
alibi Documentation
Release 0.9.5dev

Seldon Technologies Ltd

Mar 08, 2024

OVERVIEW

1 Introduction 3

2 Getting Started 33

3 Algorithm overview 39

4 White-box and black-box models 43

5 Saving and loading 47

6 Frequently Asked Questions 49

7 Methods 53

8 Examples 153

9 Methods 501

10 Examples 507

11 Methods 541

12 Examples 547

13 alibi 561

Python Module Index 781

Index 783

i

ii

alibi Documentation, Release 0.9.5dev

Alibi Explain is an open source Python library aimed at machine learning model inspection and interpretation. The
focus of the library is to provide high-quality implementations of black-box, white-box, local and global explanation
methods for classification and regression models.

OVERVIEW 1

https://github.com/SeldonIO/alibi

alibi Documentation, Release 0.9.5dev

2 OVERVIEW

CHAPTER

ONE

INTRODUCTION

• What is Explainability?

– Applications

– Black-box vs White-box methods

– Global and Local Insights

– Biases

• Types of Insights

– 1. Global Feature Attribution

∗ Accumulated Local Effects

∗ Partial Dependence

∗ Partial Dependence Variance

∗ Permutation Importance

– 2. Local Necessary Features

∗ Anchors

∗ Contrastive Explanation Method (Pertinent Positives)

– 3. Local Feature Attribution

∗ Integrated Gradients

∗ Kernel SHAP

∗ Path-dependent Tree SHAP

∗ Interventional Tree SHAP

– 4. Counterfactual instances

∗ Counterfactual Instances

∗ Contrastive Explanation Method (Pertinent Negatives)

∗ Counterfactuals Guided by Prototypes

∗ Counterfactuals with Reinforcement Learning

∗ Counterfactual Example Results

– 5. Similarity explanations

3

alibi Documentation, Release 0.9.5dev

1.1 What is Explainability?

Explainability provides us with algorithms that give insights into trained model predictions. It allows us to answer
questions such as:

• How does a prediction change dependent on feature inputs?

• What features are or are not important for a given prediction to hold?

• What set of features would you have to minimally change to obtain a new prediction of your choosing?

• How does each feature contribute to a model’s prediction?

Alibi provides a set of algorithms or methods known as explainers. Each explainer provides some kind of insight
about a model. The set of insights available given a trained model is dependent on a number of factors. For instance, if
the model is a regression model it makes sense to ask how the prediction varies for some regressor. Whereas it doesn’t
make sense to ask what minimal change is required to obtain a new class prediction. In general, given a model the
explainers available from Alibi are constrained by:

• The type of data the model handles. Each insight applies to some or all of the following kinds of data: image,
tabular or textual.

• The task the model performs. Alibi provides explainers for regression or classification models.

• The type of model used. Examples of model types include neural networks and random forests.

1.1.1 Applications

As machine learning methods have become more complex and more mainstream, with many industries now incorporat-
ing AI in some form or another, the need to understand the decisions made by models is only increasing. Explainability
has several applications of importance.

• Trust: At a core level, explainability builds trust in the machine learning systems we use. It allows us to justify
their use in many contexts where an understanding of the basis of the decision is paramount. This is a common
issue within machine learning in medicine, where acting on a model prediction may require expensive or risky
procedures to be carried out.

4 Chapter 1. Introduction

https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Neural_network
https://en.wikipedia.org/wiki/Random_forest
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/global-survey-the-state-of-ai-in-2020
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/global-survey-the-state-of-ai-in-2020
https://onlinelibrary.wiley.com/doi/abs/10.1002/bdm.542

alibi Documentation, Release 0.9.5dev

• Testing: Explainability might be used to audit financial models that aid decisions about whether to grant cus-
tomer loans. By computing the attribution of each feature towards the prediction the model makes, organisations
can check that they are consistent with human decision-making. Similarly, explainability applied to a model
trained on image data can explicitly show the model’s focus when making decisions, aiding debugging. Practi-
tioners must be wary of misuse, however.

• Functionality: Insights can be used to augment model functionality. For instance, providing information on top
of model predictions such as how to change model inputs to obtain desired outputs.

• Research: Explainability allows researchers to understand how and why opaque models make decisions. This
can help them understand more broadly the effects of the particular model or training schema they’re using.

1.1.2 Black-box vs White-box methods

Some explainers apply only to specific types of models such as the Tree SHAP methods which can only be used with
tree-based models. This is the case when an explainer uses some aspect of that model’s internal structure. If the model
is a neural network then some methods require taking gradients of the model predictions with respect to the inputs.
Methods that require access to the model internals are known as white-box methods. Other explainers apply to any
type of model. They can do so because the underlying method doesn’t make use of the model internals. Instead, they
only need to have access to the model outputs given particular inputs. Methods that apply in this general setting are
known as black-box methods. Typically, white-box methods are faster than black-box methods as they can exploit the
model internals. For a more detailed discussion see white-box and black-box models.

Note 1: Black-box Definition
The use of black-box here varies subtly from the conventional use within machine learning. In most other contexts a
model is a black-box if the mechanism by which it makes predictions is too complicated to be interpretable to a human.
Here we use black-box to mean that the explainer method doesn’t need access to the model internals to be applied.

1.1.3 Global and Local Insights

Insights can be categorised into two categories — local and global. Intuitively, a local insight says something about a
single prediction that a model makes. For example, given an image classified as a cat by a model, a local insight might
give the set of features (pixels) that need to stay the same for that image to remain classified as a cat.

On the other hand, global insights refer to the behaviour of the model over a range of inputs. As an example, a plot that
shows how a regression prediction varies for a given feature. These insights provide a more general understanding of
the relationship between inputs and model predictions.

1.1. What is Explainability? 5

https://arxiv.org/abs/1909.06342
http://proceedings.mlr.press/v70/sundararajan17a.html
https://en.wikipedia.org/wiki/Decision_tree_learning

alibi Documentation, Release 0.9.5dev

1.1.4 Biases

The explanations Alibi’s methods provide depend on the model, the data, and — for local methods — the instance of
interest. Thus Alibi allows us to obtain insight into the model and, therefore, also the data, albeit indirectly. There are
several pitfalls of which the practitioner must be wary.

Often bias exists in the data we feed machine learning models even when we exclude sensitive factors. Ostensibly
explainability is a solution to this problem as it allows us to understand the model’s decisions to check if they’re
appropriate. However, human bias itself is still an element. Hence, if the model is doing what we expect it to on biased
data, we are vulnerable to using explainability to justify relations in the data that may not be accurate. Consider:

“Before launching the model, risk analysts are asked to review the Shapley value explanations to ensure
that the model exhibits expected behavior (i.e., the model uses the same features that a human would for
the same task).” — Explainable Machine Learning in Deployment

The critical point here is that the risk analysts in the above scenario must be aware of their own bias and potential bias
in the dataset. The Shapley value explanations themselves don’t remove this source of human error; they just make the
model less opaque.

Machine learning engineers may also have expectations about how the model should be working. An explanation that
doesn’t conform to their expectations may prompt them to erroneously decide that the model is “incorrect”. People
usually expect classifiers trained on image datasets to use the same structures humans naturally do when identifying
the same classes. However, there is no reason to believe such models should behave the same way we do.

Interpretability of insights can also mislead. Some insights such as anchors give conditions for a classifiers prediction.
Ideally, the set of these conditions would be small. However, when obtaining anchors close to decision boundaries, we
may get a complex set of conditions to differentiate that instance from near members of a different class. Because this
is harder to understand, one might write the model off as incorrect, while in reality, the model performs as desired.

6 Chapter 1. Introduction

https://dl.acm.org/doi/abs/10.1145/3351095.3375624

alibi Documentation, Release 0.9.5dev

1.2 Types of Insights

Alibi provides several local and global insights with which to explore and understand models. The following gives the
practitioner an understanding of which explainers are suitable in which situations.

1.2. Types of Insights 7

alibi Documentation, Release 0.9.5dev

Explainer ScopeModel types Task
types

Data types Use Re-
sources

Accumu-
lated Local
Effects

GlobalBlack-box Clas-
sifica-
tion,
Re-
gres-
sion

Tabular (nu-
merical)

How does model prediction
vary with respect to features of
interest?

docs,
pa-
per

Partial De-
pendence

GlobalBlack-box, White-box
(scikit-learn)

Clas-
sifica-
tion,
Re-
gres-
sion

Tabular
(numerical,
categorical)

How does model prediction
vary with respect to features of
interest?

docs,
pa-
per

Partial De-
pendence
Variance

GlobalBlack-box, White-box
(scikit-learn)

Clas-
sifica-
tion,
Re-
gres-
sion

Tabular
(numerical,
categorical)

Which are the most important
features globally? How much
do features interact globally?

docs,
pa-
per

Permutation
importance

GlobalBlack-box Clas-
sifica-
tion,
Re-
gres-
sion

Tabular
(numerical,
categorical)

Which are the most important
features globally?

docs,
pa-
per

Anchors Lo-
cal

Black-box Clas-
sifica-
tion

Tabular
(numerical,
categorical),
Text and
Image

Which set of features of a given
instance are sufficient to ensure
the prediction stays the same?

docs,
pa-
per

Pertinent
Positives

Lo-
cal

Black-box, White-box
(TensorFlow)

Clas-
sifica-
tion

Tabular (nu-
merical),
Image

“” docs,
pa-
per

Integrated
Gradients

Lo-
cal

White-box (Tensor-
Flow)

Clas-
sifica-
tion,
Re-
gres-
sion

Tabular
(numerical,
categorical),
Text and
Image

What does each feature con-
tribute to the model prediction?

docs,
pa-
per

Kernel
SHAP

Lo-
cal

Black-box Clas-
sifica-
tion,
Re-
gres-
sion

Tabular
(numerical,
categorical)

“” docs,
pa-
per

Tree SHAP
(path-
dependent)

Lo-
cal

White-box (XGBoost,
LightGBM, CatBoost,
scikit-learn and pys-
park tree models)

Clas-
sifica-
tion,
Re-
gres-
sion

Tabular
(numerical,
categorical)

“” docs,
pa-
per

Tree SHAP
(interven-
tional)

Lo-
cal

White-box (XGBoost,
LightGBM, CatBoost,
scikit-learn and pys-
park tree models)

Clas-
sifica-
tion,
Re-
gres-
sion

Tabular
(numerical,
categorical)

“” docs,
pa-
per

Counter-
factual
Instances

Lo-
cal

Black-box (differen-
tiable), White-box
(TensorFlow)

Clas-
sifica-
tion

Tabular (nu-
merical),
Image

What minimal change to fea-
tures is required to reclassify the
current prediction?

docs,
pa-
per

Contrastive
Explanation
Method

Lo-
cal

Black-box (differen-
tiable), White-box
(TensorFlow)

Clas-
sifica-
tion

Tabular (nu-
merical),
Image

“” docs,
pa-
per

Counter-
factuals
Guided by
Prototypes

Lo-
cal

Black-box (differen-
tiable), White-box
(TensorFlow)

Clas-
sifica-
tion

Tabular
(numerical,
categorical),
Image

“” docs,
pa-
per

Counter-
factuals
with Rein-
forcement
Learning

Lo-
cal

Black-box Clas-
sifica-
tion

Tabular
(numerical,
categorical),
Image

“” docs,
pa-
per

Similarity
explanations

Lo-
cal

White-box Clas-
sifica-
tion,
Re-
gres-
sion

Tabular
(numerical,
categorical),
Text and
Image

What are the instances in the
training set that are most simi-
lar to the instance of interest ac-
cording to the model?

docs,
pa-
per

8 Chapter 1. Introduction

https://arxiv.org/abs/1612.08468
https://arxiv.org/abs/1612.08468
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boostingmachine/10.1214/aos/1013203451.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boostingmachine/10.1214/aos/1013203451.full
https://arxiv.org/abs/1805.04755
https://arxiv.org/abs/1805.04755
https://arxiv.org/abs/1801.01489
https://arxiv.org/abs/1801.01489
https://dl.acm.org/doi/abs/10.5555/3504035.3504222
https://dl.acm.org/doi/abs/10.5555/3504035.3504222
https://arxiv.org/abs/1802.07623
https://arxiv.org/abs/1802.07623
https://arxiv.org/abs/1703.01365
https://arxiv.org/abs/1703.01365
https://papers.nips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://papers.nips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://www.nature.com/articles/s42256-019-0138-9
https://www.nature.com/articles/s42256-019-0138-9
https://www.nature.com/articles/s42256-019-0138-9
https://www.nature.com/articles/s42256-019-0138-9
https://arxiv.org/abs/1711.00399
https://arxiv.org/abs/1711.00399
https://arxiv.org/abs/1802.07623
https://arxiv.org/abs/1802.07623
https://arxiv.org/abs/1907.02584
https://arxiv.org/abs/1907.02584
https://arxiv.org/abs/2106.02597
https://arxiv.org/abs/2106.02597
https://papers.nips.cc/paper/2019/hash/c61f571dbd2fb949d3fe5ae1608dd48b-Abstract.html
https://papers.nips.cc/paper/2019/hash/c61f571dbd2fb949d3fe5ae1608dd48b-Abstract.html

alibi Documentation, Release 0.9.5dev

1.2.1 1. Global Feature Attribution

Global Feature Attribution methods aim to show the dependency of model output on a subset of the input features.
They provide global insight describing the model’s behaviour over the input space. For instance, Accumulated Local
Effects plots obtain graphs that directly visualize the relationship between feature and prediction over a specific set of
samples.

Suppose a trained regression model that predicts the number of bikes rented on a given day depending on the temper-
ature, humidity, and wind speed. A global feature attribution plot for the temperature feature might be a line graph
plotted against the number of bikes rented. One would anticipate an increase in rentals until a specific temperature and
then a decrease after it gets too hot.

Accumulated Local Effects

Explainer ScopeModel
types

Task types Data
types

Use Re-
sources

Accumulated
Local Effects

GlobalBlack-
box

Classification,
Regression

Tabular
(numeri-
cal)

How does model prediction vary with
respect to features of interest?

docs,
paper

Alibi provides accumulated local effects (ALE) plots because they give the most accurate insight. Alternatives include
Partial Dependence Plots (PDP), of which ALE is a natural extension. Suppose we have a model 𝑓 and features
𝑋 = {𝑥1, ...𝑥𝑛}. Given a subset of the features 𝑋𝑆 , we denote 𝑋𝐶 = 𝑋 ∖𝑋𝑆 . 𝑋𝑆 is usually chosen to be of size at
most 2 in order to make the generated plots easy to visualize. PDP works by marginalizing the model’s output over the
features we are not interested in, 𝑋𝐶 . The process of factoring out the 𝑋𝐶 set causes the introduction of artificial data,
which can lead to errors. ALE plots solve this by using the conditional probability distribution instead of the marginal
distribution and removing any incorrect output dependencies due to correlated input variables by accumulating local
differences in the model output instead of averaging them. See the following for a more expansive explanation.

We illustrate the use of ALE on the wine-quality dataset which is a tabular numeric dataset with wine quality as the
target variable. Because we want a classification task we split the data into good and bad classes using 5 as the threshold.
We can compute the ALE with Alibi (see notebook) by simply using:

from alibi.explainers import ALE, plot_ale

Model is a binary classifier so we only take the first model output corresponding to
→˓"good" class probability.
predict_fn = lambda x: model(scaler.transform(x)).numpy()[:, 0]
ale = ALE(predict_fn, feature_names=features)
exp = ale.explain(X_train)

Plot the explanation for the "Alcohol feature"
plot_ale(exp, features=['alcohol'], line_kw={'label': 'Probability of "good" class'})

Hence, we see the model predicts higher alcohol content wines as being better:

1.2. Types of Insights 9

https://arxiv.org/abs/1612.08468
https://archive.ics.uci.edu/ml/datasets/wine+quality

alibi Documentation, Release 0.9.5dev

Note 2: Categorical Variables and ALE
Note that while ALE is well-defined on numerical tabular data, it isn’t on categorical data. This is because it’s unclear
what the difference between two categorical values should be. Note that if the dataset has a mix of categorical and
numerical features, we can always compute the ALE of the numerical ones.

Pros Cons
ALE plots are easy to visualize and understand intu-
itively

Harder to explain the underlying motivation behind the
method than PDP plots or M plots

Very general as it is a black-box algorithm Requires access to the training dataset
Doesn’t struggle with dependencies in the underlying
features, unlike PD plots

ALE of categorical variables is not well-defined

ALE plots are fast

10 Chapter 1. Introduction

alibi Documentation, Release 0.9.5dev

Partial Dependence

Ex-
plainer

ScopeModel types Task types Data types Use Re-
sources

Partial
Depen-
dence

GlobalBlack-box,
White-box
(scikit-learn)

Classi-
fication,
Regression

Tabular (nu-
merical,
categorical)

How does model prediction vary
with respect to features of inter-
est?

docs,
paper

Alibi provides partial dependence (PD) plots as an alternative to ALE. Following the same notation as above, we remind
the reader that the PD is marginalizing the model’s output over the features we are not interested in, 𝑋𝐶 . This approach
has a direct extension for categorical features, something that ALE struggle with. Although, the practitioner should be
aware of the main limitation of PD, which is the assumption of feature independence. The process of marginalizing out
the set 𝑋𝐶 under the assumption of feature independence might thus include in the computation predictions for data
instances belonging to low probability regions of the features distribution.

Pros Cons
PD plots are easy to visualize and understand intuitively
(easier than ALE)

Struggle with dependencies in the underlying features. In
the uncorrelated case the interpretation might be unclear.

Very general as it is a black-box algorithm Heterogeneous effects might be hidden (ICE to the res-
cue)

PD plots are in general fast. Even faster implementation
for scikit-learn tree based models
PD plots have causal interpretation. The relationship
is causal for the model, but not necessarily for the real
world
Natural extension to categorical features

Partial Dependence Variance

Explainer ScopeModel types Task
types

Data types Use Re-
sources

Partial De-
pendence
Variance

GlobalBlack-box,
White-box
(scikit-learn)

Classi-
fication,
Regres-
sion

Tabular (nu-
merical, cat-
egorical)

What are the most important features
globally? How much do features in-
teract globally?

docs,
pa-
per

Alibi provides partial dependence variance as a way to measure globally the feature importance and the strength of
the feature interactions between pairs of features. Since the method is based on the partial dependence, the practitioner
should be aware that the method inherits its main limitations (see discussion above).

1.2. Types of Insights 11

https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boostingmachine/10.1214/aos/1013203451.full
https://arxiv.org/abs/1805.04755
https://arxiv.org/abs/1805.04755

alibi Documentation, Release 0.9.5dev

Pros Cons
Intuitive motivation for the computation of the feature importance The feature importance captures only the

main effect and ignores possible feature in-
teraction

Very general as it is a black-box algorithm Can fail to detect feature interaction even
though those exist

Fast computation in general. Even faster implementation for scikit-
learn tree-based models
Offers standardized procedure to quantify the feature importance
(i.e., contrasts with internal feature importance for some tree-based
model)
Offers support for both numerical and categorical features

Can quantify the strength of potential interaction effects

Permutation Importance

Explainer ScopeModel
types

Task types Data types Use Re-
sources

Permutation
Importance

Global Black-
box

Classification,
Regression

Tabular (numeri-
cal, categorical)

Which are the most impor-
tant features globally?

docs,
paper

Alibi provides permutation importance as a way to measure globally the feature importance. The computation of the
feature importance is based on the degree of model performance degradation when the feature values within a feature
column are permuted. One important behavior that a practitioner should be aware of is that the importance of correlated
features can be split between them.

Pros Cons
A nice and simple interpretation - the feature importance is the in-
crease/decrease in the model loss/score when a feature is noise.

Need the ground truth labels

Very general as it is a black-box algorithm Can be biased towards unrealistic
data instances

The feature importance takes into account all the feature interactions The importance metric is related to
the loss/score function

Does not require retraining the model

12 Chapter 1. Introduction

https://arxiv.org/abs/1801.01489

alibi Documentation, Release 0.9.5dev

1.2.2 2. Local Necessary Features

Local necessary features tell us what features need to stay the same for a specific instance in order for the model to give
the same classification. In the case of a trained image classification model, local necessary features for a given instance
would be a minimal subset of the image that the model uses to make its decision. Alibi provides two explainers for
computing local necessary features: anchors and pertinent positives.

Anchors

Ex-
plainer

ScopeModel
types

Task
types

Data types Use Re-
sources

An-
chors

Lo-
cal

Black-
box

Clas-
sifica-
tion

Tabular (numerical,
categorical), Text and
Image

Which set of features of a given instance are
sufficient to ensure the prediction stays the
same?

docs,
paper

Anchors are introduced in Anchors: High-Precision Model-Agnostic Explanations. More detailed documentation can
be found here.

Let 𝐴 be a rule (set of predicates) acting on input instances, such that 𝐴(𝑥) returns 1 if all its feature predicates are
true. Consider the wine quality dataset adjusted by partitioning the data into good and bad wine based on a quality
threshold of 0.5:

An example of a predicate for this dataset would be a rule of the form: 'alcohol > 11.00'. Note that the more
predicates we add to an anchor, the fewer instances it applies to, as by doing so, we filter out more instances of the data.

1.2. Types of Insights 13

https://dl.acm.org/doi/abs/10.5555/3504035.3504222
https://dl.acm.org/doi/abs/10.5555/3504035.3504222
https://archive.ics.uci.edu/ml/datasets/wine+quality

alibi Documentation, Release 0.9.5dev

Anchors are sets of predicates associated to a specific instance 𝑥 such that 𝑥 is in the anchor (𝐴(𝑥) = 1) and any other
point in the anchor has the same classification as 𝑥 (𝑧 such that 𝐴(𝑧) = 1 =⇒ 𝑓(𝑧) = 𝑓(𝑥) where 𝑓 is the model).
We’re interested in finding the Anchor that contains both the most instances and also 𝑥.

To construct an anchor using Alibi for tabular data such as the wine quality dataset (see notebook), we use:

from alibi.explainers import AnchorTabular

predict_fn = lambda x: model.predict(scaler.transform(x))
explainer = AnchorTabular(predict_fn, features)
explainer.fit(X_train)

x is the instance to explain
result = explainer.explain(x)

print('Anchor =', result.data['anchor'])
print('Coverage = ', result.data['coverage'])

where x is an instance of the dataset classified as good.

Mean test accuracy 95.00%
Anchor = ['sulphates <= 0.55', 'volatile acidity > 0.52', 'alcohol <= 11.00', 'pH > 3.40
→˓']
Coverage = 0.0316930775646372

Note: Alibi also gives an idea of the size (coverage) of the Anchor which is the proportion of the input space the anchor
applies to.

To find anchors Alibi sequentially builds them by generating a set of candidates from an initial anchor candidate, picking
the best candidate of that set and then using that to generate the next set of candidates and repeating. Candidates are
favoured on the basis of the number of instances they contain that are in the same class as 𝑥 under 𝑓 . The proportion
of instances the anchor contains that are classified the same as 𝑥 is known as the precision of the anchor. We repeat
the above process until we obtain a candidate anchor with satisfactory precision. If there are multiple such anchors we
choose the one that contains the most instances (as measured by coverage).

To compute which of two anchors is better, Alibi obtains an estimate by sampling from 𝒟(𝑧|𝐴) where 𝒟 is the data
distribution. The sampling process is dependent on the type of data. For tabular data, this process is easy; we can fix
the values in the Anchor and replace the rest with values from points sampled from the dataset.

In the case of textual data, anchors are sets of words that the sentence must include to be in the anchor. To sample from
𝒟(𝑧|𝐴), we need to find realistic sentences that include those words. To help do this Alibi provides support for three
transformer based language models: DistilbertBaseUncased, BertBaseUncased, and RobertaBase.

Image data being high-dimensional means we first need to reduce it to a lower dimension. We can do this using image
segmentation algorithms (Alibi supports felzenszwalb , slic and quickshift) to find super-pixels. The user can also use
their own custom defined segmentation function. We then create the anchors from these super-pixels. To sample from
𝒟(𝑧|𝐴) we replace those super-pixels that aren’t in 𝐴 with something else. Alibi supports superimposing over the
absent super-pixels with an image sampled from the dataset or taking the average value of the super-pixel.

The fact that the method requires perturbing and comparing anchors at each stage leads to some limitations. For
instance, the more features, the more candidate anchors you can obtain at each process stage. The algorithm uses a
beam search among the candidate anchors and solves for the best 𝐵 anchors at each stage in the process by framing the
problem as a multi-armed bandit. The runtime complexity is 𝒪(𝐵 · 𝑝2 + 𝑝2 · 𝒪𝑀𝐴𝐵[𝐵·𝑝,𝐵]) where 𝑝 is the number of
features and 𝒪𝑀𝐴𝐵[𝐵·𝑝,𝐵] is the runtime for the multi-armed bandit (see Molnar for more details).

Similarly, comparing anchors that are close to decision boundaries can require many samples to obtain a clear winner
between the two. Also, note that anchors close to decision boundaries are likely to have many predicates to ensure the
required predictive property. This makes them less interpretable.

14 Chapter 1. Introduction

https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)
https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_segmentations.html#felzenszwalb-s-efficient-graph-based-segmentation
https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_segmentations.html#slic-k-means-based-image-segmentation
https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_segmentations.html#quickshift-image-segmentation
https://en.wikipedia.org/wiki/Beam_search
https://en.wikipedia.org/wiki/Multi-armed_bandit
https://christophm.github.io/interpretable-ml-book/anchors.html#complexity-and-runtime

alibi Documentation, Release 0.9.5dev

Pros Cons
Easy to explain as rules are simple to interpret Time complexity scales as a function of features
Is a black-box method as we need to predict the value of
an instance and don’t need to access model internals

Requires a large number of samples to distinguish an-
chors close to decision boundaries

The coverage of an anchor gives a level of global insight
as well

Anchors close to decision boundaries are less likely to
be interpretable
High dimensional feature spaces such as images need
to be reduced to improve the runtime complexity
Practitioners may need domain-specific knowledge to
correctly sample from the conditional probability

Contrastive Explanation Method (Pertinent Positives)

Ex-
plainer

ScopeModel types Task
types

Data types Use Re-
sources

Perti-
nent
Posi-
tives

Lo-
cal

Black-box,
White-box (Ten-
sorFlow)

Clas-
sifica-
tion

Tabular
(numerical),
Image

Which set of features of a given instance is
sufficient to ensure the prediction stays the
same

docs,
pa-
per

Introduced by Amit Dhurandhar, et al, a Pertinent Positive is the subset of features of an instance that still obtains
the same classification as that instance. These differ from anchors primarily in the fact that they aren’t constructed
to maximize coverage. The method to create them is also substantially different. The rough idea is to define an ab-
sence of a feature and then perturb the instance to take away as much information as possible while still retaining
the original classification. Note that these are a subset of the CEM method which is also used to construct pertinent
negatives/counterfactuals.

Given an instance 𝑥 we use gradient descent to find a 𝛿 that minimizes the following loss:

𝐿 = 𝑐 · 𝐿𝑝𝑟𝑒𝑑(𝛿) + 𝛽𝐿1(𝛿, 𝑥) + 𝐿2
2(𝛿, 𝑥) + 𝛾‖𝛿 −𝐴𝐸(𝛿)‖22

𝐴𝐸 is an autoencoder generated from the training data. If 𝛿 strays from the original data distribution, the autoencoder
loss will increase as it will no longer reconstruct 𝛿 well. Thus, we ensure that 𝛿 remains close to the original dataset
distribution.

1.2. Types of Insights 15

https://arxiv.org/abs/1802.07623
https://arxiv.org/abs/1802.07623
https://arxiv.org/abs/1802.07623
https://en.wikipedia.org/wiki/Autoencoder

alibi Documentation, Release 0.9.5dev

Note that 𝛿 is constrained to only “take away” features from the instance 𝑥. There is a slightly subtle point here:
removing features from an instance requires correctly defining non-informative feature values. For the MNIST digits,
it’s reasonable to assume that the black background behind each digit represents an absence of information. In general,
having to choose a non-informative value for each feature is non-trivial and domain knowledge is required. This is the
reverse to the contrastive explanation method (pertinent-negatives) method introduced in the section on counterfactual
instances.

Note that we need to compute the loss gradient through the model. If we have access to the internals, we can do this
directly. Otherwise, we need to use numerical differentiation at a high computational cost due to the extra model calls
we need to make. This does however mean we can use this method for a wide range of black-box models but not all. We
require the model to be differentiable which isn’t always true. For instance tree-based models have piece-wise constant
output.

Pros Cons
Can be used with both white-box (Tensor-
Flow) and some black-box models

Finding non-informative feature values to take away from an instance
is often not trivial, and domain knowledge is essential
The autoencoder loss requires access to the original dataset

Need to tune hyperparameters 𝛽 and 𝛾

The insight doesn’t tell us anything about the coverage of the pertinent
positive
Slow for black-box models due to having to numerically evaluate gra-
dients
Only works for differentiable black-box models

1.2.3 3. Local Feature Attribution

Local feature attribution (LFA) asks how each feature in a given instance contributes to its prediction. In the case of an
image, this would highlight those pixels that are most responsible for the model prediction. Note that this differs subtly
from Local Necessary Features which find the minimal subset of features required to keep the same prediction. Local
feature attribution instead assigns a score to each feature.

A good example use of local feature attribution is to detect that an image classifier is focusing on the correct features
of an image to infer the class. In their paper “Why Should I Trust You?”: Explaining the Predictions of Any Classifier,
Marco Tulio Ribeiro et al. train a logistic regression classifier on a small dataset of images of wolves and huskies. The
data set has been handpicked so that only the pictures of wolves have snowy backdrops while the huskies don’t. LFA
methods reveal that the resulting misclassification of huskies in snow as wolves results from the network incorrectly
focusing on those images snowy backdrops.

Let 𝑓 : R𝑛 → R. 𝑓 might be a regression model, a single component of a multi-output regression or a probability of
a class in a classification model. If 𝑥 = (𝑥1, ..., 𝑥𝑛) ∈ R𝑛 then an attribution of the prediction at input 𝑥 is a vector
𝑎 = (𝑎1, ..., 𝑎𝑛) ∈ R𝑛 where 𝑎𝑖 is the contribution of 𝑥𝑖 to the prediction 𝑓(𝑥).

Alibi exposes four explainers to compute LFAs: Integrated Gradients , Kernel SHAP , Path-dependent Tree SHAP and
Interventional Tree SHAP. The last three of these are implemented in the SHAP library and Alibi acts as a wrapper.
Interventional and path-dependent tree SHAP are white-box methods that apply to tree based models.

For attribution methods to be relevant, we expect the attributes to behave consistently in certain situations. Hence, they
should satisfy the following properties.

• Efficiency/Completeness: The sum of attributions should equal the difference between the prediction and the
baseline

16 Chapter 1. Introduction

http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1602.04938
https://github.com/slundberg/shap

alibi Documentation, Release 0.9.5dev

Fig. 1: Figure 11 from “Why Should I Trust You?”: Explaining the Predictions of Any Classifier.

• Symmetry: Variables that have identical effects on the model should have equal attribution

• Dummy/Sensitivity: Variables that don’t change the model output should have attribution zero

• Additivity/Linearity: The attribution of a feature for a linear combination of two models should equal the linear
combination of attributions of that feature for each of those models

Not all LFA methods satisfy these methods (LIME for example) but the ones provided by Alibi (Integrated Gradients,
Kernel SHAP , Path-dependent and Interventional Tree SHAP) do.

Integrated Gradients

Ex-
plainer

ScopeModel
types

Task types Data types Use Re-
sources

Inte-
grated
Gradients

Lo-
cal

White-box
(Tensor-
Flow)

Classi-
fication,
Regression

Tabular (numerical,
categorical), Text and
Image

What does each feature con-
tribute to the model predic-
tion?

docs,
paper

The Integrated Gradients (IG) method computes the attribution of each feature by integrating the model partial deriva-
tives along a path from a baseline point to the instance. This accumulates the changes in the prediction that occur due
to the changing feature values. These accumulated values represent how each feature contributes to the prediction for
the instance of interest. A more detailed explanation of the method can be found in the method specific docs.

We need to choose a baseline which should capture a blank state in which the model makes essentially no prediction
or assigns the probability of each class equally. This is dependent on domain knowledge of the dataset. In the case of
MNIST for instance a common choice is an image set to black. For numerical tabular data we can set the baseline as
the average of each feature.

Note 3: Choice of Baseline

1.2. Types of Insights 17

https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1703.01365
https://arxiv.org/abs/1703.01365

alibi Documentation, Release 0.9.5dev

The main difficulty with this method is that as IG is very dependent on the baseline, it’s essential to make sure you
choose it well. Choosing a black image baseline for a classifier trained to distinguish between photos taken at day or
night may not be the best choice.

Note that IG is a white-box method that requires access to the model internals in order to compute the partial derivatives.
Alibi provides support for TensorFlow models. For example given a TensorFlow classifier trained on the wine quality
dataset we can compute the IG attributions (see notebook) by doing:

from alibi.explainers import IntegratedGradients

ig = IntegratedGradients(model) # TensorFlow model
result = ig.explain(
scaler.transform(x), # scaled data instance
target=0, # model class probability prediction to obtain␣

→˓attribution for
)

plot_importance(result.data['attributions'][0], features, 0)

This gives:

Note 4: Comparison to ALE The alcohol feature value contributes negatively here to the “Good” prediction which
seems to contradict the ALE result. However, The instance 𝑥 we choose has an alcohol content of 9.4%, which is
reasonably low for a wine classed as “Good” and is consistent with the ALE plot. (The median for good wines is
10.8% and bad wines 9.7%)

Pros Cons
Simple to understand and visualize, espe-
cially with image data

White-box method. Requires the partial derivatives of the model
outputs with respect to inputs

Doesn’t require access to the training data Requires choosing the baseline which can have a significant effect
on the outcome

Satisfies several desirable properties

18 Chapter 1. Introduction

https://distill.pub/2020/attribution-baselines/

alibi Documentation, Release 0.9.5dev

Kernel SHAP

Ex-
plainer

ScopeModel
types

Task types Data types Use Re-
sources

Kernel
SHAP

Lo-
cal

Black-
box

Classification,
Regression

Tabular (numeri-
cal, categorical)

What does each feature contribute
to the model prediction?

docs,
paper

Kernel SHAP (Alibi method docs) is a method for computing the Shapley values of a model around an instance. Shapley
values are a game-theoretic method of assigning payout to players depending on their contribution to an overall goal.
In our case, the features are the players, and the payouts are the attributions.

Given any subset of features, we can ask how a feature’s presence in that set contributes to the model output. We do
this by computing the model output for the set with and without the specific feature. We obtain the Shapley value for
that feature by considering these contributions with and without it present for all possible subsets of features.

Two problems arise. Most models are not trained to take a variable number of input features. And secondly, considering
all possible sets of absent features leads to considering the power set which is prohibitively large when there are many
features.

To solve the former, we sample from the interventional conditional expectation. This replaces missing features with
values sampled from the training distribution. And to solve the latter, the kernel SHAP method samples on the space
of subsets to obtain an estimate.

A downside of interfering in the distribution like this is that doing so introduces unrealistic samples if there are depen-
dencies between the features.

Alibi provides a wrapper to the SHAP library. We can use this explainer to compute the Shapley values for a sklearn
random forest model using the following (see notebook):

from alibi.explainers import KernelShap

black-box model
predict_fn = lambda x: rfc.predict_proba(scaler.transform(x))
explainer = KernelShap(predict_fn, task='classification')
explainer.fit(X_train[0:100])
result = explainer.explain(x)

plot_importance(result.shap_values[1], features, 1)

This gives the following output:

1.2. Types of Insights 19

https://papers.nips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://papers.nips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://christophm.github.io/interpretable-ml-book/shapley.html
https://christophm.github.io/interpretable-ml-book/shapley.html
https://en.wikipedia.org/wiki/Power_set
https://github.com/slundberg/shap
https://scikit-learn.org/stable/
https://en.wikipedia.org/wiki/Random_forest

alibi Documentation, Release 0.9.5dev

This result is similar to the one for Integrated Gradients although there are differences due to using different methods
and models in each case.

Pros Cons
Satisfies several desirable properties Kernel SHAP is slow owing to the number of samples required to estimate

the Shapley values accurately
Shapley values can be easily inter-
preted and visualized

The interventional conditional probability introduces unrealistic data
points

Very general as is a black-box method Requires access to the training dataset

Path-dependent Tree SHAP

Explainer ScopeModel types Task
types

Data types Use Re-
sources

Tree SHAP
(path-
dependent)

Lo-
cal

White-box (XGBoost, Light-
GBM, CatBoost, scikit-learn
and pyspark tree models)

Classi-
fication,
Regres-
sion

Tabular (nu-
merical, cat-
egorical)

What does each feature
contribute to the model
prediction?

docs,
pa-
per

Computing the Shapley values for a model requires computing the interventional conditional expectation for each
member of the power set of instance features. For tree-based models we can approximate this distribution by applying
the tree as usual. However, for missing features, we take both routes down the tree, weighting each path taken by the
proportion of samples from the training dataset that go each way. The tree SHAP method does this simultaneously for all
members of the feature power set, obtaining a significant speedup . Assume the random forest has 𝑇 trees, with a depth
of 𝐷, let 𝐿 be the number of leaves and let 𝑀 be the size of the feature set. If we compute the approximation for each
member of the power set we obtain a time complexity of 𝑂(𝑇𝐿2𝑀). In contrast, computing for all sets simultaneously
we achieve 𝑂(𝑇𝐿𝐷2).

To compute the path-dependent tree SHAP explainer for a random forest using Alibi (see notebook) we use:

from alibi.explainers import TreeShap

(continues on next page)

20 Chapter 1. Introduction

https://www.nature.com/articles/s42256-019-0138-9
https://www.nature.com/articles/s42256-019-0138-9
https://en.wikipedia.org/wiki/Power_set
https://www.researchgate.net/publication/333077391_Explainable_AI_for_Trees_From_Local_Explanations_to_Global_Understanding

alibi Documentation, Release 0.9.5dev

(continued from previous page)

rfc is a random forest model
path_dependent_explainer = TreeShap(rfc)
path_dependent_explainer.fit() # path dependent Tree␣
→˓SHAP doesn't need any data

result = path_dependent_explainer.explain(scaler.transform(x)) # explain the scaled␣
→˓instance
plot_importance(result.shap_values[1], features, '"Good"')

From this we obtain:

This result is similar to the one for Integrated Gradients and Kernel SHAP although there are differences due to using
different methods and models in each case.

Pros Cons
Satisfies several desirable properties Only applies to tree-based models
Very fast for a valuable category of
models

Uses an approximation of the interventional conditional expectation in-
stead of computing it directly

Doesn’t require access to the training
data
Shapley values can be easily interpreted
and visualized

Interventional Tree SHAP

Explainer ScopeModel types Task
types

Data types Use Re-
sources

Tree
SHAP
(interven-
tional)

Lo-
cal

White-box (XGBoost, Light-
GBM, CatBoost, scikit-learn
and pyspark tree models)

Classi-
fication,
Regres-
sion

Tabular (nu-
merical, cat-
egorical)

What does each feature
contribute to the model
prediction?

docs,
pa-
per

1.2. Types of Insights 21

https://www.nature.com/articles/s42256-019-0138-9
https://www.nature.com/articles/s42256-019-0138-9

alibi Documentation, Release 0.9.5dev

Suppose we sample a reference data point, 𝑟, from the training dataset. Let 𝐹 be the set of all features. For each
feature, 𝑖, we then enumerate over all subsets of 𝑆 ⊂ 𝐹 ∖ {𝑖}. If a subset is missing a feature, we replace it with the
corresponding one in the reference sample. We can then compute 𝑓(𝑆) directly for each member of the power set of
instance features to get the Shapley values.

Enforcing independence of the 𝑆 and 𝐹 ∖𝑆 in this way is known as intervening in the underlying data distribution and
is the source of the algorithm’s name. Note that this breaks any independence between features in the dataset, which
means the data points we’re sampling won’t always be realistic.

For a single tree and sample 𝑟 if we iterate over all the subsets of 𝑆 ⊂ 𝐹 ∖{𝑖}, it would give 𝑂(𝑀2𝑀) time complexity.
The interventional tree SHAP algorithm runs with 𝑂(𝑇𝐿𝐷) time complexity.

The main difference between the interventional and the path-dependent tree SHAP methods is that the latter approxi-
mates the interventional conditional expectation, whereas the former method calculates it directly.

To compute the interventional tree SHAP explainer for a random forest using Alibi (see notebook), we use:

from alibi.explainers import TreeShap

rfc is a random forest classifier model
tree_explainer_interventional = TreeShap(rfc)

interventional tree SHAP is slow for large datasets so we take first 100 samples of␣
→˓training data.
tree_explainer_interventional.fit(scaler.transform(X_train[0:100]))

result = tree_explainer_interventional.explain(scaler.transform(x)) # explain the␣
→˓scaled instance
plot_importance(result.shap_values[1], features, '"Good"')

From this we obtain:

This result is similar to the one for Integrated Gradients, Kernel SHAP , Path-dependent Tree SHAP although there are
differences due to using different methods and models in each case.

For a great interactive explanation of the interventional Tree SHAP method see.

22 Chapter 1. Introduction

https://hughchen.github.io/its_blog/index.html
https://hughchen.github.io/its_blog/index.html

alibi Documentation, Release 0.9.5dev

Pros Cons
Satisfies several desirable properties Only applies to tree-based models
Very fast for a valuable category of models Requires access to the dataset
Shapley values can be easily interpreted and visualized Typically slower than the path-

dependent method
Computes the interventional conditional expectation exactly unlike the
path-dependent method

1.2.4 4. Counterfactual instances

Given an instance of the dataset and a prediction given by a model, a question naturally arises how would the instance
minimally have to change for a different prediction to be provided. Such a generated instance is known as a counter-
factual. Counterfactuals are local explanations as they relate to a single instance and model prediction.

Given a classification model trained on the MNIST dataset and a sample from the dataset, a counterfactual would be
a generated image that closely resembles the original but is changed enough that the model classifies it as a different
number from the original instance.

Fig. 2: From Samoilescu RF et al., Model-agnostic and Scalable Counterfactual Explanations via Reinforcement
Learning, 2021

Counterfactuals can be used to both debug and augment model functionality. Given tabular data that a model uses to
make financial decisions about a customer, a counterfactual would explain how to change their behavior to obtain a
different conclusion. Alternatively, it may tell the Machine Learning Engineer that the model is drawing incorrect as-
sumptions if the recommended changes involve features that are irrelevant to the given decision. However, practitioners
must still be wary of bias.

A counterfactual, 𝑥cf, needs to satisfy

• The model prediction on 𝑥cf needs to be close to the pre-defined output (e.g. desired class label).

• The counterfactual 𝑥cf should be interpretable.

The first requirement is clear. The second, however, requires some idea of what interpretable means. Alibi exposes
four methods for finding counterfactuals: counterfactual instances (CFI) , contrastive explanations (CEM) , coun-
terfactuals guided by prototypes (CFP), and counterfactuals with reinforcement learning (CFRL). Each of these
methods deals with interpretability slightly differently. However, all of them require sparsity of the solution. This
means we prefer to only change a small subset of the features which limits the complexity of the solution making it
more understandable.

1.2. Types of Insights 23

https://research-information.bris.ac.uk/en/publications/counterfactual-explanations-of-machine-learning-predictions-oppor

alibi Documentation, Release 0.9.5dev

Note that sparse changes to the instance of interest doesn’t guarantee that the generated counterfactual is believably a
member of the data distribution. CEM , CFP, and CFRL also require that the counterfactual be in distribution in order
to be interpretable.

Fig. 3: Original MNIST 7 instance, Counterfactual instances constructed using 1) counterfactual instances method,
2) counterfactual instances with prototypes method

The first three methods CFI , CEM , CFP all construct counterfactuals using a very similar method. They build them
by defining a loss that prefer interpretable instances close to the target class. They then use gradient descent to move
within the feature space until they obtain a counterfactual of sufficient quality. The main difference is the CEM and
CFP methods also train an autoencoder to ensure that the constructed counterfactuals are within the data-distribution.

Fig. 4: Obtaining counterfactuals using gradient descent with and without autoencoder trained on data distribution

These three methods only realistically work for grayscale images and anything multi-channel will not be interpretable.
In order to get quality results for multi-channel images practitioners should use CFRL.

CFRL uses a similar loss to CEM and CFP but applies reinforcement learning to train a model which will generate
counterfactuals on demand.

Note 5: fit and explain method runtime differences

24 Chapter 1. Introduction

alibi Documentation, Release 0.9.5dev

Alibi explainers expose two methods, fit and explain. Typically in machine learning the method that takes the most
time is the fit method, as that’s where the model optimization conventionally takes place. In explainability, the explain
step often requires the bulk of computation. However, this isn’t always the case.

Among the explainers in this section, there are two approaches taken. The first finds a counterfactual when the user
requests the insight. This happens during the .explain() method call on the explainer class. This is done by running
gradient descent on model inputs to find a counterfactual. The methods that take this approach are counterfactual
instances, contrastive explanation, and counterfactuals guided by prototypes. Thus, the fit method in these cases
is quick, but the explain method is slow.

The other approach, counterfactuals with reinforcement learning, trains a model that produces explanations on
demand. The training takes place during the fit method call, so this has a long runtime while the explain method is
quick. If you want performant explanations in production environments, then the latter approach is preferable.

Counterfactual Instances

Explainer ScopeModel types Task
types

Data types Use Re-
sources

Counter-
factual
Instances

Lo-
cal

Black-box (differen-
tiable), White-box
(TensorFlow)

Clas-
sifi-
ca-
tion

Tabu-
lar(numerical),
Image

What minimal change to features
is required to reclassify the current
prediction?

docs,
pa-
per

Let the model be given by 𝑓 , and let 𝑝𝑡 be the target probability of class 𝑡. Let 𝜆 be a hyperparameter. This method
constructs counterfactual instances from an instance 𝑋 by running gradient descent on a new instance 𝑋 ′ to minimize
the following loss:

𝐿(𝑋 ′, 𝑋) = (𝑓𝑡(𝑋
′)− 𝑝𝑡)

2 + 𝜆𝐿1(𝑋
′, 𝑋)

The first term pushes the constructed counterfactual towards the desired class, and the use of the 𝐿1 norm encourages
sparse solutions.

This method requires computing gradients of the loss in the model inputs. If we have access to the model and the
gradients are available, this can be done directly. If not, we can use numerical gradients, although this comes at a
considerable performance cost.

A problem arises here in that encouraging sparse solutions doesn’t necessarily generate interpretable counterfactuals.
This happens because the loss doesn’t prevent the counterfactual solution from moving off the data distribution. Thus,
you will likely get an answer that doesn’t look like something that you would expect to see from the data.

To use the counterfactual instances method from Alibi applied to the wine quality dataset (see notebook), use:

from alibi.explainers import Counterfactual

explainer = Counterfactual(
model, # The model to explain
shape=(1,) + X_train.shape[1:], # The shape of the model input
target_proba=0.51, # The target class probability
tol=0.01, # The tolerance for the loss
target_class='other', # The target class to obtain

)

result_cf = explainer.explain(scaler.transform(x))
(continues on next page)

1.2. Types of Insights 25

https://arxiv.org/abs/1711.00399
https://arxiv.org/abs/1711.00399

alibi Documentation, Release 0.9.5dev

(continued from previous page)

print("Instance prediction:", model.predict(scaler.transform(x))[0].argmax())
print("Counterfactual prediction:", model.predict(result_cf.data['cf']['X'])[0].argmax())

Gives the expected result:

Instance prediction: 0 # "good"
Counterfactual prediction: 1 # "bad"

Pros Cons
Both a black-box and white-box method Not likely to give human interpretable instances
Doesn’t require access to the training
dataset

Requires tuning of 𝜆 hyperparameter

Slow for black-box models due to having to numerically evaluate gra-
dients

Contrastive Explanation Method (Pertinent Negatives)

Explainer ScopeModel types Task
types

Data
types

Use Re-
sources

Contrastive
Explanation
Method

Lo-
cal

Black-box (differen-
tiable), White-box
(TensorFlow)

Clas-
sifi-
ca-
tion

Tabu-
lar(numerical),
Image

What minimal change to features
is required to reclassify the current
prediction?

docs,
pa-
per

CEM follows a similar approach to the above but includes three new details. Firstly an elastic net 𝛽𝐿1+𝐿2 regularizer
term is added to the loss. This term causes the solutions to be both close to the original instance and sparse.

Secondly, we require that 𝛿 only adds new features rather than takes them away. We need to define what it means for a
feature to be present so that the perturbation only works to add and not remove them. In the case of the MNIST dataset,
an obvious choice of “present” feature is if the pixel is equal to 1 and absent if it is equal to 0. This is simple in the
case of the MNIST data set but more difficult in complex domains such as colour images.

Thirdly, by training an autoencoder to penalize counterfactual instances that deviate from the data distribution. This
works by minimizing the reconstruction loss of the autoencoder applied to instances. If a generated instance is unlike
anything in the dataset, the autoencoder will struggle to recreate it well, and its loss term will be high. We require three
hyperparameters 𝑐, 𝛽 and 𝛾 to define the following loss:

𝐿 = 𝑐 · 𝐿𝑝𝑟𝑒𝑑(𝛿) + 𝛽𝐿1(𝛿, 𝑥) + 𝐿2
2(𝛿, 𝑥) + 𝛾‖𝛿 −𝐴𝐸(𝛿)‖22

A subtle aspect of this method is that it requires defining the absence or presence of features as delta is restrained only
to allow you to add information. For the MNIST digits, it’s reasonable to assume that the black background behind each
written number represents an absence of information. Similarly, in the case of colour images, you might take the median
pixel value to convey no information, and moving away from this value adds information. For numerical tabular data,
we can use the feature mean. In general, choosing a non-informative value for each feature is non-trivial, and domain
knowledge is required. This is the reverse process to the contrastive explanation method (pertinent-positives) method
introduced in the section on local necessary features in which we take away features rather than add them.

This approach extends the definition of interpretable to include a requirement that the computed counterfactual be
believably a member of the dataset. This isn’t always satisfied (see image below). In particular, the constructed coun-
terfactual often doesn’t look like a member of the target class.

26 Chapter 1. Introduction

https://arxiv.org/abs/1802.07623
https://arxiv.org/abs/1802.07623

alibi Documentation, Release 0.9.5dev

Fig. 5: An original MNIST instance and a pertinent negative obtained using CEM.

To compute a pertinent-negative using Alibi (see notebook) we use:

from alibi.explainers import CEM

cem = CEM(model, # model to explain
shape=(1,) + X_train.shape[1:], # shape of the model input
mode='PN', # pertinant negative mode
kappa=0.2, # Confidence parameter for the attack loss␣

→˓term
beta=0.1, # Regularization constant for L1 loss term
ae_model=ae # autoencoder model

)

cem.fit(
scaler.transform(X_train), # scaled training data
no_info_type='median' # non-informative value for each feature

)
result_cem = cem.explain(scaler.transform(x), verbose=False)
cem_cf = result_cem.data['PN']

print("Instance prediction:", model.predict(scaler.transform(x))[0].argmax())
print("Counterfactual prediction:", model.predict(cem_cf)[0].argmax())

Gives the expected result:

Instance prediction: 0 # "good"
Counterfactual prediction: 1 # "bad"

This method can apply to both black-box and white-box models. There is a performance cost from computing the
numerical gradients in the black-box case due to having to numerically evaluate gradients.

1.2. Types of Insights 27

alibi Documentation, Release 0.9.5dev

Pros Cons
Provides more interpretable instances than the coun-
terfactual instances’ method.

Requires access to the dataset to train the autoencoder

Applies to both white and black-box models Requires setup and configuration in choosing 𝑐, 𝛾 and 𝛽
Requires training an autoencoder

Requires domain knowledge when choosing what it means
for a feature to be present or not
Slow for black-box models

Counterfactuals Guided by Prototypes

Explainer ScopeModel types Task
types

Data types Use Re-
sources

Counterfactu-
als Guided by
Prototypes

Lo-
cal

Black-box (differen-
tiable), White-box
(TensorFlow)

Clas-
sifi-
ca-
tion

Tabular (nu-
merical,
categorical),
Image

What minimal change to fea-
tures is required to reclassify the
current prediction?

docs,
pa-
per

For this method, we add another term to the loss that optimizes for the distance between the counterfactual instance
and representative members of the target class. In doing this, we require interpretability also to mean that the generated
counterfactual is believably a member of the target class and not just in the data distribution.

With hyperparameters 𝑐, 𝛾 and 𝛽, the loss is given by:

𝐿(𝑋 ′|𝑋) = 𝑐 · 𝐿𝑝𝑟𝑒𝑑(𝑋
′) + 𝛽𝐿1(𝑋

′, 𝑋) + 𝐿2(𝑋
′, 𝑋)2 + 𝛾𝐿2(𝑋

′, 𝐴𝐸(𝑋 ′))2 + 𝐿2(𝑋
′, 𝑋𝑝𝑟𝑜𝑡𝑜)

This method produces much more interpretable results than CFI and CEM.

Because the prototype term steers the solution, we can remove the prediction loss term. This makes this method much
faster if we are using a black-box model as we don’t need to compute the gradients numerically. However, occasionally
the prototype isn’t a member of the target class. In this case you’ll end up with an incorrect counterfactual.

To use the counterfactual with prototypes method in Alibi (see notebook) we do:

from alibi.explainers import CounterfactualProto

explainer = CounterfactualProto(
model, # The model to explain
shape=(1,) + X_train.shape[1:], # shape of the model input
ae_model=ae, # The autoencoder
enc_model=ae.encoder # The encoder

)

explainer.fit(scaler.transform(X_train)) # Fit the explainer with scaled data

result_proto = explainer.explain(scaler.transform(x), verbose=False)

proto_cf = result_proto.data['cf']['X']
(continues on next page)

28 Chapter 1. Introduction

https://arxiv.org/abs/1907.02584
https://arxiv.org/abs/1907.02584

alibi Documentation, Release 0.9.5dev

(continued from previous page)

print("Instance prediction:", model.predict(scaler.transform(x))[0].argmax())
print("Counterfactual prediction:", model.predict(proto_cf)[0].argmax())

We get the following results:

Instance prediction: 0 # "good"
Counterfactual prediction: 1 # "bad"

Pros Cons
Generates more interpretable instances than the CEM
method

Requires access to the dataset

Black-box version of the method is fast Requires setup and configuration in choosing 𝛾, 𝛽 and
𝑐

Applies to more data-types Requires training an autoencoder

Counterfactuals with Reinforcement Learning

Explainer ScopeModel
types

Task
types

Data types Use Re-
sources

Counterfactuals
with Reinforcement
Learning

Lo-
cal

Black-
box

Clas-
sifica-
tion

Tabular (numeri-
cal, categorical),
Image

What minimal change to features is
required to reclassify the current pre-
diction?

docs,
pa-
per

This black-box method splits from the approach taken by the above three significantly. Instead of minimizing a loss
during the explain method call, it trains a new model when fitting the explainer called an actor that takes instances and
produces counterfactuals. It does this using reinforcement learning. In reinforcement learning, an actor model takes
some state as input and generates actions; in our case, the actor takes an instance with a target classification and attempts
to produce a member of the target class. Outcomes of actions are assigned rewards dependent on a reward function
designed to encourage specific behaviors. In our case, we reward correctly classified counterfactuals generated by the
actor. As well as this, we reward counterfactuals that are close to the data distribution as modeled by an autoencoder.
Finally, we require that they are sparse perturbations of the original instance. The reinforcement training step pushes
the actor to take high reward actions. CFRL is a black-box method as the process by which we update the actor to
maximize the reward only requires estimating the reward via sampling the counterfactuals.

As well as this, CFRL actors can be trained to ensure that certain constraints can be taken into account when generating
counterfactuals. This is highly desirable as a use case for counterfactuals is to suggest the necessary changes to an
instance to obtain a different classification. In some cases, you want these changes to be constrained, for instance,
when dealing with immutable characteristics. In other words, if you are using the counterfactual to advise changes in
behavior, you want to ensure the changes are enactable. Suggesting that someone needs to be two years younger to
apply for a loan isn’t very helpful.

The training process requires randomly sampling data instances, along with constraints and target classifications. We
can then compute the reward and update the actor to maximize it. We do this without needing access to the model
internals; we only need to obtain a prediction in each case. The end product is a model that can generate interpretable
counterfactual instances at runtime with arbitrary constraints.

To use CFRL on the wine dataset (see notebook), we use:

1.2. Types of Insights 29

https://arxiv.org/abs/2106.02597
https://arxiv.org/abs/2106.02597

alibi Documentation, Release 0.9.5dev

from alibi.explainers import CounterfactualRL

predict_fn = lambda x: model(x)

cfrl_explainer = CounterfactualRL(
predictor=predict_fn, # The model to explain
encoder=ae.encoder, # The encoder
decoder=ae.decoder, # The decoder
latent_dim=7, # The dimension of the autoencoder latent space
coeff_sparsity=0.5, # The coefficient of sparsity
coeff_consistency=0.5, # The coefficient of consistency
train_steps=10000, # The number of training steps
batch_size=100, # The batch size

)

cfrl_explainer.fit(X=scaler.transform(X_train))

result_cfrl = cfrl_explainer.explain(X=scaler.transform(x), Y_t=np.array([1]))
print("Instance prediction:", model.predict(scaler.transform(x))[0].argmax())
print("Counterfactual prediction:", model.predict(result_cfrl.data['cf']['X'])[0].
→˓argmax())

Which gives the following output:

Instance prediction: 0 # "good"
Counterfactual prediction: 1 # "bad"

Note 6: CFRL explainers
Alibi exposes two explainer methods for counterfactuals with reinforcement learning. The first is the CounterfactualRL
and the second is CounterfactualRlTabular. The difference is that CounterfactualRlTabular is designed to support
categorical features. See the CFRL documentation page for more details.

Pros Cons
Generates more interpretable instances than the CEM method Longer to fit the model
Very fast at runtime Requires to fit an autoencoder
Can be trained to account for arbitrary constraints Requires access to the training dataset
General as is a black-box algorithm

30 Chapter 1. Introduction

alibi Documentation, Release 0.9.5dev

Counterfactual Example Results

For each of the four explainers, we have generated a counterfactual instance. We compare the original instance to each:

Feature Instance CFI CEM CFP CFRL
sulphates 0.67 0.64 0.549 0.623 0.598
alcohol 10.5 9.88 9.652 9.942 9.829
residual sugar 1.6 1.582 1.479 1.6 2.194
chlorides 0.062 0.061 0.057 0.062 0.059
free sulfur dioxide 5.0 4.955 2.707 5.0 6.331
total sulfur dioxide 12.0 11.324 12.0 12.0 14.989
fixed acidity 9.2 9.23 9.2 9.2 8.965
volatile acidity 0.36 0.36 0.36 0.36 0.349
citric acid 0.34 0.334 0.34 0.34 0.242
density 0.997 0.997 0.997 0.997 0.997
pH 3.2 3.199 3.2 3.2 3.188

The CFI, CEM, and CFRL methods all perturb more features than CFP, making them less interpretable. Looking at
the ALE plots, we can see how the counterfactual methods change the features to flip the prediction. In general, each
method seems to decrease the sulphates and alcohol content to obtain a “bad” classification consistent with the ALE
plots. Note that the ALE plots potentially miss details local to individual instances as they are global insights.

1.2. Types of Insights 31

alibi Documentation, Release 0.9.5dev

1.2.5 5. Similarity explanations

Ex-
plainer

ScopeModel
types

Task
types

Data types Use Re-
sources

Simi-
larity
explana-
tions

Lo-
cal

White-
box

Classi-
fication,
Regres-
sion

Tabular (numeri-
cal, categorical),
Text and Image

What are the instances in the training set that
are most similar to the instance of interest ac-
cording to the model?

docs,
pa-
per

Similarity explanations are instance-based explanations that focus on training data points to justify a model prediction
on a test instance. Given a trained model and a test instance whose prediction is to be explained, these methods scan
the training set, finding the most similar data points according to the model which forms an explanation. This type of
explanation can be interpreted as the model justifying its prediction by referring to similar instances which may share
the same prediction—“I classify this image as a ‘Golden Retriever’ because it is most similar to images in the training
set which I also classified as ‘Golden Retriever’”.

Fig. 6: A similarity explanation justifies the classification of an image as a ‘Golden Retriever’ because most similar
instances in the training set are also classified as ‘Golden Retriever’.

32 Chapter 1. Introduction

https://papers.nips.cc/paper/2019/hash/c61f571dbd2fb949d3fe5ae1608dd48b-Abstract.html
https://papers.nips.cc/paper/2019/hash/c61f571dbd2fb949d3fe5ae1608dd48b-Abstract.html

CHAPTER

TWO

GETTING STARTED

2.1 Installation

Alibi works with Python 3.7+ and can be installed from PyPI or conda-forge by following the instructions below.

Install via PyPI

• Alibi can be installed from PyPI with pip:

Standard

Default installation.

pip install alibi

SHAP

Installation with support for computing SHAP values.

pip install alibi[shap]

Distributed

Installation with support for distributed Kernel SHAP.

pip install alibi[ray]

TensorFlow

Installation with support for tensorflow backends. Required for

• Contrastive Explanation Method (CEM)

• Counterfactuals Guided by Prototypes

• Counterfactual Instances

• Integrated gradients

33

https://pypi.org/project/alibi/
https://conda-forge.org/
https://pypi.org/project/alibi/
https://shap.readthedocs.io/en/stable/index.html

alibi Documentation, Release 0.9.5dev

• Anchors on Textual data with sampling_strategy='language_model'

• One of Torch or TensorFlow is required for the Counterfactuals with RL methods

pip install alibi[tensorflow]

Torch

Installation with support for torch backends. One of Torch or TensorFlow is required for:

• Counterfactuals with RL

• Similarity explanations

pip install alibi[torch]

All

Installs all optional dependencies.

pip install alibi[all]

Install via conda-forge

• To install the conda-forge version it is recommended to use mamba, which can be installed to the base conda
enviroment with:

conda install mamba -n base -c conda-forge

• mamba can then be used to install alibi in a conda enviroment:

Standard

Default installation.

mamba install -c conda-forge alibi

SHAP

Installation with support for computing SHAP values.

mamba install -c conda-forge alibi shap

34 Chapter 2. Getting Started

https://mamba.readthedocs.io/en/stable/
https://shap.readthedocs.io/en/stable/index.html

alibi Documentation, Release 0.9.5dev

Distributed

Installation with support for distributed computation of explanations.

mamba install -c conda-forge alibi ray

2.2 Features

Alibi is a Python package designed to help explain the predictions of machine learning models and gauge the confidence
of predictions. The focus of the library is to support the widest range of models using black-box methods where possible.

To get a list of the latest available model explanation algorithms, you can type:

import alibi
alibi.explainers.__all__

['ALE',
'AnchorTabular',
'DistributedAnchorTabular',
'AnchorText',
'AnchorImage',
'CEM',
'Counterfactual',
'CounterfactualProto',
'CounterfactualRL',
'CounterfactualRLTabular',
'PartialDependence',
'TreePartialDependence',
'PartialDependenceVariance',
'PermutationImportance',
'plot_ale',
'plot_pd',
'plot_pd_variance',
'plot_permutation_importance',
'IntegratedGradients',
'KernelShap',
'TreeShap',
'GradientSimilarity']

For gauging model confidence:

alibi.confidence.__all__

['linearity_measure',
'LinearityMeasure',
'TrustScore']

For dataset summarization

alibi.prototypes.__all__

2.2. Features 35

alibi Documentation, Release 0.9.5dev

['ProtoSelect',
'visualize_image_prototypes']

For detailed information on the methods:

• Overview of available methods

– Accumulated Local Effects

– Anchor explanations

– Contrastive Explanation Method (CEM)

– Counterfactual Instances

– Counterfactuals Guided by Prototypes

– Counterfactuals with RL

– Integrated gradients

– Kernel SHAP

– Linearity Measure

– ProtoSelect

– PartialDependence

– PD Variance

– Permutation Importance

– TreeShap

– Trust Scores

– Similarity explanations

2.3 Basic Usage

The alibi explanation API takes inspiration from scikit-learn, consisting of distinct initialize, fit and explain steps.
We will use the Anchor method on tabular data to illustrate the API.

First, we import the explainer:

from alibi.explainers import AnchorTabular

Next, we initialize it by passing it a prediction function and any other necessary arguments:

explainer = AnchorTabular(predict_fn, feature_names)

Some methods require an additional .fit step which requires access to the training set the model was trained on:

explainer.fit(X_train)

AnchorTabular(meta={
'name': 'AnchorTabular',
'type': ['blackbox'],
'explanations': ['local'],

(continues on next page)

36 Chapter 2. Getting Started

alibi Documentation, Release 0.9.5dev

(continued from previous page)

'params': {'seed': None, 'disc_perc': (25, 50, 75)}
})

Finally, we can call the explainer on a test instance which will return an Explanation object containing the explanation
and any additional metadata returned by the computation:

explanation = explainer.explain(x)

The returned Explanation object has meta and data attributes which are dictionaries containing any explanation
metadata (e.g. parameters, type of explanation) and the explanation itself respectively:

explanation.meta

{'name': 'AnchorTabular',
'type': ['blackbox'],
'explanations': ['local'],
'params': {'seed': None,
'disc_perc': (25, 50, 75),
'threshold': 0.95,
'delta': ...truncated output...

explanation.data

{'anchor': ['petal width (cm) > 1.80', 'sepal width (cm) <= 2.80'],
'precision': 0.9839228295819936,
'coverage': 0.31724137931034485,
'raw': {'feature': [3, 1],
'mean': [0.6453362255965293, 0.9839228295819936],
'precision': [0.6453362255965293, 0.9839228295819936],
'coverage': [0.20689655172413793, 0.31724137931034485],
'examples': ...truncated output...

The top level keys of both meta and data dictionaries are also exposed as attributes for ease of use of the explanation:

explanation.anchor

['petal width (cm) > 1.80', 'sepal width (cm) <= 2.80']

Some algorithms, such as Kernel SHAP, can run batches of explanations in parallel, if the number of cores is specified
in the algorithm constructor:

distributed_ks = KernelShap(predict_fn, distributed_opts={'n_cpus': 10})

Note that this requires the user to run pip install alibi[ray] to install dependencies of the distributed backend.

The exact details will vary slightly from method to method, so we encourage the reader to become familiar with the
types of algorithms supported in Alibi.

2.3. Basic Usage 37

alibi Documentation, Release 0.9.5dev

38 Chapter 2. Getting Started

CHAPTER

THREE

ALGORITHM OVERVIEW

This page provides a high-level overview of the algorithms and their features currently implemented in Alibi.

3.1 Model Explanations

These algorithms provide instance-specific (sometimes also called local) explanations of ML model predictions. Given
a single instance and a model prediction they aim to answer the question “Why did my model make this prediction?”
Most of the following algorithms work with black-box models meaning that the only requirement is to have access
to a prediction function (which could be an API endpoint for a model in production). For an extended discussion see
White-box and black-box models.

The following table summarizes the capabilities of the current algorithms:

39

alibi Documentation, Release 0.9.5dev

Method Models Exp.
types

Classifi-
cation

Re-
gres-
sion

Tab-
ular

Text Im-
age

Cat.
data

Train Dist.

ALE BB global ✓✓✓ ✓✓✓ ✓✓✓

Partial Depen-
dence

BB WB global ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

PD Variance BB WB global ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Permutation Im-
portance

BB global ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Anchors BB local ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ For
Tabular

CEM BB*
TF/Keras

local ✓✓✓ ✓✓✓ ✓✓✓ Op-
tional

Counterfactuals BB*
TF/Keras

local ✓✓✓ ✓✓✓ ✓✓✓ No

Prototype Coun-
terfactuals

BB*
TF/Keras

local ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ Op-
tional

Counterfactuals
with RL

BB local ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Integrated Gra-
dients

TF/Keras local ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ Op-
tional

Kernel SHAP BB local
global

✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Tree SHAP WB local
global

✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ Op-
tional

Similarity expla-
nations

WB local ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Key:

• BB - black-box (only require a prediction function)

• BB* - black-box but assume model is differentiable

• WB - requires white-box model access. There may be limitations on models supported

• TF/Keras - TensorFlow models via the Keras API

• Local - instance specific explanation, why was this prediction made?

• Global - explains the model with respect to a set of instances

• Cat. data - support for categorical features

• Train - whether a training set is required to fit the explainer

• Dist. - whether a batch of explanations can be executed in parallel

Accumulated Local Effects (ALE): calculates first-order feature effects on the model with respect to a dataset. In-
tended for use on tabular datasets, currently supports numerical features. Documentation, regression example, classi-
fication example.

Partial Dependence: computes the marginal effect that one or multiple features have on the predicted outcome of a
model with respect to a dataset. Intended for use on tabular datasets, black-box and white-box (scikit-learn) models,
supporting numerical and categorical features. Documentation, Bike rental.

40 Chapter 3. Algorithm overview

https://docs.seldon.io/projects/alibi/en/stable/methods/CFRL.html
https://docs.seldon.io/projects/alibi/en/stable/methods/CFRL.html

alibi Documentation, Release 0.9.5dev

Partial Dependence Variance: computes the global feature importance or the feature interaction of a pair of features.
The feature importance and the feature interactions are summarized in a single positive number given by the variance
within the Partial Dependence function. Intended for use on tabular datasets, black-box and white-box (scikit-learn)
models, supporting numerical and categorical features. Documentation, Friedman’s regression problem.

Permutation Importance: computes the global feature importance. The computation of the feature importance is
based on the degree of model performance degradation when the feature values within a feature column are permuted.
Intended for use on tabular dataset, black-box models, supporting numerical and categorical features. Documentation,
Who’s Going to Leave Next?.

Anchor Explanations: produce an “anchor” - a small subset of features and their ranges that will almost always result
in the same model prediction. Documentation, tabular example, text classification, image classification.

Contrastive Explanation Method (CEM): produce a pertinent positive (PP) and a pertinent negative (PN) instance.
The PP instance finds the features that should be minimally and sufficiently present to predict the same class as the
original prediction (a PP acts as the “most compact” representation of the instance to keep the same prediction). The
PN instance identifies the features that should be minimally and necessarily absent to maintain the original prediction
(a PN acts as the closest instance that would result in a different prediction). Documentation, tabular example, image
classification.

Counterfactual Explanations: generate counterfactual examples using a simple loss function. Documentation, image
classification.

Counterfactual Explanations Guided by Prototypes: generate counterfactuals guided by nearest class prototypes
other than the class predicted on the original instance. It can use both an encoder or k-d trees to define the proto-
types. This method can speed up the search, especially for black box models, and create interpretable counterfactuals.
Documentation, tabular example, tabular example with categorical features, image classification.

Model-agnostic Counterfactual Explanations with RL: transform the optimization procedure into an end-to-end
learnable process, allowing to generate batches of counterfactual instances in a single forward pass. The method is
model-agnostic (does not assume differentiability) and relies only on feedback from model predictions, allows for
generating target-conditional counterfactual instances, flexible feature range constraints for numerical and categorical
attributes, including the immutability of protected features (e.g. gender, race) and can be easily extended to other data
modalities such as images. Documentation, tabular_example, image_classification.

Integrated gradients: attribute an importance score to each element of the input or an internal layer of the the model
with respect to a given baseline. The attributions are calculated as the path integral of the model gradients along
a straight line from the baseline to the input. Documentation, MNIST example, Imagenet example, IMDB example,
Transformers example.

Kernel Shapley Additive Explanations (Kernel SHAP): attribute the change of a model output with respect to a given
baseline (e.g., average over a reference set) to each of the input features. This is achieved for each feature in turn, by
averaging the difference in the model output observed when the feature whose contribution is to be estimated is part of
a group of “present” input features and the value observed when the feature is excluded from said group. The features
that are not “present” (i.e., are missing) are replaced with values from a background dataset. This algorithm can be
used to explain regression models and it is optimised to distribute batches of explanations.Documentation, continuous
data, more continuous data, categorical data, distributed_batch_explanations.

Tree Shapley Additive Explanations (Tree SHAP): attribute the change of a model output with respect to a baseline
(e.g., average over a reference set or inferred from node data) to each of the input features. Similar to Kernel SHAP, the
shap value of each feature is computed by averaging the difference of the model output observed when the feature is part
of a group of “present” features and when the feature is excluded from said group, over all possible subsets of “present”
features. Different estimation procedures for the effect of selecting different subsets of “present” features on the model
output give rise to the interventional feature perturbation and the path-dependent feature perturbation variants of Tree
SHAP. This algorithm can be used to explain regression models. Documentation, interventional feature perturbation
Tree SHAP, path-dependent feature perturbation Tree SHAP.

Similarity explanations: present instances in the training set that are similar to the instance of interest according
to a kernel metric. The implemented kernels are gradient-based, meaning that the similarity between 2 instances is

3.1. Model Explanations 41

alibi Documentation, Release 0.9.5dev

based on the gradients of the loss function with respect to the model’s parameters calculated at each of the instances.
Documentation, MNIST example, Imagenet example, 20 news groups example.

3.2 Model Confidence

These algorithms provide instance-specific scores measuring the model confidence for making a particular prediction.

Method Mod-
els

Classifi-
cation

Regres-
sion

Tabu-
lar

Text Im-
ages

Categorical
Features

Train set re-
quired

Trust Scores BB ✓✓✓ ✓✓✓ ✓✓✓1 ✓✓✓2 Yes

Linearity
Measure

BB ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ Optional

Trust scores: produce a “trust score” of a classifier’s prediction. The trust score is the ratio between the distance to
the nearest class different from the predicted class and the distance to the predicted class, higher scores correspond to
more trustworthy predictions. Documentation, tabular example, image classification.

Linearity measure: produces a score quantifying how linear the model is around a test instance. The linearity score
measures the model linearity around a test instance by feeding the model linear superpositions of inputs and comparing
the outputs with the linear combination of outputs from predictions on single inputs. Documentation, Tabular example,
image classification.

3.3 Prototypes

These algorithms provide a distilled view of the dataset and help construct a 1-KNN interpretable classifier.

Method Classifica-
tion

Regres-
sion

Tabu-
lar

Text Im-
ages

Categorical Fea-
tures

Train set la-
bels

ProtoSe-
lect

✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ Optional

ProtoSelect: produces a condensed view of the training dataset and facilitates the construction of an interpretable
classification model through 1-KNN. Every class k of the training dataset is summarised by a prototype set constructed
to encourage the following three properties: i) covers as many training points as possible of the class k; ii) covers as
few training points as possible of classes different from k; iii) is sparse - contains as few prototypes as possible. The
method can be applied to any data modality as long as there is a meaningful way of defining a “distance” between data
points which can often be done using a domain-specific pre-processing function. Documentation, Tabular and image
example.

1 depending on model
2 may require dimensionality reduction

42 Chapter 3. Algorithm overview

https://docs.seldon.io/projects/alibi/en/latest/methods/ProtoSelect.html
https://docs.seldon.io/projects/alibi/en/latest/methods/ProtoSelect.html

CHAPTER

FOUR

WHITE-BOX AND BLACK-BOX MODELS

Explainer algorithms can be categorised in many ways (see this table), but perhaps the most fundamental one is whether
they work with white-box or black-box models.

White-box is a term used for any model that the explainer method can “look inside” and manipulate arbitrarily. In the
context of alibi this category of models corresponds to Python objects that represent models, for example instances of
sklearn.base.BaseEstimator, tensorflow.keras.Model, torch.nn.Module etc. The exact type of the white-
box model in question enables different white-box explainer methods. For example, tensorflow and torch models
are gradient-based which enables gradient-based explainer methods such as Integrated Gradients1 whilst various types
of tree-based models are supported by TreeShap.

On the other hand, a black-box model describes any model that the explainer method may not inspect and modify
arbitrarily. The only interaction with the model is via calling its predict function (or similar) on data and receiving
predictions back. In the context of alibi black-box models have a concrete definition—they are functions that take
in a numpy array representing data and return a numpy array representing a prediction. Using type hints we can define
a general black-box model (also referred to as a prediction function) to be of type Callable[[np.ndarray], np.
ndarray]2. Explainers that expect black-box models as input are very flexible as any type of function that conforms
to the expected type can be explained by black-box explainers.

Note: In addition to the expected type, black-box models must be compatible with batch prediction. I.e. alibi
explainers assume that the first dimension of the input array is always batch.

Warning: There is currently one exception to the black-box interface: the AnchorText explainer expects the
prediction function to be of type Callable[[List[str], np.ndarray], i.e. the model is expected to work on
batches of raw text (here List[str] indicates a batch of text strings). See this example for more information.

4.1 Wrapping white-box models into black-box models

Models in Python all start out as white-box models (i.e. custom Python objects from some modelling library like
sklearn or tensorflow). However, to be used with explainers that expect a black-box prediction function, the user
has to define a prediction function that conforms to the black-box definition given above. Here we give a few common
examples and some pointers about creating a black-box prediction function from a white-box model. In what follows
we distinguish between the original white-box model and the wrapped black-box predictor function.

1 At the time of writing IntegratedGradients only supports tensorflow models.
2 Note that this definition limits black-box models to be single-input and single-output which are what most black-box alibi explainers can

handle. In the general case the definition can be extended to multi-input and multi-output models, i.e. taking in and/or returning multiple arrays.

43

https://docs.python.org/3/library/typing.html

alibi Documentation, Release 0.9.5dev

4.1.1 Scikit-learn models

All sklearnmodels expose a predictmethod that already conforms to the black-box function interface defined above
which makes it easy to create black-box predictors:

predictor = model.predict
explainer = SomeExplainer(predictor, **kwargs)

In some cases for classifiers it may be more appropriate to expose the predict_proba or decision_function
method instead of predict, see an example on ALE for classifiers.

4.1.2 Tensorflow models

Tensorflow models (specifically instances of tensorflow.keras.Model) expose a predict method that takes in
numpy arrays and returns predictions as numpy arrays3:

predictor = model.predict
explainer = SomeExplainer(predictor), **kwargs)

4.1.3 Pytorch models

Pytorch models (specifically instances of torch.nn.Module) expect and return instances of torch.Tensor from the
forward method, thus we need to do a bit more work to define the predictor black-box function:

model.eval()

@torch.no_grad()
def predictor(X: np.ndarray) -> np.ndarray:

X = torch.as_tensor(X, dtype=dtype, device=device)
return model.forward(X).cpu().numpy()

Note that there are a few differences with tensorflow models:

• Ensure the model is in the evaluation mode (i.e., model.eval()) and that the mode does not change to training
(i.e., model.train()) between consecutive calls to the explainer. Otherwise consider including model.eval()
inside the predictor function.

• Decorate the predictor with @torch.no_grad() to avoid the computation and storage of the gradients which
are not needed.

• Explicit conversion to a tensor with a specific dtype. Whilst tensorflow handles this internally when predict
is called, for torch we need to do this manually.

• Explicit device selection for the tensor. This is an important step as numpy arrays are limited to cpu and if your
model is on a gpu it will expect its input tensors to be on a gpu.

• Explicit conversion of prediction tensor to numpy. We first send the output to the cpu and then transform into
numpy array.

If you are using Pytorch Lightning to create torch models, then the dtype and device can be retrieved as attributes
of your LightningModule, see here.

3 This is in contrast to the __call__ and call methods which expect and return tensorflow.Tensor objects. However, using __call__ may
be preferable for performance in some cases (this would require transforming inputs and outputs similar to the torch example).

44 Chapter 4. White-box and black-box models

https://www.pytorchlightning.ai
https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html
https://www.tensorflow.org/api_docs/python/tf/keras/Model#predict

alibi Documentation, Release 0.9.5dev

4.1.4 General models

Given the above examples, the pattern for defining a black-box predictor from a white-box model is clear: define a
predictor function that manipulates the inputs to and outputs from the underlying model in a way that conforms to
the black-box model interface alibi expects:

def predictor(X: np.ndarray) -> np.ndarray:
inp = transform_input(X)
output = model(inp) # or call the model-specific prediction method
output = transform_output(output)
return output

explainer = SomeExplainer(predictor, **kwargs)

Here transform_input and transform_output are general user-defined functions that appropriately transform the
input numpy arrays in a format that the model expects and transform the output predictions into a numpy array so that
predictor is an alibi compatible black-box function.

4.1. Wrapping white-box models into black-box models 45

alibi Documentation, Release 0.9.5dev

46 Chapter 4. White-box and black-box models

CHAPTER

FIVE

SAVING AND LOADING

Alibi includes experimental support for saving and loading a subset of explainers to disk using the dill module.

To save an explainer, simply call the save method and provide a path to a directory (a new one will be created if it
doesn’t exist):

explainer.save('path')

Alibi doesn’t save the model/prediction function that is passed into the explainer so when loading the explainer you
will need to provide it again:

from alibi.saving import load_explainer
explainer = load_explainer('path', predictor=predictor)

5.1 Details and limitations

Every explainer will save the following artifacts as a minimum:

path/meta.dill
path/explainer.dill

Here meta.dill is the metadata of the explainer (including the Alibi version used to create it) and explainer.dill
is the serialized explainer. Some explainers may save more artifacts, e.g. AnchorText additionally saves path/nlp
which is the spacy model used to initialize the explainer using the native spacy saving functionality (pickle based)
whilst AnchorImage also saves the custom Python segmentation function under path/segmentation_fn.dill.

When loading a saved explainer, a warning will be issued if the runtime Alibi version is different from the version used
to save the explainer. It is highly recommended to use the same Alibi, Python and dependency versions as were
used to save the explainer to avoid potential bugs and incompatibilities.

47

alibi Documentation, Release 0.9.5dev

48 Chapter 5. Saving and loading

CHAPTER

SIX

FREQUENTLY ASKED QUESTIONS

6.1 General troubleshooting

6.1.1 I’m getting code errors using a method on my model and my data

There can be many reasons why the method does not work. For code exceptions it is a good idea to check the following:

• Read the docstrings of the method, paying close attention to the type hints as most errors are due to misformatted
input arguments.

• Check that your model signature (its type and expected inputs/outputs) are in the right format. Typically this
means taking as input a numpy array representing a batch of data and returning a numpy array representing class
labels, probabilities or regression values. For further details refer to White-box and black-box models.

• Check the expected input type for the explain method. Note that in many cases (e.g. all the Anchor methods)
the explainmethod expects a single instance without a leading batch dimension, e.g. for AnchorImage a colour
image of shape (height, width, colour_channels).

6.1.2 My model works on different input types, e.g. pandas dataframes instead of
numpy arrays so the explainers don’t work

At the time of writing we support models that operate on numpy arrays. You can write simple wrapper functions for
your model so that it adheres to the format that alibi expects, see here. In the future we may support more diverse
input types (see #516).

6.1.3 Explanations are taking a long time to complete

Explanations can take different times as a function of the model, the data, and the explanation type itself. Refer to the
Introduction and Methods sections for notes on algorithm complexity. You might need to experiment with the type
of model, data points (specifically feature cardinality), and method parameters to ascertain if a specific method scales
well for your use case.

49

https://docs.python.org/3/library/typing.html
https://github.com/SeldonIO/alibi/issues/516

alibi Documentation, Release 0.9.5dev

6.1.4 The explanation returned doesn’t make sense to me

Explanations reflect the decision-making process of the model and not that of a biased human observer, see Biases.
Moreover, depending on the method, the data, and the model, the explanations returned are valid but may be harder to
interpret (e.g. see Anchor explanations for some examples).

6.1.5 Is there a way I can get more information from the library during the explana-
tion generation process?

Yes! We use Python logging to log info and debug messages from the library. You can configure logging for your script
to see these messages during the execution of the code. Additionally, some methods also expose a verbose argument
to print information to standard output. Configuring Python logging for your application will depend on your needs,
but for simple scripts you can easily configure logging to print to standard error as follows:

import logging
logging.basicConfig(level=logging.DEBUG)

Note: this will display all logged messages with level DEBUG and higher from all libraries in use.

6.2 Anchor explanations

6.2.1 Why is my anchor explanation empty (tabular or text data) or black (image
data)?

This is expected behaviour and signals that there is no salient subset of features that is necessary for the prediction to
hold. In other words, with high probability (as measured by the precision), the predicted class of the data point does
not change regardless of the perturbations applied to it.

Note: this behaviour can be typical for very imbalanced datasets, see comment from the author.

6.2.2 Why is my anchor explanation so long (tabular or text data) or covers much
of the image (image data)?

This is expected behaviour and can happen in two ways:

• The data point to be explained lies near the decision boundary of the classifier. Thus, many more predicates are
needed to ensure that a data point keeps the predicted class as small changes to the feature values may push the
prediction to another class.

• For tabular data, sampling perturbations is done using a training set. If the training set is imbalanced, explaining a
minority class data point will result in oversampling perturbed features typical of majority classes so the algorithm
would struggle to find a short anchor exceeding the specified precision level. For a concrete example, see Anchor
explanations for income prediction.

50 Chapter 6. Frequently Asked Questions

https://docs.python.org/3/howto/logging.html
https://github.com/marcotcr/anchor/issues/71#issuecomment-863591122

alibi Documentation, Release 0.9.5dev

6.3 Counterfactual explanations

6.3.1 I’m using the methods Counterfactual, CounterfactualProto, or CEM on a tree-
based model such as decision trees, random forests, or gradient boosted
models (e.g. xgboost) but not finding any counterfactual examples

These methods only work on a subset of black-box models, namely ones whose decision function is differentiable with
respect to the input data and hence amenable to gradient-based counterfactual search. Since for tree-based models, the
decision function is piece-wise constant these methods won’t work. It is recommended to use CFRL instead.

6.3.2 I’m getting an error using the methods Counterfactual, CounterfactualProto,
or CEM, especially if trying to use one of these methods together with Inte-
gratedGradients or CFRL

At the moment the 3 counterfactual methods are implemented using TensorFlow 1.x constructs. This means that when
running these methods, first we need to disable behaviour specific to TensorFlow 2.x as follows:

import tensorflow as tf
tf.compat.v1.disable_v2_behavior()

Unfortunately, running this line means it’s impossible to run explainers based on TensorFlow 2.x such as Integrated-
Gradients or CFRL. Thus at the moment, it is impossible to run these explainers together in the same Python interpreter
session. Ultimately the fix is to rewrite the TensorFlow 1.x implementations in idiomatic TensorFlow 2.x and some
work has been done but is currently not prioritised.

6.3.3 Why am I’m unable to restrict the features allowed to changed in Counterfac-
tualProto?

This is a known issue with the current implementation, see here and here. It is currently blocked until we migrate the
code to use TensorFlow 2.x constructs. In the meantime, it is recommended to use CFRL for counterfactual explanations
with flexible feature-range constraints.

6.4 Similarity explanations

6.4.1 I’m using the GradientSimilarity method on a large model and it runs very
slow. If I use precompute_grads=True I get out of memory errors. How do I
solve this?

Large models with many parameters result in the similarity method running very slow and using
precompute_grads=True may not be an option due to the memory cost. The best solutions for this problem
are:

• Use the explainer on a reduced dataset. You can use Prototype Methods to obtain a smaller representative sample.

• Freeze some parameters in the model so that when computing the gradients the simialrity method excludes them.
If using tensorflow you can do this by setting trainable=False on layers or specific parameters. For pytorch
we can set requires_grad=False on the relevent model parameters.

Note that doing so will cause the explainer to issue a warning on initialization, informing you there are non-trainable
parameters in your model and the explainer will not use those when computng the similarity scores.

6.3. Counterfactual explanations 51

https://github.com/SeldonIO/alibi/pull/403
https://github.com/SeldonIO/alibi/pull/403
https://github.com/SeldonIO/alibi/issues/327
https://github.com/SeldonIO/alibi/issues/366#issuecomment-820299804
https://www.tensorflow.org/guide/keras/transfer_learning
https://pytorch.org/docs/master/notes/autograd.html#locally-disabling-gradient-computation

alibi Documentation, Release 0.9.5dev

6.4.2 I’m using the GradientSimilarity method on a tensorflow model and I keep
getting warnings about non-trainable parameters but I haven’t set any to be
non-trainable?

This warning likely means that your model has layers that track statistics using non-trainable parameters such as batch
normalization layers. The warning should list the specific tensors that are non-trainable so you should be able to check.
If this is the case you don’t need to worry as similarity methods don’t use those parameters anyway. Otherwise you will
see this warning if you have set one of the parameters to trainable=False and alibi is just making sure you know
this is the case.

52 Chapter 6. Frequently Asked Questions

CHAPTER

SEVEN

METHODS

[source]

7.1 Accumulated Local Effects

7.1.1 Overview

Accumulated Local Effects (ALE) is a method for computing feature effects based on the paper Visualizing the Effects
of Predictor Variables in Black Box Supervised Learning Models by Apley and Zhu. The algorithm provides model-
agnostic (black box) global explanations for classification and regression models on tabular data.

ALE addresses some key shortcomings of Partial Dependence Plots (PDP), a popular method for estimating first order
feature effects. We discuss these limitations and motivate ALE after presenting the method usage.

7.1.2 Usage

Initialize the explainer by passing a black-box prediction function and optionally a list of feature names and target
(class) names for interpretation:

from alibi.explainers import ALE
ale = ALE(predict_fn, feature_names=feature_names, target_names=target_names)

Following the initialization, we can immediately produce an explanation given a dataset of instances 𝑋:

exp = ale.explain(X)

The explain method has a default argument, min_bin_points=4, which determines the number of bins the range
of each feature is subdivided into so that the ALE estimate for each bin is made with at least min_bin_points.
Smaller values can result in less accurate local estimates while larger values can also result in less accurate estimates
by averaging across large parts of the feature range.

Alternatively, we can run the explanation only on a subset of features:

exp = ale.explain(X, features=[0, 1])

This is useful if the number of total features is large and only small number is of interest. Also, it can be particularly
useful to filter out categorical variable columns as there is no consistent ALE formulation and hence any results for
categorical variables would be misleading.

It is also possible to define custom grid points for each feature. The custom grid points are defined in a dictionary
where the keys are the features indices and the values are numpy arrays containing the points. The sequence of points
for each feature must be monotocaly increasing:

53

../api/alibi.explainers.html#alibi.explainers.ALE
https://arxiv.org/abs/1612.08468
https://arxiv.org/abs/1612.08468
https://christophm.github.io/interpretable-ml-book/pdp.html

alibi Documentation, Release 0.9.5dev

grid_points = {0: np.array([0.1, 0.5, 1.0]),
1: np.array([0.1, 0.5, 1.0])}

exp = ale.explain(X, features=[0, 1], grid_points=grid_points)

The result exp is an Explanation object which contains the following data-related attributes:

• ale_values - a list of arrays of ALE values (one for each feature). Each array can have multiple columns (if the
number of targets is >1 as in classification).

• constant_value - the mean prediction over 𝑋 (zeroth order effects).

• ale0 - a list of arrays of “centering” values (one for each feature) used by the algorithm to center the ale_values
around the expected effect for the feature (i.e. the sum of ale_values and ale0 will be the uncentered ALE).

• feature_values - a list of arrays (one for each feature) of feature values at which the ALE values were com-
puted.

• feature_names - an array of feature names.

• target_names - an array of target names.

• feature_deciles - a list of arrays (one for each feature) of the feature deciles.

Plotting ale_values against feature_values recovers the ALE curves. For convenience we include a plotting
function plot_ale which automatically produces ALE plots using matplotlib:

from alibi.explainers import plot_ale
plot_ale(exp)

The following is an example ALE plot of a logistic regression model on the Iris dataset (see worked example):

54 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

7.1.3 Examples

ALE regression example (California house prices)

ALE classification example (Iris dataset)

7.1.4 Motivation and definition

The following exposition largely follows Apley and Zhu (2016) and Molnar (2019).

Given a predictive model 𝑓(𝑥) where 𝑥 = (𝑥1, . . . , 𝑥𝑑) is a vector of 𝑑 features, we are interested in computing the
feature effects of each feature 𝑥𝑖 on the model 𝑓(𝑥). A feature effect of feature 𝑥𝑖 is some function 𝑔(𝑥𝑖) designed to
disentangle the contribution of 𝑥𝑖 to the response 𝑓(𝑥). To simplify notation, in the following we condiser the 𝑑 = 2
case and define the feature effect functions for the first feature 𝑥1.

Partial Dependence

Partial Dependence Plots (PDP) is a very common method for computing feature effects. It is defined as

PD(𝑥1) = E[𝑓(𝑥1, 𝑋2)] =

∫︁
𝑝(𝑥2)𝑓(𝑥1, 𝑥2)𝑑𝑥2,

where 𝑝(𝑥2) is the marginal distribution of 𝑋2. To estimate the expectation, we can take the training set 𝑋 and average
the predictions of instances where the first feature for all instances is replaced by 𝑥1:

̂︁PD(𝑥1) =
1

𝑛

𝑛∑︁
𝑗=1

𝑓(𝑥1, 𝑥2,𝑗).

The PD function attempts to calculate the effect of 𝑥1 by averaging the effects of the other feature 𝑥2 over it’s marginal
distribution. This is problematic because by doing so we are averaging predictions of many out of distribution instances.
For example, if 𝑥1 and 𝑥2 are a person’s height and weight and 𝑓 predicts some other attribute of the person, then the
PD function at a fixed height 𝑥1 would average predictions of persons with height 𝑥1 and all possible weights 𝑥2

observed in the training set. Clearly, since height and weight are strongly correlated this would lead to many unrealistic
data points. Since the predictor 𝑓 has not been trained on such impossible data points, the predictions are no longer
meaningful. We can say that an implicit assumption motivating the PD approach is that the features are uncorrelated,
however this is rarely the case and severely limits the usage of PDP.

An attempt to fix the issue with the PD function is to average over the conditional distribution instead of the marginal
which leads to the following feature effect function:

𝑀(𝑥1) = E[𝑓(𝑋1, 𝑋2)|𝑋1 = 𝑥1] =

∫︁
𝑝(𝑥2|𝑥1)𝑓(𝑥1, 𝑥2)𝑑𝑥2,

where 𝑝(𝑥2|𝑥1) is the conditional distribution of 𝑋2. To estimate this function from the training set 𝑋 we can compute

̂︁𝑀(𝑥1) =
1

𝑛(𝑥1)

∑︁
𝑗∈𝑁(𝑥1)

𝑓(𝑥1, 𝑥2,𝑗),

where 𝑁(𝑥1) is a subset of indices 𝑗 for which 𝑥1,𝑗 falls into some small neighbourhood of 𝑥1 and 𝑛(𝑥1) is the number
of such instances.

While this refinement addresses the issue of the PD function averaging over impossible data points, the use of the
𝑀(𝑥1) function as feature effects remains limited when the features are correlated. To go back to the example with
people’s height and weight, if we fix the height to be some particular value 𝑥1 and calculate the effects according to
𝑀(𝑥1), because of the correlation of height and weight the function value mixes effects of both features and estimates
the combined effect. This is undesirable as we cannot attribute the value of 𝑀(𝑥1) purely to height. Furthermore,

7.1. Accumulated Local Effects 55

https://arxiv.org/abs/1612.08468
https://christophm.github.io/interpretable-ml-book/ale.html

alibi Documentation, Release 0.9.5dev

suppose height doesn’t actually have any effect on the prediction, only weight does. Because of the correlation between
height and weight, 𝑀(𝑥1) would still show an effect which can be highly misleading. Concretely, for a model like
𝑓(𝑥1, 𝑥2) = 𝑥2 it is possible that 𝑀(𝑥1) ̸= 0 if 𝑥1, 𝑥2 are correlated.

The following plot summarizes the two approaches for estimating the effect of 𝑥1 at a particular value when 𝑥2 is
strongly correlated with 𝑥1:

ALE

ALE solves the problem of mixing effects from different features. As with the function 𝑀(𝑥1), ALE uses the condi-
tional distribution to average over other features, but instead of averaging the predictions directly, it averages differences
in predictions to block the effect of correlated features. The ALE function is defined as follows:

ALE(𝑥1) =

∫︁ 𝑥1

min(𝑥1)

E
[︂
𝜕𝑓(𝑋1, 𝑋2)

𝜕𝑋1

⃒⃒⃒
𝑋1 = 𝑧1

]︂
𝑑𝑧1 − 𝑐1 (7.1)

=

∫︁ 𝑥1

min(𝑥1)

∫︁
𝑝(𝑥2|𝑧1)

𝜕𝑓(𝑧1, 𝑥2)

𝜕𝑧1
𝑑𝑥2𝑑𝑧1⏟ ⏞

uncentered ALE

−𝑐1, (7.2)

where the constant 𝑐1 is chosen such that the resulting ALE values are independent of the point min(𝑥1) and have zero
mean over the distribution 𝑝(𝑥1).

The term
𝜕𝑓(𝑥1, 𝑥2)

𝜕𝑥1
is called the local effect of 𝑥1 on 𝑓 . Averaging the local effect over the conditional distribution

𝑝(𝑥2|𝑥1) allows us to isolate the effect of 𝑥1 from the effects of other correlated features avoiding the issue of 𝑀
plots which directly average the predictor 𝑓 . Finally, note that the local effects are integrated over the range of 𝑥1,
this corresponds to the accumulated in ALE. This is done as a means of visualizing the global effect of the feature by
“piecing together” the calculated local effects.

In practice, we calculate the local effects by finite differences so the predictor 𝑓 need not be differentiable. Thus, to
estimate the ALE from data, we compute the following:

̂︂ALE(𝑥1) =

𝑘(𝑥1)∑︁
𝑘=1

1

𝑛(𝑘)

∑︁
𝑖:𝑥

(𝑖)
1 ∈𝑁(𝑘)

[︁
𝑓(𝑧𝑘, 𝑥

(𝑖)
∖1)− 𝑓(𝑧𝑘−1, 𝑥

(𝑖)
∖1)
]︁

⏟ ⏞
uncentered ALE

−𝑐1.

Here 𝑧0, 𝑧1, . . . is a sufficiently fine grid of the feature 𝑥1 (typically quantiles so that each resulting interval contains a
similar number of points), 𝑁(𝑘) denotes the interval [𝑧𝑘−1, 𝑧𝑘), 𝑛(𝑘) denotes the number of points falling into interval

56 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

𝑁(𝑘) and 𝑘(𝑥1) denotes the index of the interval into which 𝑥1 falls into, i.e. 𝑥1 ∈ [𝑧𝑘(𝑥1)−1, 𝑧𝑘(𝑥1)). Finally, the
notation 𝑓(𝑧𝑘, 𝑥

(𝑖)
∖1) means that for instance 𝑖 we replace 𝑥1 with the value of the right interval end-point 𝑧𝑘 (likewise

for the left interval end-point using 𝑧𝑘−1), leaving the rest of the features unchanged, and evaluate the difference of
predictions at these points.

The following plot illustrates the ALE estimation process. We have subdivided the feature range of 𝑥1 into 5 bins with
roughly the same number of points indexed by 𝑁(𝑘). Focusing on bin 𝑁(4), for each point falling into this bin, we
replace their 𝑥1 feature value by the left and right end-points of the interval, 𝑧3 and 𝑧4. Then we evaluate the difference
of the predictions of these points and calculate the average by dividing by the number of points in this interval 𝑛(4).
We do this for every interval and sum up (accumulate) the results. Finally, to calculate the constant 𝑐1, we subtract
the expectation over 𝑝(𝑥1) of the calculated uncentered ALE so that the resulting ALE values have mean zero over the
distribution 𝑝(𝑥1).

We show the results of ALE calculation for a model 𝑓(𝑥1, 𝑥2) = 3𝑥1 + 2𝑥2
2. The resulting plots correctly recover the

linear effect of 𝑥1 and the quadratic effect of 𝑥2 on 𝑓 . Note that the ALE is estimated for each interval edge and linearly
interpolated in between, for real applications it is important to have a sufficiently fine grid but also one that has enough
points into each interval for accurate estimates. The x-axis also shows feature deciles of the feature to help judge in
which parts of the feature space the ALE plot is interpolating more and the estimate might be less trustworthy.

The value of ALE(𝑥𝑖) is the main effect of feature 𝑥𝑖 as compared to the average effect of that feature. For example, the
value of ALE(𝑥1) = 0.75 at 𝑥1 = 0.7, if we sample data from the joint distribution 𝑝(𝑥1, 𝑥2) (i.e. realistic data points)
and 𝑥1 = 0.7, then we would expect the first order effect of feature 𝑥1 to be 0.75 higher than the average first order
effect of this feature. Seeing that the ALE(𝑥1) plot crosses zero at 𝑥1 ≈ 0.45, realistic data points with 𝑥1 ≈ 0.45 will
have effect on 𝑓 similar to the average first order effect of 𝑥1. For realistic data points with smaller 𝑥1, the effect will
become negative with respect to the average effect.

7.1. Accumulated Local Effects 57

alibi Documentation, Release 0.9.5dev

Note
The interpretation of ALE plots is mainly qualitative—the focus should be on the shape of the curve at different points
in the feature range. The steepness of the tangent to the curve (or the slope of the linear interpolation) determines the
size of the effect of that feature locally—the steeper the tangent, the bigger the effect.

Because the model 𝑓(𝑥1, 𝑥2) = 3𝑥1 + 2𝑥2
2 is explicit and differentiable, we can calculate the ALE functions analyt-

ically which gives us even more insight. The partial derivatives are given by (3, 4𝑥2). Assuming that the conditional
distributions 𝑝(𝑥2|𝑥1) and 𝑝(𝑥1|𝑥2) are uniform, the expectations over the conditional distributions are equal to the
partial derivatives. Next, we integrate over the range of the features to obtain the uncentered ALE functions:

ALE𝑢(𝑥1) =

∫︁ 𝑥1

min(𝑥1)

3𝑑𝑧1 = 3𝑥1 − 3min(𝑥1) (7.3)

ALE𝑢(𝑥2) =

∫︁ 𝑥2

min(𝑥2)

4𝑧2𝑑𝑧2 = 2𝑥2
2 − 2min(𝑥2)

2. (7.4)

Finally, to obtaine the ALE functions, we center by setting 𝑐𝑖 = E(ALE𝑢(𝑥𝑖)) where the expectation is over the
marginal distribution 𝑝(𝑥𝑖):

ALE(𝑥1) = 3𝑥1 − 3min(𝑥1)− E(3𝑥1 − 3min(𝑥1)) = 3𝑥1 − 3E(𝑥1) (7.5)
ALE(𝑥2) = 2𝑥2

2 − 2min(𝑥2)
2 − E(2𝑥2

2 − 2min(𝑥2)
2) = 2𝑥2

2 − 2E(𝑥2
2). (7.6)

This calculation verifies that the ALE curves are the desired feature effects (linear for 𝑥1 and quadratic for 𝑥2) relative to
the mean feature effects across the dataset. In fact if 𝑓 is additive in the individual features like our toy model, then the
ALE main effects recover the correct additive components (Apley and Zhu (2016)). Furthermore, for additive models
we have the decomposition 𝑓(𝑥) = E(𝑓(𝑥)) +

∑︀𝑑
𝑖=1 ALE(𝑥𝑖), here the first term which is the average prediction

across the dataset 𝑋 can be thought of as zeroth order effects.

[source]

58 Chapter 7. Methods

https://arxiv.org/abs/1612.08468

alibi Documentation, Release 0.9.5dev

7.2 Anchors

7.2.1 Overview

The anchor algorithm is based on the Anchors: High-Precision Model-Agnostic Explanations paper by Ribeiro et
al.(2018) and builds on the open source code from the paper’s first author.

The algorithm provides model-agnostic (black box) and human interpretable explanations suitable for classification
models applied to images, text and tabular data. The idea behind anchors is to explain the behaviour of complex
models with high-precision rules called anchors. These anchors are locally sufficient conditions to ensure a certain
prediction with a high degree of confidence.

Anchors address a key shortcoming of local explanation methods like LIME which proxy the local behaviour of the
model in a linear way. It is however unclear to what extent the explanation holds up in the region around the instance
to be explained, since both the model and data can exhibit non-linear behaviour in the neighborhood of the instance.
This approach can easily lead to overconfidence in the explanation and misleading conclusions on unseen but similar
instances. The anchor algorithm tackles this issue by incorporating coverage, the region where the explanation applies,
into the optimization problem. A simple example from sentiment classification illustrates this (Figure 1). Dependent
on the sentence, the occurrence of the word not is interpreted as positive or negative for the sentiment by LIME. It is
clear that the explanation using not is very local. Anchors however aim to maximize the coverage, and require not to
occur together with good or bad to ensure respectively negative or positive sentiment.

Ribeiro et al., Anchors: High-Precision Model-Agnostic Explanations, 2018

As highlighted by the above example, an anchor explanation consists of if-then rules, called the anchors, which suffi-
ciently guarantee the explanation locally and try to maximize the area for which the explanation holds. This means that
as long as the anchor holds, the prediction should remain the same regardless of the values of the features not present in
the anchor. Going back to the sentiment example: as long as not good is present, the sentiment is negative, regardless
of the other words in the movie review.

7.2. Anchors 59

https://homes.cs.washington.edu/~marcotcr/aaai18.pdf
https://github.com/marcotcr/anchor
https://arxiv.org/abs/1602.04938

alibi Documentation, Release 0.9.5dev

7.2.2 Concepts and use-case insights

For a more intuitive understanding of what the method tries to achieve, we will loosely define a few concepts and
explain some insights we get from an anchor explanation.

A predicate represents an expression involving a single feature. Some examples of predicates for a tabular dataset
having features such as Age, Relationship, and Occupation are:

• 28 < Age < 50

• Relationship = Husband

• Occupation = Blue-Collar

A rule represents a set of predicates connected by the AND operator. Considering all the predicate examples
above, we can construct the following rule: 28 < Age < 50 AND Relationship = Husband AND Occupation
= Blue-Collar. Note that a rule selects/refers to a particular subpopulation from the given dataset.

We can now define the notion of an anchor. Following the definition from Ribeiro et al. (2018), “an anchor explanation
is a rule that sufficiently ‘anchors’ the prediction locally – such that changes to the rest of the feature values of the
instance do not matter”.

As previously mentioned, the power of the Anchors over other local explanations methods comes from the objective
formulation which is to maximize the coverage under the precision constraints.

Precision represents the probability of receiving the same classification label of the explained input if we query the
model on other instances that satisfy the anchor predicates. The expected precision range is the interval [𝑡, 1], where t
is the user-specified precision threshold.

Coverage represents the proportion of the population which satisfy the anchor predicates. It is a positive number ≤ 1,
where a value of 1 corresponds to the empty anchor.

There are some edge cases that a practitioner should be aware of:

• An anchor with many predicates and a small coverage might indicate that the explained input lies near the decision
boundary. Many more predicates are needed to ensure that an instance keeps the predicted label since minor
perturbations may push the prediction to another class.

• An empty anchor with a coverage of 1 indicates that there is no salient subset of features that is necessary for
the prediction to hold. In other words, with high probability (as measured by the precision), the predicted class
of the data point does not change regardless of the perturbations applied to it. This behaviour can be typical for
very imbalanced datasets.

Check FAQ for further details.

7.2.3 Data modalities

Text

For text classification, an interpretable anchor consists of the words that need to be present to ensure a prediction,
regardless of the other words in the input. The words that are not present in a candidate anchor can be sampled in 3
ways:

• Replace word token by UNK token.

• Replace word token by sampled token from a corpus with the same POS tag and probability proportional to the
similarity in the embedding space. By sampling similar words, we keep more context than simply using the UNK
token.

60 Chapter 7. Methods

https://homes.cs.washington.edu/~marcotcr/aaai18.pdf

alibi Documentation, Release 0.9.5dev

• Replace word tokens with sampled tokens according to the masked language model probability distribution. The
tokens can be sampled in parallel, independent of one another, or sequentially(autoregressive), conditioned on
the previously generated tokens.

Tabular Data

Anchors are also suitable for tabular data with both categorical and continuous features. The continuous features are
discretized into quantiles (e.g. deciles), so they become more interpretable. The features in a candidate anchor are
kept constant (same category or bin for discretized features) while we sample the other features from a training set. As
a result, anchors for tabular data need access to training data. Let’s illustrate this with an example. Say we want to
predict whether a person makes less or more than £50,000 per year based on the person’s characteristics including age
(continuous variable) and marital status (categorical variable). The following would then be a potential anchor: Hugo
makes more than £50,000 because he is married and his age is between 35 and 45 years.

Images

Similar to LIME, images are first segmented into superpixels, maintaining local image structure. The interpretable
representation then consists of the presence or absence of each superpixel in the anchor. It is crucial to generate
meaningful superpixels in order to arrive at interpretable explanations. The algorithm supports a number of standard
image segmentation algorithms (felzenszwalb, slic and quickshift) and allows the user to provide a custom segmentation
function.

The superpixels not present in a candidate anchor can be masked in 2 ways:

• Take the average value of that superpixel.

• Use the pixel values of a superimposed picture over the masked superpixels.

Ribeiro et al., Anchors: High-Precision Model-Agnostic Explanations, 2018

Efficiently Computing Anchors

The anchor needs to return the same prediction as the original instance with a minimal confidence of e.g. 95%. If
multiple candidate anchors satisfy this constraint, we go with the anchor that has the largest coverage. Because the
number of potential anchors is exponential in the feature space, we need a faster approximate solution.

The anchors are constructed bottom-up in combination with beam search. We start with an empty rule or anchor, and
incrementally add an if-then rule in each iteration until the minimal confidence constraint is satisfied. If multiple valid
anchors are found, the one with the largest coverage is returned.

7.2. Anchors 61

https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_segmentations.html#sphx-glr-auto-examples-segmentation-plot-segmentations-py
https://en.wikipedia.org/wiki/Beam_search

alibi Documentation, Release 0.9.5dev

In order to select the best candidate anchors for the beam width efficiently during each iteration, we formulate the
problem as a pure exploration multi-armed bandit problem. This limits the number of model prediction calls which
can be a computational bottleneck.

For more details, we refer the reader to the original paper.

7.2.4 Usage

While each data type has specific requirements to initialize the explainer and return explanations, the underlying algo-
rithm to construct the anchors is the same.

In order to efficiently generate anchors, the following hyperparameters need to be set to sensible values when calling
the explain method:

• threshold: Minimum anchor precision threshold. The algorithm tries to find an anchor that maximizes the
coverage under precision constraint. The precision constraint is formally defined as 𝑃 (𝑝𝑟𝑒𝑐(𝐴) ≥ 𝑡) ≥ 1 − 𝛿,
where 𝐴 is an anchor, 𝑡 is the threshold parameter, 𝛿 is the delta parameter, and 𝑝𝑟𝑒𝑐(·) denotes the precision
of an anchor. In other words, we are seeking for an anchor having its precision greater or equal than the given
threshold with a confidence of (1 - delta). A higher value guarantees that the anchors are faithful to the
model, but also leads to more computation time. Note that there are cases in which the precision constraint
cannot be satisfied due to the quantile-based discretisation of the numerical features. If that is the case, the best
(i.e. highest coverage) non-eligible anchor is returned. The default value is 0.95.

• delta: Significance threshold. 1 - delta represents the confidence threshold for the anchor precision (see
threshold) and the selection of the best anchor candidate in each iteration (see tau).

• tau: Multi-armed bandit parameter used to select candidate anchors in each iteration. The multi-armed bandit
algorithm tries to find within a tolerance tau the most promising (i.e. according to the precision) beam_size
candidate anchor(s) from a list of proposed anchors. Formally, when the beam_size=1, the multi-armed bandit
algorithm seeks to find an anchor 𝐴 such that 𝑃 (𝑝𝑟𝑒𝑐(𝐴) ≥ 𝑝𝑟𝑒𝑐(𝐴⋆)−𝜏) ≥ 1−𝛿, where 𝐴⋆ is the anchor with
the highest true precision (which we don’t know), 𝜏 is the tau parameter, 𝛿 is the delta parameter, and 𝑝𝑟𝑒𝑐(·)
denotes the precision of an anchor.In other words, in each iteration, the algorithm returns with a probability of at
least 1 - delta an anchor 𝐴 with a precision within an error tolerance of tau from the precision of the highest
true precision anchor 𝐴⋆. A bigger value for tau means faster convergence but also looser anchor conditions.

• batch_size: Batch size used for sampling. The Anchor algorithm will query the black-box model in batches
of size batch_size. A larger batch_size gives more confidence in the anchor, again at the expense of com-
putation time since it involves more model prediction calls. The default value is 100.

• coverage_samples: Number of samples used to estimate coverage from during result search. By default set to
10000.

• beam_size: Number of candidate anchors selected by the multi-armed bandit algorithm in each iteration from
a list of proposed anchors. A bigger beam width can lead to a better overall anchor (i.e. prevents the algorithm
of getting stuck in a local maximum) at the expense of more computation time.

Text

[source]

62 Chapter 7. Methods

https://www.cse.iitb.ac.in/~shivaram/papers/kk_colt_2013.pdf
https://homes.cs.washington.edu/~marcotcr/aaai18.pdf
../api/alibi.explainers.html#alibi.explainers.AnchorText

alibi Documentation, Release 0.9.5dev

Predictor

Since the explainer works on black-box models, only access to a predict function is needed. The model below is
a simple logistic regression trained on movie reviews with negative or positive sentiment and pre-processed with a
CountVectorizer:

predict_fn = lambda x: clf.predict(vectorizer.transform(x))

Simple sampling strategies

AnchorText provides two simple sampling strategies: unknown and similarity. Randomly chosen words, except
those in queried anchor, are replaced by the UNK token for the unknown strategy, and by similar words with the same
part of speech of tag for the similarity strategy.

To perform text tokenization, pos-tagging, compute word similarity, etc., we use spaCy. The spaCy model can be
loaded as follows:

import spacy
from alibi.utils import spacy_model

model = 'en_core_web_md'
spacy_model(model=model)
nlp = spacy.load(model)

If we choose to replace words with the UNK token, we define the explainer as follows:

explainer = AnchorText(predictor=predict_fn, sampling_strategy='unknown', nlp=nlp)

Likewise, if we choose to sample similar words from a corpus, we define the explainer as follows:

explainer = AnchorText(predictor=predict_fn, sampling_strategy='similarity', nlp=nlp)

Language model

AnchorText provides the option to define the perturbation distribution through a language_model sampling strat-
egy. In this case, randomly chosen words, except those in the queried anchor, are replaced by words sampled ac-
cording to the language model’s predictions. We provide support for three transformer based language models:
DistilbertBaseUncased, BertBaseUncased, and RobertaBase.

A language model can be loaded as follows:

language_model = DistilbertBaseUncased()

Then we can initialize the explainer as follows:

explainer = AnchorText(predictor=predict_fn, sampling_strategy="language_model",
language_model=language_model)

7.2. Anchors 63

alibi Documentation, Release 0.9.5dev

Sampling parameters

Parameters specific to each sampling strategy can be passed to the constructor via kwargs. For example:

• If sampling_strategy="unknown" we can initialize the explainer as follows:

explainer = AnchorText(
predictor=predict_fn,
sampling_strategy='unknown', # replace a word by UNK token
nlp=nlp, # spacy object
sample_proba=0.5, # probability of a word to be replaced by UNK␣

→˓token
)

• If sampling_strategy="similarity" we can initialize the explainer as follows:

explainer = AnchorText(
predictor=predict_fn,
sampling_strategy='similarity', # replace a word by similar words
nlp=nlp, # spacy object
sample_proba=0.5, # probability of a word to be replaced by as␣

→˓similar word
use_proba=True, # sample according to the similarity distribution
top_n=20, # consider only top 20 most similar words
temperature=0.2 # higher temperature implies more randomness when␣

→˓sampling
)

• Or if sampling_strategy="language_model", the explainer can be defined as:

explainer = AnchorText(
predictor=predict_fn,
sampling_strategy="language_model", # use language model to predict the masked␣

→˓words
language_model=language_model, # language model to be used
filling="parallel", # just one pass through the transformer
sample_proba=0.5, # probability of masking and replacing a word␣

→˓according to the LM
frac_mask_templates=0.1, # fraction of masking templates
use_proba=True, # use words distribution when sampling (if␣

→˓false sample uniform)
top_n=50, # consider the fist 50 most likely words
temperature=0.2, # higher temperature implies more randomness␣

→˓when sampling
stopwords=['and', 'a', 'but'], # those words will not be masked/disturbed
punctuation=string.punctuation, # punctuation tokens contained here will not␣

→˓be masked/disturbed
sample_punctuation=False, # if False tokens included in `punctuation`␣

→˓will not be sampled
batch_size_lm=32 # batch size used for the language model

)

Words outside of the candidate anchor can be replaced by UNK token, similar words, or masked out and replaced
by the most likely words according to language model prediction, with a probability equal to sample_proba. We
can sample the top n most similar words or the top n most likely language model predictions by setting the top_n

64 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

parameter. We can put more weight on similar or most likely words by decreasing the temperature argument. It
is also possible to sample words from the corpus proportional to the word similarity with the ground truth word or
according to the language model’s conditional probability distribution by setting use_proba to True. Furthermore,
we can avoid masking specific words by including them in the stopwords list.

Working with transformers can be computationally and memory-wise expensive. For sampling_strategy=
"language_model" we provide two methods to predict the masked words: filling="parallel" and filling=
"autoregressive".

If filling="parallel", we perform a single forward pass through the transformer. After obtaining the probability
distribution of the masked words, each word is sampled independently of the others.

If filling="autoregressive", we perform multiple forward passes through the transformer and generate the words
one at a time. Thus, the masked words will be conditioned on the previous ones. Note that this filling method is
computationally expensive.

To further decrease the explanation runtime, for sampling_strategy="language_model", filling="parallel
", we provide a secondary functionality through the frac_mask_templates. Behind the scenes, the anchor algo-
rithm is constantly requesting samples to query the predictor. Thus, we need to generate what we call mask tem-
plates, which are sentences containing words outside the candidate anchors replaced by the <MASK> token. The
frac_mask_templates controls the fraction of mask templates to be generated. For example, if we need to generate
100 samples and the frac_mask_templates=0.1, we will generate only 10 mask templates. Those 10 templates are
then passed to the language model to predict the masked words. Having the distribution of each word in each mask
template, we can generate 100 samples as requested. Note that instead of passing 100 masked sentences through the
language model (which is expensive), we only pass 10 sentences. Although this can increase the speed considerably, it
can also decrease the diversity of the samples. The maximum batch size used in a forward pass through the language
model can be specified by setting batch_size_lm.

When sampling_strategy="language_model", we can specify the punctuation considered by the sampling
algorithm. Any token composed only from characters in the punctuation string, will not be perturbed (we
call those punctuation tokens). Furthermore, we can decide whether to sample punctuation tokens by setting the
sample_punctuation parameter. If sample_punctuation=False, then punctuation tokens will not be sampled.

Explanation

Let’s define the instance we want to explain and verify that the sentiment prediction on the original instance is positive:

text = 'This is a good book .'
class_names = ['negative', 'positive']
pred = class_names[predict_fn([text])[0]]

Now we can explain the instance:

explanation = explainer.explain(text, threshold=0.95)

The explain method returns an Explanation object with the following attributes:

• anchor: a list of words in the anchor.

• precision: the fraction of times the sampled instances where the anchor holds yields the same prediction as the
original instance. The precision will always be ≥ threshold for a valid anchor.

• coverage: the fraction of sampled instances the anchor applies to.

The raw attribute is a dictionary which also contains example instances where the anchor holds and the prediction is
the same as on the original instance, as well as examples where the anchor holds but the prediction changed to give
the user a sense of where the anchor fails. raw also stores information on the anchor, precision and coverage of partial

7.2. Anchors 65

alibi Documentation, Release 0.9.5dev

anchors. This allows the user to track the improvement in for instance the precision as more features (words in the case
of text) are added to the anchor.

Tabular Data

[source]

Initialization and fit

To initialize the explainer, we provide a predict function, a list with the feature names to make the anchors easy to
understand as well as an optional mapping from the encoded categorical features to a description of the category. An
example for categorical_names would be

category_map = {0: ["married", "divorced"], 3: ["high school diploma", "master's degree
→˓"]}

Each key in category_map refers to the column index in the input for the relevant categorical variable, while the
values are lists with the options for each categorical variable. To make it easy, we provide a utility function
gen_category_map to generate this map automatically from a Pandas dataframe:

from alibi.utils import gen_category_map
category_map = gen_category_map(df)

Then initialize the explainer:

predict_fn = lambda x: clf.predict(preprocessor.transform(x))
explainer = AnchorTabular(predict_fn, feature_names, categorical_names=category_map)

The implementation supports one-hot encoding representation of the cateforical features by setting ohe=True.
The feature_names and categorical_names(category_map) remain unchanged. The prediction function
predict_fn should expect as input datapoints with one-hot encoded categorical features. To initialize the explainer
with the one-hot encoding support:

explainer = AnchorTabular(predict_fn, feature_names, categorical_names=category_map,␣
→˓ohe=True)

Tabular data requires a fit step to map the ordinal features into quantiles and therefore needs access to a representative
set of the training data. disc_perc is a list with percentiles used for binning:

explainer.fit(X_train, disc_perc=[25, 50, 75])

Note that if one-hot encoding support is enabled (ohe=True), the fit calls expect the data to be one-hot encoded.

Explanation

Let’s check the prediction of the model on the original instance and explain:

class_names = ['<=50K', '>50K']
pred = class_names[explainer.predict_fn(X)[0]]
explanation = explainer.explain(X, threshold=0.95)

The returned Explanation object contains the same attributes as the text explainer, so you could explain a prediction
as follows:

66 Chapter 7. Methods

../api/alibi.explainers.html#alibi.explainers.AnchorTabular

alibi Documentation, Release 0.9.5dev

Prediction: <=50K
Anchor: Marital Status = Never-Married AND Relationship = Own-child
Precision: 1.00
Coverage: 0.13

Note that if one-hot encoding support is enabled (ohe=True), the explain calls expect the data to be one-hot encode.

Images

[source]

Initialization

Besides the predict function, we also need to specify either a built in or custom superpixel segmentation function. The
built in methods are felzenszwalb, slic and quickshift. It is important to create sensible superpixels in order to speed
up convergence and generate interpretable explanations. Tuning the hyperparameters of the segmentation method is
recommended.

explainer = AnchorImage(predict_fn, image_shape, segmentation_fn='slic',
segmentation_kwargs={'n_segments': 15, 'compactness': 20, 'sigma

→˓': .5},
images_background=None)

Example of superpixels generated for the Persian cat picture using the slic method:

The following function would be an example of a custom segmentation function dividing the image into rectangles.

def superpixel(image, size=(4, 7)):
segments = np.zeros([image.shape[0], image.shape[1]])
row_idx, col_idx = np.where(segments == 0)
for i, j in zip(row_idx, col_idx):

segments[i, j] = int((image.shape[1]/size[1]) * (i//size[0]) + j//size[1])
return segments

The images_background parameter allows the user to provide images used to superimpose on the masked superpixels,
not present in the candidate anchor, instead of taking the average value of the masked superpixel. The superimposed

7.2. Anchors 67

../api/alibi.explainers.html#alibi.explainers.AnchorImage
https://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.felzenszwalb
https://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.slic
https://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.quickshift

alibi Documentation, Release 0.9.5dev

images need to have the same shape as the explained instance.

Explanation

We can then explain the instance in the usual way:

explanation = explainer.explain(image, p_sample=.5)

p_sample determines the fraction of superpixels that are either changed to the average superpixel value or that are
superimposed.

The Explanation object again contains information about the anchor’s precision, coverage and examples where the
anchor does or does not hold. On top of that, it also contains a masked image with only the anchor superpixels visible
under the anchor attribute (see image below) as well as the image’s superpixels under segments.

7.2.5 Examples

Image

Anchor explanations for ImageNet

Anchor explanations for fashion MNIST

Tabular Data

Anchor explanations on the Iris dataset

Anchor explanations for income prediction

68 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

Text

Anchor explanations for movie sentiment

[source]

7.3 Contrastive Explanation Method

Note
To enable support for CEM, you may need to run

pip install alibi[tensorflow]

7.3.1 Overview

The Contrastive Explanation Method (CEM) is based on the paper Explanations based on the Missing: Towards Con-
strastive Explanations with Pertinent Negatives and extends the code open sourced by the authors. CEM generates
instance based local black box explanations for classification models in terms of Pertinent Positives (PP) and Pertinent
Negatives (PN). For a PP, the method finds the features that should be minimally and sufficiently present (e.g. impor-
tant pixels in an image) to predict the same class as on the original instance. PN’s on the other hand identify what
features should be minimally and necessarily absent from the instance to be explained in order to maintain the original
prediction class. The aim of PN’s is not to provide a full set of characteristics that should be absent in the explained
instance, but to provide a minimal set that differentiates it from the closest different class. Intuitively, the Pertinent
Positives could be compared to Anchors while Pertinent Negatives are similar to Counterfactuals. As the authors of the
paper state, CEM can generate clear explanations of the form: “An input x is classified in class y because features 𝑓𝑖,
. . . , 𝑓𝑘 are present and because features 𝑓𝑚, . . . , 𝑓𝑝 are absent.” The current implementation is most suitable for images
and tabular data without categorical features.

In order to create interpretable PP’s and PN’s, feature-wise perturbation needs to be done in a meaningful way. To
keep the perturbations sparse and close to the original instance, the objective function contains an elastic net (𝛽𝐿1 +
𝐿2) regularizer. Optionally, an auto-encoder can be trained to reconstruct instances of the training set. We can then
introduce the 𝐿2 reconstruction error of the perturbed instance as an additional loss term in our objective function. As
a result, the perturbed instance lies close to the training data manifold.

The ability to add or remove features to arrive at respectively PN’s or PP’s implies that there are feature values that
contain no information with regards to the model’s predictions. Consider for instance the MNIST image below where
the pixels are scaled between 0 and 1. The pixels with values close to 1 define the number in the image while the
background pixels have value 0. We assume that perturbations towards the background value 0 are equivalent to
removing features, while perturbations towards 1 imply adding features.

7.3. Contrastive Explanation Method 69

../api/alibi.explainers.html#alibi.explainers.CEM
https://arxiv.org/abs/1802.07623
https://arxiv.org/abs/1802.07623
https://github.com/IBM/Contrastive-Explanation-Method

alibi Documentation, Release 0.9.5dev

It is intuitive to understand that adding features to get a PN means changing 0’s into 1’s until a different number is
formed, in this case changing a 4 into a 9.

To find the PP, we do the opposite and change 1’s from the original instance into 0’s, the background value, and only
keep a vague outline of the original 4.

70 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

It is however often not trivial to find these non-informative feature values and domain knowledge becomes very impor-
tant.

For more details, we refer the reader to the original paper.

7.3.2 Usage

Initialization

The optimizer is defined in TensorFlow (TF) internally. We first load our MNIST classifier and the (optional) auto-
encoder. The example below uses Keras or TF models. This allows optimization of the objective function to run entirely
with automatic differentiation because the TF graph has access to the underlying model architecture. For models built
in different frameworks (e.g. scikit-learn), the gradients of part of the loss function with respect to the input features
need to be evaluated numerically. We’ll handle this case later.

define models
cnn = load_model('mnist_cnn.h5')
ae = load_model('mnist_ae.h5')

We can now initialize the CEM explainer:

initialize CEM explainer
shape = (1,) + x_train.shape[1:]
mode = 'PN'
cem = CEM(cnn, mode, shape, kappa=0., beta=.1,

feature_range=(x_train.min(), x_train.max()),
gamma=100, ae_model=ae, max_iterations=1000,
c_init=1., c_steps=10, learning_rate_init=1e-2,
clip=(-1000.,1000.), no_info_val=-1.)

Besides passing the the predictive and auto-encoder models, we set a number of hyperparameters . . .

. . . general:
• mode: ‘PN’ or ‘PP’.

• shape: shape of the instance to be explained, starting with batch dimension. Currently only single explanations
are supported, so the batch dimension should be equal to 1.

• feature_range: global or feature-wise min and max values for the perturbed instance.

. . . related to the optimizer:

• max_iterations: number of loss optimization steps for each value of c; the multiplier of the first loss term.

• learning_rate_init: initial learning rate, follows polynomial decay.

• clip: min and max gradient values.

. . . related to the non-informative value:

• no_info_val: as explained in the previous section, it is important to define which feature values are considered
background and not crucial for the class predictions. For MNIST images scaled between 0 and 1 or -0.5 and
0.5 as in the notebooks, pixel perturbations in the direction of the (low) background pixel value can be seen
as removing features, moving towards the non-informative value. As a result, the no_info_val parameter is
set at a low value like -1. no_info_val can be defined globally or feature-wise. For most applications, domain
knowledge becomes very important here. If a representative sample of the training set is available, we can always
(naively) infer a no_info_val by taking the feature-wise median or mean:

7.3. Contrastive Explanation Method 71

https://arxiv.org/abs/1802.07623

alibi Documentation, Release 0.9.5dev

cem.fit(x_train, no_info_type='median')

. . . related to the objective function:

• c_init and c_steps: the multiplier 𝑐 of the first loss term is updated for c_steps iterations, starting at c_init.
The first loss term encourages the perturbed instance to be predicted as a different class for a PN and the same
class for a PP. If we find a candidate PN or PP for the current value of 𝑐, we reduce the value of 𝑐 for the next
optimization cycle to put more emphasis on the regularization terms and improve the solution. If we cannot find
a solution, 𝑐 is increased to put more weight on the prediction class restrictions of the PN and PP before focusing
on the regularization.

• kappa: the first term in the loss function is defined by a difference between the predicted probabilities for the
perturbed instance of the original class and the max of the other classes. 𝜅 ≥ 0 defines a cap for this difference,
limiting its impact on the overall loss to be optimized. Similar to the original paper, we set 𝜅 to 0. in the examples.

• beta: 𝛽 is the 𝐿1 loss term multiplier. A higher value for 𝛽 means more weight on the sparsity restrictions of
the perturbations. Similar to the paper, we set 𝛽 to 0.1 for the MNIST and Iris datasets.

• gamma: multiplier for the optional 𝐿2 reconstruction error. A higher value for 𝛾 means more emphasis on the
reconstruction error penalty defined by the auto-encoder. Similar to the paper, we set 𝛾 to 100 when we have an
auto-encoder available.

While the paper’s default values for the loss term coefficients worked well for the simple examples provided in the
notebooks, it is recommended to test their robustness for your own applications.

Warning
Once a CEM instance is initialized, the parameters of it are frozen even if creating a new instance. This is due to
TensorFlow behaviour which holds on to some global state. In order to change parameters of the explainer in the
same session (e.g. for explaining different models), you will need to reset the TensorFlow graph manually:

import tensorflow as tf
tf.keras.backend.clear_session()

You may need to reload your model after this. Then you can create a new CEM instance with new parameters.

Explanation

We can finally explain the instance:

explanation = cem.explain(X)

The explain method returns an Explanation object with the following attributes:

• X: original instance

• X_pred: predicted class of original instance

• PN or PP: Pertinent Negative or Pertinant Positive

• PN_pred or PP_pred: predicted class of PN or PP

• grads_graph: gradient values computed from the TF graph with respect to the input features at the PN or PP

• grads_num: numerical gradient values with respect to the input features at the PN or PP

72 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

Numerical Gradients

So far, the whole optimization problem could be defined within the internal TF graph, making autodiff possible. It
is however possible that we do not have access to the model architecture and weights, and are only provided with a
predict function returning probabilities for each class. We initialize the CEM in the same way as before:

define model
lr = load_model('iris_lr.h5')
predict_fn = lambda x: lr.predict(x)

initialize CEM explainer
shape = (1,) + x_train.shape[1:]
mode = 'PP'
cem = CEM(predict_fn, mode, shape, kappa=0., beta=.1,

feature_range=(x_train.min(), x_train.max()),
eps=(1e-2, 1e-2), update_num_grad=100)

In this case, we need to evaluate the gradients of the loss function with respect to the input features numerically:

𝜕𝐿

𝜕𝑥
=

𝜕𝐿

𝜕𝑝

𝜕𝑝

𝜕𝑥

where 𝐿 is the loss function, 𝑝 the predict function and 𝑥 the input features to optimize. There are now 2 additional
hyperparameters to consider:

• eps: a tuple to define the perturbation size used to compute the numerical gradients. eps[0] and eps[1] are
used respectively for 𝛿𝐿/𝛿𝑝 and 𝛿𝑝/𝛿𝑥. eps[0] and eps[1] can be a combination of float values or numpy arrays.
For eps[0], the array dimension should be (1 x nb of prediction categories) and for eps[1] it should be (1 x nb
of features). For the Iris dataset, eps could look as follows:

eps0 = np.array([[1e-2, 1e-2, 1e-2]]) # 3 prediction categories, equivalent to 1e-2
eps1 = np.array([[1e-2, 1e-2, 1e-2, 1e-2]]) # 4 features, also equivalent to 1e-2
eps = (eps0, eps1)

• update_num_grad: for complex models with a high number of parameters and a high dimensional feature space
(e.g. Inception on ImageNet), evaluating numerical gradients can be expensive as they involve prediction calls for
each perturbed instance. The update_num_grad parameter allows you to set a batch size on which to evaluate
the numerical gradients, reducing the number of prediction calls required.

7.3.3 Examples

Contrastive Explanations Method (CEM) applied to MNIST

Contrastive Explanations Method (CEM) applied to Iris dataset

[source]

7.3. Contrastive Explanation Method 73

../api/alibi.explainers.html#alibi.explainers.Counterfactual

alibi Documentation, Release 0.9.5dev

7.4 Counterfactual Instances

Note
To enable support for counterfactual Instances, you may need to run

pip install alibi[tensorflow]

7.4.1 Overview

A counterfactual explanation of an outcome or a situation 𝑌 takes the form “If 𝑋 had not occured, 𝑌 would not have
occured” (Interpretable Machine Learning). In the context of a machine learning classifier 𝑋 would be an instance of
interest and 𝑌 would be the label predicted by the model. The task of finding a counterfactual explanation is then to
find some 𝑋 ′ that is in some way related to the original instance 𝑋 but leading to a different prediction 𝑌 ′. Reasoning
in counterfactual terms is very natural for humans, e.g. asking what should have been done differently to achieve a
different result. As a consequence counterfactual instances for machine learning predictions is a promising method for
human-interpretable explanations.

The counterfactual method described here is the most basic way of defining the problem of finding such 𝑋 ′. Our
algorithm loosely follows Wachter et al. (2017): Counterfactual Explanations without Opening the Black Box: Auto-
mated Decisions and the GDPR. For an extension to the basic method which provides ways of finding higher quality
counterfactual instances 𝑋 ′ in a quicker time, please refer to Counterfactuals Guided by Prototypes.

We can reason that the most basic requirements for a counterfactual 𝑋 ′ are as follows:

• The predicted class of 𝑋 ′ is different from the predicted class of 𝑋

• The difference between 𝑋 and 𝑋 ′ should be human-interpretable.

While the first condition is straight-forward, the second condition does not immediately lend itself to a condition as
we need to first define “interpretability” in a mathematical sense. For this method we restrict ourselves to a particular
definition by asserting that 𝑋 ′ should be as close as possible to 𝑋 without violating the first condition. The main
issue with this definition of “interpretability” is that the difference between 𝑋 ′ and 𝑋 required to change the model
prediciton might be so small as to be un-interpretable to the human eye in which case we need a more sophisticated
approach.

That being said, we can now cast the search for 𝑋 ′ as a simple optimization problem with the following loss:

𝐿 = 𝐿pred + 𝜆𝐿dist,

where the first loss term 𝐿pred guides the search towards points 𝑋 ′ which would change the model prediction and
the second term 𝜆𝐿dist ensures that 𝑋 ′ is close to 𝑋 . This form of loss has a single hyperparameter 𝜆 weighing the
contributions of the two competing terms.

The specific loss in our implementation is as follows:

𝐿(𝑋 ′|𝑋) = (𝑓𝑡(𝑋
′)− 𝑝𝑡)

2 + 𝜆𝐿1(𝑋
′, 𝑋).

Here 𝑡 is the desired target class for 𝑋 ′ which can either be specified in advance or left up to the optimization algorithm
to find, 𝑝𝑡 is the target probability of this class (typically 𝑝𝑡 = 1), 𝑓𝑡 is the model prediction on class 𝑡 and 𝐿1 is
the distance between the proposed counterfactual instance 𝑋 ′ and the instance to be explained 𝑋 . The use of the 𝐿1

distance should ensure that the 𝑋 ′ is a sparse counterfactual - minimizing the number of features to be changed in order
to change the prediction.

74 Chapter 7. Methods

https://christophm.github.io/interpretable-ml-book/counterfactual.html
https://arxiv.org/abs/1711.00399
https://arxiv.org/abs/1711.00399

alibi Documentation, Release 0.9.5dev

The optimal value of the hyperparameter 𝜆 will vary from dataset to dataset and even within a dataset for each instance
to be explained and the desired target class. As such it is difficult to set and we learn it as part of the optimization
algorithm, i.e. we want to optimize

min
𝑋′

max
𝜆

𝐿(𝑋 ′|𝑋)

subject to

|𝑓𝑡(𝑋 ′)− 𝑝𝑡| ≤ 𝜖 (counterfactual constraint),

where 𝜖 is a tolerance parameter. In practice this is done in two steps, on the first pass we sweep a broad range of 𝜆, e.g.
𝜆 ∈ (10−1, . . . , 10−10) to find lower and upper bounds 𝜆lb, 𝜆ub where counterfactuals exist. Then we use bisection to
find the maximum 𝜆 ∈ [𝜆lb, 𝜆ub] such that the counterfactual constraint still holds. The result is a set of counterfactual
instances 𝑋 ′ with varying distance from the test instance 𝑋 .

7.4.2 Usage

Initialization

The counterfactual (CF) explainer method works on fully black-box models, meaning they can work with arbitrary
functions that take arrays and return arrays. However, if the user has access to a full TensorFlow (TF) or Keras model,
this can be passed in as well to take advantage of the automatic differentiation in TF to speed up the search. This section
describes the initialization for a TF/Keras model, for fully black-box models refer to numerical gradients.

First we load the TF/Keras model:

model = load_model('my_model.h5')

Then we can initialize the counterfactual object:

shape = (1,) + x_train.shape[1:]
cf = Counterfactual(model, shape, distance_fn='l1', target_proba=1.0,

target_class='other', max_iter=1000, early_stop=50, lam_init=1e-1,
max_lam_steps=10, tol=0.05, learning_rate_init=0.1,
feature_range=(-1e10, 1e10), eps=0.01, init='identity',
decay=True, write_dir=None, debug=False)

Besides passing the model, we set a number of hyperparameters . . .

. . . general:
• shape: shape of the instance to be explained, starting with batch dimension. Currently only single explanations

are supported, so the batch dimension should be equal to 1.

• feature_range: global or feature-wise min and max values for the perturbed instance.

• write_dir: write directory for Tensorboard logging of the loss terms. It can be helpful when tuning the hy-
perparameters for your use case. It makes it easy to verify that e.g. not 1 loss term dominates the optimization,
that the number of iterations is OK etc. You can access Tensorboard by running tensorboard --logdir
{write_dir} in the terminal.

• debug: flag to enable/disable writing to Tensorboard.

. . . related to the optimizer:

• max_iterations: number of loss optimization steps for each value of 𝜆; the multiplier of the distance loss term.

• learning_rate_init: initial learning rate, follows linear decay.

7.4. Counterfactual Instances 75

alibi Documentation, Release 0.9.5dev

• decay: flag to disable learning rate decay if desired

• early_stop: early stopping criterion for the search. If no counterfactuals are found for this many steps or if this
many counterfactuals are found in a row we change 𝜆 accordingly and continue the search.

• init: how to initialize the search, currently only "identity" is supported meaning the search starts from the
original instance.

. . . related to the objective function:

• distance_fn: distance function between the test instance 𝑋 and the proposed counterfactual 𝑋 ′, currently only
"l1" is supported.

• target_proba: desired target probability for the returned counterfactual instance. Defaults to 1.0, but it could
be useful to reduce it to allow a looser definition of a counterfactual instance.

• tol: the tolerance within the target_proba, this works in tandem with target_proba to specify a range of
acceptable predicted probability values for the counterfactual.

• target_class: desired target class for the returned counterfactual instance. Can be either an integer denoting
the specific class membership or the string otherwhich will find a counterfactual instance whose predicted class
is anything other than the class of the test instance.

• lam_init: initial value of the hyperparameter 𝜆. This is set to a high value 𝜆 = 1𝑒−1 and annealed during the
search to find good bounds for 𝜆 and for most applications should be fine to leave as default.

• max_lam_steps: the number of steps (outer loops) to search for with a different value of 𝜆.

While the default values for the loss term coefficients worked well for the simple examples provided in the notebooks,
it is recommended to test their robustness for your own applications.

Warning
Once a Counterfactual instance is initialized, the parameters of it are frozen even if creating a new instance.
This is due to TensorFlow behaviour which holds on to some global state. In order to change parameters of the
explainer in the same session (e.g. for explaining different models), you will need to reset the TensorFlow graph
manually:

import tensorflow as tf
tf.keras.backend.clear_session()

You may need to reload your model after this. Then you can create a new Counterfactual instance with new
parameters.

76 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

Fit

The method is purely unsupervised so no fit method is necessary.

Explanation

We can now explain the instance 𝑋:

explanation = cf.explain(X)

The explain method returns an Explanation object with the following attributes:

• cf : dictionary containing the counterfactual instance found with the smallest distance to the test instance, it has
the following keys:

– X: the counterfactual instance

– distance: distance to the original instance

– lambda: value of 𝜆 corresponding to the counterfactual

– index: the step in the search procedure when the counterfactual was found

– class: predicted class of the counterfactual

– proba: predicted class probabilities of the counterfactual

– loss: counterfactual loss

• orig_class: predicted class of original instance

• orig_proba: predicted class probabilites of the original instance

• all: dictionary of all instances encountered during the search that satisfy the counterfactual constraint but have
higher distance to the original instance than the returned counterfactual. This is organized by levels of 𝜆, i.e.
explanation['all'][0] will be a list of dictionaries corresponding to instances satisfying the counterfactual
condition found in the first iteration over 𝜆 during bisection.

Numerical Gradients

So far, the whole optimization problem could be defined within the TF graph, making automatic differentiation possible.
It is however possible that we do not have access to the model architecture and weights, and are only provided with a
predict function returning probabilities for each class. The counterfactual can then be initialized in the same way as
before, but using a prediction function:

define model
model = load_model('mnist_cnn.h5')
predict_fn = lambda x: cnn.predict(x)

initialize explainer
shape = (1,) + x_train.shape[1:]
cf = Counterfactual(predict_fn, shape, distance_fn='l1', target_proba=1.0,

target_class='other', max_iter=1000, early_stop=50, lam_init=1e-1,
max_lam_steps=10, tol=0.05, learning_rate_init=0.1,
feature_range=(-1e10, 1e10), eps=0.01, init

7.4. Counterfactual Instances 77

alibi Documentation, Release 0.9.5dev

In this case, we need to evaluate the gradients of the loss function with respect to the input features 𝑋 numerically:

𝜕𝐿pred

𝜕𝑋
=

𝜕𝐿pred

𝜕𝑝

𝜕𝑝

𝜕𝑋

where 𝐿pred is the predict function loss term, 𝑝 the predict function and 𝑥 the input features to optimize. There is now
an additional hyperparameter to consider:

• eps: a float or an array of floats to define the perturbation size used to compute the numerical gradients of 𝛿𝑝/𝛿𝑋 .
If a single float, the same perturbation size is used for all features, if the array dimension is (1 x nb of features),
then a separate perturbation value can be used for each feature. For the Iris dataset, eps could look as follows:

eps = np.array([[1e-2, 1e-2, 1e-2, 1e-2]]) # 4 features, also equivalent to eps=1e-2

7.4.3 Examples

Counterfactual instances on MNIST

[source]

7.5 Counterfactuals Guided by Prototypes

Note
To enable support for Counterfactuals guided by Prototypes, you may need to run

pip install alibi[tensorflow]

7.5.1 Overview

This method is based on the Interpretable Counterfactual Explanations Guided by Prototypes paper which proposes a
fast, model agnostic method to find interpretable counterfactual explanations for classifier predictions by using class
prototypes.

Humans often think about how they can alter the outcome of a situation. What do I need to change for the bank to
approve my loan? is a common example. This form of counterfactual reasoning comes natural to us and explains how
to arrive at a desired outcome in an interpretable manner. Moreover, examples of counterfactual instances resulting
in a different outcome can give powerful insights of what is important to the the underlying decision process. This
makes it a compelling method to explain predictions of machine learning models. In the context of predictive models,
a counterfactual instance describes the necessary change in input features of a test instance that alter the prediction to
a predefined output (e.g. a prediction class). The counterfactual is found by iteratively perturbing the input features of
the test instance during an optimization process until the desired output is achieved.

A high quality counterfactual instance 𝑥𝑐𝑓 should have the following desirable properties:

• The model prediction on 𝑥𝑐𝑓 needs to be close to the predefined output.

• The perturbation 𝛿 changing the original instance 𝑥0 into 𝑥𝑐𝑓 = 𝑥0 + 𝛿 should be sparse.

• The counterfactual 𝑥𝑐𝑓 should be interpretable. This implies that 𝑥𝑐𝑓 needs to lie close to both the overall and
counterfactual class specific data distribution.

• The counterfactual 𝑥𝑐𝑓 needs to be found fast enough so it can be used in a real life setting.

78 Chapter 7. Methods

../api/alibi.explainers.html#alibi.explainers.CounterfactualProto
https://arxiv.org/abs/1907.02584

alibi Documentation, Release 0.9.5dev

We can obtain those properties by incorporating additional loss terms in the objective function that is optimized using
gradient descent. A basic loss function for a counterfactual can look like this:

𝐿𝑜𝑠𝑠 = 𝑐𝐿𝑝𝑟𝑒𝑑 + 𝛽𝐿1 + 𝐿2

The first loss term, 𝑐𝐿𝑝𝑟𝑒𝑑, encourages the perturbed instance to predict another class than the original instance. The
𝛽𝐿1 + 𝐿2 terms act as an elastic net regularizer and introduce sparsity by penalizing the size of the difference be-
tween the counterfactual and the perturbed instance. While we can obtain sparse counterfactuals using this objective
function, these are often not very interpretable because the training data distribution is not taken into account, and the
perturbations are not necessarily meaningful.

The Contrastive Explanation Method (CEM) uses an autoencoder which is trained to reconstruct instances of the train-
ing set. We can then add the 𝐿2 reconstruction error of the perturbed instance as a loss term to keep the counterfactual
close to the training data distribution. The loss function becomes:

𝐿𝑜𝑠𝑠 = 𝑐𝐿𝑝𝑟𝑒𝑑 + 𝛽𝐿1 + 𝐿2 + 𝐿𝐴𝐸

The 𝐿𝐴𝐸 does however not necessarily lead to interpretable solutions or speed up the counterfactual search. The lack
of interpretability occurs because the overall data distribution is followed, but not the class specific one. That’s where
the prototype loss term 𝐿𝑝𝑟𝑜𝑡𝑜 comes in. To define the prototype for each prediction class, we can use the encoder part
of the previously mentioned autoencoder. We also need the training data or at least a representative sample. We use
the model to make predictions on this data set. For each predicted class, we encode the instances belonging to that
class. The class prototype is simply the average of the k closest encodings in that class to the encoding of the instance
that we want to explain. When we want to generate a counterfactual, we first find the nearest prototype other than the
one for the predicted class on the original instance. The 𝐿𝑝𝑟𝑜𝑡𝑜 loss term tries to minimize the 𝐿2 distance between the
counterfactual and the nearest prototype. As a result, the perturbations are guided to the closest prototype, speeding up
the counterfactual search and making the perturbations more meaningful as they move towards a typical in-distribution
instance. If we do not have a trained encoder available, we can build class representations using k-d trees for each class.
The prototype is then the k nearest instance from a k-d tree other than the tree which represents the predicted class on
the original instance. The loss function now looks as follows:

𝐿𝑜𝑠𝑠 = 𝑐𝐿𝑝𝑟𝑒𝑑 + 𝛽𝐿1 + 𝐿2 + 𝐿𝐴𝐸 + 𝐿𝑝𝑟𝑜𝑡𝑜

The method allows us to select specific prototype classes to guide the counterfactual to. For example, in MNIST the
closest prototype to a 9 could be a 4. However, we can specify that we want to move towards the 7 prototype and avoid
4.

In order to help interpretability, we can also add a trust score constraint on the proposed counterfactual. The trust score
is defined as the ratio of the distance between the encoded counterfactual and the prototype of the class predicted on the
original instance, and the distance between the encoded counterfactual and the prototype of the class predicted for the
counterfactual instance. Intuitively, a high trust score implies that the counterfactual is far from the originally predicted
class compared to the counterfactual class. For more info on trust scores, please check out the documentation.

Because of the 𝐿𝑝𝑟𝑜𝑡𝑜 term, we can actually remove the prediction loss term and still obtain an interpretable coun-
terfactual. This is especially relevant for fully black box models. When we provide the counterfactual search method
with a Keras or TensorFlow model, it is incorporated in the TensorFlow graph and evaluated using automatic differ-
entiation. However, if we only have access to the model’s prediction function, the gradient updates are numerical and
typically require a large number of prediction calls because of 𝐿𝑝𝑟𝑒𝑑. These prediction calls can slow the search down
significantly and become a bottleneck. We can represent the gradient of the loss term as follows:

𝜕𝐿𝑝𝑟𝑒𝑑

𝜕𝑥
=

𝜕𝐿𝑝𝑟𝑒𝑑

𝜕𝑝

𝜕𝑝

𝜕𝑥

where 𝑝 is the prediction function and 𝑥 the input features to optimize. For a 28 by 28 MNIST image, the 𝛿𝑝/𝛿𝑥 term
alone would require a prediction call with batch size 28x28x2 = 1568. By using the prototypes to guide the search
however, we can remove the prediction loss term and only make a single prediction at the end of each gradient update
to check whether the predicted class on the proposed counterfactual is different from the original class.

