key you can do so by adding the pair to the [bindings] section. This will introduce
a global binding, that works in all modes. To make a binding specific to a mode you have to add the pair under the
subsection named like the mode. For instance, if you want to bind T to open a new search for threads tagged with
‘todo’, and be able to toggle this tag in search mode, you’d add this to your config

[bindings]
T = search tag:todo

[[search]]
t = toggletags todo

3.4. Key Bindings 35

https://github.com/guyzmo/notmuch-abook
https://notmuchmail.org/manpages/notmuch-address-1/
https://notmuchmail.org/manpages/notmuch-address-1/
https://notmuchmail.org/manpages/notmuch-address-1/
https://github.com/aperezdc/notmuch-addrlookup-c
http://abook.sourceforge.net/

alot Documentation, Release 0.10

Known modes are:

• bufferlist

• envelope

• namedqueries

• search

• taglist

• thread

Have a look at the urwid User Input documentation on how key strings are formatted.

3.4.1 Default bindings

User-defined bindings are combined with the default bindings listed below.

up = move up
down = move down
page up = move page up
page down = move page down
mouse press 4 = move up
mouse press 5 = move down
j = move down
k = move up
'g g' = move first
G = move last
' ' = move page down
'ctrl d' = move halfpage down
'ctrl u' = move halfpage up
@ = refresh
? = help bindings
I = search tag:inbox AND NOT tag:killed
'#' = taglist
shift tab = bprevious
U = search tag:unread
tab = bnext
\ = prompt 'search '
d = bclose
$ = flush
m = compose
o = prompt 'search '
q = exit
';' = bufferlist
':' = prompt
. = repeat

[bufferlist]
x = close
enter = open

[search]
enter = select
a = toggletags inbox
& = toggletags killed
! = toggletags flagged

(continues on next page)

36 Chapter 3. Configuration

http://excess.org/urwid/wiki/UserInput

alot Documentation, Release 0.10

(continued from previous page)

s = toggletags unread
l = retagprompt
O = refineprompt
| = refineprompt

[envelope]
a = prompt 'attach ~/'
y = send
P = save
s = 'refine Subject'
f = prompt 'set From '
t = 'refine To'
b = 'refine Bcc'
c = 'refine Cc'
S = togglesign
enter = edit
'g f' = togglesource

[taglist]
enter = select

[namedqueries]
enter = select

[thread]
enter = select
C = fold *
E = unfold *
c = fold
e = unfold
< = fold
> = unfold
[= indent -
] = indent +
'g f' = togglesource
H = toggleheaders
P = print --all --separately --add_tags
S = save --all
g = reply --all
f = forward
p = print --add_tags
n = editnew
b= bounce
s = save
r = reply
| = prompt 'pipeto '
t = togglemimetree
h = togglemimepart

'g j' = move next sibling
'g k' = move previous sibling
'g h' = move parent
'g l' = move first reply
' ' = move next

In prompts the following hardcoded bindings are available.

3.4. Key Bindings 37

alot Documentation, Release 0.10

Key Function
Ctrl-f/b Moves the curser one character to the right/left
Alt-f/b Shift-right/left Moves the cursor one word to the right/left
Ctrl-a/e Moves the curser to the beginning/end of the line
Ctrl-d Deletes the character under the cursor
Alt-d Deletes everything from the cursor to the end of the current or next word
Alt-Delete/Backspace Ctrl-
w

Deletes everything from the cursor to the beginning of the current or previous word

Ctrl-k Deletes everything from the cursor to the end of the line
Ctrl-u Deletes everything from the cursor to the beginning of the line

3.4.2 Overwriting defaults

To disable a global binding you can redefine it in your config to point to an empty command string. For example, to
add a new global binding for key a, which is bound to toggletags inbox in search mode by default, you can remap it as
follows.

[bindings]
a = NEW GLOBAL COMMAND

[[search]]
a =

If you omit the last two lines, a will still be bound to the default binding in search mode.

3.5 Hooks

Hooks are python callables that live in a module specified by hooksfile in the config. Per default this points to ~/.
config/alot/hooks.py.

3.5.1 Pre/Post Command Hooks

For every COMMAND in mode MODE, the callables pre_MODE_COMMAND() and post_MODE_COMMAND()
– if defined – will be called before and after the command is applied respectively. In addition callables
pre_global_COMMAND() and post_global_COMMAND() can be used. They will be called if no specific
hook function for a mode is defined. The signature for the pre-send hook in envelope mode for example looks like
this:

pre_envelope_send(ui=None, dbm=None, cmd=None)

Parameters

• ui (alot.ui.UI) – the main user interface

• dbm (alot.db.manager.DBManager) – a database manager

• cmd (alot.commands.Command) – the Command instance that is being called

Consider this pre-hook for the exit command, that logs a personalized goodbye message:

38 Chapter 3. Configuration

alot Documentation, Release 0.10

import logging
from alot.settings.const import settings
def pre_global_exit(**kwargs):

accounts = settings.get_accounts()
if accounts:

logging.info('goodbye, %s!' % accounts[0].realname)
else:

logging.info('goodbye!')

3.5.2 Other Hooks

Apart from command pre- and posthooks, the following hooks will be interpreted:

reply_prefix(realname, address, timestamp[, message=None, ui= None, dbm=None])
Is used to reformat the first indented line in a reply message. This defaults to ‘Quoting %s (%s)n’ % (realname,
timestamp)’ unless this hook is defined

Parameters

• realname (str) – name or the original sender

• address (str) – address of the sender

• timestamp (datetime.datetime) – value of the Date header of the replied message

• message (email.Message) – message object attached to reply

Return type string

forward_prefix(realname, address, timestamp[, message=None, ui= None, dbm=None])
Is used to reformat the first indented line in a inline forwarded message. This defaults to ‘Forwarded message
from %s (%s)n’ % (realname, timestamp)’ if this hook is undefined

Parameters

• realname (str) – name or the original sender

• address (str) – address of the sender

• timestamp (datetime.datetime) – value of the Date header of the replied message

• message (email.Message) – message object being forwarded

Return type string

pre_edit_translate(text[, ui= None, dbm=None])
Used to manipulate a message’s text before the editor is called. The text might also contain some header lines,
depending on the settings edit_headers_whitelist and edit_header_blacklist.

Parameters text (str) – text representation of mail as displayed in the interface and as sent to
the editor

Return type str

post_edit_translate(text[, ui= None, dbm=None])
used to manipulate a message’s text after the editor is called, also see pre_edit_translate

Parameters text (str) – text representation of mail as displayed in the interface and as sent to
the editor

Return type str

3.5. Hooks 39

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

alot Documentation, Release 0.10

text_quote(message)
used to transform a message into a quoted one

Parameters message (str) – message to be quoted

Return type str

timestamp_format(timestamp)
represents given timestamp as string

Parameters timestamp (datetime) – timestamp to represent

Return type str

touch_external_cmdlist(cmd, shell=shell, spawn=spawn, thread=thread)
used to change external commands according to given flags shortly before they are called.

Parameters

• cmd (list of str) – command to be called

• shell (bool) – is this to be interpreted by the shell?

• spawn (bool) – should be spawned in new terminal/environment

• threads – should be called in new thread

Returns triple of amended command list, shell and thread flags

Return type list of str, bool, bool

reply_subject(subject)
used to reformat the subject header on reply

Parameters subject (str) – subject to reformat

Return type str

forward_subject(subject)
used to reformat the subject header on forward

Parameters subject (str) – subject to reformat

Return type str

pre_buffer_open(ui= None, dbm=None, buf=buf)
run before a new buffer is opened

Parameters buf (alot.buffer.Buffer) – buffer to open

post_buffer_open(ui=None, dbm=None, buf=buf)
run after a new buffer is opened

Parameters buf (alot.buffer.Buffer) – buffer to open

pre_buffer_close(ui=None, dbm=None, buf=buf)
run before a buffer is closed

Parameters buf (alot.buffer.Buffer) – buffer to open

post_buffer_close(ui=None, dbm=None, buf=buf, success=success)
run after a buffer is closed

Parameters

• buf (alot.buffer.Buffer) – buffer to open

• success (boolean) – true if successfully closed buffer

40 Chapter 3. Configuration

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

alot Documentation, Release 0.10

pre_buffer_focus(ui=None, dbm=None, buf=buf)
run before a buffer is focused

Parameters buf (alot.buffer.Buffer) – buffer to open

post_buffer_focus(ui=None, dbm=None, buf=buf, success=success)
run after a buffer is focused

Parameters

• buf (alot.buffer.Buffer) – buffer to open

• success (boolean) – true if successfully focused buffer

exit()
run just before the program exits

sanitize_attachment_filename(filename=None, prefix=”, suffix=”)
returns prefix and suffix for a sanitized filename to use while opening an attachment. The prefix and suffix are
used to open a file named prefix + XXXXXX + suffix in a temporary directory.

