alibi Documentation

Release 0.2.2

Seldon Technologies Ltd

Contents

1	Getting Started	3
2	Algorithm overview	5
3	Roadmap	7
4	Anchors	9
5	Contrastive Explanation Method	17
6	Counterfactual Instances	23
7	Counterfactuals Guided by Prototypes	29
8	Trust Scores	37
9	Anchor explanations for income prediction	41
10	Anchor explanations on the Iris dataset	45
11	Anchor explanations for movie sentiment	47
12	Anchor explanations for ImageNet	51
13	Anchor explanations for fashion MNIST	55
14	Contrastive Explanations Method (CEM) applied to MNIST	61
15	Contrastive Explanations Method (CEM) applied to Iris dataset	69
16	Counterfactual instances on MNIST	77
17	Counterfactuals guided by prototypes on MNIST	85
18	Counterfactuals guided by prototypes on Boston housing dataset	105
19	Trust Scores applied to Iris	109
20	Trust Scores applied to MNIST	115

21 and	123
22 Indices and tables	161
Python Module Index	163
Index	165

Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The initial focus on the library is on black-box, instance based model explanations.

- Provide high quality reference implementations of black-box ML model explanation algorithms
- Define a consistent API for interpretable ML methods
- Support multiple use cases (e.g. tabular, text and image data classification, regression)
- Implement the latest model explanation, concept drift, algorithmic bias detection and other ML model monitoring and interpretation methods

Contents 1

2 Contents

CHAPTER 1

Getting Started

1.1 Installation

Alibi works with Python 3.5+ and can be installed from PyPI:

```
pip install alibi
```

1.2 Features

Alibi is a Python package designed to help explain the predictions of machine learning models, gauge the confidence of predictions and eventually support wider capabilities of inspecting the performance of models with respect to concept drift and algorithmic bias. The focus of the library is to support the widest range of models using black-box methods where possible.

To get a list of the latest available model explanation algorithms, you can type:

```
import alibi
alibi.explainers.__all___
```

```
['AnchorTabular',
  'AnchorText',
  'AnchorImage',
  'CEM',
  'CounterFactual',
  'CounterFactualProto']
```

For gauging model confidence:

```
alibi.confidence.__all__
```

```
['TrustScore']
```

For detailed information on the methods:

- Overview of available methods
 - Anchor explanations
 - Contrastive Explanation Method (CEM)
 - Counterfactual Instances
 - Counterfactuals Guided by Prototypes
 - Trust Scores

1.3 Basic Usage

We will use the Anchor method on tabular data to illustrate the usage of explainers in Alibi.

First, we import the explainer:

```
from alibi.explainers import AnchorTabular
```

Next, we initialize it by passing it a prediction function and any other necessary arguments:

```
explainer = AnchorTabular(predict_fn, feature_names)
```

Some methods require an additional .fit step which requires access to the training set the model was trained on:

```
explainer.fit(X_train)
```

Finally, we can call the explainer on a test instance which will return a dictionary containing the explanation and any additional metadata returned by the computation:

```
explainer.explain(x)
```

The exact details will vary slightly from method to method, so we encourage the reader to become familiar with the *types of algorithms supported* in Alibi.

Algorithm overview

This page provides a high-level overview of the algorithms and their features currently implemented in Alibi.

2.1 Model Explanations

These algorithms provide instance-specific (sometimes also called "local") explanations of ML model predictions. Given a single instance and a model prediction they aim to answer the question "Why did my model make this prediction?" The following table summarizes the capabilities of the current algorithms:

Explainer	Classifica-	Regres-	Categorical fea-	Tabu- Text Ir		lm-	Needs train-
	tion	sion	tures	lar		ages	ing set
Anchors	✓		✓	✓	✓	✓	For Tabular
CEM	✓			✓		✓	Optional
Counterfactual	✓			✓		✓	No
Instances							
Prototype Counter-	✓			✓		✓	Optional
factuals							

Anchor explanations: produce an "anchor" - a small subset of features and their ranges that will almost always result in the same model prediction. *Documentation*, *tabular example*, *text classification*, *image classification*.

Contrastive explanation method (CEM): produce a pertinent positive (PP) and a pertinent negative (PN) instance. The PP instance finds the features that should me minimally and sufficiently present to predict the same class as the original prediction (a PP acts as the "most compact" representation of the instance to keep the same prediction). The PN instance identifies the features that should be minimally and necessarily absent to maintain the original prediction (a PN acts as the closest instance that would result in a different prediction). *Documentation, tabular example, image classification*.

Counterfactual instances: generate counterfactual examples using a simple loss function. *Documentation*, *image classification*.

Prototype Counterfactuals: generate counterfactuals guided by nearest class prototypes other than the class predicted on the original instance. It can use both an encoder or k-d trees to define the prototypes. This method can speed up the search, especially for black box models, and create interpretable counterfactuals. *Documentation*, *tabular example*, *image classification*.

2.2 Model Confidence

These algorithms provide instance-specific scores measuring the model confidence for making a particular prediction.

Algorithm	Classifica-	Regres-	Categorical	fea-	Tabu-	Text	lm-	Needs	training
	tion	sion	tures		lar		ages	set	
Trust	✓				✓	✓¹	✓2	Yes	
Scores									

Trust scores: produce a "trust score" of a classifier's prediction. The trust score is the ratio between the distance to the nearest class different from the predicted class and the distance to the predicted class, higher scores correspond to more trustworthy predictions. *Documentation*, *tabular example*, *image classification*

¹ Depending on model

² May require dimensionality reduction

CHAPTER 3

Roadmap

Alibi aims to be the go-to library for ML model interpretability and monitoring. There are multiple challenges for developing a high-quality, production-ready library that achieves this. In addition to having high quality reference implementations of the most promising algorithms, we need extensive documentation and case studies comparing the different interpretability methods and their respective pros and cons. A clean and a usable API is also a priority. Additionally we want to move beyond model explanation and provide tools to gauge ML model confidence, measure concept drift, detect outliers and algorithmic bias among other things.

3.1 Additional explanation methods

- Influence functions [WIP]
- Feature attribution methods (e.g. SHAP)
- Global methods (e.g. ALE)

3.2 Important enhancements to explanation methods

- Robust handling of categorical variables (Github issue)
- Document pitfalls of popular methods like LIME and PDP (Github issue)
- Unified API (Github issue)
- Standardized return types for explanations
- Explanations for regression models (Github issue)
- · Explanations for sequential data
- Develop methods for highly correlated features

3.3 Beyond explanations

- Investigate alternatives to Trust Scores for gauging the confidence of black-box models
- Concept drift provide methods for monitoring and alerting to changes in the incoming data distribution and the conditional distribution of the predictions
- · Bias detection methods
- Outlier detection methods (Github issue)

[source]

CHAPTER 4

Anchors

4.1 Overview

The anchor algorithm is based on the Anchors: High-Precision Model-Agnostic Explanations paper by Ribeiro et al. and builds on the open source code from the paper's first author.

The algorithm provides model-agnostic (*black box*) and human interpretable explanations suitable for classification models applied to images, text and tabular data. The idea behind anchors is to explain the behaviour of complex models with high-precision rules called *anchors*. These anchors are locally sufficient conditions to ensure a certain prediction with a high degree of confidence.

Anchors address a key shortcoming of local explanation methods like LIME which proxy the local behaviour of the model in a linear way. It is however unclear to what extent the explanation holds up in the region around the instance to be explained, since both the model and data can exhibit non-linear behaviour in the neighborhood of the instance. This approach can easily lead to overconfidence in the explanation and misleading conclusions on unseen but similar instances. The anchor algorithm tackles this issue by incorporating coverage, the region where the explanation applies, into the optimization problem. A simple example from sentiment classification illustrates this (Figure 1). Dependent on the sentence, the occurrence of the word *not* is interpreted as positive or negative for the sentiment by LIME. It is clear that the explanation using *not* is very local. Anchors however aim to maximize the coverage, and require *not* to occur together with *good* or *bad* to ensure respectively negative or positive sentiment.

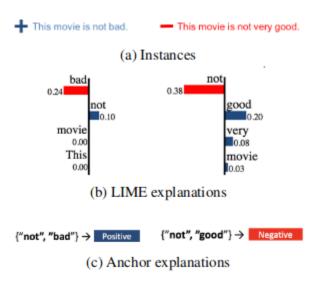


Figure 1: Sentiment predictions, LSTM

Ribeiro et al., Anchors: High-Precision Model-Agnostic Explanations, 2018

As highlighted by the above example, an anchor explanation consists of *if-then rules*, called the anchors, which sufficiently guarantee the explanation locally and try to maximize the area for which the explanation holds. This means that as long as the anchor holds, the prediction should remain the same regardless of the values of the features not present in the anchor. Going back to the sentiment example: as long as *not good* is present, the sentiment is negative, regardless of the other words in the movie review.

4.1.1 Text

For text classification, an interpretable anchor consists of the words that need to be present to ensure a prediction, regardless of the other words in the input. The words that are not present in a candidate anchor can be sampled in 2 ways:

- Replace word token by UNK token.
- Replace word token by sampled token from a corpus with the same POS tag and probability proportional to the similarity in the embedding space. By sampling similar words, we keep more context than simply using the UNK token.

4.1.2 Tabular Data

Anchors are also suitable for tabular data with both categorical and continuous features. The continuous features are discretized into quantiles (e.g. deciles), so they become more interpretable. The features in a candidate anchor are kept constant (same category or bin for discretized features) while we sample the other features from a training set. As a result, anchors for tabular data need access to training data. Let's illustrate this with an example. Say we want to predict whether a person makes less or more than £50,000 per year based on the person's characteristics including age (continuous variable) and marital status (categorical variable). The following would then be a potential anchor: Hugo makes more than £50,000 because he is married and his age is between 35 and 45 years.

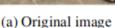
10 Chapter 4. Anchors

4.1.3 Images

Similar to LIME, images are first segmented into superpixels, maintaining local image structure. The interpretable representation then consists of the presence or absence of each superpixel in the anchor. It is crucial to generate meaningful superpixels in order to arrive at interpretable explanations. The algorithm supports a number of standard image segmentation algorithms (felzenszwalb, slic and quickshift) and allows the user to provide a custom segmentation function.

The superpixels not present in a candidate anchor can be masked in 2 ways:

- Take the average value of that superpixel.
- Use the pixel values of a superimposed picture over the masked superpixels.



(b) Anchor for "beagle"

Ribeiro et al., Anchors: High-Precision Model-Agnostic Explanations, 2018

4.1.4 Efficiently Computing Anchors

The anchor needs to return the same prediction as the original instance with a minimal confidence of e.g. 95%. If multiple candidate anchors satisfy this constraint, we go with the anchor that has the largest coverage. Because the number of potential anchors is exponential in the feature space, we need a faster approximate solution.

The anchors are constructed bottom-up in combination with beam search. We start with an empty rule or anchor, and incrementally add an *if-then* rule in each iteration until the minimal confidence constraint is satisfied. If multiple valid anchors are found, the one with the largest coverage is returned.

In order to select the best candidate anchors for the beam width efficiently during each iteration, we formulate the problem as a pure exploration multi-armed bandit problem. This limits the number of model prediction calls which can be a computational bottleneck.

For more details, we refer the reader to the original paper.

4.2 Usage

While each data type has specific requirements to initialize the explainer and return explanations, the underlying algorithm to construct the anchors is the same.

4.2. Usage 11

In order to efficiently generate anchors, the following hyperparameters need to be set to sensible values when calling the explain method:

- threshold: the previously discussed minimal confidence level. threshold defines the minimum fraction of samples for a candidate anchor that need to lead to the same prediction as the original instance. A higher value gives more confidence in the anchor, but also leads to more computation time. The default value is 0.95.
- tau: determines when we assume convergence for the multi-armed bandit. A bigger value for tau means faster convergence but also looser anchor conditions. By default equal to 0.15.
- beam_size: the size of the beam width. A bigger beam width can lead to a better overall anchor at the expense of more computation time.
- batch_size: the batch size used for sampling. A bigger batch size gives more confidence in the anchor, again at the expense of computation time since it involves more model prediction calls. The default value is 100.
- coverage_samples: number of samples used to compute the coverage of the anchor. By default set to 10000.

4.2.1 Text

Initialization

Since the explainer works on black box models, only access to a predict function is needed. The model below is a simple logistic regression trained on movie reviews with negative or positive sentiment and pre-processed with a CountVectorizer:

```
predict_fn = lambda x: clf.predict(vectorizer.transform(x))
```

If we choose to sample similar words from a corpus, we first need to load a spaCy model:

```
import spacy
from alibi.utils.download import spacy_model

model = 'en_core_web_md'
spacy_model(model=model)
nlp = spacy.load(model)
```

We can now initialize our explainer:

```
explainer = AnchorText(nlp, predict_fn)
```

Explanation

Let's define the instance we want to explain and verify that the sentiment prediction on the original instance is positive:

```
text = 'This is a good book .'
class_names = ['negative', 'positive']
pred = class_names[predict_fn([text])[0]]
```

Now we can explain the instance:

```
explanation = explainer.explain(text, threshold=0.95, use_proba=True, use_unk=False)
```

We set the confidence threshold at 95%. use_proba equals True means that we will sample from the corpus proportional to the word similarity, while use_unk False implies that we are not replacing words outside the anchor

with UNK tokens. use_proba False and use_unk True would mean that we are simply replacing the words that are not in the candidate anchor with the UNK tokens.

The explain method returns a dictionary that contains key: value pairs for:

- *names*: the words in the anchor.
- *precision*: the fraction of times the sampled instances where the anchor holds yields the same prediction as the original instance. The precision will always be ≥ threshold for a valid anchor.
- coverage: the coverage of the anchor over a sampled part of the training set.

Under the *raw* key, the dictionary also contains example instances where the anchor holds and the prediction is the same as on the original instance, as well as examples where the anchor holds but the prediction changed to give the user a sense of where the anchor fails. *raw* also stores information on the *names*, *precision* and *coverage* of partial anchors. This allows the user to track the improvement in for instance the *precision* as more features (words in the case of text) are added to the anchor.

4.2.2 Tabular Data

Initialization and fit

To initialize the explainer, we provide a predict function, a list with the feature names to make the anchors easy to understand as well as an optional mapping from the encoded categorical features to a description of the category. An example for categorical_names would be category_map = {0: list('married', 'divorced'), 3: list('high school diploma', 'master's degree')}. Each key in category_map refers to the column index in the input for the relevant categorical variable, while the values are lists with the options for each categorical variable.

```
predict_fn = lambda x: clf.predict(preprocessor.transform(x))
explainer = AnchorTabular(predict_fn, feature_names, categorical_names=category_map)
```

Tabular data requires a fit step to map the ordinal features into quantiles and therefore needs access to a representative set of the training data. disc_perc is a list with percentiles used for binning:

```
explainer.fit(X_train, disc_perc=[25, 50, 75])
```

Explanation

Let's check the prediction of the model on the original instance and explain:

```
class_names = ['<=50K', '>50K']
pred = class_names[explainer.predict_fn(X)[0]]
explanation = explainer.explain(X, threshold=0.95)
```

The returned explanation dictionary contains the same *key: value* pairs as the text explainer, so you could explain a prediction as follows:

```
Prediction: <=50K
Anchor: Marital Status = Never-Married AND Relationship = Own-child
Precision: 1.00
Coverage: 0.13
```

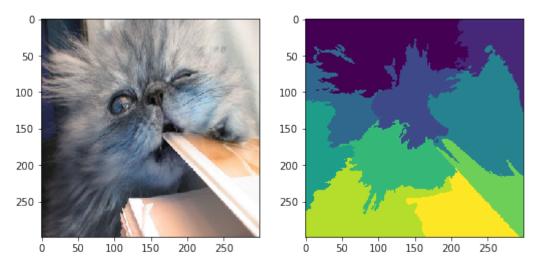
4.2. Usage 13

4.2.3 Images

Initialization

Besides the predict function, we also need to specify either a built in or custom superpixel segmentation function. The built in methods are felzenszwalb, slic and quickshift. It is important to create sensible superpixels in order to speed up convergence and generate interpretable explanations. Tuning the hyperparameters of the segmentation method is recommended.

Example of superpixels generated for the Persian cat picture using the *slic* method:



The following function would be an example of a custom segmentation function dividing the image into rectangles.

```
def superpixel(image, size=(4, 7)):
    segments = np.zeros([image.shape[0], image.shape[1]])
    row_idx, col_idx = np.where(segments == 0)
    for i, j in zip(row_idx, col_idx):
        segments[i, j] = int((image.shape[1]/size[1]) * (i//size[0]) + j//size[1])
    return segments
```

The images_background parameter allows the user to provide images used to superimpose on the masked superpixels, not present in the candidate anchor, instead of taking the average value of the masked superpixel. The superimposed images need to have the same shape as the explained instance.

Explanation

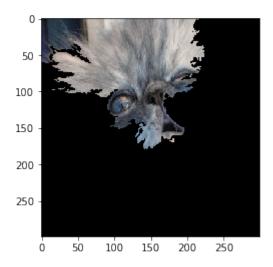
We can then explain the instance in the usual way:

```
explanation = explainer.explain(image, p_sample=.5)
```

p_sample determines the fraction of superpixels that are either changed to the average superpixel value or that are superimposed.

14 Chapter 4. Anchors

The explanation dictionary again contains information about the anchor's *precision*, *coverage* and examples where the anchor does or does not hold. On top of that, it also contains a masked image with only the anchor superpixels visible under the *anchor* key (see image below) as well as the image's superpixels under *segments*.



4.3 Examples

4.3.1 Image

Anchor explanations for ImageNet

Anchor explanations for fashion MNIST

4.3.2 Tabular Data

Anchor explanations on the Iris dataset

Anchor explanations for income prediction

4.3.3 Text

Anchor explanations for movie sentiment [source]

4.3. Examples 15

16 Chapter 4. Anchors

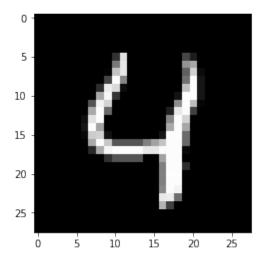
Contrastive Explanation Method

5.1 Overview

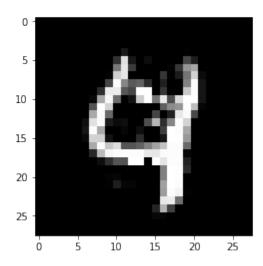
The Contrastive Explanation Method (CEM) is based on the paper Explanations based on the Missing: Towards Constrastive Explanations with Pertinent Negatives and extends the code open sourced by the authors. CEM generates instance based local black box explanations for classification models in terms of Pertinent Positives (PP) and Pertinent Negatives (PN). For a PP, the method finds the features that should be minimally and sufficiently present (e.g. important pixels in an image) to predict the same class as on the original instance. PN's on the other hand identify what features should be minimally and necessarily absent from the instance to be explained in order to maintain the original prediction class. The aim of PN's is not to provide a full set of characteristics that should be absent in the explained instance, but to provide a minimal set that differentiates it from the closest different class. Intuitively, the Pertinent Positives could be compared to Anchors while Pertinent Negatives are similar to Counterfactuals. As the authors of the paper state, CEM can generate clear explanations of the form: "An input x is classified in class y because features f_i, \ldots, f_k are present and because features f_m, \ldots, f_p are absent." The current implementation is most suitable for images and tabular data without categorical features.

In order to create interpretable PP's and PN's, feature-wise perturbation needs to be done in a meaningful way. To keep the perturbations sparse and close to the original instance, the objective function contains an elastic net ($\beta L_1 + L_2$) regularizer. Optionally, an auto-encoder can be trained to reconstruct instances of the training set. We can then introduce the L_2 reconstruction error of the perturbed instance as an additional loss term in our objective function. As a result, the perturbed instance lies close to the training data manifold.

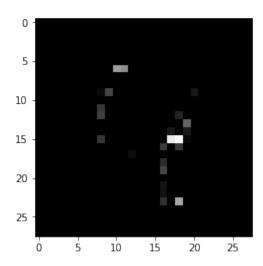
The ability to add or remove features to arrive at respectively PN's or PP's implies that there are feature values that contain no information with regards to the model's predictions. Consider for instance the MNIST image below where the pixels are scaled between 0 and 1. The pixels with values close to 1 define the number in the image while the background pixels have value 0. We assume that perturbations towards the background value 0 are equivalent to removing features, while perturbations towards 1 imply adding features.



It is intuitive to understand that adding features to get a PN means changing 0's into 1's until a different number is formed, in this case changing a 4 into a 9.



To find the PP, we do the opposite and change 1's from the original instance into 0's, the background value, and only keep a vague outline of the original 4.



It is however often not trivial to find these non-informative feature values and domain knowledge becomes very important.

For more details, we refer the reader to the original paper.

5.2 Usage

5.2.1 Initialization

Because the optimizer is defined in TensorFlow (TF), we need to run the CEM explainer within a TensorFlow session:

```
# initialize TensorFlow session before model definition
sess = tf.Session()
K.set_session(sess) # using a Keras model in the same session
sess.run(tf.global_variables_initializer())
```

We can then load our MNIST classifier and the (optional) auto-encoder. The example below uses Keras or TF models. This allows optimization of the objective function to run entirely with automatic differentiation because the TF graph has access to the underlying model architecture. For models built in different frameworks (e.g. scikit-learn), the gradients of part of the loss function with respect to the input features need to be evaluated numerically. We'll handle this case later.

```
# define models
cnn = load_model('mnist_cnn.h5')
ae = load_model('mnist_ae.h5')
```

We can now initialize the CEM explainer:

Besides passing the previously defined session as well as the predictive and auto-encoder models, we set a number of **hyperparameters** . . .

... general:

- mode: 'PN' or 'PP'.
- shape: shape of the instance to be explained, starting with batch dimension. Currently only single explanations are supported, so the batch dimension should be equal to 1.
- feature_range: global or feature-wise min and max values for the perturbed instance.
- ... related to the **optimizer**:
 - max_iterations: number of loss optimization steps for each value of c; the multiplier of the first loss term.
 - learning_rate_init: initial learning rate, follows polynomial decay.
 - clip: min and max gradient values.
- ... related to the **non-informative value**:

5.2. Usage 19

• no_info_val: as explained in the previous section, it is important to define which feature values are considered background and not crucial for the class predictions. For MNIST images scaled between 0 and 1 or -0.5 and 0.5 as in the notebooks, pixel perturbations in the direction of the (low) background pixel value can be seen as removing features, moving towards the non-informative value. As a result, the no_info_val parameter is set at a low value like -1. no_info_val can be defined globally or feature-wise. For most applications, domain knowledge becomes very important here. If a representative sample of the training set is available, we can always (naively) infer a no_info_val by taking the feature-wise median or mean:

```
cem.fit(x_train, no_info_type='median')
```

... related to the **objective function**:

- c_init and c_steps: the multiplier c of the first loss term is updated for c_steps iterations, starting at c_init. The first loss term encourages the perturbed instance to be predicted as a different class for a PN and the same class for a PP. If we find a candidate PN or PP for the current value of c, we reduce the value of c for the next optimization cycle to put more emphasis on the regularization terms and improve the solution. If we cannot find a solution, c is increased to put more weight on the prediction class restrictions of the PN and PP before focusing on the regularization.
- kappa: the first term in the loss function is defined by a difference between the predicted probabilities for the perturbed instance of the original class and the max of the other classes. $\kappa \geq 0$ defines a cap for this difference, limiting its impact on the overall loss to be optimized. Similar to the original paper, we set κ to 0. in the examples.
- beta: β is the L_1 loss term multiplier. A higher value for β means more weight on the sparsity restrictions of the perturbations. Similar to the paper, we set β to 0.1 for the MNIST and Iris datasets.
- gamma: multiplier for the optional L_2 reconstruction error. A higher value for γ means more emphasis on the reconstruction error penalty defined by the auto-encoder. Similar to the paper, we set γ to 100 when we have an auto-encoder available.

While the paper's default values for the loss term coefficients worked well for the simple examples provided in the notebooks, it is recommended to test their robustness for your own applications.

5.2.2 Explanation

We can finally explain the instance and close the TensorFlow session when we are done:

```
explanation = cem.explain(X)
sess.close()
K.clear_session()
```

The explain method returns a dictionary with the following *key: value* pairs:

- X: original instance
- X_pred: predicted class of original instance
- PN or PP: Pertinent Negative or Pertinant Positive
- PN_pred or PP_pred: predicted class of PN or PP
- grads_graph: gradient values computed from the TF graph with respect to the input features at the PN or PP
- grads_num: numerical gradient values with respect to the input features at the PN or PP

5.2.3 Numerical Gradients

So far, the whole optimization problem could be defined within the TF graph, making autodiff possible. It is however possible that we do not have access to the model architecture and weights, and are only provided with a predict function returning probabilities for each class. The CEM can be initialized in the TF session as follows:

In this case, we need to evaluate the gradients of the loss function with respect to the input features numerically:

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial x}$$

where L is the loss function, p the predict function and x the input features to optimize. There are now 2 additional hyperparameters to consider:

• eps: a tuple to define the perturbation size used to compute the numerical gradients. eps[0] and eps[1] are used respectively for ${}^{\delta L}/{}_{\delta p}$ and ${}^{\delta p}/{}_{\delta x}$. eps[0] and eps[1] can be a combination of float values or numpy arrays. For eps[0], the array dimension should be (1 x nb of prediction categories) and for eps[1] it should be (1 x nb of features). For the Iris dataset, eps could look as follows:

```
eps0 = np.array([[1e-2, 1e-2, 1e-2]]) # 3 prediction categories, equivalent to 1e-2 eps1 = np.array([[1e-2, 1e-2, 1e-2, 1e-2]]) # 4 features, also equivalent to 1e-2 eps = (eps0, eps1)
```

• update_num_grad: for complex models with a high number of parameters and a high dimensional feature space (e.g. Inception on ImageNet), evaluating numerical gradients can be expensive as they involve prediction calls for each perturbed instance. The update_num_grad parameter allows you to set a batch size on which to evaluate the numerical gradients, reducing the number of prediction calls required.

5.3 Examples

Contrastive Explanations Method (CEM) applied to MNIST
Contrastive Explanations Method (CEM) applied to Iris dataset
[source]

5.3. Examples 21

Counterfactual Instances

6.1 Overview

A counterfactual explanation of an outcome or a situation Y takes the form "If X had not occured, Y would not have occured" (Interpretable Machine Learning). In the context of a machine learning classifier X would be an instance of interest and Y would be the label predicted by the model. The task of finding a counterfactual explanation is then to find some X' that is in some way related to the original instance X but leading to a different prediction Y'. Reasoning in counterfactual terms is very natural for humans, e.g. asking what should have been done differently to achieve a different result. As a consequence counterfactual instances for machine learning predictions is a promising method for human-interpretable explanations.

The counterfactual method described here is the most basic way of defining the problem of finding such X'. Our algorithm loosely follows Wachter et al. (2017): Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR. For an extension to the basic method which provides ways of finding higher quality counterfactual instances X' in a quicker time, please refer to *Counterfactuals Guided by Prototypes*.

We can reason that the most basic requirements for a counterfactual X' are as follows:

- The predicted class of X' is different from the predicted class of X
- The difference between X and X' should be human-interpretable.