7.5. Counterfactuals Guided by Prototypes 79

https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/K-d_tree

alibi Documentation, Release 0.9.5dev

7.5.2 Categorical Variables

It is crucial for many machine learning applications to deal with both continuous numerical and categorical data.
Explanation methods which rely on perturbations or sampling of the input features need to make sure those perturbations
are meaningful and capture the underlying structure of the data. If not done properly, the perturbed or sampled instances
are possibly out of distribution compared to the training data and result in misleading explanations. The perturbation or
sampling process becomes tricky for categorical features. For instance random perturbations across possible categories
or enforcing a ranking between categories based on frequency of occurrence in the training data do not capture this
structure.

Our method first computes the pairwise distances between categories of a categorical variable based on either the
model predictions (MVDM) or the context provided by the other variables in the dataset (ABDM). For MVDM, we
use the difference between the conditional model prediction probabilities of each category. This method is based on
the Modified Value Difference Metric (MVDM) by Cost et al (1993). ABDM stands for Association-Based Distance
Metric, a categorical distance measure introduced by Le et al (2005). ABDM infers context from the presence of other
variables in the data and computes a dissimilarity measure based on the Kullback-Leibler divergence. Both methods
can also be combined as ABDM-MVDM. We can then apply multidimensional scaling to project the pairwise distances
into Euclidean space. More details will be provided in a forthcoming paper.

The different use cases are highlighted in the example notebooks linked at the bottom of the page.

7.5.3 Usage

Initialization

The counterfactuals guided by prototypes method works on fully black-box models. This means that they can work
with arbitrary functions that take arrays and return arrays. However, if the user has access to a full TensorFlow (TF)
or Keras model, this can be passed in as well to take advantage of the automatic differentiation in TF to speed up the
search. This section describes the initialization for a TF/Keras model. Please see the numerical gradients section for
black box models.

We first load our MNIST classifier and the (optional) autoencoder and encoder:

cnn = load_model('mnist_cnn.h5')
ae = load_model('mnist_ae.h5')
enc = load_model('mnist_enc.h5')

We can now initialize the counterfactual:

shape = (1,) + x_train.shape[1:]
cf = CounterfactualProto(cnn, shape, kappa=0., beta=.1, gamma=100., theta=100.,

ae_model=ae, enc_model=enc, max_iterations=500,
feature_range=(-.5, .5), c_init=1., c_steps=5,
learning_rate_init=1e-2, clip=(-1000., 1000.), write_dir='./cf')

Besides passing the predictive, and (optional) autoencoder and models, we set a number of hyperparameters . . .

. . . general:
• shape: shape of the instance to be explained, starting with batch dimension. Currently only single explanations

are supported, so the batch dimension should be equal to 1.

• feature_range: global or feature-wise min and max values for the perturbed instance.

• write_dir: write directory for Tensorboard logging of the loss terms. It can be helpful when tuning the hy-
perparameters for your use case. It makes it easy to verify that e.g. not 1 loss term dominates the optimization,
that the number of iterations is OK etc. You can access Tensorboard by running tensorboard --logdir

80 Chapter 7. Methods

https://link.springer.com/article/10.1023/A:1022664626993
https://www.sciencedirect.com/science/article/abs/pii/S0167865505001686

alibi Documentation, Release 0.9.5dev

{write_dir} in the terminal. The figure below for example shows the loss to be optimized over different 𝑐
iterations. It is clear that within each iteration, the number of max_iterations steps is too high and we can
speed up the search.

. . . related to the optimizer:

• max_iterations: number of loss optimization steps for each value of c; the multiplier of the first loss term.

• learning_rate_init: initial learning rate, follows polynomial decay.

• clip: min and max gradient values.

. . . related to the objective function:

• c_init and c_steps: the multiplier 𝑐 of the first loss term is updated for c_steps iterations, starting at c_init.
The first loss term encourages the perturbed instance to be predicted as a different class than the original instance.
If we find a candidate counterfactual for the current value of 𝑐, we reduce the value of 𝑐 for the next optimization
cycle to put more emphasis on the other loss terms and improve the solution. If we cannot find a solution, 𝑐 is
increased to put more weight on the prediction class restrictions of the counterfactual.

• kappa: the first term in the loss function is defined by a difference between the predicted probabilities for the
perturbed instance of the original class and the max of the other classes. 𝜅 ≥ 0 defines a cap for this difference,
limiting its impact on the overall loss to be optimized. Similar to CEM, we set 𝜅 to 0 in the examples.

• beta: 𝛽 is the 𝐿1 loss term multiplier. A higher value for 𝛽 means more weight on the sparsity restrictions of
the perturbations. 𝛽 equal to 0.1 works well for the example datasets.

• gamma: multiplier for the optional 𝐿2 reconstruction error. A higher value for 𝛾 means more emphasis on the
reconstruction error penalty defined by the autoencoder. A value of 100 is reasonable for the examples.

• theta: multiplier for the 𝐿𝑝𝑟𝑜𝑡𝑜 loss term. A higher 𝜃 means more emphasis on the gradients guiding the
counterfactual towards the nearest class prototype. A value of 100 worked well for the examples.

When the dataset contains categorical variables, we need to additionally pass the following arguments:

• cat_vars: if the categorical variables have ordinal encodings, this is a dictionary with as keys the categorical
columns and values the number of categories for the categorical variable in the dataset. If one-hot encoding
is applied to the data, then the keys of the cat_vars dictionary represent the column where each categorical
variable starts while the values still return the number of categories.

• ohe: a flag (True or False) whether the categories are one-hot encoded.

It is also important to remember that the perturbations are applied in the numerical feature space, after the categorical
variables have been transformed into numerical features. This has to be reflected by the dimension and values of
feature_range. Imagine for example that we have a dataset with 10 columns. Two of the features are categorical and
one-hot encoded. They can both take 3 values each. As a result, the number of columns in the dataset is reduced to 6
when we transform those categorical features to numerical features. As a result, the feature_range needs to contain
the upper and lower ranges for 6 features.

While the default values for the loss term coefficients worked well for the simple examples provided in the notebooks,
it is recommended to test their robustness for your own applications.

7.5. Counterfactuals Guided by Prototypes 81

alibi Documentation, Release 0.9.5dev

Warning
Once a CounterfactualProto instance is initialized, the parameters of it are frozen even if creating a new in-
stance. This is due to TensorFlow behaviour which holds on to some global state. In order to change parameters
of the explainer in the same session (e.g. for explaining different models), you will need to reset the TensorFlow
graph manually:

import tensorflow as tf
tf.keras.backend.clear_session()

You may need to reload your model after this. Then you can create a new CounterfactualProto instance with
new parameters.

Fit

If we use an encoder to find the class prototypes, we need an additional fit step on the training data:

cf.fit(x_train)

We also need the fit step if the data contains categorical features so we can compute the numerical transformations.
In practice, most of these optional arguments do not need to be changed.

cf.fit(x_train, d_type='abdm', w=None, disc_perc=[25, 50, 75], standardize_cat_
→˓vars=False,

smooth=1., center=True, update_feature_range=True)

• d_type: the distance metric used to compute the pairwise distances between the categories of each categorical
variable. As discussed in the introduction, the options are "abdm", "mvdm" or "abdm-mvdm".

• w: if the combined metric "abdm-mvdm" is used, w is the weight (between 0 and 1) given to abdm.

• disc_perc: for abdm, we infer context from the other features. If there are continuous numerical features
present, these are binned according to the quartiles in disc_perc before computing the similarity metric.

• standardize_car_vars: whether to return the standardized values for the numerical distances of each cate-
gorical feature.

• smooth: if the difference in the distances between the categorical variables is too large, then a lower value of
the smooth argument (0, 1) can smoothen out this difference. This would only be relevant if one categorical
variable has significantly larger differences between its categories than others. As a result, the counterfactual
search process will likely leave that categorical variable unchanged.

• center: whether to center the numerical distances of the categorical variables between the min and max feature
ranges.

• update_feature_range: whether to update the feature_range parameter for the categorical variables based
on the min and max values it computed in the fit step.

82 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

Explanation

We can now explain the instance:

explanation = cf.explain(X, Y=None, target_class=None, k=20, k_type='mean',
threshold=0., verbose=True, print_every=100, log_every=100)

• X: original instance

• Y: one-hot-encoding of class label for X, inferred from the prediction on X if None.

• target_class: classes considered for the nearest class prototype. Either a list with class indices or None.

• k: number of nearest instances used to define the prototype for a class. Defaults to using all instances belonging
to the class.

• k_type: use either the average encoding of the k nearest instances in a class as the class prototype
(k_type=’mean’) or the k-nearest encoding in the class (k_type=’point’). This parameter is only relevant if
an encoder is used to define the prototypes.

• threshold: threshold level for the ratio between the distance of the counterfactual to the prototype of the pre-
dicted class for the original instance over the distance to the prototype of the predicted class for the counterfactual.
If the trust score is below the threshold, the proposed counterfactual does not meet the requirements and is re-
jected.

• verbose: if True, print progress of counterfactual search every print_every steps.

• log_every: if write_dir for Tensorboard is specified, then log losses every log_every steps.

The explain method returns an Explanation object with the following attributes:

• cf : a dictionary with the overall best counterfactual found. explanation[‘cf’] has the following key: value pairs:

– X: the counterfactual instance

– class: predicted class for the counterfactual

– proba: predicted class probabilities for the counterfactual

– grads_graph: gradient values computed from the TF graph with respect to the input features at the coun-
terfactual

– grads_num: numerical gradient values with respect to the input features at the counterfactual

• orig_class: predicted class for original instance

• orig_proba: predicted class probabilities for original instance

• all: a dictionary with the iterations as keys and for each iteration a list with counterfactuals found in that iteration
as values. So for instance, during the first iteration, explanation[‘all’][0], initially we typically find fairly noisy
counterfactuals that improve over the course of the iteration. The counterfactuals for the subsequent iterations
then need to be better (sparser) than the previous best counterfactual. So over the next few iterations, we probably
find less but better solutions.

7.5. Counterfactuals Guided by Prototypes 83

alibi Documentation, Release 0.9.5dev

Numerical Gradients

So far, the whole optimization problem could be defined within the TF graph, making automatic differentiation possible.
It is however possible that we do not have access to the model architecture and weights, and are only provided with a
predict function returning probabilities for each class. The counterfactual can then be initialized in the same way:

define model
cnn = load_model('mnist_cnn.h5')
predict_fn = lambda x: cnn.predict(x)
ae = load_model('mnist_ae.h5')
enc = load_model('mnist_enc.h5')

initialize explainer
shape = (1,) + x_train.shape[1:]
cf = CounterfactualProto(predict_fn, shape, gamma=100., theta=100.,

ae_model=ae, enc_model=enc, max_iterations=500,
feature_range=(-.5, .5), c_init=1., c_steps=4,
eps=(1e-2, 1e-2), update_num_grad=100)

In this case, we need to evaluate the gradients of the loss function with respect to the input features numerically:

𝜕𝐿𝑝𝑟𝑒𝑑

𝜕𝑥
=

𝜕𝐿𝑝𝑟𝑒𝑑

𝜕𝑝

𝜕𝑝

𝜕𝑥

where 𝐿𝑝𝑟𝑒𝑑 is the loss term related to the prediction function, 𝑝 is the prediction function and 𝑥 are the input features
to optimize. There are now 2 additional hyperparameters to consider:

• eps: a tuple to define the perturbation size used to compute the numerical gradients. eps[0] and eps[1] are
used respectively for 𝛿𝐿𝑝𝑟𝑒𝑑/𝛿𝑝 and 𝛿𝑝/𝛿𝑥. eps[0] and eps[1] can be a combination of float values or numpy
arrays. For eps[0], the array dimension should be (1 x nb of prediction categories) and for eps[1] it should be
(1 x nb of features). For the Iris dataset, eps could look as follows:

eps0 = np.array([[1e-2, 1e-2, 1e-2]]) # 3 prediction categories, equivalent to 1e-2
eps1 = np.array([[1e-2, 1e-2, 1e-2, 1e-2]]) # 4 features, also equivalent to 1e-2
eps = (eps0, eps1)

• update_num_grad: for complex models with a high number of parameters and a high dimensional feature space
(e.g. Inception on ImageNet), evaluating numerical gradients can be expensive as they involve prediction calls for
each perturbed instance. The update_num_grad parameter allows you to set a batch size on which to evaluate
the numerical gradients, reducing the number of prediction calls required.

We can also remove the prediction loss term by setting c_init to 0 and only run 1 c_steps, and still obtain an
interpretable counterfactual. This dramatically speeds up the counterfactual search (e.g. by 100x in the MNIST example
notebook):

cf = CounterfactualProto(predict_fn, shape, gamma=100., theta=100.,
ae_model=ae, enc_model=enc, max_iterations=500,
feature_range=(-.5, .5), c_init=0., c_steps=1)

84 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

k-d trees

So far, we assumed that we have a trained encoder available to find the nearest class prototype. This is however not
a hard requirement. As mentioned in the Overview section, we can use k-d trees to build class representations, find
prototypes by querying the trees for each class and return the k nearest class instance as the closest prototype. We can
run the counterfactual as follows:

cf = CounterfactualProto(cnn, shape, use_kdtree=True, theta=10., feature_range=(-.5, .5))
cf.fit(x_train, trustscore_kwargs=None)
explanation = cf.explain(X, k=2)

• trustscore_kwargs: keyword arguments for the trust score object used to define the k-d trees for each class.
Please check the trust scores documentation for more info.

7.5.4 Examples

Counterfactuals guided by prototypes on MNIST

Counterfactuals guided by prototypes on California housing dataset

Counterfactual explanations with one-hot encoded categorical variables

Counterfactual explanations with ordinally encoded categorical variables

[source]

7.6 Counterfactuals with Reinforcement Learning

Note
To enable support for Counterfactuals with Reinforcement Learning, you need one of tensorflow or torch installed. You
can do so using:

pip install alibi[tensorflow]

or

pip install alibi[torch]

7.6.1 Overview

The counterfactual with reinforcement learning is based on the Model-agnostic and Scalable Counterfactual Explana-
tions via Reinforcement Learning which proposes a fast, model agnostic method to generate batches of counterfactual
explanations by replacing the usual optimization procedure with a learnable process. The method does not assume
model differentiability, relies only on the feedback from the model predictions, allows for target-conditional counter-
factual instances and flexible feature range constraints for numerical and categorical features, including the immutability
of protected features (e.g, gender, race). Furthermore, it is easily extendable to multiple data modalities (e.g., images,
tabular data).

Counterfactual instances (a.k.a. counterfactual explanations, counterfactuals) are a powerful tool to obtain insight
into the underlying decision process exhibited by a black-box model, describing the necessary minimal changes in
the input space to alter the prediction towards the desired target. To be of practical use, a counterfactual should be

7.6. Counterfactuals with Reinforcement Learning 85

../api/alibi.explainers.html#alibi.explainers.CounterfactualRL
https://arxiv.org/pdf/2106.02597.pdf
https://arxiv.org/pdf/2106.02597.pdf

alibi Documentation, Release 0.9.5dev

sparse—close (using some distance measure) to the original instance—and indistinguishable from real instances, that is,
it should be in-distribution. Thus, for a loan application system that currently outputs a rejection for a given individual,
a counterfactual explanation should suggest plausible minimal changes in the feature values that the applicant could
perform to get the loan accepted leading to actionable recourse.

A desirable property of a method for generating counterfactuals is to allow feature conditioning. Real-world datasets
usually include immutable features such as gender or race, which should remain unchanged throughout the counter-
factual search procedure. A natural extension of immutability is to restrict a feature to a subset or an interval of values.
Thus, following the same loan application example, a customer might be willing to improve their education level from a
High-school graduate to Bachelor’s or Master’s, but not further. Similarly, a numerical feature such as age should only
increase for a counterfactual to be actionable. To enable such feature conditioning, we propose to use a conditioning
vector to guide the generation process.

A counterfactual explanation of a given instance represents a sparse, in-distribution example that alters the model
prediction towards a specified target. Let 𝑥 be the original instance, 𝑀 a black-box model, 𝑦𝑀 = 𝑀(𝑥) the model
prediction on 𝑥 and 𝑦𝑇 the target prediction. The goal is to produce a counterfactual instance 𝑥𝐶𝐹 = 𝑥+ 𝛿𝐶𝐹 where
𝛿𝐶𝐹 represents a sparse perturbation vector such that 𝑦𝑇 = 𝑀(𝑥𝐶𝐹). Instead of solving an optimization problem for
each input instance, we train a generative model which models the counterfactual instances 𝑥𝐶𝐹 directly and allows for
feature level constraints via an optional conditioning vector 𝑐. A conditional counterfactual explanation 𝑥𝐶𝐹 therefore
depends on the tuple 𝑠 = (𝑥, 𝑦𝑀 , 𝑦𝑇 , 𝑐).

The method does not assume the model 𝑀 to be differentiable and it trains the counterfactual generator using rein-
forcement learning, namely Deep Deterministic Policy Gradient (DDPG). DDPG interleaves a state-action function
approximator called critic (𝑄), with learning an approximator called actor(𝜇) to predict the optimal action, which is
equivalent to predicting the optimal counterfactual. The method assumes that the critic is differentiable with respect to
the action argument, thus allowing to optimize the actor’s parameters efficiently through gradient-based methods.

This model-agnostic training pipeline is compatible with various data modalities and only uses sparse model prediction
feedback as a reward. For a classification model returning the predicted class label the reward can be defined by an
indicator function, 𝑅 = 1(𝑀(𝑥𝐶𝐹) = 𝑦𝑇). The reward for a regression model, on the other hand is proportional to
the proximity of 𝑀(𝑥𝐶𝐹) to the regression target 𝑦𝑇 .

Instead of directly modeling the perturbation vector 𝛿𝐶𝐹 in the potentially high-dimensional input space, we first train
an autoencoder. The weights of the autoencoder are frozen and 𝜇 applies the counterfactual perturbations in the latent
space of the encoder. The pre-trained decoder maps the counterfactual embedding back to the input feature space. Since
𝜇 operates in the continuous latent space we use the sample efficient DDPG method. We denote by 𝑒𝑛𝑐 and 𝑑𝑒𝑐 the
encoder and the decoder networks, respectively. Given the encoded representation of the input instance 𝑧 = 𝑒𝑛𝑐(𝑥),
the model prediction 𝑦𝑀 , the target prediction 𝑦𝑇 and the conditioning vector 𝑐, the actor outputs the counterfactual’s
latent representation 𝑧𝐶𝐹 = 𝜇(𝑧, 𝑦𝑀 , 𝑦𝑇 , 𝑐). The decoder then projects the embedding 𝑧𝐶𝐹 back to the original input
space, followed by optional post-processing.

The training step consists of simultaneously optimizing the actor and critic networks. The critic regresses on the re-
ward𝑅 determined by the model prediction, while the actor maximizes the critic’s output for the given instance through
𝐿𝑚𝑎𝑥. The actor also minimizes two objectives to encourage the generation of sparse, in-distribution counterfactuals.
The sparsity loss 𝐿𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 operates on the decoded counterfactual 𝑥𝐶𝐹 and combines the 𝐿1 loss over the standardized
numerical features and the 𝐿0 loss over the categorical ones. The consistency loss 𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡 aims to encode the coun-
terfactual 𝑥𝐶𝐹 back to the same latent representation where it was decoded from and helps to produce in-distribution
counterfactual instances. Formally, the actor’s loss can be written as: 𝐿𝑎𝑐𝑡𝑜𝑟 = 𝐿𝑚𝑎𝑥 +𝜆1𝐿𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 +𝜆2𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

86 Chapter 7. Methods

https://arxiv.org/abs/1509.02971
https://en.wikipedia.org/wiki/Autoencoder

alibi Documentation, Release 0.9.5dev

Tabular

Samoilescu RF et al., Model-agnostic and Scalable Counterfactual Explanations via Reinforcement Learning, 2021

In many real-world applications, some of the input features are immutable, have restricted feature ranges, or are con-
strained to a subset of all possible feature values. These constraints need to be taken into account when generating
actionable counterfactual instances. For instance, age and marital status could be features in the loan application ex-
ample. An actionable counterfactual should however only be able to increase the numerical age feature and keep the
categorical marital status feature unchanged. To achieve this we condition the counterfactual generator on a condition-
ing vector 𝑐.

Following the decoding phase, as part of post-processing (denoted by a function 𝑝𝑝), the numerical values are clipped
within the desired range, and categorical values are conditionally sampled according to their masking vector. This step
ensures that the generated counterfactual respects the desired feature conditioning before passing it to the model. Note
that CFRL is flexible and allows non-differentiable post-processing such as casting features to their original data types
(e.g., converting a decoded floating-point age to an integer: 40 = int(40.3)) and categorical mapping (e.g., marital
status distribution/one-hot encoding to the married value) since we rely solely on the sparse model prediction reward.

Samoilescu RF et al., Model-agnostic and Scalable Counterfactual Explanations via Reinforcement Learning, 2021

Counterfactual diversity is important since it allows the user to take an informed action subject to personal preferences.
CFRL can be extended to generate diverse counterfactuals too. Note that the deterministic decoding phase ensures
consistency over repeated queries but limits the output to a single possible counterfactual per instance. To increase the
diversity, we can sample the conditional vector subject to the user-defined feature constraints. Thus, for unconstrained
features, we follow the same sampling procedure applied during training, while for constrained ones, we sample a
subset of their restricted values which ensures the feasibility of the counterfactual.

7.6. Counterfactuals with Reinforcement Learning 87

alibi Documentation, Release 0.9.5dev

Images

Samoilescu RF et al., Model-agnostic and Scalable Counterfactual Explanations via Reinforcement Learning, 2021

CFRL is a flexible method and can be easily extendable to other data modalities, such as images. The training pipeline
remains unchanged and only requires a pre-trained autoencoder for each dataset. The method can generate valid, in-
distribution counterfactuals even for high-dimensional data.

7.6.2 Usage

CFRL provides a base class specifically designed to be easily adaptable to multiple data modalities. CFRL achieves
this flexibility by allowing the user to input custom functions as:

• reward_func - element-wise reward function.

• conditional_func - generates a conditional vector given a input instance.

• postprocessing_funcs - post-processing list of functions. Non-differentiable post-processing can be applied.

For more details, see the documentation here.

Image

We first introduce the image dataset scenario due to ease of usage.

Predictor

Since CFRL works on black-box models, only access to a predict function is needed. The model below is a simple
convolutional neural network(CNN) trained on the MNIST dataset:

predictor = lambda x: cnn(x)

Note that for the classification task the CFRL expects the output of the predictor to be a 2D array, where the second
dimension matches the number of classes. The output can be either soft-label distribution (actual probabilities/logits
for each class) or hard-label distribution (one-hot encoding). Regardless of the output prediction (logits, probabilities,
one-hot encoding), for the classification task the CFRL applies the argmax operator on the output.

88 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

Autoencoder

CFRL models the perturbation vector 𝛿𝐶𝐹 in embedding space, thus a pre-trained autoencoder, ae, is required. The
autoencoder is a CNN trained on the MNIST dataset, and for simplicity of notation we assume that the model can be
factored out in two components, ae.encoder and ae.decoder, corresponding to the encoder component and decoder
component, respectively.

Initialization

explainer = CounterfactualRL(predictor=predictor,
encoder=ae.encoder,
decoder=ae.decoder,
coeff_sparsity=COEFF_SPARSITY,
coeff_consistency=COEFF_CONSISTENCY,
latent_dim=LATENT_DIM,
train_steps=300000,
batch_size=100,
backend="tensorflow")

where:

• predictor - black-box model.

• encoder - pre-trained encoder.

• decoder - pre-trained decoder.

• latent_dim - embedding/latent dimension.

• coeff_sparsity - sparsity loss coefficient.

• coeff_consistency - consistency loss coefficient.

• train_steps - number of training steps.

• batch_size - batch size dimension to be used.

• backend - backend to be used. Possible values: tensorflow|pytorch.

We previously mentioned the CFRL base class can be easily adaptable to multiple data modalities, by allowing the user
to specify custom functions. By default, the customizable functions are defined as:

• reward_func - by default, checks if the counterfactual prediction label matches the target label.

• conditional_func - by default, the function returns None which is equivalent to no conditioning.

• postprocessing_funcs - by default is an empty list which is equivalent to no post-processing.

Fit

Fitting is straightforward, just passing the training set:

explainer.fit(X=X_train)

7.6. Counterfactuals with Reinforcement Learning 89

alibi Documentation, Release 0.9.5dev

Explanation

We can now explain the instance:

explanation = explainer.explain(X=X_test,
Y_t=np.array([1]),
batch_size=100)

where:

• X - test instances to be explained.

• Y_t - target class. This array can contain either a single entrance that is applied for all test instances or multiple
entrances, one for each test instance.

• batch_size - batch size to be used at prediction time.

The explain method returns an Explanation object with the following attributes:

• "orig" - a dictionary containing the following key-value pairs:

– "X" - original input instances.

– "class" - classification labels of the input instances.

• "cf" - a dictionary containing the following key-value pairs:

– "X" - counterfactual instances.

– "class" - classification labels of the counterfactual instance.

• "target" - target labels.

• "condition" - counterfactual conditioning.

Tabular

The tabular scenario follows closely the details provided for the image one, by replacing the custom functions to match
the CFRL original implementation.

Predictor

As previously mentioned, CFRL operates in the black-box scenario and thus it can be applied to any model (from
differentiable models as neural networks to highly non-differentiable models such as Decision Tree, Random Forest,
XGBoost, etc.). The predictor can be defined as:

predictor = lambda x: black_box.predict_proba(x)

For classification, the output has to respect the same conventions as described in the Image section, namely to be a 2D
array having the second dimension match the number of classes.
Note that for models that do not support predict_proba which outputs the distribution over the classes, one can write
a custom function that returns a one-hot encoding representation of the label class without affecting the performance
since CFRL applies the argmax operator over the output distribution.

90 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

Heterogeneous autoencoder

For the heterogeneous autoencoder, heae, we use the same naming convention as for Image datasets and assume that the
autoencoder can be factored into two independent components, heae.encoder and heae.decoder, representing the
encoder and decoder modules. For the tabular scenarios, both the encoder and decoder networks can be fully connected
networks.

Since we are dealing with a heterogeneous dataset, that has to be reflected in the output of the decoder. Thus, the
convention is that the decoder must be a multiheaded network which implies that the output must be a list of tensors.
The first head models all the numerical features (if exist), while the rest of the heads model the categorical ones (one
head for each categorical feature).

Heterogeneous datasets require special treatment. In this work, we modeled the numerical features by normal distri-
butions with constant standard deviation and categorical features by categorical distributions. Due to the choice of
feature modeling, some numerical features can end up having different types than the original numerical features. For
example, a feature like Age having the type of int can become a float due to the autoencoder reconstruction (e.g.,
Age=26 -> Age=26.3). This behavior can be undesirable. Thus we performed a casting when processing the output
of the autoencoder (decoder component).

We can specify the datatype of each numerical feature by defining:

feature_types = {"Age": int, "Capital Gain": int, "Capital Loss": int, "Hours per week":␣
→˓int}

(by default each numerical feature is considered to be float, thus it can be omitted from the feature_types dictio-
nary).

Then we can obtain a heterogeneous autoencoder pre-processor(heae_preprocessor) which standardizes the nu-
merical features and transforms the categorical one into a one-hot encoding. The pre-processor is accompanied by
an inverse pre-preprocessor(heae_inv_preprocessor), designed to map the raw output of the decoder back to the
original input space. The inverse pre-processor includes type casting specified in the feature_types.

We can obtain the pre-processing pair by:

from alibi.explainers.backends.cfrl_tabular import get_he_preprocessor
heae_preprocessor, heae_inv_preprocessor = get_he_preprocessor(X=X_train,

feature_names=adult.
→˓feature_names,

category_map=adult.
→˓category_map,

feature_types=feature_
→˓types)

Constraints

A desirable property of a method for generating counterfactuals is to allow feature conditioning. Real-world datasets
usually include immutable features such as gender or race, which should remain unchanged throughout the counter-
factual search procedure. Similarly, a numerical feature such as age should only increase for a counterfactual to be
actionable.

We define the immutable features as:

immutable_features = ['Marital Status', 'Relationship', 'Race', 'Sex']

and ranges for numerical attributes as:

7.6. Counterfactuals with Reinforcement Learning 91

alibi Documentation, Release 0.9.5dev

ranges = {'Age': [0.0, 1.0], 'Hours per week': [-1.0, 0.0], "Capital Gain": [-1.0, 1.0]}

The encoding for ranges has the following meaning:

• "Age" - can only increase.

• "Hours per week" - can only decrease.

• "Capital Gain" - can increase or decrease. It is equivalent of saying that there are no constraints, and therefore
can be omitted.

Note that the value 0 must be contained in the specified interval. For more details, see the documentation here.

Initialization

explainer = CounterfactualRLTabular(predictor=predictor,
encoder=heae.encoder,
decoder=heae.decoder,
latent_dim=LATENT_DIM,
encoder_preprocessor=heae_preprocessor,
decoder_inv_preprocessor=heae_inv_preprocessor,
coeff_sparsity=COEFF_SPARSITY,
coeff_consistency=COEFF_CONSISTENCY,
feature_names=adult.feature_names,
category_map=adult.category_map,
immutable_features=immutable_features,
ranges=ranges,
train_steps=100000,
batch_size=100,
backend="tensorflow")

where:

• decoder - heterogeneous decoder network. The output of the decoder must be a list of tensors.
• encoder_preprocessor - heterogeneous autoencoder/encoder pre-processor.

• decoder_inv_preprocessor - heterogeneous autencoder/decoder inverse pre-processor.

• category_map - dataset category mapping. Keys are feature indexes and values are list feature values. Provided
by the alibi dataset.

• feature_names - list of feature names. Provided by the alibi dataset.

• ranges - numerical feature ranges, described in the previous section.

• immutable_features - list of immutable features, described in the previous section.

The rest of the arguments were previously described in the Image section.

92 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

Fit

Similar to the Image section, fitting is straight-forward, just passing the training set:

explainer.fit(X=X_train)

Explanation

Before asking for an explanation, we can define some conditioning:

C = [{"Age": [0, 20], "Workclass": ["State-gov", "?", "Local-gov"]}]

The above condition is equivalent to say that the Age is allowed to increase up to 20 years and that the Workclass can
change to either "State-gov", "?", "Local-gov" or remain the same. Note that the conditioning is expressed as a 𝛿
change from the input and the original feature value will be included by default.

We can generate an explanation by calling the explain method as follows:

explanation = explainer.explain(X=X_test,
Y_t=np.array([1]),
C=C,
batch_size=BATCH_SIZE)

where:

• C - conditioning. The list can contain either a single entrance that is applied for all test instances or multiple
entrances, one for each test instance.

The rest of the arguments were previously described in the Image section.

The explain method returns an Explanation object described as well in the Image section.

Diversity

We can generate a diverse counterfactual set for a single instance by calling the explain method and by setting the
diversity=True:

explanation = explainer.explain(X=X_test[0:1],
Y_t=np.array([1]),
C=C,
diversity=True,
num_samples=NUM_SAMPLES,
batch_size=BATCH_SIZE)

where:

• diversity - diversity flag.

• num_samples - number of distinct counterfactual instances to be generated.

The rest of the arguments were previously described in the Image section.

7.6. Counterfactuals with Reinforcement Learning 93

alibi Documentation, Release 0.9.5dev

Possible corner case

As we previously mention, tabular scenario requires a heterogeneous decoder. That is a decoder which outputs a
list of tensors, one for all numerical features, and one tensor for each of the categorical features. For homogeneous
dataset (e.g., all numerical features) the output of the decoder must be a list that contains one tensor. One possible
workaround is to wrap the decoder as follows:

class DecoderList(tf.keras.Model):
def __init__(self, decoder: tf.keras.Model, **kwargs):

super().__init__(**kwargs)
self.decoder = decoder

def call(self, input: Union[tf.Tensor, List[tf.Tensor]], **kwargs):
return [self.decoder(input, **kwargs)]

decoder = DecoderList(decoder)

Logging

Logging is clearly important when dealing with deep learning models. Thus, we provide an interface to write custom
callbacks for logging purposes after each training step which we defined here. In the following section we provide links
to notebooks that exemplify how to log using Weights and Biases.
Having defined the callbacks, we can define a new explainer that will include logging.

import wandb

Initialize wandb.
wandb_project = "Adult Census Counterfactual with Reinforcement Learning"
wandb.init(project=wandb_project)

Define explainer as before and include callbacks.
explainer = CounterfactualRLTabular(...,

callbacks=[LossCallback(), RewardCallback(),␣
→˓TablesCallback()])

Fit the explainers.
explainer = explainer.fit(X=X_train)

Close wandb.
wandb.finish()

94 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

MNIST Logs

Adult Census Logs

7.6. Counterfactuals with Reinforcement Learning 95

alibi Documentation, Release 0.9.5dev

7.6.3 Examples

Counterfactuals with Reinforcement Learning on MNIST

Counterfactuals with Reinforcement Learning on Adult Census

[source]

7.7 Integrated Gradients

Note
To enable support for Integrated Gradients, you may need to run

pip install alibi[tensorflow]

7.7.1 Overview

Integrated gradients is a method originally proposed in Sundararajan et al., “Axiomatic Attribution for Deep Networks”
that aims to attribute an importance value to each input feature of a machine learning model based on the gradients
of the model output with respect to the input. In particular, integrated gradients defines an attribution value for each
feature by considering the integral of the gradients taken along a straight path from a baseline instance 𝑥′ to the input
instance 𝑥.

7.7.2 Integrated gradients method

The method is applicable to regression and classification models. In the case of a non-scalar output, such as in clas-
sification models or multi-target regression, the gradients are calculated for one given element of the output. For
classification models, the gradient usually refers to the output corresponding to the true class or to the class predicted
by the model.

Let us consider an input instance 𝑥, a baseline instance 𝑥′ and a model 𝑀 : 𝑋 → 𝑌 which acts on the feature space 𝑋
and produces an output 𝑦 in the output space 𝑌 . Let us now define the function 𝐹 as

• 𝐹 (𝑥) = 𝑀(𝑥) if the model output is a scalar;

• 𝐹 (𝑥) = 𝑀𝑘(𝑥) if the model output is a vector, with the index 𝑘 denoting the 𝑘-th element of 𝑀(𝑥).

For example, in case of a 𝐾-class classification, 𝑀𝑘(𝑥) is the probability of class 𝑘, which could be the true class
corresponding to 𝑥 or the highest probability class predicted by the model. The attributions 𝐴𝑖(𝑥, 𝑥

′) for each feature
𝑥𝑖 with respect to the corresponding feature 𝑥′

𝑖 in the baseline are calculated as

𝐴𝑖(𝑥, 𝑥
′) = (𝑥𝑖 − 𝑥′

𝑖)

∫︁ 1

0

𝜕𝐹 (𝑥′ + 𝛼(𝑥− 𝑥′))

𝜕𝑥𝑖
𝑑𝛼,

where the integral is taken along a straight path from the baseline 𝑥′ to the instance 𝑥 parameterized by the parameter
𝛼.

It is shown that such attributions satisfy the following axioms:

• Sensitivity axiom: if we consider a baseline 𝑥′ which differs from the input instance 𝑥 for the value of one feature
𝑥𝑖 and yields different predictions, the attribution given to feature 𝑥𝑖 must be non-zero.

96 Chapter 7. Methods

../api/alibi.explainers.html#alibi.explainers.IntegratedGradients
https://arxiv.org/abs/1703.01365

alibi Documentation, Release 0.9.5dev

• Implementation invariance axiom: an attribution method should be such that the attributions do not depend on
the particular implementation of the model.

• Completeness axiom: The completeness axiom states that the sum over all features attributions should be equal
to the difference between the model output at the instance 𝑥 and the model output at the baseline 𝑥′:∑︁

𝑖

𝐴𝑖(𝑥, 𝑥
′) = 𝐹 (𝑥)− 𝐹 (𝑥′).

The proofs that integrated gradients satisfies these axioms are relatively straightforward and are discussed in Sections
2 and 3 of the original paper “Axiomatic Attribution for Deep Networks”.

7.7.3 Usage

The alibi implementation of the integrated gradients method is specific to TensorFlow and Keras models.

import tensorflow as tf
from alibi.explainers import IntegratedGradients

model = tf.keras.models.load_model("path_to_your_model")

ig = IntegratedGradients(model,
layer=None,
taget_fn=None,
method="gausslegendre",
n_steps=50,
internal_batch_size=100)

• model: Tensorflow or Keras model.

• layer: Layer with respect to which the gradients are calculated. If not provided, the gradients are calculated
with respect to the input.

• target_fn: A scalar function that is applied to the predictions of the model. This can be used to specify which
scalar output the attributions should be calculated for (see the example below).

• method: Method for the integral approximation. Methods available: riemann_left, riemann_right,
riemann_middle, riemann_trapezoid, gausslegendre.

• n_steps: Number of step in the path integral approximation from the baseline to the input instance.

• internal_batch_size: Batch size for the internal batching.

explanation = ig.explain(X,
baselines=None,
target=None)

attributions = explanation.attributions

• X: Instances for which integrated gradients attributions are computed.

• baselines: Baselines (starting point of the path integral) for each instance. If the passed value is an np.
ndarray must have the same shape as X. If not provided, all features values for the baselines are set to 0.

• target: Defines which element of the model output is considered to compute the gradients. It can be a list of
integers or a numeric value. If a numeric value is passed, the gradients are calculated for the same element of the
output for all data points. It must be provided if the model output dimension is higher than 1 and no target_fn

7.7. Integrated Gradients 97

https://arxiv.org/abs/1703.01365

alibi Documentation, Release 0.9.5dev

is provided. For regression models whose output is a scalar, target should not be provided. For classification
models target can be either the true classes or the classes predicted by the model.

Example
If your model is a classifier outputting class probabilities (i.e. the predictions are 𝑁 × 𝐶 arrays where 𝑁 is batch size
and 𝐶 is the number of classes), then you can provide a target_fn to the constructor that, for each data point, would
select the class of highest probability to calculate the attributions for:

from functools import partial
import numpy as np
target_fn = partial(np.argmax, axis=1)
ig = IntegratedGradients(model=model, target_fn=target_fn)
explanation = ig.explain(X)

Alternatively, you can leave out target_fn and instead provide the predicted class labels directly to the explain
method:

predictions = model.predict(X).argmax(axis=1)
ig = IntegratedGradients(model=model)
explanation = ig.explain(X, target=predictions)

Layer attributions

It is possible to calculate the integrated gradients attributions for the model input features or for the elements of an
intermediate layer of the model. Specifically,

• If the parameter layer is set to its default value None as in the example above, the attributions are calculated for
each input feature.

• If a layer of the model is passed, the attributions are calculated for each element of the layer passed.

Calculating attribution with respect to an internal layer of the model is particularly useful for models that take text as
an input and use word-to-vector embeddings. In this case, the integrated gradients are calculated with respect to the
embedding layer (see example on the IMDB dataset).

Baselines

Conceptually, baselines represent data points which do not contain information useful for the model task, and they are
used as a benchmark by the integrated gradients method. Common choices for the baselines are data points with all
features values set to zero (for example the black image in case of image classification) or set to a random value.

However, the choice of the baselines can have a significant impact on the values of the attributions. For example, if we
consider a simple binary image classification task where a model is trained to predict whether a picture was taken at
night or during the day, considering the black image as a baseline would be misleading: in fact, with such a baseline
all the dark pixels of the images would have zero attributions, while they are likely to be important for the task at hand.

An extensive discussion about the impact of the baselines on integrated gradients attributions can be found in P. Sturm-
fels at al., “Visualizing the Impact of Feature Attribution Baselines”.

98 Chapter 7. Methods

https://distill.pub/2020/attribution-baselines/

alibi Documentation, Release 0.9.5dev

Targets

In the context of integrated gradients, the target variable specifies which element of the output should be considered to
calculate the attributions. If the output of the model is a scalar, as in the case of single target regression, a target is not
necessary, and the gradients are calculated in a straightforward way.

If the output of the model is a vector, the target value specifies the position of the element in the output vector considered
for the calculation of the attributions. In case of a classification model, the target can be either the true class or the
class predicted by the model for a given input.

7.7.4 Examples

MNIST dataset

Imagenet dataset

IMDB dataset text classification

Text classification using transformers

[source]

7.8 Kernel SHAP

Note
To enable SHAP support, you may need to run:

pip install alibi[shap]

7.8.1 Overview

The Kernel SHAP (SHapley Additive exPlanations) algorithm is based on the paper A Unified Approach to Interpreting
Model Predictions by Lundberg et al. and builds on the open source shap library from the paper’s first author.

The algorithm provides model-agnostic (black box), human interpretable explanations suitable for regression and clas-
sification models applied to tabular data. This method is a member of the additive feature attribution methods class;
feature attribution refers to the fact that the change of an outcome to be explained (e.g., a class probability in a classifi-
cation problem) with respect to a baseline (e.g., average prediction probability for that class in the training set) can be
attributed in different proportions to the model input features.

A simple illustration of the explanation process is shown in Figure 1. Here we see depicted a model which takes as
an input features such as Age, BMI or Sex and outputs a continuous value. We know that the average value of that
output in a dataset of interest is 0.1. Using the Kernel SHAP algorithm, we attribute the 0.3 difference to the input
features. Because the sum of the attribute values equals output - base rate, this method is additive. We can see
for example that the Sex feature contributes negatively to this prediction whereas the remainder of the features have
a positive contribution. For explaining this particular data point, the Age feature seems to be the most important.
See our examples on how to perform explanations with this algorithm and visualise the results using the shap library
visualisations here, here and here.

7.8. Kernel SHAP 99

../api/alibi.explainers.html#alibi.explainers.KernelShap
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions
https://github.com/slundberg/shap

alibi Documentation, Release 0.9.5dev

Figure 1: Cartoon illustration of black-box explanation models with Kernel SHAP

Image Credit: Scott Lundberg (see source here)

7.8.2 Usage

In order to compute the shap values , the following hyperparameters can be set when calling the explain method:

• nsamples: Determines the number of subsets used for the estimation of the shap values. A default of 2*M +
2**11 is provided where M is the number of features. One is encouraged to experiment with the number of
samples in order to determine a value that balances explanation accuracy and runtime.

• l1_reg: can take values 0, False to disable, auto for automatic regularisation selection, bic or aic to use
ℓ1 regularised regression with the Bayes/Akaike information criteria for regularisation parameter selection,
num_features(10) to specify the number of feature effects to be returned or a float value that is used as the
regularisation coefficient for the ℓ1 penalised regression. The default option auto uses the least angle regression
algorithm with the Akaike Information Criterion if a fraction smaller than 0.2 of the total number of subsets is
enumerated.

If the dataset to be explained contains categorical variables, then the following options can be specified unless the
categorical variables have been grouped (see example below):

• summarise_result: if True, the shap values estimated for dimensions of an encoded categorical variable are
summed and a single shap value is returned for the categorical variable. This requires that both arguments below
are specified:

• cat_var_start_idx: a list containing the column indices where categorical variables start. For ex-
ample if the feature matrix contains a categorical feature starting at index 0 and one at index 10, then
cat_var_start_idx=[0, 10].

• cat_vars_enc_dim: a list containing the dimension of the encoded categorical variables. The number of
columns specified in this list is summed for each categorical variable starting with the corresponding index
in cat_var_start_idx. So if cat_var_start_idx=[0, 10] and cat_vars_enc_dim=[3, 5], then the
columns with indices 0, 1 and 2 and 10, 11, 12, 13 and 14 will be combined to return one shap value for
each categorical variable, as opposed to 3 and 5.

100 Chapter 7. Methods

https://github.com/slundberg/shap

alibi Documentation, Release 0.9.5dev

Explaining continuous datasets

Initialisation and fit

The explainer is initialised by specifying:

• a predict function.

• optionally, setting link='logit' if the the model to be explained is a classifier that outputs probabilities. This
will apply the logit function to convert outputs to margin space.

• optionally, providing a list of feature_names

Hence assuming the classifier takes in 4 inputs and returns probabilities of 3 classes, we initialise its explainer as:

from alibi.explainers import KernelShap

predict_fn = lambda x: clf.predict_proba(x)
explainer = KernelShap(predict_fn, link='logit', feature_names=['a','b','c','d'])

To fit our classifier, we simply pass our background or ‘reference’ dataset to the explainer:

explainer.fit(X_reference)

Note that X_reference is expected to have a samples x features layout.

Explanation

To explain an instance X, we simply pass it to the explain method:

explanation = explainer.explain(X)

The returned explanation object has the following fields:

• explanation.meta:

{'name': 'KernelShap',
'type': ['blackbox'],
'explanations': ['local', 'global'],
'params': {'groups': None,

'group_names': None,
'weights': None,
'summarise_background': False
}

}

This field contains metadata such as the explainer name and type as well as the type of explanations this method can
generate. In this case, the params attribute shows that none of the fit method optional parameters have been set.

• explanation.data:

{'shap_values': [array([0.8340445 , 0.12000589, -0.07984099, 0.61758141]),
array([-0.71522546, 0.31749045, 0.3146705 , -0.13365639]),
array([-0.12984616, -0.47194649, -0.23036243, -0.52314911])],

'expected_value': array([0.74456904, 1.05058744, 1.15837362]),
'link': 'logit',

(continues on next page)

7.8. Kernel SHAP 101

alibi Documentation, Release 0.9.5dev

(continued from previous page)

'feature_names': ['a', 'b', 'c', 'd'],
'categorical_names': {},
'raw': {

'raw_prediction': array([2.23635984, 0.83386654, -0.19693058]),
'prediction': array([0]),
'instances': array([0.93884707, -0.63216607, -0.4350103 , -0.91969562]),
'importances': {

'0': {'ranked_effect': array([0.8340445 , 0.61758141, 0.12000589, 0.07984099]),
'names': ['a', 'd', 'b', 'c']},

'1': {'ranked_effect': array([0.71522546, 0.31749045, 0.3146705 , 0.13365639]),
'names': ['a', 'b', 'c', 'd']},

'2': {'ranked_effect': array([0.52314911, 0.47194649, 0.23036243, 0.12984616]),
'names': ['d', 'b', 'c', 'a']},

'aggregated': {'ranked_effect': array([1.67911611, 1.27438691, 0.90944283, 0.
→˓62487392]),

'names': ['a', 'd', 'b', 'c']}
}

}
}

This field contains:

• shap_values: a list of length equal to the number of model outputs, where each entry is an array of dimension
samples x features of shap values. For the example above , only one instance with 4 features has been
explained so the shap values for each class are of dimension 1 x 4

• expected_value: an array of the expected value for each model output across X_reference

• link: which function has been applied to the model output prior to computing the expected_value and esti-
mation of the shap_values

• feature_names: a list with the feature names, if provided. Defaults to a list containing strings of with the
format feature_{} if no names are passed

• categorical_names: a mapping of the categorical variables (represented by indices in the shap_values
columns) to the description of the category

• raw: this field contains:

• raw_prediction: a samples x n_outputs array of predictions for each instance to be explained. Note that
this is calculated by applying the link function specified in link to the output of pred_fn

• prediction: a samples array containing the index of the maximum value in the raw_prediction array

• instances: a samples x n_features array of instances which have been explained

• importances: a dictionary where each entry is a dictionary containing the sorted average magnitude of the
shap value (ranked_effect) along with a list of feature names corresponding to the re-ordered shap values
(names). There are n_outputs + 1 keys, corresponding to n_outputs and to the aggregated output (obtained
by summing all the arrays in shap_values)

Please see our examples on how to visualise these outputs using the shap library visualisations here, here and here.

102 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

Explaining heterogeneous (continuous and categorical) datasets

When the dataset contains both continuous and categorical variables, categorical_names, an optional mapping from
the encoded categorical features to a description of the category can be passed in addition to the feature_names list.
This mapping is currently used for determining what type of summarisation should be applied if X_reference is
large and the fit argument summarise_background='auto' or summarise_background=True but in the future
it might be used for annotating visualisations. The definition of the map depends on what method is used to handle the
categorical variables.

By grouping categorical data

By grouping categorical data we estimate a single shap value for each categorical variable.

Initialisation and fit

Assume that we have a dataset with features such as Marital Status (first column), Age (2nd column), Income (3rd
column) and Education (4th column). The 2nd and 3rd column are continuous variables, whereas the 1st and 4th are
categorical ones.

The mapping of categorical variables could be generated from a Pandas dataframe using the utility
gen_category_map, imported from alibi.utils. For this example the output could look like:

category_map = {
0: ["married", "divorced"],
3: ["high school diploma", "master's degree"],

}

Hence, using the same predict function as before, we initialise the explainer as:

explainer = KernelShap(
predict_fn,
link='logit',
feature_names=["Marital Status", "Age", "Income", "Education"],
categorical_names=category_map,

)

To group our data, we have to provide the groups list, which contains lists with indices that are grouped together. In
our case this would be:

groups = [[0, 1], [2], [3], [4, 5]]

Similarly, the group_names are the same as the feature names

group_names = ["Marital Status", "Age", "Income", "Education"]

Note that, in this case, the keys of the category_map are indices into groups. To fit our explainer we pass one-hot
encoded data to the explainer along with the grouping information.

explainer.fit(
X_reference,
group_names=group_names,
groups=groups,

)

7.8. Kernel SHAP 103

alibi Documentation, Release 0.9.5dev

Explanation

To perform an explanation, we pass one hot encoded instances X to the explain method:

explanation = explainer.explain(X)

The explanation returned will contain the grouping information in its meta attribute

{'name': 'KernelShap',
'type': ['blackbox'],
'explanations': ['local', 'global'],
'params': {'groups': [[0, 1], [2], [3], [4, 5]],

'group_names': ["Marital Status", "Age", "Income", "Education"] ,
'weights': None,
'summarise_background': False
}

}

whereas inspecting the data attribute shows that one shap value is estimated for each of the four groups:

{'shap_values': [array([0.8340445 , 0.12000589, -0.07984099, 0.61758141]),
array([-0.71522546, 0.31749045, 0.3146705 , -0.13365639]),
array([-0.12984616, -0.47194649, -0.23036243, -0.52314911])],

'expected_value': array([0.74456904, 1.05058744, 1.15837362]),
'link': 'logit',
'feature_names': ["Marital Status", "Age", "Income", "Education"],
'categorical_names': {},
'raw': {

'raw_prediction': array([2.23635984, 0.83386654, -0.19693058]),
'prediction': array([0]),
'instances': array([0.93884707, -0.63216607, -0.4350103 , -0.91969562]),
'importances': {

'0': {'ranked_effect': array([0.8340445 , 0.61758141, 0.12000589, 0.07984099]),
'names': ['a', 'd', 'b', 'c']},

'1': {'ranked_effect': array([0.71522546, 0.31749045, 0.3146705 , 0.13365639]),
'names': ['a', 'b', 'c', 'd']},

'2': {'ranked_effect': array([0.52314911, 0.47194649, 0.23036243, 0.12984616]),
'names': ['d', 'b', 'c', 'a']},

'aggregated': {'ranked_effect': array([1.67911611, 1.27438691, 0.90944283, 0.
→˓62487392]),

'names': ['a', 'd', 'b', 'c']}
}

}
}

104 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

By summing output

An alternative to grouping, with a higher runtime cost, is to estimate one shap value for each dimension of the one-hot
encoded data and sum the shap values of the encoded dimensions to obtain only one shap value per categorical variable.

Initialisation and fit

The initialisation step is as before:

explainer = KernelShap(
predict_fn,
link='logit',
feature_names=["Marital Status", "Age", "Income", "Education"],
categorical_names=category_map,

)

However, note that the keys of the category_map have to correspond to the locations of the categorical variables after
the effects for the encoded dimensions have been summed up (see details below).

The fit step requires one hot encoded data and simply takes the reference dataset:

explainer.fit(X_reference)

Explanation

To obtain a single shap value per categorical result, we have to specify the following arguments to the explainmethod:

• summarise_result: indicates that some shap values will be summed

• cat_vars_start_idx: the column indices where the first encoded dimension is for each categorical variable

• cat_vars_enc_dim: the length of the encoding dimensions for each categorical variable

explanation = explainer.explain(
X,
summarise_result=True,
cat_vars_start_idx=[0, 4],
cat_vars_enc_dim=[2, 2],

)

In our case Marital Status starts at column 0 and occupies 2 columns, Age and Income occupy columns 2 and 3
and Education occupies columns 4 and 5.

By combining preprocessor and predictor

Finally, an alternative is to combine the preprocessor and the predictor together in the same object, and fit the explainer
on data before preprocessing.

7.8. Kernel SHAP 105

alibi Documentation, Release 0.9.5dev

Initialisation and fit

To do so, we first redefine our predict function as

predict_fn = lambda x: clf.predict(preprocessor.transform(x))

The explainer can be initialised as:

explainer = KernelShap(
predict_fn,
link='logit',
feature_names=["Marital Status", "Age", "Income", "Education"],
categorical_names=category_map,

)

Then, the explainer should be fitted on unprocessed data:

explainer.fit(X_referennce_unprocessed)

Explanation

We can explain unprocessed records simply by calling explain:

explanation = explainer.explain(X_unprocessed)

Running batches of explanations in parallel

Increases in the size of the background dataset, the number of samples used to estimate the shap values or simply
explaining a large number of instances dramatically increase the cost of running Kernel SHAP.

To explain batches of instances in parallel, first run pip install alibi[ray] to install required dependencies and
then simply initialise KernelShap specifying the number of physical cores available as follows:

distrib_kernel_shap = KernelShap(predict_fn, distributed_opts={'n_cpus': 10}

To explain, simply call the explain as before - no other changes are required.

Warning
Windows support for the ray Python library is still experimental. Using KernelShap in parallel is not currently
supported on Windows platforms.

106 Chapter 7. Methods

https://docs.ray.io/en/stable/installation.html#windows-support

alibi Documentation, Release 0.9.5dev

Miscellaneous

Runtime considerations

For a given instance, the runtime of the algorithm depends on:

• the size of the reference dataset

• the dimensionality of the data

• the number of samples used to estimate the shap values

Adjusting the size of the reference dataset

The algorithm automatically warns the user if a background dataset size of more than 300 samples is passed. If the
runtime of an explanation with the original dataset is too large, then the algorithm can automatically subsample the
background dataset during the fit step. This can be achieve by specifying the fit step as

explainer.fit(
X_reference,
summarise_background=True,
n_background_samples=150,

)

or

explainer.fit(
X_reference,
summarise_background='auto'

)

The auto option will select 300 examples, whereas using the boolean argument allows the user to directly control the
size of the reference set. If categorical variables or grouping options are specified, the algorithm uses subsampling of the
data. Otherwise, a kmeans clustering algorithm is used to select the background dataset and the samples are weighted
according to the frequency of occurrence of the cluster they are assigned to, which is reflected in the expected_value
attribute of the explainer.

As described above, the explanations are performed with respect to the expected (or weighted-average) output over this
dataset so the shap values will be affected by the dataset selection. We recommend experimenting with various ways
to choose the background dataset before deploying explanations.

The dimensionality of the data and the number of samples used in shap value estimation

The dimensionality of the data has a slight impact on the runtime, since by default the number of samples used for
estimation is 2*n_features + 2**11. In our experiments, we found that either grouping the data or fitting the
explainer on unprocessed data resulted in run time savings (but did not run rigorous comparison experiments). If
grouping/fitting on unprocessed data alone does not give enough runtime savings, the background dataset could be
adjusted. Additionally (or alternatively), the number of samples could be reduced as follows:

explanation = explainer.explain(X, nsamples=500)

We recommend experimenting with this setting to understand the variance in the shap values before deploying such
configurations.

7.8. Kernel SHAP 107

alibi Documentation, Release 0.9.5dev

Imbalanced datasets

In some situations, the reference datasets might be imbalanced so one might wish to perform an explanation of the
model behaviour around 𝑥 with respect to

∑︀
𝑖 𝑤𝑖𝑓(𝑦𝑖) as opposed to E𝒟[𝑓(𝑦)]. This can be achieved by passing a list

or an 1-D numpy array containing a weight for each data point in X_reference as the weights argument of the fit
method.

7.8.3 Theoretical overview

Consider a model 𝑓 that takes as an input 𝑀 features. Assume that we want to explain the output of the model 𝑓 when
applied to an input 𝑥. Since the model output scale does not have an origin (it is an affine space), one can only explain
the difference of the observed model output with respect to a chosen origin point. This point can be taken to be the
function output value for an arbitrary record or the average output over a set of records, 𝒟. Assuming the latter case,
for the explanation to be accurate, one requires

𝑓(𝑥)− E𝑦∼𝒟[𝑓(𝑦)] =

𝑀∑︁
𝑖=1

𝜑𝑖

where 𝒟 is also known as a background dataset and 𝜑𝑖 is the portion of the change attributed to the 𝑖th feature. This
portion is sometimes referred to as feature importance, effect or simply shap value.

One can conceptually imagine the estimation process for the shap value of the 𝑖𝑡ℎ feature 𝑥𝑖 as consisting of the
following steps:

• enumerate all subsets 𝑆 of the set 𝐹 = {1, ...,𝑀} ∖ {𝑖}

• for each 𝑆 ⊆ 𝐹 ∖ {𝑖}, compute the contribution of feature 𝑖 as 𝐶(𝑖|𝑆) = 𝑓(𝑆 ∪ {𝑖})− 𝑓(𝑆)

• compute the shap value according to

𝜑𝑖 :=
1

𝑀

∑︁
𝑆⊆𝐹∖{𝑖}

1(︀
𝑀−1
|𝑆|
)︀𝐶(𝑖|𝑆).

The semantics of 𝑓(𝑆) in the above is to compute 𝑓 by treating 𝑆 as missing inputs. Thus, we can imagine the process
of computing the SHAP explanation as starting with 𝑆 that does not contain our feature, adding feature 𝑖 and then
observing the difference in the function value. For a nonlinear function the value obtained will depend on which
features are already in 𝑆, so we average the contribution over all possible ways to choose a subset of size |𝑆| and over
all subset sizes. The issue with this method is that:

• the summation contains 2𝑀 terms, so the algorithm complexity is 𝑂(𝑀2𝑀)

• since most models cannot accept an arbitrary pattern of missing inputs at inference time, calculating 𝑓(𝑆) would
involve model retraining the model an exponential number of times

To overcome this issue, the following approximations are made:

• the missing features are simulated by replacing them with values from the background dataset

• the feature attributions are estimated instead by solving

min
𝜑𝑖,...,𝜑𝑀

⎧⎪⎨⎪⎩
∑︁
𝑆⊆𝐹

⎡⎣𝑓(𝑆)−∑︁
𝑗∈𝑆

𝜑𝑗

⎤⎦2

𝜋𝑥(𝑆)

⎫⎪⎬⎪⎭
where

𝜋𝑥(𝑆) =
𝑀 − 1(︀

𝑀
|𝑆|
)︀
|𝑆|(𝑀 − |𝑆|)

108 Chapter 7. Methods

https://en.wikipedia.org/wiki/Affine_space

alibi Documentation, Release 0.9.5dev

is the Shapley kernel (Figure 2).

Figure 2: Shapley kernel

Note that the optimisation objective implies above an exponential number of terms. In practice, one considers a finite
number of samples n, selecting n subsets 𝑆1, ..., 𝑆𝑛 according to the probability distribution induced by the kernel
weights. We can see that the kernel favours either small or large subset sizes, since most of the information about
the effect of a particular feature for an outcome change can be obtained by excluding that feature or excluding all the
features except for it from the input set.

Therefore, Kernel SHAP returns an approximation of the true Shapley values, whose variability depends on factors
such as the size of the structure of the background dataset used to estimate the feature attributions and the number
of subsets of missing features sampled. Whenever possible, algorithms specialised for specific model structures (e.g.,
Tree SHAP, Linear SHAP, integrated gradients) should be used since they are faster and more accurate.

Comparison to other methods

Like LIME, this method provides local explanations, in the sense that the attributions are estimated to explain the
change from a baseline for a given data point, 𝑥. LIME computes the feature attributions by optimising the following
objective in order to obtain a locally accurate explanation model (i.e., one that approximates the model to explained
well around an instance 𝑥):

𝜁 = argmin
𝑔∈𝒢

𝐿(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔).

Here 𝑓 is the model to be explained, 𝑔 is the explanation model (assumed linear), 𝜋 is a local kernel around instance 𝑥
(usually cosine or ℓ2 kernel) andΩ(𝑔) penalises explanation model complexity. The choices for𝐿, 𝜋 andΩ in LIME are

7.8. Kernel SHAP 109

https://arxiv.org/abs/1602.04938

alibi Documentation, Release 0.9.5dev

heuristic, which can lead to unintuitive behaviour (see Section 5 of Lundberg et al. for a study). Instead, by computing
the shap values according to the weighted regression in the previous section, the feature attributions estimated by Kernel
SHAP have desirable properties such as local accuracy , consistency and missingness, detailed in Section 3 of Lundberg
et al..

Although, in general, local explanations are limited in that it is not clear to what a given explanation applies around and
instance 𝑥 (see anchors algorithm overview here for a discussion), insights into global model behaviour can be drawn
by aggregating the results from local explanations (see the work of Lundberg et al. here). In the future, a distributed
version of the Kernel SHAP algorithm will be available in order to reduce the runtime requirements necessary for
explaining large datasets.

7.8.4 Examples

Continuous Data

Introductory example: Kernel SHAP on Wine dataset

Comparison with interpretable models

Mixed Data

Handling categorical variables with Kernel SHAP: an income prediction application

Handlling categorical variables with Kernel SHAP: fitting explainers on data before pre-processing

Distributed Kernel SHAP: paralelizing explanations on multiple cores

[source]

7.9 Partial Dependence

7.9.1 Overview

The partial dependence (PD) plot proposed by J.H. Friedman (2001)[1], is a method to visualize the marginal effect that
one or two features have on the predicted outcome of a machine learning model. By inspecting the PD plots, one can
understand whether the relation between a feature/pair of features is, for example, a simple linear or quadratic relation,
whether it presents a monotonically increasing or decreasing trend, or reveal a more complex response.

The following figure displays two one-way PD plots for two features and a one two-way PD for the same features. The
prediction model is random forest regression trained on the Bike rental[2] dataset (see worked example).

110 Chapter 7. Methods

https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions
https://www.nature.com/articles/s42256-019-0138-9
../api/alibi.explainers.html#alibi.explainers.PartialDependence
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boostingmachine/10.1214/aos/1013203451.full
http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

alibi Documentation, Release 0.9.5dev

From the left plot, we can observe that the average model prediction increases with the temperature till it reaches
approximately 17∘𝐶. Then it flattens at a high number until the weather becomes too hot (i.e. approx. 27∘𝐶), after
which it starts dropping again. A similar analysis can be conducted by inspecting the middle figure for wind speed.
As the wind speed increases, fewer and fewer people are riding the bike. Finally, by looking at the right plot, we can
visualize how the two features interact. In a few words, the plot suggests that for relatively warm weather, the number
of rentals increases as long as the wind is not too rough. For a more detailed analysis, please check the worked example.

For pros & cons of PD plots, see the Partial Dependence section from the Introduction materials.

7.9.2 Usage

To initialize the explainer with any black-box model one can directly pass the prediction function and optionally a list
of feature names, a list of target names, and a dictionary of categorical names for interpretation and specification of the
categorical features:

from alibi.explainers import PartialDependence
pd = PartialDependence(predictor=prediction_fn,

feature_names=feature_names,
categorical_names=categorical_names,
target_names=target_names)

In addition, similar to the sklearn implementation, alibi supports a faster PD computation for some tree-based
sklearn models through the TreePartialDependence explainer. The initialization is similar to the one above, with
the difference that the predictor argument will be set to the tree predictor object instead of the prediction function.

from alibi.explainer import TreePartialDependence
tree_pd = TreePartialDependence(predictor=tree_predictor,

feature_names=feature_names,
categorical_names=categorical_names,
target_names=target_name)

Following the initialization, we can produce an explanation given a dataset 𝑋:

exp = pd.explain(X=X,
features=features,
kind='average')

Multiple arguments can be provided to the explain method:

• X - A N x F tabular dataset used to calculate partial dependence curves. This is typically the training dataset or
a representative sample.

• features - An optional list of features or pairs of features for which to calculate the partial dependence. If not
provided, the partial dependence will be computed for every single features in the dataset. Some example for
features would be: [0, 2], [0, 2, (0, 2)], [(0, 2)], where 0 and 2 correspond to column 0 and 2 in
X, respectively.

• kind - If set to 'average', then only the partial dependence (PD) averaged across all samples from the dataset
is returned. If set to individual, then only the individual conditional expectation (ICE) is returned for each
individual from the dataset. Otherwise, if set to 'both', then both the PD and the ICE are returned.

• percentiles - Lower and upper percentiles used to limit the feature values to potentially remove outliers from
low-density regions. Note that for features with not many data points with large/low values, the PD estimates are
less reliable in those extreme regions. The values must be in [0, 1]. Only used with grid_resolution.

• grid_resolution - Number of equidistant points to split the range of each target feature. Only applies if the
number of unique values of a target feature in the reference dataset X is greater than the grid_resolution

7.9. Partial Dependence 111

https://docs.seldon.io/projects/alibi/en/stable/overview/high_level.html#partial-dependence
https://docs.seldon.io/projects/alibi/en/stable/overview/high_level.html

alibi Documentation, Release 0.9.5dev

value. For example, consider a case where a feature can take the following values: [0.1, 0.3, 0.35, 0.
351, 0.4, 0.41, 0.44, ..., 0.5, 0.54, 0.56, 0.6, 0.65, 0.7, 0.9], and we are not interested
in evaluating the marginal effect at every single point as it can become computationally costly (assume hun-
dreds/thousands of points) without providing any additional information for nearby points (e.g., 0.35 and 351).
By setting grid_resolution=5, the marginal effect is computed for the values [0.1, 0.3, 0.5, 0.7, 0.
9] instead, which is less computationally demanding and can provide similar insights regarding the model’s
behaviour. Note that the extreme values of the grid can be controlled using the percentiles argument.

• grid_points - Custom grid points. Must be a dict where the keys are the target features indices and the
values are monotonically increasing numpy arrays defining the grid points for numerical feature, and a subset
of categorical feature values for a categorical feature. If the grid_points are not specified, then the grid will
be constructed based on the unique target feature values available in the reference dataset X, or based on the
grid_resolution and percentiles (check grid_resolution to see when it applies). For categorical fea-
tures, the corresponding value in the grid_points can be specified either as numpy array of strings or numpy
array of integers corresponding the label encodings. Note that the label encoding must match the ordering of the
values provided in the categorical_names.

Note that for the tree explainer, we no longer have the option to select the kind argument since the
TreePartialDependece can only compute the PD and not the ICE. In this case, the explain call should look like
this:

tree_exp = tree_pd.explain(X=X,
features=features)

The rest of the arguments are still available.

The result exp/tree_exp is an Explanation object which contains the following data-related attributes:

• feature_values - A list of arrays or list of arrays containing the evaluation points for each explained feature
passed in the features argument (see explain method).

• feature_names - A list of strings or tuples of string containing the names associated with the explained features
elements from feature_values.

• feature_deciles - a list of arrays (one for each numerical features) of the explained feature deciles.

• pd_values - a list of arrays of PD values (one for each feature/pair of features). Each array has a shape of T x
(V1 x V2 x ...), where T is the number of target outputs, and Vi is the number of evaluation points for the
corresponding feature fi.

• ice_values - a list of arrays of ICE values (one for each feature/pair of feature). Each array has a shape
of T x N x (V1 x V2 x ...), where T is the number of target outputs, N is the number of instances
in the reference dataset, and Vi is the number of evaluation points for the corresponding feature fi. For
TreePartialDependence the value of this attribute is None.

Plotting the pd_values and ice_values against exp_feature_values recovers the PD and the ICE plots, respec-
tively. For convenience we included a plotting function plot_pd which automatically produces PD and ICE plots using
matplotlib.

from alibi.explainers import plot_pd
plot_pd(exp)

The following figure displays the one way PD plots for a random forest regression trained on the Bike rental[2] dataset
(see worked example).

112 Chapter 7. Methods

http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

alibi Documentation, Release 0.9.5dev

The following figure displays the ICE plots for a random forest regression trained on the Bike rental[2] dataset (see
worked example).

The following figure displays the two way PD plots for a random forest regression trained on the Bike rental[2] dataset
(see worked example).

7.9. Partial Dependence 113

http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

alibi Documentation, Release 0.9.5dev

7.9.3 Theoretical exposition

Before diving into the mathematical formulation of the PD, we first introduce some notation. Consider ℱ to be the set
of all features, 𝑆 be a set of features of interest (i.e. 𝑆 ⊆ ℱ) that we want to compute the marginal effect for, and 𝐶 be
their complement (i.e. 𝐶 = ℱ ∖𝑆). It is important to note that the subset 𝑆 is not only restricted to one or two features
as mentioned in the previous paragraph but can be any subset of the set ℱ . In practice, though, due to visualization
reasons, we will not analyze more than two features at a time.

Given a black-box model, 𝑓 , we are ready to define the partial dependence for a set of features 𝑆 as:

𝑓𝑆(𝑥𝑆) = E𝑋𝐶
[𝑓(𝑥𝑆 , 𝑋𝐶)] =

∫︁
𝑓(𝑥𝑆 , 𝑋𝐶)𝑑P(𝑋𝐶),

where we denoted random variables by capital letters (e.g., 𝑋𝐶), realizations by lowercase letters (e.g. 𝑥𝑆), and P(𝑋𝐶)
the probability distribution/measure over the features set C.

In practice, to approximate the integral above, we compute the average over a reference dataset. Formally, let us consider
a reference dataset 𝒳 = {𝑥(1), 𝑥(2), ..., 𝑥(𝑛)}. The PD for the set 𝑆 can be approximated as:

𝑓𝑆(𝑥𝑆) =
1

𝑛

𝑛∑︁
𝑖=1

𝑓(𝑥𝑆 , 𝑥
(𝑖)
𝐶).

In simple words, to compute the marginal effect of the feature values 𝑥𝑆 , we query the model on synthetic instances
created from the concatenation of 𝑥𝑆 with the feature values 𝑥

(𝑖)
𝐶 from the reference dataset and average the model

responses. Already from the computation, we can identify a major limitation of the method. The PD computation
assumes feature independence (i.e., features are not correlated) which is a strong and quite restrictive assumption and
usually does not hold in practice. A classic example of positively correlated features is height and weight. If 𝑆 =
{height} and 𝐶 = {weight}, the independence assumption will create an unrealistic synthetic instance, by combining
values of height and weight that are not correlated (e.g. height = 1.85m - height of an adult - and weight = 30kg -
weight of a child). This limitation can be addressed by the Accumulated Local Effects[3] (ALE) method.

Although the ALE can handle correlated features, the PD still has some advantages beyond their simple and intuitive
definition. The PD can directly be extended to categorical features. For each category of a feature, one can compute the
PD by setting all data instance to have the same category and following the same averaging strategy over the reference
dataset (i.e., replace features 𝐶 with feature values from the reference, compute the response, and average all the
responses). Note that ALE requires by definition the feature values to be ordinal, which might not be the case for
all categorical features. Depending on the context, there exist some methods that allow the ALE to be extended to
categorical features for which we recommend the ALE chapter from the Interpretable machine learning[4] book, as
further reading.

We illustrate PD for the simple case of interpreting a linear regression model and demonstrate that it correctly results in
showing a linear relationship between the features and the response. To formally prove the linear relationship, consider
the following linear regression model:

𝑓(𝑥) = 𝛽0 + 𝛽1𝑥1 + ...𝛽|ℱ|𝑥|ℱ|.

Without loss of generality, we can assume the features of interest come first in the equation above and the rest of the
features at the end. We can rewrite the above equation as follows:

𝑓(𝑥) = 𝛽0 + 𝛽1𝑥𝑆1
+ ...+ 𝛽|𝑆|𝑥𝑆|𝑆| + 𝛽|𝑆|+1𝑥𝐶1

+ ...+ 𝛽|𝑆|+|𝐶|𝑥𝐶|𝐶| ,

where 𝑆𝑖 and 𝐶𝑖 represent features in 𝑆 and 𝐶, respectively.

Following the definition of PD, we obtain:

114 Chapter 7. Methods

https://christophm.github.io/interpretable-ml-book/ale.html
https://christophm.github.io/interpretable-ml-book/

alibi Documentation, Release 0.9.5dev

𝑓𝑆(𝑥𝑆) = E𝑋𝐶
[𝑓(𝑥𝑆 , 𝑋𝐶)] (7.7)

= E𝑋𝐶
[𝛽0 + 𝛽1𝑥𝑆1

+ ...+ 𝛽|𝑆|𝑥𝑆|𝑆| + 𝛽|𝑆|+1𝑥𝐶1
+ ...+ 𝛽|𝑆|+|𝐶|𝑥𝐶|𝐶|] (7.8)

= 𝛽0 + 𝛽1𝑥𝑆1 + ...+ 𝛽|𝑆|𝑥𝑆|𝑆| + E𝑋𝐶
[𝑥𝐶1 + ...+ 𝛽|𝑆|+|𝐶|𝑥𝐶|𝐶|] (7.9)

= 𝛽0 + 𝛽1𝑥𝑆1
+ ...+ 𝛽|𝑆|𝑥𝑆|𝑆| +𝐾𝐶 (7.10)

= (𝛽0 +𝐾𝐶) + 𝛽1𝑥𝑆1
+ ...+ 𝛽|𝑆|𝑥𝑆|𝑆| . (7.11)

The following figure displays the PD plots for a linear regression model trained on the for Bike rentals[2] dataset:

As expected, we observe a linear relation between the feature value and the marginal effect.

7.9.4 Examples

PD, ICE regression example (Bike rental)

7.9.5 References

[1] Friedman, Jerome H. “Greedy function approximation: a gradient boosting machine.” Annals of statistics (2001):
1189-1232.

[2] Fanaee-T, Hadi, and Gama, Joao, ‘Event labeling combining ensemble detectors and background knowledge’,
Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg.

[3] Apley, Daniel W., and Jingyu Zhu. “Visualizing the effects of predictor variables in black box supervised learning
models.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 82.4 (2020): 1059-1086.

[4] Molnar, Christoph. Interpretable machine learning. Lulu. com, 2020.

[source]

7.9. Partial Dependence 115

http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
../api/alibi.explainers.html#alibi.explainers.PartialDependenceVariance

alibi Documentation, Release 0.9.5dev

7.10 Partial Dependence Variance

7.10.1 Overview

Partial Dependence Variance is a method proposed by Greenwell et al. (2018)[1] to compute the global feature impor-
tance or the feature interaction of a pair of features. As the naming suggests, the feature importance and the feature
interactions are summarized in a single positive number given by the variance within the Partial Dependence (PD)[2,
3] function. Because the computation relies on the PD, the method is quite intuitive and easy to comprehend.

To get a better intuition of what the proposed method tries to achieve, let us consider a simple example. Given a trained
model on the Bike rental[4] dataset, one can compute the PD function for each individual feature. Figure 1 displays the
PD for 6 out of 11 features:

Figure 1. PD plots for Bike rental datasets.*

From the inspection of the plots, we can observe that temperature (temp), humidity (hum), wind speed (windspeed)
have a strong non-linear relationship with the predicted outcome. We can observe that the model prediction increases
with temperature till it reaches approx 17∘𝐶. Then it flattens at a high number until the weather becomes too hot (i.e.,
approx. 27∘𝐶), after which it starts dropping again. The humidity larger than 60% seems to be a factor that inhibits
the number of rentals, since we can observe a downward trend form that point onward. Finally, a similar analysis can
be conducted for speed. As the wind speed increases, fewer and fewer people are riding the bike.

Quite noticeable are the plots in the second row which show a flat response. Naturally, although some heterogeneity
can be hidden, one can assume that the features in the second row have a less impact on the model prediction than the
others.

Given the arguments above, one can propose a notion of quantifying the importance of a feature based on a measure
of flatness of the PD function, for which the variance represents a natural and straightforward candidate. Figure 2

116 Chapter 7. Methods

https://arxiv.org/abs/1805.04755
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boostingmachine/10.1214/aos/1013203451.full
http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

alibi Documentation, Release 0.9.5dev

displays the global feature importance for the given example using the variance of the PD function (left figure) and a
model-internal method (i.e., based on impurity because it is a tree ensemble model) (right figure):

Figure 2. Feature importance comparison between the PD variance (left) and impurity-based method (right).

As we can observe, the two methods agree on the top most salient features.

Advantages:
• the method offers a standardized procedure to quantify the feature importance for any learning algorithm. This

contrasts with some internal feature importance notions for some tree-based algorithms such as Random For-
est[5] or Gradient Boosting[6], which have their own way to define the importance of a feature.

• the method operates in the black-box regime (i.e., can be applied to any prediction model).

• the method can be adapted to quantify the strength of potential interaction effects.

Drawbacks:
• since the computation of the feature importance is based on the PD, the method captures only the main effect of

a feature and ignores possible feature interactions. The PD plot can be flat as the feature affects the predictions
manly through interactions. This is related to the masked heterogeneity.

• the method can fail to detect feature interactions even though those exist (see theoretical overview example
below).

7.10.2 Usage

To initialize the explainer with any black-box model, one can directly pass the prediction function and optionally a list
of feature names, a list of target names, and a dictionary of categorical names for interpretation and specification of the
categorical features.

from alibi.explainers import PartialDependenceVariance

pd_variance = PartialDependenceVariance(predictor=predictor_fn,
feature_names=feature_names,
categorical_names=categorical_names,
target_names=target_names)

Since the PartialDependenceVariance uses the PartialDependence explainer, it has support for some tree-based
sklearn models directly, just by passing the model to the predictor argument (i.e., predictor=tree_predictor,
where tree_predictor is a specific sklearn tree-based model). The rest of the initialization remains the same.

Following the initialization, we can compute two types of explanation for a given dataset X with F features.

7.10. Partial Dependence Variance 117

https://link.springer.com/article/10.1023/a:1010933404324
https://link.springer.com/article/10.1023/a:1010933404324
https://www.jstor.org/stable/2699986

alibi Documentation, Release 0.9.5dev

The first type of explanation computes feature importance. To compute the feature importance one has to pass the
argument method='importance' to the explain function. The call should look like:

exp_importance = pd_variance.explain(X=X, method='importance')

By default, the explainer will compute the feature importance for all F features in the dataset. The feature set for which
to compute the importance can be customized through the argument features as will be presented later.

The second type of explanation computes feature interaction between pairs of features. To compute the feature inter-
action, one has to pass the argument method='interaction' to the explain function. The call should look like:

exp_interaction = pd_variance.explain(X, method='interaction')

By default, the explainer will compute the feature importance for all F x (F - 1) feature pair combinations from the
dataset. As before, the pairs of feature to compute the feature importance for can be customized.

Multiple other arguments can be specified to the explain function:

• X - A N x F tabular dataset used to calculate partial dependence curves. This is typically the training dataset or
a representative sample.

• features - A list of features for which to compute the feature importance or a list of feature pairs for which to
compute the feature interaction. Some example of features would be: [0, 1, 3], [(0, 1), (0, 3), (1,
3)], where 0,1, and 3 correspond to the columns 0, 1, and 3 in X. If not provided, the feature importance or the
feature interaction will be computed for every feature or for every combination of feature pairs, depending on the
parameter method.

• method - Flag to specify whether to compute the feature importance or the feature interaction of the elements
provided in features. Supported values: 'importance' | 'interaction'.

• percentiles - Lower and upper percentiles used to limit the feature values to potentially remove outliers from
low-density regions. Note that for features with not many data points with large/low values, the PD estimates are
less reliable in those extreme regions. The values must be in [0, 1]. Only used with grid_resolution.

• grid_resolution - Number of equidistant points to split the range of each target feature. Only applies if the
number of unique values of a target feature in the reference dataset X is greater than the grid_resolution value.
For example, consider a case where a feature can take the following values: [0.1, 0.3, 0.35, 0.351, 0.4,
0.41, 0.44, ..., 0.5, 0.54, 0.56, 0.6, 0.65, 0.7, 0.9], and we are not interested in evaluating
the marginal effect at every single point as it can become computationally costly (assume hundreds/thousands
of points) without providing any additional information for nearby points (e.g., 0.35 and 0.351). By setting
grid_resolution=5, the marginal effect is computed for the values [0.1, 0.3, 0.5, 0.7, 0.9] instead,
which is less computationally demanding and can provide similar insights regarding the model’s behaviour. Note
that the extreme values of the grid can be controlled using the percentiles argument.

• grid_points - Custom grid points. Must be a dict where the keys are the target features indices and the values
are monotonically increasing arrays defining the grid points for a numerical feature, and a subset of categorical
feature values for a categorical feature. If the grid_points are not specified, then the grid will be constructed
based on the unique target feature values available in the dataset X, or based on the grid_resolution and
percentiles (check grid_resolution to see when it applies). For categorical features, the correspond-
ing value in the grid_points can be specified either as array of strings or array of integers correspond-
ing the label encodings. Note that the label encoding must match the ordering of the values provided in the
categorical_names.

The results exp is an Explanation object which contains the following data-related attributes:

• feature_values - A list of arrays or list of arrays containing the evaluation points for each explained feature
passed in the features argument (see explain method).

• feature_names - A list of strings or tuples of string containing the names associated with the explained features
elements from feature_values.

118 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

• feature_deciles - a list of arrays (one for each numerical features) of the explained feature deciles.

• pd_values - a list of arrays of PD values (one for each feature/pair of features). Each array has a shape of T
x (V1 x [V2]), where T is the number of target outputs, and Vi is the number of evaluation points for the
corresponding feature fi.

• feature_importance - an array of feature importance for each target and for each explained feature. The array
has a size of T X F, where T is the number of targets and F is the number of explained features.

• feature_interaction - an array of feature interaction for each target and for each explained feature pair. The
array has a size of T x FP, where T is the number of targets and FP is the number of explained feature pairs.

• conditional_importance_values - a list of tuples of arrays, where each tuple is associated to a feature pair,
and each array inside the tuple corresponds to the conditional feature importance when fixing the value of a
feature to a constant and letting the other vary. The arrays inside the tuple have the sizes of T X V1 and T X V2,
where T is the number of targets, and Vi is the number of evaluation points corresponding to feature fi.

• conditional_importance - a list of tuples of number, where each tuple is associated to a feature pair, and
each number inside the tuple corresponds to the conditional feature importance (i.e., taking the importance of
the arrays returned in the conditional_importance_values). Note that the average of the numbers inside
the tuple gives the feature_interaction for a feature pair.

Alibi exposes a utility function to plot a summary of the feature importance and feature interaction, or a more detailed
exposition of them.

To plot a summary of the feature interaction, one can simply call the plot_pd_variance as follows:

from alibi.explainers import plot_pd_variance
plot_pd_variance(exp=exp_importance)

Figure 3 displays the summary of the feature importance as a horizontal bar plot. By default, the features are sorted in
descending order (top to bottom) according to their feature importance.

Figure 3. Feature importance summary.

7.10. Partial Dependence Variance 119

alibi Documentation, Release 0.9.5dev

To plot a more detailed exposition of the feature importance, one should set the summarise=False flag in the
plot_pd_variance function. The call should look like:

plot_pd_variance(exp=exp_importance, summarise=False)

Figure 4 displays the PD plots for the explained features. By default the plots are sorted in descending order (left to
right, top to bottom) according to their feature importance:

Figure 4. Detailed feature importance plots.

To plot the summary for the feature interaction, we follow the same steps from above:

plot_pd_variance(exp=exp_interaction)

As before, in Figure 5, the feature interaction is plotted as a horizontal bar plot, sorted in descending order according
to the feature interaction.

120 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

Figure 5. Feature interaction summary.

To plot the more detailed exposition of the feature interaction, we pass, as before, the flag summarise=False to the
plot_pd_variance. It is recommended that the number of axes columns to be divisible by 3 for visualization purposes
(see Figure 6).

plot_pd_variance(exp=exp_interaction, summarise=False, n_cols=3).

7.10. Partial Dependence Variance 121

alibi Documentation, Release 0.9.5dev

Figure 6. Detailed feature interaction plots.

Note that in this case, for each feature pair, the plots display the 2-way PD function and the two conditional importance
plots for each individual feature. By default, the three plots groups are sorted in descending order according to their
feature interaction strength.

122 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

7.10.3 Theoretical exposition

We split the theoretical exposition in two parts, the first one covering the feature importance and the second one covering
the feature interaction.

Feature importance

Following the notation from the Partial Dependence exposition, we say that any variable with a flat PD plot is likely to
be less important than those for which the PD plot varies across a wider range. This notion of variable importance is
based on a measure of the flatness of the PD function which can be generally stated as:

𝑖(𝑥𝑆) = 𝐹 (𝑓𝑆(𝑥𝑆)),

where 𝐹 (·) is any measure of the “flatness” for the PD of the variables 𝑆.

Greenwell et al. (2018)[1] proposed to measure the “flatness” as the sample standard deviation for continuous features
and the range statistic divided by four for the categorical features. Note that the range divided by four is an estimate of
the standard deviation for a small sample size. Formally, those statistics are defined as:

𝑖(𝑥1) =

{︃√︁
1

𝑘−1

∑︀𝑘
𝑖=1[𝑓1(𝑥1𝑖)− 1

𝑘

∑︀𝑘
𝑗=1 𝑓1(𝑥1𝑖)]2, if 𝑥1 is continuous

[max𝑖(𝑓1(𝑥1𝑖))−min𝑖(𝑓1(𝑥1𝑖))]/4, if 𝑥1 is categorical
(7.12)

Connection to t-statistic

Although the choice of computing the variance of the PD can be motivated intuitively, one can justify it more rigorously
by considering a linear model as follows:

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ...+ 𝛽𝑝𝑋𝑝 + 𝜖

where 𝛽𝑖, 𝑖 = 1, ..., 𝑝 are the regression coefficients and 𝜖 ∼ 𝒩 (0, 𝜎2).

To test the significance of a regression coefficient for a least squares problem, one can apply the t-test. For that, one
has to compute the t-statistic given by:

t-statistic =
𝛽𝑖 − 𝛽𝐻0

𝑠.𝑒.(𝛽𝑖)
,

where 𝛽𝑖 is an estimate of 𝛽𝑖, 𝛽𝐻0
is the value under the null hypothesis, and 𝑠.𝑒. is the standard error.

If we set 𝛽𝐻0 = 0, then the t-statistic is given by:

t-statistic =
𝛽𝑖

𝑠.𝑒.(𝛽𝑖)
.

For completeness, we will provide a sketch of the derivation of the t-statistic for the least squares problem. Using the
matrix notation, we can rewrite the least squares problem as follows:

𝛽 = arg min
𝛽∈R𝑝

‖𝑌 −𝑋𝛽‖22,

where 𝑌 is the target variable. The least squares solution of the equation above is given by:

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌.

7.10. Partial Dependence Variance 123

https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependence.html#Theoretical-exposition
https://arxiv.org/abs/1805.04755
https://en.wikipedia.org/wiki/Student%27s_t-test
https://en.wikipedia.org/wiki/T-statistic

alibi Documentation, Release 0.9.5dev

Under the assumption that the true model is given by 𝑌 = 𝑋𝛽 + 𝜖, we can infer the distribution of 𝛽:

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇 (𝑋𝛽 + 𝜖) = 𝛽 + (𝑋𝑇𝑋)−1𝑋𝑇 𝜖.

From the equation above, one can conclude that 𝛽 − 𝛽 ∼ 𝒩 (0, 𝜎2(𝑋𝑇𝑋)−1). Knowing that 𝛽 − 𝛽 has a multivariate
normal distribution, we can look at the diagonal entrance and obtain that 𝛽𝑖 − 𝛽𝑖 ∼ 𝒩 (0, 𝜎2𝑆𝑖𝑖), where 𝑆𝑖𝑖 is the i-th
diagonal entrance on of the matrix (𝑋𝑇𝑋)−1. The last statement implies that:

𝑧𝑖 =
𝛽𝑖 − 𝛽𝑖√
𝜎2𝑆𝑖𝑖

∼ 𝒩 (0, 1).

Let us denote by 𝜖 = (𝐼 −𝑋(𝑋𝑇𝑋)−1𝑋𝑇)𝑌 the residuals, and 𝑠2 = 𝜖𝑇 𝜖
𝑛−𝑝 be an unbiased estimate of 𝜎2. One can

show that:

𝑉 =
(𝑛− 𝑝)𝑠2

𝜎2
∼ 𝜒2

𝑛−𝑝.

Given that 𝑧𝑖 ∼ 𝒩 (0, 1) and 𝑉 ∼ 𝜒2
𝑛−𝑝, we can conclude that 𝑡𝑖 = 𝑧𝑖√

𝑉/(𝑛−𝑝)
is characterized by a t-student

distribution with 𝑛− 𝑝 degrees of freedom. With some simple algebraic manipulation, one can show that 𝑡𝑖 = 𝛽𝑖−𝛽𝑖

𝑠.𝑒.(𝛽𝑖)

as follows:

𝑡𝑖 =

𝛽𝑖−𝛽𝑖√
𝜎2𝑆𝑖𝑖√︁

(𝑛−𝑝)𝑠2

𝜎2 /(𝑛− 𝑝)
=

𝛽𝑖−𝛽𝑖√
𝑆𝑖𝑖√
𝑠2

=
𝛽𝑖 − 𝛽𝑖√
𝑠2𝑆𝑖𝑖

=
𝛽𝑖 − 𝛽𝑖

𝑠.𝑒.(𝛽𝑖)

For a more detailed derivation of the results above, see this page.

To see exactly the connection between the Partial Dependence Variance feature importance and the t-statistic, we con-
sider the following example also presented in Greenwell et al. (2018)[1]. Consider the linear model:

𝑌 = 𝛽0 + 𝛽𝑋1 + 𝛽𝑋2

where 𝛽0, 𝛽1, 𝛽2 are constants,𝑋1 and𝑋2 are both independent Uniform[0, 1]. Since the distributions of𝑋1 and𝑋2 are
known, one can compute the exact PD 𝑓𝑖(𝑋𝑖). For example, 𝑓1(𝑋1) =

∫︀ 1

0
E[𝑌 |𝑋1, 𝑋2]𝑝(𝑋2)𝑑𝑋2, where 𝑝(𝑋2) = 1.

After simple calculus, one obtains:

𝑓1(𝑋1) = 𝛽0 +
𝛽2

2
+ 𝛽1𝑋1 and 𝑓2(𝑋2) = 𝛽0 +

𝛽1

2
+ 𝛽2𝑋2.

Computing the variance for each PD function above, gives us:

V[𝑓1(𝑋1)] =
𝛽2
1

12
and V[𝑓2(𝑋2)] =

𝛽2
2

12

which implies that the standard deviation is given by |𝛽1|√
12

and |𝛽2|√
12

, respectively.

On the other hand, the two-tailed t-statistic is given by:

𝑡1 =
|𝛽1|√
𝑠2𝑆11

=
|𝛽1|√
12𝑠2

and 𝑡2 =
|𝛽2|√
𝑠2𝑆22

=
|𝛽2|√
12𝑠2

which matches the Partial Dependence Variance up to a proportionality constant. Thus, the variance of the PDmeasures
the significance of each regression coefficient and orders them accordingly. In other words, the most important features
will correspond to the ones with the most significant p-values.

124 Chapter 7. Methods

https://en.wikipedia.org/wiki/Ordinary_least_squares#Estimation
https://stats.stackexchange.com/a/117422
https://arxiv.org/abs/1805.04755

alibi Documentation, Release 0.9.5dev

Feature interaction

Greenwell et al. (2018)[1] also proposed to use the PD to measure the feature interaction of two given features. Let
𝑆𝐷(𝑋𝑖, 𝑋𝑗), with 𝑖 ̸= 𝑗, be the standard deviation of the joint PD values 𝑓𝑖𝑗(𝑋𝑖𝑖′ , 𝑋𝑗𝑗′), for 𝑖′ = 1, 2, ..., 𝑘𝑖 and
𝑗′ = 1, 2, ..., 𝑘𝑗 . The intuition proposed by the authors is that a weak interaction effect between 𝑋𝑖 and 𝑋𝑗 on the
response 𝑌 would suggest that importance 𝑖(𝑋𝑖, 𝑋𝑗) has little variance when either 𝑋𝑖 or 𝑋𝑗 is held constant and the
other varies.

The computation of the feature interaction is straightforward. Consider any two features (𝑋𝑖, 𝑋𝑗), 𝑖 ̸= 𝑗. We construct
the PD function 𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗) and compute the feature importance of 𝑋𝑖 while keeping 𝑋𝑗 constant, for all values of
𝑋𝑗 . We denote it by 𝑆𝐷(𝑋𝑖|𝑋𝑗). Following that, we take the standard deviation of the resulting importance scores
across all values of 𝑋𝑗 . We denote the latter quantity as 𝑖(𝑋𝑖|𝑋𝑗). Similarly, we compute 𝑖(𝑋𝑗 |𝑋𝑖). To compute the
feature interaction, one simply averages the two results. A large values will indicate a possible feature interaction.

Although the results reported by Greenwell et al. (2018)[1] seem encouraging, the authors do not offer a rigorous
justification for their proposal which makes the method to appear rather heuristic. In the following paragraphs, we
provide through concrete examples some arguments on why the method can capture feature interactions and which are
some failure cases.

Consider the following function of two variables, 𝑓 : [0, 1]→ R, 𝑓(𝑋1, 𝑋2) = 𝑋1+𝑋2+𝑋1𝑋2. Due to its simplistic
form, one might be tempted to eyeball the decomposition of the function in three terms: a main effect of 𝑋1 given by
𝑓1(𝑋1), a main effect of𝑋2 given by 𝑓2(𝑋2), and an interaction term between (𝑋1, 𝑋2) given by 𝑓3(𝑋1, 𝑋2) = 𝑋1𝑋2.
Although this can be a valid function decomposition within an axiomatic framework, it is not the case for the PD. This is
because in the PD case the term 𝑋1𝑋2 does not only contain a feature interaction between 𝑋1 and 𝑋2, but also contains
a fraction of their main effects.

To understand why 𝑋1𝑋2 contains also a fraction of the main effects of 𝑋1 and 𝑋2, we first provide an intuitive view
of what the main effect consists when using the PD functions. Informally, one can think of the main effect of a feature
in the PD context as how well w.r.t. the mean squared error (MSE) one can approximate 𝑓(𝑋1, 𝑋2) by only having
access to the feature 𝑋1. In our case we can analyze the three terms:

• 𝑓1(𝑋1) = 𝑋1 is straightforward. Since we have access to the feature 𝑋1, we can approximate the function
exactly.

• 𝑓2(𝑋2) = 𝑋2 is also relatively easy. Since we only have access to 𝑋1 and because 𝑓2(𝑋2) does not depend on
𝑋1, the best we can do is to approximate it with a constant. The constant that we choose is dependent of the
objective we want to minimize. For MSE, the constant is given by E[𝑓2(𝑋2)], where the expectation is taken
w.r.t. the marginal of 𝑋2.

• 𝑓3(𝑋1, 𝑋2) = 𝑋1𝑋2 is a bit more challenging. As mentioned before, one might be tempted to say that 𝑓3
describes only the feature interaction between 𝑋1 and 𝑋2, but given our PD approach, this is not the case. This
is because in the PD context, the 𝑓3 contains also a fractions of the main effects of 𝑋1 and 𝑋2.

We now elaborate more on the third bullet point. To intuitively see why this is the case, let us fix the value 𝑋1 = 0.2
and inspect 𝑓3(0.2, 𝑋2) by varying 𝑋2 (see Figure 7(a)).

7.10. Partial Dependence Variance 125

https://arxiv.org/abs/1805.04755
https://arxiv.org/abs/1805.04755

alibi Documentation, Release 0.9.5dev

Figure 7. Conditional PD estimation steps.

Having no access to 𝑋2, the best we can predict 𝑓3(𝑋1, 𝑋2) based only on 𝑋1 = 0.2 w.r.t. the MSE, is to predict the
average response of 𝑓3(0.2, 𝑋2) over the marginal of 𝑋2. Formally, the value is given by E𝑋2 [𝑓3(0.2, 𝑋2)]. This is
depicted by the green line in Figure 7(b).

The residuals (i.e. what we cannot predict) are given by 𝑓3(0.2, 𝑋2)−E[𝑓3(0.2, 𝑋2)], displayed in red in Figure 7(c).

The residuals/errors can be attributed to the following:

• either to a fraction from the main effect of 𝑋2.

• either to the interaction between 𝑋1 and 𝑋2.

• or a combination of both.

Intuitively, we would conclude that we do not have any feature interaction between 𝑋1 and 𝑋2 if for any value of
𝑋1 = 𝑐, we obtain the same error patterns. In this case, the errors would only be a result from a fraction of the main
effect of 𝑋2. Figure 8 displays the two scenarios, without and with feature interaction.

126 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

Figure 8. Conditional PD estimation error patterns. The first row displays error patterns when there is no interaction
(i.e., the interaction term is removed). The second row displays error pattern when there is interaction.

We now come back to Greenwell et al. (2018)[1] proposal on how to measure the feature interaction. For feature𝑋1, the
first step is to compute the standard deviation of the PD along the 𝑋2 axis when 𝑋1 is held constant. This is equivalent
of computing the root mean squared error (i.e., corresponds to the red lines above). This first step can quantify whether
there is some effect we are missing just by using 𝑋1, which we can attribute to either a fraction from the main effect
of 𝑋2 or to the interaction between 𝑋1 and 𝑋2 (we still do not know to which one we should attribute). We repeat
the same step for every value of 𝑋1. Having all the standard deviations for every value of 𝑋1𝑖 (i.e., 𝑆𝐷𝑋2

(𝑋2|𝑋1𝑖),
we compute the standard deviation along the 𝑋1, 𝑖(𝑋1|𝑋2) = 𝑆𝐷𝑋1

[𝑆𝐷𝑋2
(𝑋2|𝑋1)]. This step is necessary (but not

sufficient) to check whether the variance in the error is attributed to the fraction from the main effect of 𝑋2 or to the
feature interaction between 𝑋1 and 𝑋2. Note that if the standard deviation 𝑖(𝑋1|𝑋2) = 𝑆𝐷𝑋1

[𝑆𝐷(𝑋2|𝑋1)] = 0,
it means that we have the same variance along the 𝑋2 for every value 𝑋1𝑖. This might happen for multiple reasons,
but one reason can be if we encounter the same error pattern when we condition on every 𝑋1𝑖. If that happens then it

7.10. Partial Dependence Variance 127

https://arxiv.org/abs/1805.04755

alibi Documentation, Release 0.9.5dev

means that there is no feature interaction and all the error is attributed to a fraction of the main effect of 𝑋2.

One simple example for which the method fails to capture the feature interaction is for 𝑓 : [−1, 1] × [−1, 1] → R,
𝑓(𝑋1, 𝑋2) = ⊮(𝑋1𝑋2 > 0). In this case the variance is the same when keeping 𝑋1 or 𝑋2 constant, but the error
patterns differ depending on their sign. The PD and the conditional importances are displayed in Figure 9:

Figure 9. Feature interaction failure case.

Although there is clear interaction between 𝑋1 and 𝑋2, the method fails to detect it because the variance along the 𝑋1

and 𝑋2 axis is the same.

7.10.4 Examples

Partial Dependence Variance, regression example (Friedman’s regression problem)

7.10.5 References

[1] Greenwell, Brandon M., Bradley C. Boehmke, and Andrew J. McCarthy. “A simple and effective model-based
variable importance measure.” arXiv preprint arXiv:1805.04755 (2018).

[2] Friedman, Jerome H. “Greedy function approximation: a gradient boosting machine.” Annals of statistics (2001):
1189-1232.

[3] Molnar, Christoph. Interpretable machine learning. Lulu. com, 2020.

[4] Fanaee-T, Hadi, and Gama, Joao, ‘Event labeling combining ensemble detectors and background knowledge’,
Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg.

[5] Breiman, Leo. “Random forests.” Machine learning 45.1 (2001): 5-32.

[6] Friedman, Jerome H. “Greedy function approximation: a gradient boosting machine.” Annals of statistics (2001):
1189-1232.

[source]

128 Chapter 7. Methods

../api/alibi.explainers.html#alibi.explainers.PermutationImportance

alibi Documentation, Release 0.9.5dev

7.11 Permutation Importance

7.11.1 Overview

The permutation importance, initially proposed by Breiman (2001)[1], and further refined by Fisher et al. (2019)[2] is
a method to compute the global importance of a feature for a tabular dataset. The computation of the feature importance
is based on how much the model performance degrades when the feature values within a feature column are permuted.
By inspecting the attribution received by each feature, a practitioner can understand which are the most important
features that the model relies on to compute its predictions.

Figure 1. Permutation Importance using 𝐹1 score on “Who’s Going to Leave Next?” dataset. Left figure displays the
importance as the ratio between the original score and the permuted score. Right figure displays the importance as the
difference between the original score and the permuted score.

Figure 1 displays the importance of each feature according to the 𝐹1 score function reported as the ratio between the
original score and the permuted score (left plot), and as the difference between the original score and the permuted score
(right plot). We can observe that the most important feature that the model relies on is the satisfaction level. Fol-
lowing that, we have three features that have approximately the same importance, namely the average_montly_hours,
last_evaluation and number_project. Finally, in our top 5 hierarchy we have time_spend_company. Features
like sales, salary, Work_accident and promotion_last_5years receive an importance close to 1 in the left plot
and an importance close to 0 in the right plot which are an indication that the features are not important to the model.
For a more detailed analysis, please check the worked example.

For pros & cons, see the Permutation Importance section from the Introduction materials.

7.11.2 Usage

To initialize the explainer with any black-box model, one can directly pass the prediction function, the metrics consisting
of the loss functions or the score functions, and optionally a list of feature names:

from alibi.explainers import PermutationImportance

pfi = PermutationImportance(predictor=predict_fn,
loss_fns=loss_fns,
score_fns=score_fns,
feature_names=feature_names)

7.11. Permutation Importance 129

https://link.springer.com/article/10.1023/A:1010933404324
https://arxiv.org/abs/1801.01489
https://docs.seldon.io/projects/alibi/en/stable/overview/high_level.html#permutation-importance
https://docs.seldon.io/projects/alibi/en/stable/overview/high_level.html

alibi Documentation, Release 0.9.5dev

Note
Remember that the PermutationImportance explainer measures the importance of a feature f as the degradation of
the model when the feature values of f are permuted. The degradation of the model can thus be quantified as either
the increase in the loss function or the decrease in the score function. Although one can transform a loss function into
a score function an vice-versa (i.e., simply negate the value and optionally add an offset), the equivalent representation
might not be always be natural to interpret (e.g., transforming mean squared error loss into the equivalent score given
by the negative mean squared error). Thus, the alibi API allows the user to provide the suitable metric either as a loss
or a score function.

The metric (loss or score) functions can be initialized through strings, a callable or dictionaries. For example, for
a classification problem, the initialization of the score functions through strings can be done either score_fns
= ['accuracy', 'f1'] or directly score_fns='f1' when a single score function is used. Similarly, when a
singe score function is used the initialization through a callable can be done as score_fns = accuracy_score,
where accuracy_score is the reference to the function. Finally, the initialization through a dictionary would
look like score_fns={'name_score_1': function_score_1, 'name_score_2': function_score_2}. For
all the previous cases, the initialization is analogous for the loss functions.

Note that the initialization through a callable or a dictionary allows the flexibility to provide custom metric functions.
The signature of a metric function must be as follows:

def metric_fn(y_true: np.ndarray,
y_pred: np.ndarray,
sample_weight: Optional[np.ndarray] = None) -> float:

pass

or

def metric_fn(y_true: np.ndarray,
y_score: np.ndarray,
sample_weight: Optional[np.ndarray] = None) -> float:

pass

where y_true is the array of ground-truth values, y_pred | y_score is the output of the predictor used in the
initialization of the explainer, and sample_weight is an optional array containing the weights for the given data
instances.

Besides designing custom metrics, the signature above makes it possible to use the sklearn metrics provided here.
Also, the list of all supported string metrics can be found here.

Following the initialization, we can produce an explanation given the test dataset (𝑋test, 𝑦test):

exp = pfi.explain(X=X_test, y=y_test)

Multiple arguments can be provided to the explain method:

• X - A N x F input feature dataset used to calculate the permutation feature importance. This is typically the test
dataset.

• y - Ground-truth labels array of size N (i.e. (N,)) corresponding the input feature X.

• features - An optional list of features or tuples of features for which to compute the permutation feature im-
portance. If not provided, the permutation feature importance will be computed for every single features in the
dataset. Some example of features would be: [0, 2], [0, 2, (0, 2)], [(0, 2)], where 0 and 2 corre-
spond to column 0 and 2 in X, respectively.

130 Chapter 7. Methods

https://scikit-learn.org/stable/modules/model_evaluation.html
https://docs.seldon.io/projects/alibi/en/stable/api/alibi.explainers.permutation_importance.html#alibi.explainers.permutation_importance.METRIC_FNS

alibi Documentation, Release 0.9.5dev

• method - The method to be used to compute the feature importance. If set to 'exact', a “switch” operation
is performed across all observed pairs, by excluding pairings that are actually observed in the original dataset.
This operation is quadratic in the number of samples (N x (N - 1) samples) and thus can be computationally
intensive. If set to 'estimate', the dataset will be divided in half. The values of the first half containing
the ground-truth labels the rest of the features (i.e. features that are left intact) is matched with the values of
the second half of the permuted features, and the other way around. This method is computationally lighter and
provides estimate error bars given by the standard deviation. Note that for some specific loss and score functions,
the estimate does not converge to the exact metric value.

• kind - Whether to report the importance as the loss/score ratio or the loss/score difference. Available values are:
'ratio' | 'difference'.

• n_repeats - Number of times to permute the feature values. Considered only when method='estimate'.

• sample_weight - Optional weight for each sample instance.

Note
As mentioned in the parameter description, depending on the loss or score functions used to measure the model per-
formance, the feature importance values when using method='estimate' might not converge to the feature impor-
tance values when method='exact', regardless of the number of times the feature values are permuted specified via
n_repeats.

The result exp is an Explanation object which contains the following data-related attributes:

• feature_names - A list of strings or tuples of strings containing the names associated with the explained fea-
tures.

• metric_names - A list of strings containing the names of the metrics used to compute the feature importance.

• feature_importance - A list of lists of float when method='exact' and list of lists of dictionary when
method='estimate' containing the feature importance for each metric and each explained feature. When
method='estimate', the dictionary returned for each metric and each feature contains the importance mean,
the importance standard deviation and the samples used to compute those statistics.

For convenience, we included a plotting function plot_permutation_importance which produces a bar plot with
the feature importance values for each metric using matplotlib.

from alibi.explainers import plot_permutation_importance
plot_permutation_importance(exp)

The following figure displays the feature importance for the accuracy and 𝐹1 score for a random forest classifier trained
on the “Who’s Going to Leave Next?” dataset (see worked example).

7.11. Permutation Importance 131

alibi Documentation, Release 0.9.5dev

7.11.3 Theoretical exposition

Breiman (2001)[1] initially proposed the permutation feature importance for a random forest classifier as a method to
compute the global importance of a feature as seen by the model. More precisely, consider a dataset with 𝑀 input
features and a random forest classifier. After each tree is created, the values of the 𝑚-th feature in the out-of-bag
(OOB) split are randomly permuted and the newly generated data is fed to the current tree to obtain a new prediction.
The result for each newly generated data instance from OOB is saved. The process is then repeated for all features
𝑚 = 1, 2, ...,𝑀 . After the procedure is completed for every tree, the noised responses are compared with the true label
to give the misclassification rate. The importance of each feature is given by the percent increase in the misclassification
rate as compared with the OOB rate when all the features are left intact.

Note
The intuition behind the procedure described above is that an increase in the misclassification rate is an indication that
a feature is important for the given model.

Although the method was initially proposed for a random forest classifier, it can be easily generalized to any model
and prediction task (e.g., classification or regression). Fisher et al. (2019)[2] proposed a model agnostic version of the
permutation feature importance called model reliance which is the one implemented in alibi.

Notation

Before diving into the mathematical formulation of the model reliance, we first introduce some notation. Let 𝑍 =
(𝑌,𝑋1, 𝑋2) ∈ 𝒵 be an iid random variable with outcome 𝑌 ∈ 𝒴 and covariates (features) 𝑋 = (𝑋1, 𝑋2) ∈ 𝒳 , where
the covariates subsets 𝑋1 ∈ 𝒳1 and 𝑋2 ∈ 𝒳2 may be each multivariate. The goal is to measure how much the model
prediction relies on 𝑋1 to predict 𝑌 .

For a given prediction model 𝑓 , Fisher et al. (2019)[2] introduced the model reliance to be the percent increase in 𝑓 ’s
expected loss when noise is added to 𝑋1. Informally this can be written as:

𝑀𝑅(𝑓) =
Expected loss of 𝑓 under noise

Expected loss of 𝑓 without noise

Note that there are certain properties that the noise must satisfy:

• must render 𝑋1 completely uninformative of the outcome 𝑌 .

132 Chapter 7. Methods

https://link.springer.com/article/10.1023/A:1010933404324
https://en.wikipedia.org/wiki/Out-of-bag_error
https://arxiv.org/abs/1801.01489
https://arxiv.org/abs/1801.01489

alibi Documentation, Release 0.9.5dev

• must not alter the marginal distribution of 𝑋1.

Definition

Given the notation above, we can introduce formally the model reliance.

Let 𝑍(𝑎) = (𝑌 (𝑎), 𝑋
(𝑎)
1 , 𝑋

(𝑏)
2) and 𝑍(𝑏) = (𝑌 (𝑏), 𝑋

(𝑏)
1 , 𝑋

(𝑏)
2) be independent random variables, each following the

same distribution as 𝑍 = (𝑌,𝑋1, 𝑋2). The expected loss of the model 𝑓 across pairs of observations (𝑍(𝑎), 𝑍(𝑏)) in
which the values 𝑋(𝑎)

1 and 𝑋
(𝑏)
1 have been switched is defined as:

𝑒switch(𝑓) = E[𝐿{𝑓, (𝑌 (𝑏), 𝑋
(𝑎)
1 , 𝑋

(𝑏)
2)}]

Note that the definition above uses the pair (𝑌 (𝑏), 𝑋
(𝑏)
2) from 𝑍(𝑏), but the variable 𝑋

(𝑎)
1 from 𝑍(𝑎), hence the name

switched. It is important to understand that the values (𝑌 (𝑏), 𝑋
(𝑎)
1 , 𝑋

(𝑏)
2) do not relate to each other and thus we brake

the correlation between 𝑋1 with the remaining features 𝑋2 and with the output 𝑌 . An alternative interpretation of
𝑒switch(𝑓) is the expected loss of 𝑓 when noise is added to 𝑋1 in such a way that 𝑋1 becomes completely uninformative
of 𝑌 , but the marginal of 𝑋1 is unchanged.

The reference quantity to compare 𝑒switch(𝑓) against is the standard expected loss when the features are left intact (i.e.,
none of the feature values were switched). Formally it can be written as:

𝑒orig(𝑓) = E[𝐿{𝑓, (𝑌,𝑋1, 𝑋2)}]

Given the two quantities above, we can formally define 𝑀𝑅(𝑓) as their ratio:

𝑀𝑅(𝑓) =
𝑒switch(𝑓)

𝑒orig(𝑓)

There are three possible cases to be analyzed:

• 𝑀𝑅(𝑓) > 1 indicates that the model 𝑓 relies on the feature 𝑋1. For example, a 𝑀𝑅(𝑓) = 2 means that the
error loss has doubled when 𝑋1 was permuted.

• 𝑀𝑅(𝑓) = 1 indicates that the model 𝑓 does not rely on the feature 𝑋1. This means that the error has not
changed when 𝑋1 was permuted.

• 𝑀𝑅(𝑓) < 1 is an interesting case. Surprisingly, there exist models 𝑓 such that their reliance is less than one. For
example, this can happen if the model 𝑓 treats 𝑋1 and 𝑌 as positively correlated when in fact they are negatively
correlated. In many cases, a 𝑀𝑅(𝑓) < 1 implies the existence of a better performant model 𝑓 ′ satisfying
𝑀𝑅(𝑓 ′) = 1 and 𝑒orig(𝑓

′) < 𝑒orig(𝑓). This is equivalent to saying that the model 𝑓 is typically suboptimal.

An alternative definition of the model reliance which uses the difference instead of the ratio is given by:

𝑀𝑅difference(𝑓) = 𝑒switch(𝑓)− 𝑒orig(𝑓).

As emphasized by Molnar 2020[3], the positive aspect of using ratio over difference is that the results are comparable
across multiple problems.

Estimation of model reliance with U-statistics

For a given model 𝑓 and a dataset 𝑍 = (𝑌,𝑋1, 𝑋2), one has to estimate the 𝑀𝑅(𝑓). The estimation of the 𝑒orig(𝑓) is
straightforward through the empirical loss, formally given by:

𝑒orig(𝑓) =
1

𝑛

𝑛∑︁
𝑖=1

𝐿{𝑓, 𝑌 (𝑖), 𝑋
(𝑖)
1 , 𝑋

(𝑖)
2 }.

7.11. Permutation Importance 133

https://christophm.github.io/interpretable-ml-book/feature-importance.html

alibi Documentation, Release 0.9.5dev

For the estimation of the 𝑒switch(𝑓), one has to be more considerate because applying a naive permutation of the feature
values can be a source of bias. To be more concrete on how the bias can be introduced, let us consider an example of
four data instances

𝒵 = {(𝑌 (1), 𝑋
(1)
1 , 𝑋

(1)
2), (𝑌 (2), 𝑋

(2)
1 , 𝑋

(2)
2), (𝑌 (3), 𝑋

(3)
1 , 𝑋

(3)
2), (𝑌 (4), 𝑋

(4)
1 , 𝑋

(4)
2)}.

Note that naively applying the permutation (1, 2, 4, 3) to the original dataset will only break the correlation for two
instances out of four, and the rest will be left intact. Since the first two instances will be left intact and since they follow
the same data distribution that the model was trained on, we expect that the error for those instances to be low (i.e., if we
use the test set and if the model did not overfit), which will bring down the estimate of 𝑒switch(𝑓). Thus, permutations
𝜋 for which there exist elements such that 𝜑(𝑖) = 𝑖 are a source of bias in our estimate.

Fisher et al. (2019)[2] proposed two alternative methods to compute an unbiased estimate using U-statistic. The first
estimate is to perform a “switch” operation across all observed pairs, by excluding pairings that are actually observed
in the original dataset. Formally, it can be written as:

𝑒switch(𝑓) =
1

𝑛(𝑛− 1)

𝑛∑︁
𝑖=1

∑︁
𝑗 ̸=𝑖

𝐿{𝑓, (𝑌 (𝑖), 𝑋
(𝑖)
1 , 𝑋

(𝑖)
2 }.

The computation of the 𝑒switch(𝑓) can be expensive because the summation is performed over all 𝑛(𝑛 − 1) possible
pairs.

If the estimation is prohibited due to the sample size, the following alternative estimator can be used:

𝑒divide(𝑓) =
1

2⌊𝑛/2⌋

⌊𝑛/2⌋∑︁
𝑖=1

[𝐿{𝑓, (𝑌 (𝑖), 𝑋
(𝑖+⌊𝑛/2⌋)
1 , 𝑋

(𝑖)
2 }+ 𝐿{𝑓, (𝑌 (𝑖+⌊𝑛/2⌋), 𝑋

(𝑖)
1 , 𝑋

(𝑖+⌊𝑛/2⌋)
2)}].

Note that rather than summing over all possible pairs, the dataset is divided in half and the first and half values for
(𝑌,𝑋2) are matched with the second half values of 𝑋1, and the other way around. Besides the light computation, this
approach can provide confidence intervals by computing the estimates over multiple data splits.

We end our theoretical exposition by mentioning that both estimators above can be used to compute an unbiased estimate
of 𝑀𝑅(𝑓). Furthermore, one interesting observation is that the definition of 𝑒switch is very similar to the one proposed
by Breiman (2001)[1]. Formally, the approach described by Breiman (2001)[1] can be written as:

𝑒permute =

𝑛∑︁
𝑖=1

𝐿{𝑓, (𝑌 (𝑖), 𝑋
𝜋𝑙(𝑖)
1 , 𝑋

𝜋𝑙(𝑖)
2)},

where 𝜋𝑗 ∈ {𝜋1, ..., 𝜋𝑛!} is one permutation from the set of all permutations of (1, ..., 𝑛). The calculation proposed by
Fisher et al. (2019)[2] is proportional to the sum of losses over all𝑛! permutations, excluding the𝑛 unique combinations
of the rows of 𝑋1 and the rows of [𝑌,𝑋2] that appear in the original sample. As mentioned before, excluding those
combinations is necessary to preserve the unbiasedness of the 𝑒switch(𝑓).

7.11.4 Examples

Permutation Importance classification example (“Who’s Going to Leave Next?”)

134 Chapter 7. Methods

https://arxiv.org/abs/1801.01489
https://en.wikipedia.org/wiki/U-statistic#:~:text=In%20statistical%20theory%2C%20a%20U,producing%20minimum%2Dvariance%20unbiased%20estimators.
https://link.springer.com/article/10.1023/A:1010933404324
https://link.springer.com/article/10.1023/A:1010933404324
https://arxiv.org/abs/1801.01489

alibi Documentation, Release 0.9.5dev

7.11.5 References

[1] Breiman, Leo. “Random forests.” Machine learning 45.1 (2001): 5-32.

[2] Fisher, Aaron, Cynthia Rudin, and Francesca Dominici. “All Models are Wrong, but Many are Useful: Learning a
Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously.” J. Mach. Learn. Res. 20.177
(2019): 1-81.

[3] Molnar, Christoph. Interpretable machine learning. Lulu. com, 2020.

[source]

7.12 Similarity explanations

7.12.1 Overview

The GradientSimilarity class implements an explanation method that belongs to the family of the similarity-based
explanations methods.

Given an input instance of a machine learning model, similarity-based methods aim to explain the output of the model
by finding and presenting instances seen during training that are similar to the given instance. Roughly speaking, an
explanation of this type should be interpreted by the user following a rationale of the type: This 𝑋 is a 𝑌 because a
similar instance 𝑋 ′ is a 𝑌 .

Similarity explanations of a ResNet50 model on ImageNet dataset (top) and of a DistilBERT model on Emotions dataset
(bottom).

7.12. Similarity explanations 135

../api/alibi.explainers.html#alibi.explainers.GradientSimilarity
https://arxiv.org/abs/2006.04528
https://arxiv.org/abs/2006.04528

alibi Documentation, Release 0.9.5dev

Various similarity-based methods use different metrics to quantify the similarity between two instances. The
GradientSimilarity class implements gradients-based metrics, as introduced by Charpiat et al., 2019.

Theory

The purpose of gradient-based methods is to define a similarity kernel between two instances that quantify how similar
the instances are according to a model trained for a specific task (for example a classifier). In particular, given two
instances 𝑧 = (𝑥, 𝑦) and 𝑧′ = (𝑥′, 𝑦′), a model 𝑓𝜃(𝑥) parametrized by 𝜃 and a loss function ℒ𝜃(𝑧) = ℒ(𝑓𝜃(𝑥), 𝑦), we
define similarity as the influence of 𝑧 over 𝑧′ with respect to the loss function. The similarity quantifies how much an
additional parameter’s update that changes the loss calculated at 𝑧 by a certain amount would change the loss calculated
at 𝑧′.

In particular, let us consider the Taylor expansion of the loss function ℒ at the point 𝑧, which reads like:

ℒ𝜃+𝛿𝜃(𝑧) = ℒ𝜃(𝑧) + 𝛿𝜃∇𝜃ℒ𝜃(𝑧) +𝒪(||𝛿𝜃‖∈)

If we want to change the loss at 𝑧 by an amount 𝜖, we can do so by changing the model’s parameters 𝜃 by an amount
𝛿𝜃 = 𝜖 ∇𝜃ℒ𝜃(𝑧)

||∇𝜃ℒ𝜃(𝑧)||2 . In fact, by substituting this value in the Taylor expansion above we obtain:

ℒ𝜃+𝛿𝜃(𝑧) = ℒ𝜃(𝑧) + 𝜖+𝒪(|𝜖|2)

Now, we would like to measure the impact of such a change of parameters on the loss function calculated at a different
point 𝑧′. Using Taylor expansion again, the loss at point 𝑧′ is given by:

ℒ𝜃+𝛿𝜃(𝑧
′) = ℒ𝜃(𝑧

′) + 𝛿𝜃∇𝜃ℒ𝜃(𝑧
′) +𝒪(||𝛿𝜃‖∈)

Substituting 𝛿𝜃 = 𝜖 ∇𝜃ℒ𝜃(𝑧)
||∇𝜃ℒ𝜃(𝑧)||2 we have

ℒ𝜃+𝛿𝜃(𝑧
′) = ℒ𝜃(𝑧

′) + 𝜖
∇𝜃ℒ𝜃(𝑧

′) · ∇𝜃ℒ𝜃(𝑧)

||∇𝜃ℒ𝜃(𝑧)||2
+𝒪(||𝜖||∈).

In conclusion, the kernel

𝑘𝜃(𝑧, 𝑧
′) =

∇𝜃ℒ𝜃(𝑧
′) · ∇𝜃ℒ𝜃(𝑧)

||∇𝜃ℒ𝜃(𝑧)||2

quantifies how much the loss function at point 𝑧′ has changed after a parameters’ update that has changed the loss at
point 𝑧 by an amount 𝜖. It represents the influence that the point 𝑧 has over the point 𝑧′ with respect to the loss function.

Based on this kernel, which is not symmetric, the original paper suggests two symmetric alternatives:

𝑘𝜃(𝑧, 𝑧
′) =

∇𝜃ℒ𝜃(𝑧
′) · ∇𝜃ℒ𝜃(𝑧)

||∇𝜃ℒ𝜃(𝑧′)||||∇𝜃ℒ𝜃(𝑧)||
.

𝑘𝜃(𝑧, 𝑧
′) = ∇𝜃ℒ𝜃(𝑧

′) · ∇𝜃ℒ𝜃(𝑧).

All the three versions of the kernel are implemented in the GradientSimilarity class (see Usage section below).

7.12.2 Usage

Initialization

136 Chapter 7. Methods

https://papers.nips.cc/paper/2019/hash/c61f571dbd2fb949d3fe5ae1608dd48b-Abstract.html

alibi Documentation, Release 0.9.5dev

from alibi.explainers.similarity.grad import GradientSimilarity

model = <YOUR_MODEL>
loss_fn = <YOUR_LOSS_FUNCTION>

explainer = GradientSimilarity(predictor=model, # your tensorflow or pytorch model.
loss_fn=loss_fn, # your loss_fn. Usually the loss␣

→˓function of your model.
sim_fn='grad_dot', # 'grad_dot', 'grad_cos' or 'grad_asym_

→˓dot'.
task='classification', # 'classification' or 'regression'.
precompute_grads=False, # precompute training set␣

→˓gradients in fit step.
backend='tensorflow', # 'tensorflow' or 'pytorch'.
device=None, # pytorch device. For example 'cpu' or 'cuda'.
verbose=False)

• predictor: The GradientSimilarity class provides both a tensorflow and a pytorch backend, so your
predictor can be a model in either of these frameworks. The backend argument must be set accordingly.

• loss_fn: The loss function ℒ(𝑓𝜃(𝑥), 𝑦) used to compute the gradients. Usually the loss function used by the
model for training, but it can be any function taking as inputs the model’s prediction and the labels 𝑦-s.

• sim_fn: The similarity function used to compute the kernel 𝑘𝜃(𝑧, 𝑧′). GradientSimilarity implements 3
kernels:

– ‘grad_dot’, defined as

𝑘𝜃(𝑧, 𝑧
′) = ∇𝜃ℒ𝜃(𝑧

′) · ∇𝜃ℒ𝜃(𝑧).

– ‘grad_cos’, defined as

𝑘𝜃(𝑧, 𝑧
′) =

∇𝜃ℒ𝜃(𝑧
′) · ∇𝜃ℒ𝜃(𝑧)

||∇𝜃ℒ𝜃(𝑧′)||||∇𝜃ℒ𝜃(𝑧)||
.

– ‘grad_asym_dot’, defined as

𝑘𝜃(𝑧, 𝑧
′) =

∇𝜃ℒ𝜃(𝑧
′) · ∇𝜃ℒ𝜃(𝑧)

||∇𝜃ℒ𝜃(𝑧)||2
.

• precompute_grads: Whether to pre-compute the training set gradients during the fit step or not.

• backend: Backend framework. tensorflow or pytorch.

• device: pytorch device. For example cpu or cuda.

Fit

Fitting is straightforward, just passing the training set:

explainer.fit(X_train, y_train)

In this step, the dataset and the data input dimensions are stored as attributes of the class. If precompute_grads=True,
the gradients for all the training instances are computed and stored as attributes.

7.12. Similarity explanations 137

alibi Documentation, Release 0.9.5dev

Explanation

We can now explain the instance by running:

explanation = explainer.explain(X, y)

• X: Test instances to be explained.

• y: Target class (optional). This array can contain either a single entrance that is applied for all test instances or
multiple entrances, one for each test instance.

The returned explanation is a standard alibi explanation class with the following data attributes:

• scores: A numpy array with the similarity score for each train instance.

• ordered_indices: A numpy array with the indices corresponding to the train instances, ordered from the most
similar to the least similar.

• most_similar: A numpy array with the 5 most similar instances in the train set.

• least_similar: A numpy array with the 5 least similar instances in the train set.

Notes on usage

Fitting and train set

The GradientSimilarity will order the instances passed on the fit step based on the similarity with the instances
passed on the explain step, regardless of whether they have been used for training the model or not. In the examples
below we downsample the training set by picking a number of random instances in order to speed up the fit step.

Setting precompute_grads=True will speed up the computation during the explain step, but the fit step will require
considerably more time as the gradients for all the training instances are computed. It could also require a considerable
amount of memory for large datasets as all the gradients are stored as attributes of the class instance.

138 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

Similarity metrics

As reported in Hanawa et al. (2021), the grad_dot metrics fails the identical class test, meaning that not always the
most similar instances produced belong to the same class of the instance of interest. On the other hand, it is highly
likely that the most similar instances belong to the same class as the instance of interest when the grad_cos metric is
used. Note that an important feature of the cosine distance is the normalization coefficient which makes the method
insensitive to outliers (i.e. instances with large gradient norms) as illustrated in the following figure:

Left: 2D data instances (circles) and their corresponding gradients (arrows) for a model parametrized by two param-
eters; Right: gradient comparison.

Batch explanations

When a batch of instances is passed to explain, a naive loop over the instances is performed internally and the gradients
are calculated one instance at a time. This is due to limitations in the tensorflow and pytorch backends which
automatically aggregate the values of the gradients in a batch.

7.12.3 Examples

Similarity explanation on MNIST

Similarity explanation on ImageNet

Similarity explanation on 20 news groups

[source]

7.12. Similarity explanations 139

https://arxiv.org/pdf/2006.04528.pdf
../api/alibi.explainers.html#alibi.explainers.TreeShap

alibi Documentation, Release 0.9.5dev

7.13 Tree SHAP

Note
To enable SHAP support, you may need to run:

pip install alibi[shap]

7.13.1 Overview

The tree SHAP (SHapley Additive exPlanations) algorithm is based on the paper From local explanations to global
understanding with explainable AI for trees by Lundberg et al. and builds on the open source shap library from the
paper’s first author.

The algorithm provides human interpretable explanations suitable for regression and classification of models with tree
structure applied to tabular data. This method is a member of the additive feature attribution methods class; feature
attribution refers to the fact that the change of an outcome to be explained (e.g., a class probability in a classification
problem) with respect to a baseline (e.g., average prediction probability for that class in the training set) can be attributed
in different proportions to the model input features.

A simple illustration of the explanation process is shown in Figure 1. Here we see depicted a tree-based model which
takes as an input features such as Age, BMI or Blood pressure and outputs Mortality risk score, a continuous
value. Let’s assume that we aim to explain the difference between and observed outcome and no risk, corresponding to
a base value of 0.0. Using the Tree SHAP algorithm, we attribute the 4.0 difference to the input features. Because the
sum of the attribute values equals output - base value, this method is additive. We can see for example that the
Sex feature contributes negatively to this prediction whereas the remainder of the features have a positive contribution
(i.e., increase the mortality risk). For explaining this particular data point, the Blood Pressure feature seems to have
the largest effect, and corresponds to an increase in the mortality risk. See our example on how to perform explanations
with this algorithm and visualise the results using the shap library visualisations here and here.

Figure 1: Cartoon ilustration of explanation models with Tree SHAP.

Image Credit: Scott Lundberg (see source here)

140 Chapter 7. Methods

https://www.nature.com/articles/s42256-019-0138-9
https://www.nature.com/articles/s42256-019-0138-9
https://github.com/slundberg/shap
https://www.nature.com/articles/s42256-019-0138-9

alibi Documentation, Release 0.9.5dev

7.13.2 Usage

In order to compute the shap values , the following arguments can optionally be set when calling the explain method:

• interactions: set to True to decompose the shap value of every feature for every example into a main effect
and interaction effects

• approximate: set to True to calculate an approximation to shap values (see our example)

• check_additivity: if the explainer is initialised with model_output = raw and this option is True the
explainer checks that the sum of the shap values is equal to model output - expected value

• tree_limit: it an int is passed, an ensemble formed of only tree_limit trees is explained

If the dataset contains categorical variables that have been encoded before being passed to the explainer and a single
shap value is desired for each categorical variable, the the following options should be specified:

• summarise_result: set to True

• cat_vars_start_idx: a sequence of integers containing the column indices where categorical variables
start. If the feature matrix contains a categorical feature starting at index 0 and one at index 10, then
cat_vars_start_idx=[0, 10]

• cat_vars_enc_dim: a list containing the dimension of the encoded categorical variables. The number of
columns specified in this list is summed for each categorical variable starting with the corresponding index
in cat_vars_start_idx. So if cat_vars_start_idx=[0, 10] and cat_vars_enc_dim=[3, 5], then the
columns with indices 0, 1 and 2 and 10, 11, 12, 13 and 14 will be combined to return one shap value for
each categorical variable, as opposed to 3 and 5.

Path-dependent feature perturbation algorithm

Initialiastion and fit

The explainer is initialised with the following agruments:

• a model, which could be an sklearn, xgboost, catboost or lightgbm model. Note that some of the models
in these packages or models trained with specific objectives may not be supported. In particular, passing raw
strings as categorical levels for catboost and lightgbm is not supported

• model_output should always default to raw for this algorithm

• optionally, set task to 'classification' or 'regression' to indicate the type of prediction the model
makes. If set to regression the prediction field of the response is empty

• optionally, a list of feature names via feature_names. This is used to provide information about feature impor-
tances in the response

• optionally, a dictionary, category_names, that maps the columns of the categorical variables to a list of strings
representing the names of the categories. This may be used for visualisation in the future.

from alibi.explainers import TreeShap

explainer = TreeShap(
model,
feature_names=['size', 'age'],
categorical_names={0: ['S', 'M', 'L', 'XL', 'XXL']}

)

For this algorithm, fit is called with no arguments:

7.13. Tree SHAP 141

alibi Documentation, Release 0.9.5dev

explainer.fit()

Explanation

To explain an instance X, we simply pass it to the explain method:

explanation = explainer.explain(X)

The returned explanation object has the following fields:

• explanation.meta:

{'name': 'TreeShap',
'type': ['whitebox'],
'task': 'classification',
'explanations': ['local', 'global'],
'params': {'summarise_background': False, 'algorithm': 'tree_path_dependent' ,'kwargs':
→˓{}}
}

This field contains metadata such as the explainer name and type as well as the type of explanations this method can
generate. In this case, the params attribute shows the Tree SHAP variant that will be used to explain the model in the
algorithm attribute.

• explanation.data:

data={'shap_values': [
array([[5.0661433e-01, 2.7620478e-02],
[-4.1725192e+00, 4.4859368e-03],
[4.1338313e-01, -5.5618007e-02]],

dtype=float32)
],
'shap_interaction_values': [array([], dtype=float64)],
'expected_value': array([-0.06472124]),
'model_output': 'raw',
'categorical_names': {0: ['S', 'M', 'L', 'XL', 'XXL']},
'feature_names': ['size', 'age'],
'raw': {

'raw_prediction': array([-0.73818872, -8.8434663 , -3.24204564]),
'loss': [],
'prediction': array([0, 0, 0]),
'instances': array([[0, 23],
[4, 55],
[2, 43]]),
'labels': array([], dtype=float64),
'importances': {

'0': {
'ranked_effect': array([1.6975055 , 1.3598266], dtype=float32),
'names': [

'size',
'age',

]
},

(continues on next page)

142 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

(continued from previous page)

'aggregated': {
'ranked_effect': array([1.6975055 , 1.3598266], dtype=float32),
'names': [

'size',
'age',

]
}

}
}

}

This field contains:

• shap_values: a list of length equal to the number of model outputs, where each entry is an array of dimension
samples x features of shap values. For the example above , 3 instances with 2 features has been explained so the
shap values for each class are of dimension 3 x 2

• shap_interaction_values: an empty list since this interactions was set to False in the explain call

• expected_value: an array containing expected value for each model output

• model_output: raw indicates that the model raw output was explained, the only option for the path dependent
algorithm

• feature_names: a list with the feature names

• categorical_names: a mapping of the categorical variables (represented by indices in the shap_values
columns) to the description of the category

• raw: this field contains:

– raw_prediction: a samples x n_outputs array of predictions for each instance to be explained.

– prediction: an array containing the index of the maximum value in the raw_prediction array

– instances: a samples x n_features array of instances which have been explained

– labels: an array containing the labels for the instances to be explained

– importances: a dictionary where each entry is a dictionary containing the sorted average magnitude of the
shap value (ranked_effect) along with a list of feature names corresponding to the re-ordered shap values
(names). There are n_outputs + 1 keys, corresponding to n_outputs and the aggregated output (obtained by
summing all the arrays in shap_values)

Please see our examples on how to visualise these outputs using the shap library visualisations library visualisations
here and here.

Shapley interaction values

Initialisation and fit

Shapley interaction values can only be calculated using the path-dependent feature perturbation algorithm in this re-
lease, so no arguments are passed to the fit method:

explainer = TreeShap(
model,
model_output='raw',

(continues on next page)

7.13. Tree SHAP 143

alibi Documentation, Release 0.9.5dev

(continued from previous page)

)

explainer.fit()

Explanation

To obtain the Shapley interaction values, the explain method is called with the option interactions=True:

explanation = explainer.explain(X, interactions=True)

The explanation contains a list with the shap interaction values for each model output in the
shap_interaction_values field of the data property.

Interventional feature perturbation algorithm

Explaining model output

Initialiastion and fit

explainer = TreeShap(
model,
model_output='raw',

)

explainer.fit(X_reference)

Model output can be set to model_output='probability' to explain models which return probabilities. Note that
this requires the model to be trained with specific objectives. Please the footnote to our path-dependent feature pertur-
bation example for an example of how to set the model training objective in order to explain probability outputs.

Explanation

To explain instances in X, the explainer is called as follows:

explanation = explainer.explain(X)

Explaining loss functions

Initialisation and fit

To explain loss function, the following configuration and fit steps are necessary:

explainer = TreeShap(
model,
model_output='log_loss',

)
(continues on next page)

144 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

(continued from previous page)

explainer.fit(X_reference)

Only square loss regression objectives and cross-entropy classification objectives are supported in this release.

Explanation

Note that the labels need to be passed to the explain method in order to obtain the explanation:

explanation = explainer.explain(X, y)

Miscellaneous

Runtime considerations

Adjusting the size of the reference dataset

The algorithm automatically warns the user if a background dataset size of more than 1000 samples is passed. If the
runtime of an explanation with the original dataset is too large, then the algorithm can automatically subsample the
background dataset during the fit step. This can be achieve by specifying the fit step as

explainer.fit(
X_reference,
summarise_background=True,
n_background_samples=300,

)

or

explainer.fit(
X_reference,
summarise_background='auto'

)

The auto option will select 1000 examples, whereas using the boolean argument allows the user to directly control the
size of the reference set. If categorical variables are specified, the algorithm uses subsampling of the data. Otherwise,
a kmeans clustering algorithm is used to select the background dataset.

As describe above, the explanations are performed with respect to the expected output over this dataset so the shap values
will be affected by the dataset selection. We recommend experimenting with various ways to choose the background
dataset before deploying explanations.

7.13. Tree SHAP 145

alibi Documentation, Release 0.9.5dev

7.13.3 Theoretical overview

Recall that, for a model 𝑓 , the Kernel SHAP algorithm [1] explains a certain outcome with respect to a chosen reference
(or an expected value) by estimating the shap values of each feature 𝑖 from {1, ...,𝑀}, as follows:

• enumerate all subsets 𝑆 of the set 𝐹 ∖ {𝑖}

• for each 𝑆 ⊆ 𝐹 ∖ {𝑖}, compute the contribution of feature 𝑖 as 𝐶(𝑖|𝑆) = 𝑓(𝑆 ∪ {𝑖})− 𝑓(𝑆)

• compute the shap value according to

𝜑𝑖 :=
1

𝑀

∑︁
𝑆⊆𝐹∖{𝑖}

1(︀
𝑀−1
|𝑆|
)︀𝐶(𝑖|𝑆). (1)

Since most models do not accept arbitrary patterns of missing values at inference time, 𝑓(𝑆) needs to be approximated.
The original formulation of the Kernel Shap algorithm [1] proposes to compute 𝑓(𝑆) as the observational conditional
expectation

𝑓(𝑆) := E [𝑓(x𝑆 ,X𝑆 |X𝑆 = x𝑆)] (2)

where the expectation is taken over a background dataset, 𝒟, after conditioning. Computing this expectation involves
drawing sufficiently many samples from X𝑆 for every sample from X𝑆 , which is expensive. Instead, (2) is approxi-
mated by

𝑓(𝑆) := E [𝑓(x𝑆 ,X𝑆)]

where features in a subset 𝑆 are fixed and features in 𝑆 are sampled from the background dataset. This quantity is
referred to as marginal or interventional conditional expectation, to emphasise that setting features in 𝑆 to the values
x𝑆 can be viewed as an intervention on the instance to be explained.

As described in [2], if estimating impact of a feature 𝑖 on the function value by E [𝑓 |𝑋𝑖 = 𝑥𝑖], one should bear in mind
that observing 𝑋𝑖 = 𝑥𝑖 changes the distribution of the features 𝑋𝑗 ̸=𝑖 if these variables are correlated. Hence, if the
conditional expectation if used to estimate 𝑓(𝑆), the Shapley values might not be accurate since they also depend on the
remaining variables, effect which becomes important if there are strong correlations amongst the independent variables.
Furthermore, the authors show that estimating 𝑓(𝑆) using the conditional expectation violates the sensitivity principle,
according to which the Shapley value of a redundant variable should be 0. On the other hand, the intervention breaks
the dependencies, ensuring that the sensitivity holds. One potential drawback of this method is that setting a subset of
values to certain values without regard to the values of the features in the complement (i.e., 𝑆) can generate instances
that are outside the training data distribution, which will affect the model prediction and hence the contributions.

The following sections detail how these methods work and how, unlike Kernel SHAP, compute the exact shap values
in polynomial time. The algorithm estimating contributions using interventional expectations is presented, with the
remaining sections being dedicated to presenting an approximate algorithm for evaluating the interventional expectation
that does not require a background dataset and Shapley interaction values.

Interventional feature perturbation

The interventional feature perturbation algorithm provides an efficient way to calculate the expectation 𝑓(𝑆) :=
E [𝑓(x𝑆 ,X𝑆)] for all possible subsets 𝑆, and to combine these values according to equation (1) in order to obtain
the Shapley value. Intuitively, one can proceed as follows:

• choose a background sample 𝑟 ∈ 𝒟

• for each feature 𝑖, enumerate all subsets 𝑆 ⊆ 𝐹 ∖ {𝑖}

• for each such subset, 𝑆, compute 𝑓(𝑆) by traversing the tree with a hybrid sample where the features in 𝑆 are
replaced by their corresponding values in 𝑟

146 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

• combine results according to equation (1)

If 𝑅 samples from the background distribution are used, then the complexity of this algorithm is 𝑂(𝑅𝑀2𝑀) since we
perform 2𝑀 enumerations for each of the 𝑀 features, 𝑅 times. The key insight into this algorithm is that multiple
hybrid samples will end up traversing identical paths and that this can be avoided if the shap values’ calculation is
reformulated as a summation over the paths in the tree (see [4] for a proof):

𝜑𝑖 =
∑︁
𝑃

𝜑𝑃
𝑖

where the summation is over paths 𝑃 in the tree descending from 𝑖. The value and sign of the contribution of each path
descending through a node depends on whether the split from the node is due to a foreground or a background feature,
as explained in the practical example below.

Computing contributions with interventional Tree SHAP: a practical example.

Figure 2: Ilustration of the feature contribution and expected value estimation process using interventional perturbation
Tree SHAP. The positive and the negative contributions of a node are represented in green and red, respectively.

In the figure above, the paths followed due the instance to be explained 𝑥 are coloured in red, paths followed due to the
background sample in red, and common paths in yellow.

The instance to be explained is perturbed using a reference sample by the values of the features 𝐹1, 𝐹3 and 𝐹5 in 𝑥
with the corresponding values in 𝑟. This process gives the name of the algorithm since following the paths indicated
by the background sample is akin to intervening on the instance to be explained with features from the background
sample. Therefore, one defines the set 𝐹 in the previous section as 𝐹 = {𝑗 : 𝑥𝑗 ̸= 𝑟𝑗} for this case. Note that these are
the only features for which one can estimate a contribution given this background sample; the same path is followed
for features 𝐹2 and 𝐹4 for both the original and the perturbed sample, so these features do not contribute to explain
the difference between the observed outcome (𝑣6) and the outcome that would have been observed if the tree had been
traversed according to the reference (𝑣10).

7.13. Tree SHAP 147

alibi Documentation, Release 0.9.5dev

Considering the structure of the tree for the given 𝑥 and 𝑟 together with equation (1) reveals that the left subtree can be
traversed to compute the negative terms in the summation whereas the right subtree will provide positive terms. This
is because the nodes in the left subtree can only be reached if 𝐹1 takes the value from the background sample, that
is, only 𝐹1 is missing. Because 𝐹2 and 𝐹4 do not contribute to explaining 𝑓(𝑥)− 𝑓(𝑟), the negative contribution of
the left subtree will be equal to the negative contribution of node 8. This node sums two negative components: one
when the downstream feature 𝐹5 is also missing (corresponding to evaluating 𝑓 at 𝑆 = ∅) and one when 𝐹5 is present
(corresponding to evaluating 𝑓 at 𝑆 = {𝐹5}). These negative values are weighted according to the combinatorial
factor in equation (1). By a similar reasoning, the nodes in the right subtree are reached only if 𝐹1 is present and they
provide the positive terms for the shap value computation. Note that the combinatorial factor in (1) should be evaluated
with |𝑆| ← |𝑆| − 1 for positive contributions since |𝑆| is increased by 1 because of the feature whose contribution is
calculated is present in the right subtree.

A similar reasoning is applied to compute the contributions of the downstream nodes. For example, to estimate the
contribution of𝐹5, one considers a set𝑆 = ∅ and observes the value of node 10, and weighs that with the combinatorial
factor from equation (1)where𝑀−1 = 1 and |𝑆| = 0 (because there are no features present on the path) and a positive
contribution from node 9 weighted by the same combinatorial factor (because 𝑆 = {𝐹5} so |𝑆| − 1 = 0).

To summarise, the efficient algorithm relies on the following key ideas:

• each node in the tree is assigned a positive contribution reflecting membership of the splitting feature in a subset
𝑆 and a negative contribution to indicate the feature is missing (𝑖 ∈ 𝑆)

• the positive and negative contributions of a node can be computed by summing the positive and negative con-
tributions of the children nodes, in keeping with the fact that the Shapley value can be computed by summing a
contribution from each path the feature is on

• to compute the contribution of a feature at a node, one adds a positive contribution from the node reached by
splitting on the feature from the instance to be explained and a negative contribution from the node reached by
splitting on the feature in the background sample

• features for which the instance to be explained and the reference follow the same path are assigned 0 contribution.

Explaining loss functions

One advantage of the interventional approach is that it allows to approximately transform the shap values to account for
nonlinear transformation of outputs, such as the loss function. Recall that given 𝜑𝑖, ..., 𝜑𝑀 the local accuracy property
guarantees that given 𝜑0 = E[𝑓(𝑥)]

𝑓(𝑥) = 𝜑0 +

𝑀∑︁
𝑖=1

𝜑𝑖. (3)

Hence, in order to account for the effect of the nonlinear transformation ℎ, one has to find the functions 𝑔0, ..., 𝑔𝑀 such
that

ℎ(𝑓(𝑥)) = 𝑔(𝜑0) +

𝑀∑︁
𝑖=1

𝑔𝑖(𝜑𝑖) (4)

For simplicity, let 𝑦 = ℎ(𝑥). Then using a first-order Taylor series expansion around E[𝑦] one obtains

ℎ(𝑦) ≈ ℎ(E[𝑦]) +
𝜕ℎ(𝑦)

𝜕𝑦

⃒⃒⃒
𝑦=E[𝑦]

(𝑦 − E[𝑦]). (5)

Substituting (3) in (5) and comparing coefficients with (4) yields

148 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

𝑔0 ≈ ℎ(E[𝑦])

𝑔𝑖 ≈ 𝜑𝑖
𝜕ℎ(𝑦)

𝜕𝑦

⃒⃒⃒
𝑦=E[𝑦]

.

Hence, an approximate correction is given by simply scaling the shap values using the gradient of the nonlinear function.
Note that in practice one may take the Taylor series expansion at a reference point 𝑟 from the background dataset and
average over the entire background dataset to compute the scaling factor. This introduces an additional source of noise
since ℎ(E[𝑦]) = E[ℎ(𝑦)] only when ℎ is linear.

Computational complexity

For a single foreground and background sample and a single tree, the algorithm runs in 𝑂(𝐿𝐷) time. Thus, using 𝑅
background samples and a model containing 𝑇 trees, yields a complexity of 𝑂(𝑇𝑅𝐿𝐷).

Path dependent feature perturbation

Another way to approximate equation (2) to compute 𝑓(𝑆) given an instance 𝑥 and a set of missing features 𝑆 is to
recursively follow the decision path through the tree and:

• return the node value if a split on a feature 𝑖 ∈ 𝑆 is performed

• take a weighted average of the values returned by children if 𝑖 ∈ 𝑆, where the weighing factor is equal to the
proportion of training examples flowing down each branch. This proportion is a property of each node, sometimes
referred to as weight or cover and measures how important is that node with regard to classifying the training
data.

Therefore, in the path-dependent perturbation method, we compute the expectations with respect to the training data
distribution by weighting the leaf values according to the proportion of the training examples that flow to that leaf.

To avoid repeating the above recursion 𝑀2𝑀 times, one first notices that for a single decision tree, applying a pertur-
bation would result in the sample ending up in a different leaf. Therefore, following each path from the root to a leaf
in the tree is equivalent to perturbing subsets of features of varying cardinalities. Consequently, each leaf will contain
a certain proportion of all possible subsets 𝑆 ⊆ 𝐹 . Therefore, to compute the shap values, the following quantities are
computed at each leaf, for every feature :math:`i` on the path leading to that leaf :

• the proportion of subsets 𝑆 at the leaf that contain 𝑖 and the proportion of subsets 𝑆 that do not contain 𝑖

• for each cardinality, the proportion of the sets of that cardinality contained at the leaf. Tracking each cardinality
as opposed to a single count of subsets falling into a given leaf is necessary since it allows to apply the weighting
factor in equation (1), which depends on the subset size, |𝑆|.

This intuition can be summarised as follows:

𝜑𝑖 :=

𝐿∑︁
𝑗=1

∑︁
𝑃∈𝑆𝑗

𝑤(|𝑃 |, 𝑗)
𝑀𝑗

(︀𝑀𝑗−1
|𝑃 |

)︀ (𝑝𝑖,𝑗𝑜 − 𝑝𝑖,𝑗𝑧)𝑣𝑗 (6)

where 𝑆𝑗 is the set of present feature subsets at leaf 𝑗, 𝑀𝑗 is the length of the path and 𝑤(|𝑃 |, 𝑗) is the proportion of all
subsets of cardinality 𝑃 at leaf 𝑗, 𝑝𝑖,𝑗𝑜 and 𝑝𝑖,𝑗𝑧 represent the fractions of subsets that contain or do not contain feature 𝑖
respectively.