Parameters

• filename (str or None) – filename provided in the email (can be None)

• prefix (str) – prefix string as found on mailcap

• suffix (str) – suffix string as found on mailcap

Returns tuple of prefix and suffix

Return type (str, str)

loop_hook(ui=None)
Run on a period controlled by _periodic_hook_frequency

Parameters ui (alot.ui.UI) – the main user interface

3.6 Theming

Alot can be run in 1, 16 or 256 colour mode. The requested mode is determined by the command-line parameter -C
or read from option colourmode config value. The default is 256, which scales down depending on how many colours
your terminal supports.

Most parts of the user interface can be individually coloured to your liking. To make it easier to switch between or
share different such themes, they are defined in separate files (see below for the exact format). To specify the theme
to use, set the theme config option to the name of a theme-file. A file by that name will be looked up in the path
given by the themes_dir config setting which defaults to $XDG_CONFIG_HOME/alot/themes, and ~/.config/
alot/themes/, if XDG_CONFIG_HOME is empty or not set. If the themes_dir is not present then the contents
of $XDG_DATA_DIRS/alot/themes will be tried in order. This defaults to /usr/local/share/alot/themes
and /usr/share/alot/themes, in that order. These locations are meant to be used by distro packages to put
themes in.

3.6.1 Theme Files

contain a section for each MODE plus “help” for the bindings-help overlay and “global” for globally used themables
like footer, prompt etc. Each such section defines colour attributes for the parts that can be themed. The names of the
themables should be self-explanatory. Have a look at the default theme file at alot/defaults/default.theme
and the config spec alot/defaults/default.theme for the exact format.

3.6. Theming 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

alot Documentation, Release 0.10

3.6.2 Colour Attributes

Attributes are sextuples of urwid Attribute strings that specify foreground and background for mono, 16 and 256-
colour modes respectively. For mono-mode only the flags blink, standup, underline and bold are available, 16c mode
supports these in combination with the colour names:

brown dark red dark magenta dark blue dark cyan dark green
yellow light red light magenta light blue light cyan light green
black dark gray light gray white

In high-colour mode, you may use the above plus grayscales g0 to g100 and colour codes given as # followed by three
hex values. See here and here for more details on the interpreted values. A colour picker that makes choosing colours
easy can be found in alot/extra/colour_picker.py.

As an example, check the setting below that makes the footer line appear as underlined bold red text on a bright green
background:

[[global]]
#name mono fg mono bg 16c fg 16c bg 256c fg

→˓ 256c bg
| | | | |

→˓ |
v v v v v

→˓ v
footer = 'bold,underline', '', 'light red, bold, underline', 'light green', 'light

→˓red, bold, underline', '#8f6'

3.6.3 Search mode threadlines

The subsection ‘[[threadline]]’ of the ‘[search]’ section in Theme Files determines how to present a thread: here,
attributes ‘normal’ and ‘focus’ provide fallback/spacer themes and ‘parts’ is a (string) list of displayed subwidgets.
Possible part strings are:

• authors

• content

• date

• mailcount

• subject

• tags

For every listed part there must be a subsection with the same name, defining

normal attribute used for this part if unfocussed

focus attribute used for this part if focussed

width tuple indicating the width of the part. This is either (‘fit’, min, max) to force the widget to be at
least min and at most max characters wide, or (‘weight’, n) which makes it share remaining space
with other ‘weight’ parts.

alignment how to place the content string if the widget space is larger. This must be one of ‘right’, ‘left’
or ‘center’.

42 Chapter 3. Configuration

http://urwid.org/manual/displayattributes.html
http://urwid.org/manual/displayattributes.html
http://urwid.org/reference/attrspec.html#urwid.AttrSpec

alot Documentation, Release 0.10

Dynamic theming of thread lines based on query matching

To highlight some thread lines (use different attributes than the defaults found in the ‘[[threadline]]’ section), one can
define sections with prefix ‘threadline’. Each one of those can redefine any part of the structure outlined above, the
rest defaults to values defined in ‘[[threadline]]’.

The section used to theme a particular thread is the first one (in file-order) that matches the criteria defined by its
‘query’ and ‘tagged_with’ values:

• If ‘query’ is defined, the thread must match that querystring.

• If ‘tagged_with’ is defined, is value (string list) must be a subset of the accumulated tags of all messages in the
thread.

Note: that ‘tagged_with = A,B’ is different from ‘query = “is:A AND is:B”’: the latter will match only if the thread
contains a single message that is both tagged with A and B.

Moreover, note that if both query and tagged_with is undefined, this section will always match and thus overwrite the
defaults.

The example below shows how to highlight unread threads: The date-part will be bold red if the thread has unread
messages and flagged messages and just bold if the thread has unread but no flagged messages:

[search]
default threadline
[[threadline]]

normal = 'default','default','default','default','#6d6','default'
focus = 'standout','default','light gray','dark gray','white','#68a'
parts = date,mailcount,tags,authors,subject
[[[date]]]

normal = 'default','default','light gray','default','g58','default'
focus = 'standout','default','light gray','dark gray','g89','#68a'
width = 'fit',10,10

...

highlight threads containing unread and flagged messages
[[threadline-flagged-unread]]

tagged_with = 'unread','flagged'
[[[date]]]

normal = 'default','default','light red,bold','default','light red,bold',
→˓'default'

highlight threads containing unread messages
[[threadline-unread]]

query = 'is:unread'
[[[date]]]

normal = 'default','default','light gray,bold','default','g58,bold',
→˓'default'

3.6.4 Tagstring Formatting

One can specify how a particular tagstring is displayed throughout the interface. To use this feature, add a section
[tags] to you alot config (not the theme file) and for each tag you want to customize, add a subsection named after the
tag. Such a subsection may define

normal attribute used if unfocussed

3.6. Theming 43

alot Documentation, Release 0.10

focus attribute used if focussed

translated fixed string representation for this tag. The tag can be hidden from view, if the key translated
is set to ‘’, the empty string.

translation a pair of strings that define a regular substitution to compute the string representation on the
fly using re.sub. This only really makes sense if one uses a regular expression to match more than
one tagstring (see below).

The following will make alot display the “todo” tag as “TODO” in white on red.

[tags]
[[todo]]
normal = '','', 'white','light red', 'white','#d66'
translated = TODO

Utf-8 symbols are welcome here, see e.g. http://panmental.de/symbols/info.htm for some fancy symbols. I personally
display my maildir flags like this:

[tags]

[[flagged]]
translated =
normal = '','','light red','','light red',''
focus = '','','light red','','light red',''

[[unread]]
translated =

[[replied]]
translated =

[[encrypted]]
translated =

You may use regular expressions in the tagstring subsections to theme multiple tagstrings at once (first match wins).
If you do so, you can use the translation option to specify a string substitution that will rename a matching tagstring.
translation takes a comma separated pair of strings that will be fed to re.sub(). For instance, to theme all your
nmbug tagstrings and especially colour tag notmuch::bug red, do the following:

[[notmuch::bug]]
translated = 'nm:bug'
normal = "", "", "light red, bold", "light blue", "light red, bold", "#88d"

[[notmuch::.*]]
translation = 'notmuch::(.*)','nm:\1'
normal = "", "", "white", "light blue", "#fff", "#88d"

3.6.5 ANSI escape codes

Alot’s message display will interpret ANSI escape codes in the “body” text to be displayed.