While the first condition is straight-forward, the second condition does not immediately lend itself to a condition as we need to first define "interpretability" in a mathematical sense. For this method we restrict ourselves to a particular definition by asserting that X' should be as close as possible to X without violating the first condition. There main issue with this definition of "interpretability" is that the difference between X' and X required to change the model prediction might be so small as to be un-interpretable to the human eye in which case we need a more sophisticated approach.

That being said, we can now cast the search for X' as a simple optimization problem with the following loss:

$$L = L_{\text{pred}} + \lambda L_{\text{dist}},$$

where the first lost term L_{pred} guides the search towards points X' which would change the model prediction and the second term λL_{dist} ensures that X' is close to X. This form of loss has a single hyperparameter λ weighing the contributions of the two competing terms.

The specific loss in our implementation is as follows:

$$L(X'|X) = (f_t(X') - p_t)^2 + \lambda L_1(X', X).$$

Here t is the desired target class for X' which can either be specified in advance or left up to the optimization algorithm to find, p_t is the target probability of this class (typically $p_t = 1$), f_t is the model prediction on class t and L_1 is the distance between the proposed counterfactual instance X' and the instance to be explained X. The use of the L_1 distance should ensure that the X' is a sparse counterfactual - minimizing the number of features to be changed in order to change the prediction.

The optimal value of the hyperparameter λ will vary from dataset to dataset and even within a dataset for each instance to be explained and the desired target class. As such it is difficult to set and we learn it as part of the optimization algorithm, i.e. we want to optimize

$$\min_{X'} \max_{\lambda} L(X'|X)$$

subject to

$$|f_t(X') - p_t| < \epsilon$$
 (counterfactual constraint),

where ϵ is a tolerance parameter. In practice this is done in two steps, on the first pass we sweep a broad range of λ , e.g. $\lambda \in (10^{-1}, \dots, 10^{-10})$ to find lower and upper bounds $\lambda_{lb}, \lambda_{ub}$ where counterfactuals exist. Then we use bisection to find the maximum $\lambda \in [\lambda_{lb}, \lambda_{ub}]$ such that the counterfactual constraint still holds. The result is a set of counterfactual instances X' with varying distance from the test instance X.

6.2 Usage

6.2.1 Initialization

The counterfactual (CF) explainer method works on fully black-box models, meaning they can work with arbitrary functions that take arrays and return arrays. However, if the user has access to a full TensorFlow (TF) or Keras model, this can be passed in as well to take advantage of the automatic differentiation in TF to speed up the search. This section describes the initialization for a TF/Keras model, for fully black-box models refer to *numerical gradients*.

Similar to other methods, we use TensorFlow (TF) internally to solve the optimization problem defined above, thus we need to run the counterfactual explainer within a TF session, for a Keras model once it has been loaded we can just get it:

```
model = load_model('my_model.h5')
sess = K.get_session()
```

Then we can initialize the counterfactual object:

Besides passing the session and the model, we set a number of hyperparameters ...

... general:

• shape: shape of the instance to be explained, starting with batch dimension. Currently only single explanations are supported, so the batch dimension should be equal to 1.

- feature_range: global or feature-wise min and max values for the perturbed instance.
- write_dir: write directory for Tensorboard logging of the loss terms. It can be helpful when tuning the hyperparameters for your use case. It makes it easy to verify that e.g. not 1 loss term dominates the optimization, that the number of iterations is OK etc. You can access Tensorboard by running tensorboard --logdir {write_dir} in the terminal.
- debug: flag to enable/disable writing to Tensorboard.

... related to the **optimizer**:

- max_iterations: number of loss optimization steps for each value of λ ; the multiplier of the distance loss term.
- learning_rate_init: initial learning rate, follows linear decay.
- decay: flag to disable learning rate decay if desired
- early_stop: early stopping criterion for the search. If no counterfactuals are found for this many steps or if this many counterfactuals are found in a row we change λ accordingly and continue the search.
- init: how to initialize the search, currently only "identity" is supported meaning the search starts from the original instance.

... related to the **objective function**:

- distance_fn: distance function between the test instance X and the proposed counterfactual X', currently only "11" is supported.
- target_proba: desired target probability for the returned counterfactual instance. Defaults to 1.0, but it could be useful to reduce it to allow a looser definition of a counterfactual instance.
- tol: the tolerance within the target_proba, this works in tandem with target_proba to specify a range of acceptable predicted probability values for the counterfactual.
- target_class: desired target class for the returned counterfactual instance. Can be either an integer denoting the specific class membership or the string other which will find a counterfactual instance whose predicted class is anything other than the class of the test instance.
- lam_init: initial value of the hyperparameter λ . This is set to a high value $\lambda = 1e^{-1}$ and annealed during the search to find good bounds for λ and for most applications should be fine to leave as default.
- max_lam_steps: the number of steps (outer loops) to search for with a different value of λ .

While the default values for the loss term coefficients worked well for the simple examples provided in the notebooks, it is recommended to test their robustness for your own applications.

6.2.2 Fit

The method is purely unsupervised so no fit method is necessary.

6.2.3 Explanation

We can now explain the instance X and close the TensorFlow session when we are done:

```
explanation = cf.explain(X)
sess.close()
K.clear_session()
```

The explain method returns a dictionary with the following key: value pairs:

6.2. Usage 25

- cf: dictionary containing the counterfactual instance found with the smallest distance to the test instance, it has the following keys:
 - X: the counterfactual instance
 - distance: distance to the original instance
 - lambda: value of λ corresponding to the counterfactual
 - index: the step in the search procedure when the counterfactual was found
 - class: predicted class of the counterfactual
 - proba: predicted class probabilities of the counterfactual
 - loss: counterfactual loss
- orig_class: predicted class of original instance
- orig_proba: predicted class probabilites of the original instance
- all: dictionary of all instances encountered during the search that satisfy the counterfactual constraint but have higher distance to the original instance than the returned counterfactual. This is organized by levels of λ , i.e. explanation['all'][0] will be a list of dictionaries corresponding to instances satisfying the counterfactual condition found in the first iteration over λ during bisection.

6.2.4 Numerical Gradients

So far, the whole optimization problem could be defined within the TF graph, making automatic differentiation possible. It is however possible that we do not have access to the model architecture and weights, and are only provided with a predict function returning probabilities for each class. The counterfactual can then be initialized in the TF session as follows:

In this case, we need to evaluate the gradients of the loss function with respect to the input features X numerically:

$$\frac{\partial L_{\text{pred}}}{\partial X} = \frac{\partial L_{\text{pred}}}{\partial p} \frac{\partial p}{\partial X}$$

where L_{pred} is the predict function loss term, p the predict function and x the input features to optimize. There is now an additional hyperparameter to consider:

• eps: a float or an array of floats to define the perturbation size used to compute the numerical gradients of ${}^{\delta p}/_{\delta X}$. If a single float, the same perturbation size is used for all features, if the array dimension is (1 x nb of features), then a separate perturbation value can be used for each feature. For the Iris dataset, eps could look as follows:

```
eps = np.array([[1e-2, 1e-2, 1e-2, 1e-2]]) # 4 features, also equivalent to eps=1e-2
```

6.3 Examples

Counterfactual instances on MNIST [source]

6.3. Examples 27

Counterfactuals Guided by Prototypes

7.1 Overview

According to Molnar's Interpretable Machine Learning book, a counterfactual explanation of a prediction describes the smallest change to the feature values that changes the prediction. One use case for counterfactuals would be loan approvals. Ann might be interested why her application for a loan was rejected, and what would need to change so the application is approved.

Counterfactuals are generated from the original instance by applying perturbations. The counterfactual then needs to satisfy certain constraints related to the model prediction or sparsity of the perturbed instance.

Some issues arise during the perturbation process:

- the training data manifold needs to be respected
- finding a satisfactory counterfactual can take time, especially for high dimensional data
- there is often a trade off between sparsity and interpretability of the counterfactual

We can address these issues by incorporating additional loss terms in the objective function that is optimized using gradient descent. A basic loss function for a counterfactual can look like this:

$$Loss = cL_{pred} + \beta L_1 + L_2$$

The first loss term, cL_{pred} , encourages the perturbed instance to predict another class than the original instance. The $\beta L_1 + L_2$ acts as a regularizer and introduces sparsity by penalizing the size of the difference between the counterfactual and the perturbed instance. While we can obtain sparse counterfactuals using this objective function, these are often not very interpretable because the training data manifold is not taken into account, and the perturbations are not necessarily meaningful.

The Contrastive Explanation Method (CEM) uses an auto-encoder which is trained to reconstruct instances of the training set. We can then add the L_2 reconstruction error of the perturbed instance as loss term to keep the counterfactual close to the training data manifold. The loss function becomes:

$$Loss = cL_{pred} + \beta L_1 + L_2 + \gamma L_{AE}$$

The L_{AE} does however not necessarily lead to interpretable solutions or speed up the counterfactual search. That's where the prototype loss term L_{proto} comes in. To define the prototype for each prediction class, we can use the

encoder part of the previously mentioned auto-encoder. We also need the training data or at least a representative sample. We use the model to make predictions on this data set. For each predicted class, we encode the instances belonging to that class. The class prototype is simply the average encoding for that class. When we want to generate a counterfactual, we first find the nearest prototype other than the one for the predicted class on the original instance. The L_{proto} loss term tries to minimize the L_2 distance between the counterfactual and the nearest prototype. As a result, the perturbations are guided to the closest prototype, speeding up the counterfactual search and making the perturbations more meaningful as they move towards a typical in-distribution instance. If we do not have a trained encoder available, we can build class representations using k-d trees for each class. The prototype is then the nearest instance from a k-d tree other than the tree which represents the predicted class on the original instance. The loss function now looks as follows:

$$Loss = cL_{pred} + \beta L_1 + L_2 + \gamma L_{AE} + \theta L_{proto}$$

The method allows us to select specific prototype classes to guide the counterfactual. For example, in MNIST the closest prototype to 9 is 4. However, we can specify that we want to move towards the 7 prototype and avoid 4.

In order to help interpretability, we can also add a trust score constraint on the proposed counterfactual. The trust score is defined as the ratio of the distance between the encoded counterfactual and the prototype of the class predicted on the original instance, and the distance between the encoded counterfactual and the prototype of the class predicted for the counterfactual instance. Intuitively, a high trust score implies that the counterfactual is far from the originally predicted class compared to the counterfactual class. For more info on trust scores, please check out the *documentation*.

Because of the L_{proto} term, we can actually remove the prediction loss term and still obtain an interpretable counterfactual. This is especially relevant for fully black box models. When we provide the counterfactual search method with a Keras or TensorFlow model, it is incorporated in the TensorFlow graph and evaluated using automatic differentiation. However, if we only have access to the model's predict function, the gradient updates are numerical and typically require a large number of prediction calls because of L_{pred} . These prediction calls can slow the search down significantly and become a bottleneck. We can represent the gradient of the loss term as follows:

$$\frac{\partial L_{pred}}{\partial x} = \frac{\partial L_{pred}}{\partial p} \frac{\partial p}{\partial x}$$

where p is the predict function and x the input features to optimize. For a 28 by 28 MNIST image, the δ^p/δ_x term alone would require a prediction call with batch size 28x28x2 = 1568. By using the prototypes to guide the search however, we can remove the prediction loss term and only make a single prediction at the end of each gradient update to check whether the predicted class on the proposed counterfactual is different from the original class.

The different use cases are highlighted in the example notebooks linked at the bottom of the page.

More details will be revealed in a forthcoming paper.

7.2 Usage

7.2.1 Initialization

The counterfactuals guided by prototypes method works on fully black-box models, meaning they can work with arbitrary functions that take arrays and return arrays. However, if the user has access to a full TensorFlow (TF) or Keras model, this can be passed in as well to take advantage of the automatic differentiation in TF to speed up the search. This section describes the initialization for a TF/Keras model. Please see the *numerical gradients* section for black box models.

We first load our MNIST classifier and the (optional) auto-encoder and encoder:

```
cnn = load_model('mnist_cnn.h5')
ae = load_model('mnist_ae.h5')
enc = load_model('mnist_enc.h5')
```

Because the optimizer is defined in TensorFlow, we need to run the explainer within a TensorFlow session. The example below uses the session set by the loaded Keras models:

```
sess = K.get_session()
```

We can now initialize the counterfactual:

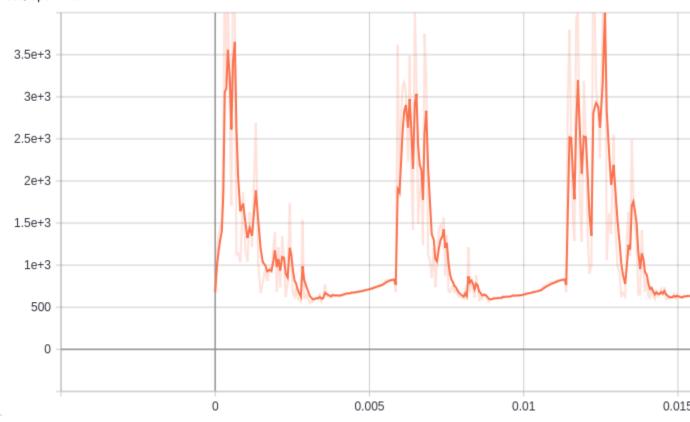
Besides passing the previously defined session as well as the predictive, and (optional) auto-encoder and models, we set a number of **hyperparameters**...

... general:

- shape: shape of the instance to be explained, starting with batch dimension. Currently only single explanations are supported, so the batch dimension should be equal to 1.
- feature_range: global or feature-wise min and max values for the perturbed instance.
- write_dir: write directory for Tensorboard logging of the loss terms. It can be helpful when tuning the hyperparameters for your use case. It makes it easy to verify that e.g. not 1 loss term dominates the optimization, that the number of iterations is OK etc. You can access Tensorboard by running tensorboard --logdir {write_dir} in the terminal. The figure below for example shows the loss to be optimized over different c iterations. It is clear that within each iteration, the number of max_iterations steps is too high and we can speed up the search.

7.2. Usage 31

Optimized tag: loss/Optimized



... related to the **optimizer**:

- $max_iterations$: number of loss optimization steps for each value of c; the multiplier of the first loss term.
- learning_rate_init: initial learning rate, follows polynomial decay.
- clip: min and max gradient values.

... related to the **objective function**:

- c_init and c_steps: the multiplier c of the first loss term is updated for c_steps iterations, starting at c_init. The first loss term encourages the perturbed instance to be predicted as a different class than the original instance. If we find a candidate counterfactual for the current value of c, we reduce the value of c for the next optimization cycle to put more emphasis on the other loss terms and improve the solution. If we cannot find a solution, c is increased to put more weight on the prediction class restrictions of the counterfactual.
- kappa: the first term in the loss function is defined by a difference between the predicted probabilities for the perturbed instance of the original class and the max of the other classes. $\kappa \geq 0$ defines a cap for this difference, limiting its impact on the overall loss to be optimized. Similar to CEM, we set κ to 0 in the examples.
- beta: β is the L_1 loss term multiplier. A higher value for β means more weight on the sparsity restrictions of the perturbations. β equal to 0.1 works well for the example datasets.
- gamma: multiplier for the optional L_2 reconstruction error. A higher value for γ means more emphasis on the reconstruction error penalty defined by the auto-encoder. A value of 100 is reasonable for the examples.
- theta: multiplier for the L_{proto} loss term. A higher θ means more emphasis on the gradients guiding the counterfactual towards the nearest class prototype. A value of 100 worked well for the examples.

While the default values for the loss term coefficients worked well for the simple examples provided in the notebooks, it is recommended to test their robustness for your own applications.

7.2.2 Fit

If we use an encoder to find the class prototypes, we need an additional fit step on the training data:

```
cf.fit(x_train)
```

7.2.3 Explanation

We can now explain the instance and close the TensorFlow session when we are done:

- X: original instance
- Y: one-hot-encoding of class label for X, inferred from the prediction on X if None.
- target_class: classes considered for the nearest class prototype. Either a list with class indices or None.
- threshold: threshold level for the ratio between the distance of the counterfactual to the prototype of the predicted class for the original instance over the distance to the prototype of the predicted class for the counterfactual. If the trust score is below the threshold, the proposed counterfactual does not meet the requirements and is rejected.
- verbose: if *True*, print progress of counterfactual search every print_every steps.
- log every: if write dir for Tensorboard is specified, then log losses every log every steps.

The explain method returns a dictionary with the following key: value pairs:

- cf: a dictionary with the overall best counterfactual found. explanation['cf'] has the following key: value pairs:
 - X: the counterfactual instance
 - class: predicted class for the counterfactual
 - proba: predicted class probabilities for the counterfactual
 - grads_graph: gradient values computed from the TF graph with respect to the input features at the counterfactual
 - grads_num: numerical gradient values with respect to the input features at the counterfactual
- orig_class: predicted class for original instance
- orig_proba: predicted class probabilities for original instance
- *all*: a dictionary with the iterations as keys and for each iteration a list with counterfactuals found in that iteration as values. So for instance, during the first iteration, *explanation['all'][0]*, initially we typically find fairly noisy counterfactuals that improve over the course of the iteration. The counterfactuals for the subsequent iterations then need to be *better* (sparser) than the previous best counterfactual. So over the next few iterations, we probably find less but *better* solutions.

7.2. Usage 33

7.2.4 Numerical Gradients

So far, the whole optimization problem could be defined within the TF graph, making automatic differentiation possible. It is however possible that we do not have access to the model architecture and weights, and are only provided with a predict function returning probabilities for each class. The counterfactual can then be initialized in the TF session as follows:

In this case, we need to evaluate the gradients of the loss function with respect to the input features numerically:

$$\frac{\partial L_{pred}}{\partial x} = \frac{\partial L_{pred}}{\partial p} \frac{\partial p}{\partial x}$$

where L_{pred} is the predict function loss term, p the predict function and x the input features to optimize. There are now 2 additional hyperparameters to consider:

• eps: a tuple to define the perturbation size used to compute the numerical gradients. eps[0] and eps[1] are used respectively for $\delta^{L_{pred}}/\delta_p$ and δ^{p}/δ_x . eps[0] and eps[1] can be a combination of float values or numpy arrays. For eps[0], the array dimension should be (1 x nb of prediction categories) and for eps[1] it should be (1 x nb of features). For the Iris dataset, eps could look as follows:

```
eps0 = np.array([[1e-2, 1e-2, 1e-2]]) # 3 prediction categories, equivalent to 1e-2
eps1 = np.array([[1e-2, 1e-2, 1e-2, 1e-2]]) # 4 features, also equivalent to 1e-2
eps = (eps0, eps1)
```

• update_num_grad: for complex models with a high number of parameters and a high dimensional feature space (e.g. Inception on ImageNet), evaluating numerical gradients can be expensive as they involve prediction calls for each perturbed instance. The update_num_grad parameter allows you to set a batch size on which to evaluate the numerical gradients, reducing the number of prediction calls required.

We can also remove the prediction loss term by setting c_init to 0 and only run 1 c_steps , and still obtain an interpretable counterfactual. This dramatically speeds up the counterfactual search (e.g. by 100x in the MNIST example notebook):

7.2.5 k-d trees

So far, we assumed that we have a trained encoder available to find the nearest class prototype. This is however not a hard requirement. As mentioned in the *Overview* section, we can use k-d trees to build class representations, find

prototypes by querying the trees for each class and return the closest class instance as the nearest prototype. We can run the counterfactual as follows:

• trustscore_kwargs: keyword arguments for the trust score object used to define the k-d trees for each class. Please check the trust scores *documentation* for more info.

7.3 Examples

Counterfactuals guided by prototypes on MNIST

Counterfactuals guided by prototypes on Boston housing dataset

[source]

7.3. Examples 35

Trust Scores

8.1 Overview

It is important to know when a machine learning classifier's predictions can be trusted. Relying on the classifier's (uncalibrated) prediction probabilities is not optimal and can be improved upon. Enter *trust scores*. Trust scores measure the agreement between the classifier and a modified nearest neighbor classifier on the predicted instances. The trust score is the ratio between the distance of the instance to the nearest class different from the predicted class and the distance to the predicted class. A score of 1 would mean that the distance to the predicted class is the same as to the nearest other class. Higher scores correspond to more trustworthy predictions. The original paper on which the algorithm is based is called To Trust Or Not To Trust A Classifier. Our implementation borrows heavily from and extends the authors' open source code.

The method requires labeled training data to build k-d trees for each prediction class. When the classifier makes predictions on a test instance, we measure the distance of the instance to each of the trees. The trust score is then calculated by taking the ratio of the smallest distance to any other class than the predicted class and the distance to the predicted class. The distance is measured to the kth nearest neighbor in each tree or by using the average distance from the first to the kth neighbor.

In order to filter out the impact of outliers in the training data, they can optionally be removed using 2 filtering techniques. The first technique builds a k-d tree for each class and removes a fraction α of the training instances with the largest k nearest neighbor (kNN) distance to the other instances in the class. The second fits a kNN-classifier to the training set, and removes a fraction α of the training instances with the highest prediction class disagreement. Be aware that the first method operates on the prediction class level while the second method runs on the whole training set. It is also important to keep in mind that kNN methods might not be suitable when there are significant scale differences between the input features.

Trust scores can for instance be used as a warning flag for machine learning predictions. If the score drops below a certain value and there is disagreement between the model probabilities and the trust score, the prediction can be explained using techniques like anchors or contrastive explanations.

Trust scores work best for low to medium dimensional feature spaces. When working with high dimensional observations like images, dimensionality reduction methods (e.g. auto-encoders or PCA) could be applied as a pre-processing step before computing the scores. This is demonstrated by the following example *notebook*.

8.2 Usage

8.2.1 Initialization and fit

At initialization, the optional filtering method used to remove outliers during the fit stage needs to be specified as well:

All the **hyperparameters** are optional:

- alpha: target fraction of instances to filter out.
- filter_type: filter method; one of *None* (no filtering), *distance_knn* (first technique discussed in *Overview*) or *probability_knn* (second technique).
- k_filter: number of neighbors used for the distance or probability based filtering method.
- leaf_size: affects the speed and memory usage to build the k-d trees. The memory scales with the ratio between the number of samples and the leaf size.
- metric: distance metric used for the k-d trees. Euclidean by default.
- dist_filter_type: *point* uses the distance to the *k*-nearest point while *mean* uses the average distance from the 1st to the *k*th nearest point during filtering.

In this example, we use the *distance_knn* method to filter out 5% of the instances of each class with the largest distance to its 10th nearest neighbor in that class:

```
ts.fit(X_train, y_train, classes=3)
```

• classes: equals the number of prediction classes.

 X_{train} is the training set and y_{train} represents the training labels, either using one-hot encoding (OHE) or simple class labels.

8.2.2 Scores

The trust scores are simply calculated through the score method. score also returns the class labels of the closest not predicted class as a numpy array:

y_pred can again be represented using both OHE or via class labels.

- k: kth nearest neighbor used to compute distance to for each class.
- dist_type: similar to the filtering step, we can compute the distance to each class either to the k-th nearest point (point) or by using the average distance from the 1st to the kth nearest point (mean).

8.3 Examples

Trust Scores applied to Iris

Trust Scores applied to MNIST

8.3. Examples 39

CHAPTER 9

Anchor explanations for income prediction

In this example, we will explain predictions of a Random Forest classifier whether a person will make more or less than \$50k based on characteristics like age, marital status, gender or occupation. The features are a mixture of ordinal and categorical data and will be pre-processed accordingly.

```
[1]: import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from alibi.explainers import AnchorTabular
from alibi.datasets import adult
```

9.1 Load adult dataset

Define shuffled training and test set

```
[3]: np.random.seed(0)
  data_perm = np.random.permutation(np.c_[data, labels])
  data = data_perm[:,:-1]
  labels = data_perm[:,-1]
```

```
[4]: idx = 30000
X_train,Y_train = data[:idx,:], labels[:idx]
X_test, Y_test = data[idx+1:,:], labels[idx+1:]
```

9.2 Create feature transformation pipeline

Create feature pre-processor. Needs to have 'fit' and 'transform' methods. Different types of pre-processing can be applied to all or part of the features. In the example below we will standardize ordinal features and apply one-hot-encoding to categorical features.

Ordinal features:

Categorical features:

Combine and fit:

9.3 Train Random Forest model

Fit on pre-processed (imputing, OHE, standardizing) data.

(continues on next page)

```
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=50, n_jobs=None,
oob_score=False, random_state=None, verbose=0,
warm_start=False)
```

Define predict function

```
[9]: predict_fn = lambda x: clf.predict(preprocessor.transform(x))
    print('Train accuracy: ', accuracy_score(Y_train, predict_fn(X_train)))
    print('Test accuracy: ', accuracy_score(Y_test, predict_fn(X_test)))

Train accuracy: 0.9655333333333334
Test accuracy: 0.85390625
```

9.4 Initialize and fit anchor explainer for tabular data

```
[10]: explainer = AnchorTabular(predict_fn, feature_names, categorical_names=category_map)
```

Discretize the ordinal features into quartiles

```
[11]: explainer.fit(X_train, disc_perc=[25, 50, 75])
```

9.5 Getting an anchor

Below, we get an anchor for the prediction of the first observation in the test set. An anchor is a sufficient condition - that is, when the anchor holds, the prediction should be the same as the prediction for this instance.

We set the precision threshold to 0.95. This means that predictions on observations where the anchor holds will be the same as the prediction on the explained instance at least 95% of the time.

```
[13]: explanation = explainer.explain(X_test[idx], threshold=0.95)
    print('Anchor: %s' % (' AND '.join(explanation['names'])))
    print('Precision: %.2f' % explanation['precision'])
    print('Coverage: %.2f' % explanation['coverage'])

Anchor: Marital Status = Separated AND Sex = Female
    Precision: 0.96
    Coverage: 0.11
```

CHAPTER 10

Anchor explanations on the Iris dataset

```
[1]: import numpy as np
  from sklearn.datasets import load_iris
  from sklearn.ensemble import RandomForestClassifier
  from alibi.explainers import AnchorTabular
```

10.1 Load iris dataset

```
[2]: dataset = load_iris()
  feature_names = dataset.feature_names
  class_names = list(dataset.target_names)
```

Define training and test set

```
[3]: idx = 145
X_train,Y_train = dataset.data[:idx,:], dataset.target[:idx]
X_test, Y_test = dataset.data[idx+1:,:], dataset.target[idx+1:]
```

10.2 Train Random Forest model

(continues on next page)

```
oob_score=False, random_state=None, verbose=0,
warm_start=False)
```

Define predict function

```
[5]: predict_fn = lambda x: clf.predict_proba(x)
```

10.3 Initialize and fit anchor explainer for tabular data

```
[6]: explainer = AnchorTabular(predict_fn, feature_names)
```

Discretize the ordinal features into quartiles

```
[7]: explainer.fit(X_train, disc_perc=[25, 50, 75])
```

10.4 Getting an anchor

Below, we get an anchor for the prediction of the first observation in the test set. An anchor is a sufficient condition - that is, when the anchor holds, the prediction should be the same as the prediction for this instance.