7.13. Tree SHAP 149

alibi Documentation, Release 0.9.5dev

Computational complexity

Using the above quantities, one can compute the contribution of each leaf to the Shapley value of every feature. This
algorithm has complexity 𝑂(𝑇𝐿𝐷2) for an ensemble of trees where 𝐿 is the number of leaves, 𝑇 the number of trees
in the ensemble and 𝐷 the maximum tree depth. If the tree is balanced, then 𝐷 = log𝐿 and the complexity of our
algorithm is 𝑂(𝑇𝐿 log2 𝐿)

Expected value for the path-dependent perturbation algorithm

Note that although a background dataset is not provided, the expected value is computed using the node cover infor-
mation, stored at each node. The computation proceeds recursively, starting at the root. The contribution of a node to
the expected value of the tree is a function of the expected values of the children and is computed as follows:

𝑐𝑗 =
𝑐𝑟(𝑗)𝑟𝑟(𝑗) + 𝑐𝑙(𝑗)𝑟𝑙(𝑗)

𝑟𝑗

where 𝑗 denotes the node index, 𝑐𝑗 denotes the node expected value, 𝑟𝑗 is the cover of the 𝑗th node and 𝑟(𝑗) and 𝑙(𝑗)
represent the indices of the right and left children, respectively. The expected value used by the tree is simply 𝑐𝑟𝑜𝑜𝑡.
Note that for tree ensembles, the expected values of the ensemble members is weighted according to the tree weight
and the weighted expected values of all trees are summed to obtain a single value.

The cover depends on the objective function and the model chosen. For example, in a gradient boosted tree trained
with squared loss objective, 𝑟𝑗 is simply the number of training examples flowing through 𝑗. For an arbitrary objective,
this is the sum of the Hessian of the loss function evaluated at each point flowing through 𝑗, as explained here.

Shapley interaction values

While the Shapley values provide a solution to the problem of allocating a function variation to the input features, in
practice it might be of interest to understand how the importance of a feature depends on the other features. The Shapley
interaction values can solve this problem, by allocating the change in the function amongst the individual features (main
effects) and all pairs of features (interaction effects). Thus, they are defined as

Φ𝑖,𝑗(𝑓, 𝑥) =
∑︁

𝑆⊆𝐹∖{𝑖,𝑗}

1

2|𝑆|
(︀
𝑀−1
|𝑆|−1

)︀∇𝑖𝑗(𝑓, 𝑥, 𝑆), 𝑖 ̸= 𝑗 (7)

and

∇𝑖𝑗(𝑓, 𝑥, 𝑆) = 𝑓𝑥(𝑆 ∪ {𝑖, 𝑗})− 𝑓𝑥(𝑆 ∪ {𝑗})⏟ ⏞
𝑗 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

− [𝑓𝑥(𝑆 ∪ {𝑖})− 𝑓𝑥(𝑆)]⏟ ⏞
𝑗 𝑛𝑜𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

. (8)

Therefore, the interaction of features 𝑖 and 𝑗 can be computed by taking the difference between the shap values of 𝑖
when 𝑗 is present and when 𝑗 is not present. The main effects are defined as

Φ𝑖,𝑖(𝑓, 𝑥) = 𝜑𝑖(𝑓, 𝑥)−
∑︁
𝑖 ̸=𝑗

Φ𝑖,𝑗(𝑓, 𝑥),

Setting Φ0,0 = 𝑓𝑥(∅) yields the local accuracy property for Shapley interaction values:

𝑓(𝑥) =

𝑀∑︁
𝑖=0

𝑀∑︁
𝑗=0

Φ𝑖,𝑗 .(𝑓, 𝑥)

.

The interaction is split equally between feature 𝑖 and 𝑗, which is why the division by two appears in equation (7). The
total interaction effect is defined as Φ𝑖,𝑗(𝑓, 𝑥) + Φ𝑗,𝑖(𝑓, 𝑥).

150 Chapter 7. Methods

alibi Documentation, Release 0.9.5dev

Computational complexity

According to equation (8), the interaction values can be computed by applying either the interventional or path-
dependent feature perturbation algorithm twice: once by fixing the value of feature 𝑗 to 𝑥𝑗 and computing the shapley
value for feature 𝑖 in this configuration, and once by fixing 𝑥𝑗 to a “missing” value and performing the same compu-
tation. Thus, the interaction values can be computed in 𝑂(𝑇𝑀𝐿𝐷2) with the path-dependent perturbation algorithm
and 𝑂(𝑇𝑀𝐿𝐷𝑅) with the interventional feature perturbation algorithm.

Comparison to other methods

Tree-based models are widely used in areas where model interpretability is of interest because node-level statistics
gathered from the training data can be used to provide insights into the behaviour of the model across the training
dataset, providing a global explanation technique. As shown in our example, considering different statistics gives rise
to different importance rankings. As discussed in [1] and [3], depending on the statistic chosen, feature importances
derived from trees are not consistent, meaning that a model where a feature is known to have a bigger impact might
fail to have a larger importance. As such, feature importances cannot be compared across models. In contrast, both the
path-dependent and interventional perturbation algorithms tackle this limitation.

In contrast to feature importances derived from tree statistics, the Tree SHAP algorithms can also provide local ex-
planations, allowing the identification of features that are globally “not important”, but can affect specific outcomes
significantly, as might be the case in healthcare applications. Additionally, it provides a means to succinctly summarise
the effect magnitude and direction (positive or negative) across potentially large samples. Finally, as shown in [1] (see
here, p. 26), averaging the instance-level shap values importance to derive a global score for each feature can result in
improvements in feature selection tasks.

Another method to derive instance-level explanations for tree-based model has been proposed by Sabaas here. This
feature attribution method is similar in spirit to Shapley value, but does not account for the effect of variable order as
explained here (pp. 10-11) as well as not satisfying consistency ([3]).

Finally, both Tree SHAP algorithms exploit model structure to provide exact Shapley values computation albeit us-
ing different estimates for the effect of missing features, achieving explanations in low-order polynomial time. The
KernelShap method relies on post-hoc (black-box) function modelling and approximations to approximate the same
quantities and given enough samples has been shown to to the exact values (see experiments here and our example).
Our Kernel SHAP documentation provides comparisons of feature attribution methods based on Shapley values with
other algorithms such as LIME and anchors.

7.13.4 References

[1] Lundberg, S.M. and Lee, S.I., 2017. A unified approach to interpreting model predictions. In Advances in neural
information processing systems (pp. 4765-4774).

[2] Janzing, D., Minorics, L. and Blöbaum, P., 2019. Feature relevance quantification in explainable AI: A causality
problem. arXiv preprint arXiv:1910.13413.

[3] Lundberg, S.M., Erion, G.G. and Lee, S.I., 2018. Consistent individualized feature attribution for tree ensembles.
arXiv preprint arXiv:1802.03888.

[4] Chen, H., Lundberg, S.M. and Lee, S.I., 2018. Understanding Shapley value explanation algorithms for trees. Under
review for publication in Distill, draft available here.

7.13. Tree SHAP 151

https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-019-0138-9/MediaObjects/42256_2019_138_MOESM1_ESM.pdf
https://github.com/andosa/treeinterpreter
https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-019-0138-9/MediaObjects/42256_2019_138_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-019-0138-9/MediaObjects/42256_2019_138_MOESM1_ESM.pdf
https://hughchen.github.io/its_blog/index.html

alibi Documentation, Release 0.9.5dev

7.13.5 Examples

Path-dependent Feature Perturbation Tree SHAP

Explaing tree models with path-dependent feature perturbation Tree SHAP

Interventional Feature Perturbation Tree SHAP

Explaing tree models with path-dependent feature perturbation Tree SHAP

152 Chapter 7. Methods

CHAPTER

EIGHT

EXAMPLES

8.1 Alibi Overview Example

This notebook aims to demonstrate each of the explainers Alibi provides on the same model and dataset. Unfortunately,
this isn’t possible as white-box neural network methods exclude tree-based white-box methods. Hence we will train
both a neural network(TensorFlow) and a random forest model on the same dataset and apply the full range of explainers
to see what insights we can obtain.

The results and code from this notebook are used in the documentation overview.

This notebook requires the seaborn package for visualization which can be installed via pip:

Note
To enusre all dependencies are met for this example, you may need to run

pip install alibi[all]

[2]: !pip install -q seaborn

[3]: import requests
from io import BytesIO, StringIO
from io import BytesIO
from zipfile import ZipFile

import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
import seaborn as sns
sns.set(rc={'figure.figsize':(11.7,8.27)})

import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import joblib
import os.path

import tensorflow as tf
np.random.seed(0)

(continues on next page)

153

alibi Documentation, Release 0.9.5dev

(continued from previous page)

tf.random.set_seed(0)

FROM_SCRATCH = False
TF_MODEL_FNAME = 'tf-clf-wine'
RFC_FNAME = 'rfc-wine'
ENC_FNAME = 'wine_encoder'
DEC_FNAME = 'wine_decoder'

8.1.1 Preparing the data.

We’re using the wine-quality dataset, a numeric tabular dataset containing features that refer to the chemical compo-
sition of wines and quality ratings. To make this a simple classification task, we bucket all wines with ratings greater
than five as good, and the rest we label bad. We also normalize all the features.

[4]: def fetch_wine_ds():
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/

→˓winequality-red.csv'
resp = requests.get(url, timeout=2)
resp.raise_for_status()
string_io = StringIO(resp.content.decode('utf-8'))
return pd.read_csv(string_io, sep=';')

[5]: df = fetch_wine_ds()

[6]: df['class'] = 'bad'
df.loc[(df['quality'] > 5), 'class'] = 'good'

features = [
'fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',
'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density',
'pH', 'sulphates', 'alcohol'

]

df['good'] = 0
df['bad'] = 0
df.loc[df['class'] == 'good', 'good'] = 1
df.loc[df['class'] == 'bad', 'bad'] = 1

data = df[features].to_numpy()
labels = df[['class','good', 'bad']].to_numpy()

X_train, X_test, y_train, y_test = train_test_split(data, labels, random_state=0)
X_train, X_test = X_train.astype('float32'), X_test.astype('float32')
y_train_lab, y_test_lab = y_train[:, 0], y_test[:, 0]
y_train, y_test = y_train[:, 1:].astype('float32'), y_test[:, 1:].astype('float32')

scaler = StandardScaler()
scaler.fit(X_train)

[6]: StandardScaler()

154 Chapter 8. Examples

https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/

alibi Documentation, Release 0.9.5dev

Select good wine instance

We partition the dataset into good and bad portions and select an instance of interest. I’ve chosen it to be a good quality
wine.

Note that bad wines are class 1 and correspond to the second model output being high, whereas good wines are class
0 and correspond to the first model output being high.

[7]: bad_wines = np.array([a for a, b in zip(X_train, y_train) if b[1] == 1])
good_wines = np.array([a for a, b in zip(X_train, y_train) if b[1] == 0])
x = np.array([[9.2, 0.36, 0.34, 1.6, 0.062, 5., 12., 0.99667, 3.2, 0.67, 10.5]]) #␣
→˓prechosen instance

8.1.2 Training models

Creating an Autoencoder

For some of the explainers, we need an autoencoder to check whether example instances are close to the training data
distribution or not.

[8]: from tensorflow.keras.layers import Dense
from tensorflow import keras

ENCODING_DIM = 7
BATCH_SIZE = 64
EPOCHS = 100

class AE(keras.Model):
def __init__(self, encoder: keras.Model, decoder: keras.Model, **kwargs) -> None:

super().__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder

def call(self, x: tf.Tensor, **kwargs):
z = self.encoder(x)
x_hat = self.decoder(z)
return x_hat

def make_ae():
len_input_output = X_train.shape[-1]

encoder = keras.Sequential()
encoder.add(Dense(units=ENCODING_DIM*2, activation="relu", input_shape=(len_input_

→˓output,)))
encoder.add(Dense(units=ENCODING_DIM, activation="relu"))

decoder = keras.Sequential()
decoder.add(Dense(units=ENCODING_DIM*2, activation="relu", input_shape=(ENCODING_DIM,

→˓)))
decoder.add(Dense(units=len_input_output, activation="linear"))

(continues on next page)

8.1. Alibi Overview Example 155

alibi Documentation, Release 0.9.5dev

(continued from previous page)

ae = AE(encoder=encoder, decoder=decoder)

ae.compile(optimizer='adam', loss='mean_squared_error')
history = ae.fit(

scaler.transform(X_train),
scaler.transform(X_train),
batch_size=BATCH_SIZE,
epochs=EPOCHS,
verbose=False,)

loss = history.history['loss']
plt.plot(loss)
plt.xlabel('Epoch')
plt.ylabel('MSE-Loss')

ae.encoder.save(f'{ENC_FNAME}.h5')
ae.decoder.save(f'{DEC_FNAME}.h5')
return ae

def load_ae_model():
encoder = load_model(f'{ENC_FNAME}.h5')
decoder = load_model(f'{DEC_FNAME}.h5')
return AE(encoder=encoder, decoder=decoder)

Random Forest Model

We need a tree-based model to get results for the tree SHAP explainer. Hence we train a random forest on the wine-
quality dataset.

[9]: from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, f1_score

def make_rfc():
rfc = RandomForestClassifier(n_estimators=50)
rfc.fit(scaler.transform(X_train), y_train_lab)
y_pred = rfc.predict(scaler.transform(X_test))

print('accuracy_score:', accuracy_score(y_pred, y_test_lab))
print('f1_score:', f1_score(y_test_lab, y_pred, average=None))

joblib.dump(rfc, f"{RFC_FNAME}.joblib")
return rfc

def load_rfc_model():
return joblib.load(f"{RFC_FNAME}.joblib")

156 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Tensorflow Model

Finally, we also train a TensorFlow model.

[10]: from tensorflow import keras
from tensorflow.keras import layers

def make_tf_model():
inputs = keras.Input(shape=X_train.shape[1])
x = layers.Dense(6, activation="relu")(inputs)
outputs = layers.Dense(2, activation="softmax")(x)
model = keras.Model(inputs, outputs)

model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=['accuracy
→˓'])

history = model.fit(
scaler.transform(X_train),
y_train,
epochs=30,
verbose=False,
validation_data=(scaler.transform(X_test), y_test),

)

y_pred = model(scaler.transform(X_test)).numpy().argmax(axis=1)
print('accuracy_score:', accuracy_score(y_pred, y_test.argmax(axis=1)))
print('f1_score:', f1_score(y_pred, y_test.argmax(axis=1), average=None))

model.save(f'{TF_MODEL_FNAME}.h5')
return model

def load_tf_model():
return load_model(f'{TF_MODEL_FNAME}.h5')

Load/Make models

We save and load the same models each time to ensure stable results. If they don’t exist we create new ones. If you
want to generate new models on each notebook run, then set FROM_SCRATCH=True.

[11]: if FROM_SCRATCH or not os.path.isfile(f'{TF_MODEL_FNAME}.h5'):
model = make_tf_model()
rfc = make_rfc()
ae = make_ae()

else:
rfc = load_rfc_model()
model = load_tf_model()
ae = load_ae_model()

accuracy_score: 0.74
f1_score: [0.75471698 0.72340426]
accuracy_score: 0.815
f1_score: [0.8 0.82790698]
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be␣
→˓built. `model.compile_metrics` will be empty until you train or evaluate the model.

(continues on next page)

8.1. Alibi Overview Example 157

alibi Documentation, Release 0.9.5dev

(continued from previous page)

WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be␣
→˓built. `model.compile_metrics` will be empty until you train or evaluate the model.

8.1.3 Util functions

These are utility functions for exploring results. The first shows two instances of the data side by side and compares
the difference. We’ll use this to see how the counterfactuals differ from their original instances. The second function
plots the importance of each feature. This will be useful for visualizing the attribution methods.

[12]: def compare_instances(x, cf):
"""
Show the difference in values between two instances.
"""
x = x.astype('float64')
cf = cf.astype('float64')
for f, v1, v2 in zip(features, x[0], cf[0]):

print(f'{f:<25} instance: {round(v1, 3):^10} counter factual: {round(v2, 3):^10}␣
→˓difference: {round(v1 - v2, 7):^5}')

def plot_importance(feat_imp, feat_names, class_idx, **kwargs):
"""
Create a horizontal barchart of feature effects, sorted by their magnitude.
"""

df = pd.DataFrame(data=feat_imp, columns=feat_names).sort_values(by=0, axis='columns
→˓')

feat_imp, feat_names = df.values[0], df.columns
fig, ax = plt.subplots(figsize=(10, 5))
y_pos = np.arange(len(feat_imp))
ax.barh(y_pos, feat_imp)
ax.set_yticks(y_pos)
ax.set_yticklabels(feat_names, fontsize=15)
ax.invert_yaxis()
ax.set_xlabel(f'Feature effects for class {class_idx}', fontsize=15)
return ax, fig

8.1.4 Local Feature Attribution

Integrated Gradients

The integrated gradients (IG) method computes the attribution of each feature by integrating the model partial deriva-
tives along a path from a baseline point to the instance. This accumulates the changes in the prediction that occur due
to the changing feature values. These accumulated values represent how each feature contributes to the prediction for
the instance of interest.

We illustrate the application of IG to the instance of interest.

[13]: from alibi.explainers import IntegratedGradients

ig = IntegratedGradients(model,
(continues on next page)

158 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

layer=None,
method="gausslegendre",
n_steps=50,
internal_batch_size=100)

result = ig.explain(scaler.transform(x), target=0)

plot_importance(result.data['attributions'][0], features, '"good"')

/home/alex/.local/lib/python3.8/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress␣
→˓not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/
→˓en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm

[13]: (<AxesSubplot:xlabel='Feature effects for class "good"'>,
<Figure size 720x360 with 1 Axes>)

Kernel SHAP

Kernel SHAP is a method for computing the Shapley values of a model around an instance. Shapley values are a
game-theoretic method of assigning payout to players depending on their contribution to an overall goal. In our case,
the features are the players, and the payouts are the attributions.

Here we give an example of Kernel SHAP method applied to the Tensorflow model.

[14]: from alibi.explainers import KernelShap

predict_fn = lambda x: model(scaler.transform(x))

explainer = KernelShap(predict_fn, task='classification')

explainer.fit(X_train[0:100])

result = explainer.explain(x)
(continues on next page)

8.1. Alibi Overview Example 159

alibi Documentation, Release 0.9.5dev

(continued from previous page)

plot_importance(result.shap_values[0], features, 0)

100%|==========| 1/1 [00:00<00:00, 2.55it/s]

[14]: (<AxesSubplot:xlabel='Feature effects for class 0'>,
<Figure size 720x360 with 1 Axes>)

Here we apply Kernel SHAP to the Tree-based model to compare to the tree-based methods we run later.

[15]: from alibi.explainers import KernelShap

predict_fn = lambda x: rfc.predict_proba(scaler.transform(x))

explainer = KernelShap(predict_fn, task='classification')

explainer.fit(X_train[0:100])

result = explainer.explain(x)

plot_importance(result.shap_values[1], features, '"Good"')

100%|==========| 1/1 [00:00<00:00, 1.21it/s]

[15]: (<AxesSubplot:xlabel='Feature effects for class "Good"'>,
<Figure size 720x360 with 1 Axes>)

160 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Interventional treeSHAP

Interventional tree SHAP computes the same Shapley values as the kernel SHAP method above. The difference is that
it’s much faster for tree-based models. Here it is applied to the random forest we trained. Comparison with the kernel
SHAP results above show very similar outcomes.

[16]: from alibi.explainers import TreeShap

tree_explainer_interventional = TreeShap(rfc, model_output='raw', task='classification')
tree_explainer_interventional.fit(scaler.transform(X_train[0:100]))
result = tree_explainer_interventional.explain(scaler.transform(x), check_
→˓additivity=False)

plot_importance(result.shap_values[1], features, '"Good"')

[16]: (<AxesSubplot:xlabel='Feature effects for class "Good"'>,
<Figure size 720x360 with 1 Axes>)

8.1. Alibi Overview Example 161

alibi Documentation, Release 0.9.5dev

Path Dependent treeSHAP

Path Dependent tree SHAP gives the same results as the Kernel SHAP method, only faster. Here it is applied to a
random forest model. Again very similar results to kernel SHAP and Interventional tree SHAP as expected.

[17]: path_dependent_explainer = TreeShap(rfc, model_output='raw', task='classification')
path_dependent_explainer.fit()
result = path_dependent_explainer.explain(scaler.transform(x))

plot_importance(result.shap_values[1], features, '"Good"')

[17]: (<AxesSubplot:xlabel='Feature effects for class "Good"'>,
<Figure size 720x360 with 1 Axes>)

Note: There is some difference between the kernel SHAP and integrated gradient applied to the TensorFlow model
and the SHAP methods applied to the random forest. This is expected due to the combination of different methods and

162 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

models. They are reasonably similar overall. Notably, the ordering is nearly the same.

8.1.5 Local Necessary Features

Anchors

Anchors tell us what features need to stay the same for a specific instance for the model to give the same classification.
In the case of a trained image classification model, an anchor for a given instance would be a minimal subset of the
image that the model uses to make its decision.

Here we apply Anchors to the tensor flow model trained on the wine-quality dataset.

[18]: from alibi.explainers import AnchorTabular

predict_fn = lambda x: model.predict(scaler.transform(x))
explainer = AnchorTabular(predict_fn, features)
explainer.fit(X_train, disc_perc=(25, 50, 75))
result = explainer.explain(x, threshold=0.95)

The result is a set of predicates that tell you whether a point in the data set is in the anchor or not. If it is in the anchor,
it is very likely to have the same classification as the instance x.

[19]: print('Anchor =', result.data['anchor'])
print('Precision = ', result.data['precision'])
print('Coverage = ', result.data['coverage'])

Anchor = ['alcohol > 10.10', 'volatile acidity <= 0.39']
Precision = 0.9513641755634639
Coverage = 0.16263552960800667

8.1.6 Global Feature Attribution

ALE

ALE plots show the dependency of model output on a subset of the input features. They provide global insight describ-
ing the model’s behaviour over the input space. Here we use ALE to directly visualize the relationship between the
TensorFlow model’s predictions and the alcohol content of wine.

[20]: from alibi.explainers import ALE
from alibi.explainers.ale import plot_ale

predict_fn = lambda x: model(scaler.transform(x)).numpy()[:, 0]
ale = ALE(predict_fn, feature_names=features)
exp = ale.explain(X_train)
plot_ale(exp, features=['alcohol'], line_kw={'label': 'Probability of "good" class'})

[20]: array([[<AxesSubplot:xlabel='alcohol', ylabel='ALE'>]], dtype=object)

8.1. Alibi Overview Example 163

alibi Documentation, Release 0.9.5dev

8.1.7 Counterfactuals

Next, we apply each of the “counterfactuals with reinforcement learning”, “counterfactual instances”, “contrastive
explanation method”, and the “counterfactuals with prototypes” methods. We also plot the kernel SHAP values to
show how the counterfactual methods change the attribution of each feature leading to the change in prediction.

Counter Factuals with Reinforcement Learning

CFRL trains a new model when fitting the explainer called an actor that takes instances and produces counterfactuals.
It does this using reinforcement learning. In reinforcement learning, an actor model takes some state as input and
generates actions; in our case, the actor takes an instance with a target classification and attempts to produce a member
of the target class. Outcomes of actions are assigned rewards dependent on a reward function designed to encourage
specific behaviors. In our case, we reward correctly classified counterfactuals generated by the actor. As well as this,
we reward counterfactuals that are close to the data distribution as modeled by an autoencoder. Finally, we require that
they are sparse perturbations of the original instance. The reinforcement training step pushes the actor to take high
reward actions. CFRL is a black-box method as the process by which we update the actor to maximize the reward only
requires estimating the reward via sampling the counterfactuals.

[21]: from alibi.explainers import CounterfactualRL

predict_fn = lambda x: model(x)

(continues on next page)

164 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

cfrl_explainer = CounterfactualRL(
predictor=predict_fn, # The model to explain
encoder=ae.encoder, # The encoder
decoder=ae.decoder, # The decoder
latent_dim=7, # The dimension of the autoencoder latent space
coeff_sparsity=0.5, # The coefficient of sparsity
coeff_consistency=0.5, # The coefficient of consistency
train_steps=10000, # The number of training steps
batch_size=100, # The batch size

)

cfrl_explainer.fit(X=scaler.transform(X_train))

result_cfrl = cfrl_explainer.explain(X=scaler.transform(x), Y_t=np.array([1]))
print("Instance class prediction:", model.predict(scaler.transform(x))[0].argmax())
print("Counterfactual class prediction:", model.predict(result_cfrl.data['cf']['X'])[0].
→˓argmax())

100%|==========| 10000/10000 [01:50<00:00, 90.18it/s]
100%|==========| 1/1 [00:00<00:00, 167.78it/s]

Instance class prediction: 0
Counterfactual class prediction: 1

[22]: cfrl = scaler.inverse_transform(result_cfrl.data['cf']['X'])
compare_instances(x, cfrl)

fixed acidity instance: 9.2 counter factual: 8.965 difference: 0.
→˓2350657
volatile acidity instance: 0.36 counter factual: 0.349 difference: 0.
→˓0108247
citric acid instance: 0.34 counter factual: 0.242 difference: 0.
→˓0977357
residual sugar instance: 1.6 counter factual: 2.194 difference: -
→˓0.5943643
chlorides instance: 0.062 counter factual: 0.059 difference: 0.
→˓0031443
free sulfur dioxide instance: 5.0 counter factual: 6.331 difference: -
→˓1.3312454
total sulfur dioxide instance: 12.0 counter factual: 14.989 difference: -
→˓2.9894428
density instance: 0.997 counter factual: 0.997 difference: -
→˓0.0003435
pH instance: 3.2 counter factual: 3.188 difference: 0.
→˓0118126
sulphates instance: 0.67 counter factual: 0.598 difference: 0.
→˓0718592
alcohol instance: 10.5 counter factual: 9.829 difference: 0.
→˓6712008

[23]: from alibi.explainers import KernelShap

predict_fn = lambda x: model(scaler.transform(x))
(continues on next page)

8.1. Alibi Overview Example 165

alibi Documentation, Release 0.9.5dev

(continued from previous page)

explainer = KernelShap(predict_fn, task='classification')

explainer.fit(X_train[0:100])

result_x = explainer.explain(x)
result_cfrl = explainer.explain(cfrl)

plot_importance(result_x.shap_values[0], features, 0)
plot_importance(result_cfrl.shap_values[0], features, 0)

100%|==========| 1/1 [00:00<00:00, 2.66it/s]
100%|==========| 1/1 [00:00<00:00, 2.55it/s]

[23]: (<AxesSubplot:xlabel='Feature effects for class 0'>,
<Figure size 720x360 with 1 Axes>)

166 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Counterfactual Instances

First we need to revert to using tfv1

[24]: import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

WARNING:tensorflow:From /home/alex/miniconda3/envs/alibi-explain/lib/python3.8/site-
→˓packages/tensorflow/python/compat/v2_compat.py:111: disable_resource_variables (from␣
→˓tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future␣
→˓version.
Instructions for updating:
non-resource variables are not supported in the long term

[25]: from tensorflow.keras.models import Model, load_model
model = load_tf_model()
ae = load_ae_model()

WARNING:tensorflow:OMP_NUM_THREADS is no longer used by the default Keras config. To␣
→˓configure the number of threads, use tf.config.threading APIs.
WARNING:tensorflow:No training configuration found in the save file, so the model was␣
→˓*not* compiled. Compile it manually.
WARNING:tensorflow:No training configuration found in the save file, so the model was␣
→˓*not* compiled. Compile it manually.

The counterfactual instance method in alibi generates counterfactuals by defining a loss that prefers interpretable in-
stances close to the target class. It then uses gradient descent to move within the feature space until it obtains a coun-
terfactual of sufficient quality.

[26]: from alibi.explainers import Counterfactual

explainer = Counterfactual(
model, # The model to explain
shape=(1,) + X_train.shape[1:], # The shape of the model input
target_proba=0.51, # The target class probability
tol=0.01, # The tolerance for the loss
target_class='other', # The target class to obtain

)

result_cf = explainer.explain(scaler.transform(x))
print("Instance class prediction:", model.predict(scaler.transform(x))[0].argmax())
print("Counterfactual class prediction:", model.predict(result_cf.data['cf']['X'])[0].
→˓argmax())

WARNING:tensorflow:From /home/alex/Development/alibi-explain/alibi/explainers/
→˓counterfactual.py:170: The name tf.keras.backend.get_session is deprecated. Please use␣
→˓tf.compat.v1.keras.backend.get_session instead.

`Model.state_updates` will be removed in a future version. This property should not be␣
→˓used in TensorFlow 2.0, as `updates` are applied automatically.

Instance class prediction: 0
Counterfactual class prediction: 1

8.1. Alibi Overview Example 167

alibi Documentation, Release 0.9.5dev

[27]: cf = scaler.inverse_transform(result_cf.data['cf']['X'])
compare_instances(x, cf)

fixed acidity instance: 9.2 counter factual: 9.23 difference: -
→˓0.030319
volatile acidity instance: 0.36 counter factual: 0.36 difference: 0.
→˓0004017
citric acid instance: 0.34 counter factual: 0.334 difference: 0.
→˓0064294
residual sugar instance: 1.6 counter factual: 1.582 difference: 0.
→˓0179322
chlorides instance: 0.062 counter factual: 0.061 difference: 0.
→˓0011683
free sulfur dioxide instance: 5.0 counter factual: 4.955 difference: 0.
→˓0449123
total sulfur dioxide instance: 12.0 counter factual: 11.324 difference: 0.
→˓6759205
density instance: 0.997 counter factual: 0.997 difference: -
→˓5.08e-05
pH instance: 3.2 counter factual: 3.199 difference: 0.
→˓0012383
sulphates instance: 0.67 counter factual: 0.64 difference: 0.
→˓0297857
alcohol instance: 10.5 counter factual: 9.88 difference: 0.
→˓6195097

[28]: from alibi.explainers import KernelShap

predict_fn = lambda x: model.predict(scaler.transform(x))

explainer = KernelShap(predict_fn, task='classification')

explainer.fit(X_train[0:100])

result_x = explainer.explain(x)
result_cf = explainer.explain(cf)

plot_importance(result_x.shap_values[0], features, 0)
plot_importance(result_cf.shap_values[0], features, 0)

100%|==========| 1/1 [00:01<00:00, 1.19s/it]
100%|==========| 1/1 [00:01<00:00, 1.23s/it]

[28]: (<AxesSubplot:xlabel='Feature effects for class 0'>,
<Figure size 720x360 with 1 Axes>)

168 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Contrastive Explanations Method

The CEM method generates counterfactuals by defining a loss that prefers interpretable instances close to the target
class. It also adds an autoencoder reconstruction loss to ensure the counterfactual stays within the data distribution.

[29]: from alibi.explainers import CEM

cem = CEM(model, # model to explain
shape=(1,) + X_train.shape[1:], # shape of the model input
mode='PN', # pertinant negative mode
kappa=0.2, # Confidence parameter for the attack loss␣

→˓term
beta=0.1, # Regularization constant for L1 loss term
ae_model=ae # autoencoder model

)
(continues on next page)

8.1. Alibi Overview Example 169

alibi Documentation, Release 0.9.5dev

(continued from previous page)

cem.fit(
scaler.transform(X_train), # scaled training data
no_info_type='median' # non-informative value for each feature

)
result_cem = cem.explain(scaler.transform(x), verbose=False)
cem_cf = result_cem.data['PN']

print("Instance class prediction:", model.predict(scaler.transform(x))[0].argmax())
print("Counterfactual class prediction:", model.predict(cem_cf)[0].argmax())

Instance class prediction: 0
Counterfactual class prediction: 1

[30]: cem_cf = result_cem.data['PN']
cem_cf = scaler.inverse_transform(cem_cf)
compare_instances(x, cem_cf)

fixed acidity instance: 9.2 counter factual: 9.2 difference:␣
→˓2e-07
volatile acidity instance: 0.36 counter factual: 0.36 difference: -
→˓0.0
citric acid instance: 0.34 counter factual: 0.34 difference: -
→˓0.0
residual sugar instance: 1.6 counter factual: 1.479 difference: 0.
→˓1211611
chlorides instance: 0.062 counter factual: 0.057 difference: 0.
→˓0045941
free sulfur dioxide instance: 5.0 counter factual: 2.707 difference: 2.
→˓2929246
total sulfur dioxide instance: 12.0 counter factual: 12.0 difference: 1.
→˓9e-06
density instance: 0.997 counter factual: 0.997 difference: -
→˓0.0004602
pH instance: 3.2 counter factual: 3.2 difference: -
→˓0.0
sulphates instance: 0.67 counter factual: 0.549 difference: 0.
→˓121454
alcohol instance: 10.5 counter factual: 9.652 difference: 0.
→˓8478804

[31]: from alibi.explainers import KernelShap

predict_fn = lambda x: model.predict(scaler.transform(x))

explainer = KernelShap(predict_fn, task='classification')

explainer.fit(X_train[0:100])

result_x = explainer.explain(x)
result_cem_cf = explainer.explain(cem_cf)

(continues on next page)

170 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

plot_importance(result_x.shap_values[0], features, 0)
plot_importance(result_cem_cf.shap_values[0], features, 0)

100%|==========| 1/1 [00:01<00:00, 1.22s/it]
100%|==========| 1/1 [00:01<00:00, 1.21s/it]

[31]: (<AxesSubplot:xlabel='Feature effects for class 0'>,
<Figure size 720x360 with 1 Axes>)

8.1. Alibi Overview Example 171

alibi Documentation, Release 0.9.5dev

Counterfactual With Prototypes

Like the previous two methods, “counterfactuals with prototypes” defines a loss that guides the counterfactual towards
the target class while also using an autoencoder to ensure it stays within the data distribution. As well as this, it uses
prototype instances of the target class to ensure that the generated counterfactual is interpretable as a member of the
target class.

[32]: from alibi.explainers import CounterfactualProto

explainer = CounterfactualProto(
model, # The model to explain
shape=(1,) + X_train.shape[1:], # shape of the model input
ae_model=ae, # The autoencoder
enc_model=ae.encoder # The encoder

)

explainer.fit(scaler.transform(X_train)) # Fit the explainer with scaled data

result_proto = explainer.explain(scaler.transform(x), verbose=False)

proto_cf = result_proto.data['cf']['X']
print("Instance class prediction:", model.predict(scaler.transform(x))[0].argmax())
print("Counterfactual class prediction:", model.predict(proto_cf)[0].argmax())

`Model.state_updates` will be removed in a future version. This property should not be␣
→˓used in TensorFlow 2.0, as `updates` are applied automatically.

Instance class prediction: 0
Counterfactual class prediction: 1

[33]: proto_cf = scaler.inverse_transform(proto_cf)
compare_instances(x, proto_cf)

fixed acidity instance: 9.2 counter factual: 9.2 difference:␣
→˓2e-07
volatile acidity instance: 0.36 counter factual: 0.36 difference: -
→˓0.0
citric acid instance: 0.34 counter factual: 0.34 difference: -
→˓0.0
residual sugar instance: 1.6 counter factual: 1.6 difference:␣
→˓1e-07
chlorides instance: 0.062 counter factual: 0.062 difference: ␣
→˓0.0
free sulfur dioxide instance: 5.0 counter factual: 5.0 difference: ␣
→˓0.0
total sulfur dioxide instance: 12.0 counter factual: 12.0 difference: 1.
→˓9e-06
density instance: 0.997 counter factual: 0.997 difference: -
→˓0.0
pH instance: 3.2 counter factual: 3.2 difference: -
→˓0.0
sulphates instance: 0.67 counter factual: 0.623 difference: 0.
→˓0470144
alcohol instance: 10.5 counter factual: 9.942 difference: 0.
→˓558073

172 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[34]: from alibi.explainers import KernelShap

predict_fn = lambda x: model.predict(scaler.transform(x))

explainer = KernelShap(predict_fn, task='classification')

explainer.fit(X_train[0:100])

result_x = explainer.explain(x)
result_proto_cf = explainer.explain(cem_cf)

plot_importance(result_x.shap_values[0], features, 0)
print(result_x.shap_values[0].sum())
plot_importance(result_proto_cf.shap_values[0], features, 0)
print(result_proto_cf.shap_values[0].sum())

100%|==========| 1/1 [00:01<00:00, 1.20s/it]
100%|==========| 1/1 [00:01<00:00, 1.25s/it]

0.16304971136152735
-0.20360063157975683

8.1. Alibi Overview Example 173

alibi Documentation, Release 0.9.5dev

Looking at the ALE plots below, we can see how the counterfactual methods change the features to flip the prediction.
Note that the ALE plots potentially miss details local to individual instances as they are global insights.

[35]: plot_ale(exp, features=['sulphates', 'alcohol', 'residual sugar', 'chlorides', 'free␣
→˓sulfur dioxide', 'total sulfur dioxide'], line_kw={'label': 'Probability of "good"␣
→˓class'})

[35]: array([[<AxesSubplot:xlabel='sulphates', ylabel='ALE'>,
<AxesSubplot:xlabel='alcohol', ylabel='ALE'>,
<AxesSubplot:xlabel='residual sugar', ylabel='ALE'>],
[<AxesSubplot:xlabel='chlorides', ylabel='ALE'>,
<AxesSubplot:xlabel='free sulfur dioxide', ylabel='ALE'>,
<AxesSubplot:xlabel='total sulfur dioxide', ylabel='ALE'>]],

dtype=object)

174 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

8.2 Accumulated Local Effects

8.2.1 Accumulated Local Effects for classifying flowers

In this example we will explain the behaviour of classification models on the Iris dataset. It is recommended to first read
the ALE regression example to familiarize yourself with how to interpret ALE plots in a simpler setting. Interpreting
ALE plots for classification problems become more complex due to a few reasons:

• Instead of one ALE line for each feature we now have one for each class to explain the feature effects towards
predicting each class.

• There are two ways to choose the prediction function to explain:

– Class probability predictions (e.g. clf.predict_proba in sklearn)

– Margin or logit predictions (e.g. clf.decision_function in sklearn)

We will see the implications of explaining each of these prediction functions.

[1]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression

(continues on next page)

8.2. Accumulated Local Effects 175

alibi Documentation, Release 0.9.5dev

(continued from previous page)

from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from alibi.explainers import ALE, plot_ale

Load and prepare the dataset

[2]: data = load_iris()
feature_names = data.feature_names
target_names = data.target_names
X = data.data
y = data.target
print(feature_names)
print(target_names)

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
['setosa' 'versicolor' 'virginica']

Shuffle the data and define the train and test set:

[3]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_
→˓state=42)

Fit and evaluate a logistic regression model

[4]: lr = LogisticRegression(max_iter=200)

[5]: lr.fit(X_train, y_train)

[5]: LogisticRegression(max_iter=200)

[6]: accuracy_score(y_test, lr.predict(X_test))

[6]: 1.0

Calculate Accumulated Local Effects

There are several options for explaining the classifier predictions using ALE. We define two prediction functions, one
in the unnormalized logit space and the other in probability space, and look at how the resulting ALE plot interpretation
changes.

[7]: logit_fun_lr = lr.decision_function
proba_fun_lr = lr.predict_proba

[8]: logit_ale_lr = ALE(logit_fun_lr, feature_names=feature_names, target_names=target_names)
proba_ale_lr = ALE(proba_fun_lr, feature_names=feature_names, target_names=target_names)

[9]: logit_exp_lr = logit_ale_lr.explain(X_train)
proba_exp_lr = proba_ale_lr.explain(X_train)

176 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

ALE in logit space

We first look at the ALE plots for explaining the feature effects towards the unnormalized logit scores:

[10]: plot_ale(logit_exp_lr, n_cols=2, fig_kw={'figwidth': 8, 'figheight': 5}, sharey=None);

We see that the feature effects are linear for each class and each feature. This is exactly what we expect because the
logistic regression is a linear model in the logit space.

Furthermore, the units of the ALE plots here are in logits, which means that the feature effect at some feature value
will be a positive or negative contribution to the logit of each class with respect to the mean feature effect.

Let’s look at the interpretation of the feature effects for “petal length” in more detail:

[11]: plot_ale(logit_exp_lr, features=[2]);

8.2. Accumulated Local Effects 177

alibi Documentation, Release 0.9.5dev

The main insights from an ALE plot are qualitative—we can make several observations: - The slope of each ALE
curve determines the relative effect of the feature petal length on the prediction (in logits) for each target class - In
particular, we observe that the feature petal length has little relative variation in its effect towards the target class
of versicolor - On the other hand, for the target classes of setosa and virginica the slopes of the curves are
significant—the relative feature effect of petal length rises/falls for the target class of virginica/setosa as the
petal length increases - The effect of petal length on the target classes of setosa and virginica are inversely
related, suggesting that e.g. the effect of longer petal lengths contributes more positively towards predicting virginica
and negatively towards predicting setosa

We can gain even more insight into the ALE plot by looking at the class histograms for the feature petal length:

[12]: fig, ax = plt.subplots()
for target in range(3):

ax.hist(X_train[y_train==target][:,2], label=target_names[target]);

ax.set_xlabel(feature_names[2])
ax.legend();

Here we see that the three classes are very well separated by this feature. This confirms that the ALE plot is behaving

178 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

as expected—the feature effects of small value of petal length are that of increasing the logit values for the class
setosa and decreasing for the other two classes. Also note that the range of the ALE values for this feature is particu-
larly high compared to other features which can be interpreted as the model attributing more importance to this feature
as it separates the classes well on its own.

ALE in probability space

We now turn to interpret the ALE plots for explaining the feature effects on the probabilities of each class.

[17]: plot_ale(proba_exp_lr, n_cols=2, fig_kw={'figwidth': 8, 'figheight': 5});

As expected, the ALE plots are no longer linear which reflects the non-linear nature due to the softmax transformation
applied to the logits.

Note that, in this case, the ALE are in the units of relative probability mass, i.e. given a feature value how much more
(less) probability does the model assign to each class relative to the mean effect of that feature. This also means that
any increase in relative probability of one class must result in a decrease in probability of another class. In fact, the
ALE curves summed across classes result in 0 as a direct consequence of conservation of probability:

[18]: for feature in range(4):
print(proba_exp_lr.ale_values[feature].sum())

-5.551115123125783e-17
1.734723475976807e-17
-6.661338147750939e-16
4.440892098500626e-16

By transforming the ALE plots into probability space we can gain additional insight into the model behaviour. For
example, the ALE curve for the feature petal width and class setosa is virtually flat. This means that the model
does not use this feature to assign higher or lower probability to class setosa with respect to the average effect of that
feature. This is not readily seen in logit space as the ALE curve has negative slope which would lead us to the opposite
conclusion. The interpretation here is that even though the ALE curve in the logit space shows a negative effect with

8.2. Accumulated Local Effects 179

alibi Documentation, Release 0.9.5dev

feature value, the effect in the logit space is not significant enough to translate into a tangible effect in the probability
space.

Turning to the feature petal length we can observe a much more nuanced behaviour of the ALE plots than we saw in
the logit space previously. In particular, for the target class versicolor, whilst the ALE curve is nearly flat in the logit
space, in probability space it reveals a significant uplift over the average effect of petal length towards predicting
versicolor in an interval between ~3-5cm. This agrees with our observation previously that the histogram of petal
length by target class reveals that the feature can separate all three classes quite well.

Finally, the feature sepal width does not offer significant information to the model to prefer any class over the other
(with respect to the mean effect of sepal_width that is). If we plot the marginal distribution of sepal_width it
explains why that is—the overlap in the class conditional histograms of this feature show that it does not increase the
model discriminative power:

[14]: fig, ax = plt.subplots()
for target in range(3):

ax.hist(X_train[y_train==target][:,1], label=target_names[target]);

ax.set_xlabel(feature_names[1])
ax.legend();

ALE for gradient boosting

Finally, we look at the resulting ALE plots for a highly non-linear model—a gradient boosted classifier.

[15]: from sklearn.ensemble import GradientBoostingClassifier

[16]: gb = GradientBoostingClassifier()
gb.fit(X_train, y_train)

[16]: GradientBoostingClassifier()

[17]: accuracy_score(y_test, gb.predict(X_test))

[17]: 1.0

As before, we explain the feature contributions in both logit and probability space.

180 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[18]: logit_fun_gb = gb.decision_function
proba_fun_gb = gb.predict_proba

[19]: logit_ale_gb = ALE(logit_fun_gb, feature_names=feature_names, target_names=target_names)
proba_ale_gb = ALE(proba_fun_gb, feature_names=feature_names, target_names=target_names)

[20]: logit_exp_gb = logit_ale_gb.explain(X_train)
proba_exp_gb = proba_ale_gb.explain(X_train)

ALE in logit space

[21]: plot_ale(logit_exp_gb, n_cols=2, fig_kw={'figwidth': 8, 'figheight': 5});

The ALE curves are no longer linear as the model used is non-linear. Furthermore, we’ve plotted the ALE curves of
different features on the same scale on the 𝑦-axis which suggests that the features petal length and petal width
are more discriminative for the task. Checking the feature importances of the classifier confirms this:

[22]: gb.feature_importances_

[22]: array([0.00221272, 0.01651258, 0.51811252, 0.46316218])

8.2. Accumulated Local Effects 181

alibi Documentation, Release 0.9.5dev

ALE in probability space

[23]: plot_ale(proba_exp_gb, n_cols=2, fig_kw={'figwidth': 8, 'figheight': 5});

Because of the non-linearity of the gradient boosted model the ALE curves in probability space are very similar to the
curves in the logit space just on a different scale.

Comparing ALE between models

We have seen that for both logistic regression and gradient boosting models the features petal length and petal
width have a high feature effect on the classifier predictions. We can explore this in more detail by comparing the ALE
curves for both models. In the following we plot the ALE curves of the two features for predicting the class setosa in
probability space:

[24]: fig, ax = plt.subplots(1, 2, figsize=(8, 4), sharey='row');
plot_ale(proba_exp_lr, features=[2, 3], targets=['setosa'], ax=ax, line_kw={'label': 'LR
→˓'});
plot_ale(proba_exp_gb, features=[2, 3], targets=['setosa'], ax=ax, line_kw={'label': 'GB
→˓'});

182 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

From this plot we can draw a couple of conclusions:

• Both models have similar feature effects of petal length—a high positive effect for predicting setosa for
small feature values and a high negative effect for large values (over >3cm).

• While the logistic regression model does not benefit much from the petal width feature to discriminate the
setosa class, the gradient boosted model does exploit this feature to discern between different classes.

8.2.2 Accumulated Local Effects for predicting house prices

In this example we will explain the behaviour of regression models on the California housing dataset. We will show
how to calculate accumulated local effects (ALE) for determining the feature effects on a model and how these vary on
different kinds of models (linear and non-linear models).

[1]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from alibi.explainers import ALE, plot_ale

Fetch and prepare the dataset

Each row in the dataset represents a whole census block (the smallest geographical unit for which the US census
publishes data), thus the feature values for each datapoint are averages within the block. For a complete description of
the dataset please refer to the scikit-learn documentation page.

[2]: data = fetch_california_housing(as_frame=True)
feature_names = data.feature_names

8.2. Accumulated Local Effects 183

https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset

alibi Documentation, Release 0.9.5dev

[3]: data.frame.head()

[3]: MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude \
0 8.3252 41.0 6.984127 1.023810 322.0 2.555556 37.88
1 8.3014 21.0 6.238137 0.971880 2401.0 2.109842 37.86
2 7.2574 52.0 8.288136 1.073446 496.0 2.802260 37.85
3 5.6431 52.0 5.817352 1.073059 558.0 2.547945 37.85
4 3.8462 52.0 6.281853 1.081081 565.0 2.181467 37.85

Longitude MedHouseVal
0 -122.23 4.526
1 -122.22 3.585
2 -122.24 3.521
3 -122.25 3.413
4 -122.25 3.422

[4]: X, y = data.data.to_numpy(), data.target.to_numpy()

Shuffle the data and define the train and test set:

[5]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_
→˓state=42)

Fit and evaluate models

Fit and evaluate a linear regression model:

[6]: lr = LinearRegression()

[7]: lr.fit(X_train, y_train)

[7]: LinearRegression()

[8]: mean_squared_error(y_test, lr.predict(X_test))

[8]: 0.5411287478470682

Fit and evaluate a random forest model:

[9]: rf = RandomForestRegressor()

[10]: rf.fit(X_train, y_train)

[10]: RandomForestRegressor()

[11]: mean_squared_error(y_test, rf.predict(X_test))

[11]: 0.2538208780210583

184 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Feature Effects: Motivation

Here we develop an intuition for calculating feature effects. We start by illustrating the calculation of feature effects for
the linear regression model.

For our regression model, the conditional mean or the prediction function E(𝑦|𝑥) = 𝑓(𝑥) is linear:

𝑓(𝑥) = 𝑤0 + 𝑤1𝑥1 + · · ·+ 𝑤𝑘𝑥𝑘.

Because the model is additive and doesn’t include feature interactions, we can read off individual feature effects imme-
diately: the effect of any feature 𝑥𝑖 is just 𝑤𝑖𝑥𝑖, so the effect is a linear function of 𝑥𝑖 and the sign of the coefficient 𝑤𝑖

determines whether the effect is positive or negative as 𝑥𝑖 changes.

Now suppose we don’t know the true effect of the feature 𝑥𝑖 which is usually the case when using a more complex
model. How might we approach the problem of estimating the effect? Let’s focus on one feature - median income
(MedInc). The following is a scatterplot of model predictions versus the feature:

[12]: FEATURE = 'MedInc'
index = feature_names.index(FEATURE)

fig, ax = plt.subplots()
ax.scatter(X_train[:, index], lr.predict(X_train));

ax.set_xlabel('Median income in $10,000\'s');
ax.set_ylabel('Predicted value in $100,000\'s');

As we can see, there is a strong positive correlation as one might expect. However the feature effects for MedInc cannot
be read off immediately because the prediction function includes the effects of all features not just MedInc. What we
need is a procedure to block out the effects of all other features to uncover the true effect of MedInc only. This is exactly
what the ALE approach does by averaging the differences of predictions across small intervals of the feature.

8.2. Accumulated Local Effects 185

alibi Documentation, Release 0.9.5dev

Calculate Accumulated Local Effects

Here we initialize the ALE object by passing it the predictor function which in this case is the clf.predict method
for both models. We also pass in feature names and target name for easier interpretation of the resulting explanations.

[13]: lr_ale = ALE(lr.predict, feature_names=feature_names, target_names=['Value in $100,000\'s
→˓'])
rf_ale = ALE(rf.predict, feature_names=feature_names, target_names=['Value in $100,000\'s
→˓'])

We now call the explain method on the explainer objects which will compute the ALE’s and return an Explanation
object which is ready for inspection and plotting. Since ALE is a global explanation method it takes in a batch of data
for which the model feature effects are computed, in this case we pass in the training set.

[14]: lr_exp = lr_ale.explain(X_train)
rf_exp = rf_ale.explain(X_train)

The resulting Explanation objects contain the ALE’s for each feature under the ale_values attribute - this is a list of
numpy arrays, one for each feature. The easiest way to interpret the ALE values is by plotting them against the feature
values for which we provide a built-in function plot_ale. By calling the function without arguments, we will plot the
effects of every feature, so in this case we will get 8 different subplots. To fit them all on the screen we pass in options
for the figure size.

ALE for the linear regression model

The ALE plots show the main effects of each feature on the prediction function.

[15]: plot_ale(lr_exp, n_cols=4, fig_kw={'figwidth':14, 'figheight': 7});

As expected, the feature effects plots are linear because we used a linear model. The interpretation of the ALE plot is
that, given a feature value, the ALE value corresponding to that feature value is the difference to the mean effect of that
feature. Put differently, the ALE value is the relative feature effect on the prediction at that feature value.

186 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Effect of the median income

Let’s look at the ALE plot for the feature MedInc (median income) in more detail:

[16]: plot_ale(lr_exp, features=['MedInc']);

The ALE on the y-axes of the plot above is in the units of the prediction variable which, in this case, is the value of the
house in $100,000’s.

The median income here is in units of $10,000’s.

The main interpretation of the ALE plot is qualitative—fixing the feature value and looking at the ALE plot as a function
at that point, the tangent at that point (or the slope of linear interpolation between the closest bin endpoints) shows how
sensitive the target prediction is with respect to small changes of the feature value. Since we have a linear regression
model, the tangent/slope is the same across the whole feature range so the feature sensitivity is identical at any point in
the feature range. We can calculate it by taking the slope of the linear interpolation between any two points of the ALE
plot:

[17]: slopes = np.array([((v[-1]-v[0])/(f[-1]-f[0])).item() for v, f in zip(lr_exp.ale_values,␣
→˓lr_exp.feature_values)])
slope_med_inc = slopes[feature_names.index('MedInc')]
print(slope_med_inc)

0.4476000685169465

This value can be interpreted that, at any point in the feature range of MedInc, the effect of changing it by some amount
𝛿 will result in a change in the prediction by approximately 0.4476 ·𝛿. In other words, at any point an additional median
income of $10,000 would result in an uplift of the predicted house value by ~44,760 dollars.

Note
This interpretation doesn’t mean that for any single datapoint the effect will be the same uplift. Rather, the effect is true
on average for datapoints close to the feature value of interest, i.e. in a bin of size 𝛿.

We can also say a few more quantitative things about this plot. The ALE value for the point MedInc=6 ($60,000) is
~1 which has the interpretation that for areas with this median income the model predicts an up-lift of ~$100,000 with

8.2. Accumulated Local Effects 187

alibi Documentation, Release 0.9.5dev

respect to the average effect of MedInc. This is because the ALE plots are centered such that the average effect of the
feature across the whole range of it is zero.

On the other hand, for neighbourhoods with MedInc=4 ($40,000), the ALE value is ~0 which indicates that the effect
of the feature at this point is the same as the average effect of the feature. For even lower values of MedInc, below
$40,000, the feature effect becomes less than the average effect, i.e. a smaller median income in the area brings the
predicted house value down with respect to the average feature effect.

Effect of the crime level

An additional feature of the ALE plot is that it shows feature deciles on the x-axis. This helps understand in which
regions there is low data density so the ALE plot is interpolating. For example, for the AveOccup feature (average
number of household members), there appears to be an outlier in the data at over ~1,200 which causes the plot to
linearly interpolate over a large range where there is no data. Note that this can also be seen by the lack of markers on
the plot within that large range.

[18]: plot_ale(lr_exp, features=['AveOccup']);

For linear models this is not an issue as we know the effect is linear across the whole range of the feature, however for
non-linear models linear interpolation in feature areas with no data could be unreliable. This is why the use of deciles
can help assess in which areas of the feature space the estimated feature effects are more reliable.

Linearity of ALE

It is no surprise that the ALE plots for the linear regression model are linear themselves—the feature effects are after
all linear by definition. In fact, the slopes of the ALE lines are exactly the coefficients of the linear regression:

[19]: lr.coef_

[19]: array([4.47600069e-01, 9.56752596e-03, -1.24755956e-01, 7.94471254e-01,
-1.43902596e-06, -3.44307993e-03, -4.18555257e-01, -4.33405135e-01])

[20]: slopes

188 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[20]: array([4.47600069e-01, 9.56752596e-03, -1.24755956e-01, 7.94471254e-01,
-1.43902596e-06, -3.44307993e-03, -4.18555257e-01, -4.33405135e-01])

[21]: np.allclose(lr.coef_, slopes)

[21]: True

Thus the slopes of the ALE plots for linear regression have exactly the same interpretation as the coefficients of the
learnt model—global feature effects. In fact, we can calculate the ALE effect of linear regression analytically to show
that the effect of feature 𝑥𝑖 is ALE(𝑥𝑖) = 𝑤𝑖𝑥𝑖 −𝑤𝑖E(𝑥𝑖) which is the familiar effect 𝑤𝑖𝑥𝑖 relative to the mean effect
of the feature.

ALE for the random forest model

Now let’s look at the ALE plots for the non-linear random forest model:

[22]: axes = plot_ale(rf_exp, n_cols=4, fig_kw={'figwidth':14, 'figheight': 7});

Because the model is no longer linear, the ALE plots are non-linear also and in some cases also non-monotonic. The
interpretation of the plots is still the same—the ALE value at a point is the relative feature effect with respect to the
mean feature effect, however the non-linear model used shows that the feature effects differ both in shape and magnitude
when compared to the linear model.

From these plots, it seems that the feature MedInc (median income) has the biggest impact on the prediction. Checking
the built-in feature importances of the random forest classifier confirms this:

[23]: feature_names[rf[1].feature_importances_.argmax()]

[23]: 'MedInc'

Let’s explore the feature Latitude and how its effects are different between the two models. To do this, we can pass
in matplotlib axes objects for the plot_ale function to plot on:

8.2. Accumulated Local Effects 189

alibi Documentation, Release 0.9.5dev

[24]: fig, ax = plt.subplots()
plot_ale(lr_exp, features=['Latitude'], ax=ax, line_kw={'label': 'Linear regression'});
plot_ale(rf_exp, features=['Latitude'], ax=ax, line_kw={'label': 'Random forest'});

From this plot we can gain a couple of interesting insights:

• Whilst for linear regression the feature effects are the same across the range of the values of Latitude, for a
random forest model, because it’s a more capable predictor, there are intervals of Latitude where different
behaviour is observed

• For both models the feature effects of Latitude are negatively correlated, i.e. for areas more South (lower
latitude) the effects on house price predictions are positive. However, for the random forest, the ALE curve is
sometimes piece-wise constant which tells us that there are regions where the effects are roughly the same for
different latitudes (e.g. between latitudes 36 and 37)

• In general, the ALE for a non-linear model doesn’t have to be monotonic, although in this case there are only
very small departures from monotonicity which may be due to artifacts from the grid-size used to calculate the
ALE. It may be useful to experiment with different resolutions of the grid size

Comparing the ALE plots of multiple models on the same axis should be done with care. In general, we can only make
qualitative comparisons of the plots between different intervals of the feature values as we have done here.

To compare multiple models and multiple features we can plot the ALE’s on a common axis that is big enough to
accommodate all features of interest:

[26]: fig, ax = plt.subplots(2, 4, sharey='all');

plot_ale(lr_exp, ax=ax, fig_kw={'figwidth':14, 'figheight': 7},
line_kw={'label': 'Linear regression'});

plot_ale(rf_exp, ax=ax, line_kw={'label': 'Random forest'});

190 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

8.3 Anchors

8.3.1 Anchor explanations for fashion MNIST

[1]: import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Input
from tensorflow.keras.models import Model
from tensorflow.keras.utils import to_categorical
from alibi.explainers import AnchorImage

Load and prepare fashion MNIST data

[2]: (x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()
print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape)

x_train shape: (60000, 28, 28) y_train shape: (60000,)

[3]: idx = 0
plt.imshow(x_train[idx]);

8.3. Anchors 191

alibi Documentation, Release 0.9.5dev

Scale, reshape and categorize data

[4]: x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train, x_train.shape + (1,))
x_test = np.reshape(x_test, x_test.shape + (1,))
print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)

x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1)
y_train shape: (60000, 10) y_test shape: (10000, 10)

Define CNN model

[5]: def model():
x_in = Input(shape=(28, 28, 1))
x = Conv2D(filters=64, kernel_size=2, padding='same', activation='relu')(x_in)
x = MaxPooling2D(pool_size=2)(x)
x = Dropout(0.3)(x)

x = Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')(x)
x = MaxPooling2D(pool_size=2)(x)
x = Dropout(0.3)(x)

x = Flatten()(x)
x = Dense(256, activation='relu')(x)
x = Dropout(0.5)(x)
x_out = Dense(10, activation='softmax')(x)

cnn = Model(inputs=x_in, outputs=x_out)
cnn.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return cnn

192 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[6]: cnn = model()
cnn.summary()

Model: "model"

Layer (type) Output Shape Param #
===
input_1 (InputLayer) [(None, 28, 28, 1)] 0

conv2d (Conv2D) (None, 28, 28, 64) 320

max_pooling2d (MaxPooling2D) (None, 14, 14, 64) 0

dropout (Dropout) (None, 14, 14, 64) 0

conv2d_1 (Conv2D) (None, 14, 14, 32) 8224

max_pooling2d_1 (MaxPooling2 (None, 7, 7, 32) 0

dropout_1 (Dropout) (None, 7, 7, 32) 0

flatten (Flatten) (None, 1568) 0

dense (Dense) (None, 256) 401664

dropout_2 (Dropout) (None, 256) 0

dense_1 (Dense) (None, 10) 2570
===
Total params: 412,778
Trainable params: 412,778
Non-trainable params: 0

Train model

[7]: cnn.fit(x_train, y_train, batch_size=64, epochs=3)

Train on 60000 samples
Epoch 1/3
60000/60000 [==============================] - 29s 481us/sample - loss: 0.5932 - acc: 0.
→˓7819
Epoch 2/3
60000/60000 [==============================] - 33s 542us/sample - loss: 0.4066 - acc: 0.
→˓8506
Epoch 3/3
60000/60000 [==============================] - 32s 525us/sample - loss: 0.3624 - acc: 0.
→˓8681

[7]: <tensorflow.python.keras.callbacks.History at 0x7fae6dd5cb70>

8.3. Anchors 193

alibi Documentation, Release 0.9.5dev

[8]: # Evaluate the model on test set
score = cnn.evaluate(x_test, y_test, verbose=0)
print('Test accuracy: ', score[1])

Test accuracy: 0.8867

Define superpixels

Function to generate rectangular superpixels for a given image. Alternatively, use one of the built in methods. It
is important to have meaningful superpixels in order to generate a useful explanation. Please check scikit-image’s
segmentation methods (felzenszwalb, slic and quickshift built in the explainer) for more information on the built in
methods.

[9]: def superpixel(image, size=(4, 7)):
segments = np.zeros([image.shape[0], image.shape[1]])
row_idx, col_idx = np.where(segments == 0)
for i, j in zip(row_idx, col_idx):

segments[i, j] = int((image.shape[1]/size[1]) * (i//size[0]) + j//size[1])
return segments

[10]: segments = superpixel(x_train[idx])
plt.imshow(segments);

194 Chapter 8. Examples

http://scikit-image.org/docs/dev/api/skimage.segmentation.html

alibi Documentation, Release 0.9.5dev

Define prediction function

[11]: predict_fn = lambda x: cnn.predict(x)

Initialize anchor image explainer

[12]: image_shape = x_train[idx].shape
explainer = AnchorImage(predict_fn, image_shape, segmentation_fn=superpixel)

Explain a prediction

The explanation returns a mask with the superpixels that constitute the anchor.

Image to be explained:

[13]: i = 1
image = x_test[i]
plt.imshow(image[:,:,0]);

Model prediction:

[14]: cnn.predict(image.reshape(1, 28, 28, 1)).argmax()

[14]: 2

The predicted category correctly corresponds to the class Pullover:

8.3. Anchors 195

alibi Documentation, Release 0.9.5dev

Label Description
0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot

Generate explanation:

[15]: explanation = explainer.explain(image, threshold=.95, p_sample=.8, seed=0)

Show anchor:

[16]: plt.imshow(explanation.anchor[:,:,0]);

From the example, it looks like the end of the sleeve alone is sufficient to predict a pullover.

8.3.2 Anchor explanations for ImageNet

[1]: import tensorflow as tf
import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from tensorflow.keras.applications.inception_v3 import InceptionV3, preprocess_input,␣
→˓decode_predictions
from alibi.datasets import load_cats
from alibi.explainers import AnchorImage

196 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Load InceptionV3 model pre-trained on ImageNet

[2]: model = InceptionV3(weights='imagenet')

Load and pre-process sample images

The load_cats function loads a small sample of images of various cat breeds.

[3]: image_shape = (299, 299, 3)
data, labels = load_cats(target_size=image_shape[:2], return_X_y=True)
print(f'Images shape: {data.shape}')

Images shape: (4, 299, 299, 3)

Apply image preprocessing, make predictions and map predictions back to categories. The output label is a tuple which
consists of the class name, description and the prediction probability.

[4]: images = preprocess_input(data)
preds = model.predict(images)
label = decode_predictions(preds, top=3)
print(label[0])

1/1 [==============================] - 4s 4s/step
[('n02123045', 'tabby', 0.82086897), ('n02123159', 'tiger_cat', 0.14372891), ('n02124075
→˓', 'Egyptian_cat', 0.01642174)]

Define prediction function

[5]: predict_fn = lambda x: model.predict(x)

Initialize anchor image explainer

The segmentation function will be used to generate superpixels. It is important to have meaningful superpixels in order
to generate a useful explanation. Please check scikit-image’s segmentation methods (felzenszwalb, slic and quickshift
built in the explainer) for more information.

In the example, the pixels not in the proposed anchor will take the average value of their superpixel. Another option is
to superimpose the pixel values from other images which can be passed as a numpy array to the images_background
argument.

[6]: segmentation_fn = 'slic'
kwargs = {'n_segments': 15, 'compactness': 20, 'sigma': .5, 'start_label': 0}
explainer = AnchorImage(predict_fn, image_shape, segmentation_fn=segmentation_fn,

segmentation_kwargs=kwargs, images_background=None)

1/1 [==============================] - 2s 2s/step

8.3. Anchors 197

http://scikit-image.org/docs/dev/api/skimage.segmentation.html

alibi Documentation, Release 0.9.5dev

Explain a prediction

The explanation of the below image returns a mask with the superpixels that constitute the anchor.

[7]: i = 0
plt.imshow(data[i]);

The threshold, p_sample and tau parameters are also key to generate a sensible explanation and ensure fast enough
convergence. The threshold defines the minimum fraction of samples for a candidate anchor that need to lead to the
same prediction as the original instance. While a higher threshold gives more confidence in the anchor, it also leads
to longer computation time. p_sample determines the fraction of superpixels that are changed to either the average
value of the superpixel or the pixel value for the superimposed image. The pixels in the proposed anchors are of
course unchanged. The parameter tau determines when we assume convergence. A bigger value for tau means faster
convergence but also looser anchor restrictions.

[8]: image = images[i]
np.random.seed(0)
explanation = explainer.explain(image, threshold=.95, p_sample=.5, tau=0.25)

1/1 [==============================] - 0s 25ms/step
4/4 [==============================] - 5s 304ms/step
4/4 [==============================] - 1s 437ms/step
4/4 [==============================] - 1s 448ms/step
4/4 [==============================] - 1s 436ms/step

Superpixels in the anchor:

[9]: plt.imshow(explanation.anchor);

198 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

A visualization of all the superpixels:

[10]: plt.imshow(explanation.segments);

8.3.3 Anchor explanations for income prediction

In this example, we will explain predictions of a Random Forest classifier whether a person will make more or less than
$50k based on characteristics like age, marital status, gender or occupation. The features are a mixture of ordinal and
categorical data and will be pre-processed accordingly.

[1]: import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from alibi.explainers import AnchorTabular
from alibi.datasets import fetch_adult

8.3. Anchors 199

alibi Documentation, Release 0.9.5dev

Load adult dataset

The fetch_adult function returns a Bunch object containing the features, the targets, the feature names and a mapping
of categorical variables to numbers which are required for formatting the output of the Anchor explainer.

[2]: adult = fetch_adult()
adult.keys()

[2]: dict_keys(['data', 'target', 'feature_names', 'target_names', 'category_map'])

[3]: data = adult.data
target = adult.target
feature_names = adult.feature_names
category_map = adult.category_map

Note that for your own datasets you can use our utility function gen_category_map to create the category map:

[4]: from alibi.utils import gen_category_map

Define shuffled training and test set

[5]: np.random.seed(0)
data_perm = np.random.permutation(np.c_[data, target])
data = data_perm[:,:-1]
target = data_perm[:,-1]

[6]: idx = 30000
X_train,Y_train = data[:idx,:], target[:idx]
X_test, Y_test = data[idx+1:,:], target[idx+1:]

Create feature transformation pipeline

Create feature pre-processor. Needs to have ‘fit’ and ‘transform’ methods. Different types of pre-processing can be
applied to all or part of the features. In the example below we will standardize ordinal features and apply one-hot-
encoding to categorical features.

Ordinal features:

[7]: ordinal_features = [x for x in range(len(feature_names)) if x not in list(category_map.
→˓keys())]
ordinal_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),

('scaler', StandardScaler())])

Categorical features:

[8]: categorical_features = list(category_map.keys())
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),

('onehot', OneHotEncoder(handle_unknown='ignore
→˓'))])

Combine and fit:

200 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[9]: preprocessor = ColumnTransformer(transformers=[('num', ordinal_transformer, ordinal_
→˓features),

('cat', categorical_transformer,␣
→˓categorical_features)])
preprocessor.fit(X_train)

[9]: ColumnTransformer(n_jobs=None, remainder='drop', sparse_threshold=0.3,
transformer_weights=None,
transformers=[('num',

Pipeline(memory=None,
steps=[('imputer',

SimpleImputer(add_indicator=False,
copy=True,
fill_value=None,
missing_values=nan,
strategy='median',
verbose=0)),

('scaler',
StandardScaler(copy=True,

with_mean=True,
with_std=True))],

verbose=False),
[0, 8, 9, 10]),
('cat',
Pipeline(memory=None,

steps=[('imputer',
SimpleImputer(add_indicator=False,

copy=True,
fill_value=None,
missing_values=nan,
strategy='median',
verbose=0)),

('onehot',
OneHotEncoder(categories='auto',

drop=None,
dtype=<class 'numpy.

→˓float64'>,
handle_unknown='ignore',
sparse=True))],

verbose=False),
[1, 2, 3, 4, 5, 6, 7, 11])],

verbose=False)

8.3. Anchors 201

alibi Documentation, Release 0.9.5dev

Train Random Forest model

Fit on pre-processed (imputing, OHE, standardizing) data.

[10]: np.random.seed(0)
clf = RandomForestClassifier(n_estimators=50)
clf.fit(preprocessor.transform(X_train), Y_train)

[10]: RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
criterion='gini', max_depth=None, max_features='auto',
max_leaf_nodes=None, max_samples=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=50,
n_jobs=None, oob_score=False, random_state=None,
verbose=0, warm_start=False)

Define predict function

[11]: predict_fn = lambda x: clf.predict(preprocessor.transform(x))
print('Train accuracy: ', accuracy_score(Y_train, predict_fn(X_train)))
print('Test accuracy: ', accuracy_score(Y_test, predict_fn(X_test)))

Train accuracy: 0.9655333333333334
Test accuracy: 0.855859375

Initialize and fit anchor explainer for tabular data

[12]: explainer = AnchorTabular(predict_fn, feature_names, categorical_names=category_map,␣
→˓seed=1)

Discretize the ordinal features into quartiles

[13]: explainer.fit(X_train, disc_perc=[25, 50, 75])

[13]: AnchorTabular(meta={
'name': 'AnchorTabular',
'type': ['blackbox'],
'explanations': ['local'],
'params': {'seed': 1, 'disc_perc': [25, 50, 75]}

})

Getting an anchor

Below, we get an anchor for the prediction of the first observation in the test set. An anchor is a sufficient condition -
that is, when the anchor holds, the prediction should be the same as the prediction for this instance.

[14]: idx = 0
class_names = adult.target_names
print('Prediction: ', class_names[explainer.predictor(X_test[idx].reshape(1, -1))[0]])

Prediction: <=50K

202 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

We set the precision threshold to 0.95. This means that predictions on observations where the anchor holds will be the
same as the prediction on the explained instance at least 95% of the time.

[15]: explanation = explainer.explain(X_test[idx], threshold=0.95)
print('Anchor: %s' % (' AND '.join(explanation.anchor)))
print('Precision: %.2f' % explanation.precision)
print('Coverage: %.2f' % explanation.coverage)

Anchor: Marital Status = Separated AND Sex = Female
Precision: 0.95
Coverage: 0.18

. . . or not?

Let’s try getting an anchor for a different observation in the test set - one for the which the prediction is >50K.

[16]: idx = 6
class_names = adult.target_names
print('Prediction: ', class_names[explainer.predictor(X_test[idx].reshape(1, -1))[0]])

explanation = explainer.explain(X_test[idx], threshold=0.95)
print('Anchor: %s' % (' AND '.join(explanation.anchor)))
print('Precision: %.2f' % explanation.precision)
print('Coverage: %.2f' % explanation.coverage)

Prediction: >50K

Could not find an result satisfying the 0.95 precision constraint. Now returning the␣
→˓best non-eligible result.

Anchor: Capital Loss > 0.00 AND Relationship = Husband AND Marital Status = Married AND␣
→˓Age > 37.00 AND Race = White AND Country = United-States AND Sex = Male
Precision: 0.71
Coverage: 0.05

Notice how no anchor is found!

This is due to the imbalanced dataset (roughly 25:75 high:low earner proportion), so during the sampling stage feature
ranges corresponding to low-earners will be oversampled. This is a feature because it can point out an imbalanced
dataset, but it can also be fixed by producing balanced datasets to enable anchors to be found for either class.

8.3.4 Anchor explanations on the Iris dataset

[1]: import numpy as np
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from alibi.explainers import AnchorTabular

8.3. Anchors 203

alibi Documentation, Release 0.9.5dev

Load iris dataset

[2]: dataset = load_iris()
feature_names = dataset.feature_names
class_names = list(dataset.target_names)

Define training and test set

[3]: idx = 145
X_train,Y_train = dataset.data[:idx,:], dataset.target[:idx]
X_test, Y_test = dataset.data[idx+1:,:], dataset.target[idx+1:]

Train Random Forest model

[4]: np.random.seed(0)
clf = RandomForestClassifier(n_estimators=50)
clf.fit(X_train, Y_train)

[4]: RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
criterion='gini', max_depth=None, max_features='auto',
max_leaf_nodes=None, max_samples=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=50,
n_jobs=None, oob_score=False, random_state=None,
verbose=0, warm_start=False)

Define predict function

[5]: predict_fn = lambda x: clf.predict_proba(x)

Initialize and fit anchor explainer for tabular data

[6]: explainer = AnchorTabular(predict_fn, feature_names)

Discretize the ordinal features into quartiles

[7]: explainer.fit(X_train, disc_perc=(25, 50, 75))

[7]: AnchorTabular(meta={
'name': 'AnchorTabular',
'type': ['blackbox'],
'explanations': ['local'],
'params': {'seed': None, 'disc_perc': (25, 50, 75)}

})

204 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Getting an anchor

Below, we get an anchor for the prediction of the first observation in the test set. An anchor is a sufficient condition -
that is, when the anchor holds, the prediction should be the same as the prediction for this instance.

[8]: idx = 0
print('Prediction: ', class_names[explainer.predictor(X_test[idx].reshape(1, -1))[0]])

Prediction: virginica

We set the precision threshold to 0.95. This means that predictions on observations where the anchor holds will be the
same as the prediction on the explained instance at least 95% of the time.

[9]: explanation = explainer.explain(X_test[idx], threshold=0.95)
print('Anchor: %s' % (' AND '.join(explanation.anchor)))
print('Precision: %.2f' % explanation.precision)
print('Coverage: %.2f' % explanation.coverage)

Anchor: petal width (cm) > 1.80 AND sepal width (cm) <= 2.80
Precision: 0.98
Coverage: 0.32

8.3.5 Anchor explanations for movie sentiment

In this example, we will explain why a certain sentence is classified by a logistic regression as having negative or
positive sentiment. The logistic regression is trained on negative and positive movie reviews.

Note
To enable support for the anchor text language models, you may need to run

pip install alibi[tensorflow]

[1]: import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # surpressing some transformers' output

import spacy
import string
import numpy as np

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split

from alibi.explainers import AnchorText
from alibi.datasets import fetch_movie_sentiment
from alibi.utils import spacy_model
from alibi.utils import DistilbertBaseUncased, BertBaseUncased, RobertaBase

8.3. Anchors 205

alibi Documentation, Release 0.9.5dev

Load movie review dataset

The fetch_movie_sentiment function returns a Bunch object containing the features, the targets and the target
names for the dataset.

[2]: movies = fetch_movie_sentiment()
movies.keys()

[2]: dict_keys(['data', 'target', 'target_names'])

[3]: data = movies.data
labels = movies.target
target_names = movies.target_names

Define shuffled training, validation and test set

[4]: train, test, train_labels, test_labels = train_test_split(data, labels, test_size=.2,␣
→˓random_state=42)
train, val, train_labels, val_labels = train_test_split(train, train_labels, test_size=.
→˓1, random_state=42)
train_labels = np.array(train_labels)
test_labels = np.array(test_labels)
val_labels = np.array(val_labels)

Apply CountVectorizer to training set

[5]: vectorizer = CountVectorizer(min_df=1)
vectorizer.fit(train)

[5]: CountVectorizer()

Fit model

[6]: np.random.seed(0)
clf = LogisticRegression(solver='liblinear')
clf.fit(vectorizer.transform(train), train_labels)

[6]: LogisticRegression(solver='liblinear')

Define prediction function

[7]: predict_fn = lambda x: clf.predict(vectorizer.transform(x))

206 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Make predictions on train and test sets

[8]: preds_train = predict_fn(train)
preds_val = predict_fn(val)
preds_test = predict_fn(test)
print('Train accuracy: %.3f' % accuracy_score(train_labels, preds_train))
print('Validation accuracy: %.3f' % accuracy_score(val_labels, preds_val))
print('Test accuracy: %.3f' % accuracy_score(test_labels, preds_test))

Train accuracy: 0.980
Validation accuracy: 0.754
Test accuracy: 0.759

Load spaCy model

English multi-task CNN trained on OntoNotes, with GloVe vectors trained on Common Crawl. Assigns word vectors,
context-specific token vectors, POS tags, dependency parse and named entities.

[9]: model = 'en_core_web_md'
spacy_model(model=model)
nlp = spacy.load(model)

Instance to be explained

[10]: class_names = movies.target_names

select instance to be explained
text = data[4]
print("* Text: %s" % text)

compute class prediction
pred = class_names[predict_fn([text])[0]]
alternative = class_names[1 - predict_fn([text])[0]]
print("* Prediction: %s" % pred)

* Text: a visually flashy but narratively opaque and emotionally vapid exercise in style␣
→˓and mystification .
* Prediction: negative

Initialize anchor text explainer with unknown sampling

• sampling_strategy='unknown' means we will perturb examples by replacing words with UNKs.

[11]: explainer = AnchorText(
predictor=predict_fn,
sampling_strategy='unknown',
nlp=nlp,

)

8.3. Anchors 207

alibi Documentation, Release 0.9.5dev

Explanation

[12]: explanation = explainer.explain(text, threshold=0.95)

Let us now take a look at the anchor. The word flashy basically guarantees a negative prediction.

[13]: print('Anchor: %s' % (' AND '.join(explanation.anchor)))
print('Precision: %.2f' % explanation.precision)
print('\nExamples where anchor applies and model predicts %s:' % pred)
print('\n'.join([x for x in explanation.raw['examples'][-1]['covered_true']]))
print('\nExamples where anchor applies and model predicts %s:' % alternative)
print('\n'.join([x for x in explanation.raw['examples'][-1]['covered_false']]))

Anchor: flashy
Precision: 0.99

Examples where anchor applies and model predicts negative:
a UNK flashy UNK UNK opaque and emotionally vapid exercise in style UNK mystification .
a UNK flashy UNK UNK UNK and emotionally UNK exercise UNK UNK and UNK UNK
a UNK flashy UNK narratively opaque UNK UNK UNK exercise in style and UNK UNK
UNK visually flashy UNK narratively UNK and emotionally UNK UNK UNK UNK UNK␣
→˓mystification .
UNK UNK flashy UNK UNK opaque and emotionally UNK UNK in UNK and UNK .
a visually flashy but UNK UNK and UNK UNK UNK in style UNK mystification .
a visually flashy but UNK opaque UNK emotionally vapid UNK in UNK and mystification .
a UNK flashy but narratively UNK UNK emotionally vapid exercise in style UNK␣
→˓mystification UNK
a UNK flashy but narratively opaque UNK emotionally vapid exercise in style and␣
→˓mystification .
a visually flashy UNK UNK opaque UNK UNK UNK exercise in UNK UNK UNK .

Examples where anchor applies and model predicts positive:
UNK UNK flashy but narratively UNK and UNK UNK UNK in style and UNK UNK

Initialize anchor text explainer with word similarity sampling

Let’s try this with another perturbation distribution, namely one that replaces words by similar words instead of UNKs.

[14]: explainer = AnchorText(
predictor=predict_fn,
sampling_strategy='similarity', # replace masked words by simialar words
nlp=nlp, # spacy object
sample_proba=0.5, # probability of a word to be masked and replace␣

→˓by as similar word
)

[15]: explanation = explainer.explain(text, threshold=0.95)

The anchor now shows that we need more to guarantee the negative prediction:

[16]: print('Anchor: %s' % (' AND '.join(explanation.anchor)))
print('Precision: %.2f' % explanation.precision)

(continues on next page)

208 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

print('\nExamples where anchor applies and model predicts %s:' % pred)
print('\n'.join([x for x in explanation.raw['examples'][-1]['covered_true']]))
print('\nExamples where anchor applies and model predicts %s:' % alternative)
print('\n'.join([x for x in explanation.raw['examples'][-1]['covered_false']]))

Anchor: exercise AND vapid
Precision: 0.99

Examples where anchor applies and model predicts negative:
that visually flashy but tragically opaque and emotionally vapid exercise under genre␣
→˓and glorification .
another provably flashy but hysterically bulky and emotionally vapid exercise arounds␣
→˓style and authorization .
that- visually flashy but narratively opaque and politically vapid exercise in style and␣
→˓mystification .
a unintentionally decal but narratively thick and emotionally vapid exercise in␣
→˓unflattering and mystification .
the purposely flashy but narratively rosy and emotionally vapid exercise in style and␣
→˓mystification .
thievery intentionally flashy but hysterically gray and anally vapid exercise in style␣
→˓and mystification .
a irrationally flashy but narratively smoothness and purposefully vapid exercise near␣
→˓style and diction .
a medio flashy but narratively blue and economically vapid exercise since style and␣
→˓intuition .
a visually flashy but narratively opaque and anally vapid exercise onwards style and␣
→˓mystification .
each purposefully flashy but narratively gorgeous and emotionally vapid exercise in␣
→˓style and mystification .

Examples where anchor applies and model predicts positive:
a visually punchy but tragically opaque and hysterically vapid exercise in minimalist␣
→˓and mystification .
a visually discernible but realistically posh and physically vapid exercise around style␣
→˓and determination .

We can make the token perturbation distribution sample words that are more similar to the ground truth word via the
top_n argument. Smaller values (default=100) should result in sentences that are more coherent and thus more in the
distribution of natural language which could influence the returned anchor. By setting the use_proba to True, the
sampling distribution for perturbed tokens is proportional to the similarity score between the possible perturbations
and the original word. We can also put more weight on similar words via the temperature argument. Lower values
of temperature increase the sampling weight of more similar words. The following example will perturb tokens in
the original sentence with probability equal to sample_proba. The sampling distribution for the perturbed tokens is
proportional to the similarity score between the ground truth word and each of the top_n words.

[17]: explainer = AnchorText(
predictor=predict_fn,
sampling_strategy='similarity', # replace masked words by simialar words
nlp=nlp, # spacy object
use_proba=True, # sample according to the similiary distribution
sample_proba=0.5, # probability of a word to be masked and replace by␣

→˓as similar word
top_n=20, # consider only top 20 words most similar words

(continues on next page)

8.3. Anchors 209

alibi Documentation, Release 0.9.5dev

(continued from previous page)

temperature=0.2 # higher temperature implies more randomness when␣
→˓sampling
)

[18]: explanation = explainer.explain(text, threshold=0.95)

[19]: print('Anchor: %s' % (' AND '.join(explanation.anchor)))
print('Precision: %.2f' % explanation.precision)
print('\nExamples where anchor applies and model predicts %s:' % pred)
print('\n'.join([x for x in explanation.raw['examples'][-1]['covered_true']]))
print('\nExamples where anchor applies and model predicts %s:' % alternative)
print('\n'.join([x for x in explanation.raw['examples'][-1]['covered_false']]))

Anchor: exercise AND flashy
Precision: 1.00

Examples where anchor applies and model predicts negative:
a visually flashy but sarcastically brown and reflexively vapid exercise between style␣
→˓and mystification .
this visually flashy but intentionally shiny and emotionally vapid exercise in style and␣
→˓appropriation .
a visually flashy but narratively glossy and critically vapid exercise in accentuate and␣
→˓omission .
a visually flashy but historically glossy and purposely rapid exercise within stylesheet␣
→˓and equivocation .
each visually flashy but intently opaque and emotionally quickie exercise throughout␣
→˓style and mystification .
that reflexively flashy but narratively opaque and romantically melodramatic exercise␣
→˓within style and mystification .
a equally flashy but narratively boxy and emotionally predictable exercise in classism␣
→˓and exaggeration .
a visually flashy but narratively opaque and emotionally vapid exercise between style␣
→˓and mystification .
a visually flashy but emphatically opaque and emotionally vapid exercise walkthrough␣
→˓classism and mystification .
a verbally flashy but sarcastically opaque and emotionally dramatic exercise in design␣
→˓and mystification .

Examples where anchor applies and model predicts positive:
that visually flashy but narratively boxy and reflexively insignificant exercise outside␣
→˓minimalist and appropriation .

210 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Initialize language model

Because the Language Model is computationally demanding, we can run it on the GPU. Note that this is optional, and
we can run the explainer on a non-GPU machine too.

[20]: # the code runs for non-GPU machines too
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"

We provide support for three transformer-based language models: DistilbertBaseUncased, BertBaseUncased,
and RobertaBase. We initialize the language model as follows:

[21]: # language_model = RobertaBase()
language_model = BertBaseUncased()
language_model = DistilbertBaseUncased()

Some layers from the model checkpoint at distilbert-base-uncased were not used when␣
→˓initializing TFDistilBertForMaskedLM: ['activation_13']
- This IS expected if you are initializing TFDistilBertForMaskedLM from the checkpoint␣
→˓of a model trained on another task or with another architecture (e.g. initializing a␣
→˓BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing TFDistilBertForMaskedLM from the␣
→˓checkpoint of a model that you expect to be exactly identical (initializing a␣
→˓BertForSequenceClassification model from a BertForSequenceClassification model).
All the layers of TFDistilBertForMaskedLM were initialized from the model checkpoint at␣
→˓distilbert-base-uncased.
If your task is similar to the task the model of the checkpoint was trained on, you can␣
→˓already use TFDistilBertForMaskedLM for predictions without further training.

Initialize anchor text explainer with language_model sampling (parallel filling)

• sampling_strategy='language_model' means that the words will be sampled according to the output dis-
tribution predicted by the language model

• filling='parallel'means the only one forward pass is performed. The words are the sampled independently
of one another.

[22]: # initialize explainer
explainer = AnchorText(

predictor=predict_fn,
sampling_strategy="language_model", # use language model to predict the masked␣

→˓words
language_model=language_model, # language model to be used
filling="parallel", # just one pass through the transformer
sample_proba=0.5, # probability of masking a word
frac_mask_templates=0.1, # fraction of masking templates (smaller value␣

→˓-> faster, less diverse)
use_proba=True, # use words distribution when sampling (if␣

→˓False sample uniform)
top_n=20, # consider the fist 20 most likely words
temperature=1.0, # higher temperature implies more randomness␣

→˓when sampling
stopwords=['and', 'a', 'but', 'in'], # those words will not be sampled

(continues on next page)

8.3. Anchors 211

alibi Documentation, Release 0.9.5dev

(continued from previous page)

batch_size_lm=32, # language model maximum batch size
)

[23]: explanation = explainer.explain(text, threshold=0.95)

[24]: print('Anchor: %s' % (' AND '.join(explanation.anchor)))
print('Precision: %.2f' % explanation.precision)
print('\nExamples where anchor applies and model predicts %s:' % pred)
print('\n'.join([x for x in explanation.raw['examples'][-1]['covered_true']]))
print('\nExamples where anchor applies and model predicts %s:' % alternative)
print('\n'.join([x for x in explanation.raw['examples'][-1]['covered_false']]))

Anchor: exercise AND flashy AND opaque
Precision: 0.95

Examples where anchor applies and model predicts negative:
a visually flashy but visually opaque and politically photographic exercise in style and␣
→˓mystification.
a visually flashy but visually opaque and emotionally expressive exercise in style and␣
→˓mystification.
a visually flashy but visually opaque and socially visual exercise in style and␣
→˓mystification.
a visually flashy but ultimately opaque and visually dramatic exercise in style and␣
→˓mystification.
a visually flashy but often opaque and highly conscious exercise in style and␣
→˓mystification.
a visually flashy but historically opaque and intensely thorough exercise in style and␣
→˓mystification.
a visually flashy but socially opaque and visually an exercise in style and␣
→˓mystification.
a visually flashy but emotionally opaque and socially an exercise in style and␣
→˓mystification.
a visually flashy but emotionally opaque and visually creative exercise in style and␣
→˓mystification.
a visually flashy but sometimes opaque and subtly photographic exercise in style and␣
→˓mystification.

Examples where anchor applies and model predicts positive:
a visually flashy but visually opaque and deeply enjoyable exercise in imagination and␣
→˓mystification.
a visually flashy but somewhat opaque and highly an exercise in reflection and␣
→˓mystification.
a visually flashy but narratively opaque and deeply imaginative exercise in style and␣
→˓mystification.
a visually flashy but narratively opaque and visually challenging exercise in style and␣
→˓mystification.
a visually flashy but narratively opaque and intensely challenging exercise in style and␣
→˓mystification.
a surprisingly flashy but narratively opaque and highly rigorous exercise in style and␣
→˓mystification.
a very flashy but narratively opaque and highly imaginative exercise in style and␣
→˓mystification.

212 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Initialize anchor text explainer with language_model sampling (autoregressive filling)

• filling='autoregressive' means that the words are sampled one at the time (autoregressive). Thus, fol-
lowing words to be predicted will be conditioned one the previously generated words.

• frac_mask_templates=1 in this mode (overwriting it with any other value will not be considered).

• This procedure is computationally expensive.

[25]: # initialize explainer
explainer = AnchorText(

predictor=predict_fn,
sampling_strategy="language_model", # use language model to predict the masked words
language_model=language_model, # language model to be used
filling="autoregressive", # just one pass through the transformer
sample_proba=0.5, # probability of masking a word
use_proba=True, # use words distribution when sampling (if␣

→˓False sample uniform)
top_n=20, # consider the fist 20 most likely words
stopwords=['and', 'a', 'but', 'in'] # those words will not be sampled

)

[26]: explanation = explainer.explain(text, threshold=0.95, batch_size=10, coverage_
→˓samples=100)

[27]: print('Anchor: %s' % (' AND '.join(explanation.anchor)))
print('Precision: %.2f' % explanation.precision)
print('\nExamples where anchor applies and model predicts %s:' % pred)
print('\n'.join([x for x in explanation.raw['examples'][-1]['covered_true']]))
print('\nExamples where anchor applies and model predicts %s:' % alternative)
print('\n'.join([x for x in explanation.raw['examples'][-1]['covered_false']]))

Anchor: flashy AND exercise AND vapid
Precision: 0.96

Examples where anchor applies and model predicts negative:
a visually flashy but emotionally opaque and emotionally vapid exercise in mystery and␣
→˓mystification.
a slightly flashy but narratively opaque and deliberately vapid exercise in style and␣
→˓detail.
a visually flashy but narratively accessible and emotionally vapid exercise in style and␣
→˓creativity.
a fairly flashy but narratively vivid and emotionally vapid exercise in style and␣
→˓mystification.
a somewhat flashy but socially opaque and emotionally vapid exercise in style and␣
→˓technique.
a fairly flashy but extremely opaque and emotionally vapid exercise in beauty and␣
→˓mystification.
a little flashy but extremely lively and fairly vapid exercise in relaxation and␣
→˓mystification.
a slightly flashy but highly opaque and somewhat vapid exercise in movement and␣
→˓breathing.
a visually flashy but narratively sensitive and emotionally vapid exercise in style and␣
→˓mystification.

(continues on next page)

8.3. Anchors 213

alibi Documentation, Release 0.9.5dev

(continued from previous page)

a visually flashy but emotionally opaque and emotionally vapid exercise in beauty and␣
→˓mystery.

Examples where anchor applies and model predicts positive:

8.4 Contrastive Explanation Method

8.4.1 Contrastive Explanations Method (CEM) applied to Iris dataset

The Contrastive Explanation Method (CEM) can generate black box model explanations in terms of pertinent positives
(PP) and pertinent negatives (PN). For PP, it finds what should be minimally and sufficiently present (e.g. important
pixels in an image) to justify its classification. PN on the other hand identify what should be minimally and necessarily
absent from the explained instance in order to maintain the original prediction.

The original paper where the algorithm is based on can be found on arXiv.

This notebook requires the seaborn package for visualization which can be installed via pip:

Note
To enable support for the Contrastive Explanation Method, you may need to run

pip install alibi[tensorflow]

[]: !pip install seaborn

[1]: import tensorflow as tf
tf.get_logger().setLevel(40) # suppress deprecation messages
tf.compat.v1.disable_v2_behavior() # disable TF2 behaviour as alibi code still relies on␣
→˓TF1 constructs
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.utils import to_categorical

import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns
from sklearn.datasets import load_iris
from alibi.explainers import CEM

print('TF version: ', tf.__version__)
print('Eager execution enabled: ', tf.executing_eagerly()) # False

TF version: 2.2.0
Eager execution enabled: False

214 Chapter 8. Examples

https://arxiv.org/abs/1802.07623

alibi Documentation, Release 0.9.5dev

Load and prepare Iris dataset

[2]: dataset = load_iris()
feature_names = dataset.feature_names
class_names = list(dataset.target_names)

Scale data

[3]: dataset.data = (dataset.data - dataset.data.mean(axis=0)) / dataset.data.std(axis=0)

Define training and test set

[4]: idx = 145
x_train,y_train = dataset.data[:idx,:], dataset.target[:idx]
x_test, y_test = dataset.data[idx+1:,:], dataset.target[idx+1:]
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

Define and train logistic regression model

[5]: def lr_model():
x_in = Input(shape=(4,))
x_out = Dense(3, activation='softmax')(x_in)
lr = Model(inputs=x_in, outputs=x_out)
lr.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
return lr

[6]: lr = lr_model()
lr.summary()
lr.fit(x_train, y_train, batch_size=16, epochs=500, verbose=0)
lr.save('iris_lr.h5', save_format='h5')

Model: "model"

Layer (type) Output Shape Param #
===
input_1 (InputLayer) [(None, 4)] 0

dense (Dense) (None, 3) 15
===
Total params: 15
Trainable params: 15
Non-trainable params: 0

8.4. Contrastive Explanation Method 215

alibi Documentation, Release 0.9.5dev

Generate contrastive explanation with pertinent negative

Explained instance:

[7]: idx = 0
X = x_test[idx].reshape((1,) + x_test[idx].shape)
print(f'Prediction on instance to be explained: {class_names[np.argmax(lr.predict(X))]}')
print(f'Prediction probabilities for each class on the instance: {lr.predict(X)}')

Prediction on instance to be explained: virginica
Prediction probabilities for each class on the instance: [[2.2735458e-04 2.4420770e-01 7.
→˓5556499e-01]]

CEM parameters:

[8]: mode = 'PN' # 'PN' (pertinent negative) or 'PP' (pertinent positive)
shape = (1,) + x_train.shape[1:] # instance shape
kappa = .2 # minimum difference needed between the prediction probability for the␣
→˓perturbed instance on the

class predicted by the original instance and the max probability on the␣
→˓other classes

in order for the first loss term to be minimized
beta = .1 # weight of the L1 loss term
c_init = 10. # initial weight c of the loss term encouraging to predict a different␣
→˓class (PN) or

the same class (PP) for the perturbed instance compared to the original␣
→˓instance to be explained
c_steps = 10 # nb of updates for c
max_iterations = 1000 # nb of iterations per value of c
feature_range = (x_train.min(axis=0).reshape(shape)-.1, # feature range for the␣
→˓perturbed instance

x_train.max(axis=0).reshape(shape)+.1) # can be either a float or␣
→˓array of shape (1xfeatures)
clip = (-1000.,1000.) # gradient clipping
lr_init = 1e-2 # initial learning rate

Generate pertinent negative:

[9]: # define model
lr = load_model('iris_lr.h5')

initialize CEM explainer and explain instance
cem = CEM(lr, mode, shape, kappa=kappa, beta=beta, feature_range=feature_range,

max_iterations=max_iterations, c_init=c_init, c_steps=c_steps,
learning_rate_init=lr_init, clip=clip)

cem.fit(x_train, no_info_type='median') # we need to define what feature values contain␣
→˓the least

info wrt predictions
here we will naively assume that the feature-

→˓wise median
contains no info; domain knowledge helps!

explanation = cem.explain(X, verbose=False)

216 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[10]: print(f'Original instance: {explanation.X}')
print(f'Predicted class: {class_names[explanation.X_pred]}')

Original instance: [[0.55333328 -1.28296331 0.70592084 0.92230284]]
Predicted class: virginica

[11]: print(f'Pertinent negative: {explanation.PN}')
print(f'Predicted class: {class_names[explanation.PN_pred]}')

Pertinent negative: [[0.5533333 -1.2829633 -0.5391252 0.92230284]]
Predicted class: versicolor

Store explanation to plot later on:

[12]: expl = {}
expl['PN'] = explanation.PN
expl['PN_pred'] = explanation.PN_pred

Generate pertinent positive

[13]: mode = 'PP'

Generate pertinent positive:

[14]: # define model
lr = load_model('iris_lr.h5')

initialize CEM explainer and explain instance
cem = CEM(lr, mode, shape, kappa=kappa, beta=beta, feature_range=feature_range,

max_iterations=max_iterations, c_init=c_init, c_steps=c_steps,
learning_rate_init=lr_init, clip=clip)

cem.fit(x_train, no_info_type='median')
explanation = cem.explain(X, verbose=False)

[15]: print(f'Pertinent positive: {explanation.PP}')
print(f'Predicted class: {class_names[explanation.PP_pred]}')

Pertinent positive: [[-7.44469730e-09 -3.47054341e-08 2.68840638e-01 9.17062904e-01]]
Predicted class: virginica

[16]: expl['PP'] = explanation.PP
expl['PP_pred'] = explanation.PP_pred

8.4. Contrastive Explanation Method 217

alibi Documentation, Release 0.9.5dev

Visualize PN and PP

Let’s visualize the generated explanations to check if the perturbed instances make sense.

Create dataframe from standardized data:

[17]: df = pd.DataFrame(dataset.data, columns=dataset.feature_names)
df['species'] = np.array([dataset.target_names[i] for i in dataset.target])

Highlight explained instance and add pertinent negative and positive to the dataset:

[18]: pn = pd.DataFrame(expl['PN'], columns=dataset.feature_names)
pn['species'] = 'PN_' + class_names[expl['PN_pred']]
pp = pd.DataFrame(expl['PP'], columns=dataset.feature_names)
pp['species'] = 'PP_' + class_names[expl['PP_pred']]
orig_inst = pd.DataFrame(explanation.X, columns=dataset.feature_names)
orig_inst['species'] = 'orig_' + class_names[explanation.X_pred]
df = pd.concat([df, pn, pp, orig_inst], ignore_index=True)

Pair plots between the features show that the pertinent negative is pushed from the original instance (versicolor) into
the virginica distribution while the pertinent positive moved away from the virginica distribution.

[19]: fig = sns.pairplot(df, hue='species', diag_kind='hist');

218 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Use numerical gradients in CEM

If we do not have access to the Keras or TensorFlow model weights, we can use numerical gradients for the first term
in the loss function that needs to be minimized (eq. 1 and 4 in the paper).

CEM parameters:

[20]: mode = 'PN'

If numerical gradients are used to compute:

𝜕𝐿

𝜕𝑥
=

𝜕𝐿

𝜕𝑝
* 𝜕𝑝

𝜕𝑥

with L = loss function; p = predict function and x the parameter to optimize, then the tuple eps can be used to define
the perturbation used to compute the derivatives. eps[0] is used to calculate the first partial derivative term and eps[1]
is used for the second term. eps[0] and eps[1] can be a combination of float values or numpy arrays. For eps[0], the
array dimension should be (1 x nb of prediction categories) and for eps[1] it should be (1 x nb of features).

8.4. Contrastive Explanation Method 219

https://arxiv.org/pdf/1802.07623.pdf

alibi Documentation, Release 0.9.5dev

[21]: eps0 = np.array([[1e-2, 1e-2, 1e-2]]) # 3 prediction categories, equivalent to 1e-2
eps1 = np.array([[1e-2, 1e-2, 1e-2, 1e-2]]) # 4 features, also equivalent to 1e-2
eps = (eps0, eps1)

For complex models with a high number of parameters and a high dimensional feature space (e.g. Inception on Im-
ageNet), evaluating numerical gradients can be expensive as they involve multiple prediction calls for each perturbed
instance. The update_num_grad parameter allows you to set a batch size on which to evaluate the numerical gradients,
drastically reducing the number of prediction calls required.

[22]: update_num_grad = 1

Generate pertinent negative:

[23]: # define model
lr = load_model('iris_lr.h5')
predict_fn = lambda x: lr.predict(x) # only pass the predict fn which takes numpy␣
→˓arrays to CEM

explainer can no longer minimize wrt model␣
→˓weights

initialize CEM explainer and explain instance
cem = CEM(predict_fn, mode, shape, kappa=kappa, beta=beta,

feature_range=feature_range, max_iterations=max_iterations,
eps=eps, c_init=c_init, c_steps=c_steps, learning_rate_init=lr_init,
clip=clip, update_num_grad=update_num_grad)

cem.fit(x_train, no_info_type='median')
explanation = cem.explain(X, verbose=False)

[24]: print(f'Original instance: {explanation.X}')
print(f'Predicted class: {class_names[explanation.X_pred]}')

Original instance: [[0.55333328 -1.28296331 0.70592084 0.92230284]]
Predicted class: virginica

[25]: print(f'Pertinent negative: {explanation.X}')
print(f'Predicted class: {class_names[explanation.X_pred]}')

Pertinent negative: [[0.55333328 -1.28296331 0.70592084 0.92230284]]
Predicted class: virginica

Clean up:

[26]: os.remove('iris_lr.h5')

220 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

8.4.2 Contrastive Explanations Method (CEM) applied to MNIST

The Contrastive Explanation Method (CEM) can generate black box model explanations in terms of pertinent positives
(PP) and pertinent negatives (PN). For PP, it finds what should be minimally and sufficiently present (e.g. important
pixels in an image) to justify its classification. PN on the other hand identify what should be minimally and necessarily
absent from the explained instance in order to maintain the original prediction.

The original paper where the algorithm is based on can be found on arXiv.

Note
To enable support for the Contrastive Explanation Method, you may need to run

pip install alibi[tensorflow]

[1]: import tensorflow as tf
tf.get_logger().setLevel(40) # suppress deprecation messages
tf.compat.v1.disable_v2_behavior() # disable TF2 behaviour as alibi code still relies on␣
→˓TF1 constructs
import tensorflow.keras as keras
from tensorflow.keras import backend as K
from tensorflow.keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Input,
→˓ UpSampling2D
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.utils import to_categorical

import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import os
from alibi.explainers import CEM

print('TF version: ', tf.__version__)
print('Eager execution enabled: ', tf.executing_eagerly()) # False

TF version: 2.2.0
Eager execution enabled: False

Load and prepare MNIST data

[2]: (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape)
plt.gray()
plt.imshow(x_test[4]);

x_train shape: (60000, 28, 28) y_train shape: (60000,)

8.4. Contrastive Explanation Method 221

https://arxiv.org/abs/1802.07623

alibi Documentation, Release 0.9.5dev

Prepare data: scale, reshape and categorize

[3]: x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train, x_train.shape + (1,))
x_test = np.reshape(x_test, x_test.shape + (1,))
print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)

x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1)
y_train shape: (60000, 10) y_test shape: (10000, 10)

[4]: xmin, xmax = -.5, .5
x_train = ((x_train - x_train.min()) / (x_train.max() - x_train.min())) * (xmax - xmin)␣
→˓+ xmin
x_test = ((x_test - x_test.min()) / (x_test.max() - x_test.min())) * (xmax - xmin) + xmin

Define and train CNN model

[5]: def cnn_model():
x_in = Input(shape=(28, 28, 1))
x = Conv2D(filters=64, kernel_size=2, padding='same', activation='relu')(x_in)
x = MaxPooling2D(pool_size=2)(x)
x = Dropout(0.3)(x)

x = Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')(x)
x = MaxPooling2D(pool_size=2)(x)
x = Dropout(0.3)(x)

x = Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')(x)
x = MaxPooling2D(pool_size=2)(x)
x = Dropout(0.3)(x)

(continues on next page)

222 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

x = Flatten()(x)
x = Dense(256, activation='relu')(x)
x = Dropout(0.5)(x)
x_out = Dense(10, activation='softmax')(x)

cnn = Model(inputs=x_in, outputs=x_out)
cnn.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return cnn

[6]: cnn = cnn_model()
cnn.summary()
cnn.fit(x_train, y_train, batch_size=64, epochs=5, verbose=1)
cnn.save('mnist_cnn.h5', save_format='h5')

Model: "model"

Layer (type) Output Shape Param #
===
input_1 (InputLayer) [(None, 28, 28, 1)] 0

conv2d (Conv2D) (None, 28, 28, 64) 320

max_pooling2d (MaxPooling2D) (None, 14, 14, 64) 0

dropout (Dropout) (None, 14, 14, 64) 0

conv2d_1 (Conv2D) (None, 14, 14, 32) 8224

max_pooling2d_1 (MaxPooling2 (None, 7, 7, 32) 0

dropout_1 (Dropout) (None, 7, 7, 32) 0

conv2d_2 (Conv2D) (None, 7, 7, 32) 4128

max_pooling2d_2 (MaxPooling2 (None, 3, 3, 32) 0

dropout_2 (Dropout) (None, 3, 3, 32) 0

flatten (Flatten) (None, 288) 0

dense (Dense) (None, 256) 73984

dropout_3 (Dropout) (None, 256) 0

dense_1 (Dense) (None, 10) 2570
===
Total params: 89,226
Trainable params: 89,226
Non-trainable params: 0

Evaluate the model on test set

8.4. Contrastive Explanation Method 223

alibi Documentation, Release 0.9.5dev

[7]: cnn = load_model('mnist_cnn.h5')
score = cnn.evaluate(x_test, y_test, verbose=0)
print('Test accuracy: ', score[1])

Test accuracy: 0.9871

Define and train auto-encoder

[8]: def ae_model():
x_in = Input(shape=(28, 28, 1))
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x_in)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
encoded = Conv2D(1, (3, 3), activation=None, padding='same')(x)

x = Conv2D(16, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
decoded = Conv2D(1, (3, 3), activation=None, padding='same')(x)

autoencoder = Model(x_in, decoded)
autoencoder.compile(optimizer='adam', loss='mse')

return autoencoder

[9]: ae = ae_model()
ae.summary()
ae.fit(x_train, x_train, batch_size=128, epochs=4, validation_data=(x_test, x_test),␣
→˓verbose=0)
ae.save('mnist_ae.h5', save_format='h5')

Model: "model_1"

Layer (type) Output Shape Param #
===
input_2 (InputLayer) [(None, 28, 28, 1)] 0

conv2d_3 (Conv2D) (None, 28, 28, 16) 160

conv2d_4 (Conv2D) (None, 28, 28, 16) 2320

max_pooling2d_3 (MaxPooling2 (None, 14, 14, 16) 0

conv2d_5 (Conv2D) (None, 14, 14, 1) 145

conv2d_6 (Conv2D) (None, 14, 14, 16) 160

up_sampling2d (UpSampling2D) (None, 28, 28, 16) 0

conv2d_7 (Conv2D) (None, 28, 28, 16) 2320

conv2d_8 (Conv2D) (None, 28, 28, 1) 145

(continues on next page)

224 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

===
Total params: 5,250
Trainable params: 5,250
Non-trainable params: 0

Compare original with decoded images

[10]: ae = load_model('mnist_ae.h5')

decoded_imgs = ae.predict(x_test)
n = 5
plt.figure(figsize=(20, 4))
for i in range(1, n+1):

display original
ax = plt.subplot(2, n, i)
plt.imshow(x_test[i].reshape(28, 28))
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
display reconstruction
ax = plt.subplot(2, n, i + n)
plt.imshow(decoded_imgs[i].reshape(28, 28))
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)

plt.show()

Generate contrastive explanation with pertinent negative

Explained instance:

[11]: idx = 15
X = x_test[idx].reshape((1,) + x_test[idx].shape)

[12]: plt.imshow(X.reshape(28, 28));

8.4. Contrastive Explanation Method 225

alibi Documentation, Release 0.9.5dev

Model prediction:

[13]: cnn.predict(X).argmax(), cnn.predict(X).max()

[13]: (5, 0.99959975)

CEM parameters:

[14]: mode = 'PN' # 'PN' (pertinent negative) or 'PP' (pertinent positive)
shape = (1,) + x_train.shape[1:] # instance shape
kappa = 0. # minimum difference needed between the prediction probability for the␣
→˓perturbed instance on the

class predicted by the original instance and the max probability on the␣
→˓other classes

in order for the first loss term to be minimized
beta = .1 # weight of the L1 loss term
gamma = 100 # weight of the optional auto-encoder loss term
c_init = 1. # initial weight c of the loss term encouraging to predict a different␣
→˓class (PN) or

the same class (PP) for the perturbed instance compared to the original␣
→˓instance to be explained
c_steps = 10 # nb of updates for c
max_iterations = 1000 # nb of iterations per value of c
feature_range = (x_train.min(),x_train.max()) # feature range for the perturbed instance
clip = (-1000.,1000.) # gradient clipping
lr = 1e-2 # initial learning rate
no_info_val = -1. # a value, float or feature-wise, which can be seen as containing no␣
→˓info to make a prediction

perturbations towards this value means removing features, and away␣
→˓means adding features

for our MNIST images, the background (-0.5) is the least informative,
so positive/negative perturbations imply adding/removing features

Generate pertinent negative:

[15]: # initialize CEM explainer and explain instance
cem = CEM(cnn, mode, shape, kappa=kappa, beta=beta, feature_range=feature_range,

(continues on next page)

226 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

gamma=gamma, ae_model=ae, max_iterations=max_iterations,
c_init=c_init, c_steps=c_steps, learning_rate_init=lr, clip=clip, no_info_

→˓val=no_info_val)

explanation = cem.explain(X)

Pertinent negative:

[16]: print(f'Pertinent negative prediction: {explanation.PN_pred}')
plt.imshow(explanation.PN.reshape(28, 28));

Pertinent negative prediction: 3

Generate pertinent positive

[17]: mode = 'PP'

[18]: # initialize CEM explainer and explain instance
cem = CEM(cnn, mode, shape, kappa=kappa, beta=beta, feature_range=feature_range,

gamma=gamma, ae_model=ae, max_iterations=max_iterations,
c_init=c_init, c_steps=c_steps, learning_rate_init=lr, clip=clip, no_info_

→˓val=no_info_val)

explanation = cem.explain(X)

Pertinent positive:

[19]: print(f'Pertinent positive prediction: {explanation.PP_pred}')
plt.imshow(explanation.PP.reshape(28, 28));

Pertinent positive prediction: 5

8.4. Contrastive Explanation Method 227

alibi Documentation, Release 0.9.5dev

Clean up:

[]: os.remove('mnist_cnn.h5')
os.remove('mnist_ae.h5')

8.5 Counterfactual Instances

8.5.1 Counterfactual instances on MNIST

Given a test instance 𝑋 , this method can generate counterfactual instances 𝑋 ′ given a desired counterfactual class 𝑡
which can either be a class specified upfront or any other class that is different from the predicted class of 𝑋 .

The loss function for finding counterfactuals is the following:

𝐿(𝑋 ′|𝑋) = (𝑓𝑡(𝑋
′)− 𝑝𝑡)

2 + 𝜆𝐿1(𝑋
′, 𝑋).

The first loss term, guides the search towards instances 𝑋 ′ for which the predicted class probability 𝑓𝑡(𝑋
′) is close to

a pre-specified target class probability 𝑝𝑡 (typically 𝑝𝑡 = 1). The second loss term ensures that the counterfactuals are
close in the feature space to the original test instance.

In this notebook we illustrate the usage of the basic counterfactual algorithm on the MNIST dataset.

Note
To enable support for Counterfactual, you may need to run

pip install alibi[tensorflow]

[1]: import tensorflow as tf
tf.get_logger().setLevel(40) # suppress deprecation messages
tf.compat.v1.disable_v2_behavior() # disable TF2 behaviour as alibi code still relies on␣
→˓TF1 constructs
from tensorflow.keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Input
from tensorflow.keras.models import Model, load_model

(continues on next page)

228 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

from tensorflow.keras.utils import to_categorical
import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import os
from time import time
from alibi.explainers import Counterfactual
print('TF version: ', tf.__version__)
print('Eager execution enabled: ', tf.executing_eagerly()) # False

TF version: 2.2.0
Eager execution enabled: False

Load and prepare MNIST data

[2]: (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape)
plt.gray()
plt.imshow(x_test[1]);

x_train shape: (60000, 28, 28) y_train shape: (60000,)

Prepare data: scale, reshape and categorize

[3]: x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train, x_train.shape + (1,))
x_test = np.reshape(x_test, x_test.shape + (1,))
print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)

x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1)
y_train shape: (60000, 10) y_test shape: (10000, 10)

8.5. Counterfactual Instances 229

alibi Documentation, Release 0.9.5dev

[4]: xmin, xmax = -.5, .5
x_train = ((x_train - x_train.min()) / (x_train.max() - x_train.min())) * (xmax - xmin)␣
→˓+ xmin
x_test = ((x_test - x_test.min()) / (x_test.max() - x_test.min())) * (xmax - xmin) + xmin

Define and train CNN model

[5]: def cnn_model():
x_in = Input(shape=(28, 28, 1))
x = Conv2D(filters=64, kernel_size=2, padding='same', activation='relu')(x_in)
x = MaxPooling2D(pool_size=2)(x)
x = Dropout(0.3)(x)

x = Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')(x)
x = MaxPooling2D(pool_size=2)(x)
x = Dropout(0.3)(x)

x = Flatten()(x)
x = Dense(256, activation='relu')(x)
x = Dropout(0.5)(x)
x_out = Dense(10, activation='softmax')(x)

cnn = Model(inputs=x_in, outputs=x_out)
cnn.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return cnn

[6]: cnn = cnn_model()
cnn.summary()
cnn.fit(x_train, y_train, batch_size=64, epochs=3, verbose=0)
cnn.save('mnist_cnn.h5')

Model: "model"

Layer (type) Output Shape Param #
===
input_1 (InputLayer) [(None, 28, 28, 1)] 0

conv2d (Conv2D) (None, 28, 28, 64) 320

max_pooling2d (MaxPooling2D) (None, 14, 14, 64) 0

dropout (Dropout) (None, 14, 14, 64) 0

conv2d_1 (Conv2D) (None, 14, 14, 32) 8224

max_pooling2d_1 (MaxPooling2 (None, 7, 7, 32) 0

dropout_1 (Dropout) (None, 7, 7, 32) 0

flatten (Flatten) (None, 1568) 0

(continues on next page)

230 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

dense (Dense) (None, 256) 401664

dropout_2 (Dropout) (None, 256) 0

dense_1 (Dense) (None, 10) 2570
===
Total params: 412,778
Trainable params: 412,778
Non-trainable params: 0

Evaluate the model on test set

[7]: cnn = load_model('mnist_cnn.h5')
score = cnn.evaluate(x_test, y_test, verbose=0)
print('Test accuracy: ', score[1])

Test accuracy: 0.9871

Generate counterfactuals

Original instance:

[8]: X = x_test[0].reshape((1,) + x_test[0].shape)
plt.imshow(X.reshape(28, 28));

Counterfactual parameters:

[9]: shape = (1,) + x_train.shape[1:]
target_proba = 1.0
tol = 0.01 # want counterfactuals with p(class)>0.99
target_class = 'other' # any class other than 7 will do
max_iter = 1000
lam_init = 1e-1
max_lam_steps = 10

(continues on next page)

8.5. Counterfactual Instances 231

alibi Documentation, Release 0.9.5dev

(continued from previous page)

learning_rate_init = 0.1
feature_range = (x_train.min(),x_train.max())

Run counterfactual:

[10]: # initialize explainer
cf = Counterfactual(cnn, shape=shape, target_proba=target_proba, tol=tol,

target_class=target_class, max_iter=max_iter, lam_init=lam_init,
max_lam_steps=max_lam_steps, learning_rate_init=learning_rate_init,
feature_range=feature_range)

start_time = time()
explanation = cf.explain(X)
print('Explanation took {:.3f} sec'.format(time() - start_time))

Explanation took 8.407 sec

Results:

[11]: pred_class = explanation.cf['class']
proba = explanation.cf['proba'][0][pred_class]

print(f'Counterfactual prediction: {pred_class} with probability {proba}')
plt.imshow(explanation.cf['X'].reshape(28, 28));

Counterfactual prediction: 9 with probability 0.9924006462097168

The counterfactual starting from a 7 moves towards the closest class as determined by the model and the data - in
this case a 9. The evolution of the counterfactual during the iterations over 𝜆 can be seen below (note that all of the
following examples satisfy the counterfactual condition):

[12]: n_cfs = np.array([len(explanation.all[iter_cf]) for iter_cf in range(max_lam_steps)])
examples = {}
for ix, n in enumerate(n_cfs):

if n>0:
examples[ix] = {'ix': ix, 'lambda': explanation.all[ix][0]['lambda'],

'X': explanation.all[ix][0]['X']}
(continues on next page)

232 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

columns = len(examples) + 1
rows = 1

fig = plt.figure(figsize=(16,6))

for i, key in enumerate(examples.keys()):
ax = plt.subplot(rows, columns, i+1)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.imshow(examples[key]['X'].reshape(28,28))
plt.title(f'Iteration: {key}')

Typically, the first few iterations find counterfactuals that are out of distribution, while the later iterations make the
counterfactual more sparse and interpretable.

Let’s now try to steer the counterfactual to a specific class:

[13]: target_class = 1

cf = Counterfactual(cnn, shape=shape, target_proba=target_proba, tol=tol,
target_class=target_class, max_iter=max_iter, lam_init=lam_init,
max_lam_steps=max_lam_steps, learning_rate_init=learning_rate_init,
feature_range=feature_range)

explanation = start_time = time()
explanation = cf.explain(X)
print('Explanation took {:.3f} sec'.format(time() - start_time))

Explanation took 6.249 sec

Results:

[14]: pred_class = explanation.cf['class']
proba = explanation.cf['proba'][0][pred_class]

print(f'Counterfactual prediction: {pred_class} with probability {proba}')
plt.imshow(explanation.cf['X'].reshape(28, 28));

Counterfactual prediction: 1 with probability 0.9999160766601562

8.5. Counterfactual Instances 233

alibi Documentation, Release 0.9.5dev

As you can see, by specifying a class, the search process can’t go towards the closest class to the test instance (in this
case a 9 as we saw previously), so the resulting counterfactual might be less interpretable. We can gain more insight
by looking at the difference between the counterfactual and the original instance:

[15]: plt.imshow((explanation.cf['X'] - X).reshape(28, 28));

This shows that the counterfactual is stripping out the top part of the 7 to make to result in a prediction of 1 - not very
surprising as the dataset has a lot of examples of diagonally slanted 1’s.

Clean up:

[16]: os.remove('mnist_cnn.h5')

234 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

8.6 Counterfactuals Guided by Prototypes

8.6.1 Counterfactual explanations with one-hot encoded categorical variables

Real world machine learning applications often handle data with categorical variables. Explanation methods which rely
on perturbations of the input features need to make sure those perturbations are meaningful and capture the underlying
structure of the data. This becomes tricky for categorical features. For instance random perturbations across possible
categories or enforcing a ranking between categories based on frequency of occurrence in the training data do not
capture this structure. Our method captures the relation between categories of a variable numerically through the
context given by the other features in the data and/or the predictions made by the model. First it captures the pairwise
distances between categories and then applies multi-dimensional scaling. More details about the method can be found
in the documentation. The example notebook illustrates this approach on the adult dataset, which contains a mixture
of categorical and numerical features used to predict whether a person’s income is above or below $50k.

Note
To enable support for CounterfactualProto, you may need to run

pip install alibi[tensorflow]

[1]: import tensorflow as tf
tf.get_logger().setLevel(40) # suppress deprecation messages
tf.compat.v1.disable_v2_behavior() # disable TF2 behaviour as alibi code still relies on␣
→˓TF1 constructs
from tensorflow.keras.layers import Dense, Dropout, Input
from tensorflow.keras.models import Model
from tensorflow.keras.utils import to_categorical

%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import os
from sklearn.preprocessing import OneHotEncoder
from time import time
from alibi.datasets import fetch_adult
from alibi.explainers import CounterfactualProto
from alibi.utils import ohe_to_ord, ord_to_ohe

print('TF version: ', tf.__version__)
print('Eager execution enabled: ', tf.executing_eagerly()) # False

TF version: 2.8.0
Eager execution enabled: False

8.6. Counterfactuals Guided by Prototypes 235

https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html

alibi Documentation, Release 0.9.5dev

Load adult dataset

The fetch_adult function returns a Bunch object containing the features, the targets, the feature names and a mapping
of the categories in each categorical variable.

[2]: adult = fetch_adult()
data = adult.data
target = adult.target
feature_names = adult.feature_names
category_map_tmp = adult.category_map
target_names = adult.target_names

Define shuffled training and test set:

[3]: def set_seed(s=0):
np.random.seed(s)
tf.random.set_seed(s)

[4]: set_seed()
data_perm = np.random.permutation(np.c_[data, target])
X = data_perm[:,:-1]
y = data_perm[:,-1]

[5]: idx = 30000
y_train, y_test = y[:idx], y[idx+1:]

Reorganize data so categorical features come first:

[6]: X = np.c_[X[:, 1:8], X[:, 11], X[:, 0], X[:, 8:11]]

Adjust feature_names and category_map as well:

[7]: feature_names = feature_names[1:8] + feature_names[11:12] + feature_names[0:1] + feature_
→˓names[8:11]
print(feature_names)

['Workclass', 'Education', 'Marital Status', 'Occupation', 'Relationship', 'Race', 'Sex',
→˓ 'Country', 'Age', 'Capital Gain', 'Capital Loss', 'Hours per week']

[8]: category_map = {}
for i, (_, v) in enumerate(category_map_tmp.items()):

category_map[i] = v

Create a dictionary with as keys the categorical columns and values the number of categories for each variable in the
dataset:

[9]: cat_vars_ord = {}
n_categories = len(list(category_map.keys()))
for i in range(n_categories):

cat_vars_ord[i] = len(np.unique(X[:, i]))
print(cat_vars_ord)

{0: 9, 1: 7, 2: 4, 3: 9, 4: 6, 5: 5, 6: 2, 7: 11}

236 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Since we will apply one-hot encoding (OHE) on the categorical variables, we convert cat_vars_ord from the ordinal
to OHE format. alibi.utils.mapping contains utility functions to do this. The keys in cat_vars_ohe now rep-
resent the first column index for each one-hot encoded categorical variable. This dictionary will later be used in the
counterfactual explanation.

[10]: cat_vars_ohe = ord_to_ohe(X, cat_vars_ord)[1]
print(cat_vars_ohe)

{0: 9, 9: 7, 16: 4, 20: 9, 29: 6, 35: 5, 40: 2, 42: 11}

Preprocess data

Scale numerical features between -1 and 1:

[11]: X_num = X[:, -4:].astype(np.float32, copy=False)
xmin, xmax = X_num.min(axis=0), X_num.max(axis=0)
rng = (-1., 1.)
X_num_scaled = (X_num - xmin) / (xmax - xmin) * (rng[1] - rng[0]) + rng[0]

Apply OHE to categorical variables:

[12]: X_cat = X[:, :-4].copy()
ohe = OneHotEncoder(categories='auto', sparse_output=False).fit(X_cat)
X_cat_ohe = ohe.transform(X_cat)

Combine numerical and categorical data:

[13]: X = np.c_[X_cat_ohe, X_num_scaled].astype(np.float32, copy=False)
X_train, X_test = X[:idx, :], X[idx+1:, :]
print(X_train.shape, X_test.shape)

(30000, 57) (2560, 57)

Train neural net

[14]: def nn_ohe():

x_in = Input(shape=(57,))
x = Dense(60, activation='relu')(x_in)
x = Dropout(.2)(x)
x = Dense(60, activation='relu')(x)
x = Dropout(.2)(x)
x = Dense(60, activation='relu')(x)
x = Dropout(.2)(x)
x_out = Dense(2, activation='softmax')(x)

nn = Model(inputs=x_in, outputs=x_out)
nn.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return nn

8.6. Counterfactuals Guided by Prototypes 237

alibi Documentation, Release 0.9.5dev

[15]: set_seed()
nn = nn_ohe()
nn.summary()
nn.fit(X_train, to_categorical(y_train), batch_size=256, epochs=30, verbose=0)

Model: "model"

Layer (type) Output Shape Param #
===
input_1 (InputLayer) [(None, 57)] 0

dense (Dense) (None, 60) 3480

dropout (Dropout) (None, 60) 0

dense_1 (Dense) (None, 60) 3660

dropout_1 (Dropout) (None, 60) 0

dense_2 (Dense) (None, 60) 3660

dropout_2 (Dropout) (None, 60) 0

dense_3 (Dense) (None, 2) 122
===
Total params: 10,922
Trainable params: 10,922
Non-trainable params: 0

[15]: <tensorflow.python.keras.callbacks.History at 0x7f2d7cc5e410>

Generate counterfactual

Original instance:

[16]: X = X_test[0].reshape((1,) + X_test[0].shape)

Initialize counterfactual parameters. The feature perturbations are applied in the numerical feature space, after trans-
forming the categorical variables to numerical features. As a result, the dimensionality and values of feature_range
are defined in the numerical space.

[17]: shape = X.shape
beta = .01
c_init = 1.
c_steps = 5
max_iterations = 500
rng = (-1., 1.) # scale features between -1 and 1
rng_shape = (1,) + data.shape[1:]
feature_range = ((np.ones(rng_shape) * rng[0]).astype(np.float32),

(np.ones(rng_shape) * rng[1]).astype(np.float32))

Initialize explainer:

238 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[18]: def set_seed(s=0):
np.random.seed(s)
tf.random.set_seed(s)

[19]: set_seed()
cf = CounterfactualProto(nn,

shape,
beta=beta,
cat_vars=cat_vars_ohe,
ohe=True, # OHE flag
max_iterations=max_iterations,
feature_range=feature_range,
c_init=c_init,
c_steps=c_steps
)

Fit explainer. d_type refers to the distance metric used to convert the categorical to numerical values. Valid options
are abdm, mvdm and abdm-mvdm. abdm infers the distance between categories of the same variable from the context
provided by the other variables. This requires binning of the numerical features as well. mvdm computes the distance
using the model predictions, and abdm-mvdm combines both methods. More info on both distance measures can be
found in the documentation.

[20]: cf.fit(X_train, d_type='abdm', disc_perc=[25, 50, 75]);

We can now visualize the transformation from the categorical to numerical values for each category. The example below
shows that the Education feature is ordered from High School Dropout to having obtained a Doctorate degree. As a
result, if we perturb an instance representing a person that has obtained a Bachelors degree, the nearest perturbations
will result in a counterfactual instance with either a Masters or an Associates degree.

[21]: def plot_bar(dist, cols, figsize=(10,4)):
dist = dist.reshape(dist.shape[0])
idx = np.argsort(dist)
fig, ax = plt.subplots(figsize=figsize)
plt.bar(cols[idx], dist[idx])
print(cols[idx])

[22]: cat = 'Education'
idx = feature_names.index(cat)
plot_bar(cf.d_abs[idx], np.array(category_map[idx]), figsize=(20,4))

['Dropout' 'High School grad' 'Associates' 'Bachelors' 'Masters'
'Prof-School' 'Doctorate']

Explain instance:

8.6. Counterfactuals Guided by Prototypes 239

https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html

alibi Documentation, Release 0.9.5dev

[23]: explanation = cf.explain(X)

Helper function to more clearly describe explanations:

[24]: def describe_instance(X, explanation, eps=1e-2):
print('Original instance: {} -- proba: {}'.format(target_names[explanation.orig_

→˓class],
explanation.orig_proba[0]))

print('Counterfactual instance: {} -- proba: {}'.format(target_names[explanation.cf[
→˓'class']],

explanation.cf['proba'][0]))
print('\nCounterfactual perturbations...')
print('\nCategorical:')
X_orig_ord = ohe_to_ord(X, cat_vars_ohe)[0]
X_cf_ord = ohe_to_ord(explanation.cf['X'], cat_vars_ohe)[0]
delta_cat = {}
for i, (_, v) in enumerate(category_map.items()):

cat_orig = v[int(X_orig_ord[0, i])]
cat_cf = v[int(X_cf_ord[0, i])]
if cat_orig != cat_cf:

delta_cat[feature_names[i]] = [cat_orig, cat_cf]
if delta_cat:

for k, v in delta_cat.items():
print('{}: {} --> {}'.format(k, v[0], v[1]))

print('\nNumerical:')
delta_num = X_cf_ord[0, -4:] - X_orig_ord[0, -4:]
n_keys = len(list(cat_vars_ord.keys()))
for i in range(delta_num.shape[0]):

if np.abs(delta_num[i]) > eps:
print('{}: {:.2f} --> {:.2f}'.format(feature_names[i+n_keys],

X_orig_ord[0,i+n_keys],
X_cf_ord[0,i+n_keys]))

[25]: describe_instance(X, explanation)

Original instance: <=50K -- proba: [0.70744723 0.29255277]
Counterfactual instance: >50K -- proba: [0.37736374 0.62263626]

Counterfactual perturbations...

Categorical:
Education: Associates --> Bachelors

Numerical:

By obtaining a higher level of education the income is predicted to be above $50k.

240 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Change the categorical distance metric

Instead of abdm, we now use mvdm as our distance metric.

[26]: set_seed()
cf.fit(X_train, d_type='mvdm')
explanation = cf.explain(X)
describe_instance(X, explanation)

Original instance: <=50K -- proba: [0.70744723 0.29255277]
Counterfactual instance: >50K -- proba: [0.38161737 0.61838263]

Counterfactual perturbations...

Categorical:
Education: Associates --> Bachelors

Numerical:

The same conclusion hold using a different distance metric.

Use k-d trees to build prototypes

We can also use k-d trees to build class prototypes to guide the counterfactual to nearby instances in the counterfactual
class as described in Interpretable Counterfactual Explanations Guided by Prototypes.

[27]: use_kdtree = True
theta = 10. # weight of prototype loss term

Initialize, fit and explain instance:

[28]: set_seed()
X = X_test[7].reshape((1,) + X_test[0].shape)
cf = CounterfactualProto(nn,

shape,
beta=beta,
theta=theta,
cat_vars=cat_vars_ohe,
ohe=True,
use_kdtree=use_kdtree,
max_iterations=max_iterations,
feature_range=feature_range,
c_init=c_init,
c_steps=c_steps
)

cf.fit(X_train, d_type='abdm')
explanation = cf.explain(X)
describe_instance(X, explanation)

Original instance: <=50K -- proba: [0.5211548 0.47884512]
Counterfactual instance: >50K -- proba: [0.49958408 0.500416]

Counterfactual perturbations...

(continues on next page)

8.6. Counterfactuals Guided by Prototypes 241

https://arxiv.org/abs/1907.02584

alibi Documentation, Release 0.9.5dev

(continued from previous page)

Categorical:

Numerical:
Age: -0.53 --> -0.51

By slightly increasing the age of the person the income would be predicted to be above $50k.

Use an autoencoder to build prototypes

Another option is to use an autoencoder to guide the perturbed instance to the counterfactual class. We define and train
the autoencoder:

[29]: def ae_model():
encoder
x_in = Input(shape=(57,))
x = Dense(60, activation='relu')(x_in)
x = Dense(30, activation='relu')(x)
x = Dense(15, activation='relu')(x)
encoded = Dense(10, activation=None)(x)
encoder = Model(x_in, encoded)

decoder
dec_in = Input(shape=(10,))
x = Dense(15, activation='relu')(dec_in)
x = Dense(30, activation='relu')(x)
x = Dense(60, activation='relu')(x)
decoded = Dense(57, activation=None)(x)
decoder = Model(dec_in, decoded)

autoencoder = encoder + decoder
x_out = decoder(encoder(x_in))
autoencoder = Model(x_in, x_out)
autoencoder.compile(optimizer='adam', loss='mse')

return autoencoder, encoder, decoder

[30]: set_seed()
ae, enc, dec = ae_model()
ae.summary()
ae.fit(X_train, X_train, batch_size=128, epochs=100, validation_data=(X_test, X_test),␣
→˓verbose=0)

Model: "model_3"

Layer (type) Output Shape Param #
===
input_2 (InputLayer) [(None, 57)] 0

model_1 (Model) (None, 10) 5935

model_2 (Model) (None, 57) 5982
===

(continues on next page)

242 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

Total params: 11,917
Trainable params: 11,917
Non-trainable params: 0

[30]: <tensorflow.python.keras.callbacks.History at 0x7f2d783aff90>

Weights for the autoencoder and prototype loss terms:

[31]: beta = .1 # L1
gamma = 10. # autoencoder
theta = .1 # prototype

Initialize, fit and explain instance:

[32]: set_seed()
X = X_test[19].reshape((1,) + X_test[0].shape)
cf = CounterfactualProto(nn,

shape,
beta=beta,
enc_model=enc,
ae_model=ae,
gamma=gamma,
theta=theta,
cat_vars=cat_vars_ohe,
ohe=True,
max_iterations=max_iterations,
feature_range=feature_range,
c_init=c_init,
c_steps=c_steps
)

cf.fit(X_train, d_type='abdm')
explanation = cf.explain(X)
describe_instance(X, explanation)

Original instance: >50K -- proba: [0.48656026 0.5134398]
Counterfactual instance: <=50K -- proba: [0.71456206 0.28543794]

Counterfactual perturbations...

Categorical:
Education: High School grad --> Dropout

Numerical:

8.6. Counterfactuals Guided by Prototypes 243

alibi Documentation, Release 0.9.5dev

Black box model with k-d trees

Now we assume that we only have access to the model’s prediction function and treat it as a black box. The k-d trees
are again used to define the prototypes.

[33]: use_kdtree = True
theta = 10. # weight of prototype loss term

Initialize, fit and explain instance:

[34]: set_seed()

X = X_test[24].reshape((1,) + X_test[0].shape)

define predict function
predict_fn = lambda x: nn.predict(x)

cf = CounterfactualProto(predict_fn,
shape,
beta=beta,
theta=theta,
cat_vars=cat_vars_ohe,
ohe=True,
use_kdtree=use_kdtree,
max_iterations=max_iterations,
feature_range=feature_range,
c_init=c_init,
c_steps=c_steps
)

cf.fit(X_train, d_type='abdm')
explanation = cf.explain(X)
describe_instance(X, explanation)

Original instance: >50K -- proba: [0.20676644 0.7932335]
Counterfactual instance: <=50K -- proba: [0.5048416 0.49515834]

Counterfactual perturbations...

Categorical:

Numerical:
Age: -0.15 --> -0.19
Hours per week: -0.20 --> -0.51

If the person was younger and worked less, he or she would have a predicted income below $50k.

244 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

8.6.2 Counterfactual explanations with ordinally encoded categorical variables

This example notebook illustrates how to obtain counterfactual explanations for instances with a mixture of ordinally
encoded categorical and numerical variables. A more elaborate notebook highlighting additional functionality can be
found here. We generate counterfactuals for instances in the adult dataset where we predict whether a person’s income
is above or below $50k.

Note
To enable support for CounterfactualProto, you may need to run

pip install alibi[tensorflow]

[1]: import tensorflow as tf
tf.get_logger().setLevel(40) # suppress deprecation messages
tf.compat.v1.disable_v2_behavior() # disable TF2 behaviour as alibi code still relies on␣
→˓TF1 constructs
from tensorflow.keras.layers import Dense, Input, Embedding, Concatenate, Reshape,␣
→˓Dropout, Lambda
from tensorflow.keras.models import Model
from tensorflow.keras.utils import to_categorical

%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import os
from sklearn.preprocessing import OneHotEncoder
from time import time
from alibi.datasets import fetch_adult
from alibi.explainers import CounterfactualProto

print('TF version: ', tf.__version__)
print('Eager execution enabled: ', tf.executing_eagerly()) # False

TF version: 2.2.0
Eager execution enabled: False

Load adult dataset

The fetch_adult function returns a Bunch object containing the features, the targets, the feature names and a mapping
of the categories in each categorical variable.

[2]: adult = fetch_adult()
data = adult.data
target = adult.target
feature_names = adult.feature_names
category_map_tmp = adult.category_map
target_names = adult.target_names

Define shuffled training and test set:

8.6. Counterfactuals Guided by Prototypes 245

https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html

alibi Documentation, Release 0.9.5dev

[3]: def set_seed(s=0):
np.random.seed(s)
tf.random.set_seed(s)

[4]: set_seed()
data_perm = np.random.permutation(np.c_[data, target])
X = data_perm[:,:-1]
y = data_perm[:,-1]

[5]: idx = 30000
y_train, y_test = y[:idx], y[idx+1:]

Reorganize data so categorical features come first:

[6]: X = np.c_[X[:, 1:8], X[:, 11], X[:, 0], X[:, 8:11]]

Adjust feature_names and category_map as well:

[7]: feature_names = feature_names[1:8] + feature_names[11:12] + feature_names[0:1] + feature_
→˓names[8:11]
print(feature_names)

['Workclass', 'Education', 'Marital Status', 'Occupation', 'Relationship', 'Race', 'Sex',
→˓ 'Country', 'Age', 'Capital Gain', 'Capital Loss', 'Hours per week']

[8]: category_map = {}
for i, (_, v) in enumerate(category_map_tmp.items()):

category_map[i] = v

Create a dictionary with as keys the categorical columns and values the number of categories for each variable in the
dataset. This dictionary will later be used in the counterfactual explanation.

[9]: cat_vars_ord = {}
n_categories = len(list(category_map.keys()))
for i in range(n_categories):

cat_vars_ord[i] = len(np.unique(X[:, i]))
print(cat_vars_ord)

{0: 9, 1: 7, 2: 4, 3: 9, 4: 6, 5: 5, 6: 2, 7: 11}

Preprocess data

Scale numerical features between -1 and 1:

[10]: X_num = X[:, -4:].astype(np.float32, copy=False)
xmin, xmax = X_num.min(axis=0), X_num.max(axis=0)
rng = (-1., 1.)
X_num_scaled = (X_num - xmin) / (xmax - xmin) * (rng[1] - rng[0]) + rng[0]
X_num_scaled_train = X_num_scaled[:idx, :]
X_num_scaled_test = X_num_scaled[idx+1:, :]

Combine numerical and categorical data:

246 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[11]: X = np.c_[X[:, :-4], X_num_scaled].astype(np.float32, copy=False)
X_train, X_test = X[:idx, :], X[idx+1:, :]
print(X_train.shape, X_test.shape)

(30000, 12) (2560, 12)

Train a neural net

The neural net will use entity embeddings for the categorical variables.

[12]: def nn_ord():

x_in = Input(shape=(12,))
layers_in = []

embedding layers
for i, (_, v) in enumerate(cat_vars_ord.items()):

emb_in = Lambda(lambda x: x[:, i:i+1])(x_in)
emb_dim = int(max(min(np.ceil(.5 * v), 50), 2))
emb_layer = Embedding(input_dim=v+1, output_dim=emb_dim, input_length=1)(emb_in)
emb_layer = Reshape(target_shape=(emb_dim,))(emb_layer)
layers_in.append(emb_layer)

numerical layers
num_in = Lambda(lambda x: x[:, -4:])(x_in)
num_layer = Dense(16)(num_in)
layers_in.append(num_layer)

combine
x = Concatenate()(layers_in)
x = Dense(60, activation='relu')(x)
x = Dropout(.2)(x)
x = Dense(60, activation='relu')(x)
x = Dropout(.2)(x)
x = Dense(60, activation='relu')(x)
x = Dropout(.2)(x)
x_out = Dense(2, activation='softmax')(x)

nn = Model(inputs=x_in, outputs=x_out)
nn.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return nn

[13]: set_seed()
nn = nn_ord()
nn.summary()
nn.fit(X_train, to_categorical(y_train), batch_size=128, epochs=30, verbose=0)

Model: "model"

→˓_________
Layer (type) Output Shape Param # Connected to

(continues on next page)

8.6. Counterfactuals Guided by Prototypes 247

alibi Documentation, Release 0.9.5dev

(continued from previous page)

==
input_1 (InputLayer) [(None, 12)] 0

→˓_________
lambda (Lambda) (None, 1) 0 input_1[0][0]

→˓_________
lambda_1 (Lambda) (None, 1) 0 input_1[0][0]

→˓_________
lambda_2 (Lambda) (None, 1) 0 input_1[0][0]

→˓_________
lambda_3 (Lambda) (None, 1) 0 input_1[0][0]

→˓_________
lambda_4 (Lambda) (None, 1) 0 input_1[0][0]

→˓_________
lambda_5 (Lambda) (None, 1) 0 input_1[0][0]

→˓_________
lambda_6 (Lambda) (None, 1) 0 input_1[0][0]

→˓_________
lambda_7 (Lambda) (None, 1) 0 input_1[0][0]

→˓_________
embedding (Embedding) (None, 1, 5) 50 lambda[0][0]

→˓_________
embedding_1 (Embedding) (None, 1, 4) 32 lambda_1[0][0]

→˓_________
embedding_2 (Embedding) (None, 1, 2) 10 lambda_2[0][0]

→˓_________
embedding_3 (Embedding) (None, 1, 5) 50 lambda_3[0][0]

→˓_________
embedding_4 (Embedding) (None, 1, 3) 21 lambda_4[0][0]

→˓_________
embedding_5 (Embedding) (None, 1, 3) 18 lambda_5[0][0]

→˓_________
embedding_6 (Embedding) (None, 1, 2) 6 lambda_6[0][0]

→˓_________
embedding_7 (Embedding) (None, 1, 6) 72 lambda_7[0][0]

→˓_________

(continues on next page)

248 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

lambda_8 (Lambda) (None, 4) 0 input_1[0][0]

→˓_________
reshape (Reshape) (None, 5) 0 embedding[0][0]

→˓_________
reshape_1 (Reshape) (None, 4) 0 embedding_1[0][0]

→˓_________
reshape_2 (Reshape) (None, 2) 0 embedding_2[0][0]

→˓_________
reshape_3 (Reshape) (None, 5) 0 embedding_3[0][0]

→˓_________
reshape_4 (Reshape) (None, 3) 0 embedding_4[0][0]

→˓_________
reshape_5 (Reshape) (None, 3) 0 embedding_5[0][0]

→˓_________
reshape_6 (Reshape) (None, 2) 0 embedding_6[0][0]

→˓_________
reshape_7 (Reshape) (None, 6) 0 embedding_7[0][0]

→˓_________
dense (Dense) (None, 16) 80 lambda_8[0][0]

→˓_________
concatenate (Concatenate) (None, 46) 0 reshape[0][0]

reshape_1[0][0]
reshape_2[0][0]
reshape_3[0][0]
reshape_4[0][0]
reshape_5[0][0]
reshape_6[0][0]
reshape_7[0][0]
dense[0][0]

→˓_________
dense_1 (Dense) (None, 60) 2820 concatenate[0][0]

→˓_________
dropout (Dropout) (None, 60) 0 dense_1[0][0]

→˓_________
dense_2 (Dense) (None, 60) 3660 dropout[0][0]

→˓_________
dropout_1 (Dropout) (None, 60) 0 dense_2[0][0]

(continues on next page)

8.6. Counterfactuals Guided by Prototypes 249

alibi Documentation, Release 0.9.5dev

(continued from previous page)

→˓_________
dense_3 (Dense) (None, 60) 3660 dropout_1[0][0]

→˓_________
dropout_2 (Dropout) (None, 60) 0 dense_3[0][0]

→˓_________
dense_4 (Dense) (None, 2) 122 dropout_2[0][0]
==
Total params: 10,601
Trainable params: 10,601
Non-trainable params: 0

→˓_________

[13]: <tensorflow.python.keras.callbacks.History at 0x7f482905f8d0>

Generate counterfactual

Original instance:

[14]: X = X_test[0].reshape((1,) + X_test[0].shape)

Initialize counterfactual parameters:

[15]: shape = X.shape
beta = .01
c_init = 1.
c_steps = 5
max_iterations = 500
rng = (-1., 1.) # scale features between -1 and 1
rng_shape = (1,) + data.shape[1:]
feature_range = ((np.ones(rng_shape) * rng[0]).astype(np.float32),

(np.ones(rng_shape) * rng[1]).astype(np.float32))

Initialize explainer. Since the Embedding layers in tf.keras do not let gradients propagate through, we will only
make use of the model’s predict function, treat it as a black box and perform numerical gradient calculations.

[16]: set_seed()

define predict function
predict_fn = lambda x: nn.predict(x)

cf = CounterfactualProto(predict_fn,
shape,
beta=beta,
cat_vars=cat_vars_ord,
max_iterations=max_iterations,
feature_range=feature_range,
c_init=c_init,
c_steps=c_steps,

(continues on next page)

250 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

eps=(.01, .01) # perturbation size for numerical gradients
)

Fit explainer. Please check the documentation for more info about the optional arguments.

[17]: cf.fit(X_train, d_type='abdm', disc_perc=[25, 50, 75]);

Explain instance:

[18]: set_seed()
explanation = cf.explain(X)

Helper function to more clearly describe explanations:

[19]: def describe_instance(X, explanation, eps=1e-2):
print('Original instance: {} -- proba: {}'.format(target_names[explanation.orig_

→˓class],
explanation.orig_proba[0]))

print('Counterfactual instance: {} -- proba: {}'.format(target_names[explanation.cf[
→˓'class']],

explanation.cf['proba'][0]))
print('\nCounterfactual perturbations...')
print('\nCategorical:')
X_orig_ord = X
X_cf_ord = explanation.cf['X']
delta_cat = {}
for i, (_, v) in enumerate(category_map.items()):

cat_orig = v[int(X_orig_ord[0, i])]
cat_cf = v[int(X_cf_ord[0, i])]
if cat_orig != cat_cf:

delta_cat[feature_names[i]] = [cat_orig, cat_cf]
if delta_cat:

for k, v in delta_cat.items():
print('{}: {} --> {}'.format(k, v[0], v[1]))

print('\nNumerical:')
delta_num = X_cf_ord[0, -4:] - X_orig_ord[0, -4:]
n_keys = len(list(cat_vars_ord.keys()))
for i in range(delta_num.shape[0]):

if np.abs(delta_num[i]) > eps:
print('{}: {:.2f} --> {:.2f}'.format(feature_names[i+n_keys],

X_orig_ord[0,i+n_keys],
X_cf_ord[0,i+n_keys]))

[20]: describe_instance(X, explanation)

Original instance: <=50K -- proba: [0.6976237 0.30237624]
Counterfactual instance: >50K -- proba: [0.49604183 0.5039582]

Counterfactual perturbations...

Categorical:

(continues on next page)

8.6. Counterfactuals Guided by Prototypes 251

https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html

alibi Documentation, Release 0.9.5dev

(continued from previous page)

Numerical:
Capital Gain: -1.00 --> -0.88

The person’s incomce is predicted to be above $50k by increasing his or her capital gain.

8.6.3 Counterfactuals guided by prototypes on California housing dataset

This notebook goes through an example of prototypical counterfactuals using k-d trees to build the prototypes. Please
check out this notebook for a more in-depth application of the method on MNIST using (auto-)encoders and trust scores.

In this example, we will train a simple neural net to predict whether house prices in California districts are above the
median value or not. We can then find a counterfactual to see which variables need to be changed to increase or decrease
a house price above or below the median value.

Note
To enable support for CounterfactualProto, you may need to run

pip install alibi[tensorflow]

[2]: %matplotlib inline
import matplotlib.pyplot as plt

import tensorflow as tf
tf.get_logger().setLevel(40) # suppress deprecation messages
tf.compat.v1.disable_v2_behavior() # disable TF2 behaviour as alibi code still relies on␣
→˓TF1 constructs
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.utils import to_categorical

import os
import numpy as np
import pandas as pd
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from alibi.explainers import CounterfactualProto

print('TF version: ', tf.__version__)
print('Eager execution enabled: ', tf.executing_eagerly()) # False

TF version: 2.7.4
Eager execution enabled: False

252 Chapter 8. Examples

https://en.wikipedia.org/wiki/K-d_tree

alibi Documentation, Release 0.9.5dev

Load and prepare California housing dataset

[3]: california = fetch_california_housing(as_frame=True)
X = california.data.to_numpy()
target = california.target.to_numpy()
feature_names = california.feature_names

[4]: california.data.head()

[4]: MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude \
0 8.3252 41.0 6.984127 1.023810 322.0 2.555556 37.88
1 8.3014 21.0 6.238137 0.971880 2401.0 2.109842 37.86
2 7.2574 52.0 8.288136 1.073446 496.0 2.802260 37.85
3 5.6431 52.0 5.817352 1.073059 558.0 2.547945 37.85
4 3.8462 52.0 6.281853 1.081081 565.0 2.181467 37.85

Longitude
0 -122.23
1 -122.22
2 -122.24
3 -122.25
4 -122.25

Each row represents a whole census group. Explanation of features:

• MedInc - median income in block group

• HouseAge - median house age in block group

• AveRooms - average number of rooms per household

• AveBedrms - average number of bedrooms per household

• Population - block group population

• AveOccup - average number of household members

• Latitude - block group latitude

• Longitude - block group longitude

For more details on the dataset, refer to the scikit-learn documentation.