You can use this feature to let your HTML renderer interpret colours from html mails and translate them to ANSI
escapes. For instance, elinks can do this for you if you use the following entry in your ~/.mailcap:

text/html; elinks -force-html -dump -dump-color-mode 3 -dump-charset utf8 -eval 'set
→˓document.codepage.assume = "%{charset}"' %s; copiousoutput

44 Chapter 3. Configuration

http://panmental.de/symbols/info.htm
https://docs.python.org/3/library/re.html#re.sub
http://notmuchmail.org/nmbug/
https://en.wikipedia.org/wiki/ANSI_escape_code#Colors
http://elinks.or.cz

CHAPTER 4

API and Development

4.1 Overview

The main component is alot.ui.UI, which provides methods for user input and notifications, sets up the widget
tree and maintains the list of active buffers. When you start up alot, init.py initializes logging, parses settings and
commandline args and instantiates the UI instance of that gets passes around later. From its constructor this instance
starts the urwid mainloop that takes over.

Apart from the central UI, there are two other “managers” responsible for core functionalities, also set up in init.
py:

• ui.dbman: a DBManager to access the email database and

• alot.settings.settings: a SettingsManager oo access user settings

Every user action, triggered either by key bindings or via the command prompt, is given as commandline string that
gets translated to a Command object which is then applied. Different actions are defined as a subclasses of
Command, which live in alot/commands/MODE.py, where MODE is the name of the mode (Buffer type) they
are used in.

4.2 Email Database

The python bindings to libnotmuch define notmuch.Thread and notmuch.Message, which unfortunately are
very fragile. Alot defines the wrapper classes alot.db.Thread and alot.db.Message that use an manager.
DBManager instance to transparently provide persistent objects.

alot.db.Message moreover contains convenience methods to extract information about the message like refor-
mated header values, a summary, decoded and interpreted body text and a list of Attachments.

The central UI instance carries around a DBManager object that is used for any lookups or modifications of the email
base. DBManager can directly look up Thread and Message objects and is able to postpone/cache/retry writing
operations in case the Xapian index is locked by another process.

45

alot Documentation, Release 0.10

4.2.1 Database Manager

4.2.2 Errors

4.2.3 Wrapper

4.2.4 Other Structures

4.2.5 Utilities

4.3 User Interface

Alot sets up a widget tree and a mainloop in the constructor of alot.ui.UI. The visible area is a urwid.Frame,
where the footer is used as a status line and the body part displays the currently active alot.buffers.Buffer.

To be able to bind keystrokes and translate them to Commands, keypresses are not propagated down the widget
tree as is customary in urwid. Instead, the root widget given to urwids mainloop is a custom wrapper (alot.ui.
Inputwrap) that interprets key presses. A dedicated SendKeypressCommand can be used to trigger key presses
to the wrapped root widget and thereby accessing standard urwid behaviour.

In order to keep the interface non-blocking and react to events like terminal size changes, alot makes use of asyncio -
which allows asynchronous calls without the use of callbacks. Alot makes use of the python 3.5 async/await syntax

async def greet(ui): # ui is instance of alot.ui.UI
name = await ui.prompt('pls enter your name')
ui.notify('your name is: ' + name)

4.3.1 UI - the main component

4.3.2 Buffers

A buffer defines a view to your data. It knows how to render itself, to interpret keypresses and is visible in the “body”
part of the widget frame. Different modes are defined by subclasses of the following base class.

Available modes are:

Mode Buffer Subclass
search SearchBuffer
thread ThreadBuffer
bufferlist BufferlistBuffer
taglist TagListBuffer
namedqueries NamedQueriesBuffer
envelope EnvelopeBuffer

4.3.3 Widgets

What follows is a list of the non-standard urwid widgets used in alot. Some of them respect user settings, themes in
particular.

46 Chapter 4. API and Development

https://urwid.readthedocs.io/en/latest/reference/widget.html#urwid.Frame

alot Documentation, Release 0.10

utils

Utility Widgets not specific to alot

class alot.widgets.utils.AttrFlipWidget(w, maps, init_map=’normal’)
An AttrMap that can remember attributes to set

class alot.widgets.utils.DialogBox(body, title, bodyattr=None, titleattr=None)

globals

bufferlist

Widgets specific to Bufferlist mode

class alot.widgets.bufferlist.BufferlineWidget(buffer)
selectable text widget that represents a Buffer in the BufferlistBuffer.

search

thread

4.3.4 Completion

alot.ui.UI.prompt() allows tab completion using a Completer object handed as ‘completer’ parameter.
alot.completion defines several subclasses for different occasions like completing email addresses from an
AddressBook, notmuch tagstrings. Some of these actually build on top of each other; the QueryCompleter for
example uses a TagsCompleter internally to allow tagstring completion after “is:” or “tag:” keywords when typing
a notmuch querystring.

All these classes overide the method complete(), which for a given string and cursor position in that string re-
turns a list of tuples (completed_string, new_cursor_position) that are taken to be the completed values. Note that
completed_string does not need to have the original string as prefix. complete() may rise alot.errors.
CompletionError exceptions.

4.4 User Settings

Alot sets up a SettingsManager to access user settings defined in different places uniformly. There are four types
of user settings:

what? location accessible via
alot config ~/.config/alot/config or given by com-

mand option -c.
SettingsManager.
get()

hooks – user provided
python code

~/.config/alot/hooks.py or as given by the
hooksfile config value

SettingsManager.
get_hook()

notmuch config notmuch config file as given by command option -n
or its default location described in notmuch-config(1)

SettingsManager.
get_notmuch_setting()

mailcap – defines shell-
commands to handle mime
types

~/.mailcap (/etc/mailcap) SettingsManager.
mailcap_find_match()

4.4. User Settings 47

alot Documentation, Release 0.10

4.4.1 Settings Manager

class alot.settings.manager.SettingsManager
Organizes user settings

account_matching_address(address, return_default=False)
returns Account for a given email address (str)

Parameters

• address (str) – address to look up. A realname part will be ignored.

• return_default (bool) – If True and no address can be found, then the default ac-
count wil be returned.

Return type Account

Raises NoMatchingAccount – If no account can be found. This includes if return_default is
True and there are no accounts defined.

get(key, fallback=None)
look up global config values from alot’s config

Parameters

• key (str) – key to look up

• fallback (str) – fallback returned if key is not present

Returns config value with type as specified in the spec-file

get_accounts()
returns known accounts

Return type list of Account

get_addressbooks(order=None, append_remaining=True)
returns list of all defined AddressBook objects

get_hook(key)
return hook (callable) identified by key

get_keybinding(mode, key)
look up keybinding from MODE-maps sections

Parameters

• mode (str) – mode identifier

• key (str) – urwid-style key identifier

Returns a command line to be applied upon keypress

Return type str

get_keybindings(mode)
look up keybindings from MODE-maps sections

Parameters mode (str) – mode identifier

Returns dictionaries of key-cmd for global and specific mode

Return type 2-tuple of dicts

get_main_addresses()
returns addresses of known accounts without its aliases

48 Chapter 4. API and Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

alot Documentation, Release 0.10

get_notmuch_setting(section, key, fallback=None)
look up config values from notmuch’s config

Parameters

• section (str) – key is in

• key (str) – key to look up

• fallback (str) – fallback returned if key is not present

Returns the config value

Return type str

get_tagstring_representation(tag, onebelow_normal=None, onebelow_focus=None)
looks up user’s preferred way to represent a given tagstring.

Parameters

• tag (str) – tagstring

• onebelow_normal (urwid.AttrSpec) – attribute that shines through if unfocussed

• onebelow_focus (urwid.AttrSpec) – attribute that shines through if focussed

If onebelow_normal or onebelow_focus is given these attributes will be used as fallbacks for fg/bg values
‘’ and ‘default’.

This returns a dictionary mapping

normal to urwid.AttrSpec used if unfocussed

focussed to urwid.AttrSpec used if focussed

translated to an alternative string representation

get_theming_attribute(mode, name, part=None)
looks up theming attribute

Parameters

• mode (str) – ui-mode (e.g. search,‘thread‘. . .)

• name (str) – identifier of the atttribute

Return type urwid.AttrSpec

get_threadline_theming(thread)
looks up theming info a threadline displaying a given thread. This wraps around
get_threadline_theming(), filling in the current colour mode.