We set the precision threshold to 0.95. This means that predictions on observations where the anchor holds will be the same as the prediction on the explained instance at least 95% of the time.

```
[9]: explanation = explainer.explain(X_test[idx], threshold=0.95)
print('Anchor: %s' % (' AND '.join(explanation['names'])))
print('Precision: %.2f' % explanation['precision'])
print('Coverage: %.2f' % explanation['coverage'])

Anchor: petal width (cm) > 1.80 AND sepal width (cm) <= 2.80
Precision: 0.99
Coverage: 0.07</pre>
```

CHAPTER 11

Anchor explanations for movie sentiment

In this example, we will explain why a certain sentence is classified by a logistic regression as having negative or positive sentiment. The logistic regression is trained on negative and positive movie reviews.

```
[1]: import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
import spacy
from alibi.explainers import AnchorText
from alibi.datasets import movie_sentiment
from alibi.utils.download import spacy_model
```

11.1 Load movie review dataset

```
[2]: data, labels = movie_sentiment()
```

Define shuffled training, validation and test set

11.2 Apply CountVectorizer to training set

11.3 Fit model

11.4 Define prediction function

```
[6]: predict_fn = lambda x: clf.predict(vectorizer.transform(x))
```

11.5 Make predictions on train and test sets

```
[7]: preds_train = predict_fn(train)
    preds_val = predict_fn(val)
    preds_test = predict_fn(test)
    print('Train accuracy', accuracy_score(train_labels, preds_train))
    print('Validation accuracy', accuracy_score(val_labels, preds_val))
    print('Test accuracy', accuracy_score(test_labels, preds_test))

Train accuracy 0.9801624284382905
    Validation accuracy 0.7544910179640718
Test accuracy 0.7589841878294202
```

11.6 Load spaCy model

English multi-task CNN trained on OntoNotes, with GloVe vectors trained on Common Crawl. Assigns word vectors, context-specific token vectors, POS tags, dependency parse and named entities.

```
[8]: model = 'en_core_web_md'
spacy_model(model=model)
nlp = spacy.load(model)
```

11.7 Initialize anchor text explainer

```
[9]: explainer = AnchorText(nlp, predict_fn)
```

11.8 Explain a prediction

```
[10]: class_names = ['negative', 'positive']
```

Prediction:

```
[11]: text = 'This is a good book .'
    pred = class_names[predict_fn([text])[0]]
    alternative = class_names[1 - predict_fn([text])[0]]
    print('Prediction: %s' % pred)

Prediction: positive
```

Explanation:

```
[12]: np.random.seed(0)
    explanation = explainer.explain(text, threshold=0.95, use_proba=False, use_unk=True)
```

use_unk=True means we will perturb examples by replacing words with UNKs. Let us now take a look at the anchor. The word 'good' basically guarantees a positive prediction. This is because the UNKs do not take instances like 'not good' into account.

```
[13]: print('Anchor: %s' % (' AND '.join(explanation['names'])))
     print('Precision: %.2f' % explanation['precision'])
     print('\nexamples where anchor applies and model predicts %s:' % pred)
     print('\n'.join([x[0] for x in explanation['raw']['examples'][-1]['covered_true']]))
     print('\nExamples where anchor applies and model predicts %s:' % alternative)
     print('\n'.join([x[0] for x in explanation['raw']['examples'][-1]['covered_false']]))
     Anchor: good
     Precision: 1.00
     Examples where anchor applies and model predicts positive:
     UNK UNK UNK good book UNK
     UNK is a good book .
     UNK is a good book UNK
     UNK is UNK good book .
     UNK UNK UNK good book .
     UNK is a good book .
     UNK is UNK good UNK UNK
     UNK UNK UNK good UNK .
     This UNK a good UNK UNK
     This is a good UNK .
     Examples where anchor applies and model predicts negative:
```

11.9 Changing the perturbation distribution

Let's try this with another perturbation distribution, namely one that replaces words by similar words instead of UNKs.

Explanation:

```
[14]: np.random.seed(0)
    explanation = explainer.explain(text, threshold=0.95, use_proba=True, use_unk=False)
```

The anchor now shows that we need more to guarantee the positive prediction:

```
[15]: print('Anchor: %s' % (' AND '.join(explanation['names'])))
     print('Precision: %.2f' % explanation['precision'])
     print('\nExamples where anchor applies and model predicts %s:' % pred)
     print('\n'.join([x[0] for x in explanation['raw']['examples'][-1]['covered_true']]))
     print('\nExamples where anchor applies and model predicts %s:' % alternative)
     print('\n'.join([x[0] for x in explanation['raw']['examples'][-1]['covered_false']]))
     Anchor: good AND book
     Precision: 0.95
     Examples where anchor applies and model predicts positive:
     Another includes both good book .
     Any explains that good book .
     SOME refers another good book .
     This makes an good book .
     SOME encapsulates every good book .
     That consists this good book .
     THE carries this good book .
     Both is another good book .
     Every sits another good book .
     BOTH leads the good book .
     Examples where anchor applies and model predicts negative:
     SOME falls another good book .
     THE feels another good book .
     This starts some good book .
     THis starts another good book .
     All requires a good book .
     Some goes a good book .
     This happens some good book .
     Some starts a good book .
     Both feels some good book .
     Both feels another good book .
```

CHAPTER 12

Anchor explanations for ImageNet

12.1 Load InceptionV3 model pre-trained on ImageNet

```
[2]: model = InceptionV3(weights='imagenet')
```

12.2 Download and preprocess some images from ImageNet

The *imagenet* function takes as arguments one of the following ImageNet categories: 'Persian cat', 'volcano', 'strawberry', 'jellyfish' or 'centipede' as well as the number of images to return and the target size of the image.

```
[3]: category = 'Persian cat'
  image_shape = (299, 299, 3)
  data, labels = imagenet(category, nb_images=10, target_size=image_shape[:2], seed=2)
  print('Images shape: {}'.format(data.shape))

Images shape: (10, 299, 299, 3)
```

Apply image preprocessing, make predictions and map predictions back to categories. The output label is a tuple which consists of the class name, description and the prediction probability.

12.3 Define prediction function

```
[5]: predict_fn = lambda x: model.predict(x)
```

12.4 Initialize anchor image explainer

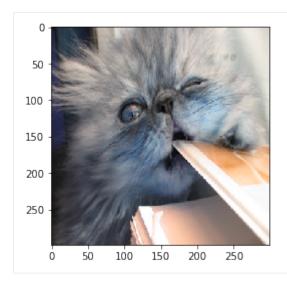
The segmentation function will be used to generate superpixels. It is important to have meaningful superpixels in order to generate a useful explanation. Please check scikit-image's segmentation methods (*felzenszwalb*, *slic* and *quickshift* built in the explainer) for more information.

In the example, the pixels not in the proposed anchor will take the average value of their superpixel. Another option is to superimpose the pixel values from other images which can be passed as a numpy array to the *images_background* argument.

12.5 Explain a prediction

The explanation of the below image returns a mask with the superpixels that constitute the anchor.

```
[7]: i = 0
plt.imshow(data[i])
[7]: <matplotlib.image.AxesImage at 0x7f77214b0dd8>
```



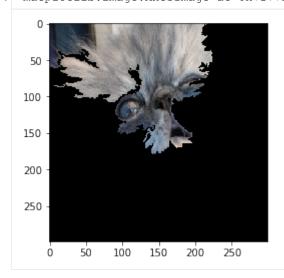
The *threshold*, *p_sample* and *tau* parameters are also key to generate a sensible explanation and ensure fast enough convergence. The *threshold* defines the minimum fraction of samples for a candidate anchor that need to lead to the same prediction as the original instance. While a higher threshold gives more confidence in the anchor, it also leads to longer computation time. *p_sample* determines the fraction of superpixels that are changed to either the average value of the superpixel or the pixel value for the superimposed image. The pixels in the proposed anchors are of course unchanged. The parameter *tau* determines when we assume convergence. A bigger value for *tau* means faster convergence but also looser anchor restrictions.

```
[8]: image = images[i]
np.random.seed(0)
explanation = explainer.explain(image, threshold=.95, p_sample=.5, tau=0.25)
```

Superpixels in the anchor:

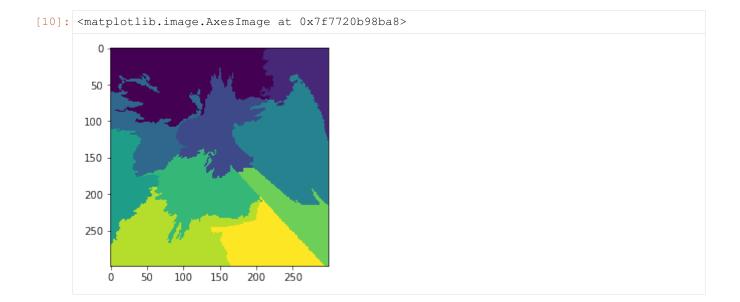
```
[9]: plt.imshow(explanation['anchor'])
```

[9]: <matplotlib.image.AxesImage at 0x7f7720ae6f98>



A visualization of all the superpixels:

```
[10]: plt.imshow(explanation['segments'])
```



CHAPTER 13

Anchor explanations for fashion MNIST

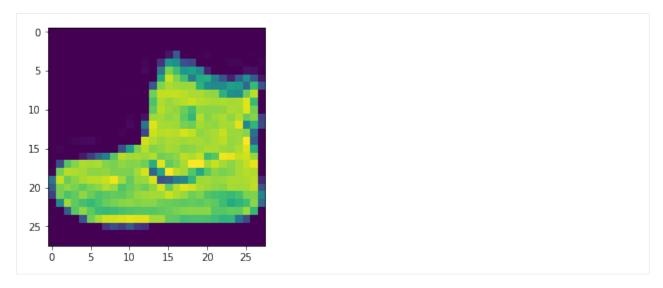
```
import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import keras
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Input
from keras.models import Model
from keras.utils import to_categorical
from alibi.explainers import AnchorImage
Using TensorFlow backend.
```

13.1 Load and prepare fashion MNIST data

```
[2]: (x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
    print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape)
    x_train shape: (60000, 28, 28) y_train shape: (60000,)

[3]: idx = 0
    plt.imshow(x_train[idx])

[3]: <matplotlib.image.AxesImage at 0x7fc93802a320>
```



Scale, reshape and categorize data

```
[4]: x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train, x_train.shape + (1,))
x_test = np.reshape(x_test, x_test.shape + (1,))
print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)

x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1)
y_train shape: (60000, 10) y_test shape: (10000, 10)
```

13.2 Define CNN model

```
[5]: def model():
        x_{in} = Input(shape=(28, 28, 1))
        x = Conv2D(filters=64, kernel_size=2, padding='same', activation='relu')(x_in)
        x = MaxPooling2D(pool_size=2)(x)
        x = Dropout(0.3)(x)
        x = Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')(x)
        x = MaxPooling2D (pool_size=2) (x)
        x = Dropout(0.3)(x)
        x = Flatten()(x)
        x = Dense(256, activation='relu')(x)
        x = Dropout(0.5)(x)
        x_out = Dense(10, activation='softmax')(x)
        cnn = Model(inputs=x_in, outputs=x_out)
        cnn.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy
     ' ] )
        return cnn
```

```
[6]: cnn = model()
    cnn.summary()
    Layer (type)
                               Output Shape
                                                       Param #
    ______
    input_1 (InputLayer)
                               (None, 28, 28, 1)
                                                       0
    conv2d_1 (Conv2D)
                               (None, 28, 28, 64)
                                                       320
    max_pooling2d_1 (MaxPooling2 (None, 14, 14, 64)
    dropout_1 (Dropout)
                               (None, 14, 14, 64)
                               (None, 14, 14, 32)
    conv2d_2 (Conv2D)
                                                       8224
    max_pooling2d_2 (MaxPooling2 (None, 7, 7, 32)
    dropout_2 (Dropout)
                               (None, 7, 7, 32)
    flatten_1 (Flatten)
                               (None, 1568)
    dense_1 (Dense)
                               (None, 256)
                                                       401664
    dropout_3 (Dropout)
                               (None, 256)
    dense_2 (Dense)
                                                       2570
                               (None, 10)
    Total params: 412,778
    Trainable params: 412,778
    Non-trainable params: 0
```

13.3 Train model

13.3. Train model 57

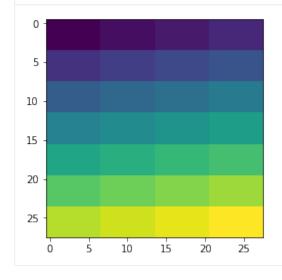
13.4 Define superpixels

Function to generate rectangular superpixels for a given image. Alternatively, use one of the built in methods. It is important to have meaningful superpixels in order to generate a useful explanation. Please check scikit-image's segmentation methods (*felzenszwalb*, *slic* and *quickshift* built in the explainer) for more information on the built in methods.

```
[9]: def superpixel(image, size=(4, 7)):
    segments = np.zeros([image.shape[0], image.shape[1]])
    row_idx, col_idx = np.where(segments == 0)
    for i, j in zip(row_idx, col_idx):
        segments[i, j] = int((image.shape[1]/size[1]) * (i//size[0]) + j//size[1])
    return segments
```

```
[10]: segments = superpixel(x_train[idx])
    plt.imshow(segments)
```

[10]: <matplotlib.image.AxesImage at 0x7fc9247d5ac8>



13.5 Define prediction function

```
[11]: predict_fn = lambda x: cnn.predict(x)
```

13.6 Initialize anchor image explainer

13.7 Explain a prediction

The explanation returns a mask with the superpixels that constitute the anchor.

Image to be explained:

Generate explanation:

```
[14]: explanation = explainer.explain(image, threshold=.95, p_sample=.8)
```

Show anchor:

From the example, it looks like the heel alone is sufficient to predict a shoe.

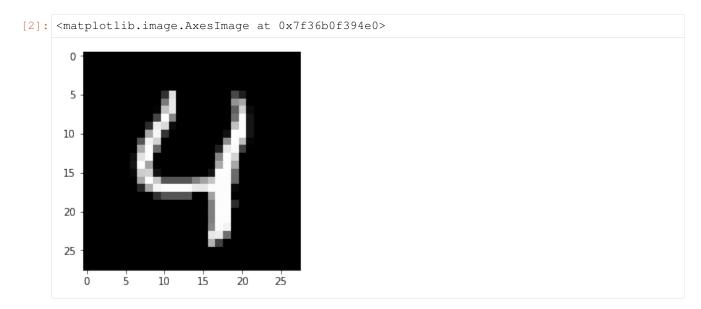
Contrastive Explanations Method (CEM) applied to MNIST

The Contrastive Explanation Method (CEM) can generate black box model explanations in terms of pertinent positives (PP) and pertinent negatives (PN). For PP, it finds what should be minimally and sufficiently present (e.g. important pixels in an image) to justify its classification. PN on the other hand identify what should be minimally and necessarily absent from the explained instance in order to maintain the original prediction.

The original paper where the algorithm is based on can be found on arXiv.

14.1 Load and prepare MNIST data

```
[2]: (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape)
plt.gray()
plt.imshow(x_test[4])
x_train shape: (60000, 28, 28) y_train shape: (60000,)
```



Prepare data: scale, reshape and categorize

```
[3]: x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train, x_train.shape + (1,))
x_test = np.reshape(x_test, x_test.shape + (1,))
print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)
x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1)
y_train shape: (60000, 10) y_test shape: (10000, 10)
```

14.2 Define and train CNN model

```
[5]: def cnn_model():
    x_in = Input(shape=(28, 28, 1))
    x = Conv2D(filters=64, kernel_size=2, padding='same', activation='relu')(x_in)
    x = MaxPooling2D(pool_size=2)(x)
    x = Dropout(0.3)(x)

x = Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')(x)
    x = MaxPooling2D(pool_size=2)(x)
    x = Dropout(0.3)(x)

x = Flatten()(x)
    x = Dense(256, activation='relu')(x)
    x = Dropout(0.5)(x)
```

(continues on next page)

```
[6]: cnn = cnn_model()
  cnn.summary()
  cnn.fit(x_train, y_train, batch_size=64, epochs=5, verbose=0)
  cnn.save('mnist_cnn.h5')
```

Layer (type)	Output	Shape	Param #
input_1 (InputLayer)	(None,	28, 28, 1)	0
conv2d_1 (Conv2D)	(None,	28, 28, 64)	320
max_pooling2d_1 (MaxPooling2	(None,	14, 14, 64)	0
dropout_1 (Dropout)	(None,	14, 14, 64)	0
conv2d_2 (Conv2D)	(None,	14, 14, 32)	8224
max_pooling2d_2 (MaxPooling2	(None,	7, 7, 32)	0
dropout_2 (Dropout)	(None,	7, 7, 32)	0
flatten_1 (Flatten)	(None,	1568)	0
dense_1 (Dense)	(None,	256)	401664
dropout_3 (Dropout)	(None,	256)	0
dense_2 (Dense)	(None,	10)	2570
Total params: 412,778 Trainable params: 412,778 Non-trainable params: 0			

Evaluate the model on test set

```
[7]: score = cnn.evaluate(x_test, y_test, verbose=0)
print('Test accuracy: ', score[1])
Test accuracy: 0.9892
```

14.3 Define and train auto-encoder

```
[8]: def ae_model():
    x_in = Input(shape=(28, 28, 1))
    (continues on next page)
```

```
x = Conv2D(16, (3, 3), activation='relu', padding='same') (x_in)
x = Conv2D(16, (3, 3), activation='relu', padding='same') (x)
x = MaxPooling2D((2, 2), padding='same') (x)
encoded = Conv2D(1, (3, 3), activation=None, padding='same') (x)

x = Conv2D(16, (3, 3), activation='relu', padding='same') (encoded)
x = UpSampling2D((2, 2)) (x)
x = Conv2D(16, (3, 3), activation='relu', padding='same') (x)
decoded = Conv2D(1, (3, 3), activation=None, padding='same') (x)

autoencoder = Model(x_in, decoded)
autoencoder.compile(optimizer='adam', loss='mse')

return autoencoder
```

```
[9]: ae = ae_model()
ae.summary()
ae.fit(x_train, x_train, batch_size=128, epochs=10, validation_data=(x_test, x_test),
    verbose=0)
ae.save('mnist_ae.h5')
```

Layer (type)	Output	Sha	pe		Param #
input_2 (InputLayer)	(None,	28,	28,	1)	0
conv2d_3 (Conv2D)	(None,	28,	28,	16)	160
conv2d_4 (Conv2D)	(None,	28,	28,	16)	2320
max_pooling2d_3 (MaxPooling2	(None,	14,	14,	16)	0
conv2d_5 (Conv2D)	(None,	14,	14,	1)	145
conv2d_6 (Conv2D)	(None,	14,	14,	16)	160
up_sampling2d_1 (UpSampling2	(None,	28,	28,	16)	0
conv2d_7 (Conv2D)	(None,	28,	28,	16)	2320
conv2d_8 (Conv2D)	(None,	28,	28,	1)	145
Total params: 5,250 Trainable params: 5,250 Non-trainable params: 0					

Compare original with decoded images

Chapter 14. Contrastive Explanations Method (CEM) applied to MNIST

```
ax.get_yaxis().set_visible(False)
# display reconstruction
ax = plt.subplot(2, n, i + n)
plt.imshow(decoded_imgs[i].reshape(28, 28))
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
```

14.4 Generate contrastive explanation with pertinent negative

Explained instance:

```
[11]: idx = 4
X = x_test[idx].reshape((1,) + x_test[idx].shape)
```

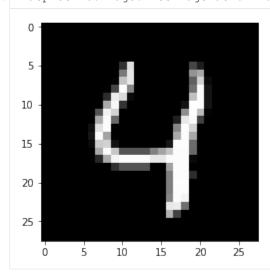
CEM parameters:

```
[12]: mode = 'PN' # 'PN' (pertinent negative) or 'PP' (pertinent positive)
     shape = (1,) + x_train.shape[1:] # instance shape
     kappa = 0. # minimum difference needed between the prediction probability for the
      →perturbed instance on the
                 # class predicted by the original instance and the max probability on the
      →other classes
                # in order for the first loss term to be minimized
     beta = .1 # weight of the L1 loss term
     gamma = 100  # weight of the optional auto-encoder loss term
     c_init = 1. # initial weight c of the loss term encouraging to predict a different_
      \hookrightarrow class (PN) or
                   # the same class (PP) for the perturbed instance compared to the
      →original instance to be explained
     c_steps = 10 # nb of updates for c
     max_iterations = 1000 # nb of iterations per value of c
     feature_range = (x_train.min(), x_train.max()) # feature range for the perturbed_
      →instance
     clip = (-1000.,1000.) # gradient clipping
     lr = 1e-2 # initial learning rate
     no_info_val = -1. # a value, float or feature-wise, which can be seen as containing_
      →no info to make a prediction
                       # perturbations towards this value means removing features, and_
      →away means adding features
                       # for our MNIST images, the background (-0.5) is the least.
      ⇒informative.
                        # so positive/negative perturbations imply adding/removing features
```

Generate pertinent negative:

Original instance and prediction:

```
[14]: print('Original instance prediction: {}'.format(explanation['X_pred']))
    plt.imshow(explanation['X'].reshape(28, 28))
    Original instance prediction: 4
[14]: <matplotlib.image.AxesImage at 0x7f36453d0828>
```

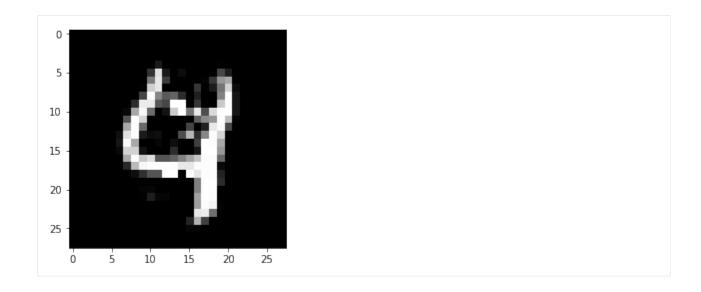


Pertinent negative:

```
[15]: print('Pertinent negative prediction: {}'.format(explanation[mode + '_pred']))
    plt.imshow(explanation[mode].reshape(28, 28))

Pertinent negative prediction: 9

[15]: <matplotlib.image.AxesImage at 0x7f36453b5400>
```



14.5 Generate pertinent positive

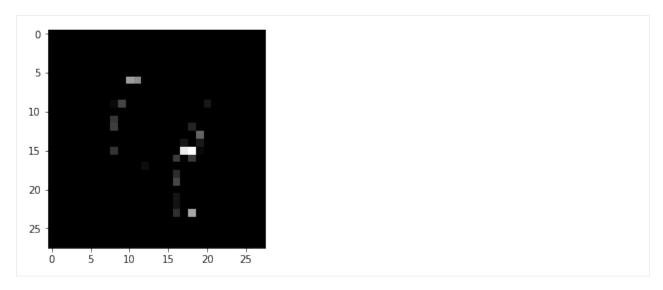
```
[16]: mode = 'PP'
[17]: # initialize TensorFlow session before model definition
     sess = tf.Session()
     K.set_session(sess)
     sess.run(tf.global_variables_initializer())
     # define models
     cnn = load_model('mnist_cnn.h5')
     ae = load_model('mnist_ae.h5')
     # initialize CEM explainer and explain instance
     cem = CEM(sess, cnn, mode, shape, kappa=kappa, beta=beta, feature_range=feature_range,
               gamma=gamma, ae_model=ae, max_iterations=max_iterations,
               c_init=c_init, c_steps=c_steps, learning_rate_init=lr, clip=clip, no_info_
      →val=no_info_val)
     explanation = cem.explain(X, verbose=False)
     sess.close()
     K.clear_session()
```

Pertinent positive:

```
[18]: print('Pertinent positive prediction: {}'.format(explanation[mode + '_pred']))
    plt.imshow(explanation[mode].reshape(28, 28))

Pertinent positive prediction: 4

[18]: <matplotlib.image.AxesImage at 0x7f363fa95588>
```



Clean up:

```
[19]: os.remove('mnist_cnn.h5')
    os.remove('mnist_ae.h5')
```

CHAPTER 15

Contrastive Explanations Method (CEM) applied to Iris dataset

The Contrastive Explanation Method (CEM) can generate black box model explanations in terms of pertinent positives (PP) and pertinent negatives (PN). For PP, it finds what should be minimally and sufficiently present (e.g. important pixels in an image) to justify its classification. PN on the other hand identify what should be minimally and necessarily absent from the explained instance in order to maintain the original prediction.

The original paper where the algorithm is based on can be found on arXiv.

```
[1]: import keras
    from keras import backend as K
    from keras.layers import Dense, Input
    from keras.models import Model, load_model
    from keras.utils import to_categorical
    import matplotlib
    %matplotlib inline
    import matplotlib.pyplot as plt
    import numpy as np
    import os
    import pandas as pd
    import seaborn as sns
    from sklearn.datasets import load_iris
    import tensorflow as tf
    from alibi.explainers import CEM
    Using TensorFlow backend.
```

15.1 Load and prepare Iris dataset

```
[2]: dataset = load_iris()
feature_names = dataset.feature_names
class_names = list(dataset.target_names)
```

Scale data

y_test = to_categorical(y_test)

```
[3]: dataset.data = (dataset.data - dataset.data.mean(axis=0)) / dataset.data.std(axis=0)

Define training and test set

[4]: idx = 145
    x_train,y_train = dataset.data[:idx,:], dataset.target[:idx]
    x_test, y_test = dataset.data[idx+1:,:], dataset.target[idx+1:]
    y_train = to_categorical(y_train)
```

15.2 Define and train logistic regression model

```
[5]: def lr_model():
       x_{in} = Input(shape=(4,))
       x_out = Dense(3, activation='softmax')(x_in)
       lr = Model(inputs=x_in, outputs=x_out)
       lr.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
       return lr
[6]: lr = lr_model()
    lr.summary()
    lr.fit(x_train, y_train, batch_size=128, epochs=500, verbose=0)
    lr.save('iris_lr.h5')
    Layer (type)
                             Output Shape
                                                    Param #
    ______
    input_1 (InputLayer)
                             (None, 4)
    dense_1 (Dense)
                             (None, 3)
                                                    1.5
    Total params: 15
    Trainable params: 15
    Non-trainable params: 0
```

15.3 Generate contrastive explanation with pertinent negative

Explained instance:

CEM parameters:

```
[8]: mode = 'PN' # 'PN' (pertinent negative) or 'PP' (pertinent positive)
    shape = (1,) + x_train.shape[1:] # instance shape
    kappa = .2 # minimum difference needed between the prediction probability for the
     →perturbed instance on the
                # class predicted by the original instance and the max probability on the...
     →other classes
               # in order for the first loss term to be minimized
    beta = .1 # weight of the L1 loss term
    c_init = 10. # initial weight c of the loss term encouraging to predict a different,
     \hookrightarrow class (PN) or
                  # the same class (PP) for the perturbed instance compared to the
    →original instance to be explained
    c_steps = 10  # nb of updates for c
    max_iterations = 1000 # nb of iterations per value of c
    feature_range = (x_train.min(axis=0).reshape(shape)-.1, # feature range for the_
    →perturbed instance
                     x_train.max(axis=0).reshape(shape)+.1) # can be either a float or_
    →array of shape (1xfeatures)
    clip = (-1000.,1000.) # gradient clipping
    lr_init = 1e-2 # initial learning rate
```

Generate pertinent negative:

```
[9]: # init session before model definition
    sess = tf.Session()
    K.set session(sess)
    sess.run(tf.global_variables_initializer())
    # define model
    lr = load_model('iris_lr.h5')
    # initialize CEM explainer and explain instance
    cem = CEM(sess, lr, mode, shape, kappa=kappa, beta=beta, feature_range=feature_range,
              max_iterations=max_iterations, c_init=c_init, c_steps=c_steps,
              learning_rate_init=lr_init, clip=clip)
    cem.fit(x_train, no_info_type='median') # we need to define what feature values.
     ⇔contain the least
                                              # info wrt predictions
                                              # here we will naively assume that the
    → feature-wise median
                                              # contains no info; domain knowledge helps!
    explanation = cem.explain(X, verbose=False)
    sess.close()
    K.clear_session()
```

```
[10]: print('Original instance: {}'.format(explanation['X']))
    print('Predicted class: {}'.format(class_names[explanation['X_pred']]))

Original instance: [[ 0.55333328 -1.28296331  0.70592084  0.92230284]]
    Predicted class: versicolor
```

```
[11]: print('Pertinent negative: {}'.format(explanation[mode]))
    print('Predicted class: {}'.format(class_names[explanation[mode + '_pred']]))

Pertinent negative: [[ 0.5533333 -1.2829633    1.0322616    1.0454441]]
    Predicted class: virginica
```

Store explanation to plot later on:

```
[12]: expl = {}
  expl['PN'] = explanation[mode]
  expl['PN_pred'] = explanation[mode + '_pred']
```

15.4 Generate pertinent positive

```
[13]: mode = 'PP'
```

Generate pertinent positive:

```
[15]: print('Pertinent positive: {}'.format(explanation[mode]))
print('Predicted class: {}'.format(class_names[explanation[mode + '_pred']]))

Pertinent positive: [[-7.44469730e-09 -3.47054341e-08 2.67991149e-08 -4.

$\times 21282409e-09]]
Predicted class: versicolor
```

```
[16]: expl['PP'] = explanation[mode]
  expl['PP_pred'] = explanation[mode + '_pred']
```

15.5 Visualize PN and PP

Let's visualize the generated explanations to check if the perturbed instances make sense.