Transform into classification task: target becomes whether house price is above the overall median or not

[5]: y = np.zeros((target.shape[0],))
y[np.where(target > np.median(target))[0]] = 1

Standardize data

[6]: mu = X.mean(axis=0)
sigma = X.std(axis=0)
X = (X - mu) / sigma

Define train and test set

[7]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

8.6. Counterfactuals Guided by Prototypes 253

https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset

alibi Documentation, Release 0.9.5dev

Train model

[8]: np.random.seed(42)
tf.random.set_seed(42)

[9]: def nn_model():
x_in = Input(shape=(8,))
x = Dense(40, activation='relu')(x_in)
x = Dense(40, activation='relu')(x)
x_out = Dense(2, activation='softmax')(x)
nn = Model(inputs=x_in, outputs=x_out)
nn.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
return nn

[]: nn = nn_model()
nn.summary()
nn.fit(X_train, y_train, batch_size=64, epochs=500, verbose=0)
nn.save('nn_california.h5', save_format='h5')

[12]: nn = load_model('nn_california.h5')
score = nn.evaluate(X_test, y_test, verbose=0)
print('Test accuracy: ', score[1])

Test accuracy: 0.87863374

Generate counterfactual guided by the nearest class prototype

Original instance:

[13]: X = X_test[1].reshape((1,) + X_test[1].shape)
shape = X.shape

Run counterfactual:

[]: # define model
nn = load_model('nn_california.h5')

initialize and fit the explainer
cf = CounterfactualProto(nn, shape, use_kdtree=True, theta=10., max_iterations=1000,

feature_range=(X_train.min(axis=0), X_train.max(axis=0)),
c_init=1., c_steps=10)

cf.fit(X_train)

[18]: # generate a counterfactual
explanation = cf.explain(X)

The prediction flipped from 0 (value below the median) to 1 (above the median):

[20]: print(f'Original prediction: {explanation.orig_class}')
print(f'Counterfactual prediction: {explanation.cf["class"]}')

254 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Original prediction: 0
Counterfactual prediction: 1

Let’s take a look at the counterfactual. To make the results more interpretable, we will first undo the pre-processing
step and then check where the counterfactual differs from the original instance:

[21]: orig = X * sigma + mu
counterfactual = explanation.cf['X'] * sigma + mu
delta = counterfactual - orig
for i, f in enumerate(feature_names):

if np.abs(delta[0][i]) > 1e-4:
print(f'{f}: {delta[0][i]}')

AveOccup: -0.9049749915631999
Latitude: -0.31885583625280134

So in order for the model to consider the census group as having above median house prices, the average occupancy
would have to be lower by almost a whole household member, and the location of the census group would need to shift
slightly South.

Comparing the original instance and the counterfactual side-by-side:

[22]: pd.DataFrame(orig, columns=feature_names)

[22]: MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude \
0 2.5313 30.0 5.039384 1.193493 1565.0 2.679795 35.14

Longitude
0 -119.46

[23]: pd.DataFrame(counterfactual, columns=feature_names)

[23]: MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude \
0 2.5313 30.0 5.039384 1.193493 1565.000004 1.77482 34.821144

Longitude
0 -119.46

Clean up:

[24]: os.remove('nn_california.h5')

8.6.4 Counterfactuals guided by prototypes on MNIST

This method is described in the Interpretable Counterfactual Explanations Guided by Prototypes paper and can generate
counterfactual instances guided by class prototypes. It means that for a certain instance X, the method builds a prototype
for each prediction class using either an autoencoder or k-d trees. The nearest prototype class other than the originally
predicted class is then used to guide the counterfactual search. For example, in MNIST the closest class to a 7 could
be a 9. As a result, the prototype loss term will try to minimize the distance between the proposed counterfactual
and the prototype of a 9. This speeds up the search towards a satisfactory counterfactual by steering it towards an
interpretable solution from the start of the optimization. It also helps to avoid out-of-distribution counterfactuals with
the perturbations driven to a prototype of another class.

The loss function to be optimized is the following:

𝐿𝑜𝑠𝑠 = 𝑐𝐿𝑝𝑟𝑒𝑑 + 𝛽𝐿1 + 𝐿2 + 𝐿𝐴𝐸 + 𝐿𝑝𝑟𝑜𝑡𝑜

8.6. Counterfactuals Guided by Prototypes 255

https://arxiv.org/abs/1907.02584
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/K-d_tree

alibi Documentation, Release 0.9.5dev

The first loss term relates to the model’s prediction function, the following 2 terms define the elastic net regularization
while the last 2 terms are optional. The aim of 𝐿𝐴𝐸 is to penalize out-of-distribution counterfactuals while 𝐿𝑝𝑟𝑜𝑡𝑜

guides the counterfactual to a prototype. When we only have acces to the model’s prediction function and cannot fully
enjoy the benefits of automatic differentiation, the prototypes allow us to drop the prediction function loss term 𝐿𝑝𝑟𝑒𝑑

and still generate high quality counterfactuals. This drastically reduces the number of prediction calls made during the
numerical gradient update step and again speeds up the search.

Other options include generating counterfactuals for specific classes or including trust score constraints to ensure that
the counterfactual is close enough to the newly predicted class compared to the original class. Different use cases are
illustrated throughout this notebook.

Note
To enable support for CounterfactualProto, you may need to run

pip install alibi[tensorflow]

[1]: import tensorflow as tf
tf.get_logger().setLevel(40) # suppress deprecation messages
tf.compat.v1.disable_v2_behavior() # disable TF2 behaviour as alibi code still relies on␣
→˓TF1 constructs
from tensorflow.keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Input,
→˓ UpSampling2D
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.utils import to_categorical

import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import os
from time import time
from alibi.explainers import CounterfactualProto

print('TF version: ', tf.__version__)
print('Eager execution enabled: ', tf.executing_eagerly()) # False

TF version: 2.2.0
Eager execution enabled: False

Load and prepare MNIST data

[2]: (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape)
plt.gray()
plt.imshow(x_test[1]);

x_train shape: (60000, 28, 28) y_train shape: (60000,)

256 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Prepare data: scale, reshape and categorize

[3]: x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train, x_train.shape + (1,))
x_test = np.reshape(x_test, x_test.shape + (1,))
print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)

x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1)
y_train shape: (60000, 10) y_test shape: (10000, 10)

[4]: xmin, xmax = -.5, .5
x_train = ((x_train - x_train.min()) / (x_train.max() - x_train.min())) * (xmax - xmin)␣
→˓+ xmin
x_test = ((x_test - x_test.min()) / (x_test.max() - x_test.min())) * (xmax - xmin) + xmin

Define and train CNN model

[5]: def cnn_model():
x_in = Input(shape=(28, 28, 1))
x = Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')(x_in)
x = MaxPooling2D(pool_size=2)(x)
x = Dropout(0.3)(x)

x = Conv2D(filters=64, kernel_size=2, padding='same', activation='relu')(x)
x = MaxPooling2D(pool_size=2)(x)
x = Dropout(0.3)(x)

x = Flatten()(x)
x = Dense(256, activation='relu')(x)
x = Dropout(0.5)(x)
x_out = Dense(10, activation='softmax')(x)

(continues on next page)

8.6. Counterfactuals Guided by Prototypes 257

alibi Documentation, Release 0.9.5dev

(continued from previous page)

cnn = Model(inputs=x_in, outputs=x_out)
cnn.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return cnn

[6]: cnn = cnn_model()
cnn.fit(x_train, y_train, batch_size=32, epochs=3, verbose=0)
cnn.save('mnist_cnn.h5', save_format='h5')

Evaluate the model on test set

[7]: cnn = load_model('mnist_cnn.h5')
score = cnn.evaluate(x_test, y_test, verbose=0)
print('Test accuracy: ', score[1])

Test accuracy: 0.9871

Define and train auto-encoder

[8]: def ae_model():
encoder
x_in = Input(shape=(28, 28, 1))
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x_in)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
encoded = Conv2D(1, (3, 3), activation=None, padding='same')(x)
encoder = Model(x_in, encoded)

decoder
dec_in = Input(shape=(14, 14, 1))
x = Conv2D(16, (3, 3), activation='relu', padding='same')(dec_in)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
decoded = Conv2D(1, (3, 3), activation=None, padding='same')(x)
decoder = Model(dec_in, decoded)

autoencoder = encoder + decoder
x_out = decoder(encoder(x_in))
autoencoder = Model(x_in, x_out)
autoencoder.compile(optimizer='adam', loss='mse')

return autoencoder, encoder, decoder

[9]: ae, enc, dec = ae_model()
ae.fit(x_train, x_train, batch_size=128, epochs=4, validation_data=(x_test, x_test),␣
→˓verbose=0)
ae.save('mnist_ae.h5', save_format='h5')
enc.save('mnist_enc.h5', save_format='h5')

Compare original with decoded images

258 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[10]: ae = load_model('mnist_ae.h5')
enc = load_model('mnist_enc.h5', compile=False)

decoded_imgs = ae.predict(x_test)
n = 5
plt.figure(figsize=(20, 4))
for i in range(1, n+1):

display original
ax = plt.subplot(2, n, i)
plt.imshow(x_test[i].reshape(28, 28))
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
display reconstruction
ax = plt.subplot(2, n, i + n)
plt.imshow(decoded_imgs[i].reshape(28, 28))
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)

plt.show()

Generate counterfactual guided by the nearest class prototype

Original instance:

[11]: X = x_test[0].reshape((1,) + x_test[0].shape)
plt.imshow(X.reshape(28, 28));

Counterfactual parameters:

8.6. Counterfactuals Guided by Prototypes 259

alibi Documentation, Release 0.9.5dev

[12]: shape = (1,) + x_train.shape[1:]
gamma = 100.
theta = 100.
c_init = 1.
c_steps = 2
max_iterations = 1000
feature_range = (x_train.min(),x_train.max())

Run counterfactual:

[13]: # initialize explainer, fit and generate counterfactual
cf = CounterfactualProto(cnn, shape, gamma=gamma, theta=theta,

ae_model=ae, enc_model=enc, max_iterations=max_iterations,
feature_range=feature_range, c_init=c_init, c_steps=c_steps)

start_time = time()
cf.fit(x_train) # find class prototypes
print('Time to find prototypes each class: {:.3f} sec'.format(time() - start_time))
start_time = time()
explanation = cf.explain(X)
print('Explanation took {:.3f} sec'.format(time() - start_time))

Time to find prototypes each class: 14.580 sec
Explanation took 9.269 sec

Results:

[14]: print('Counterfactual prediction: {}'.format(explanation.cf['class']))
print(f'Closest prototype class: {explanation.id_proto}')
plt.imshow(explanation.cf['X'].reshape(28, 28));

Counterfactual prediction: 9
Closest prototype class: 9

The counterfactual starting from a 7 moves towards its closest prototype class: a 9. The evolution of the counterfactual
during the first iteration can be seen below:

[15]: iter_cf = 0
print(f'iteration c {iter_cf}')

(continues on next page)

260 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

n = len(explanation['all'][iter_cf])
plt.figure(figsize=(20, 4))
for i in range(n):

ax = plt.subplot(1, n+1, i+1)
plt.imshow(explanation['all'][iter_cf][i].reshape(28, 28))
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)

plt.show()

iteration c 0

Typically, the first few iterations already steer the 7 towards a 9, while the later iterations make the counterfactual more
sparse.

Prototypes defined by the 𝑘 nearest encoded instances

In the above example, the class prototypes are defined by the average encoding of all instances belonging to the specific
class. Instead, we can also select only the 𝑘 nearest encoded instances of a class to the encoded instance to be explained
and use the average over those 𝑘 encodings as the prototype.

[16]: # initialize explainer, fit and generate counterfactuals
cf = CounterfactualProto(cnn, shape, gamma=gamma, theta=theta,

ae_model=ae, enc_model=enc, max_iterations=max_iterations,
feature_range=feature_range, c_init=c_init, c_steps=c_steps)

cf.fit(x_train)
explanation_k1 = cf.explain(X, k=1, k_type='mean')
explanation_k20 = cf.explain(X, k=20, k_type='mean')

Results for 𝑘 equals 1:

[17]: print('Counterfactual prediction: {}'.format(explanation_k1.cf['class']))
print(f'Closest prototype class: {explanation.id_proto}')
plt.imshow(explanation_k1.cf['X'].reshape(28, 28));

Counterfactual prediction: 9
Closest prototype class: 9

8.6. Counterfactuals Guided by Prototypes 261

alibi Documentation, Release 0.9.5dev

Results for 𝑘 equals 20:

[18]: print('Counterfactual prediction: {}'.format(explanation_k20.cf['class']))
print(f'Closest prototype class: {explanation.id_proto}')
plt.imshow(explanation_k20.cf['X'].reshape(28, 28));

Counterfactual prediction: 9
Closest prototype class: 9

A lower value of 𝑘 typically leads to counterfactuals that look more like the original instance and less like an average
instance of the counterfactual class.

262 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Remove the autoencoder loss term 𝐿𝐴𝐸

In the previous example, we used both an autoencoder loss term to penalize a counterfactual which falls outside of the
training data distribution as well as an encoder loss term to guide the counterfactual to the nearest prototype class. In
the next example we get rid of the autoencoder loss term to speed up the counterfactual search and still generate decent
counterfactuals:

[19]: # initialize explainer, fit and generate counterfactuals
cf = CounterfactualProto(cnn, shape, gamma=gamma, theta=theta,

enc_model=enc, max_iterations=max_iterations,
feature_range=feature_range, c_init=c_init, c_steps=c_steps)

cf.fit(x_train)
start_time = time()
explanation = cf.explain(X, k=1)
print('Explanation took {:.3f} sec'.format(time() - start_time))

Explanation took 6.443 sec

Results:

[20]: print('Counterfactual prediction: {}'.format(explanation.cf['class']))
print(f'Closest prototype class: {explanation.id_proto}')
plt.imshow(explanation.cf['X'].reshape(28, 28));

Counterfactual prediction: 9
Closest prototype class: 9

Specify prototype classes

For multi-class predictions, we might be interested to generate counterfactuals for certain classes while avoiding others.
The following example illustrates how to do this:

[21]: X = x_test[12].reshape((1,) + x_test[1].shape)
plt.imshow(X.reshape(28, 28));

8.6. Counterfactuals Guided by Prototypes 263

alibi Documentation, Release 0.9.5dev

[22]: # initialize explainer, fit and generate counterfactuals
cf = CounterfactualProto(cnn, shape, gamma=gamma, theta=theta,

ae_model=ae, enc_model=enc, max_iterations=max_iterations,
feature_range=feature_range, c_init=c_init, c_steps=c_steps)

cf.fit(x_train)
explanation_1 = cf.explain(X, k=5, k_type='mean')
proto_1 = explanation_1.id_proto
explanation_2 = cf.explain(X, k=5, k_type='mean', target_class=[7])
proto_2 = explanation_2.id_proto

The closest class to the 9 is 4. This is evident by looking at the first counterfactual below. For the second counterfactual,
we specified that the prototype class used in the search should be a 7. As a result, a counterfactual 7 instead of a 4 is
generated.

[23]: print('Counterfactual prediction: {}'.format(explanation_1.cf['class']))
print(f'Closest prototype class: {proto_1}')
plt.imshow(explanation_1.cf['X'].reshape(28, 28));

Counterfactual prediction: 4
Closest prototype class: 4

264 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[24]: print('Counterfactual prediction: {}'.format(explanation_2.cf['class']))
print(f'Closest prototype class: {proto_2}')
plt.imshow(explanation_2.cf['X'].reshape(28, 28));

Counterfactual prediction: 7
Closest prototype class: 7

Speed up the counterfactual search by removing the predict function loss term

We can also remove the prediction loss term and still obtain an interpretable counterfactual. This is especially relevant
for fully black box models. When we provide the counterfactual search method with a Keras or TensorFlow model,
it is incorporated in the TensorFlow graph and evaluated using automatic differentiation. However, if we only have
access to the model’s prediction function, the gradient updates are numerical and typically require a large number of
prediction calls because of the prediction loss term𝐿𝑝𝑟𝑒𝑑. These prediction calls can slow the search down significantly
and become a bottleneck. We can represent the gradient of the loss term as follows:

𝜕𝐿𝑝𝑟𝑒𝑑

𝜕𝑥
=

𝜕𝐿𝑝𝑟𝑒𝑑

𝜕𝑝

𝜕𝑝

𝜕𝑥

where 𝐿𝑝𝑟𝑒𝑑 is the prediction loss term, 𝑝 the prediction function and 𝑥 the input features to optimize. For a 28 by 28
MNIST image, the 𝛿𝑝/𝛿𝑥 term alone would require a prediction call with batch size 28x28x2 = 1568. By using the
prototypes to guide the search however, we can remove the prediction loss term and only make a single prediction at
the end of each gradient update to check whether the predicted class on the proposed counterfactual is different from
the original class. We do not necessarily need a Keras or TensorFlow auto-encoder either and can use k-d trees to find
the nearest class prototypes. Please check out this notebook for a practical example.

The first example below removes 𝐿𝑝𝑟𝑒𝑑 from the loss function to bypass the bottleneck. It illustrates the drastic speed
improvements over the black box alternative with numerical gradient evaluation while still producing interpretable
counterfactual instances.

[25]: plt.gray()
X = x_test[23].reshape(1, 28, 28, 1)
plt.imshow(X.reshape(28, 28));

8.6. Counterfactuals Guided by Prototypes 265

alibi Documentation, Release 0.9.5dev

[26]: c_init = 0. # weight on prediction loss term set to 0
c_steps = 1 # no need to find optimal values for c

[27]: # define a black-box model
predict_fn = lambda x: cnn.predict(x)

initialize explainer, fit and generate counterfactuals
cf = CounterfactualProto(predict_fn, shape, gamma=gamma, theta=theta,

ae_model=ae, enc_model=enc, max_iterations=max_iterations,
feature_range=feature_range, c_init=c_init, c_steps=c_steps)

cf.fit(x_train)
start_time = time()
explanation = cf.explain(X, k=1)
print('Explanation took {:.3f} sec'.format(time() - start_time))

Explanation took 7.257 sec

[28]: print('Counterfactual prediction: {}'.format(explanation.cf['class']))
print(f'Closest prototype class: {explanation.id_proto}')
plt.imshow(explanation.cf['X'].reshape(28, 28));

Counterfactual prediction: 6
Closest prototype class: 6

266 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Let us know add the 𝐿𝑝𝑟𝑒𝑑 loss term back in the objective function and observe how long it takes to generate a black
box counterfactual:

[29]: c_init = 1.
c_steps = 2

[30]: # define a black-box model
predict_fn = lambda x: cnn.predict(x)

initialize explainer, fit and generate counterfactuals
cf = CounterfactualProto(predict_fn, shape, gamma=gamma, theta=theta,

ae_model=ae, enc_model=enc, max_iterations=max_iterations,
feature_range=feature_range, c_init=c_init, c_steps=c_steps)

cf.fit(x_train)
start_time = time()
explanation = cf.explain(X, k=1)
print('Explanation took {:.3f} sec'.format(time() - start_time))

Explanation took 966.342 sec

[31]: print('Counterfactual prediction: {}'.format(explanation.cf['class']))
print(f'Closest prototype class: {explanation.id_proto}')
plt.imshow(explanation.cf['X'].reshape(28, 28));

Counterfactual prediction: 6
Closest prototype class: 6

8.6. Counterfactuals Guided by Prototypes 267

alibi Documentation, Release 0.9.5dev

Clean up:

[32]: os.remove('mnist_cnn.h5')
os.remove('mnist_ae.h5')
os.remove('mnist_enc.h5')

8.7 Counterfactuals with Reinforcement Learning

8.7.1 Counterfactual with Reinforcement Learning (CFRL) on Adult Census

This method is described in Model-agnostic and Scalable Counterfactual Explanations via Reinforcement Learning
and can generate counterfactual instances for any black-box model. The usual optimization procedure is transformed
into a learnable process allowing to generate batches of counterfactual instances in a single forward pass even for
high dimensional data. The training pipeline is model-agnostic and relies only on prediction feedback by querying the
black-box model. Furthermore, the method allows target and feature conditioning.

We exemplify the use case for the TensorFlow backend. This means that all models: the autoencoder, the actor
and the critic are TensorFlow models. Our implementation supports PyTorch backend as well.
CFRL uses Deep Deterministic Policy Gradient (DDPG) by interleaving a state-action function approximator called
critic, with a learning an approximator called actor to predict the optimal action. The method assumes that the critic is
differentiable with respect to the action argument, thus allowing to optimize the actor’s parameters efficiently through
gradient-based methods.

The DDPG algorithm requires two separate networks, an actor 𝜇 and a critic𝑄. Given the encoded representation of the
input instance 𝑧 = 𝑒𝑛𝑐(𝑥), the model prediction 𝑦𝑀 , the target prediction 𝑦𝑇 and the conditioning vector 𝑐, the actor
outputs the counterfactual’s latent representation 𝑧𝐶𝐹 = 𝜇(𝑧, 𝑦𝑀 , 𝑦𝑇 , 𝑐). The decoder then projects the embedding
𝑧𝐶𝐹 back to the original input space, followed by optional post-processing.

The training step consists of simultaneously optimizing the actor and critic networks. The critic regresses on the re-
ward𝑅 determined by the model prediction, while the actor maximizes the critic’s output for the given instance through
𝐿𝑚𝑎𝑥. The actor also minimizes two objectives to encourage the generation of sparse, in-distribution counterfactuals.
The sparsity loss 𝐿𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 operates on the decoded counterfactual 𝑥𝐶𝐹 and combines the 𝐿1 loss over the standardized
numerical features and the 𝐿0 loss over the categorical ones. The consistency loss 𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡 aims to encode the coun-
terfactual 𝑥𝐶𝐹 back to the same latent representation where it was decoded from and helps to produce in-distribution
counterfactual instances. Formally, the actor’s loss can be written as: 𝐿𝑎𝑐𝑡𝑜𝑟 = 𝐿𝑚𝑎𝑥 +𝜆1𝐿𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 +𝜆2𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

268 Chapter 8. Examples

https://arxiv.org/abs/2106.02597
https://arxiv.org/abs/1509.02971

alibi Documentation, Release 0.9.5dev

This example will use the xgboost library, which can be installed with:

Note
To enable support for CounterfactualRLTabular with tensorflow backend, you may need to run

pip install alibi[tensorflow]

[4]: import os
import numpy as np
import pandas as pd
from copy import deepcopy
from typing import List, Tuple, Dict, Callable

import tensorflow as tf
import tensorflow.keras as keras

from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

from xgboost import XGBClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression

from alibi.explainers import CounterfactualRLTabular, CounterfactualRL
from alibi.datasets import fetch_adult
from alibi.models.tensorflow import HeAE
from alibi.models.tensorflow import Actor, Critic
from alibi.models.tensorflow import ADULTEncoder, ADULTDecoder
from alibi.explainers.cfrl_base import Callback
from alibi.explainers.backends.cfrl_tabular import get_he_preprocessor, get_statistics, \

get_conditional_vector, apply_category_mapping

Load Adult Census Dataset

[2]: # Fetch adult dataset
adult = fetch_adult()

Separate columns in numerical and categorical.
categorical_names = [adult.feature_names[i] for i in adult.category_map.keys()]
categorical_ids = list(adult.category_map.keys())

numerical_names = [name for i, name in enumerate(adult.feature_names) if i not in adult.
→˓category_map.keys()]
numerical_ids = [i for i in range(len(adult.feature_names)) if i not in adult.category_
→˓map.keys()]

(continues on next page)

8.7. Counterfactuals with Reinforcement Learning 269

https://github.com/dmlc/xgboost

alibi Documentation, Release 0.9.5dev

(continued from previous page)

Split data into train and test
X, Y = adult.data, adult.target
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=13)

Train black-box classifier

[3]: # Define numerical standard scaler.
num_transf = StandardScaler()

Define categorical one-hot encoder.
cat_transf = OneHotEncoder(

categories=[range(len(x)) for x in adult.category_map.values()],
handle_unknown="ignore"

)

Define column transformer
preprocessor = ColumnTransformer(

transformers=[
("cat", cat_transf, categorical_ids),
("num", num_transf, numerical_ids),

],
sparse_threshold=0

)

[4]: # Fit preprocessor.
preprocessor.fit(X_train)

Preprocess train and test dataset.
X_train_ohe = preprocessor.transform(X_train)
X_test_ohe = preprocessor.transform(X_test)

[5]: # Select one of the below classifiers.
clf = XGBClassifier(min_child_weight=0.5, max_depth=3, gamma=0.2)
clf = LogisticRegression(C=10)
clf = DecisionTreeClassifier(max_depth=10, min_samples_split=5)
clf = RandomForestClassifier(max_depth=15, min_samples_split=10, n_estimators=50)

Fit the classifier.
clf.fit(X_train_ohe, Y_train)

[5]: RandomForestClassifier(max_depth=15, min_samples_split=10, n_estimators=50)

270 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Define the predictor (black-box)

Now that we’ve trained the classifier, we can define the black-box model. Note that the output of the black-box is
a distribution which can be either a soft-label distribution (probabilities/logits for each class) or a hard-label distri-
bution (one-hot encoding). Internally, CFRL takes the argmax. Moreover the output DOES NOT HAVE TO BE
DIFFERENTIABLE.

[6]: # Define prediction function.
predictor = lambda x: clf.predict_proba(preprocessor.transform(x))

[7]: # Compute accuracy.
acc = accuracy_score(y_true=Y_test, y_pred=predictor(X_test).argmax(axis=1))
print("Accuracy: %.3f" % acc)

Accuracy: 0.864

Define and train autoencoder

Instead of directly modelling the perturbation vector in the potentially high-dimensional input space, we first train an
autoencoder. The weights of the encoder are frozen and the actor applies the counterfactual perturbations in the latent
space of the encoder. The pre-trained decoder maps the counterfactual embedding back to the input feature space.

The autoencoder follows a standard design. The model is composed from two submodules, the encoder and the decoder.
The forward pass consists of passing the input to the encoder, obtain the input embedding and pass the embedding
through the decoder.

class HeAE(keras.Model):
def __init__(self, encoder: keras.Model, decoder: keras.Model, **kwargs) -> None:

super().__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder

def call(self, x: tf.Tensor, **kwargs):
z = self.encoder(x)
x_hat = self.decoder(z)
return x_hat

The heterogeneous variant used in this example uses an additional type checking to ensure that the output of the decoder
is a list of tensors.

Heterogeneous dataset require special treatment. In this work we modeled the numerical features by normal distribu-
tions with constant standard deviation and categorical features by categorical distributions. Due to the choice of feature
modeling, some numerical features can end up having different types than the original numerical features. For example,
a feature like Age having the type of int can become a float due to the autoencoder reconstruction (e.g., Age=26 ->
Age=26.3). This behavior can be undesirable. Thus we performed casting when process the output of the autoencoder
(decoder component).

[8]: # Define attribute types, required for datatype conversion.
feature_types = {"Age": int, "Capital Gain": int, "Capital Loss": int, "Hours per week":␣
→˓int}

Define data preprocessor and inverse preprocessor. The invers preprocessor include␣
→˓datatype conversions.
heae_preprocessor, heae_inv_preprocessor = get_he_preprocessor(X=X_train,

(continues on next page)

8.7. Counterfactuals with Reinforcement Learning 271

alibi Documentation, Release 0.9.5dev

(continued from previous page)

feature_names=adult.
→˓feature_names,

category_map=adult.
→˓category_map,

feature_types=feature_
→˓types)

Define trainset
trainset_input = heae_preprocessor(X_train).astype(np.float32)
trainset_outputs = {

"output_1": trainset_input[:, :len(numerical_ids)]
}

for i, cat_id in enumerate(categorical_ids):
trainset_outputs.update({

f"output_{i+2}": X_train[:, cat_id]
})

trainset = tf.data.Dataset.from_tensor_slices((trainset_input, trainset_outputs))
trainset = trainset.shuffle(1024).batch(128, drop_remainder=True)

[9]: # Define autoencoder path and create dir if it doesn't exist.
heae_path = os.path.join("tensorflow", "ADULT_autoencoder")
if not os.path.exists(heae_path):

os.makedirs(heae_path)

Define constants.
EPOCHS = 50 # epochs to train the autoencoder
HIDDEN_DIM = 128 # hidden dimension of the autoencoder
LATENT_DIM = 15 # define latent dimension

Define output dimensions.
OUTPUT_DIMS = [len(numerical_ids)]
OUTPUT_DIMS += [len(adult.category_map[cat_id]) for cat_id in categorical_ids]

Define the heterogeneous auto-encoder.
heae = HeAE(encoder=ADULTEncoder(hidden_dim=HIDDEN_DIM, latent_dim=LATENT_DIM),

decoder=ADULTDecoder(hidden_dim=HIDDEN_DIM, output_dims=OUTPUT_DIMS))

Define loss functions.
he_loss = [keras.losses.MeanSquaredError()]
he_loss_weights = [1.]

Add categorical losses.
for i in range(len(categorical_names)):

he_loss.append(keras.losses.SparseCategoricalCrossentropy(from_logits=True))
he_loss_weights.append(1./len(categorical_names))

Define metrics.
metrics = {}
for i, cat_name in enumerate(categorical_names):

metrics.update({f"output_{i+2}": keras.metrics.SparseCategoricalAccuracy()})
(continues on next page)

272 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

Compile model.
heae.compile(optimizer=keras.optimizers.Adam(learning_rate=1e-3),

loss=he_loss,
loss_weights=he_loss_weights,
metrics=metrics)

if len(os.listdir(heae_path)) == 0:
Fit and save autoencoder.
heae.fit(trainset, epochs=EPOCHS)
heae.save(heae_path, save_format="tf")

else:
Load the model.
heae = keras.models.load_model(heae_path, compile=False)

Epoch 1/50
203/203 [==============================] - 3s 6ms/step - loss: 1.1228 - output_1_loss: 0.
→˓2364 - output_2_loss: 1.1212 - output_3_loss: 1.2091 - output_4_loss: 0.6083 - output_
→˓5_loss: 1.5602 - output_6_loss: 0.9074 - output_7_loss: 0.6149 - output_8_loss: 0.3439␣
→˓- output_9_loss: 0.7265 - output_2_sparse_categorical_accuracy: 0.6879 - output_3_
→˓sparse_categorical_accuracy: 0.5755 - output_4_sparse_categorical_accuracy: 0.7886 -␣
→˓output_5_sparse_categorical_accuracy: 0.4560 - output_6_sparse_categorical_accuracy: 0.
→˓7181 - output_7_sparse_categorical_accuracy: 0.8123 - output_8_sparse_categorical_
→˓accuracy: 0.8518 - output_9_sparse_categorical_accuracy: 0.8578
Epoch 2/50
203/203 [==============================] - 1s 6ms/step - loss: 0.4056 - output_1_loss: 0.
→˓0395 - output_2_loss: 0.6040 - output_3_loss: 0.5136 - output_4_loss: 0.1736 - output_
→˓5_loss: 0.5957 - output_6_loss: 0.3023 - output_7_loss: 0.3132 - output_8_loss: 0.0976␣
→˓- output_9_loss: 0.3288 - output_2_sparse_categorical_accuracy: 0.7967 - output_3_
→˓sparse_categorical_accuracy: 0.8346 - output_4_sparse_categorical_accuracy: 0.9540 -␣
→˓output_5_sparse_categorical_accuracy: 0.8339 - output_6_sparse_categorical_accuracy: 0.
→˓9210 - output_7_sparse_categorical_accuracy: 0.8900 - output_8_sparse_categorical_
→˓accuracy: 0.9735 - output_9_sparse_categorical_accuracy: 0.9092
Epoch 3/50
203/203 [==============================] - 1s 6ms/step - loss: 0.2299 - output_1_loss: 0.
→˓0288 - output_2_loss: 0.2825 - output_3_loss: 0.2869 - output_4_loss: 0.1087 - output_
→˓5_loss: 0.2454 - output_6_loss: 0.1982 - output_7_loss: 0.1817 - output_8_loss: 0.0510␣
→˓- output_9_loss: 0.2541 - output_2_sparse_categorical_accuracy: 0.9271 - output_3_
→˓sparse_categorical_accuracy: 0.9168 - output_4_sparse_categorical_accuracy: 0.9739 -␣
→˓output_5_sparse_categorical_accuracy: 0.9474 - output_6_sparse_categorical_accuracy: 0.
→˓9444 - output_7_sparse_categorical_accuracy: 0.9486 - output_8_sparse_categorical_
→˓accuracy: 0.9892 - output_9_sparse_categorical_accuracy: 0.9231
Epoch 4/50
203/203 [==============================] - 1s 6ms/step - loss: 0.1582 - output_1_loss: 0.
→˓0220 - output_2_loss: 0.1704 - output_3_loss: 0.1952 - output_4_loss: 0.0748 - output_
→˓5_loss: 0.1633 - output_6_loss: 0.1357 - output_7_loss: 0.1176 - output_8_loss: 0.0324␣
→˓- output_9_loss: 0.2000 - output_2_sparse_categorical_accuracy: 0.9601 - output_3_
→˓sparse_categorical_accuracy: 0.9452 - output_4_sparse_categorical_accuracy: 0.9812 -␣
→˓output_5_sparse_categorical_accuracy: 0.9646 - output_6_sparse_categorical_accuracy: 0.
→˓9643 - output_7_sparse_categorical_accuracy: 0.9671 - output_8_sparse_categorical_
→˓accuracy: 0.9933 - output_9_sparse_categorical_accuracy: 0.9375
Epoch 5/50

(continues on next page)

8.7. Counterfactuals with Reinforcement Learning 273

alibi Documentation, Release 0.9.5dev

(continued from previous page)

203/203 [==============================] - 1s 6ms/step - loss: 0.1218 - output_1_loss: 0.
→˓0175 - output_2_loss: 0.1279 - output_3_loss: 0.1429 - output_4_loss: 0.0577 - output_
→˓5_loss: 0.1298 - output_6_loss: 0.0969 - output_7_loss: 0.0897 - output_8_loss: 0.0234␣
→˓- output_9_loss: 0.1656 - output_2_sparse_categorical_accuracy: 0.9697 - output_3_
→˓sparse_categorical_accuracy: 0.9632 - output_4_sparse_categorical_accuracy: 0.9850 -␣
→˓output_5_sparse_categorical_accuracy: 0.9686 - output_6_sparse_categorical_accuracy: 0.
→˓9757 - output_7_sparse_categorical_accuracy: 0.9726 - output_8_sparse_categorical_
→˓accuracy: 0.9950 - output_9_sparse_categorical_accuracy: 0.9493
Epoch 6/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0986 - output_1_loss: 0.
→˓0146 - output_2_loss: 0.1042 - output_3_loss: 0.1073 - output_4_loss: 0.0475 - output_
→˓5_loss: 0.1068 - output_6_loss: 0.0741 - output_7_loss: 0.0734 - output_8_loss: 0.0181␣
→˓- output_9_loss: 0.1410 - output_2_sparse_categorical_accuracy: 0.9757 - output_3_
→˓sparse_categorical_accuracy: 0.9747 - output_4_sparse_categorical_accuracy: 0.9878 -␣
→˓output_5_sparse_categorical_accuracy: 0.9736 - output_6_sparse_categorical_accuracy: 0.
→˓9820 - output_7_sparse_categorical_accuracy: 0.9776 - output_8_sparse_categorical_
→˓accuracy: 0.9959 - output_9_sparse_categorical_accuracy: 0.9582
Epoch 7/50
203/203 [==============================] - 1s 7ms/step - loss: 0.0826 - output_1_loss: 0.
→˓0126 - output_2_loss: 0.0886 - output_3_loss: 0.0831 - output_4_loss: 0.0408 - output_
→˓5_loss: 0.0893 - output_6_loss: 0.0592 - output_7_loss: 0.0626 - output_8_loss: 0.0147␣
→˓- output_9_loss: 0.1219 - output_2_sparse_categorical_accuracy: 0.9784 - output_3_
→˓sparse_categorical_accuracy: 0.9819 - output_4_sparse_categorical_accuracy: 0.9891 -␣
→˓output_5_sparse_categorical_accuracy: 0.9790 - output_6_sparse_categorical_accuracy: 0.
→˓9856 - output_7_sparse_categorical_accuracy: 0.9816 - output_8_sparse_categorical_
→˓accuracy: 0.9968 - output_9_sparse_categorical_accuracy: 0.9639
Epoch 8/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0713 - output_1_loss: 0.
→˓0112 - output_2_loss: 0.0771 - output_3_loss: 0.0680 - output_4_loss: 0.0359 - output_
→˓5_loss: 0.0766 - output_6_loss: 0.0498 - output_7_loss: 0.0533 - output_8_loss: 0.0128␣
→˓- output_9_loss: 0.1069 - output_2_sparse_categorical_accuracy: 0.9808 - output_3_
→˓sparse_categorical_accuracy: 0.9844 - output_4_sparse_categorical_accuracy: 0.9905 -␣
→˓output_5_sparse_categorical_accuracy: 0.9819 - output_6_sparse_categorical_accuracy: 0.
→˓9880 - output_7_sparse_categorical_accuracy: 0.9846 - output_8_sparse_categorical_
→˓accuracy: 0.9971 - output_9_sparse_categorical_accuracy: 0.9689
Epoch 9/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0629 - output_1_loss: 0.
→˓0103 - output_2_loss: 0.0687 - output_3_loss: 0.0577 - output_4_loss: 0.0321 - output_
→˓5_loss: 0.0671 - output_6_loss: 0.0434 - output_7_loss: 0.0470 - output_8_loss: 0.0112␣
→˓- output_9_loss: 0.0938 - output_2_sparse_categorical_accuracy: 0.9826 - output_3_
→˓sparse_categorical_accuracy: 0.9869 - output_4_sparse_categorical_accuracy: 0.9921 -␣
→˓output_5_sparse_categorical_accuracy: 0.9841 - output_6_sparse_categorical_accuracy: 0.
→˓9899 - output_7_sparse_categorical_accuracy: 0.9868 - output_8_sparse_categorical_
→˓accuracy: 0.9976 - output_9_sparse_categorical_accuracy: 0.9738
Epoch 10/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0562 - output_1_loss: 0.
→˓0092 - output_2_loss: 0.0626 - output_3_loss: 0.0507 - output_4_loss: 0.0292 - output_
→˓5_loss: 0.0592 - output_6_loss: 0.0383 - output_7_loss: 0.0414 - output_8_loss: 0.0099␣
→˓- output_9_loss: 0.0842 - output_2_sparse_categorical_accuracy: 0.9835 - output_3_
→˓sparse_categorical_accuracy: 0.9879 - output_4_sparse_categorical_accuracy: 0.9925 -␣
→˓output_5_sparse_categorical_accuracy: 0.9861 - output_6_sparse_categorical_accuracy: 0.
→˓9906 - output_7_sparse_categorical_accuracy: 0.9890 - output_8_sparse_categorical_

(continues on next page)

274 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

→˓accuracy: 0.9978 - output_9_sparse_categorical_accuracy: 0.9762
Epoch 11/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0511 - output_1_loss: 0.
→˓0086 - output_2_loss: 0.0569 - output_3_loss: 0.0454 - output_4_loss: 0.0266 - output_
→˓5_loss: 0.0535 - output_6_loss: 0.0346 - output_7_loss: 0.0372 - output_8_loss: 0.0091␣
→˓- output_9_loss: 0.0760 - output_2_sparse_categorical_accuracy: 0.9857 - output_3_
→˓sparse_categorical_accuracy: 0.9893 - output_4_sparse_categorical_accuracy: 0.9935 -␣
→˓output_5_sparse_categorical_accuracy: 0.9883 - output_6_sparse_categorical_accuracy: 0.
→˓9916 - output_7_sparse_categorical_accuracy: 0.9900 - output_8_sparse_categorical_
→˓accuracy: 0.9980 - output_9_sparse_categorical_accuracy: 0.9783
Epoch 12/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0465 - output_1_loss: 0.
→˓0081 - output_2_loss: 0.0522 - output_3_loss: 0.0406 - output_4_loss: 0.0242 - output_
→˓5_loss: 0.0476 - output_6_loss: 0.0319 - output_7_loss: 0.0334 - output_8_loss: 0.0082␣
→˓- output_9_loss: 0.0687 - output_2_sparse_categorical_accuracy: 0.9865 - output_3_
→˓sparse_categorical_accuracy: 0.9906 - output_4_sparse_categorical_accuracy: 0.9945 -␣
→˓output_5_sparse_categorical_accuracy: 0.9890 - output_6_sparse_categorical_accuracy: 0.
→˓9925 - output_7_sparse_categorical_accuracy: 0.9913 - output_8_sparse_categorical_
→˓accuracy: 0.9984 - output_9_sparse_categorical_accuracy: 0.9803
Epoch 13/50

203/203 [==============================] - 1s 6ms/step - loss: 0.0424 - output_1_loss: 0.
→˓0075 - output_2_loss: 0.0477 - output_3_loss: 0.0369 - output_4_loss: 0.0221 - output_
→˓5_loss: 0.0431 - output_6_loss: 0.0289 - output_7_loss: 0.0305 - output_8_loss: 0.0076␣
→˓- output_9_loss: 0.0626 - output_2_sparse_categorical_accuracy: 0.9875 - output_3_
→˓sparse_categorical_accuracy: 0.9912 - output_4_sparse_categorical_accuracy: 0.9950 -␣
→˓output_5_sparse_categorical_accuracy: 0.9903 - output_6_sparse_categorical_accuracy: 0.
→˓9934 - output_7_sparse_categorical_accuracy: 0.9921 - output_8_sparse_categorical_
→˓accuracy: 0.9987 - output_9_sparse_categorical_accuracy: 0.9820
Epoch 14/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0390 - output_1_loss: 0.
→˓0069 - output_2_loss: 0.0443 - output_3_loss: 0.0341 - output_4_loss: 0.0205 - output_
→˓5_loss: 0.0392 - output_6_loss: 0.0267 - output_7_loss: 0.0277 - output_8_loss: 0.0070␣
→˓- output_9_loss: 0.0571 - output_2_sparse_categorical_accuracy: 0.9880 - output_3_
→˓sparse_categorical_accuracy: 0.9923 - output_4_sparse_categorical_accuracy: 0.9953 -␣
→˓output_5_sparse_categorical_accuracy: 0.9908 - output_6_sparse_categorical_accuracy: 0.
→˓9936 - output_7_sparse_categorical_accuracy: 0.9930 - output_8_sparse_categorical_
→˓accuracy: 0.9986 - output_9_sparse_categorical_accuracy: 0.9840
Epoch 15/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0362 - output_1_loss: 0.
→˓0066 - output_2_loss: 0.0412 - output_3_loss: 0.0316 - output_4_loss: 0.0191 - output_
→˓5_loss: 0.0352 - output_6_loss: 0.0249 - output_7_loss: 0.0249 - output_8_loss: 0.0064␣
→˓- output_9_loss: 0.0531 - output_2_sparse_categorical_accuracy: 0.9891 - output_3_
→˓sparse_categorical_accuracy: 0.9922 - output_4_sparse_categorical_accuracy: 0.9957 -␣
→˓output_5_sparse_categorical_accuracy: 0.9919 - output_6_sparse_categorical_accuracy: 0.
→˓9942 - output_7_sparse_categorical_accuracy: 0.9937 - output_8_sparse_categorical_
→˓accuracy: 0.9987 - output_9_sparse_categorical_accuracy: 0.9852
Epoch 16/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0336 - output_1_loss: 0.
→˓0064 - output_2_loss: 0.0380 - output_3_loss: 0.0294 - output_4_loss: 0.0178 - output_
→˓5_loss: 0.0322 - output_6_loss: 0.0226 - output_7_loss: 0.0224 - output_8_loss: 0.0060␣
→˓- output_9_loss: 0.0491 - output_2_sparse_categorical_accuracy: 0.9906 - output_3_

(continues on next page)

8.7. Counterfactuals with Reinforcement Learning 275

alibi Documentation, Release 0.9.5dev

(continued from previous page)

→˓sparse_categorical_accuracy: 0.9932 - output_4_sparse_categorical_accuracy: 0.9963 -␣
→˓output_5_sparse_categorical_accuracy: 0.9928 - output_6_sparse_categorical_accuracy: 0.
→˓9946 - output_7_sparse_categorical_accuracy: 0.9943 - output_8_sparse_categorical_
→˓accuracy: 0.9987 - output_9_sparse_categorical_accuracy: 0.9865
Epoch 17/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0313 - output_1_loss: 0.
→˓0062 - output_2_loss: 0.0353 - output_3_loss: 0.0271 - output_4_loss: 0.0166 - output_
→˓5_loss: 0.0294 - output_6_loss: 0.0214 - output_7_loss: 0.0205 - output_8_loss: 0.0055␣
→˓- output_9_loss: 0.0456 - output_2_sparse_categorical_accuracy: 0.9910 - output_3_
→˓sparse_categorical_accuracy: 0.9936 - output_4_sparse_categorical_accuracy: 0.9965 -␣
→˓output_5_sparse_categorical_accuracy: 0.9935 - output_6_sparse_categorical_accuracy: 0.
→˓9949 - output_7_sparse_categorical_accuracy: 0.9947 - output_8_sparse_categorical_
→˓accuracy: 0.9990 - output_9_sparse_categorical_accuracy: 0.9879
Epoch 18/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0292 - output_1_loss: 0.
→˓0058 - output_2_loss: 0.0327 - output_3_loss: 0.0253 - output_4_loss: 0.0155 - output_
→˓5_loss: 0.0272 - output_6_loss: 0.0198 - output_7_loss: 0.0188 - output_8_loss: 0.0052␣
→˓- output_9_loss: 0.0428 - output_2_sparse_categorical_accuracy: 0.9913 - output_3_
→˓sparse_categorical_accuracy: 0.9939 - output_4_sparse_categorical_accuracy: 0.9968 -␣
→˓output_5_sparse_categorical_accuracy: 0.9938 - output_6_sparse_categorical_accuracy: 0.
→˓9955 - output_7_sparse_categorical_accuracy: 0.9955 - output_8_sparse_categorical_
→˓accuracy: 0.9989 - output_9_sparse_categorical_accuracy: 0.9888
Epoch 19/50
203/203 [==============================] - 1s 7ms/step - loss: 0.0275 - output_1_loss: 0.
→˓0057 - output_2_loss: 0.0303 - output_3_loss: 0.0241 - output_4_loss: 0.0146 - output_
→˓5_loss: 0.0249 - output_6_loss: 0.0186 - output_7_loss: 0.0173 - output_8_loss: 0.0047␣
→˓- output_9_loss: 0.0397 - output_2_sparse_categorical_accuracy: 0.9919 - output_3_
→˓sparse_categorical_accuracy: 0.9941 - output_4_sparse_categorical_accuracy: 0.9969 -␣
→˓output_5_sparse_categorical_accuracy: 0.9940 - output_6_sparse_categorical_accuracy: 0.
→˓9955 - output_7_sparse_categorical_accuracy: 0.9960 - output_8_sparse_categorical_
→˓accuracy: 0.9991 - output_9_sparse_categorical_accuracy: 0.9896
Epoch 20/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0254 - output_1_loss: 0.
→˓0054 - output_2_loss: 0.0281 - output_3_loss: 0.0218 - output_4_loss: 0.0136 - output_
→˓5_loss: 0.0225 - output_6_loss: 0.0170 - output_7_loss: 0.0156 - output_8_loss: 0.0045␣
→˓- output_9_loss: 0.0375 - output_2_sparse_categorical_accuracy: 0.9927 - output_3_
→˓sparse_categorical_accuracy: 0.9949 - output_4_sparse_categorical_accuracy: 0.9972 -␣
→˓output_5_sparse_categorical_accuracy: 0.9949 - output_6_sparse_categorical_accuracy: 0.
→˓9962 - output_7_sparse_categorical_accuracy: 0.9965 - output_8_sparse_categorical_
→˓accuracy: 0.9992 - output_9_sparse_categorical_accuracy: 0.9905
Epoch 21/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0239 - output_1_loss: 0.
→˓0052 - output_2_loss: 0.0259 - output_3_loss: 0.0204 - output_4_loss: 0.0128 - output_
→˓5_loss: 0.0206 - output_6_loss: 0.0158 - output_7_loss: 0.0144 - output_8_loss: 0.0041␣
→˓- output_9_loss: 0.0352 - output_2_sparse_categorical_accuracy: 0.9934 - output_3_
→˓sparse_categorical_accuracy: 0.9952 - output_4_sparse_categorical_accuracy: 0.9974 -␣
→˓output_5_sparse_categorical_accuracy: 0.9955 - output_6_sparse_categorical_accuracy: 0.
→˓9962 - output_7_sparse_categorical_accuracy: 0.9967 - output_8_sparse_categorical_
→˓accuracy: 0.9992 - output_9_sparse_categorical_accuracy: 0.9910
Epoch 22/50
203/203 [==============================] - ETA: 0s - loss: 0.0228 - output_1_loss: 0.
→˓0051 - output_2_loss: 0.0247 - output_3_loss: 0.0194 - output_4_loss: 0.0124 - output_

(continues on next page)

276 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

→˓5_loss: 0.0195 - output_6_loss: 0.0149 - output_7_loss: 0.0135 - output_8_loss: 0.0040␣
→˓- output_9_loss: 0.0327 - output_2_sparse_categorical_accuracy: 0.9938 - output_3_
→˓sparse_categorical_accuracy: 0.9951 - output_4_sparse_categorical_accuracy: 0.9975 -␣
→˓output_5_sparse_categorical_accuracy: 0.9957 - output_6_sparse_categorical_accuracy: 0.
→˓9966 - output_7_sparse_categorical_accuracy: 0.9970 - output_8_sparse_categorical_
→˓accuracy: 0.9990 - output_9_sparse_categorical_accuracy: 0.991 - 1s 6ms/step - loss: 0.
→˓0227 - output_1_loss: 0.0051 - output_2_loss: 0.0244 - output_3_loss: 0.0193 - output_
→˓4_loss: 0.0124 - output_5_loss: 0.0192 - output_6_loss: 0.0149 - output_7_loss: 0.0133␣
→˓- output_8_loss: 0.0040 - output_9_loss: 0.0332 - output_2_sparse_categorical_accuracy:
→˓ 0.9939 - output_3_sparse_categorical_accuracy: 0.9952 - output_4_sparse_categorical_
→˓accuracy: 0.9975 - output_5_sparse_categorical_accuracy: 0.9957 - output_6_sparse_
→˓categorical_accuracy: 0.9966 - output_7_sparse_categorical_accuracy: 0.9971 - output_8_
→˓sparse_categorical_accuracy: 0.9991 - output_9_sparse_categorical_accuracy: 0.9914
Epoch 23/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0212 - output_1_loss: 0.
→˓0049 - output_2_loss: 0.0228 - output_3_loss: 0.0179 - output_4_loss: 0.0116 - output_
→˓5_loss: 0.0174 - output_6_loss: 0.0141 - output_7_loss: 0.0123 - output_8_loss: 0.0037␣
→˓- output_9_loss: 0.0311 - output_2_sparse_categorical_accuracy: 0.9940 - output_3_
→˓sparse_categorical_accuracy: 0.9958 - output_4_sparse_categorical_accuracy: 0.9976 -␣
→˓output_5_sparse_categorical_accuracy: 0.9964 - output_6_sparse_categorical_accuracy: 0.
→˓9969 - output_7_sparse_categorical_accuracy: 0.9974 - output_8_sparse_categorical_
→˓accuracy: 0.9993 - output_9_sparse_categorical_accuracy: 0.9920
Epoch 24/50

203/203 [==============================] - 1s 7ms/step - loss: 0.0198 - output_1_loss: 0.
→˓0046 - output_2_loss: 0.0209 - output_3_loss: 0.0169 - output_4_loss: 0.0109 - output_
→˓5_loss: 0.0163 - output_6_loss: 0.0129 - output_7_loss: 0.0116 - output_8_loss: 0.0036␣
→˓- output_9_loss: 0.0292 - output_2_sparse_categorical_accuracy: 0.9948 - output_3_
→˓sparse_categorical_accuracy: 0.9958 - output_4_sparse_categorical_accuracy: 0.9980 -␣
→˓output_5_sparse_categorical_accuracy: 0.9968 - output_6_sparse_categorical_accuracy: 0.
→˓9974 - output_7_sparse_categorical_accuracy: 0.9975 - output_8_sparse_categorical_
→˓accuracy: 0.9992 - output_9_sparse_categorical_accuracy: 0.9928
Epoch 25/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0190 - output_1_loss: 0.
→˓0046 - output_2_loss: 0.0197 - output_3_loss: 0.0157 - output_4_loss: 0.0107 - output_
→˓5_loss: 0.0154 - output_6_loss: 0.0123 - output_7_loss: 0.0106 - output_8_loss: 0.0031␣
→˓- output_9_loss: 0.0278 - output_2_sparse_categorical_accuracy: 0.9950 - output_3_
→˓sparse_categorical_accuracy: 0.9960 - output_4_sparse_categorical_accuracy: 0.9979 -␣
→˓output_5_sparse_categorical_accuracy: 0.9968 - output_6_sparse_categorical_accuracy: 0.
→˓9973 - output_7_sparse_categorical_accuracy: 0.9978 - output_8_sparse_categorical_
→˓accuracy: 0.9994 - output_9_sparse_categorical_accuracy: 0.9930
Epoch 26/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0178 - output_1_loss: 0.
→˓0043 - output_2_loss: 0.0186 - output_3_loss: 0.0148 - output_4_loss: 0.0099 - output_
→˓5_loss: 0.0139 - output_6_loss: 0.0114 - output_7_loss: 0.0100 - output_8_loss: 0.0032␣
→˓- output_9_loss: 0.0260 - output_2_sparse_categorical_accuracy: 0.9955 - output_3_
→˓sparse_categorical_accuracy: 0.9963 - output_4_sparse_categorical_accuracy: 0.9982 -␣
→˓output_5_sparse_categorical_accuracy: 0.9971 - output_6_sparse_categorical_accuracy: 0.
→˓9977 - output_7_sparse_categorical_accuracy: 0.9978 - output_8_sparse_categorical_
→˓accuracy: 0.9995 - output_9_sparse_categorical_accuracy: 0.9936
Epoch 27/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0167 - output_1_loss: 0.

(continues on next page)

8.7. Counterfactuals with Reinforcement Learning 277

alibi Documentation, Release 0.9.5dev

(continued from previous page)

→˓0041 - output_2_loss: 0.0171 - output_3_loss: 0.0137 - output_4_loss: 0.0092 - output_
→˓5_loss: 0.0131 - output_6_loss: 0.0109 - output_7_loss: 0.0096 - output_8_loss: 0.0028␣
→˓- output_9_loss: 0.0245 - output_2_sparse_categorical_accuracy: 0.9960 - output_3_
→˓sparse_categorical_accuracy: 0.9968 - output_4_sparse_categorical_accuracy: 0.9984 -␣
→˓output_5_sparse_categorical_accuracy: 0.9974 - output_6_sparse_categorical_accuracy: 0.
→˓9980 - output_7_sparse_categorical_accuracy: 0.9980 - output_8_sparse_categorical_
→˓accuracy: 0.9995 - output_9_sparse_categorical_accuracy: 0.9938
Epoch 28/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0160 - output_1_loss: 0.
→˓0041 - output_2_loss: 0.0164 - output_3_loss: 0.0130 - output_4_loss: 0.0091 - output_
→˓5_loss: 0.0124 - output_6_loss: 0.0098 - output_7_loss: 0.0090 - output_8_loss: 0.0028␣
→˓- output_9_loss: 0.0230 - output_2_sparse_categorical_accuracy: 0.9964 - output_3_
→˓sparse_categorical_accuracy: 0.9972 - output_4_sparse_categorical_accuracy: 0.9983 -␣
→˓output_5_sparse_categorical_accuracy: 0.9980 - output_6_sparse_categorical_accuracy: 0.
→˓9982 - output_7_sparse_categorical_accuracy: 0.9981 - output_8_sparse_categorical_
→˓accuracy: 0.9994 - output_9_sparse_categorical_accuracy: 0.9944
Epoch 29/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0150 - output_1_loss: 0.
→˓0039 - output_2_loss: 0.0153 - output_3_loss: 0.0120 - output_4_loss: 0.0083 - output_
→˓5_loss: 0.0114 - output_6_loss: 0.0093 - output_7_loss: 0.0085 - output_8_loss: 0.0023␣
→˓- output_9_loss: 0.0217 - output_2_sparse_categorical_accuracy: 0.9966 - output_3_
→˓sparse_categorical_accuracy: 0.9974 - output_4_sparse_categorical_accuracy: 0.9982 -␣
→˓output_5_sparse_categorical_accuracy: 0.9980 - output_6_sparse_categorical_accuracy: 0.
→˓9981 - output_7_sparse_categorical_accuracy: 0.9981 - output_8_sparse_categorical_
→˓accuracy: 0.9996 - output_9_sparse_categorical_accuracy: 0.9946
Epoch 30/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0142 - output_1_loss: 0.
→˓0038 - output_2_loss: 0.0144 - output_3_loss: 0.0111 - output_4_loss: 0.0080 - output_
→˓5_loss: 0.0107 - output_6_loss: 0.0087 - output_7_loss: 0.0079 - output_8_loss: 0.0023␣
→˓- output_9_loss: 0.0206 - output_2_sparse_categorical_accuracy: 0.9967 - output_3_
→˓sparse_categorical_accuracy: 0.9975 - output_4_sparse_categorical_accuracy: 0.9986 -␣
→˓output_5_sparse_categorical_accuracy: 0.9981 - output_6_sparse_categorical_accuracy: 0.
→˓9984 - output_7_sparse_categorical_accuracy: 0.9984 - output_8_sparse_categorical_
→˓accuracy: 0.9997 - output_9_sparse_categorical_accuracy: 0.9949
Epoch 31/50
203/203 [==============================] - 1s 7ms/step - loss: 0.0139 - output_1_loss: 0.
→˓0039 - output_2_loss: 0.0135 - output_3_loss: 0.0109 - output_4_loss: 0.0079 - output_
→˓5_loss: 0.0103 - output_6_loss: 0.0084 - output_7_loss: 0.0076 - output_8_loss: 0.0022␣
→˓- output_9_loss: 0.0194 - output_2_sparse_categorical_accuracy: 0.9972 - output_3_
→˓sparse_categorical_accuracy: 0.9979 - output_4_sparse_categorical_accuracy: 0.9985 -␣
→˓output_5_sparse_categorical_accuracy: 0.9980 - output_6_sparse_categorical_accuracy: 0.
→˓9984 - output_7_sparse_categorical_accuracy: 0.9984 - output_8_sparse_categorical_
→˓accuracy: 0.9996 - output_9_sparse_categorical_accuracy: 0.9957
Epoch 32/50
203/203 [==============================] - 1s 7ms/step - loss: 0.0135 - output_1_loss: 0.
→˓0037 - output_2_loss: 0.0132 - output_3_loss: 0.0105 - output_4_loss: 0.0079 - output_
→˓5_loss: 0.0100 - output_6_loss: 0.0089 - output_7_loss: 0.0073 - output_8_loss: 0.0022␣
→˓- output_9_loss: 0.0186 - output_2_sparse_categorical_accuracy: 0.9972 - output_3_
→˓sparse_categorical_accuracy: 0.9977 - output_4_sparse_categorical_accuracy: 0.9981 -␣
→˓output_5_sparse_categorical_accuracy: 0.9986 - output_6_sparse_categorical_accuracy: 0.
→˓9982 - output_7_sparse_categorical_accuracy: 0.9986 - output_8_sparse_categorical_
→˓accuracy: 0.9995 - output_9_sparse_categorical_accuracy: 0.9958

(continues on next page)

278 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

Epoch 33/50
203/203 [==============================] - 1s 7ms/step - loss: 0.0124 - output_1_loss: 0.
→˓0035 - output_2_loss: 0.0120 - output_3_loss: 0.0094 - output_4_loss: 0.0069 - output_
→˓5_loss: 0.0089 - output_6_loss: 0.0071 - output_7_loss: 0.0071 - output_8_loss: 0.0019␣
→˓- output_9_loss: 0.0176 - output_2_sparse_categorical_accuracy: 0.9974 - output_3_
→˓sparse_categorical_accuracy: 0.9980 - output_4_sparse_categorical_accuracy: 0.9986 -␣
→˓output_5_sparse_categorical_accuracy: 0.9987 - output_6_sparse_categorical_accuracy: 0.
→˓9987 - output_7_sparse_categorical_accuracy: 0.9988 - output_8_sparse_categorical_
→˓accuracy: 0.9997 - output_9_sparse_categorical_accuracy: 0.9959
Epoch 34/50
203/203 [==============================] - 1s 7ms/step - loss: 0.0128 - output_1_loss: 0.
→˓0037 - output_2_loss: 0.0117 - output_3_loss: 0.0095 - output_4_loss: 0.0078 - output_
→˓5_loss: 0.0091 - output_6_loss: 0.0094 - output_7_loss: 0.0068 - output_8_loss: 0.0022␣
→˓- output_9_loss: 0.0166 - output_2_sparse_categorical_accuracy: 0.9976 - output_3_
→˓sparse_categorical_accuracy: 0.9981 - output_4_sparse_categorical_accuracy: 0.9985 -␣
→˓output_5_sparse_categorical_accuracy: 0.9985 - output_6_sparse_categorical_accuracy: 0.
→˓9985 - output_7_sparse_categorical_accuracy: 0.9987 - output_8_sparse_categorical_
→˓accuracy: 0.9995 - output_9_sparse_categorical_accuracy: 0.9962
Epoch 35/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0111 - output_1_loss: 0.
→˓0032 - output_2_loss: 0.0108 - output_3_loss: 0.0082 - output_4_loss: 0.0062 - output_
→˓5_loss: 0.0079 - output_6_loss: 0.0064 - output_7_loss: 0.0063 - output_8_loss: 0.0017␣
→˓- output_9_loss: 0.0156 - output_2_sparse_categorical_accuracy: 0.9977 - output_3_
→˓sparse_categorical_accuracy: 0.9983 - output_4_sparse_categorical_accuracy: 0.9988 -␣
→˓output_5_sparse_categorical_accuracy: 0.9990 - output_6_sparse_categorical_accuracy: 0.
→˓9991 - output_7_sparse_categorical_accuracy: 0.9987 - output_8_sparse_categorical_
→˓accuracy: 0.9999 - output_9_sparse_categorical_accuracy: 0.9966
Epoch 36/50

203/203 [==============================] - 1s 6ms/step - loss: 0.0108 - output_1_loss: 0.
→˓0033 - output_2_loss: 0.0103 - output_3_loss: 0.0078 - output_4_loss: 0.0059 - output_
→˓5_loss: 0.0077 - output_6_loss: 0.0061 - output_7_loss: 0.0059 - output_8_loss: 0.0016␣
→˓- output_9_loss: 0.0147 - output_2_sparse_categorical_accuracy: 0.9981 - output_3_
→˓sparse_categorical_accuracy: 0.9987 - output_4_sparse_categorical_accuracy: 0.9991 -␣
→˓output_5_sparse_categorical_accuracy: 0.9989 - output_6_sparse_categorical_accuracy: 0.
→˓9992 - output_7_sparse_categorical_accuracy: 0.9989 - output_8_sparse_categorical_
→˓accuracy: 0.9998 - output_9_sparse_categorical_accuracy: 0.9970
Epoch 37/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0102 - output_1_loss: 0.
→˓0031 - output_2_loss: 0.0096 - output_3_loss: 0.0075 - output_4_loss: 0.0058 - output_
→˓5_loss: 0.0072 - output_6_loss: 0.0058 - output_7_loss: 0.0056 - output_8_loss: 0.0016␣
→˓- output_9_loss: 0.0139 - output_2_sparse_categorical_accuracy: 0.9982 - output_3_
→˓sparse_categorical_accuracy: 0.9987 - output_4_sparse_categorical_accuracy: 0.9988 -␣
→˓output_5_sparse_categorical_accuracy: 0.9990 - output_6_sparse_categorical_accuracy: 0.
→˓9990 - output_7_sparse_categorical_accuracy: 0.9991 - output_8_sparse_categorical_
→˓accuracy: 0.9998 - output_9_sparse_categorical_accuracy: 0.9973
Epoch 38/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0098 - output_1_loss: 0.
→˓0030 - output_2_loss: 0.0091 - output_3_loss: 0.0071 - output_4_loss: 0.0055 - output_
→˓5_loss: 0.0070 - output_6_loss: 0.0053 - output_7_loss: 0.0054 - output_8_loss: 0.0015␣
→˓- output_9_loss: 0.0131 - output_2_sparse_categorical_accuracy: 0.9985 - output_3_
→˓sparse_categorical_accuracy: 0.9988 - output_4_sparse_categorical_accuracy: 0.9990 -␣

(continues on next page)

8.7. Counterfactuals with Reinforcement Learning 279

alibi Documentation, Release 0.9.5dev

(continued from previous page)

→˓output_5_sparse_categorical_accuracy: 0.9990 - output_6_sparse_categorical_accuracy: 0.
→˓9992 - output_7_sparse_categorical_accuracy: 0.9991 - output_8_sparse_categorical_
→˓accuracy: 0.9999 - output_9_sparse_categorical_accuracy: 0.9972
Epoch 39/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0095 - output_1_loss: 0.
→˓0031 - output_2_loss: 0.0088 - output_3_loss: 0.0066 - output_4_loss: 0.0050 - output_
→˓5_loss: 0.0067 - output_6_loss: 0.0051 - output_7_loss: 0.0054 - output_8_loss: 0.0014␣
→˓- output_9_loss: 0.0126 - output_2_sparse_categorical_accuracy: 0.9984 - output_3_
→˓sparse_categorical_accuracy: 0.9990 - output_4_sparse_categorical_accuracy: 0.9993 -␣
→˓output_5_sparse_categorical_accuracy: 0.9990 - output_6_sparse_categorical_accuracy: 0.
→˓9993 - output_7_sparse_categorical_accuracy: 0.9990 - output_8_sparse_categorical_
→˓accuracy: 0.9998 - output_9_sparse_categorical_accuracy: 0.9975
Epoch 40/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0091 - output_1_loss: 0.
→˓0029 - output_2_loss: 0.0083 - output_3_loss: 0.0066 - output_4_loss: 0.0050 - output_
→˓5_loss: 0.0062 - output_6_loss: 0.0049 - output_7_loss: 0.0051 - output_8_loss: 0.0014␣
→˓- output_9_loss: 0.0121 - output_2_sparse_categorical_accuracy: 0.9985 - output_3_
→˓sparse_categorical_accuracy: 0.9990 - output_4_sparse_categorical_accuracy: 0.9992 -␣
→˓output_5_sparse_categorical_accuracy: 0.9992 - output_6_sparse_categorical_accuracy: 0.
→˓9993 - output_7_sparse_categorical_accuracy: 0.9990 - output_8_sparse_categorical_
→˓accuracy: 0.9997 - output_9_sparse_categorical_accuracy: 0.9975
Epoch 41/50
203/203 [==============================] - 1s 7ms/step - loss: 0.0089 - output_1_loss: 0.
→˓0029 - output_2_loss: 0.0079 - output_3_loss: 0.0064 - output_4_loss: 0.0049 - output_
→˓5_loss: 0.0063 - output_6_loss: 0.0047 - output_7_loss: 0.0049 - output_8_loss: 0.0013␣
→˓- output_9_loss: 0.0115 - output_2_sparse_categorical_accuracy: 0.9986 - output_3_
→˓sparse_categorical_accuracy: 0.9990 - output_4_sparse_categorical_accuracy: 0.9992 -␣
→˓output_5_sparse_categorical_accuracy: 0.9991 - output_6_sparse_categorical_accuracy: 0.
→˓9994 - output_7_sparse_categorical_accuracy: 0.9991 - output_8_sparse_categorical_
→˓accuracy: 0.9998 - output_9_sparse_categorical_accuracy: 0.9978
Epoch 42/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0082 - output_1_loss: 0.
→˓0026 - output_2_loss: 0.0075 - output_3_loss: 0.0057 - output_4_loss: 0.0043 - output_
→˓5_loss: 0.0057 - output_6_loss: 0.0045 - output_7_loss: 0.0045 - output_8_loss: 0.0013␣
→˓- output_9_loss: 0.0108 - output_2_sparse_categorical_accuracy: 0.9988 - output_3_
→˓sparse_categorical_accuracy: 0.9992 - output_4_sparse_categorical_accuracy: 0.9992 -␣
→˓output_5_sparse_categorical_accuracy: 0.9994 - output_6_sparse_categorical_accuracy: 0.
→˓9994 - output_7_sparse_categorical_accuracy: 0.9992 - output_8_sparse_categorical_
→˓accuracy: 0.9998 - output_9_sparse_categorical_accuracy: 0.9981
Epoch 43/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0080 - output_1_loss: 0.
→˓0027 - output_2_loss: 0.0070 - output_3_loss: 0.0055 - output_4_loss: 0.0042 - output_
→˓5_loss: 0.0054 - output_6_loss: 0.0042 - output_7_loss: 0.0044 - output_8_loss: 0.0011␣
→˓- output_9_loss: 0.0103 - output_2_sparse_categorical_accuracy: 0.9989 - output_3_
→˓sparse_categorical_accuracy: 0.9992 - output_4_sparse_categorical_accuracy: 0.9993 -␣
→˓output_5_sparse_categorical_accuracy: 0.9994 - output_6_sparse_categorical_accuracy: 0.
→˓9997 - output_7_sparse_categorical_accuracy: 0.9992 - output_8_sparse_categorical_
→˓accuracy: 0.9999 - output_9_sparse_categorical_accuracy: 0.9981
Epoch 44/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0077 - output_1_loss: 0.
→˓0027 - output_2_loss: 0.0067 - output_3_loss: 0.0052 - output_4_loss: 0.0039 - output_
→˓5_loss: 0.0053 - output_6_loss: 0.0040 - output_7_loss: 0.0043 - output_8_loss: 0.0012␣

(continues on next page)

280 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

→˓- output_9_loss: 0.0098 - output_2_sparse_categorical_accuracy: 0.9990 - output_3_
→˓sparse_categorical_accuracy: 0.9992 - output_4_sparse_categorical_accuracy: 0.9992 -␣
→˓output_5_sparse_categorical_accuracy: 0.9994 - output_6_sparse_categorical_accuracy: 0.
→˓9995 - output_7_sparse_categorical_accuracy: 0.9993 - output_8_sparse_categorical_
→˓accuracy: 0.9998 - output_9_sparse_categorical_accuracy: 0.9982
Epoch 45/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0074 - output_1_loss: 0.
→˓0026 - output_2_loss: 0.0066 - output_3_loss: 0.0051 - output_4_loss: 0.0038 - output_
→˓5_loss: 0.0049 - output_6_loss: 0.0037 - output_7_loss: 0.0042 - output_8_loss: 0.0010␣
→˓- output_9_loss: 0.0094 - output_2_sparse_categorical_accuracy: 0.9990 - output_3_
→˓sparse_categorical_accuracy: 0.9992 - output_4_sparse_categorical_accuracy: 0.9994 -␣
→˓output_5_sparse_categorical_accuracy: 0.9995 - output_6_sparse_categorical_accuracy: 0.
→˓9997 - output_7_sparse_categorical_accuracy: 0.9992 - output_8_sparse_categorical_
→˓accuracy: 0.9999 - output_9_sparse_categorical_accuracy: 0.9984
Epoch 46/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0075 - output_1_loss: 0.
→˓0027 - output_2_loss: 0.0064 - output_3_loss: 0.0050 - output_4_loss: 0.0039 - output_
→˓5_loss: 0.0050 - output_6_loss: 0.0041 - output_7_loss: 0.0040 - output_8_loss: 0.0010␣
→˓- output_9_loss: 0.0091 - output_2_sparse_categorical_accuracy: 0.9989 - output_3_
→˓sparse_categorical_accuracy: 0.9993 - output_4_sparse_categorical_accuracy: 0.9993 -␣
→˓output_5_sparse_categorical_accuracy: 0.9994 - output_6_sparse_categorical_accuracy: 0.
→˓9994 - output_7_sparse_categorical_accuracy: 0.9992 - output_8_sparse_categorical_
→˓accuracy: 0.9998 - output_9_sparse_categorical_accuracy: 0.9984
Epoch 47/50
203/203 [==============================] - 1s 6ms/step - loss: 0.0072 - output_1_loss: 0.
→˓0026 - output_2_loss: 0.0060 - output_3_loss: 0.0048 - output_4_loss: 0.0040 - output_
→˓5_loss: 0.0049 - output_6_loss: 0.0038 - output_7_loss: 0.0038 - output_8_loss: 0.0010␣
→˓- output_9_loss: 0.0088 - output_2_sparse_categorical_accuracy: 0.9991 - output_3_
→˓sparse_categorical_accuracy: 0.9993 - output_4_sparse_categorical_accuracy: 0.9992 -␣
→˓output_5_sparse_categorical_accuracy: 0.9994 - output_6_sparse_categorical_accuracy: 0.
→˓9996 - output_7_sparse_categorical_accuracy: 0.9994 - output_8_sparse_categorical_
→˓accuracy: 0.9998 - output_9_sparse_categorical_accuracy: 0.9986
Epoch 48/50

203/203 [==============================] - 1s 7ms/step - loss: 0.0069 - output_1_loss: 0.
→˓0025 - output_2_loss: 0.0060 - output_3_loss: 0.0047 - output_4_loss: 0.0035 - output_
→˓5_loss: 0.0046 - output_6_loss: 0.0036 - output_7_loss: 0.0037 - output_8_loss: 0.0013␣
→˓- output_9_loss: 0.0086 - output_2_sparse_categorical_accuracy: 0.9991 - output_3_
→˓sparse_categorical_accuracy: 0.9993 - output_4_sparse_categorical_accuracy: 0.9993 -␣
→˓output_5_sparse_categorical_accuracy: 0.9995 - output_6_sparse_categorical_accuracy: 0.
→˓9994 - output_7_sparse_categorical_accuracy: 0.9994 - output_8_sparse_categorical_
→˓accuracy: 0.9998 - output_9_sparse_categorical_accuracy: 0.9985
Epoch 49/50
203/203 [==============================] - 1s 7ms/step - loss: 0.0065 - output_1_loss: 0.
→˓0023 - output_2_loss: 0.0054 - output_3_loss: 0.0042 - output_4_loss: 0.0031 - output_
→˓5_loss: 0.0043 - output_6_loss: 0.0034 - output_7_loss: 0.0039 - output_8_loss: 9.
→˓7766e-04 - output_9_loss: 0.0082 - output_2_sparse_categorical_accuracy: 0.9992 -␣
→˓output_3_sparse_categorical_accuracy: 0.9994 - output_4_sparse_categorical_accuracy: 0.
→˓9996 - output_5_sparse_categorical_accuracy: 0.9995 - output_6_sparse_categorical_
→˓accuracy: 0.9997 - output_7_sparse_categorical_accuracy: 0.9993 - output_8_sparse_
→˓categorical_accuracy: 0.9998 - output_9_sparse_categorical_accuracy: 0.9985
Epoch 50/50

(continues on next page)

8.7. Counterfactuals with Reinforcement Learning 281

alibi Documentation, Release 0.9.5dev

(continued from previous page)

203/203 [==============================] - 1s 6ms/step - loss: 0.0066 - output_1_loss: 0.
→˓0025 - output_2_loss: 0.0053 - output_3_loss: 0.0043 - output_4_loss: 0.0033 - output_
→˓5_loss: 0.0044 - output_6_loss: 0.0032 - output_7_loss: 0.0036 - output_8_loss: 9.
→˓2933e-04 - output_9_loss: 0.0075 - output_2_sparse_categorical_accuracy: 0.9993 -␣
→˓output_3_sparse_categorical_accuracy: 0.9993 - output_4_sparse_categorical_accuracy: 0.
→˓9993 - output_5_sparse_categorical_accuracy: 0.9995 - output_6_sparse_categorical_
→˓accuracy: 0.9996 - output_7_sparse_categorical_accuracy: 0.9994 - output_8_sparse_
→˓categorical_accuracy: 0.9999 - output_9_sparse_categorical_accuracy: 0.9986
INFO:tensorflow:Assets written to: tensorflow/ADULT_autoencoder/assets

Counterfactual with Reinforcement Learning

[10]: # Define constants
COEFF_SPARSITY = 0.5 # sparisty coefficient
COEFF_CONSISTENCY = 0.5 # consisteny coefficient
TRAIN_STEPS = 10000 # number of training steps -> consider increasing the␣
→˓number of steps
BATCH_SIZE = 100 # batch size

Define dataset specific attributes and constraints

A desirable property of a method for generating counterfactuals is to allow feature conditioning. Real-world datasets
usually include immutable features such as Sex or Race, which should remain unchanged throughout the counterfactual
search procedure. Similarly, a numerical feature such as Age should only increase for a counterfactual to be actionable.

[11]: # Define immutable features.
immutable_features = ['Marital Status', 'Relationship', 'Race', 'Sex']

Define ranges. This means that the `Age` feature can not decrease.
ranges = {'Age': [0.0, 1.0]}

Define and fit the explainer

[12]: explainer = CounterfactualRLTabular(predictor=predictor,
encoder=heae.encoder,
decoder=heae.decoder,
latent_dim=LATENT_DIM,
encoder_preprocessor=heae_preprocessor,
decoder_inv_preprocessor=heae_inv_preprocessor,
coeff_sparsity=COEFF_SPARSITY,
coeff_consistency=COEFF_CONSISTENCY,
category_map=adult.category_map,
feature_names=adult.feature_names,
ranges=ranges,
immutable_features=immutable_features,
train_steps=TRAIN_STEPS,
batch_size=BATCH_SIZE,
backend="tensorflow")

282 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[13]: # Fit the explainer.
explainer = explainer.fit(X=X_train)

100%|==========| 10000/10000 [06:37<00:00, 25.17it/s]

Test explainer

[14]: # Select some positive examples.
X_positive = X_test[np.argmax(predictor(X_test), axis=1) == 1]

X = X_positive[:1000]
Y_t = np.array([0])
C = [{"Age": [0, 20], "Workclass": ["State-gov", "?", "Local-gov"]}]

[15]: # Generate counterfactual instances.
explanation = explainer.explain(X, Y_t, C)

100%|==========| 10/10 [00:00<00:00, 34.63it/s]

[16]: # Concat labels to the original instances.
orig = np.concatenate(

[explanation.data['orig']['X'], explanation.data['orig']['class']],
axis=1

)

Concat labels to the counterfactual instances.
cf = np.concatenate(

[explanation.data['cf']['X'], explanation.data['cf']['class']],
axis=1

)

Define new feature names and category map by including the label.
feature_names = adult.feature_names + ["Label"]
category_map = deepcopy(adult.category_map)
category_map.update({feature_names.index("Label"): adult.target_names})

Replace label encodings with strings.
orig_pd = pd.DataFrame(

apply_category_mapping(orig, category_map),
columns=feature_names

)

cf_pd = pd.DataFrame(
apply_category_mapping(cf, category_map),
columns=feature_names

)

[17]: orig_pd.head(n=10)

[17]: Age Workclass Education Marital Status Occupation \
0 60 Private High School grad Married Blue-Collar

(continues on next page)

8.7. Counterfactuals with Reinforcement Learning 283

alibi Documentation, Release 0.9.5dev

(continued from previous page)

1 35 Private High School grad Married White-Collar
2 39 State-gov Masters Married Professional
3 44 Self-emp-inc High School grad Married Sales
4 39 Private Bachelors Separated White-Collar
5 45 Private High School grad Married Blue-Collar
6 50 Private Bachelors Married Professional
7 29 Private Bachelors Married White-Collar
8 47 Private Bachelors Married Professional
9 35 Private Bachelors Married White-Collar

Relationship Race Sex Capital Gain Capital Loss Hours per week \
0 Husband White Male 7298 0 40
1 Husband White Male 7688 0 50
2 Wife White Female 5178 0 38
3 Husband White Male 0 0 50
4 Not-in-family White Female 13550 0 50
5 Husband White Male 0 1902 40
6 Husband White Male 0 0 50
7 Wife White Female 0 0 50
8 Husband White Male 0 0 50
9 Husband White Male 0 0 70

Country Label
0 United-States >50K
1 United-States >50K
2 United-States >50K
3 United-States >50K
4 United-States >50K
5 ? >50K
6 United-States >50K
7 United-States >50K
8 United-States >50K
9 United-States >50K

[18]: cf_pd.head(n=10)

[18]: Age Workclass Education Marital Status Occupation \
0 60 Private High School grad Married Blue-Collar
1 35 Private Dropout Married Blue-Collar
2 39 State-gov Dropout Married Service
3 44 Self-emp-inc High School grad Married Sales
4 39 Private Bachelors Separated White-Collar
5 45 Private High School grad Married Blue-Collar
6 50 Private Dropout Married Service
7 29 Private Dropout Married Sales
8 47 Private Dropout Married Service
9 35 Private Dropout Married Sales

Relationship Race Sex Capital Gain Capital Loss Hours per week \
0 Husband White Male 320 0 40
1 Husband White Male 125 0 50
2 Wife White Female 538 15 39

(continues on next page)

284 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

3 Husband White Male 0 0 50
4 Not-in-family White Female 1922 0 51
5 Husband White Male 0 1900 41
6 Husband White Male 0 0 51
7 Wife White Female 0 0 50
8 Husband White Male 0 0 51
9 Husband White Male 0 0 71

Country Label
0 United-States <=50K
1 United-States <=50K
2 United-States <=50K
3 United-States >50K
4 United-States <=50K
5 Latin-America >50K
6 United-States <=50K
7 United-States <=50K
8 United-States <=50K
9 United-States <=50K

Diversity

[19]: # Generate counterfactual instances.
X = X_positive[0].reshape(1, -1)
explanation = explainer.explain(X=X, Y_t=Y_t, C=C, diversity=True, num_samples=100,␣
→˓batch_size=10)

12it [00:00, 26.20it/s]

[20]: # Concat label column.
orig = np.concatenate(

[explanation.data['orig']['X'], explanation.data['orig']['class']],
axis=1

)

cf = np.concatenate(
[explanation.data['cf']['X'], explanation.data['cf']['class']],
axis=1

)

Transfrom label encodings to string.
orig_pd = pd.DataFrame(

apply_category_mapping(orig, category_map),
columns=feature_names,

)

cf_pd = pd.DataFrame(
apply_category_mapping(cf, category_map),
columns=feature_names,

)

8.7. Counterfactuals with Reinforcement Learning 285

alibi Documentation, Release 0.9.5dev

[21]: orig_pd.head(n=5)

[21]: Age Workclass Education Marital Status Occupation Relationship \
0 60 Private High School grad Married Blue-Collar Husband

Race Sex Capital Gain Capital Loss Hours per week Country Label
0 White Male 7298 0 40 United-States >50K

[22]: cf_pd.head(n=5)

[22]: Age Workclass Education Marital Status Occupation Relationship \
0 60 Private Dropout Married Blue-Collar Husband
1 60 Private High School grad Married Blue-Collar Husband
2 60 Private High School grad Married Blue-Collar Husband
3 60 Private High School grad Married Blue-Collar Husband
4 60 Private High School grad Married Blue-Collar Husband

Race Sex Capital Gain Capital Loss Hours per week Country Label
0 White Male 143 0 40 United-States <=50K
1 White Male 49 0 40 United-States <=50K
2 White Male 84 0 40 United-States <=50K
3 White Male 87 0 41 United-States <=50K
4 White Male 97 0 40 United-States <=50K

Logging

Logging is clearly important when dealing with deep learning models. Thus, we provide an interface to write custom
callbacks for logging purposes after each training step which we defined here. In the following cells we provide some
example to log in Weights and Biases.

Logging reward callback

[23]: class RewardCallback(Callback):
def __call__(self,

step: int,
update: int,
model: CounterfactualRL,
sample: Dict[str, np.ndarray],
losses: Dict[str, float]):

if (step + update) % 100 != 0:
return

get the counterfactual and target
Y_t = sample["Y_t"]
X_cf = model.params["decoder_inv_preprocessor"](sample["X_cf"])

get prediction label
Y_m_cf = predictor(X_cf)

compute reward
(continues on next page)

286 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

reward = np.mean(model.params["reward_func"](Y_m_cf, Y_t))
wandb.log({"reward": reward})

Logging losses callback

[24]: class LossCallback(Callback):
def __call__(self,

step: int,
update: int,
model: CounterfactualRL,
sample: Dict[str, np.ndarray],
losses: Dict[str, float]):

Log training losses.
if (step + update) % 100 == 0:

wandb.log(losses)

Logging tables callback

[25]: class TablesCallback(Callback):
def __call__(self,

step: int,
update: int,
model: CounterfactualRL,
sample: Dict[str, np.ndarray],
losses: Dict[str, float]):

Log every 1000 steps
if step % 1000 != 0:

return

Define number of samples to be displayed.
NUM_SAMPLES = 5

X = heae_inv_preprocessor(sample["X"][:NUM_SAMPLES]) # input instance
X_cf = heae_inv_preprocessor(sample["X_cf"][:NUM_SAMPLES]) # counterfactual

Y_m = np.argmax(sample["Y_m"][:NUM_SAMPLES], axis=1).astype(int).reshape(-1, 1)
→˓# input labels

Y_t = np.argmax(sample["Y_t"][:NUM_SAMPLES], axis=1).astype(int).reshape(-1, 1)
→˓# target labels

Y_m_cf = np.argmax(predictor(X_cf), axis=1).astype(int).reshape(-1, 1)
→˓# counterfactual labels

Define feature names and category map for input.
feature_names = adult.feature_names + ["Label"]
category_map = deepcopy(adult.category_map)
category_map.update({feature_names.index("Label"): adult.target_names})

Construct input array.
(continues on next page)

8.7. Counterfactuals with Reinforcement Learning 287

alibi Documentation, Release 0.9.5dev

(continued from previous page)

inputs = np.concatenate([X, Y_m], axis=1)
inputs = pd.DataFrame(apply_category_mapping(inputs, category_map),

columns=feature_names)

Define feature names and category map for counterfactual output.
feature_names += ["Target"]
category_map.update({feature_names.index("Target"): adult.target_names})

Construct output array.
outputs = np.concatenate([X_cf, Y_m_cf, Y_t], axis=1)
outputs = pd.DataFrame(apply_category_mapping(outputs, category_map),

columns=feature_names)

Log table.
wandb.log({

"Input": wandb.Table(dataframe=inputs),
"Output": wandb.Table(dataframe=outputs)

})

Having defined the callbacks, we can define a new explainer that will include logging.

import wandb

Initialize wandb.
wandb_project = "Adult Census Counterfactual with Reinforcement Learning"
wandb.init(project=wandb_project)

Define explainer as before and include callbacks.
explainer = CounterfactualRLTabular(...,

callbacks=[LossCallback(), RewardCallback(),␣
→˓TablesCallback()])

Fit the explainers.
explainer = explainer.fit(X=X_train)

Close wandb.
wandb.finish()

8.7.2 Counterfactual with Reinforcement Learning (CFRL) on MNIST

This method is described in Model-agnostic and Scalable Counterfactual Explanations via Reinforcement Learning
and can generate counterfactual instances for any black-box model. The usual optimization procedure is transformed
into a learnable process allowing to generate batches of counterfactual instances in a single forward pass even for
high dimensional data. The training pipeline is model-agnostic and relies only on prediction feedback by querying the
black-box model. Furthermore, the method allows target and feature conditioning.

We exemplify the use case for the TensorFlow backend. This means that all models: the autoencoder, the actor
and the critic are TensorFlow models. Our implementation supports PyTorch backend as well.
CFRL uses Deep Deterministic Policy Gradient (DDPG) by interleaving a state-action function approximator called
critic, with a learning an approximator called actor to predict the optimal action. The method assumes that the critic is
differentiable with respect to the action argument, thus allowing to optimize the actor’s parameters efficiently through
gradient-based methods.

288 Chapter 8. Examples

https://arxiv.org/abs/2106.02597
https://arxiv.org/abs/1509.02971

alibi Documentation, Release 0.9.5dev

The DDPG algorithm requires two separate networks, an actor 𝜇 and a critic𝑄. Given the encoded representation of the
input instance 𝑧 = 𝑒𝑛𝑐(𝑥), the model prediction 𝑦𝑀 , the target prediction 𝑦𝑇 and the conditioning vector 𝑐, the actor
outputs the counterfactual’s latent representation 𝑧𝐶𝐹 = 𝜇(𝑧, 𝑦𝑀 , 𝑦𝑇 , 𝑐). The decoder then projects the embedding
𝑧𝐶𝐹 back to the original input space, followed by optional post-processing.

The training step consists of simultaneously optimizing the actor and critic networks. The critic regresses on the re-
ward𝑅 determined by the model prediction, while the actor maximizes the critic’s output for the given instance through
𝐿𝑚𝑎𝑥. The actor also minimizes two objectives to encourage the generation of sparse, in-distribution counterfactuals.
The sparsity loss 𝐿𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 operates on the decoded counterfactual 𝑥𝐶𝐹 and combines the 𝐿1 loss over the standardized
numerical features and the 𝐿0 loss over the categorical ones. The consistency loss 𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡 aims to encode the coun-
terfactual 𝑥𝐶𝐹 back to the same latent representation where it was decoded from and helps to produce in-distribution
counterfactual instances.Formally, the actor’s loss can be written as: 𝐿𝑎𝑐𝑡𝑜𝑟 = 𝐿𝑚𝑎𝑥 + 𝜆1𝐿𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 + 𝜆2𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

Note
To enable support for CounterfactualRLTabular with tensorflow backend, you may need to run

pip install alibi[tensorflow]

[2]: import os
import numpy as np
import matplotlib.pyplot as plt
from typing import Dict

import tensorflow as tf
import tensorflow.keras as keras

from alibi.explainers import CounterfactualRL
from alibi.models.tensorflow import AE
from alibi.models.tensorflow import Actor, Critic
from alibi.models.tensorflow import MNISTEncoder, MNISTDecoder, MNISTClassifier
from alibi.explainers.cfrl_base import Callback

Load MNIST dataset

[3]: # Define constants.
BATCH_SIZE = 64
BUFFER_SIZE = 1024

Load MNIST dataset.
(X_train, Y_train), (X_test, Y_test) = tf.keras.datasets.mnist.load_data()

Expand dimensions and normalize.
X_train = np.expand_dims(X_train, axis=-1).astype(np.float32) / 255.
X_test = np.expand_dims(X_test, axis=-1).astype(np.float32) / 255.

Define trainset.
trainset_classifier = tf.data.Dataset.from_tensor_slices((X_train, Y_train))
trainset_classifier = trainset_classifier.shuffle(buffer_size=BUFFER_SIZE).batch(BATCH_
→˓SIZE)

(continues on next page)

8.7. Counterfactuals with Reinforcement Learning 289

alibi Documentation, Release 0.9.5dev

(continued from previous page)

Define testset.
testset_classifier = tf.data.Dataset.from_tensor_slices((X_test, Y_test))
testset_classifier = testset_classifier.shuffle(buffer_size=BUFFER_SIZE).batch(BATCH_
→˓SIZE)

Define and train CNN classifier

[4]: # Number of classes.
NUM_CLASSES = 10
EPOCHS = 5

Define classifier path and create dir if it doesn't exist.
classifier_path = os.path.join("tensorflow", "MNIST_classifier")
if not os.path.exists(classifier_path):

os.makedirs(classifier_path)

Construct classifier. This is the classifier used in the paper experiments.
classifier = MNISTClassifier(output_dim=NUM_CLASSES)

Define optimizer and loss function
optimizer = keras.optimizers.Adam(learning_rate=1e-3)
loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True)

Complile the model.
classifier.compile(optimizer=optimizer,

loss=loss,
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])

if len(os.listdir(classifier_path)) == 0:
Fit and save the classifier.
classifier.fit(trainset_classifier, epochs=EPOCHS)
classifier.save(classifier_path)

else:
Load the classifier if already fitted.
classifier = keras.models.load_model(classifier_path)

Epoch 1/5
938/938 [==============================] - 12s 11ms/step - loss: 0.4742 - sparse_
→˓categorical_accuracy: 0.8550
Epoch 2/5
938/938 [==============================] - 12s 13ms/step - loss: 0.0935 - sparse_
→˓categorical_accuracy: 0.9709
Epoch 3/5
938/938 [==============================] - 11s 12ms/step - loss: 0.0639 - sparse_
→˓categorical_accuracy: 0.9799
Epoch 4/5
938/938 [==============================] - 11s 12ms/step - loss: 0.0516 - sparse_
→˓categorical_accuracy: 0.9832
Epoch 5/5
938/938 [==============================] - 11s 12ms/step - loss: 0.0453 - sparse_

(continues on next page)

290 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

→˓categorical_accuracy: 0.9851
INFO:tensorflow:Assets written to: tensorflow/MNIST_classifier/assets

[5]: # Evaluate the classifier
loss, accuracy = classifier.evaluate(testset_classifier)

157/157 [==============================] - 1s 6ms/step - loss: 0.0383 - sparse_
→˓categorical_accuracy: 0.9879

Define the predictor (black-box)

Now that we’ve trained the CNN classifier, we can define the black-box model. Note that the output of the black-
box is a distribution which can be either a soft-label distribution (probabilities/logits for each class) or a hard-label
distribution (one-hot encoding). Internally, CFRL takes the argmax. Moreover the output DOES NOT HAVE TO BE
DIFFERENTIABLE.

[6]: # Define predictor function (black-box) used to train the CFRL
def predictor(X: np.ndarray):

Y = classifier(X).numpy()
return Y

Define and train autoencoder

Instead of directly modeling the perturbation vector in the potentially high-dimensional input space, we first train an
autoencoder. The weights of the encoder are frozen and the actor applies the counterfactual perturbations in the latent
space of the encoder. The pre-trained decoder maps the counterfactual embedding back to the input feature space.

The autoencoder follows a standard design. The model is composed from two submodules, the encoder and the decoder.
The forward pass consists of passing the input to the encoder, obtain the input embedding and pass the embedding
through the decoder.

class AE(keras.Model):
def __init__(self, encoder: keras.Model, decoder: keras.Model, **kwargs) -> None:

super().__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder

def call(self, x: tf.Tensor, **kwargs):
z = self.encoder(x)
x_hat = self.decoder(z)
return x_hat

[7]: # Define autoencoder trainset.
trainset_ae = tf.data.Dataset.from_tensor_slices(X_train)
trainset_ae = trainset_ae.map(lambda x: (x, x))
trainset_ae = trainset_ae.shuffle(buffer_size=BUFFER_SIZE).batch(BATCH_SIZE)

Define autoencode testset.
testset_ae = tf.data.Dataset.from_tensor_slices(X_test)

(continues on next page)

8.7. Counterfactuals with Reinforcement Learning 291

alibi Documentation, Release 0.9.5dev

(continued from previous page)

testset_ae = testset_ae.map(lambda x: (x, x))
testset_ae = testset_ae.shuffle(buffer_size=BUFFER_SIZE).batch(BATCH_SIZE)

[8]: # Define autoencoder path and create dir if it doesn't exist.
ae_path = os.path.join("tensorflow", "MNIST_autoencoder")
if not os.path.exists(ae_path):

os.makedirs(ae_path)

Define latent dimension.
LATENT_DIM = 64
EPOCHS = 50

Define autoencoder.
ae = AE(encoder=MNISTEncoder(latent_dim=LATENT_DIM),

decoder=MNISTDecoder())

Define optimizer and loss function.
optimizer = keras.optimizers.Adam(learning_rate=1e-3)
loss = keras.losses.BinaryCrossentropy(from_logits=False)

Compile autoencoder.
ae.compile(optimizer=optimizer, loss=loss)

if len(os.listdir(ae_path)) == 0:
Fit and save autoencoder.
ae.fit(trainset_ae, epochs=EPOCHS)
ae.save(ae_path)

else:
Load the model.
ae = keras.models.load_model(ae_path)

Epoch 1/50
938/938 [==============================] - 9s 8ms/step - loss: 0.2846
Epoch 2/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1431
Epoch 3/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1287
Epoch 4/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1224
Epoch 5/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1184
Epoch 6/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1155
Epoch 7/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1129
Epoch 8/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1111
Epoch 9/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1094
Epoch 10/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1078
Epoch 11/50

(continues on next page)

292 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

938/938 [==============================] - 8s 8ms/step - loss: 0.1066
Epoch 12/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1056
Epoch 13/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1045
Epoch 14/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1038
Epoch 15/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1030
Epoch 16/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1023
Epoch 17/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1016
Epoch 18/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1010
Epoch 19/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1005
Epoch 20/50
938/938 [==============================] - 8s 8ms/step - loss: 0.1000
Epoch 21/50
938/938 [==============================] - 8s 8ms/step - loss: 0.0997
Epoch 22/50
938/938 [==============================] - 8s 8ms/step - loss: 0.0992
Epoch 23/50
938/938 [==============================] - 8s 8ms/step - loss: 0.0987
Epoch 24/50
938/938 [==============================] - 8s 8ms/step - loss: 0.0983
Epoch 25/50
938/938 [==============================] - 7s 7ms/step - loss: 0.0980
Epoch 26/50
938/938 [==============================] - 7s 8ms/step - loss: 0.0977
Epoch 27/50
938/938 [==============================] - 7s 8ms/step - loss: 0.0973
Epoch 28/50
938/938 [==============================] - 7s 7ms/step - loss: 0.0971
Epoch 29/50
938/938 [==============================] - 7s 7ms/step - loss: 0.0967
Epoch 30/50
938/938 [==============================] - 7s 7ms/step - loss: 0.0964
Epoch 31/50
938/938 [==============================] - 7s 7ms/step - loss: 0.0962
Epoch 32/50
938/938 [==============================] - 7s 7ms/step - loss: 0.0960
Epoch 33/50
938/938 [==============================] - 7s 8ms/step - loss: 0.0957
Epoch 34/50
938/938 [==============================] - 8s 9ms/step - loss: 0.0954
Epoch 35/50
938/938 [==============================] - 7s 8ms/step - loss: 0.0953
Epoch 36/50
938/938 [==============================] - 8s 8ms/step - loss: 0.0951
Epoch 37/50

(continues on next page)

8.7. Counterfactuals with Reinforcement Learning 293

alibi Documentation, Release 0.9.5dev

(continued from previous page)

938/938 [==============================] - 7s 8ms/step - loss: 0.0949
Epoch 38/50
938/938 [==============================] - 7s 8ms/step - loss: 0.0948
Epoch 39/50
938/938 [==============================] - 7s 8ms/step - loss: 0.0944
Epoch 40/50
938/938 [==============================] - 9s 10ms/step - loss: 0.0941
Epoch 41/50
938/938 [==============================] - 7s 7ms/step - loss: 0.0940
Epoch 42/50
938/938 [==============================] - 8s 9ms/step - loss: 0.0938
Epoch 43/50
938/938 [==============================] - 9s 10ms/step - loss: 0.0937
Epoch 44/50
938/938 [==============================] - 7s 7ms/step - loss: 0.0935
Epoch 45/50
938/938 [==============================] - 7s 8ms/step - loss: 0.0933
Epoch 46/50
938/938 [==============================] - 7s 7ms/step - loss: 0.0932
Epoch 47/50
938/938 [==============================] - 7s 7ms/step - loss: 0.0930
Epoch 48/50
938/938 [==============================] - 7s 7ms/step - loss: 0.0929
Epoch 49/50
938/938 [==============================] - 8s 8ms/step - loss: 0.0928
Epoch 50/50
938/938 [==============================] - 7s 8ms/step - loss: 0.0925
INFO:tensorflow:Assets written to: tensorflow/MNIST_autoencoder/assets

Test the autoencoder

[9]: # Define number of samples to be displayed
NUM_SAMPLES = 5

Get some random samples from test
np.random.seed(0)
indices = np.random.choice(X_test.shape[0], NUM_SAMPLES)
inputs = [X_test[i].reshape(1, 28, 28, 1) for i in indices]
inputs = np.concatenate(inputs, axis=0)

Pass samples through the autoencoder
inputs_hat = ae(inputs).numpy()

[10]: # Plot inputs and reconstructions.
plt.rcParams.update({'font.size': 22})
fig, ax = plt.subplots(2, NUM_SAMPLES, figsize=(25, 10))

for i in range(NUM_SAMPLES):
ax[0][i].imshow(inputs[i], cmap='gray')
ax[1][i].imshow(inputs_hat[i], cmap='gray')

(continues on next page)

294 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

text1 = ax[0][0].set_ylabel("x")
text2 = ax[1][0].set_ylabel("x_hat")

Counterfactual with Reinforcement Learning

[11]: # Define constants
COEFF_SPARSITY = 7.5 # sparisty coefficient
COEFF_CONSISTENCY = 0 # consisteny coefficient -> no consistency
TRAIN_STEPS = 50000 # number of training steps -> consider increasing the␣
→˓number of steps
BATCH_SIZE = 100 # batch size

Define and fit the explainer

[12]: # Define explainer.
explainer = CounterfactualRL(predictor=predictor,

encoder=ae.encoder,
decoder=ae.decoder,
latent_dim=LATENT_DIM,
coeff_sparsity=COEFF_SPARSITY,
coeff_consistency=COEFF_CONSISTENCY,
train_steps=TRAIN_STEPS,
batch_size=BATCH_SIZE,
backend="tensorflow")

[13]: # Fit the explainer
explainer = explainer.fit(X=X_train)

100%|==========| 50000/50000 [31:04<00:00, 26.82it/s]

8.7. Counterfactuals with Reinforcement Learning 295

alibi Documentation, Release 0.9.5dev

Test explainer

[14]: # Generate counterfactuals for some test instances.
explanation = explainer.explain(X_test[0:200], Y_t=np.array([2]), batch_size=100)

100%|==========| 2/2 [00:00<00:00, 36.14it/s]

[15]: fig, ax = plt.subplots(2, NUM_SAMPLES, figsize=(25, 10))

for i in range(NUM_SAMPLES):
ax[0][i].imshow(explanation.data['orig']['X'][i], cmap='gray')
ax[1][i].imshow(explanation.data['cf']['X'][i], cmap='gray')

ax[0][i].set_xlabel("Label: " + str(explanation.data['orig']['class'][i]))
ax[1][i].set_xlabel("Label: " + str(explanation.data['cf']['class'][i]))

text1 = ax[0][0].set_ylabel("X")
text2 = ax[1][0].set_ylabel("X_hat")

Logging

Logging is clearly important when dealing with deep learning models. Thus, we provide an interface to write custom
callbacks for logging purposes after each training step which we defined here. In the following cells we provide some
example to log in Weights and Biases.

296 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Logging reward callback

[16]: class RewardCallback(Callback):
def __call__(self,

step: int,
update: int,
model: CounterfactualRL,
sample: Dict[str, np.ndarray],
losses: Dict[str, float]):

if step % 100 != 0:
return

Get the counterfactual and target.
X_cf = sample["X_cf"]
Y_t = sample["Y_t"]

Get prediction label.
Y_m_cf = predictor(X_cf)

Compute reward
reward = np.mean(model.params["reward_func"](Y_m_cf, Y_t))
wandb.log({"reward": reward})

Logging images callback

[17]: class ImagesCallback(Callback):
def __call__(self,

step: int,
update: int,
model: CounterfactualRL,
sample: Dict[str, np.ndarray],
losses: Dict[str, float]):

Log every 100 steps
if step % 100 != 0:

return

Defie number of samples to be displayed.
NUM_SAMPLES = 10

X = sample["X"][:NUM_SAMPLES] # input instance
X_cf = sample["X_cf"][:NUM_SAMPLES] # counterfactual
diff = np.abs(X - X_cf) # differences

Y_m = sample["Y_m"][:NUM_SAMPLES].astype(int) # input labels
Y_t = sample["Y_t"][:NUM_SAMPLES].astype(int) # target labels
Y_m_cf = predictor(X_cf).astype(int) # counterfactual labels

Concatentate images,
X = np.concatenate(X, axis=1)
X_cf = np.concatenate(X_cf, axis=1)
diff = np.concatenate(diff, axis=1)

(continues on next page)

8.7. Counterfactuals with Reinforcement Learning 297

alibi Documentation, Release 0.9.5dev

(continued from previous page)

Construct full image.
img = np.concatenate([X, X_cf, diff], axis=0)

Construct caption.
caption = ""
caption += "Input:\t%s\n" % str(list(np.argmax(Y_m, axis=1)))
caption += "Target:\t%s\n" % str(list(np.argmax(Y_t, axis=1)))
caption += "Predicted:\t%s\n" % str(list(np.argmax(Y_m_cf, axis=1)))

Log image.
wandb.log({"samples": wandb.Image(img, caption=caption)})

Logging losses callback

[18]: class LossCallback(Callback):
def __call__(self,

step: int,
update: int,
model: CounterfactualRL,
sample: Dict[str, np.ndarray],
losses: Dict[str, float]):

Log evary 100 updates.
if (step + update) % 100 == 0:

wandb.log(losses)

Having defined the callbacks, we can define a new explainer that will include logging.

import wandb

Initialize wandb.
wandb_project = "MNIST Counterfactual with Reinforcement Learning"
wandb.init(project=wandb_project)

Define explainer as before and include callbacks.
explainer = CounterfactualRL(...,

callbacks=[RewardCallback(), ImagesCallback()])

Fit the explainer.
explainer.fit(X=X_train)

Close wandb.
wandb.finish()

298 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

8.8 Integrated Gradients

8.8.1 Integrated gradients for a ResNet model trained on Imagenet dataset

In this notebook we apply the integrated gradients method to a pretrained ResNet model trained on the Imagenet data
set. Integrated gradients defines an attribution value for each feature (in this case for each pixel and channel in the
image) by integrating the model’s gradients with respect to the input along a straight path from a baseline instance 𝑥′

to the input instance 𝑥.

A more detailed description of the method can be found here. Integrated gradients was originally proposed in Sun-
dararajan et al., “Axiomatic Attribution for Deep Networks”

Note
To enable support for IntegratedGradients, you may need to run

pip install alibi[tensorflow]

[1]: import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from alibi.explainers import IntegratedGradients
from tensorflow.keras.applications.resnet_v2 import ResNet50V2
from alibi.datasets import load_cats
from alibi.utils import visualize_image_attr
print('TF version: ', tf.__version__)
print('Eager execution enabled: ', tf.executing_eagerly()) # True

TF version: 2.8.0
Eager execution enabled: True

Load data

The load_cats function loads a small sample of images of various cat breeds.

[3]: image_shape = (224, 224, 3)
data, labels = load_cats(target_size=image_shape[:2], return_X_y=True)
print(f'Images shape: {data.shape}')
data = (data / 255).astype('float32')

Images shape: (4, 224, 224, 3)

[4]: i = 2
plt.imshow(data[i]);

8.8. Integrated Gradients 299

https://docs.seldon.io/projects/alibi/en/stable/methods/IntegratedGradients.html
https://arxiv.org/abs/1703.01365

alibi Documentation, Release 0.9.5dev

Load model

Load a pretrained tensorflow model with a ResNet architecture trained on the Imagenet dataset.

[5]: model = ResNet50V2(weights='imagenet')

Calculate integrated gradients

The IntegratedGradients class implements the integrated gradients features attributions method. A description of the
method can be found here.

In the first example, the baselines (i.e. the starting points of the path integral) are black images (all pixel values are
set to zero). This means that black areas of the image will always have zero attributions. In the second example we
consider random uniform noise baselines. The path integral is defined as a straight line from the baseline to the input
image. The path is approximated by choosing 50 discrete steps according to the Gauss-Legendre method.

[6]: n_steps = 50
method = "gausslegendre"
internal_batch_size = 50
ig = IntegratedGradients(model,

n_steps=n_steps,
method=method,
internal_batch_size=internal_batch_size)

Here we compute attributions for a single image, but batch explanations are supported (leading dimension assumed to
be batch).

[7]: instance = np.expand_dims(data[i], axis=0)
predictions = model(instance).numpy().argmax(axis=1)
explanation = ig.explain(instance,

baselines=None,
target=predictions)

[8]: # Metadata from the explanation object
explanation.meta

300 Chapter 8. Examples

https://docs.seldon.io/projects/alibi/en/stable/methods/IntegratedGradients.html

alibi Documentation, Release 0.9.5dev

[8]: {'name': 'IntegratedGradients',
'type': ['whitebox'],
'explanations': ['local'],
'params': {'method': 'gausslegendre',
'n_steps': 50,
'internal_batch_size': 50,
'layer': 0}}

[9]: # Data fields from the explanation object
explanation.data.keys()

[9]: dict_keys(['attributions', 'X', 'forward_kwargs', 'baselines', 'predictions', 'deltas',
→˓'target'])

[10]: # Get attributions values from the explanation object
attrs = explanation.attributions[0]

Visualize attributions

Black image baseline

Sample image from the test set and its attributions. The attributions are shown by overlaying the attributions values for
each pixel to the original image. The attribution value for a pixel is obtained by summing up the attributions values for
the three color channels. The attributions are scaled in a [−1, 1] range: red pixels represent negative attributions, while
green pixels represent positive attributions. The original image is shown in gray scale for clarity.

[11]: fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 5))
visualize_image_attr(attr=None, original_image=data[i], method='original_image',

title='Original Image', plt_fig_axis=(fig, ax[0]), use_pyplot=False);

visualize_image_attr(attr=attrs.squeeze(), original_image=data[i], method='blended_heat_
→˓map',

sign='all', show_colorbar=True, title='Overlaid Attributions',
plt_fig_axis=(fig, ax[1]), use_pyplot=True);

8.8. Integrated Gradients 301

alibi Documentation, Release 0.9.5dev

Random baselines

Here we show the attributions obtained choosing random uniform noise as a baseline. It can be noticed that the at-
tributions can be considerably different from the previous example, where the black image is taken as a baseline. An
extensive discussion about the impact of the baselines on integrated gradients attributions can be found in P. Sturmfels
at al., “Visualizing the Impact of Feature Attribution Baselines”.

[12]: baselines = np.random.random_sample(instance.shape)

[13]: explanation = ig.explain(instance,
baselines=baselines,
target=predictions)

[14]: attrs = explanation.attributions[0]

Sample image from the test dataset and its attributions. The attributions are shown by overlaying the attributions values
for each pixel to the original image. The attribution value for a pixel is obtained by summing up the attributions values
for the three color channels. The attributions are scaled in a [−1, 1] range: red pixel represents negative attributions,
while green pixels represents positive attributions. The original image is shown in gray scale for clarity.

[15]: fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 5))
visualize_image_attr(attr=None, original_image=data[i], method='original_image',

title='Original Image', plt_fig_axis=(fig, ax[0]), use_pyplot=False);

visualize_image_attr(attr=attrs.squeeze(), original_image=data[i], method='blended_heat_
→˓map',

sign='all', show_colorbar=True, title='Overlaid Attributions',
plt_fig_axis=(fig, ax[1]), use_pyplot=True);

302 Chapter 8. Examples

https://distill.pub/2020/attribution-baselines/

alibi Documentation, Release 0.9.5dev

8.8.2 Integrated gradients for text classification on the IMDB dataset

In this example, we apply the integrated gradients method to a sentiment analysis model trained on the IMDB dataset.
In text classification models, integrated gradients define an attribution value for each word in the input sentence. The
attributions are calculated considering the integral of the model gradients with respect to the word embedding layer
along a straight path from a baseline instance 𝑥′ to the input instance 𝑥. A description of the method can be found here.
Integrated gradients was originally proposed in Sundararajan et al., “Axiomatic Attribution for Deep Networks”

The IMDB data set contains 50K movie reviews labelled as positive or negative. We train a convolutional neural
network classifier with a single 1-d convolutional layer followed by a fully connected layer. The reviews in the dataset
are truncated at 100 words and each word is represented by 50-dimesional word embedding vector. We calculate
attributions for the elements of the embedding layer.

Note
To enable support for IntegratedGradients, you may need to run

pip install alibi[tensorflow]

[1]: import tensorflow as tf
import numpy as np
import os
import pandas as pd
from tensorflow.keras.datasets import imdb
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, Embedding, Conv1D, GlobalMaxPooling1D,␣
→˓Dropout
from tensorflow.keras.utils import to_categorical
from alibi.explainers import IntegratedGradients

(continues on next page)

8.8. Integrated Gradients 303

https://docs.seldon.io/projects/alibi/en/stable/methods/IntegratedGradients.html
https://arxiv.org/abs/1703.01365

alibi Documentation, Release 0.9.5dev

(continued from previous page)

import matplotlib.pyplot as plt
print('TF version: ', tf.__version__)
print('Eager execution enabled: ', tf.executing_eagerly()) # True

TF version: 2.6.0
Eager execution enabled: True

Load data

Loading the imdb dataset.

[2]: max_features = 10000
maxlen = 100

[3]: print('Loading data...')
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
test_labels = y_test.copy()
train_labels = y_train.copy()
print(len(x_train), 'train sequences')
print(len(x_test), 'test sequences')
y_train, y_test = to_categorical(y_train), to_categorical(y_test)

print('Pad sequences (samples x time)')
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)

index = imdb.get_word_index()
reverse_index = {value: key for (key, value) in index.items()}

Loading data...
25000 train sequences
25000 test sequences
Pad sequences (samples x time)
x_train shape: (25000, 100)
x_test shape: (25000, 100)

A sample review from the test set. Note that unknown words are replaced with ‘UNK’

[4]: def decode_sentence(x, reverse_index):
the `-3` offset is due to the special tokens used by keras
see https://stackoverflow.com/questions/42821330/restore-original-text-from-keras-

→˓s-imdb-dataset
return " ".join([reverse_index.get(i - 3, 'UNK') for i in x])

[5]: print(decode_sentence(x_test[1], reverse_index))

a powerful study of loneliness sexual UNK and desperation be patient UNK up the␣
→˓atmosphere and pay attention to the wonderfully written script br br i praise robert␣
→˓altman this is one of his many films that deals with unconventional fascinating␣
→˓subject matter this film is disturbing but it's sincere and it's sure to UNK a strong␣

(continues on next page)

304 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

→˓emotional response from the viewer if you want to see an unusual film some might even␣
→˓say bizarre this is worth the time br br unfortunately it's very difficult to find in␣
→˓video stores you may have to buy it off the internet

Train Model

The model includes one convolutional layer and reaches a test accuracy of 0.85. If save_model = True, a local folder
../model_imdb will be created and the trained model will be saved in that folder. If the model was previously saved,
it can be loaded by setting load_model = True.

[6]: batch_size = 32
embedding_dims = 50
filters = 250
kernel_size = 3
hidden_dims = 250

[7]: load_model = False
save_model = True

[8]: filepath = './model_imdb/' # change to directory where model is downloaded
if load_model:

model = tf.keras.models.load_model(os.path.join(filepath, 'model.h5'))
else:

print('Build model...')

inputs = Input(shape=(maxlen,), dtype=tf.int32)
embedded_sequences = Embedding(max_features,

embedding_dims)(inputs)
out = Conv1D(filters,

kernel_size,
padding='valid',
activation='relu',
strides=1)(embedded_sequences)

out = Dropout(0.4)(out)
out = GlobalMaxPooling1D()(out)
out = Dense(hidden_dims,

activation='relu')(out)
out = Dropout(0.4)(out)
outputs = Dense(2, activation='softmax')(out)

model = Model(inputs=inputs, outputs=outputs)
model.compile(loss='categorical_crossentropy',

optimizer='adam',
metrics=['accuracy'])

print('Train...')
model.fit(x_train, y_train,

batch_size=256,
epochs=3,
validation_data=(x_test, y_test))

(continues on next page)

8.8. Integrated Gradients 305

alibi Documentation, Release 0.9.5dev

(continued from previous page)

if save_model:
if not os.path.exists(filepath):

os.makedirs(filepath)
model.save(os.path.join(filepath, 'model.h5'))

Build model...
Train...
Epoch 1/3
98/98 [==============================] - 13s 130ms/step - loss: 0.6030 - accuracy: 0.
→˓6534 - val_loss: 0.4228 - val_accuracy: 0.8192
Epoch 2/3
98/98 [==============================] - 14s 146ms/step - loss: 0.3223 - accuracy: 0.
→˓8631 - val_loss: 0.3489 - val_accuracy: 0.8542
Epoch 3/3
98/98 [==============================] - 19s 197ms/step - loss: 0.2128 - accuracy: 0.
→˓9177 - val_loss: 0.3327 - val_accuracy: 0.8545

Calculate integrated gradients

The integrated gradients attributions are calculated with respect to the embedding layer for 10 samples from the test
set. Since the model uses a word to vector embedding with vector dimensionality of 50 and sequence length of 100
words, the dimensionality of the attributions is (10, 100, 50). In order to obtain a single attribution value for each word,
we sum all the attribution values for the 50 elements of each word’s vector representation.

The default baseline is used in this example which is internally defined as a sequence of zeros. In this case, this corre-
sponds to a sequence of padding characters (NB: in general the numerical value corresponding to a “non-informative”
baseline such as the PAD token will depend on the tokenizer used, make sure that the numerical value of the baseline
used corresponds to your desired token value to avoid surprises). The path integral is defined as a straight line from the
baseline to the input image. The path is approximated by choosing 50 discrete steps according to the Gauss-Legendre
method.

[9]: layer = model.layers[1]
layer

[9]: <keras.layers.embeddings.Embedding at 0x7fb80bdf1e50>

[10]: n_steps = 50
method = "gausslegendre"
internal_batch_size = 100
nb_samples = 10
ig = IntegratedGradients(model,

layer=layer,
n_steps=n_steps,
method=method,
internal_batch_size=internal_batch_size)

[11]: x_test_sample = x_test[:nb_samples]
predictions = model(x_test_sample).numpy().argmax(axis=1)
explanation = ig.explain(x_test_sample,

baselines=None,
target=predictions,
attribute_to_layer_inputs=False)

306 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[12]: # Metadata from the explanation object
explanation.meta

[12]: {'name': 'IntegratedGradients',
'type': ['whitebox'],
'explanations': ['local'],
'params': {'method': 'gausslegendre',
'n_steps': 50,
'internal_batch_size': 100,
'layer': 1}}

[13]: # Data fields from the explanation object
explanation.data.keys()

[13]: dict_keys(['attributions', 'X', 'forward_kwargs', 'baselines', 'predictions', 'deltas',
→˓'target'])

[14]: # Get attributions values from the explanation object
attrs = explanation.attributions[0]
print('Attributions shape:', attrs.shape)

Attributions shape: (10, 100, 50)

Sum attributions

[15]: attrs = attrs.sum(axis=2)
print('Attributions shape:', attrs.shape)

Attributions shape: (10, 100)

Visualize attributions

[16]: i = 1
x_i = x_test_sample[i]
attrs_i = attrs[i]
pred = predictions[i]
pred_dict = {1: 'Positive review', 0: 'Negative review'}

[17]: print('Predicted label = {}: {}'.format(pred, pred_dict[pred]))

Predicted label = 1: Positive review

We can visualize the attributions for the text instance by mapping the values of the attributions onto a matplotlib
colormap. Below we define some utility functions for doing this.

[18]: from IPython.display import HTML
def hlstr(string, color='white'):

"""
Return HTML markup highlighting text with the desired color.
"""
return f"<mark style=background-color:{color}>{string} </mark>"

8.8. Integrated Gradients 307

alibi Documentation, Release 0.9.5dev

[19]: def colorize(attrs, cmap='PiYG'):
"""
Compute hex colors based on the attributions for a single instance.
Uses a diverging colorscale by default and normalizes and scales
the colormap so that colors are consistent with the attributions.
"""
import matplotlib as mpl
cmap_bound = np.abs(attrs).max()
norm = mpl.colors.Normalize(vmin=-cmap_bound, vmax=cmap_bound)
cmap = mpl.cm.get_cmap(cmap)

now compute hex values of colors
colors = list(map(lambda x: mpl.colors.rgb2hex(cmap(norm(x))), attrs))
return colors

Below we visualize the attribution values (highlighted in the text) having the highest positive attributions. Words with
high positive attribution are highlighted in shades of green and words with negative attribution in shades of pink.
Stronger shading corresponds to higher attribution values. Positive attributions can be interpreted as increase in prob-
ability of the predicted class (“Positive sentiment”) while negative attributions correspond to decrease in probability
of the predicted class.

[20]: words = decode_sentence(x_i, reverse_index).split()
colors = colorize(attrs_i)

[21]: HTML("".join(list(map(hlstr, words, colors))))

[21]: <IPython.core.display.HTML object>

8.8.3 Integrated gradients for MNIST

In this notebook we apply the integrated gradients method to a convolutional network trained on the MNIST dataset.
Integrated gradients defines an attribution value for each feature of the input instance (in this case for each pixel in the
image) by integrating the model’s gradients with respect to the input along a straight path from a baseline instance 𝑥′

to the input instance 𝑥.

A more detailed description of the method can be found here. Integrated gradients was originally proposed in Sun-
dararajan et al., “Axiomatic Attribution for Deep Networks”.

Note
To enable support for IntegratedGradients, you may need to run

pip install alibi[tensorflow]

[2]: import numpy as np
import os
import tensorflow as tf
from tensorflow.keras.layers import Activation, Conv2D, Dense, Dropout
from tensorflow.keras.layers import Flatten, Input, Reshape, MaxPooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.utils import to_categorical

(continues on next page)

308 Chapter 8. Examples

https://docs.seldon.io/projects/alibi/en/stable/methods/IntegratedGradients.html
https://arxiv.org/abs/1703.01365

alibi Documentation, Release 0.9.5dev

(continued from previous page)

from alibi.explainers import IntegratedGradients
import matplotlib.pyplot as plt
print('TF version: ', tf.__version__)
print('Eager execution enabled: ', tf.executing_eagerly()) # True

TF version: 2.5.0
Eager execution enabled: True

Load data

Loading and preparing the MNIST data set.

[3]: train, test = tf.keras.datasets.mnist.load_data()
X_train, y_train = train
X_test, y_test = test
test_labels = y_test.copy()
train_labels = y_train.copy()

X_train = X_train.reshape(-1, 28, 28, 1).astype('float64') / 255
X_test = X_test.reshape(-1, 28, 28, 1).astype('float64') / 255
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)

(60000, 28, 28, 1) (60000, 10) (10000, 28, 28, 1) (10000, 10)

Train model

Train a convolutional neural network on the MNIST dataset. The model includes 2 convolutional layers and it reaches
a test accuracy of 0.98. If save_model = True, a local folder ./model_mnist will be created and the trained model
will be saved in that folder. If the model was previously saved, it can be loaded by setting load_mnist_model =
True.

[4]: load_mnist_model = False
save_model = True

[5]: filepath = './model_mnist/' # change to directory where model is saved
if load_mnist_model:

model = tf.keras.models.load_model(os.path.join(filepath, 'model.h5'))
else:

define model
inputs = Input(shape=(X_train.shape[1:]), dtype=tf.float64)
x = Conv2D(64, 2, padding='same', activation='relu')(inputs)
x = MaxPooling2D(pool_size=2)(x)
x = Dropout(.3)(x)

x = Conv2D(32, 2, padding='same', activation='relu')(x)
x = MaxPooling2D(pool_size=2)(x)
x = Dropout(.3)(x)

x = Flatten()(x)
(continues on next page)

8.8. Integrated Gradients 309

alibi Documentation, Release 0.9.5dev

(continued from previous page)

x = Dense(256, activation='relu')(x)
x = Dropout(.5)(x)
logits = Dense(10, name='logits')(x)
outputs = Activation('softmax', name='softmax')(logits)
model = Model(inputs=inputs, outputs=outputs)
model.compile(loss='categorical_crossentropy',

optimizer='adam',
metrics=['accuracy'])

train model
model.fit(X_train,

y_train,
epochs=6,
batch_size=256,
verbose=1,
validation_data=(X_test, y_test)
)

if save_model:
if not os.path.exists(filepath):

os.makedirs(filepath)
model.save(os.path.join(filepath, 'model.h5'))

Epoch 1/6
235/235 [==============================] - 16s 65ms/step - loss: 0.5084 - accuracy: 0.
→˓8374 - val_loss: 0.1216 - val_accuracy: 0.9625
Epoch 2/6
235/235 [==============================] - 14s 60ms/step - loss: 0.1686 - accuracy: 0.
→˓9488 - val_loss: 0.0719 - val_accuracy: 0.9781
Epoch 3/6
235/235 [==============================] - 17s 70ms/step - loss: 0.1205 - accuracy: 0.
→˓9634 - val_loss: 0.0520 - val_accuracy: 0.9841
Epoch 4/6
235/235 [==============================] - 18s 76ms/step - loss: 0.0979 - accuracy: 0.
→˓9702 - val_loss: 0.0443 - val_accuracy: 0.9863
Epoch 5/6
235/235 [==============================] - 16s 69ms/step - loss: 0.0844 - accuracy: 0.
→˓9733 - val_loss: 0.0382 - val_accuracy: 0.9872
Epoch 6/6
235/235 [==============================] - 14s 59ms/step - loss: 0.0742 - accuracy: 0.
→˓9768 - val_loss: 0.0364 - val_accuracy: 0.9875

Calculate integrated gradients

The IntegratedGradients class implements the integrated gradients attribution method. A description of the method
can be found here.

In the following example, the baselines (i.e. the starting points of the path integral) are black images (all pixel values
are set to zero). This means that black areas of the image will always have zero attribution. The path integral is defined
as a straight line from the baseline to the input image. The path is approximated by choosing 50 discrete steps according
to the Gauss-Legendre method.

310 Chapter 8. Examples

https://docs.seldon.io/projects/alibi/en/stable/methods/IntegratedGradients.html

alibi Documentation, Release 0.9.5dev

[6]: # Initialize IntegratedGradients instance
n_steps = 50
method = "gausslegendre"
ig = IntegratedGradients(model,

n_steps=n_steps,
method=method)

[7]: # Calculate attributions for the first 10 images in the test set
nb_samples = 10
X_test_sample = X_test[:nb_samples]
predictions = model(X_test_sample).numpy().argmax(axis=1)
explanation = ig.explain(X_test_sample,

baselines=None,
target=predictions)

[8]: # Metadata from the explanation object
explanation.meta

[8]: {'name': 'IntegratedGradients',
'type': ['whitebox'],
'explanations': ['local'],
'params': {'method': 'gausslegendre',
'n_steps': 50,
'internal_batch_size': 100,
'layer': 0}}

[9]: # Data fields from the explanation object
explanation.data.keys()

[9]: dict_keys(['attributions', 'X', 'baselines', 'predictions', 'deltas', 'target'])

[10]: # Get attributions values from the explanation object
attrs = explanation.attributions[0]

Visualize attributions

Sample images from the test dataset and their attributions.

• The first column shows the original image.

• The second column shows the values of the attributions.

• The third column shows the positive valued attributions.

• The fourth column shows the negative valued attributions.

The attributions are calculated using the black image as a baseline for all samples.

[12]: fig, ax = plt.subplots(nrows=3, ncols=4, figsize=(10, 7))
image_ids = [0, 1, 9]
cmap_bound = np.abs(attrs[[0, 1, 9]]).max()

for row, image_id in enumerate(image_ids):
original images

(continues on next page)

8.8. Integrated Gradients 311

alibi Documentation, Release 0.9.5dev

(continued from previous page)

ax[row, 0].imshow(X_test[image_id].squeeze(), cmap='gray')
ax[row, 0].set_title(f'Prediction: {predictions[image_id]}')

attributions
attr = attrs[image_id]
im = ax[row, 1].imshow(attr.squeeze(), vmin=-cmap_bound, vmax=cmap_bound, cmap='PiYG

→˓')

positive attributions
attr_pos = attr.clip(0, 1)
im_pos = ax[row, 2].imshow(attr_pos.squeeze(), vmin=-cmap_bound, vmax=cmap_bound,␣

→˓cmap='PiYG')

negative attributions
attr_neg = attr.clip(-1, 0)
im_neg = ax[row, 3].imshow(attr_neg.squeeze(), vmin=-cmap_bound, vmax=cmap_bound,␣

→˓cmap='PiYG')

ax[0, 1].set_title('Attributions');
ax[0, 2].set_title('Positive attributions');
ax[0, 3].set_title('Negative attributions');

for ax in fig.axes:
ax.axis('off')

fig.colorbar(im, cax=fig.add_axes([0.95, 0.25, 0.03, 0.5]));

312 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

8.8.4 Integrated gradients for transformers models

In this example, we apply the integrated gradients method to two different sentiment analysis models. The first one is a
pretrained sentiment analysis model from the transformers library. The second model is a combination of a pretrained
(distil)BERT model and a simple feed forward network. The entire model, (distil)BERT and feed forward network, is
trained on the IMDB reviews dataset.

In text classification models, integrated gradients (IG) define an attribution value for each word in the input sentence.
The attributions are calculated considering the integral of the model gradients with respect to the word embedding layer
along a straight path from a baseline instance 𝑥′ to the input instance 𝑥. A description of the method can be found here.
Integrated gradients was originally proposed in Sundararajan et al., “Axiomatic Attribution for Deep Networks”

Note
To enable support for IntegratedGradients, you may need to run

pip install alibi[tensorflow]

[1]: import re
import os
import numpy as np
import matplotlib as mpl
import matplotlib.cm

from tqdm import tqdm
from typing import Optional, Union, List, Dict, Tuple
from IPython.display import HTML

import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras.datasets import imdb
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.losses import SparseCategoricalCrossentropy

from transformers.optimization_tf import WarmUp
from transformers import TFAutoModelForSequenceClassification, AutoTokenizer,␣
→˓PreTrainedTokenizer

from alibi.explainers import IntegratedGradients

Here we define some functions needed to process the data and visualize. For consistency with other text examples in
alibi, we will use the IMDB reviews dataset provided by Keras. Since the dataset consists of reviews that are already
tokenized, we need to decode each sentence and re-convert them into tokens using the (distil)BERT tokenizer.

[2]: def decode_sentence(x: List[int], reverse_index: Dict[int, str], unk_token: str = '[UNK]
→˓') -> str:
"""
Decodes the tokenized sentences from keras IMDB dataset into plain text.

Parameters

(continues on next page)

8.8. Integrated Gradients 313

https://github.com/huggingface/transformers
https://docs.seldon.io/projects/alibi/en/stable/methods/IntegratedGradients.html
https://arxiv.org/abs/1703.01365

alibi Documentation, Release 0.9.5dev

(continued from previous page)

x
List of integers to be docoded.

revese_index
Reverse index map, from `int` to `str`.

unk_token
Unkown token to be used.

Returns

Decoded sentence.
"""
the `-3` offset is due to the special tokens used by keras
see https://stackoverflow.com/questions/42821330/restore-original-text-from-keras-

→˓s-imdb-dataset
return " ".join([reverse_index.get(i - 3, unk_token) for i in x])

def process_sentences(sentence: List[str],
tokenizer: PreTrainedTokenizer,
max_len: int) -> Dict[str, np.ndarray]:

"""
Tokenize the text sentences.

Parameters

sentence

Sentence to be processed.
tokenizer

Tokenizer to be used.
max_len

Controls the maximum length to use by one of the truncation/padding parameters.

Returns

Tokenized representation containing:
- input_ids
- attention_mask
"""
since we are using the model for classification, we need to include special char␣

→˓(i.e, '[CLS]', ''[SEP]')
check the example here: https://huggingface.co/transformers/v4.4.2/quicktour.html
z = tokenizer(sentence,

add_special_tokens=True,
padding='max_length',
max_length=max_len,
truncation=True,
return_attention_mask = True,
return_tensors='np')

return z

def process_input(sentence: List[str],

(continues on next page)

314 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

tokenizer: PreTrainedTokenizer,
max_len: int) -> Tuple[np.ndarray, dict]:

"""
Preprocess input sentence befor sending to transformer model.

Parameters

sentence

Sentence to be processed.
tokenizer

Tokenizer to be used.
max_len

Controls the maximum length to use by one of the truncation/padding parameters.

Returns

Tuple consisting of the input_ids and a dictionary contaning the attention_mask.
"""
tokenize the sentences using the transformer's tokenizer.
tokenized_samples = process_sentences(sentence, tokenizer, max_len)
X_test = tokenized_samples['input_ids'].astype(np.int32)

the values of the kwargs have to be `tf.Tensor`.
see transformers issue #14404: https://github.com/huggingface/transformers/issues/

→˓14404
solved from v4.16.0
kwargs = {k: tf.constant(v) for k, v in tokenized_samples.items() if k != 'input_ids

→˓'}
return X_test, kwargs

[3]: def hlstr(string: str , color: str = 'white') -> str:
"""
Return HTML markup highlighting text with the desired color.
"""
return f"<mark style=background-color:{color}>{string} </mark>"

def colorize(attrs: np.ndarray, cmap: str = 'PiYG') -> List:
"""
Compute hex colors based on the attributions for a single instance.
Uses a diverging colorscale by default and normalizes and scales
the colormap so that colors are consistent with the attributions.

Parameters

attrs

Attributions to be visualized.
cmap

Matplotlib cmap type.
"""
cmap_bound = np.abs(attrs).max()
norm = mpl.colors.Normalize(vmin=-cmap_bound, vmax=cmap_bound)

(continues on next page)

8.8. Integrated Gradients 315

alibi Documentation, Release 0.9.5dev

(continued from previous page)

cmap = mpl.cm.get_cmap(cmap)
return list(map(lambda x: mpl.colors.rgb2hex(cmap(norm(x))), attrs))

def display(X: np.ndarray,
attrs: np.ndarray,
tokenizer: PreTrainedTokenizer,
pred: np.ndarray) -> None:

"""
Display the attribution of a given instance.

Parameters

X

Instance to display the attributions for.
attrs

Attributions values for the given instance.
tokenizer

Tokenizer to be used for decoding.
pred

Classification label (prediction) for the given instance.
"""
pred_dict = {1: 'Positive review', 0: 'Negative review'}

remove padding
fst_pad_indices = np.where(X ==tokenizer.pad_token_id)[0]
if len(fst_pad_indices) > 0:

X, attrs = X[:fst_pad_indices[0]], attrs[:fst_pad_indices[0]]

decode tokens and get colors
tokens = [tokenizer.decode([X[i]]) for i in range(len(X))]
colors = colorize(attrs)

print(f'Predicted label = {pred}: {pred_dict[pred]}')
return HTML("".join(list(map(hlstr, tokens, colors))))

Automodel

In this section, we will use the Tensorflow auto model for sequence classification provided by the transformers library.

The model is pretrained on the Stanford Sentiment Treebank (SST) dataset. The Stanford Sentiment Treebank is the
first corpus with fully labeled parse trees that allows for a complete analysis of the compositional effects of sentiment
in language.

Each phrase is labeled as either negative, somewhat negative, neutral, somewhat positive or positive. The corpus with
all 5 labels is referred to as SST-5 or SST fine-grained. Binary classification experiments on full sentences (negative
or somewhat negative vs somewhat positive or positive with neutral sentences discarded) refer to the dataset as SST-2
or SST binary. In this example, we will use a text classifier pretrained on the SST-2 dataset.

[4]: # load model and tokenizer
model_name = "distilbert-base-uncased-finetuned-sst-2-english"

(continues on next page)

316 Chapter 8. Examples

https://github.com/huggingface/transformers
https://huggingface.co/datasets/sst

alibi Documentation, Release 0.9.5dev

(continued from previous page)

auto_model_distilbert = TFAutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

All model checkpoint layers were used when initializing␣
→˓TFDistilBertForSequenceClassification.

All the layers of TFDistilBertForSequenceClassification were initialized from the model␣
→˓checkpoint at distilbert-base-uncased-finetuned-sst-2-english.
If your task is similar to the task the model of the checkpoint was trained on, you can␣
→˓already use TFDistilBertForSequenceClassification for predictions without further␣
→˓training.

The auto_model_distilbert output is a custom object containing the output logits. We use a wrapper to transform
the output into a tensor and apply a softmax function to the logits.

[5]: class AutoModelWrapper(keras.Model):
def __init__(self, transformer: keras.Model, **kwargs):

"""
Constructor.

Parameters

transformer

Transformer to be wrapped.
"""
super().__init__()
self.transformer = transformer

def call(self,
input_ids: Union[np.ndarray, tf.Tensor],
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False):

"""
Performs forward pass throguh the model.

Parameters

input_ids

Indices of input sequence tokens in the vocabulary.
attention_mask

Mask to avoid performing attention on padding token indices.

Returns

Classification probabilities.
"""
out = self.transformer(input_ids=input_ids, attention_mask=attention_mask,␣

→˓training=training)
return tf.nn.softmax(out.logits, axis=-1)

def get_config(self):
return {}

(continues on next page)

8.8. Integrated Gradients 317

alibi Documentation, Release 0.9.5dev

(continued from previous page)

@classmethod
def from_config(cls, config):

return cls(**config)

[6]: auto_model = AutoModelWrapper(auto_model_distilbert)

Calculate integrated gradients

The auto model consists of a main distilBERT layer (layer 0) followed by two dense layers.

[7]: auto_model.layers[0].layers

[7]: [<transformers.models.distilbert.modeling_tf_distilbert.TFDistilBertMainLayer at␣
→˓0x7f4cb5435e80>,
<keras.layers.core.dense.Dense at 0x7f4ca8058c10>,
<keras.layers.core.dense.Dense at 0x7f4ca8058e80>,
<keras.layers.core.dropout.Dropout at 0x7f4ca01db1f0>]

We will proceed with the embedding layer from distilBERT. We calculate attributions to the outputs of the embedding
layer for which we can easily construct an appropriate baseline for the IG by replacing the regular tokens with the [PAD]
token (i.e. a neutral token) and keeping the other special tokens (e.g. [CLS], [SEP], [UNK], [PAD]). By including
special tokens such as [CLS], [SEP], [UNK], we ensure that the attribution for those tokens will be 0 if we use the
embedding layer. The 0 attribution is due to integration between [𝑥, 𝑥] which is 0. Note that if we considered a hidden
layer instead, we would inevitably capture higher order interaction between the input tokens. Moreover, the embedding
layer is our first choice since we cannot compute attributions for the raw input due to its discrete structure (i.e., we
cannot differentiate the output of the model with respect to the discrete input representation). That being said, you
can use any other layer and compute attributions to the outputs of it instead.

[8]: # Extracting the embeddings layer
layer = auto_model.layers[0].layers[0].embeddings

Extract the first layer from the transformer
layer = auto_model.layers[0].layers[0].transformer.layer[0]

[9]: n_steps = 50
internal_batch_size = 5
method = "gausslegendre"

define Integrated Gradients explainer
ig = IntegratedGradients(auto_model,

layer=layer,
n_steps=n_steps,
method=method,
internal_batch_size=internal_batch_size)

Here we consider some simple sentences such as “I love you, I like you”, “I love you, I like you, but I also kind of
dislike you” .

[10]: # define some text to be explained
text_samples = [

'I love you, I like you',
(continues on next page)

318 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

'I love you, I like you, but I also kind of dislike you',
'Everything is so nice about you'

]

process input to be explained
X_test, kwargs = process_input(sentence=text_samples,

tokenizer=tokenizer,
max_len=256)

[11]: # get predictions
predictions = auto_model(X_test, **kwargs).numpy().argmax(axis=1)

get the baseline
mask = np.isin(X_test, tokenizer.all_special_ids)
baselines = X_test * mask + tokenizer.pad_token_id * (1 - mask)

get explanation
explanation = ig.explain(X_test,

forward_kwargs=kwargs,
baselines=baselines,
target=predictions)

Let’s check the attributions’ shapes.

[12]: # Get attributions values from the explanation object
attrs = explanation.attributions[0]
print('Attributions shape:', attrs.shape)

Attributions shape: (3, 256, 768)

As you can see, the attribution of each token corresponds to a tensor of 768 elements. We compress all this information
into a single number buy summing up all 768 components. The nice thing about this is that we still remain consistent
with the Completeness Axiom, which states that the attributions add up to the difference between the output of our
model for the given instance and the output of our model for the given baseline.

[13]: attrs = attrs.sum(axis=2)
print('Attributions shape:', attrs.shape)

Attributions shape: (3, 256)

[14]: index = 1
display(X=X_test[index], attrs=attrs[index], pred=predictions[index],␣
→˓tokenizer=tokenizer)

Predicted label = 0: Negative review

[14]: <IPython.core.display.HTML object>

Note that since the sentence is classified as negative, words like ``dislike`` contribute positively to the score while
words like ``love`` contribute negatively.

8.8. Integrated Gradients 319

alibi Documentation, Release 0.9.5dev

Sentiment analysis on IMDB with fine-tuned model head.

Load and process data

[15]: # constants
max_features = 10000

load imdb reviews datasets.
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)

remove the first integer token which is a special character that marks the beginning␣
→˓of the sentence
x_train = [x[1:] for x in x_train]
x_test = [x[1:] for x in x_test]

get mappings. The keys are transformed to lower case since we will use uncased models.
reverse_index = {value: key.lower() for (key, value) in imdb.get_word_index().items()}

Load model and corresponding tokenizer

Now we have to load the model and the corresponding tokenizer. You can chose between the BERT model or the dis-
tilBERT model. Note that we will be finetuning those models which will require access to a GPU. In our experiments,
we trained distilBERT on a single Quadro RTX 5000 which requires around 5GB of memory. The entire training
took around 5-6 min. We recommend using distilBERT as it is lighter and we did not noticed a big difference in
performance between the two models after finetuning.

[16]: # choose whether to use the BERT or distilBERT model by selecting the appropriate name
model_name = 'distilbert-base-uncased'
model_name = 'bert-base-uncased'

[17]: # load model and tokenizer
model = TFAutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
tokenizer = AutoTokenizer.from_pretrained(model_name)

define maximum input length
max_len = 256

if model_name == 'bert-base-uncased':
training parameters: https://huggingface.co/fabriceyhc/bert-base-uncased-imdb
init_lr = 5e-05
min_lr_ratio = 0
batch_size = 8
num_warmup_steps = 1546
num_train_steps = 15468
power = 1.0

elif model_name == 'distilbert-base-uncased':
training parameters: https://huggingface.co/lvwerra/distilbert-imdb
init_lr = 5e-05
min_lr_ratio = 0
batch_size = 16

(continues on next page)

320 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

num_warmup_steps = 0
num_train_steps = int(np.ceil(len(x_train) / batch_size))
power = 1.0

else:
raise ValueError('Unknown model name.')

Some layers from the model checkpoint at distilbert-base-uncased were not used when␣
→˓initializing TFDistilBertForSequenceClassification: ['vocab_transform', 'vocab_
→˓projector', 'activation_13', 'vocab_layer_norm']
- This IS expected if you are initializing TFDistilBertForSequenceClassification from␣
→˓the checkpoint of a model trained on another task or with another architecture (e.g.␣
→˓initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing TFDistilBertForSequenceClassification␣
→˓from the checkpoint of a model that you expect to be exactly identical (initializing a␣
→˓BertForSequenceClassification model from a BertForSequenceClassification model).
Some layers of TFDistilBertForSequenceClassification were not initialized from the model␣
→˓checkpoint at distilbert-base-uncased and are newly initialized: ['dropout_39', 'pre_
→˓classifier', 'classifier']
You should probably TRAIN this model on a down-stream task to be able to use it for␣
→˓predictions and inference.

Decoding each sentence in the Keras IMDB tokenized dataset to obtain the corresponding plain text. The dataset is
already in a pretty good shape, so we don’t need to do extra preprocessing. The only thing that we do is to replace the
unknown tokens with the appropriate tokenizer’s unknown token (i.e., [UNK])

[18]: X_train, X_test = [], []

decode training sentences
for i in range(len(x_train)):

tr_sentence = decode_sentence(x_train[i], reverse_index, unk_token=tokenizer.unk_
→˓token)

X_train.append(tr_sentence)

decode testing sentences
for i in range(len(x_test)):

te_sentence = decode_sentence(x_test[i], reverse_index, unk_token=tokenizer.unk_
→˓token)

X_test.append(te_sentence)

Retokenizing the plain text using the (distil)BERT tokenizer.

[19]: # tokenize datasets
X_train = process_sentences(X_train, tokenizer, max_len)
X_test = process_sentences(X_test, tokenizer, max_len)

Construct the Tensorflow datasets for training and testing.

[20]: train_ds = tf.data.Dataset.from_tensor_slices(((*X_train.values() ,), y_train))
train_ds = train_ds.shuffle(1024).batch(batch_size).repeat()

test_ds = tf.data.Dataset.from_tensor_slices(((*X_test.values(),), y_test))
test_ds = test_ds.batch(batch_size)

8.8. Integrated Gradients 321

alibi Documentation, Release 0.9.5dev

Train model

Here we train a classification model by leveraging the pretrained (distil)BERT transformer.

[21]: filepath = './model_transformers/' # change to desired save directory
checkpoint_path = os.path.join(filepath, model_name)
load_model = False

define linear learning schedules
lr_schedule = tf.keras.optimizers.schedules.PolynomialDecay(

initial_learning_rate=init_lr,
decay_steps=num_train_steps - num_warmup_steps,
end_learning_rate=init_lr * min_lr_ratio,
power=power,

)

include learning rate warmup
if num_warmup_steps:

lr_schedule = WarmUp(
initial_learning_rate=init_lr,
decay_schedule_fn=lr_schedule,
warmup_steps=num_warmup_steps,

)

if not load_model:
compile the model
model.compile(

optimizer=tf.keras.optimizers.Adam(learning_rate=lr_schedule, beta_1=0.9, beta_
→˓2=0.999, epsilon=1e-08),

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=tf.metrics.SparseCategoricalAccuracy(),

)

fit and save the model
model.fit(x=train_ds, validation_data=test_ds, steps_per_epoch=num_train_steps)
model.save_pretrained(checkpoint_path)

else:
load and compile the model
model = model.from_pretrained(checkpoint_path)
model.compile(

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=tf.metrics.SparseCategoricalAccuracy(),

)

evaluate the model
model.evaluate(test_ds)

1563/1563 [==============================] - 459s 291ms/step - loss: 0.2721 - sparse_
→˓categorical_accuracy: 0.8859 - val_loss: 0.2141 - val_sparse_categorical_accuracy: 0.
→˓9142

[22]: # wrap the finetuned model
auto_model = AutoModelWrapper(model)

322 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Calculate integrated gradients

We pick the first 10 sentences from the test set as examples. You can easily add some of your text here too, as we
exemplify it.

[23]: # include IMDB reviews from the test dataset
text_samples = [decode_sentence(x_test[i], reverse_index, unk_token=tokenizer.unk_token)␣
→˓for i in range(10)]

inlcude your text here
text_samples.append("best movie i've ever seen nothing bad to say about it")

process input before passing it to the explainer
X_test, kwargs = process_input(sentence=text_samples,

tokenizer=tokenizer,
max_len=max_len)

We calculate the attributions with respect to the first embedding layer of the (distil)BERT. You can choose any other
layer.

[24]: if model_name == 'bert-base-uncased':
layer = auto_model.layers[0].layers[0].embeddings
layer = auto_model.layers[0].layers[0].encoder.layer[2]

elif model_name == 'distilbert-base-uncased':
layer = auto_model.layers[0].layers[0].embeddings
layer = auto_model.layers[0].layers[0].transformer.layer[0]

else:
raise ValueError('Unknown model name.')

[25]: n_steps = 50
method = "gausslegendre"
internal_batch_size = 5

define Integrated Gradients explainer
ig = IntegratedGradients(auto_model,

layer=layer,
n_steps=n_steps,
method=method,
internal_batch_size=internal_batch_size)

[26]: # compute model's prediction and construct baselines
predictions = auto_model(X_test, **kwargs).numpy().argmax(axis=1)

construct the baseline as before
mask = np.isin(X_test, tokenizer.all_special_ids)
baselines = X_test * mask + tokenizer.pad_token_id * (1 - mask)

get explanation
explanation = ig.explain(X_test,

forward_kwargs=kwargs,
baselines=baselines,

(continues on next page)

8.8. Integrated Gradients 323

alibi Documentation, Release 0.9.5dev

(continued from previous page)

target=predictions)

[27]: # Get attributions values from the explanation object
attrs = explanation.attributions[0]
print('Attributions shape:', attrs.shape)

Attributions shape: (11, 256, 768)

[28]: attrs = attrs.sum(axis=2)
print('Attributions shape:', attrs.shape)

Attributions shape: (11, 256)

Check attributions for our example

[29]: index = -1
display(X=X_test[index], attrs=attrs[index], pred=predictions[index],␣
→˓tokenizer=tokenizer)

Predicted label = 1: Positive review

[29]: <IPython.core.display.HTML object>

Check attribution for some test examples

[30]: index = 0
display(X=X_test[index], attrs=attrs[index], pred=predictions[index],␣
→˓tokenizer=tokenizer)

Predicted label = 0: Negative review

[30]: <IPython.core.display.HTML object>

[31]: index = 1
display(X=X_test[index], attrs=attrs[index], pred=predictions[index],␣
→˓tokenizer=tokenizer)

Predicted label = 1: Positive review

[31]: <IPython.core.display.HTML object>

8.9 Kernel SHAP

8.9.1 Distributed KernelSHAP

Note
To enable SHAP support, you may need to run

324 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

pip install alibi[shap]

Introduction

In this example, KernelSHAP is used to explain a batch of instances on multiple cores. To run this example, please run
pip install alibi[ray] first.

Warning
Windows support for the ray Python library is in beta. Using KernelShap in parallel is not currently supported
on Windows platforms.

[]: # shap.summary_plot currently doesn't work with matplotlib>=3.6.0,
see bug report: https://github.com/slundberg/shap/issues/2687
!pip install matplotlib==3.5.3

[]: import pprint
import shap
import ray
shap.initjs()

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

from alibi.explainers import KernelShap
from alibi.datasets import fetch_adult
from collections import defaultdict
from scipy.special import logit
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from timeit import default_timer as timer
from typing import Dict, List, Tuple

8.9. Kernel SHAP 325

https://docs.ray.io/en/latest/ray-overview/installation.html#windows-support

alibi Documentation, Release 0.9.5dev

Data preparation

Load and split

The fetch_adult function returns a Bunch object containing the features, the targets, the feature names and a mapping
of categorical variables to numbers.