Parameters thread (alot.db.thread.Thread) – thread to theme

mailcap_find_match(*args, **kwargs)
Propagates mailcap.find_match() but caches the mailcap (first argument)

read_config(path)
parse alot’s config file :param path: path to alot’s config file :type path: str

read_notmuch_config(path)
parse notmuch’s config file :param path: path to notmuch’s config file :type path: str

reload()
Reload notmuch and alot config files

represent_datetime(d)
turns a given datetime obj into a string representation. This will:

4.4. User Settings 49

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://urwid.readthedocs.io/en/latest/reference/attrspec.html#urwid.AttrSpec
https://urwid.readthedocs.io/en/latest/reference/attrspec.html#urwid.AttrSpec
https://urwid.readthedocs.io/en/latest/reference/attrspec.html#urwid.AttrSpec
https://urwid.readthedocs.io/en/latest/reference/attrspec.html#urwid.AttrSpec
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://urwid.readthedocs.io/en/latest/reference/attrspec.html#urwid.AttrSpec

alot Documentation, Release 0.10

1) look if a fixed ‘timestamp_format’ is given in the config

2) check if a ‘timestamp_format’ hook is defined

3) use pretty_datetime() as fallback

set(key, value)
setter for global config values

Parameters

• key (str) – config option identifies

• value (depends on the specfile alot.rc.spec) – option to set

4.4.2 Errors

exception alot.settings.errors.ConfigError
could not parse user config

exception alot.settings.errors.NoMatchingAccount
No account matching requirements found.

4.4.3 Utils

alot.settings.utils.read_config(configpath=None, specpath=None, checks=None, re-
port_extra=False)

get a (validated) config object for given config file path.

Parameters

• configpath (str or list(str)) – path to config-file or a list of lines as its content

• specpath (str) – path to spec-file

• checks (dict str->callable,) – custom checks to use for validator. see validate
docs

• report_extra (boolean) – log if a setting is not present in the spec file

Raises ConfigError

Return type configobj.ConfigObj

alot.settings.utils.read_notmuch_config(path)
Read notmuch configuration.

This function calls the command “notmuch –config {path} config list” and parses its output into a config
dictionary, which is then returned.

The configuration value for a key under a section can be accessed with config[section][key].

The returned value is a dict config with

Parameters path (str) – path to the configuration file, which is passed as argument to the –config
option of notmuch.

Raises ConfigError

Return type dict

alot.settings.utils.resolve_att(a, fallback)
replace ‘’ and ‘default’ by fallback values

50 Chapter 4. API and Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://www.voidspace.org.uk/python/validate.html
http://www.voidspace.org.uk/python/validate.html
https://docs.python.org/3/library/stdtypes.html#str

alot Documentation, Release 0.10

4.4.4 Themes

class alot.settings.theme.Theme(path)
Colour theme

Parameters path (str) – path to theme file

Raises ConfigError

get_attribute(colourmode, mode, name, part=None)
returns requested attribute

Parameters

• mode (str) – ui-mode (e.g. search,‘thread‘. . .)

• name (str) – of the atttribute

• colourmode (int) – colour mode; in [1, 16, 256]

Return type urwid.AttrSpec

get_threadline_theming(thread, colourmode)
look up how to display a Threadline wiidget in search mode for a given thread.

Parameters

• thread (alot.db.thread.Thread) – Thread to theme Threadline for

• colourmode (int) – colourmode to use, one of 1,16,256.

This will return a dict mapping

normal to urwid.AttrSpec,

focus to urwid.AttrSpec,

parts to a list of strings indentifying subwidgets to be displayed in this order.

Moreover, for every part listed this will map ‘part’ to a dict mapping

normal to urwid.AttrSpec,

focus to urwid.AttrSpec,

width to a tuple indicating the width of the subpart. This is either (‘fit’, min, max) to force
the widget to be at least min and at most max characters wide, or (‘weight’, n) which makes
it share remaining space with other ‘weight’ parts.

alignment where to place the content if shorter than the widget. This is either ‘right’, ‘left’
or ‘center’.

4.4.5 Accounts

class alot.account.Address(user, domain, case_sensitive=False)
A class that represents an email address.

This class implements a number of RFC requirements (as explained in detail below) specifically in the compar-
ison of email addresses to each other.

This class abstracts the requirements of RFC 5321 § 2.4 on the user name portion of the email:

4.4. User Settings 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://urwid.readthedocs.io/en/latest/reference/attrspec.html#urwid.AttrSpec
https://docs.python.org/3/library/functions.html#int

alot Documentation, Release 0.10

local-part of a mailbox MUST BE treated as case sensitive. Therefore, SMTP implementations
MUST take care to preserve the case of mailbox local-parts. In particular, for some hosts, the user
“smith” is different from the user “Smith”. However, exploiting the case sensitivity of mailbox local-
parts impedes interoperability and is discouraged. Mailbox domains follow normal DNS rules and
are hence not case sensitive.

This is complicated by § 2.3.11 of the same RFC:

The standard mailbox naming convention is defined to be “local-part@domain”; contemporary usage
permits a much broader set of applications than simple “user names”. Consequently, and due to a
long history of problems when intermediate hosts have attempted to optimize transport by modifying
them, the local-part MUST be interpreted and assigned semantics only by the host specified in the
domain part of the address.

And also the restrictions that RFC 1035 § 3.1 places on the domain name:

Name servers and resolvers must compare [domains] in a case-insensitive manner

Because of RFC 6531 § 3.2, we take special care to ensure that unicode names will work correctly:

An SMTP server that announces the SMTPUTF8 extension MUST be prepared to accept a UTF-8
string [RFC3629] in any position in which RFC 5321 specifies that a <mailbox> can appear. Al-
though the characters in the <local-part> are permitted to contain non-ASCII characters, the actual
parsing of the <local-part> and the delimiters used are unchanged from the base email specification
[RFC5321]

What this means is that the username can be either case-insensitive or not, but only the receiving SMTP server
can know what it’s own rules are. The consensus is that the vast majority (all?) of the SMTP servers in modern
usage treat user names as case-insensitve. Therefore we also, by default, treat the user name as case insenstive.

Parameters

• user (str) – The “user name” portion of the address.

• domain (str) – The domain name portion of the address.

• case_sensitive (bool) – If False (the default) the user name portion of the address
will be compared to the other user name portion without regard to case. If True then it will.

classmethod from_string(address, case_sensitive=False)
Alternate constructor for building from a string.

Parameters

• address (str) – An email address in <user>@<domain> form

• case_sensitive (bool) – passed directly to the constructor argument of the same
name.

Returns An account from the given arguments

Return type Account

class alot.account.Account(address=None, aliases=None, alias_regexp=None, realname=None,
gpg_key=None, signature=None, signature_filename=None, sig-
nature_as_attachment=False, sent_box=None, sent_tags=None,
draft_box=None, draft_tags=None, replied_tags=None,
passed_tags=None, abook=None, sign_by_default=False,
encrypt_by_default=’none’, encrypt_to_self=None, mes-
sage_id_domain=None, case_sensitive_username=False, **_)

Datastructure that represents an email account. It manages this account’s settings, can send and store mails to
maildirs (drafts/send).

52 Chapter 4. API and Development

mailto:local-part@domain
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

alot Documentation, Release 0.10

Note: This is an abstract class that leaves send_mail() unspecified. See SendmailAccount for a
subclass that uses a sendmail command to send out mails.

matches_address(address)
returns whether this account knows about an email address

Parameters address (str) – address to look up

Return type bool

send_mail(mail)
sends given mail

Parameters mail (email.message.Message or string) – the mail to send

Raises SendingMailFailed – if sending fails

store_draft_mail(mail)
stores mail (email.message.Message or str) as draft if draft_box is set.

static store_mail(mbx, mail)
stores given mail in mailbox. If mailbox is maildir, set the S-flag and return path to newly added mail.
Oherwise this will return None.