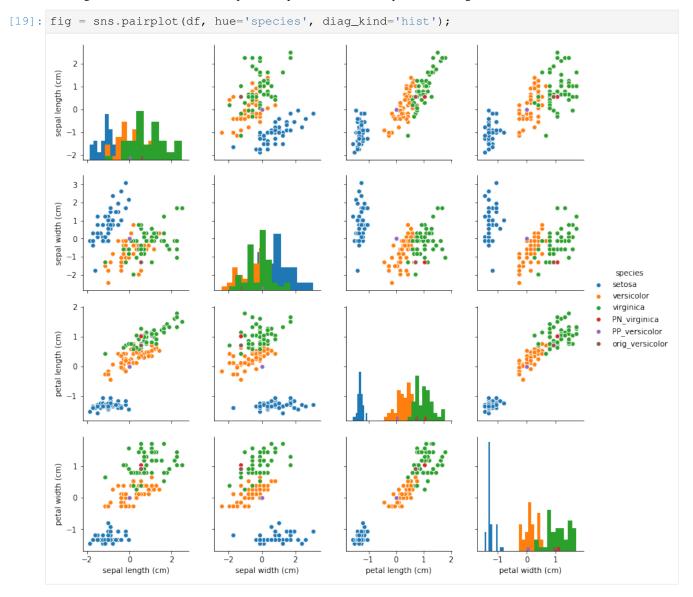
Create dataframe from standardized data:

```
[17]: df = pd.DataFrame(dataset.data, columns=dataset.feature_names)
    df['species'] = np.array([dataset.target_names[i] for i in dataset.target])
```

Highlight explained instance and add pertinent negative and positive to the dataset:

```
orig_inst = pd.DataFrame(explanation['X'], columns=dataset.feature_names)
orig_inst['species'] = 'orig_' + class_names[explanation['X_pred']]
df = df.append([pn, pp, orig_inst], ignore_index=True)
```

Pair plots between the features show that the pertinent negative is pushed from the original instance (versicolor) into the virginica distribution while the pertinent positive moved away from the virginica distribution.



15.6 Use numerical gradients in CEM

If we do not have access to the Keras or TensorFlow model weights, we can use numerical gradients for the first term in the loss function that needs to be minimized (eq. 1 and 4 in the paper).

CEM parameters:

```
[20]: mode = 'PN'
```

If numerical gradients are used to compute:

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial p} * \frac{\partial p}{\partial x}$$

with L = loss function; p = predict function and x the parameter to optimize, then the tuple *eps* can be used to define the perturbation used to compute the derivatives. eps[0] is used to calculate the first partial derivative term and eps[1] is used for the second term. eps[0] and eps[1] can be a combination of float values or numpy arrays. For eps[0], the array dimension should be $(1 \times nb \text{ of prediction categories})$ and for eps[1] it should be $(1 \times nb \text{ of features})$.

```
[21]: eps0 = np.array([[1e-2, 1e-2, 1e-2]]) # 3 prediction categories, equivalent to 1e-2 eps1 = np.array([[1e-2, 1e-2, 1e-2, 1e-2]]) # 4 features, also equivalent to 1e-2 eps = (eps0, eps1)
```

For complex models with a high number of parameters and a high dimensional feature space (e.g. Inception on ImageNet), evaluating numerical gradients can be expensive as they involve multiple prediction calls for each perturbed instance. The *update_num_grad* parameter allows you to set a batch size on which to evaluate the numerical gradients, drastically reducing the number of prediction calls required.

```
[22]: update_num_grad = 1
```

Generate pertinent negative:

```
[23]: # init session before model definition
     sess = tf.Session()
     K.set_session(sess)
     sess.run(tf.global_variables_initializer())
     # define model
     lr = load_model('iris_lr.h5')
     predict_fn = lambda x: lr.predict(x) # only pass the predict fn which takes numpy,
      →arrays to CEM
                                            # explainer can no longer minimize wrt model_
      →weights
     # initialize CEM explainer and explain instance
     cem = CEM(sess, predict_fn, mode, shape, kappa=kappa, beta=beta,
               feature_range=feature_range, max_iterations=max_iterations,
               eps=eps, c_init=c_init, c_steps=c_steps, learning_rate_init=lr_init,
               clip=clip, update_num_grad=update_num_grad)
     cem.fit(x_train, no_info_type='median')
     explanation = cem.explain(X, verbose=False)
     sess.close()
     K.clear_session()
```

```
[24]: print('Original instance: {}'.format(explanation['X']))
    print('Predicted class: {}'.format(class_names[explanation['X_pred']]))

Original instance: [[ 0.55333328 -1.28296331  0.70592084  0.92230284]]
    Predicted class: versicolor
```

```
[25]: print('Pertinent negative: {}'.format(explanation[mode]))
    print('Predicted class: {}'.format(class_names[explanation[mode + '_pred']]))

Pertinent negative: [[ 0.5533333 -1.2829633   1.0467366   1.0182681]]
    Predicted class: virginica
```

Clean up:

[26]: os.remove('iris_lr.h5')

Counterfactual instances on MNIST

Given a test instance X, this method can generate counterfactual instances X' given a desired counterfactual class t which can either be a class specified upfront or any other class that is different from the predicted class of X.

The loss function for finding counterfactuals is the following:

$$L(X'|X) = (f_t(X') - p_t)^2 + \lambda L_1(X', X).$$

The first loss term, guides the search towards instances X' for which the predicted class probability $f_t(X')$ is close to a pre-specified target class probability p_t (typically $p_t = 1$). The second loss term ensures that the counterfactuals are close in the feature space to the original test instance.

In this notebook we illustrate the usage of the basic counterfactual algorithm on the MNIST dataset.

```
[1]: import keras
    from keras import backend as K
    from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Input
    from keras.models import Model, load_model
    from keras.utils import to_categorical
    import matplotlib
    %matplotlib inline
    import matplotlib.pyplot as plt
    import numpy as np
    import os
    import tensorflow as tf
    from time import time
    from alibi.explainers import CounterFactual
Using TensorFlow backend.
```

16.1 Load and prepare MNIST data

```
[2]: (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
    print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape)
    plt.gray()
    plt.imshow(x_test[1]);
    x_train shape: (60000, 28, 28) y_train shape: (60000,)
      0
      5
     10
     15
      20
      25
              5
                   10
                         15
                               20
                                     25
```

Prepare data: scale, reshape and categorize

```
[3]: x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train, x_train.shape + (1,))
x_test = np.reshape(x_test, x_test.shape + (1,))
print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)

x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1)
y_train shape: (60000, 10) y_test shape: (10000, 10)
```

16.2 Define and train CNN model

```
[5]: def cnn_model():
    x_in = Input(shape=(28, 28, 1))
    x = Conv2D(filters=64, kernel_size=2, padding='same', activation='relu')(x_in)
    x = MaxPooling2D(pool_size=2)(x)
    x = Dropout(0.3)(x)

x = Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')(x)
    x = MaxPooling2D(pool_size=2)(x)
```

```
x = Flatten()(x)
        x = Dense(256, activation='relu')(x)
        x = Dropout(0.5)(x)
        x_out = Dense(10, activation='softmax')(x)
        cnn = Model(inputs=x_in, outputs=x_out)
        cnn.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy
     ' ] )
        return cnn
[6]: cnn = cnn_model()
    cnn.summary()
    cnn.fit(x_train, y_train, batch_size=64, epochs=3, verbose=1)
    cnn.save('mnist_cnn.h5')
    WARNING:tensorflow:From /home/janis/.conda/envs/py36dev/lib/python3.6/site-packages/
    →tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.
    →python.framework.ops) is deprecated and will be removed in a future version.
    Instructions for updating:
    Colocations handled automatically by placer.
    WARNING:tensorflow:From /home/janis/.conda/envs/py36dev/lib/python3.6/site-packages/
    →keras/backend/tensorflow_backend.py:3445: calling dropout (from tensorflow.python.
    →ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 -_
    →keep_prob`.
    Layer (type)
                                Output Shape
                                                         Param #
    ______
    input_1 (InputLayer)
                                (None, 28, 28, 1)
                                                         0
    conv2d_1 (Conv2D)
                                (None, 28, 28, 64)
                                                         320
    max_pooling2d_1 (MaxPooling2 (None, 14, 14, 64)
    dropout_1 (Dropout)
                                (None, 14, 14, 64)
                                                         0
```

 max_pooling2d_2 (MaxPooling2 (None, 7, 7, 32)
 0

 dropout_2 (Dropout)
 (None, 7, 7, 32)
 0

 flatten_1 (Flatten)
 (None, 1568)
 0

 dense_1 (Dense)
 (None, 256)
 401664

(None, 14, 14, 32)

8224

dropout_3 (Dropout) (None, 256) 0

dense_2 (Dense) (None, 10) 2570

Total params: 412,778
Trainable params: 412,778
Non-trainable params: 0

conv2d_2 (Conv2D)

x = Dropout(0.3)(x)

(continues on next page)

Evaluate the model on test set

```
[7]: score = cnn.evaluate(x_test, y_test, verbose=0)
print('Test accuracy: ', score[1])

Test accuracy: 0.987
```

16.3 Generate counterfactuals

Original instance:

```
[8]: X = x_test[0].reshape((1,) + x_test[0].shape)
plt.imshow(X.reshape(28, 28));

0 -
5 -
10 -
15 -
20 -
25 -
0 5 10 15 20 25
```

Counterfactual parameters:

```
[9]: shape = (1,) + x_train.shape[1:]
  target_proba = 1.0
  tol = 0.01 # want counterfactuals with p(class)>0.99
  target_class = 'other' # any class other than 7 will do
  max_iter = 1000
  (continues on next page)
```

```
lam_init = 1e-1
max_lam_steps = 10
learning_rate_init = 0.1
feature_range = (x_train.min(), x_train.max())
```

Run counterfactual:

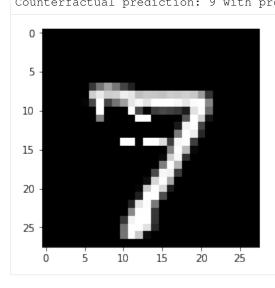
```
[10]: # set random seed
     np.random.seed(1)
     tf.set_random_seed(1)
     sess = K.get_session()
      # initialize explainer
     cf = CounterFactual(sess, cnn, shape=shape, target_proba=target_proba, tol=tol,
                          target_class=target_class, max_iter=max_iter, lam_init=lam_init,
                          max_lam_steps=max_lam_steps, learning_rate_init=learning_rate_
      ⇒init,
                          feature_range=feature_range)
     start_time = time()
     explanation = cf.explain(X)
     print('Explanation took {:.3f} sec'.format(time() - start_time))
     WARNING:tensorflow:From /home/janis/.conda/envs/py36dev/lib/python3.6/site-packages/
      →tensorflow/python/training/learning_rate_decay_v2.py:321: div (from tensorflow.
      →python.ops.math_ops) is deprecated and will be removed in a future version.
     Instructions for updating:
     Deprecated in favor of operator or tf.math.divide.
     Explanation took 6.444 sec
```

Results:

```
[11]: pred_class = explanation['cf']['class']
    proba = explanation['cf']['proba'][0][pred_class]

    print(f'Counterfactual prediction: {pred_class} with probability {proba}')
    plt.imshow(explanation['cf']['X'].reshape(28, 28));

Counterfactual prediction: 9 with probability 0.9900996088981628
```



The counterfactual starting from a 7 moves towards the closest class as determined by the model and the data: a 9. The evolution of the counterfactual during the iterations over λ can be seen below (note that all of the following examples satisfy the counterfactual condition):

```
[12]: n_cfs = np.array([len(explanation['all'][iter_cf]) for iter_cf in range(max_lam_
      ⇒steps)])
      examples = {}
      for ix, n in enumerate(n_cfs):
          if n>0:
              examples[ix] = {'ix': ix, 'lambda': explanation['all'][ix][0]['lambda'],
                              'X': explanation['all'][ix][0]['X']}
      columns = len(examples) + 1
      rows = 1
      fig = plt.figure(figsize=(16,6))
      for i, key in enumerate(examples.keys()):
          ax = plt.subplot(rows, columns, i+1)
          ax.get_xaxis().set_visible(False)
          ax.get_yaxis().set_visible(False)
          plt.imshow(examples[key]['X'].reshape(28,28))
          plt.title(f'Iteration: {key}')
       Iteration: 1
                 Iteration: 2
                            Iteration: 3
                                      Iteration: 4
                                                 Iteration: 5
                                                           Iteration: 6
                                                                      Iteration: 7
                                                                                Iteration: 8
```

Typically, the first few iterations find counterfactuals that are out of distribution, while the later iterations make the counterfactual more sparse and interpretable.

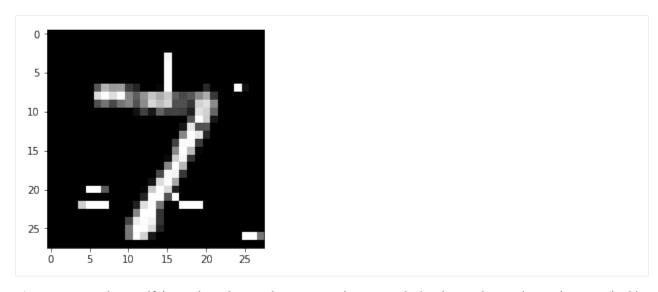
Let's now try to steer the counterfactual to a specific class:

Results:

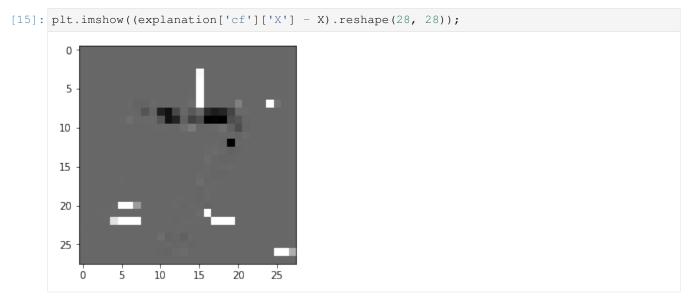
```
[14]: pred_class = explanation['cf']['class']
    proba = explanation['cf']['proba'][0][pred_class]

print(f'Counterfactual prediction: {pred_class} with probability {proba}')
    plt.imshow(explanation['cf']['X'].reshape(28, 28));

Counterfactual prediction: 1 with probability 0.9983848333358765
```



As you can see, by specifying a class, the search process can't go towards the closest class to the test instance (in this case a 9 as we saw previously), so the resulting counterfactual might be less interpretable. We can gain more insight by looking at the difference between the counterfactual and the original instance:



This shows that the counterfactual is stripping out the top part of the 7 to make to result in a prediction of 1 - not very surprising as the dataset has a lot of examples of diagonally slanted 1's.

Clean up:

```
[16]: os.remove('mnist_cnn.h5')
```

Counterfactuals guided by prototypes on MNIST

This method can generate counterfactual instances guided by class prototypes. It means that for a certain instance X, the method builds a prototype for each prediction class using either an auto-encoder or k-d trees. The nearest prototype class other than the originally predicted class is then used to guide the counterfactual search. For example, in MNIST the closest class to a 7 would be a 9. As a result, the prototype loss term will try to minimize the distance between the proposed counterfactual and the prototype of a 9. This speeds up the search towards a satisfactory counterfactual by steering it towards an interpretable solution from the start of the optimization. It also helps to avoid out-of-distribution counterfactuals with the perturbations driven to a prototype of another class.

The loss function to be optimized is the following:

$$Loss = cL_{pred} + \beta L_1 + L_2 + \gamma L_{AE} + \theta L_{proto}$$

The first loss term relates to the model's prediction function, the following 2 terms define the elastic net regularization while the last 2 terms are optional. The aim of γL_{AE} is to penalize out-of-distribution counterfactuals while θL_{proto} guides the counterfactual to a prototype. When we only have acces to the model's predict function and cannot fully enjoy the benefits of automatic differentiation, the prototypes allow us to drop the predict function loss term and still generate reasonable counterfactuals. This drastically reduces the number of predict calls made during the numerical gradient update step and again speeds up the search.

Other options include generating counterfactuals for specific classes or including trust score constraints to ensure that the counterfactual is close enough to the newly predicted class compared to the original class.

The different use cases highlighted above are illustrated throughout this notebook.

(continues on next page)

```
import tensorflow as tf
from time import time
from alibi.explainers import CounterFactualProto

Using TensorFlow backend.
```

17.1 Load and prepare MNIST data

Prepare data: scale, reshape and categorize

10

15

20

25

5

```
[3]: x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train, x_train.shape + (1,))
x_test = np.reshape(x_test, x_test.shape + (1,))
print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)
x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1)
y_train shape: (60000, 10) y_test shape: (10000, 10)
```

17.2 Define and train CNN model

```
[5]: def cnn_model():
        x_{in} = Input(shape=(28, 28, 1))
        x = Conv2D(filters=64, kernel_size=2, padding='same', activation='relu')(x_in)
        x = MaxPooling2D(pool_size=2)(x)
        x = Dropout(0.3)(x)
        x = Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')(x)
        x = MaxPooling2D (pool\_size=2) (x)
        x = Dropout(0.3)(x)
        x = Flatten()(x)
        x = Dense(256, activation='relu')(x)
        x = Dropout(0.5)(x)
        x_out = Dense(10, activation='softmax')(x)
        cnn = Model(inputs=x_in, outputs=x_out)
        cnn.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy
     return cnn
```

```
[6]: cnn = cnn_model()
    cnn.summary()
    cnn.fit(x_train, y_train, batch_size=64, epochs=3, verbose=1)
    cnn.save('mnist_cnn.h5')
    Layer (type)
                               Output Shape
                                                       Param #
    ______
    input_1 (InputLayer)
                               (None, 28, 28, 1)
    conv2d_1 (Conv2D)
                               (None, 28, 28, 64)
                                                       320
    max_pooling2d_1 (MaxPooling2 (None, 14, 14, 64)
                                                       0
                               (None, 14, 14, 64)
    dropout_1 (Dropout)
    conv2d_2 (Conv2D)
                               (None, 14, 14, 32)
                                                       8224
    max_pooling2d_2 (MaxPooling2 (None, 7, 7, 32)
    dropout_2 (Dropout)
                               (None, 7, 7, 32)
                                                       0
    flatten_1 (Flatten)
                               (None, 1568)
    dense_1 (Dense)
                               (None, 256)
                                                       401664
    dropout_3 (Dropout)
                               (None, 256)
    dense_2 (Dense)
                                                       2570
                               (None, 10)
    Total params: 412,778
    Trainable params: 412,778
    Non-trainable params: 0
```

Evaluate the model on test set

[8]: **def** ae_model():

encoder

```
[7]: score = cnn.evaluate(x_test, y_test, verbose=0)
print('Test accuracy: ', score[1])

Test accuracy: 0.9862
```

17.3 Define and train auto-encoder

 $x_{in} = Input(shape=(28, 28, 1))$

```
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x_in)
       x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
       x = MaxPooling2D((2, 2), padding='same')(x)
       encoded = Conv2D(1, (3, 3), activation=None, padding='same')(x)
       encoder = Model(x_in, encoded)
        # decoder
       dec_in = Input(shape=(14, 14, 1))
       x = Conv2D(16, (3, 3), activation='relu', padding='same')(dec_in)
       x = UpSampling2D((2, 2))(x)
       x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
       decoded = Conv2D(1, (3, 3), activation=None, padding='same')(x)
       decoder = Model(dec_in, decoded)
        # autoencoder = encoder + decoder
       x_out = decoder(encoder(x_in))
       autoencoder = Model(x_in, x_out)
       autoencoder.compile(optimizer='adam', loss='mse')
       return autoencoder, encoder, decoder
[9]: ae, enc, dec = ae\_model()
    ae.summary()
    ae.fit(x_train, x_train, batch_size=128, epochs=4, validation_data=(x_test, x_test),_
    →verbose=1)
    ae.save('mnist_ae.h5')
    enc.save('mnist_enc.h5')
    Layer (type)
                              Output Shape
                                                       Param #
    ______
                               (None, 28, 28, 1)
    input_1 (InputLayer)
    model_1 (Model)
                               (None, 14, 14, 1)
                                                       2625
    model_2 (Model)
                              (None, 28, 28, 1)
    ______
    Total params: 5,250
    Trainable params: 5,250
    Non-trainable params: 0
    /home/avl/anaconda3/envs/alibi/lib/python3.6/site-packages/keras/engine/saving.
    →py:292: UserWarning: No training configuration found in save file: the model was_
    →*not* compiled. Compile it manually.
                                                                        (continues on next page)
```

```
warnings.warn('No training configuration found in save file: '
```

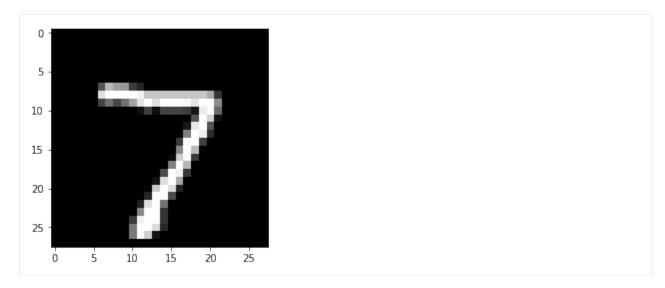
Compare original with decoded images

```
[10]: decoded_imgs = ae.predict(x_test)
    n = 5
    plt.figure(figsize=(20, 4))
    for i in range(1, n+1):
        # display original
        ax = plt.subplot(2, n, i)
        plt.imshow(x_test[i].reshape(28, 28))
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)
        # display reconstruction
        ax = plt.subplot(2, n, i + n)
        plt.imshow(decoded_imgs[i].reshape(28, 28))
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)
        plt.show()
```

17.4 Generate counterfactual guided by the nearest class prototype

Original instance:

```
[11]: X = x_test[0].reshape((1,) + x_test[0].shape)
    plt.imshow(X.reshape(28, 28))
[11]: <matplotlib.image.AxesImage at 0x7fd04d57c6d8>
```



Counterfactual parameters:

```
[12]: shape = (1,) + x_train.shape[1:]
    gamma = 100.
    theta = 100.
    c_init = 1.
    c_steps = 2
    max_iterations = 500
    feature_range = (x_train.min(), x_train.max())
```

Run counterfactual:

```
[13]: # set random seed
     np.random.seed(1)
     tf.set_random_seed(1)
     # define models
     cnn = load_model('mnist_cnn.h5')
     ae = load_model('mnist_ae.h5')
     enc = load_model('mnist_enc.h5')
     sess = K.get_session()
     # initialize explainer, fit and generate counterfactual
     cf = CounterFactualProto(sess, cnn, shape, gamma=gamma, theta=theta,
                               ae_model=ae, enc_model=enc, max_iterations=max_iterations,
                               feature_range=feature_range, c_init=c_init, c_steps=c_steps)
     start_time = time()
     cf.fit(x_train) # find class prototypes
     print('Time to find prototypes each class: {:.3f} sec'.format(time() - start_time))
     start_time = time()
     explanation = cf.explain(X)
     print('Explanation took \{:.3f\} sec'.format(time() - start_time))
     sess.close()
     K.clear_session()
     Time to find prototypes each class: 16.354 sec
     Explanation took 4.252 sec
```

Results:

```
[14]: print('Counterfactual prediction: {}'.format(explanation['cf']['class']))
     print('Closest prototype class: {}'.format(cf.id_proto))
     plt.imshow(explanation['cf']['X'].reshape(28, 28))
     Counterfactual prediction: 9
     Closest prototype class: 9
[14]: <matplotlib.image.AxesImage at 0x7fd04bfb67b8>
        0
        5
      10
      15
       20
       25
               5
                                20
                                     25
                          15
```

The counterfactual starting from a 7 moves towards its closest prototype class: a 9. The evolution of the counterfactual during the first iteration can be seen below:

```
[15]: iter_of = 0
    print('iteration c {}'.format(iter_cf))
    n = len(explanation['all'][iter_cf])
    plt.figure(figsize=(20, 4))
    for i in range(n):
        ax = plt.subplot(1, n+1, i+1)
        plt.imshow(explanation['all'][iter_cf][i].reshape(28, 28))
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)
    plt.show()

iteration c 0
```

Typically, the first few iterations already steer the 7 towards a 9, while the later iterations make the counterfactual more sparse.