[2]: adult = fetch_adult()
adult.keys()

[2]: dict_keys(['data', 'target', 'feature_names', 'target_names', 'category_map'])

[3]: data = adult.data
target = adult.target
target_names = adult.target_names
feature_names = adult.feature_names
category_map = adult.category_map

Note that for your own datasets you can use our utility function gen_category_map to create the category map.

[4]: from alibi.utils import gen_category_map

[5]: np.random.seed(0)
data_perm = np.random.permutation(np.c_[data, target])
data = data_perm[:,:-1]
target = data_perm[:,-1]

[6]: idx = 30000
X_train,y_train = data[:idx,:], target[:idx]
X_test, y_test = data[idx+1:,:], target[idx+1:]

Create feature transformation pipeline

Create feature pre-processor. Needs to have ‘fit’ and ‘transform’ methods. Different types of pre-processing can be
applied to all or part of the features. In the example below we will standardize ordinal features and apply one-hot-
encoding to categorical features.

Ordinal features:

[7]: ordinal_features = [x for x in range(len(feature_names)) if x not in list(category_map.
→˓keys())]
ordinal_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),

('scaler', StandardScaler())])

Categorical features:

[8]: categorical_features = list(category_map.keys())
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),

('onehot', OneHotEncoder(drop='first', handle_
→˓unknown='error'))])

Note that in order to be able to interpret the coefficients corresponding to the categorical features, the option
drop='first' has been passed to the OneHotEncoder. This means that for a categorical variable with n levels,

326 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

the length of the code will be n-1. This is necessary in order to avoid introducing feature multicolinearity, which
would skew the interpretation of the results. For more information about the issue about multicolinearity in the context
of linear modelling see [1].

Combine and fit:

[9]: preprocessor = ColumnTransformer(transformers=[('num', ordinal_transformer, ordinal_
→˓features),

('cat', categorical_transformer,␣
→˓categorical_features)])
preprocessor.fit(X_train)

[9]: ColumnTransformer(transformers=[('num',
Pipeline(steps=[('imputer',

SimpleImputer(strategy='median')),
('scaler', StandardScaler())]),

[0, 8, 9, 10]),
('cat',
Pipeline(steps=[('imputer',

SimpleImputer(strategy='median')),
('onehot',
OneHotEncoder(drop='first'))]),

[1, 2, 3, 4, 5, 6, 7, 11])])

Preprocess the data

[10]: X_train_proc = preprocessor.transform(X_train)
X_test_proc = preprocessor.transform(X_test)

Applying the sklearn processing pipeline modifies the column order of the original dataset. The new feature ordering
is necessary in order to corectly plot visualisations, and is inferred from the preprocessor object below:

[11]: numerical_feats_idx = preprocessor.transformers_[0][2]
categorical_feats_idx = preprocessor.transformers_[1][2]
scaler = preprocessor.transformers_[0][1].named_steps['scaler']
num_feats_names = [feature_names[i] for i in numerical_feats_idx]
cat_feats_names = [feature_names[i] for i in categorical_feats_idx]
perm_feat_names = num_feats_names + cat_feats_names

[12]: pp = pprint.PrettyPrinter()
print("Original order:")
pp.pprint(feature_names)
print("")
print("New features order:")
pp.pprint(perm_feat_names)

Original order:
['Age',
'Workclass',
'Education',
'Marital Status',
'Occupation',
'Relationship',

(continues on next page)

8.9. Kernel SHAP 327

alibi Documentation, Release 0.9.5dev

(continued from previous page)

'Race',
'Sex',
'Capital Gain',
'Capital Loss',
'Hours per week',
'Country']

New features order:
['Age',
'Capital Gain',
'Capital Loss',
'Hours per week',
'Workclass',
'Education',
'Marital Status',
'Occupation',
'Relationship',
'Race',
'Sex',
'Country']

Create a utility to reorder the columns of an input array so that the features have the same ordering as that induced by
the preprocessor.

[13]: def permute_columns(X: np.ndarray, feat_names: List[str], perm_feat_names: List[str]) ->␣
→˓np.ndarray:
"""
Permutes the original dataset so that its columns (ordered according to feat_names)␣

→˓have the order
of the variables after transformation with the sklearn preprocessing pipeline (perm_

→˓feat_names).
"""

perm_X = np.zeros_like(X)
perm = []
for i, feat_name in enumerate(perm_feat_names):

feat_idx = feat_names.index(feat_name)
perm_X[:, i] = X[:, feat_idx]
perm.append(feat_idx)

return perm_X, perm

The categorical variables will be grouped to reduce shap values variance, as shown in this example. To do so, the
dimensionality of each categorical variable is extracted from the preprocessor:

[14]: # get feature names for the encoded categorical features
ohe = preprocessor.transformers_[1][1].named_steps['onehot']
fts = [feature_names[x] for x in categorical_features]
cat_enc_feat_names = ohe.get_feature_names_out(fts)
compute encoded dimension; -1 as ohe is setup with drop='first'
feat_enc_dim = [len(cat_enc) - 1 for cat_enc in ohe.categories_]
d = {'feature_names': fts , 'encoded_dim': feat_enc_dim}
df = pd.DataFrame(data=d)

(continues on next page)

328 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

print(df)
total_dim = df['encoded_dim'].sum()
print("The dimensionality of the encoded categorical features is {}.".format(total_dim))
assert total_dim == len(cat_enc_feat_names)

feature_names encoded_dim
0 Workclass 8
1 Education 6
2 Marital Status 3
3 Occupation 8
4 Relationship 5
5 Race 4
6 Sex 1
7 Country 10
The dimensionality of the encoded categorical features is 45.

Select a subset of test instances to explain

[15]: def split_set(X, y, fraction, random_state=0):
"""
Given a set X, associated labels y, splits a fraction y from X.
"""
_, X_split, _, y_split = train_test_split(X,

y,
test_size=fraction,
random_state=random_state,
)

print("Number of records: {}".format(X_split.shape[0]))
print("Number of class {}: {}".format(0, len(y_split) - y_split.sum()))
print("Number of class {}: {}".format(1, y_split.sum()))

return X_split, y_split

[16]: fraction_explained = 0.05
X_explain, y_explain = split_set(X_test,

y_test,
fraction_explained,
)

X_explain_proc = preprocessor.transform(X_explain)

Number of records: 128
Number of class 0: 96
Number of class 1: 32

Create a version of the dataset to be explained that has the same feature ordering as that of the feature matrix after
applying the preprocessing (for plotting purposes).

[17]: perm_X_explain, _ = permute_columns(X_explain, feature_names, perm_feat_names)

8.9. Kernel SHAP 329

alibi Documentation, Release 0.9.5dev

Fit a binary logistic regression classifier to the Adult dataset

Training

[18]: classifier = LogisticRegression(multi_class='multinomial',
random_state=0,
max_iter=500,
verbose=0,

)
classifier.fit(X_train_proc, y_train)

[18]: LogisticRegression(max_iter=500, multi_class='multinomial', random_state=0)

Model assessment

[19]: y_pred = classifier.predict(X_test_proc)

[20]: cm = confusion_matrix(y_test, y_pred)

[21]: title = 'Confusion matrix for the logistic regression classifier'
disp = ConfusionMatrixDisplay.from_estimator(classifier,

X_test_proc,
y_test,
display_labels=target_names,
cmap=plt.cm.Blues,
normalize=None,

)
disp.ax_.set_title(title);

[22]: print('Test accuracy: ', accuracy_score(y_test, classifier.predict(X_test_proc)))

Test accuracy: 0.855078125

330 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Running KernelSHAP in sequential mode

A background dataset is selected.

[23]: start_example_idx = 0
stop_example_idx = 100
background_data = slice(start_example_idx, stop_example_idx)

Groups are specified by creating a list where each sublist contains the column indices that a given variable occupies in
the preprocessed feature matrix.

[24]: def make_groups(num_feats_names: List[str], cat_feats_names: List[str], feat_enc_dim:␣
→˓List[int]) -> Tuple[List[str], List[List[int]]]:
"""
Given a list with numerical feat. names, categorical feat. names
and a list specifying the lengths of the encoding for each cat.
varible, the function outputs a list of group names, and a list
of the same len where each entry represents the column indices that
the corresponding categorical feature
"""

group_names = num_feats_names + cat_feats_names
groups = []
cat_var_idx = 0

for name in group_names:
if name in num_feats_names:

groups.append(list(range(len(groups), len(groups) + 1)))
else:

start_idx = groups[-1][-1] + 1 if groups else 0
groups.append(list(range(start_idx, start_idx + feat_enc_dim[cat_var_idx])))
cat_var_idx += 1

return group_names, groups

def sparse2ndarray(mat, examples=None):
"""
Converts a scipy.sparse.csr.csr_matrix to a numpy.ndarray.
If specified, examples is slice object specifying which selects a
number of rows from mat and converts only the respective slice.
"""

if examples:
return mat[examples, :].toarray()

return mat.toarray()

X_train_proc_d = sparse2ndarray(X_train_proc, examples=background_data)
group_names, groups = make_groups(num_feats_names, cat_feats_names, feat_enc_dim)

Initialise and run the explainer sequentially.

[25]: pred_fcn = classifier.predict_proba
seq_lr_explainer = KernelShap(pred_fcn, link='logit', feature_names=perm_feat_names)

(continues on next page)

8.9. Kernel SHAP 331

alibi Documentation, Release 0.9.5dev

(continued from previous page)

seq_lr_explainer.fit(X_train_proc_d[background_data, :], group_names=group_names,␣
→˓groups=groups)

[25]: KernelShap(meta={
'name': 'KernelShap',
'type': ['blackbox'],
'task': 'classification',
'explanations': ['local', 'global'],
'params': {

'link': 'logit',
'group_names': ['Age', 'Capital Gain', 'Capital Loss', 'Hours per week',

→˓'Workclass', 'Education', 'Marital Status', 'Occupation', 'Relationship', 'Race', 'Sex
→˓', 'Country'],

'grouped': True,
'groups': [[0], [1], [2], [3], [4, 5, 6, 7, 8, 9, 10, 11], [12, 13, 14, 15,

→˓ 16, 17], [18, 19, 20], [21, 22, 23, 24, 25, 26, 27, 28], [29, 30, 31, 32, 33], [34,␣
→˓35, 36, 37], [38], [39, 40, 41, 42, 43, 44, 45, 46, 47, 48]],

'weights': None,
'summarise_background': False,
'summarise_result': None,
'transpose': False,
'kwargs': {}}

,
'version': '0.7.1dev'}

)

[26]: n_runs = 3

[27]: s_explanations, s_times = [], []

[]: for run in range(n_runs):
t_start = timer()
explanation = seq_lr_explainer.explain(sparse2ndarray(X_explain_proc))
t_elapsed = timer() - t_start
s_times.append(t_elapsed)
s_explanations.append(explanation.shap_values)

Running KernelSHAP in distributed mode

The only change needed to distribute the computation is to pass a dictionary containing the number of (physical) CPUs
available to distribute the computation to the KernelShap constructor:

[29]: def distrib_opts_factory(n_cpus: int) -> Dict[str, int]:
return {'n_cpus': n_cpus}

[30]: cpu_range = range(2, 5)
distrib_avg_times = dict(zip(cpu_range, [0.0]*len(cpu_range)))
distrib_min_times = dict(zip(cpu_range, [0.0]*len(cpu_range)))
distrib_max_times = dict(zip(cpu_range, [0.0]*len(cpu_range)))
d_explanations = defaultdict(list)

332 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[]: for n_cpu in cpu_range:
opts = distrib_opts_factory(n_cpu)
distrib_lr_explainer = KernelShap(pred_fcn, link='logit', feature_names=perm_feat_

→˓names, distributed_opts=opts)
distrib_lr_explainer.fit(X_train_proc_d[background_data, :], group_names=group_names,

→˓ groups=groups)
raw_times = []
for _ in range(n_runs):

t_start = timer()
d_explanations[n_cpu].append(distrib_lr_explainer.explain(sparse2ndarray(X_

→˓explain_proc), silent=True).shap_values)
t_elapsed = timer() - t_start
raw_times.append(t_elapsed)

distrib_avg_times[n_cpu] = np.round(np.mean(raw_times), 3)
distrib_min_times[n_cpu] = np.round(np.min(raw_times), 3)
distrib_max_times[n_cpu] = np.round(np.max(raw_times), 3)
ray.shutdown()

Results analysis

Timing

[41]: print(f"Distributed average times for {n_runs} runs (n_cpus: avg_time):")
print(distrib_avg_times)
print("")
print(f"Sequential average time for {n_runs} runs:")
print(np.round(np.mean(s_times), 3), "s")

Distributed average times for 3 runs (n_cpus: avg_time):
{2: 57.197, 3: 41.728, 4: 36.751}

Sequential average time for 3 runs:
119.656 s

Running KernelSHAP in a distributed fashion improves the runtime as the results above show. However, the results
above should not be interpreted as performance measurements since they were not run in a controlled environment.
See our blog post for a more thorough analysis.

Explanations comparison

[33]: cls = 0 # class of prediction explained
run = 1 # which run to compare the result for

[34]: # sequential
shap.summary_plot(s_explanations[run][cls], perm_X_explain, perm_feat_names)

8.9. Kernel SHAP 333

https://www.seldon.io/how-seldons-alibi-and-ray-make-model-explainability-easy-and-scalable/

alibi Documentation, Release 0.9.5dev

[36]: # distributed
n_cpu = 3
shap.summary_plot(d_explanations[n_cpu][run][cls], perm_X_explain, perm_feat_names)

334 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Comparing the results above one sees that the running the algorithm across multiple cores gave identical results, indi-
cating its correctness.

Conclusion

This example showed that batches of explanations can be explained much faster by simply passing
distributed_opts={'n_cpus': k} to the KernelShap constructor (here k is the number of physical cores
available). The significant runtime reduction makes it possible to explain larger datasets faster and combine shap
values estimated with KernelSHAP into global explanations or use larger background datasets.

8.9.2 KernelSHAP: combining preprocessor and predictor

Note
To enable SHAP support, you may need to run

pip install alibi[shap]

8.9. Kernel SHAP 335

alibi Documentation, Release 0.9.5dev

Introduction

In this example, we showed that the categorical variables can be handled by fitting the explainer on preprocessed data
and passing preprocessed data to the explain call. To handle the categorical variables, we either group them explicitly
or sum the estimated shap values for each encoded shap dimension. An alternative way is to define our black-box model
to include the preprocessor, as shown in this example. We now show that these methods give the same results.

[]: import shap
shap.initjs()

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

from alibi.explainers import KernelShap
from alibi.datasets import fetch_adult
from scipy.special import logit
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, OneHotEncoder

Data preparation

Load and split

The fetch_adult function returns a Bunch object containing the features, the targets, the feature names and a mapping
of categorical variables to numbers.

[2]: adult = fetch_adult()
adult.keys()

[2]: dict_keys(['data', 'target', 'feature_names', 'target_names', 'category_map'])

[3]: data = adult.data
target = adult.target
target_names = adult.target_names
feature_names = adult.feature_names
category_map = adult.category_map

Note that for your own datasets you can use our utility function gen_category_map to create the category map.

[4]: from alibi.utils import gen_category_map

[5]: np.random.seed(0)
data_perm = np.random.permutation(np.c_[data, target])
data = data_perm[:,:-1]
target = data_perm[:,-1]

336 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[6]: idx = 30000
X_train,y_train = data[:idx,:], target[:idx]
X_test, y_test = data[idx+1:,:], target[idx+1:]

Create feature transformation pipeline

Create feature pre-processor. Needs to have ‘fit’ and ‘transform’ methods. Different types of pre-processing can be
applied to all or part of the features. In the example below we will standardize ordinal features and apply one-hot-
encoding to categorical features.

Ordinal features:

[7]: ordinal_features = [x for x in range(len(feature_names)) if x not in list(category_map.
→˓keys())]
ordinal_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),

('scaler', StandardScaler())])

Categorical features:

[8]: categorical_features = list(category_map.keys())
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),

('onehot', OneHotEncoder(drop='first', handle_
→˓unknown='error'))])

Note that in order to be able to interpret the coefficients corresponding to the categorical features, the option
drop='first' has been passed to the OneHotEncoder. This means that for a categorical variable with n levels,
the length of the code will be n-1. This is necessary in order to avoid introducing feature multicolinearity, which
would skew the interpretation of the results. For more information about the issue about multicolinearity in the context
of linear modelling see [1].

Combine and fit:

[9]: preprocessor = ColumnTransformer(transformers=[('num', ordinal_transformer, ordinal_
→˓features),

('cat', categorical_transformer,␣
→˓categorical_features)])
preprocessor.fit(X_train)

[9]: ColumnTransformer(transformers=[('num',
Pipeline(steps=[('imputer',

SimpleImputer(strategy='median')),
('scaler', StandardScaler())]),

[0, 8, 9, 10]),
('cat',
Pipeline(steps=[('imputer',

SimpleImputer(strategy='median')),
('onehot',
OneHotEncoder(drop='first'))]),

[1, 2, 3, 4, 5, 6, 7, 11])])

8.9. Kernel SHAP 337

alibi Documentation, Release 0.9.5dev

Fit a binary logistic regression classifier to the preprocessed Adult dataset

Preprocess the data

[10]: X_train_proc = preprocessor.transform(X_train)
X_test_proc = preprocessor.transform(X_test)

Training

[11]: classifier = LogisticRegression(multi_class='multinomial',
random_state=0,
max_iter=500,
verbose=0,

)
classifier.fit(X_train_proc, y_train)

[11]: LogisticRegression(max_iter=500, multi_class='multinomial', random_state=0)

Model assessment

[12]: y_pred = classifier.predict(X_test_proc)

[13]: cm = confusion_matrix(y_test, y_pred)

[14]: title = 'Confusion matrix for the logistic regression classifier'
disp = ConfusionMatrixDisplay.from_estimator(classifier,

X_test_proc,
y_test,
display_labels=target_names,
cmap=plt.cm.Blues,
normalize=None,

)
disp.ax_.set_title(title);

338 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[15]: print('Test accuracy: ', accuracy_score(y_test, classifier.predict(X_test_proc)))

Test accuracy: 0.855078125

Explaining the model with an explainer fitted on the preprocessed data

To speed up computation, we will use a background dataset with only 100 samples.

[16]: start_example_idx = 0
stop_example_idx = 100
background_data = slice(start_example_idx, stop_example_idx)

First, we group the categorical variables.

[17]: def make_groups(num_feats_names, cat_feats_names, feat_enc_dim):
"""
Given a list with numerical feat. names, categorical feat. names
and a list specifying the lengths of the encoding for each cat.
varible, the function outputs a list of group names, and a list
of the same len where each entry represents the column indices that
the corresponding categorical feature
"""

group_names = num_feats_names + cat_feats_names
groups = []
cat_var_idx = 0

for name in group_names:
if name in num_feats_names:

groups.append(list(range(len(groups), len(groups) + 1)))
else:

start_idx = groups[-1][-1] + 1 if groups else 0
groups.append(list(range(start_idx, start_idx + feat_enc_dim[cat_var_idx])))
cat_var_idx += 1

(continues on next page)

8.9. Kernel SHAP 339

alibi Documentation, Release 0.9.5dev

(continued from previous page)

return group_names, groups

def sparse2ndarray(mat, examples=None):
"""
Converts a scipy.sparse.csr.csr_matrix to a numpy.ndarray.
If specified, examples is slice object specifying which selects a
number of rows from mat and converts only the respective slice.
"""

if examples:
return mat[examples, :].toarray()

return mat.toarray()

[18]: # obtain the indices of the categorical and the numerical features from the pipeline.
numerical_feats_idx = preprocessor.transformers_[0][2]
categorical_feats_idx = preprocessor.transformers_[1][2]
num_feats_names = [feature_names[i] for i in numerical_feats_idx]
cat_feats_names = [feature_names[i] for i in categorical_feats_idx]
perm_feat_names = num_feats_names + cat_feats_names
ohe = preprocessor.transformers_[1][1].named_steps['onehot']
feat_enc_dim = [len(cat_enc) - 1 for cat_enc in ohe.categories_]

[19]: # create the groups
X_train_proc_d = sparse2ndarray(X_train_proc, examples=background_data)
group_names, groups = make_groups(num_feats_names, cat_feats_names, feat_enc_dim)

Having created the groups, we are now ready to instantiate the explainer and explain our set.

[20]: pred_fcn = classifier.predict_proba
grp_lr_explainer = KernelShap(pred_fcn, link='logit', feature_names=perm_feat_names,␣
→˓seed=0)
grp_lr_explainer.fit(X_train_proc_d, group_names=group_names, groups=groups)

[20]: KernelShap(meta={'name': 'KernelShap', 'type': 'blackbox', 'explanations': ['local',
→˓'global'], 'params': {'groups': [[0], [1], [2], [3], [4, 5, 6, 7, 8, 9, 10, 11], [12,␣
→˓13, 14, 15, 16, 17], [18, 19, 20], [21, 22, 23, 24, 25, 26, 27, 28], [29, 30, 31, 32,␣
→˓33], [34, 35, 36, 37], [38], [39, 40, 41, 42, 43, 44, 45, 46, 47, 48]], 'group_names':␣
→˓['Age', 'Capital Gain', 'Capital Loss', 'Hours per week', 'Workclass', 'Education',
→˓'Marital Status', 'Occupation', 'Relationship', 'Race', 'Sex', 'Country'], 'weights':␣
→˓None, 'summarise_background': False}})

We select only a small fraction of the testing set to explain for the purposes of this example.

[21]: def split_set(X, y, fraction, random_state=0):
"""
Given a set X, associated labels y, split\\s a fraction y from X.
"""
_, X_split, _, y_split = train_test_split(X,

y,
test_size=fraction,

(continues on next page)

340 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

random_state=random_state,
)

print("Number of records: {}".format(X_split.shape[0]))
print("Number of class {}: {}".format(0, len(y_split) - y_split.sum()))
print("Number of class {}: {}".format(1, y_split.sum()))

return X_split, y_split

[22]: fraction_explained = 0.01
X_explain, y_explain = split_set(X_test,

y_test,
fraction_explained,
)

X_explain_proc = preprocessor.transform(X_explain)
X_explain_proc_d = sparse2ndarray(X_explain_proc)

Number of records: 26
Number of class 0: 20
Number of class 1: 6

[]: grouped_explanation = grp_lr_explainer.explain(X_explain_proc_d)

Explaining with an explainer fitted on the raw data

To explain with an explainer fitted on the raw data, we make the preprocessor part of the predictor, as shown below.

[24]: pred_fcn = lambda x: classifier.predict_proba(preprocessor.transform(x))
lr_explainer = KernelShap(pred_fcn, link='logit', feature_names=feature_names, seed=0)

We use the same background dataset to fit the explainer.

[25]: lr_explainer.fit(X_train[background_data])

[25]: KernelShap(meta={'name': 'KernelShap', 'type': 'blackbox', 'explanations': ['local',
→˓'global'], 'params': {'groups': None, 'group_names': None, 'weights': None, 'summarise_
→˓background': False}})

We explain the same dataset as before.

[]: explanation = lr_explainer.explain(X_explain)

Results comparison

To show that fitting the explainer on the raw data and combining the preprocessor with the classifier gives the same
results as grouping the variables and fitting the explainer on the preprocessed data, we check to see that the same
features are considered as most important when combining the two approaches.

[27]: def get_ranked_values(explanation):
"""
Retrives a tuple of (feature_effects, feature_names) for

(continues on next page)

8.9. Kernel SHAP 341

alibi Documentation, Release 0.9.5dev

(continued from previous page)

each class explained. A feature's effect is its average
shap value magnitude across an array of instances.
"""

ranked_shap_vals = []
for cls_idx in range(len(explanation.shap_values)):

this_ranking = (
explanation.raw['importances'][str(cls_idx)]['ranked_effect'],
explanation.raw['importances'][str(cls_idx)]['names']

)
ranked_shap_vals.append(this_ranking)

return ranked_shap_vals

def compare_ranking(ranking_1, ranking_2, methods=None):
for i, (combined, grouped) in enumerate(zip(ranking_1, ranking_2)):

print(f"Class: {i}")
c_names, g_names = combined[1], grouped[1]
c_mag, g_mag = combined[0], grouped[0]
different = []
for i, (c_n, g_n) in enumerate(zip(c_names, g_names)):

if c_n != g_n:
different.append((i, c_n, g_n))

if different:
method_1 = methods[0] if methods else "Method_1"
method_2 = methods[1] if methods else "Method_2"
i, c_ns, g_ns = list(zip(*different))
data = {"Rank": i, method_1: c_ns, method_2: g_ns}
df = pd.DataFrame(data=data)
print("Found the following rank differences:")
print(df)

else:
print("The methods provided the same ranking for the feature effects.")
print(f"The ranking is: {c_names}")

print("")

def reorder_feats(vals_and_names, src_vals_and_names):
"""Given a two tuples, each containing a list of ranked feature
shap values and the corresponding feature names, the function
reorders the values in vals according to the order specified in
the list of names contained in src_vals_and_names.
"""

_, src_names = src_vals_and_names
vals, names = vals_and_names
reordered = np.zeros_like(vals)

for i, name in enumerate(src_names):
alt_idx = names.index(name)
reordered[i] = vals[alt_idx]

return reordered, src_names

(continues on next page)

342 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

def compare_avg_mag_shap(class_idx, comparisons, baseline, **kwargs):
"""
Given a list of tuples, baseline, containing the feature values and a list with␣

→˓feature names
for each class and, comparisons, a list of lists with tuples with the same structure␣

→˓, the
function reorders the values of the features in comparisons entries according to the␣

→˓order
of the feature names provided in the baseline entries and displays the feature␣

→˓values for comparison.
"""

methods = kwargs.get("methods", [f"method_{i}" for i in range(len(comparisons) + 1)])

n_features = len(baseline[class_idx][0])

bar settings
bar_width = kwargs.get("bar_width", 0.05)
bar_space = kwargs.get("bar_space", 2)

x axis
x_low = kwargs.get("x_low", 0.0)
x_high = kwargs.get("x_high", 1.0)
x_step = kwargs.get("x_step", 0.05)
x_ticks = np.round(np.arange(x_low, x_high + x_step, x_step), 3)

y axis (these are the y coordinate of start and end of each group
of bars)
start_y_pos = np.array(np.arange(0, n_features))*bar_space
end_y_pos = start_y_pos + bar_width*len(methods)
y_ticks = 0.5*(start_y_pos + end_y_pos)

figure
fig_x = kwargs.get("fig_x", 10)
fig_y = kwargs.get("fig_y", 7)

fontsizes
title_font = kwargs.get("title_fontsize", 20)
legend_font = kwargs.get("legend_fontsize", 20)
tick_labels_font = kwargs.get("tick_labels_fontsize", 20)
axes_label_fontsize = kwargs.get("axes_label_fontsize", 10)

labels
title = kwargs.get("title", None)
ylabel = kwargs.get("ylabel", None)
xlabel = kwargs.get("xlabel", None)

process input data
methods = list(reversed(methods))
base_vals = baseline[class_idx][0]
ordering = baseline[class_idx][1]

(continues on next page)

8.9. Kernel SHAP 343

alibi Documentation, Release 0.9.5dev

(continued from previous page)

comp_vals = []

reorder the features so that they match the order of the baseline (ordering)
for comparison in comparisons:

vals, ord_ = reorder_feats(comparison[class_idx], baseline[class_idx])
comp_vals.append(vals)
assert ord_ is ordering

all_vals = [base_vals] + comp_vals
data = dict(zip(methods, all_vals))
df = pd.DataFrame(data=data, index=ordering)

plotting logic
fig, ax = plt.subplots(figsize=(fig_x, fig_y))

for i, col in enumerate(df.columns):
values = list(df[col])
y_pos = [y + bar_width*i for y in start_y_pos]
ax.barh(y_pos, list(values), bar_width, label=col)

add ticks, legend and labels
ax.set_xticks(x_ticks)
ax.set_xticklabels([str(x) for x in x_ticks], rotation=45, fontsize=tick_labels_font)
ax.set_xlabel(xlabel, fontsize=axes_label_fontsize)
ax.set_yticks(y_ticks)
ax.set_yticklabels(ordering, fontsize=tick_labels_font)
ax.set_ylabel(ylabel, fontsize=axes_label_fontsize)
ax.invert_yaxis() # labels read top-to-bottom
ax.legend(fontsize=legend_font)

plt.grid(True)
plt.title(title, fontsize=title_font)

return ax, fig, df

[28]: ranked_grouped_shap_vals = get_ranked_values(grouped_explanation)
ranked_shal_vals_raw = get_ranked_values(explanation)
compare_ranking(ranked_grouped_shap_vals, ranked_shal_vals_raw)

Class: 0
The methods provided the same ranking for the feature effects.
The ranking is: ['Marital Status', 'Capital Gain', 'Education', 'Occupation', 'Sex',
→˓'Relationship', 'Age', 'Hours per week', 'Workclass', 'Capital Loss', 'Country', 'Race
→˓']

Class: 1
The methods provided the same ranking for the feature effects.
The ranking is: ['Marital Status', 'Capital Gain', 'Education', 'Occupation', 'Sex',
→˓'Relationship', 'Age', 'Hours per week', 'Workclass', 'Capital Loss', 'Country', 'Race
→˓']

Above we can see that both methods returned the same feature importances.

344 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[29]: class_idx = 0

ax, fig, _ = compare_avg_mag_shap(class_idx,
[ranked_shal_vals_raw],
ranked_grouped_shap_vals,
methods=('raw_data', 'grouped'),
bar_width=0.5,
tick_labels_fontsize=12,
legend_fontsize=12,
title_fontsize=15,
xlabel="Features effects (class {})".format(0),
ylabel="Feature",
axes_label_fontsize=15,
)

We can see that the shap values are very similar. The differences appear because the regression dataset generated in
order to compute the shap values differes slightly between the two runs due to the difference in the order of the features
in the background dataset.

8.9. Kernel SHAP 345

alibi Documentation, Release 0.9.5dev

References

[1] Mahto, K.K., 2019. “One-Hot-Encoding, Multicollinearity and the Dummy Variable Trap”. Retrieved 02 Feb 2020
(link)

8.9.3 Handling categorical variables with KernelSHAP

Note
To enable SHAP support, you may need to run

pip install alibi[shap]

[]: # shap.summary_plot currently doesn't work with matplotlib>=3.6.0,
see bug report: https://github.com/slundberg/shap/issues/2687
!pip install matplotlib==3.5.3

Introduction

In this example, we show how the KernelSHAP method can be used for tabular data, which contains both numerical
(continuous) and categorical attributes. Using a logistic regression model fitted to the Adult dataset, we examine the
performance of the KernelSHAP algorithm against the exact shap values. We investigate the effect of the background
dataset size on the estimated shap values and present two ways of handling categorical data.

[]: import shap
shap.initjs()

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

from alibi.explainers import KernelShap
from alibi.datasets import fetch_adult
from scipy.special import logit
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, OneHotEncoder

346 Chapter 8. Examples

https://towardsdatascience.com/one-hot-encoding-multicollinearity-and-the-dummy-variable-trap-b5840be3c41a

alibi Documentation, Release 0.9.5dev

Data preparation

Load and split

The fetch_adult function returns a Bunch object containing the features, the targets, the feature names and a mapping
of categorical variables to numbers.

[2]: adult = fetch_adult()
adult.keys()

[2]: dict_keys(['data', 'target', 'feature_names', 'target_names', 'category_map'])

[3]: data = adult.data
target = adult.target
target_names = adult.target_names
feature_names = adult.feature_names
category_map = adult.category_map

Note that for your own datasets you can use our utility function gen_category_map to create the category map.

[4]: from alibi.utils import gen_category_map

[5]: np.random.seed(0)
data_perm = np.random.permutation(np.c_[data, target])
data = data_perm[:,:-1]
target = data_perm[:,-1]

[6]: idx = 30000
X_train,y_train = data[:idx,:], target[:idx]
X_test, y_test = data[idx+1:,:], target[idx+1:]

Create feature transformation pipeline

Create feature transformation pipeline

Create feature pre-processor. Needs to have ‘fit’ and ‘transform’ methods. Different types of pre-processing can be
applied to all or part of the features. In the example below we will standardize ordinal features and apply one-hot-
encoding to categorical features.

Ordinal features:

[7]: ordinal_features = [x for x in range(len(feature_names)) if x not in list(category_map.
→˓keys())]
ordinal_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),

('scaler', StandardScaler())])

Categorical features:

[8]: categorical_features = list(category_map.keys())
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),

('onehot', OneHotEncoder(drop='first', handle_
→˓unknown='error'))])

8.9. Kernel SHAP 347

alibi Documentation, Release 0.9.5dev

Note that in order to be able to interpret the coefficients corresponding to the categorical features, the option
drop='first' has been passed to the OneHotEncoder. This means that for a categorical variable with n levels,
the length of the code will be n-1. This is necessary in order to avoid introducing feature multicolinearity, which
would skew the interpretation of the results. For more information about the issue about multicolinearity in the context
of linear modelling see [1].

Combine and fit:

[9]: preprocessor = ColumnTransformer(transformers=[('num', ordinal_transformer, ordinal_
→˓features),

('cat', categorical_transformer,␣
→˓categorical_features)])
preprocessor.fit(X_train)

[9]: ColumnTransformer(transformers=[('num',
Pipeline(steps=[('imputer',

SimpleImputer(strategy='median')),
('scaler', StandardScaler())]),

[0, 8, 9, 10]),
('cat',
Pipeline(steps=[('imputer',

SimpleImputer(strategy='median')),
('onehot',
OneHotEncoder(drop='first'))]),

[1, 2, 3, 4, 5, 6, 7, 11])])

Preprocess the data

[10]: X_train_proc = preprocessor.transform(X_train)
X_test_proc = preprocessor.transform(X_test)

Fit a binary logistic regression classifier to the Adult dataset

Training

[11]: classifier = LogisticRegression(multi_class='multinomial',
random_state=0,
max_iter=500,
verbose=0,

)
classifier.fit(X_train_proc, y_train)

[11]: LogisticRegression(max_iter=500, multi_class='multinomial', random_state=0)

348 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Model assessment

[12]: y_pred = classifier.predict(X_test_proc)

[13]: cm = confusion_matrix(y_test, y_pred)

[14]: title = 'Confusion matrix for the logistic regression classifier'
disp = ConfusionMatrixDisplay.from_estimator(classifier,

X_test_proc,
y_test,
display_labels=target_names,
cmap=plt.cm.Blues,
normalize=None,

)
disp.ax_.set_title(title);

[15]: print('Test accuracy: ', accuracy_score(y_test, classifier.predict(X_test_proc)))

Test accuracy: 0.855078125

Intepreting the logistic regression model

In order to interpret the logistic regression model, we need to first recover the encoded feature names. The feature effect
of a categorical variable is computed by summing the coefficients of the encoded variables. Hence, we first understand
how the preprocessing transformation acts on the data and then obtain the overall effects from the model coefficients.

First, we are concerned with understanding the dimensionality of a preprocessed record and what it is comprised of.

[16]: idx = 0
print(f"The dimensionality of a preprocessed record is {X_train_proc[idx:idx+1, :].shape}
→˓.")
print(f"Then number of continuos features in the original data is {len(ordinal_features)}
→˓.")

8.9. Kernel SHAP 349

alibi Documentation, Release 0.9.5dev

The dimensionality of a preprocessed record is (1, 49).
Then number of continuos features in the original data is 4.

Therefore, of 49, 45 of the dimensions of the original data are encoded categorical features. We obtain feat_enc_dim,
an array with the lengths of the encoded dimensions for each categorical variable that will be use for processing the
results later on.

[17]: fts = [feature_names[x] for x in categorical_features]
get feature names for the encoded categorical features
ohe = preprocessor.transformers_[1][1].named_steps['onehot']
cat_enc_feat_names = ohe.get_feature_names_out(fts)
compute encoded dimension; -1 as ohe is setup with drop='first'
feat_enc_dim = [len(cat_enc) - 1 for cat_enc in ohe.categories_]
d = {'feature_names': fts , 'encoded_dim': feat_enc_dim}
df = pd.DataFrame(data=d)
print(df)
total_dim = df['encoded_dim'].sum()
print(f"The dimensionality of the encoded categorical features is {total_dim}.")
assert total_dim == len(cat_enc_feat_names)

feature_names encoded_dim
0 Workclass 8
1 Education 6
2 Marital Status 3
3 Occupation 8
4 Relationship 5
5 Race 4
6 Sex 1
7 Country 10
The dimensionality of the encoded categorical features is 45.

By analysing an encoded record, we can recover the mapping of column indices to the features they represent.

[18]: print(X_train_proc[0, :])

(0, 0) -0.8464456331823879
(0, 1) -0.14513571926899238
(0, 2) -0.21784551572515998
(0, 3) 0.28898151525672766
(0, 7) 1.0
(0, 15) 1.0
(0, 19) 1.0
(0, 21) 1.0
(0, 32) 1.0
(0, 37) 1.0
(0, 47) 1.0

[19]: numerical_feats_idx = preprocessor.transformers_[0][2]
categorical_feats_idx = preprocessor.transformers_[1][2]
scaler = preprocessor.transformers_[0][1].named_steps['scaler']
print((X_train[idx, numerical_feats_idx] - scaler.mean_)/scaler.scale_)
num_feats_names = [feature_names[i] for i in numerical_feats_idx]
cat_feats_names = [feature_names[i] for i in categorical_feats_idx]
print(num_feats_names)

350 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[-0.84644563 -0.14513572 -0.21784552 0.28898152]
['Age', 'Capital Gain', 'Capital Loss', 'Hours per week']

Therefore, the first four columns of the encoded data represent the Age, Capital Gain Capital Loss and Hours
per week features. Notice these features have a different index in the dataset prior to processing X_train.

The remainder of the columns encode the encoded categorical features, as shown below.

[20]: print(cat_enc_feat_names)

['Workclass_1.0' 'Workclass_2.0' 'Workclass_3.0' 'Workclass_4.0'
'Workclass_5.0' 'Workclass_6.0' 'Workclass_7.0' 'Workclass_8.0'
'Education_1.0' 'Education_2.0' 'Education_3.0' 'Education_4.0'
'Education_5.0' 'Education_6.0' 'Marital Status_1.0' 'Marital Status_2.0'
'Marital Status_3.0' 'Occupation_1.0' 'Occupation_2.0' 'Occupation_3.0'
'Occupation_4.0' 'Occupation_5.0' 'Occupation_6.0' 'Occupation_7.0'
'Occupation_8.0' 'Relationship_1.0' 'Relationship_2.0' 'Relationship_3.0'
'Relationship_4.0' 'Relationship_5.0' 'Race_1.0' 'Race_2.0' 'Race_3.0'
'Race_4.0' 'Sex_1.0' 'Country_1.0' 'Country_2.0' 'Country_3.0'
'Country_4.0' 'Country_5.0' 'Country_6.0' 'Country_7.0' 'Country_8.0'
'Country_9.0' 'Country_10.0']

To obtain a single coefficient for each categorical variable, we pass a list with the indices where each encoded categorical
variable starts and the encodings dimensions to the sum_categories function.

[21]: from alibi.explainers.shap_wrappers import sum_categories

Compute the start index of each categorical variable knowing that the categorical variables are adjacent and follow the
continuous features.

[22]: start=len(ordinal_features)
cat_feat_start = [start]
for dim in feat_enc_dim[:-1]:

cat_feat_start.append(dim + cat_feat_start[-1])

[23]: beta = classifier.coef_
beta = np.concatenate((-beta, beta), axis=0)
intercepts = classifier.intercept_
intercepts = np.concatenate((-intercepts, intercepts), axis=0)
all_coef = sum_categories(beta, cat_feat_start, feat_enc_dim)

Extract and plot feature importances. Please see this example for background on interpreting logistic regression coef-
ficients.

[24]: def get_importance(class_idx, beta, feature_names, intercepts=None):
"""
Retrive and sort abs magnitude of coefficients from model.
"""

sort the absolute value of model coef from largest to smallest
srt_beta_k = np.argsort(np.abs(beta[class_idx, :]))[::-1]
feat_names = [feature_names[idx] for idx in srt_beta_k]
feat_imp = beta[class_idx, srt_beta_k]
include bias among feat importances

(continues on next page)

8.9. Kernel SHAP 351

alibi Documentation, Release 0.9.5dev

(continued from previous page)

if intercepts is not None:
intercept = intercepts[class_idx]
bias_idx = len(feat_imp) - np.searchsorted(np.abs(feat_imp)[::-1], np.

→˓abs(intercept))
feat_imp = np.insert(feat_imp, bias_idx, intercept.item(),)
intercept_idx = np.where(feat_imp == intercept)[0][0]
feat_names.insert(intercept_idx, 'bias')

return feat_imp, feat_names

def plot_importance(feat_imp, feat_names, class_idx, **kwargs):
"""
Create a horizontal barchart of feature effects, sorted by their magnitude.
"""

left_x, right_x = kwargs.get("left_x"), kwargs.get("right_x")
eps_factor = kwargs.get("eps_factor", 4.5)

fig, ax = plt.subplots(figsize=(10, 5))
y_pos = np.arange(len(feat_imp))
ax.barh(y_pos, feat_imp)
ax.set_yticks(y_pos)
ax.set_yticklabels(feat_names, fontsize=15)
ax.invert_yaxis() # labels read top-to-bottom
ax.set_xlabel(f'Feature effects for class {class_idx}', fontsize=15)
ax.set_xlim(left=left_x, right=right_x)

for i, v in enumerate(feat_imp):
eps = 0.03
if v < 0:

eps = -eps_factor*eps
ax.text(v + eps, i + .25, str(round(v, 3)))

return ax, fig

[25]: class_idx = 0
perm_feat_names = num_feats_names + cat_feats_names

[26]: perm_feat_names # feats are reordered by preprocessor

[26]: ['Age',
'Capital Gain',
'Capital Loss',
'Hours per week',
'Workclass',
'Education',
'Marital Status',
'Occupation',
'Relationship',
'Race',
'Sex',
'Country']

352 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[27]: feat_imp, srt_feat_names = get_importance(class_idx,
all_coef,
perm_feat_names,

)

[28]: srt_feat_names

[28]: ['Marital Status',
'Education',
'Capital Gain',
'Occupation',
'Workclass',
'Race',
'Country',
'Sex',
'Relationship',
'Hours per week',
'Age',
'Capital Loss']

[29]: _, class_0_fig = plot_importance(feat_imp,
srt_feat_names,
class_idx,
left_x=-2.5,
right_x=3.7,
eps_factor=12 # controls text distance from end of bar
)

Note that in the above, the feature effects are with respect to the model bias, which has a value of 1.31.

[30]: # Sanity check to ensure graph is correct.
print(beta[class_idx, 0:4]) # Age, Capital Gains, Capital Loss, Hours per week
print(np.sum(beta[class_idx, 18:21])) # Marital status

8.9. Kernel SHAP 353

alibi Documentation, Release 0.9.5dev

[-0.15990831 -1.17397349 -0.13215877 -0.17288254]
3.2134915799542094

Apply KernelSHAP to explain the model

Note that the local accuracy property of SHAP (eq. (5) in [1]) requires

𝑓(𝑥) = 𝑔(𝑥′) = 𝜑0 +

𝑀∑︁
𝑖=1

𝜑𝑖𝑥
′
𝑖. (1)

Hence, sum of the feature importances should be equal to the model output, 𝑓(𝑥). By passing link='logit' to the
explainer, we ensure that 𝜑0, the base value (see Local explanation section here) will be calculated in the margin space
(i.e., a logit transformation is applied to the probabilities) where the logistic regression model is additive.

Further considerations when applying the KernelSHAP method to this dataset are:

• the background dataset size: by setting a larger value for the stop_example_idx in the set below, you can
observe how the runtime of the algorithm increases. At the same time, it is important to have a diverse but
sufficiently large set of samples as background so that the missing feature values are correctly integrated. A way
to reduce the number of samples is to pass the summarise_background=True flag to the explainer fit option
along with the desired number of samples (n_background_samples). If there are no categorical variables in the
data and there is no data grouping, then a k-means clustering algorithm is used to summarise the data. Otherwise,
the data is sampled uniformly at random. Below, we used the train_test_split function of sklearn instead
so that the label proportions are approximately the same as in the original split.

• the number of instances to be explained: the test set contains a number of 2560 records, which are 49-
dimensional after pre-processing, as opposed to 13-dimensional as in the Wine dataset example. For this reason,
only a fraction of fraction_explained (default 5%) are explained by way of getting a more general view of
the model behaviour compared to simply analysing local explanations

• treating the encoded categorical features as a group of features that are jointly perturbed as opposed to being
perturbed individually

[31]: def split_set(X, y, fraction, random_state=0):
"""
Given a set X, associated labels y, splits a fraction y from X.
"""
_, X_split, _, y_split = train_test_split(X,

y,
test_size=fraction,
random_state=random_state,
)

print(f"Number of records: {X_split.shape[0]}")
print(f"Number of class {0}: {len(y_split) - y_split.sum()}")
print(f"Number of class {1}: {y_split.sum()}")

return X_split, y_split

[32]: fraction_explained = 0.05
X_explain, y_explain = split_set(X_test,

y_test,
fraction_explained,
)

X_explain_proc = preprocessor.transform(X_explain)

354 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Number of records: 128
Number of class 0: 96
Number of class 1: 32

[33]: # Select only 100 examples for the background dataset to speedup computation
start_example_idx = 0
stop_example_idx = 100
background_data = slice(start_example_idx, stop_example_idx)

Exploiting explanation model additivity to estimate the effects of categorical features

Inspired by equation (1), a way to estimate the overall effect of a categorical variable is to treat its encoded levels as
individual binary variables and sum the estimated effects for the encoded dimensions.

[34]: pred_fcn = classifier.predict_proba
lr_explainer = KernelShap(pred_fcn, link='logit', feature_names=perm_feat_names)
lr_explainer.fit(X_train_proc[background_data, :])

[34]: KernelShap(meta={
'name': 'KernelShap',
'type': ['blackbox'],
'explanations': ['local', 'global'],
'params': {

'groups': None,
'group_names': None,
'weights': None,
'summarise_background': False

}
})

[35]: # passing the logit link function to the explainer ensures the units are consistent ...
mean_scores_train = logit(pred_fcn(X_train_proc[background_data, :]).mean(axis=0))
print(mean_scores_train - lr_explainer.expected_value)

[36]: lr_explainer.expected_value

[36]: array([1.08786649, -1.08786649])

[]: explanation = lr_explainer.explain(X_explain_proc,
summarise_result=True,
cat_vars_start_idx=cat_feat_start,
cat_vars_enc_dim=feat_enc_dim,
)

We now sum the estimate shap values for each dimension to obtain one shap value for each categorical variable!

[39]: def rank_features(shap_values, feat_names):
"""
Given an NxF array of shap values where N is the number of
instances and F number of features, the function ranks the
shap values according to their average magnitude.

(continues on next page)

8.9. Kernel SHAP 355

alibi Documentation, Release 0.9.5dev

(continued from previous page)

"""

avg_mag = np.mean(np.abs(shap_values), axis=0)
srt = np.argsort(avg_mag)[::-1]
rank_values = avg_mag[srt]
rank_names = [feat_names[idx] for idx in srt]

return rank_values, rank_names

def get_ranked_values(explanation):
"""
Retrives a tuple of (feature_effects, feature_names) for
each class explained. A feature's effect is its average
shap value magnitude across an array of instances.
"""

ranked_shap_vals = []
for cls_idx in range(len(explanation.shap_values)):

this_ranking = (
explanation.raw['importances'][str(cls_idx)]['ranked_effect'],
explanation.raw['importances'][str(cls_idx)]['names']

)
ranked_shap_vals.append(this_ranking)

return ranked_shap_vals

[40]: ranked_combined_shap_vals = get_ranked_values(explanation)

Because the columns have been permuted by the preprocessor, the columns of the instances to be explained have to
be permuted before creating the summary plot.

[41]: perm_feat_names

[41]: ['Age',
'Capital Gain',
'Capital Loss',
'Hours per week',
'Workclass',
'Education',
'Marital Status',
'Occupation',
'Relationship',
'Race',
'Sex',
'Country']

[42]: def permute_columns(X, feat_names, perm_feat_names):
"""
Permutes the original dataset so that its columns
(ordered according to feat_names) have the order

(continues on next page)

356 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

of the variables after transformation with the
sklearn preprocessing pipeline (perm_feat_names).
"""

perm_X = np.zeros_like(X)
perm = []
for i, feat_name in enumerate(perm_feat_names):

feat_idx = feat_names.index(feat_name)
perm_X[:, i] = X[:, feat_idx]
perm.append(feat_idx)

return perm_X, perm

[43]: perm_X_explain, _ = permute_columns(X_explain, feature_names, perm_feat_names)

[44]: shap.summary_plot(explanation.shap_values[0], perm_X_explain, perm_feat_names)

Note that the aggregated local explanations of this limited set are in partial agreement with the global explanation
provided by the model coefficients. The top 3 most important features are determined to be the same. We can see that,
high values of the Capital Gains decrease the odds of a sample being classified as class_0 (income <$50k).

8.9. Kernel SHAP 357

alibi Documentation, Release 0.9.5dev

Grouping features with KernelShap

An alternative way to deal with one-hot encoded categorical variables is to group the levels of a categorical variables
and treat them as a single variable during the sampling process that generates the training data for the explanation
model. Dealing with the categorical variables in this way can help reduce the variance of the shap values estimate (1)
. Note that this does not necessarily result in a runtime saving: by default the algorithm estimates the shap values by
creating a training dataset for the weighed regression, which consists of tiling nsamples (2) copies of the background
dataset. By default, this parameter is set to auto, which is given by 2*M + 2**11 where M is the number of features
which can be perturbed. Therefore, because 2*M < 2 ** 11, one should not expect to see significant time savings
when reducing the number of columns. The runtime can be improved by reducing nsamples at the cost of a loss in
estimation accuracy. (3)

The following arguments should be passed to the fit step in order to perform grouping:

• background_data: in this case, X_train_proc(4)

• group_names: a list containing the feature names

• groups: for each feature name in group_name, groups contains a list of column indices in X_train_proc
which represent that feature.

[45]: def make_groups(num_feats_names, cat_feats_names, feat_enc_dim):
"""
Given a list with numerical feat. names, categorical feat. names
and a list specifying the lengths of the encoding for each cat.
varible, the function outputs a list of group names, and a list
of the same len where each entry represents the column indices that
the corresponding categorical feature
"""

group_names = num_feats_names + cat_feats_names
groups = []
cat_var_idx = 0

for name in group_names:
if name in num_feats_names:

groups.append(list(range(len(groups), len(groups) + 1)))
else:

start_idx = groups[-1][-1] + 1 if groups else 0
groups.append(list(range(start_idx, start_idx + feat_enc_dim[cat_var_idx])))
cat_var_idx += 1

return group_names, groups

def sparse2ndarray(mat, examples=None):
"""
Converts a scipy.sparse.csr.csr_matrix to a numpy.ndarray.
If specified, examples is slice object specifying which selects a
number of rows from mat and converts only the respective slice.
"""

if examples:
return mat[examples, :].toarray()

return mat.toarray()

358 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[46]: X_train_proc_d = sparse2ndarray(X_train_proc, examples=background_data)
group_names, groups = make_groups(num_feats_names, cat_feats_names, feat_enc_dim)

Having created the groups, we are now ready to instantiate the explainer and explain our set.

[48]: X_explain_proc_d = sparse2ndarray(X_explain_proc)
grp_lr_explainer = KernelShap(pred_fcn, link='logit', feature_names=perm_feat_names)
grp_lr_explainer.fit(X_train_proc_d, group_names=group_names, groups=groups)

[]: grouped_explanation = grp_lr_explainer.explain(X_explain_proc_d)

[50]: shap.summary_plot(grouped_explanation.shap_values[0], perm_X_explain, perm_feat_names)

[51]: ranked_grouped_shap_vals = get_ranked_values(grouped_explanation)

Having ranked the features by the average magnitude of their shap value, we can now see if they provide the same
ranking. Yet another way to deal with the categorical variables is to fit the explainer to the unprocessed dataset and
combine the preprocessor with the predictor. We show this approach yields the same results in this example.

[52]: def compare_ranking(ranking_1, ranking_2, methods=None):
for i, (combined, grouped) in enumerate(zip(ranking_1, ranking_2)):

print(f"Class: {i}")
c_names, g_names = combined[1], grouped[1]
c_mag, g_mag = combined[0], grouped[0]
different = []
for i, (c_n, g_n) in enumerate(zip(c_names, g_names)):

if c_n != g_n:
(continues on next page)

8.9. Kernel SHAP 359

alibi Documentation, Release 0.9.5dev

(continued from previous page)

different.append((i, c_n, g_n))
if different:

method_1 = methods[0] if methods else "Method_1"
method_2 = methods[1] if methods else "Method_2"
i, c_ns, g_ns = list(zip(*different))
data = {"Rank": i, method_1: c_ns, method_2: g_ns}
df = pd.DataFrame(data=data)
print("Found the following rank differences:")
print(df)

else:
print("The methods provided the same ranking for the feature effects.")
print(f"The ranking is: {c_names}")

print("")

compare_ranking(ranked_combined_shap_vals, ranked_grouped_shap_vals)

Class: 0
The methods provided the same ranking for the feature effects.
The ranking is: ['Marital Status', 'Education', 'Capital Gain', 'Occupation', 'Sex',
→˓'Relationship', 'Age', 'Hours per week', 'Workclass', 'Capital Loss', 'Country', 'Race
→˓']

Class: 1
The methods provided the same ranking for the feature effects.
The ranking is: ['Marital Status', 'Education', 'Capital Gain', 'Occupation', 'Sex',
→˓'Relationship', 'Age', 'Hours per week', 'Workclass', 'Capital Loss', 'Country', 'Race
→˓']

As shown in this example, for a logistic regression model, the exact shap values can be computed as shown below. Note
that, like KernelShap, this computation makes the assumption that the features are independent.

[67]: exact_shap = [(beta[:, None, :]*X_explain_proc_d)[i, ...] for i in range(beta.shape[0])]
combined_exact_shap = [sum_categories(shap_values, cat_feat_start, feat_enc_dim) for␣
→˓shap_values in exact_shap]
ranked_combined_exact_shap = [rank_features(vals, perm_feat_names) for vals in combined_
→˓exact_shap]

[58]: shap.summary_plot(combined_exact_shap[0], perm_X_explain, perm_feat_names)

360 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Comparing the two summary plots above, we notice that albeit the estimation and the exact method rank the features
Marital Status, Education and Capital Gain as the features that are most important for the classification deci-
sion, the ranking of the remainder of the features differs. In particular, while Race is estimated to be the sixth more
important feature using the exact shap value computation, it is deemed as the least important in the approximate com-
putation. However, note that the exact shap value calculation takes into account the weight estimated by the logistic
regression model. All the weights in the model are estimated jointly so that the model predictive distribution matches
the predictive distribution of the training data. Thus, the values of the coefficients are a function of the entire dataset. On
the other hand, to limit the computation time, the shap values are estimated using a small background dataset. This er-
ror is compounded by the fact that the estimation is approximate, since computing the exact values using the weighted
regression has exponential computational complexity. Below, we show that the Race feature distribution is heavily
skewed towards white individuals. Investigating correcting this imbalance would lead to more accurate estimation is
left to future work.

[69]: from functools import partial
from collections import Counter

[70]: def get_feature_distribution(dataset, feature, category_map, feature_names):
"""Given a map of categorical variable indices to human-readable
values and an array of feature integer values, the function outputs
the distribution the feature in human readable format."""
feat_mapping = category_map[feature_names.index(feature)]
distrib_raw = Counter(dataset)
distrib = {feat_mapping[key]: val for key, val in distrib_raw.items()}

return distrib

8.9. Kernel SHAP 361

alibi Documentation, Release 0.9.5dev

[71]: get_distribution = partial(get_feature_distribution, feature_names=feature_names,␣
→˓category_map=category_map)
race_idx = feature_names.index("Race")
bkg_race_distrib = get_distribution(X_train[background_data, race_idx], 'Race')
train_race_distrib = get_distribution(X_train[:, race_idx], 'Race')
expl_race_distrib = get_distribution(X_explain[:, race_idx], 'Race')

[72]: print("Background data race distribution:")
print(bkg_race_distrib)
print("Train data race distribution:")
print(train_race_distrib)
print("Explain race distribution:")
print(expl_race_distrib)

Background data race distribution:
{'White': 89, 'Amer-Indian-Eskimo': 2, 'Black': 8, 'Asian-Pac-Islander': 1}
Train data race distribution:
{'White': 25634, 'Amer-Indian-Eskimo': 285, 'Black': 2868, 'Asian-Pac-Islander': 963,
→˓'Other': 250}
Explain race distribution:
{'White': 105, 'Black': 20, 'Asian-Pac-Islander': 2, 'Amer-Indian-Eskimo': 1}

We now look to compare the approximate and the exact shap values as well as the relation between the shap computation
and the logistic regression coefficients.

[372]: def reorder_feats(vals_and_names, src_vals_and_names):
"""Given a two tuples, each containing a list of ranked feature
shap values and the corresponding feature names, the function
reorders the values in vals according to the order specified in
the list of names contained in src_vals_and_names.
"""

_, src_names = src_vals_and_names
vals, names = vals_and_names
reordered = np.zeros_like(vals)

for i, name in enumerate(src_names):
alt_idx = names.index(name)
reordered[i] = vals[alt_idx]

return reordered, src_names

def compare_avg_mag_shap(class_idx, comparisons, baseline, **kwargs):
"""
Given a list of tuples, baseline, containing the feature values and a list with␣

→˓feature names
for each class and, comparisons, a list of lists with tuples with the same structure␣

→˓, the
function reorders the values of the features in comparisons entries according to the␣

→˓order
of the feature names provided in the baseline entries and displays the feature␣

→˓values for comparison.
"""

(continues on next page)

362 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

methods = kwargs.get("methods", [f"method_{i}" for i in range(len(comparisons) + 1)])

n_features = len(baseline[class_idx][0])

bar settings
bar_width = kwargs.get("bar_width", 0.05)
bar_space = kwargs.get("bar_space", 2)

x axis
x_low = kwargs.get("x_low", 0.0)
x_high = kwargs.get("x_high", 1.0)
x_step = kwargs.get("x_step", 0.05)
x_ticks = np.round(np.arange(x_low, x_high + x_step, x_step), 3)

y axis (these are the y coordinate of start and end of each group
of bars)
start_y_pos = np.array(np.arange(0, n_features))*bar_space
end_y_pos = start_y_pos + bar_width*len(methods)
y_ticks = 0.5*(start_y_pos + end_y_pos)

figure
fig_x = kwargs.get("fig_x", 10)
fig_y = kwargs.get("fig_y", 7)

fontsizes
title_font = kwargs.get("title_fontsize", 20)
legend_font = kwargs.get("legend_fontsize", 20)
tick_labels_font = kwargs.get("tick_labels_fontsize", 20)
axes_label_fontsize = kwargs.get("axes_label_fontsize", 10)

labels
title = kwargs.get("title", None)
ylabel = kwargs.get("ylabel", None)
xlabel = kwargs.get("xlabel", None)

process input data
methods = list(reversed(methods))
base_vals = baseline[class_idx][0]
ordering = baseline[class_idx][1]
comp_vals = []

reorder the features so that they match the order of the baseline (ordering)
for comparison in comparisons:

vals, ord_ = reorder_feats(comparison[class_idx], baseline[class_idx])
comp_vals.append(vals)
assert ord_ is ordering

all_vals = [base_vals] + comp_vals
data = dict(zip(methods, all_vals))
df = pd.DataFrame(data=data, index=ordering)

(continues on next page)

8.9. Kernel SHAP 363

alibi Documentation, Release 0.9.5dev

(continued from previous page)

plotting logic
fig, ax = plt.subplots(figsize=(fig_x, fig_y))

for i, col in enumerate(df.columns):
values = list(df[col])
y_pos = [y + bar_width*i for y in start_y_pos]
ax.barh(y_pos, list(values), bar_width, label=col)

add ticks, legend and labels
ax.set_xticks(x_ticks)
ax.set_xticklabels([str(x) for x in x_ticks], rotation=45, fontsize=tick_labels_font)
ax.set_xlabel(xlabel, fontsize=axes_label_fontsize)
ax.set_yticks(y_ticks)
ax.set_yticklabels(ordering, fontsize=tick_labels_font)
ax.set_ylabel(ylabel, fontsize=axes_label_fontsize)
ax.invert_yaxis() # labels read top-to-bottom
ax.legend(fontsize=legend_font)

plt.grid(True)
plt.title(title, fontsize=title_font)

return ax, fig, df

[356]: class_idx = 0
ax, fig, _ = compare_avg_mag_shap(class_idx,

[ranked_combined_shap_vals],
ranked_combined_exact_shap,
methods=('approximate', 'exact'),
bar_width=0.5,
tick_labels_fontsize=12,
legend_fontsize=12,
title="Comparison between exact and approximate feature␣

→˓effects",
title_fontsize=15,
xlabel=f"Features effects (class {0})",
ylabel="Feature",
axes_label_fontsize=15,
)

364 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[75]: class_0_fig

[75]:

As before, we see that features such as Occupation, Workclass or Race have similar effects according to the ranking
of the logistic regression coefficients and that the exact shap value estimation recovers this effect since it is computed
using the underlying coefficients. Unlike in our previous example, these relationships are not recovered by the ap-
proximate estimation procedure. Therefore, whenever possible, exact shap value computation should be preferred to
approximations. As shown in this example it is possible to calculate exact shap values for linear models and exact algo-

8.9. Kernel SHAP 365

alibi Documentation, Release 0.9.5dev

rithms exist for tree models. The approximate procedure still gives insights into the model, but, as shown above, it can
be quite sensitive when the effects of the variables are similar. The notable differences between the two explanations
are the importance of the Race and Country are underestimated by a significant margin and their rank significantly
differs from the exact computation.

Finally, as noted in [4] as the model bias (7) increases, more weight can be assigned to irrelevant features. This is
perhaps expected since a linear model will suffer from bias when applied to data generated from a nonlinear process,
so we don’t expect the feature effects to be accurately estimated. This also affects the exact shap values, which depend
on these coefficients.

Investigating the feature effects given a range of feature values

Given an individual record, one could ask questions of the type What would have been the effect of feature x had its
value been y?. To answer this question one can create hypothetical instances starting from a base record, where the
hypothetical instances have a different value for a chosen feature than the original record. Below, we study the effect of
the Capital Gain feature as a function of its value. We choose the 0th record in the X_explain set, which represents
an individual with no capital gain.

[76]: idx = 0
base_record = X_explain[idx,]
cap_gain = X_explain[idx,feature_names.index('Capital Gain')]
print(f"The capital gain of individual {idx} is {cap_gain}!")

The capital gain of individual 0 is 0!

We now create a dataset of records that differ from a base record only by the Capital Gain feature.

[77]: cap_increment = 100
cap_range = range(0, 10100, cap_increment)
hyp_record = np.repeat(base_record[None, :], len(cap_range), axis=0)
hyp_record[:, feature_names.index('Capital Gain')] = cap_range
assert (hyp_record[1, :] - hyp_record[0,]).sum() == cap_increment
X_hyp_proc = preprocessor.transform(hyp_record)
X_hyp_proc_d = X_hyp_proc.toarray()

We can explain the hypothetical instances in order to understand the change in the Capital Gain effect as a function
of its value.

[]: hyp_explainer = KernelShap(pred_fcn, link='logit', feature_names=perm_feat_names)
hyp_explainer.fit(X_train_proc_d, group_names=group_names, groups=groups)
hyp_explanation = hyp_explainer.explain(X_hyp_proc_d)

[79]: hyp_record_perm, _ = permute_columns(hyp_record, feature_names, perm_feat_names)

[80]: shap.dependence_plot('Capital Gain',
hyp_explanation.shap_values[1],
hyp_record_perm,
feature_names=perm_feat_names,
interaction_index=None,

)

366 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

In a logistic regression model, the predictors are linearly related to the logits. Estimating the shap values using the
KernelShap clearly recovers this aspect, as shown by the plot above. The dependence of the feature effect on the feature
value has important implications on the shap value estimation; since the model relies on using the background dataset
to simulate the effect of missing inputs in order to estimate any feature effect, it is important to select an appropriate
background dataset in order to avoid biasing the estimate of the feature effect of interest. Below, we will experiment
with the size of the background dataset, split from the training set of the classifier while keeping the class represensation
proportions of the training set roughly the same.

An alternative way to display the effect of a value as a function of the feature value is to group the similar prediction
paths, which can be done by specifying the hclust feature ordering option.

[81]: # obtain the human readable vesion of the base record (for display purposes)
base_perm, perm = permute_columns(base_record[None, :], feature_names, perm_feat_names)
br = []
for i, x in enumerate(np.nditer(base_record.squeeze())):

if i in categorical_features:
br.append(category_map[i][x])

else:
br.append(x.item())

br = [br[i] for i in perm]
df = pd.DataFrame(data=np.array(br).reshape(1, -1), columns=perm_feat_names)

[82]: df

[82]: Age Capital Gain Capital Loss Hours per week Workclass Education \
0 49 0 0 55 Private Prof-School

Marital Status Occupation Relationship Race Sex Country
0 Never-Married Professional Not-in-family White Female United-States

[84]: r = shap.decision_plot(hyp_explainer.expected_value[1],
hyp_explanation.shap_values[1][0:-1:5],

(continues on next page)

8.9. Kernel SHAP 367

alibi Documentation, Release 0.9.5dev

(continued from previous page)

hyp_record_perm,
link='logit',
feature_names=perm_feat_names,
feature_order='hclust',
highlight=[0, 10],
new_base_value = 0.0,
return_objects=True)

[85]: hyp_record[0:-1:5][10,:]

[85]: array([49, 4, 6, 1, 5, 1, 4, 0, 5000, 0, 55,
9])

The decision plot above informs us of the path to the decision Income < $50,0000 for the original record (depicted
in blue, and, for clarity, on its own below). Aditionally, decision paths for fictitious records where only the Capital
Gain feature was altered are displayed. For clarity, only a handful of these instances have been plotted. Note that
the base value of the plot has been altered to be the classification threshold (6) as opposed to the expected prediction
probability for individuals earning more than $50,000.

We see that the second highlighted instance (in purple) would have been predicted as making an income over $50, 0000
with approximately 0.6 probability, and that this change in prediction is largely dirven by the Capital Gain feature.
We can see below that the income predictor would have predicted the income of this individual to be more than $50,
000 had the Capital Gain been over $3,500.

[86]: # the 7th record from the filtered ones would be predicted to make an income > $50k
income_pred_probas = pred_fcn(preprocessor.transform(hyp_record[0:-1:5][7,:][None,:]))
print(f"Prediction probabilities: {income_pred_probas}")

(continues on next page)

368 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

we can see that the minimum capital gain for the prediction to change is: $3,500
cap_gain_min = hyp_record[0:-1:5][7,feature_names.index('Capital Gain')]
print(f"Minimum capital gain is: ${cap_gain_min}")

Prediction probabilities: [[0.49346669 0.50653331]]
Minimum capital gain is: $3500

[88]: shap.decision_plot(hyp_explainer.expected_value[1],
hyp_explanation.shap_values[1][0],
df,
link='logit',
feature_order=r.feature_idx,
highlight=0
)

Note that passing return_objects=True and using the r.feature_idx as an input to the decision plot above we
were able to plot the original record along with the feature values in the same feature order. Additionally, by passing
logit to the plotting function, the scale of the axis is mapped from the margin to probability space(5) .

Combined, the two decision plots show that:

• the largest decrease in the probability of earning more than $50,000 is significantly affected if the individual is
has marital status Never-Married

• the largest increase in the probability of earning more than $50,000 is determinbed by the education level

• the probability of making an income greater than $50,000 increases with the capital gain; notice how this implies
that features such as Education or Occupation also cotribute more to the increase in probability of earning
more than $50,000

8.9. Kernel SHAP 369

alibi Documentation, Release 0.9.5dev

Checking if prediction paths significantly differ for extreme probability predictions

One can employ the decision plot to check if the prediction paths for low (or high) probability examples differ signifi-
cantly; conceptually, examples which exhibit prediction paths which are significantly different are potential outliers.

Below, we seek to explain only those examples which are predicted to have an income above $ 50,000 with small
probability.

[89]: predictions = classifier.predict_proba(X_explain_proc)
low_prob_idx = np.logical_and(predictions[:, 1] <= 0.1, predictions[:, 1] >= 0.03)
X_low_prob = X_explain_proc[low_prob_idx, :]

[]: low_prob_explanation = hyp_explainer.explain(X_low_prob.toarray())

[92]: X_low_prob_perm, _ = permute_columns(X_explain[low_prob_idx, :], feature_names, perm_
→˓feat_names)

shap.decision_plot(hyp_explainer.expected_value[1],
low_prob_explanation.shap_values[1],
X_low_prob_perm,
feature_names=perm_feat_names,
feature_order='hclust')

From the above plot, we see that the prediction paths for the samples with low probability of being class 1 are similar
- no potential outliers are identified.

370 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Investigating the effect of the background dataset size on shap value estimates

The shap values estimation relies on quering the model with samples where certain inputs are toggled off in order to
infer the contribution of a particular feature. Since most models cannot accept arbitrary patterns of missing values, the
background dataset is used to replace the values of the missing features, that is, as a background model. In more detail,
the algorithm creates first creates a number of copies of this dataset, and then subsamples sets of

Since the model predicts on these perturbed samples and regresses on the predictions to infer the shap values, the
quality of the background model is key for the explanation model. Here we will not be concerned with modelling the
background, but instead investigate whether simply increasing the background set size can give rise to wildly different
shap values. This part of the example is long running so the graph showing our original results can be loaded instead.

[93]: import pickle

[94]: def get_dataset(X_train, y_train, split_fraction):
"""
Splits and transforms a dataset
"""

split_X, _ = split_set(X_train, y_train, split_fraction)
split_X_proc = preprocessor.transform(split_X)
split_X_proc_d = sparse2ndarray(split_X_proc)

return split_X_proc_d

Below cell is long running, skip and display the graph instead.

[]: split_fractions = [0.005, 0.01, 0.02, 0.04 ,0.08, 0.16]
exp_data = {'data': [],

'explainers': [],
'raw_shap': [],
'split_fraction': [],
'ranked_shap_vals': [],
}

fname = 'experiment.pkl'

for fraction in split_fractions:
data = get_dataset(X_train, y_train, fraction)
explainer = KernelShap(pred_fcn, link='logit')
explainer.fit(data, group_names=group_names, groups=groups)
explanation = explainer.explain(X_explain_proc_d)
ranked_avg_shap = get_ranked_values(explanation)
exp_data['data'].append(data)
exp_data['explainers'].append(explainer)
exp_data['raw_shap'].append(explanation.shap_values)
exp_data['ranked_shap_vals'].append(ranked_avg_shap)
with open(fname, 'wb') as f:

pickle.dump(exp_data, f)

[]: comparisons = exp_data['ranked_shap_vals']
methods = [f'train_fraction={fr}' for fr in split_fractions] + ['exact']
_, fg, df = compare_avg_mag_shap(class_idx,

comparisons,
(continues on next page)

8.9. Kernel SHAP 371

alibi Documentation, Release 0.9.5dev

(continued from previous page)

ranked_combined_exact_shap,
methods=methods,
fig_x=22,
fig_y=18,
bar_width=1,
bar_space=9.5,
xlabel=f"Feature effects (class {0})",
ylabel="Features",
axes_label_fontsize=30,
title="Variation of feature effects estimates as a␣

→˓function of background dataset size",
title_fontsize=30,
legend_fontsize=25,
)

We notice that with the exception of the Capital Gain and Capital Loss, the differences betweem the shap values
estimates are not significant as the fraction of the training set used as a background dataset increases from 0.005 to 0.
16. Notably, the Capital Gain feature would be ranked as the second most important by the all approximate models,
whereas in the initial experiment which used the first 100 (0.003) examples from the training set the ranking of the
two features was reversed. How to select an appropriate background dataset is an open ended question. In the future,

372 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

we will explore whether clustering the training data can provide a more representative background model and increase
the accuracy of the estimation.

A potential limitation of expensive explanation methods such as KernelShap when used to draw insights about the
global model behaviour is the fact that explaining large datasets can take a long time. Below, we explain a larger
fraction of the testing set (0.4) in order to see if different conclusions about the feature importances would be made.

[366]: fraction_explained = 0.4
X_explain_large, y_explain_large = split_set(X_test,

y_test,
fraction_explained,
)

X_explain_large_proc = preprocessor.transform(X_explain_large)
X_explain_large_proc_d = sparse2ndarray(X_explain_large_proc)

Number of records: 1024
Number of class 0: 763
Number of class 1: 261

[]: data = get_dataset(X_train, y_train, 0.08)
explainer = KernelShap(pred_fcn, link='logit')
explainer.fit(data, group_names=group_names, groups=groups)
explanation_large_dataset = explainer.explain(X_explain_large_proc_d)
ranked_avg_shap_l = get_ranked_values(explanation_large_dataset)

[370]: class_idx = 0 # income below $50,000
exact_shap_large = [(beta[:, None, :]*X_explain_large_proc_d)[i, ...] for i in␣
→˓range(beta.shape[0])]
combined_exact_shap_large = [sum_categories(shap_values, cat_feat_start, feat_enc_dim)␣
→˓for shap_values in exact_shap_large]
ranked_combined_exact_shap_large = [rank_features(shap_values, perm_feat_names) for shap_
→˓values in combined_exact_shap_large]

[383]: comparisons = [ranked_combined_exact_shap]
methods = ['exact_large', 'exact_small']
_, fg, df = compare_avg_mag_shap(class_idx,

comparisons,
ranked_combined_exact_shap_large,
methods=methods,
bar_width=0.5,
legend_fontsize=15,
axes_label_fontsize=15,
tick_labels_fontsize=15,
title="Comparison of exact shap values infered from a␣

→˓small (128) and a large (1024) explanation dataset",
title_fontsize=15,
xlabel=f'Feature effects (class {class_idx})',
ylabel='Features'
)

8.9. Kernel SHAP 373

alibi Documentation, Release 0.9.5dev

As expected, the exact shap values have the same ranking when a larger set is explained, since they are derived from
the same model coefficients.

[387]: comparisons = [ranked_avg_shap]
methods = ['approx_large', 'approx_small']
_, fg, df = compare_avg_mag_shap(class_idx,

comparisons,
ranked_avg_shap_l,
methods=methods,
bar_width=0.5,
legend_fontsize=15,
axes_label_fontsize=15,
tick_labels_fontsize=15,
title="Comparison of approximate shap values infered␣

→˓from a small (128) and a large (1024) explanation dataset",
title_fontsize=15,
xlabel=f'Feature effects (class {class_idx})',
ylabel='Features'
)

374 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

The ranking of the features also remains unchanged for the approximate method even when significantly more instances
are explained.

[389]: with open('large_explain_set.pkl', 'wb') as f:
pickle.dump(

{'data': data,
'explainer': explainer,
'raw_shap': explanation_large_dataset,
'ranked_shap_vals': ranked_avg_shap_l
},
f

)

Footnotes

(1): As detailed in Theorem 1 in [3], the estimation process for a shap value of feature 𝑖 from instance 𝑥 involves
taking a weighted average of the contribution of feature 𝑖 to the model output, where the weighting takes into account
all the possible orderings in which the previous and successor features can be added to the set. This computation is
thus performed by choosing subsets of features from the full feature set and setting the values of these features to a
background value; the prediction on these perturbed samples is used in a least squares objective (Theorem 2), weighted
by the Shapley kernel. Note that the optimisation objective involves a summation over all possible subsets. Enumerating
all the feature subsets has exponential computational cost, so the smaller the feature set, the more samples can be drawn
and more accurate shap values can be estimated. Thus, grouping the features can serve to reduce the variance of the
shap values estimation by providing a smaller set of features to choose from.

(2): This is a kwarg to shap_values method.

(3): Note the progress bars below show, however, different runtimes between the two methods. No accurate timing
analysis was carried out to study this aspect.

8.9. Kernel SHAP 375

alibi Documentation, Release 0.9.5dev

(4): Note that the shap library currently does not support grouping when the data is represented as a sparse ma-
trix, so it should be converted to a numpy.ndarray object, both during explainer initialisation and when calling the
shap_values method.

(5): When link='logit' is passed to the plotting function, the model outputs are scaled to the probability space, so
the inverse logit transformation is applied to the data and axis ticks. This is in contrast to passing link='logit' to
the KernelExplainer, which maps the model output through the forward logit transformation, log

(︁
𝑝

1−𝑝

)︁
.

(6): We could alter the base value by specifying the new_base_value argument to shap.decision_plot. Note
that this argument has to be specified in the same units as the explanation - if we explained the instances in margin
space then to switch the base value of the plot to, say, p=0.4 then we would pass new_base_value = log(0.4/(1
- 0.4)) to the plotting function.

(7): In this context, bias refers to the bias-variance tradeoff; a simpler model will likely incur a larger error during
training but will have a smaller generalisation gap compared to a more complex model which will have smaller training
error but will generalise poorly.

References

[1] Mahto, K.K., 2019. “One-Hot-Encoding, Multicollinearity and the Dummy Variable Trap”. Retrieved 02 Feb 2020
(link)

[2] Mood, C., 2017. “Logistic regression: Uncovering unobserved heterogeneity.”

[3] Lundberg, S.M. and Lee, S.I., 2017. A unified approach to interpreting model predictions. In Advances in neural
information processing systems (pp. 4765-4774).

[4] Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N.
and Lee, S.I., 2020. From local explanations to global understanding with explainable AI for trees. Nature machine
intelligence, 2(1), pp.56-67.

[5] Lundberg, S.M., Nair, B., Vavilala, M.S., Horibe, M., Eisses, M.J., Adams, T., Liston, D.E., Low, D.K.W., Newman,
S.F., Kim, J. and Lee, S.I., 2018. Explainable machine-learning predictions for the prevention of hypoxaemia during
surgery. Nature biomedical engineering, 2(10), pp.749-760.

8.9.4 Kernel SHAP explanation for SVM models

Note
To enable SHAP support, you may need to run

pip install alibi[shap]

[]: # shap.summary_plot currently doesn't work with matplotlib>=3.6.0,
see bug report: https://github.com/slundberg/shap/issues/2687
!pip install matplotlib==3.5.3

376 Chapter 8. Examples

https://towardsdatascience.com/one-hot-encoding-multicollinearity-and-the-dummy-variable-trap-b5840be3c41a

alibi Documentation, Release 0.9.5dev

Introduction

In this example, we show how to explain a multi-class classification model based on the SVM algorithm using the
KernelSHAP method. We show how to perform instance-level (or local) explanations on this model as well as how
to draw insights about the model behaviour in general by aggregating information from explanations across many
instances (that is, perform global explanations).

[]: import shap
shap.initjs()

import matplotlib.pyplot as plt
import numpy as np

from alibi.explainers import KernelShap
from sklearn import svm
from sklearn.datasets import load_wine
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC

Data preparation

[2]: wine = load_wine()
wine.keys()

[2]: dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names'])

[3]: data = wine.data
target = wine.target
target_names = wine.target_names
feature_names = wine.feature_names

Split data into testing and training sets and normalize it.

[4]: X_train, X_test, y_train, y_test = train_test_split(data,
target,
test_size=0.2,
random_state=0,
)

print("Training records: {}".format(X_train.shape[0]))
print("Testing records: {}".format(X_test.shape[0]))

Training records: 142
Testing records: 36

[5]: scaler = StandardScaler().fit(X_train)
X_train_norm = scaler.transform(X_train)
X_test_norm = scaler.transform(X_test)

8.9. Kernel SHAP 377

alibi Documentation, Release 0.9.5dev

Fitting a support vector classifier (SVC) to the Wine dataset

Training

SVM, is a binary classifier, so multiple classifiers are fitted in order to support multiclass classification. The algorithm
output is explained here.

[6]: np.random.seed(0)
classifier = SVC(

kernel = 'rbf',
C=1,
gamma = 0.1,
decision_function_shape='ovr', # n_cls trained with data from one class as postive␣

→˓and remainder of data as neg
random_state = 0,

)
classifier.fit(X_train_norm, y_train)

[6]: SVC(C=1, gamma=0.1, random_state=0)

Model assessment

Look at confusion matrix.

[7]: y_pred = classifier.predict(X_test_norm)

[8]: cm = confusion_matrix(y_test, y_pred)

[9]: title = 'Confusion matrix for SVC classifier'
disp = ConfusionMatrixDisplay.from_estimator(classifier,

X_test_norm,
y_test,
display_labels=target_names,
cmap=plt.cm.Blues,
normalize=None,

)
disp.ax_.set_title(title);

378 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

The confusion matrix show the classifier is perfect - let’s understand what patterns in the data help the SVC perform
so well!

Apply KernelSHAP to explain the model

The model needs access to a function that takes as an input samples and returns predictions to be explained. For an
input 𝑧 the decision function of an binary SVM classifier is given by:

class(𝑧) = sign(𝛽𝑧 + 𝑏)

where 𝛽 is the best separating hyperplane (linear combination of support vectors, the training points closest to the
separating hyperplane) and 𝑏 is the bias of the model.

For the ‘one-vs-rest’ SVM, nclass binary SVM algorithms are fitted using each class as the positive class and the
remainder as negative class. The classification decision is taken by assigning the label from the classifier with the
maximum absolute decision score. Therefore, to explain our model we could consider explaining the SVM model
which outputs the highest decision score. Click here to go back to source.

To do so, the KernelSHAP explainer must receive a callable that returns a set of scores when called with an input 𝑋 ,
in this case the decision_function attribute of our classifier.

[10]: pred_fcn = classifier.decision_function

[11]: np.random.seed(0)
svm_explainer = KernelShap(pred_fcn)
svm_explainer.fit(X_train_norm)

Using 142 background data samples could cause slower run times. Consider using shap.
→˓sample(data, K) or shap.kmeans(data, K) to summarize the background as K samples.

[11]: KernelShap(meta={
'name': 'KernelShap',
'type': ['blackbox'],
'task': 'classification',
'explanations': ['local', 'global'],
'params': {

(continues on next page)

8.9. Kernel SHAP 379

alibi Documentation, Release 0.9.5dev

(continued from previous page)

'link': 'identity',
'group_names': None,
'grouped': False,
'groups': None,
'weights': None,
'summarise_background': False,
'summarise_result': None,
'transpose': False,
'kwargs': {}}

,
'version': '0.7.1dev'}

)

Note that the explainer is fit to the classifier training set . This training set is used for two purposes:

• To determine the model output when all inputs are missing (𝜑0 in eq. (5) of [1]. Because the SVM model does
not accept arbitrary inputs, this quantity is approximated by averaging the decision score for each class, across
the samples in X_train_norm as shown below and it is stored as the expected_value attribute of the explainer

• The values of the features in the 𝑁 ×𝐷 X_train_norm dataset are used to replace the values missing during the
feature attribution (𝜑𝑖) estimation process. Specifically, nsamples copies of X_train_norm are tiled to create
a dataset where, for each copy, a subset of features 𝑧′ of size 𝑠 = |𝑧′| are replaced by the values in the instance to
be explained and the complement of this subset is left to the background dataset value. These background values
simulate the effect of missing values, since most models cannot cope with arbitrary patterns of missing values
at inference time. Therefore, when computing the shap value of a particular feature, 𝜑𝑖, nsamples regression
targets (𝑓(ℎ𝑥(𝑧

′)) in eq (5) of [1]) are computed as the expected prediction of the model to be explained when
a given subset of features is missing as opposed to replacing the missing feature with a single value. Note that
the averaging operation can be replaced by weighted averaging by specifying the weights argument to the fit
method. (a)

For the above reason, this is sometimes referred to as the background dataset; a larger dataset increases the runtime of
the algorithm, so for large datasets, a subset of it should be used. An option to deal with the runtime issue while still
providing meaningful values for missing values is to summarise the dataset using the shap.kmeans function. This
function wraps the sklearn k-means clustering implementation, while ensuring that the clusters returned have values
that are found in the training data. In addition, the samples are weighted according to the cluster sizes.

[12]: # expected_values attribute stores average scores across training set for every binary␣
→˓SVM
mean_scores_train = pred_fcn(X_train_norm).mean(axis=0)
are stored in the expected value attibute of the explainer ...
print(mean_scores_train - svm_explainer.expected_value)

[-1.11022302e-16 4.44089210e-16 -4.44089210e-16]

[13]: svm_explanation = svm_explainer.explain(X_test_norm, l1_reg=False)

0%| | 0/36 [00:00<?, ?it/s]

In cases where the feature space has higher dimensionality, only a small fraction of the missing subsets can be enumer-
ated for a given number of samples nsamples. If the the fraction of the subsets enumerated falls below a fraction (0.2
for version 0.3.2) and the regularisation is set to auto, a least angle regression with the AIC information criterion
for selecting the regularisation coefficient 𝛼 is performed in order to select features. The regularisation has no effect
if the fraction is greater than this threshold and l1_reg is not set to auto. Other options for regularisations are: -
l1_reg="num_features(10)": in this case, the LARS algorithm [2] is used to which 10 features to estimate the
shap values for. - l1_reg="bic": in this case, the least angle regression is run with the Bayes Information Criterion -

380 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

l1_reg=0.02: if a float is specified, the ℓ1-regularised regression coefficient is set to this value

Local explanation

Because the SVM algorithm returns a score for each of the 3 classes, the shap_values are computed for each class in
turn. Moreover, the attributions are computed for each data point to be explained and for each feature, resulting in a
𝑁𝑒×𝐷 matrix of shap values for each classs, where 𝑁𝑒 is the number of instances to be explained and 𝐷 is the number
of features.

[14]: print("Output type:", type(svm_explanation.shap_values))
print("Output size:", len(svm_explanation.shap_values))
print("Class output size:", svm_explanation.shap_values[0].shape)

Output type: <class 'list'>
Output size: 3
Class output size: (36, 13)

For a given instance, we can visualise the attributions using a force plot. Let’s choose the first example in the testing
set as an example.

[15]: idx = 0
instance = X_test_norm[idx][None, :]
pred = classifier.predict(instance)
scores = classifier.decision_function(instance)
class_idx = pred.item()
print("The predicted class for the X_test_norm[{}] is {}.".format(idx, *pred))
print("OVR decision function values are {}.".format(*scores))

The predicted class for the X_test_norm[0] is 0.
OVR decision function values are [2.24071294 0.85398239 -0.21510456].

We see that class 0 is predicted because the SVM model trained with class 0 as a positive class and classes 1 and 2
combined as a negative class returned the largest score.

To create this force plot, we have provided the plotting function with four inputs: - the expected predicted score by the
class-0 SVM assuming all inputs are missing. This is marked as the base value on the force plot - the feature attributions
for the instance to be explained - the instance to be explained - the feature names

[16]: shap.force_plot(
svm_explainer.expected_value[class_idx],
svm_explanation.shap_values[class_idx][idx, :] ,
instance,
feature_names,

)

[16]: <shap.plots._force.AdditiveForceVisualizer at 0x7f1ddad28070>

The force plot depicts the contribution of each feature to the process of moving the value of the decision score from
the base value (estimation of the decision score if all inputs were missing) to the value predicted by the classifier. We
see that all features contribute to increasing the decision score, and that the largest increases are due to the proline
feature with a value of 1.049 and the flavanoids feature with a value of 0.9778. The lengths of the bars are the
corresponding feature attributions.

Similarly, below we see that the proline and alcohol features contribute the to decreasing the decision score of the
SVM predicting class 1 as positive and that the malic_acid feature increases the decision score.

8.9. Kernel SHAP 381

alibi Documentation, Release 0.9.5dev

[17]: shap.force_plot(
svm_explainer.expected_value[1],
svm_explanation.shap_values[1][idx, :] ,
instance,
feature_names,

)

[17]: <shap.plots._force.AdditiveForceVisualizer at 0x7f1ddad28a90>

An alternative way to visualise local explanations for multi-output models is a multioutput decision plot. This plot can
be especially useful when the number of features is large and the force plot might not be readable.

[18]: def class_labels(classifier, instance, class_names=None):
"""
Creates a set of legend labels based on the decision
scores of a classifier and, optionally, the class names.
"""

decision_scores = classifier.decision_function(instance)

if not class_names:
class_names = [f'Class {i}' for i in range(decision_scores.shape[1])]

for i, score in enumerate(np.nditer(decision_scores)):
class_names[i] = class_names[i] + ' ({})'.format(round(score.item(),3))

return class_names

[19]: legend_labels = class_labels(classifier, instance)

[20]: r = shap.multioutput_decision_plot(svm_explainer.expected_value.tolist(),
svm_explanation.shap_values,
idx,
feature_names=feature_names,
feature_order='importance',
highlight=[class_idx],
legend_labels=legend_labels,
return_objects=True,
legend_location='lower right')

382 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

The decision plots shows how the individual features influence contribute to the classification into each of the three
classes (a prediction path). One sees that, for this example, the model can easily separate the three classes. It also shows,
for example, that a wine with the given alcohol content is typical of class 0 (because the alcohol feature contributes
positively to a classification of class 0 as negatively to classification in classes 1 and 2)

Note that the feature ordering is determined by summing the shap value magnitudes corresponding to each feature
across classes and then ordering the feature_names in descending order of cumulative magniture. The plot origin,
marked by the gray vertical line, is the average base values across the classes. The dashed line represents the model
prediction - in general we can highlight a particular class by passing the class index in the highlight list.

Suppose now that we want to analyse instance 5 but realise that the feature importances are different for this instance.

[21]: idx = 5
instance = X_test_norm[idx][None, :]
pred = classifier.predict(instance)

[22]: instance_shap = np.array(svm_explanation.shap_values)[:, idx, :]
feature_order = np.argsort(np.sum(np.abs(instance_shap),axis=0))[::-1]
feat_importance = [feature_names[i] for i in feature_order]

[23]: print(feat_importance)

['flavanoids', 'alcalinity_of_ash', 'od280/od315_of_diluted_wines', 'alcohol', 'ash',
→˓'total_phenols', 'proline', 'magnesium', 'proanthocyanins', 'hue', 'malic_acid',
→˓'nonflavanoid_phenols', 'color_intensity']

We want to create a multi-output decision plot with the same feature order and scale. This is possible, since by passing
the return_objects=True to the plotting function in the example above, we retrieved the feature indices and the axis
limits and can reuse them to display the decision plot for instance 5 with the same feature order as above.

8.9. Kernel SHAP 383

alibi Documentation, Release 0.9.5dev

[24]: shap.multioutput_decision_plot(svm_explainer.expected_value.tolist(),
svm_explanation.shap_values,
idx,
feature_names=feature_names,
feature_order=r.feature_idx,
highlight=[pred.item()],
legend_labels=legend_labels,
legend_location='lower right',
xlim=r.xlim,
return_objects=False)

Global explanation

As shown above, the force plot allows us to understand how the individual features contribute to a classification output
given an instance. However, the particular explanation does not tell us about the model behaviour in general. Below,
we show how such insights can be drawn.

384 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Stacked force plots

The simplest way we can do this is to stack the force plot for a number of instances, which can be achieved by calling
the force_plot function with the same arguments as before but replacing instance with the whole testing set,
X_test_norm.

[25]: class_idx = 0 # we explain the predicted label
shap.force_plot(

svm_explainer.expected_value[class_idx],
svm_explanation.shap_values[class_idx],
X_test_norm,
feature_names,

)

[25]: <shap.plots._force.AdditiveForceArrayVisualizer at 0x7f1dda9f2dc0>

In the default configuration, the x axis is represented by the 36 instances in X_test_norm whereas the y axis represents
the decision score. Note that, like before, the decision score is for class 0. For a given instance, the height in between
two horizontal lines is equal to the shap value of the feature, and hovering over a plot shows a list of the features along
with their values, sorted by shap values. As before, the blue shading shows a negative contribution to the decision
score (moves the score away from the baseline value) whereas the pink shading shows a positive contribution to the
decision score. Hovering over the plot, tells us, for example, that to achieve a high decision score (equivalent to class 0
membership) the features proline and flavanoids are generally the most important and that positive proline values
lead to higher decision scores for belonging to this class whereas negative proline values provide evidence against this
one belonging to 0 class.

To see the relationship between decision scores and the values more clearly, we can permute the x axis so that the
instances are sorted according to the value of the proline feature by selecting proline from the horizontal drop
down menu.

[26]: shap.force_plot(
svm_explainer.expected_value[class_idx],
svm_explanation.shap_values[class_idx],
X_test_norm,
feature_names,

)

[26]: <shap.plots._force.AdditiveForceArrayVisualizer at 0x7f1dda98bfd0>

You can also explore the effect of a particular feature across the testing dataset. For example, in the plot below, by
selecting flavanoids from the top drop-down, the instances are ordered on the x axis in increasing value of the
flavanoids feature.

Similarly, selecting flavanoids effects from the side drop-down will plot the shap value as opposed to the model
output. The effect of this feature generally increases as its value increases and the large negative values of this feature
reduce the decision score for classification as 0. Note that the shap values are respresented with resepect to the base
value for this class (0.798, as shown below).

[27]: shap.force_plot(
svm_explainer.expected_value[0],
svm_explanation.shap_values[0],
X_test_norm,
feature_names,

)

[27]: <shap.plots._force.AdditiveForceArrayVisualizer at 0x7f1dda8faac0>

8.9. Kernel SHAP 385

alibi Documentation, Release 0.9.5dev

[28]: print(svm_explainer.expected_value)

[0.79821894 1.41710253 0.69461514]

Summary plots

To visualise the impact of the features on the decision scores associated with class 0, we can use a summary plot. In
this plot, the features are sorted by the sum of their SHAP values magnitudes across all instances in X_test_norm.
Therefore, the features with the highest impact on the decision score for class class_idx are displayed at the top of
the plot.

[29]: shap.summary_plot(svm_explanation.shap_values[0], X_test_norm, feature_names)

In this case, the proline and flavanoids have the most impact on the model output; as the values of the features
increase, their impact also increases and the model is more likely to predict class 0. On the other hand, high values of
the nonflavonoid_phenols have a negative impact on the model output, potentially contributing to the classification
of the particular wine in a different class. To see this, we do a summary plot with respect to class_2.

[30]: shap.summary_plot(svm_explanation.shap_values[1], X_test_norm, feature_names)

386 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

We see that, indeed, a higher value of the nonflavonoid_phenols feature contributes to a sample being classified as
class 1, but that this effect is rather limited compared to features such as proline or alcohol.

To visualise the impact of the feature across all classes, that is, the importance of a particular feature for the model,
we simply pass all the shap values to the summary_plot functions. We see, that, for example, the color_intensity
feature is much more important for deciding whether an instance should be classified as class_2 then in class_0.

[31]: shap.summary_plot(svm_explanation.shap_values, X_test_norm, feature_names)

8.9. Kernel SHAP 387

alibi Documentation, Release 0.9.5dev

Dependence plots

Another way to visualise the model dependence on a particular feature is through a dependence plot. This plot shows
the impact of the feature value on its importance for classification with respect to class 0.

[32]: feature = 'flavanoids'
shap.dependence_plot(

feature,
svm_explanation.shap_values[0],
X_test_norm,
feature_names=feature_names,
interaction_index='auto',

)

388 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

The colour of the individual instances is represented by the value of the feature nonflavanoid_phenols. By spec-
ifying interaction_index=auto, the nonflavanoid_phenols was estimated as a the feature with the strongest
interaction with the flavanoids_feature; this interaction is approximate, and is estimate by computing the Pearson
Correlation Coefficient between the shap values of the reference feature (flavanoids in this case) and the value of
each feature in turn on bins along the feature value.

We see that, for class 0 wines, a higher value for nonfavanoid_phenols is generally associated with a low value in
flavanoids and that they have a negative impact on the score for class 0 classification.

Footnotes

(a) The weights are applied to each point in a copy, so the number of weights should be the same as the number of
samples in the data.

References

[1] Lundberg, S.M. and Lee, S.I., 2017. A unified approach to interpreting model predictions. In Advances in neural
information processing systems (pp. 4765-4774).

[2] Wikipedia entry on the Least-angle regression: https://en.wikipedia.org/wiki/Least-angle_regression.

8.9. Kernel SHAP 389

https://en.wikipedia.org/wiki/Least-angle_regression

alibi Documentation, Release 0.9.5dev

8.9.5 Kernel SHAP explanation for multinomial logistic regression models

Note
To enable SHAP support, you may need to run

pip install alibi[shap]

[]: # shap.summary_plot currently doesn't work with matplotlib>=3.6.0,
see bug report: https://github.com/slundberg/shap/issues/2687
!pip install matplotlib==3.5.3

Introduction

In a previous example, we showed how the KernelSHAP algorithm can be aplied to explain the output of an arbi-
trary classification model so long the model outputs probabilities or operates in margin space. We also showcased
the powerful visualisations in the shap library that can be used for model investigation. In this example we focus on
understanding, in a simple setting, how conclusions drawn from the analysis of the KernelShap output relate to con-
clusions drawn from interpreting the model directly. To make this possible, we fit a logistic regression model on the
Wine dataset.

[]: import shap
shap.initjs()

import matplotlib.pyplot as plt
import numpy as np

from alibi.explainers import KernelShap
from scipy.special import logit
from sklearn.datasets import load_wine
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression

Data preparation: load and split Wine dataset

[2]: wine = load_wine()
wine.keys()

[2]: dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names'])

[3]: data = wine.data
target = wine.target
target_names = wine.target_names
feature_names = wine.feature_names

Split data into testing and training sets and normalize it.

390 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[4]: X_train, X_test, y_train, y_test = train_test_split(data,
target,
test_size=0.2,
random_state=0,
)

print("Training records: {}".format(X_train.shape[0]))
print("Testing records: {}".format(X_test.shape[0]))

Training records: 142
Testing records: 36

[5]: scaler = StandardScaler().fit(X_train)
X_train_norm = scaler.transform(X_train)
X_test_norm = scaler.transform(X_test)

Fitting a multinomial logistic regression classifier to the Wine dataset

Training

[6]: classifier = LogisticRegression(multi_class='multinomial',
random_state=0,
)

classifier.fit(X_train_norm, y_train)

[6]: LogisticRegression(multi_class='multinomial', random_state=0)

Model assessment

[7]: y_pred = classifier.predict(X_test_norm)

[8]: cm = confusion_matrix(y_test, y_pred)

[9]: title = 'Confusion matrix for the logistic regression classifier'
disp = ConfusionMatrixDisplay.from_estimator(classifier,

X_test_norm,
y_test,
display_labels=target_names,
cmap=plt.cm.Blues,
normalize=None,

)
disp.ax_.set_title(title);

8.9. Kernel SHAP 391

alibi Documentation, Release 0.9.5dev

Interpreting the logistic regression model

One way to arrive at the multinomial logistic regression model is to consider modelling a categorical response variable
𝑦 ∼ Cat(𝑦|𝛽𝑥) where 𝛽 is 𝐾 × 𝐷 matrix of distribution parameters with 𝐾 being the number of classes and 𝐷 the
feature dimensionality. Because the probability of outcome 𝑘 being observed given 𝑥, 𝑝𝑘 = 𝑝(𝑦 = 𝑘|𝑥, 𝛽), is bounded
by [0, 1], the logistic regression assumes that a linear relationship exists between the logit transformation of the output
and the input. This can be formalised as follows:

log

(︂
𝑝𝑘

1− 𝑝𝑘

)︂
= 𝛽0,𝑘 + 𝛽1,𝑘𝑥1 + 𝛽2,𝑘𝑥2 + · · ·+ 𝛽𝐷,𝑘𝑥𝐷 = 𝛽𝑘 · 𝑥

The RHS is a function of the expected value of the categorical distribution (sometimes referred to as a link function in
the literature). The coefficients 𝛽 of the linear relations used to fit the logit transformation are estimated jointly given
a set of training examples 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1.

For each class, the vector of coefficients 𝛽𝑘 can be used to interpret the model globally; in the absence of interaction
terms, the coefficient of a predictor (i.e., independent variable) represents the change in log odds when the predictor
changes by one unit while all other variables are kept at fixed values. Equivalently, the exponentiated coefficient is
equivalent to a change in odds. Since the transformation from odds to outcome probabilities is monotonic, a change
in odds also implies a change in the outcome probability in the same direction. Thus, the magnitudes of the feature
coefficients measure the effect of a predictor on the output and thus one can globally interpret the logistic regression
model.

However, the log odds ratios and odds ratios are known to be sensitive to unobserved heterogenity, that is, omission of a
variable with good explanatory power from a logistic regression model assumed true. While we will not be concerned
directly with this issue and refer the interested reader to [2], we will be using the estimated percentage unit effect (or
the marginal effect)

𝛽𝑗,𝑘 × 𝑝𝑖,𝑘(1− 𝑝𝑖,𝑘)

as a means of estimating the effect of a predictor 𝑗 on individual 𝑖 (𝑥𝑖,𝑗) with respect to predicting the 𝑘𝑡ℎ class and
thus locally interpret the model. The average marginal effect is more robust measure of effects in situations where
effects are compared across different groups or models. Consider a logistic model where an independent variable 𝑥1 is
used to predict an outcome and a logistic model where 𝑥2, known to be uncorrelated with 𝑥1, is also included. Since
the two models assign different probabilities to the different outcomes and since the distribution of the outcome across
values of 𝑥1 should be the same across the two models (due to the independence assumption), we expected the second

392 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

model will scale the coeffcient of 𝛽1. Hence, the log-odds and odds ratios are not robust to unobserved heterogeneity
so directly comparing the two across models or groups can be misleading. As discussed in [2], the marginal effect is
generally robust to the effect.

The average marginal effect (AME) of a predictor

1

𝑛

𝑛∑︁
𝑖=1

𝛽𝑗,𝑘 × 𝑝𝑖,𝑘(1− 𝑝𝑖,𝑘)

is equivalent to simply using 𝛽𝑗,𝑘 to globally explain the model.

[10]: def issorted(arr, reverse=False):
"""
Checks if a numpy array is sorted.
"""

if reverse:
return np.all(arr[::-1][:-1] <=arr[::-1][1:])

return np.all(arr[:-1] <= arr[1:])

def get_importance(class_idx, beta, feature_names, intercepts=None):
"""
Retrive and sort abs magnitude of coefficients from model.
"""

sort the absolute value of model coef from largest to smallest
srt_beta_k = np.argsort(np.abs(beta[class_idx, :]))[::-1]
feat_names = [feature_names[idx] for idx in srt_beta_k]
feat_imp = beta[class_idx, srt_beta_k]

include bias among feat importances
if intercepts is not None:

intercept = intercepts[class_idx]
bias_idx = len(feat_imp) - (np.searchsorted(np.abs(feat_imp)[::-1], np.

→˓abs(intercept)))
bias_idx = np.searchsorted(np.abs(feat_imp)[::-1], np.abs(intercept)) + 1

feat_imp = np.insert(feat_imp, bias_idx, intercept.item(),)
intercept_idx = np.where(feat_imp == intercept)[0][0]
feat_names.insert(intercept_idx, 'bias')

return feat_imp, feat_names

def plot_importance(feat_imp, feat_names, **kwargs):
"""
Create a horizontal barchart of feature effects, sorted by their magnitude.
"""

left_x, right_x = kwargs.get("left_x"), kwargs.get("right_x")
eps_factor = kwargs.get("eps_factor", 4.5)
xlabel = kwargs.get("xlabel", None)
ylabel = kwargs.get("ylabel", None)
labels_fontsize = kwargs.get("labels_fontsize", 15)
tick_labels_fontsize = kwargs.get("tick_labels_fontsize", 15)

(continues on next page)

8.9. Kernel SHAP 393

alibi Documentation, Release 0.9.5dev

(continued from previous page)

plot
fig, ax = plt.subplots(figsize=(10, 5))
y_pos = np.arange(len(feat_imp))
ax.barh(y_pos, feat_imp)

set lables
ax.set_yticks(y_pos)
ax.set_yticklabels(feat_names, fontsize=tick_labels_fontsize)
ax.invert_yaxis() # labels read top-to-bottom
ax.set_xlabel(xlabel, fontsize=labels_fontsize)
ax.set_ylabel(ylabel, fontsize=labels_fontsize)
ax.set_xlim(left=left_x, right=right_x)

add text
for i, v in enumerate(feat_imp):

eps = 0.03
if v < 0:

eps = -eps_factor*eps
ax.text(v + eps, i + .25, str(round(v, 3)))

return ax, fig

We now retrieve the estimated coefficients, and plot them sorted by their maginitude.

[11]: beta = classifier.coef_
intercepts = classifier.intercept_
all_coefs = np.concatenate((beta, intercepts[:, None]), axis=1)

[12]: class_idx = 0
feat_imp, feat_names = get_importance(class_idx,

beta,
feature_names,
)

[13]: _, class_0_fig = plot_importance(feat_imp,
feat_names,
left_x=-1.,
right_x=1.25,
xlabel = f"Feature effects (class {class_idx})",
ylabel = "Features"
)

394 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Note that these effects are with respect to the model bias (displayed below).

[14]: classifier.intercept_

[14]: array([0.24013981, 0.66712652, -0.90726633])

This plot shows that features such as proline, flavanoids, od280/od315_of_diluted_wines, alcohol increase
the odds of any sample being classified as class_0 whereas the alcalinity_of_ash decreases them.

[15]: feat_imp, feat_names = get_importance(1, # class_idx
beta,
feature_names,
)

The plot below shows that, however, alcalinity_of_ash increases the odds of a wine being in class_1. Predictors
such as proline, alcohol or ash, which increase the odds of predicting a wine as a member of class_0, decrease
the odds of predicting it as a member of class_1.

[16]: _, class_1_fig = plot_importance(feat_imp,
feat_names,
left_x=-1.5,
right_x=1,
eps_factor = 5, # controls text distance from end of␣

→˓bar for negative examples
xlabel = "Feature effects (class {})".format(1),
ylabel = "Features"
)

8.9. Kernel SHAP 395

alibi Documentation, Release 0.9.5dev

[17]: feat_imp, feat_names = get_importance(2, # class_idx
beta,
feature_names,
)

Finally, for class_2, the color_intensity, ash are the features that increase the class_2 odds.

[18]: _, class_2_fig = plot_importance(feat_imp,
feat_names,
left_x=-1.25,
right_x=1,
xlabel = "Feature effects (class {})".format(2),
ylabel = "Features"

eps_factor = 5.
)

396 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Apply KernelSHAP to explain the model

Note that the local accuracy property of SHAP (eq. (5) in [1]) requires

𝑓(𝑥) = 𝑔(𝑥′) = 𝜑0 +

𝐷∑︁
𝑗=1

𝜑𝑗𝑥
′
𝑗 .

Hence, sum of the feature importances, 𝜑𝑗 , should be equal to the model output, 𝑓(𝑥). By passing link='logit' to
the explainer, we ensure that 𝜑0, the base value (see Local explanation section here) will be calculated in the correct
units. Note that here 𝑥′ ∈ R𝐷 represents a simplified input for which the shap value is computed. A simple example
of a simplified input in the image domain, justified by the dimensionality of the input space, is a superpixel mask: we
formulate the task of explaining the outcome of an image prediction task as determining the effects of each superpixel
in a segmenented image upon the outcome. The interested reader is referred to [1] for more details about simplified
inputs.

[19]: pred_fcn = classifier.predict_proba
lr_explainer = KernelShap(pred_fcn, link='logit')
lr_explainer.fit(X_train_norm)

Using 142 background data samples could cause slower run times. Consider using shap.
→˓sample(data, K) or shap.kmeans(data, K) to summarize the background as K samples.

[19]: KernelShap(meta={
'name': 'KernelShap',
'type': ['blackbox'],
'task': 'classification',
'explanations': ['local', 'global'],
'params': {

'link': 'logit',
'group_names': None,
'grouped': False,
'groups': None,
'weights': None,
'summarise_background': False,
'summarise_result': None,
'transpose': False,
'kwargs': {}}

,
'version': '0.7.1dev'}

)

[20]: # passing the logit link function to the explainer ensures the units are consistent ...
mean_scores_train = logit(pred_fcn(X_train_norm).mean(axis=0))
print(mean_scores_train - lr_explainer.expected_value)

[-3.33066907e-16 0.00000000e+00 3.33066907e-16]

[21]: lr_explanation = lr_explainer.explain(X_test_norm, l1_reg=False)

0%| | 0/36 [00:00<?, ?it/s]

Because the dimensionality of the feature space is relatively small, we opted not to regularise the regression that com-
putes the Shapley values. For more information about the regularisation options available for higher dimensional data
see the introductory example here.

8.9. Kernel SHAP 397

alibi Documentation, Release 0.9.5dev

Locally explaining multi-output models with KernelShap

Explaining the logitstic regression model globally with KernelSHAP

Summary plots

To visualise the impact of the features on the decision scores associated with class class_idx, we can use a sum-
mary plot. In this plot, the features are sorted by the sum of their SHAP values magnitudes across all instances in
X_test_norm. Therefore, the features with the highest impact on the decision score for class class_idx are dis-
played at the top of the plot.

[22]: shap.summary_plot(lr_explanation.shap_values[class_idx], X_test_norm, feature_names)

Because the logistic regression model uses a linear predictor function, the exact shap values for each class 𝑘 can be
computed exactly according to ([1])

𝜑𝑖,𝑗(𝑓, 𝑥𝑖) = 𝛽𝑗,𝑘(𝑥𝑖,𝑗 − E𝒟[𝑥𝑗]).

Here we introduced an additional index 𝑖 to emphasize that we compute a shap value for each predictor and each
instance in a set to be explained.This allows us to check the accuracy of the SHAP estimate. Note that we have already
applied the normalisation so the expectation is not subtracted below.

398 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[23]: exact_shap = beta[:, None, :]*X_test_norm

[24]: feat_name = 'alcohol'
feat_idx = feature_names.index(feat_name)
x = np.linspace(-3, 4, 1000)
plt.scatter(exact_shap[class_idx,...][:, feat_idx], lr_explanation.shap_values[class_
→˓idx][:, feat_idx])
plt.plot(x, x, linestyle='dashed', color='red')
plt.xlabel(r'Exact ϕ_j', fontsize=18)
plt.ylabel(r'Estimated ϕ_j', fontsize=18)
plt.title(fr"Comparison of estimated and exact shap values for feature '{feat_name}'")
plt.grid(True)

The plot below shows that the exact shap values and the estimate values give rise to similar ranking of the features, and
only the order of the flavanoids and alcoholfeatures is swapped.

[25]: shap.summary_plot(exact_shap[class_idx, ...], X_test_norm, feature_names)

8.9. Kernel SHAP 399

alibi Documentation, Release 0.9.5dev

An simlar plot can be create for the logistic regression model by plotting the marginal effects. Note that the plot labelling
cannot be changed, so the x axis is incorrectly labeled as SHAP value below.

[26]: p = classifier.predict_proba(X_test_norm)
prb = p * (1. - p)
marg_effects = all_coefs[:, None, :] * prb.T[..., None]
assert (all_coefs[0, 0] * prb[:, 0] - marg_effects[0, :, 0]).sum() == 0.0
avg_marg_effects = np.mean(marg_effects, axis=1) # nb: ranking of the feature coefs␣
→˓should be preserved
mask = np.ones_like(X_test_norm) # the effect (postive vs negative) on the output␣
→˓depend on the sign of the input
mask[X_test_norm < 0] = -1

[27]: shap.summary_plot(marg_effects[class_idx, :, :-1]*mask, X_test_norm, feature_names) #␣
→˓exclude bias

400 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

As expected, the ranking of the marginal effects is the same as that provided the ranking the raw coefficients (see
below). However, this effect measure allows us to assess the effects at instance level. Note that both the approximate
computation and the exact method yield the same group of features as the most important, although their rankings are
not identical. It is important to note that the exact effects ranking and absolute values is a function of the entire data (due
to the dependence of the model coefficients) whereas the approximate computation is local: the explanation model is
fitted locally around each instance. We also notice that the approximate and exact shap value computation both identify
the same relationship between the feature value and the effect on the evidence of a sample belonging to class_idx.

[28]: class_0_fig

8.9. Kernel SHAP 401

alibi Documentation, Release 0.9.5dev

[28]:

Looking at the 6 most important features for this classification in class_0, we see that both the KernelSHAP method
and the logistic regression rank the proline feature as the one with the most significant effect. While the order of the
subsequent 5 features is permuted, the effects of these features are also very similar so, in effect, similar conclusions
would be drawn from analysing either output.

References

[1] Lundberg, S.M. and Lee, S.I., 2017. A unified approach to interpreting model predictions. In Advances in neural
information processing systems (pp. 4765-4774).

[2] Mood, C., 2017. “Logistic regression: Uncovering unobserved heterogeneity.”

8.10 Partial Dependence

8.10.1 Partial Dependence and Individual Conditional Expectation for predicting
bike renting

In this example we will explain the behavior of a regression model on the Bike rentals[1] dataset. We will show how to
calculate the partial dependence (PD) and the individual conditional expectation (ICE) to determine the feature effects
on the model.

We will follow the example from the PDP chapter of the Interpretable Machine Learning[2] book and use the cleaned
version of the dataset from the github repository.

[1]: import numpy as np
import pandas as pd

from sklearn.preprocessing import StandardScaler, OneHotEncoder, OrdinalEncoder
from sklearn.compose import ColumnTransformer
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split

from alibi.explainers import PartialDependence, plot_pd

402 Chapter 8. Examples

http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
https://christophm.github.io/interpretable-ml-book/pdp.html
https://christophm.github.io/interpretable-ml-book/
https://github.com/christophM/interpretable-ml-book

alibi Documentation, Release 0.9.5dev

Read and process the dataset

[2]: df = pd.read_csv('https://raw.githubusercontent.com/christophM/interpretable-ml-book/
→˓master/data/bike.csv')
df.head()

[2]: season yr mnth holiday weekday workingday weathersit temp \
0 WINTER 2011 JAN NO HOLIDAY SAT NO WORKING DAY MISTY 8.175849
1 WINTER 2011 JAN NO HOLIDAY SUN NO WORKING DAY MISTY 9.083466
2 WINTER 2011 JAN NO HOLIDAY MON WORKING DAY GOOD 1.229108
3 WINTER 2011 JAN NO HOLIDAY TUE WORKING DAY GOOD 1.400000
4 WINTER 2011 JAN NO HOLIDAY WED WORKING DAY GOOD 2.666979

hum windspeed cnt days_since_2011
0 80.5833 10.749882 985 0
1 69.6087 16.652113 801 1
2 43.7273 16.636703 1349 2
3 59.0435 10.739832 1562 3
4 43.6957 12.522300 1600 4

We will be using the cnt column as the target in the regression task. The cnt stands for the Count of bicycles
which includes the casual and the registered users. We invite the reader to follow this link for more details on the
dataset.

[3]: # extract feature names
feature_names = df.columns.tolist()
feature_names.remove('cnt')

define target names
target_names = ['Number of bikes']

define categorical columns
categorical_columns_names = ['season', 'yr', 'mnth', 'holiday', 'weekday', 'workingday',
→˓'weathersit']

define categorical and numerical indices for later preprocessing
categorical_columns_indices = [feature_names.index(cn) for cn in categorical_columns_
→˓names]
numerical_columns_indices = [feature_names.index(fn) for fn in feature_names if fn not␣
→˓in categorical_columns_names]

extract data
X = df[feature_names]
y = df['cnt']

split data in train & test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

To preprocess the dataset in a format expected by the alibi explainers, we ordinally encode the categorical columns
(i.e. string to integer) and we construct the categorical_names necessary to specify to the explainer which are
the categorical features of the datasets. The categorical_names is a dictionary having as key the indices of the
categorical columns and as values the corresponding feature values. For more details, see the method description page.

8.10. Partial Dependence 403

https://christophm.github.io/interpretable-ml-book/bike-data.html

alibi Documentation, Release 0.9.5dev

[4]: # define and fit the oridnal encoder
oe = OrdinalEncoder().fit(X_train[categorical_columns_names])

transform the categorical columns to ordinal encoding
X_train.loc[:, categorical_columns_names] = oe.transform(X_train[categorical_columns_
→˓names])
X_test.loc[:, categorical_columns_names] = oe.transform(X_test[categorical_columns_
→˓names])

convert data to numpy
X_train, y_train = X_train.to_numpy(), y_train.to_numpy()
X_test, y_test = X_test.to_numpy(), y_test.to_numpy()

define categorical mappings
categorical_names = {i: list(v) for (i, v) in zip(categorical_columns_indices, oe.
→˓categories_)}

We apply standard preprocessing steps to the dataset: standardization for the numerical features and one-hot encoding
for the categorical ones. Note that the one-hot encoding is the representation to be used by the classifier. We require
the previous label encoding step to transform the data into the standard format used by the alibi explainers.

[5]: # define numerical standard sclaer
num_transf = StandardScaler()

define categorical one-hot encoder
cat_transf = OneHotEncoder(

categories=[range(len(x)) for x in categorical_names.values()],
handle_unknown='ignore',

)

define preprocessor
preprocessor = ColumnTransformer(

transformers=[
('cat', cat_transf, categorical_columns_indices),
('num', num_transf, numerical_columns_indices),

],
sparse_threshold=0

)

[6]: # fit preprocessor
preprocessor.fit(X_train)

preprocess train and test datasets
X_train_ohe = preprocessor.transform(X_train)
X_test_ohe = preprocessor.transform(X_test)

404 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Train regressor

Now that we have the dataset in a good format, we are ready to train the model. For this example, we use a
RandomForestRegressor from sklearn library.

[7]: # define and fit regressor - feel free to play with the hyperparameters
predictor = RandomForestRegressor(random_state=0)
predictor.fit(X_train_ohe, y_train)

compute scores
print('Train score: %.2f' % (predictor.score(X_train_ohe, y_train)))
print('Test score: %.2f' % (predictor.score(X_test_ohe, y_test)))

Train score: 0.98
Test score: 0.90

Partial dependence

Before proceeding with the explanation, there is one additional step we need to perform. The PartialDependece
explainer expects the categorical features to be ordinal encoding and does not have explicit support for one-hot encoding
yet (to be addressed in future releases).

To address this limitation, we can simply define a prediction function which applies the preprocessing step before
passing the data to the predict method. This can be achieved as follows:

[8]: prediction_fn = lambda x: predictor.predict(preprocessor.transform(x))

Now that we defined the prediction function, we are ready to initialize the explainer.

[9]: # define explainer
explainer = PartialDependence(predictor=prediction_fn,

feature_names=feature_names,
target_names=target_names,
categorical_names=categorical_names)

Select a few features of interest, such as temperature, humidity, wind speed, and season.

[10]: # select temperature, humidity, wind speed, and season
features = [feature_names.index('temp'),

feature_names.index('hum'),
feature_names.index('windspeed'),
feature_names.index('season')]

To compute the PD for the features listed we call the explain method. The parameter kind='average' specifies to
return of the PD values. For some tree-based sklearn models, one can use the TreePartialDependence explainer
for which the computation is faster. Note that the two methods do not agree in general on the values they return. This
is because the marginal effect is computed with respect to different probability distributions. For more details on the
computation method, check the sklearn documentation page.

Following the PD computation, we can simply display the PD curves by calling the plot_pd method. The method
allows the user to customize the plots as desired. For more details, see the method description page.

[11]: # compute explanations
exp = explainer.explain(X=X_train,

(continues on next page)

8.10. Partial Dependence 405

https://scikit-learn.org/stable/modules/partial_dependence.html#computation-methods

alibi Documentation, Release 0.9.5dev

(continued from previous page)

features=features,
kind='average')

[12]: # plot partial dependece curves
plot_pd(exp=exp,

n_cols=3,
sharey='row',
fig_kw={'figheight': 10, 'figwidth': 15});

We can observe that the average model prediction increases with the temperature till it reaches approximately 17∘𝐶.
Then it flattens at a high number until the weather becomes too hot (i.e. approx. 27∘𝐶), after which it starts dropping
again.

The humidity larger than 60% seems to be a factor that inhibits the number of rentals since we can observe a downward
trend from that point onward.

A similar analysis can be conducted for the wind speed. As the wind speed increases, fewer and fewer people are
riding the bike. Interestingly, as also mentioned in here, the number of bike rentals flattens after 25km/h. By looking
at the decile ticks, we can observe that there is not much data in that intervals. The model might not have learned to
extrapolate correctly in that region, thus the predictions might not be meaningful.

Lastly, looking at the average prediction for each season, we can observe that all seasons show a similar effect on the
model predictions, with a maximum in fall and a minimum in winter.

406 Chapter 8. Examples

https://christophm.github.io/interpretable-ml-book/pdp.html

alibi Documentation, Release 0.9.5dev

Individual conditional expectation

Although the PD plots can give us some insight concerning the average model response, they can also hide some
heterogeneous effects. This is because the PD plots show the average marginal effects. To visualize the response of
each data point and uncover heterogeneous effects we can use the ICE plots.

To compute both the PD and the ICE, we simply set the parameter kind='both'. Note that the
TreePartialDependece alternative cannot compute the ICE.

Because the PD is the average of the ICE, the ICE plots can be heavily dispersed around the PD which can hide away the
evolution of a data point as we change the feature value. Thus, it is recommended to center the plots at 0 by subtracting
the value corresponding to the initial feature value.

[13]: # compute explanations
exp = explainer.explain(X=X_train,

features=features,
kind='both')

[14]: # random seed for `ice` sampling
np.random.seed(13)

plot the pd and ice
plot_pd(exp=exp,

n_cols=3,
n_ice=50, # number of ICE curves to be displayed. Can be set to 'all' or␣

→˓provided a list of indices
sharey='row',
center=True, # center the plots for better visualization
fig_kw={'figheight': 10, 'figwidth': 15});

8.10. Partial Dependence 407

alibi Documentation, Release 0.9.5dev

For example, we can observe that there exist some particular scenarios in which the bike rental increases significantly
and stays constant as the wind speed increases between 5 and 22km/h. Similarly, in some scenarios, the bike rental
may stay the almost the same for winter relative to the other seasons. Such effects were hidden from us in the PD plot.

Partial dependence for two features

We will continue to provide some examples and a brief analysis of two feature PD plots, including a combination of
two numerical features, two categorical features, and one numerical & one categorical. As we will see, 2-way PD plots
helps us understand and visualize feature intereactions.

[15]: features = [
(feature_names.index('temp'), feature_names.index('windspeed')),
(feature_names.index('mnth'), feature_names.index('weathersit')),
(feature_names.index('season'), feature_names.index('temp'))

]

[16]: # compute explanations
exp = explainer.explain(X=X_train,

features=features,
kind='average',
grid_resolution=25)

[17]: # plot partial dependece curves
plot_pd(exp=exp,

(continues on next page)

408 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

n_cols=2,
fig_kw={'figheight': 10, 'figwidth': 10});

From the interaction plot between the temperature and wind speed, we can observe that between −5 and about 12∘𝐶,
the wind speed does not influence the average prediction that much. This can be deduced from the vertical strips of
similar values restricted to the feature values domain of the reference dataset. The global trend is such that no matter
the wind speed, the number of rented bikes increases with the temperature. As the temperature increases over 12∘𝐶
and stays below 30∘𝐶, we can observe that the wind speed starts to become more relevant for the model’s prediction.
We note that the number of rented bikes stays high until the wind speed surpasses the value of approximately 18km/h,
after which it starts dropping. This suggests that for relatively warm weather, the number of rentals increases as long
as the wind is not too rough. Finally, we can observe that for extremely hot weather, the number of rentals drops again
with the temperature.

8.10. Partial Dependence 409

alibi Documentation, Release 0.9.5dev

By inspecting the weather situation against the month, interestingly, we can observe the rental prediction is influenced
by the weather situation and not by the calendar month. As the weather deteriorates, the rentals drop, independent of
the calendar month.

A similar situation can be observed in the plot of temperature against the season. Something that we’ve seen before
is that the number of predicted rentals seems to be independent of the season and only depends on the temperature
outside. As we have mentioned before, as the temperature increases, the number of rentals seems to increase till it
reaches 17∘𝐶. Then it flattens at a high number until the weather becomes too hot (i.e. approx. 27∘𝐶), after which it
starts dropping again.

References

[1] Fanaee-T, Hadi, and Gama, Joao, ‘Event labeling combining ensemble detectors and background knowledge’,
Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg.

[2] Molnar, Christoph. Interpretable machine learning. Lulu. com, 2020.

8.11 Partial Dependence Variance

8.11.1 Feature importance and feature interaction based on partial dependece vari-
ance

In this notebook example we will explain the global behavior of a regression model trained on a synthetic dataset. We
will show how to compute the global feature attribution and the feature interactions for a given model.

We will follow the example from Greenwell et al. (2018)[1] on the Friedman’s regression problem defined in Friedman
et al. (1991)[2] and Breiman et al. (1996)[3].

[1]: import numpy as np
from sklearn.neural_network import MLPRegressor
from sklearn.model_selection import train_test_split
from alibi.explainers.pd_variance import PartialDependenceVariance, plot_pd_variance

Friedman’s regression problem

Friedman’s regression problem introduced in Friedman et al.[2] and Breiman et al.[3] consists in predicting a target
variable based on ten independent features sample from a Uniform(0, 1). Although the feature space consists of ten
features, only the first five of them appear in the true model.

The relation between the input features and the response variables, 𝑦, is given by:

𝑦 = 10 sin(𝜋𝑥1𝑥2) + 20(𝑥3 − 0.5)2 + 10𝑥4 + 5𝑥5 + 𝜖

where 𝑥𝑖, for 𝑖 = 1, ..., 10 are the ten input features, and 𝜖 ∼ 𝒩 (0, 𝜎2).

In the following cell, we generate a dataset of 1000 examples which we split into 500 training examples and 500 testing
examples. Similar to the paper setup, the simulated observation are generated using a 𝜎 = 1.

[2]: def generate_target(X: np.ndarray):
"""
Generates the target/response variable for the Friedman's regression problem.

(continues on next page)

410 Chapter 8. Examples

https://arxiv.org/pdf/1805.04755.pdf
https://projecteuclid.org/journals/annals-of-statistics/volume-19/issue-1/Multivariate-Adaptive-Regression-Splines/10.1214/aos/1176347963.full
https://projecteuclid.org/journals/annals-of-statistics/volume-19/issue-1/Multivariate-Adaptive-Regression-Splines/10.1214/aos/1176347963.full
https://link.springer.com/article/10.1007/BF00058655
https://projecteuclid.org/journals/annals-of-statistics/volume-19/issue-1/Multivariate-Adaptive-Regression-Splines/10.1214/aos/1176347963.full
https://link.springer.com/article/10.1007/BF00058655

alibi Documentation, Release 0.9.5dev

(continued from previous page)

Parameters

X

A matrix realisations sample from a Uniform(0, 1). The size of the matrix is `N␣
→˓x 10`,

where `N` is the number of data instances.

Returns

Response variable.
"""
return 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5)**2 \

+ 10 * X[:, 3] + 5 * X[:, 4] + np.random.randn(len(X))

np.random.seed(0)
X = np.random.rand(1000, 10)
y = generate_target(X)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)

Train MLP regressor

Similar with Greenwell et al.[1], we train a Muti-layer Perceptron (MLP) regressor and report its score on both the
train and test split. For the purposes of this examples, we keep the default configuration for the MLPRegressor.

[3]: # train MLP regressor on data
nn = MLPRegressor(max_iter=10000, random_state=0)
nn = nn.fit(X_train, y_train)

compute score on train and test dataset
print(f"Train score: {nn.score(X_train, y_train):.3f}")
print(f"Test score: {nn.score(X_test, y_test):.3f}")

Train score: 0.968
Test score: 0.931

Define explainer

Now that we have the prediction model, we can define the PartialDependenceVariance explainer to compute the
feature importance and feature interactions.

Note that our explainer can work with any black-box model by providing the prediction function, which in our case
will be nn.predict. Furthermore, we can specify the feature names and the target names to match our formulation
through the parameters feature_names and target_names.

[4]: # define explainer
explainer = PartialDependenceVariance(predictor=nn.predict,

feature_names=[f'x{i}' for i in range(1, 11)],
target_names=['y'],
verbose=True)

8.11. Partial Dependence Variance 411

https://arxiv.org/pdf/1805.04755.pdf

alibi Documentation, Release 0.9.5dev

Feature importance

With our explainer initialized, we can compute the feature importance for all features through a simple call to the
explain function. The arguments provided would be a reference dataset X which is usually the training dataset (i.e.,
X_train in our example) and setting method='importance'. Note that the explain function can receive many
other arguments through which the user can specify explicitly the features to compute the feature importance for, the
grid points (i.e., in our case grid_resolution=50 to speed up the computation), etc. We refer the reader to our
documentation page for further details.

[5]: exp_importance = explainer.explain(X=X_train,
method='importance',
grid_resolution=50)

100%|==========| 10/10 [00:00<00:00, 28.22it/s]

Once our explanation is computed, we can visualize the feature importance in two ways. Alibi implements an utility
plotting function, plot_pd_variance, which helps the user quickly visualize the results.

The simplest way is to visualize the results through a horizontal bar plot. By default, the features are ordered in descend-
ing order by their importance from top to bottom. This can be achieved through as simple call to plot_pd_variance
as follows:

[6]: plot_pd_variance(exp=exp_importance,
features='all',
fig_kw={'figwidth': 7, 'figheight': 5});

We can see straight away that the explainer managed to identify that the first five features are the most salient (i.e.,
𝑥4, 𝑥2, 𝑥1, 𝑥3, 𝑥5 in decreasing order of their importance).

As also recommended in the paper, the feature importance should be analyzed concomitantly with the Partial De-
pendence Plots (PDP) described in Friedman et al. (2001)[4] and Molnar (2020)[5] based on which the impor-
tance has been calculated. Our utility function allows the user to visualize the PDPs by simply setting the parameter
summarise=False. As before, the plots are sorted in descending order based on the corresponding feature importance.

412 Chapter 8. Examples

https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boostingmachine/10.1214/aos/1013203451.full
(https://christophm.github.io/interpretable-ml-book/pdp.html)

alibi Documentation, Release 0.9.5dev

[7]: plot_pd_variance(exp=exp_importance,
features='all',
summarise=False,
n_cols=3,
fig_kw={'figwidth': 15, 'figheight': 20});

8.11. Partial Dependence Variance 413

alibi Documentation, Release 0.9.5dev

414 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

From the PDPs, we can observe that the explainer managed to identify correctly the effects of each feature: linear
for 𝑥4 and 𝑥5, quadratic for 𝑥3, and sinusoidal for 𝑥1 and 𝑥2. The other variables show a relative flat main effect
which according to the method’s assumption means a low importance. Also, by inspecting the plots we can see that 𝑥4

main effect spans a range from 8 to somewhere around 19, which is probably one of the reasons why it got the largest
importance.

Feature interaction

As previously mentioned, the PartialDependenceVariance explainer is able to compute a measure of feature inter-
action. The call to the explainer follows the same API as above, just by simply calling the explain function with the
parameter method='interaction'. By default, the explainer will compute a measure of interaction for all possible
pairs of features. Note that this is quadratic in the number of features and is based on computing a two-ways partial
dependence function for all pairs. Thus, this step might be more computationally demanding. Similar with the compu-
tation of the feature importance, the user has the liberty to provide the features pairs for which the feature interaction
will be computed and control the computation complexity through the grid parameters.

[8]: exp_interaction = explainer.explain(X=X_train,
method='interaction',
grid_resolution=30)

100%|==========| 45/45 [00:34<00:00, 1.32it/s]

Once the explanation is computed, we can visualize the summary horizontal plot to identify the pairs of features that
interact the most. Because the plot can grow very tall due to the quadratic number of feature pairs, we expose the
top_k parameter to limit the plot to the top_k most important features provided through the features parameter. In
our case we set top_k=10 and since features='all', the plot will display the 10 feature pairs that interact the most
out of all feature pairs.

[9]: # plot summary
plot_pd_variance(exp=exp_interaction,

features='all', # considers plotting all features
top_k=10, # plots only the top 10 features from all the␣

→˓`features`
fig_kw={'figwidth': 7, 'figheight': 5});

8.11. Partial Dependence Variance 415

alibi Documentation, Release 0.9.5dev

From the plot above we can observe that the explainer attributes non-zero interaction values to many pairs of features,
but interaction between 𝑥1 and 𝑥2 is the one that stands out, being an order of magnitude higher than the rest. This is
in fact the only pair of features that interact through the function sin(𝜋𝑥1𝑥2).

As before, if we would like to visualize more details, we can call again the plot_pd_variance with
summarise=False. For each explained feature pair the function will plot the two-way PDP followed immediately
by two conditional importance plots, when conditioning on one feature at a time. Note that the final interaction be-
tween the two features is computed as the average of the two conditional interactions (see titles of each subplot). For
visualization purposes, we recommend using n_cols=3, such that each row will describe only the feature interaction
between one pair. Similar as before, the plots are displayed in descending order based on their interaction.

[10]: plot_pd_variance(exp=exp_interaction,
features='all', # considers plotting all feature pairs
top_k=3, # plots only the top 3 features pairs from all the␣

→˓`features`
summarise=False,
n_cols=3,
fig_kw={'figwidth': 12, 'figheight': 12});

416 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

We can observe that apart from the first plot corresponding to features 𝑥1 and 𝑥2, the other plots present an almost flat
trend which can be an indication, but not a guarantee, of the absence of feature interaction. There exist functions for
which the PartialDependenceVariance explainer does not capture the feature interaction. We refer the reader to
the method description for a more detailed example.

8.11. Partial Dependence Variance 417

https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependenceVariance.html

alibi Documentation, Release 0.9.5dev

References

[1] Greenwell, Brandon M., Bradley C. Boehmke, and Andrew J. McCarthy. “A simple and effective model-based
variable importance measure.” arXiv preprint arXiv:1805.04755 (2018).

[2] Friedman, Jerome H. “Multivariate adaptive regression splines.” The annals of statistics 19.1 (1991): 1-67.

[3] Breiman, Leo. “Bagging predictors.” Machine learning 24.2 (1996): 123-140.

[4] Friedman, Jerome H. “Greedy function approximation: a gradient boosting machine.” Annals of statistics (2001):
1189-1232.

[5] Molnar, Christoph. Interpretable machine learning. Lulu. com, 2020.

8.12 Permutation Importance

8.12.1 Permutation Feature Importance on “Who’s Going to Leave Next?”

In this notebook example, we will explain the global behavior of a classification model by identifying the most important
features it relies on. To obtain the importance of the features, we will use the PermutationImportance explainer,
initially proposed by Breiman (2001)[1], and further refined by Fisher et al. (2019)[2].

This notebook is inspired from the following blogpost.

Since seaborn is not a required dependency, we need to install it:

[]: !pip install -q seaborn

[1]: import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, f1_score, roc_auc_score

from alibi.explainers import PermutationImportance, plot_permutation_importance

Read the dataset

[2]: df = pd.read_csv('https://raw.githubusercontent.com/ucg8j/kaggle_HR/master/HR_comma_sep.
→˓csv')
df.head()

[2]: satisfaction_level last_evaluation number_project average_montly_hours \
0 0.38 0.53 2 157
1 0.80 0.86 5 262
2 0.11 0.88 7 272
3 0.72 0.87 5 223

(continues on next page)

418 Chapter 8. Examples

https://link.springer.com/article/10.1023/A:1010933404324
https://arxiv.org/abs/1801.01489
https://lukesingham.com/whos-going-to-leave-next/

alibi Documentation, Release 0.9.5dev

(continued from previous page)

4 0.37 0.52 2 159

time_spend_company Work_accident left promotion_last_5years sales \
0 3 0 1 0 sales
1 6 0 1 0 sales
2 4 0 1 0 sales
3 5 0 1 0 sales
4 3 0 1 0 sales

salary
0 low
1 medium
2 medium
3 low
4 low

We will be using the left column as the target for the binary classification task. A value of 1 in the left column
indicates that a person left the company.

[3]: # define target column
target_name = 'left'

extract the features
feature_names = df.columns.to_list()
feature_names.remove(target_name)

define categorical columns
categorical_names = [

'Work_accident', # binary
'promotion_last_5years', # binary
'sales', # nominal
'salary' # ordinal, but will treat it as nominal

]

define numerical features
numerical_names = [ft for ft in feature_names if ft not in categorical_names]

Note that although the salary feature is ordinal, we will treat it as a nominal feature in this example.

Data analysis

Before diving into the data preprocessing step and the actual model training, let us first explore the dataset. We begin
by inspecting the proportion of positive and negative instances available in our dataset.

[4]: target_perc = df[target_name].value_counts(normalize=True).mul(100).rename('percent').
→˓reset_index().rename({'index': 'left'}, axis=1) # rename "index" on pandas 1.x
g = sns.catplot(data=target_perc, x='left', y='percent', kind='bar')
g.ax.set_ylim(0, 100)

for p in g.ax.patches:
txt = str(p.get_height().round(2)) + '%'

(continues on next page)

8.12. Permutation Importance 419

alibi Documentation, Release 0.9.5dev

(continued from previous page)

txt_x, txt_y = p.get_x(), p.get_height()
g.ax.text(x=txt_x, y=txt_y, s=txt, fontdict={'size': 15})

Right away, we can observe that our dataset is quite imbalanced. The people who left the company are the minority
class, representing only 23.81% of the entire dataset. Although this might not be the case for us, with extreme class
imbalance, we should carefully consider which metric to use to evaluate the performance of our model.

For example, reporting the accuracy alone might not be sufficient. Consider, for example, the case in which we have
99% of the data instances belonging to the negative class and 1% belonging to the positive class - the class of interest.
A classifier which predicts 0 every time will achieve an accuracy of 99%. Although the model achieves a high accuracy
it is useless because it cannot detect any positive instances. Thus, in this scenario, better metrics to inspect the model
performance are the precision, the recall, and the𝐹1 score. In addition, one can analyze the ROC-AUC curve to measure
class separation.

Let us now inspect the relationship between each feature and the target. We begin by looking at the distribution of the
numerical features grouped by labels.

[5]: fig, axs = plt.subplots(nrows=2, ncols=3, figsize=(12, 8))
axs = axs.flatten()

for ax, ft in zip(axs, numerical_names):
sns.boxplot(data=df, y=ft, x=target_name, ax=ax, orient='v')

fig.delaxes(axs[-1])

420 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

By inspecting the distributions above, we already see some associations. It is probably not surprising that people with
lower satisfaction levels are more likely to leave. Similarly, people who work more hours and people that are older
in the company have the same tendency to leave. All those associations make intuitive sense, and one can propose
multiple plausible hypotheses on why this happens.

Quite interesting is that people who tend to have a higher evaluation score are also associated with leaving the company.
Later, we will inspect the interactions between the two features, and we may be able to understand why this happens.

We now look at the categorical features.

[6]: fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(14, 10))
axs = axs.flatten()

for ax, ft in zip(axs, categorical_names):
ser1 = df.groupby([target_name, ft])[target_name].count()
ser2 = df.groupby([ft])[target_name].count()
df_prec = (ser1 / ser2).rename('percent').reset_index()
sns.barplot(data=df_prec, x=ft, y='percent', hue=target_name, ax=ax)
ax.set_ylim(0, 1)

axs[-2].tick_params(axis='x', rotation=60)
axs[-1].tick_params(axis='x', rotation=60)

8.12. Permutation Importance 421

alibi Documentation, Release 0.9.5dev

We can eyeball that some conditional distributions differ from the unconditional label distribution (76.19%, 23.81%):

[7]: prec = (df[df.Work_accident == 1].left == 0).mean() * 100
print("* Precentage staying if a work accident happended: {:.2f}% > 76.19%\n".
→˓format(prec))

prec = (df[df.promotion_last_5years == 1].left == 0).mean() * 100
print("* Precentage staying if a promotion happend in the last 5 years: {:.2f}% > 76.19%\
→˓n".format(prec))

prec = (df[df.sales == 'RandD'].left == 0).mean() * 100
print("* Precentage staying if the `sales` feature equals 'RandD': {:.2f}% > 76.19%\n".
→˓format(prec))

prec = (df[df.sales == 'management'].left == 0).mean() * 100
print("* Precentage staying if the `sales` feature equals 'management': {:.2f}% > 76.19%\
→˓n".format(prec))

prec = (df[df.salary == 'high'].left == 0).mean() * 100
print("* Precentage staying if they have a high salary: {:.2f}% > 76.19%\n".format(prec))

(continues on next page)

422 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

prec = (df[df.sales == 'hr'].left == 1).mean() * 100
print("* Precentage leaving if the feature `sales` equals 'hr': {:.2f}% > 23.81%".
→˓format(prec))

* Precentage staying if a work accident happended: 92.21% > 76.19%

* Precentage staying if a promotion happend in the last 5 years: 94.04% > 76.19%

* Precentage staying if the `sales` feature equals 'RandD': 84.63% > 76.19%

* Precentage staying if the `sales` feature equals 'management': 85.56% > 76.19%

* Precentage staying if they have a high salary: 93.37% > 76.19%

* Precentage leaving if the feature `sales` equals 'hr': 29.09% > 23.81%

We can observe from the above computation that people are more likely to stay if they had a work accident, or they
had a promotion in the last five years, or the sales feature equals 'RandD' or 'management', or of they have a high
salary. Also, probably not as significant, we can observe a tendency to leave for people having the feature sales equal
'hr'.

We continue our analysis by visualizing the interactions between two numerical features and their association with the
target label.

[8]: sns.pairplot(data=df.sample(frac=0.1), x_vars=numerical_names, y_vars=numerical_names,␣
→˓hue=target_name);

8.12. Permutation Importance 423

alibi Documentation, Release 0.9.5dev

There are quite a few interactions that are worth mentioning:

• (satisfaction_level, last_evaluation) - We can observe three groups that tend to leave the company.
We have people with a satisfaction level around 0.4 and the last evaluation around 0.5. Those are people who
are not very happy with their job and are not that great at their tasks, and thus it makes intuitive sense to leave
the company. We also have people with low satisfaction levels and high evaluation scores. Those might be very
skillful people who can easily find other opportunities when they are not pleased anymore with their job. Finally,
we have the satisfied people with high-performance evaluations representing the ones who enjoy and are very
good at what they are doing but probably leave for better opportunities.

• (satisfaction_level, average_montly_hours) - Analogous to the previous case, we identify three groups
(might coincide). The first group consists of people with a satisfaction level around 0.4 and who work on average
a low number of hours per month. In the second group, we have people who work a lot, but are not very happy
with their job. Finally, the third group is represented by satisfied people who work a lot.

• (last_evaluation, number_project) - we distinguish two groups. The first group consists of people with a
low evaluation score and a low number of projects which might not be very productive for the company. The

424 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

second group consists of people with a high evaluation score and a high number of projects.

• (last_evaluation, average_montly_hours) - Similarly, we can see two clear clusters defined by people
with a low evaluation score and who work on average a low number of hours per month and people with a high
evaluation score and large number monthly working hours.

Although there are many other interactions to mention, we stop here for the sake of this example. One can conduct
similar investigations the categorical features. From the above analysis, we can conclude that numerical features are
very relevant for the classification task.

Data preprocessing

We first split the dataset into train and test.

[9]: X = df[feature_names].to_numpy()
y = df[target_name].to_numpy()

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y,␣
→˓random_state=0)

Define and fit the preprocessor. We use only one hot encoding (OHE) for the categorical variables.

[10]: categorical_indices = [feature_names.index(ft) for ft in categorical_names]

define categorical one-hot encoder
cat_transf = OneHotEncoder(

categories=[np.unique(X_train[:, ft_idx]) for ft_idx in categorical_indices],
drop='if_binary'

)

define preprocessor
preprocessor = ColumnTransformer(

transformers=[
('cat', cat_transf, categorical_indices)

],
remainder='passthrough',
sparse_threshold=0,

)

fit the preprocessor
preprocessor = preprocessor.fit(X_train)

With the preprocessor fitted, we compute the OHE representation of the training and testing dataset.

[11]: # get OHE data representation
X_train_ohe = preprocessor.transform(X_train)
X_test_ohe = preprocessor.transform(X_test)

8.12. Permutation Importance 425

alibi Documentation, Release 0.9.5dev

Train and evaluate random forest classifier

Now that we have the dataset in a good format, we are ready to train the RandomForestClassifier from the sklearn
library

[12]: rf = RandomForestClassifier(class_weight='balanced', random_state=0)
rf = rf.fit(X_train_ohe, y_train)

[13]: # evaluate classifier on train data
y_train_hat = rf.predict(X_train_ohe)
print(classification_report(y_true=y_train, y_pred=y_train_hat))

precision recall f1-score support

0 1.00 1.00 1.00 9142
1 1.00 1.00 1.00 2857

accuracy 1.00 11999
macro avg 1.00 1.00 1.00 11999

weighted avg 1.00 1.00 1.00 11999

[14]: # evaluate classifier on test data
y_test_hat = rf.predict(X_test_ohe)
print(classification_report(y_true=y_test, y_pred=y_test_hat))

precision recall f1-score support

0 0.99 1.00 0.99 2286
1 1.00 0.96 0.98 714

accuracy 0.99 3000
macro avg 0.99 0.98 0.99 3000

weighted avg 0.99 0.99 0.99 3000

As we can observe, our classifier performs reasonably well on all the metrics of interest.

Permutation importance

With our classifier trained, we can perform post-hoc explanation to determine which features are the most important
for our model. We begin by defining a prediction function followed by the initialization of the alibi explainer. Note
that alibi supports some metric functions which can be specified through strings.

[15]: def predict_fn(X: np.ndarray) -> np.ndarray:
return rf.predict(preprocessor.transform(X))

[16]: explainer = PermutationImportance(predictor=predict_fn,
score_fns=['accuracy', 'f1'],
feature_names=feature_names,
verbose=True)

We are now ready to compute the global importance of the features. If the list of features is not provided, by default
the explainer will compute the importance of all the features in the dataset. Also, by default the explainer uses the

426 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

estimation method to compute the feature importance (i.e., it is less computationally intensive), and the importance
returned is the ratio between the original score and the permuted score.

[17]: exp = explainer.explain(X=X_test, y=y_test)

100%|==========| 9/9 [00:14<00:00, 1.65s/it]

To inspect the results, we can use the built-in plot_permutation_importance function.

[18]: plot_permutation_importance(exp,
n_cols=2,
fig_kw={'figwidth': 14, 'figheight': 6});

From the 𝐹1 score plot, we can see that the most important feature that the model relies on is the satisfaction
level. Following that, we have three features that have approximately the same importance, namely the
average_montly_hours, last_evaluation and number_project. Finally, in our top 5 hierarchy we have
time_spend_company.

We can observe that features like sales, salary, Work_accident and promotion_last_5years receive an im-
portance of 1, which means that they are not relevant for the model (i.e., we are using the ratio between the base and
permuted score and a ratio close to 1 means that the original score and the permuted score are approximately the same).

Note that we observe the same ordering in the accuracy plot. It is worth emphasizing that this does not always happen
- using a different metric or loss function can give different results.

Custom metrics

We can also use custom score and loss functions apart from the ones already provided. For example, if we would like
to use 1 - f1 metric, we need to define the corresponding loss function. To change the metric functions, we need to
define a new explainer and ensure that the output of the predictor is compatible with the loss function.

[19]: def loss_f1(y_true: np.ndarray, y_pred: np.ndarray) -> float:
return 1 - f1_score(y_true=y_true, y_pred=y_pred)

[20]: explainer_loss_f1 = PermutationImportance(predictor=predict_fn,
loss_fns={'1 - f1': loss_f1},
feature_names=feature_names,
verbose=True)

8.12. Permutation Importance 427

alibi Documentation, Release 0.9.5dev

[21]: exp_loss_f1 = explainer_loss_f1.explain(X=X_test, y=y_test)

100%|==========| 9/9 [00:15<00:00, 1.74s/it]

[22]: plot_permutation_importance(exp=exp_loss_f1,
fig_kw={'figwidth': 7, 'figheight': 6});

As another example, if we want to use the 1 - auc metric we need to define the corresponding loss function, a new
predictor which returns the probability of the positive class instead of the label, and implicitly will require to define
a new explainer. Note that we need to define a new predictor because the output of the predictor must be compatible
with the arguments expected by the loss function.

[23]: def loss_auc(y_true: np.ndarray, y_score: np.ndarray) -> float:
return 1 - roc_auc_score(y_true=y_true, y_score=y_score)

def proba_fn(X: np.ndarray) -> np.ndarray:
return rf.predict_proba(preprocessor.transform(X))[:, 1]

[24]: explainer_loss_auc = PermutationImportance(predictor=proba_fn,
loss_fns={'1 - auc': loss_auc},
feature_names=feature_names,
verbose=True)

[25]: exp_loss_auc = explainer_loss_auc.explain(X=X_test, y=y_test)

428 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

100%|==========| 9/9 [00:17<00:00, 1.96s/it]

[26]: plot_permutation_importance(exp=exp_loss_auc,
fig_kw={'figwidth': 7, 'figheight': 6});

To conclude, we can observe from the plots above, that the numerical features are quite important for the classifi-
cation task which agrees with the intuition we developed in our data analysis step. Note that based on the met-
ric used, the importance of the features, and implicitly their ordering can differ. Nevertheless, we observe that the
satisfaction_level feature is consistently reported as the most important.

References

[1] Breiman, Leo. “Random forests.” Machine learning 45.1 (2001): 5-32.

[2] Fisher, Aaron, Cynthia Rudin, and Francesca Dominici. “All Models are Wrong, but Many are Useful: Learning a
Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously.” J. Mach. Learn. Res. 20.177
(2019): 1-81.