Parameters

• mbx (mailbox.Mailbox) – mailbox to use

• mail (email.message.Message or str) – the mail to store

Returns absolute path of mail-file for Maildir or None if mail was successfully stored

Return type str or None

Raises StoreMailError

store_sent_mail(mail)
stores mail (email.message.Message or str) in send-store if sent_box is set.

abook = None
addressbook (addressbook.AddressBook) managing this accounts contacts

address = None
this accounts main email address

alias_regexp = ''
regex matching alternative addresses

aliases = []
list of alternative addresses

encrypt_to_self = None
encrypt outgoing encrypted emails to this account’s private key

gpg_key = None
gpg fingerprint for this account’s private key

realname = None
real name used to format from-headers

signature = None
signature to append to outgoing mails

4.4. User Settings 53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/email.compat32-message.html#email.message.Message
https://docs.python.org/3/library/email.compat32-message.html#email.message.Message
https://docs.python.org/3/library/mailbox.html#mailbox.Mailbox
https://docs.python.org/3/library/email.compat32-message.html#email.message.Message
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/email.compat32-message.html#email.message.Message

alot Documentation, Release 0.10

signature_as_attachment = None
attach signature file instead of appending its content to body text

signature_filename = None
filename of signature file in attachment

class alot.account.SendmailAccount(cmd, **kwargs)
Account that pipes a message to a sendmail shell command for sending

Parameters cmd (str) – sendmail command to use for this account

send_mail(mail)
Pipe the given mail to the configured sendmail command. Display a short message on success or a noti-
fication on error. :param mail: the mail to send out :type mail: email.message.Message or string
:raises: class:SendingMailFailed if sending failes

4.4.6 Addressbooks

class alot.addressbook.AddressBook(ignorecase=True)
can look up email addresses and realnames for contacts.

Note: This is an abstract class that leaves get_contacts() unspecified. See AbookAddressBook and
ExternalAddressbook for implementations.

get_contacts()
list all contacts tuples in this abook as (name, email) tuples

lookup(query=”)
looks up all contacts where name or address match query

class alot.addressbook.abook.AbookAddressBook(path=’~/.abook/addressbook’, **kwargs)
AddressBook that parses abook’s config/database files

Parameters path (str) – path to abook addressbook file

get_contacts()
list all contacts tuples in this abook as (name, email) tuples

class alot.addressbook.external.ExternalAddressbook(commandline, regex, re-
flags=0, external_filtering=True,
**kwargs)

AddressBook that parses a shell command’s output

Parameters

• commandline (str) – commandline

• regex (str) – regular expression used to match contacts in commands output to stdout.
Must define subparts named “email” and “name”.

• reflags (str) – flags to use with regular expression. Use the constants defined in re
here (re.IGNORECASE etc.) The default (inherited) value is set via the ignorecase config
option (defaults to re.IGNORECASE) Setting a value here will replace this.

• external_filtering (bool) – if True the command is fired with the given search
string as parameter and the result is not filtered further. If set to False, the command is fired
without additional parameters and the result list is filtered according to the search string.

54 Chapter 4. API and Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.compat32-message.html#email.message.Message
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/re.html#module-re
https://docs.python.org/3/library/functions.html#bool

alot Documentation, Release 0.10

4.5 Utils

alot.helper.RFC3156_canonicalize(text)
Canonicalizes plain text (MIME-encoded usually) according to RFC3156.

This function works as follows (in that order):

1. Convert all line endings to \r\n (DOS line endings).

2. Encode all occurrences of “From ” at the beginning of a line to “From=20” in order to prevent other mail
programs to replace this with “> From” (to avoid MBox conflicts) and thus invalidate the signature.

Parameters text – text to canonicalize (already encoded as quoted-printable)

Return type str

alot.helper.call_cmd(cmdlist, stdin=None)
get a shell commands output, error message and return value and immediately return.

Warning: This returns with the first screen content for interactive commands.

Parameters

• cmdlist (list of str) – shellcommand to call, already splitted into a list accepted
by subprocess.Popen()

• stdin (str, bytes, or None) – string to pipe to the process

Returns triple of stdout, stderr, return value of the shell command

Return type str, str, int

alot.helper.call_cmd_async(cmdlist, stdin=None, env=None)
Given a command, call that command asynchronously and return the output.

This function only handles OSError when creating the subprocess, any other exceptions raised either durring
subprocess creation or while exchanging data with the subprocess are the caller’s responsibility to handle.

If such an OSError is caught, then returncode will be set to 1, and the error value will be set to the str() value of
the exception.

Parameters stdin (str) – string to pipe to the process

Returns Tuple of stdout, stderr, returncode

Return type tuple[str, str, int]

alot.helper.get_notmuch_config_path()
Find the notmuch config file via env vars and default locations

alot.helper.get_xdg_env(env_name, fallback)
Used for XDG_* env variables to return fallback if unset or empty

alot.helper.guess_encoding(blob)
uses file magic to determine the encoding of the given data blob.

Parameters blob (data) – file content as read by file.read()

Returns encoding

Return type str

4.5. Utils 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

alot Documentation, Release 0.10

alot.helper.guess_mimetype(blob)
uses file magic to determine the mime-type of the given data blob.

Parameters blob (data) – file content as read by file.read()

Returns mime-type, falls back to ‘application/octet-stream’

Return type str

alot.helper.humanize_size(size)
Create a nice human readable representation of the given number (understood as bytes) using the “KiB” and
“MiB” suffixes to indicate kibibytes and mebibytes. A kibibyte is defined as 1024 bytes (as opposed to a
kilobyte which is 1000 bytes) and a mibibyte is 1024**2 bytes (as opposed to a megabyte which is 1000**2
bytes).

Parameters size (int) – the number to convert

Returns the human readable representation of size

Return type str

alot.helper.libmagic_version_at_least(version)
checks if the libmagic library installed is more recent than a given version.

Parameters version – minimum version expected in the form XYY (i.e. 5.14 -> 514) with XYY
>= 513

alot.helper.mailto_to_envelope(mailto_str)
Interpret mailto-string into a alot.db.envelope.Envelope

alot.helper.mimewrap(path, filename=None, ctype=None)
Take the contents of the given path and wrap them into an email MIME part according to the content type. The
content type is auto detected from the actual file contents and the file name if it is not given.

Parameters

• path (str) – the path to the file contents

• filename (str or None) – the file name to use in the generated MIME part

• ctype (str or None) – the content type of the file contents in path

Returns the message MIME part storing the data from path

Return type subclasses of email.mime.base.MIMEBase

alot.helper.parse_mailcap_nametemplate(tmplate=’%s’)
this returns a prefix and suffix to be used in the tempfile module for a given mailcap nametemplate string

alot.helper.parse_mailto(mailto_str)
Interpret mailto-string

Parameters mailto_str (str) – the string to interpret. Must conform to :rfc:2368.

Returns the header fields and the body found in the mailto link as a tuple of length two

Return type tuple(dict(str->list(str)), str)

alot.helper.pretty_datetime(d)
translates datetime d to a “sup-style” human readable string.

>>> now = datetime.now()
>>> now.strftime('%c')
'Sat 31 Mar 2012 14:47:26 '
>>> pretty_datetime(now)

(continues on next page)

56 Chapter 4. API and Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

alot Documentation, Release 0.10

(continued from previous page)

'just now'
>>> pretty_datetime(now - timedelta(minutes=1))
'1min ago'
>>> pretty_datetime(now - timedelta(hours=5))
'5h ago'
>>> pretty_datetime(now - timedelta(hours=12))
'02:54am'
>>> pretty_datetime(now - timedelta(days=1))
'yest 02pm'
>>> pretty_datetime(now - timedelta(days=2))
'Thu 02pm'
>>> pretty_datetime(now - timedelta(days=7))
'Mar 24'
>>> pretty_datetime(now - timedelta(days=356))
'Apr 2011'

alot.helper.shell_quote(text)
Escape the given text for passing it to the shell for interpretation. The resulting string will be parsed into one
“word” (in the sense used in the shell documentation, see sh(1)) by the shell.

Parameters text (str) – the text to quote

Returns the quoted text

Return type str

alot.helper.shorten(string, maxlen)
shortens string if longer than maxlen, appending ellipsis

alot.helper.shorten_author_string(authors_string, maxlength)
Parse a list of authors concatenated as a text string (comma separated) and smartly adjust them to maxlength.

1) If the complete list of sender names does not fit in maxlength, it tries to shorten names by using only the first
part of each.