17.5 Remove the auto-encoder loss term

In the previous example, we used both an auto-encoder loss term to penalize a counterfactual which falls outside of the training data distribution as well as an encoder loss term to guide the counterfactual to the nearest prototype class. In the next example we get rid of the auto-encoder loss term to speed up the counterfactual search and still get decent results:

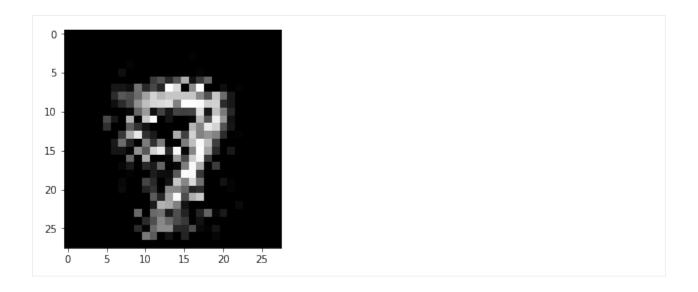
```
[16]: theta = 500.
[17]: # set random seed
     np.random.seed(1)
     tf.set_random_seed(1)
      # define models
     cnn = load_model('mnist_cnn.h5')
     enc = load_model('mnist_enc.h5')
     sess = K.get_session()
      # initialize explainer, fit and generate counterfactual
     cf = CounterFactualProto(sess, cnn, shape, theta=theta,
                              enc_model=enc, max_iterations=max_iterations,
                               feature_range=feature_range, c_init=c_init, c_steps=c_steps)
     cf.fit(x_train)
     start_time = time()
     explanation = cf.explain(X)
     print('Explanation took {:.3f} sec'.format(time() - start_time))
     sess.close()
     K.clear_session()
     Explanation took 2.877 sec
```

Results:

```
[18]: print('Counterfactual prediction: {}'.format(explanation['cf']['class']))
    print('Closest prototype class: {}'.format(cf.id_proto))
    plt.imshow(explanation['cf']['X'].reshape(28, 28))

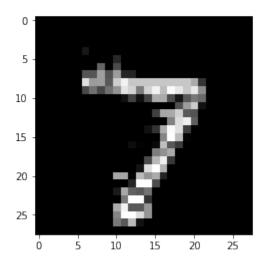
Counterfactual prediction: 9
    Closest prototype class: 9

[18]: <matplotlib.image.AxesImage at 0x7fd04a3d3fd0>
```



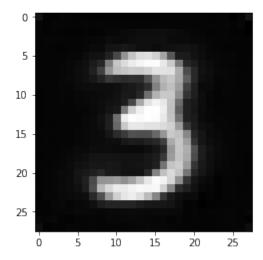
17.6 Add trust scores

Explainability through counterfactuals can involve a trade off between sparsity and interpretability. The first counterfactual below is sparse and flips the original 7 into a 3. It is obtained by setting the auto-encoder and prototype loss terms to 0, moving the objective function towards an elastic net regularizer which generates sparse solutions. It is clear however that this is not a very interpretable 3 which lies very far from its class prototype or the training data distribution:

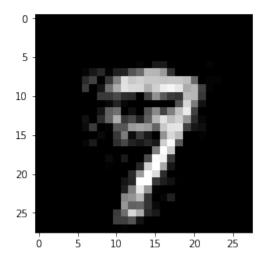


Class 3 prototype:

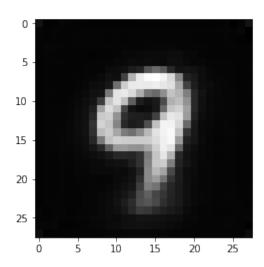
17.6. Add trust scores 93



By adding in the nearest prototype and auto-encoder loss terms, the counterfactual becomes more interpretable but less sparse. The example below illustrates this by flipping the same 7 into a 9:



Class 9 prototype:



In order to help interpretability, we can add a trust score constraint on the proposed counterfactual. The trust score is defined as the ratio of the distance between the encoded counterfactual and the prototype of the class predicted on the original instance, and the distance between the encoded counterfactual and the prototype of the class predicted for the counterfactual instance. Intuitively, a high trust score implies that the counterfactual is far from the originally predicted class compared to the counterfactual class. For more info on trust scores, please check out the *documentation*. The example below shows the impact of such a trust score constraint:

```
[19]: theta = 100.
    c_init = 1.
    c_steps = 5
```

```
[24]: # set random seed
     np.random.seed(1)
     tf.set_random_seed(1)
     # define models
     cnn = load_model('mnist_cnn.h5')
     enc = load_model('mnist_enc.h5')
     sess = K.get_session()
      # initialize explainer, fit and generate counterfactual
     cf = CounterFactualProto(sess, cnn, shape, theta=theta,
                               enc_model=enc, max_iterations=max_iterations,
                               feature_range=feature_range, c_init=c_init, c_steps=c_steps)
     cf.fit(x_train) # find class prototypes
     explanation1 = cf.explain(X, threshold=0.)
     explanation2 = cf.explain(X, threshold=.8)
     sess.close()
     K.clear_session()
```

Original instance:



The counterfactual below without the trust score threshold predicts a 3 which actually starts to look like a 9 since that is the nearest prototype class. This counterfactual is slightly sparser than the second counterfactual below which has

17.6. Add trust scores 95

the trust score threshold at 0.8. The sparser counterfactual does not meet this trust score constraint and is therefore rejected in the second example.

[26]: print('Counterfactual prediction: {}'.format(explanation1['cf']['class']))

```
print('Closest prototype class: {}'.format(cf.id_proto))
     plt.imshow(explanation1['cf']['X'].reshape(28, 28))
     Counterfactual prediction: 3
     Closest prototype class: 9
[26]: <matplotlib.image.AxesImage at 0x7fd04315a710>
       0
       5
      10
      15
       20
       25
                          15
                               20
                                     25
[27]: print('Counterfactual prediction: {}'.format(explanation2['cf']['class']))
     print('Closest prototype class: {}'.format(cf.id_proto))
     plt.imshow(explanation2['cf']['X'].reshape(28, 28))
     Counterfactual prediction: 9
     Closest prototype class: 9
[27]: <matplotlib.image.AxesImage at 0x7fd043130dd8>
       0
       5
```

10

15

20

25

Ó

15

20

17.7 Specify prototype classes

For multi-class predictions, we might be interested to generate counterfactuals for certain classes while avoiding others. The following example illustrates how to do this. It does not guarantee that the avoided classes are excluded from the counterfactuals, but does not include those classes when looking for the nearest prototype class. So as a result, it will not drive the counterfactual to the prototype of the classes that should be avoided.

```
[29]: theta = 100.
    gamma = 100.
    c_init = 1.
    c_steps = 3
    max_iterations = 1000
```

```
[30]: # set random seed
     np.random.seed(1)
     tf.set_random_seed(1)
     # define models
     cnn = load_model('mnist_cnn.h5')
     ae = load_model('mnist_ae.h5')
     enc = load_model('mnist_enc.h5')
     sess = K.get_session()
     # initialize explainer, fit and generate counterfactual
     cf = CounterFactualProto(sess, cnn, shape, gamma=gamma, theta=theta,
                               ae_model=ae, enc_model=enc, max_iterations=max_iterations,
                               feature_range=feature_range, c_init=c_init, c_steps=c_steps)
     cf.fit(x_train) # find class prototypes
     explanation1 = cf.explain(X)
     proto_class1 = cf.id_proto
     explanation2 = cf.explain(X, target_class=[7])
     proto_class2 = cf.id_proto
```

(continues on next page)

```
sess.close()
K.clear_session()
```

The closest class to a 9 is 4. This is evident by looking at the first counterfactual below. For the second counterfactual, we specified that the prototype class used in the search should be a 7. As a result, the 9 is not pushed towards a 4.

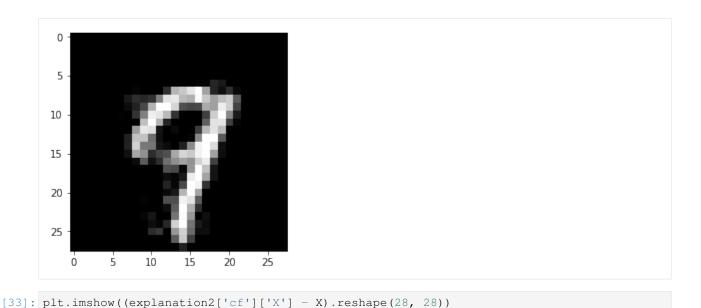
```
[31]: print('Counterfactual prediction: {}'.format(explanation1['cf']['class']))
     print('Closest prototype class: {}'.format(proto_class1))
     plt.imshow(explanation1['cf']['X'].reshape(28, 28))
     Counterfactual prediction: 4
     Closest prototype class: 4
[31]: <matplotlib.image.AxesImage at 0x7fd048f87ef0>
        0
        5
       10
      15
       20
       25
          0
               5
                    10
                                20
                                     25
```

While the counterfactual still looks like a 9 at first sight, it is clear by looking at the difference plot between the counterfactual and the original instance that the pixels generating the circle of the 9 are being removed, moving towards a 7.

```
[32]: print('Counterfactual prediction: {}'.format(explanation2['cf']['class']))
    print('Closest prototype class: {}'.format(proto_class2))
    plt.imshow(explanation2['cf']['X'].reshape(28, 28))

Counterfactual prediction: 7
    Closest prototype class: 7

[32]: <matplotlib.image.AxesImage at 0x7fd0485354e0>
```



(33]: <matplotlib.image.AxesImage at 0x7fd0493b3c88>

20

25

10

15

20

25

17.8 Speed up the counterfactual search by removing the predict function loss term

We can also remove the prediction loss term and still obtain an interpretable counterfactual. This is especially relevant for fully black box models. When we provide the counterfactual search method with a Keras or TensorFlow model, it is incorporated in the TensorFlow graph and evaluated using automatic differentiation. However, if we only have access to the model's predict function, the gradient updates are numerical and typically require a large number of prediction calls because of the predict loss term. These prediction calls can slow the search down significantly and become a bottleneck. We can represent the gradient of the loss term as follows:

$$\frac{\partial L_{pred}}{\partial x} = \frac{\partial L_{pred}}{\partial p} \frac{\partial p}{\partial x}$$

where L_{pred} is the prediction loss term, p the predict function and x the input features to optimize. For a 28 by 28 MNIST image, the $\delta^p/\delta x$ term alone would require a prediction call with batch size 28x28x2 = 1568. By using the

prototypes to guide the search however, we can remove the prediction loss term and only make a single prediction at the end of each gradient update to check whether the predicted class on the proposed counterfactual is different from the original class. We do not necessarily need a Keras or TensorFlow auto-encoder either and can use k-d trees to find the nearest class prototypes. Please check out *this notebook* for a practical example.

We'll first illustrate this method by using a Keras model and then try a black box model.

```
[35]: c_init = 0. # set weight predict loss term to 0
    c_steps = 1 # do not update c further
    max_iterations = 2000
    theta = 100.
    gamma = 100.
```

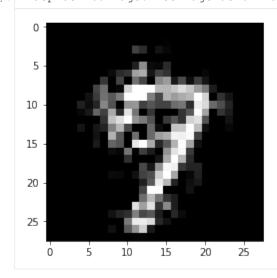
```
[36]: # set random seed
     np.random.seed(1)
     tf.set_random_seed(1)
     # define models
     cnn = load_model('mnist_cnn.h5')
     ae = load_model('mnist_ae.h5')
     enc = load_model('mnist_enc.h5')
     sess = K.get_session()
     # initialize explainer, fit and generate counterfactual
     cf = CounterFactualProto(sess, cnn, shape, gamma=gamma, theta=theta,
                               ae_model=ae, enc_model=enc, max_iterations=max_iterations,
                               feature_range=feature_range, c_init=c_init, c_steps=c_steps)
     cf.fit(x_train) # find class prototypes
     explanation = cf.explain(X)
     sess.close()
     K.clear_session()
```

Still get a reasonable 9:

```
[37]: print('Counterfactual prediction: {}'.format(explanation['cf']['class']))
    print('Closest prototype class: {}'.format(cf.id_proto))
    plt.imshow(explanation['cf']['X'].reshape(28, 28))

Counterfactual prediction: 9
    Closest prototype class: 9

[37]: <matplotlib.image.AxesImage at 0x7fd04d689438>
```



Let us now use the black box model:

```
[38]: # set random seed
     np.random.seed(1)
     tf.set_random_seed(1)
     # define models
     cnn = load_model('mnist_cnn.h5')
     predict_fn = lambda x: cnn.predict(x)
     ae = load_model('mnist_ae.h5')
     enc = load_model('mnist_enc.h5')
     sess = K.get_session()
     # initialize explainer, fit and generate counterfactual
     cf = CounterFactualProto(sess, predict_fn, shape, gamma=gamma, theta=theta,
                               ae_model=ae, enc_model=enc, max_iterations=max_iterations,
                               feature_range=feature_range, c_init=c_init, c_steps=c_steps)
     cf.fit(x_train) # find class prototypes
     start_time = time()
     explanation = cf.explain(X)
     print('Explanation took {:.3f} sec'.format(time() - start_time))
     sess.close()
     K.clear_session()
     Explanation took 8.979 sec
```

Which again gives a 9 as counterfactual:

```
[39]: print('Counterfactual prediction: {}'.format(explanation['cf']['class']))
print('Closest prototype class: {}'.format(cf.id_proto))

(continues on next page)
```

```
plt.imshow(explanation['cf']['X'].reshape(28, 28))

Counterfactual prediction: 9
Closest prototype class: 9

<matplotlib.image.AxesImage at 0x7fd04213bd30>

0

5

10

20

25

0

5
10
15
20
25
```

We can include the prediction loss term again and compare the explanation time for the same amount of iteration steps:

```
[40]: c_init = 1. # set weight predict loss term to 0
c_steps = 4 # do not update c further
max_iterations = 500 # 4x500 = 2000
```

```
[41]: # set random seed
     np.random.seed(1)
     tf.set_random_seed(1)
     # define models
     cnn = load_model('mnist_cnn.h5')
     predict_fn = lambda x: cnn.predict(x)
     ae = load_model('mnist_ae.h5')
     enc = load_model('mnist_enc.h5')
     sess = K.get_session()
     # initialize explainer, fit and generate counterfactual
     cf = CounterFactualProto(sess, predict_fn, shape, gamma=gamma, theta=theta,
                               ae_model=ae, enc_model=enc, max_iterations=max_iterations,
                               feature_range=feature_range, c_init=c_init, c_steps=c_steps)
     cf.fit(x_train) # find class prototypes
     start_time = time()
     explanation = cf.explain(X)
     print('Explanation took {:.3f} sec'.format(time() - start_time))
     sess.close()
     K.clear_session()
     Explanation took 893.747 sec
```

```
[42]: print('Counterfactual prediction: {}'.format(explanation['cf']['class']))
     print('Closest prototype class: {}'.format(cf.id_proto))
     plt.imshow(explanation['cf']['X'].reshape(28, 28))
     Counterfactual prediction: 9
     Closest prototype class: 9
[42]: <matplotlib.image.AxesImage at 0x7fd04b731400>
       0
        5
      10
      15
       20
       25
               5
                                20
                                      25
          Ó
                    10
                          15
```

By removing the predict loss term and having the nearest class prototype guide the counterfactual, we can speed up the search by about 100x for a simple CNN. Please note that these examples are not optimized for speed but just highlight the difference in performance.

Clean up:

```
[43]: os.remove('mnist_cnn.h5')
  os.remove('mnist_ae.h5')
  os.remove('mnist_enc.h5')
```

Counterfactuals guided by prototypes on Boston housing dataset

This notebook goes through an example of *prototypical counterfactuals* using k-d trees to build the prototypes. Please check out *this notebook* for a more in-depth application of the method on MNIST using (auto-)encoders and trust scores.

In this example, we will train a simple neural net to predict whether house prices in the Boston area are above the median value or not. We can then find a counterfactual to see which variables need to be changed to increase or decrease a house price above or below the median value.

```
[1]: import keras
    from keras import backend as K
    from keras.layers import Dense, Input
    from keras.models import Model, load_model
    from keras.utils import to_categorical
    import matplotlib
    %matplotlib inline
    import matplotlib.pyplot as plt
    import numpy as np
    import os
    from sklearn.datasets import load_boston
    import tensorflow as tf
    from alibi.explainers import CounterFactualProto
Using TensorFlow backend.
```

18.1 Load and prepare Boston housing dataset

```
[2]: boston = load_boston()
  data = boston['data']
  target = boston['target']
  feature_names = boston['feature_names']
```

Transform into classification task: target becomes whether house price is above the overall median or not

```
[3]: y = np.zeros((target.shape[0],))
y[np.where(target > np.median(target))[0]] = 1
```

Remove categorical feature

```
[4]: data = np.delete(data, 3, 1)
feature_names = np.delete(feature_names, 3)
```

Explanation of remaining features:

- CRIM: per capita crime rate by town
- ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS: proportion of non-retail business acres per town
- RM: average number of rooms per dwelling
- AGE: proportion of owner-occupied units built prior to 1940
- DIS: weighted distances to five Boston employment centres
- RAD: index of accessibility to radial highways
- TAX: full-value property-tax rate per USD10,000
- PTRATIO: pupil-teacher ratio by town
- B: 1000(Bk 0.63)² where Bk is the proportion of blacks by town
- LSTAT: % lower status of the population

Standardize data

```
[5]: mu = data.mean(axis=0)
    sigma = data.std(axis=0)
    data = (data - mu) / sigma
```

Define train and test set

```
idx = 475
x_train,y_train = data[:idx,:], y[:idx]
x_test, y_test = data[idx:,:], y[idx:]
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
```

18.2 Train model

```
[7]: np.random.seed(0)
    tf.set_random_seed(0)

[8]: def nn_model():
        x_in = Input(shape=(12,))
        x = Dense(40, activation='relu')(x_in)
        x = Dense(40, activation='relu')(x)
        x_out = Dense(2, activation='softmax')(x)
        nn = Model(inputs=x_in, outputs=x_out)
        nn.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
        return nn
```

```
[9]: nn = nn_model()
    nn.summarv()
    nn.fit(x_train, y_train, batch_size=128, epochs=500, verbose=0)
    nn.save('nn_boston.h5')
    Layer (type)
                           Output Shape
                                                 Param #
    ______
    input_1 (InputLayer)
                            (None, 12)
    dense_1 (Dense)
                            (None, 40)
                                                 520
    dense_2 (Dense)
                            (None, 40)
                                                 1640
    dense_3 (Dense)
                                                82
                           (None, 2)
    ______
    Total params: 2,242
    Trainable params: 2,242
    Non-trainable params: 0
[10]: score = nn.evaluate(x_test, y_test, verbose=0)
    print('Test accuracy: ', score[1])
    Test accuracy: 0.8064516186714172
```

18.3 Generate counterfactual guided by the nearest class prototype

Original instance:

```
[11]: X = x_test[1].reshape((1,) + x_test[1].shape)
shape = X.shape
```

Run counterfactual:

```
[12]: # set random seed
     np.random.seed(1)
     tf.set_random_seed(1)
     # define model
     nn = load_model('nn_boston.h5')
     # get Keras session
     sess = K.get_session()
     # initialize explainer, fit and generate counterfactual
     cf = CounterFactualProto(sess, nn, shape, use_kdtree=True, theta=10., max_
      ⇒iterations=1000,
                               feature_range=(x_train.min(axis=0), x_train.max(axis=0)),
                               c_init=1., c_steps=10)
     cf.fit(x train)
     explanation = cf.explain(X)
     sess.close()
     K.clear_session()
```

```
No encoder specified. Using k-d trees to represent class prototypes.
```

The prediction flipped from 0 (value below the median) to 1 (above the median):

```
[13]: print('Original prediction: {}'.format(explanation['orig_class']))
    print('Counterfactual prediction: {}'.format(explanation['cf']['class']))

Original prediction: 0
    Counterfactual prediction: 1
```

Let's take a look at the counterfactual. To make the results more interpretable, we will first undo the pre-processing step and then check where the counterfactual differs from the original instance:

```
[14]: orig = X * sigma + mu
    counterfactual = explanation['cf']['X'] * sigma + mu
    delta = counterfactual - orig
    for i, f in enumerate(feature_names):
        if np.abs(delta[0][i]) > 1e-4:
            print('{}: {}'.format(f, delta[0][i]))

AGE: -21.56911332760376
LSTAT: -4.1864947634051575
```

So in order to increase the house price, the proportion of owner-occupied units built prior to 1940 should decrease by almost 22%. This is not surprising since the proportion for the observation is very high at 93.6%. Furthermore, the % of the population with "lower status" should decrease by 4%.

```
[15]: print('% owner-occupied units built prior to 1940: {}'.format(orig[0][5]))
    print('% lower status of the population: {}'.format(orig[0][11]))

% owner-occupied units built prior to 1940: 93.6
% lower status of the population: 18.68
```

Clean up:

```
[16]: os.remove('boston_nn.h5')
```

CHAPTER 19

Trust Scores applied to Iris

It is important to know when a machine learning classifier's predictions can be trusted. Relying on the classifier's (uncalibrated) prediction probabilities is not optimal and can be improved upon. *Trust scores* measure the agreement between the classifier and a modified nearest neighbor classifier on the test set. The trust score is the ratio between the distance of the test instance to the nearest class different from the predicted class and the distance to the predicted class. Higher scores correspond to more trustworthy predictions. A score of 1 would mean that the distance to the predicted class is the same as to another class.

The original paper on which the algorithm is based is called To Trust Or Not To Trust A Classifier. Our implementation borrows heavily from https://github.com/google/TrustScore, as does the example notebook.

```
[1]: import matplotlib
%matplotlib inline
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import StratifiedShuffleSplit
from alibi.confidence import TrustScore
```

19.1 Load and prepare Iris dataset

```
[2]: dataset = load_iris()

Scale data

[3]: dataset.data = (dataset.data - dataset.data.mean(axis=0)) / dataset.data.std(axis=0)
```

Define training and test set

```
[4]: idx = 140
X_train,y_train = dataset.data[:idx,:], dataset.target[:idx]
X_test, y_test = dataset.data[idx+1:,:], dataset.target[idx+1:]
```

19.2 Fit model and make predictions

```
[5]: np.random.seed(0)
    clf = LogisticRegression(solver='liblinear', multi_class='auto')
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)
    print('Predicted class: {}'.format(y_pred))

Predicted class: [2 2 2 2 2 2 2 2 2]
```

19.3 Basic Trust Score Usage

19.3.1 Initialise Trust Scores and fit on training data

The trust score algorithm builds k-d trees for each class. The distance of the test instance to the kth nearest neighbor of each tree (or the average distance to the kth neighbor) can then be used to calculate the trust score. We can optionally filter out outliers in the training data before building the trees. The example below uses the $distance_knn$ (filter_type) method to filter out the 5% (alpha) instances of each class with the highest distance to its 10th nearest neighbor (k_filter) in that class.

```
[7]: ts.fit(X_train, y_train, classes=3) # classes = nb of prediction classes
```

19.3.2 Calculate Trust Scores on test data

Since the trust score is the ratio between the distance of the test instance to the nearest class different from the predicted class and the distance to the predicted class, higher scores correspond to more trustworthy predictions. A score of 1 would mean that the distance to the predicted class is the same as to another class. The score method returns arrays with both the trust scores and the class labels of the closest not predicted class.

```
print('Trust scores: {}'.format(score))
print('\nClosest not predicted class: {}'.format(closest_class))

Trust scores: [2.574271277538439 2.1630334957870114 3.1629405367742223
2.7258494544157927 2.541748027539072 1.402878283257114 1.941073062524019
2.0601725424359296 2.1781121494573514]

Closest not predicted class: [1 1 1 1 1 1 1 1]
```

19.4 Comparison of Trust Scores with model prediction probabilities

Let's compare the prediction probabilities from the classifier with the trust scores for each prediction. The first use case checks whether trust scores are better than the model's prediction probabilities at identifying correctly classified examples, while the second use case does the same for incorrectly classified instances.

First we need to set up a couple of helper functions.

• Define a function that handles model training and predictions for a simple logistic regression:

• Define the function that generates the precision plots:

```
[10]: def plot_precision_curve(plot_title,
                               percentiles,
                               labels,
                               final_tp,
                               final_stderr,
                               final_misclassification,
                               colors = ['blue', 'darkorange', 'brown', 'red', 'purple']):
         plt.title(plot_title, fontsize=18)
         colors = colors + list(cm.rainbow(np.linspace(0, 1, len(final_tp))))
         plt.xlabel("Percentile", fontsize=14)
         plt.ylabel("Precision", fontsize=14)
          for i, label in enumerate(labels):
             ls = "--" if ("Model" in label) else "-"
              plt.plot(percentiles, final_tp[i], ls, c=colors[i], label=label)
              plt.fill_between (percentiles,
                               final_tp[i] - final_stderr[i],
                               final_tp[i] + final_stderr[i],
                               color=colors[i],
                               alpha=.1)
         if 0. in percentiles:
             plt.legend(loc="lower right", fontsize=14)
          else:
```

(continues on next page)

```
plt.legend(loc="upper left", fontsize=14)
model_acc = 100 * (1 - final_misclassification)
plt.axvline(x=model_acc, linestyle="dotted", color="black")
plt.show()
```

• The function below trains the model on a number of folds, makes predictions, calculates the trust scores, and generates the precision curves to compare the trust scores with the model prediction probabilities:

```
[11]: def run_precision_plt(X, y, nfolds, percentiles, run_model, test_size=.5,
                           plt_title="", plt_names=[], predict_correct=True, classes=3):
         def stderr(L):
             return np.std(L) / np.sqrt(len(L))
         all_tp = [[[] for p in percentiles] for _ in plt_names]
         misclassifications = []
         mult = 1 if predict_correct else -1
         folds = StratifiedShuffleSplit(n_splits=nfolds, test_size=test_size, random_
      ⇒state=0)
         for train_idx, test_idx in folds.split(X, y):
             # create train and test folds, train model and make predictions
             X_train, y_train = X[train_idx, :], y[train_idx]
             X_test, y_test = X[test_idx, :], y[test_idx]
             y_pred, probas = run_lr(X_train, y_train, X_test)
              # target points are the correctly classified points
             target_points = np.where(y_pred == y_test)[0] if predict_correct else np.
      →where (y_pred != y_test) [0]
             final_curves = [probas]
             # calculate trust scores
             ts = TrustScore()
             ts.fit(X_train, y_train, classes=classes)
             scores, _ = ts.score(X_test, y_pred)
             final_curves.append(scores) # contains prediction probabilities and trust_
             # check where prediction probabilities and trust scores are above a certain,
      →percentage level
             for p, perc in enumerate(percentiles):
                 high_proba = [np.where(mult * curve >= np.percentile(mult * curve,_
      →perc))[0] for curve in final_curves]
                 if 0 in map(len, high_proba):
                  # calculate fraction of values above percentage level that are correctly.
      → (or incorrectly) classified
                 tp = [len(np.intersectld(hp, target_points)) / (1. * len(hp)) for hp in_
      →high_proba]
                 for i in range(len(plt_names)):
                     all_tp[i][p].append(tp[i]) # for each percentile, store fraction of,
      →values above cutoff value
             misclassifications.append(len(target_points) / (1. * len(X_test)))
          # average over folds for each percentile
         final_tp = [[] for _ in plt_names]
          final_stderr = [[] for _ in plt_names]
         for p, perc in enumerate(percentiles):
             for i in range(len(plt_names)):
```

(continues on next page)

```
final_tp[i].append(np.mean(all_tp[i][p]))
    final_stderr[i].append(stderr(all_tp[i][p]))

for i in range(len(all_tp)):
    final_tp[i] = np.array(final_tp[i])
    final_stderr[i] = np.array(final_stderr[i])

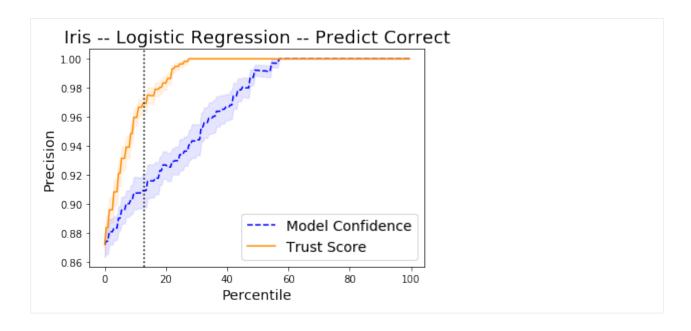
final_misclassification = np.mean(misclassifications)

# create plot
    plot_precision_curve(plt_title, percentiles, plt_names, final_tp, final_stderr,__
final_misclassification)
```

19.4.1 Detect correctly classified examples

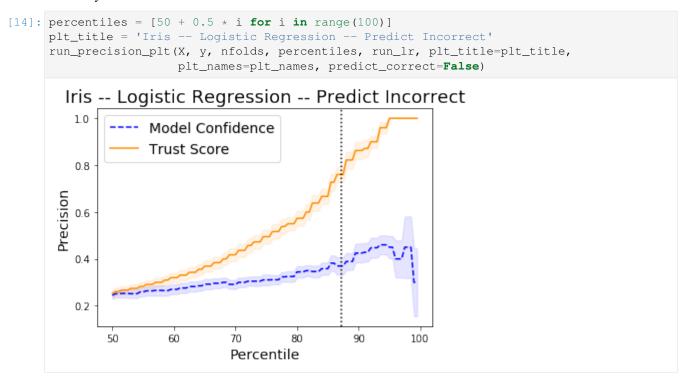
The x-axis on the plot below shows the percentiles for the model prediction probabilities of the predicted class for each instance and for the trust scores. The y-axis represents the precision for each percentile. For each percentile level, we take the test examples whose trust score is above that percentile level and plot the percentage of those points that were correctly classified by the classifier. We do the same with the classifier's own model confidence (i.e. softmax probabilities). For example, at percentile level 80, we take the top 20% scoring test examples based on the trust score and plot the percentage of those points that were correctly classified. We also plot the top 20% scoring test examples based on model probabilities and plot the percentage of those that were correctly classified. The vertical dotted line is the error of the logistic regression classifier. The plots are an average over 10 folds of the dataset with 50% of the data kept for the test set.