8.12. Permutation Importance 429

alibi Documentation, Release 0.9.5dev

8.13 Similarity explanations

8.13.1 Similarity explanations for 20 newsgroups dataset

In this notebook, we apply the similarity explanation method to a feed forward neural network (FFNN) trained on the
20 newsgroups dataset.

The 20 newsgroups dataset is a corpus of 18846 text documents (emails) divided into 20 sections. The FFNN is trained
to classify each document in the correct section. The model uses pre-trained sentence embeddings as input features,
which are obtained from raw text using a pretrained transformer.

Given an input document of interest, the similarity explanation method used here aims to find text documents in the
training set that are similar to the document of interest according to “how the model sees them”, meaning that the
similarity metric makes use of the gradients of the model’s loss function with respect to the model’s parameters.

The similarity explanation tool supports both pytorch and tensorflow backends. In this example, we will use the
pytorch backend. Running this notebook on CPU can be very slow, so GPU is recommended.

A more detailed description of the method can be found here. The implementation follows Charpiat et al., 2019 and
Hanawa et al. 2021.

[]: # Installing required sentence transformer
!pip install sentence_transformers

[1]: import os
import torch
import string
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch.nn as nn
from termcolor import colored
from torch.utils.data import DataLoader
from tqdm import tqdm
from sentence_transformers import SentenceTransformer
from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split
from alibi.explainers import GradientSimilarity

Utils

[2]: def to_categorical(y, num_classes):
""" 1-hot encodes a tensor """
return np.eye(num_classes, dtype='uint8')[y].astype('float32')

class TorchDataset(torch.utils.data.Dataset):
"""Utility class to create a torch dataloader from numpy arrays.
"""
def __init__(self, *indexables):

self.indexables = indexables

def __getitem__(self, idx):
output = tuple(indexable[idx] for indexable in self.indexables)

(continues on next page)

430 Chapter 8. Examples

https://www.sbert.net/docs/pretrained_models.html
https://papers.nips.cc/paper/2019/hash/c61f571dbd2fb949d3fe5ae1608dd48b-Abstract.html
https://arxiv.org/abs/2006.04528

alibi Documentation, Release 0.9.5dev

(continued from previous page)

return output if len(output) > 1 else output[0]

def __len__(self):
return len(self.indexables[0])

def append_int(num):
"""Converts an integer into an ordinal (ex. 1 -> 1st, 2 -> 2nd, etc.)

Parameters

num

Integer number

Returns

Ordinal suffixes
"""
if num > 9:

secondToLastDigit = str(num)[-2]
if secondToLastDigit == '1':

return 'th'
lastDigit = num % 10
if (lastDigit == 1):

return 'st'
elif (lastDigit == 2):

return 'nd'
elif (lastDigit == 3):

return 'rd'
else:

return 'th'

def break_doc_in_lines(text, nb_words_per_line=18):
"""Breaks document in lines of a fixed number of words for visualization purposes.

Parameters

text

String to break in line
nb_words_per_line

number of words for each line

Returns

String with line breakers
"""
text_l = text.split(' ')
text_conc = []
nb_lines = np.floor(len(text_l) / nb_words_per_line).astype(int) + 1
for i in range(nb_lines):

tl = text_l[i * nb_words_per_line: (i + 1) * nb_words_per_line]
text_conc.append(' '.join(tl))

text = '\n'.join(text_conc)
(continues on next page)

8.13. Similarity explanations 431

alibi Documentation, Release 0.9.5dev

(continued from previous page)

return text

Load data

Loading and preparing the 20 newsgroups dataset.

Warning:
The cell below will load the 20 news groups dataset. This might require a␣
→˓considerable amount of memory.

[4]: example_idx = 4

print("Loading 20 news groups dataset")
data = fetch_20newsgroups(shuffle=True, random_state=1, subset='train',

remove=('headers', 'footers', 'quotes'),
return_X_y=False)

X, y = np.asarray(data.data), data.target
target_names = data.target_names
df = pd.DataFrame({'text': X, 'labels': y})

print("Cleaning text")
df['text_cleaned'] = df['text'].str.replace('\s+',' ')
df['text_cleaned'] = df['text_cleaned'].str.strip()
df['text_cleaned'] = df['text_cleaned'].str.slice(0,131072)
df = df.replace('', np.NaN).dropna()
df = df.drop_duplicates(subset='text_cleaned')
print('')

print(colored("Sample document before cleaning", 'red'))
print(f"{df['text'][example_idx]}")
print('')
print(colored("Sample document after cleaning", 'red'))
print(break_doc_in_lines(f"{df['text_cleaned'][example_idx]}"))
print('')

print("Splitting train - test")
df_train, df_test = train_test_split(df, test_size=0.2)
X_train, y_train = df_train['text_cleaned'].values, df_train['labels'].values
X_test, y_test = df_test['text_cleaned'].values, df_test['labels'].values
y_train, y_test = to_categorical(y_train, num_classes=20), to_categorical(y_test, num_
→˓classes=20)
print(f"X_train shape: {X_train.shape} - y_train shape: {y_train.shape}")
print(f"X_test shape: {X_test.shape} - y_test shape: {y_test.shape}")

Loading 20 news groups dataset
Cleaning text

The default value of regex will change from True to False in a future version.

432 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Sample document before cleaning

So its an automatic? Don't know if US spec=CDN spec. for Maximas.

If it is the first set of brake pads on front, then this is fine. My car
eats a set every 15k miles or so. The fact that he is replacing the
muffler too is also ok.

The mileage is fairly low - but typical fwd stuff is CV joints. Check
the maintenance records with the manufacturers requirements for valve
adjustments, timing belt changes and so on.

The 60k mile service is often expensive, so make sure he has done everything.

Well, this is one of the commonly cited methods for identifying a
car with highway miles.
Might check the gas pedal wear too. Ask him how many sets of tires he
has been through. A highway car might have squeezed by on 2 sets,
a hard driven car 6-10 sets.

Well, the Maxima should be pretty reliable - but if its out of warranty
you should get it checked out by someone knowledgeable first. Stuff
for Japanese cars can be expensive.

1995 model year, I believe.

Sample document after cleaning
So its an automatic? Don't know if US spec=CDN spec. for Maximas. If it is the first set
of brake pads on front, then this is fine. My car eats a set every 15k miles or
so. The fact that he is replacing the muffler too is also ok. The mileage is fairly low
- but typical fwd stuff is CV joints. Check the maintenance records with the␣
→˓manufacturers requirements for valve
adjustments, timing belt changes and so on. The 60k mile service is often expensive, so␣
→˓make sure he
has done everything. Well, this is one of the commonly cited methods for identifying a␣
→˓car with highway
miles. Might check the gas pedal wear too. Ask him how many sets of tires he has been
through. A highway car might have squeezed by on 2 sets, a hard driven car 6-10 sets.␣
→˓Well,
the Maxima should be pretty reliable - but if its out of warranty you should get it␣
→˓checked
out by someone knowledgeable first. Stuff for Japanese cars can be expensive. 1995 model␣
→˓year, I believe.

Splitting train - test
X_train shape: (14604,) - y_train shape: (14604, 20)

(continues on next page)

8.13. Similarity explanations 433

alibi Documentation, Release 0.9.5dev

(continued from previous page)

X_test shape: (3652,) - y_test shape: (3652, 20)

Define and train model

We define and train a pytorch classifier using sentence embeddings as inputs.

Define model

[5]: class EmbeddingModel:
"""Pre-trained sentence transformer wrapper.
"""
def __init__(

self,
model_name: str = 'paraphrase-MiniLM-L6-v2', # https://www.sbert.net/docs/

→˓pretrained_models.html
max_seq_length: int = 200,
batch_size: int = 32,
device: torch.device = None

) -> None:
if not isinstance(device, torch.device):

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.encode_text = SentenceTransformer(model_name).to(device)
self.encode_text.max_seq_length = max_seq_length
self.batch_size = batch_size

def __call__(self, x: np.ndarray) -> np.ndarray:
return self.encode_text.encode(x,

convert_to_numpy=True,
batch_size=self.batch_size,
show_progress_bar=False)

class Classifier(nn.Module):
"""FFNN classifier with pretrained sentence embeddings inputs.
"""
def __init__(

self,
n_classes= 20

) -> None:
""" Text classification model from sentence embeddings. """
super().__init__()
self.head = nn.Sequential(nn.Linear(384, 256),

nn.LeakyReLU(.1),
nn.Dropout(.5),
nn.Linear(256, n_classes))

def forward(self, sentence_embeddings) -> torch.Tensor:
return self.head(sentence_embeddings)

[6]: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

434 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Get sentence embeddings and define dataloaders

[7]: embedding_model = EmbeddingModel(device=device)

print('Getting train embeddings')
embeddings_train = embedding_model(X_train)
train_loader = DataLoader(TorchDataset(torch.Tensor(embeddings_train).to(device),

torch.Tensor(y_train).to(device)),
batch_size=32,
shuffle=True)

print('Getting test embeddings')
embeddings_test = embedding_model(X_test)
test_loader = DataLoader(TorchDataset(torch.Tensor(embeddings_test).to(device),

torch.Tensor(y_test).to(device)),
batch_size=32,
shuffle=False)

Getting train embeddings
Getting test embeddings

Train model

[8]: epochs = 3

initialize classifier
model = Classifier().to(device)
print('Training classifier')
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
for epoch in range(epochs):

for x, y in tqdm(train_loader):
y_hat = model(x)
optimizer.zero_grad()
loss = loss_fn(y_hat, y)
loss.backward()
optimizer.step()

Training classifier

100%|================| 457/457 [00:00<00:00, 972.33it/s]
100%|===============| 457/457 [00:00<00:00, 1189.45it/s]
100%|===============| 457/457 [00:00<00:00, 1195.13it/s]

8.13. Similarity explanations 435

alibi Documentation, Release 0.9.5dev

Evaluate model

Evaluating the model on train and test set. Since the dataset is well balanced, we only consider accuracy as evaluation
metric.

[9]: def eval_model(model, loader):
model.eval()
logits, labels = [], []
with torch.no_grad():

for x, y in loader:
y_hat = model(x)
logits += [y_hat.cpu().numpy()]
labels += [y.cpu().numpy()]

logits = np.concatenate(logits, 0)
preds = np.argmax(logits, 1)
labels = np.concatenate(labels, 0)
accuracy = (preds == labels.argmax(axis=1)).mean()
print(f'Accuracy: {accuracy:.3f}')

print('Train set evaluation')
eval_model(model, train_loader)
print('Test set evaluation')
eval_model(model, test_loader)

Train set evaluation
Accuracy: 0.720
Test set evaluation
Accuracy: 0.664

Find similar instances

Selecting a reference set of 1000 random samples from the training set. The GradientSimilarity explainer will find
the most similar instances among those. This downsampling step is performed in order to speed up the fit step.

[10]: idxs_ref = np.random.choice(len(X_train), 1000, replace=False)
X_ref = X_train[idxs_ref]
embeddings_ref = embeddings_train[idxs_ref]
y_ref = y_train[idxs_ref]

Initializing a GradientSimilarity explainer instance.

[11]: gsm = GradientSimilarity(model,
loss_fn,
precompute_grads=True,
sim_fn='grad_cos',
backend='pytorch',
device=device)

Fitting the explainer on the reference data.

[12]: gsm.fit(embeddings_ref, y_ref)

436 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[12]: GradientSimilarity(meta={
'name': 'GradientSimilarity',
'type': ['whitebox'],
'explanations': ['local'],
'params': {

'sim_fn_name': 'grad_cos',
'store_grads': True,
'backend_name': 'pytorch',
'task_name': 'classification'}

,
'version': '0.6.6dev'}

)

Selecting 3 random instances from the test set. We only select documents with less than 1000 characters for visualization
purposes.

[13]: idxs_samples = np.where(np.array([len(x) for x in X_test]) <= 1000)[0]
idxs_samples = np.random.choice(idxs_samples, 3, replace=False)

X_sample, embeddings_sample, y_sample = X_test[idxs_samples], embeddings_test[idxs_
→˓samples], y_test[idxs_samples]

Getting predictions and explanations for each of the 5 test samples.

[14]: preds = model(torch.Tensor(embeddings_sample).to(device)).detach().cpu().numpy().
→˓argmax(axis=1)
expls = gsm.explain(embeddings_sample, y_sample)

Visualizations

Building a dictionary for each sample for visualization purposes. Each dictionary contains:

• The original text document x (not the embedding representation).

• The corresponding label y.

• The corresponding model’s prediction pred.

• The reference instances ordered by similarity X_sim.

• The corresponding reference labels ordered by similarity y_sim.

• The corresponding model’s predictions for the reference set preds_sim.

[15]: ds = []
for j in range(len(embeddings_sample)):

y_sim = y_ref[expls.data['ordered_indices'][j]].argmax(axis=1)
X_sim = X_ref[expls.data['ordered_indices'][j]]
sim_embedding = embeddings_ref[expls.data['ordered_indices'][j]]
preds_sim = model(torch.Tensor(sim_embedding).to(device)).detach().cpu().numpy().

→˓argmax(axis=1)

d = {'x': X_sample[j],
'y': y_sample[j].argmax(),
'pred':preds[j],

(continues on next page)

8.13. Similarity explanations 437

alibi Documentation, Release 0.9.5dev

(continued from previous page)

'X_sim': X_sim,
'y_sim': y_sim,
'preds_sim': preds_sim}

ds.append(d)

Most similar instances

Showing the 3 most similar instances for each of the test instances.

[16]: for sample_nb in range(3):
title = f"Sample nb {sample_nb}"
print(colored(title, 'blue'))
print(colored(f"{len(title) * '='}", 'blue'))
print('')

print(colored("Original instance - ", 'red'),
colored(f"Label: {target_names[ds[sample_nb]['y']]} - ", 'red'),
colored(f"Prediction: {target_names[ds[sample_nb]['pred']]}", 'red'))

print(break_doc_in_lines(f"{ds[sample_nb]['x']}"))
print('')

for i in range(3):
print(colored(f"{i+1}{append_int(i+1)} most similar instance - ", 'red'),

colored(f"Label: {target_names[ds[sample_nb]['y_sim'][i]]} - ", 'red'),
colored(f"Prediction: {target_names[ds[sample_nb]['preds_sim'][i]]}", 'red

→˓'))
print(break_doc_in_lines(f"{ds[sample_nb]['X_sim'][i]}"))
print('')

Sample nb 0
===========

Original instance - Label: misc.forsale - Prediction: misc.forsale
One pair of kg1's in Oak finish with black grilles. Includes original packaging. $200 +␣
→˓shipping Firm.

1st most similar instance - Label: misc.forsale - Prediction: misc.forsale
Kirsch Pull down Window Shades - White, Light Filtering - 73.25" Wide, 72" High, can be␣
→˓cut to
width - Brand new, unopened - "Best Quality", Vinyl Coated Cotton - Mounting Brackets␣
→˓included - $35 (Bought
at $60 at J.C.Penney)

2nd most similar instance - Label: misc.forsale - Prediction: misc.forsale
Hey, collection. I am interested in buying any in good condition. I am particularly␣
→˓interested in any of
the older, exotic models (eg five] transformers into one etc... I am looking at paying␣
→˓around $20-$40
depending upon the model, size and original cost etc. I will also pay airmail postage␣
→˓and packing. I
am also happy to buy any old sci-fi related toys eg robots, rocketships, micronauts␣

(continues on next page)

438 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

→˓etc... There is only
one catch. I live in New Zealand so you have to be willing to post the items there.
I hop that someone can help me out. Cheers

3rd most similar instance - Label: misc.forsale - Prediction: misc.forsale
HP 9872B 4 pen plotter. $150 Fujistu M2451E 130 meg SCSI tape drive $150 Sony 40 meg SCSI
disk drive (sticks once in a while) $50 Dead Maxtor XT4380E 338 meg ESDI drive $100 Dead␣
→˓Miniscribe
20 meg SCSI drive $10 Adaptac SCSI to ST-412 interface board $20 Daughter boards from␣
→˓tape drives ?QIC-02
- QIC-36? $20 Twist Terms (VT100 terms that the head twists on for 80x25 or 80x72) $150␣
→˓14"
Analog RGB color monitor (15.7 Khz works nice with amiga's) $100 Spool with 90+ feet of␣
→˓50 conductor
ribbon cable $75 All prices are or best offer. Prices do not include UPS shipping. All␣
→˓items working
except those stated as Dead.

Sample nb 1
===========

Original instance - Label: sci.crypt - Prediction: sci.crypt
I am looking for some Public Domain (and exportable) code for encryption. Nothing␣
→˓elaborate, just something that will
satisfy a marketing need :-) Oh yes, UNIX platform.

1st most similar instance - Label: sci.crypt - Prediction: sci.crypt
Hmmmm. I think, with really large keyspaces like this, you need to alter the strategy␣
→˓discussed for DES.
Attempt decryption of several blocks, and check the disctribution of the contents. I don
→˓'t think it's at all
feasible to keep 2**80 encryptions of a known plaintext block on *any* amount of tape or␣
→˓CD-ROM. And
certainly not 2**128 such encrypted blocks. (Anyone know a cheap way of converting every␣
→˓atom in the solar
system into a one bit storage device?) Actually, a keysearch of this kind shouldn't be␣
→˓much worse than
the simpler kind in terms of speed. It's just that you have to do it over for *every*
encrypted message. Dumb question: Has anyone ever done any serious research on how many␣
→˓legitimate ASCII-encoded 8-byte blocks
there are that could be part of an english sentence? For attacking DES in ECB mode, it␣
→˓seems
like a dictionary of this kind might be pretty valuable...

2nd most similar instance - Label: sci.crypt - Prediction: sci.crypt
As am I If "high quality secure NSA classified technology" means handing my key over to␣
→˓whomever, I'll
take PGP any day. Right now they are billing it as voluntary, i.e. bend over, here it␣
→˓comes.
As soon as enough Wiretap chip based units are out there, how much easier do you think it
will be to redefine "on your own" to mean write it yourself and don't even THINK about␣
→˓distributing

(continues on next page)

8.13. Similarity explanations 439

alibi Documentation, Release 0.9.5dev

(continued from previous page)

it...? Get honest, no one is going to buy this trash if they KNOW it's compromised␣
→˓already, and
less will buy it if the algorithm is not disclosed. The NSA knows that making this stuff␣
→˓available
to the public means handing it to whatever foreign powers are interested in the process.␣
→˓Since when has
export control stopped anyone (especially software wise) Ask yourself carefully if "␣
→˓high quality secure NSA classified technology
" is something they are going to hand out. Not unless you can drive a NSA van through
the holes. uni (Dark)

3rd most similar instance - Label: sci.crypt - Prediction: sci.crypt
You're reading far too much into this (aside from the obvious fact that you shouldn't␣
→˓hold anybody to
what they wrote in a 10 year old book in a rapidly changing field like this.) Quite␣
→˓simply
she says that the security should not DEPEND on the secrecy of the algorithm. A secret␣
→˓algorithm can
still be secure, after all, we just don't know it. Only our level of trust is affected,␣
→˓not
the security of the system. The algorithm *could* be RSA for all we know, which we␣
→˓believe to
be secure. They have a much better reason to classify the algorithm than to protect its␣
→˓security. They
want to protect its market share. If they publish the algorithm, then shortly␣
→˓manufacturers would make chips that
implement the algorithm and standard but do not use a key stored in escrow. And of␣
→˓course, everybody
would buy them. The whole push of this chip is that by establishing a standard that you␣
→˓can
only use if you follow their rules, they get us to follow their rules without enacting␣
→˓new laws
that we would fight tooth and nail. Quite simply, with Clipper established, it would be␣
→˓much harder for
another encryption maker to define a new standard, to make phones that can't talk to the␣
→˓leading phone
companies. The result is tappable cryptography without laws forbidding other kinds, for␣
→˓99% of the populace. To get
untappable crypto, you would have to build a special phone that runs on top of this␣
→˓system, and
everybody you talk to would have to have an indentical one. That's the chicken and egg␣
→˓of crypto.
The government is using its very special ability to solve chicken and egg problems of␣
→˓new technologies to
control this one in a way they like. It's almost admirably clever. When the EFF started,␣
→˓I posed
the question here "What are the police going to do when they wake up and discover they␣
→˓can't
wiretap?" and nobody here had an answer (or even thought it was much of a question) Then␣
→˓came
the backdoor and Digital Telephony bills, which we fought. Now we have their real answer,
→˓ the cleverest of

(continues on next page)

440 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

all.

Sample nb 2
===========

Original instance - Label: comp.graphics - Prediction: comp.graphics
Sorry if this is a FAQ but : "Where can I get a 286 (16 bit) version of
POV-Ray ? " Any help would be greatly appreciated. I need the 286 version since Turbo␣
→˓Pascal won't
let me run a 32 bit program from within my program. Any info on this would also be
a great help. Thanks, Byron. bkidd@esk.compserv.utas.edu.au B.Kidd@cam.compserv.utas.edu.
→˓au --

1st most similar instance - Label: comp.graphics - Prediction: comp.graphics
FOR IMMEDIATE RELEASE Editorial Contact: Single Source Marketing: Myra Manahan (714) 545-
→˓1338 Genoa Systems: Joseph Brunoli (408) 432-9090
Neil Roehm (408) 432-9090/Technical Genoa Presents High Performance Video Graphics␣
→˓Accelerator SAN JOSE, Calif USA -- Genoa Systems
Corporation announces WINDOWSVGA 24, a True Color 24-bit graphics accelerator card that␣
→˓delivers up to 16.8 million colors
at speeds faster than the competition. Plus it offers a full range of resolutions, high␣
→˓refresh rates as
well as unique proprietary performance features. The card is available in both 16-bit␣
→˓ISA bus and 32-bit VESA
Local bus versions (models 8500 AND 8500VL). With 1MB DRAM on board, the WINDOWSVGA 24␣
→˓card offers maximum
resolution up to 1,280 x 1,024 and supports a refresh rate of 72Hz at 800 x 600 and
resolution up to 1,024 x 768 non-interlaced. Both models provide performance many times␣
→˓greater than standard SVGA boards,
yet conform to all current video standards. WINDOWSVGA 24 features Genoa's␣
→˓FlickerFree(tm) technology, which eliminates screen flash and
flicker to make viewing much more comfortable. the cards also come with Safescan(tm), a␣
→˓utility developed by Genoa
to eliminate the black border around the screen and thereby provide 100-percent screen␣
→˓use for overscanning monitors. WINDOWSVGA
model 8500VL takes full advantage of the speed offered by the new VESA Local bus␣
→˓technology. Most VL
bus cards will only handle data transfers up to 33MHz, but the 8500VL will transfer data␣
→˓at the
full speed of the CPU, up to 50MHz. Genoa is also offering this card in the "TurboBahn"␣
→˓combination
packaged with their TURBOEXPRESS 486VL motherboard. Built around the Cirrus Logic GD-
→˓5426 GUI accelerator, WINDOWSVGA 24 offers the
user an exceptional price/performance value. Genoa's advanced proprietary drivers act to
→˓"turbocharge" the chip, thereby providing an affordable
accelerator card with power and performance that surpass many of the more highly priced␣
→˓chip cards. The Genoa
user will enjoy optimal speed and reliability for such programs as Windows, AutoCAD,␣
→˓AutoShade, 3D Studio, OS/2, OrCAD
and more. Driver updates and product bulletins are available on Genoa's BBS at (408) 943-
→˓1231. Genoa Systems manufactures
and markets an extensive line of graphics adapters, motherboards, audio and multimedia␣

(continues on next page)

8.13. Similarity explanations 441

alibi Documentation, Release 0.9.5dev

(continued from previous page)

→˓cards for IBM-compatible personal computers. All
products come with a two year limited warranty on parts and labor. Genoa products are␣
→˓currently distributed worldwide
through authorized distributors, resellers, VARs and systems integrators. For more␣
→˓information contact Joe Brunoli, Marketing Manager, Genoa Systems
at 75 E. Trimble Road, San Jose, Calif. 95131; Tel: (408) 432-9090 or (800) 934-3662;␣
→˓Fax: (408) 434-0997.

2nd most similar instance - Label: comp.graphics - Prediction: comp.graphics
Well, the temp file thing creates an obvious problem: it is impossible to use cview for␣
→˓viewing CD-ROM
based picture collections. And it is the ONLY non- windows viewer that works properly␣
→˓with my Cirrus-based 24
bit VGA.

3rd most similar instance - Label: comp.graphics - Prediction: comp.graphics
If you are looking for viewer try VPIC60

Most similar labels distributions

Showing the average similarity scores for each group of instances in the reference set belonging to the same true class
and to the same predicted class.

[17]: def plot_distributions(ds, expls, target_names, figsize=(20, 5)):

for i in range(len(ds)):
fig, axes = plt.subplots(1, 2, figsize=figsize, sharex=False)
d = ds[i]

y_sim = d['y_sim']
preds_sim = d['preds_sim']
y = d['y']
pred = d['pred']
df_ditribution = pd.DataFrame({'y_sim': y_sim,

'preds_sim': preds_sim,
'scores': expls.data['scores'][i]})

title = f"Sample nb {i}"
print(colored(title, 'blue'))
print(colored(f"{len(title) * '='}", 'blue'))
print('')

print(colored("Original instance", 'red'))
print(colored(f"Label: section {d['y']}, {target_names[d['y']]}", 'red'))
print(colored(f"Prediction: section {d['pred']}, {target_names[d['pred']]}", 'red

→˓'))
print(break_doc_in_lines(f"{d['x']}"))

df_y = df_ditribution.groupby('y_sim')['scores'].mean()
df_y.index = target_names

(continues on next page)

442 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

df_y.sort_values(ascending=True).plot(kind='barh', ax=axes[0])
axes[0].set_title("Averaged scores for each true class in reference set \n")

df_preds = df_ditribution.groupby('preds_sim')['scores'].mean()
df_preds.index = target_names
df_preds.sort_values(ascending=True).plot(kind='barh', ax=axes[1])
axes[1].set_title("Averaged scores for each predicted class in reference set \n")
fig.tight_layout()
plt.show()

[19]: plot_distributions(ds, expls, target_names)

Sample nb 0
===========

Original instance
Label: section 6, misc.forsale
Prediction: section 6, misc.forsale
One pair of kg1's in Oak finish with black grilles. Includes original packaging. $200 +␣
→˓shipping Firm.

Sample nb 1
===========

Original instance
Label: section 11, sci.crypt
Prediction: section 11, sci.crypt
I am looking for some Public Domain (and exportable) code for encryption. Nothing␣
→˓elaborate, just something that will
satisfy a marketing need :-) Oh yes, UNIX platform.

Sample nb 2
===========

(continues on next page)

8.13. Similarity explanations 443

alibi Documentation, Release 0.9.5dev

(continued from previous page)

Original instance
Label: section 1, comp.graphics
Prediction: section 1, comp.graphics
Sorry if this is a FAQ but : "Where can I get a 286 (16 bit) version of
POV-Ray ? " Any help would be greatly appreciated. I need the 286 version since Turbo␣
→˓Pascal won't
let me run a 32 bit program from within my program. Any info on this would also be
a great help. Thanks, Byron. bkidd@esk.compserv.utas.edu.au B.Kidd@cam.compserv.utas.edu.
→˓au --

The plots show how the instances belonging to the same class (and the instances classified by the model as belonging
to the same class) of the instance of interest have on average higher similarity scores, as expected.

8.13.2 Similarity explanations for ImageNet

In this notebook, we apply the similarity explanation method to a ResNet model pre-trained on the ImageNet dataset.
We use a subset of the ImageNet dataset including 1000 random samples as training set for the explainer. The training
set is constructed by picking 100 random images for each of the following classes:

• ‘stingray’

• ‘trilobite’

• ‘centipede’

• ‘slug’

• ‘snail’

• ‘Rhodesian ridgeback’

• ‘beagle’

• ‘golden retriever’

• ‘sea lion’

• ‘espresso’

The test set contains 50 random samples, 5 for each of the classes above. The data set is stored in a public google
storage bucket and can be fetched using the utility function fetch_imagenet_10.

Given an input image of interest picked from the test set, the similarity explanation method used here aims to find
images in the training set that are similar to the image of interest according to “how the model sees them”, meaning that
the similarity metric makes use of the gradients of the model’s loss function with respect to the model’s parameters.

444 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

The similarity explanation tool supports both pytorch and tensorflow backends. In this example, we will use the
tensorflow backend. Running this notebook on CPU can be very slow, so GPU is recommended.

A more detailed description of the method can be found here. The implementation follows Charpiat et al., 2019 and
Hanawa et al. 2021.

[4]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
from sklearn.metrics import accuracy_score
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.losses import categorical_crossentropy
from alibi.datasets import fetch_imagenet_10
from alibi.explainers import GradientSimilarity

Utils

[18]: def plot_similar(ds, expls, int_to_str, mean_channels, figsize=(20, 20)):
"""Plots original instances and similar instances.

Parameters

ds

List of dictionaries containing instances to plot, labels and predictions.
expls

Similarity explainer explanation object.
int_to_str

Dictionary mapping label's number to label's names.
mean_channels

Mean channels to add to the images for visualization.
figsize

Figure size.

Returns

None
"""
fig, axes = plt.subplots(5, 6, figsize=figsize, sharex=False)
for j in range(len(ds)):

d = ds[j]
axes[j, 0].imshow(BGR_to_RGB(d['x']))
label_orig = int_to_str[d['y']].split(',')[0]
if len(label_orig) > 16:

label_orig = label_orig[:13] + '...'
pred_orig = int_to_str[d['pred']].split(',')[0]
if len(pred_orig) > 16:

pred_orig = pred_orig[:13] + '...'
if j == 0:

title_orig = "Original instance"
axes[j, 0].set_title(f"{title_orig} \n" +

(continues on next page)

8.13. Similarity explanations 445

https://papers.nips.cc/paper/2019/hash/c61f571dbd2fb949d3fe5ae1608dd48b-Abstract.html
https://arxiv.org/abs/2006.04528

alibi Documentation, Release 0.9.5dev

(continued from previous page)

f"{len(title_orig) * '='} \n" +
f"Label: {label_orig} \n" +
f"Prediction: {pred_orig} ")

else:
axes[j, 0].set_title(f"Label: {label_orig} \n" +

f"Prediction: {pred_orig} ")
axes[j, 0].axis('off')
for i in range(expls.data['most_similar'].shape[0]):

label_sim = int_to_str[d['y_sim'][i]].split(',')[0]
if len(label_sim) > 16:

label_sim = label_sim[:13] + '...'
pred_sim = int_to_str[d['preds_sim'][i]].split(',')[0]
if len(pred_sim) > 16:

pred_sim = pred_sim[:13] + '...'
most_similar = BGR_to_RGB((expls.data['most_similar'][j] + mean_channels).

→˓astype(int)[i])

axes[j, i + 1].imshow(most_similar, cmap='gray')
if j == 0:

title_most_sim = f"{i+1}{append_int(i+1)} most similar instance"
axes[j, i + 1].set_title(f"{title_most_sim} \n" +

f"{len(title_most_sim) * '='} \n"+
f"Label: {label_sim} \n" +
f"Prediction: {pred_sim}")

else:
axes[j, i + 1].set_title(f"Label: {label_sim} \n" +

f"Prediction: {pred_sim}")
axes[j, i + 1].axis('off')

plt.show()

def plot_distributions(ds, expls, int_to_str, figsize=(20, 20)):
"""Plots original instances and scores distributions per class.

Parameters

ds

List of dictionaries containing instances to plot, labels and predictions.
expls

Similarity explainer explanation object.
int_to_str

Dictionary mapping label's number to label's names.
figsize

Figure size.

Returns

None
"""

(continues on next page)

446 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

fig, axes = plt.subplots(5, 2, figsize=figsize, sharex=False)

for i in range(len(ds)):
d = ds[i]

y_sim = d['y_sim']
preds_sim = d['preds_sim']
y = d['y']
pred = d['pred']
df_ditribution = pd.DataFrame({'y_sim': y_sim,

'scores': expls.data['scores'][i]})

axes[i, 0].imshow(BGR_to_RGB(d['x']))
if i == 0:

title_orig = "Original instance"
axes[i, 0].set_title(f"{title_orig} \n " +

f"{len(title_orig) * '='} \n" +
f"Label: {d['y']} - {int_to_str[d['y']]} \n" +
f"Prediction: {d['pred']} - {int_to_str[d['pred']].

→˓split(',')[0]} ")
else:

axes[i, 0].set_title(f"Label: {d['y']} - {int_to_str[d['y']].split(',')[0]} ␣
→˓\n" +

f"Prediction: {d['pred']} - {int_to_str[d['pred']].
→˓split(',')[0]} ")

axes[i, 0].axis('off')
df_y = df_ditribution.groupby('y_sim')['scores'].mean()
df_y.index = [int_to_str[i] for i in df_y.index]
df_y.sort_values(ascending=True).plot(kind='barh', ax=axes[i, 1])
if i == 0:

title_true_class = "Averaged scores for each true class in reference set"
axes[i, 1].set_title(f"{title_true_class} \n" +

f"{len(title_true_class) * '='} \n ")

fig.tight_layout()
plt.show()

def append_int(num):
"""Converts an integer into an ordinal (ex. 1 -> 1st, 2 -> 2nd, etc.).

Parameters

num

Integer number.

Returns

Ordinal suffixes.
"""
if num > 9:

secondToLastDigit = str(num)[-2]
if secondToLastDigit == '1':

(continues on next page)

8.13. Similarity explanations 447

alibi Documentation, Release 0.9.5dev

(continued from previous page)

return 'th'
lastDigit = num % 10
if (lastDigit == 1):

return 'st'
elif (lastDigit == 2):

return 'nd'
elif (lastDigit == 3):

return 'rd'
else:

return 'th'

def substract_mean_channel(X):
"""Substracts the mean channels from a batch of images.

Parameters

X

Batches of images to substract the mean channel from.
Returns

Batch of images.
"""
assert len(X.shape) == 4
mean_channels = np.array([103.939, 116.779, 123.68]).reshape(1, 1, 1, -1)
X_mean = X - mean_channels
return X_mean, mean_channels

def BGR_to_RGB(X):
if len(X.shape) == 4:

return X[:, :,:,::-1]
elif len(X.shape) == 3:

return X[:,:,::-1]
else:

raise ValueError('Incorrect shape')

Load data

Fetching and preparing the reduced ImageNet dataset.

[6]: imagenet10 = fetch_imagenet_10()

[7]: X_train, y_train = imagenet10['trainset']
X_train, mean_channels = substract_mean_channel(X_train)
X_test, y_test = imagenet10['testset']
X_test, _ = substract_mean_channel(X_test)
int_to_str = imagenet10['int_to_str_labels']
y_train = to_categorical(y_train, num_classes=1000)
y_test = to_categorical(y_test, num_classes=1000)

448 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[8]: i = 0
label = y_train.argmax(axis=1)[i]
print(f"Label: {label} - {int_to_str[label]}")
x = BGR_to_RGB((X_train + mean_channels).astype(int)[i])

plt.imshow(x);
plt.axis('off');

Label: 6 - stingray

Load model

Load a pretrained tensorflow model with a ResNet architecture trained on the ImageNet dataset.

[]: model = ResNet50(weights='imagenet')
preds = model(X_test).numpy().argmax(axis=1)
acc = accuracy_score(y_test.argmax(axis=1), preds)

[10]: print('Test accuracy: ', acc)

Test accuracy: 0.86

Find similar instances

Initializing a GradientSimilarity explainer instance.

[11]: gsm = GradientSimilarity(model, categorical_crossentropy, precompute_grads=False, sim_fn=
→˓'grad_cos')

Fitting the explainer on the training data.

[12]: gsm.fit(X_train, y_train)

[12]: GradientSimilarity(meta={
'name': 'GradientSimilarity',
'type': ['whitebox'],
'explanations': ['local'],

(continues on next page)

8.13. Similarity explanations 449

alibi Documentation, Release 0.9.5dev

(continued from previous page)

'params': {
'sim_fn_name': 'grad_cos',
'store_grads': False,
'backend_name': 'tensorflow',
'task_name': 'classification'}

,
'version': '0.6.6dev'}

)

Selecting 5 random classes out of 10 and 1 random instance per class from the test set (5 test instances in total).

[13]: idxs_samples = np.array([np.random.choice(range(5 * i, 5 * i + 5)) for i in range(10)])
idxs_samples = np.random.choice(idxs_samples, 5, replace=False)

X_sample, y_sample = X_test[idxs_samples], y_test[idxs_samples]
preds = model(X_sample).numpy().argmax(axis=1)

Getting the most similar instance for the each of the 5 test samples.

[14]: expls = gsm.explain(X_sample, y_sample)

Visualizations

Building a dictionary for each sample for visualization purposes. Each dictionary contains

• The original image x (with mean channels added back for visualization).

• The corresponding label y.

• The corresponding model’s prediction pred.

• The corresponding reference labels ordered by similarity y_sim.

• The corresponding model’s predictions for the reference set preds_sim.

[15]: ds = []
for j in range(len(X_sample)):

y_sim = y_train[expls.data['ordered_indices'][j]].argmax(axis=1)
X_sim = X_train[expls.data['ordered_indices'][j][:5]]
preds_sim = model(X_sim).numpy().argmax(axis=1)

d = {'x': (X_sample + mean_channels).astype(int)[j],
'y': y_sample[j].argmax(),
'pred':preds[j],
'y_sim': y_sim,
'preds_sim': preds_sim}

ds.append(d)

450 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Most similar instances

Showing the 5 most similar instances for each of the test instances, ordered from the most similar to the least similar.

[16]: plot_similar(ds, expls, int_to_str, mean_channels)

8.13. Similarity explanations 451

alibi Documentation, Release 0.9.5dev

Most similar labels distributions

Showing the average similarity scores for each group of instances in the reference set belonging to the same true class.
It can be seen that the higher score corresponds to the class of the original instance, as expected.

[19]: plot_distributions(ds, expls, int_to_str)

452 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

8.13. Similarity explanations 453

alibi Documentation, Release 0.9.5dev

8.13.3 Similarity explanations for MNIST

In this notebook, we apply the similarity explanation method to a convolutional network trained on the MNIST dataset.
Given an input image of interest, the similarity explanation method used here aims to find images in the training dataset
that are similar to the image of interest according to “how the model sees them”, meaning that the similarity metric
makes use of the gradients of the model’s loss function with respect to the model’s parameters. The explanation should
be interpreted along the line of “I classify this image as a 4 because I find it similar to another image in the training set
that was labeled as a 4.”

The similarity explanation tool supports both pytorch and tensorflow backends. In this example, we will use the
tensorflow backend.

A more detailed description of the method can be found here. The implementation follows Charpiat et al., 2019 and
Hanawa et al. 2021.

[1]: import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.layers import Activation, Conv2D, Dense, Dropout
from tensorflow.keras.layers import Flatten, Input, Reshape, MaxPooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.losses import categorical_crossentropy
from alibi.explainers import GradientSimilarity

Utils

[2]: def plot_similar(ds, expls, figsize=(20, 20)):
"""Plots original instances and similar instances.

Parameters

ds

List of dictionaries containing instances to plot, labels and predictions.
expls

Similarity explainer explanation object.
figsize

Figure size.

Returns

None
"""
fig, axes = plt.subplots(5, 6, figsize=figsize, sharex=False)
for j in range(len(ds)):

d = ds[j]
axes[j, 0].imshow(np.squeeze(d['x']), cmap='gray')
axes[j, 0].axis('off')
if j == 0:

title_orig = "Original instance"
axes[j, 0].set_title(f"{title_orig} \n" +

(continues on next page)

454 Chapter 8. Examples

https://papers.nips.cc/paper/2019/hash/c61f571dbd2fb949d3fe5ae1608dd48b-Abstract.html
https://arxiv.org/abs/2006.04528

alibi Documentation, Release 0.9.5dev

(continued from previous page)

f"{len(title_orig) * '='} \n" +
f"Label: {d['y']} - Prediction: {d['pred']} ")

else:
axes[j, 0].set_title(f"Label: {d['y']} - Prediction: {d['pred']} ")

for i in range(expls.data['most_similar'].shape[0]):
most_similar = np.squeeze(expls.data['most_similar'][j][i])
axes[j, i + 1].imshow(most_similar, cmap='gray')
axes[i, i + 1].axis('off')
if j == 0:

title_most_sim = f"{i+1}{append_int(i+1)} most similar instance"
axes[j, i + 1].set_title(f"{title_most_sim} \n" +

f"{len(title_most_sim) * '='} \n"+
f"Label: {d['y_sim'][i]} - Prediction: {d[

→˓'preds_sim'][i]}")
else:

axes[j, i + 1].set_title(f"Label: {d['y_sim'][i]} - Prediction: {d[
→˓'preds_sim'][i]}")

plt.show()

def plot_distributions(ds, expls, figsize=(20, 20)):
"""Plots original instances and scores distributions per class.

Parameters

ds

List of dictionaries containing instances to plot, labels and predictions.
expls

Similarity explainer explanation object.
figsize

Figure size.

Returns

None
"""

fig, axes = plt.subplots(5, 3, figsize=figsize, sharex=False)

for i in range(len(ds)):
d = ds[i]

y_sim = d['y_sim']
preds_sim = d['preds_sim']
y = d['y']
pred = d['pred']
df_ditribution = pd.DataFrame({'y_sim': y_sim,

'preds_sim': preds_sim,
'scores': expls.data['scores'][i]})

axes[i, 0].imshow(np.squeeze(d['x']), cmap='gray')

(continues on next page)

8.13. Similarity explanations 455

alibi Documentation, Release 0.9.5dev

(continued from previous page)

axes[i, 0].axis('off')
if i == 0:

title_orig = "Original instance"
axes[i, 0].set_title(f"{title_orig} \n " +

f"{len(title_orig) * '='} \n" +
f"Label: {d['y']} - Prediction: {d['pred']} ")

else:
axes[i, 0].set_title(f"Label: {d['y']} - Prediction: {d['pred']}")

df_y = df_ditribution.groupby('y_sim')['scores'].mean().sort_
→˓values(ascending=False)

df_y.plot(kind='bar', ax=axes[i, 1])
if i == 0:

title_true_class = "Averaged scores for each true class in reference set"
axes[i, 1].set_title(f"{title_true_class} \n" +

f"{len(title_true_class) * '='} \n ")
df_preds = df_ditribution.groupby('preds_sim')['scores'].mean().sort_

→˓values(ascending=False)
df_preds.plot(kind='bar', ax=axes[i, 2])
if i == 0:

title_pred_class = "Averaged scores for each predicted class in reference set
→˓"

axes[i, 2].set_title(f"{title_pred_class} \n" +
f"{len(title_pred_class) * '='} \n ")

plt.show()

def append_int(num):
"""Converts an integer into an ordinal (ex. 1 -> 1st, 2 -> 2nd, etc.).

Parameters

num

Integer number

Returns

Ordinal suffixes
"""
if num > 9:

secondToLastDigit = str(num)[-2]
if secondToLastDigit == '1':

return 'th'
lastDigit = num % 10
if (lastDigit == 1):

return 'st'
elif (lastDigit == 2):

return 'nd'
elif (lastDigit == 3):

return 'rd'
else:

return 'th'

456 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Load data

Loading and preparing the MNIST data set.

[3]: train, test = tf.keras.datasets.mnist.load_data()
X_train, y_train = train
X_test, y_test = test
test_labels = y_test.copy()
train_labels = y_train.copy()

X_train = X_train.reshape(-1, 28, 28, 1).astype('float64') / 255
X_test = X_test.reshape(-1, 28, 28, 1).astype('float64') / 255
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)

(60000, 28, 28, 1) (60000, 10) (10000, 28, 28, 1) (10000, 10)

Train model

Train a convolutional neural network on the MNIST dataset. The model includes 2 convolutional layers and it reaches
a test accuracy of 0.98. If save_model = True, a local folder ./model_mnist will be created and the trained model
will be saved in that folder. If the model was previously saved, it can be loaded by setting load_mnist_model =
True.

[4]: load_mnist_model = False
save_model = True

[]: filepath = './model_mnist/' # change to directory where model is saved
if load_mnist_model:

model = tf.keras.models.load_model(os.path.join(filepath, 'model.h5'))
else:

define model
inputs = Input(shape=(X_train.shape[1:]), dtype=tf.float64)
x = Conv2D(64, 2, padding='same', activation='relu')(inputs)
x = MaxPooling2D(pool_size=2)(x)
x = Dropout(.3)(x)

x = Conv2D(32, 2, padding='same', activation='relu')(x)
x = MaxPooling2D(pool_size=2)(x)
x = Dropout(.3)(x)

x = Flatten()(x)
x = Dense(256, activation='relu')(x)
x = Dropout(.5)(x)
logits = Dense(10, name='logits')(x)
outputs = Activation('softmax', name='softmax')(logits)
model = Model(inputs=inputs, outputs=outputs)
model.compile(loss='categorical_crossentropy',

optimizer='adam',
metrics=['accuracy'])

train model
(continues on next page)

8.13. Similarity explanations 457

alibi Documentation, Release 0.9.5dev

(continued from previous page)

model.fit(X_train,
y_train,
epochs=6,
batch_size=256,
verbose=1,
validation_data=(X_test, y_test)
)

if save_model:
if not os.path.exists(filepath):

os.makedirs(filepath)
model.save(os.path.join(filepath, 'model.h5'))

Find similar instances

Initializing a GradientSimilarity explainer instance:

[6]: gsm = GradientSimilarity(model, categorical_crossentropy, precompute_grads=True, sim_fn=
→˓'grad_cos')

Selecting a reference set of 1000 random samples from the training set. The GradientSimilarity explainer will find
the most similar instances among those. This downsampling step is performed to speed up the fit step.

[7]: idxs_ref = np.random.choice(len(X_train), 1000, replace=False)
X_ref, y_ref = X_train[idxs_ref], y_train[idxs_ref]

Fitting the explainer on the reference data:

[8]: gsm.fit(X_ref, y_ref)

[8]: GradientSimilarity(meta={
'name': 'GradientSimilarity',
'type': ['whitebox'],
'explanations': ['local'],
'params': {

'sim_fn_name': 'grad_cos',
'store_grads': True,
'backend_name': 'tensorflow',
'task_name': 'classification'}

,
'version': '0.6.6dev'}

)

Selecting 5 random instances from the test set:

[9]: idxs_samples = np.random.choice(len(X_test), 5, replace=False)
X_sample, y_sample = X_test[idxs_samples], y_test[idxs_samples]
preds = model(X_sample).numpy().argmax(axis=1)

Getting the most similar instances for the each of the 5 test samples:

[10]: expls = gsm.explain(X_sample, y_sample)

458 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Visualizations

Building a dictionary for each sample for visualization purposes. Each dictionary contains

• The original image x.

• The corresponding label y.

• The corresponding model’s prediction pred.

• The corresponding reference labels ordered by similarity y_sim.

• The corresponding model’s predictions for the reference set preds_sim.

[11]: ds = []
for j in range(len(X_sample)):

y_sim = y_ref[expls.data['ordered_indices'][j]].argmax(axis=1)
X_sim = X_ref[expls.data['ordered_indices'][j]]
preds_sim = model(X_sim).numpy().argmax(axis=1)

d = {'x': X_sample[j],
'y': y_sample[j].argmax(),
'pred':preds[j],
'y_sim': y_sim,
'preds_sim': preds_sim}

ds.append(d)

Showing the 5 most similar instances for each of the test instances, ordered from the most similar to the least similar.

Most similar instances

[12]: plot_similar(ds, expls)

8.13. Similarity explanations 459

alibi Documentation, Release 0.9.5dev

Most similar labels distributions

Showing the average similarity scores for each group of instances in the reference set belonging to the same true class
and to same predicted class.

[13]: plot_distributions(ds, expls)

460 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

The plots show how the instances belonging to the same class (and the instances classified by the model as belonging
to the same class) of the instance of interest have on average higher similarity scores, as expected.

8.13. Similarity explanations 461

alibi Documentation, Release 0.9.5dev

8.14 Tree SHAP

8.14.1 Explaining Tree Models with Interventional Feature Perturbation Tree SHAP

Note
To enable SHAP support, you may need to run

pip install alibi[shap]

[]: # shap.summary_plot currently doesn't work with matplotlib>=3.6.0,
see bug report: https://github.com/slundberg/shap/issues/2687
!pip install matplotlib==3.5.3

Introduction

This example shows how to apply interventional Tree SHAP to compute shap values exactly for an xgboost model
fitted to the Adult dataset (binary classification task). Furthermore, the shap values computed by Kernel SHAP, an
approximate feature attribution method, are shown to converge to the interventional Tree SHAP contributions given a
sufficiently large number of model evaluations.

This example will use the xgboost library (v1.6.1). The latest version can be installed with:

[1]: !pip install -q xgboost

[2]: import json
import pickle
import shap
shap.initjs()

import numpy as np
import matplotlib.pyplot as plt
import xgboost as xgb

from alibi.datasets import fetch_adult
from alibi.explainers import KernelShap, TreeShap
from collections import defaultdict, Counter
from functools import partial
from itertools import product, zip_longest

from scipy.special import expit
invlogit=expit
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.utils import resample

from timeit import default_timer as timer

<IPython.core.display.HTML object>

462 Chapter 8. Examples

https://github.com/dmlc/xgboost

alibi Documentation, Release 0.9.5dev

Data preparation

Load and split

The fetch_adult function returns a Bunch object containing features, targets, feature names and a mapping of cate-
gorical variables to numbers.

[3]: adult = fetch_adult()
adult.keys()

[3]: dict_keys(['data', 'target', 'feature_names', 'target_names', 'category_map'])

[4]: data = adult.data
target = adult.target
target_names = adult.target_names
feature_names = adult.feature_names
category_map = adult.category_map

Note that for your own datasets you can use the utility function gen_category_map imported from alibi.utils to
create the category map.

[5]: np.random.seed(0)
data_perm = np.random.permutation(np.c_[data, target])
data = data_perm[:,:-1]
target = data_perm[:,-1]

[6]: idx = 30000
X_train,y_train = data[:idx,:], target[:idx]
X_test, y_test = data[idx+1:,:], target[idx+1:]

xgboost wraps arrays using DMatrix objects, optimised for both memory efficiency and training speed.

[7]: def wrap(arr):
return np.ascontiguousarray(arr)

dtrain = xgb.DMatrix(
wrap(X_train),
label=wrap(y_train),
feature_names=feature_names,

)

dtest = xgb.DMatrix(wrap(X_test), label=wrap(y_test), feature_names=feature_names)

Finally, a matrix that contains the raw string values for categorical variables (used for display) is created:

[8]: def _decode_data(X, feature_names, category_map):
"""
Given an encoded data matrix `X` returns a matrix where the
categorical levels have been replaced by human readable categories.
"""

X_new = np.zeros(X.shape, dtype=object)
for idx, name in enumerate(feature_names):

categories = category_map.get(idx, None)
(continues on next page)

8.14. Tree SHAP 463

alibi Documentation, Release 0.9.5dev

(continued from previous page)

if categories:
for j, category in enumerate(categories):

encoded_vals = X[:, idx] == j
X_new[encoded_vals, idx] = category

else:
X_new[:, idx] = X[:, idx]

return X_new

decode_data = partial(_decode_data,
feature_names=feature_names,
category_map=category_map)

[9]: X_display = decode_data(X_test)

[10]: X_display

[10]: array([[52, 'Private', 'Associates', ..., 0, 60, 'United-States'],
[21, 'Private', 'High School grad', ..., 0, 20, 'United-States'],
[43, 'Private', 'Dropout', ..., 0, 50, 'United-States'],
...,
[23, 'Private', 'High School grad', ..., 0, 40, 'United-States'],
[45, 'Local-gov', 'Doctorate', ..., 0, 45, 'United-States'],
[25, 'Private', 'High School grad', ..., 0, 48, 'United-States']],

dtype=object)

Model definition

The model fitted in the xgboost fitting example will be explained. The confusion matrix of this model is shown below.

[11]: def plot_conf_matrix(y_test, y_pred, class_names):
"""
Plots confusion matrix. Taken from:
http://queirozf.com/entries/visualizing-machine-learning-models-examples-with-scikit-

→˓learn-and-matplotlib
"""

matrix = confusion_matrix(y_test,y_pred)

place labels at the top
plt.gca().xaxis.tick_top()
plt.gca().xaxis.set_label_position('top')

plot the matrix per se
plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.Blues)

plot colorbar to the right
plt.colorbar()

fmt = 'd'
(continues on next page)

464 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

write the number of predictions in each bucket
thresh = matrix.max() / 2.
for i, j in product(range(matrix.shape[0]), range(matrix.shape[1])):

if background is dark, use a white number, and vice-versa
plt.text(j, i, format(matrix[i, j], fmt),

horizontalalignment="center",
color="white" if matrix[i, j] > thresh else "black")

tick_marks = np.arange(len(class_names))
plt.xticks(tick_marks, class_names, rotation=45)
plt.yticks(tick_marks, class_names)
plt.tight_layout()
plt.ylabel('True label',size=14)
plt.xlabel('Predicted label',size=14)
plt.show()

def predict(xgb_model, dataset, proba=False, threshold=0.5):
"""
Predicts labels given a xgboost model that outputs raw logits.
"""

y_pred = model.predict(dataset) # raw logits are predicted
y_pred_proba = invlogit(y_pred)
if proba:

return y_pred_proba
y_pred_class = np.zeros_like(y_pred)
y_pred_class[y_pred_proba >= threshold] = 1 # assign a label

return y_pred_class

[12]: model = xgb.Booster()
model.load_model('assets/adult_xgb.mdl')

[13]: y_pred_train = predict(model, dtrain)
y_pred_test = predict(model, dtest)

[14]: plot_conf_matrix(y_test, y_pred_test, target_names)

8.14. Tree SHAP 465

alibi Documentation, Release 0.9.5dev

[15]: print(f'Train accuracy: {round(100*accuracy_score(y_train, y_pred_train), 4)} %.')
print(f'Test accuracy: {round(100*accuracy_score(y_test, y_pred_test), 4)}%.')

Train accuracy: 87.75 %.
Test accuracy: 86.3672%.

Explaining xgboost with interventional Tree SHAP: global knowledge from local explanations

Recall that the goal of shap values computation for an instance 𝑥 is to attribute the difference 𝑓(𝑥) − E𝒟[𝑓(𝑥)] to
𝑀 input features. Here 𝒟 represents the background data. Unlike the path-dependent perturbation algorithm which
exploits the tree structure and cover information (derived from the training data) to obviate the need for a background
dataset, the interventional perturbation algorithm follows a similar idea to Kernel SHAP and uses a background dataset
to compute the expected value as the average of the leaves where the background samples fall plus the baseline model
offset (1) . As explained in the algorithm overview, this allows explaining nonlinear transformations of the model
output, so this method can be used to explain loss function fluctuations.

As discussed in [1] and detailed in the overview, this perturbation method enforces the conditional independence
𝑥𝑆 ⊥ 𝑥𝑆 where 𝑆 is a subset of missing features. This section shows that this method is consistent with the path-
dependent perturbation method, in the sense that it leads to very similar analysis conclusions assuming an appropriate
background dataset is used.

Because the background dataset contains 30, 000 examples, the next part of the example would be in principle a long
running. In practice, sufficient accuracy can be achieved using a couple of hundred samples (the library authors
recommend anywhere between 100 and 1000 examples), provided that the samples chosen represent the underlying
distribution accurately (i.e., they cover the entire support of the distribution). You can skip the computation by setting
COMPUTE_SHAP = False and can load the results by calling the load_shap_values function.

Warning
The upstream implementation of interventional TreeShap supports only up to 100 samples in the background
dataset. A larger background dataset will be sampled with replacement to 100 instances. Some of the issues related
to this limitation have been reported here and here. Thus, we will use only 100 background samples for the following
experiments.

466 Chapter 8. Examples

https://docs.seldon.io/projects/alibi/en/stable/methods/KernelSHAP.html
https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html
https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html
https://github.com/slundberg/shap/issues/2487
https://github.com/slundberg/shap/issues/1991

alibi Documentation, Release 0.9.5dev

[16]: background_indices = np.random.choice(len(X_train), size=100, replace=False)
background_data = X_train[background_indices]

tree_explainer_interventional = TreeShap(model, model_output='raw', task='classification
→˓')
tree_explainer_interventional.fit(background_data=background_data)

COMPUTE_SHAP = False # whether to compute the SHAP values from scratch (the computation␣
→˓is quite fast).

if COMPUTE_SHAP:
explanation = tree_explainer_interventional.explain(X_test)

with open('assets/shap_interv.pkl', 'wb') as f:
pickle.dump(explanation.shap_values[0], f)

Predictor returned a scalar value. Ensure the output represents a probability or␣
→˓decision score as opposed to a classification label!

[17]: def load_shap_values():
with open('assets/shap_interv.pkl', 'rb') as f:

shap_interventional = pickle.load(f)

return shap_interventional

[18]: interventional_shap_values = load_shap_values()

Note that the local accuracy property holds for all examples.

[19]: errs = np.abs(model.predict(dtest) - tree_explainer_interventional.expected_value -␣
→˓interventional_shap_values.sum(1))
print(Counter(np.round(errs, 2)))

Counter({0.0: 2560})

[20]: shap.summary_plot(interventional_shap_values, X_test, feature_names)

8.14. Tree SHAP 467

alibi Documentation, Release 0.9.5dev

Figure 1: Summary plot of the interventional perturbation Tree SHAP explanations for the test set

[21]: shap.summary_plot(interventional_shap_values, X_test, feature_names, plot_type='bar')

468 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Figure 2: Most important features as predicted by the interventional perturbation Tree SHAP algorithm

One might be tempted to proceed to compare the feature rankings displayed above with the ranking provided by the
path-dependent Tree SHAP example. However, these algorithms have different ways of estimating the effect of missing
features and:

1. The length of the bar represents the average magnitude of the points in the summary plot above; each point is
the average of the shap values computed for a given instance 𝑥 with respect to 𝑅 different background samples.
Hence, one can consider that for each instance to be explained the shap value of the 𝑗th feature is a random
variable, denoted by Φ𝑖,𝑗 . One way to define the importance of the 𝑗th feature, 𝐼𝑗 , is

𝐼𝑗 =
1

𝑁

𝑁∑︁
𝑖=1

|E[Φ𝑖,𝑗]|,

where the expectation is taken over the background distribution and 𝑁 is the number of instances explained. This
corresponds to the notion of feature importance according to which a feature is important for explaining the model
behaviour over a given dataset if:

• either the instances to explained are consistently affected by the feature, or the feature has a particularly large
impact for certain subgroups and a small or moderate impact for the remainder. Traditional global explanation
feature importances hide this information whereas the summary plot reveals why a particular feature was deemed
important

• locally, one also requires that cancellation effects are not significant. In other words, for a particular instance,
a feature would be considered as not important if, across different backgrounds, cancellation effects result in a
small average for the effect.

It should be noted that the error 𝐼𝑗 is inversely proportional to the square root of the size of the background dataset for a
given dataset to be explained, so it is important to select a sufficient number of background samples in order to reduce
the error of this estimate.

8.14. Tree SHAP 469

alibi Documentation, Release 0.9.5dev

2. The two methods explain the dataset with respect to different expected values, so the contributions will be dif-
ferent. This also arises because of the different set of conditional assumptions are made when estimating the
individual contributions, as explained in the algorithm overview.

Instead of analysing feature importance rankings, it is perhaps more instructive to look at the dependence plots and see
if the conclusions from the previous model interpretation hold. Although the decision plots in Figure 3 show the same
patterns as their counterparts in the path-dependent example, different variables are found to have the strongest interac-
tion with the variables of interest so the colouring of the plot is different. This is expected since the different conditional
independence assumptions give rise to different magnitudes for the shap values, and therefore the estimations for the
Pearson coefficients will be affected.

[22]: def _dependence_plot(features, shap_values, dataset, feature_names, category_map,␣
→˓display_features=None, **kwargs):
"""
Plots dependence plots of specified features in a grid.

features: List[str], List[Tuple[str, str]]
Names of features to be plotted. If List[str], then shap
values are plotted as a function of feature value, coloured
by the value of the feature determined to have the strongest
interaction (empirically). If List[Tuple[str, str]], shap
interaction values are plotted.

display_features: np.ndarray, N x F
Same as dataset, but contains human readable values
for categorical levels as opposed to numerical values

"""

def _set_fonts(fig, ax, fonts=None, set_cbar=False):
"""
Sets fonts for axis labels and colobar.
"""

ax.xaxis.label.set_size(xlabelfontsize)
ax.yaxis.label.set_size(ylabelfontsize)
ax.tick_params(axis='x', labelsize=xtickfontsize)
ax.tick_params(axis='y', labelsize=ytickfontsize)
if set_cbar:

fig.axes[-1].tick_params(labelsize=cbartickfontsize)
fig.axes[-1].tick_params(labelrotation=cbartickrotation)
fig.axes[-1].yaxis.label.set_size(cbarlabelfontsize)

parse plotting args
figsize = kwargs.get("figsize", (15, 10))
nrows = kwargs.get('nrows', len(features))
ncols = kwargs.get('ncols', 1)
xlabelfontsize = kwargs.get('xlabelfontsize', 14)
xtickfontsize = kwargs.get('xtickfontsize', 11)
ylabelfontsize = kwargs.get('ylabelfontsize', 14)
ytickfontsize = kwargs.get('ytickfontsize', 11)
cbartickfontsize = kwargs.get('cbartickfontsize', 14)
cbartickrotation = kwargs.get('cbartickrotation', 10)
cbarlabelfontsize = kwargs.get('cbarlabelfontsize', 14)
rotation_orig = kwargs.get('xticklabelrotation', 25)

(continues on next page)

470 Chapter 8. Examples

https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html

alibi Documentation, Release 0.9.5dev

(continued from previous page)

alpha = kwargs.get("alpha", 1)
x_jitter_orig = kwargs.get("x_jitter", 0.8)
grouped_features = list(zip_longest(*[iter(features)] * ncols))

fig, axes = plt.subplots(nrows, ncols, figsize=figsize)
if nrows == len(features):

axes = list(zip_longest(*[iter(axes)] * 1))

for i, (row, group) in enumerate(zip(axes, grouped_features), start=1):
plot each feature or interaction in a subplot
for ax, feature in zip(row, group):

set x-axis ticks and labels and x-jitter for categorical variables
if not feature:

continue
if isinstance(feature, list) or isinstance(feature, tuple):

feature_index = feature_names.index(feature[0])
else:

feature_index = feature_names.index(feature)
if feature_index in category_map:

ax.set_xticks(np.arange(len(category_map[feature_index])))
if i == nrows:

rotation = 90
else:

rotation = rotation_orig
ax.set_xticklabels(category_map[feature_index], rotation=rotation,␣

→˓fontsize=22)
x_jitter = x_jitter_orig

else:
x_jitter = 0

shap.dependence_plot(feature,
shap_values,
dataset,
feature_names=feature_names,
display_features=display_features,
interaction_index='auto',
ax=ax,
show=False,
x_jitter=x_jitter,
alpha=alpha
)

if i!= nrows:
ax.tick_params('x', labelrotation=rotation_orig)

_set_fonts(fig, ax, set_cbar=True)

plot_dependence = partial(
_dependence_plot,
feature_names=feature_names,
category_map=category_map,

)

8.14. Tree SHAP 471

alibi Documentation, Release 0.9.5dev

Warning
For the following plots to run the matplotlib version needs to be <3.5.0. This is because of an upstream issue of
how the shap.dependence_plot function is handled in the shap library. An issue tracking it can be found here.

[23]: plot_dependence(['Marital Status', 'Age', 'Hours per week', 'Occupation'],
interventional_shap_values,
X_test,
display_features=X_display,
nrows=2,
ncols=2,
figsize=(22, 10),
alpha=0.5)

Figure 3: Decision plots of the variables Marital Status, Age, Sex, Race, Occupation, Education using the
interventional perturbation Tree SHAP algorithm for the test set

By changing, value of feature below, one can recolour the decision plots according to the interactions estimate from
the path-dependent perturbation example. Generally, the same interaction patterns are observed, with the exception of
Age, where the interaction with the Capital Gain feature is not conclusive.

[24]: path_dep_interactions = {
'Marital Status': 'Hours per week',
'Age': 'Capital Gain',
'Hours per week': 'Age',
'Occupation': 'Sex',

}

[25]: feature = 'Occupation'
x_jitter = 0.5 if feature in ['Occupation', 'Marital Status'] else 0
shap.dependence_plot(feature,

interventional_shap_values,
X_test,

(continues on next page)

472 Chapter 8. Examples

https://github.com/slundberg/shap/issues/2273

alibi Documentation, Release 0.9.5dev

(continued from previous page)

feature_names=feature_names,
display_features=X_display,
interaction_index=path_dep_interactions[feature],
alpha=0.5,
x_jitter=x_jitter

)

If interaction effects are of interest, these can be computed exactly using the path-dependent perturbation algorithm as
opposed to approximated.

White-box vs black-box model explanations: a comparison with Kernel SHAP

The main drawback of model-agnostic methods such as Kernel SHAP is their sample complexity, which leads to
variability in the results obtained. Given enough samples, the feature attributions estimated Kernel SHAP algorithm
approach their exact values and give rise to the same feature importance rankings, as shown below.

Below, both the Tree SHAP and Kernel SHAP algorithms are used to explain 100 instances from the test set using a
background dataset of 100 samples (recall the background dataset size limitation of interventional TreeShap). For the
Kernel SHAP algorithm, each explanation is computed 10 times to account for the variability in the estimation.

[26]: n_background_samples = 100 # same background dataset size limitation of interventional␣
→˓TreeShap
n_explained = 100
background_dataset, y_background = resample(X_train, y_train, n_samples=n_background_
→˓samples, replace=False, random_state=0)

8.14. Tree SHAP 473

https://docs.seldon.io/projects/alibi/en/stable/methods/KernelSHAP.html

alibi Documentation, Release 0.9.5dev

[27]: X_display_background = decode_data(background_dataset)
X_explain = X_test[:n_explained, :]

[28]: tree_explainer = TreeShap(model, model_output='raw', task='classification')
tree_explainer.fit(background_dataset)
explanation = tree_explainer.explain(X_explain)
tree_shap_values = explanation.shap_values[0]

Predictor returned a scalar value. Ensure the output represents a probability or␣
→˓decision score as opposed to a classification label!

xgboost requires the model inputs to be a DMatrix instance, so predict_fcn needs to account for this transformation
to avoid errors.

[29]: predict_fcn = lambda x: model.predict(xgb.DMatrix(x, feature_names=feature_names))
kernel_explainer = KernelShap(predict_fcn)

[30]: kernel_explainer.fit(background_dataset)

Predictor returned a scalar value. Ensure the output represents a probability or␣
→˓decision score as opposed to a classification label!

[30]: KernelShap(meta={
'name': 'KernelShap',
'type': ['blackbox'],
'task': 'classification',
'explanations': ['local', 'global'],
'params': {

'link': 'identity',
'group_names': None,
'grouped': False,
'groups': None,
'weights': None,
'summarise_background': False,
'summarise_result': None,
'transpose': False,
'kwargs': {}}

,
'version': '0.7.1dev'}

)

To assess convergence, Kernel SHAP is run with the numbers of samples specified in n_samples for n_runs. Since
the computation is quite slow, you can skip the computation and can load the precomputed results by setting
COMPUTE_SHAP = False.

[31]: n_runs = 5
There is no point going beyond 2^(num_features) = 2^12 since larger number will be␣
→˓truncated to 2^(num_features).
2^(num_features) represents the maximum number of enumerable subsets of the set of␣
→˓input features.
n_samples = [64, 128, 512, 1024, 4096]

[32]: COMPUTE_SHAP = False # whether to compute the SHAP values from scratch (the computation␣
→˓is quite slow).

(continues on next page)

474 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

if COMPUTE_SHAP:
results = defaultdict(list)
times = defaultdict(list)

for n_samp in n_samples:
print(f"Number of samples {n_samp}")
for run in range(n_runs):

t_start = timer()
exp = kernel_explainer.explain(X_explain, nsamples=n_samp, l1_reg=False)
t_end = timer()
times[str(n_samp)].append(t_end - t_start)
results[str(n_samp)].append(exp.shap_values[0])

results['time'] = times

with open('assets/kernel_convergence.pkl', 'wb') as f:
pickle.dump(results, f)

[33]: with open('assets/kernel_convergence.pkl', 'rb') as f:
convergence_data = pickle.load(f)

To compare the two algorithms, the mean absolute deviation from the ground truth provided by the Tree SHAP algo-
rithm with interventional feature perturbation is computed. For each number of samples, either the maximum mean
absolute deviation across the feature, or the mean of this quantity across the features is computed. This calculation can
be performed for one instance, or averaged across an entire distribution. The plots below show that all these quanti-
ties approach to the ground truth values. A threshold of 1% from the effect of the most important feature (Marital
Status) is depicted.

[34]: def get_errors(tree_shap_values, convergence_data, instance_idx=None):
"""
Compute the mean and max maximum absolute deviation of Kernel SHAP values
from Tree SHAP values for a specific instance or as an average over instances.
If instance_idx is set, then the errors are computed at instance level.
"""

mad = []
for key in convergence_data:

if key != 'time':
mad.append(np.abs(tree_shap_values - np.mean(convergence_data[key], axis=0)))

if instance_idx is not None:
err_max = [max(x[instance_idx, :]) for x in mad]
err_mean =[np.mean(x[instance_idx, :]).item() for x in mad]

else:
err_max = [max(x.mean(axis=0)) for x in mad]
err_mean =[np.mean(x.mean(axis=0)).item() for x in mad]

return err_max, err_mean

def plot_convergence(err_mean, err_max, n_samples, threshold, instance_idx=None):
(continues on next page)

8.14. Tree SHAP 475

alibi Documentation, Release 0.9.5dev

(continued from previous page)

"""
Plots the average error across the features and the maximum error across
features as a function of the number of samples Kernel SHAP uses to estimate
the contributions.
"""

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))

ax1.loglog(n_samples, err_max, '--*')
ax1.plot([0] + n_samples, [threshold]*(len(n_samples)+1), '--', color='gray',␣

→˓linewidth='3')
ax1.grid(True)
ax1.set_ylabel('Estimation error (max over all features)')
ax1.set_xlabel('Number of samples')

ax2.loglog(n_samples, err_mean, '--*')
ax2.plot([0] + n_samples, [threshold]*(len(n_samples)+1), '--', color='gray',␣

→˓linewidth='3')
ax2.grid(True)
ax2.set_ylabel('Estimation error (mean over all features)')
ax2.set_xlabel('Number of samples')
if instance_idx is not None:

plt.suptitle(f'Convergence of the Kernel SHAP algorithm to exact shap values␣
→˓(instance {instance_idx})')
else:

plt.suptitle('Convergence of the Kernel SHAP algorithm to exact shap values␣
→˓(mean)')

[35]: threshold = 0.01 * np.max(np.mean(np.abs(tree_shap_values), axis=0))

[36]: err_max, err_mean = get_errors(tree_shap_values, convergence_data, instance_idx=0)
plot_convergence(err_max, err_mean, n_samples, threshold, instance_idx=0)

Figure 4: Converge of Kernel SHAP to true values according to the maximum error (left) and mean error (right) for
instance 0

476 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

[37]: e_err_max, e_err_mean = get_errors(tree_shap_values, convergence_data)
plot_convergence(e_err_max, e_err_mean, n_samples, threshold)

Figure 5: Converge of Kernel SHAP according to the maximum error (left) and mean error (right) averaged across 100
instances

If a high enough number of samples is selected, the algorithms yield the same global patterns, as shown below.

[38]: n_explained = 500
X_explained = X_test[:n_explained, :]
explanation_500_kernel = kernel_explainer.explain(X_explained, nsamples=1024, l1_
→˓reg=False)
shap_values_500_kernel = explanation_500_kernel.shap_values[0]

0%| | 0/500 [00:00<?, ?it/s]

[39]: explanation_500_tree = tree_explainer.explain(X_explained)
shap_values_500_tree = explanation_500_tree.shap_values[0]

Again, we can observe that the local accuracy holds.

[40]: errs = np.round(np.abs(model.predict(xgb.DMatrix(X_explained, feature_names=feature_
→˓names)) - tree_explainer.expected_value - shap_values_500_tree.sum(1)), 2)
print(Counter(errs))

Counter({0.0: 500})

[41]: shap.summary_plot(shap_values_500_tree, X_explained, feature_names)

8.14. Tree SHAP 477

alibi Documentation, Release 0.9.5dev

While the Tree SHAP values take a few seconds to compute, the Kernel SHAP takes a few minutes to provide estimates
for the shap values. Note that this is also a consequence of the fact that the implementation of Tree SHAP is distributed.

[42]: shap.summary_plot(shap_values_500_tree, X_explained, feature_names, plot_type='bar')

478 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Figure 6: Feature importances estimated using the interventional feature perturbation Tree SHAP algorithm

[43]: shap.summary_plot(shap_values_500_kernel, X_explained, feature_names, plot_type='bar')

8.14. Tree SHAP 479

alibi Documentation, Release 0.9.5dev

Figure 7: Feature importances estimated using the Kernel SHAP algorithm

[44]: print(f"Max absolute deviation from ground truth: {np.round(np.max(np.abs(shap_values_
→˓500_tree - shap_values_500_kernel)), 4)}.")
print(f"Min absolute deviation from ground truth: {np.round(np.min(np.abs(shap_values_
→˓500_tree - shap_values_500_kernel)), 4)}.")

Max absolute deviation from ground truth: 0.0443.
Min absolute deviation from ground truth: 0.0.

Since the errors incurred in estimating the shap values are relatively small, the feature importance rankings shown in
Figures 6 and 7 are identical.

[45]: average_prediction = model.predict(xgb.DMatrix(background_dataset, feature_names=feature_
→˓names)).mean()
kernel_exp_value = kernel_explainer.expected_value
tree_exp_value = tree_explainer.expected_value
print(f"Average prediction on background data is the expected value of kernel explainer:
→˓{np.abs(average_prediction - kernel_exp_value) < 1e-3}")
print(f"Average expected value for kernel explainer is the same as the tree explainer:
→˓{np.abs(kernel_exp_value - tree_exp_value) < 1e-3}")

Average prediction on background data is the expected value of kernel explainer: True
Average expected value for kernel explainer is the same as the tree explainer: True

The expected values of the two explainers are approximately the same.

[46]: print(f"The difference between the expected values is {np.round(np.abs(kernel_exp_value -
→˓ tree_exp_value),2)}.")

The difference between the expected values is 0.0.

References

[1] Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N.
and Lee, S.I., 2020. From local explanations to global understanding with explainable AI for trees. Nature machine
intelligence, 2(1), pp.56-67.

8.14.2 Explaining Tree Models with Path-Dependent Feature Perturbation Tree
SHAP

Note
To enable SHAP support, you may need to run

pip install alibi[shap]

[]: # shap.summary_plot currently doesn't work with matplotlib>=3.6.0,
see bug report: https://github.com/slundberg/shap/issues/2687
!pip install matplotlib==3.5.3

480 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Introduction

This example shows how to apply path-dependent feature perturbation Tree SHAP to compute shap values exactly
for an xgboost model fitted to the Adult dataset (binary classification task). An example of how to decompose the
contribution of any given feature into a main effect and interactions with other features is also presented.

This example will use the xgboost library, which can be installed with:

[]: !pip install xgboost

[1]: import pickle
import shap
shap.initjs()

import numpy as np
import matplotlib.pyplot as plt
import xgboost as xgb

from alibi.datasets import fetch_adult
from alibi.explainers import TreeShap
from functools import partial
from itertools import product, zip_longest
from scipy.special import expit
invlogit=expit
from sklearn.metrics import accuracy_score, confusion_matrix

from timeit import default_timer as timer

<IPython.core.display.HTML object>

Data preparation

Load and split

The fetch_adult function returns a Bunch object containing the features, targets, feature names and a mapping of
categorical variables to numbers.

[2]: adult = fetch_adult()
adult.keys()

[2]: dict_keys(['data', 'target', 'feature_names', 'target_names', 'category_map'])

[3]: data = adult.data
target = adult.target
target_names = adult.target_names
feature_names = adult.feature_names
category_map = adult.category_map

Note that for your own datasets you can use the utility function gen_category_map imported from alibi.utils to
create the category map.

[4]: np.random.seed(0)
data_perm = np.random.permutation(np.c_[data, target])

(continues on next page)

8.14. Tree SHAP 481

https://github.com/dmlc/xgboost

alibi Documentation, Release 0.9.5dev

(continued from previous page)

data = data_perm[:,:-1]
target = data_perm[:,-1]

[5]: idx = 30000
X_train,y_train = data[:idx,:], target[:idx]
X_test, y_test = data[idx+1:,:], target[idx+1:]

xgboost wraps arrays using DMatrix objects, optimised for both memory efficiency and training speed.

[6]: def wrap(arr):
return np.ascontiguousarray(arr)

dtrain = xgb.DMatrix(
wrap(X_train),
label=wrap(y_train),
feature_names=feature_names,

)

dtest = xgb.DMatrix(wrap(X_test), label=wrap(y_test), feature_names=feature_names)

Finally, a matrix that contains the raw string values for categorical variables (used for display) is created:

[7]: def _decode_data(X, feature_names, category_map):
"""
Given an encoded data matrix `X` returns a matrix where the
categorical levels have been replaced by human readable categories.
"""

X_new = np.zeros(X.shape, dtype=object)
for idx, name in enumerate(feature_names):

categories = category_map.get(idx, None)
if categories:

for j, category in enumerate(categories):
encoded_vals = X[:, idx] == j
X_new[encoded_vals, idx] = category

else:
X_new[:, idx] = X[:, idx]

return X_new

decode_data = partial(_decode_data, feature_names=feature_names, category_map=category_
→˓map)

[8]: X_display = decode_data(X_test)

[9]: X_display

[9]: array([[52, 'Private', 'Associates', ..., 0, 60, 'United-States'],
[21, 'Private', 'High School grad', ..., 0, 20, 'United-States'],
[43, 'Private', 'Dropout', ..., 0, 50, 'United-States'],
...,
[23, 'Private', 'High School grad', ..., 0, 40, 'United-States'],

(continues on next page)

482 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

[45, 'Local-gov', 'Doctorate', ..., 0, 45, 'United-States'],
[25, 'Private', 'High School grad', ..., 0, 48, 'United-States']],

dtype=object)

Model definition

The model fitted in the xgboost fitting example will be explained. The confusion matrix of this model is shown below:

[10]: def plot_conf_matrix(y_test, y_pred, class_names):
"""
Plots confusion matrix. Taken from:
http://queirozf.com/entries/visualizing-machine-learning-models-examples-with-scikit-

→˓learn-and-matplotlib
"""

matrix = confusion_matrix(y_test,y_pred)

place labels at the top
plt.gca().xaxis.tick_top()
plt.gca().xaxis.set_label_position('top')

plot the matrix per se
plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.Blues)

plot colorbar to the right
plt.colorbar()

fmt = 'd'

write the number of predictions in each bucket
thresh = matrix.max() / 2.
for i, j in product(range(matrix.shape[0]), range(matrix.shape[1])):

if background is dark, use a white number, and vice-versa
plt.text(j, i, format(matrix[i, j], fmt),

horizontalalignment="center",
color="white" if matrix[i, j] > thresh else "black")

tick_marks = np.arange(len(class_names))
plt.xticks(tick_marks, class_names, rotation=45)
plt.yticks(tick_marks, class_names)
plt.tight_layout()
plt.ylabel('True label',size=14)
plt.xlabel('Predicted label',size=14)
plt.show()

def predict(xgb_model, dataset, proba=False, threshold=0.5):
"""
Predicts labels given a xgboost model that outputs raw logits.
"""

(continues on next page)

8.14. Tree SHAP 483

alibi Documentation, Release 0.9.5dev

(continued from previous page)

y_pred = model.predict(dataset) # raw logits are predicted
y_pred_proba = invlogit(y_pred)
if proba:

return y_pred_proba
y_pred_class = np.zeros_like(y_pred)
y_pred_class[y_pred_proba >= threshold] = 1 # assign a label

return y_pred_class

[11]: model = xgb.Booster()
model.load_model('assets/adult_xgb.mdl')

[12]: y_pred_train = predict(model, dtrain)
y_pred_test = predict(model, dtest)

[13]: plot_conf_matrix(y_test, y_pred_test, target_names)

Figure 1: Model confusion matrix

[14]: print(f'Train accuracy: {round(100*accuracy_score(y_train, y_pred_train), 4)} %.')
print(f'Test accuracy: {round(100*accuracy_score(y_test, y_pred_test), 4)}%.')

Train accuracy: 87.75 %.
Test accuracy: 86.6797%.

484 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Explaining xgboost via global feature importance

Locally, one could interpret an outcome predicted by a decision tree by analysing the path followed by the sample
through the tree (known as the decision path). However, for xgboost the final decision depends on the number of
boosting rounds so this technique is not practical. Moreover, this approach only informs one about which features
factored in the decision of the algorithm but nothing about the relative importance of the features. Such a view can
only be obtained at a global level, for example, by combining information from decision paths of all ensemble members.
The xgboost library offers the following measures of feature importance for a feature:

• weight - the number of times a feature is used to split the data across all trees

• gain - the average gain (that is, contribution to the model output) across all splits the feature is used in

• cover(1) - the average coverage across all splits the feature is used in

• total_gain - the total gain across all splits the feature is used in

• total_cover - the total coverage across all splits the feature is used in.

Therefore, one is first faced with the task of choosing a notion of feature importance before interpreting their model.
As shown below, different notions of feature importance lead to different explanations for the same model.

[15]: def _get_importance(model, measure='weight'):
"""
Retrieves the feature importances from an xgboost
models, measured according to the criterion `measure`.
"""

imps = model.get_score(importance_type=measure)
names, vals = list(imps.keys()), list(imps.values())
sorter = np.argsort(vals)
s_names, s_vals = tuple(zip(*[(names[i], vals[i]) for i in sorter]))

return s_vals[::-1], s_names[::-1]

def plot_importance(feat_imp, feat_names, ax=None, **kwargs):
"""
Create a horizontal barchart of feature effects, sorted by their magnitude.
"""

left_x, step ,right_x = kwargs.get("left_x", 0), kwargs.get("step", 50), kwargs.get(
→˓"right_x")

xticks = np.arange(left_x, right_x, step)
xlabel = kwargs.get("xlabel", 'Feature effects')
xposfactor = kwargs.get("xposfactor", 1)
textfont = kwargs.get("text_fontsize", 25) # 16
yticks_fontsize = kwargs.get("yticks_fontsize", 25)
xlabel_fontsize = kwargs.get("xlabel_fontsize", 30)
textxpos = kwargs.get("textxpos", 60)
textcolor = kwargs.get("textcolor", 'white')

if ax:
fig = None

else:
fig, ax = plt.subplots(figsize=(10, 5))

(continues on next page)

8.14. Tree SHAP 485

alibi Documentation, Release 0.9.5dev

(continued from previous page)

y_pos = np.arange(len(feat_imp))
ax.barh(y_pos, feat_imp)
ax.set_yticks(y_pos)
ax.set_yticklabels(feat_names, fontsize=yticks_fontsize)
ax.set_xticklabels(xticks, fontsize=30, rotation=45)
ax.invert_yaxis() # labels read top-to-bottom
ax.set_xlabel(xlabel, fontsize=xlabel_fontsize)
ax.set_xlim(left=left_x, right=right_x)

for i, v in enumerate(feat_imp):
if v<0:

textxpos = xposfactor*textxpos
ax.text(v - textxpos, i + .25, str(round(v, 3)), fontsize=textfont,␣

→˓color=textcolor)
return ax, fig

get_importance = partial(_get_importance, model)

To demonstrate this, the feature importances obtained when the measures of importance are set to weight, total_gain
and gain are plotted below. The difference between the latter two is that the decrease in loss due to a feature is reported
as a sum (total_gain) and as an average across the splits (gain).

[16]: imp_by_weight_v, imp_by_weight_n = get_importance()
imp_by_gain_v, imp_by_gain_n = get_importance(measure='total_gain')
imp_by_a_gain_v, imp_by_a_gain_n = get_importance(measure='gain')

[17]: fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(62, 13))
plot_importance(imp_by_weight_v, imp_by_weight_n, ax=ax1, xlabel='Feature effects␣
→˓(weights)', textxpos=45, right_x=1000, step=200)
plot_importance(imp_by_gain_v, imp_by_gain_n, ax=ax2, xlabel='Feature effects (total␣
→˓gain)', textxpos=5, right_x=65000, step=10000, textcolor='black')
plot_importance(imp_by_a_gain_v, imp_by_a_gain_n, ax=ax3, xlabel='Feature effects (gain)
→˓', textxpos=0, right_x=250, step=50, textcolor='black')

[17]: (<matplotlib.axes._subplots.AxesSubplot at 0x7feb8944e650>, None)

Figure 2: Feature importances as measured by the total number of splits (left), total loss decrease due to feature (middle)
and average decrease in loss due to splitting on a particular feature (right)

When using the weight criterion for feature importance, all the continuous variables are ranked above categorical ones
in terms of feature importance. This occurs because these continuous variables can be split multiple times at different
levels in the tree, whereas binary variables such as Sex can only be used to partition the data once, so the expected
number of splits is smaller for such a variable. To avoid such biases, the feature importance can be quantified by using
the total and average gain in information (or, equivalently, decrease in objective). Although the Marital Status

486 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

feature was used to partition the data only 151 times, it contributed the most to decreasing the loss, both across the
entire ensemble and when averaged across the splits.

In general, the notion of importance should balance the information gain from making a split on a particular feature
with how frequently this feature is used for splitting. Features such as Age may have a large cumulative gain courtesy to
them being split on multiple times, but on average they may contribute less to the outcome compared to other features
such as Capital Gain which are also split on significant number of times.

However, despite mitigating some of the shortcomings of the split-frequency feature importance, the gain notion of
feature-importance suffers from lack of consistency, a property that allows one to compare feature effects across models.
The interested reader is referred to this example (page 22) published by Lundberg et al. for details. Such a problem
can be mitigated by defining the notion of feature importance with respect to Shapley values, which are consistent as
well as faithful to the model (locally).

Explaining xgboost with path-dependent Tree SHAP: global knowledge from local explanations

As described in the overview, the path-dependent feature perturbation Tree SHAP algorithm uses node-level statistics
(cover) extacted from the training data in order to estimate the effect of missing features on the model output. Since
tree structures also support efficient computation of the model outputs for all possible subsets of missing features, the
use of tree paths makes exact shap value estimation possible without a background dataset. In contrast, algorithms such
as Kernel SHAP use a background dataset to approximate shap values while interventional feature perturbation Tree
SHAP uses a background dataset to compute the effect of missing features on function output and exactly computes
the feature contributions given these values.

[18]: path_dependent_explainer = TreeShap(model, model_output='raw', task='classification')
path_dependent_explainer.fit() # does not require background_data

Setting feature_perturbation = "tree_path_dependent" because no background data was␣
→˓given.
Predictor returned a scalar value. Ensure the output represents a probability or␣
→˓decision score as opposed to a classification label!

[18]: TreeShap(meta={
'name': 'TreeShap',
'type': ['whitebox'],
'task': 'classification',
'explanations': ['local', 'global'],
'params': {'summarise_background': False, 'kwargs': {}}

})

Note that the model_output kwarg was set to raw, to indicate the fact that the model outputs log-odds ratios(2) . This
is the only option supported at this moment by this algorithm.

[19]: path_dependent_explanation = path_dependent_explainer.explain(X_test)
path_dependent_shap_values = path_dependent_explanation.shap_values[0]

The shap values computed in this way have the local accuracy property, as expected. That is, they sum to the difference
between the model output to be explained and the reference value.

[20]: np.max(np.abs(model.predict(dtest) - path_dependent_explainer.expected_value - path_
→˓dependent_shap_values.sum(1)))

[20]: 0.5000074921901536

The features which are most important for the predicting whether an individual makes an income greater than \$50,

8.14. Tree SHAP 487

https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-019-0138-9/MediaObjects/42256_2019_138_MOESM1_ESM.pdf
https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html

alibi Documentation, Release 0.9.5dev

000 are shown in Figure 3, where the feature importance of feature 𝑗 is defined as:

𝐼𝑗 =
1

𝑁

𝑁∑︁
𝑖=1

|𝜑𝑖,𝑗 |.

Here 𝑁 is the size of the explained dataset. According to this criterion, the Marital Status feature seems to be the
most important, followed by features such as Age or Capital Gain. This global view does not provide information
about the direction of the effect at individual level (i.e., whether the prediction that an individual earns more than $50,
000 is affected positively or negatively by a particular feature), the magnitude of the effect at individual level (i.e.,
whether the Marital Status feature, the most important globally, has a significant impact on the prediction about
each individual) or the prevalence of a particular effect (how many members of the population are affected in similar
ways by a particular feature).

[21]: shap.summary_plot(path_dependent_shap_values, X_test, feature_names, plot_type='bar')

Figure 3: Most important features as predicted by the path-dependent perturbation Tree SHAP algorithm

To answer such questions, the same feature ranking can be displayed in a summary plot (Figure 4), which is an aggre-
gation of local explanations. Note that at each feature, points with the same shap value pile up to show density.

[22]: shap.summary_plot(path_dependent_shap_values, X_test, feature_names, class_names=target_
→˓names)

488 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Figure 4: Summary plot of the path-dependent perturbation Tree SHAP explanations for the test set

[23]: from collections import Counter

feat_name = 'Marital Status'
decode_dict = {}
for i, val in enumerate(category_map[feature_names.index(feat_name)]):

decode_dict[i] = val
print("Mapping of feature encoded values to readable values", decode_dict)

Mapping of feature encoded values to readable values {0: 'Married', 1: 'Never-Married',␣
→˓2: 'Separated', 3: 'Widowed'}

The summary plot shows that being married increases the odds of making more than $50, 000 and that, with few
exceptions, being widowed decreases the odds of making an income above this threshold. Despite having a significant
effect in aggregate, the Age feature does not affect all individuals as significantly: the impact on the prediction of this
feature can be significantly negative for young individuals, making it unlikely that young individuals will be predicted
to earn more than $50, 0000. However, while in general elderly tend to be more wealthy, the impact of this feature can
be less significant compared to other “less important” features such as Capital Loss, Capital Gain or Education.

The tails in the summary plot of the Capital Loss feature indicate that while this feature is less important than
Education or Sex as far as the global model behaviour is concerned, for specific individuals this feature can be a
stronger predictor of the income class than the aforementioned features. This granularity in explanations is beyond the
reach of traditional methods for tree interpretability.

The vertical spread in the summary plots is indicative of feature interactions, which can be identified approximately,
as described in this example, through the shap dependence plot. The Model explanations with Shapley interaction
values section shows that Tree SHAP supports exact computation of Shapley interaction values which allow attributing
a change in an outcome not only to the features, but also to first order interactions between features.

8.14. Tree SHAP 489

alibi Documentation, Release 0.9.5dev

[24]: def _dependence_plot(features, shap_values, dataset, feature_names, category_map,␣
→˓display_features=None, **kwargs):
"""
Plots dependence plots of specified features in a grid.

features: List[str], List[Tuple[str, str]]
Names of features to be plotted. If List[str], then shap
values are plotted as a function of feature value, coloured
by the value of the feature determined to have the strongest
interaction (empirically). If List[Tuple[str, str]], shap
interaction values are plotted.

display_features: np.ndarray, N x F
Same as dataset, but contains human readable values
for categorical levels as opposed to numerical values

"""

def _set_fonts(fig, ax, fonts=None, set_cbar=False):
"""
Sets fonts for axis labels and colobar.
"""

ax.xaxis.label.set_size(xlabelfontsize)
ax.yaxis.label.set_size(ylabelfontsize)
ax.tick_params(axis='x', labelsize=xtickfontsize)
ax.tick_params(axis='y', labelsize=ytickfontsize)
if set_cbar:

fig.axes[-1].tick_params(labelsize=cbartickfontsize)
fig.axes[-1].tick_params(labelrotation=cbartickrotation)
fig.axes[-1].yaxis.label.set_size(cbarlabelfontsize)

parse plotting args
figsize = kwargs.get("figsize", (15, 10))
nrows = kwargs.get('nrows', len(features))
ncols = kwargs.get('ncols', 1)
xlabelfontsize = kwargs.get('xlabelfontsize', 14)
xtickfontsize = kwargs.get('xtickfontsize', 11)
ylabelfontsize = kwargs.get('ylabelfontsize', 14)
ytickfontsize = kwargs.get('ytickfontsize', 11)
cbartickfontsize = kwargs.get('cbartickfontsize', 14)
cbartickrotation = kwargs.get('cbartickrotation', 10)
cbarlabelfontsize = kwargs.get('cbarlabelfontsize', 14)
rotation_orig = kwargs.get('xticklabelrotation', 25)

alpha = kwargs.get("alpha", 1)
x_jitter_orig = kwargs.get("x_jitter", 0.8)
grouped_features = list(zip_longest(*[iter(features)] * ncols))

fig, axes = plt.subplots(nrows, ncols, figsize=figsize)
if nrows == len(features):

axes = list(zip_longest(*[iter(axes)] * 1))

(continues on next page)

490 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

for i, (row, group) in enumerate(zip(axes, grouped_features), start=1):
plot each feature or interaction in a subplot
for ax, feature in zip(row, group):

set x-axis ticks and labels and x-jitter for categorical variables
if not feature:

continue
if isinstance(feature, list) or isinstance(feature, tuple):

feature_index = feature_names.index(feature[0])
else:

feature_index = feature_names.index(feature)
if feature_index in category_map:

ax.set_xticks(np.arange(len(category_map[feature_index])))
if i == nrows:

rotation = 90
else:

rotation = rotation_orig
ax.set_xticklabels(category_map[feature_index], rotation=rotation,␣

→˓fontsize=22)
x_jitter = x_jitter_orig

else:
x_jitter = 0

shap.dependence_plot(feature,
shap_values,
dataset,
feature_names=feature_names,
display_features=display_features,
interaction_index='auto',
ax=ax,
show=False,
x_jitter=x_jitter,
alpha=alpha
)

if i!= nrows:
ax.tick_params('x', labelrotation=rotation_orig)

_set_fonts(fig, ax, set_cbar=True)

plot_dependence = partial(
_dependence_plot,
feature_names=feature_names,
category_map=category_map,

)

The dependence plots (Figure 5, below) reveal that the strongest interaction of the Marital Status shap values are
due to the Hours per week variable. Although the odds for earning in excess of $50, 000 are against people who are
not married or have separated, they tend to be more favourable for individuals working long hours.

As far as Age is concerned, the odds of earning more increase as a person ages, and, in general, this variable is used by
the model to assign individuals to a lower income class. People in their 30s-60s are thought to be more likely to make
an income over $50, 000 if their capital gains are high. Interestingly, for people over 60, high capital gains have a large
negative contribution to the odds of making large incomes, a pattern that is perhaps not intuitive.

As far as the Hours per week is concerned, one sees that older people working no to few hours a week are predicted
better odds for making a larger income, and that, up to a certain threshold (of approximately 60 hours), working more

8.14. Tree SHAP 491

alibi Documentation, Release 0.9.5dev

than 20 hours increases the odds of a > $50, 000 prediction for all ages.

Finally, note that not knowing the occupation hurts the odds of predicting a high income. No significant interactions be-
tween the sex of the individual (males in red), their occupation and their predicted odds are observed with the exception
of, perhaps, Admin and Blue Collar groups.

Warning
For the following plots to run the matplotlib version needs to be <3.5.0. This is because of an upstream issue of
how the shap.dependence_plot function is handled in the shap library. An issue tracking it can be found here.

[25]: plot_dependence(
['Marital Status', 'Age', 'Hours per week', 'Occupation'],
path_dependent_shap_values,
X_test,
alpha=0.5,
x_jitter=0.8,
nrows=2,
ncols=2,

)

Figure 5: Decision plot of Marital Status, Age, Hours per week, Occupation features using the path-dependent
perturbation Tree SHAP algorithm. Colouring is according to the value of the variable estimated to have the strongest
interaction with the plotted variable. Jitter in the x direction has been applied to categorical variables to improve
readability.

492 Chapter 8. Examples

https://github.com/slundberg/shap/issues/2273

alibi Documentation, Release 0.9.5dev

Performing local explanations across multiple instances efficiently can provide insight into how features contributed
to misclassifications and the most common causes of misclassification. This can be achieved by performing a similar
analysis for those individuals whose income was predicted below $50, 000 but who are known to make an income in
excess of this threshold.

[26]: # identify false negatives
misclassified = (np.logical_and(y_test == 1, y_pred_test == 0)).nonzero()[0]
X_misclassified = X_test[misclassified]
explain the predictions
shap_vals_misclassified = path_dependent_shap_values[misclassified, :]

The summary plot indicates that the feature with the most impact on misclassification is Marital Status and that
the model does not correctly capture the fact that individuals who were never married, widowed or separated can also
make high incomes.

[27]: shap.summary_plot(shap_vals_misclassified, X_misclassified, feature_names)

Figure 6: Summary plot of path-dependent perturbation Tree SHAP explanations for individuals misclassified as earn-
ing less than $50, 000.

[28]: X_misclassified_display = decode_data(X_misclassified)
plot_dependence(

['Marital Status', 'Age', 'Sex', 'Race', 'Occupation', 'Education'],
shap_vals_misclassified,
X_misclassified,
display_features=X_misclassified_display,
rotation=33,
figsize=(47.5, 22),
alpha=1,

(continues on next page)

8.14. Tree SHAP 493

alibi Documentation, Release 0.9.5dev

(continued from previous page)

x_jitter=0.5,
nrows=3,
ncols=2,
xlabelfontsize=24,
xtickfontsize=20,
xticklabelrotation=0,
ylabelfontsize=24,
ytickfontsize=21,
cbarlabelfontsize=22,
cbartickfontsize=20,
cbartickrotation=0,

)

Figure 7: Decision plots of the variables Marital Status, Age, Sex, Race, Occupation, Education using the
path-dependent Tree SHAP algorithm for individuals misclassified as earning less than $50, 000.

Analysing the plots above reveals that some of the patterns that can lead to misclassification are:

• individuals are not married or are divorced/widowed

• individuals below 40 years old are expected to earn less, across all occupation categories

• individuals are female; being single further increases the odds against the high income class

• racial bias does not seem to be one of the drivers of misclassification, although we can see that for Black people
the contribution is slightly negative whereas for white people the contribution is zero

• individuals being Blue-Collar workers, working in Admin jobs, the Service industry or individuals whose
occupation is unknown

• individuals having dropped out of education or being high school graduates

494 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Model explanations with Shapley interaction values

As described in the algorithm overview, path-dependent feature perturbation Tree Shap can attribute a change in out-
come not only to the 𝑀 input features, but to the 𝑀 features and the first-order interactions between them. For each
instance to be explained, a tensor of 𝑀 ×𝑀 numbers is returned. The diagonal of this tensor, indexed by (𝑖, 𝑖), rep-
resents the main effects (i.e., due to the feature itself) whereas the off-diagonal terms indexed by (𝑖, 𝑗) represent the
interaction between the :math:`i`th and the :math:`j`th feature in the input. Summing along the rows of an entry in
the Shapley interaction values tensor yields the 𝑀 shap values for that instance. Note that the interaction value is split
equally between each feature so the returned matrix is symmetric; the total interaction effect between feature 𝑖 and 𝑗 is
therefore obtained by adding the two symmetric entries (𝑖, 𝑗) and (𝑗, 𝑖).

[29]: shap_interactions_explanation = path_dependent_explainer.explain(X_test,␣
→˓interactions=True)

[30]: shap_interactions_values = shap_interactions_explanation.shap_interaction_values[0]

Plots of the interactions between the features Age, Sex, Education and Occupation with Capital Gain are shown
below.

[31]: plot_dependence(
[('Age', 'Capital Gain'),
('Sex', 'Capital Gain'),
('Education', 'Capital Gain'),
('Occupation', 'Capital Gain'),
],
shap_interactions_values,
X_test,
figsize=(30,16.5),
rotation=15,
ncols=2,
nrows=2,
display_features=X_display,
xtickfontsize=20,
xlabelfontsize=20,
ylabelfontsize=20,
ytickfontsize=17,
cbarlabelfontsize=20,
cbartickfontsize=18,

)

8.14. Tree SHAP 495

https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html

alibi Documentation, Release 0.9.5dev

Figure 11: Shap interaction values for the features Age, Sex, Education and Occupation with Capital Gain

The model has captured the following patterns:

• The interaction between Age and Capital gain increases the odds of predicting an income >$50, 000 for most
individuals below 60 years old but significantly decreases the odds for individuals above 60 years old. This
interaction has no effect when the individuals don’t have any capital gains

• For females, capital gains generally increase the prediction odds while for males they decrease them, although
these latter interactions are much smaller in magnitude

• Having a capital gain and education level at Masters and Prof-School or High School grad decreases the
prediction odds for higher income

• For most individuals in occupation categories Professional and Sales, high capital gains slightly reduce the
odds of predicting >$50, 000. For White-Collar individuals, high capital gain can both increase or decrease
the odds.

The plot_decomposition function can be used to decompose the shap values of a particular feature into a set of shap
values that do not account for the interaction with a specific feature and the interaction values with that specific feature,
as shown below. This is depicted in Figure 12.

[32]: def plot_decomposition(feature_pair, shap_interaction_vals, features, feat_names,␣
→˓display_features=None, **kwargs):
"""
Given a list containing two feature names (`feature_pair`), an n_instances x n_

→˓features x n_features tensor
of shap interaction values (`shap_interaction_vals`), an n_instances x n_features␣

→˓(`features`) tensor of
feature values and a list of feature names (which assigns a name to each column of␣

(continues on next page)

496 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

→˓`features`), this function
plots:

- left: shap values for feature_pair[0] coloured by the value of feature_pair[1]
- middle: shap values for feature_pair[0] after subtracting the interaction with␣

→˓feature_pair[1]
- right: the interaction values between feature_pair[0] and feature_pair[1],␣

→˓which are subtracted
from the left plot to get the middle plot

NB: `display_features` is the same shape as `features` but should contain the raw␣
→˓categories for categorical
variables so that the colorbar can be discretised and the category names displayed␣

→˓alongside the colorbar.
"""

def _set_fonts(fig, ax, fonts=None, set_cbar=False):
"""
Sets fonts for axis labels and colobar.
"""

ax.xaxis.label.set_size(xlabelfontsize)
ax.yaxis.label.set_size(ylabelfontsize)
ax.tick_params(axis='x', labelsize=xtickfontsize)
ax.tick_params(axis='y', labelsize=ytickfontsize)
if set_cbar:

fig.axes[-1].tick_params(labelsize=cbartickfontsize)
fig.axes[-1].yaxis.label.set_size(cbarlabelfontsize)

parse plotting args
xlabelfontsize = kwargs.get('xlabelfontsize', 21)
ylabelfontsize = kwargs.get('ylabelfontsize', 21)
cbartickfontsize = kwargs.get('cbartickfontsize', 16)
cbarlabelfontsize = kwargs.get('cbarlabelfontsize', 21)
xtickfontsize = kwargs.get('xtickfontsize', 20)
ytickfontsize = kwargs.get('ytickfontsize', 20)
alpha = kwargs.get('alpha', 0.7)
figsize = kwargs.get('figsize', (44, 10))
ncols = kwargs.get('ncols', 3)
nrows = kwargs.get('nrows', 1)
compute shap values and shap values without interaction
feat1_idx = feat_names.index(feature_pair[0])
feat2_idx = feat_names.index(feature_pair[1])
shap values
shap_vals = shap_interaction_vals.sum(axis=2)
shap values for feat1, all samples
shap_val_ind1 = shap_interaction_vals[..., feat1_idx].sum(axis=1)
shap values for (feat1, feat2) interaction
shap_int_ind1_ind2 = shap_interaction_vals[:, feat2_idx, feat1_idx]
subtract effect of feat2
shap_val_minus_ind2 = shap_val_ind1 - shap_int_ind1_ind2
shap_val_minus_ind2 = shap_val_minus_ind2[:, None]

(continues on next page)

8.14. Tree SHAP 497

alibi Documentation, Release 0.9.5dev

(continued from previous page)

create plot

fig, (ax1, ax2, ax3) = plt.subplots(nrows, ncols, figsize=figsize)

plot the shap values including the interaction
shap.dependence_plot(feature_pair[0],

shap_vals,
features,
display_features = display_features,
feature_names=feat_names,
interaction_index=feature_pair[1],
alpha=alpha,
ax=ax1,
show=False)

_set_fonts(fig, ax1, set_cbar=True)

plot the shap values excluding the interaction
shap.dependence_plot(0,

shap_val_minus_ind2,
features[:, feat1_idx][:, None],
feature_names=[feature_pair[0]],
interaction_index=None,
alpha=alpha,
ax=ax2,
show=False,
)

ax2.set_ylabel(f' Shap value for {feature_pair[0]} \n wo {feature_pair[1]}␣
→˓interaction')

_set_fonts(fig, ax2)

plot the interaction value
shap.dependence_plot(feature_pair,

shap_interaction_vals,
features,
feature_names=feat_names,
display_features=display_features,
interaction_index='auto',
alpha=alpha,
ax=ax3,
show=False,
)

_set_fonts(fig, ax3, set_cbar=True)

[33]: feature_pair = ('Age', 'Capital Gain')
plot_decomposition(

feature_pair,
shap_interactions_values,
X_test,
feature_names,
display_features=X_display,

)

498 Chapter 8. Examples

alibi Documentation, Release 0.9.5dev

Figure 12: A decomposition of the shap values for Age (left) into shap values for Age excluding the Capital Gain
interaction (middle). The total interaction between Age and Capital Gain shown on right.

Model explanations using xgboost predict method

The xgboost library implements an optimised version of the path-dependendent feature perturbation algorithm, which
is also internally used by the shap library. xgboost also provides an optimised algorithm for computing the shap
interaction values.

The predict method can output the shap values if called as follows:

[34]: xgb_shap_vals = model.predict(dtest, pred_contribs=True)

[35]: print(f"shap values shape: {xgb_shap_vals.shape}")

shap values shape: (2560, 13)

Note that there are only 12 features in the dataset. The last column is the expected value with respect to which the
feature contributions are computed.

One can also estimate the shap interaction values as follows:

[36]: xgb_shap_interaction_vals = model.predict(dtest, pred_interactions=True)

[37]: print(f"shap values shape: {xgb_shap_interaction_vals.shape}")

shap values shape: (2560, 13, 13)

Note that the expected value is again returned in the last column.

The xgboost library also implements an approximate feature attribution method, first described by Sabaas here. This
feature attribution method is similar in spirit to Shapley value, but does not account for the effect of variable order as
explained here (pp. 10-11). This explanation method can be invoked as follows:

[38]: xgb_sabaas = model.predict(dtest, pred_contribs=True, approx_contribs=True)

8.14. Tree SHAP 499

https://github.com/andosa/treeinterpreter
https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-019-0138-9/MediaObjects/42256_2019_138_MOESM1_ESM.pdf

alibi Documentation, Release 0.9.5dev

Footnotes

(1): See the algorithm overview for a brief explanation of coverage.

(2): model_output=raw should always be used with the path-dependent perturbation for classification problems in
xgboost, irrespective of whether the model is trained with the binary:logitraw or binary:logistic. Even though
a model trained with the latter outputs probabilities, internally xgboost explains the output in margin space due to the
model_output=raw option. To explain the probability output of a model, one should use the interventional algorithm
and pass model_output=probability to the constructor along with the objective binary:logistic to the training
function.

500 Chapter 8. Examples

https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html

CHAPTER

NINE

METHODS

[source]

9.1 Measuring the linearity of machine learning models

9.1.1 Overview

Machine learning models include in general linear and non-linear operations: neural networks may include several
layers consisting of linear algebra operations followed by non-linear activation functions, while models based on deci-
sion trees are by nature highly non-linear. The linearity measure function and class provide an operational definition
for the amount of non-linearity of a map acting on vector spaces. Roughly speaking, the amount of non-linearity of
the map is defined based on how much the output of the map applied to a linear superposition of input vectors differs
from the linear superposition of the map’s outputs for each individual vector. In the context of supervised learning, this
definition is immediately applicable to machine learning models, which are fundamentally maps from a input vector
space (the feature space) to an output vector space that may represent probabilities (for classification models) or actual
values of quantities of interest (for regression models).

Given an input vector space 𝑉 , an output vector space 𝑊 and a map 𝑀 : 𝑉 →𝑊 , the amount of non-linearity of the
map 𝑀 in a region 𝛽 of the input space 𝑉 and relative to some coefficients 𝛼(𝑣) is defined as

𝐿
(𝑀)
𝛽,𝛼 =

⃦⃦⃦⃦∫︁
𝛽

𝛼(𝑣)𝑀(𝑣)𝑑𝑣 −𝑀

(︂∫︁
𝛽

𝛼(𝑣)𝑣𝑑𝑣

)︂⃦⃦⃦⃦
,

where 𝑣 ∈ 𝑉 and ‖ · ‖ denotes the norm of a vector. If we consider a finite number of vectors 𝑁 , the amount of
non-linearity can be defined as

𝐿
(𝑀)
𝛽,𝛼 =

⃦⃦⃦⃦
⃦∑︁

𝑖

𝛼𝑖𝑀(𝑣𝑖)−𝑀

(︃∑︁
𝑖

𝛼𝑖𝑣𝑖

)︃⃦⃦⃦⃦
⃦ ,

where, with an abuse of notation, 𝛽 is no longer a continuous region in the input space but a collection of input vectors
{𝑣𝑖} and 𝛼 is no longer a function but a collection of real coefficients {𝛼𝑖} with 𝑖 ∈ {1, ..., 𝑁}. Note that the second
expression may be interpreted as an approximation of the integral quantity defined in the first expression, where the
vectors {𝑣𝑖} are sampled uniformly in the region 𝛽.

501

../api/alibi.confidence.html#alibi.confidence.LinearityMeasure

alibi Documentation, Release 0.9.5dev

9.1.2 Application to machine learning models

In supervised learning, a model can be considered as a function 𝑀 mapping vectors from the input space (feature
vectors) to vectors in the output space. The output space may represents probabilities in the case of a classification
model or values of the target quantities in the case of a regression model. The definition of the linearity measure given
above can be applied to the case of a regression model (either a single target regression or a multi target regression) in
a straightforward way.

In case of a classifier, let us denote by 𝑧 the logits vector of the model such that the probabilities of the model 𝑀
are given by softmax(𝑧). Since the activation function of the last layer is usually highly non-linear, it is convenient to
apply the definition of linearity given above to the logits vector 𝑧. In the “white box” scenario, in which we have access
to the internal architecture of the model, the vector 𝑧 is accessible and the amount of non-linearity can be calculated
immediately. On the other hand, if the only accessible quantities are the output probabilities (the “black box” scenario),
we need to invert the last layer’s activation function in order to retrieve 𝑧. In other words, that means defining a new map
𝑀 ′ = 𝑓−1 ∘𝑀(𝑣) where 𝑓 is the activation function at the last layer and considering 𝐿

(𝑀 ′)
𝛽,𝛼 as a measure of the non-

linearity of the model. The activation function of the last layer is usually a sigmoid function for binary classification
tasks or a softmax function for multi-class classification. The inversion of the sigmoid function does not present any
particular challenge, and the map 𝑀 ′ can be written as

𝑀 ′ = − log ∘
(︂
1−𝑀(𝑣)

𝑀(𝑣)

)︂
.

On the other hand, the softmax probabilities 𝑝 are defined in terms of the vector 𝑧 as 𝑝𝑗 = 𝑒𝑧𝑗/
∑︀

𝑗 𝑒
𝑧𝑗 , where 𝑧𝑗 are

the components of 𝑧. The inverse of the softmax function is thus defined up to a constant 𝐶 which does not depend on
𝑗 but might depend on the input vector 𝑣. The inverse map 𝑀 ′ = softmax−1 ∘𝑀(𝑣) is then given by:

𝑀 ′ = log ∘𝑀(𝑣) + 𝐶(𝑣),

where 𝐶(𝑣) is an arbitrary constant depending in general on the input vector 𝑣.

Since in the black box scenario it is not possible to assess the value of 𝐶, henceforth we will ignore it and define the
amount of non-linearity of a machine learning model whose output is a probability distribution as

𝐿
(log ∘𝑀)
𝛽,𝛼 =

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖

𝛼𝑖 log ∘𝑀(𝑣𝑖)− log ∘𝑀

(︃
𝑁∑︁
𝑖

𝛼𝑖𝑣𝑖

)︃⃦⃦⃦⃦
⃦ .

It must be noted that the quantity above may in general be different from the “actual” amount of non-linearity of the
model, i.e. the quantity calculated by accessing the activation vectors 𝑧 directly.

9.1.3 Implementation

Sampling

The module implements two different methods for the sampling of vectors in a neighbourhood of the instance of interest
𝑣.

• The first sampling method grid consists of defining the region 𝛽 as a discrete lattice of a given size around the
instance of interest, with the size defined in terms of the L1 distance in the lattice; the vectors are then sampled
from the lattice according to a uniform distribution. The density and the size of the lattice are controlled by the
resolution parameter res and the size parameter epsilon. This method is highly efficient and scalable from a
computational point of view.

• The second sampling method knn consists of sampling from the same probability distribution the instance 𝑣
was drawn from; this method is implemented by simply selecting the 𝐾 nearest neighbours to 𝑣 from a training
set, when this is available. The knn method imposes the constraint that the neighbourhood of 𝑣 must include
only vectors from the training set, and as a consequence it will exclude out-of-distribution instances from the
computation of linearity.

502 Chapter 9. Methods

alibi Documentation, Release 0.9.5dev

Pairwise vs global linearity

The module implements two different methods to associate a value of the linearity measure to 𝑣.

• The first method consists of measuring the global linearity in a region around 𝑣. This means that we sample 𝑁
vectors {𝑣𝑖} from a region 𝛽 of the input space around 𝑣 and apply

𝐿
(𝑀)
𝛽,𝛼 =

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖=1

𝛼𝑖𝑀(𝑣𝑖)−𝑀

(︃
𝑁∑︁
𝑖=1

𝛼𝑖𝑣𝑖

)︃⃦⃦⃦⃦
⃦ ,

• The second method consists of measuring the pairwise linearity between the instance of interest and other
vectors close to it, averaging over all such pairs. In other words, we sample 𝑁 vectors {𝑣𝑖} from 𝛽 as in the
global method, but in this case we calculate the amount of non-linearity 𝐿(𝑣,𝑣𝑖),𝛼 for every pair of vectors (𝑣, 𝑣𝑖)
and average over all the pairs. Given two coefficients {𝛼0, 𝛼1} such that 𝛼0+𝛼1 = 1, we can define the pairwise
linearity measure relative to the instance of interest 𝑣 as

𝐿(𝑀) =
1

𝑁

𝑁∑︁
𝑖=0

‖𝛼0𝑀(𝑣) + 𝛼1𝑀(𝑣𝑖)−𝑀(𝛼0𝑣 + 𝛼1𝑣𝑖)‖ .

The two methods are slightly different from a conceptual point of view: the global linearity measure combines all
𝑁 vectors sampled in 𝛽 in a single superposition, and can be conceptually regarded as a direct approximation of the
integral quantity. Thus, the quantity is strongly linked to the model behavior in the whole region 𝛽. On the other hand,
the pairwise linearity measure is an averaged quantity over pairs of superimposed vectors, with the instance of interest
𝑣 included in each pair. For that reason, it is conceptually more tied to the instance 𝑣 itself rather than the region 𝛽
around it.

9.1.4 Usage

LinearityMeasure class

Given a model class with a predict method that return probabilities distribution in case of a classifier or numeric
values in case of a regressor, the linearity measure 𝐿 around an instance of interest 𝑋 can be calculated using the class
LinearityMeasure as follows:

from alibi.confidence import LinearityMeasure

predict_fn = lambda x: model.predict(x)

lm = LinearityMeasure(method='grid',
epsilon=0.04,
nb_samples=10,
res=100,
alphas=None,
model_type='classifier',
agg='pairwise',
verbose=False)

lm.fit(X_train)
L = lm.score(predict_fn, X)

Where x_train is the dataset the model was trained on. The feature_range is inferred form x_train in the fit
step.

9.1. Measuring the linearity of machine learning models 503

alibi Documentation, Release 0.9.5dev

linearity_measure function

Given a model class with a predict method that return probabilities distribution in case of a classifier or numeric
values in case of a regressor, the linearity measure 𝐿 around an instance of interest 𝑋 can also be calculated using the
linearity_measure function as follows:

from alibi.confidence import linearity_measure
from alibi.confidence.model_linearity import infer_feature_range

predict_fn = lambda x: model.predict(x)

feature_range = infer_feature_range(X_train)
L = linearity_measure(predict_fn,

X,
feature_range=feature_range
method='grid',
X_train=None,
epsilon=0.04,
nb_samples=10,
res=100,
alphas=None,
agg='global',
model_type='classifier')

Note that in this case the feature_range must be explicitly passed to the function and it is inferred beforehand.

9.1.5 Examples

Iris dataset

Fashion MNIST dataset

[source]

9.2 Trust Scores

9.2.1 Overview

It is important to know when a machine learning classifier’s predictions can be trusted. Relying on the classifier’s
(uncalibrated) prediction probabilities is not optimal and can be improved upon. Enter trust scores. Trust scores
measure the agreement between the classifier and a modified nearest neighbor classifier on the predicted instances.
The trust score is the ratio between the distance of the instance to the nearest class different from the predicted class
and the distance to the predicted class. A score of 1 would mean that the distance to the predicted class is the same
as to the nearest other class. Higher scores correspond to more trustworthy predictions. The original paper on which
the algorithm is based is called To Trust Or Not To Trust A Classifier. Our implementation borrows heavily from and
extends the authors’ open source code.

The method requires labeled training data to build k-d trees for each prediction class. When the classifier makes
predictions on a test instance, we measure the distance of the instance to each of the trees. The trust score is then
calculated by taking the ratio of the smallest distance to any other class than the predicted class and the distance to the
predicted class. The distance is measured to the 𝑘th nearest neighbor in each tree or by using the average distance from
the first to the 𝑘th neighbor.

504 Chapter 9. Methods

../api/alibi.confidence.html#alibi.confidence.TrustScore
https://arxiv.org/abs/1805.11783
https://github.com/google/TrustScore
https://en.wikipedia.org/wiki/K-d_tree

alibi Documentation, Release 0.9.5dev

In order to filter out the impact of outliers in the training data, they can optionally be removed using 2 filtering tech-
niques. The first technique builds a k-d tree for each class and removes a fraction 𝛼 of the training instances with the
largest k nearest neighbor (kNN) distance to the other instances in the class. The second fits a kNN-classifier to the
training set, and removes a fraction 𝛼 of the training instances with the highest prediction class disagreement. Be aware
that the first method operates on the prediction class level while the second method runs on the whole training set. It
is also important to keep in mind that kNN methods might not be suitable when there are significant scale differences
between the input features.

Trust scores can for instance be used as a warning flag for machine learning predictions. If the score drops below
a certain value and there is disagreement between the model probabilities and the trust score, the prediction can be
explained using techniques like anchors or contrastive explanations.

Trust scores work best for low to medium dimensional feature spaces. When working with high dimensional observa-
tions like images, dimensionality reduction methods (e.g. auto-encoders or PCA) could be applied as a pre-processing
step before computing the scores. This is demonstrated by the following example notebook.

9.2.2 Usage

Initialization and fit

At initialization, the optional filtering method used to remove outliers during the fit stage needs to be specified as
well:

from alibi.confidence import TrustScore

ts = TrustScore(alpha=.05,
filter_type='distance_knn',
k_filter=10,
leaf_size=40,
metric='euclidean',
dist_filter_type='point')

All the hyperparameters are optional:

• alpha: target fraction of instances to filter out.

• filter_type: filter method; one of None (no filtering), distance_knn (first technique discussed in Overview)
or probability_knn (second technique).

• k_filter: number of neighbors used for the distance or probability based filtering method.

• leaf_size: affects the speed and memory usage to build the k-d trees. The memory scales with the ratio between
the number of samples and the leaf size.

• metric: distance metric used for the k-d trees. Euclidean by default.

• dist_filter_type: point uses the distance to the 𝑘-nearest point while mean uses the average distance from
the 1st to the 𝑘th nearest point during filtering.

In this example, we use the distance_knn method to filter out 5% of the instances of each class with the largest distance
to its 10th nearest neighbor in that class:

ts.fit(X_train, y_train, classes=3)

• classes: equals the number of prediction classes.

X_train is the training set and y_train represents the training labels, either using one-hot encoding (OHE) or simple
class labels.

9.2. Trust Scores 505

alibi Documentation, Release 0.9.5dev

Scores

The trust scores are simply calculated through the score method. score also returns the class labels of the closest not
predicted class as a numpy array:

score, closest_class = ts.score(X_test,
y_pred,
k=2,
dist_type='point')

y_pred can again be represented using both OHE or via class labels.

• k: 𝑘th nearest neighbor used to compute distance to for each class.

• dist_type: similar to the filtering step, we can compute the distance to each class either to the 𝑘-th nearest
point (point) or by using the average distance from the 1st to the 𝑘th nearest point (mean).

9.2.3 Examples

Trust Scores applied to Iris

Trust Scores applied to MNIST

506 Chapter 9. Methods

CHAPTER

TEN

EXAMPLES

10.1 Measuring the linearity of machine learning models

10.1.1 Linearity measure applied to fashion MNIST

General definition

The model linearity module in alibi provides metric to measure how linear an ML model is. Linearity is defined based
on how much the linear superposition of the model’s outputs differs from the output of the same linear superposition
of the inputs.

Given 𝑁 input vectors 𝑣𝑖, 𝑁 real coefficients 𝛼𝑖 and a predict function M(𝑣𝑖), the linearity of the predict function is
defined as

𝐿 =
⃒⃒⃒⃒⃒⃒∑︁

𝑖

𝛼𝑖𝑀(𝑣𝑖)−𝑀
(︁∑︁

𝑖

𝛼𝑖𝑣𝑖

)︁⃒⃒⃒⃒⃒⃒
If M is a regressor

𝐿 =
⃒⃒⃒⃒⃒⃒∑︁

𝑖

𝛼𝑖 log ∘𝑀(𝑣𝑖)− log ∘𝑀
(︁∑︁

𝑖

𝛼𝑖𝑣𝑖

)︁⃒⃒⃒⃒⃒⃒
If M is a classifier

Note that a lower value of 𝐿 means that the model 𝑀 is more linear.

Alibi implementation

• Based on the general definition above, alibi calculates the linearity of a model in the neighboorhood of a given
instance 𝑣0.

Fashion MNIST data set

• We train a convolutional neural network to classify the images in the fashion MNIST dataset.

• We investigate the correlation between the model’s linearity associated to a certain instance and the class the
instance belong to.

• We also calculate the linearity measure for each internal layer of the CNN and show how linearity propagates
through the model.

[2]: import pandas as pd
import numpy as np
import matplotlib
%matplotlib inline

(continues on next page)

507

alibi Documentation, Release 0.9.5dev

(continued from previous page)

import matplotlib.pyplot as plt
from time import time

import tensorflow as tf

from alibi.confidence import linearity_measure, LinearityMeasure
from alibi.confidence.model_linearity import infer_feature_range

from tensorflow.keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Input,
→˓ Activation
from tensorflow.keras.models import Model
from tensorflow.keras.utils import to_categorical
from tensorflow.keras import backend as K

Load data fashion mnist

The fashion MNIST data set consists of 60000 images of shape 28 × 28 divided in 10 categories. Each category
corresponds to a different type of clothing piece, such as “boots”, “t-shirts”, etc

[3]: (x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()
print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape)

x_train shape: (60000, 28, 28) y_train shape: (60000,)

[4]: idx = 0
plt.imshow(x_train[idx])
print('Sample instance from the MNIST data set.')

Sample instance from the MNIST data set.

[5]: x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train, x_train.shape + (1,))
x_test = np.reshape(x_test, x_test.shape + (1,))
print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape)

(continues on next page)

508 Chapter 10. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)

x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1)
y_train shape: (60000, 10) y_test shape: (10000, 10)

Convolutional neural network

Here we define and train a 2 layer convolutional neural network on the fashion MNIST data set.

Define model

[6]: def model():
x_in = Input(shape=(28, 28, 1), name='input')
x = Conv2D(filters=64, kernel_size=2, padding='same', name='conv_1')(x_in)
x = Activation('relu', name='relu_1')(x)
x = MaxPooling2D(pool_size=2, name='maxp_1')(x)
x = Dropout(0.3, name='drop_1')(x)

x = Conv2D(filters=64, kernel_size=2, padding='same', name='conv_2')(x)
x = Activation('relu', name='relu_2')(x)
x = MaxPooling2D(pool_size=2, name='maxp_2')(x)
x = Dropout(0.3, name='drop_2')(x)

x = Flatten(name='flat')(x)
x = Dense(256, name='dense_1')(x)
x = Activation('relu', name='relu_3')(x)
x = Dropout(0.5, name='drop_3')(x)
x_out = Dense(10, name='dense_2')(x)
x_out = Activation('softmax', name='softmax')(x_out)

cnn = Model(inputs=x_in, outputs=x_out)
cnn.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return cnn

[7]: cnn = model()
cnn.summary()

Model: "model"

Layer (type) Output Shape Param #
===
input (InputLayer) [(None, 28, 28, 1)] 0

conv_1 (Conv2D) (None, 28, 28, 64) 320

relu_1 (Activation) (None, 28, 28, 64) 0

(continues on next page)

10.1. Measuring the linearity of machine learning models 509

alibi Documentation, Release 0.9.5dev

(continued from previous page)

maxp_1 (MaxPooling2D) (None, 14, 14, 64) 0

drop_1 (Dropout) (None, 14, 14, 64) 0

conv_2 (Conv2D) (None, 14, 14, 64) 16448

relu_2 (Activation) (None, 14, 14, 64) 0

maxp_2 (MaxPooling2D) (None, 7, 7, 64) 0

drop_2 (Dropout) (None, 7, 7, 64) 0

flat (Flatten) (None, 3136) 0

dense_1 (Dense) (None, 256) 803072

relu_3 (Activation) (None, 256) 0

drop_3 (Dropout) (None, 256) 0

dense_2 (Dense) (None, 10) 2570

softmax (Activation) (None, 10) 0
===
Total params: 822,410
Trainable params: 822,410
Non-trainable params: 0

Training

[8]: cnn.fit(x_train, y_train, batch_size=64, epochs=5);

Epoch 1/5
60000/60000 [==============================] - 40s 674us/sample - loss: 0.5552 - acc: 0.
→˓7955
Epoch 2/5
60000/60000 [==============================] - 43s 717us/sample - loss: 0.3865 - acc: 0.
→˓8596
Epoch 3/5
60000/60000 [==============================] - 51s 852us/sample - loss: 0.3421 - acc: 0.
→˓8765
Epoch 4/5
60000/60000 [==============================] - 47s 782us/sample - loss: 0.3123 - acc: 0.
→˓8851
Epoch 5/5
60000/60000 [==============================] - 48s 802us/sample - loss: 0.2938 - acc: 0.
→˓8936

510 Chapter 10. Examples

alibi Documentation, Release 0.9.5dev

Linearity of each Layer

Here we calculate the linearity of the model considering each layer as the output in turn. The values are averaged over
100 random instances sampled from the training set.

Extract layers

[9]: inp = cnn.input
outs = {l.name: l.output for l in cnn.layers}
predict_fns = {name: K.function([inp], [out]) for name, out in outs.items()}

Calculate linearity

[10]: # Infering feature ranges.
features_range = infer_feature_range(x_test)

Selecting random instances from training set.
rnd = np.random.randint(len(x_test) - 101, size=100)

[11]: lins_layers = {}
for name, l in predict_fns.items():

if name != 'input':
def predict_fn(x):

layer = l([x])
return layer[0]

if name == 'softmax':
lins_layers[name] = linearity_measure(predict_fn, x_test[rnd], feature_

→˓range=features_range,
agg='global', model_type='classifier',␣

→˓nb_samples=20)
else:

lins_layers[name] = linearity_measure(predict_fn, x_test[rnd], feature_
→˓range=features_range,

agg='global', model_type='regressor',␣
→˓nb_samples=20)
lins_layers_mean = {k: v.mean() for k, v in lins_layers.items()}
S = pd.Series(data=lins_layers_mean)

[12]: colors = ['gray' for l in S[:-1]]
colors.append('r')
ax = S.plot(kind='bar', linewidth=3, figsize=(15,10), color=colors, width=0.7,␣
→˓fontsize=18)
ax.set_ylabel('L measure', fontsize=20)
ax.set_xlabel('Layer', fontsize=20)
print('Linearity measure calculated taking as output each layer of a convolutional␣
→˓neural network.')

Linearity measure calculated taking as output each layer of a convolutional neural␣
→˓network.

10.1. Measuring the linearity of machine learning models 511

alibi Documentation, Release 0.9.5dev

Linearity measure in the locality of a given instance calculated taking as output each layer of a convolutional neural
network trained on the fashion MNIST data set. * The linearity measure of the first convolutional layer conv_1 is 0,
as expected since convolutions are linear operations. * The relu activation introduces non-linearity, which is increased
by maxpooling. Dropout layers and flatten layers do no change the output at inference time so the linearity doesn’t
change. * The second convolutional layer conv_2 and the dense layers change the linearity even though they are linear
operations. * The softmax layer in red is obtained by inverting the softmax function. * For more details see arxiv
reference.

Linearity and categories

Here we calculate the linearity averaged over all instances belonging to the same class, for each class.

[13]: class_groups = []
for i in range(10):

y = y_test.argmax(axis=1)
idxs_i = np.where(y == i)[0]
class_groups.append(x_test[idxs_i])

[14]: def predict_fn(x):
return cnn.predict(x)

lins_classes = []
t_0 = time()

(continues on next page)

512 Chapter 10. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

for j in range(len(class_groups)):
print(f'Calculating linearity for instances belonging to class {j}')
class_group = class_groups[j]
class_group = np.random.permutation(class_group)[:2000]
t_i = time()
lin = linearity_measure(predict_fn, class_group, feature_range=features_range,

agg='global', model_type='classifier', nb_samples=20)
t_i_1 = time() - t_i
print(f'Run time for class {j}: {t_i_1}')
lins_classes.append(lin)

t_fin = time() - t_0
print(f'Total run time: {t_fin}')

Calculating linearity for instances belonging to class 0
Run time for class 0: 2.941605806350708
Calculating linearity for instances belonging to class 1
Run time for class 1: 3.3313376903533936
Calculating linearity for instances belonging to class 2
Run time for class 2: 3.178601026535034
Calculating linearity for instances belonging to class 3
Run time for class 3: 3.324582815170288
Calculating linearity for instances belonging to class 4
Run time for class 4: 3.085338830947876
Calculating linearity for instances belonging to class 5
Run time for class 5: 3.159513473510742
Calculating linearity for instances belonging to class 6
Run time for class 6: 3.4014275074005127
Calculating linearity for instances belonging to class 7
Run time for class 7: 3.3238165378570557
Calculating linearity for instances belonging to class 8
Run time for class 8: 2.9885218143463135
Calculating linearity for instances belonging to class 9
Run time for class 9: 3.4760279655456543
Total run time: 32.22387504577637

[15]: df = pd.DataFrame(data=lins_classes).T

[16]: ax = df.mean().plot(kind='bar', linewidth=3, figsize=(15,10), color='gray', width=0.7,␣
→˓fontsize=10)
ax.set_ylabel('L measure', fontsize=20)
ax.set_xlabel('Class', fontsize=20)
print("Linearity measure distribution means for each class in the fashion MNIST data set.
→˓")

Linearity measure distribution means for each class in the fashion MNIST data set.

10.1. Measuring the linearity of machine learning models 513

alibi Documentation, Release 0.9.5dev

[17]: ax2 = df.plot(kind='hist', subplots=True, bins=20, figsize=(10,10), sharey=True)
for a in ax2:

a.set_xlabel('L measure', fontsize=20)
a.set_ylabel('', rotation=True, fontsize=10)

#ax2.set_ylabel('F', fontsize=10)
print('Linearity measure distributions for each class in the fashion MNIST data set.')

Linearity measure distributions for each class in the fashion MNIST data set.

514 Chapter 10. Examples

alibi Documentation, Release 0.9.5dev

10.1.2 Linearity measure applied to Iris

General definition

The model linearity module in alibi provides metric to measure how linear an ML model is. Linearity is defined based
on how much the linear superposition of the model’s outputs differs from the output of the same linear superposition
of the inputs.

Given 𝑁 input vectors 𝑣𝑖, 𝑁 real coefficients 𝛼𝑖 and a predict function M(𝑣𝑖), the linearity of the predict function is
defined as

𝐿 =
⃒⃒⃒⃒⃒⃒∑︁

𝑖

𝛼𝑖𝑀(𝑣𝑖)−𝑀
(︁∑︁

𝑖

𝛼𝑖𝑣𝑖

)︁⃒⃒⃒⃒⃒⃒
If M is a regressor

10.1. Measuring the linearity of machine learning models 515

alibi Documentation, Release 0.9.5dev

𝐿 =
⃒⃒⃒⃒⃒⃒∑︁

𝑖

𝛼𝑖 log ∘𝑀(𝑣𝑖)− log ∘𝑀
(︁∑︁

𝑖

𝛼𝑖𝑣𝑖

)︁⃒⃒⃒⃒⃒⃒
If M is a classifier

Note that a lower value of 𝐿 means that the model 𝑀 is more linear.

Alibi implementation

• Based on the general definition above, alibi calculates the linearity of a model in the neighboorhood of a given
instance 𝑣0.

Iris Data set

• As an example, we will visualize the decision boundaries and the values of the linearity measure for various
classifier on the iris dataset. Only 2 features are included for visualization porpuses.

This example will use the xgboost library, which can be installed with:

[]: !pip install xgboost

[2]: import pandas as pd
import numpy as np
import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris

from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
from xgboost import XGBClassifier

from itertools import product
from alibi.confidence import linearity_measure, LinearityMeasure

Dataset

[3]: ds = load_iris()
X_train, y_train = ds.data[:, :2], ds.target

[4]: lins_dict = {}

516 Chapter 10. Examples

https://github.com/dmlc/xgboost

alibi Documentation, Release 0.9.5dev

Models

We will experiment with 5 different classifiers: * A logistic regression model, which is expected to be highly linear.
* A random forest classifier, which is expected to be higly non-linear. * An xgboost classifier. * A support vector
machine classifier. * A feed forward neural network

[5]: lr = LogisticRegression(fit_intercept=False, multi_class='multinomial', solver='newton-cg
→˓')
rf = RandomForestClassifier(n_estimators=100)
xgb = XGBClassifier(n_estimators=100)
svm = SVC(gamma=.1, kernel='rbf', probability=True)
nn = MLPClassifier(hidden_layer_sizes=(100,50), activation='relu', max_iter=1000)

[6]: lr.fit(X_train, y_train)
rf.fit(X_train, y_train)
xgb.fit(X_train, y_train)
svm.fit(X_train, y_train)
nn.fit(X_train, y_train);

Decision boundaries and linearity

[7]: # Creating a grid
x_min, x_max = X_train[:, 0].min() - 1, X_train[:, 0].max() + 1
y_min, y_max = X_train[:, 1].min() - 1, X_train[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1))

[8]: # Flattening points in the grid
X = np.empty((len(xx.flatten()), 2))
for i in range(xx.shape[0]):

for j in range(xx.shape[1]):
k = i * xx.shape[1] + j
X[k] = np.array([xx[i, j], yy[i, j]])

Logistic regression

[9]: # Defining predict function for logistic regression
clf = lr
predict_fn = lambda x: clf.predict_proba(x)

[10]: # Calculating linearity for all points in the grid
lm = LinearityMeasure(agg='pairwise')
lm.fit(X_train)
L = lm.score(predict_fn, X)
L = L.reshape(xx.shape)
lins_dict['LR'] = L.mean()

[11]: # Visualising decision boundaries and linearity values
f, axarr = plt.subplots(1, 2, sharex='col', sharey='row', figsize=(16, 8))
idx = (0,0)

(continues on next page)

10.1. Measuring the linearity of machine learning models 517

alibi Documentation, Release 0.9.5dev

(continued from previous page)

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

axarr[0].contourf(xx, yy, Z, alpha=0.4)
axarr[0].scatter(X_train[:, 0], X_train[:, 1], c=y_train, s=20, edgecolor='k', alpha=1)
axarr[0].set_title('Decision boundaries', fontsize=20)
axarr[0].set_xlabel('sepal length (cm)',fontsize=18)
axarr[0].set_ylabel('sepal width (cm)', fontsize=18)

LPL = axarr[1].contourf(xx, yy, L, alpha=0.8, cmap='Greys')
axarr[1].set_title('Model linearity', fontsize=20)
axarr[1].set_xlabel('sepal length (cm)', fontsize=18)
axarr[1].set_ylabel('sepal width (cm)', fontsize=18)
cbar = f.colorbar(LPL)
#cbar.ax.set_ylabel('Linearity')
plt.show()
print('Decision boundaries (left panel) and linearity measure (right panel) for a␣
→˓logistic regression (LG) classifier in feature space. The x and y axis in the plots␣
→˓represent the sepal length and the sepal width, respectively. Different colours␣
→˓correspond to different predicted classes. The markers represents the data points in␣
→˓the training set.')
print('Maximum value model linearity: {}'. format(np.round(L.max(), 5)))
print(f'Minimum value model linearity: {np.round(L.min(),5)}')

Decision boundaries (left panel) and linearity measure (right panel) for a logistic␣
→˓regression (LG) classifier in feature space. The x and y axis in the plots represent␣
→˓the sepal length and the sepal width, respectively. Different colours correspond to␣
→˓different predicted classes. The markers represents the data points in the training␣
→˓set.
Maximum value model linearity: 0.01841
Minimum value model linearity: 0.0

518 Chapter 10. Examples

alibi Documentation, Release 0.9.5dev

Random forest

[12]: # Defining predict function for random forest
clf = rf
predict_fn = lambda x: clf.predict_proba(x)

[13]: # Calculating linearity for all points in the grid
lm = LinearityMeasure(agg='pairwise')
lm.fit(X_train)
L = lm.score(predict_fn, X)
L = L.reshape(xx.shape)
lins_dict['RF'] = L.mean()

[14]: # Visualising decision boundaries and linearity values
f, axarr = plt.subplots(1, 2, sharex='col', sharey='row', figsize=(16, 8))
idx = (0,0)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

axarr[0].contourf(xx, yy, Z, alpha=0.4)
axarr[0].scatter(X_train[:, 0], X_train[:, 1], c=y_train, s=20, edgecolor='k', alpha=1)
axarr[0].set_title('Decision boundaries', fontsize=20)
axarr[0].set_xlabel('sepal length (cm)', fontsize=18)
axarr[0].set_ylabel('sepal width (cm)', fontsize=18)

LPL = axarr[1].contourf(xx, yy, L, alpha=0.8, cmap='Greys')
axarr[1].set_title('Model linearity', fontsize=20)
axarr[1].set_xlabel('sepal length (cm)', fontsize=18)
axarr[1].set_ylabel('sepal width (cm)', fontsize=18)

cbar = f.colorbar(LPL)
plt.show()
print('Decision boundaries (left panel) and linearity measure (right panel) for a random␣
→˓forest (RF) classifier in feature space. The x and y axis in the plots represent the␣
→˓sepal length and the sepal width, respectively. Different colours correspond to␣
→˓different predicted classes. The markers represents the data points in the training␣
→˓set.')
print('Maximum value model linearity: {}'. format(np.round(L.max(), 5)))
print(f'Minimum value model linearity: {np.round(L.min(),5)}')

10.1. Measuring the linearity of machine learning models 519

alibi Documentation, Release 0.9.5dev

Decision boundaries (left panel) and linearity measure (right panel) for a random forest␣
→˓(RF) classifier in feature space. The x and y axis in the plots represent the sepal␣
→˓length and the sepal width, respectively. Different colours correspond to different␣
→˓predicted classes. The markers represents the data points in the training set.
Maximum value model linearity: 12.07288
Minimum value model linearity: 0.0

Xgboost

[15]: # Defining predict function for xgboost
clf = xgb
predict_fn = lambda x: clf.predict_proba(x)

[16]: # Calculating linearity for all points in the grid
lm = LinearityMeasure(agg='pairwise')
lm.fit(X_train)
L = lm.score(predict_fn, X)
L = L.reshape(xx.shape)
lins_dict['XB'] = L.mean()

[17]: # Visualising decision boundaries and linearity values
f, axarr = plt.subplots(1, 2, sharex='col', sharey='row', figsize=(16, 8))
idx = (0,0)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

axarr[0].contourf(xx, yy, Z, alpha=0.4)
axarr[0].scatter(X_train[:, 0], X_train[:, 1], c=y_train, s=20, edgecolor='k', alpha=1)

(continues on next page)

520 Chapter 10. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

axarr[0].set_title('Decision boundaries', fontsize=20)
axarr[0].set_xlabel('sepal length (cm)', fontsize=20)
axarr[0].set_ylabel('sepal width (cm)', fontsize=20)

LPL = axarr[1].contourf(xx, yy, L, alpha=0.8, cmap='Greys')
axarr[1].set_title('L measure', fontsize=20)
axarr[1].set_xlabel('sepal length (cm)', fontsize=20)
axarr[1].set_ylabel('sepal width (cm)', fontsize=20)

cbar = f.colorbar(LPL)
#cbar.ax.set_ylabel('Linearity')
plt.show()
print('Decision boundaries (left panel) and linearity measure (right panel) for a␣
→˓xgboost (XB) classifier in feature space. The x and y axis in the plots represent the␣
→˓sepal length and the sepal width, respectively. Different colours correspond to␣
→˓different predicted classes. The markers represents the data points in the training␣
→˓set.')
print('Maximum value model linearity: {}'. format(np.round(L.max(), 5)))
print(f'Minimum value model linearity: {np.round(L.min(),5)}')

Decision boundaries (left panel) and linearity measure (right panel) for a xgboost (XB)␣
→˓classifier in feature space. The x and y axis in the plots represent the sepal length␣
→˓and the sepal width, respectively. Different colours correspond to different␣
→˓predicted classes. The markers represents the data points in the training set.
Maximum value model linearity: 1.42648
Minimum value model linearity: 0.0

10.1. Measuring the linearity of machine learning models 521

alibi Documentation, Release 0.9.5dev

SVM

[18]: # Defining predict function for svm
clf = svm
predict_fn = lambda x: clf.predict_proba(x)

[19]: # Calculating linearity for all points in the grid
lm = LinearityMeasure(agg='pairwise')
lm.fit(X_train)
L = lm.score(predict_fn, X)
L = L.reshape(xx.shape)
lins_dict['SM'] = L.mean()

[20]: # Visualising decision boundaries and linearity values
f, axarr = plt.subplots(1, 2, sharex='col', sharey='row', figsize=(16, 8))
idx = (0,0)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

axarr[0].contourf(xx, yy, Z, alpha=0.4)
axarr[0].scatter(X_train[:, 0], X_train[:, 1], c=y_train, s=20, edgecolor='k', alpha=1)
axarr[0].set_title('Decision boundaries', fontsize=20)
axarr[0].set_xlabel('sepal length (cm)', fontsize=18)
axarr[0].set_ylabel('sepal width (cm)', fontsize=18)

LPL = axarr[1].contourf(xx, yy, L, alpha=0.8, cmap='Greys')
axarr[1].set_title('Model linearity', fontsize=20)
axarr[1].set_xlabel('sepal length (cm)', fontsize=18)
axarr[1].set_ylabel('sepal width (cm)', fontsize=18)

cbar = f.colorbar(LPL)
#cbar.ax.set_ylabel('Linearity')
plt.show()
print('Decision boundaries (left panel) and linearity measure (right panel) for a␣
→˓support vector machine (SM) classifier in feature space. The x and y axis in the plots␣
→˓represent the sepal length and the sepal width, respectively. Different colours␣
→˓correspond to different predicted classes. The markers represents the data points in␣
→˓the training set.')
print('Maximum value model linearity: {}'. format(np.round(L.max(), 5)))
print(f'Minimum value model linearity: {np.round(L.min(),5)}')

522 Chapter 10. Examples

alibi Documentation, Release 0.9.5dev

Decision boundaries (left panel) and linearity measure (right panel) for a support␣
→˓vector machine (SM) classifier in feature space. The x and y axis in the plots␣
→˓represent the sepal length and the sepal width, respectively. Different colours␣
→˓correspond to different predicted classes. The markers represents the data points in␣
→˓the training set.
Maximum value model linearity: 0.45113
Minimum value model linearity: 0.00083

NN

[21]: # Defining predict function for svm
clf = nn
predict_fn = lambda x: clf.predict_proba(x)

[22]: # Calculating linearity for all points in the grid
lm = LinearityMeasure(agg='pairwise')
lm.fit(X_train)
L = lm.score(predict_fn, X)
L = L.reshape(xx.shape)
lins_dict['NN'] = L.mean()

[23]: # Visualising decision boundaries and linearity values
f, axarr = plt.subplots(1, 2, sharex='col', sharey='row', figsize=(16, 8))
idx = (0,0)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

axarr[0].contourf(xx, yy, Z, alpha=0.4)
axarr[0].scatter(X_train[:, 0], X_train[:, 1], c=y_train, s=20, edgecolor='k', alpha=1)

(continues on next page)

10.1. Measuring the linearity of machine learning models 523

alibi Documentation, Release 0.9.5dev

(continued from previous page)

axarr[0].set_title('Decision boundaries', fontsize=20)
axarr[0].set_xlabel('sepal length (cm)', fontsize=18)
axarr[0].set_ylabel('sepal width (cm)', fontsize=18)

LPL = axarr[1].contourf(xx, yy, L, alpha=0.8, cmap='Greys')
axarr[1].set_title('Model linearity', fontsize=20)
axarr[1].set_xlabel('sepal length (cm)', fontsize=18)
axarr[1].set_ylabel('sepal width (cm)', fontsize=18)

cbar = f.colorbar(LPL)
#cbar.ax.set_ylabel('Linearity')
plt.show()
print('Decision boundaries (left panel) and linearity measure (right panel) for a feed␣
→˓forward neural network classifier (NN) classifier in feature space. The x and y axis␣
→˓in the plots represent the sepal length and the sepal width, respectively. Different␣
→˓colours correspond to different predicted classes. The markers represents the data␣
→˓points in the training set.')
print('Maximum value model linearity: {}'. format(np.round(L.max(), 5)))
print(f'Minimum value model linearity: {np.round(L.min(),5)}')

Decision boundaries (left panel) and linearity measure (right panel) for a feed forward␣
→˓neural network classifier (NN) classifier in feature space. The x and y axis in the␣
→˓plots represent the sepal length and the sepal width, respectively. Different colours␣
→˓correspond to different predicted classes. The markers represents the data points in␣
→˓the training set.
Maximum value model linearity: 0.11615
Minimum value model linearity: 3e-05

524 Chapter 10. Examples

alibi Documentation, Release 0.9.5dev

Average linearity over the whole feature space

[24]: ax = pd.Series(data=lins_dict).sort_values().plot(kind='barh', figsize=(10,5),␣
→˓fontsize=20, color='dimgray',

width=0.8, logx=True)
ax.set_xlabel('L measure (log scale)', fontsize=20)
print('Comparison of the linearity measure L averaged over the whole feature space for␣
→˓various models trained on the iris dataset: random forest (RF), xgboost (XB), support␣
→˓vector machine (SM), neural network (NN) and logistic regression (LR). Note that the␣
→˓scale of the X axis is logarithmic.')

Comparison of the linearity measure L averaged over the whole feature space for various␣
→˓models trained on the iris dataset: random forest (RF), xgboost (XB), support vector␣
→˓machine (SM), neural network (NN) and logistic regression (LR). Note that the scale of␣
→˓the X axis is logarithmic.

10.2 Trust Scores

10.2.1 Trust Scores applied to Iris

It is important to know when a machine learning classifier’s predictions can be trusted. Relying on the classifier’s
(uncalibrated) prediction probabilities is not optimal and can be improved upon. Trust scores measure the agreement
between the classifier and a modified nearest neighbor classifier on the test set. The trust score is the ratio between the
distance of the test instance to the nearest class different from the predicted class and the distance to the predicted class.
Higher scores correspond to more trustworthy predictions. A score of 1 would mean that the distance to the predicted
class is the same as to another class.

The original paper on which the algorithm is based is called To Trust Or Not To Trust A Classifier. Our implementation
borrows heavily from https://github.com/google/TrustScore, as does the example notebook.

10.2. Trust Scores 525

https://arxiv.org/abs/1805.11783
https://github.com/google/TrustScore

alibi Documentation, Release 0.9.5dev

[1]: import matplotlib
%matplotlib inline
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import StratifiedShuffleSplit
from alibi.confidence import TrustScore

Load and prepare Iris dataset

[2]: dataset = load_iris()

Scale data

[3]: dataset.data = (dataset.data - dataset.data.mean(axis=0)) / dataset.data.std(axis=0)

Define training and test set

[4]: idx = 140
X_train,y_train = dataset.data[:idx,:], dataset.target[:idx]
X_test, y_test = dataset.data[idx+1:,:], dataset.target[idx+1:]

Fit model and make predictions

[5]: np.random.seed(0)
clf = LogisticRegression(solver='liblinear', multi_class='auto')
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print(f'Predicted class: {y_pred}')

Predicted class: [2 2 2 2 2 2 2 2 2]

Basic Trust Score Usage

Initialise Trust Scores and fit on training data

The trust score algorithm builds k-d trees for each class. The distance of the test instance to the 𝑘th nearest neigh-
bor of each tree (or the average distance to the 𝑘th neighbor) can then be used to calculate the trust score. We can
optionally filter out outliers in the training data before building the trees. The example below uses the distance_knn
(filter_type) method to filter out the 5% (alpha) instances of each class with the highest distance to its 10th nearest
neighbor (k_filter) in that class.