2) If the list is still too long, hide authors according to the following priority:

• First author is always shown (if too long is shorten with ellipsis)

• If possible, last author is also shown (if too long, uses ellipsis)

• If there are more than 2 authors in the thread, show the maximum of them. More recent senders have
higher priority.

• If it is finally necessary to hide any author, an ellipsis between first and next authors is added.

alot.helper.split_commandline(s)
splits semi-colon separated commandlines, ignoring quoted separators

alot.helper.split_commandstring(cmdstring)
split command string into a list of strings to pass on to subprocess.Popen and the like. This simply calls
shlex.split but works also with unicode bytestrings.

alot.helper.string_decode(string, enc=’ascii’)
safely decodes string to unicode bytestring, respecting enc as a hint.

Parameters

• string (str or unicode) – the string to decode

• enc (str) – a hint what encoding is used in string (‘ascii’, ‘utf-8’, . . .)

Returns the unicode decoded input string

4.5. Utils 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

alot Documentation, Release 0.10

Return type unicode

alot.helper.string_sanitize(string, tab_width=8)
strips, and replaces non-printable characters

Parameters tab_width (int or None) – number of spaces to replace tabs with. Read from glob-
als.tabwidth setting if None

>>> string_sanitize(' foo\rbar ', 8)
' foobar '
>>> string_sanitize('foo\tbar', 8)
'foo bar'
>>> string_sanitize('foo\t\tbar', 8)
'foo bar'

alot.helper.try_decode(blob)
Guess the encoding of blob and try to decode it into a str.

Parameters blob (bytes) – The bytes to decode

Returns the decoded blob

Return type str

4.6 Commands

User actions are represented by Command objects that can then be triggered by alot.ui.UI.
apply_command(). Command-line strings given by the user via the prompt or key bindings can be translated
to Command objects using alot.commands.commandfactory(). Specific actions are defined as subclasses of
Command and can be registered to a global command pool using the registerCommand decorator.

Note: that the return value of commandfactory() depends on the current mode the user interface is in. The mode
identifier is a string that is uniquely defined by the currently focuses Buffer.

Note: The names of the commands available to the user in any given mode do not correspond one-to-one to these
subclasses. You can register a Command multiple times under different names, with different forced constructor
parameters and so on. See for instance the definition of BufferFocusCommand in ‘commands/globals.py’:

@registerCommand(MODE, 'bprevious', forced={'offset': -1},
help='focus previous buffer')

@registerCommand(MODE, 'bnext', forced={'offset': +1},
help='focus next buffer')

class BufferFocusCommand(Command):
def __init__(self, buffer=None, offset=0, **kwargs):
...

class alot.commands.Command
base class for commands

apply(ui)
code that gets executed when this command is applied

class alot.commands.CommandParseError
could not parse commandline string

58 Chapter 4. API and Development

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

alot Documentation, Release 0.10

class alot.commands.CommandArgumentParser(prog=None, usage=None, descrip-
tion=None, epilog=None, par-
ents=[], formatter_class=<class ’arg-
parse.HelpFormatter’>, prefix_chars=’-
’, fromfile_prefix_chars=None, argu-
ment_default=None, conflict_handler=’error’,
add_help=True, allow_abbrev=True)

ArgumentParser that raises CommandParseError instead of printing to sys.stderr

alot.commands.commandfactory(cmdline, mode=’global’)
parses cmdline and constructs a Command.

Parameters

• cmdline (str) – command line to interpret

• mode (str) – mode identifier

alot.commands.lookup_command(cmdname, mode)
returns commandclass, argparser and forced parameters used to construct a command for cmdname when called
in mode.

Parameters

• cmdname (str) – name of the command to look up

• mode (str) – mode identifier

Return type (Command, ArgumentParser, dict(str->dict))

alot.commands.lookup_parser(cmdname, mode)
returns the CommandArgumentParser used to construct a command for cmdname when called in mode.

class alot.commands.registerCommand(mode, name, help=None, usage=None, forced=None, ar-
guments=None)

Decorator used to register a Command as handler for command name in mode so that it can be looked up later
using lookup_command().

Consider this example that shows how a Command class definition is decorated to register it as handler for
‘save’ in mode ‘thread’ and add boolean and string arguments:

.. code-block::

@registerCommand(‘thread’, ‘save’, arguments=[([’–all’], {‘action’: ‘store_true’, ‘help’:’save
all’}), ([‘path’], {‘nargs’:’?’, ‘help’:’path to save to’})], help=’save attachment(s)’)

class SaveAttachmentCommand(Command): pass

Parameters

• mode (str) – mode identifier

• name (str) – command name to register as

• help (str) – help string summarizing what this command does

• usage (str) – overides the auto generated usage string

• forced (dict (str->str)) – keyword parameter used for commands constructor

• arguments (list of (list of str, dict (str->str)) – list of argu-
ments given as pairs (args, kwargs) accepted by argparse.ArgumentParser.
add_argument().

4.6. Commands 59

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument

alot Documentation, Release 0.10

4.6.1 Globals

4.6.2 Envelope

4.6.3 Bufferlist

4.6.4 Search

4.6.5 Taglist

4.6.6 Namedqueries

4.6.7 Thread

4.7 Crypto

alot.crypto.RFC3156_micalg_from_algo(hash_algo)
Converts a GPGME hash algorithm name to one conforming to RFC3156.

GPGME returns hash algorithm names such as “SHA256”, but RFC3156 says that programs need to use names
such as “pgp-sha256” instead.

Parameters hash_algo (str) – GPGME hash_algo

Returns the lowercase name of of the algorithm with “pgp-” prepended

Return type str

alot.crypto.bad_signatures_to_str(error)
Convert a bad signature exception to a text message. This is a workaround for gpg not handling non-ascii data
correctly.

Parameters error (BadSignatures) – BadSignatures exception

alot.crypto.check_uid_validity(key, email)
Check that a the email belongs to the given key. Also check the trust level of this connection. Only if the trust
level is high enough (>=4) the email is assumed to belong to the key.

Parameters

• key (gpg.gpgme._gpgme_key) – the GPG key to which the email should belong

• email (str) – the email address that should belong to the key

Returns whether the key can be assumed to belong to the given email

Return type bool

alot.crypto.decrypt_verify(encrypted, session_keys=None)
Decrypts the given ciphertext string and returns both the signatures (if any) and the plaintext.

Parameters

• encrypted (bytes) – the mail to decrypt

• session_keys (list[str]) – a list OpenPGP session keys

Returns the signatures and decrypted plaintext data

Return type tuple[list[gpg.resuit.Signature], str]

60 Chapter 4. API and Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

alot Documentation, Release 0.10

Raises alot.errors.GPGProblem – if the decryption fails

alot.crypto.detached_signature_for(plaintext_str, keys)
Signs the given plaintext string and returns the detached signature.

A detached signature in GPG speak is a separate blob of data containing a signature for the specified plaintext.

Parameters

• plaintext_str (bytes) – bytestring to sign

• keys (list[gpg.gpgme._gpgme_key]) – list of one or more key to sign with.

Returns A list of signature and the signed blob of data

Return type tuple[list[gpg.results.NewSignature], str]

alot.crypto.encrypt(plaintext_str, keys)
Encrypt data and return the encrypted form.

Parameters

• plaintext_str (bytes) – the mail to encrypt

• key (list[gpg.gpgme.gpgme_key_t] or None) – optionally, a list of keys to
encrypt with

Returns encrypted mail

Return type str

alot.crypto.get_key(keyid, validate=False, encrypt=False, sign=False, signed_only=False)
Gets a key from the keyring by filtering for the specified keyid, but only if the given keyid is specific enough (if
it matches multiple keys, an exception will be thrown).

If validate is True also make sure that returned key is not invalid, revoked or expired. In addition if encrypt or
sign is True also validate that key is valid for that action. For example only keys with private key can sign. If
signed_only is True make sure that the user id can be trusted to belong to the key (is signed). This last check
will only work if the keyid is part of the user id associated with the key, not if it is part of the key fingerprint.