The *Trust Score* and *Model Confidence* curves then show that the model precision is typically higher when using the trust scores to rank the predictions compared to the model prediction probabilities.



19.4.2 Detect incorrectly classified examples

By taking the *negative of the prediction probabilities and trust scores*, we can also see on the plot below how the trust scores compare to the model predictions for incorrectly classified instances. The vertical dotted line is the accuracy of the logistic regression classifier. The plot shows the precision of identifying incorrectly classified instances. Higher is obviously better.



Trust Scores applied to MNIST

It is important to know when a machine learning classifier's predictions can be trusted. Relying on the classifier's (uncalibrated) prediction probabilities is not optimal and can be improved upon. *Trust scores* measure the agreement between the classifier and a modified nearest neighbor classifier on the test set. The trust score is the ratio between the distance of the test instance to the nearest class different from the predicted class and the distance to the predicted class. Higher scores correspond to more trustworthy predictions. A score of 1 would mean that the distance to the predicted class is the same as to another class.

The original paper on which the algorithm is based is called To Trust Or Not To Trust A Classifier. Our implementation borrows heavily from https://github.com/google/TrustScore, as does the example notebook.

Trust scores work best for low to medium dimensional feature spaces. This notebook illustrates how you can **apply trust scores to high dimensional** data like images by adding an additional pre-processing step in the form of an auto-encoder to reduce the dimensionality. Other dimension reduction techniques like PCA can be used as well.

```
import keras
from keras import backend as K
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Input,

→UpSampling2D
from keras.models import Model
from keras.utils import to_categorical
import matplotlib
%matplotlib inline
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import StratifiedShuffleSplit
from alibi.confidence import TrustScore

Using TensorFlow backend.
```

```
[2]: (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape)
plt.gray()
plt.imshow(x_test[0])
```

Prepare data: scale, reshape and categorize

```
[3]: x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train, x_train.shape + (1,))
x_test = np.reshape(x_test, x_test.shape + (1,))
print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)

x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1)
y_train shape: (60000, 10) y_test shape: (10000, 10)
```

20.1 Define and train model

For this example we are not interested in optimizing model performance so a simple softmax classifier will do:

```
[5]: def sc_model():
    x_in = Input(shape=(28, 28, 1))
    x = Flatten()(x_in)
    x_out = Dense(10, activation='softmax')(x)
    sc = Model(inputs=x_in, outputs=x_out)
    sc.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
    return sc
```

```
[6]: sc = sc_model()
   sc.summary()
   sc.fit(x_train, y_train, batch_size=128, epochs=5, verbose=0)
   Layer (type)
                       Output Shape
                                          Param #
   ______
   input_1 (InputLayer)
                        (None, 28, 28, 1)
                        (None, 784)
   flatten_1 (Flatten)
   dense_1 (Dense)
                       (None, 10)
                                          7850
   ______
   Total params: 7,850
   Trainable params: 7,850
   Non-trainable params: 0
[6]: <keras.callbacks.History at 0x7f7fd1e13630>
```

Evaluate the model on the test set:

```
[7]: score = sc.evaluate(x_test, y_test, verbose=0)
print('Test accuracy: ', score[1])

Test accuracy: 0.8862
```

20.2 Define and train auto-encoder

```
[8]: def ae model():
        # encoder
        x_{in} = Input(shape=(28, 28, 1))
        x = Conv2D(16, (3, 3), activation='relu', padding='same')(x_in)
        x = MaxPooling2D((2, 2), padding='same')(x)
        x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
        x = MaxPooling2D((2, 2), padding='same')(x)
        x = Conv2D(4, (3, 3), activation=None, padding='same')(x)
        encoded = MaxPooling2D((2, 2), padding='same')(x)
        encoder = Model(x_in, encoded)
        # decoder
        dec_in = Input(shape=(4, 4, 4))
        x = Conv2D(4, (3, 3), activation='relu', padding='same')(dec_in)
        x = UpSampling2D((2, 2))(x)
        x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
        x = UpSampling2D((2, 2))(x)
        x = Conv2D(16, (3, 3), activation='relu')(x)
        x = UpSampling2D((2, 2))(x)
        decoded = Conv2D(1, (3, 3), activation=None, padding='same')(x)
        decoder = Model(dec_in, decoded)
        # autoencoder = encoder + decoder
        x_out = decoder(encoder(x_in))
        autoencoder = Model(x in, x out)
        autoencoder.compile(optimizer='adam', loss='mse')
```

(continues on next page)

```
return autoencoder, encoder, decoder
[9]: ae, enc, dec = ae\_model()
   ae.summary()
   ae.fit(x_train, x_train, batch_size=128, epochs=8, validation_data=(x_test, x_test),_
    →verbose=0)
   Layer (type)
                           Output Shape
                                                Param #
   ______
   input_2 (InputLayer)
                           (None, 28, 28, 1)
                                                0
   model_2 (Model)
                           (None, 4, 4, 4)
                                                1612
   model_3 (Model)
                           (None, 28, 28, 1)
                                                1757
   ______
   Total params: 3,369
   Trainable params: 3,369
   Non-trainable params: 0
[9]: <keras.callbacks.History at 0x7f7fd24cd5c0>
```

20.3 Calculate Trust Scores

Initialize trust scores:

```
[10]: ts = TrustScore()
```

The key is to **fit and calculate the trust scores on the encoded instances**. The encoded data still needs to be reshaped from (60000, 4, 4, 4) to (60000, 64) to comply with the k-d tree format. This is handled internally:

```
[11]: x_train_enc = enc.predict(x_train)
    ts.fit(x_train_enc, y_train, classes=10) # 10 classes present in MNIST

Reshaping data from (60000, 4, 4, 4) to (60000, 64) so k-d trees can be built.
```

We can now calculate the trust scores and closest not predicted classes of the predictions on the test set, using the distance to the 5th nearest neighbor in each class:

```
[12]: x_test_enc = enc.predict(x_test)
    y_pred = sc.predict(x_test)
    score, closest_class = ts.score(x_test_enc, y_pred, k=5)

Reshaping data from (10000, 4, 4, 4) to (10000, 64) so k-d trees can be queried.
```

Let's inspect which predictions have low and high trust scores:

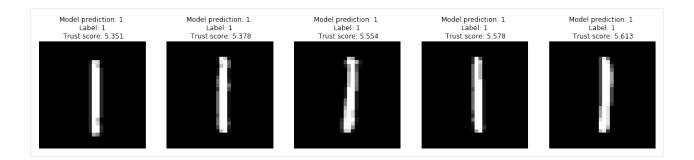
20.3.1 Low Trust Scores

The image below makes clear that the low trust scores correspond to misclassified images. Because the trust scores are significantly below 1, they correctly identified that the images belong to another class than the predicted class, and identified that class.

```
[14]: plt.figure(figsize=(20, 4))
        for i in range(n):
             ax = plt.subplot(1, n, i+1)
             plt.imshow(imqs_min[i].reshape(28, 28))
             plt.title('Model prediction: {} \n Label: {} \n Trust score: {:.3f}' \
                             '\n Closest other class: {}'.format(pred_min[i], label_min[i], score_
         →min[i], closest_min[i]))
              ax.get_xaxis().set_visible(False)
              ax.get_yaxis().set_visible(False)
        plt.show()
             Model prediction: 5
                                       Model prediction: 8
                                                                 Model prediction: 8
                                                                                           Model prediction: 8
                                                                                                                     Model prediction: 8
            Label: 1
Trust score: 0.313
Closest other class: 1
                                       Label: 1
Trust score: 0.317
                                                                  Label: 1
Trust score: 0.318
                                                                                            Label: 1
Trust score: 0.335
                                                                                                                      Label: 1
Trust score: 0.337
                                       Closest other class: 1
                                                                 Closest other class: 1
                                                                                           Closest other class: 1
                                                                                                                     Closest other class: 1
```

20.3.2 High Trust Scores

The high trust scores on the other hand all are very clear 1's:



20.4 Comparison of Trust Scores with model prediction probabilities

Let's compare the prediction probabilities from the classifier with the trust scores for each prediction by checking whether trust scores are better than the model's prediction probabilities at identifying correctly classified examples.

First we need to set up a couple of helper functions.

• Define a function that handles model training and predictions:

• Define the function that generates the precision plots:

```
[17]: def plot_precision_curve(plot_title,
                               percentiles,
                               labels,
                               final_tp,
                               final_stderr,
                               final_misclassification,
                               colors = ['blue', 'darkorange', 'brown', 'red', 'purple']):
         plt.title(plot_title, fontsize=18)
         colors = colors + list(cm.rainbow(np.linspace(0, 1, len(final_tp))))
         plt.xlabel("Percentile", fontsize=14)
         plt.ylabel("Precision", fontsize=14)
          for i, label in enumerate(labels):
             ls = "--" if ("Model" in label) else "-"
              plt.plot(percentiles, final_tp[i], ls, c=colors[i], label=label)
              plt.fill_between(percentiles,
                               final_tp[i] - final_stderr[i],
                               final_tp[i] + final_stderr[i],
                               color=colors[i],
                               alpha=.1)
         if 0. in percentiles:
             plt.legend(loc="lower right", fontsize=14)
          else:
```

(continues on next page)

```
plt.legend(loc="upper left", fontsize=14)
model_acc = 100 * (1 - final_misclassification)
plt.axvline(x=model_acc, linestyle="dotted", color="black")
plt.show()
```

• The function below trains the model on a number of folds, makes predictions, calculates the trust scores, and generates the precision curves to compare the trust scores with the model prediction probabilities:

```
[18]: def run_precision_plt(X, y, nfolds, percentiles, run_model, test_size=.2,
                           plt_title="", plt_names=[], predict_correct=True, classes=10):
         def stderr(L):
             return np.std(L) / np.sqrt(len(L))
         all_tp = [[[] for p in percentiles] for _ in plt_names]
         misclassifications = []
         mult = 1 if predict_correct else -1
         folds = StratifiedShuffleSplit(n_splits=nfolds, test_size=test_size, random_
      ⇒state=0)
         for train_idx, test_idx in folds.split(X, y):
              # create train and test folds, train model and make predictions
             X_train, y_train = X[train_idx, :], y[train_idx, :]
             X_test, y_test = X[test_idx, :], y[test_idx, :]
             y_pred, probas = run_sc(X_train, y_train, X_test)
              # target points are the correctly classified points
             y_test_class = np.argmax(y_test, axis=1)
             target_points = (np.where(y_pred == y_test_class)[0] if predict_correct else
                              np.where(y_pred != y_test_class)[0])
             final_curves = [probas]
              # calculate trust scores
             ts = TrustScore()
             ts.fit(enc.predict(X_train), y_train, classes=classes)
             scores, _ = ts.score(enc.predict(X_test), y_pred, k=5)
             final_curves.append(scores) # contains prediction probabilities and trust,
      ⇔scores
             # check where prediction probabilities and trust scores are above a certain,
      →percentage level
             for p, perc in enumerate(percentiles):
                 high_proba = [np.where(mult * curve >= np.percentile(mult * curve,_
      →perc))[0] for curve in final_curves]
                 if 0 in map(len, high_proba):
                     continue
                  # calculate fraction of values above percentage level that are correctly,
      → (or incorrectly) classified
                 tp = [len(np.intersect1d(hp, target_points)) / (1. * len(hp)) for hp in_
      →high_proba]
                 for i in range(len(plt_names)):
                     all_tp[i][p].append(tp[i]) # for each percentile, store fraction of __
      →values above cutoff value
             misclassifications.append(len(target_points) / (1. * len(X_test)))
          # average over folds for each percentile
         final_tp = [[] for _ in plt_names]
          final_stderr = [[] for _ in plt_names]
         for p, perc in enumerate(percentiles):
```

(continues on next page)

20.5 Detect correctly classified examples

The x-axis on the plot below shows the percentiles for the model prediction probabilities of the predicted class for each instance and for the trust scores. The y-axis represents the precision for each percentile. For each percentile level, we take the test examples whose trust score is above that percentile level and plot the percentage of those points that were correctly classified by the classifier. We do the same with the classifier's own model confidence (i.e. softmax probabilities). For example, at percentile level 80, we take the top 20% scoring test examples based on the trust score and plot the percentage of those points that were correctly classified. We also plot the top 20% scoring test examples based on model probabilities and plot the percentage of those that were correctly classified. The vertical dotted line is the error of the classifier. The plots are an average over 2 folds of the dataset with 20% of the data kept for the test set.

The *Trust Score* and *Model Confidence* curves then show that the model precision is typically higher when using the trust scores to rank the predictions compared to the model prediction probabilities.

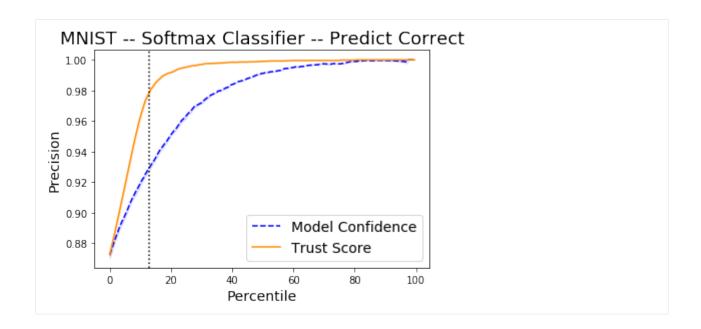
```
run_precision_plt(X, y, nfolds, percentiles, run_sc, plt_title=plt_title, plt_names=plt_names, predict_correct=True)

Reshaping data from (48000, 4, 4, 4) to (48000, 64) so k-d trees can be built.

Reshaping data from (12000, 4, 4, 4) to (12000, 64) so k-d trees can be queried.

Reshaping data from (48000, 4, 4, 4) to (48000, 64) so k-d trees can be built.

Reshaping data from (12000, 4, 4, 4) to (12000, 64) so k-d trees can be queried.
```



CHAPTER 21

alibi

21.1 alibi package

21.1.1 Subpackages

alibi.confidence package

The 'alibi.confidence' module includes trust scores.

Parameters

- **k_filter** (int) Number of neighbors used during either kNN distance or probability filtering.
- alpha (float) Fraction of instances to filter out to reduce impact of outliers.
- **filter_type** (Optional[str]) Filter method; either 'distance_knn' or 'probability_knn'
- **leaf_size** (int) Number of points at which to switch to brute-force. Affects speed and memory required to build trees. Memory to store the tree scales with n_samples / leaf_size.
- metric (str) Distance metric used for the tree. See sklearn's DistanceMetric class for a list of available metrics.
- **dist_filter_type** (str) Use either the distance to the k-nearest point (dist_filter_type = 'point') or the average distance from the first to the k-nearest point in the data (dist_filter_type = 'mean').

Return type None

$filter_by_distance_knn(X)$

Filter out instances with low kNN density. Calculate distance to k-nearest point in the data for each instance and remove instances above a cutoff distance.

Return type <sphinx.ext.autodoc.importer. MockObject object at 0x7fba345bd358>

Returns Filtered data.

$filter_by_probability_knn(X, Y)$

Filter out instances with high label disagreement amongst its k nearest neighbors.

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd390>) Data
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd3c8>) Predicted class labels

Return type Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd400>, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd438>]

Returns Filtered data and labels.

fit (*X*, *Y*, *classes=None*)

Build KDTrees for each prediction class.

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd4e0>) Data
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd518>) Target labels, either one-hot encoded or the actual class label.
- classes (Optional[int]) Number of prediction classes, needs to be provided if Y equals the predicted class.

Return type None

$score(X, Y, k=2, dist_type='point')$

Calculate trust scores = ratio of distance to closest class other than the predicted class to distance to predicted class.

Parameters

- **X** (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd550>) Instances to calculate trust score for.
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd588>) Either prediction probabilities for each class or the predicted class.
- **k** (int) Number of nearest neighbors used for distance calculation.
- **dist_type** (str) Use either the distance to the k-nearest point (dist_type = 'point') or the average distance from the first to the k-nearest point in the data (dist_type = 'mean').

Return type Tuple[<sphinx.ext.autodoc.importer. MockObject object at 0x7fba345bd5c0>, <sphinx.ext.autodoc.importer. MockObject object at 0x7fba345bd5f8>]

Returns *Batch with trust scores and the closest not predicted class.*

Submodules

alibi.confidence.trustscore module

```
class alibi.confidence.trustscore.TrustScore (k_filter=10, alpha=0.0, filter_type=None,
                                                          leaf\ size=40,
                                                                              metric='euclidean',
                                                          dist_filter_type='point')
```

Bases: object

alpha=0.0, $leaf_size=40$, ___init___(*k_filter=10*, filter_type=None, metric='euclidean', dist_filter_type='point') Initialize trust scores.

Parameters

- **k_filter** (int) Number of neighbors used during either kNN distance or probability filtering.
- alpha (float) Fraction of instances to filter out to reduce impact of outliers.
- filter type (Optional[str]) Filter method; either 'distance knn' or 'probability knn'
- leaf_size (int) Number of points at which to switch to brute-force. Affects speed and memory required to build trees. Memory to store the tree scales with n_samples / leaf size.
- metric (str) Distance metric used for the tree. See sklearn's DistanceMetric class for a list of available metrics.
- dist_filter_type (str) Use either the distance to the k-nearest point (dist_filter_type = 'point') or the average distance from the first to the k-nearest point in the data (dist_filter_type = 'mean').

Return type None

$filter_by_distance_knn(X)$

Filter out instances with low kNN density. Calculate distance to k-nearest point in the data for each instance and remove instances above a cutoff distance.

```
(<sphinx.ext.autodoc.importer._MockObject object at
Parameters X
   0x7fba345bd320>) - Data
```

Return type <sphinx.ext.autodoc.importer. MockObject object at 0x7fba345bd358>

Returns Filtered data.

$filter_by_probability_knn(X, Y)$

Filter out instances with high label disagreement amongst its k nearest neighbors.

Parameters

- (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd390>) - Data
- (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd3c8>) - Predicted class labels

21.1. alibi package 127 **Return type** Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd400>, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd438>]

Returns Filtered data and labels.

fit (*X*, *Y*, *classes=None*)

Build KDTrees for each prediction class.

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd4e0>) Data
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd518>) Target labels, either one-hot encoded or the actual class label.
- classes (Optional[int]) Number of prediction classes, needs to be provided if Y equals the predicted class.

Return type None

```
score(X, Y, k=2, dist\_type='point')
```

Calculate trust scores = ratio of distance to closest class other than the predicted class to distance to predicted class.

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd550>) Instances to calculate trust score for.
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd588>) Either prediction probabilities for each class or the predicted class.
- **k** (int) Number of nearest neighbors used for distance calculation.
- **dist_type** (str) Use either the distance to the k-nearest point (dist_type = 'point') or the average distance from the first to the k-nearest point in the data (dist_type = 'mean').

Return type Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd5c0>, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba345bd5f8>]

Returns Batch with trust scores and the closest not predicted class.

alibi.explainers package

The 'alibi.explainers' module includes feature importance, counterfactual and anchor-based explainers.

```
class alibi.explainers.AnchorTabular(predict_fn, feature_names, categorical_names={})
    Bases: object
```

```
__init__ (predict_fn, feature_names, categorical_names={})
Initialize the anchor tabular explainer.
```

Parameters

- predict_fn (Callable) Model prediction function
- feature names (list) List with feature names
- categorical_names (dict) Dictionary where keys are feature columns and values are the categories for the feature

Return type None

add_names_to_exp (hoeffding_exp, mapping)

Add feature names to explanation dictionary.

Parameters

- hoeffding_exp (dict) Dict with anchors and additional metadata
- mapping (dict) -

Dict: key = feature column or bin for ordinal features in categorized data; value = tuple containing (feature column, flag for categorical/ordinal feature, feature value or bin value)

Return type None

explain (X, threshold=0.95, delta=0.1, tau=0.15, batch_size=100, max_anchor_size=None, desired_label=None, **kwargs)
Explain instance and return anchor with metadata.

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34573da0>) Instance to be explained
- threshold (float) Minimum precision threshold
- **delta** (float) Used to compute beta
- tau (float) Margin between lower confidence bound and minimum precision or upper bound
- batch_size (int) Batch size used for sampling
- $\bullet \ \ \text{max_anchor_size} \ (\texttt{Optional[int]}) Maximum \ number \ of \ features \ in \ anchor$
- desired_label (Optional[int]) Label to use as true label for the instance to be explained

Return type dict

Returns *explanation* – Dictionary containing the anchor explaining the instance with additional metadata

fit (*train_data*, *disc_perc*=[25, 50, 75])

Fit discretizer to train data to bin ordinal features and compute statistics for ordinal features.

Parameters

- train_data (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3456b438>) Representative sample from the training data
- $\mbox{disc_perc}$ (list) List with percentiles (int) used for discretization

Return type None

get_sample_fn (X, desired_label=None)

Create sampling function and mapping dictionary between categorized data and the feature types and values.

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34573668>) Instance to be explained
- desired_label (Optional[int]) Label to use as true label for the instance to be explained

21.1. alibi package

Return type Tuple[Callable, dict]

Returns

- sample_fn Function returning raw and categorized sampled data, and labels
- mapping -

Dict: key = feature column or bin for ordinal features in categorized data; value = tuple containing (feature column, flag for categorical/ordinal feature, feature value or bin value)

Sample data from training set but keep features which are present in the proposed anchor the same as the feature value or bin (for ordinal features) as the instance to be explained.

Parameters

- conditions_eq(dict) Dict: key = feature column; value = categorical feature value
- conditions_neq (dict) Not used at the moment
- conditions_geq (dict) Dict: key = feature column; value = bin value of ordinal feature where bin value < feature value
- conditions_leq (dict) Dict: key = feature column; value = bin value of ordinal feature where bin value >= feature value
- num samples (int) Number of samples used when sampling from training set

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3456b470>

Returns sample – Sampled data from training set

```
class alibi.explainers.AnchorText (nlp, predict_fn)
    Bases: object
    __init__ (nlp, predict_fn)
```

Parameters

- nlp (spacy.language.Language) spaCy object
- predict_fn (Callable) Model prediction function

Return type None

Initialize anchor text explainer.

```
explain (text, threshold=0.95, delta=0.1, tau=0.15, batch_size=100, desired_label=None, use_proba=False, use_unk=True, **kwargs)

Explain instance and return anchor with metadata.
```

Parameters

- text (str) Text instance to be explained
- threshold (float) Minimum precision threshold
- **delta** (float) Used to compute beta
- tau (float) Margin between lower confidence bound and minimum precision or upper bound
- batch_size (int) Batch size used for sampling
- **desired_label** (Optional[int]) Label to use as true label for the instance to be explained

- use_proba (bool) Bool whether to sample according to a similarity score with the corpus embeddings. use unk needs to be False in order for use proba equals True to work.
- use_unk (bool) If True, perturbation distribution will replace words randomly with UNKs. If False, words will be replaced by similar words using word embeddings.

Return type dict

Returns *explanation* – Dictionary containing the anchor explaining the instance with additional metadata

get_sample_fn (text, desired_label=None, use_proba=False, use_unk=True)

Create sampling function as well as lists with the words and word positions in the text.

Parameters

- text (str) Text instance to be explained
- desired_label (Optional[int]) Label to use as true label for the instance to be explained
- **use_proba** (bool) Bool whether to sample according to a similarity score with the corpus embeddings
- **use_unk** (bool) If True, perturbation distribution will replace words randomly with UNKs. If False, words will be replaced by similar words using word embeddings.

Return type Tuple[list, list, Callable]

Returns

- words List with words in the text
- positions List with positions of the words in the text
- sample_fn Function returning perturbed text instances, matrix with flags for perturbed words and labels

Parameters

- text (str) Text instance to be explained
- **present** (list) List with the word index in the text for the words in the proposed anchor
- n (int) Number of samples used when sampling from the corpus
- proba change (float) Probability of a word being changed
- top_n (int) Keep only top_n instances from similar words in the corpus
- **forbidden** (set) Forbidden lemmas
- forbidden_tags (set) Forbidden POS tags
- forbidden_words (set) Forbidden words
- pos (set) POS that can be changed during perturbation
- **use_proba** (bool) Bool whether to sample according to a similarity score with the corpus embeddings
- temperature (float) Sample weight hyperparameter if use_proba equals True

Return type Tuple[list, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3457fd68>]

Returns

- raw_data List with num_samples of perturbed text instance
- *data* Matrix with 1s and 0s indicating whether a word in the text has not been perturbed for each sample

class alibi.explainers.AnchorImage (predict_fn, image_shape, segmentation_fn='slic', segmentation_kwargs={'compactness': 10, 'n_segments': 10, 'sigma': 0.5}, images_background=None)

Bases: object

__init__ (predict_fn, image_shape, segmentation_fn='slic', segmentation_kwargs={'compactness': 10, 'n_segments': 10, 'sigma': 0.5}, images_background=None)
Initialize anchor image explainer.

Parameters

- **predict_fn** (Callable) Model prediction function.
- image_shape (tuple) Shape of the image to be explained.
- **segmentation_fn** (Any) Any of the built in segmentation function strings: 'felzen-szwalb', 'slic' or 'quickshift' or a custom segmentation function (callable) which returns an image mask with labels for each superpixel. See http://scikit-image.org/docs/dev/api/skimage.segmentation.html for more info.
- **segmentation_kwargs** (dict) Keyword arguments for the built in segmentation functions.
- images_background (Optional[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34504550>]) Images to overlay superpixels on.

Return type None

explain (*image*, *threshold*=0.95, *delta*=0.1, *tau*=0.15, *batch_size*=100, *p_sample*=0.5, **kwargs) Explain instance and return anchor with metadata.

Parameters

- image (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345047b8>) Image to be explained
- threshold (float) Minimum precision threshold
- **delta** (float) Used to compute beta
- tau (float) Margin between lower confidence bound and minimum precision of upper bound
- batch_size (int) Batch size used for sampling
- **p_sample** (float) Probability for a pixel to be represented by the average value of its superpixel

Returns *explanation* – Dictionary containing the anchor explaining the instance with additional metadata

get_sample_fn (image, p_sample=0.5)

Create sampling function and superpixel mask.