[6]: ts = TrustScore(k_filter=10, # nb of neighbors used for kNN distance or probability to␣
→˓filter out outliers

alpha=.05, # target fraction of instances to filter out
filter_type='distance_knn', # filter method: None, 'distance_knn' or

(continues on next page)

526 Chapter 10. Examples

https://en.wikipedia.org/wiki/K-d_tree

alibi Documentation, Release 0.9.5dev

(continued from previous page)

→˓'probability_knn'
leaf_size=40, # affects speed and memory to build KDTrees, memory␣

→˓scales with n_samples / leaf_size
metric='euclidean', # distance metric used for the KDTrees
dist_filter_type='point') # 'point' uses distance to k-nearest point

'mean' uses average distance from the 1st to␣
→˓the kth nearest point

[7]: ts.fit(X_train, y_train, classes=3) # classes = nb of prediction classes

Calculate Trust Scores on test data

Since the trust score is the ratio between the distance of the test instance to the nearest class different from the predicted
class and the distance to the predicted class, higher scores correspond to more trustworthy predictions. A score of 1
would mean that the distance to the predicted class is the same as to another class. The score method returns arrays
with both the trust scores and the class labels of the closest not predicted class.

[8]: score, closest_class = ts.score(X_test,
y_pred, k=2, # kth nearest neighbor used

to compute distances for each class
dist_type='point') # 'point' or 'mean' distance option

print(f'Trust scores: {score}')
print(f'\nClosest not predicted class: {closest_class}')

Trust scores: [2.574271277538439 2.1630334957870114 3.1629405367742223
2.7258494544157927 2.541748027539072 1.402878283257114 1.941073062524019
2.0601725424359296 2.1781121494573514]

Closest not predicted class: [1 1 1 1 1 1 1 1 1]

Comparison of Trust Scores with model prediction probabilities

Let’s compare the prediction probabilities from the classifier with the trust scores for each prediction. The first use
case checks whether trust scores are better than the model’s prediction probabilities at identifying correctly classified
examples, while the second use case does the same for incorrectly classified instances.

First we need to set up a couple of helper functions.

• Define a function that handles model training and predictions for a simple logistic regression:

[9]: def run_lr(X_train, y_train, X_test):
clf = LogisticRegression(solver='liblinear', multi_class='auto')
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
y_pred_proba = clf.predict_proba(X_test)
probas = y_pred_proba[range(len(y_pred)), y_pred] # probabilities of predicted class
return y_pred, probas

• Define the function that generates the precision plots:

10.2. Trust Scores 527

alibi Documentation, Release 0.9.5dev

[10]: def plot_precision_curve(plot_title,
percentiles,
labels,
final_tp,
final_stderr,
final_misclassification,
colors = ['blue', 'darkorange', 'brown', 'red', 'purple']):

plt.title(plot_title, fontsize=18)
colors = colors + list(cm.rainbow(np.linspace(0, 1, len(final_tp))))
plt.xlabel("Percentile", fontsize=14)
plt.ylabel("Precision", fontsize=14)

for i, label in enumerate(labels):
ls = "--" if ("Model" in label) else "-"
plt.plot(percentiles, final_tp[i], ls, c=colors[i], label=label)
plt.fill_between(percentiles,

final_tp[i] - final_stderr[i],
final_tp[i] + final_stderr[i],
color=colors[i],
alpha=.1)

if 0. in percentiles:
plt.legend(loc="lower right", fontsize=14)

else:
plt.legend(loc="upper left", fontsize=14)

model_acc = 100 * (1 - final_misclassification)
plt.axvline(x=model_acc, linestyle="dotted", color="black")
plt.show()

• The function below trains the model on a number of folds, makes predictions, calculates the trust scores, and
generates the precision curves to compare the trust scores with the model prediction probabilities:

[11]: def run_precision_plt(X, y, nfolds, percentiles, run_model, test_size=.5,
plt_title="", plt_names=[], predict_correct=True, classes=3):

def stderr(L):
return np.std(L) / np.sqrt(len(L))

all_tp = [[[] for p in percentiles] for _ in plt_names]
misclassifications = []
mult = 1 if predict_correct else -1

folds = StratifiedShuffleSplit(n_splits=nfolds, test_size=test_size, random_state=0)
for train_idx, test_idx in folds.split(X, y):

create train and test folds, train model and make predictions
X_train, y_train = X[train_idx, :], y[train_idx]
X_test, y_test = X[test_idx, :], y[test_idx]
y_pred, probas = run_model(X_train, y_train, X_test)
target points are the correctly classified points
target_points = np.where(y_pred == y_test)[0] if predict_correct else np.where(y_

→˓pred != y_test)[0]
final_curves = [probas]

(continues on next page)

528 Chapter 10. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

calculate trust scores
ts = TrustScore()
ts.fit(X_train, y_train, classes=classes)
scores, _ = ts.score(X_test, y_pred)
final_curves.append(scores) # contains prediction probabilities and trust scores
check where prediction probabilities and trust scores are above a certain␣

→˓percentage level
for p, perc in enumerate(percentiles):

high_proba = [np.where(mult * curve >= np.percentile(mult * curve, perc))[0]␣
→˓for curve in final_curves]

if 0 in map(len, high_proba):
continue

calculate fraction of values above percentage level that are correctly (or␣
→˓incorrectly) classified

tp = [len(np.intersect1d(hp, target_points)) / (1. * len(hp)) for hp in high_
→˓proba]

for i in range(len(plt_names)):
all_tp[i][p].append(tp[i]) # for each percentile, store fraction of␣

→˓values above cutoff value
misclassifications.append(len(target_points) / (1. * len(X_test)))

average over folds for each percentile
final_tp = [[] for _ in plt_names]
final_stderr = [[] for _ in plt_names]
for p, perc in enumerate(percentiles):

for i in range(len(plt_names)):
final_tp[i].append(np.mean(all_tp[i][p]))
final_stderr[i].append(stderr(all_tp[i][p]))

for i in range(len(all_tp)):
final_tp[i] = np.array(final_tp[i])
final_stderr[i] = np.array(final_stderr[i])

final_misclassification = np.mean(misclassifications)

create plot
plot_precision_curve(plt_title, percentiles, plt_names, final_tp, final_stderr,␣

→˓final_misclassification)

Detect correctly classified examples

The x-axis on the plot below shows the percentiles for the model prediction probabilities of the predicted class for each
instance and for the trust scores. The y-axis represents the precision for each percentile. For each percentile level,
we take the test examples whose trust score is above that percentile level and plot the percentage of those points that
were correctly classified by the classifier. We do the same with the classifier’s own model confidence (i.e. softmax
probabilities). For example, at percentile level 80, we take the top 20% scoring test examples based on the trust score
and plot the percentage of those points that were correctly classified. We also plot the top 20% scoring test examples
based on model probabilities and plot the percentage of those that were correctly classified. The vertical dotted line is
the error of the logistic regression classifier. The plots are an average over 10 folds of the dataset with 50% of the data
kept for the test set.

The Trust Score and Model Confidence curves then show that the model precision is typically higher when using the

10.2. Trust Scores 529

alibi Documentation, Release 0.9.5dev

trust scores to rank the predictions compared to the model prediction probabilities.

[12]: X = dataset.data
y = dataset.target
percentiles = [0 + 0.5 * i for i in range(200)]
nfolds = 10
plt_names = ['Model Confidence', 'Trust Score']
plt_title = 'Iris -- Logistic Regression -- Predict Correct'

[13]: run_precision_plt(X, y, nfolds, percentiles, run_lr, plt_title=plt_title,
plt_names=plt_names, predict_correct=True)

Detect incorrectly classified examples

By taking the negative of the prediction probabilities and trust scores, we can also see on the plot below how the trust
scores compare to the model predictions for incorrectly classified instances. The vertical dotted line is the accuracy of
the logistic regression classifier. The plot shows the precision of identifying incorrectly classified instances. Higher is
obviously better.

[14]: percentiles = [50 + 0.5 * i for i in range(100)]
plt_title = 'Iris -- Logistic Regression -- Predict Incorrect'
run_precision_plt(X, y, nfolds, percentiles, run_lr, plt_title=plt_title,

plt_names=plt_names, predict_correct=False)

530 Chapter 10. Examples

alibi Documentation, Release 0.9.5dev

10.2.2 Trust Scores applied to MNIST

It is important to know when a machine learning classifier’s predictions can be trusted. Relying on the classifier’s
(uncalibrated) prediction probabilities is not optimal and can be improved upon. Trust scores measure the agreement
between the classifier and a modified nearest neighbor classifier on the test set. The trust score is the ratio between the
distance of the test instance to the nearest class different from the predicted class and the distance to the predicted class.
Higher scores correspond to more trustworthy predictions. A score of 1 would mean that the distance to the predicted
class is the same as to another class.

The original paper on which the algorithm is based is called To Trust Or Not To Trust A Classifier. Our implementation
borrows heavily from https://github.com/google/TrustScore, as does the example notebook.

Trust scores work best for low to medium dimensional feature spaces. This notebook illustrates how you can apply trust
scores to high dimensional data like images by adding an additional pre-processing step in the form of an auto-encoder
to reduce the dimensionality. Other dimension reduction techniques like PCA can be used as well.

[1]: import tensorflow as tf
from tensorflow.keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Input,
→˓ UpSampling2D
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.utils import to_categorical
import matplotlib
%matplotlib inline
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import StratifiedShuffleSplit
from alibi.confidence import TrustScore

[2]: (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape)
plt.gray()
plt.imshow(x_test[0]);

10.2. Trust Scores 531

https://arxiv.org/abs/1805.11783
https://github.com/google/TrustScore
https://en.wikipedia.org/wiki/Autoencoder

alibi Documentation, Release 0.9.5dev

x_train shape: (60000, 28, 28) y_train shape: (60000,)

Prepare data: scale, reshape and categorize

[3]: x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train, x_train.shape + (1,))
x_test = np.reshape(x_test, x_test.shape + (1,))
print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)

x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1)
y_train shape: (60000, 10) y_test shape: (10000, 10)

[4]: xmin, xmax = -.5, .5
x_train = ((x_train - x_train.min()) / (x_train.max() - x_train.min())) * (xmax - xmin)␣
→˓+ xmin
x_test = ((x_test - x_test.min()) / (x_test.max() - x_test.min())) * (xmax - xmin) + xmin

Define and train model

For this example we are not interested in optimizing model performance so a simple softmax classifier will do:

[5]: def sc_model():
x_in = Input(shape=(28, 28, 1))
x = Flatten()(x_in)
x_out = Dense(10, activation='softmax')(x)
sc = Model(inputs=x_in, outputs=x_out)
sc.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
return sc

[6]: sc = sc_model()
sc.summary()
sc.fit(x_train, y_train, batch_size=128, epochs=5);

532 Chapter 10. Examples

alibi Documentation, Release 0.9.5dev

Model: "model"

Layer (type) Output Shape Param #
===
input_1 (InputLayer) [(None, 28, 28, 1)] 0

flatten (Flatten) (None, 784) 0

dense (Dense) (None, 10) 7850
===
Total params: 7,850
Trainable params: 7,850
Non-trainable params: 0

Epoch 1/5
60000/60000 [==============================] - 1s 12us/sample - loss: 1.2706 - acc: 0.
→˓6963
Epoch 2/5
60000/60000 [==============================] - 1s 9us/sample - loss: 0.7030 - acc: 0.8422
Epoch 3/5
60000/60000 [==============================] - 1s 9us/sample - loss: 0.5762 - acc: 0.8618
Epoch 4/5
60000/60000 [==============================] - 1s 9us/sample - loss: 0.5155 - acc: 0.8706
Epoch 5/5
60000/60000 [==============================] - 1s 9us/sample - loss: 0.4787 - acc: 0.8759

Evaluate the model on the test set:

[7]: score = sc.evaluate(x_test, y_test, verbose=0)
print('Test accuracy: ', score[1])

Test accuracy: 0.8862

Define and train auto-encoder

[8]: def ae_model():
encoder
x_in = Input(shape=(28, 28, 1))
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x_in)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(4, (3, 3), activation=None, padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
encoder = Model(x_in, encoded)

decoder
dec_in = Input(shape=(4, 4, 4))
x = Conv2D(4, (3, 3), activation='relu', padding='same')(dec_in)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)

(continues on next page)

10.2. Trust Scores 533

alibi Documentation, Release 0.9.5dev

(continued from previous page)

x = Conv2D(16, (3, 3), activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation=None, padding='same')(x)
decoder = Model(dec_in, decoded)

autoencoder = encoder + decoder
x_out = decoder(encoder(x_in))
autoencoder = Model(x_in, x_out)
autoencoder.compile(optimizer='adam', loss='mse')

return autoencoder, encoder, decoder

[9]: ae, enc, dec = ae_model()
ae.summary()
ae.fit(x_train, x_train, batch_size=128, epochs=8, validation_data=(x_test, x_test))
ae.save('mnist_ae.h5')
enc.save('mnist_enc.h5')

Model: "model_3"

Layer (type) Output Shape Param #
===
input_2 (InputLayer) [(None, 28, 28, 1)] 0

model_1 (Model) (None, 4, 4, 4) 1612

model_2 (Model) (None, 28, 28, 1) 1757
===
Total params: 3,369
Trainable params: 3,369
Non-trainable params: 0

Train on 60000 samples, validate on 10000 samples
Epoch 1/8
60000/60000 [==============================] - 29s 477us/sample - loss: 0.0606 - val_
→˓loss: 0.0399
Epoch 2/8
60000/60000 [==============================] - 34s 572us/sample - loss: 0.0341 - val_
→˓loss: 0.0301
Epoch 3/8
60000/60000 [==============================] - 43s 715us/sample - loss: 0.0288 - val_
→˓loss: 0.0272
Epoch 4/8
60000/60000 [==============================] - 48s 806us/sample - loss: 0.0265 - val_
→˓loss: 0.0253
Epoch 5/8
60000/60000 [==============================] - 41s 680us/sample - loss: 0.0249 - val_
→˓loss: 0.0239
Epoch 6/8
60000/60000 [==============================] - 39s 649us/sample - loss: 0.0237 - val_
→˓loss: 0.0230
Epoch 7/8

(continues on next page)

534 Chapter 10. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

60000/60000 [==============================] - 33s 545us/sample - loss: 0.0229 - val_
→˓loss: 0.0222
Epoch 8/8
60000/60000 [==============================] - 29s 484us/sample - loss: 0.0224 - val_
→˓loss: 0.0217

[10]: ae = load_model('mnist_ae.h5')
enc = load_model('mnist_enc.h5')

Calculate Trust Scores

Initialize trust scores:

[11]: ts = TrustScore()

The key is to fit and calculate the trust scores on the encoded instances. The encoded data still needs to be reshaped
from (60000, 4, 4, 4) to (60000, 64) to comply with the k-d tree format. This is handled internally:

[12]: x_train_enc = enc.predict(x_train)
ts.fit(x_train_enc, y_train, classes=10) # 10 classes present in MNIST

Reshaping data from (60000, 4, 4, 4) to (60000, 64) so k-d trees can be built.

We can now calculate the trust scores and closest not predicted classes of the predictions on the test set, using the
distance to the 5th nearest neighbor in each class:

[13]: n_samples = 1000 # calculate the trust scores for the first 1000 predictions on the test␣
→˓set
x_test_enc = enc.predict(x_test[:n_samples])
y_pred = sc.predict(x_test[:n_samples])
score, closest_class = ts.score(x_test_enc[:n_samples], y_pred, k=5)

Reshaping data from (1000, 4, 4, 4) to (1000, 64) so k-d trees can be queried.

Let’s inspect which predictions have low and high trust scores:

[14]: n = 5

lowest and highest trust scores
idx_min, idx_max = np.argsort(score)[:n], np.argsort(score)[-n:]
score_min, score_max = score[idx_min], score[idx_max]
closest_min, closest_max = closest_class[idx_min], closest_class[idx_max]
pred_min, pred_max = y_pred[idx_min], y_pred[idx_max]
imgs_min, imgs_max = x_test[idx_min], x_test[idx_max]
label_min, label_max = np.argmax(y_test[idx_min], axis=1), np.argmax(y_test[idx_max],␣
→˓axis=1)

model confidence percentiles
max_proba = y_pred.max(axis=1)

low score high confidence examples
idx_low = np.where((max_proba>0.80) & (max_proba<0.9) & (score<1))[0][:n]

(continues on next page)

10.2. Trust Scores 535

alibi Documentation, Release 0.9.5dev

(continued from previous page)

score_low = score[idx_low]
closest_low = closest_class[idx_low]
pred_low = y_pred[idx_low]
imgs_low = x_test[idx_low]
label_low = np.argmax(y_test[idx_low], axis=1)

Low Trust Scores

The image below makes clear that the low trust scores correspond to misclassified images. Because the trust scores
are significantly below 1, they correctly identified that the images belong to another class than the predicted class, and
identified that class.

[15]: plt.figure(figsize=(20, 4))
for i in range(n):

ax = plt.subplot(1, n, i+1)
plt.imshow(imgs_min[i].reshape(28, 28))
plt.title('Model prediction: {} (p={:.2f}) \n Label: {} \n Trust score: {:.3f}' \

'\n Closest other class: {}'.format(pred_min[i].argmax(),pred_min[i].max(),
label_min[i], score_min[i], closest_

→˓min[i]), fontsize=14)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)

plt.show()

High Trust Scores

The high trust scores on the other hand all are very clear 1’s:

[17]: plt.figure(figsize=(20, 4))
for i in range(n):

ax = plt.subplot(1, n, i+1)
plt.imshow(imgs_max[i].reshape(28, 28))
plt.title('Model prediction: {} (p={:.2f}) \n Label: {} \n Trust score: {:.3f}' \

'\n Closest other class: {}'.format(pred_max[i].argmax(),pred_max[i].max(),
label_max[i], score_max[i], closest_

→˓max[i]), fontsize=14)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)

plt.show()

536 Chapter 10. Examples

alibi Documentation, Release 0.9.5dev

High model confidence, low trust score

Where trust scores really matter is when the predicted model confidence is relatively high (e.g. 𝑝 ∈ [0.8, 0.9]) but the
corresponding trust score is low, this can indicate samples for which the model is overconfident.The trust score provides
a diagnostic for finding these examples:

[18]: plt.figure(figsize=(20, 4))
for i in range(min(n, len(idx_low))): # in case fewer than n instances are found

ax = plt.subplot(1, n, i+1)
plt.imshow(imgs_low[i].reshape(28, 28))
plt.title('Model prediction: {} (p={:.2f}) \n Label: {} \n Trust score: {:.3f}' \

'\n Closest other class: {}'.format(pred_low[i].argmax(),pred_low[i].max(),
label_low[i], score_low[i], closest_

→˓low[i]), fontsize=14)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)

plt.show()

We can see several examples of an over-confident model predicting the wrong class, the low trust score, however, reveals
that this is happening and the predictions should not be trusted despite the high model confidence.

In the following section we will see that on average trust scores outperform the model confidence for identifying cor-
rectly classified samples.

10.2. Trust Scores 537

alibi Documentation, Release 0.9.5dev

Comparison of Trust Scores with model prediction probabilities

Let’s compare the prediction probabilities from the classifier with the trust scores for each prediction by checking
whether trust scores are better than the model’s prediction probabilities at identifying correctly classified examples.

First we need to set up a couple of helper functions.

• Define a function that handles model training and predictions:

[19]: def run_sc(X_train, y_train, X_test):
clf = sc_model()
clf.fit(X_train, y_train, batch_size=128, epochs=5, verbose=0)
y_pred_proba = clf.predict(X_test)
y_pred = np.argmax(y_pred_proba, axis=1)
probas = y_pred_proba[range(len(y_pred)), y_pred] # probabilities of predicted class
return y_pred, probas

• Define the function that generates the precision plots:

[20]: def plot_precision_curve(plot_title,
percentiles,
labels,
final_tp,
final_stderr,
final_misclassification,
colors = ['blue', 'darkorange', 'brown', 'red', 'purple']):

plt.title(plot_title, fontsize=18)
colors = colors + list(cm.rainbow(np.linspace(0, 1, len(final_tp))))
plt.xlabel("Percentile", fontsize=14)
plt.ylabel("Precision", fontsize=14)

for i, label in enumerate(labels):
ls = "--" if ("Model" in label) else "-"
plt.plot(percentiles, final_tp[i], ls, c=colors[i], label=label)
plt.fill_between(percentiles,

final_tp[i] - final_stderr[i],
final_tp[i] + final_stderr[i],
color=colors[i],
alpha=.1)

if 0. in percentiles:
plt.legend(loc="lower right", fontsize=14)

else:
plt.legend(loc="upper left", fontsize=14)

model_acc = 100 * (1 - final_misclassification)
plt.axvline(x=model_acc, linestyle="dotted", color="black")
plt.show()

• The function below trains the model on a number of folds, makes predictions, calculates the trust scores, and
generates the precision curves to compare the trust scores with the model prediction probabilities:

[21]: def run_precision_plt(X, y, nfolds, percentiles, run_model, test_size=.2,
plt_title="", plt_names=[], predict_correct=True, classes=10):

(continues on next page)

538 Chapter 10. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

def stderr(L):
return np.std(L) / np.sqrt(len(L))

all_tp = [[[] for p in percentiles] for _ in plt_names]
misclassifications = []
mult = 1 if predict_correct else -1

folds = StratifiedShuffleSplit(n_splits=nfolds, test_size=test_size, random_state=0)
for train_idx, test_idx in folds.split(X, y):

create train and test folds, train model and make predictions
X_train, y_train = X[train_idx, :], y[train_idx, :]
X_test, y_test = X[test_idx, :], y[test_idx, :]
y_pred, probas = run_model(X_train, y_train, X_test)
target points are the correctly classified points
y_test_class = np.argmax(y_test, axis=1)
target_points = (np.where(y_pred == y_test_class)[0] if predict_correct else

np.where(y_pred != y_test_class)[0])
final_curves = [probas]
calculate trust scores
ts = TrustScore()
ts.fit(enc.predict(X_train), y_train, classes=classes)
scores, _ = ts.score(enc.predict(X_test), y_pred, k=5)
final_curves.append(scores) # contains prediction probabilities and trust scores
check where prediction probabilities and trust scores are above a certain␣

→˓percentage level
for p, perc in enumerate(percentiles):

high_proba = [np.where(mult * curve >= np.percentile(mult * curve, perc))[0]␣
→˓for curve in final_curves]

if 0 in map(len, high_proba):
continue

calculate fraction of values above percentage level that are correctly (or␣
→˓incorrectly) classified

tp = [len(np.intersect1d(hp, target_points)) / (1. * len(hp)) for hp in high_
→˓proba]

for i in range(len(plt_names)):
all_tp[i][p].append(tp[i]) # for each percentile, store fraction of␣

→˓values above cutoff value
misclassifications.append(len(target_points) / (1. * len(X_test)))

average over folds for each percentile
final_tp = [[] for _ in plt_names]
final_stderr = [[] for _ in plt_names]
for p, perc in enumerate(percentiles):

for i in range(len(plt_names)):
final_tp[i].append(np.mean(all_tp[i][p]))
final_stderr[i].append(stderr(all_tp[i][p]))

for i in range(len(all_tp)):
final_tp[i] = np.array(final_tp[i])
final_stderr[i] = np.array(final_stderr[i])

final_misclassification = np.mean(misclassifications)

(continues on next page)

10.2. Trust Scores 539

alibi Documentation, Release 0.9.5dev

(continued from previous page)

create plot
plot_precision_curve(plt_title, percentiles, plt_names, final_tp, final_stderr,␣

→˓final_misclassification)

Detect correctly classified examples

The x-axis on the plot below shows the percentiles for the model prediction probabilities of the predicted class for each
instance and for the trust scores. The y-axis represents the precision for each percentile. For each percentile level,
we take the test examples whose trust score is above that percentile level and plot the percentage of those points that
were correctly classified by the classifier. We do the same with the classifier’s own model confidence (i.e. softmax
probabilities). For example, at percentile level 80, we take the top 20% scoring test examples based on the trust score
and plot the percentage of those points that were correctly classified. We also plot the top 20% scoring test examples
based on model probabilities and plot the percentage of those that were correctly classified. The vertical dotted line is
the error of the classifier. The plots are an average over 2 folds of the dataset with 20% of the data kept for the test set.

The Trust Score and Model Confidence curves then show that the model precision is typically higher when using the
trust scores to rank the predictions compared to the model prediction probabilities.

[22]: X = x_train
y = y_train
percentiles = [0 + 0.5 * i for i in range(200)]
nfolds = 2
plt_names = ['Model Confidence', 'Trust Score']
plt_title = 'MNIST -- Softmax Classifier -- Predict Correct'

[23]: run_precision_plt(X, y, nfolds, percentiles, run_sc, plt_title=plt_title,
plt_names=plt_names, predict_correct=True)

Reshaping data from (48000, 4, 4, 4) to (48000, 64) so k-d trees can be built.
Reshaping data from (12000, 4, 4, 4) to (12000, 64) so k-d trees can be queried.
Reshaping data from (48000, 4, 4, 4) to (48000, 64) so k-d trees can be built.
Reshaping data from (12000, 4, 4, 4) to (12000, 64) so k-d trees can be queried.

540 Chapter 10. Examples

CHAPTER

ELEVEN

METHODS

[source]

11.1 ProtoSelect

11.1.1 Overview

Bien and Tibshirani (2012) proposed ProtoSelect, which is a prototype selection method with the goal of constructing
not only a condensed view of a dataset but also an interpretable model (applicable to classification only). Prototypes
can be defined as instances that are representative of the entire training data distribution. Formally, consider a dataset
of training points 𝒳 = {𝑥1, ..., 𝑥𝑛} ⊂ R𝑝 and their corresponding labels 𝒴 = {𝑦1, ..., 𝑦𝑛}, where 𝑦𝑖 ∈ {1, 2, ..., 𝐿}.
ProtoSelect finds sets 𝒫𝑙 ⊆ 𝒳 for each class 𝑙 such that the set union of 𝒫1,𝒫2, ...,𝒫𝐿 would provided a distilled view
of the training dataset (𝒳 ,𝒴).

Given the sets of prototypes, one can construct a simple interpretable classifier given by:

𝑐(𝑥) = argmin
𝑙

min
𝑧∈𝒫𝑙

𝑑(𝑥, 𝑧)

Note that the classifier defined in the equation above would be equivalent to 1-KNN if each set 𝒫𝑙 would consist only
of instances belonging to class 𝑙.

11.1.2 ProtoSelect method

ProtoSelect is designed such that each prototype would satisfy a set of desired properties. For a set 𝒫𝑙 ⊆ 𝒳 , the
neighborhood of a point 𝑥𝑖 ∈ 𝒫𝑙 is given by the points contained in an 𝜖-ball centered in 𝑥𝑖, denoted as 𝐵(𝑥𝑖, 𝜖). Thus,
given a radius 𝜖 for a point 𝑥𝑖, we say that another point 𝑥𝑗 is covered by 𝑥𝑖 if 𝑥𝑗 is contained in the 𝜖-ball centered on
𝑥𝑖. A visualization of the prototypes sets for various 𝜖 radius values are depicted in the following figure:

541

../api/alibi.prototypes.html#alibi.prototypes.ProtoSelect
https://arxiv.org/abs/1202.5933

alibi Documentation, Release 0.9.5dev

Bien and Tibshirani, PROTOTYPE SELECTION FOR INTERPRETABLE CLASSIFICATION, 2012

A desirable prototype set for a class 𝑙 would satisfy the following properties:

• cover as many training points as possible of the class 𝑙.

• covers as few training points as possible of classes different from 𝑙.

• is sparse (i.e., contains as few prototypes instances as possible).

Formally, let us first define 𝛼
(𝑙)
𝑗 ∈ {0, 1} to indicate whether we select 𝑥𝑗 to be in 𝒫𝑙. Then we can write the three

properties as an integer program as follows:

min
𝛼

(𝑙)
𝑗 ,𝜉𝑖,𝜈𝑖

∑︁
𝑖

𝜉𝑖 +
∑︁
𝑖

𝜈𝑖 + 𝜆
∑︁
𝑗,𝑙

𝛼
(𝑙)
𝑗 such that (11.1)

∑︁
𝑗:𝑥𝑖∈𝐵(𝑥𝑗 ,𝜖)

𝛼
(𝑦𝑖)
𝑗 ≥ 1− 𝜉𝑖,∀𝑥𝑖 ∈ 𝒳 , (a)

∑︁
𝑗:𝑥𝑖∈𝐵(𝑥𝑗 ,𝜖),𝑙 ̸=𝑦𝑖

𝛼
(𝑙)
𝑗 ≤ 0 + 𝜈𝑖,∀𝑥𝑖 ∈ 𝒳 , (b)

𝛼𝑙
𝑗 ∈ {0, 1}∀𝑗, 𝑙, (11.2)

𝜉𝑖, 𝜈𝑖 ≥ 0. (11.3)

For each training point 𝑥𝑖, we introduce the slack variables 𝜉𝑖 and 𝜈𝑖. Before explaining the two constraints, note that∑︀
𝑗:𝑥𝑖∈𝐵(𝑥𝑗 ,𝜖)

𝛼
(𝑙)
𝑗 counts the number of balls 𝐵(𝑥𝑗 , 𝜖) with 𝑥𝑗 ∈ 𝒫𝑙 that cover the point 𝑥𝑖. The constraint (a) tries

542 Chapter 11. Methods

https://en.wikipedia.org/wiki/Integer_programming

alibi Documentation, Release 0.9.5dev

to encourage that for each training point (𝑥𝑖, 𝑦𝑖), 𝑥𝑖 is covered in at least one 𝜖-ball of a prototype for the class 𝑦𝑖. On
the other hand, the constraint (b) tries to encourage that 𝑥𝑖 will not belong to any 𝜖-ball centered in a prototype for the
other classes 𝑙 ̸= 𝑦𝑖.

Because the integer program defined above cannot be solved in polynomial time, the authors propose two alternative
solution. The first one consists of a relaxation of the objective and a transformation of the integer program into a linear
program, for which post-processing is required to ensure feasibility of the solution. We refer the reader to the paper for
more details. The second one, recommended and implemented in Alibi, follows a greedy approach. Given the current
choice of prototypes subsets (𝒫1, ...,𝒫𝐿), in the next iteration we update it to (𝒫1, ...,𝒫𝑙 ∪ {𝑥𝑗}, ...,𝒫𝐿), where 𝑥𝑗 is
selected such that it maximizes the objective ∆𝑂𝑏𝑗(𝑥𝑗 , 𝑙) = ∆𝜉(𝑥𝑗 , 𝑙)−∆𝜈(𝑥𝑗 , 𝑙)− 𝜆, where:

∆𝜉(𝑥𝑗 , 𝑙) = |𝒳𝑙 ∩ (𝐵(𝑥𝑗 , 𝜖) ∖ ∪𝑥𝑗′∈𝒫𝑙
𝐵(𝑥𝑗′ , 𝜖))| (a)

∆𝜈(𝑥𝑗 , 𝑙) = |𝐵(𝑥𝑗 , 𝜖) ∩ (𝒳 ∖ 𝒳𝑙)|. (b)

Note that ∆𝜉(𝑥𝑗 , 𝑙) counts the number of new instances (i.e. not already covered by the existing prototypes) belonging
to class 𝑙 that 𝑥𝑗 covers in the 𝜖-ball. On the other hand, ∆𝜈(𝑥𝑗 , 𝑙) counts how many instances belonging to a different
class than 𝑙 the 𝑥𝑗 element covers. Finally, 𝜆 is the penalty/cost of adding a new prototypes encouraging sparsity (lower
number of prototypes). Intuitively, a good prototype for a class 𝑙 will cover as many new instances belonging to class
𝑙 (i.e. maximize ∆𝜉(𝑥𝑗 , 𝑙)) and avoid covering elements outside the class 𝑙 (i.e. minimize ∆𝜈(𝑥𝑗 , 𝑙)). The prototype
selection algorithm stops when all ∆𝑂𝑏𝑗(𝑥𝑗 , 𝑙) are lower than 0.

11.1.3 Usage

from alibi.prototypes import ProtoSelect
from alibi.utils.kernel import EuclideanDistance

summariser = ProtoSelect(kernel_distance=EuclideanDistance(), eps=eps, preprocess_
→˓fn=preprocess_fn)

• kernel_distance: Kernel distance to be used. Expected to support computation in batches. Given an input 𝑥
of size 𝑁𝑥 × 𝑓1 × 𝑓2 × . . . and an input 𝑦 of size 𝑁𝑦 × 𝑓1 × 𝑓2 × . . ., the kernel distance should return a kernel
matrix of size 𝑁𝑥 ×𝑁𝑦 .

• eps: Epsilon ball size.

• lambda_penalty: Penalty for each prototype. Encourages a lower number of prototypes to be selected. Corre-
sponds to 𝜆 in the paper’s notation. If not specified, the default value is set to 1 / N, where N is the size of the
dataset to choose the prototype instances from, passed to the fit method.

• batch_size: Batch size to be used for kernel matrix computation.

• preprocess_fn: Preprocessing function used for kernel matrix computation. The preprocessing function
takes the input in a list or a numpy array and transforms it into a numpy array which is then fed to the
kernel_distance function. The use of preprocess_fn allows the method to be applied to any data modality.

• verbose: Whether to display progression bar while computing prototype points.

Following the initialization, we need to fit the summariser.

summariser = summariser.fit(X=X_train, y=y_train)

• X: Dataset to be summarised.

• y: Labels of the dataset X. The labels are expected to be represented as integers [0, 1, ..., L-1], where L
is the number of classes in the dataset X.

11.1. ProtoSelect 543

https://arxiv.org/abs/1202.5933
https://docs.seldon.io/projects/alibi/en/stable/api/alibi.prototypes.protoselect.html#alibi.prototypes.protoselect.ProtoSelect.fit

alibi Documentation, Release 0.9.5dev

In a more general case, we can specify an optional dataset 𝑍 to choose the prototypes from (see the documentation of
the fit method). In this scenario, the dataset to be summarised is still 𝑋 , but it is summarised by prototypes belonging
to the dataset 𝑍. Furthermore, note that we only need to specify the labels for the 𝑋 set through 𝑦, but not for 𝑍. In
case the labels 𝑦 are missing, the method implicitly assumes that all the instances belong to the same class. This means
that the second term in the objective, ∆𝜈(𝑥𝑗 , 𝑙), will be 0. Thus, the algorithm will try to find prototypes that cover as
many data instances as possible, with minimum overlap between their corresponding 𝜖-balls.

Finally, we can obtain a summary by requesting the maximum number of prototypes to be returned:

summary = summariser.summarise(num_prototypes=num_prototypes)

• num_prototypes: Maximum number of prototypes to be selected.

As we previously mentioned, the algorithm stops when the objective is less than 0, for all the remaining instances in
the set of potential prototypes. This means that the algorithm can return a lower number of prototypes than the one
requested.

Another important observation is that the summary returns the prototypes with their corresponding labels although no
labels were provided for 𝑍. This is possible since each prototype 𝑧 will belong to a prototype set 𝒫𝑙, and thus we can
assign a label 𝑙 to 𝑧. Following the summarisation step, one can train an interpretable 1-KNN classifier on the returned
prototypes even for an unlabeled dataset 𝑍.

Warning
If the optional argument 𝑍 is not provided, it is automatically set to 𝑋 . Although the labels of the data instances
belonging to 𝑍 are available in this case, the dataset 𝑍 is still viewed as an unlabeled dataset. This means that a
prototype 𝑧𝑖 ∈ 𝑍 belonging to the class 𝑙 according to the labels 𝑦, can be a prototype for a class 𝑘 ̸= 𝑙.

11.1.4 Hyperparameter selection

Alibi exposes a cross-validation hyperparameter selection method for the radius 𝜖 when the Euclidean distance is used.
The method returns the 𝜖 radius value that achieves the best accuracy score on a 1-KNN classification task.

from alibi.prototypes.protoselect import cv_protoselect_euclidean

cv = cv_protoselect_euclidean(trainset=(X_train, y_train),
valset=(X_val, y_val),
num_prototypes=num_prototypes,
quantiles=(0., 0.4),
preprocess_fn=preprocess_fn)

The method API is flexible and allows for various arguments to be passed such as a predefined 𝜖-grid, the number of
equidistant bins, keyword arguments to the KFold split when the validation set is not provided, etc. We refer the reader
to the documentation page for a full parameter description.

The best 𝜖-radius can be access through cv['best_eps']. The object also contains other metadata gathered through-
out the hyperparameter search.

544 Chapter 11. Methods

https://docs.seldon.io/projects/alibi/en/stable/api/alibi.prototypes.protoselect.html#alibi.prototypes.protoselect.ProtoSelect.fit
https://docs.seldon.io/projects/alibi/en/stable/api/alibi.prototypes.protoselect.html#alibi.prototypes.protoselect.cv_protoselect_euclidean

alibi Documentation, Release 0.9.5dev

11.1.5 Data modalities

The method can be applied to any data modality by passing the preprocess_fn: Callable[[Union[list, np.
ndarray]], np.ndarray] expected to return a numpy array feature representation compatible with the kernel pro-
vided.

11.1.6 Prototypes visualization for image modality

As proposed by Bien and Tibshirani (2012), one can visualize and understand the importance of a prototype in a 2D
image scatter plot. To obtain the image size of each prototype, we fit a 1-KNN classifier on the prototypes using the
feature representation provided by preprocess_fn and the Euclidean distance metric, which is consistent with our
choice of kernel dissimilarity. The size of each prototype is proportional to the logarithm of the number of assigned
training instances correctly classified according to the 1-KNN classifier. Thus, the larger the image, the more important
the prototype is.

11.1. ProtoSelect 545

https://arxiv.org/pdf/1202.5933.pdf

alibi Documentation, Release 0.9.5dev

Prototypes of a subsampled ImageNet dataset containing 10 classes using a ResNet50 pretrained feature extractor.

import umap
from alibi.prototypes import visualize_prototypes

define 2D reducer
reducer = umap.UMAP(random_state=26)
reducer = reducer.fit(preprocess_fn(X_train))

display prototypes in 2D
visualize_image_prototypes(summary=summary,

trainset=(X_train, y_train),
reducer=reducer.transform,
preprocess_fn=preprocess_fn)

• summary: An Explanation object produced by a call to the summarise method.

• trainset: Tuple, (X_train, y_train), consisting of the training data instances with the corresponding la-
bels.

• reducer: 2D reducer. Reduces the input feature representation to 2D. Note that the reducer operates directly on
the input instances if preprocess_fn=None. If the preprocess_fn is specified, the reducer will be called on
the feature representation obtained after calling preprocess_fn on the input instances.

• preprocess_fn: Preprocessor function.

Here we used a UMAP 2D reducer, but any other dimensionality reduction method will do. The
visualize_image_prototypes method exposes other arguments to control how the images will be displayed. We
refer the reader to the documentation page for further details.

11.1.7 Examples

Tabular and image datasets

546 Chapter 11. Methods

https://docs.seldon.io/projects/alibi/en/stable/api/alibi.prototypes.protoselect.html#alibi.prototypes.protoselect.ProtoSelect.summarise
https://arxiv.org/abs/1802.03426
https://docs.seldon.io/projects/alibi/en/stable/api/alibi.prototypes.protoselect.html#alibi.prototypes.protoselect.visualize_prototypes

CHAPTER

TWELVE

EXAMPLES

12.1 ProtoSelect

12.1.1 ProtoSelect on Adult Census and CIFAR10

Bien and Tibshirani (2012) proposed ProtoSelect, which is a prototype selection method with the goal of constructing
not only a condensed view of a dataset but also an interpretable model (applicable to classification only). Prototypes
can be defined as instances that are representative of the entire training data distribution. Formally, consider a dataset
of training points 𝒳 = {𝑥1, ..., 𝑥𝑛} ⊂ R𝑝 and their corresponding labels 𝒴 = {𝑦1, ..., 𝑦𝑛}, where 𝑦𝑖 ∈ {1, 2, ..., 𝐿}.
ProtoSelect finds sets 𝒫𝑙 ⊆ 𝒳 for each class 𝑙 such that the set union of 𝒫1,𝒫2, ...,𝒫𝐿 would provided a distilled view
of the training dataset (𝒳 ,𝒴).

Given the sets of prototypes, one can construct a simple interpretable classifier given by:

𝑐(𝑥) = argmin
𝑙

min
𝑧∈𝒫𝑙

𝑑(𝑥, 𝑧)

Note that the classifier defined in the equation above would be equivalent to 1-KNN if each set 𝒫𝑙 would consist only
of instances belonging to class 𝑙.

[1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from typing import List, Dict, Tuple

import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.layers as layers

from sklearn.compose import ColumnTransformer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.neighbors import KNeighborsClassifier

from alibi.api.interfaces import Explanation
from alibi.datasets import fetch_adult
from alibi.prototypes import ProtoSelect, visualize_image_prototypes
from alibi.utils.kernel import EuclideanDistance
from alibi.prototypes.protoselect import cv_protoselect_euclidean

547

https://arxiv.org/abs/1202.5933

alibi Documentation, Release 0.9.5dev

Utils

Utility function to display the tabular data in a human-readable format.

[2]: def display_table(X: np.ndarray,
y: np.ndarray,
feature_names: List[str],
category_map: Dict[int, List[str]],
target_names: List[str]) -> pd.DataFrame:

"""
Displays the table in a human readable format.

Parameters

X

Array of data instances to be displayed.
y

Array of data labels.
feature_names

List of feature names.
category_map

Category mapping dictionary having as keys the categorical index and as values␣
→˓the categorical values

each feature takes.
target_names

List of label names.

Return

`DataFrame` containing the concatenation of `X` and `Y` in a human readable format.
"""
concat labels to the original instances
orig = np.concatenate([X, y.reshape(-1, 1)], axis=1)

define new feature names and category map by including the label
feature_names = feature_names + ["Label"]
category_map.update({feature_names.index("Label"): [target_names[i] for i in np.

→˓unique(y)]})

replace label encodings with strings
df = pd.DataFrame(orig, columns=feature_names)
for key in category_map:

df[feature_names[key]].replace(range(len(category_map[key])), category_map[key],␣
→˓inplace=True)

dfs = []
for l in np.unique(y):

dfs.append(df[df['Label'] == target_names[l]])

return pd.concat(dfs)

Utility function to display image prototypes.

548 Chapter 12. Examples

alibi Documentation, Release 0.9.5dev

[3]: def display_images(summary: Explanation, imgsize: float =1.5):
"""
Displays image prototypes per class.

Parameters

summary

An `Explanation` object produced by a call to the `summarise` method.
imgsize

Image size of a prototype.
"""
X_protos, y_protos = summary.data['prototypes'], summary.data['prototype_labels']
str_labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse

→˓', 'ship', 'truck']
int_labels, counts = np.unique(y_protos, return_counts=True)
max_counts = np.max(counts).item()

fig, axs = plt.subplots(len(int_labels), max_counts)
fig.set_figheight(len(int_labels) * imgsize)
fig.set_figwidth(max_counts * imgsize)

for i, l in enumerate(int_labels):
indices = np.where(y_protos == l)[0]
X = X_protos[indices]

for j in range(max_counts):
if j < len(indices):

axs[i][j].imshow(X[j])
else:

fig.delaxes(axs[i][j])

axs[i][j].set_xticks([])
axs[i][j].set_yticks([])

axs[i][0].set_ylabel(str_labels[l])

Adult Census dataset

Load Adult Census dataset

Fetch the Adult Census dataset and perform train-test-validation split. In this example, for demonstrative purposes,
each split contains only 1000. One can increase the number of instances in each set but should be aware of the memory
limitation since the kernel matrix used for prototype selection is precomputed and stored in memory.

[4]: # fetch adult datasets
adult = fetch_adult()

split dataset into train-test-validation
X, y = adult.data, adult.target
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=1000, test_
→˓size=2000, random_state=13)

(continues on next page)

12.1. ProtoSelect 549

alibi Documentation, Release 0.9.5dev

(continued from previous page)

X_test, X_val, y_test, y_val = train_test_split(X_test, y_test, test_size=0.5, random_
→˓state=13)

identify numerical and categorical columns
categorical_ids = list(adult.category_map.keys())
numerical_ids = [i for i in range(len(adult.feature_names)) if i not in adult.category_
→˓map]

Preprocessing function

Because the tabular dataset has low dimensionality, we can use a simple preprocessing function: numerical features
are standardized and categorical features are one-hot encoded. The kernel dissimilarity used for prototype selection
will operate on the preprocessed representation.

[5]: # define data preprocessor
num_transf = StandardScaler()
cat_transf = OneHotEncoder(

categories=[range(len(x)) for x in adult.category_map.values()],
handle_unknown='ignore'

)
preprocessor = ColumnTransformer(

transformers=[
('cat', cat_transf, categorical_ids),
('num', num_transf, numerical_ids)

],
sparse_threshold=0

)

fit data preprocessor
preprocessor = preprocessor.fit(adult.data)

Prototypes selection

As with every kernel-based method, the performance of ProtoSelect is sensitive to the kernel selection and a predefined
𝜖-radius which characterizes the neighborhood of an instance 𝑥 as a hyper-sphere of radius 𝜖 centered in 𝑥 denoted as
𝐵(𝑥𝑖, 𝜖). Note that other kernel dissimilarities might require some tuning (e.g., Gaussian RBF), which means that we
will have to jointly search for the optimum 𝜖 and kernel parameters. Luckily, in our case, we will use a simple Euclidean
distance metric that does not require any tuning. Thus, we only need to search for the optimum 𝜖-radius to be used by
ProtoSelect. Alibi already comes with support for a grid-based search of the optimum values of the 𝜖 when using a
Euclidean distance metric.

To search for the optimum 𝜖-radius, we call thecv_protoselect_euclideanmethod, provided with a training dataset,
an optional prototype dataset (i.e. training dataset is used by default if prototype dataset is not provided), and a validation
set. Note that in the absence of a validation dataset, the method performs cross-validation on the training dataset.

[6]: num_prototypes = 20
grid_size = 50
quantiles = (0., .5)

search for the best epsilon-radius value
(continues on next page)

550 Chapter 12. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

cv = cv_protoselect_euclidean(trainset=(X_train, y_train),
valset=(X_val, y_val),
num_prototypes=num_prototypes,
quantiles=quantiles,
grid_size=grid_size,
preprocess_fn=preprocessor.transform)

Once we have the optimum value of 𝜖, we can instantiate ProtoSelect as follows:

[7]: summariser = ProtoSelect(kernel_distance=EuclideanDistance(),
eps=cv['best_eps'],
preprocess_fn=preprocessor.transform)

summariser = summariser.fit(X=X_train, y=y_train)
summary = summariser.summarise(num_prototypes=num_prototypes)
print(f"Found {len(summary.data['prototypes'])} prototypes.")

Found 20 prototypes.

Display prototypes

Let us inspect the returned prototypes:

[8]: X_protos = summary.data['prototypes']
y_protos = summary.data['prototype_labels']

display the prototypes in a human readable format
display_table(X=X_protos,

y=y_protos,
feature_names=adult.feature_names,
category_map=adult.category_map,
target_names=adult.target_names)

[8]: Age Workclass Education Marital Status Occupation \
0 33 Private High School grad Never-Married Blue-Collar
1 31 Private High School grad Never-Married Service
2 60 Private Associates Separated Service
3 61 ? High School grad Married ?
4 20 ? High School grad Never-Married ?
5 31 Private High School grad Never-Married Service
6 27 ? High School grad Separated ?
7 63 Private Dropout Widowed Service
8 67 Federal-gov Bachelors Widowed Admin
9 25 Private Dropout Never-Married Service
10 38 Self-emp-not-inc Bachelors Never-Married Blue-Collar
11 31 Private High School grad Separated Blue-Collar
12 21 Private High School grad Never-Married Sales
13 17 ? Dropout Never-Married ?
14 61 Local-gov Masters Married White-Collar
15 51 Self-emp-inc Doctorate Married Professional
16 55 Private Masters Married White-Collar
17 33 Private Bachelors Married Professional

(continues on next page)

12.1. ProtoSelect 551

alibi Documentation, Release 0.9.5dev

(continued from previous page)

18 49 Self-emp-inc Prof-School Married Professional
19 90 Private Prof-School Married Professional

Relationship Race Sex Capital Gain Capital Loss \
0 Not-in-family White Male 0 0
1 Own-child White Female 0 0
2 Not-in-family White Female 0 0
3 Husband White Male 0 0
4 Own-child White Male 0 0
5 Own-child White Male 0 1721
6 Own-child Black Female 0 0
7 Not-in-family White Female 0 0
8 Not-in-family White Female 0 0
9 Unmarried Black Female 0 0
10 Not-in-family Amer-Indian-Eskimo Male 0 0
11 Unmarried White Female 0 2238
12 Own-child Asian-Pac-Islander Male 0 0
13 Own-child White Male 0 0
14 Husband White Male 7298 0
15 Husband White Male 15024 0
16 Husband White Male 0 1977
17 Husband White Male 15024 0
18 Husband White Male 99999 0
19 Husband White Male 20051 0

Hours per week Country Label
0 40 United-States <=50K
1 30 United-States <=50K
2 40 United-States <=50K
3 6 United-States <=50K
4 20 United-States <=50K
5 16 United-States <=50K
6 40 United-States <=50K
7 31 United-States <=50K
8 40 United-States <=50K
9 32 United-States <=50K
10 30 United-States <=50K
11 40 United-States <=50K
12 30 British-Commonwealth <=50K
13 20 South-America <=50K
14 60 United-States >50K
15 40 United-States >50K
16 40 United-States >50K
17 75 United-States >50K
18 37 United-States >50K
19 72 United-States >50K

By inspecting the prototypes, we can observe that features like Education and Marital Status can reveal some
patterns. People with lower education level (e.g., High School grad, Dropout, etc.) and who don’t have a partner
(e.g., Never-Married, Separated, Widowed etc.) tend to be classified as ≤ 50𝐾. On the other hand, we have
people that have a higher education level (e.g., Bachelors, Masters, Doctorate, etc.) and who have a partner (e.g.,
Married) that are classified as > 50𝐾.

552 Chapter 12. Examples

alibi Documentation, Release 0.9.5dev

Train 1-KNN

A standard procedure to check the quality of the prototypes is to train a 1-KNN classifier and evaluate its performance.

[9]: # train 1-knn classifier using the selected prototypes
knn_proto = KNeighborsClassifier(n_neighbors=1, metric='euclidean')
knn_proto = knn_proto.fit(X=preprocessor.transform(X_protos), y=y_protos)

To verify that ProtoSelect returns better prototypes than a simple random selection, we randomly sample multiple
prototype sets, train a 1-KNN for each set, evaluate the classifiers, and return the average accuracy score.

[10]: np.random.seed(0)
scores = []

for i in range(10):
rand_idx = np.random.choice(len(X_train), size=len(X_protos), replace=False)
rands, rands_labels = X_train[rand_idx], y_train[rand_idx]

knn_rand = KNeighborsClassifier(n_neighbors=1, metric='euclidean')
knn_rand = knn_rand.fit(X=preprocessor.transform(rands), y=rands_labels)
scores.append(knn_rand.score(preprocessor.transform(X_test), y_test))

Compare the results returned by ProtoSelect and by the random sampling.

[11]: # compare the scores obtained by ProtoSelect vs random choice
print('ProtoSelect 1-KNN accuracy: %.3f' % (knn_proto.score(preprocessor.transform(X_
→˓test), y_test)))
print('Random 1-KNN mean accuracy: %.3f' % (np.mean(scores)))

ProtoSelect 1-KNN accuracy: 0.813
Random 1-KNN mean accuracy: 0.723

We can observe that ProtoSelect chooses more representative instances than a naive random selection. The gap
between the two should narrow as we increase the number of requested prototypes.

CIFAR10 dataset

Load dataset

Fetch the CIFAR10 dataset and perform train-test-validation split and standard preprocessing. For demonstrative pur-
poses, we use a reduced dataset and remind the user about the memory limitation of pre-computing and storing the
kernel matrix in memory.

[12]: (X_train, y_train), (X_test, y_test) = tf.keras.datasets.cifar10.load_data()
X_train = X_train.astype(np.float32) / 255.
X_test = X_test.astype(np.float32) / 255.
y_train, y_test = y_train.flatten(), y_test.flatten()

split the test into test-validation
X_test, X_val, y_test, y_val = train_test_split(X_test, y_test, train_size=1000, test_
→˓size=1000, random_state=13)

(continues on next page)

12.1. ProtoSelect 553

alibi Documentation, Release 0.9.5dev

(continued from previous page)

subsample the datasets
np.random.seed(13)
train_idx = np.random.choice(len(X_train), size=1000, replace=False)
X_train, y_train = X_train[train_idx], y_train[train_idx]

Preprocessing function

For CIFAR10, we use a hidden layer output from a pre-trained network as our feature representation of the input images.
The network was trained on the CIFAR10 dataset. Note that one can use any feature representation of choice (e.g., used
from some self-supervised task).

[13]: # download weights
!wget https://storage.googleapis.com/seldon-models/alibi/model_cifar10/checkpoint -P␣
→˓model_cifar10
!wget https://storage.googleapis.com/seldon-models/alibi/model_cifar10/cifar10.ckpt.data-
→˓00000-of-00001 -P model_cifar10
!wget https://storage.googleapis.com/seldon-models/alibi/model_cifar10/cifar10.ckpt.
→˓index -P model_cifar10

--2022-05-09 14:21:49-- https://storage.googleapis.com/seldon-models/alibi/model_
→˓cifar10/checkpoint
Resolving storage.googleapis.com (storage.googleapis.com)... 142.250.178.16, 142.250.187.
→˓240, 142.250.187.208, ...
Connecting to storage.googleapis.com (storage.googleapis.com)|142.250.178.16|:443...␣
→˓connected.
HTTP request sent, awaiting response... 200 OK
Length: 81 [application/octet-stream]
Saving to: ‘model_cifar10/checkpoint’

checkpoint 100%[===================>] 81 --.-KB/s in 0s

2022-05-09 14:21:49 (11,2 MB/s) - ‘model_cifar10/checkpoint’ saved [81/81]

--2022-05-09 14:21:49-- https://storage.googleapis.com/seldon-models/alibi/model_
→˓cifar10/cifar10.ckpt.data-00000-of-00001
Resolving storage.googleapis.com (storage.googleapis.com)... 142.250.178.16, 142.250.187.
→˓240, 142.250.187.208, ...
Connecting to storage.googleapis.com (storage.googleapis.com)|142.250.178.16|:443...␣
→˓connected.
HTTP request sent, awaiting response... 200 OK
Length: 2218891 (2,1M) [application/octet-stream]
Saving to: ‘model_cifar10/cifar10.ckpt.data-00000-of-00001’

cifar10.ckpt.data-0 100%[===================>] 2,12M --.-KB/s in 0,08s

2022-05-09 14:21:49 (25,5 MB/s) - ‘model_cifar10/cifar10.ckpt.data-00000-of-00001’ saved␣
→˓[2218891/2218891]

--2022-05-09 14:21:50-- https://storage.googleapis.com/seldon-models/alibi/model_
→˓cifar10/cifar10.ckpt.index
Resolving storage.googleapis.com (storage.googleapis.com)... 142.250.178.16, 142.250.187.

(continues on next page)

554 Chapter 12. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

→˓240, 142.250.187.208, ...
Connecting to storage.googleapis.com (storage.googleapis.com)|142.250.178.16|:443...␣
→˓connected.
HTTP request sent, awaiting response... 200 OK
Length: 2828 (2,8K) [application/octet-stream]
Saving to: ‘model_cifar10/cifar10.ckpt.index’

cifar10.ckpt.index 100%[===================>] 2,76K --.-KB/s in 0s

2022-05-09 14:21:50 (38,4 MB/s) - ‘model_cifar10/cifar10.ckpt.index’ saved [2828/2828]

[14]: # define the network to be used.
model = keras.Sequential([

layers.InputLayer(input_shape=(32, 32, 3)),
layers.Conv2D(32, (3, 3), kernel_initializer='he_uniform', padding='same'),
layers.ReLU(),
layers.BatchNormalization(),
layers.Conv2D(32, (3, 3), kernel_initializer='he_uniform', padding='same'),
layers.ReLU(),
layers.BatchNormalization(),
layers.MaxPooling2D((2, 2)),
layers.Dropout(0.2),
layers.Conv2D(64, (3, 3), kernel_initializer='he_uniform', padding='same'),
layers.ReLU(),
layers.BatchNormalization(),
layers.Conv2D(64, (3, 3), kernel_initializer='he_uniform', padding='same'),
layers.ReLU(),
layers.BatchNormalization(),
layers.MaxPooling2D((2, 2)),
layers.Dropout(0.3),
layers.Conv2D(128, (3, 3), kernel_initializer='he_uniform', padding='same'),
layers.ReLU(),
layers.BatchNormalization(),
layers.Conv2D(128, (3, 3), kernel_initializer='he_uniform', padding='same'),
layers.ReLU(),
layers.BatchNormalization(),
layers.MaxPooling2D((2, 2)),
layers.Dropout(0.4),
layers.Flatten(),
layers.Dense(128, kernel_initializer='he_uniform', name='feature_layer'),
layers.ReLU(),
layers.BatchNormalization(),
layers.Dropout(0.5),
layers.Dense(10)

])

load the weights
model.load_weights('model_cifar10/cifar10.ckpt');

12.1. ProtoSelect 555

alibi Documentation, Release 0.9.5dev

[15]: # define preprocessing function
partial_model = keras.Model(

inputs=model.inputs,
outputs=model.get_layer(name='feature_layer').output

)

def preprocess_fn(x: np.ndarray):
return partial_model(x, training=False).numpy()

Prototypes selection

To obtain the best results, we apply the same grid-search procedure as in the case of the tabular dataset.

[16]: num_prototypes = 50
grid_size = 50
quantiles = (0.0, 0.5)

get best eps by cv
cv = cv_protoselect_euclidean(trainset=(X_train, y_train),

valset=(X_val, y_val),
num_prototypes=num_prototypes,
quantiles=quantiles,
grid_size=grid_size,
preprocess_fn=preprocess_fn,
batch_size=100)

Once we have the optimum value of 𝜖 we can instantiate ProtoSelect as follows:

[17]: summariser = ProtoSelect(kernel_distance=EuclideanDistance(),
eps=cv['best_eps'],
preprocess_fn=preprocess_fn)

summariser = summariser.fit(X=X_train, y=y_train)
summary = summariser.summarise(num_prototypes=num_prototypes)
print(f"Found {len(summary.data['prototypes'])} prototypes.")

Found 31 prototypes.

Display prototypes

We can visualize and understand the importance of a prototype in a 2D image scatter plot. Alibi provides a helper
function which fits a 1-KNN classifier on the prototypes and computes their importance as the logarithm of the number
of assigned training instances correctly classified according to the 1-KNN classifier. Thus, the larger the image, the
more important the prototype is.

[]: !pip install umap-learn

[18]: import umap

define 2D reducer
(continues on next page)

556 Chapter 12. Examples

alibi Documentation, Release 0.9.5dev

(continued from previous page)

reducer = umap.UMAP(random_state=26)
reducer = reducer.fit(preprocess_fn(X_train))

[19]: # display prototypes in 2D
ax = visualize_image_prototypes(summary=summary,

trainset=(X_train, y_train),
reducer=reducer.transform,
preprocess_fn=preprocess_fn,
knn_kw = {'metric': 'euclidean'},
fig_kw={'figwidth': 12, 'figheight': 12})

Besides visualizing and understanding the prototypes importance (i.e., larger images correspond to more important
prototypes), one can also understand the diversity of each class by simply displaying all their corresponding prototypes.

12.1. ProtoSelect 557

alibi Documentation, Release 0.9.5dev

[20]: display_images(summary=summary, imgsize=1.5)

558 Chapter 12. Examples

alibi Documentation, Release 0.9.5dev

12.1. ProtoSelect 559

alibi Documentation, Release 0.9.5dev

For example, within the current setup, we can observe that only two prototypes are required to cover the subset of
the airplane instance. On the other hand, for the subset of the car instances, we need at least six prototypes. The
visualization suggests that the car class has more diversity in the feature representation and implicitly requires more
prototypes to cover its instances.

Train 1-KNN

As before, we train a 1-KNN classifier to verify the quality of the prototypes returned by ProtoSelect against a random
sampling.

[21]: # train 1-knn classifier using the selected prototypes
X_protos = summary.data['prototypes']
y_protos = summary.data['prototype_labels']
knn_proto = KNeighborsClassifier(n_neighbors=1, metric='euclidean')
knn_proto = knn_proto.fit(X=preprocess_fn(X_protos), y=y_protos)

[22]: np.random.seed(0)
scores = []

for i in range(10):
rand_idx = np.random.choice(len(X_train), size=len(X_protos), replace=False)
rands, rands_labels = X_train[rand_idx], y_train[rand_idx]

knn_rand = KNeighborsClassifier(n_neighbors=1, metric='euclidean')
knn_rand = knn_rand.fit(X=preprocess_fn(rands), y=rands_labels)
scores.append(knn_rand.score(preprocess_fn(X_test), y_test))

[23]: print('ProtoSelect 1-KNN accuracy: %.3f' % (knn_proto.score(preprocess_fn(X_test), y_
→˓test)))
print('Random 1-KNN mean accuracy: %.3f' % (np.mean(scores)))

ProtoSelect 1-KNN accuracy: 0.870
Random 1-KNN mean accuracy: 0.773

560 Chapter 12. Examples

CHAPTER

THIRTEEN

ALIBI

13.1 alibi package

13.1.1 Subpackages

alibi.api package

Submodules

alibi.api.defaults module

This module defines the default metadata and data dictionaries for each explanation method. Note that the “name” field
is automatically populated upon initialization of the corresponding Explainer class.

alibi.api.defaults.DEFAULT_DATA_ALE: dict = {'ale0': [], 'ale_values': [],
'constant_value': None, 'feature_deciles': None, 'feature_names': None, 'feature_values':
[], 'target_names': None}

Default ALE data.

alibi.api.defaults.DEFAULT_DATA_ANCHOR: dict = {'anchor': [], 'coverage': None,
'precision': None, 'raw': None}

Default anchor data.

alibi.api.defaults.DEFAULT_DATA_ANCHOR_IMG: dict = {'anchor': [], 'coverage': None,
'precision': None, 'raw': None, 'segments': None}

Default anchor image data.

alibi.api.defaults.DEFAULT_DATA_CEM: dict = {'PN': None, 'PN_pred': None, 'PP': None,
'PP_pred': None, 'X': None, 'X_pred': None, 'grads_graph': None, 'grads_num': None}

Default CEM data.

alibi.api.defaults.DEFAULT_DATA_CF: dict = {'all': [], 'cf': None, 'orig_class': None,
'orig_proba': None, 'success': None}

Default counterfactual data.

alibi.api.defaults.DEFAULT_DATA_CFP: dict = {'all': [], 'cf': None, 'id_proto': None,
'orig_class': None, 'orig_proba': None}

Default counterfactual prototype metadata.

561

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

alibi Documentation, Release 0.9.5dev

alibi.api.defaults.DEFAULT_DATA_CFRL: dict = {'cf': None, 'condition': None, 'orig':
None, 'target': None}

Default CounterfactualRL data.

alibi.api.defaults.DEFAULT_DATA_INTGRAD: dict = {'X': None, 'attributions': None,
'baselines': None, 'deltas': None, 'forward_kwargs': None, 'predictions': None}

Default IntegratedGradients data.

alibi.api.defaults.DEFAULT_DATA_KERNEL_SHAP: dict = {'categorical_names': {},
'expected_value': [], 'feature_names': [], 'raw': {'importances': {}, 'instances': None,
'prediction': None, 'raw_prediction': None}, 'shap_values': []}

Default KernelShap data.

alibi.api.defaults.DEFAULT_DATA_PD: dict = {'feature_deciles': None, 'feature_names':
None, 'feature_values': None, 'ice_values': None, 'pd_values': None}

Default PartialDependence data.

alibi.api.defaults.DEFAULT_DATA_PDVARIANCE: dict = {'conditional_importance': None,
'conditional_importance_values': None, 'feature_deciles': None, 'feature_importance':
None, 'feature_interaction': None, 'feature_names': None, 'feature_values': None,
'pd_values': None}

Default PartialDependenceVariance data.

alibi.api.defaults.DEFAULT_DATA_PERMUTATION_IMPORTANCE: dict = {'feature_importance':
None, 'feature_names': None, 'metric_names': None}

Default PermutationImportance data.

alibi.api.defaults.DEFAULT_DATA_PROTOSELECT: dict = {'prototype_indices': None,
'prototype_labels': None, 'prototypes': None}

Default ProtoSelect data.

alibi.api.defaults.DEFAULT_DATA_SIM: dict = {'least_similar': None, 'most_similar': None,
'ordered_indices': None, 'scores': None}

Default SimilarityExplainer data.

alibi.api.defaults.DEFAULT_DATA_TREE_SHAP: dict = {'categorical_names': {},
'expected_value': [], 'feature_names': [], 'raw': {'importances': {}, 'instances': None,
'labels': None, 'loss': None, 'prediction': None, 'raw_prediction': None},
'shap_interaction_values': [], 'shap_values': []}

Default TreeShap data.

alibi.api.defaults.DEFAULT_META_ALE: dict = {'explanations': ['global'], 'name': None,
'params': {}, 'type': ['blackbox'], 'version': None}

Default ALE metadata.

alibi.api.defaults.DEFAULT_META_ANCHOR: dict = {'explanations': ['local'], 'name': None,
'params': {}, 'type': ['blackbox'], 'version': None}

Default anchor metadata.

alibi.api.defaults.DEFAULT_META_CEM: dict = {'explanations': ['local'], 'name': None,
'params': {}, 'type': ['blackbox', 'tensorflow', 'keras'], 'version': None}

Default CEM metadata.

alibi.api.defaults.DEFAULT_META_CF: dict = {'explanations': ['local'], 'name': None,
'params': {}, 'type': ['blackbox', 'tensorflow', 'keras'], 'version': None}

Default counterfactual metadata.

562 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

alibi Documentation, Release 0.9.5dev

alibi.api.defaults.DEFAULT_META_CFP: dict = {'explanations': ['local'], 'name': None,
'params': {}, 'type': ['blackbox', 'tensorflow', 'keras'], 'version': None}

Default counterfactual prototype metadata.

alibi.api.defaults.DEFAULT_META_CFRL: dict = {'explanations': ['local'], 'name': None,
'params': {}, 'type': ['blackbox'], 'version': None}

Default CounterfactualRL metadata.

alibi.api.defaults.DEFAULT_META_INTGRAD: dict = {'explanations': ['local'], 'name': None,
'params': {}, 'type': ['whitebox'], 'version': None}

Default IntegratedGradients metadata.

alibi.api.defaults.DEFAULT_META_KERNEL_SHAP: dict = {'explanations': ['local', 'global'],
'name': None, 'params': {'group_names': None, 'grouped': None, 'groups': None, 'kwargs':
None, 'link': None, 'summarise_background': None, 'summarise_result': None, 'transpose':
None, 'weights': None}, 'task': None, 'type': ['blackbox'], 'version': None}

Default KernelShap metadata.

alibi.api.defaults.DEFAULT_META_PD: dict = {'explanations': ['global'], 'name': None,
'params': {}, 'type': ['blackbox'], 'version': None}

Default PartialDependence metadata.

alibi.api.defaults.DEFAULT_META_PDVARIANCE: dict = {'explanations': ['global'], 'name':
None, 'params': {}, 'type': ['blackbox'], 'version': None}

Default PartialDependenceVariance metadata.

alibi.api.defaults.DEFAULT_META_PERMUTATION_IMPORTANCE: dict = {'explanations':
['global'], 'name': None, 'params': {}, 'type': ['blackbox'], 'version': None}

Default PermutationImportance metadata.

alibi.api.defaults.DEFAULT_META_PROTOSELECT: dict = {'explanation': ['global'], 'name':
None, 'params': {}, 'type': ['data'], 'version': None}

Default ProtoSelect metadata.

alibi.api.defaults.DEFAULT_META_SIM: dict = {'explanations': ['local'], 'name': None,
'params': {}, 'type': ['whitebox'], 'version': None}

Default SimilarityExplainer metadata.

alibi.api.defaults.DEFAULT_META_TREE_SHAP: dict = {'explanations': ['local', 'global'],
'name': None, 'params': {'algorithm': None, 'approximate': None, 'explain_loss': None,
'interactions': None, 'kwargs': None, 'model_output': None, 'summarise_background': None,
'summarise_result': None}, 'task': None, 'type': ['whitebox'], 'version': None}

Default TreeShap metadata.

alibi.api.defaults.KERNEL_SHAP_PARAMS = ['link', 'group_names', 'grouped', 'groups',
'weights', 'summarise_background', 'summarise_result', 'transpose', 'kwargs']

KernelShap parameters updated and returned in metadata['params']. See alibi.explainers.
shap_wrappers.KernelShap.

alibi.api.defaults.TREE_SHAP_PARAMS = ['model_output', 'summarise_background',
'summarise_result', 'approximate', 'interactions', 'explain_loss', 'algorithm', 'kwargs']

TreeShap parameters updated and returned in metadata['params']. See alibi.explainers.
shap_wrappers.TreeShap.

13.1. alibi package 563

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

alibi Documentation, Release 0.9.5dev

alibi.api.interfaces module

class alibi.api.interfaces.AlibiPrettyPrinter(*args, **kwargs)
Bases: PrettyPrinter

Overrides the built in dictionary pretty representation to look more similar to the external prettyprinter libary.

class alibi.api.interfaces.Base(meta=_Nothing.NOTHING)

Bases: object

Base class for all alibi algorithms. Implements a structured approach to handle metadata.

meta: dict

Object metadata.

class alibi.api.interfaces.Explainer(meta=_Nothing.NOTHING)

Bases: ABC, Base

Base class for explainer algorithms from alibi.explainers.

abstract explain(X)

Return type
Explanation

classmethod load(path, predictor)
Load an explainer from disk.

Parameters
• path (Union[str, PathLike]) – Path to a directory containing the saved explainer.

• predictor (Any) – Model or prediction function used to originally initialize the explainer.

Return type
Explainer

Returns
An explainer instance.

reset_predictor(predictor)
Resets the predictor.

Parameters
predictor (Any) – New predictor.

Return type
None

save(path)
Save an explainer to disk. Uses the dill module.

Parameters
path (Union[str, PathLike]) – Path to a directory. A new directory will be created if one
does not exist.

Return type
None

class alibi.api.interfaces.Explanation(meta, data)
Bases: object

Explanation class returned by explainers.

564 Chapter 13. alibi

https://docs.python.org/3/library/pprint.html#pprint.PrettyPrinter
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object

alibi Documentation, Release 0.9.5dev

__attrs_post_init__()

Expose keys stored in self.meta and self.data as attributes of the class.

__getitem__(item)

This method is purely for deprecating previous behaviour of accessing explanation data via items in the
returned dictionary.

data: dict

classmethod from_json(jsonrepr)
Create an instance of an Explanation class using a json representation of the Explanation.

Parameters
jsonrepr – json representation of an explanation.

Return type
Explanation

Returns
An Explanation object.

meta: dict

to_json()

Serialize the explanation data and metadata into a json format.

Return type
str

Returns
String containing json representation of the explanation.

class alibi.api.interfaces.FitMixin

Bases: ABC

abstract fit(X)

Return type
Explainer

class alibi.api.interfaces.Summariser(meta=_Nothing.NOTHING)

Bases: ABC, Base

Base class for prototype algorithms from alibi.prototypes.

classmethod load(path)

Return type
Summariser

save(path)

Return type
None

abstract summarise(num_prototypes)

Return type
Explanation

13.1. alibi package 565

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

alibi.api.interfaces.default_meta()

Return type
dict

alibi.confidence package

The ‘alibi.confidence’ module includes trust scores.

class alibi.confidence.LinearityMeasure(method='grid', epsilon=0.04, nb_samples=10, res=100,
alphas=None, model_type='classifier', agg='pairwise',
verbose=False)

Bases: object

__init__(method='grid', epsilon=0.04, nb_samples=10, res=100, alphas=None, model_type='classifier',
agg='pairwise', verbose=False)

Parameters
• method (str) – Method for sampling. Supported methods: 'knn' | 'grid'.

• epsilon (float) – Size of the sampling region around the central instance as a percentage
of the features range.

• nb_samples (int) – Number of samples to generate.

• res (int) – Resolution of the grid. Number of intervals in which the feature range is
discretized.

• alphas (Optional[ndarray]) – Coefficients in the superposition.

• agg (str) – Aggregation method. Supported values: 'global' | 'pairwise'.

• model_type (str) – Type of task. Supported values: 'regressor' | 'classifier'.

fit(X_train)

Parameters
X_train (ndarray) – Training set.

Return type
None

score(predict_fn, x)

Parameters
• predict_fn (Callable) – Prediction function.

• x (ndarray) – Instance of interest.

Return type
ndarray

Returns
Linearity measure.

class alibi.confidence.TrustScore(k_filter=10, alpha=0.0, filter_type=None, leaf_size=40,
metric='euclidean', dist_filter_type='point')

Bases: object

566 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#object

alibi Documentation, Release 0.9.5dev

__init__(k_filter=10, alpha=0.0, filter_type=None, leaf_size=40, metric='euclidean',
dist_filter_type='point')

Initialize trust scores.

Parameters
• k_filter (int) – Number of neighbors used during either kNN distance or probability

filtering.

• alpha (float) – Fraction of instances to filter out to reduce impact of outliers.

• filter_type (Optional[str]) – Filter method: 'distance_knn' |
'probability_knn'.

• leaf_size (int) – Number of points at which to switch to brute-force. Affects speed and
memory required to build trees. Memory to store the tree scales with n_samples / leaf_size.

• metric (str) – Distance metric used for the tree. See sklearn DistanceMetric class for a
list of available metrics.

• dist_filter_type (str) – Use either the distance to the k-nearest point
(dist_filter_type = 'point') or the average distance from the first to the k-nearest
point in the data (dist_filter_type = 'mean').

filter_by_distance_knn(X)
Filter out instances with low kNN density. Calculate distance to k-nearest point in the data for each instance
and remove instances above a cutoff distance.

Parameters
X (ndarray) – Data.

Return type
ndarray

Returns
Filtered data.

filter_by_probability_knn(X, Y)
Filter out instances with high label disagreement amongst its k nearest neighbors.

Parameters
• X (ndarray) – Data.

• Y (ndarray) – Predicted class labels.

Return type
Tuple[ndarray, ndarray]

Returns
Filtered data and labels.

fit(X, Y , classes=None)
Build KDTrees for each prediction class.

Parameters
• X (ndarray) – Data.

• Y (ndarray) – Target labels, either one-hot encoded or the actual class label.

• classes (Optional[int]) – Number of prediction classes, needs to be provided if Y
equals the predicted class.

13.1. alibi package 567

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

Return type
None

score(X, Y , k=2, dist_type='point')
Calculate trust scores = ratio of distance to closest class other than the predicted class to distance to predicted
class.

Parameters
• X (ndarray) – Instances to calculate trust score for.

• Y (ndarray) – Either prediction probabilities for each class or the predicted class.

• k (int) – Number of nearest neighbors used for distance calculation.

• dist_type (str) – Use either the distance to the k-nearest point (dist_type =
'point') or the average distance from the first to the k-nearest point in the data
(dist_type = 'mean').

Return type
Tuple[ndarray, ndarray]

Returns
Batch with trust scores and the closest not predicted class.

alibi.confidence.linearity_measure(predict_fn, x, feature_range=None, method='grid', X_train=None,
epsilon=0.04, nb_samples=10, res=100, alphas=None, agg='global',
model_type='classifier')

Calculate the linearity measure of the model around an instance of interest x.

Parameters
• predict_fn (Callable) – Predict function.

• x (ndarray) – Instance of interest.

• feature_range (Union[List, ndarray, None]) – Array with min and max values for each
feature.

• method (str) – Method for sampling. Supported values: 'knn' | 'grid'.

• X_train (Optional[ndarray]) – Training set.

• epsilon (float) – Size of the sampling region as a percentage of the feature range.

• nb_samples (int) – Number of samples to generate.

• res (int) – Resolution of the grid. Number of intervals in which the features range is dis-
cretized.

• alphas (Optional[ndarray]) – Coefficients in the superposition.

• agg (str) – Aggregation method. Supported values: 'global' | 'pairwise'.

• model_type (str) – Type of task. Supported values: 'regressor' | 'classifier'.

Return type
ndarray

Returns
Linearity measure.

568 Chapter 13. alibi

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

Submodules

alibi.confidence.model_linearity module

class alibi.confidence.model_linearity.LinearityMeasure(method='grid', epsilon=0.04,
nb_samples=10, res=100, alphas=None,
model_type='classifier', agg='pairwise',
verbose=False)

Bases: object

__init__(method='grid', epsilon=0.04, nb_samples=10, res=100, alphas=None, model_type='classifier',
agg='pairwise', verbose=False)

Parameters
• method (str) – Method for sampling. Supported methods: 'knn' | 'grid'.

• epsilon (float) – Size of the sampling region around the central instance as a percentage
of the features range.

• nb_samples (int) – Number of samples to generate.

• res (int) – Resolution of the grid. Number of intervals in which the feature range is
discretized.

• alphas (Optional[ndarray]) – Coefficients in the superposition.

• agg (str) – Aggregation method. Supported values: 'global' | 'pairwise'.

• model_type (str) – Type of task. Supported values: 'regressor' | 'classifier'.

fit(X_train)

Parameters
X_train (ndarray) – Training set.

Return type
None

score(predict_fn, x)

Parameters
• predict_fn (Callable) – Prediction function.

• x (ndarray) – Instance of interest.

Return type
ndarray

Returns
Linearity measure.

alibi.confidence.model_linearity.infer_feature_range(X_train)
Infers the feature range from the training set.

Parameters
X_train (ndarray) – Training set.

Return type
ndarray

13.1. alibi package 569

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable

alibi Documentation, Release 0.9.5dev

Returns
Feature range.

alibi.confidence.model_linearity.linearity_measure(predict_fn, x, feature_range=None,
method='grid', X_train=None, epsilon=0.04,
nb_samples=10, res=100, alphas=None,
agg='global', model_type='classifier')

Calculate the linearity measure of the model around an instance of interest x.

Parameters
• predict_fn (Callable) – Predict function.

• x (ndarray) – Instance of interest.

• feature_range (Union[List, ndarray, None]) – Array with min and max values for each
feature.

• method (str) – Method for sampling. Supported values: 'knn' | 'grid'.

• X_train (Optional[ndarray]) – Training set.

• epsilon (float) – Size of the sampling region as a percentage of the feature range.

• nb_samples (int) – Number of samples to generate.

• res (int) – Resolution of the grid. Number of intervals in which the features range is dis-
cretized.

• alphas (Optional[ndarray]) – Coefficients in the superposition.

• agg (str) – Aggregation method. Supported values: 'global' | 'pairwise'.

• model_type (str) – Type of task. Supported values: 'regressor' | 'classifier'.

Return type
ndarray

Returns
Linearity measure.

alibi.confidence.trustscore module

class alibi.confidence.trustscore.TrustScore(k_filter=10, alpha=0.0, filter_type=None, leaf_size=40,
metric='euclidean', dist_filter_type='point')

Bases: object

__init__(k_filter=10, alpha=0.0, filter_type=None, leaf_size=40, metric='euclidean',
dist_filter_type='point')

Initialize trust scores.

Parameters
• k_filter (int) – Number of neighbors used during either kNN distance or probability

filtering.

• alpha (float) – Fraction of instances to filter out to reduce impact of outliers.

• filter_type (Optional[str]) – Filter method: 'distance_knn' |
'probability_knn'.

• leaf_size (int) – Number of points at which to switch to brute-force. Affects speed and
memory required to build trees. Memory to store the tree scales with n_samples / leaf_size.

570 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

• metric (str) – Distance metric used for the tree. See sklearn DistanceMetric class for a
list of available metrics.

• dist_filter_type (str) – Use either the distance to the k-nearest point
(dist_filter_type = 'point') or the average distance from the first to the k-nearest
point in the data (dist_filter_type = 'mean').

filter_by_distance_knn(X)
Filter out instances with low kNN density. Calculate distance to k-nearest point in the data for each instance
and remove instances above a cutoff distance.

Parameters
X (ndarray) – Data.

Return type
ndarray

Returns
Filtered data.

filter_by_probability_knn(X, Y)
Filter out instances with high label disagreement amongst its k nearest neighbors.

Parameters
• X (ndarray) – Data.

• Y (ndarray) – Predicted class labels.

Return type
Tuple[ndarray, ndarray]

Returns
Filtered data and labels.

fit(X, Y , classes=None)
Build KDTrees for each prediction class.

Parameters
• X (ndarray) – Data.

• Y (ndarray) – Target labels, either one-hot encoded or the actual class label.

• classes (Optional[int]) – Number of prediction classes, needs to be provided if Y
equals the predicted class.

Return type
None

score(X, Y , k=2, dist_type='point')
Calculate trust scores = ratio of distance to closest class other than the predicted class to distance to predicted
class.

Parameters
• X (ndarray) – Instances to calculate trust score for.

• Y (ndarray) – Either prediction probabilities for each class or the predicted class.

• k (int) – Number of nearest neighbors used for distance calculation.

• dist_type (str) – Use either the distance to the k-nearest point (dist_type =
'point') or the average distance from the first to the k-nearest point in the data
(dist_type = 'mean').

13.1. alibi package 571

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

Return type
Tuple[ndarray, ndarray]

Returns
Batch with trust scores and the closest not predicted class.

alibi.datasets package

alibi.datasets.fetch_adult(features_drop=None, return_X_y=False, url_id=0)
Downloads and pre-processes ‘adult’ dataset. More info: http://mlr.cs.umass.edu/ml/
machine-learning-databases/adult/

Parameters
• features_drop (Optional[list]) – List of features to be dropped from dataset, by default

drops ["fnlwgt", "Education-Num"].

• return_X_y (bool) – If True, return features X and labels y as numpy arrays. If False
return a Bunch object.

• url_id (int) – Index specifying which URL to use for downloading.

Return type
Union[Bunch , Tuple[ndarray, ndarray]]

Returns
• Bunch – Dataset, labels, a list of features and a dictionary containing a list with the potential

categories for each categorical feature where the key refers to the feature column.

• (data, target) – Tuple if return_X_y=True

alibi.datasets.fetch_fashion_mnist(return_X_y=False)
Loads the Fashion MNIST dataset.

Parameters
return_X_y (bool) – If True, an N x M x P array of data points and N-array of labels are
returned instead of a dict.

Return type
Union[Bunch , Tuple[ndarray, ndarray]]

Returns
• If return_X_y=False, a Bunch object with fields ‘data’, ‘targets’ and ‘target_names’

• is returned. Otherwise an array with data points and an array of labels is returned.

alibi.datasets.fetch_imagenet(category='Persian cat', nb_images=10, target_size=(299, 299),
min_std=10.0, seed=42, return_X_y=False)

Return type
None

alibi.datasets.fetch_imagenet_10(url_id=0)
Sample dataset extracted from imagenet in a dictionary format. The train set contains 1000 random samples, 100
for each of the following 10 selected classes:

• stingray

• trilobite

• centipede

572 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Tuple
http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/
http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

• slug

• snail

• Rhodesian ridgeback

• beagle

• golden retriever

• sea lion

• espresso

The test set contains 50 random samples, 5 for each of the classes above.

Parameters
url_id (int) – Index specifying which URL to use for downloading.

Return type
Dict

Returns
Dictionary with the following keys –

• trainset - train set tuple (X_train, y_train)

• testset - test set tuple (X_test, y_test)

• int_to_str_labels - map from target to target name

• str_to_int_labels - map from target name to target

alibi.datasets.fetch_movie_sentiment(return_X_y=False, url_id=0)
The movie review dataset, equally split between negative and positive reviews.

Parameters
• return_X_y (bool) – If True, return features X and labels y as Python lists. If False return

a Bunch object.

• url_id (int) – Index specifying which URL to use for downloading

Return type
Union[Bunch , Tuple[list, list]]

Returns
• Bunch – Movie reviews and sentiment labels (0 means ‘negative’ and 1 means ‘positive’).

• (data, target) – Tuple if return_X_y=True.

alibi.datasets.load_cats(target_size=(299, 299), return_X_y=False)
A small sample of Imagenet-like public domain images of cats used primarily for examples. The images were
hand-collected using flickr.com by searching for various cat types, filtered by images in the public domain.

Parameters
• target_size (tuple) – Size of the returned images, used to crop images for a specified

model input size.

• return_X_y (bool) – If True, return features X and labels y as numpy arrays. If False
return a Bunch object

Return type
Union[Bunch , Tuple[ndarray, ndarray]]

13.1. alibi package 573

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple

alibi Documentation, Release 0.9.5dev

Returns
• Bunch – Bunch object with fields ‘data’, ‘target’ and ‘target_names’. Both targets and tar-

get_names are taken from the original Imagenet.

• (data, target) – Tuple if return_X_y=True.

Submodules

alibi.datasets.default module

alibi.datasets.default.fetch_adult(features_drop=None, return_X_y=False, url_id=0)
Downloads and pre-processes ‘adult’ dataset. More info: http://mlr.cs.umass.edu/ml/
machine-learning-databases/adult/

Parameters
• features_drop (Optional[list]) – List of features to be dropped from dataset, by default

drops ["fnlwgt", "Education-Num"].

• return_X_y (bool) – If True, return features X and labels y as numpy arrays. If False
return a Bunch object.

• url_id (int) – Index specifying which URL to use for downloading.

Return type
Union[Bunch , Tuple[ndarray, ndarray]]

Returns
• Bunch – Dataset, labels, a list of features and a dictionary containing a list with the potential

categories for each categorical feature where the key refers to the feature column.

• (data, target) – Tuple if return_X_y=True

alibi.datasets.default.fetch_imagenet(category='Persian cat', nb_images=10, target_size=(299, 299),
min_std=10.0, seed=42, return_X_y=False)

Return type
None

alibi.datasets.default.fetch_imagenet_10(url_id=0)
Sample dataset extracted from imagenet in a dictionary format. The train set contains 1000 random samples, 100
for each of the following 10 selected classes:

• stingray

• trilobite

• centipede

• slug

• snail

• Rhodesian ridgeback

• beagle

• golden retriever

• sea lion

574 Chapter 13. alibi

http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/
http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

• espresso

The test set contains 50 random samples, 5 for each of the classes above.

Parameters
url_id (int) – Index specifying which URL to use for downloading.

Return type
Dict

Returns
Dictionary with the following keys –

• trainset - train set tuple (X_train, y_train)

• testset - test set tuple (X_test, y_test)

• int_to_str_labels - map from target to target name

• str_to_int_labels - map from target name to target

alibi.datasets.default.fetch_movie_sentiment(return_X_y=False, url_id=0)
The movie review dataset, equally split between negative and positive reviews.

Parameters
• return_X_y (bool) – If True, return features X and labels y as Python lists. If False return

a Bunch object.

• url_id (int) – Index specifying which URL to use for downloading

Return type
Union[Bunch , Tuple[list, list]]

Returns
• Bunch – Movie reviews and sentiment labels (0 means ‘negative’ and 1 means ‘positive’).

• (data, target) – Tuple if return_X_y=True.

alibi.datasets.default.load_cats(target_size=(299, 299), return_X_y=False)
A small sample of Imagenet-like public domain images of cats used primarily for examples. The images were
hand-collected using flickr.com by searching for various cat types, filtered by images in the public domain.

Parameters
• target_size (tuple) – Size of the returned images, used to crop images for a specified

model input size.

• return_X_y (bool) – If True, return features X and labels y as numpy arrays. If False
return a Bunch object

Return type
Union[Bunch , Tuple[ndarray, ndarray]]

Returns
• Bunch – Bunch object with fields ‘data’, ‘target’ and ‘target_names’. Both targets and tar-

get_names are taken from the original Imagenet.

• (data, target) – Tuple if return_X_y=True.

13.1. alibi package 575

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple

alibi Documentation, Release 0.9.5dev

alibi.datasets.tensorflow module

alibi.datasets.tensorflow.fetch_fashion_mnist(return_X_y=False)
Loads the Fashion MNIST dataset.

Parameters
return_X_y (bool) – If True, an N x M x P array of data points and N-array of labels are
returned instead of a dict.

Return type
Union[Bunch , Tuple[ndarray, ndarray]]

Returns
• If return_X_y=False, a Bunch object with fields ‘data’, ‘targets’ and ‘target_names’

• is returned. Otherwise an array with data points and an array of labels is returned.

alibi.explainers package

The ‘alibi.explainers’ module includes feature importance, counterfactual and anchor-based explainers.

class alibi.explainers.ALE(predictor, feature_names=None, target_names=None,
check_feature_resolution=True, low_resolution_threshold=10,
extrapolate_constant=True, extrapolate_constant_perc=10.0,
extrapolate_constant_min=0.1)

Bases: Explainer

__init__(predictor, feature_names=None, target_names=None, check_feature_resolution=True,
low_resolution_threshold=10, extrapolate_constant=True, extrapolate_constant_perc=10.0,
extrapolate_constant_min=0.1)

Accumulated Local Effects for tabular datasets. Current implementation supports first order feature effects
of numerical features.

Parameters
• predictor (Callable[[ndarray], ndarray]) – A callable that takes in an N x F array

as input and outputs an N x T array (N - number of data points, F - number of features, T
- number of outputs/targets (e.g. 1 for single output regression, >=2 for classification)).

• feature_names (Optional[List[str]]) – A list of feature names used for displaying
results.

• target_names (Optional[List[str]]) – A list of target/output names used for displaying
results.

• check_feature_resolution (bool) – If True, the number of unique values is calcu-
lated for each feature and if it is less than low_resolution_threshold then the feature values
are used for grid-points instead of quantiles. This may increase the runtime of the algo-
rithm for large datasets. Only used for features without custom grid-points specified in
alibi.explainers.ale.ALE.explain().

• low_resolution_threshold (int) – If a feature has at most this many unique values,
these are used as the grid points instead of quantiles. This is to avoid situations when
the quantile algorithm returns quantiles between discrete values which can result in jumps
in the ALE plot obscuring the true effect. Only used if check_feature_resolution is True
and for features without custom grid-points specified in alibi.explainers.ale.ALE.
explain().

576 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

• extrapolate_constant (bool) – If a feature is constant, only one quantile exists where
all the data points lie. In this case the ALE value at that point is zero, however this may
be misleading if the feature does have an effect on the model. If this parameter is set to
True, the ALE values are calculated on an interval surrounding the constant value. The in-
terval length is controlled by the extrapolate_constant_perc and extrapolate_constant_min
arguments.

• extrapolate_constant_perc (float) – Percentage by which to extrapolate a constant
feature value to create an interval for ALE calculation. If q is the constant feature value,
creates an interval [q - q/extrapolate_constant_perc, q + q/extrapolate_constant_perc] for
which ALE is calculated. Only relevant if extrapolate_constant is set to True.

• extrapolate_constant_min (float) – Controls the minimum extrapolation length for
constant features. An interval constructed for constant features is guaranteed to be 2 x
extrapolate_constant_min wide centered on the feature value. This allows for captur-
ing model behaviour around constant features which have small value so that extrapo-
late_constant_perc is not so helpful. Only relevant if extrapolate_constant is set to True.

explain(X, features=None, min_bin_points=4, grid_points=None)
Calculate the ALE curves for each feature with respect to the dataset X.

Parameters
• X (ndarray) – An N x F tabular dataset used to calculate the ALE curves. This is typically

the training dataset or a representative sample.

• features (Optional[List[int]]) – Features for which to calculate ALE.

• min_bin_points (int) – Minimum number of points each discretized interval should
contain to ensure more precise ALE estimation. Only relevant for adaptive grid points
(i.e., features without an entry in the grid_points dictionary).

• grid_points (Optional[Dict[int, ndarray]]) – Custom grid points. Must be a dict
where the keys are features indices and the values are monotonically increasing numpy ar-
rays defining the grid points for each feature. See the Notes section for the default behavior
when potential edge-cases arise when using grid-points. If no grid points are specified
(i.e. the feature is missing from the grid_points dictionary), deciles discretization is used
instead.

Return type
Explanation

Returns
explanation – An Explanation object containing the data and the metadata of the calculated
ALE curves. See usage at ALE examples for details.

Notes

Consider f to be a feature of interest. We denote possible feature values of f by X (i.e. the values from the
dataset column corresponding to feature f), by O a user-specified grid-point value, and by (X|O) an overlap
between a grid-point and a feature value. We can encounter the following edge-cases:

• Grid points outside the feature range. Consider the following example: O O O X X O X O X O O, where
3 grid-points are smaller than the minimum value in f, and 2 grid-points are larger than the maximum
value in f. The empty leading and ending bins are removed. The grid-points considered

will be: O X X O X O X O.

13.1. alibi package 577

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.seldon.io/projects/alibi/en/latest/methods/ALE.html

alibi Documentation, Release 0.9.5dev

• Grid points that do not cover the entire feature range. Consider the following example: X X O X X O
X O X X X X X. Two auxiliary grid-points are added which correspond the value of the minimum and
maximum value of feature f. The grid-points considered will be: (O|X) X O X X O X O X X X X (X|O).

• Grid points that do not contain any values in between. Consider the following example: (O|X) X X O
O O X O X O O (X|O). The intervals which do not contain any feature values are removed/merged.
The grid-points considered will be: (O|X) X X O X O X O (X|O).

reset_predictor(predictor)
Resets the predictor function.

Parameters
predictor (Callable) – New predictor function.

Return type
None

class alibi.explainers.AnchorImage(predictor, image_shape, dtype=<class 'numpy.float32'>,
segmentation_fn='slic', segmentation_kwargs=None,
images_background=None, seed=None)

Bases: Explainer

__init__(predictor, image_shape, dtype=<class 'numpy.float32'>, segmentation_fn='slic',
segmentation_kwargs=None, images_background=None, seed=None)

Initialize anchor image explainer.

Parameters
• predictor (Callable[[ndarray], ndarray]) – A callable that takes a numpy array of N

data points as inputs and returns N outputs.

• image_shape (tuple) – Shape of the image to be explained. The channel axis is expected
to be last.

• dtype (Type[generic]) – A numpy scalar type that corresponds to the type of input array
expected by predictor. This may be used to construct arrays of the given type to be passed
through the predictor. For most use cases this argument should have no effect, but it is
exposed for use with predictors that would break when called with an array of unsupported
type.

• segmentation_fn (Any) – Any of the built in segmentation function strings:
'felzenszwalb', 'slic' or 'quickshift' or a custom segmentation function
(callable) which returns an image mask with labels for each superpixel. The segmen-
tation function is expected to return a segmentation mask containing all integer val-
ues from 0 to K-1, where K is the number of image segments (superpixels). See http:
//scikit-image.org/docs/dev/api/skimage.segmentation.html for more info.

• segmentation_kwargs (Optional[dict]) – Keyword arguments for the built in segmen-
tation functions.

• images_background (Optional[ndarray]) – Images to overlay superpixels on.

• seed (Optional[int]) – If set, ensures different runs with the same input will yield same
explanation.

Raises
• alibi.exceptions.PredictorCallError – If calling predictor fails at runtime.

• alibi.exceptions.PredictorReturnTypeError – If the return type of predictor is
not np.ndarray.

578 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Any
http://scikit-image.org/docs/dev/api/skimage.segmentation.html
http://scikit-image.org/docs/dev/api/skimage.segmentation.html
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

explain(image, p_sample=0.5, threshold=0.95, delta=0.1, tau=0.15, batch_size=100,
coverage_samples=10000, beam_size=1, stop_on_first=False, max_anchor_size=None,
min_samples_start=100, n_covered_ex=10, binary_cache_size=10000, cache_margin=1000,
verbose=False, verbose_every=1, **kwargs)

Explain instance and return anchor with metadata.

Parameters
• image (ndarray) – Image to be explained.

• p_sample (float) – The probability of simulating the absence of a superpixel. If the
images_background is not provided, the absent superpixels will be replaced by the average
value of their constituent pixels. Otherwise, the synthetic instances are created by fixing the
present superpixels and superimposing another image from the images_background over
the rest of the absent superpixels.

• threshold (float) – Minimum anchor precision threshold. The algorithm tries to find
an anchor that maximizes the coverage under precision constraint. The precision constraint
is formally defined as 𝑃 (𝑝𝑟𝑒𝑐(𝐴) ≥ 𝑡) ≥ 1 − 𝛿, where 𝐴 is an anchor, 𝑡 is the threshold
parameter, 𝛿 is the delta parameter, and 𝑝𝑟𝑒𝑐(·) denotes the precision of an anchor. In other
words, we are seeking for an anchor having its precision greater or equal than the given
threshold with a confidence of (1 - delta). A higher value guarantees that the anchors are
faithful to the model, but also leads to more computation time. Note that there are cases in
which the precision constraint cannot be satisfied due to the quantile-based discretisation
of the numerical features. If that is the case, the best (i.e. highest coverage) non-eligible
anchor is returned.

• delta (float) – Significance threshold. 1 - delta represents the confidence threshold for
the anchor precision (see threshold) and the selection of the best anchor candidate in each
iteration (see tau).

• tau (float) – Multi-armed bandit parameter used to select candidate anchors in each
iteration. The multi-armed bandit algorithm tries to find within a tolerance tau the most
promising (i.e. according to the precision) beam_size candidate anchor(s) from a list of
proposed anchors. Formally, when the beam_size=1, the multi-armed bandit algorithm
seeks to find an anchor 𝐴 such that 𝑃 (𝑝𝑟𝑒𝑐(𝐴) ≥ 𝑝𝑟𝑒𝑐(𝐴⋆) − 𝜏) ≥ 1 − 𝛿, where 𝐴⋆ is
the anchor with the highest true precision (which we don’t know), 𝜏 is the tau parameter,
𝛿 is the delta parameter, and 𝑝𝑟𝑒𝑐(·) denotes the precision of an anchor. In other words,
in each iteration, the algorithm returns with a probability of at least 1 - delta an anchor
𝐴 with a precision within an error tolerance of tau from the precision of the highest true
precision anchor 𝐴⋆. A bigger value for tau means faster convergence but also looser
anchor conditions.

• batch_size (int) – Batch size used for sampling. The Anchor algorithm will query the
black-box model in batches of size batch_size. A larger batch_size gives more confidence
in the anchor, again at the expense of computation time since it involves more model pre-
diction calls.

• coverage_samples (int) – Number of samples used to estimate coverage from during
result search.

• beam_size (int) – Number of candidate anchors selected by the multi-armed bandit al-
gorithm in each iteration from a list of proposed anchors. A bigger beam width can lead to
a better overall anchor (i.e. prevents the algorithm of getting stuck in a local maximum) at
the expense of more computation time.

• stop_on_first (bool) – If True, the beam search algorithm will return the first anchor
that has satisfies the probability constraint.

13.1. alibi package 579

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

alibi Documentation, Release 0.9.5dev

• max_anchor_size (Optional[int]) – Maximum number of features in result.

• min_samples_start (int) – Min number of initial samples.

• n_covered_ex (int) – How many examples where anchors apply to store for each anchor
sampled during search (both examples where prediction on samples agrees/disagrees with
desired_label are stored).

• binary_cache_size (int) – The result search pre-allocates binary_cache_size batches
for storing the binary arrays returned during sampling.

• cache_margin (int) – When only max(cache_margin, batch_size) positions in the
binary cache remain empty, a new cache of the same size is pre-allocated to continue buffer-
ing samples.

• verbose (bool) – Display updates during the anchor search iterations.

• verbose_every (int) – Frequency of displayed iterations during anchor search process.

Return type
Explanation

Returns
explanation – Explanation object containing the anchor explaining the instance with addi-
tional metadata as attributes. See usage at AnchorImage examples for details.

generate_superpixels(image)
Generates superpixels from (i.e., segments) an image.

Parameters
image (ndarray) – A grayscale or RGB image.

Return type
ndarray

Returns
A [H, W] array of integers. Each integer is a segment (superpixel) label.

overlay_mask(image, segments, mask_features, scale=(0, 255))
Overlay image with mask described by the mask features.

Parameters
• image (ndarray) – Image to be explained.

• segments (ndarray) – Superpixels.

• mask_features (list) – List with superpixels present in mask.

• scale (tuple) – Pixel scale for masked image.

Return type
ndarray

Returns
masked_image – Image overlaid with mask.

reset_predictor(predictor)
Resets the predictor function.

Parameters
predictor (Callable) – New predictor function.

580 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.seldon.io/projects/alibi/en/stable/methods/Anchors.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Callable

alibi Documentation, Release 0.9.5dev

Return type
None

class alibi.explainers.AnchorTabular(predictor, feature_names, categorical_names=None, dtype=<class
'numpy.float32'>, ohe=False, seed=None)

Bases: Explainer, FitMixin

__init__(predictor, feature_names, categorical_names=None, dtype=<class 'numpy.float32'>, ohe=False,
seed=None)

Parameters
• predictor (Callable[[ndarray], ndarray]) – A callable that takes a numpy array of N

data points as inputs and returns N outputs.

• feature_names (List[str]) – List with feature names.

• categorical_names (Optional[Dict[int, List[str]]]) – Dictionary where keys are
feature columns and values are the categories for the feature.

• dtype (Type[generic]) – A numpy scalar type that corresponds to the type of input array
expected by predictor. This may be used to construct arrays of the given type to be passed
through the predictor. For most use cases this argument should have no effect, but it is
exposed for use with predictors that would break when called with an array of unsupported
type.

• ohe (bool) – Whether the categorical variables are one-hot encoded (OHE) or not. If not
OHE, they are assumed to have ordinal encodings.

• seed (Optional[int]) – Used to set the random number generator for repeatability pur-
poses.

Raises
• alibi.exceptions.PredictorCallError – If calling predictor fails at runtime.

• alibi.exceptions.PredictorReturnTypeError – If the return type of predictor is
not np.ndarray.

add_names_to_exp(explanation)
Add feature names to explanation dictionary.

Parameters
explanation (dict) – Dict with anchors and additional metadata.

Return type
None

explain(X, threshold=0.95, delta=0.1, tau=0.15, batch_size=100, coverage_samples=10000, beam_size=1,
stop_on_first=False, max_anchor_size=None, min_samples_start=100, n_covered_ex=10,
binary_cache_size=10000, cache_margin=1000, verbose=False, verbose_every=1, **kwargs)

Explain prediction made by classifier on instance X.

Parameters
• X (ndarray) – Instance to be explained.

• threshold (float) – Minimum anchor precision threshold. The algorithm tries to find
an anchor that maximizes the coverage under precision constraint. The precision constraint
is formally defined as 𝑃 (𝑝𝑟𝑒𝑐(𝐴) ≥ 𝑡) ≥ 1 − 𝛿, where 𝐴 is an anchor, 𝑡 is the threshold
parameter, 𝛿 is the delta parameter, and 𝑝𝑟𝑒𝑐(·) denotes the precision of an anchor. In other
words, we are seeking for an anchor having its precision greater or equal than the given

13.1. alibi package 581

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

threshold with a confidence of (1 - delta). A higher value guarantees that the anchors are
faithful to the model, but also leads to more computation time. Note that there are cases in
which the precision constraint cannot be satisfied due to the quantile-based discretisation
of the numerical features. If that is the case, the best (i.e. highest coverage) non-eligible
anchor is returned.

• delta (float) – Significance threshold. 1 - delta represents the confidence threshold for
the anchor precision (see threshold) and the selection of the best anchor candidate in each
iteration (see tau).

• tau (float) – Multi-armed bandit parameter used to select candidate anchors in each
iteration. The multi-armed bandit algorithm tries to find within a tolerance tau the most
promising (i.e. according to the precision) beam_size candidate anchor(s) from a list of
proposed anchors. Formally, when the beam_size=1, the multi-armed bandit algorithm
seeks to find an anchor 𝐴 such that 𝑃 (𝑝𝑟𝑒𝑐(𝐴) ≥ 𝑝𝑟𝑒𝑐(𝐴⋆) − 𝜏) ≥ 1 − 𝛿, where 𝐴⋆ is
the anchor with the highest true precision (which we don’t know), 𝜏 is the tau parameter,
𝛿 is the delta parameter, and 𝑝𝑟𝑒𝑐(·) denotes the precision of an anchor. In other words,
in each iteration, the algorithm returns with a probability of at least 1 - delta an anchor
𝐴 with a precision within an error tolerance of tau from the precision of the highest true
precision anchor 𝐴⋆. A bigger value for tau means faster convergence but also looser
anchor conditions.

• batch_size (int) – Batch size used for sampling. The Anchor algorithm will query the
black-box model in batches of size batch_size. A larger batch_size gives more confidence
in the anchor, again at the expense of computation time since it involves more model pre-
diction calls.

• coverage_samples (int) – Number of samples used to estimate coverage from during
result search.

• beam_size (int) – Number of candidate anchors selected by the multi-armed bandit al-
gorithm in each iteration from a list of proposed anchors. A bigger beam width can lead to
a better overall anchor (i.e. prevents the algorithm of getting stuck in a local maximum) at
the expense of more computation time.

• stop_on_first (bool) – If True, the beam search algorithm will return the first anchor
that has satisfies the probability constraint.

• max_anchor_size (Optional[int]) – Maximum number of features in result.

• min_samples_start (int) – Min number of initial samples.

• n_covered_ex (int) – How many examples where anchors apply to store for each anchor
sampled during search (both examples where prediction on samples agrees/disagrees with
desired_label are stored).

• binary_cache_size (int) – The result search pre-allocates binary_cache_size batches
for storing the binary arrays returned during sampling.

• cache_margin (int) – When only max(cache_margin, batch_size) positions in the
binary cache remain empty, a new cache of the same size is pre-allocated to continue buffer-
ing samples.

• verbose (bool) – Display updates during the anchor search iterations.

• verbose_every (int) – Frequency of displayed iterations during anchor search process.

Return type
Explanation

Returns

582 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

explanation – Explanation object containing the result explaining the instance with additional
metadata as attributes. See usage at AnchorTabular examples for details.

Raises
alibi.exceptions.NotFittedError – If fit has not been called prior to calling explain.

fit(train_data, disc_perc=(25, 50, 75), **kwargs)
Fit discretizer to train data to bin numerical features into ordered bins and compute statistics for numerical
features. Create a mapping between the bin numbers of each discretised numerical feature and the row id
in the training set where it occurs.

Parameters
• train_data (ndarray) – Representative sample from the training data.

• disc_perc (Tuple[Union[int, float], ...]) – List with percentiles (int) used for dis-
cretization.

Return type
AnchorTabular

instance_label: int

The label of the instance to be explained.

property predictor: Callable | None

Return type
Optional[Callable]

reset_predictor(predictor)
Resets the predictor function.

Parameters
predictor (Callable) – New predictor function.

Return type
None

class alibi.explainers.AnchorText(predictor, sampling_strategy='unknown', nlp=None,
language_model=None, seed=0, **kwargs)

Bases: Explainer

CLASS_SAMPLER = {'language_model': <class
'alibi.explainers.anchors.language_model_text_sampler.LanguageModelSampler'>,
'similarity': <class 'alibi.explainers.anchors.text_samplers.SimilaritySampler'>,
'unknown': <class 'alibi.explainers.anchors.text_samplers.UnknownSampler'>}

DEFAULTS: Dict[str, Dict] = {'language_model': {'batch_size_lm': 32, 'filling':
'parallel', 'frac_mask_templates': 0.1, 'punctuation':
'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~', 'sample_proba': 0.5, 'sample_punctuation':
False, 'stopwords': [], 'temperature': 1.0, 'top_n': 100, 'use_proba': False},
'similarity': {'sample_proba': 0.5, 'temperature': 1.0, 'top_n': 100, 'use_proba':
False}, 'unknown': {'sample_proba': 0.5}}

SAMPLING_LANGUAGE_MODEL = 'language_model'

Language model sampling strategy.

SAMPLING_SIMILARITY = 'similarity'

Similarity sampling strategy.

13.1. alibi package 583

https://docs.seldon.io/projects/alibi/en/stable/methods/Anchors.html
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict

alibi Documentation, Release 0.9.5dev

SAMPLING_UNKNOWN = 'unknown'

Unknown sampling strategy.

__init__(predictor, sampling_strategy='unknown', nlp=None, language_model=None, seed=0, **kwargs)
Initialize anchor text explainer.

Parameters
• predictor (Callable[[List[str]], ndarray]) – A callable that takes a list of text strings

representing N data points as inputs and returns N outputs.

• sampling_strategy (str) – Perturbation distribution method:

– 'unknown' - replaces words with UNKs.

– 'similarity' - samples according to a similarity score with the corpus embeddings.

– 'language_model' - samples according the language model’s output distributions.

• nlp (Optional[Language]) – spaCy object when sampling method is 'unknown' or
'similarity'.

• language_model (Optional[LanguageModel]) – Transformers masked language
model. This is a model that it adheres to the LanguageModel interface we define in alibi.
utils.lang_model.LanguageModel.

• seed (int) – If set, ensure identical random streams.

• kwargs (Any) – Sampling arguments can be passed as kwargs depending on the sam-
pling_strategy. Check default arguments defined in:

– alibi.explainers.anchor_text.DEFAULT_SAMPLING_UNKNOWN

– alibi.explainers.anchor_text.DEFAULT_SAMPLING_SIMILARITY

– alibi.explainers.anchor_text.DEFAULT_SAMPLING_LANGUAGE_MODEL

Raises
• alibi.exceptions.PredictorCallError – If calling predictor fails at runtime.

• alibi.exceptions.PredictorReturnTypeError – If the return type of predictor is
not np.ndarray.

compare_labels(samples)
Compute the agreement between a classifier prediction on an instance to be explained and the prediction
on a set of samples which have a subset of features fixed to a given value (aka compute the precision of
anchors).

Parameters
samples (ndarray) – Samples whose labels are to be compared with the instance label.

Return type
ndarray

Returns
A numpy boolean array indicating whether the prediction was the same as the instance label.

explain(text, threshold=0.95, delta=0.1, tau=0.15, batch_size=100, coverage_samples=10000,
beam_size=1, stop_on_first=True, max_anchor_size=None, min_samples_start=100,
n_covered_ex=10, binary_cache_size=10000, cache_margin=1000, verbose=False,
verbose_every=1, **kwargs)

Explain instance and return anchor with metadata.

584 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any

alibi Documentation, Release 0.9.5dev

Parameters
• text (str) – Text instance to be explained.

• threshold (float) – Minimum anchor precision threshold. The algorithm tries to find
an anchor that maximizes the coverage under precision constraint. The precision constraint
is formally defined as 𝑃 (𝑝𝑟𝑒𝑐(𝐴) ≥ 𝑡) ≥ 1 − 𝛿, where 𝐴 is an anchor, 𝑡 is the threshold
parameter, 𝛿 is the delta parameter, and 𝑝𝑟𝑒𝑐(·) denotes the precision of an anchor. In other
words, we are seeking for an anchor having its precision greater or equal than the given
threshold with a confidence of (1 - delta). A higher value guarantees that the anchors are
faithful to the model, but also leads to more computation time. Note that there are cases in
which the precision constraint cannot be satisfied due to the quantile-based discretisation
of the numerical features. If that is the case, the best (i.e. highest coverage) non-eligible
anchor is returned.

• delta (float) – Significance threshold. 1 - delta represents the confidence threshold for
the anchor precision (see threshold) and the selection of the best anchor candidate in each
iteration (see tau).

• tau (float) – Multi-armed bandit parameter used to select candidate anchors in each
iteration. The multi-armed bandit algorithm tries to find within a tolerance tau the most
promising (i.e. according to the precision) beam_size candidate anchor(s) from a list of
proposed anchors. Formally, when the beam_size=1, the multi-armed bandit algorithm
seeks to find an anchor 𝐴 such that 𝑃 (𝑝𝑟𝑒𝑐(𝐴) ≥ 𝑝𝑟𝑒𝑐(𝐴⋆) − 𝜏) ≥ 1 − 𝛿, where 𝐴⋆ is
the anchor with the highest true precision (which we don’t know), 𝜏 is the tau parameter,
𝛿 is the delta parameter, and 𝑝𝑟𝑒𝑐(·) denotes the precision of an anchor. In other words,
in each iteration, the algorithm returns with a probability of at least 1 - delta an anchor
𝐴 with a precision within an error tolerance of tau from the precision of the highest true
precision anchor 𝐴⋆. A bigger value for tau means faster convergence but also looser
anchor conditions.

• batch_size (int) – Batch size used for sampling. The Anchor algorithm will query the
black-box model in batches of size batch_size. A larger batch_size gives more confidence
in the anchor, again at the expense of computation time since it involves more model pre-
diction calls.

• coverage_samples (int) – Number of samples used to estimate coverage from during
anchor search.

• beam_size (int) – Number of candidate anchors selected by the multi-armed bandit al-
gorithm in each iteration from a list of proposed anchors. A bigger beam width can lead to
a better overall anchor (i.e. prevents the algorithm of getting stuck in a local maximum) at
the expense of more computation time.

• stop_on_first (bool) – If True, the beam search algorithm will return the first anchor
that has satisfies the probability constraint.

• max_anchor_size (Optional[int]) – Maximum number of features to include in an
anchor.

• min_samples_start (int) – Number of samples used for anchor search initialisation.

• n_covered_ex (int) – How many examples where anchors apply to store for each anchor
sampled during search (both examples where prediction on samples agrees/disagrees with
predicted label are stored).

• binary_cache_size (int) – The anchor search pre-allocates binary_cache_size batches
for storing the boolean arrays returned during sampling.

13.1. alibi package 585

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

• cache_margin (int) – When only max(cache_margin, batch_size) positions in the
binary cache remain empty, a new cache of the same size is pre-allocated to continue buffer-
ing samples.

• verbose (bool) – Display updates during the anchor search iterations.

• verbose_every (int) – Frequency of displayed iterations during anchor search process.

• **kwargs (Any) – Other keyword arguments passed to the anchor beam search and the text
sampling and perturbation functions.

Return type
Explanation

Returns
Explanation object containing the anchor explaining the instance with additional metadata as
attributes. Contains the following data-related attributes –

• anchor : List[str] - a list of words in the proposed anchor.

• precision : float - the fraction of times the sampled instances where the anchor holds
yields the same prediction as the original instance. The precision will always be threshold
for a valid anchor.

• coverage : float - the fraction of sampled instances the anchor applies to.

model: spacy.language.Language | LanguageModel

Language model to be used.

perturbation: Any

Perturbation method.

reset_predictor(predictor)
Resets the predictor function.

Parameters
predictor (Callable) – New predictor function.

Return type
None

sampler(anchor, num_samples, compute_labels=True)
Generate perturbed samples while maintaining features in positions specified in anchor unchanged.

Parameters
• anchor (Tuple[int, tuple]) –

– int - the position of the anchor in the input batch.

– tuple - the anchor itself, a list of words to be kept unchanged.

• num_samples (int) – Number of generated perturbed samples.

• compute_labels (bool) – If True, an array of comparisons between predictions on per-
turbed samples and instance to be explained is returned.

Return type
Union[List[Union[ndarray, float, int]], List[ndarray]]

Returns
• If compute_labels=True, a list containing the following is returned –

586 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List

alibi Documentation, Release 0.9.5dev

– covered_true - perturbed examples where the anchor applies and the model prediction
on perturbation is the same as the instance prediction.

– covered_false - perturbed examples where the anchor applies and the model prediction
is NOT the same as the instance prediction.

– labels - num_samples ints indicating whether the prediction on the perturbed sample
matches (1) the label of the instance to be explained or not (0).

– data - Matrix with 1s and 0s indicating whether a word in the text has been perturbed
for each sample.

– -1.0 - indicates exact coverage is not computed for this algorithm.

– anchor[0] - position of anchor in the batch request.

• Otherwise, a list containing the data matrix only is returned.

class alibi.explainers.CEM(predict, mode, shape, kappa=0.0, beta=0.1, feature_range=(-10000000000.0,
10000000000.0), gamma=0.0, ae_model=None, learning_rate_init=0.01,
max_iterations=1000, c_init=10.0, c_steps=10, eps=(0.001, 0.001),
clip=(-100.0, 100.0), update_num_grad=1, no_info_val=None, write_dir=None,
sess=None)

Bases: Explainer, FitMixin

__init__(predict, mode, shape, kappa=0.0, beta=0.1, feature_range=(-10000000000.0, 10000000000.0),
gamma=0.0, ae_model=None, learning_rate_init=0.01, max_iterations=1000, c_init=10.0,
c_steps=10, eps=(0.001, 0.001), clip=(-100.0, 100.0), update_num_grad=1, no_info_val=None,
write_dir=None, sess=None)

Initialize contrastive explanation method. Paper: https://arxiv.org/abs/1802.07623

Parameters
• predict (Union[Callable[[ndarray], ndarray], Model]) – tensorflow model or any

other model’s prediction function returning class probabilities.

• mode (str) – Find pertinent negatives (PN) or pertinent positives (PP).

• shape (tuple) – Shape of input data starting with batch size.

• kappa (float) – Confidence parameter for the attack loss term.

• beta (float) – Regularization constant for L1 loss term.

• feature_range (tuple) – Tuple with min and max ranges to allow for perturbed in-
stances. Min and max ranges can be float or numpy arrays with dimension (1x nb of fea-
tures) for feature-wise ranges.

• gamma (float) – Regularization constant for optional auto-encoder loss term.

• ae_model (Optional[Model]) – Optional auto-encoder model used for loss regulariza-
tion.

• learning_rate_init (float) – Initial learning rate of optimizer.

• max_iterations (int) – Maximum number of iterations for finding a PN or PP.

• c_init (float) – Initial value to scale the attack loss term.

• c_steps (int) – Number of iterations to adjust the constant scaling the attack loss term.

• eps (tuple) – If numerical gradients are used to compute dL/dx = (dL/dp) * (dp/dx), then
eps[0] is used to calculate dL/dp and eps[1] is used for dp/dx. eps[0] and eps[1] can be a

13.1. alibi package 587

https://arxiv.org/abs/1802.07623
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

alibi Documentation, Release 0.9.5dev

combination of float values and numpy arrays. For eps[0], the array dimension should be
(1x nb of prediction categories) and for eps[1] it should be (1x nb of features).

• clip (tuple) – Tuple with min and max clip ranges for both the numerical gradients and
the gradients obtained from the tensorflow graph.

• update_num_grad (int) – If numerical gradients are used, they will be updated every
update_num_grad iterations.

• no_info_val (Union[float, ndarray, None]) – Global or feature-wise value considered
as containing no information.

• write_dir (Optional[str]) – Directory to write tensorboard files to.

• sess (Optional[Session]) – Optional tensorflow session that will be used if passed in-
stead of creating or inferring one internally.

attack(X, Y , verbose=False)
Find pertinent negative or pertinent positive for instance X using a fast iterative shrinkage-thresholding
algorithm (FISTA).

Parameters
• X (ndarray) – Instance to attack.

• Y (ndarray) – Labels for X.

• verbose (bool) – Print intermediate results of optimization if True.

Return type
Tuple[ndarray, Tuple[ndarray, ndarray]]

Returns
Overall best attack and gradients for that attack.

explain(X, Y=None, verbose=False)
Explain instance and return PP or PN with metadata.

Parameters
• X (ndarray) – Instances to attack.

• Y (Optional[ndarray]) – Labels for X.

• verbose (bool) – Print intermediate results of optimization if True.

Return type
Explanation

Returns
explanation – Explanation object containing the PP or PN with additional metadata as at-
tributes. See usage at CEM examples for details.

fit(train_data, no_info_type='median')
Get ‘no information’ values from the training data.

Parameters
• train_data (ndarray) – Representative sample from the training data.

• no_info_type (str) – Median or mean value by feature supported.

Return type
CEM

588 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.seldon.io/projects/alibi/en/stable/methods/CEM.html
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

get_gradients(X, Y)
Compute numerical gradients of the attack loss term: dL/dx = (dL/dP)*(dP/dx) with L = loss_attack_s; P
= predict; x = adv_s

Parameters
• X (ndarray) – Instance around which gradient is evaluated.

• Y (ndarray) – One-hot representation of instance labels.

Return type
ndarray

Returns
Array with gradients.

loss_fn(pred_proba, Y)
Compute the attack loss.

Parameters
• pred_proba (ndarray) – Prediction probabilities of an instance.

• Y (ndarray) – One-hot representation of instance labels.

Return type
ndarray

Returns
Loss of the attack.

perturb(X, eps, proba=False)
Apply perturbation to instance or prediction probabilities. Used for numerical calculation of gradients.

Parameters
• X (ndarray) – Array to be perturbed.

• eps (Union[float, ndarray]) – Size of perturbation.

• proba (bool) – If True, the net effect of the perturbation needs to be 0 to keep the sum of
the probabilities equal to 1.

Return type
Tuple[ndarray, ndarray]

Returns
Instances where a positive and negative perturbation is applied.

reset_predictor(predictor)
Resets the predictor function/model.

Parameters
predictor (Union[Callable, Model]) – New predictor function/model.

Return type
None

class alibi.explainers.Counterfactual(predict_fn, shape, distance_fn='l1', target_proba=1.0,
target_class='other', max_iter=1000, early_stop=50,
lam_init=0.1, max_lam_steps=10, tol=0.05,
learning_rate_init=0.1, feature_range=(-10000000000.0,
10000000000.0), eps=0.01, init='identity', decay=True,
write_dir=None, debug=False, sess=None)

13.1. alibi package 589

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

Bases: Explainer

__init__(predict_fn, shape, distance_fn='l1', target_proba=1.0, target_class='other', max_iter=1000,
early_stop=50, lam_init=0.1, max_lam_steps=10, tol=0.05, learning_rate_init=0.1,
feature_range=(-10000000000.0, 10000000000.0), eps=0.01, init='identity', decay=True,
write_dir=None, debug=False, sess=None)

Initialize counterfactual explanation method based on Wachter et al. (2017)

Parameters
• predict_fn (Union[Callable[[ndarray], ndarray], Model]) – tensorflow model or

any other model’s prediction function returning class probabilities.

• shape (Tuple[int, ...]) – Shape of input data starting with batch size.

• distance_fn (str) – Distance function to use in the loss term.

• target_proba (float) – Target probability for the counterfactual to reach.

• target_class (Union[str, int]) – Target class for the counterfactual to reach, one of
'other', 'same' or an integer denoting desired class membership for the counterfactual
instance.

• max_iter (int) – Maximum number of iterations to run the gradient descent for (inner
loop).

• early_stop (int) – Number of steps after which to terminate gradient descent if all or
none of found instances are solutions.

• lam_init (float) – Initial regularization constant for the prediction part of the Wachter
loss.

• max_lam_steps (int) – Maximum number of times to adjust the regularization constant
(outer loop) before terminating the search.

• tol (float) – Tolerance for the counterfactual target probability.

• learning_rate_init – Initial learning rate for each outer loop of lambda.

• feature_range (Union[Tuple, str]) – Tuple with min and max ranges to allow for per-
turbed instances. Min and max ranges can be float or numpy arrays with dimension (1 x nb
of features) for feature-wise ranges.

• eps (Union[float, ndarray]) – Gradient step sizes used in calculating numerical gradi-
ents, defaults to a single value for all features, but can be passed an array for feature-wise
step sizes.

• init (str) – Initialization method for the search of counterfactuals, currently must be
'identity'.

• decay (bool) – Flag to decay learning rate to zero for each outer loop over lambda.

• write_dir (Optional[str]) – Directory to write tensorboard files to.

• debug (bool) – Flag to write tensorboard summaries for debugging.

• sess (Optional[Session]) – Optional tensorflow session that will be used if passed in-
stead of creating or inferring one internally.

explain(X)
Explain an instance and return the counterfactual with metadata.

590 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional

alibi Documentation, Release 0.9.5dev

Parameters
X (ndarray) – Instance to be explained.

Return type
Explanation

Returns
explanation – Explanation object containing the counterfactual with additional metadata as
attributes. See usage at Counterfactual examples for details.

fit(X, y)
Fit method - currently unused as the counterfactual search is fully unsupervised.

Parameters
• X (ndarray) – Not used. Included for consistency.

• y (Optional[ndarray]) – Not used. Included for consistency.

Return type
Counterfactual

Returns
self – Explainer itself.

reset_predictor(predictor)
Resets the predictor function/model.

Parameters
predictor (Union[Callable, Model]) – New predictor function/model.

Return type
None

class alibi.explainers.CounterfactualProto(predict, shape, kappa=0.0, beta=0.1,
feature_range=(-10000000000.0, 10000000000.0),
gamma=0.0, ae_model=None, enc_model=None, theta=0.0,
cat_vars=None, ohe=False, use_kdtree=False,
learning_rate_init=0.01, max_iterations=1000, c_init=10.0,
c_steps=10, eps=(0.001, 0.001), clip=(-1000.0, 1000.0),
update_num_grad=1, write_dir=None, sess=None)

Bases: Explainer, FitMixin

__init__(predict, shape, kappa=0.0, beta=0.1, feature_range=(-10000000000.0, 10000000000.0),
gamma=0.0, ae_model=None, enc_model=None, theta=0.0, cat_vars=None, ohe=False,
use_kdtree=False, learning_rate_init=0.01, max_iterations=1000, c_init=10.0, c_steps=10,
eps=(0.001, 0.001), clip=(-1000.0, 1000.0), update_num_grad=1, write_dir=None, sess=None)

Initialize prototypical counterfactual method.

Parameters
• predict (Union[Callable[[ndarray], ndarray], Model]) – tensorflow model or any

other model’s prediction function returning class probabilities.

• shape (tuple) – Shape of input data starting with batch size.

• kappa (float) – Confidence parameter for the attack loss term.

• beta (float) – Regularization constant for L1 loss term.

13.1. alibi package 591

https://docs.seldon.io/projects/alibi/en/stable/methods/CF.html
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

• feature_range (Tuple[Union[float, ndarray], Union[float, ndarray]]) – Tuple
with min and max ranges to allow for perturbed instances. Min and max ranges can be
float or numpy arrays with dimension (1x nb of features) for feature-wise ranges.

• gamma (float) – Regularization constant for optional auto-encoder loss term.

• ae_model (Optional[Model]) – Optional auto-encoder model used for loss regulariza-
tion.

• enc_model (Optional[Model]) – Optional encoder model used to guide instance pertur-
bations towards a class prototype.

• theta (float) – Constant for the prototype search loss term.

• cat_vars (Optional[Dict[int, int]]) – Dict with as keys the categorical columns and
as values the number of categories per categorical variable.

• ohe (bool) – Whether the categorical variables are one-hot encoded (OHE) or not. If not
OHE, they are assumed to have ordinal encodings.

• use_kdtree (bool) – Whether to use k-d trees for the prototype loss term if no encoder
is available.

• learning_rate_init (float) – Initial learning rate of optimizer.

• max_iterations (int) – Maximum number of iterations for finding a counterfactual.

• c_init (float) – Initial value to scale the attack loss term.

• c_steps (int) – Number of iterations to adjust the constant scaling the attack loss term.

• eps (tuple) – If numerical gradients are used to compute dL/dx = (dL/dp) * (dp/dx), then
eps[0] is used to calculate dL/dp and eps[1] is used for dp/dx. eps[0] and eps[1] can be a
combination of float values and numpy arrays. For eps[0], the array dimension should be
(1x nb of prediction categories) and for eps[1] it should be (1x nb of features).

• clip (tuple) – Tuple with min and max clip ranges for both the numerical gradients and
the gradients obtained from the tensorflow graph.

• update_num_grad (int) – If numerical gradients are used, they will be updated every
update_num_grad iterations.

• write_dir (Optional[str]) – Directory to write tensorboard files to.

• sess (Optional[Session]) – Optional tensorflow session that will be used if passed in-
stead of creating or inferring one internally.

attack(X, Y , target_class=None, k=None, k_type='mean', threshold=0.0, verbose=False, print_every=100,
log_every=100)

Find a counterfactual (CF) for instance X using a fast iterative shrinkage-thresholding algorithm (FISTA).

Parameters
• X (ndarray) – Instance to attack.

• Y (ndarray) – Labels for X as one-hot-encoding.

• target_class (Optional[list]) – List with target classes used to find closest prototype.
If None, the nearest prototype except for the predict class on the instance is used.

• k (Optional[int]) – Number of nearest instances used to define the prototype for a class.
Defaults to using all instances belonging to the class if an encoder is used and to 1 for k-d
trees.

592 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

• k_type (str) – Use either the average encoding of the k nearest instances in a class
(k_type='mean') or the k-nearest encoding in the class (k_type='point') to define the
prototype of that class. Only relevant if an encoder is used to define the prototypes.

• threshold (float) – Threshold level for the ratio between the distance of the counter-
factual to the prototype of the predicted class for the original instance over the distance to
the prototype of the predicted class for the counterfactual. If the trust score is below the
threshold, the proposed counterfactual does not meet the requirements.

• verbose (bool) – Print intermediate results of optimization if True.

• print_every (int) – Print frequency if verbose is True.

• log_every (int) – tensorboard log frequency if write directory is specified.

Return type
Tuple[ndarray, Tuple[ndarray, ndarray]]

Returns
Overall best attack and gradients for that attack.

explain(X, Y=None, target_class=None, k=None, k_type='mean', threshold=0.0, verbose=False,
print_every=100, log_every=100)

Explain instance and return counterfactual with metadata.

Parameters
• X (ndarray) – Instances to attack.

• Y (Optional[ndarray]) – Labels for X as one-hot-encoding.

• target_class (Optional[list]) – List with target classes used to find closest prototype.
If None, the nearest prototype except for the predict class on the instance is used.

• k (Optional[int]) – Number of nearest instances used to define the prototype for a class.
Defaults to using all instances belonging to the class if an encoder is used and to 1 for k-d
trees.

• k_type (str) – Use either the average encoding of the k nearest instances in a class
(k_type='mean') or the k-nearest encoding in the class (k_type='point') to define the
prototype of that class. Only relevant if an encoder is used to define the prototypes.

• threshold (float) – Threshold level for the ratio between the distance of the counter-
factual to the prototype of the predicted class for the original instance over the distance to
the prototype of the predicted class for the counterfactual. If the trust score is below the
threshold, the proposed counterfactual does not meet the requirements.

• verbose (bool) – Print intermediate results of optimization if True.

• print_every (int) – Print frequency if verbose is True.

• log_every (int) – tensorboard log frequency if write directory is specified

Return type
Explanation

Returns
explanation – Explanation object containing the counterfactual with additional metadata as
attributes. See usage at CFProto examples for details.

fit(train_data, trustscore_kwargs=None, d_type='abdm', w=None, disc_perc=(25, 50, 75),
standardize_cat_vars=False, smooth=1.0, center=True, update_feature_range=True)

13.1. alibi package 593

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html

alibi Documentation, Release 0.9.5dev

Get prototypes for each class using the encoder or k-d trees. The prototypes are used for the encoder loss
term or to calculate the optional trust scores.

Parameters
• train_data (ndarray) – Representative sample from the training data.

• trustscore_kwargs (Optional[dict]) – Optional arguments to initialize the trust
scores method.

• d_type (str) – Pairwise distance metric used for categorical variables. Currently, 'abdm',
'mvdm' and 'abdm-mvdm' are supported. 'abdm' infers context from the other variables
while 'mvdm' uses the model predictions. 'abdm-mvdm' is a weighted combination of the
two metrics.

• w (Optional[float]) – Weight on 'abdm' (between 0. and 1.) distance if d_type equals
'abdm-mvdm'.

• disc_perc (Sequence[Union[int, float]]) – List with percentiles used in binning of
numerical features used for the 'abdm' and 'abdm-mvdm' pairwise distance measures.

• standardize_cat_vars (bool) – Standardize numerical values of categorical variables
if True.

• smooth (float) – Smoothing exponent between 0 and 1 for the distances. Lower values
will smooth the difference in distance metric between different features.

• center (bool) – Whether to center the scaled distance measures. If False, the min dis-
tance for each feature except for the feature with the highest raw max distance will be the
lower bound of the feature range, but the upper bound will be below the max feature range.

• update_feature_range (bool) – Update feature range with scaled values.

Return type
CounterfactualProto

get_gradients(X, Y , grads_shape, cat_vars_ord)
Compute numerical gradients of the attack loss term: dL/dx = (dL/dP)*(dP/dx) with L = loss_attack_s; P
= predict; x = adv_s.

Parameters
• X (ndarray) – Instance around which gradient is evaluated.

• Y (ndarray) – One-hot representation of instance labels.

• grads_shape (tuple) – Shape of gradients.

• cat_vars_ord (dict) – Dict with as keys the categorical columns and as values the num-
ber of categories per categorical variable.

Return type
ndarray

Returns
Array with gradients.

loss_fn(pred_proba, Y)
Compute the attack loss.

Parameters
• pred_proba (ndarray) – Prediction probabilities of an instance.

594 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

alibi Documentation, Release 0.9.5dev

• Y (ndarray) – One-hot representation of instance labels.

Return type
ndarray

Returns
Loss of the attack.

reset_predictor(predictor)
Resets the predictor function/model.

Parameters
predictor (Union[Callable, Model]) – New predictor function/model.

Return type
None

score(X, adv_class, orig_class, eps=1e-10)

Parameters
• X (ndarray) – Instance to encode and calculate distance metrics for.

• adv_class (int) – Predicted class on the perturbed instance.

• orig_class (int) – Predicted class on the original instance.

• eps (float) – Small number to avoid dividing by 0.

Return type
float

Returns
Ratio between the distance to the prototype of the predicted class for the original instance and
the prototype of the predicted class for the perturbed instance.

class alibi.explainers.CounterfactualRL(predictor, encoder, decoder, coeff_sparsity, coeff_consistency,
latent_dim=None, backend='tensorflow', seed=0, **kwargs)

Bases: Explainer, FitMixin

Counterfactual Reinforcement Learning.

__init__(predictor, encoder, decoder, coeff_sparsity, coeff_consistency, latent_dim=None,
backend='tensorflow', seed=0, **kwargs)

Constructor.

Parameters
• predictor (Callable[[ndarray], ndarray]) – A callable that takes a numpy array of N

data points as inputs and returns N outputs. For classification task, the second dimension
of the output should match the number of classes. Thus, the output can be either a soft
label distribution or a hard label distribution (i.e. one-hot encoding) without affecting the
performance since argmax is applied to the predictor’s output.

• encoder (Union[Model, Module]) – Pretrained encoder network.

• decoder (Union[Model, Module]) – Pretrained decoder network.

• coeff_sparsity (float) – Sparsity loss coefficient.

• coeff_consistency (float) – Consistency loss coefficient.

• latent_dim (Optional[int]) – Auto-encoder latent dimension. Can be omitted if the
actor network is user specified.

13.1. alibi package 595

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

• backend (str) – Deep learning backend: 'tensorflow' | 'pytorch'. Default
'tensorflow'.

• seed (int) – Seed for reproducibility. The results are not reproducible for 'tensorflow'
backend.

• **kwargs – Used to replace any default parameter from alibi.explainers.
cfrl_base.DEFAULT_BASE_PARAMS.

explain(X, Y_t, C=None, batch_size=100)
Explains an input instance

Parameters
• X (ndarray) – Instances to be explained.

• Y_t (ndarray) – Counterfactual targets.

• C (Optional[ndarray]) – Conditional vectors. If None, it means that no conditioning was
used during training (i.e. the conditional_func returns None).

• batch_size (int) – Batch size to be used when generating counterfactuals.

Return type
Explanation

Returns
explanation – Explanation object containing the counterfactual with additional metadata as
attributes. See usage at CFRL examples for details.

fit(X)
Fit the model agnostic counterfactual generator.

Parameters
X (ndarray) – Training data array.

Return type
Explainer

Returns
self – The explainer itself.

classmethod load(path, predictor)
Load an explainer from disk.

Parameters
• path (Union[str, PathLike]) – Path to a directory containing the saved explainer.

• predictor (Any) – Model or prediction function used to originally initialize the explainer.

Return type
Explainer

Returns
An explainer instance.

reset_predictor(predictor)
Resets the predictor.

Parameters
predictor (Any) – New predictor.

596 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.seldon.io/projects/alibi/en/stable/methods/CFRL.html
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

alibi Documentation, Release 0.9.5dev

Return type
None

save(path)
Save an explainer to disk. Uses the dill module.

Parameters
path (Union[str, PathLike]) – Path to a directory. A new directory will be created if one
does not exist.

Return type
None

class alibi.explainers.CounterfactualRLTabular(predictor, encoder, decoder, encoder_preprocessor,
decoder_inv_preprocessor, coeff_sparsity,
coeff_consistency, feature_names, category_map,
immutable_features=None, ranges=None,
weight_num=1.0, weight_cat=1.0, latent_dim=None,
backend='tensorflow', seed=0, **kwargs)

Bases: CounterfactualRL

Counterfactual Reinforcement Learning Tabular.

__init__(predictor, encoder, decoder, encoder_preprocessor, decoder_inv_preprocessor, coeff_sparsity,
coeff_consistency, feature_names, category_map, immutable_features=None, ranges=None,
weight_num=1.0, weight_cat=1.0, latent_dim=None, backend='tensorflow', seed=0, **kwargs)

Constructor.

Parameters
• predictor (Callable[[ndarray], ndarray]) – A callable that takes a numpy array of N

data points as inputs and returns N outputs. For classification task, the second dimension
of the output should match the number of classes. Thus, the output can be either a soft
label distribution or a hard label distribution (i.e. one-hot encoding) without affecting the
performance since argmax is applied to the predictor’s output.

• encoder (Union[Model, Module]) – Pretrained heterogeneous encoder network.

• decoder (Union[Model, Module]) – Pretrained heterogeneous decoder network. The out-
put of the decoder must be a list of tensors.

• encoder_preprocessor (Callable) – Auto-encoder data pre-processor. Depending on
the input format, the pre-processor can normalize numerical attributes, transform label
encoding to one-hot encoding etc.

• decoder_inv_preprocessor (Callable) – Auto-encoder data inverse pre-processor.
This is the inverse function of the pre-processor. It can denormalize numerical attributes,
transform one-hot encoding to label encoding, feature type casting etc.

• coeff_sparsity (float) – Sparsity loss coefficient.

• coeff_consistency (float) – Consistency loss coefficient.

• feature_names (List[str]) – List of feature names. This should be provided by the
dataset.

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are
column indexes and the values are lists containing the possible values for a feature. This
should be provided by the dataset.

• immutable_features (Optional[List[str]]) – List of immutable features.

13.1. alibi package 597

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

• ranges (Optional[Dict[str, Tuple[int, int]]]) – Numerical feature ranges. Note that
exist numerical features such as 'Age', which are allowed to increase only. We denote
those by 'inc_feat'. Similarly, there exist features allowed to decrease only. We de-
note them by 'dec_feat'. Finally, there are some free feature, which we denote by
'free_feat'. With the previous notation, we can define range = {'inc_feat': [0,
1], 'dec_feat': [-1, 0], 'free_feat': [-1, 1]}. 'free_feat' can be omit-
ted, as any unspecified feature is considered free. Having the ranges of a feature {‘feat’:
[a_low, a_high}, when sampling is performed the numerical value will be clipped between
[a_low * (max_val - min_val), a_high * [max_val - min_val]], where a_low and a_high
are the minimum and maximum values the feature 'feat'. This implies that a_low and
a_high are not restricted to {-1, 0} and {0, 1}, but can be any float number in-between
[-1, 0] and [0, 1].

• weight_num (float) – Numerical loss weight.

• weight_cat (float) – Categorical loss weight.

• latent_dim (Optional[int]) – Auto-encoder latent dimension. Can be omitted if the
actor network is user specified.

• backend (str) – Deep learning backend: 'tensorflow' | 'pytorch'. Default
'tensorflow'.

• seed (int) – Seed for reproducibility. The results are not reproducible for 'tensorflow'
backend.

• **kwargs – Used to replace any default parameter from alibi.explainers.
cfrl_base.DEFAULT_BASE_PARAMS.

explain(X, Y_t, C=None, batch_size=100, diversity=False, num_samples=1, patience=1000,
tolerance=0.001)

Computes counterfactuals for the given instances conditioned on the target and the conditional vector.

Parameters
• X (ndarray) – Input instances to generate counterfactuals for.

• Y_t (ndarray) – Target labels.

• C (Optional[List[Dict[str, List[Union[float, str]]]]]) – List of conditional dictio-
naries. If None, it means that no conditioning was used during training (i.e. the condi-
tional_func returns None). If conditioning was used during training but no conditioning is
desired for the current input, an empty list is expected.

• diversity (bool) – Whether to generate diverse counterfactual set for the given instance.
Only supported for a single input instance.

• num_samples (int) – Number of diversity samples to be generated. Considered only if
diversity=True.

• batch_size (int) – Batch size to use when generating counterfactuals.

• patience (int) – Maximum number of iterations to perform diversity search stops. If -1,
the search stops only if the desired number of samples has been found.

• tolerance (float) – Tolerance to distinguish two counterfactual instances.

Return type
Explanation

Returns

598 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

explanation – Explanation object containing the counterfactual with additional metadata as
attributes. See usage CFRL examples for details.

fit(X)
Fit the model agnostic counterfactual generator.

Parameters
X (ndarray) – Training data array.

Return type
Explainer

Returns
self – The explainer itself.

class alibi.explainers.DistributedAnchorTabular(predictor, feature_names, categorical_names=None,
dtype=<class 'numpy.float32'>, ohe=False,
seed=None)

Bases: AnchorTabular

explain(X, threshold=0.95, delta=0.1, tau=0.15, batch_size=100, coverage_samples=10000, beam_size=1,
stop_on_first=False, max_anchor_size=None, min_samples_start=1, n_covered_ex=10,
binary_cache_size=10000, cache_margin=1000, verbose=False, verbose_every=1, **kwargs)

Explains the prediction made by a classifier on instance X. Sampling is done in parallel over a number of
cores specified in kwargs[‘ncpu’].

Parameters
• X (ndarray) – See alibi.explainers.anchors.anchor_tabular.AnchorTabular.
explain().

• threshold (float) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• delta (float) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• tau (float) – See alibi.explainers.anchors.anchor_tabular.AnchorTabular.
explain().

• batch_size (int) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• coverage_samples (int) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• beam_size (int) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• stop_on_first (bool) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• max_anchor_size (Optional[int]) – See alibi.explainers.anchors.
anchor_tabular.AnchorTabular.explain().

• min_samples_start (int) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• n_covered_ex (int) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• binary_cache_size (int) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

13.1. alibi package 599

https://docs.seldon.io/projects/alibi/en/stable/methods/CFRL.html
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

• cache_margin (int) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• verbose (bool) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• verbose_every (int) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• **kwargs (Any) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

Return type
Explanation

Returns
See alibi.explainers.anchors.anchor_tabular.AnchorTabular.explain() su-
perclass.

fit(train_data, disc_perc=(25, 50, 75), **kwargs)
Creates a list of handles to parallel processes handles that are used for submitting sampling tasks.

Parameters
• train_data (ndarray) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.fit() superclass.

• disc_perc (tuple) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.fit() superclass.

• **kwargs – See alibi.explainers.anchors.anchor_tabular.AnchorTabular.
fit() superclass.

Return type
AnchorTabular

reset_predictor(predictor)
Resets the predictor function.

Parameters
predictor (Callable) – New model prediction function.

Return type
None

class alibi.explainers.GradientSimilarity(predictor, loss_fn, sim_fn='grad_dot', task='classification',
precompute_grads=False, backend='tensorflow',
device=None, verbose=False)

Bases: BaseSimilarityExplainer

__init__(predictor, loss_fn, sim_fn='grad_dot', task='classification', precompute_grads=False,
backend='tensorflow', device=None, verbose=False)

GradientSimilarity explainer.

The gradient similarity explainer is used to find examples in the training data that the predictor considers
similar to test instances the user wants to explain. It uses the gradients of the loss between the model output
and the training data labels. These are compared using the similarity function specified by sim_fn. The
GradientSimilarity explainer can be applied to models trained for both classification and regression tasks.

Parameters
• predictor (Union[Model, Module]) – Model to explain.

600 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union

alibi Documentation, Release 0.9.5dev

• loss_fn (Union[Callable[[Tensor, Tensor], Tensor], Callable[[Tensor, Tensor],
Tensor]]) – Loss function used. The gradient of the loss function is used to compute the
similarity between the test instances and the training set.

• sim_fn (Literal[‘grad_dot’, ‘grad_cos’, ‘grad_asym_dot’]) – Similarity function to use.
The 'grad_dot' similarity function computes the dot product of the gradients, see alibi.
explainers.similarity.metrics.dot(). The 'grad_cos' similarity function com-
putes the cosine similarity between the gradients, see alibi.explainers.similarity.
metrics.cos(). The 'grad_asym_dot' similarity function is similar to 'grad_dot'
but is asymmetric, see alibi.explainers.similarity.metrics.asym_dot().

• task (Literal[‘classification’, ‘regression’]) – Type of task performed by the model. If
the task is 'classification', the target value passed to the explain method of the test
instance can be specified either directly or left as None, if left None we use the model’s
maximum prediction. If the task is 'regression', the target value of the test instance
must be specified directly.

• precompute_grads (bool) – Whether to precompute the gradients. If False, gradients
are computed on the fly otherwise we precompute them which can be faster when it comes
to computing explanations. Note this option may be memory intensive if the model is large.

• backend (Literal[‘tensorflow’, ‘pytorch’]) – Backend to use.

• device (Union[int, str, device, None]) – Device to use. If None, the default device for
the backend is used. If using pytorch backend see pytorch device docs for correct options.
Note that in the pytorch backend case this parameter can be a torch.device. If using
tensorflow backend see tensorflow docs for correct options.

• verbose (bool) – Whether to print the progress of the explainer.

Raises
• ValueError – If the task is not 'classification' or 'regression'.

• ValueError – If the sim_fn is not 'grad_dot', 'grad_cos' or 'grad_asym_dot'.

• ValueError – If the backend is not 'tensorflow' or 'pytorch'.

• TypeError – If the device is not an int, str, torch.device or None for the torch back-
end option or if the device is not str or None for the tensorflow backend option.

explain(X, Y=None)
Explain the predictor’s predictions for a given input.

Computes the similarity score between the inputs and the training set. Returns an explainer object contain-
ing the scores, the indices of the training set instances sorted by descending similarity and the most similar
and least similar instances of the data set for the input. Note that the input may be a single instance or a
batch of instances.

Parameters
• X (Union[ndarray, Tensor, Tensor, Any, List[Any]]) – X can be a numpy array, tensor-

flow tensor, pytorch tensor of the same shape as the training data or a list of objects, with
or without a leading batch dimension. If the batch dimension is missing it’s added.

• Y (Union[ndarray, Tensor, Tensor, None]) – Y can be a numpy array, tensorflow tensor
or a pytorch tensor. In the case of a regression task, the Y argument must be present. If the
task is classification then Y defaults to the model prediction.

Return type
Explanation

13.1. alibi package 601

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://pytorch.org/docs/stable/tensor_attributes.html#torch-device
https://www.tensorflow.org/api_docs/python/tf/device
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

Returns
Explanation object containing the ordered similarity scores for the test instance(s) with addi-
tional metadata as attributes. Contains the following data-related attributes –

• scores: np.ndarray - similarity scores for each pair of instances in the training and test
set sorted in descending order.

• ordered_indices: np.ndarray - indices of the paired training and test set instances sorted
by the similarity score in descending order.

• most_similar: np.ndarray - 5 most similar instances in the training set for each test in-
stance The first element is the most similar instance.

• least_similar: np.ndarray - 5 least similar instances in the training set for each test in-
stance. The first element is the least similar instance.

Raises
• ValueError – If Y is None and the task is 'regression'.

• ValueError – If the shape of X or Y does not match the shape of the training or target
data.

• ValueError – If the fit method has not been called prior to calling this method.

fit(X_train, Y_train)
Fit the explainer.

The GradientSimilarity explainer requires the model gradients over the training data. In the explain method
it compares them to the model gradients for the test instance(s). If precompute_grads=True on initial-
ization then the gradients are precomputed here and stored. This will speed up the explain method call but
storing the gradients may not be feasible for large models.

Parameters
• X_train (Union[ndarray, List[Any]]) – Training data.

• Y_train (ndarray) – Training labels.

Return type
Explainer

Returns
self – Returns self.

class alibi.explainers.IntegratedGradients(model, layer=None, target_fn=None,
method='gausslegendre', n_steps=50,
internal_batch_size=100)

Bases: Explainer

__init__(model, layer=None, target_fn=None, method='gausslegendre', n_steps=50,
internal_batch_size=100)

An implementation of the integrated gradients method for tensorflow models.

For details of the method see the original paper: https://arxiv.org/abs/1703.01365 .

Parameters
• model (Model) – tensorflow model.

• layer (Union[Callable[[Model], Layer], Layer, None]) – A layer or a function having
as parameter the model and returning a layer with respect to which the gradients are calcu-
lated. If not provided, the gradients are calculated with respect to the input. To guarantee

602 Chapter 13. alibi

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://arxiv.org/abs/1703.01365
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

saving and loading of the explainer, the layer has to be specified as a callable which returns
a layer given the model. E.g. lambda model: model.layers[0].embeddings.