Parameters

• keyid (str) – filter term for the keyring (usually a key ID)

• validate (bool) – validate that returned keyid is valid

• encrypt (bool) – when validating confirm that returned key can encrypt

• sign (bool) – when validating confirm that returned key can sign

• signed_only (bool) – only return keys whose uid is signed (trusted to belong to the
key)

Returns A gpg key matching the given parameters

Return type gpg.gpgme._gpgme_key

Raises

• GPGProblem – if the keyid is ambiguous

• GPGProblem – if there is no key that matches the parameters

• GPGProblem – if a key is found, but signed_only is true and the key is unused

alot.crypto.list_keys(hint=None, private=False)
Returns a generator of all keys containing the fingerprint, or all keys if hint is None.

4.7. Crypto 61

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

alot Documentation, Release 0.10

The generator may raise exceptions of :class:gpg.errors.GPGMEError, and it is the caller’s responsibility to
handle them.

Parameters

• hint (str or None) – Part of a fingerprint to usee to search

• private (bool) – Whether to return public keys or secret keys

Returns A generator that yields keys.

Return type Generator[gpg.gpgme.gpgme_key_t, None, None]

alot.crypto.validate_key(key, sign=False, encrypt=False)
Assert that a key is valide and optionally that it can be used for signing or encrypting. Raise GPGProblem
otherwise.

Parameters

• key (gpg.gpgme._gpgme_key) – the GPG key to check

• sign (bool) – whether the key should be able to sign

• encrypt (bool) – whether the key should be able to encrypt

Raises

• GPGProblem – If the key is revoked, expired, or invalid

• GPGProblem – If encrypt is true and the key cannot be used to encrypt

• GPGProblem – If sign is true and th key cannot be used to encrypt

alot.crypto.verify_detached(message, signature)
Verifies whether the message is authentic by checking the signature.

Parameters

• message (bytes) – The message to be verified, in canonical form.

• signature (bytes) – the OpenPGP signature to verify

Returns a list of signatures

Return type list[gpg.results.Signature]

Raises alot.errors.GPGProblem – if the verification fails

62 Chapter 4. API and Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list

CHAPTER 5

Frequently Asked Questions

1. Help! I don’t see text/html content!

You need to set up a mailcap entry to declare an external renderer for text/html. Try w3m and put the following into
your ~/.mailcap:

text/html; w3m -dump -o document_charset=%{charset} '%s'; nametemplate=%s.html;
→˓copiousoutput

On more recent versions of w3m, links can be parsed and appended with reference numbers:

text/html; w3m -dump -o document_charset=%{charset} -o display_link_number=1 '%s';
→˓nametemplate=%s.html; copiousoutput

Most text based browsers have a dump mode that can be used here.

2. Why reinvent the wheel? Why not extend an existing MUA to work nicely with notmuch?

alot makes use of existing solutions where possible: It does not fetch, send or edit mails; it lets notmuch handle your
mailindex and uses a toolkit to render its display. You are responsible for automatic initial tagging.

This said, there are few CLI MUAs that could be easily and naturally adapted to using notmuch. Rebuilding an
interface from scratch using friendly and extensible tools seemed easier and more promising.

Update: see mutt-kz for a fork of mutt..

3. What’s with the snotty name?

It’s not meant to be presumptuous. I like the dichotomy; I like to picture the look on someone’s face who reads the
User-Agent header “notmuch/alot”; I like cookies; I like this comic strip.

63

http://w3m.sourceforge.net/
http://en.wikipedia.org/wiki/Text-based_web_browser
http://notmuchmail.org
http://excess.org/urwid/
http://notmuchmail.org/initial_tagging/
http://www.python.org/
https://github.com/karelzak/mutt-kz
http://hyperboleandahalf.blogspot.com/2010/04/alot-is-better-than-you-at-everything.html

alot Documentation, Release 0.10

4. I want feature X!

Me too! Feel free to file a new or comment on existing issues if you don’t want/have the time/know how to implement
it yourself. Be verbose as to how it should look or work when it’s finished and give it some thought how you think we
should implement it. We’ll discuss it from there.

5. Why are the default key bindings so counter-intuitive?

Be aware that the bindings for all modes are fully configurable. That said, I choose the bindings to be natural for me.
I use vim and pentadactyl a lot. However, I’d be interested in discussing the defaults. If you think your bindings are
more intuitive or better suited as defaults for some reason, don’t hesitate to send me your config. The same holds for
the theme settings you use. Tell me. Let’s improve the defaults.

6. Why are you doing $THIS not $THAT way?

Lazyness and Ignorance: In most cases I simply did not or still don’t know a better solution. I try to outsource as
much as I can to well established libraries and be it only to avoid having to read rfc’s. But there are lots of tasks I
implemented myself, possibly overlooking a ready made and available solution. Twisted is such a feature-rich but gray
area in my mind for example. If you think you know how to improve the current implementation let me know!

The few exceptions to above stated rule are the following:

• The modules cmd and cmd2, that handle all sorts of convenience around command objects hate urwid: They are
painfully strongly coupled to user in/output via stdin and out.

• notmuch reply is not used to format reply messages because 1. it is not offered by notmuch’s library but is
a feature of the CLI. This means we would have to call the notmuch binary, something that is avoided where
possible. 2. As there is no notmuch forward equivalent, this (very similar) functionality would have to be
re-implemented anyway.

7. I thought alot ran on Python 2?

It used to. When we made the transition to Python 3 we didn’t maintain Python 2 support. If you still need Python 2
support the 0.7 release is your best bet.

8. I thought alot used twisted?

It used to. After we switched to python 3 we decided to switch to asyncio, which reduced the number of dependencies
we have. Twisted is an especially heavy dependency, when we only used their async mechanisms, and not any of the
other goodness that twisted has to offer.

9. How do I search within the content of a mail?

Alot does not yet have this feature built-in. However, you can pipe a mail to your preferred pager and do it from there.
This can be done using the pipeto command (the default shortcut is ‘|’) in thread buffers:

pipeto --format=decoded less

Using less, you search with ‘/’ and save with ‘s’. See here or help pipeto for help on this command.

64 Chapter 5. Frequently Asked Questions

https://github.com/pazz/alot/issues
http://www.vim.org
http://dactyl.sourceforge.net/pentadactyl/

CHAPTER 6

Manpage

6.1 Synopsis

alot [options . . .] [subcommand]

6.2 Description

Alot is a terminal-based mail user agent for the notmuch mail system. It features a modular and command prompt
driven interface to provide a full MUA experience as an alternative to the Emacs mode shipped with notmuch.

6.3 Options

-r, --read-only open notmuch database in read-only mode

-c FILENAME, --config=FILENAME configuration file (default: ~/.config/alot/config)

-n FILENAME, --notmuch-config=FILENAME notmuch configuration file (default: see notmuch-
config(1))

-C COLOURS, --colour-mode=COLOURS number of colours to use on the terminal; must be 1, 16
or 256 (default: configuration option colourmode or 256)

-p PATH, --mailindex-path=PATH path to notmuch index

-d LEVEL, --debug-level=LEVEL debug level; must be one of debug, info, warning or error (default:
info)

-l FILENAME, --logfile=FILENAME log file (default: /dev/null)

-h, --help display help and exit

-v, --version output version information and exit

65

alot Documentation, Release 0.10

6.4 Commands

search start in a search buffer using the query string provided as parameter (see notmuch-search-terms(7))

compose compose a new message

bufferlist start with only a bufferlist buffer open

taglist start with only a taglist buffer open

namedqueries start with list of named queries

pyshell start the interactive python shell inside alot

6.5 Usage

The arrow keys, page-up/down, j, k and Space can be used to move the focus. Escape cancels prompts and Enter
selects. Hit : at any time and type in commands to the prompt.

The interface shows one buffer at a time, you can use Tab and Shift-Tab to switch between them, close the current
buffer with d and list them all with ;.

The buffer type or mode (displayed at the bottom left) determines which prompt commands are available. Usage
information on any command can be listed by typing help YOURCOMMAND to the prompt. The keybindings for the
current mode are listed upon pressing ?.

6.6 UNIX Signals

SIGUSR1 Refreshes the current buffer.

SIGINT Shuts down the user interface.

6.7 See Also

notmuch(1)

Alot is a terminal-based mail user agent for the notmuch mail system. It features a modular and command prompt
driven interface to provide a full MUA experience as an alternative to the Emacs mode shipped with notmuch.