Parameters

- image (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345046d8>) Image to be explained
- **p_sample** (float) Probability for a pixel to be represented by the average value of its superpixel or the pixel value of a superimposed image

Return type Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34504710>, Callable]

Returns

- segments Superpixels generated from image
- *sample_fn* Function returning the sampled images with label

static overlay_mask (image, segments, $mask_features$, scale=(0, 255)) Overlay image with mask described by the mask features.

Parameters

- image (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345047f0>) Image to be explained
- **segments** (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34504828>) Superpixels
- mask_features (list) List with superpixels present in mask
- scale (tuple) Pixel scale for masked image

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba34504860>

Returns Image overlaid with mask.

Bases: object

__init__ (sess, predict, mode, shape, kappa=0.0, beta=0.1, feature_range=(-10000000000.0, 1000000000.0), gamma=0.0, ae_model=None, learning_rate_init=0.01, max_iterations=1000, c_init=10.0, c_steps=10, eps=(0.001, 0.001), clip=(-100.0, 100.0), update_num_grad=1, no_info_val=None, write_dir=None)
Initialize contrastive explanation method. Paper: https://arxiv.org/abs/1802.07623

Parameters

- **sess** (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cb00>) TensorFlow session
- **predict** (Callable) Keras or TensorFlow model or any other model's prediction function returning class probabilities
- mode (str) Find pertinant negatives ('PN') or pertinant positives ('PP')
- **shape** (tuple) Shape of input data starting with batch size
- kappa (float) Confidence parameter for the attack loss term
- beta (float) Regularization constant for L1 loss term
- **feature_range** (tuple) Tuple with min and max ranges to allow for perturbed instances. Min and max ranges can be floats or numpy arrays with dimension (1x nb of features) for feature-wise ranges

- gamma (float) Regularization constant for optional auto-encoder loss term
- ae_model (Optional[Callable]) Optional auto-encoder model used for loss regularization
- learning_rate_init (float) Initial learning rate of optimizer
- max_iterations (int) Maximum number of iterations for finding a PN or PP
- c_init (float) Initial value to scale the attack loss term
- c_steps (int) Number of iterations to adjust the constant scaling the attack loss term
- **eps** (tuple) If numerical gradients are used to compute dL/dx = (dL/dp) * (dp/dx), then eps[0] is used to calculate dL/dp and eps[1] is used for dp/dx. eps[0] and eps[1] can be a combination of float values and numpy arrays. For eps[0], the array dimension should be (1x nb of prediction categories) and for eps[1] it should be (1x nb of features)
- clip (tuple) Tuple with min and max clip ranges for both the numerical gradients and the gradients obtained from the TensorFlow graph
- update_num_grad (int) If numerical gradients are used, they will be updated every update_num_grad iterations
- no_info_val (Union[float, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cba8>, None]) Global or feature-wise value considered as containing no information
- write_dir (Optional[str]) Directory to write tensorboard files to

Return type None

attack (X, Y, verbose=False)

Find pertinant negative or pertinant positive for instance X using a fast iterative shrinkage-thresholding algorithm (FISTA).

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34510048>) Instance to attack
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34510080>) Labels for X
- **verbose** (bool) Print intermediate results of optimization if True

Return type Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345100b8>, Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345100f0>, <sphinx.ext.autodoc.importer. MockObject object at 0x7fba34510128>]]

Returns Overall best attack and gradients for that attack.

explain(X, Y=None, verbose=False)

Explain instance and return PP or PN with metadata.

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34510240>) Instances to attack
- Y (Optional[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34510278>]) Labels for X
- **verbose** (bool) Print intermediate results of optimization if True

Return type dict

Returns explanation – Dictionary containing the PP or PN with additional metadata

fit (train_data, no_info_type='median')

Get 'no information' values from the training data.

Parameters

- train_data (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450ccc0>) Representative sample from the training data
- no_info_type (str) Median or mean value by feature supported

Return type None

$get_gradients(X, Y)$

Compute numerical gradients of the attack loss term: dL/dx = (dL/dP)*(dP/dx) with $L = loss_attack_s$; P = predict; $x = adv_s$

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cf60>) Instance around which gradient is evaluated
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cf98>) One-hot representation of instance labels

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cfd0>

Returns Array with gradients.

loss_fn (pred_proba, Y)

Compute the attack loss.

Parameters

- pred_proba (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450ccf8>) Prediction probabilities of an instance
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cd30>) One-hot representation of instance labels

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cd68>

Returns Loss of the attack.

perturb (X, eps, proba=False)

Apply perturbation to instance or prediction probabilities. Used for numerical calculation of gradients.

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cda0>) Array to be perturbed
- **eps** (Union[float, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cdd8>]) Size of perturbation
- **proba** (bool) If True, the net effect of the perturbation needs to be 0 to keep the sum of the probabilities equal to 1

Return type Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450ce80>, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450ceb8>]

Returns Instances where a positive and negative perturbation is applied.

21.1. alibi package

Bases: object

__init__ (sess, predict_fn, shape, distance_fn='ll', target_proba=1.0, target_class='other', max_iter=1000, early_stop=50, lam_init=0.1, max_lam_steps=10, tol=0.05, learning_rate_init=0.1, feature_range=(-100000000000.0, 10000000000.0), eps=0.01, init='identity', decay=True, write_dir=None, debug=False)
Initialize counterfactual explanation method based on Wachter et al. (2017)

Parameters

- **sess** (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3451d978>) TensorFlow session
- predict_fn (Union[Callable, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3451d9b0>, Forwardref]) Keras or TensorFlow model or any other model's prediction function returning class probabilities
- **shape** (Tuple[int,...]) Shape of input data starting with batch size
- distance_fn (str) Distance function to use in the loss term
- target_proba (float) Target probability for the counterfactual to reach
- target_class (Union[str, int]) Target class for the counterfactual to reach, one of 'other', 'same' or an integer denoting desired class membership for the counterfactual instance
- max_iter (int) Maximum number of interations to run the gradient descent for (inner loop)
- early_stop (int) Number of steps after which to terminate gradient descent if all or none of found instances are solutions
- lam_init (float) Initial regularization constant for the prediction part of the Wachter loss
- max_lam_steps (int) Maximum number of times to adjust the regularization constant (outer loop) before terminating the search
- tol (float) Tolerance for the counterfactual target probability
- learning_rate_init Initial learning rate for each outer loop of lambda
- **feature_range** (Union[Tuple, str]) Tuple with min and max ranges to allow for perturbed instances. Min and max ranges can be floats or numpy arrays with dimension (1 x nb of features) for feature-wise ranges
- eps (Union[float, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3451db38>]) Gradient step sizes used in calculating numerical gradients, defaults to a single value for all features, but can be passed an array for feature-wise step sizes
- init (str) Initialization method for the search of counterfactuals, currently must be 'identity'
- decay (bool) Flag to decay learning rate to zero for each outer loop over lambda

- write_dir (str) Directory to write Tensorboard files to
- **debug** (bool) Flag to write Tensorboard summaries for debugging

Return type None

explain(X)

Explain an instance and return the counterfactual with metadata.

Parameters X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3451dd68>) - Instance to be explained

Return type dict

Returns *explanation - a dictionary containing the counterfactual with additional metadata.*

fit(X, y)

Fit method - currently unused as the counterfactual search is fully unsupervised.

Return type None

class alibi.explainers.CounterFactualProto(sess, predict, shape, kappa=0.0,10000000000.0), gamma=0.0, ae model=None. enc model=None. theta=0.0, use_kdtree=False, learning_rate_init=0.01, $max_iterations=1000$, c init=10.0, c steps=10, eps=(0.001, 0.001),clip=(-1000.0, 1000.0), update num grad=1,*write dir=None*)

Bases: object

init (sess. kappa=0.0, beta=0.1, predict, shape, 100000000000.0), gamma=0.0, ae_model=None, enc_model=None, theta=0.0, *learning_rate_init=0.01*, max_iterations=1000, use_kdtree=False, c init=10.0, c_steps=10, eps=(0.001, 0.001), clip=(-1000.0, 1000.0), update_num_grad=1, *write dir=None*) Initialize prototypical counterfactual method.

Parameters

- **sess** (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516048>) TensorFlow session
- predict (Union[Callable, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516080>, Forwardref]) Keras or TensorFlow model or any other model's prediction function returning class probabilities
- **shape** (tuple) Shape of input data starting with batch size
- kappa (float) Confidence parameter for the attack loss term
- beta (float) Regularization constant for L1 loss term
- **feature_range** (tuple) Tuple with min and max ranges to allow for perturbed instances. Min and max ranges can be floats or numpy arrays with dimension (1x nb of features) for feature-wise ranges
- gamma (float) Regularization constant for optional auto-encoder loss term
- ae_model (Union[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516128>, Forwardref]) Optional auto-encoder model used for loss regularization

21.1. alibi package 137

- enc_model (Union[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345161d0>, Forwardref]) Optional encoder model used to guide instance perturbations towards a class prototype
- theta (float) Constant for the prototype search loss term
- use_kdtree (bool) Whether to use k-d trees for the prototype loss term if no encoder is available
- learning_rate_init (float) Initial learning rate of optimizer
- max_iterations (int) Maximum number of iterations for finding a counterfactual
- c_init (float) Initial value to scale the attack loss term
- c_steps (int) Number of iterations to adjust the constant scaling the attack loss term
- **eps** (tuple) If numerical gradients are used to compute dL/dx = (dL/dp) * (dp/dx), then eps[0] is used to calculate dL/dp and eps[1] is used for dp/dx. eps[0] and eps[1] can be a combination of float values and numpy arrays. For eps[0], the array dimension should be (1x nb of prediction categories) and for eps[1] it should be (1x nb of features)
- clip (tuple) Tuple with min and max clip ranges for both the numerical gradients and the gradients obtained from the TensorFlow graph
- update_num_grad (int) If numerical gradients are used, they will be updated every update_num_grad iterations
- write_dir (str) Directory to write tensorboard files to

Return type None

attack (*X*, *Y*, target_class=None, threshold=0.0, verbose=False, print_every=100, log_every=100) Find a counterfactual (CF) for instance X using a fast iterative shrinkage-thresholding algorithm (FISTA).

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345165f8>) Instance to attack
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516630>) Labels for X as one-hot-encoding
- target_class (Optional[list]) List with target classes used to find closest prototype. If None, the nearest prototype except for the predict class on the instance is used.
- **threshold** (float) Threshold level for the ratio between the distance of the counterfactual to the prototype of the predicted class for the original instance over the distance to the prototype of the predicted class for the counterfactual. If the trust score is below the threshold, the proposed counterfactual does not meet the requirements.
- verbose (bool) Print intermediate results of optimization if True
- print_every (int) Print frequency if verbose is True
- log_every (int) Tensorboard log frequency if write directory is specified

Return type Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516668>, Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345166a0>, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba345166d8>]]

Returns Overall best attack and gradients for that attack.

Explain instance and return counterfactual with metadata.

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345167f0>) Instances to attack
- Y (Optional[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516828>]) Labels for X as one-hot-encoding
- target_class (Optional[list]) List with target classes used to find closest prototype. If None, the nearest prototype except for the predict class on the instance is used.
- **threshold** (float) Threshold level for the ratio between the distance of the counterfactual to the prototype of the predicted class for the original instance over the distance to the prototype of the predicted class for the counterfactual. If the trust score is below the threshold, the proposed counterfactual does not meet the requirements.
- **verbose** (bool) Print intermediate results of optimization if True
- print_every (int) Print frequency if verbose is True
- log_every (int) Tensorboard log frequency if write directory is specified

Return type dict

Returns *explanation* – Dictionary containing the counterfactual with additional metadata

fit (train_data, trustscore_kwargs=None)

Get prototypes for each class using the encoder or k-d trees. The prototypes are used for the encoder loss term or to calculate the optional trust scores.

Parameters

- train_data (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516278>) Representative sample from the training data
- trustscore_kwargs (Optional[dict]) Optional arguments to initialize the trust scores method

Return type None

$get_gradients(X, Y)$

Compute numerical gradients of the attack loss term: dL/dx = (dL/dP)*(dP/dx) with $L = loss_attack_s$; P = predict; $x = adv_s$

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516518>) Instance around which gradient is evaluated
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516550>) One-hot representation of instance labels

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516588>

Returns Array with gradients.

loss_fn (pred_proba, Y)

Compute the attack loss.

Parameters

- pred_proba (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345162b0>) Prediction probabilities of an instance
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345162e8>) One-hot representation of instance labels

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516320>

Returns Loss of the attack.

```
perturb (X, eps, proba=False)
```

Apply perturbation to instance or prediction probabilities. Used for numerical calculation of gradients.

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516358>) Array to be perturbed
- **eps** (Union[float, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516390>]) Size of perturbation
- **proba** (bool) If True, the net effect of the perturbation needs to be 0 to keep the sum of the probabilities equal to 1

Return type Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516438>, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516470>]

Returns Instances where a positive and negative perturbation is applied.

score (X, adv_class, orig_class, eps=1e-10)

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345165c0>) Instance to encode and calculate distance metrics for
- adv_class (int) Predicted class on the perturbed instance
- \bullet $\mbox{\tt orig_class}$ (int) Predicted class on the original instance
- eps (float) Small number to avoid dividing by 0

Return type float

Returns

- Ratio between the distance to the prototype of the predicted class for the original instance and
- the prototype of the predicted class for the perturbed instance.

Submodules

alibi.explainers.anchor_base module

Return type None

Parameters

- **sample_fn** (Callable) Function used to sample from training set which returns (raw) data and labels
- **delta** (float) Used to compute beta
- epsilon (float) Precision bound tolerance for convergence
- batch size (int) Number of samples
- desired_confidence (float) Desired level of precision, tau in paper
- beam_size (int) Beam width
- **verbose** (bool) Whether to print intermediate output
- epsilon_stop (float) Confidence bound margin around desired precision
- min_samples_start (int) Min number of initial samples
- max_anchor_size (Optional[int]) Max number of features in anchor
- **verbose_every** (int) Whether to print intermediate output every verbose_every steps
- stop_on_first (bool) Stop on first valid anchor found
- coverage_samples (int) Number of samples used to compute coverage
- data_type (Optional[str]) Data type for raw data

Return type dict

Returns Explanation dictionary containing anchors with metadata like coverage and precision.

static compute_beta(n_features, t, delta)

Parameters

- n_features (int) Number of candidate anchors
- t (int) Iteration number
- delta (float) -

Return type float

Returns Level used to update upper and lower precision bounds.

static dlow_bernoulli(p, level, n_iter=17)

Update lower precision bound for a candidate anchor dependent on the KL-divergence.

Parameters

- p (float) Precision of candidate anchor
- level (float) beta / nb of samples
- n_iter (int) Number of iterations during lower bound update

Return type float

Returns Updated lower precision bound

static dup_bernoulli(p, level, n_iter=17)

Update upper precision bound for a candidate anchor dependent on the KL-divergence.

Parameters

• p (float) - Precision of candidate anchor

- level (float) beta / nb of samples
- n_iter (int) Number of iterations during lower bound update

Return type float

Returns Updated upper precision bound

static get_anchor_from_tuple(t, state)

Parameters

- t (tuple) Anchor
- state (dict) Dictionary with the relevant metrics like coverage and samples for candidate anchors

Return type dict

Returns Anchor dictionary with anchor features and additional metadata.

static get_initial_statistics(tuples, state)

Parameters

- tuples (list) Candidate anchors
- state (dict) Dictionary with the relevant metrics like coverage and samples for candidate anchors

Return type dict

Returns Dictionary with lists containing nb of samples used and where sample predictions equal the desired label.

static get_sample_fns (sample_fn, tuples, state, data_type=None)

Parameters

- sample_fn (Callable) Sample function, returns both raw and categorized data as well as labels
- tuples (list) List of anchor candidates
- **state** (dict) Dictionary with the relevant metrics like coverage and samples for candidate anchors
- data_type (Optional[str]) Data type for raw data

Return type list

Returns *List with sample functions for each candidate anchor.*

static kl_bernoulli(p, q)

Compute KL-divergence between 2 probabilities p and q.

Parameters

- **p** (float) Probability
- **q**(float) Probability

Return type float

Returns *KL-divergence*

static lucb(sample_fns, initial_stats, epsilon, delta, batch_size, top_n, verbose=False, verbose every=1)

Parameters

- sample_fns (list) List with sample functions for each candidate anchor
- initial_stats (dict) Dictionary with lists containing nb of samples used and where sample predictions equal the desired label
- **epsilon** (float) Precision bound tolerance for convergence
- **delta** (float) Used to compute beta
- batch_size (int) Number of samples
- top_n (int) Min of beam width size or number of candidate anchors
- verbose (bool) Whether to print intermediate output
- **verbose_every** (int) Whether to print intermediate output every verbose_every steps

 $Return \ type \ \texttt{Sequence}[+T_co]$

Returns Indices of best anchor options. Number of indices equals min of beam width or nb of candidate anchors.

static make_tuples (previous_best, state)

Parameters

- previous_best (list) List with tuples of anchor candidates
- state (dict) Dictionary with the relevant metrics like coverage and samples for candidate anchors

Return type list

Returns *List with tuples of candidate anchors with additional metadata.*

alibi.explainers.anchor_base.matrix_subset (matrix, n_samples)

Parameters

- matrix (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34573198>) Matrix to sample from
- n_samples (int) Number of samples returned

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba345731d0>

Returns Sample of the input matrix.

alibi.explainers.anchor explanation module

```
___init___(exp_type, exp_map)
```

Class used to unpack the anchors and metadata from the explainer dictionary.

Parameters

- **exp_type** (str) Type of explainer: tabular, text or image
- **exp_map** (dict) Dictionary with the anchors and explainer metadata for an observation

Return type None

```
coverage (partial_index=None)
```

Parameters partial_index (Optional[int]) – Get the anchor coverage until a certain index. For example, if the anchor has precisions [0.1, 0.5, 0.95] and partial_index=1, this will return 0.5.

Return type float

Returns coverage – Anchor coverage

examples (only different prediction=False, only same prediction=False, partial index=None)

Parameters

- only_different_prediction (bool) If True, will only return examples where the anchor makes a different prediction than the original model
- only_same_prediction (bool) If True, will only return examples where the anchor makes the same prediction than the original model
- partial_index (Optional[int]) Get the examples from the partial anchor until a certain index

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba34573630>

Returns Examples covered by anchor

features (partial_index=None)

Parameters partial_index (Optional[int]) – Get the anchor until a certain index. For example, if the anchor uses features (1, 2, 3) and partial_index=1, this will return [1, 2].

Return type list

Returns *features* – Features used in the anchor conditions.

names (partial index=None)

Parameters partial_index (Optional[int]) - Get the anchor until a certain index. For example, if the anchor is (A=1,B=2,C=2) and partial_index=1, this will return ["A=1", "B=2"].

Return type list

Returns names – Names with the anchor conditions

precision (partial_index=None)

Parameters partial_index (Optional[int]) – Get the anchor precision until a certain index. For example, if the anchor has precisions [0.1, 0.5, 0.95] and partial_index=1, this will return 0.5.

Return type float

Returns precision – Anchor precision

alibi.explainers.anchor image module

__init__ (predict_fn, image_shape, segmentation_fn='slic', segmentation_kwargs={'compactness': 10, 'n_segments': 10, 'sigma': 0.5}, images_background=None)
Initialize anchor image explainer.

Parameters

- predict_fn (Callable) Model prediction function.
- image_shape (tuple) Shape of the image to be explained.
- **segmentation_fn** (Any) Any of the built in segmentation function strings: 'felzen-szwalb', 'slic' or 'quickshift' or a custom segmentation function (callable) which returns an image mask with labels for each superpixel. See http://scikit-image.org/docs/dev/api/skimage.segmentation.html for more info.
- **segmentation_kwargs** (dict) Keyword arguments for the built in segmentation functions.
- images_background (Optional[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34504550>]) Images to overlay superpixels on.

Return type None

explain (*image*, *threshold*=0.95, *delta*=0.1, *tau*=0.15, *batch_size*=100, *p_sample*=0.5, **kwargs) Explain instance and return anchor with metadata.

Parameters

- image (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345047b8>) Image to be explained
- threshold (float) Minimum precision threshold
- **delta** (float) Used to compute beta
- tau (float) Margin between lower confidence bound and minimum precision of upper bound
- batch_size (int) Batch size used for sampling
- **p_sample** (float) Probability for a pixel to be represented by the average value of its superpixel

Returns *explanation* – Dictionary containing the anchor explaining the instance with additional metadata

get_sample_fn (image, p_sample=0.5)

Create sampling function and superpixel mask.

Parameters

- image (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345046d8>) Image to be explained
- **p_sample** (float) Probability for a pixel to be represented by the average value of its superpixel or the pixel value of a superimposed image

Return type Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34504710>, Callable]

Returns

- segments Superpixels generated from image
- sample_fn Function returning the sampled images with label

21.1. alibi package

```
static overlay_mask (image, segments, mask_features, scale=(0, 255)) Overlay image with mask described by the mask features.
```

Parameters

- image (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345047f0>) Image to be explained
- **segments** (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34504828>) Superpixels
- mask_features (list) List with superpixels present in mask
- scale (tuple) Pixel scale for masked image

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba34504860>

Returns *Image overlaid with mask.*

alibi.explainers.anchor_tabular module

```
 \textbf{class} \  \, \textbf{alibi.explainers.anchor\_tabular.AnchorTabular} \, (\textit{predict\_fn}, \, \textit{feature\_names}, \, \textit{cate-gorical\_names=\{\}}) \\  \, \textbf{Bases: object}
```

__init__ (predict_fn, feature_names, categorical_names={})
Initialize the anchor tabular explainer.

Parameters

- predict_fn (Callable) Model prediction function
- **feature_names** (list) List with feature names
- categorical_names (dict) Dictionary where keys are feature columns and values are the categories for the feature

Return type None

```
add_names_to_exp (hoeffding_exp, mapping)
```

Add feature names to explanation dictionary.

Parameters

- hoeffding_exp (dict) Dict with anchors and additional metadata
- mapping (dict) -

Dict: key = feature column or bin for ordinal features in categorized data; value = tuple containing (feature column, flag for categorical/ordinal feature, feature value or bin value)

Return type None

```
explain (X, threshold=0.95, delta=0.1, tau=0.15, batch_size=100, max_anchor_size=None, de-sired_label=None, **kwargs)

Explain instance and return anchor with metadata.
```

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34573da0>) Instance to be explained
- threshold (float) Minimum precision threshold
- **delta** (float) Used to compute beta

- tau (float) Margin between lower confidence bound and minimum precision or upper bound
- batch_size (int) Batch size used for sampling
- max_anchor_size (Optional[int]) Maximum number of features in anchor
- **desired_label** (Optional[int]) Label to use as true label for the instance to be explained

Return type dict

Returns explanation – Dictionary containing the anchor explaining the instance with additional metadata

fit (*train_data*, *disc_perc=*[25, 50, 75])

Fit discretizer to train data to bin ordinal features and compute statistics for ordinal features.

Parameters

- train_data (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3456b438>) Representative sample from the training data
- disc_perc (list) List with percentiles (int) used for discretization

Return type None

get_sample_fn (X, desired_label=None)

Create sampling function and mapping dictionary between categorized data and the feature types and values.

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34573668>) Instance to be explained
- **desired_label** (Optional[int]) Label to use as true label for the instance to be explained

Return type Tuple[Callable, dict]

Returns

- sample_fn Function returning raw and categorized sampled data, and labels
- mapping -

Dict: key = feature column or bin for ordinal features in categorized data; value = tuple containing (feature column, flag for categorical/ordinal feature, feature value or bin value)

Sample data from training set but keep features which are present in the proposed anchor the same as the feature value or bin (for ordinal features) as the instance to be explained.

Parameters

- conditions_eq(dict) Dict: key = feature column; value = categorical feature value
- conditions_neq (dict) Not used at the moment
- conditions_geq (dict) Dict: key = feature column; value = bin value of ordinal feature where bin value < feature value
- **conditions_leq** (dict) Dict: key = feature column; value = bin value of ordinal feature where bin value >= feature value

21.1. alibi package

• num_samples (int) - Number of samples used when sampling from training set

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3456b470>

Returns sample – Sampled data from training set

alibi.explainers.anchor_text module

```
class alibi.explainers.anchor_text.AnchorText (nlp, predict_fn)
    Bases: object
    __init___(nlp, predict_fn)
    Initialize anchor text explainer.
```

Parameters

- nlp (spacy.language.Language) spaCy object
- predict_fn (Callable) Model prediction function

Return type None

```
explain (text, threshold=0.95, delta=0.1, tau=0.15, batch_size=100, desired_label=None, use_proba=False, use_unk=True, **kwargs)

Explain instance and return anchor with metadata.
```

Parameters

- text (str) Text instance to be explained
- threshold (float) Minimum precision threshold
- **delta** (float) Used to compute beta
- tau (float) Margin between lower confidence bound and minimum precision or upper bound
- batch_size (int) Batch size used for sampling
- **desired_label** (Optional[int]) Label to use as true label for the instance to be explained
- **use_proba** (bool) Bool whether to sample according to a similarity score with the corpus embeddings. use_unk needs to be False in order for use_proba equals True to work.
- use_unk (bool) If True, perturbation distribution will replace words randomly with UNKs. If False, words will be replaced by similar words using word embeddings.

Return type dict

Returns explanation – Dictionary containing the anchor explaining the instance with additional metadata

```
get_sample_fn (text, desired_label=None, use_proba=False, use_unk=True)
Create sampling function as well as lists with the words and word positions in the text.
```

Parameters

- text (str) Text instance to be explained
- desired_label (Optional[int]) Label to use as true label for the instance to be explained
- **use_proba** (bool) Bool whether to sample according to a similarity score with the corpus embeddings

• use_unk (bool) – If True, perturbation distribution will replace words randomly with UNKs. If False, words will be replaced by similar words using word embeddings.

Return type Tuple[list, list, Callable]

Returns

- words List with words in the text
- positions List with positions of the words in the text
- sample_fn Function returning perturbed text instances, matrix with flags for perturbed words and labels

Parameters

- text (str) Text instance to be explained
- present (list) List with the word index in the text for the words in the proposed anchor
- n (int) Number of samples used when sampling from the corpus
- proba_change (float) Probability of a word being changed
- top_n (int) Keep only top_n instances from similar words in the corpus
- **forbidden** (set) Forbidden lemmas
- forbidden tags (set) Forbidden POS tags
- forbidden_words (set) Forbidden words
- **pos** (set) POS that can be changed during perturbation
- **use_proba** (bool) Bool whether to sample according to a similarity score with the corpus embeddings
- temperature (float) Sample weight hyperparameter if use_proba equals True

Return type Tuple[list, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3457fd68>]

Returns

- raw_data List with num_samples of perturbed text instance
- data Matrix with 1s and 0s indicating whether a word in the text has not been perturbed for each sample

 $\textbf{class} \ \, \text{alibi.explainers.anchor_text.Neighbors} \, (nlp_obj, n_similar = 500, w_prob = -15.0) \\ \, \text{Bases: object}$

```
__init__ (nlp_obj, n_similar=500, w_prob=-15.0)
```

Initialize class identifying neighbouring words from the embedding for a given word.

Parameters

- nlp_obj (spacy.language.Language) spaCy model
- n_similar (int) Number of similar words to return
- w_prob (float) Smoothed log probability estimate of token's type

Return type None

```
neighbors (word)
```

Find similar words for a certain word in the vocabulary.