66 Chapter 6. Manpage

Python Module Index

a
alot, 45
alot.account, 51
alot.addressbook, 54
alot.addressbook.abook, 54
alot.addressbook.external, 54
alot.commands, 58
alot.completion, 47
alot.crypto, 60
alot.db, 45
alot.db.errors, 46
alot.helper, 55
alot.settings.errors, 50
alot.settings.manager, 47
alot.settings.utils, 50
alot.ui, 46
alot.utils, 58
alot.widgets.bufferlist, 47
alot.widgets.utils, 47

67

alot Documentation, Release 0.10

68 Python Module Index

Index

A
abook (alot.account.Account attribute), 53
AbookAddressBook (class in

alot.addressbook.abook), 54
Account (class in alot.account), 52
account_matching_address()

(alot.settings.manager.SettingsManager
method), 48

address (alot.account.Account attribute), 53
Address (class in alot.account), 51
AddressBook (class in alot.addressbook), 54
alias_regexp (alot.account.Account attribute), 53
aliases (alot.account.Account attribute), 53
alot (module), 45
alot.account (module), 51
alot.addressbook (module), 54
alot.addressbook.abook (module), 54
alot.addressbook.external (module), 54
alot.commands (module), 58
alot.completion (module), 47
alot.crypto (module), 60
alot.db (module), 45
alot.db.errors (module), 46
alot.helper (module), 55
alot.settings.errors (module), 50
alot.settings.manager (module), 47
alot.settings.utils (module), 50
alot.ui (module), 46
alot.utils (module), 58
alot.widgets.bufferlist (module), 47
alot.widgets.utils (module), 47
apply() (alot.commands.Command method), 58
AttrFlipWidget (class in alot.widgets.utils), 47

B
bad_signatures_to_str() (in module

alot.crypto), 60
BufferlineWidget (class in alot.widgets.bufferlist),

47

C
call_cmd() (in module alot.helper), 55
call_cmd_async() (in module alot.helper), 55
check_uid_validity() (in module alot.crypto), 60
Command (class in alot.commands), 58
CommandArgumentParser (class in alot.commands),

58
commandfactory() (in module alot.commands), 59
CommandParseError (class in alot.commands), 58
ConfigError, 50

D
decrypt_verify() (in module alot.crypto), 60
detached_signature_for() (in module

alot.crypto), 61
DialogBox (class in alot.widgets.utils), 47

E
EDITOR, 21
encrypt() (in module alot.crypto), 61
encrypt_to_self (alot.account.Account attribute),

53
environment variable

EDITOR, 21
PATH, 4

exit() (built-in function), 41
ExternalAddressbook (class in

alot.addressbook.external), 54

F
forward_prefix() (built-in function), 39
forward_subject() (built-in function), 40
from_string() (alot.account.Address class method),

52

G
get() (alot.settings.manager.SettingsManager method),

48

69

alot Documentation, Release 0.10

get_accounts() (alot.settings.manager.SettingsManager
method), 48

get_addressbooks()
(alot.settings.manager.SettingsManager
method), 48

get_attribute() (alot.settings.theme.Theme
method), 51

get_contacts() (alot.addressbook.abook.AbookAddressBook
method), 54

get_contacts() (alot.addressbook.AddressBook
method), 54

get_hook() (alot.settings.manager.SettingsManager
method), 48

get_key() (in module alot.crypto), 61
get_keybinding() (alot.settings.manager.SettingsManager

method), 48
get_keybindings()

(alot.settings.manager.SettingsManager
method), 48

get_main_addresses()
(alot.settings.manager.SettingsManager
method), 48

get_notmuch_config_path() (in module
alot.helper), 55

get_notmuch_setting()
(alot.settings.manager.SettingsManager
method), 48

get_tagstring_representation()
(alot.settings.manager.SettingsManager
method), 49

get_theming_attribute()
(alot.settings.manager.SettingsManager
method), 49

get_threadline_theming()
(alot.settings.manager.SettingsManager
method), 49

get_threadline_theming()
(alot.settings.theme.Theme method), 51

get_xdg_env() (in module alot.helper), 55
gpg_key (alot.account.Account attribute), 53
guess_encoding() (in module alot.helper), 55
guess_mimetype() (in module alot.helper), 55

H
humanize_size() (in module alot.helper), 56

L
libmagic_version_at_least() (in module

alot.helper), 56
list_keys() (in module alot.crypto), 61
lookup() (alot.addressbook.AddressBook method), 54
lookup_command() (in module alot.commands), 59
lookup_parser() (in module alot.commands), 59
loop_hook() (built-in function), 41

M
mailcap_find_match()

(alot.settings.manager.SettingsManager
method), 49

mailto_to_envelope() (in module alot.helper), 56
matches_address() (alot.account.Account method),

53
mimewrap() (in module alot.helper), 56

N
NoMatchingAccount, 50

P
parse_mailcap_nametemplate() (in module

alot.helper), 56
parse_mailto() (in module alot.helper), 56
PATH, 4
post_buffer_close() (built-in function), 40
post_buffer_focus() (built-in function), 41
post_buffer_open() (built-in function), 40
post_edit_translate() (built-in function), 39
pre_buffer_close() (built-in function), 40
pre_buffer_focus() (built-in function), 40
pre_buffer_open() (built-in function), 40
pre_edit_translate() (built-in function), 39
pre_envelope_send() (built-in function), 38
pretty_datetime() (in module alot.helper), 56

R
read_config() (alot.settings.manager.SettingsManager

method), 49
read_config() (in module alot.settings.utils), 50
read_notmuch_config()

(alot.settings.manager.SettingsManager
method), 49

read_notmuch_config() (in module
alot.settings.utils), 50

realname (alot.account.Account attribute), 53
registerCommand (class in alot.commands), 59
reload() (alot.settings.manager.SettingsManager

method), 49
reply_prefix() (built-in function), 39
reply_subject() (built-in function), 40
represent_datetime()

(alot.settings.manager.SettingsManager
method), 49

resolve_att() (in module alot.settings.utils), 50
RFC

RFC 1524, 3
RFC 3156, 15, 16

RFC3156_canonicalize() (in module alot.helper),
55

RFC3156_micalg_from_algo() (in module
alot.crypto), 60

70 Index

alot Documentation, Release 0.10

S
sanitize_attachment_filename() (built-in

function), 41
send_mail() (alot.account.Account method), 53
send_mail() (alot.account.SendmailAccount

method), 54
SendmailAccount (class in alot.account), 54
set() (alot.settings.manager.SettingsManager method),

50
SettingsManager (class in alot.settings.manager),

48
shell_quote() (in module alot.helper), 57
shorten() (in module alot.helper), 57
shorten_author_string() (in module

alot.helper), 57
SIGINT, 6, 66
signature (alot.account.Account attribute), 53
signature_as_attachment (alot.account.Account

attribute), 53
signature_filename (alot.account.Account at-

tribute), 54
SIGUSR1, 6, 66
split_commandline() (in module alot.helper), 57
split_commandstring() (in module alot.helper),

57
store_draft_mail() (alot.account.Account

method), 53
store_mail() (alot.account.Account static method),

53
store_sent_mail() (alot.account.Account method),

53
string_decode() (in module alot.helper), 57
string_sanitize() (in module alot.helper), 58

T
text_quote() (built-in function), 39
Theme (class in alot.settings.theme), 51
timestamp_format() (built-in function), 40
touch_external_cmdlist() (built-in function),

40
try_decode() (in module alot.helper), 58

V
validate_key() (in module alot.crypto), 62
verify_detached() (in module alot.crypto), 62

Index 71

	Installation
	Manual installation
	Generating the Docs

	Usage
	Command-Line Invocation
	UNIX Signals
	First Steps in the UI
	Commands
	Cryptography

	Configuration
	Configuration Options
	Accounts
	Contacts Completion
	Key Bindings
	Hooks
	Theming

	API and Development
	Overview
	Email Database
	User Interface
	User Settings
	Utils
	Commands
	Crypto

	Frequently Asked Questions
	Manpage
	Synopsis
	Description
	Options
	Commands
	Usage
	UNIX Signals
	See Also

	Python Module Index
	Index