Parameters word (str) - Word for which we need to find similar words

Return type list

Returns A list containing tuples with the similar words and similarity scores.

alibi.explainers.cem module

```
class alibi.explainers.cem.CEM(sess,
                                                predict,
                                                          mode.
                                                                            kappa=0.0,
                                                                                          beta=0.1,
                                                                   shape,
                                                                                   10000000000.0),
                                         feature_range=(-10000000000.0,
                                                                            learning_rate_init=0.01,
                                         gamma=0.0,
                                                        ae_model=None,
                                         max\_iterations=1000, c\_init=10.0, c\_steps=10, eps=(0.001,
                                         0.001),
                                                    clip = (-100.0,
                                                                    100.0),
                                                                               update_num_grad=1,
                                         no info val=None, write dir=None)
```

Bases: object

__init__ (sess, predict, mode, shape, kappa=0.0, beta=0.1, feature_range=(-10000000000.0, 10000000000.0), gamma=0.0, ae_model=None, learning_rate_init=0.01, max_iterations=1000, c_init=10.0, c_steps=10, eps=(0.001, 0.001), clip=(-100.0, 100.0), update_num_grad=1, no_info_val=None, write_dir=None)
Initialize contrastive explanation method. Paper: https://arxiv.org/abs/1802.07623

Parameters

- **sess** (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cb00>) TensorFlow session
- predict (Callable) Keras or TensorFlow model or any other model's prediction function returning class probabilities
- mode (str) Find pertinant negatives ('PN') or pertinant positives ('PP')
- **shape** (tuple) Shape of input data starting with batch size
- kappa (float) Confidence parameter for the attack loss term
- beta (float) Regularization constant for L1 loss term
- **feature_range** (tuple) Tuple with min and max ranges to allow for perturbed instances. Min and max ranges can be floats or numpy arrays with dimension (1x nb of features) for feature-wise ranges
- gamma (float) Regularization constant for optional auto-encoder loss term
- ae_model (Optional[Callable]) Optional auto-encoder model used for loss regularization
- learning_rate_init (float) Initial learning rate of optimizer
- max_iterations (int) Maximum number of iterations for finding a PN or PP
- **c_init** (float) Initial value to scale the attack loss term
- \bullet **c_steps** (int) Number of iterations to adjust the constant scaling the attack loss term
- **eps** (tuple) If numerical gradients are used to compute dL/dx = (dL/dp) * (dp/dx), then eps[0] is used to calculate dL/dp and eps[1] is used for dp/dx. eps[0] and eps[1] can

be a combination of float values and numpy arrays. For eps[0], the array dimension should be (1x nb of prediction categories) and for eps[1] it should be (1x nb of features)

- clip (tuple) Tuple with min and max clip ranges for both the numerical gradients and the gradients obtained from the TensorFlow graph
- update_num_grad (int) If numerical gradients are used, they will be updated every update_num_grad iterations
- no_info_val (Union[float, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cba8>, None]) Global or feature-wise value considered as containing no information
- write_dir (Optional[str]) Directory to write tensorboard files to

Return type None

attack (X, Y, verbose=False)

Find pertinant negative or pertinant positive for instance X using a fast iterative shrinkage-thresholding algorithm (FISTA).

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34510048>) Instance to attack
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34510080>) Labels for X
- **verbose** (bool) Print intermediate results of optimization if True

Return type Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345100b8>, Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345100f0>, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba34510128>]]

Returns Overall best attack and gradients for that attack.

explain (X, Y=None, verbose=False)

Explain instance and return PP or PN with metadata.

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34510240>) Instances to attack
- Y (Optional[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34510278>]) Labels for X
- **verbose** (bool) Print intermediate results of optimization if True

Return type dict

Returns explanation – Dictionary containing the PP or PN with additional metadata

fit (train_data, no_info_type='median')

Get 'no information' values from the training data.

Parameters

- train_data (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450ccc0>) Representative sample from the training data
- no_info_type (str) Median or mean value by feature supported

Return type None

$get_gradients(X, Y)$

Compute numerical gradients of the attack loss term: dL/dx = (dL/dP)*(dP/dx) with $L = loss_attack_s$; P = predict; $x = adv_s$

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cf60>) Instance around which gradient is evaluated
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cf98>) One-hot representation of instance labels

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cfd0>

Returns Array with gradients.

loss_fn (pred_proba, Y)

Compute the attack loss.

Parameters

- pred_proba (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450ccf8>) Prediction probabilities of an instance
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cd30>) One-hot representation of instance labels

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cd68>

Returns Loss of the attack.

perturb (X, eps, proba=False)

Apply perturbation to instance or prediction probabilities. Used for numerical calculation of gradients.

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cda0>) Array to be perturbed
- **eps** (Union[float, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450cdd8>]) Size of perturbation
- **proba** (bool) If True, the net effect of the perturbation needs to be 0 to keep the sum of the probabilities equal to 1

Return type Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450ce80>, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3450ceb8>]

Returns *Instances where a positive and negative perturbation is applied.*

alibi.explainers.cfproto module

```
class alibi.explainers.cfproto.CounterFactualProto(sess, predict, shape, kappa=0.0,
                                                                    beta=0.1,
                                                                                  feature range=(-
                                                                    10000000000.0, 10000000000.0),
                                                                                   ae_model=None,
                                                                    gamma=0.0,
                                                                                         theta=0.0,
                                                                    enc_model=None,
                                                                                             learn-
                                                                    use kdtree=False,
                                                                    ing\_rate\_init=0.01,
                                                                    max iterations=1000,
                                                                    c_{init}=10.0,
                                                                                        c\_steps=10,
                                                                    eps=(0.001,
                                                                                            0.001),
                                                                                           1000.0),
                                                                    clip = (-1000.0,
                                                                    update_num_grad=1,
                                                                    write dir=None)
```

Bases: object

kappa=0.0, beta=0.1, feature_range=(-100000000000.0, init (sess, predict, shape, 10000000000.0), ae_model=None, enc_model=None, gamma=0.0, theta=0.0, use_kdtree=False, *learning_rate_init=0.01*, max iterations=1000, c init=10.0, $c_steps=10$, eps=(0.001, 0.001), $clip=(-1000.0, 1000.0), update_num_grad=1,$ *write dir=None*) Initialize prototypical counterfactual method.

Parameters

- **sess** (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516048>) TensorFlow session
- predict (Union[Callable, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516080>, Forwardref]) Keras or TensorFlow model or any other model's prediction function returning class probabilities
- **shape** (tuple) Shape of input data starting with batch size
- kappa (float) Confidence parameter for the attack loss term
- beta (float) Regularization constant for L1 loss term
- **feature_range** (tuple) Tuple with min and max ranges to allow for perturbed instances. Min and max ranges can be floats or numpy arrays with dimension (1x nb of features) for feature-wise ranges
- gamma (float) Regularization constant for optional auto-encoder loss term
- ae_model (Union[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516128>, Forwardref]) Optional auto-encoder model used for loss regularization
- enc_model (Union[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345161d0>, Forwardref]) Optional encoder model used to guide instance perturbations towards a class prototype
- \mbox{theta} (float) Constant for the prototype search loss term
- use_kdtree (bool) Whether to use k-d trees for the prototype loss term if no encoder is available
- learning_rate_init (float) Initial learning rate of optimizer
- max_iterations (int) Maximum number of iterations for finding a counterfactual

21.1. alibi package 153

- c init (float) Initial value to scale the attack loss term
- c_steps (int) Number of iterations to adjust the constant scaling the attack loss term
- **eps** (tuple) If numerical gradients are used to compute dL/dx = (dL/dp) * (dp/dx), then eps[0] is used to calculate dL/dp and eps[1] is used for dp/dx. eps[0] and eps[1] can be a combination of float values and numpy arrays. For eps[0], the array dimension should be (1x nb of prediction categories) and for eps[1] it should be (1x nb of features)
- clip (tuple) Tuple with min and max clip ranges for both the numerical gradients and the gradients obtained from the TensorFlow graph
- update_num_grad(int) If numerical gradients are used, they will be updated every update_num_grad iterations
- write_dir(str) Directory to write tensorboard files to

Return type None

attack (*X*, *Y*, target_class=None, threshold=0.0, verbose=False, print_every=100, log_every=100) Find a counterfactual (CF) for instance X using a fast iterative shrinkage-thresholding algorithm (FISTA).

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345165f8>) Instance to attack
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516630>) Labels for X as one-hot-encoding
- target_class (Optional[list]) List with target classes used to find closest prototype. If None, the nearest prototype except for the predict class on the instance is used.
- threshold (float) Threshold level for the ratio between the distance of the counterfactual to the prototype of the predicted class for the original instance over the distance to the prototype of the predicted class for the counterfactual. If the trust score is below the threshold, the proposed counterfactual does not meet the requirements.
- **verbose** (bool) Print intermediate results of optimization if True
- print_every (int) Print frequency if verbose is True
- log_every (int) Tensorboard log frequency if write directory is specified

Return type Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516668>, Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345166a0>, <sphinx.ext.autodoc.importer. MockObject object at 0x7fba345166d8>]]

Returns Overall best attack and gradients for that attack.

Explain instance and return counterfactual with metadata.

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345167f0>) Instances to attack
- Y (Optional[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516828>]) Labels for X as one-hot-encoding
- target_class (Optional[list]) List with target classes used to find closest prototype. If None, the nearest prototype except for the predict class on the instance is used.

- **threshold** (float) Threshold level for the ratio between the distance of the counterfactual to the prototype of the predicted class for the original instance over the distance to the prototype of the predicted class for the counterfactual. If the trust score is below the threshold, the proposed counterfactual does not meet the requirements.
- **verbose** (bool) Print intermediate results of optimization if True
- print every (int) Print frequency if verbose is True
- log every (int) Tensorboard log frequency if write directory is specified

Return type dict

Returns explanation – Dictionary containing the counterfactual with additional metadata

fit (train_data, trustscore_kwargs=None)

Get prototypes for each class using the encoder or k-d trees. The prototypes are used for the encoder loss term or to calculate the optional trust scores.

Parameters

- train_data (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516278>) Representative sample from the training data
- trustscore_kwargs (Optional[dict]) Optional arguments to initialize the trust scores method

Return type None

$get_gradients(X, Y)$

Compute numerical gradients of the attack loss term: dL/dx = (dL/dP)*(dP/dx) with $L = loss_attack_s$; P = predict; $x = adv_s$

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516518>) Instance around which gradient is evaluated
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516550>) One-hot representation of instance labels

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516588>

Returns Array with gradients.

$loss_fn(pred_proba, Y)$

Compute the attack loss.

Parameters

- pred_proba (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345162b0>) Prediction probabilities of an instance
- Y (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345162e8>) One-hot representation of instance labels

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516320>

Returns Loss of the attack.

perturb (X, eps, proba=False)

Apply perturbation to instance or prediction probabilities. Used for numerical calculation of gradients.

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516358>) Array to be perturbed
- **eps** (Union[float, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516390>]) Size of perturbation
- **proba** (bool) If True, the net effect of the perturbation needs to be 0 to keep the sum of the probabilities equal to 1

Return type Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516438>, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba34516470>]

Returns *Instances where a positive and negative perturbation is applied.*

score (X, adv_class, orig_class, eps=1e-10)

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba345165c0>) Instance to encode and calculate distance metrics for
- adv_class (int) Predicted class on the perturbed instance
- orig_class (int) Predicted class on the original instance
- $\ensuremath{\text{eps}}$ (float) Small number to avoid dividing by 0

Return type float

Returns

- Ratio between the distance to the prototype of the predicted class for the original instance and
- the prototype of the predicted class for the perturbed instance.

alibi.explainers.counterfactual module

```
class alibi.explainers.counterfactual.CounterFactual(sess,
                                                                               predict_fn,
                                                                                             shape,
                                                                      distance_fn='l1',
                                                                                                tar-
                                                                      get proba=1.0,
                                                                                                tar-
                                                                      get class='other',
                                                                      max iter=1000,
                                                                      early_stop=50, lam_init=0.1,
                                                                      max lam steps=10, tol=0.05,
                                                                      learning_rate_init=0.1,
                                                                      feature range=(-
                                                                       10000000000.0,
                                                                       100000000000.0).
                                                                                          eps=0.01.
                                                                      init='identity',
                                                                                       decay=True,
                                                                      write_dir=None,
                                                                                                de-
                                                                      bug = False)
```

Bases: object

```
__init__ (sess, predict_fn, shape, distance_fn='ll', target_proba=1.0, target_class='other', max_iter=1000, early_stop=50, lam_init=0.1, max_lam_steps=10, tol=0.05, learning_rate_init=0.1, feature_range=(-10000000000.0, 10000000000.0), eps=0.01, init='identity', decay=True, write_dir=None, debug=False)
Initialize counterfactual explanation method based on Wachter et al. (2017)
```

Parameters

- sess (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3451d978>) TensorFlow session
- **predict_fn** (Union[Callable, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3451d9b0>, Forwardref]) Keras or TensorFlow model or any other model's prediction function returning class probabilities
- **shape** (Tuple[int,...]) Shape of input data starting with batch size
- distance fn (str) Distance function to use in the loss term
- target_proba (float) Target probability for the counterfactual to reach
- target_class (Union[str, int]) Target class for the counterfactual to reach, one of 'other', 'same' or an integer denoting desired class membership for the counterfactual instance
- max_iter (int) Maximum number of interations to run the gradient descent for (inner loop)
- early_stop (int) Number of steps after which to terminate gradient descent if all or none of found instances are solutions
- lam_init (float) Initial regularization constant for the prediction part of the Wachter loss
- max_lam_steps (int) Maximum number of times to adjust the regularization constant (outer loop) before terminating the search
- tol (float) Tolerance for the counterfactual target probability
- learning_rate_init Initial learning rate for each outer loop of lambda
- **feature_range** (Union[Tuple, str]) Tuple with min and max ranges to allow for perturbed instances. Min and max ranges can be floats or numpy arrays with dimension (1 x nb of features) for feature-wise ranges
- **eps** (Union[float, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3451db38>]) Gradient step sizes used in calculating numerical gradients, defaults to a single value for all features, but can be passed an array for feature-wise step sizes
- init (str) Initialization method for the search of counterfactuals, currently must be 'identity'
- decay (bool) Flag to decay learning rate to zero for each outer loop over lambda
- write_dir (str) Directory to write Tensorboard files to
- **debug** (bool) Flag to write Tensorboard summaries for debugging

Return type None

explain(X)

Explain an instance and return the counterfactual with metadata.

Parameters X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3451dd68>) - Instance to be explained

Return type dict

 $\textbf{Returns} \ \ *explanation - a \ dictionary \ containing \ the \ counterfactual \ with \ additional \ metadata.*$

fit(X, y)

Fit method - currently unused as the counterfactual search is fully unsupervised.

21.1. alibi package

Return type None

alibi.outlier package

alibi.utils package

Submodules

alibi.utils.discretizer module

Bases: object

__init__(data, categorical_features, feature_names, percentiles=[25, 50, 75])
Initialize the discretizer.

Parameters

- data (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34573a20>) Data to discretize
- categorical_features (List[int]) List of indices corresponding to the categorical columns. These features will not be discretized. The other features will be considered continuous and therefore discretized.
- **feature_names** (List[str]) List with feature names
- percentiles (List[int]) Percentiles used for discretization

Return type None

bins (data)

Parameters data (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34573b70>) - Data to discretize

Return type List[<sphinx.ext.autodoc.importer. MockObject object at 0x7fba34573ba8>]

Returns *List with bin values for each feature that is discretized.*

discretize (data)

Parameters data (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34573cc0>) - Data to discretize

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba34573cf8>

Returns Discretized version of data with the same dimension.

alibi.utils.distance module

```
alibi.utils.distance.cityblock_batch(X, y)
```

Calculate the L1 distances between a batch of arrays X and an array of the same shape y.

Parameters

• X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba343572b0>) - Batch of arrays to calculate the distances from

• **y** (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba343572e8>) - Array to calculate the distance to

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba34357438>

Returns Array of distances from each array in X to y

alibi.utils.download module

```
alibi.utils.download.spacy_model(model='en_core_web_md')

Download spaCy model.
```

Parameters model (str) - Model to be downloaded

Return type None

alibi.utils.gradients module

```
alibi.utils.gradients.num_grad_batch(func, X, args=(), eps=1e-08)
```

Calculate the numerical gradients of a vector-valued function (typically a prediction function in classification) with respect to a batch of arrays X.

Parameters

- func (Callable) Function to be differentiated
- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3451d7f0>) A batch of vectors at which to evaluate the gradient of the function
- args (Tuple) Any additional arguments to pass to the function
- **eps** (Union[float, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3451d828>]) Gradient step to use in the numerical calculation, can be a single float or one for each feature

Return type <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3451d8d0>

Returns An array of gradients at each point in the batch X

```
alibi.utils.gradients.perturb(X, eps=1e-08, proba=False)
```

Apply perturbation to instance or prediction probabilities. Used for numerical calculation of gradients.

Parameters

- X (<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3451d630>) Array to be perturbed
- **eps** (Union[float, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3451d668>]) Size of perturbation
- **proba** (bool) If True, the net effect of the perturbation needs to be 0 to keep the sum of the probabilities equal to 1

Return type Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba3451d710>, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba3451d748>]

Returns Instances where a positive and negative perturbation is applied.

21.1. alibi package 159

21.1.2 Submodules

alibi.datasets module

```
alibi.datasets.adult (features_drop=['fnlwgt', 'Education-Num'])

Downloads and pre-processes 'adult' dataset. More info: http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/
```

Parameters features_drop (list) – List of features to be dropped from dataset

Return type Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34542978>, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba345429b0>, list, dict]

Returns

- Dataset, labels, a list of features and a dictionary containing a list with the potential categories
- for each categorical feature where the key refers to the feature column.

```
alibi.datasets.imagenet(category='Persian cat', nb_images=10, target_size=(299, 299), min_std=10.0, seed=42)
```

Retrieve imagenet images from specified category which needs to be in the mapping dictionary.

Parameters

- category (str) Imagenet category in mapping keys
- nb_images (int) Number of images to be retrieved
- target_size (tuple) Size of the returned images
- min_std (float) Min standard deviation of image pixels. Images that are no longer available can be returned without content which is undesirable. Having a min std cutoff resolves this.
- seed (int) Random seed

Return type Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7fba34542668>, <sphinx.ext.autodoc.importer._MockObject object at 0x7fba345425c0>]

Returns *List with images and the labels from imagenet.*

```
alibi.datasets.movie_sentiment()
```

The movie review dataset, equally split between negative and positive reviews.

```
Return type Tuple[list, list]
```

Returns Movie reviews and sentiment labels (0 means 'negative' and 1 means 'positive').

alibi.version module

CHAPTER 22

Indices and tables

- genindex
- modindex
- search

Python Module Index

а

```
alibi, 125
alibi.confidence, 125
alibi.confidence.trustscore, 127
alibi.datasets, 160
alibi.explainers, 128
alibi.explainers.anchor_base, 140
alibi.explainers.anchor_explanation, 143
alibi.explainers.anchor_image, 144
alibi.explainers.anchor_tabular, 146
alibi.explainers.anchor_text, 148
alibi.explainers.cem, 150
alibi.explainers.cfproto, 153
alibi.explainers.counterfactual, 156
alibi.outlier, 158
alibi.utils, 158
alibi.utils.discretizer, 158
alibi.utils.distance, 158
alibi.utils.download, 159
alibi.utils.gradients, 159
alibi.version, 160
```

164 Python Module Index

Index

Symbols	ibi.explainers.AnchorTabular method), 129
init() (alibi.confidence.TrustScore method), 125	adult () (in module alibi.datasets), 160
init() (alibi.confidence.trustscore.TrustScore	alibi (module), 125
	alibi.confidence (module), 125
init() (alibi.explainers.AnchorImage method),	alibi.confidence.trustscore(module), 127
132	alibi.datasets (module), 160
init() (alibi.explainers.AnchorTabular method),	alibi.explainers (module), 128
128	alibi.explainers.anchor_base (module), 140
init() (alibi.explainers.AnchorText method), 130	alibi.explainers.anchor_explanation
init() (alibi.explainers.CEM method), 133	(module), 143
init() (alibi.explainers.CounterFactual	alibi.explainers.anchor_image (module),
method), 136	144
init() (alibi.explainers.CounterFactualProto	alibi.explainers.anchor_tabular (module),
method) 137	146
init() (alibi.explainers.anchor_base.AnchorBaseB	Ramibi.explainers.anchor_text (module), 148
method) 140	alibi.explainers.cem (module), 130
init() (alibi.explainers.anchor_explanation.Ancho	orExplanation lainers.cfproto(module), 153
method), 143	alibi.explainers.counterlactual (module),
init() (alibi.explainers.anchor_image.AnchorImag	ge 156
method), 144	alibi.outlier (module), 158
init() (alibi.explainers.anchor_tabular.AnchorTab	nalribi.utils (module), 158
method), 146	alibi.utils.discretizer (module), 138
init() (alibi.explainers.anchor_text.AnchorText	alibi.utils.distance (module), 158
method), 148	alibi.utils.download(module), 159
init() (alibi.explainers.anchor_text.Neighbors	alibi.utils.gradients(module), 159
method), 149	alibi.version (module), 160
init() (alibi.explainers.cem.CEM method), 150	anchor_beam() (al-
init() (alibi.explainers.cfproto.CounterFactualPro	ibi.explainers.anchor_base.AnchorBaseBeam
method), 153	static method), 140
init() (alibi.explainers.counterfactual.CounterFac	AnchorBaseBeam (class in al-
method), 156	ibi.explainers.anchor_base), 140
init() (alibi.utils.discretizer.Discretizer	AnchorExplanation (class in al-
method), 158	ibi.explainers.anchor_explanation), 143
۸	AnchorImage (class in alibi.explainers), 132 AnchorImage (class in al-
A	ibi.explainers.anchor_image), 144
add_names_to_exp() (al-	AnchorTabular (class in alibi.explainers), 128
ibi.explainers.anchor_tabular.AnchorTabular	AnchorTabular (class in aibi.explainers), 126 AnchorTabular (class in al-
method), 146	ibi.explainers.anchor_tabular), 146
add_names_to_exp() (al-	AnchorText (class in alibi.explainers), 130
	Anonor reac (class in anotherpumers), 130

explain() (alibi.explainers.AnchorText method), 130 explain() (alibi.explainers.CEM method), 134 explain() (alibi.explainers.cem.CEM method), 151 explain() (alibi.explainers.cfproto.CounterFactualProto
method), 157
explain() (alibi.explainers.CounterFactualProto method), 138
F
features() (alibi.explainers.anchor_explanation.AnchorExplanation method), 144
filter_by_distance_knn() (al- ibi.confidence.TrustScore method), 126
filter_by_distance_knn() (al-
ibi.confidence.trustscore.TrustScore method), 127
filter_by_probability_knn() (al-
<pre>ibi.confidence.TrustScore method), 126 filter_by_probability_knn() (al-</pre>
ibi.confidence.trustscore.TrustScore method), 127
fit () (alibi.confidence.TrustScore method), 126
fit () (alibi.confidence.trustscore.TrustScore method),
rExplanatib28 fit() (alibi.explainers.anchor_tabular.AnchorTabular method), 147
fit () (alibi.explainers.AnchorTabular method), 129
fit () (alibi.explainers.CEM method), 135
fit () (alibi.explainers.cem.CEM method), 151 fit () (alibi.explainers.cfproto.CounterFactualProto
method), 155
fit () (alibi.explainers.CounterFactual method), 137 fit () (alibi.explainers.counterfactual.CounterFactual
method), 157
fit () (alibi.explainers.CounterFactualProto method), 139
G
nBxplannsbor_from_tuple() (al- ibi.explainers.anchor_base.AnchorBaseBeam
static method), 142 get_gradients() (alibi.explainers.CEM method),
<pre>lar 135 get_gradients() (alibi.explainers.cem.CEM</pre>
<pre>method), 151 get_gradients() (al-</pre>
ibi.explainers.cfproto.CounterFactualProto method), 155
get_gradients() (al- ibi.explainers.CounterFactualProto method),

166 Index

139	neighbors() (alibi.explainers.anchor_text.Neighbors
<pre>get_initial_statistics() (al-</pre>	method), 150
ibi.explainers.anchor_base.AnchorBaseBeam static method), 142	num_grad_batch() (in module alibi.utils.gradients), 159
<pre>get_sample_fn()</pre>	
ibi.explainers.anchor_image.AnchorImage method), 145	O overlay_mask() (al-
<pre>get_sample_fn()</pre> (al-	ibi.explainers.anchor_image.AnchorImage
ibi.explainers.anchor_tabular.AnchorTabular	static method), 145
<pre>method), 147 get_sample_fn() (al-</pre>	overlay_mask() (alibi.explainers.AnchorImage static method), 133
<i>ibi.explainers.anchor_text.AnchorText method)</i> ,	
148	P
<pre>get_sample_fn() (alibi.explainers.AnchorImage</pre>	perturb() (alibi.explainers.CEM method), 135
method), 132	perturb() (alibi.explainers.cem.CEM method), 152
<pre>get_sample_fn() (alibi.explainers.AnchorTabular</pre>	perturb() (alibi.explainers.cfproto.CounterFactualProto
method), 129	method), 155
get_sample_fn() (alibi.explainers.AnchorText	perturb() (alibi.explainers.CounterFactualProto
<pre>method), 131 get_sample_fns() (al-</pre>	method), 140
ibi.explainers.anchor_base.AnchorBaseBeam	perturb() (in module alibi.utils.gradients), 159
static method), 142	<pre>perturb_sentence() (al- ibi.explainers.anchor_text.AnchorText method),</pre>
	149
l	perturb_sentence() (alibi.explainers.AnchorText
imagenet() (in module alibi.datasets), 160	method), 131
IZ	$\verb"precision" () \textit{ (alibi.explainers.anchor_explanation.AnchorExplanation}$
K	method), 144
kl_bernoulli() (al-	S
ibi.explainers.anchor_base.AnchorBaseBeam	3
static method), 142	sample_from_train() (al-
I	ibi.explainers.anchor_tabular.AnchorTabular
Land South (with and single CEM and all 125	method), 147 sample from train() (al-
loss_fn() (alibi.explainers.CEM method), 135 loss_fn() (alibi.explainers.cem.CEM method), 152	sample_from_train() (al- ibi.explainers.AnchorTabular method), 130
loss_fn() (alibi.explainers.cem.CEM method), 132	
method), 155	score() (alibi.confidence.trustscore.TrustScore
loss_fn() (alibi.explainers.CounterFactualProto	method), 128
method), 139	score() (alibi.explainers.cfproto.CounterFactualProto
$\verb lucb() (a libi. explainers. anchor_base. Anchor Base Beam $	method), 156
static method), 142	score() (alibi.explainers.CounterFactualProto method), 140
M	spacy_model() (in module alibi.utils.download), 159
make_tuples() (al-	
ibi.explainers.anchor_base.AnchorBaseBeam	I
static method), 143	TrustScore (class in alibi.confidence), 125
matrix_subset() (in module al-	TrustScore (class in alibi.confidence.trustscore), 127
ibi.explainers.anchor_base), 143	
movie_sentiment() (in module alibi.datasets), 160	
N	
names () (alibi.explainers.anchor_explanation.AnchorExmethod), 144	planation
Neighbors (class in alibi.explainers.anchor text), 149	

Index 167