• target_fn (Optional[Callable]) – A scalar function that is applied to the predictions
of the model. This can be used to specify which scalar output the attributions should be
calculated for. This can be particularly useful if the desired output is not known before
calling the model (e.g. explaining the argmax output for a probabilistic classifier, in this
case we could pass target_fn=partial(np.argmax, axis=1)).

• method (str) – Method for the integral approximation. Methods available:
"riemann_left", "riemann_right", "riemann_middle", "riemann_trapezoid",
"gausslegendre".

• n_steps (int) – Number of step in the path integral approximation from the baseline to
the input instance.

• internal_batch_size (int) – Batch size for the internal batching.

explain(X, forward_kwargs=None, baselines=None, target=None, attribute_to_layer_inputs=False)
Calculates the attributions for each input feature or element of layer and returns an Explanation object.

Parameters
• X (Union[ndarray, List[ndarray]]) – Instance for which integrated gradients attribution

are computed.

• forward_kwargs (Optional[dict]) – Input keyword args. If it’s not None, it must be a
dict with numpy arrays as values. The first dimension of the arrays must correspond to the
number of examples. It will be repeated for each of n_steps along the integrated path. The
attributions are not computed with respect to these arguments.

• baselines (Union[int, float, ndarray, List[int], List[float], List[ndarray],
None]) – Baselines (starting point of the path integral) for each instance. If the passed
value is an np.ndarray must have the same shape as X. If not provided, all features values
for the baselines are set to 0.

• target (Union[int, list, ndarray, None]) – Defines which element of the model output
is considered to compute the gradients. Target can be a numpy array, a list or a numeric
value. Numeric values are only valid if the model’s output is a rank-n tensor with n <=
2 (regression and classification models). If a numeric value is passed, the gradients are
calculated for the same element of the output for all data points. For regression models
whose output is a scalar, target should not be provided. For classification models target
can be either the true classes or the classes predicted by the model. It must be provided
for classification models and regression models whose output is a vector. If the model’s
output is a rank-n tensor with n > 2, the target must be a rank-2 numpy array or a list of lists
(a matrix) with dimensions nb_samples X (n-1) .

• attribute_to_layer_inputs (bool) – In case of layers gradients, controls whether the
gradients are computed for the layer’s inputs or outputs. If True, gradients are computed
for the layer’s inputs, if False for the layer’s outputs.

Return type
Explanation

Returns
explanation – Explanation object including meta and data attributes with integrated gradients
attributions for each feature. See usage at IG examples for details.

reset_predictor(predictor)
Resets the predictor model.

13.1. alibi package 603

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.seldon.io/projects/alibi/en/stable/methods/IntegratedGradients.html

alibi Documentation, Release 0.9.5dev

Parameters
predictor (Model) – New prediction model.

Return type
None

class alibi.explainers.KernelShap(predictor, link='identity', feature_names=None,
categorical_names=None, task='classification', seed=None,
distributed_opts=None)

Bases: Explainer, FitMixin

__init__(predictor, link='identity', feature_names=None, categorical_names=None, task='classification',
seed=None, distributed_opts=None)

A wrapper around the shap.KernelExplainer class. It extends the current shap library functionality by
allowing the user to specify variable groups in order to treat one-hot encoded categorical as one during
sampling. The user can also specify whether to aggregate the shap values estimate for the encoded levels
of categorical variables as an optional argument to explain, if grouping arguments are not passed to fit.

Parameters
• predictor (Callable[[ndarray], ndarray]) – A callable that takes as an input a sam-

ples x features array and outputs a samples x n_outputs model outputs. The n_outputs
should represent model output in margin space. If the model outputs probabilities, then the
link should be set to 'logit' to ensure correct force plots.

• link (str) – Valid values are 'identity' or 'logit'. A generalized linear model link
to connect the feature importance values to the model output. Since the feature importance
values, 𝜑, sum up to the model output, it often makes sense to connect them to the ouput
with a link function where 𝑙𝑖𝑛𝑘(𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒) = 𝑠𝑢𝑚(𝜑). Therefore, for a
model which outputs probabilities, link='logit'makes the feature effects have log-odds
(evidence) units and link='identity' means that the feature effects have probability
units. Please see this example for an in-depth discussion about the semantics of explaining
the model in the probability or margin space.

• feature_names (Union[List[str], Tuple[str], None]) – Used to infer group names
when categorical data is treated by grouping and group_names input to fit is not spec-
ified, assuming it has the same length as the groups argument of fit method. It is also
used to compute the names field, which appears as a key in each of the values of explana-
tion.data[‘raw’][‘importances’].

• categorical_names (Optional[Dict[int, List[str]]]) – Keys are feature column in-
dices in the background_data matrix (see fit). Each value contains strings with the names
of the categories for the feature. Used to select the method for background data summari-
sation (if specified, subsampling is performed as opposed to k-means clustering). In the
future it may be used for visualisation.

• task (str) – Can have values 'classification' and 'regression'. It is only used to
set the contents of explanation.data[‘raw’][‘prediction’]

• seed (Optional[int]) – Fixes the random number stream, which influences which subsets
are sampled during shap value estimation.

• distributed_opts (Optional[Dict]) – A dictionary that controls the algorithm dis-
tributed execution. See alibi.explainers.shap_wrappers.DISTRIBUTED_OPTS
documentation for details.

explain(X, summarise_result=False, cat_vars_start_idx=None, cat_vars_enc_dim=None, **kwargs)
Explains the instances in the array X.

Parameters

604 Chapter 13. alibi

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/slundberg/shap/blob/master/notebooks/tabular_examples/model_agnostic/Squashing%20Effect.ipynb
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict

alibi Documentation, Release 0.9.5dev

• X (Union[ndarray, DataFrame, spmatrix]) – Instances to be explained.

• summarise_result (bool) – Specifies whether the shap values corresponding to dimen-
sions of encoded categorical variables should be summed so that a single shap value is
returned for each categorical variable. Both the start indices of the categorical variables
(cat_vars_start_idx) and the encoding dimensions (cat_vars_enc_dim) have to be specified

• cat_vars_start_idx (Optional[Sequence[int]]) – The start indices of the categori-
cal variables. If specified, cat_vars_enc_dim should also be specified.

• cat_vars_enc_dim (Optional[Sequence[int]]) – The length of the encoding dimen-
sion for each categorical variable. If specified cat_vars_start_idx should also be specified.

• **kwargs – Keyword arguments specifying explain behaviour. Valid arguments are:

– nsamples - controls the number of predictor calls and therefore runtime.

– l1_reg - the algorithm is exponential in the feature dimension. If set to auto the algo-
rithm will first run a feature selection algorithm to select the top features, provided the
fraction of sampled sets of missing features is less than 0.2 from the number of total
subsets. The Akaike Information Criterion is used in this case. See our examples for
more details about available settings for this parameter. Note that by first running a fea-
ture selection step, the shapley values of the remainder of the features will be different
to those estimated from the entire set.

For more details, please see the shap library documentation .

Return type
Explanation

Returns
explanation – An explanation object containing the shap values and prediction in the data
field, along with a meta field containing additional data. See usage at KernelSHAP examples
for details.

fit(background_data, summarise_background=False, n_background_samples=300, group_names=None,
groups=None, weights=None, **kwargs)
This takes a background dataset (usually a subsample of the training set) as an input along with several
user specified options and initialises a KernelShap explainer. The runtime of the algorithm depends on
the number of samples in this dataset and on the number of features in the dataset. To reduce the size of
the dataset, the summarise_background option and n_background_samples should be used. To reduce the
feature dimensionality, encoded categorical variables can be treated as one during the feature perturbation
process; this decreases the effective feature dimensionality, can reduce the variance of the shap values
estimation and reduces slightly the number of calls to the predictor. Further runtime savings can be achieved
by changing the nsamples parameter in the call to explain. Runtime reduction comes with an accuracy trade-
off, so it is better to experiment with a runtime reduction method and understand results stability before
using the system.

Parameters
• background_data (Union[ndarray, spmatrix, DataFrame, Data]) – Data used to esti-

mate feature contributions and baseline values for force plots. The rows of the background
data should represent samples and the columns features.

• summarise_background (Union[bool, str]) – A large background dataset impacts the
runtime and memory footprint of the algorithm. By setting this argument to True, only
n_background_samples from the provided data are selected. If group_names or groups ar-
guments are specified, the algorithm assumes that the data contains categorical variables so

13.1. alibi package 605

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://shap.readthedocs.io/en/stable/.
https://docs.seldon.io/projects/alibi/en/stable/methods/KernelSHAP.html
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

the records are selected uniformly at random. Otherwise, shap.kmeans (a wrapper around
sklearn k-means implementation) is used for selection. If set to 'auto', a default of KER-
NEL_SHAP_BACKGROUND_THRESHOLD samples is selected.

• n_background_samples (int) – The number of samples to keep in the background
dataset if summarise_background=True.

• groups (Optional[List[Union[Tuple[int], List[int]]]]) – A list containing sub-lists
specifying the indices of features belonging to the same group.

• group_names (Union[List[str], Tuple[str], None]) – If specified, this array is used
to treat groups of features as one during feature perturbation. This feature can be useful,
for example, to treat encoded categorical variables as one and can result in computational
savings (this may require adjusting the nsamples parameter).

• weights (Union[List[float], Tuple[float], ndarray, None]) – A sequence or array
of weights. This is used only if grouping is specified and assigns a weight to each point in
the dataset.

• **kwargs – Expected keyword arguments include keep_index (bool) and should be used
if a data frame containing an index column is passed to the algorithm.

Return type
KernelShap

reset_predictor(predictor)
Resets the prediction function.

Parameters
predictor (Callable) – New prediction function.

Return type
None

class alibi.explainers.PartialDependence(predictor, feature_names=None, categorical_names=None,
target_names=None, verbose=False)

Bases: PartialDependenceBase

Black-box implementation of partial dependence for tabular datasets. Supports multiple feature interactions.

__init__(predictor, feature_names=None, categorical_names=None, target_names=None, verbose=False)
Initialize black-box model implementation of partial dependence.

Parameters
• predictor (Callable[[ndarray], ndarray]) – A prediction function which receives as

input a numpy array of size N x F and outputs a numpy array of size N (i.e. (N,)) or N x T,
where N is the number of input instances, F is the number of features and T is the number
of targets.

• feature_names (Optional[List[str]]) – A list of feature names used for displaying
results.

• categorical_names (Optional[Dict[int, List[str]]]) – Dictionary where keys are
feature columns and values are the categories for the feature. Necessary to identify the
categorical features in the dataset. An example for categorical_names would be:

category_map = {0: ["married", "divorced"], 3: ["high school diploma
→˓", "master's degree"]}

606 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

• target_names (Optional[List[str]]) – A list of target/output names used for displaying
results.

• verbose (bool) – Whether to print the progress of the explainer.

Notes

The length of the target_names should match the number of columns returned by a call to the predictor.
For example, in the case of a binary classifier, if the predictor outputs a decision score (i.e. uses the de-
cision_function method) which returns one column, then the length of the target_names should be one.
On the other hand, if the predictor outputs a prediction probability (i.e. uses the predict_proba method)
which returns two columns (one for the negative class and one for the positive class), then the length of the
target_names should be two.

explain(X, features=None, kind='average', percentiles=(0.0, 1.0), grid_resolution=100, grid_points=None)
Calculates the partial dependence for each feature and/or tuples of features with respect to the all targets
and the reference dataset X.

Parameters
• X (ndarray) – A N x F tabular dataset used to calculate partial dependence curves. This

is typically the training dataset or a representative sample.

• features (Optional[List[Union[int, Tuple[int, int]]]]) – An optional list of fea-
tures or tuples of features for which to calculate the partial dependence. If not provided,
the partial dependence will be computed for every single features in the dataset. Some
example for features would be: [0, 2], [0, 2, (0, 2)], [(0, 2)], where 0 and 2
correspond to column 0 and 2 in X, respectively.

• kind (Literal[‘average’, ‘individual’, ‘both’]) – If set to 'average', then only the par-
tial dependence (PD) averaged across all samples from the dataset is returned. If set to
'individual', then only the individual conditional expectation (ICE) is returned for each
data point from the dataset. Otherwise, if set to 'both', then both the PD and the ICE are
returned.

• percentiles (Tuple[float, float]) – Lower and upper percentiles used to limit the
feature values to potentially remove outliers from low-density regions. Note that for fea-
tures with not many data points with large/low values, the PD estimates are less reliable in
those extreme regions. The values must be in [0, 1]. Only used with grid_resolution.

• grid_resolution (int) – Number of equidistant points to split the range of each target
feature. Only applies if the number of unique values of a target feature in the reference
dataset X is greater than the grid_resolution value. For example, consider a case where a
feature can take the following values: [0.1, 0.3, 0.35, 0.351, 0.4, 0.41, 0.44,
..., 0.5, 0.54, 0.56, 0.6, 0.65, 0.7, 0.9], and we are not interested in eval-
uating the marginal effect at every single point as it can become computationally costly
(assume hundreds/thousands of points) without providing any additional information for
nearby points (e.g., 0.35 and 351). By setting grid_resolution=5, the marginal effect is
computed for the values [0.1, 0.3, 0.5, 0.7, 0.9] instead, which is less computa-
tionally demanding and can provide similar insights regarding the model’s behaviour. Note
that the extreme values of the grid can be controlled using the percentiles argument.

• grid_points (Optional[Dict[int, Union[List, ndarray]]]) – Custom grid points.
Must be a dict where the keys are the target features indices and the values are mono-
tonically increasing arrays defining the grid points for a numerical feature, and a subset
of categorical feature values for a categorical feature. If the grid_points are not specified,
then the grid will be constructed based on the unique target feature values available in the

13.1. alibi package 607

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List

alibi Documentation, Release 0.9.5dev

dataset X, or based on the grid_resolution and percentiles (check grid_resolution to see
when it applies). For categorical features, the corresponding value in the grid_points can
be specified either as array of strings or array of integers corresponding the label encod-
ings. Note that the label encoding must match the ordering of the values provided in the
categorical_names.

Return type
Explanation

Returns
explanation – An Explanation object containing the data and the metadata of the calculated
partial dependence curves. See usage at Partial dependence examples for details

class alibi.explainers.PartialDependenceVariance(predictor, feature_names=None,
categorical_names=None, target_names=None,
verbose=False)

Bases: Explainer

Implementation of the partial dependence(PD) variance feature importance and feature interaction for tabu-
lar datasets. The method measure the importance feature importance as the variance within the PD function.
Similar, the potential feature interaction is measured by computing the variance within the two-way PD func-
tion by holding one variable constant and letting the other vary. Supports black-box models and the follow-
ing sklearn tree-based models: GradientBoostingClassifier, GradientBoostingRegressor, HistGradientBoosting-
Classifier, HistGradientBoostingRegressor, HistGradientBoostingRegressor, DecisionTreeRegressor, Random-
ForestRegressor.

For details of the method see the original paper: https://arxiv.org/abs/1805.04755 .

__init__(predictor, feature_names=None, categorical_names=None, target_names=None, verbose=False)
Initialize black-box/tree-based model implementation for the partial dependence variance feature impor-
tance.

Parameters
• predictor (Union[BaseEstimator, Callable[[ndarray], ndarray]]) – A sklearn es-

timator or a prediction function which receives as input a numpy array of size N x F and
outputs a numpy array of size N (i.e. (N,)) or N x T, where N is the number of input
instances, F is the number of features and T is the number of targets.

• feature_names (Optional[List[str]]) – A list of feature names used for displaying
results.E

• categorical_names (Optional[Dict[int, List[str]]]) – Dictionary where keys are
feature columns and values are the categories for the feature. Necessary to identify the
categorical features in the dataset. An example for categorical_names would be:

category_map = {0: ["married", "divorced"], 3: ["high school diploma
→˓", "master's degree"]}

• target_names (Optional[List[str]]) – A list of target/output names used for displaying
results.

• verbose (bool) – Whether to print the progress of the explainer.

608 Chapter 13. alibi

https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependence.html
https://arxiv.org/abs/1805.04755
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

alibi Documentation, Release 0.9.5dev

Notes

The length of the target_names should match the number of columns returned by a call to the predictor.
For example, in the case of a binary classifier, if the predictor outputs a decision score (i.e. uses the de-
cision_function method) which returns one column, then the length of the target_names should be one.
On the other hand, if the predictor outputs a prediction probability (i.e. uses the predict_proba method)
which returns two columns (one for the negative class and one for the positive class), then the length of the
target_names should be two.

explain(X, features=None, method='importance', percentiles=(0.0, 1.0), grid_resolution=100,
grid_points=None)

Calculates the variance partial dependence feature importance for each feature with respect to the all targets
and the reference dataset X.

Parameters
• X (ndarray) – A N x F tabular dataset used to calculate partial dependence curves. This

is typically the training dataset or a representative sample.

• features (Union[List[int], List[Tuple[int, int]], None]) – A list of features for
which to compute the feature importance or a list of feature pairs for which to compute the
feature interaction. Some example of features would be: [0, 1, 3], [(0, 1), (0, 3),
(1, 3)], where 0,``1``, and 3 correspond to the columns 0, 1, and 3 in X. If not provided,
the feature importance or the feature interaction will be computed for every feature or for
every combination of feature pairs, depending on the parameter method.

• method (Literal[‘importance’, ‘interaction’]) – Flag to specify whether to compute the
feature importance or the feature interaction of the elements provided in features. Sup-
ported values: 'importance' | 'interaction'.

• percentiles (Tuple[float, float]) – Lower and upper percentiles used to limit the
feature values to potentially remove outliers from low-density regions. Note that for fea-
tures with not many data points with large/low values, the PD estimates are less reliable in
those extreme regions. The values must be in [0, 1]. Only used with grid_resolution.

• grid_resolution (int) – Number of equidistant points to split the range of each target
feature. Only applies if the number of unique values of a target feature in the reference
dataset X is greater than the grid_resolution value. For example, consider a case where a
feature can take the following values: [0.1, 0.3, 0.35, 0.351, 0.4, 0.41, 0.44,
..., 0.5, 0.54, 0.56, 0.6, 0.65, 0.7, 0.9], and we are not interested in eval-
uating the marginal effect at every single point as it can become computationally costly
(assume hundreds/thousands of points) without providing any additional information for
nearby points (e.g., 0.35 and 351). By setting grid_resolution=5, the marginal effect is
computed for the values [0.1, 0.3, 0.5, 0.7, 0.9] instead, which is less computa-
tionally demanding and can provide similar insights regarding the model’s behaviour. Note
that the extreme values of the grid can be controlled using the percentiles argument.

• grid_points (Optional[Dict[int, Union[List, ndarray]]]) – Custom grid points.
Must be a dict where the keys are the target features indices and the values are mono-
tonically increasing arrays defining the grid points for a numerical feature, and a subset
of categorical feature values for a categorical feature. If the grid_points are not specified,
then the grid will be constructed based on the unique target feature values available in the
dataset X, or based on the grid_resolution and percentiles (check grid_resolution to see
when it applies). For categorical features, the corresponding value in the grid_points can
be specified either as array of strings or array of integers corresponding the label encod-
ings. Note that the label encoding must match the ordering of the values provided in the
categorical_names.

13.1. alibi package 609

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List

alibi Documentation, Release 0.9.5dev

Return type
Explanation

Returns
explanation – An Explanation object containing the data and the metadata of the calculated
partial dependence curves and feature importance/interaction. See usage at Partial depen-
dence variance examples for details

class alibi.explainers.PermutationImportance(predictor, loss_fns=None, score_fns=None,
feature_names=None, verbose=False)

Bases: Explainer

Implementation of the permutation feature importance for tabular datasets. The method measure the importance
of a feature as the relative increase/decrease in the loss/score function when the feature values are permuted.
Supports black-box models.

For details of the method see the papers:

• https://link.springer.com/article/10.1023/A:1010933404324

• https://arxiv.org/abs/1801.01489

__init__(predictor, loss_fns=None, score_fns=None, feature_names=None, verbose=False)
Initialize the permutation feature importance.

Parameters
• predictor (Callable[[ndarray], ndarray]) – A prediction function which receives as

input a numpy array of size N x F, and outputs a numpy array of size N (i.e. (N,)) or N x T,
where N is the number of input instances, F is the number of features, and T is the number
of targets. Note that the output shape must be compatible with the loss and score functions
provided in loss_fns and score_fns.

• loss_fns (Union[Literal[‘mean_absolute_error’, ‘mean_squared_error’,
‘mean_squared_log_error’, ‘mean_absolute_percentage_error’,
‘log_loss’], List[Literal[‘mean_absolute_error’, ‘mean_squared_error’,
‘mean_squared_log_error’, ‘mean_absolute_percentage_error’, ‘log_loss’]],
Callable[[ndarray, ndarray, Optional[ndarray]], float], Dict[str,
Callable[[ndarray, ndarray, Optional[ndarray]], float]], None]) – A literal,
or a list of literals, or a loss function, or a dictionary of loss functions having as
keys the names of the loss functions and as values the loss functions (i.e., lower
values are better). The available literal values are described in alibi.explainers.
permutation_importance.LOSS_FNS. Note that the predictor output must be
compatible with every loss function. Every loss function is expected to receive the
following arguments:

– y_true : np.ndarray - a numpy array of ground-truth labels.

– y_pred | y_score : np.ndarray - a numpy array of model predictions. This corresponds
to the output of the model.

– sample_weight: Optional[np.ndarray] - a numpy array of sample weights.

• score_fns (Union[Literal[‘accuracy’, ‘precision’, ‘recall’, ‘f1’, ‘roc_auc’,
‘r2’], List[Literal[‘accuracy’, ‘precision’, ‘recall’, ‘f1’, ‘roc_auc’, ‘r2’]],
Callable[[ndarray, ndarray, Optional[ndarray]], float], Dict[str,
Callable[[ndarray, ndarray, Optional[ndarray]], float]], None]) – A literal,
or a list or literals, or a score function, or a dictionary of score functions having as
keys the names of the score functions and as values the score functions (i.e, higher

610 Chapter 13. alibi

https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependenceVariance.html
https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependenceVariance.html
https://link.springer.com/article/10.1023/A:1010933404324
https://arxiv.org/abs/1801.01489
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

values are better). The available literal values are described in alibi.explainers.
permutation_importance.SCORE_FNS. As with the loss_fns, the predictor output
must be compatible with every score function and the score function must have the same
signature presented in the loss_fns parameter description.

• feature_names (Optional[List[str]]) – A list of feature names used for displaying
results.

• verbose (bool) – Whether to print the progress of the explainer.

explain(X, y, features=None, method='estimate', kind='ratio', n_repeats=50, sample_weight=None)
Computes the permutation feature importance for each feature with respect to the given loss or score func-
tions and the dataset (X, y).

Parameters
• X (ndarray) – A N x F input feature dataset used to calculate the permutation feature

importance. This is typically the test dataset.

• y (ndarray) – Ground-truth labels array of size N (i.e. (N,)) corresponding the input
feature X.

• features (Optional[List[Union[int, Tuple[int, ...]]]]) – An optional list of fea-
tures or tuples of features for which to compute the permutation feature importance. If not
provided, the permutation feature importance will be computed for every single features in
the dataset. Some example of features would be: [0, 2], [0, 2, (0, 2)], [(0, 2)],
where 0 and 2 correspond to column 0 and 2 in X, respectively.

• method (Literal[‘estimate’, ‘exact’]) – The method to be used to compute the feature
importance. If set to 'exact', a “switch” operation is performed across all observed pairs,
by excluding pairings that are actually observed in the original dataset. This operation is
quadratic in the number of samples (N x (N - 1) samples) and thus can be computationally
intensive. If set to 'estimate', the dataset will be divided in half. The values of the first
half containing the ground-truth labels the rest of the features (i.e. features that are left
intact) is matched with the values of the second half of the permuted features, and the other
way around. This method is computationally lighter and provides estimate error bars given
by the standard deviation. Note that for some specific loss and score functions, the estimate
does not converge to the exact metric value.

• kind (Literal[‘ratio’, ‘difference’]) – Whether to report the importance as the loss/score
ratio or the loss/score difference. Available values are: 'ratio' | 'difference'.

• n_repeats (int) – Number of times to permute the feature values. Considered only when
method='estimate'.

• sample_weight (Optional[ndarray]) – Optional weight for each sample instance.

Return type
Explanation

Returns
explanation – An Explanation object containing the data and the metadata of the permutation
feature importance. See usage at Permutation feature importance examples for details

reset_predictor(predictor)
Resets the predictor function.

Parameters
predictor (Callable) – New predictor function.

13.1. alibi package 611

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.seldon.io/projects/alibi/en/stable/methods/PermutationImportance.html
https://docs.python.org/3/library/typing.html#typing.Callable

alibi Documentation, Release 0.9.5dev

Return type
None

class alibi.explainers.TreePartialDependence(predictor, feature_names=None,
categorical_names=None, target_names=None,
verbose=False)

Bases: PartialDependenceBase

Tree-based model sklearn implementation of the partial dependence for tabular datasets. Supports multiple fea-
ture interactions. This method is faster than the general black-box implementation but is only supported by
some tree-based estimators. The computation is based on a weighted tree traversal. For more details on the
computation, check the sklearn documentation page. The supported sklearn models are: GradientBoostingClas-
sifier, GradientBoostingRegressor, HistGradientBoostingClassifier, HistGradientBoostingRegressor, HistGra-
dientBoostingRegressor, DecisionTreeRegressor, RandomForestRegressor.

__init__(predictor, feature_names=None, categorical_names=None, target_names=None, verbose=False)
Initialize tree-based model sklearn implementation of partial dependence.

Parameters
• predictor (BaseEstimator) – A tree-based sklearn estimator.

• feature_names (Optional[List[str]]) – A list of feature names used for displaying
results.

• categorical_names (Optional[Dict[int, List[str]]]) – Dictionary where keys are
feature columns and values are the categories for the feature. Necessary to identify the
categorical features in the dataset. An example for categorical_names would be:

category_map = {0: ["married", "divorced"], 3: ["high school diploma
→˓", "master's degree"]}

• target_names (Optional[List[str]]) – A list of target/output names used for displaying
results.

• verbose (bool) – Whether to print the progress of the explainer.

Notes

The length of the target_names should match the number of columns returned by a call to the predic-
tor.decision_function. In the case of a binary classifier, the decision score consists of a single column.
Thus, the length of the target_names should be one.

explain(X, features=None, percentiles=(0.0, 1.0), grid_resolution=100, grid_points=None)
Calculates the partial dependence for each feature and/or tuples of features with respect to the all targets
and the reference dataset X.

Parameters
• X (ndarray) – A N x F tabular dataset used to calculate partial dependence curves. This

is typically the training dataset or a representative sample.

• features (Optional[List[Union[int, Tuple[int, int]]]]) – An optional list of fea-
tures or tuples of features for which to calculate the partial dependence. If not provided,
the partial dependence will be computed for every single features in the dataset. Some
example for features would be: [0, 2], [0, 2, (0, 2)], [(0, 2)], where 0 and 2
correspond to column 0 and 2 in X, respectively.

612 Chapter 13. alibi

https://docs.python.org/3/library/constants.html#None
https://scikit-learn.org/stable/modules/partial_dependence.html#computation-methods
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

• percentiles (Tuple[float, float]) – Lower and upper percentiles used to limit the
feature values to potentially remove outliers from low-density regions. Note that for fea-
tures with not many data points with large/low values, the PD estimates are less reliable in
those extreme regions. The values must be in [0, 1]. Only used with grid_resolution.

• grid_resolution (int) – Number of equidistant points to split the range of each target
feature. Only applies if the number of unique values of a target feature in the reference
dataset X is greater than the grid_resolution value. For example, consider a case where a
feature can take the following values: [0.1, 0.3, 0.35, 0.351, 0.4, 0.41, 0.44,
..., 0.5, 0.54, 0.56, 0.6, 0.65, 0.7, 0.9], and we are not interested in eval-
uating the marginal effect at every single point as it can become computationally costly
(assume hundreds/thousands of points) without providing any additional information for
nearby points (e.g., 0.35 and 351). By setting grid_resolution=5, the marginal effect is
computed for the values [0.1, 0.3, 0.5, 0.7, 0.9] instead, which is less computa-
tionally demanding and can provide similar insights regarding the model’s behaviour. Note
that the extreme values of the grid can be controlled using the percentiles argument.

• grid_points (Optional[Dict[int, Union[List, ndarray]]]) – Custom grid points.
Must be a dict where the keys are the target features indices and the values are mono-
tonically increasing arrays defining the grid points for a numerical feature, and a subset
of categorical feature values for a categorical feature. If the grid_points are not specified,
then the grid will be constructed based on the unique target feature values available in the
dataset X, or based on the grid_resolution and percentiles (check grid_resolution to see
when it applies). For categorical features, the corresponding value in the grid_points can
be specified either as array of strings or array of integers corresponding the label encod-
ings. Note that the label encoding must match the ordering of the values provided in the
categorical_names.

Return type
Explanation

class alibi.explainers.TreeShap(predictor, model_output='raw', feature_names=None,
categorical_names=None, task='classification', seed=None)

Bases: Explainer, FitMixin

__init__(predictor, model_output='raw', feature_names=None, categorical_names=None,
task='classification', seed=None)

A wrapper around the shap.TreeExplainer class. It adds the following functionality:

1. Input summarisation options to allow control over background dataset size and hence runtime

2. Output summarisation for sklearn models with one-hot encoded categorical variables.

Users are strongly encouraged to familiarise themselves with the algorithm by reading the method overview
in the documentation.

Parameters
• predictor (Any) – A fitted model to be explained. XGBoost, LightGBM, CatBoost and

most tree-based scikit-learn models are supported. In the future, Pyspark could also be
supported. Please open an issue if this is a use case for you.

• model_output (str) – Supported values are: 'raw', 'probability',
'probability_doubled', 'log_loss':

– 'raw' - the raw model of the output, which varies by task, is explained. This option
should always be used if the fit is called without arguments. It should also be set to
compute shap interaction values. For regression models it is the standard output, for
binary classification in XGBoost it is the log odds ratio.

13.1. alibi package 613

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

– 'probability' - the probability output is explained. This option should only be
used if fit was called with the background_data argument set. The effect of spec-
ifying this parameter is that the shap library will use this information to transform
the shap values computed in margin space (aka using the raw output) to shap val-
ues that sum to the probability output by the model plus the model expected output
probability. This requires knowledge of the type of output for predictor which is in-
ferred by the shap library from the model type (e.g., most sklearn models with excep-
tion of sklearn.tree.DecisionTreeClassifier, sklearn.ensemble.RandomForestClassifier,
sklearn.ensemble.ExtraTreesClassifier output logits) or on the basis of the mapping im-
plemented in the shap.TreeEnsemble constructor. Only trees that output log odds and
probabilities are supported currently.

– 'probability_doubled' - used for binary classification problem in situations where
the model outputs the logits/probabilities for the positive class but shap values for both
outcomes are desired. This option should be used only if fit was called with the back-
ground_data argument set. In this case the expected value for the negative class is 1 -
expected_value for positive class and the shap values for the negative class are the neg-
ative values of the positive class shap values. As before, the explanation happens in the
margin space, and the shap values are subsequently adjusted. convert the model output
to probabilities. The same considerations as for probability apply for this output type
too.

– 'log_loss' - logarithmic loss is explained. This option shoud be used only if fit was
called with the background_data argument set and requires specifying labels, y, when
calling explain. If the objective is squared error, then the transformation (𝑜𝑢𝑡𝑝𝑢𝑡−𝑦)2 is
applied. For binary cross-entropy objective, the transformation 𝑙𝑜𝑔(1+𝑒𝑥𝑝(𝑜𝑢𝑡𝑝𝑢𝑡))−
𝑦*𝑜𝑢𝑡𝑝𝑢𝑡 with 𝑦 ∈ {0, 1}. Currently only binary cross-entropy and squared error losses
can be explained.

• feature_names (Union[List[str], Tuple[str], None]) – Used to compute the names
field, which appears as a key in each of the values of the importances sub-field of the
response raw field.

• categorical_names (Optional[Dict[int, List[str]]]) – Keys are feature column in-
dices. Each value contains strings with the names of the categories for the feature. Used
to select the method for background data summarisation (if specified, subsampling is per-
formed as opposed to kmeans clustering). In the future it may be used for visualisation.

• task (str) – Can have values 'classification' and 'regression'. It is only used to
set the contents of the prediction field in the data[‘raw’] response field.

Notes

Tree SHAP is an additive attribution method so it is best suited to explaining output in margin space (the
entire real line). For discussion related to explaining models in output vs probability space, please consult
this resource.

explain(X, y=None, interactions=False, approximate=False, check_additivity=True, tree_limit=None,
summarise_result=False, cat_vars_start_idx=None, cat_vars_enc_dim=None, **kwargs)

Explains the instances in X. y should be passed if the model loss function is to be explained, which can be
useful in order to understand how various features affect model performance over time. This is only possible
if the explainer has been fitted with a background dataset and requires setting model_output=’log_loss’.

Parameters
• X (Union[ndarray, DataFrame, Pool]) – Instances to be explained.

614 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/slundberg/shap/blob/master/notebooks/tabular_examples/model_agnostic/Squashing%20Effect.ipynb
https://docs.python.org/3/library/typing.html#typing.Union

alibi Documentation, Release 0.9.5dev

• y (Optional[ndarray]) – Labels corresponding to rows of X. Should be passed only if a
background dataset was passed to the fit method.

• interactions (bool) – If True, the shap value for every feature of every instance in X is
decomposed into X.shape[1] - 1 shap value interactions and one main effect. This is only
supported if fit is called with background_dataset=None.

• approximate (bool) – If True, an approximation to the shap values that does not account
for feature order is computed. This was proposed by Ando Sabaas here . Check this re-
source for more details. This option is currently only supported for xgboost and sklearn
models.

• check_additivity (bool) – If True, output correctness is ensured if
model_output='raw' has been passed to the constructor.

• tree_limit (Optional[int]) – Explain the output of a subset of the first tree_limit trees
in an ensemble model.

• summarise_result (bool) – This should be set to True only when some of the columns
in X represent encoded dimensions of a categorical variable and one single shap value per
categorical variable is desired. Both cat_vars_start_idx and cat_vars_enc_dim should be
specified as detailed below to allow this.

• cat_vars_start_idx (Optional[Sequence[int]]) – The start indices of the categori-
cal variables.

• cat_vars_enc_dim (Optional[Sequence[int]]) – The length of the encoding dimen-
sion for each categorical variable.

Return type
Explanation

Returns
explanation – An Explanation object containing the shap values and prediction in the data
field, along with a meta field containing additional data. See usage at TreeSHAP examples
for details.

fit(background_data=None, summarise_background=False, n_background_samples=1000, **kwargs)
This function instantiates an explainer which can then be use to explain instances using the explain method.
If no background dataset is passed, the explainer uses the path-dependent feature perturbation algorithm
to explain the values. As such, only the model raw output can be explained and this should be reflected
by passing model_output='raw' when instantiating the explainer. If a background dataset is passed, the
interventional feature perturbation algorithm is used. Using this algorithm, probability outputs can also be
explained. Additionally, if the model_output='log_loss' option is passed to the explainer constructor,
then the model loss function can be explained by passing the labels as the y argument to the explain method.
A limited number of loss functions are supported, as detailed in the constructor documentation.

Parameters
• background_data (Union[ndarray, DataFrame, None]) – Data used to estimate feature

contributions and baseline values for force plots. The rows of the background data should
represent samples and the columns features.

• summarise_background (Union[bool, str]) – A large background dataset may impact
the runtime and memory footprint of the algorithm. By setting this argument to True, only
n_background_samples from the provided data are selected. If the categorical_names ar-
gument has been passed to the constructor, subsampling of the data is used. Otherwise,
shap.kmeans (a wrapper around sklearn.kmeans implementation) is used for selection.
If set to 'auto', a default of TREE_SHAP_BACKGROUND_WARNING_THRESHOLD
samples is selected.

13.1. alibi package 615

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://github.com/andosa/treeinterpreter
https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-019-0138-9/MediaObjects/42256_2019_138_MOESM1_ESM.pdf
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

• n_background_samples (int) – The number of samples to keep in the background
dataset if summarise_background=True.

Return type
TreeShap

reset_predictor(predictor)
Resets the predictor.

Parameters
predictor (Any) – New prediction.

Return type
None

alibi.explainers.plot_ale(exp, features='all', targets='all', n_cols=3, sharey='all', constant=False,
ax=None, line_kw=None, fig_kw=None)

Plot ALE curves on matplotlib axes.

Parameters
• exp – An Explanation object produced by a call to the alibi.explainers.ale.ALE.
explain() method.

• features – A list of features for which to plot the ALE curves or 'all' for all features. Can
be a mix of integers denoting feature index or strings denoting entries in exp.feature_names.
Defaults to 'all'.

• targets – A list of targets for which to plot the ALE curves or 'all' for all targets. Can
be a mix of integers denoting target index or strings denoting entries in exp.target_names.
Defaults to 'all'.

• n_cols – Number of columns to organize the resulting plot into.

• sharey – A parameter specifying whether the y-axis of the ALE curves should be on the
same scale for several features. Possible values are: 'all' | 'row' | None.

• constant – A parameter specifying whether the constant zeroth order effects should be
added to the ALE first order effects.

• ax – A matplotlib axes object or a numpy array of matplotlib axes to plot on.

• line_kw – Keyword arguments passed to the plt.plot function.

• fig_kw – Keyword arguments passed to the fig.set function.

Returns
An array of matplotlib axes with the resulting ALE plots.

alibi.explainers.plot_pd(exp, features='all', target=0, n_cols=3, n_ice=100, center=False, pd_limits=None,
levels=8, ax=None, sharey='all', pd_num_kw=None, ice_num_kw=None,
pd_cat_kw=None, ice_cat_kw=None, pd_num_num_kw=None,
pd_num_cat_kw=None, pd_cat_cat_kw=None, fig_kw=None)

Plot partial dependence curves on matplotlib axes.

Parameters
• exp – An Explanation object produced by a call to the alibi.explainers.
partial_dependence.PartialDependence.explain() method.

• features – A list of features entries in the exp.data[‘feature_names’] to plot the partial
dependence curves for, or 'all' to plot all the explained feature or tuples of features. This
includes tuples of features. For example, if exp.data['feature_names'] = ['temp',

616 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

'hum', ('temp', 'windspeed')] and we want to plot the partial dependence only for
the 'temp' and ('temp', 'windspeed'), then we would set features=[0, 2]. De-
faults to 'all'.

• target – The target name or index for which to plot the partial dependence (PD)
curves. Can be a mix of integers denoting target index or strings denoting entries in
exp.meta[‘params’][‘target_names’].

• n_cols – Number of columns to organize the resulting plot into.

• n_ice – Number of ICE plots to be displayed. Can be

– a string taking the value 'all' to display the ICE curves for every instance in the reference
dataset.

– an integer for which n_ice instances from the reference dataset will be sampled uniformly
at random to display their ICE curves.

– a list of integers, where each integer represents an index of an instance in the reference
dataset to display their ICE curves.

• center – Boolean flag to center the individual conditional expectation (ICE) curves. As
mentioned in Goldstein et al. (2014), the heterogeneity in the model can be difficult to discern
when the intercepts of the ICE curves cover a wide range. Centering the ICE curves removes
the level effects and helps to visualise the heterogeneous effect.

• pd_limits – Minimum and maximum y-limits for all the one-way PD plots. If None will
be automatically inferred.

• levels – Number of levels in the contour plot.

• ax – A matplotlib axes object or a numpy array of matplotlib axes to plot on.

• sharey – A parameter specifying whether the y-axis of the PD and ICE curves should be on
the same scale for several features. Possible values are: 'all' | 'row' | None.

• pd_num_kw – Keyword arguments passed to the matplotlib.pyplot.plot function when plot-
ting the PD for a numerical feature.

• ice_num_kw – Keyword arguments passed to the matplotlib.pyplot.plot function when plot-
ting the ICE for a numerical feature.

• pd_cat_kw – Keyword arguments passed to the matplotlib.pyplot.plot function when plot-
ting the PD for a categorical feature.

• ice_cat_kw – Keyword arguments passed to the matplotlib.pyplot.plot function when plot-
ting the ICE for a categorical feature.

• pd_num_num_kw – Keyword arguments passed to the matplotlib.pyplot.contourf function
when plotting the PD for two numerical features.

• pd_num_cat_kw – Keyword arguments passed to the matplotlib.pyplot.plot function when
plotting the PD for a numerical and a categorical feature.

• pd_cat_cat_kw – Keyword arguments passed to the alibi.utils.visualization.
heatmap() functon when plotting the PD for two categorical features.

• fig_kw – Keyword arguments passed to the matplotlib.figure.set function.

Returns
An array of plt.Axes with the resulting partial dependence plots.

13.1. alibi package 617

https://arxiv.org/abs/1309.6392
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.contourf.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/figure_api.html

alibi Documentation, Release 0.9.5dev

alibi.explainers.plot_pd_variance(exp, features='all', targets='all', summarise=True, n_cols=3, sort=True,
top_k=None, plot_limits=None, ax=None, sharey='all', bar_kw=None,
line_kw=None, fig_kw=None)

Plot feature importance and feature interaction based on partial dependence curves on matplotlib axes.

Parameters
• exp (Explanation) – An Explanation object produced by a call to the alibi.
explainers.pd_variance.PartialDependenceVariance.explain() method.

• features (Union[List[int], Literal[‘all’]]) – A list of features entries pro-
vided in feature_names argument to the alibi.explainers.pd_variance.
PartialDependenceVariance.explain() method, or 'all' to plot all the explained
features. For example, if feature_names = ['temp', 'hum', 'windspeed'] and
we want to plot the values only for the 'temp' and 'windspeed', then we would set
features=[0, 2]. Defaults to 'all'.

• targets (Union[List[Union[int, str]], Literal[‘all’]]) – A target name/index, or
a list of target names/indices, for which to plot the feature importance/interaction, or
'all'. Can be a mix of integers denoting target index or strings denoting entries in
exp.meta[‘params’][‘target_names’]. By default 'all' to plot the importance for all fea-
tures or to plot all the feature interactions.

• summarise (bool) – Whether to plot only the summary of the feature importance/interaction
as a bar plot, or plot comprehensive exposition including partial dependence plots and con-
ditional importance plots.

• n_cols (int) – Number of columns to organize the resulting plot into.

• sort (bool) – Boolean flag whether to sort the values in descending order.

• top_k (Optional[int]) – Number of top k values to be displayed if the sort=True. If not
provided, then all values will be displayed.

• plot_limits (Optional[Tuple[float, float]]) – Minimum and maximum y-limits for
all the line plots. If None will be automatically inferred.

• ax (Union[Axes, ndarray, None]) – A matplotlib axes object or a numpy array of matplotlib
axes to plot on.

• sharey (Optional[Literal[‘all’, ‘row’]]) – A parameter specifying whether the y-axis of
the PD and ICE curves should be on the same scale for several features. Possible values are:
'all' | 'row' | None.

• bar_kw (Optional[dict]) – Keyword arguments passed to the matplotlib.pyplot.barh func-
tion.

• line_kw (Optional[dict]) – Keyword arguments passed to the matplotlib.pyplot.plot
function.

• fig_kw (Optional[dict]) – Keyword arguments passed to the matplotlib.figure.set func-
tion.

Returns
plt.Axes with the summary/detailed exposition plot of the feature importance or feature interac-
tion.

alibi.explainers.plot_permutation_importance(exp, features='all', metric_names='all', n_cols=3,
sort=True, top_k=None, ax=None, bar_kw=None,
fig_kw=None)

Plot permutation feature importance on matplotlib axes.

618 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.barh.html
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/figure_api.html

alibi Documentation, Release 0.9.5dev

Parameters
• exp – An Explanation object produced by a call to the alibi.explainers.
permutation_importance.PermutationImportance.explain() method.

• features – A list of feature entries provided in feature_names argument to the alibi.
explainers.permutation_importance.PermutationImportance.explain()
method, or 'all' to plot all the explained features. For example, consider that the
feature_names = ['temp', 'hum', 'windspeed', 'season']. If we set fea-
tures=None in the explain method, meaning that all the feature were explained, and
we want to plot only the values for the 'temp' and 'windspeed', then we would set
features=[0, 2]. Otherwise, if we set features=[1, 2, 3] in the explain method, meaning
that we explained ['hum', 'windspeed', 'season'], and we want to plot the values
only for ['windspeed', 'season'], then we would set features=[1, 2] (i.e., their
index in the features list passed to the explain method). Defaults to 'all'.

• metric_names – A list of metric entries in the exp.data[‘metrics’] to plot the permutation
feature importance for, or 'all' to plot the permutation feature importance for all metrics
(i.e., loss and score functions). The ordering is given by the concatenation of the loss metrics
followed by the score metrics.

• n_cols – Number of columns to organize the resulting plot into.

• sort – Boolean flag whether to sort the values in descending order.

• top_k – Number of top k values to be displayed if the sort=True. If not provided, then all
values will be displayed.

• ax – A matplotlib axes object or a numpy array of matplotlib axes to plot on.

• bar_kw – Keyword arguments passed to the matplotlib.pyplot.barh function.

• fig_kw – Keyword arguments passed to the matplotlib.figure.set function.

Returns
plt.Axes with the feature importance plot.

Subpackages

alibi.explainers.anchors package

Submodules

alibi.explainers.anchors.anchor_base module

class alibi.explainers.anchors.anchor_base.AnchorBaseBeam(samplers, **kwargs)
Bases: object

__init__(samplers, **kwargs)

Parameters
samplers (List[Callable]) – Objects that can be called with args (result, n_samples) tuple
to draw samples.

anchor_beam(delta=0.05, epsilon=0.1, desired_confidence=1.0, beam_size=1, epsilon_stop=0.05,
min_samples_start=100, max_anchor_size=None, stop_on_first=False, batch_size=100,
coverage_samples=10000, verbose=False, verbose_every=1, **kwargs)

13.1. alibi package 619

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.barh.html
https://matplotlib.org/stable/api/figure_api.html
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Callable

alibi Documentation, Release 0.9.5dev

Uses the KL-LUCB algorithm (Kaufmann and Kalyanakrishnan, 2013) together with additional sampling to
search feature sets (anchors) that guarantee the prediction made by a classifier model. The search is greedy
if beam_size=1. Otherwise, at each of the max_anchor_size steps, beam_size solutions are explored. By
construction, solutions found have high precision (defined as the expected of number of times the classifier
makes the same prediction when queried with the feature subset combined with arbitrary samples drawn
from a noise distribution). The algorithm maximises the coverage of the solution found - the frequency of
occurrence of records containing the feature subset in set of samples.

Parameters
• delta (float) – Used to compute beta.

• epsilon (float) – Precision bound tolerance for convergence.

• desired_confidence (float) – Desired level of precision (tau in paper).

• beam_size (int) – Beam width.

• epsilon_stop (float) – Confidence bound margin around desired precision.

• min_samples_start (int) – Min number of initial samples.

• max_anchor_size (Optional[int]) – Max number of features in result.

• stop_on_first (bool) – Stop on first valid result found.

• coverage_samples (int) – Number of samples from which to build a coverage set.

• batch_size (int) – Number of samples used for an arm evaluation.

• verbose (bool) – Whether to print intermediate LUCB & anchor selection output.

• verbose_every (int) – Print intermediate output every verbose_every steps.

Return type
dict

Returns
Explanation dictionary containing anchors with metadata like coverage and precision and
examples.

static compute_beta(n_features, t, delta)

Parameters
• n_features (int) – Number of candidate anchors.

• t (int) – Iteration number.

• delta (float) – Confidence budget, candidate anchors have close to optimal precisions
with prob. 1 - delta.

Return type
float

Returns
Level used to update upper and lower precision bounds.

static dlow_bernoulli(p, level, n_iter=17)
Update lower precision bound for a candidate anchors dependent on the KL-divergence.

Parameters
• p (ndarray) – Precision of candidate anchors.

620 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://homes.cs.washington.edu/~marcotcr/aaai18.pdf
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

• level (ndarray) – beta / nb of samples for each result.

• n_iter (int) – Number of iterations during lower bound update.

Return type
ndarray

Returns
Updated lower precision bounds array.

draw_samples(anchors, batch_size)

Parameters
• anchors (list) – Anchors on which samples are conditioned.

• batch_size (int) – The number of samples drawn for each result.

Return type
Tuple[tuple, tuple]

Returns
A tuple of positive samples (for which prediction matches desired label) and a tuple of total
number of samples drawn.

static dup_bernoulli(p, level, n_iter=17)
Update upper precision bound for a candidate anchors dependent on the KL-divergence.

Parameters
• p (ndarray) – Precision of candidate anchors.

• level (ndarray) – beta / nb of samples for each result.

• n_iter (int) – Number of iterations during lower bound update.

Return type
ndarray

Returns
Updated upper precision bounds array.

get_anchor_metadata(features, success, batch_size=100)
Given the features contained in a result, it retrieves metadata such as the precision and coverage of the result
and partial anchors and examples where the result/partial anchors apply and yield the same prediction as
on the instance to be explained (covered_true) or a different prediction (covered_false).

Parameters
• features (tuple) – Sorted indices of features in result.

• success – Indicates whether an anchor satisfying precision threshold was met or not.

• batch_size (int) – Number of samples among which positive and negative examples for
partial anchors are selected if partial anchors have not already been explicitly sampled.

Return type
dict

Returns
Anchor dictionary with result features and additional metadata.

get_init_stats(anchors, coverages=False)
Finds the number of samples already drawn for each result in anchors, their comparisons with the instance
to be explained and, optionally, coverage.

13.1. alibi package 621

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

alibi Documentation, Release 0.9.5dev

Parameters
• anchors (list) – Candidate anchors.

• coverages – If True, the statistics returned contain the coverage of the specified anchors.

Return type
dict

Returns
Dictionary with lists containing nb of samples used and where sample predictions equal the
desired label.

kllucb(anchors, init_stats, epsilon, delta, batch_size, top_n, verbose=False, verbose_every=1)
Implements the KL-LUCB algorithm (Kaufmann and Kalyanakrishnan, 2013).

Parameters
• anchors (list) – A list of anchors from which two critical anchors are selected (see

Kaufmann and Kalyanakrishnan, 2013).

• init_stats (dict) – Dictionary with lists containing nb of samples used and where sam-
ple predictions equal the desired label.

• epsilon (float) – Precision bound tolerance for convergence.

• delta (float) – Used to compute beta.

• batch_size (int) – Number of samples.

• top_n (int) – Min of beam width size or number of candidate anchors.

• verbose (bool) – Whether to print intermediate output.

• verbose_every (int) – Whether to print intermediate output every verbose_every steps.

Return type
ndarray

Returns
Indices of best result options. Number of indices equals min of beam width or nb of candidate
anchors.

propose_anchors(previous_best)

Parameters
previous_best (list) – List with tuples of result candidates.

Return type
list

Returns
List with tuples of candidate anchors with additional metadata.

select_critical_arms(means, ub, lb, n_samples, delta, top_n, t)
Determines a set of two anchors by updating the upper bound for low empirical precision anchors and the
lower bound for anchors with high empirical precision.

Parameters
• means (ndarray) – Empirical mean result precisions.

• ub (ndarray) – Upper bound on result precisions.

• lb (ndarray) – Lower bound on result precisions.

622 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

alibi Documentation, Release 0.9.5dev

• n_samples (ndarray) – The number of samples drawn for each candidate result.

• delta (float) – Confidence budget, candidate anchors have close to optimal precisions
with prob. 1 - delta.

• top_n (int) – Number of arms to be selected.

• t (int) – Iteration number.

Returns
Upper and lower precision bound indices.

static to_sample(means, ubs, lbs, desired_confidence, epsilon_stop)
Given an array of mean result precisions and their upper and lower bounds, determines for which anchors
more samples need to be drawn in order to estimate the anchors precision with desired_confidence and
error tolerance.

Parameters
• means (ndarray) – Mean precisions (each element represents a different result).

• ubs (ndarray) – Precisions’ upper bounds (each element represents a different result).

• lbs (ndarray) – Precisions’ lower bounds (each element represents a different result).

• desired_confidence (float) – Desired level of confidence for precision estimation.

• epsilon_stop (float) – Tolerance around desired precision.

Returns
Boolean array indicating whether more samples are to be drawn for that particular result.

update_state(covered_true, covered_false, labels, samples, anchor)
Updates the explainer state (see alibi.explainers.anchors.anchor_base.AnchorBaseBeam.
__init__() for full state definition).

Parameters
• covered_true (ndarray) – Examples where the result applies and the prediction is the

same as on the instance to be explained.

• covered_false (ndarray) – Examples where the result applies and the prediction is the
different to the instance to be explained.

• samples (Tuple[ndarray, float]) – A tuple containing discretized data, coverage and
the result sampled.

• labels (ndarray) – An array indicating whether the prediction on the sample matches
the label of the instance to be explained.

• anchor (tuple) – The result to be updated.

Return type
Tuple[int, int]

Returns
A tuple containing the number of instances equals desired label of observation to be explained
the total number of instances sampled, and the result that was sampled.

13.1. alibi package 623

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

alibi.explainers.anchors.anchor_explanation module

class alibi.explainers.anchors.anchor_explanation.AnchorExplanation(exp_type, exp_map)
Bases: object

__init__(exp_type, exp_map)
Class used to unpack the anchors and metadata from the explainer dictionary.

Parameters
• exp_type (str) – Type of explainer: tabular, text or image.

• exp_map (dict) – Dictionary with the anchors and explainer metadata for an observation.

coverage(partial_index=None)

Parameters
partial_index (Optional[int]) – Get the result coverage until a certain index. For exam-
ple, if the result has precisions [0.1, 0.5, 0.95] and partial_index=1, this will return
0.5.

Return type
float

Returns
coverage – Anchor coverage.

examples(only_different_prediction=False, only_same_prediction=False, partial_index=None)

Parameters
• only_different_prediction (bool) – If True, will only return examples where the

result makes a different prediction than the original model.

• only_same_prediction (bool) – If True, will only return examples where the result
makes the same prediction than the original model.

• partial_index (Optional[int]) – Get the examples from the partial result until a certain
index.

Return type
Union[list, ndarray]

Returns
Examples covered by result.

features(partial_index=None)

Parameters
partial_index (Optional[int]) – Get the result until a certain index. For example, if the
result uses segment_labels=(1, 2, 3) and partial_index=1, this will return [1, 2].

Return type
list

Returns
segment_labels – Features used in the result conditions.

names(partial_index=None)

Parameters
partial_index (Optional[int]) – Get the result until a certain index. For example, if the
result is (A=1, B=2, C=2) and partial_index=1, this will return ["A=1", "B=2"].

624 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

Return type
list

Returns
names – Names with the result conditions.

precision(partial_index=None)

Parameters
partial_index (Optional[int]) – Get the result precision until a certain index. For exam-
ple, if the result has precisions [0.1, 0.5, 0.95] and partial_index=1, this will return
0.5.

Return type
float

Returns
precision – Anchor precision.

alibi.explainers.anchors.anchor_image module

class alibi.explainers.anchors.anchor_image.AnchorImage(predictor, image_shape, dtype=<class
'numpy.float32'>, segmentation_fn='slic',
segmentation_kwargs=None,
images_background=None, seed=None)

Bases: Explainer

__init__(predictor, image_shape, dtype=<class 'numpy.float32'>, segmentation_fn='slic',
segmentation_kwargs=None, images_background=None, seed=None)

Initialize anchor image explainer.

Parameters
• predictor (Callable[[ndarray], ndarray]) – A callable that takes a numpy array of N

data points as inputs and returns N outputs.

• image_shape (tuple) – Shape of the image to be explained. The channel axis is expected
to be last.

• dtype (Type[generic]) – A numpy scalar type that corresponds to the type of input array
expected by predictor. This may be used to construct arrays of the given type to be passed
through the predictor. For most use cases this argument should have no effect, but it is
exposed for use with predictors that would break when called with an array of unsupported
type.

• segmentation_fn (Any) – Any of the built in segmentation function strings:
'felzenszwalb', 'slic' or 'quickshift' or a custom segmentation function
(callable) which returns an image mask with labels for each superpixel. The segmen-
tation function is expected to return a segmentation mask containing all integer val-
ues from 0 to K-1, where K is the number of image segments (superpixels). See http:
//scikit-image.org/docs/dev/api/skimage.segmentation.html for more info.

• segmentation_kwargs (Optional[dict]) – Keyword arguments for the built in segmen-
tation functions.

• images_background (Optional[ndarray]) – Images to overlay superpixels on.

• seed (Optional[int]) – If set, ensures different runs with the same input will yield same
explanation.

13.1. alibi package 625

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Any
http://scikit-image.org/docs/dev/api/skimage.segmentation.html
http://scikit-image.org/docs/dev/api/skimage.segmentation.html
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

Raises
• alibi.exceptions.PredictorCallError – If calling predictor fails at runtime.

• alibi.exceptions.PredictorReturnTypeError – If the return type of predictor is
not np.ndarray.

explain(image, p_sample=0.5, threshold=0.95, delta=0.1, tau=0.15, batch_size=100,
coverage_samples=10000, beam_size=1, stop_on_first=False, max_anchor_size=None,
min_samples_start=100, n_covered_ex=10, binary_cache_size=10000, cache_margin=1000,
verbose=False, verbose_every=1, **kwargs)

Explain instance and return anchor with metadata.

Parameters
• image (ndarray) – Image to be explained.

• p_sample (float) – The probability of simulating the absence of a superpixel. If the
images_background is not provided, the absent superpixels will be replaced by the average
value of their constituent pixels. Otherwise, the synthetic instances are created by fixing the
present superpixels and superimposing another image from the images_background over
the rest of the absent superpixels.

• threshold (float) – Minimum anchor precision threshold. The algorithm tries to find
an anchor that maximizes the coverage under precision constraint. The precision constraint
is formally defined as 𝑃 (𝑝𝑟𝑒𝑐(𝐴) ≥ 𝑡) ≥ 1 − 𝛿, where 𝐴 is an anchor, 𝑡 is the threshold
parameter, 𝛿 is the delta parameter, and 𝑝𝑟𝑒𝑐(·) denotes the precision of an anchor. In other
words, we are seeking for an anchor having its precision greater or equal than the given
threshold with a confidence of (1 - delta). A higher value guarantees that the anchors are
faithful to the model, but also leads to more computation time. Note that there are cases in
which the precision constraint cannot be satisfied due to the quantile-based discretisation
of the numerical features. If that is the case, the best (i.e. highest coverage) non-eligible
anchor is returned.

• delta (float) – Significance threshold. 1 - delta represents the confidence threshold for
the anchor precision (see threshold) and the selection of the best anchor candidate in each
iteration (see tau).

• tau (float) – Multi-armed bandit parameter used to select candidate anchors in each
iteration. The multi-armed bandit algorithm tries to find within a tolerance tau the most
promising (i.e. according to the precision) beam_size candidate anchor(s) from a list of
proposed anchors. Formally, when the beam_size=1, the multi-armed bandit algorithm
seeks to find an anchor 𝐴 such that 𝑃 (𝑝𝑟𝑒𝑐(𝐴) ≥ 𝑝𝑟𝑒𝑐(𝐴⋆) − 𝜏) ≥ 1 − 𝛿, where 𝐴⋆ is
the anchor with the highest true precision (which we don’t know), 𝜏 is the tau parameter,
𝛿 is the delta parameter, and 𝑝𝑟𝑒𝑐(·) denotes the precision of an anchor. In other words,
in each iteration, the algorithm returns with a probability of at least 1 - delta an anchor
𝐴 with a precision within an error tolerance of tau from the precision of the highest true
precision anchor 𝐴⋆. A bigger value for tau means faster convergence but also looser
anchor conditions.

• batch_size (int) – Batch size used for sampling. The Anchor algorithm will query the
black-box model in batches of size batch_size. A larger batch_size gives more confidence
in the anchor, again at the expense of computation time since it involves more model pre-
diction calls.

• coverage_samples (int) – Number of samples used to estimate coverage from during
result search.

• beam_size (int) – Number of candidate anchors selected by the multi-armed bandit al-
gorithm in each iteration from a list of proposed anchors. A bigger beam width can lead to

626 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

a better overall anchor (i.e. prevents the algorithm of getting stuck in a local maximum) at
the expense of more computation time.

• stop_on_first (bool) – If True, the beam search algorithm will return the first anchor
that has satisfies the probability constraint.

• max_anchor_size (Optional[int]) – Maximum number of features in result.

• min_samples_start (int) – Min number of initial samples.

• n_covered_ex (int) – How many examples where anchors apply to store for each anchor
sampled during search (both examples where prediction on samples agrees/disagrees with
desired_label are stored).

• binary_cache_size (int) – The result search pre-allocates binary_cache_size batches
for storing the binary arrays returned during sampling.

• cache_margin (int) – When only max(cache_margin, batch_size) positions in the
binary cache remain empty, a new cache of the same size is pre-allocated to continue buffer-
ing samples.

• verbose (bool) – Display updates during the anchor search iterations.

• verbose_every (int) – Frequency of displayed iterations during anchor search process.

Return type
Explanation

Returns
explanation – Explanation object containing the anchor explaining the instance with addi-
tional metadata as attributes. See usage at AnchorImage examples for details.

generate_superpixels(image)
Generates superpixels from (i.e., segments) an image.

Parameters
image (ndarray) – A grayscale or RGB image.

Return type
ndarray

Returns
A [H, W] array of integers. Each integer is a segment (superpixel) label.

overlay_mask(image, segments, mask_features, scale=(0, 255))
Overlay image with mask described by the mask features.

Parameters
• image (ndarray) – Image to be explained.

• segments (ndarray) – Superpixels.

• mask_features (list) – List with superpixels present in mask.

• scale (tuple) – Pixel scale for masked image.

Return type
ndarray

Returns
masked_image – Image overlaid with mask.

13.1. alibi package 627

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.seldon.io/projects/alibi/en/stable/methods/Anchors.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

alibi Documentation, Release 0.9.5dev

reset_predictor(predictor)
Resets the predictor function.

Parameters
predictor (Callable) – New predictor function.

Return type
None

class alibi.explainers.anchors.anchor_image.AnchorImageSampler(predictor, segmentation_fn,
custom_segmentation, image,
images_background=None,
p_sample=0.5,
n_covered_ex=10)

Bases: object

__call__(anchor, num_samples, compute_labels=True)
Sample images from a perturbation distribution by masking randomly chosen superpixels from the original
image and replacing them with pixel values from superimposed images if background images are provided
to the explainer. Otherwise, the superpixels from the original image are replaced with their average values.

Parameters
• anchor (Tuple[int, tuple]) –

– int - order of anchor in the batch.

– tuple - features (= superpixels) present in the proposed anchor.

• num_samples (int) – Number of samples used.

• compute_labels (bool) – If True, an array of comparisons between predictions on per-
turbed samples and instance to be explained is returned.

Return type
List[Union[ndarray, float, int]]

Returns
• If compute_labels=True, a list containing the following is returned –

– covered_true - perturbed examples where the anchor applies and the model prediction
on perturbed is the same as the instance prediction.

– covered_false - perturbed examples where the anchor applies and the model prediction
on pertrurbed sample is NOT the same as the instance prediction.

– labels - num_samples ints indicating whether the prediction on the perturbed sample
matches (1) the label of the instance to be explained or not (0).

– data - Matrix with 1s and 0s indicating whether the values in a superpixel will remain
unchanged (1) or will be perturbed (0), for each sample.

– -1.0 - indicates exact coverage is not computed for this algorithm.

– anchor[0] - position of anchor in the batch request

• Otherwise, a list containing the data matrix only is returned.

__init__(predictor, segmentation_fn, custom_segmentation, image, images_background=None,
p_sample=0.5, n_covered_ex=10)

Initialize anchor image sampler.

Parameters

628 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

• predictor (Callable) – A callable that takes a numpy array of N data points as inputs
and returns N outputs.

• segmentation_fn (Callable) – Function used to segment the images. The segmentation
function is expected to return a segmentation mask containing all integer values from 0 to
K-1, where K is the number of image segments (superpixels).

• image (ndarray) – Image to be explained.

• images_background (Optional[ndarray]) – Images to overlay superpixels on.

• p_sample (float) – Probability for a pixel to be represented by the average value of its
superpixel.

• n_covered_ex (int) – How many examples where anchors apply to store for each anchor
sampled during search (both examples where prediction on samples agrees/disagrees with
desired_label are stored).

compare_labels(samples)
Compute the agreement between a classifier prediction on an instance to be explained and the prediction
on a set of samples which have a subset of perturbed superpixels.

Parameters
samples (ndarray) – Samples whose labels are to be compared with the instance label.

Return type
ndarray

Returns
A boolean array indicating whether the prediction was the same as the instance label.

generate_superpixels(image)
Generates superpixels from (i.e., segments) an image.

Parameters
image (ndarray) – A grayscale or RGB image.

Return type
ndarray

Returns
A [H, W] array of integers. Each integer is a segment (superpixel) label.

perturbation(anchor, num_samples)
Perturbs an image by altering the values of selected superpixels. If a dataset of image backgrounds is
provided to the explainer, then the superpixels are replaced with the equivalent superpixels from the back-
ground image. Otherwise, the superpixels are replaced by their average value.

Parameters
• anchor (tuple) – Contains the superpixels whose values are not going to be perturbed.

• num_samples (int) – Number of perturbed samples to be returned.

Return type
Tuple[ndarray, ndarray]

Returns
• imgs – A [num_samples, H, W, C] array of perturbed images.

• segments_mask – A [num_samples, M] binary mask, where M is the number of image
superpixels segments. 1 indicates the values in that particular superpixels are not perturbed.

13.1. alibi package 629

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple

alibi Documentation, Release 0.9.5dev

alibi.explainers.anchors.anchor_image.scale_image(image, scale=(0, 255))
Scales an image in a specified range.

Parameters
• image (ndarray) – Image to be scale.

• scale (tuple) – The scaling interval.

Return type
ndarray

Returns
img_scaled – Scaled image.

alibi.explainers.anchors.anchor_tabular module

class alibi.explainers.anchors.anchor_tabular.AnchorTabular(predictor, feature_names,
categorical_names=None,
dtype=<class 'numpy.float32'>,
ohe=False, seed=None)

Bases: Explainer, FitMixin

__init__(predictor, feature_names, categorical_names=None, dtype=<class 'numpy.float32'>, ohe=False,
seed=None)

Parameters
• predictor (Callable[[ndarray], ndarray]) – A callable that takes a numpy array of N

data points as inputs and returns N outputs.

• feature_names (List[str]) – List with feature names.

• categorical_names (Optional[Dict[int, List[str]]]) – Dictionary where keys are
feature columns and values are the categories for the feature.

• dtype (Type[generic]) – A numpy scalar type that corresponds to the type of input array
expected by predictor. This may be used to construct arrays of the given type to be passed
through the predictor. For most use cases this argument should have no effect, but it is
exposed for use with predictors that would break when called with an array of unsupported
type.

• ohe (bool) – Whether the categorical variables are one-hot encoded (OHE) or not. If not
OHE, they are assumed to have ordinal encodings.

• seed (Optional[int]) – Used to set the random number generator for repeatability pur-
poses.

Raises
• alibi.exceptions.PredictorCallError – If calling predictor fails at runtime.

• alibi.exceptions.PredictorReturnTypeError – If the return type of predictor is
not np.ndarray.

add_names_to_exp(explanation)
Add feature names to explanation dictionary.

Parameters
explanation (dict) – Dict with anchors and additional metadata.

630 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

alibi Documentation, Release 0.9.5dev

Return type
None

explain(X, threshold=0.95, delta=0.1, tau=0.15, batch_size=100, coverage_samples=10000, beam_size=1,
stop_on_first=False, max_anchor_size=None, min_samples_start=100, n_covered_ex=10,
binary_cache_size=10000, cache_margin=1000, verbose=False, verbose_every=1, **kwargs)

Explain prediction made by classifier on instance X.

Parameters
• X (ndarray) – Instance to be explained.

• threshold (float) – Minimum anchor precision threshold. The algorithm tries to find
an anchor that maximizes the coverage under precision constraint. The precision constraint
is formally defined as 𝑃 (𝑝𝑟𝑒𝑐(𝐴) ≥ 𝑡) ≥ 1 − 𝛿, where 𝐴 is an anchor, 𝑡 is the threshold
parameter, 𝛿 is the delta parameter, and 𝑝𝑟𝑒𝑐(·) denotes the precision of an anchor. In other
words, we are seeking for an anchor having its precision greater or equal than the given
threshold with a confidence of (1 - delta). A higher value guarantees that the anchors are
faithful to the model, but also leads to more computation time. Note that there are cases in
which the precision constraint cannot be satisfied due to the quantile-based discretisation
of the numerical features. If that is the case, the best (i.e. highest coverage) non-eligible
anchor is returned.

• delta (float) – Significance threshold. 1 - delta represents the confidence threshold for
the anchor precision (see threshold) and the selection of the best anchor candidate in each
iteration (see tau).

• tau (float) – Multi-armed bandit parameter used to select candidate anchors in each
iteration. The multi-armed bandit algorithm tries to find within a tolerance tau the most
promising (i.e. according to the precision) beam_size candidate anchor(s) from a list of
proposed anchors. Formally, when the beam_size=1, the multi-armed bandit algorithm
seeks to find an anchor 𝐴 such that 𝑃 (𝑝𝑟𝑒𝑐(𝐴) ≥ 𝑝𝑟𝑒𝑐(𝐴⋆) − 𝜏) ≥ 1 − 𝛿, where 𝐴⋆ is
the anchor with the highest true precision (which we don’t know), 𝜏 is the tau parameter,
𝛿 is the delta parameter, and 𝑝𝑟𝑒𝑐(·) denotes the precision of an anchor. In other words,
in each iteration, the algorithm returns with a probability of at least 1 - delta an anchor
𝐴 with a precision within an error tolerance of tau from the precision of the highest true
precision anchor 𝐴⋆. A bigger value for tau means faster convergence but also looser
anchor conditions.

• batch_size (int) – Batch size used for sampling. The Anchor algorithm will query the
black-box model in batches of size batch_size. A larger batch_size gives more confidence
in the anchor, again at the expense of computation time since it involves more model pre-
diction calls.

• coverage_samples (int) – Number of samples used to estimate coverage from during
result search.

• beam_size (int) – Number of candidate anchors selected by the multi-armed bandit al-
gorithm in each iteration from a list of proposed anchors. A bigger beam width can lead to
a better overall anchor (i.e. prevents the algorithm of getting stuck in a local maximum) at
the expense of more computation time.

• stop_on_first (bool) – If True, the beam search algorithm will return the first anchor
that has satisfies the probability constraint.

• max_anchor_size (Optional[int]) – Maximum number of features in result.

• min_samples_start (int) – Min number of initial samples.

13.1. alibi package 631

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

• n_covered_ex (int) – How many examples where anchors apply to store for each anchor
sampled during search (both examples where prediction on samples agrees/disagrees with
desired_label are stored).

• binary_cache_size (int) – The result search pre-allocates binary_cache_size batches
for storing the binary arrays returned during sampling.

• cache_margin (int) – When only max(cache_margin, batch_size) positions in the
binary cache remain empty, a new cache of the same size is pre-allocated to continue buffer-
ing samples.

• verbose (bool) – Display updates during the anchor search iterations.

• verbose_every (int) – Frequency of displayed iterations during anchor search process.

Return type
Explanation

Returns
explanation – Explanation object containing the result explaining the instance with additional
metadata as attributes. See usage at AnchorTabular examples for details.

Raises
alibi.exceptions.NotFittedError – If fit has not been called prior to calling explain.

fit(train_data, disc_perc=(25, 50, 75), **kwargs)
Fit discretizer to train data to bin numerical features into ordered bins and compute statistics for numerical
features. Create a mapping between the bin numbers of each discretised numerical feature and the row id
in the training set where it occurs.

Parameters
• train_data (ndarray) – Representative sample from the training data.

• disc_perc (Tuple[Union[int, float], ...]) – List with percentiles (int) used for dis-
cretization.

Return type
AnchorTabular

instance_label: int

The label of the instance to be explained.

meta: dict

Object metadata.

property predictor: Callable | None

Return type
Optional[Callable]

reset_predictor(predictor)
Resets the predictor function.

Parameters
predictor (Callable) – New predictor function.

Return type
None

samplers: list

632 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.seldon.io/projects/alibi/en/stable/methods/Anchors.html
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list

alibi Documentation, Release 0.9.5dev

class alibi.explainers.anchors.anchor_tabular.TabularSampler(predictor, disc_perc,
numerical_features,
categorical_features, feature_names,
feature_values, n_covered_ex=10,
seed=None)

Bases: object

A sampler that uses an underlying training set to draw records that have a subset of features with values specified
in an instance to be explained, X.

__call__(anchor, num_samples, compute_labels=True)
Obtain perturbed records by drawing samples from training data that contain the categorical labels and
discretized numerical features and replacing the remainder of the record with arbitrary values.

Parameters
• anchor (Tuple[int, tuple]) – The integer represents the order of the result in a request

array. The tuple contains encoded feature indices.

• num_samples (int) – Number of samples used when sampling from training set.

• compute_labels – If True, an array of comparisons between predictions on perturbed
samples and instance to be explained is returned.

Return type
Union[List[Union[ndarray, float, int]], List[ndarray]]

Returns
• If compute_labels=True, a list containing the following is returned –

– covered_true - perturbed examples where the anchor applies and the model prediction
on perturbation is the same as the instance prediction.

– covered_false - perturbed examples where the anchor applies and the model prediction
is NOT the same as the instance prediction.

– labels - num_samples ints indicating whether the prediction on the perturbed sample
matches (1) the label of the instance to be explained or not (0).

– data - Sampled data where ordinal features are binned (1 if in bin, 0 otherwise).

– coverage - the coverage of the anchor.

– anchor[0] - position of anchor in the batch request.

• Otherwise, a list containing the data matrix only is returned.

__init__(predictor, disc_perc, numerical_features, categorical_features, feature_names, feature_values,
n_covered_ex=10, seed=None)

Parameters
• predictor (Callable) – A callable that takes a tensor of N data points as inputs and

returns N outputs.

• disc_perc (Tuple[Union[int, float], ...]) – Percentiles used for numerical feature
discretisation.

• numerical_features (List[int]) – Numerical features column IDs.

• categorical_features (List[int]) – Categorical features column IDs.

• feature_names (list) – Feature names.

13.1. alibi package 633

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

alibi Documentation, Release 0.9.5dev

• feature_values (dict) – Key: categorical feature column ID, value: values for the fea-
ture.

• n_covered_ex (int) – For each result, a number of samples where the prediction
agrees/disagrees with the prediction on instance to be explained are stored.

• seed (Optional[int]) – If set, fixes the random number sequence.

build_lookups(X)
An encoding of the feature IDs is created by assigning each bin of a discretized numerical variable and each
categorical variable a unique index. For a dataset containing, e.g., a numerical variable with 5 bins and 3
categorical variables, indices 0 - 4 represent bins of the numerical variable whereas indices 5, 6, 7 represent
the encoded indices of the categorical variables (but see note for caviats). The encoding is necessary so
that the different ranges of the numerical variable can be sampled during result construction. Note that the
encoded indices represent the predicates used during the anchor construction process (i.e., and anchor is a
collection of encoded indices.

Parameters
X (ndarray) – Instance to be explained.

Return type
List[Dict]

Returns
A list containing three dictionaries, whose keys are encoded feature IDs –

• cat_lookup - maps categorical variables to their value in X.

• ord_lookup - maps discretized numerical variables to the bins they can be sampled from
given X.

• enc2feat_idx - maps the encoded IDs to the original (training set) feature column IDs.

Notes

Each continuous variable has n_bins - 1 corresponding entries in ord_lookup.

compare_labels(samples)
Compute the agreement between a classifier prediction on an instance to be explained and the prediction
on a set of samples which have a subset of features fixed to specific values.

Parameters
samples (ndarray) – Samples whose labels are to be compared with the instance label.

Return type
ndarray

Returns
An array of integers indicating whether the prediction was the same as the instance label.

deferred_init(train_data, d_train_data)
Initialise the tabular sampler object with data, discretizer, feature statistics and build an index from feature
values and bins to database rows for each feature.

Parameters
• train_data (Union[ndarray, Any]) – Data from which samples are drawn. Can be a

numpy array or a ray future.

• d_train_data (Union[ndarray, Any]) – Discretized version for training data. Can be a
numpy array or a ray future.

634 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Any

alibi Documentation, Release 0.9.5dev

Return type
Any

Returns
An initialised sampler.

get_features_index(anchor)
Given an anchor, this function finds the row indices in the training set where the feature has the same value
as the feature in the instance to be explained (for ordinal variables, the row indices are those of rows which
contain records with feature values in the same bin). The algorithm uses both the feature encoded ids in
anchor and the feature ids in the input data set. The two are mapped by self.enc2feat_idx.

Parameters
anchor (tuple) – The anchor for which the training set row indices are to be retrieved. The
ints represent encoded feature ids.

Return type
Tuple[Dict[int, Set[int]], Dict[int, Any], List[Tuple[int, str, Union[Any, int]]]]

Returns
• allowed_bins – Maps original feature ids to the bins that the feature should be sampled

from given the input anchor.

• allowed_rows – Maps original feature ids to the training set rows where these features have
the same value as the anchor.

• unk_feat_values – When a categorical variable with the specified value/discretized variable
in the specified bin is not found in the training set, a tuple is added to unk_feat_values to
indicate the original feature id, its type ('c' = categorical, 'o' = discretized continuous)
and the value/bin it should be sampled from.

handle_unk_features(allowed_bins, num_samples, samples, unk_feature_values)
Replaces unknown feature values with defaults. For categorical variables, the replacement value is the same
as the value of the unknown feature. For continuous variables, a value is sampled uniformly at random from
the feature range.

Parameters
• allowed_bins (Dict[int, Set[int]]) – See alibi.explainers.anchors.
anchor_tabular.TabularSampler.get_features_index() method.

• num_samples (int) – Number of replacement values.

• samples (ndarray) – Contains the samples whose values are to be replaced.

• unk_feature_values (List[Tuple[int, str, Union[Any, int]]]) – List of tuples
where: [0] is original feature id, [1] feature type, [2] if var is categorical, replacement
value, otherwise None

Return type
None

instance_label: int

The label of the instance to be explained.

perturbation(anchor, num_samples)
Implements functionality described in alibi.explainers.anchors.anchor_tabular.
TabularSampler.__call__().

Parameters
• anchor (tuple) – Each int is an encoded feature id.

13.1. alibi package 635

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

alibi Documentation, Release 0.9.5dev

• num_samples (int) – Number of samples.

Return type
Tuple[ndarray, ndarray, float]

Returns
• samples – Sampled data from training set.

• d_samples – Like samples, but continuous data is converted to ordinal discrete data
(binned).

• coverage – The coverage of the result in the training data.

replace_features(samples, allowed_rows, uniq_feat_ids, partial_anchor_rows, nb_partial_anchors,
num_samples)

The method creates perturbed samples by first replacing all partial anchors with partial anchors drawn from
the training set. Then remainder of the features are then replaced with random values drawn from the same
bin for discretized continuous features and same value for categorical features.

Parameters
• samples (ndarray) – Randomly drawn samples, where the anchor does not apply.

• allowed_rows (Dict[int, Any]) – Maps feature ids to the rows indices in training set
where the feature has same value as instance (cat.) or is in the same bin.

• uniq_feat_ids (List[int]) – Multiple encoded features in the anchor can map to the
same original feature id. Unique features in the anchor. This is the list of unique original
features id in the anchor.

• partial_anchor_rows (List[ndarray]) – The rows in the training set where each par-
tial anchor applies. Last entry is an array of row indices where the entire anchor applies.

• nb_partial_anchors (ndarray) – The number of training records which contain each
partial anchor.

• num_samples (int) – Number of perturbed samples to be returned.

Return type
None

set_instance_label(X)
Sets the sampler label. Necessary for setting the remote sampling process state during explain call.

Parameters
X (ndarray) – Instance to be explained.

Return type
None

set_n_covered(n_covered)
Set the number of examples to be saved for each result and partial result during search process. The same
number of examples is saved in the case where the predictions on perturbed samples and original instance
agree or disagree.

Parameters
n_covered (int) – Number of examples to be saved.

Return type
None

636 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

alibi.explainers.anchors.anchor_tabular_distributed module

class alibi.explainers.anchors.anchor_tabular_distributed.DistributedAnchorBaseBeam(samplers,
**kwargs)

Bases: AnchorBaseBeam

draw_samples(anchors, batch_size)
Distributes sampling requests among processes running sampling tasks.

Parameters
• anchors (list) – See alibi.explainers.anchors.anchor_base.
AnchorBaseBeam.draw_samples() implementation.

• batch_size (int) – See alibi.explainers.anchors.anchor_base.
AnchorBaseBeam.draw_samples() implementation.

Return type
Tuple[ndarray, ndarray]

Returns
See alibi.explainers.anchors.anchor_base.AnchorBaseBeam.draw_samples()
implementation.

class alibi.explainers.anchors.anchor_tabular_distributed.DistributedAnchorTabular(predictor,
fea-
ture_names,
categor-
i-
cal_names=None,
dtype=<class
'numpy.float32'>,
ohe=False,
seed=None)

Bases: AnchorTabular

explain(X, threshold=0.95, delta=0.1, tau=0.15, batch_size=100, coverage_samples=10000, beam_size=1,
stop_on_first=False, max_anchor_size=None, min_samples_start=1, n_covered_ex=10,
binary_cache_size=10000, cache_margin=1000, verbose=False, verbose_every=1, **kwargs)

Explains the prediction made by a classifier on instance X. Sampling is done in parallel over a number of
cores specified in kwargs[‘ncpu’].

Parameters
• X (ndarray) – See alibi.explainers.anchors.anchor_tabular.AnchorTabular.
explain().

• threshold (float) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• delta (float) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• tau (float) – See alibi.explainers.anchors.anchor_tabular.AnchorTabular.
explain().

• batch_size (int) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

13.1. alibi package 637

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

• coverage_samples (int) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• beam_size (int) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• stop_on_first (bool) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• max_anchor_size (Optional[int]) – See alibi.explainers.anchors.
anchor_tabular.AnchorTabular.explain().

• min_samples_start (int) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• n_covered_ex (int) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• binary_cache_size (int) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• cache_margin (int) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• verbose (bool) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• verbose_every (int) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

• **kwargs (Any) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.explain().

Return type
Explanation

Returns
See alibi.explainers.anchors.anchor_tabular.AnchorTabular.explain() su-
perclass.

fit(train_data, disc_perc=(25, 50, 75), **kwargs)
Creates a list of handles to parallel processes handles that are used for submitting sampling tasks.

Parameters
• train_data (ndarray) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.fit() superclass.

• disc_perc (tuple) – See alibi.explainers.anchors.anchor_tabular.
AnchorTabular.fit() superclass.

• **kwargs – See alibi.explainers.anchors.anchor_tabular.AnchorTabular.
fit() superclass.

Return type
AnchorTabular

reset_predictor(predictor)
Resets the predictor function.

Parameters
predictor (Callable) – New model prediction function.

638 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Callable

alibi Documentation, Release 0.9.5dev

Return type
None

class alibi.explainers.anchors.anchor_tabular_distributed.RemoteSampler(*args)
Bases: object

A wrapper that facilitates the use of TabularSampler for distributed sampling.

__call__(anchors_batch, num_samples, compute_labels=True)
Wrapper around alibi.explainers.anchors.anchor_tabular.TabularSampler.__call__(). It
allows sampling a batch of anchors in the same process, which can improve performance.

Parameters
• anchors_batch (Union[Tuple[int, tuple], List[Tuple[int, tuple]]]) – A list of re-

sult tuples. See alibi.explainers.anchors.anchor_tabular.TabularSampler.
__call__() for details.

• num_samples (int) – A list of result tuples. See alibi.explainers.anchors.
anchor_tabular.TabularSampler.__call__() for details.

• compute_labels (bool) – A list of result tuples. See alibi.explainers.anchors.
anchor_tabular.TabularSampler.__call__() for details.

Return type
List

build_lookups(X)
Wrapper around alibi.explainers.anchors.anchor_tabular.TabularSampler.
build_lookups().

Parameters
X (ndarray) – See alibi.explainers.anchors.anchor_tabular.TabularSampler.
build_lookups().

Returns
See alibi.explainers.anchors.anchor_tabular.TabularSampler.
build_lookups().

set_instance_label(X)
Sets the remote sampler instance label.

Parameters
X (ndarray) – The instance to be explained.

Return type
int

Returns
label – The label of the instance to be explained.

set_n_covered(n_covered)
Sets the remote sampler number of examples to save for inspection.

Parameters
n_covered (int) – Number of examples where the result (and partial anchors) apply.

Return type
None

13.1. alibi package 639

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

alibi.explainers.anchors.anchor_text module

class alibi.explainers.anchors.anchor_text.AnchorText(predictor, sampling_strategy='unknown',
nlp=None, language_model=None, seed=0,
**kwargs)

Bases: Explainer

CLASS_SAMPLER = {'language_model': <class
'alibi.explainers.anchors.language_model_text_sampler.LanguageModelSampler'>,
'similarity': <class 'alibi.explainers.anchors.text_samplers.SimilaritySampler'>,
'unknown': <class 'alibi.explainers.anchors.text_samplers.UnknownSampler'>}

DEFAULTS: Dict[str, Dict] = {'language_model': {'batch_size_lm': 32, 'filling':
'parallel', 'frac_mask_templates': 0.1, 'punctuation':
'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~', 'sample_proba': 0.5, 'sample_punctuation':
False, 'stopwords': [], 'temperature': 1.0, 'top_n': 100, 'use_proba': False},
'similarity': {'sample_proba': 0.5, 'temperature': 1.0, 'top_n': 100, 'use_proba':
False}, 'unknown': {'sample_proba': 0.5}}

SAMPLING_LANGUAGE_MODEL = 'language_model'

Language model sampling strategy.

SAMPLING_SIMILARITY = 'similarity'

Similarity sampling strategy.

SAMPLING_UNKNOWN = 'unknown'

Unknown sampling strategy.

__init__(predictor, sampling_strategy='unknown', nlp=None, language_model=None, seed=0, **kwargs)
Initialize anchor text explainer.

Parameters
• predictor (Callable[[List[str]], ndarray]) – A callable that takes a list of text strings

representing N data points as inputs and returns N outputs.

• sampling_strategy (str) – Perturbation distribution method:

– 'unknown' - replaces words with UNKs.

– 'similarity' - samples according to a similarity score with the corpus embeddings.

– 'language_model' - samples according the language model’s output distributions.

• nlp (Optional[Language]) – spaCy object when sampling method is 'unknown' or
'similarity'.

• language_model (Optional[LanguageModel]) – Transformers masked language
model. This is a model that it adheres to the LanguageModel interface we define in alibi.
utils.lang_model.LanguageModel.

• seed (int) – If set, ensure identical random streams.

• kwargs (Any) – Sampling arguments can be passed as kwargs depending on the sam-
pling_strategy. Check default arguments defined in:

– alibi.explainers.anchor_text.DEFAULT_SAMPLING_UNKNOWN

– alibi.explainers.anchor_text.DEFAULT_SAMPLING_SIMILARITY

– alibi.explainers.anchor_text.DEFAULT_SAMPLING_LANGUAGE_MODEL

640 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any

alibi Documentation, Release 0.9.5dev

Raises
• alibi.exceptions.PredictorCallError – If calling predictor fails at runtime.

• alibi.exceptions.PredictorReturnTypeError – If the return type of predictor is
not np.ndarray.

compare_labels(samples)
Compute the agreement between a classifier prediction on an instance to be explained and the prediction
on a set of samples which have a subset of features fixed to a given value (aka compute the precision of
anchors).

Parameters
samples (ndarray) – Samples whose labels are to be compared with the instance label.

Return type
ndarray

Returns
A numpy boolean array indicating whether the prediction was the same as the instance label.

explain(text, threshold=0.95, delta=0.1, tau=0.15, batch_size=100, coverage_samples=10000,
beam_size=1, stop_on_first=True, max_anchor_size=None, min_samples_start=100,
n_covered_ex=10, binary_cache_size=10000, cache_margin=1000, verbose=False,
verbose_every=1, **kwargs)

Explain instance and return anchor with metadata.

Parameters
• text (str) – Text instance to be explained.

• threshold (float) – Minimum anchor precision threshold. The algorithm tries to find
an anchor that maximizes the coverage under precision constraint. The precision constraint
is formally defined as 𝑃 (𝑝𝑟𝑒𝑐(𝐴) ≥ 𝑡) ≥ 1 − 𝛿, where 𝐴 is an anchor, 𝑡 is the threshold
parameter, 𝛿 is the delta parameter, and 𝑝𝑟𝑒𝑐(·) denotes the precision of an anchor. In other
words, we are seeking for an anchor having its precision greater or equal than the given
threshold with a confidence of (1 - delta). A higher value guarantees that the anchors are
faithful to the model, but also leads to more computation time. Note that there are cases in
which the precision constraint cannot be satisfied due to the quantile-based discretisation
of the numerical features. If that is the case, the best (i.e. highest coverage) non-eligible
anchor is returned.

• delta (float) – Significance threshold. 1 - delta represents the confidence threshold for
the anchor precision (see threshold) and the selection of the best anchor candidate in each
iteration (see tau).

• tau (float) – Multi-armed bandit parameter used to select candidate anchors in each
iteration. The multi-armed bandit algorithm tries to find within a tolerance tau the most
promising (i.e. according to the precision) beam_size candidate anchor(s) from a list of
proposed anchors. Formally, when the beam_size=1, the multi-armed bandit algorithm
seeks to find an anchor 𝐴 such that 𝑃 (𝑝𝑟𝑒𝑐(𝐴) ≥ 𝑝𝑟𝑒𝑐(𝐴⋆) − 𝜏) ≥ 1 − 𝛿, where 𝐴⋆ is
the anchor with the highest true precision (which we don’t know), 𝜏 is the tau parameter,
𝛿 is the delta parameter, and 𝑝𝑟𝑒𝑐(·) denotes the precision of an anchor. In other words,
in each iteration, the algorithm returns with a probability of at least 1 - delta an anchor
𝐴 with a precision within an error tolerance of tau from the precision of the highest true
precision anchor 𝐴⋆. A bigger value for tau means faster convergence but also looser
anchor conditions.

• batch_size (int) – Batch size used for sampling. The Anchor algorithm will query the
black-box model in batches of size batch_size. A larger batch_size gives more confidence

13.1. alibi package 641

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

in the anchor, again at the expense of computation time since it involves more model pre-
diction calls.

• coverage_samples (int) – Number of samples used to estimate coverage from during
anchor search.

• beam_size (int) – Number of candidate anchors selected by the multi-armed bandit al-
gorithm in each iteration from a list of proposed anchors. A bigger beam width can lead to
a better overall anchor (i.e. prevents the algorithm of getting stuck in a local maximum) at
the expense of more computation time.

• stop_on_first (bool) – If True, the beam search algorithm will return the first anchor
that has satisfies the probability constraint.

• max_anchor_size (Optional[int]) – Maximum number of features to include in an
anchor.

• min_samples_start (int) – Number of samples used for anchor search initialisation.

• n_covered_ex (int) – How many examples where anchors apply to store for each anchor
sampled during search (both examples where prediction on samples agrees/disagrees with
predicted label are stored).

• binary_cache_size (int) – The anchor search pre-allocates binary_cache_size batches
for storing the boolean arrays returned during sampling.

• cache_margin (int) – When only max(cache_margin, batch_size) positions in the
binary cache remain empty, a new cache of the same size is pre-allocated to continue buffer-
ing samples.

• verbose (bool) – Display updates during the anchor search iterations.

• verbose_every (int) – Frequency of displayed iterations during anchor search process.

• **kwargs (Any) – Other keyword arguments passed to the anchor beam search and the text
sampling and perturbation functions.

Return type
Explanation

Returns
Explanation object containing the anchor explaining the instance with additional metadata as
attributes. Contains the following data-related attributes –

• anchor : List[str] - a list of words in the proposed anchor.

• precision : float - the fraction of times the sampled instances where the anchor holds
yields the same prediction as the original instance. The precision will always be threshold
for a valid anchor.

• coverage : float - the fraction of sampled instances the anchor applies to.

meta: dict

Object metadata.

model: spacy.language.Language | LanguageModel

Language model to be used.

perturbation: Any

Perturbation method.

642 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Any

alibi Documentation, Release 0.9.5dev

reset_predictor(predictor)
Resets the predictor function.

Parameters
predictor (Callable) – New predictor function.

Return type
None

sampler(anchor, num_samples, compute_labels=True)
Generate perturbed samples while maintaining features in positions specified in anchor unchanged.

Parameters
• anchor (Tuple[int, tuple]) –

– int - the position of the anchor in the input batch.

– tuple - the anchor itself, a list of words to be kept unchanged.

• num_samples (int) – Number of generated perturbed samples.

• compute_labels (bool) – If True, an array of comparisons between predictions on per-
turbed samples and instance to be explained is returned.

Return type
Union[List[Union[ndarray, float, int]], List[ndarray]]

Returns
• If compute_labels=True, a list containing the following is returned –

– covered_true - perturbed examples where the anchor applies and the model prediction
on perturbation is the same as the instance prediction.

– covered_false - perturbed examples where the anchor applies and the model prediction
is NOT the same as the instance prediction.

– labels - num_samples ints indicating whether the prediction on the perturbed sample
matches (1) the label of the instance to be explained or not (0).

– data - Matrix with 1s and 0s indicating whether a word in the text has been perturbed
for each sample.

– -1.0 - indicates exact coverage is not computed for this algorithm.

– anchor[0] - position of anchor in the batch request.

• Otherwise, a list containing the data matrix only is returned.

alibi.explainers.anchors.anchor_text.DEFAULT_SAMPLING_LANGUAGE_MODEL = {'batch_size_lm':
32, 'filling': 'parallel', 'frac_mask_templates': 0.1, 'punctuation':
'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~', 'sample_proba': 0.5, 'sample_punctuation': False,
'stopwords': [], 'temperature': 1.0, 'top_n': 100, 'use_proba': False}

Default perturbation options for 'language_model' sampling

• 'filling' : str - filling method for language models. Allowed values: 'parallel',
'autoregressive'. 'parallel' method corresponds to a single forward pass through the language
model. The masked words are sampled independently, according to the selected probability distribution
(see top_n, temperature, use_proba). autoregressive method fills the words one at the time. This corre-
sponds to multiple forward passes through the language model which is computationally expensive.

• 'sample_proba' : float - probability of a word to be masked.

• 'top_n' : int - number of similar words to sample for perturbations.

13.1. alibi package 643

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List

alibi Documentation, Release 0.9.5dev

• 'temperature' : float - sample weight hyper-parameter if use_proba equals True.

• 'use_proba' : bool - whether to sample according to the predicted words distribution. If set to False,
the top_n words are sampled uniformly at random.

• 'frac_mask_template' : float - fraction from the number of samples of mask templates to be gen-
erated. In each sampling call, will generate int(frac_mask_templates * num_samples) masking templates.
Lower fraction corresponds to lower computation time since the batch fed to the language model is smaller.
After the words’ distributions is predicted for each mask, a total of num_samples will be generated by
sampling evenly from each template. Note that lower fraction might correspond to less diverse sample.
A sample_proba=1 corresponds to masking each word. For this case only one masking template will be
constructed. A filling=’autoregressive’ will generate num_samples masking templates regardless of the
value of frac_mask_templates.

• 'batch_size_lm' : int - batch size used for the language model forward pass.

• 'punctuation' : str - string of punctuation not to be masked.

• 'stopwords' : List[str] - list of words not to be masked.

• 'sample_punctuation' : bool - whether to sample punctuation to fill the masked words. If False, the
punctuation defined in punctuation will not be sampled.

alibi.explainers.anchors.anchor_text.DEFAULT_SAMPLING_SIMILARITY = {'sample_proba': 0.5,
'temperature': 1.0, 'top_n': 100, 'use_proba': False}

Default perturbation options for 'similarity' sampling

• 'sample_proba' : float - probability of a word to be masked.

• 'top_n' : int - number of similar words to sample for perturbations.

• 'temperature' : float - sample weight hyper-parameter if use_proba=True.

• 'use_proba' : bool - whether to sample according to the words similarity.

alibi.explainers.anchors.anchor_text.DEFAULT_SAMPLING_UNKNOWN = {'sample_proba': 0.5}

Default perturbation options for 'unknown' sampling

• 'sample_proba' : float - probability of a word to be masked.

alibi.explainers.anchors.language_model_text_sampler module

class alibi.explainers.anchors.language_model_text_sampler.LanguageModelSampler(model, per-
turb_opts)

Bases: AnchorTextSampler

FILLING_AUTOREGRESSIVE = 'autoregressive'

Autoregressive filling procedure. Considerably slow.

FILLING_PARALLEL: str = 'parallel'

Parallel filling procedure.

__call__(anchor, num_samples)
The function returns a numpy array of num_samples where randomly chosen features, except those in an-
chor, are replaced by words sampled according to the language model’s predictions.

Parameters
• anchor (tuple) – Indices represent the positions of the words to be kept unchanged.

• num_samples (int) – Number of perturbed sentences to be returned.

644 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

Return type
Tuple[ndarray, ndarray]

Returns
See alibi.explainers.anchors.language_model_text_sampler.
LanguageModelSampler.perturb_sentence().

__init__(model, perturb_opts)
Initialize language model sampler. This sampler replaces words with the ones sampled according to
the output distribution of the language model. There are two modes to use the sampler: 'parallel'
and 'autoregressive'. In the 'parallel' mode, all words are replaced simultaneously. In the
'autoregressive' model, the words are replaced one by one, starting from left to right. Thus the fol-
lowing words are conditioned on the previous predicted words.

Parameters
• model (LanguageModel) – Transformers masked language model.

• perturb_opts (dict) – Perturbation options.

create_mask(anchor, num_samples, sample_proba=1.0, filling='parallel', frac_mask_templates=0.1,
**kwargs)

Create mask for words to be perturbed.

Parameters
• anchor (tuple) – Indices represent the positions of the words to be kept unchanged.

• num_samples (int) – Number of perturbed sentences to be returned.

• sample_proba (float) – Probability of a word being replaced.

• filling (str) – Method to fill masked words. Either 'parallel' or
'autoregressive'.

• frac_mask_templates (float) – Fraction of mask templates from the number of re-
quested samples.

• **kwargs – Other arguments to be passed to other methods.

Return type
Tuple[ndarray, ndarray]

Returns
• raw – Array with masked instances.

• data – A (num_samples, m)-dimensional boolean array, where m is the number of tokens
in the instance to be explained.

fill_mask(raw, data, num_samples, top_n=100, batch_size_lm=32, filling='parallel', **kwargs)
Fill in the masked tokens with language model.

Parameters
• raw (ndarray) – Array of mask templates.

• data (ndarray) – Binary mask having 0 where the word was masked.

• num_samples (int) – Number of samples to be drawn.

• top_n (int) – Use the top n words when sampling.

• batch_size_lm (int) – Batch size used for language model.

13.1. alibi package 645

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

• filling (str) – Method to fill masked words. Either 'parallel' or
'autoregressive'.

• **kwargs – Other paremeters to be passed to other methods.

Return type
Tuple[ndarray, ndarray]

Returns
raw – Array containing num_samples elements. Each element is a perturbed sentence.

get_sample_ids(punctuation='!"#$%&\\'()*+, -./:;<=>?@[\\\\]^_`{|}~', stopwords=None, **kwargs)
Find indices in words which can be perturbed.

Parameters
• punctuation (str) – String of punctuation characters.

• stopwords (Optional[List[str]]) – List of stopwords.

• **kwargs – Other arguments. Not used.

Return type
None

perturb_sentence(anchor, num_samples, sample_proba=0.5, top_n=100, batch_size_lm=32,
filling='parallel', **kwargs)

The function returns an numpy array of num_samples where randomly chosen features, except those in
anchor, are replaced by words sampled according to the language model’s predictions.

Parameters
• anchor (tuple) – Indices represent the positions of the words to be kept unchanged.

• num_samples (int) – Number of perturbed sentences to be returned.

• sample_proba (float) – Probability of a token being replaced by a similar token.

• top_n (int) – Used for top n sampling.

• batch_size_lm (int) – Batch size used for language model.

• filling (str) – Method to fill masked words. Either 'parallel' or
'autoregressive'.

• **kwargs – Other arguments to be passed to other methods.

Return type
Tuple[ndarray, ndarray]

Returns
• raw – Array containing num_samples elements. Each element is a perturbed sentence.

• data – A (num_samples, m)-dimensional boolean array, where m is the number of tokens
in the instance to be explained.

seed(seed)

Return type
None

646 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

set_data_type()

Working with numpy arrays of strings requires setting the data type to avoid truncating examples. This
function estimates the longest sentence expected during the sampling process, which is used to set the
number of characters for the samples and examples arrays. This depends on the perturbation method used
for sampling.

Return type
None

set_text(text)
Sets the text to be processed

Parameters
text (str) – Text to be processed.

Return type
None

alibi.explainers.anchors.text_samplers module

class alibi.explainers.anchors.text_samplers.AnchorTextSampler

Bases: object

abstract set_text(text)

Return type
None

class alibi.explainers.anchors.text_samplers.Neighbors(nlp_obj, n_similar=500, w_prob=-15.0)
Bases: object

__init__(nlp_obj, n_similar=500, w_prob=-15.0)
Initialize class identifying neighbouring words from the embedding for a given word.

Parameters
• nlp_obj (Language) – spaCy model.

• n_similar (int) – Number of similar words to return.

• w_prob (float) – Smoothed log probability estimate of token’s type.

neighbors(word, tag, top_n)
Find similar words for a certain word in the vocabulary.

Parameters
• word (str) – Word for which we need to find similar words.

• tag (str) – Part of speech tag for the words.

• top_n (int) – Return only top_n neighbors.

Return type
dict

Returns
A dict with two fields. The 'words' field contains a numpy array of the top_n most simi-
lar words, whereas the fields 'similarities' is a numpy array with corresponding word
similarities.

13.1. alibi package 647

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

alibi Documentation, Release 0.9.5dev

class alibi.explainers.anchors.text_samplers.SimilaritySampler(nlp, perturb_opts)
Bases: AnchorTextSampler

__call__(anchor, num_samples)
The function returns a numpy array of num_samples where randomly chosen features, except those in
anchor, are replaced by similar words with the same part of speech of tag. See alibi.explainers.
anchors.text_samplers.SimilaritySampler.perturb_sentence_similarity() for details of
how the replacement works.

Parameters
• anchor (tuple) – Indices represent the positions of the words to be kept unchanged.

• num_samples (int) – Number of perturbed sentences to be returned.

Return type
Tuple[ndarray, ndarray]

Returns
See alibi.explainers.anchors.text_samplers.SimilaritySampler.
perturb_sentence_similarity().

__init__(nlp, perturb_opts)
Initialize similarity sampler. This sampler replaces words with similar words.

Parameters
• nlp (Language) – spaCy object.

• perturb_opts (Dict) – Perturbation options.

find_similar_words()

This function queries a spaCy nlp model to find n similar words with the same part of speech for each word
in the instance to be explained. For each word the search procedure returns a dictionary containing a numpy
array of words ('words') and a numpy array of word similarities ('similarities').

Return type
None

perturb_sentence_similarity(present, n, sample_proba=0.5, forbidden=frozenset({}),
forbidden_tags=frozenset({'PRP$'}), forbidden_words=frozenset({'be'}),
temperature=1.0, pos=frozenset({'ADJ', 'ADP', 'ADV', 'DET', 'NOUN',
'VERB'}), use_proba=False, **kwargs)

Perturb the text instance to be explained.

Parameters
• present (tuple) – Word index in the text for the words in the proposed anchor.

• n (int) – Number of samples used when sampling from the corpus.

• sample_proba (float) – Sample probability for a word if use_proba=False.

• forbidden (frozenset) – Forbidden lemmas.

• forbidden_tags (frozenset) – Forbidden POS tags.

• forbidden_words (frozenset) – Forbidden words.

• pos (frozenset) – POS that can be changed during perturbation.

• use_proba (bool) – Bool whether to sample according to a similarity score with the cor-
pus embeddings.

648 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/functions.html#bool

alibi Documentation, Release 0.9.5dev

• temperature (float) – Sample weight hyper-parameter if use_proba=True.

• **kwargs – Other arguments. Not used.

Return type
Tuple[ndarray, ndarray]

Returns
• raw – Array of perturbed text instances.

• data – Matrix with 1s and 0s indicating whether a word in the text has not been perturbed
for each sample.

set_data_type()

Working with numpy arrays of strings requires setting the data type to avoid truncating examples. This
function estimates the longest sentence expected during the sampling process, which is used to set the
number of characters for the samples and examples arrays. This depends on the perturbation method used
for sampling.

Return type
None

set_text(text)
Sets the text to be processed

Parameters
text (str) – Text to be processed.

Return type
None

class alibi.explainers.anchors.text_samplers.UnknownSampler(nlp, perturb_opts)
Bases: AnchorTextSampler

UNK: str = 'UNK'

Unknown token to be used.

__call__(anchor, num_samples)
The function returns a numpy array of num_samples where randomly chosen features, except those in an-
chor, are replaced by 'UNK' token.

Parameters
• anchor (tuple) – Indices represent the positions of the words to be kept unchanged.

• num_samples (int) – Number of perturbed sentences to be returned.

Return type
Tuple[ndarray, ndarray]

Returns
• raw – Array containing num_samples elements. Each element is a perturbed sentence.

• data – A (num_samples, m)-dimensional boolean array, where m is the number of tokens
in the instance to be explained.

__init__(nlp, perturb_opts)
Initialize unknown sampler. This sampler replaces word with the UNK token.

Parameters
• nlp (Language) – spaCy object.

13.1. alibi package 649

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple

alibi Documentation, Release 0.9.5dev

• perturb_opts (Dict) – Perturbation options.

set_data_type()

Working with numpy arrays of strings requires setting the data type to avoid truncating examples. This
function estimates the longest sentence expected during the sampling process, which is used to set the
number of characters for the samples and examples arrays. This depends on the perturbation method used
for sampling.

Return type
None

set_text(text)
Sets the text to be processed.

Parameters
text (str) – Text to be processed.

Return type
None

alibi.explainers.anchors.text_samplers.load_spacy_lexeme_prob(nlp)
This utility function loads the lexeme_prob table for a spacy model if it is not present. This is required to enable
support for different spacy versions.

Return type
Language

alibi.explainers.backends package

Subpackages

alibi.explainers.backends.pytorch package

Submodules

alibi.explainers.backends.pytorch.cfrl_base module

This module contains utility functions for the Counterfactual with Reinforcement Learning base class, alibi.
explainers.cfrl_base for the Pytorch backend.

class alibi.explainers.backends.pytorch.cfrl_base.PtCounterfactualRLDataset(X, preprocessor,
predictor,
conditional_func,
batch_size)

Bases: CounterfactualRLDataset, Dataset

Pytorch backend datasets.

__init__(X, preprocessor, predictor, conditional_func, batch_size)
Constructor.

Parameters
• X (ndarray) – Array of input instances. The input should NOT be preprocessed as it will

be preprocessed when calling the preprocessor function.

650 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

• preprocessor (Callable) – Preprocessor function. This function correspond to the pre-
processing steps applied to the auto-encoder model.

• predictor (Callable) – Prediction function. The classifier function should expect the
input in the original format and preprocess it internally in the predictor if necessary.

• conditional_func (Callable) – Conditional function generator. Given an preprocessed
input array, the functions generates a conditional array.

• batch_size (int) – Dimension of the batch used during training. The same batch size is
used to infer the classification labels of the input dataset.

alibi.explainers.backends.pytorch.cfrl_base.add_noise(Z_cf , noise, act_low, act_high, step,
exploration_steps, device, **kwargs)

Add noise to the counterfactual embedding.

Parameters
• Z_cf (Tensor) – Counterfactual embedding.

• noise (NormalActionNoise) – Noise generator object.

• act_low (float) – Action lower bound.

• act_high (float) – Action upper bound.

• step (int) – Training step.

• exploration_steps (int) – Number of exploration steps. For the first exploration_steps,
the noised counterfactual embedding is sampled uniformly at random.

• device (device) – Device to send data to.

Return type
Tensor

Returns
Z_cf_tilde – Noised counterfactual embedding.

alibi.explainers.backends.pytorch.cfrl_base.consistency_loss(Z_cf_pred, Z_cf_tgt)
Default 0 consistency loss.

Parameters
• Z_cf_pred (Tensor) – Counterfactual embedding prediction.

• Z_cf_tgt (Tensor) – Counterfactual embedding target.

Returns
0 consistency loss.

alibi.explainers.backends.pytorch.cfrl_base.data_generator(X, encoder_preprocessor, predictor,
conditional_func, batch_size, shuffle,
num_workers, **kwargs)

Constructs a tensorflow data generator.

Parameters
• X (ndarray) – Array of input instances. The input should NOT be preprocessed as it will be

preprocessed when calling the preprocessor function.

• encoder_preprocessor (Callable) – Preprocessor function. This function correspond
to the preprocessing steps applied to the encoder/auto-encoder model.

13.1. alibi package 651

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Callable

alibi Documentation, Release 0.9.5dev

• predictor (Callable) – Prediction function. The classifier function should expect the
input in the original format and preprocess it internally in the predictor if necessary.

• conditional_func (Callable) – Conditional function generator. Given an preprocessed
input array, the functions generates a conditional array.

• batch_size (int) – Dimension of the batch used during training. The same batch size is
used to infer the classification labels of the input dataset.

• shuffle (bool) – Whether to shuffle the dataset each epoch. True by default.

• num_workers (int) – Number of worker processes to be created.

• **kwargs – Other arguments. Not used.

alibi.explainers.backends.pytorch.cfrl_base.decode(Z , decoder, device, **kwargs)
Decodes an embedding tensor.

Parameters
• Z (Tensor) – Embedding tensor to be decoded.

• decoder (Module) – Pretrained decoder network.

• device (device) – Device to sent data to.

Returns
Embedding tensor decoding.

alibi.explainers.backends.pytorch.cfrl_base.encode(X, encoder, device, **kwargs)
Encodes the input tensor.

Parameters
• X (Tensor) – Input to be encoded.

• encoder (Module) – Pretrained encoder network.

• device (device) – Device to send data to.

Returns
Input encoding.

alibi.explainers.backends.pytorch.cfrl_base.generate_cf(Z , Y_m, Y_t, C, encoder, decoder, actor,
device, **kwargs)

Generates counterfactual embedding.

Parameters
• Z (Tensor) – Input embedding tensor.

• Y_m (Tensor) – Input classification label.

• Y_t (Tensor) – Target counterfactual classification label.

• C (Optional[Tensor]) – Conditional tensor.

• encoder (Module) – Pretrained encoder network.

• decoder (Module) – Pretrained decoder network.

• actor (Module) – Actor network. The model generates the counterfactual embedding.

• device (device) – Device object to be used.

Return type
Tensor

652 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional

alibi Documentation, Release 0.9.5dev

Returns
Z_cf – Counterfactual embedding.

alibi.explainers.backends.pytorch.cfrl_base.get_actor(hidden_dim, output_dim)

Constructs the actor network.

Parameters
• hidden_dim (int) – Actor’s hidden dimension

• output_dim (int) – Actor’s output dimension.

Return type
Module

Returns
Actor network.

alibi.explainers.backends.pytorch.cfrl_base.get_critic(hidden_dim)

Constructs the critic network.

Parameters
hidden_dim (int) – Critic’s hidden dimension.

Return type
Module

Returns
Critic network.

alibi.explainers.backends.pytorch.cfrl_base.get_device()

Checks if cuda is available. If available, use cuda by default, else use cpu.

Return type
device

Returns
Device to be used.

alibi.explainers.backends.pytorch.cfrl_base.get_optimizer(model, lr=0.001)
Constructs default Adam optimizer.

Return type
Optimizer

Returns
Default optimizer.

alibi.explainers.backends.pytorch.cfrl_base.load_model(path)
Loads a model and its optimizer.

Parameters
path (Union[str, PathLike]) – Path to the loading location.

Return type
Module

Returns
Loaded model.

alibi.explainers.backends.pytorch.cfrl_base.save_model(path, model)
Saves a model and its optimizer.

Parameters

13.1. alibi package 653

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike

alibi Documentation, Release 0.9.5dev

• path (Union[str, PathLike]) – Path to the saving location.

• model (Module) – Model to be saved.

Return type
None

alibi.explainers.backends.pytorch.cfrl_base.set_seed(seed=13)
Sets a seed to ensure reproducibility.

Parameters
seed (int) – Seed to be set.

alibi.explainers.backends.pytorch.cfrl_base.sparsity_loss(X_hat_cf , X)
Default L1 sparsity loss.

Parameters
• X_hat_cf (Tensor) – Auto-encoder counterfactual reconstruction.

• X (Tensor) – Input instance

Return type
Dict[str, Tensor]

Returns
L1 sparsity loss.

alibi.explainers.backends.pytorch.cfrl_base.to_numpy(X)
Converts given tensor to numpy array.

Parameters
X (Union[List, ndarray, Tensor, None]) – Input tensor to be converted to numpy array.

Return type
Union[List, ndarray, None]

Returns
Numpy representation of the input tensor.

alibi.explainers.backends.pytorch.cfrl_base.to_tensor(X, device, **kwargs)
Converts tensor to torch.Tensor

Return type
Optional[Tensor]

Returns
torch.Tensor conversion.

alibi.explainers.backends.pytorch.cfrl_base.update_actor_critic(encoder, decoder, critic, actor,
optimizer_critic,
optimizer_actor, sparsity_loss,
consistency_loss, coeff_sparsity,
coeff_consistency, X, X_cf , Z ,
Z_cf_tilde, Y_m, Y_t, C, R_tilde,
device, **kwargs)

Training step. Updates actor and critic networks including additional losses.

Parameters
• encoder (Module) – Pretrained encoder network.

• decoder (Module) – Pretrained decoder network.

654 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional

alibi Documentation, Release 0.9.5dev

• critic (Module) – Critic network.

• actor (Module) – Actor network.

• optimizer_critic (Optimizer) – Critic’s optimizer.

• optimizer_actor (Optimizer) – Actor’s optimizer.

• sparsity_loss (Callable) – Sparsity loss function.

• consistency_loss (Callable) – Consistency loss function.

• coeff_sparsity (float) – Sparsity loss coefficient.

• coeff_consistency (float) – Consistency loss coefficient

• X (ndarray) – Input array.

• X_cf (ndarray) – Counterfactual array.

• Z (ndarray) – Input embedding.

• Z_cf_tilde (ndarray) – Noised counterfactual embedding.

• Y_m (ndarray) – Input classification label.

• Y_t (ndarray) – Target counterfactual classification label.

• C (Optional[ndarray]) – Conditional tensor.

• R_tilde (ndarray) – Noised counterfactual reward.

• device (device) – Torch device object.

• **kwargs – Other arguments. Not used.

Returns
Dictionary of losses.

alibi.explainers.backends.pytorch.cfrl_tabular module

This module contains utility functions for the Counterfactual with Reinforcement Learning tabular class, alibi.
explainers.cfrl_tabular, for the Pytorch backend.

alibi.explainers.backends.pytorch.cfrl_tabular.consistency_loss(Z_cf_pred, Z_cf_tgt, **kwargs)
Computes heterogeneous consistency loss.

Parameters
• Z_cf_pred (Tensor) – Predicted counterfactual embedding.

• Z_cf_tgt (Tensor) – Counterfactual embedding target.

Returns
Heterogeneous consistency loss.

alibi.explainers.backends.pytorch.cfrl_tabular.l0_ohe(input, target, reduction='none')
Computes the L0 loss for a one-hot encoding representation.

Parameters
• input (Tensor) – Input tensor.

• target (Tensor) – Target tensor

• reduction (str) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'.

13.1. alibi package 655

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

Return type
Tensor

Returns
L0 loss.

alibi.explainers.backends.pytorch.cfrl_tabular.l1_loss(input, target, reduction='none')
Computes L1 loss.

Parameters
• input (Tensor) – Input tensor.

• target (Tensor) – Target tensor.

• reduction (str) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'.

Return type
Tensor

Returns
L1 loss.

alibi.explainers.backends.pytorch.cfrl_tabular.sample_differentiable(X_hat_split,
category_map)

Samples differentiable reconstruction.

Parameters
• X_hat_split (List[Tensor]) – List of reconstructed columns form the auto-encoder.

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are
column indexes and the values are lists containing the possible values for an attribute.

Return type
List[Tensor]

Returns
Differentiable reconstruction.

alibi.explainers.backends.pytorch.cfrl_tabular.sparsity_loss(X_hat_split, X_ohe, category_map,
weight_num=1.0, weight_cat=1.0)

Computes heterogeneous sparsity loss.

Parameters
• X_hat_split (List[Tensor]) – List of one-hot encoded reconstructed columns form the

auto-encoder.

• X_ohe (Tensor) – One-hot encoded representation of the input.

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are
column indexes and the values are lists containing the possible values for an attribute.

• weight_num (float) – Numerical loss weight.

• weight_cat (float) – Categorical loss weight.

Returns
Heterogeneous sparsity loss.

656 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

alibi.explainers.backends.tensorflow package

Submodules

alibi.explainers.backends.tensorflow.cfrl_base module

This module contains utility functions for the Counterfactual with Reinforcement Learning base class, alibi.
explainers.cfrl_base, for the Tensorflow backend.

class alibi.explainers.backends.tensorflow.cfrl_base.TfCounterfactualRLDataset(X, preproces-
sor,
predictor,
condi-
tional_func,
batch_size,
shuf-
fle=True)

Bases: CounterfactualRLDataset, Sequence

Tensorflow backend datasets.

__init__(X, preprocessor, predictor, conditional_func, batch_size, shuffle=True)
Constructor.

Parameters
• X (ndarray) – Array of input instances. The input should NOT be preprocessed as it will

be preprocessed when calling the preprocessor function.

• preprocessor (Callable) – Preprocessor function. This function correspond to the pre-
processing steps applied to the encoder/auto-encoder model.

• predictor (Callable) – Prediction function. The classifier function should expect the
input in the original format and preprocess it internally in the predictor if necessary.

• conditional_func (Callable) – Conditional function generator. Given an pre-
processed input array, the functions generates a conditional array.

• batch_size (int) – Dimension of the batch used during training. The same batch size is
used to infer the classification labels of the input dataset.

• shuffle (bool) – Whether to shuffle the dataset each epoch. True by default.

on_epoch_end()

This method is called every epoch and performs dataset shuffling.

Return type
None

alibi.explainers.backends.tensorflow.cfrl_base.add_noise(Z_cf , noise, act_low, act_high, step,
exploration_steps, **kwargs)

Add noise to the counterfactual embedding.

Parameters
• Z_cf (Union[Tensor, ndarray]) – Counterfactual embedding.

• noise (NormalActionNoise) – Noise generator object.

• act_low (float) – Noise lower bound.

13.1. alibi package 657

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

• act_high (float) – Noise upper bound.

• step (int) – Training step.

• exploration_steps (int) – Number of exploration steps. For the first exploration_steps,
the noised counterfactual embedding is sampled uniformly at random.

• **kwargs – Other arguments. Not used.

Return type
Tensor

Returns
Z_cf_tilde – Noised counterfactual embedding.

alibi.explainers.backends.tensorflow.cfrl_base.consistency_loss(Z_cf_pred, Z_cf_tgt)
Default 0 consistency loss.

Parameters
• Z_cf_pred (Tensor) – Counterfactual embedding prediction.

• Z_cf_tgt (Tensor) – Counterfactual embedding target.

Returns
0 consistency loss.

alibi.explainers.backends.tensorflow.cfrl_base.data_generator(X, encoder_preprocessor,
predictor, conditional_func,
batch_size, shuffle=True,
**kwargs)

Constructs a tensorflow data generator.

Parameters
• X (ndarray) – Array of input instances. The input should NOT be preprocessed as it will be

preprocessed when calling the preprocessor function.

• encoder_preprocessor (Callable) – Preprocessor function. This function correspond
to the preprocessing steps applied to the encoder/auto-encoder model.

• predictor (Callable) – Prediction function. The classifier function should expect the
input in the original format and preprocess it internally in the predictor if necessary.

• conditional_func (Callable) – Conditional function generator. Given an preprocessed
input array, the functions generates a conditional array.

• batch_size (int) – Dimension of the batch used during training. The same batch size is
used to infer the classification labels of the input dataset.

• shuffle (bool) – Whether to shuffle the dataset each epoch. True by default.

• **kwargs – Other arguments. Not used.

alibi.explainers.backends.tensorflow.cfrl_base.decode(Z , decoder, **kwargs)
Decodes an embedding tensor.

Parameters
• Z (Union[Tensor, ndarray]) – Embedding tensor to be decoded.

• decoder (Model) – Pretrained decoder network.

• **kwargs – Other arguments. Not used.

658 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union

alibi Documentation, Release 0.9.5dev

Returns
Embedding tensor decoding.

alibi.explainers.backends.tensorflow.cfrl_base.encode(X, encoder, **kwargs)
Encodes the input tensor.

Parameters
• X (Union[Tensor, ndarray]) – Input to be encoded.

• encoder (Model) – Pretrained encoder network.

• **kwargs – Other arguments. Not used.

Return type
Tensor

Returns
Input encoding.

alibi.explainers.backends.tensorflow.cfrl_base.generate_cf(Z , Y_m, Y_t, C, actor, **kwargs)
Generates counterfactual embedding.

Parameters
• Z (Union[ndarray, Tensor]) – Input embedding tensor.

• Y_m (Union[ndarray, Tensor]) – Input classification label.

• Y_t (Union[ndarray, Tensor]) – Target counterfactual classification label.

• C (Union[ndarray, Tensor, None]) – Conditional tensor.

• actor (Model) – Actor network. The model generates the counterfactual embedding.

• **kwargs – Other arguments. Not used.

Return type
Tensor

Returns
Z_cf – Counterfactual embedding.

alibi.explainers.backends.tensorflow.cfrl_base.get_actor(hidden_dim, output_dim)

Constructs the actor network.

Parameters
• hidden_dim (int) – Actor’s hidden dimension

• output_dim (int) – Actor’s output dimension.

Return type
Layer

Returns
Actor network.

alibi.explainers.backends.tensorflow.cfrl_base.get_critic(hidden_dim)

Constructs the critic network.

Parameters
hidden_dim (int) – Critic’s hidden dimension.

Return type
Layer

13.1. alibi package 659

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

Returns
Critic network.

alibi.explainers.backends.tensorflow.cfrl_base.get_optimizer(model=None, lr=0.001)
Constructs default Adam optimizer.

Parameters
• model (Optional[Layer]) – Model to get the optimizer for. Not required for tensorflow

backend.

• lr (float) – Learning rate.

Return type
Optimizer

Returns
Default optimizer.

alibi.explainers.backends.tensorflow.cfrl_base.initialize_actor_critic(actor, critic, Z ,
Z_cf_tilde, Y_m, Y_t, C,
**kwargs)

Initialize actor and critic layers by passing a dummy zero tensor.

Parameters
• actor – Actor model.

• critic – Critic model.

• Z – Input embedding.

• Z_cf_tilde – Noised counterfactual embedding.

• Y_m – Input classification label.

• Y_t – Target counterfactual classification label.

• C – Conditional tensor.

• **kwargs – Other arguments. Not used.

alibi.explainers.backends.tensorflow.cfrl_base.initialize_optimizer(optimizer, model)
Initializes an optimizer given a model.

Parameters
• optimizer (Optimizer) – Optimizer to be initialized.

• model (Model) – Model to be optimized

Return type
None

alibi.explainers.backends.tensorflow.cfrl_base.initialize_optimizers(optimizer_actor,
optimizer_critic, actor,
critic, **kwargs)

Initializes the actor and critic optimizers.

Parameters
• optimizer_actor – Actor optimizer to be initialized.

• optimizer_critic – Critic optimizer to be initialized.

• actor – Actor model to be optimized.

660 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

• critic – Critic model to be optimized.

• **kwargs – Other arguments. Not used.

Return type
None

alibi.explainers.backends.tensorflow.cfrl_base.load_model(path)
Loads a model and its optimizer.

Parameters
path (Union[str, PathLike]) – Path to the loading location.

Return type
Model

Returns
Loaded model.

alibi.explainers.backends.tensorflow.cfrl_base.save_model(path, model)
Saves a model and its optimizer.

Parameters
• path (Union[str, PathLike]) – Path to the saving location.

• model (Layer) – Model to be saved.

Return type
None

alibi.explainers.backends.tensorflow.cfrl_base.set_seed(seed=13)
Sets a seed to ensure reproducibility. Does NOT ensure reproducibility.

Parameters
seed (int) – seed to be set

alibi.explainers.backends.tensorflow.cfrl_base.sparsity_loss(X_hat_cf , X)
Default L1 sparsity loss.

Parameters
• X_hat_cf (Tensor) – Auto-encoder counterfactual reconstruction.

• X (Tensor) – Input instance.

Return type
Dict[str, Tensor]

Returns
L1 sparsity loss.

alibi.explainers.backends.tensorflow.cfrl_base.to_numpy(X)
Converts given tensor to numpy array.

Parameters
X (Union[List, ndarray, Tensor, None]) – Input tensor to be converted to numpy array.

Return type
Union[List, ndarray, None]

Returns
Numpy representation of the input tensor.

13.1. alibi package 661

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

alibi.explainers.backends.tensorflow.cfrl_base.to_tensor(X, **kwargs)
Converts tensor to tf.Tensor.

Parameters
• X (Union[ndarray, Tensor]) – Input array/tensor to be converted.

• **kwargs – Other arguments. Not used.

Return type
Optional[Tensor]

Returns
tf.Tensor conversion.

alibi.explainers.backends.tensorflow.cfrl_base.update_actor_critic(encoder, decoder, critic,
actor, optimizer_critic,
optimizer_actor,
sparsity_loss,
consistency_loss,
coeff_sparsity,
coeff_consistency, X, X_cf ,
Z , Z_cf_tilde, Y_m, Y_t, C,
R_tilde, **kwargs)

Training step. Updates actor and critic networks including additional losses.

Parameters
• encoder (Model) – Pretrained encoder network.

• decoder (Model) – Pretrained decoder network.

• critic (Model) – Critic network.

• actor (Model) – Actor network.

• optimizer_critic (Optimizer) – Critic’s optimizer.

• optimizer_actor (Optimizer) – Actor’s optimizer.

• sparsity_loss (Callable) – Sparsity loss function.

• consistency_loss (Callable) – Consistency loss function.

• coeff_sparsity (float) – Sparsity loss coefficient.

• coeff_consistency (float) – Consistency loss coefficient

• X (ndarray) – Input array.

• X_cf (ndarray) – Counterfactual array.

• Z (ndarray) – Input embedding.

• Z_cf_tilde (ndarray) – Noised counterfactual embedding.

• Y_m (ndarray) – Input classification label.

• Y_t (ndarray) – Target counterfactual classification label.

• C (Optional[ndarray]) – Conditional tensor.

• R_tilde (ndarray) – Noised counterfactual reward.

• **kwargs – Other arguments. Not used.

662 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional

alibi Documentation, Release 0.9.5dev

Return type
Dict[str, Any]

Returns
Dictionary of losses.

alibi.explainers.backends.tensorflow.cfrl_tabular module

This module contains utility functions for the Counterfactual with Reinforcement Learning tabular class (cfrl_tabular)
for the Tensorflow backend.

alibi.explainers.backends.tensorflow.cfrl_tabular.consistency_loss(Z_cf_pred, Z_cf_tgt,
**kwargs)

Computes heterogeneous consistency loss.

Parameters
• Z_cf_pred (Tensor) – Counterfactual embedding prediction.

• Z_cf_tgt (Union[ndarray, Tensor]) – Counterfactual embedding target.

Returns
Heterogeneous consistency loss.

alibi.explainers.backends.tensorflow.cfrl_tabular.l0_ohe(input, target, reduction='none')
Computes the L0 loss for a one-hot encoding representation.

Parameters
• input (Tensor) – Input tensor.

• target (Tensor) – Target tensor

• reduction (str) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'.

Return type
Tensor

Returns
L0 loss.

alibi.explainers.backends.tensorflow.cfrl_tabular.l1_loss(input, target=tensorflow.Tensor,
reduction='none')

Computes the L1 loss.

Parameters
• input (Tensor) – Input tensor.

• target – Target tensor

• reduction (str) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'.

Return type
Tensor

Returns
L1 loss.

alibi.explainers.backends.tensorflow.cfrl_tabular.sample_differentiable(X_hat_split,
category_map)

Samples differentiable reconstruction.

13.1. alibi package 663

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

Parameters
• X_hat_split (List[Tensor]) – List of reconstructed columns form the auto-encoder.

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are
column indexes and the values are lists containing the possible values for an attribute.

Return type
List[Tensor]

Returns
Differentiable reconstruction.

alibi.explainers.backends.tensorflow.cfrl_tabular.sparsity_loss(X_hat_split, X_ohe,
category_map, weight_num=1.0,
weight_cat=1.0)

Computes heterogeneous sparsity loss.

Parameters
• X_hat_split (List[Tensor]) – List of reconstructed columns form the auto-encoder.

• X_ohe (Tensor) – One-hot encoded representation of the input.

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are
column indexes and the values are lists containing the possible values for an attribute.

• weight_num (float) – Numerical loss weight.

• weight_cat (float) – Categorical loss weight.

Returns
Heterogeneous sparsity loss.

Submodules

alibi.explainers.backends.cfrl_base module

This module contains utility functions for the Counterfactual with Reinforcement Learning base class, alibi.
explainers.cfrl_base, that are common for both Tensorflow and Pytorch backends.

class alibi.explainers.backends.cfrl_base.CounterfactualRLDataset

Bases: ABC

static predict_batches(X, predictor, batch_size)
Predict the classification labels of the input dataset. This is performed in batches.

Parameters
• X (ndarray) – Input to be classified.

• predictor (Callable) – Prediction function.

• batch_size (int) – Maximum batch size to be used during each inference step.

Return type
ndarray

Returns
Classification labels.

664 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

alibi.explainers.backends.cfrl_base.generate_empty_condition(X)
Empty conditioning.

Parameters
X (Any) – Input instance.

Return type
None

alibi.explainers.backends.cfrl_base.get_classification_reward(Y_pred, Y_true)
Computes classification reward per instance given the prediction output and the true label. The classification
reward is a sparse/binary reward: 1 if the most likely classes from the prediction output and the label match, 0
otherwise.

Parameters
• Y_pred (ndarray) – Prediction output as a distribution over the possible classes.

• Y_true (ndarray) – True label as a distribution over the possible classes.

Returns
Classification reward per instance. 1 if the most likely classes match, 0 otherwise.

alibi.explainers.backends.cfrl_base.get_hard_distribution(Y , num_classes=None)
Constructs the hard label distribution (one-hot encoding).

Parameters
• Y (ndarray) – Prediction array. Can be soft or hard label distribution, or a label.

• num_classes (Optional[int]) – Number of classes to be considered.

Return type
ndarray

Returns
Hard label distribution (one-hot encoding).

alibi.explainers.backends.cfrl_base.identity_function(X)
Identity function.

Parameters
X (Any) – Input instance.

Return type
Any

Returns
X – The input instance.

alibi.explainers.backends.cfrl_tabular module

This module contains utility functions for the Counterfactual with Reinforcement Learning tabular class, alibi.
explainers.cfrl_tabular, that are common for both Tensorflow and Pytorch backends.

alibi.explainers.backends.cfrl_tabular.apply_category_mapping(X, category_map)
Applies a category mapping for the categorical feature in the array. It transforms ints back to strings to be
readable.

Parameters
• X (ndarray) – Array containing the columns to be mapped.

13.1. alibi package 665

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

alibi Documentation, Release 0.9.5dev

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. Keys are
columns index, and values are list of feature values.

Return type
ndarray

Returns
Transformed array.

alibi.explainers.backends.cfrl_tabular.generate_categorical_condition(X_ohe, feature_names,
category_map,
immutable_features,
conditional=True)

Generates categorical features conditional vector. For a categorical feature of cardinality K, we condition the
subset of allowed feature through a binary mask of dimension K. When training the counterfactual generator,
the mask values are sampled from Bern(0.5). For immutable features, only the original input feature value is set
to one in the binary mask. For example, the immutability of the 'marital_status' having the current value
'married' is encoded through the binary sequence [1, 0, 0], given an ordering of the possible feature values
[married, unmarried, divorced].

Parameters
• X_ohe (ndarray) – One-hot encoding representation of the element(s) for which the con-

ditional vector will be generated. The elements are required since some features can be
immutable. In that case, the mask vector is the one-hot encoding itself for that particular
feature.

• feature_names (List[str]) – List of feature names. This should be provided by the
dataset.

• category_map (Dict[int, List]) – Dictionary of category mapping. The keys are column
indexes and the values are lists containing the possible feature values.

• immutable_features (List[str]) – List of immutable features.

• conditional (bool) – Boolean flag to generate a conditional vector. If False the condi-
tional vector does not impose any restrictions on the feature value.

Return type
ndarray

Returns
Conditional vector for categorical feature.

alibi.explainers.backends.cfrl_tabular.generate_condition(X_ohe, feature_names, category_map,
ranges, immutable_features,
conditional=True)

Generates conditional vector.

Parameters
• X_ohe (ndarray) – One-hot encoding representation of the element(s) for which the con-

ditional vector will be generated. This method assumes that the input array, X_ohe, is has
the first columns corresponding to the numerical features, and the rest are one-hot encodings
of the categorical columns. The numerical and the categorical columns are ordered by the
original column index(e.g., numerical = (1, 4), categorical=(0, 2, 3)).

• feature_names (List[str]) – List of feature names.

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are
column indexes and the values are lists containing the possible feature values.

666 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

• ranges (Dict[str, List[float]]) – Dictionary of ranges for numerical features. Each
value is a list containing two elements, first one negative and the second one positive.

• immutable_features (List[str]) – List of immutable map features.

• conditional (bool) – Boolean flag to generate a conditional vector. If False the condi-
tional vector does not impose any restrictions on the feature value.

Return type
ndarray

Returns
Conditional vector.

alibi.explainers.backends.cfrl_tabular.generate_numerical_condition(X_ohe, feature_names,
category_map, ranges,
immutable_features,
conditional=True)

Generates numerical features conditional vector. For numerical features with a minimum value a_min and a
maximum value a_max, we include in the conditional vector the values -p_min, p_max, where p_min, p_max are
in [0, 1]. The range [-p_min, p_max] encodes a shift and scale-invariant representation of the interval [a - p_min
* (a_max - a_min), a + p_max * (a_max - a_min)], where `a is the original feature value. During training, p_min
and p_max are sampled from Beta(2, 2) for each unconstrained feature. Immutable features can be encoded by
p_min = p_max = 0 or listed in immutable_features list. Features allowed to increase or decrease only correspond
to setting p_min = 0 or p_max = 0, respectively. For example, allowing the 'Age' feature to increase by up to 5
years is encoded by taking p_min = 0, p_max=0.1, assuming the minimum age of 10 and the maximum age of
60 years in the training set: 5 = 0.1 * (60 - 10).

Parameters
• X_ohe (ndarray) – One-hot encoding representation of the element(s) for which the condi-

tional vector will be generated. This argument is used to extract the number of conditional
vector. The choice of X_ohe instead of a size argument is for consistency purposes with
categorical_cond function.

• feature_names (List[str]) – List of feature names. This should be provided by the
dataset.

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are
column indexes and the values are lists containing the possible feature values.

• ranges (Dict[str, List[float]]) – Dictionary of ranges for numerical features. Each
value is a list containing two elements, first one negative and the second one positive.

• immutable_features (List[str]) – Dictionary of immutable features. The keys are the
column indexes and the values are booleans: True if the feature is immutable, False other-
wise.

• conditional (bool) – Boolean flag to generate a conditional vector. If False the condi-
tional vector does not impose any restrictions on the feature value.

Return type
ndarray

Returns
Conditional vector for numerical features.

13.1. alibi package 667

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

alibi Documentation, Release 0.9.5dev

alibi.explainers.backends.cfrl_tabular.get_categorical_conditional_vector(X, condition,
preprocessor,
feature_names,
category_map, im-
mutable_features=None,
diverse=False)

Generates a conditional vector. The condition is expressed a a delta change of the feature. For categori-
cal feature, if the 'Occupation' can change to 'Blue-Collar' or 'White-Collar', the delta change is
['Blue-Collar', 'White-Collar']. Note that the original value is optional as it is included by default.

Parameters
• X (ndarray) – Instances for which to generate the conditional vector in the original input

format.

• condition (Dict[str, List[Union[float, str]]]) – Dictionary of conditions per feature.
For numerical features it expects a range that contains the original value. For categorical
features it expects a list of feature values per features that includes the original value.

• preprocessor (Callable[[ndarray], ndarray]) – Data preprocessor. The preprocessor
should standardize the numerical values and convert categorical ones into one-hot encoding
representation. By convention, numerical features should be first, followed by the rest of
categorical ones.

• feature_names (List[str]) – List of feature names. This should be provided by the
dataset.

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are
column indexes and the values are lists containing the possible feature values. This should
be provided by the dataset.

• immutable_features (Optional[List[str]]) – List of immutable features.

• diverse – Whether to generate a diverse set of conditional vectors. A diverse set of condi-
tional vector can generate a diverse set of counterfactuals for a given input instance.

Return type
List[ndarray]

Returns
List of conditional vectors for each categorical feature.

alibi.explainers.backends.cfrl_tabular.get_conditional_dim(feature_names, category_map)
Computes the dimension of the conditional vector.

Parameters
• feature_names (List[str]) – List of feature names. This should be provided by the

dataset.

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are
column indexes and the values are lists containing the possible feature values. This should
be provided by the dataset.

Return type
int

Returns
Dimension of the conditional vector

668 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

alibi.explainers.backends.cfrl_tabular.get_conditional_vector(X, condition, preprocessor,
feature_names, category_map,
stats, ranges=None,
immutable_features=None,
diverse=False)

Generates a conditional vector. The condition is expressed a a delta change of the feature.

For numerical features, if the 'Age' feature is allowed to increase up to 10 more years, the delta change is [0,
10]. If the 'Hours per week' is allowed to decrease down to -5 and increases up to +10, then the delta change
is [-5, +10]. Note that the interval must go include 0.

For categorical feature, if the 'Occupation' can change to 'Blue-Collar' or 'White-Collar', the delta
change is ['Blue-Collar', 'White-Collar']. Note that the original value is optional as it is included by
default.

Parameters
• X (ndarray) – Instances for which to generate the conditional vector in the original input

format.

• condition (Dict[str, List[Union[float, str]]]) – Dictionary of conditions per feature.
For numerical features it expects a range that contains the original value. For categorical
features it expects a list of feature values per features that includes the original value.

• preprocessor (Callable[[ndarray], ndarray]) – Data preprocessor. The preprocessor
should standardize the numerical values and convert categorical ones into one-hot encoding
representation. By convention, numerical features should be first, followed by the rest of
categorical ones.

• feature_names (List[str]) – List of feature names. This should be provided by the
dataset.

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are
column indexes and the values are lists containing the possible feature values. This should
be provided by the dataset.

• stats (Dict[int, Dict[str, float]]) – Dictionary of statistic of the training data. Con-
tains the minimum and maximum value of each numerical feature in the training set. Each
key is an index of the column and each value is another dictionary containing 'min' and
'max' keys.

• ranges (Optional[Dict[str, List[float]]]) – Dictionary of ranges for numerical fea-
ture. Each value is a list containing two elements, first one negative and the second one
positive.

• immutable_features (Optional[List[str]]) – List of immutable features.

• diverse – Whether to generate a diverse set of conditional vectors. A diverse set of condi-
tional vector can generate a diverse set of counterfactuals for a given input instance.

Return type
ndarray

Returns
Conditional vector.

alibi.explainers.backends.cfrl_tabular.get_he_preprocessor(X, feature_names, category_map,
feature_types=None)

Heterogeneous dataset preprocessor. The numerical features are standardized and the categorical features are
one-hot encoded.

13.1. alibi package 669

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

Parameters
• X (ndarray) – Data to fit.

• feature_names (List[str]) – List of feature names. This should be provided by the
dataset.

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are
column indexes and the values are lists containing the possible feature values. This should
be provided by the dataset.

• feature_types (Optional[Dict[str, type]]) – Dictionary of type for the numerical fea-
tures.

Return type
Tuple[Callable[[ndarray], ndarray], Callable[[ndarray], ndarray]]

Returns
• preprocessor – Data preprocessor.

• inv_preprocessor – Inverse data preprocessor (e.g., inv_preprocessor(preprocessor(x)) = x
)

alibi.explainers.backends.cfrl_tabular.get_numerical_conditional_vector(X, condition,
preprocessor,
feature_names,
category_map, stats,
ranges=None, im-
mutable_features=None,
diverse=False)

Generates a conditional vector. The condition is expressed a a delta change of the feature. For numerical features,
if the 'Age' feature is allowed to increase up to 10 more years, the delta change is [0, 10]. If the 'Hours per
week' is allowed to decrease down to -5 and increases up to +10, then the delta change is [-5, +10]. Note that
the interval must go include 0.

Parameters
• X (ndarray) – Instances for which to generate the conditional vector in the original input

format.

• condition (Dict[str, List[Union[float, str]]]) – Dictionary of conditions per feature.
For numerical features it expects a range that contains the original value. For categorical
features it expects a list of feature values per features that includes the original value.

• preprocessor (Callable[[ndarray], ndarray]) – Data preprocessor. The preprocessor
should standardize the numerical values and convert categorical ones into one-hot encoding
representation. By convention, numerical features should be first, followed by the rest of
categorical ones.

• feature_names (List[str]) – List of feature names. This should be provided by the
dataset.

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are
column indexes and the values are lists containing the possible feature values. This should
be provided by the dataset.

• stats (Dict[int, Dict[str, float]]) – Dictionary of statistic of the training data. Con-
tains the minimum and maximum value of each numerical feature in the training set. Each
key is an index of the column and each value is another dictionary containing 'min' and
'max' keys.

670 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

• ranges (Optional[Dict[str, List[float]]]) – Dictionary of ranges for numerical fea-
ture. Each value is a list containing two elements, first one negative and the second one
positive.

• immutable_features (Optional[List[str]]) – List of immutable features.

• diverse – Whether to generate a diverse set of conditional vectors. A diverse set of condi-
tional vector can generate a diverse set of counterfactuals for a given input instance.

Return type
List[ndarray]

Returns
List of conditional vectors for each numerical feature.

alibi.explainers.backends.cfrl_tabular.get_statistics(X, preprocessor, category_map)
Computes statistics.

Parameters
• X (ndarray) – Instances for which to compute statistic.

• preprocessor (Callable[[ndarray], ndarray]) – Data preprocessor. The preprocessor
should standardize the numerical values and convert categorical ones into one-hot encoding
representation. By convention, numerical features should be first, followed by the rest of
categorical ones.

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are
column indexes and the values are lists containing the possible feature values. This should
be provided by the dataset.

Return type
Dict[int, Dict[str, float]]

Returns
Dictionary of statistics. For each numerical column, the minimum and maximum value is re-
turned.

alibi.explainers.backends.cfrl_tabular.sample(X_hat_split, X_ohe, C, category_map, stats)
Samples an instance from the given reconstruction according to the conditional vector and the dictionary of
statistics.

Parameters
• X_hat_split (List[ndarray]) – List of reconstructed columns from the auto-encoder. The

categorical columns contain logits.

• X_ohe (ndarray) – One-hot encoded representation of the input.

• C (Optional[ndarray]) – Conditional vector.

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are
column indexes and the values are lists containing the possible values for a feature.

• stats (Dict[int, Dict[str, float]]) – Dictionary of statistic of the training data. Con-
tains the minimum and maximum value of each numerical feature in the training set. Each
key is an index of the column and each value is another dictionary containing 'min' and
'max' keys.

Return type
List[ndarray]

13.1. alibi package 671

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List

alibi Documentation, Release 0.9.5dev

Returns
X_ohe_hat_split – Most probable reconstruction sample according to the auto-encoder, sampled
according to the conditional vector and the dictionary of statistics. This method assumes that the
input array, X_ohe , has the first columns corresponding to the numerical features, and the rest
are one-hot encodings of the categorical columns.

alibi.explainers.backends.cfrl_tabular.sample_categorical(X_hat_cat_split, C_cat_split)
Samples categorical features according to the conditional vector. This method sample conditional according to
the masking vector the most probable outcome.

Parameters
• X_hat_cat_split (List[ndarray]) – List of reconstructed categorical heads from the

auto-encoder. The categorical columns contain logits.

• C_cat_split (Optional[List[ndarray]]) – List of conditional vector for categorical
heads.

Return type
List[ndarray]

Returns
X_ohe_hat_cat – List of one-hot encoded vectors sampled according to the conditional vector.

alibi.explainers.backends.cfrl_tabular.sample_numerical(X_hat_num_split, X_ohe_num_split,
C_num_split, stats)

Samples numerical features according to the conditional vector. This method clips the values between the desired
ranges specified in the conditional vector, and ensures that the values are between the minimum and the maximum
values from train training datasets stored in the dictionary of statistics.

Parameters
• X_hat_num_split (List[ndarray]) – List of reconstructed numerical heads from the auto-

encoder. This list should contain a single element as all the numerical features are part of a
singe linear layer output.

• X_ohe_num_split (List[ndarray]) – List of original numerical heads. The list should
contain a single element as part of the convention mentioned in the description of
X_ohe_hat_num.

• C_num_split (Optional[List[ndarray]]) – List of conditional vector for numerical
heads. The list should contain a single element as part of the convention mentioned in the
description of X_ohe_hat_num.

• stats (Dict[int, Dict[str, float]]) – Dictionary of statistic of the training data. Con-
tains the minimum and maximum value of each numerical feature in the training set. Each
key is an index of the column and each value is another dictionary containing 'min' and
'max' keys.

Return type
List[ndarray]

Returns
X_ohe_hat_num – List of clamped input vectors according to the conditional vectors and the
dictionary of statistics.

alibi.explainers.backends.cfrl_tabular.split_ohe(X_ohe, category_map)
Splits a one-hot encoding array in a list of numerical heads and a list of categorical heads. Since by convention
the numerical heads are merged in a single head, if the function returns a list of numerical heads, then the size
of the list is 1.

672 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List

alibi Documentation, Release 0.9.5dev

Parameters
• X_ohe (Union[ndarray, Tensor, Tensor]) – One-hot encoding representation. This can

be any type of tensor: np.ndarray, torch.Tensor, tf.Tensor.

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are
column indexes and the values are lists containing the possible values of a feature.

Return type
Tuple[List, List]

Returns
• X_ohe_num_split – List of numerical heads. If different than None, the list’s size is 1.

• X_ohe_cat_split – List of categorical one-hot encoded heads.

alibi.explainers.similarity package

Subpackages

alibi.explainers.similarity.backends package

Subpackages

alibi.explainers.similarity.backends.pytorch package

Submodules

alibi.explainers.similarity.backends.pytorch.base module

pytorch backend for similarity explainers.

Methods unique to the pytorch backend are defined here. The interface this class defines syncs with the tensorflow
backend in order to ensure that the similarity methods only require to match this interface.

alibi.explainers.similarity.backends.tensorflow package

Submodules

alibi.explainers.similarity.backends.tensorflow.base module

tensorflow backend for similarity explainers.

Methods unique to the tensorflow backend are defined here. The interface this class defines syncs with the pytorch
backend in order to ensure that the similarity methods only require to match this interface.

13.1. alibi package 673

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List

alibi Documentation, Release 0.9.5dev

Submodules

alibi.explainers.similarity.base module

class alibi.explainers.similarity.base.BaseSimilarityExplainer(predictor, loss_fn, sim_fn,
precompute_grads=False, back-
end=Framework.TENSORFLOW ,
device=None, meta=None,
verbose=False)

Bases: Explainer, ABC

Base class for similarity explainers.

__init__(predictor, loss_fn, sim_fn, precompute_grads=False, backend=Framework.TENSORFLOW ,
device=None, meta=None, verbose=False)

Constructor

Parameters
• predictor (Union[Model, Module]) – Model to be explained.

• loss_fn (Union[Callable[[Tensor, Tensor], Tensor], Callable[[Tensor, Tensor],
Tensor]]) – Loss function.

• sim_fn (Callable[[ndarray, ndarray], ndarray]) – Similarity function. Takes two
inputs and returns a similarity value.

• precompute_grads (bool) – Whether to precompute and store the gradients when fitting.

• backend (Framework) – Deep learning backend.

• device (Union[int, str, device, None]) – Device to be used. Will default to the same
device the backend defaults to.

• meta (Optional[dict]) – Metadata specific to explainers that inherit from this class.
Should be initialized in the child class and passed in here. Is used in the __init__ of the
base Explainer class.

fit(X_train, Y_train)
Fit the explainer. If self.precompute_grads == True then the gradients are precomputed and stored.

Parameters
• X_train (Union[ndarray, List[Any]]) – Training data.

• Y_train (ndarray) – Training labels.

Return type
Explainer

Returns
self – Returns self.

reset_predictor(predictor)
Resets the predictor to the given predictor.

Parameters
predictor (Union[Model, Module]) – The new predictor to use.

Return type
None

674 Chapter 13. alibi

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

alibi.explainers.similarity.grad module

Gradient-based explainer.

This module implements the gradient-based explainers grad-dot and grad-cos.

class alibi.explainers.similarity.grad.GradientSimilarity(predictor, loss_fn, sim_fn='grad_dot',
task='classification',
precompute_grads=False,
backend='tensorflow', device=None,
verbose=False)

Bases: BaseSimilarityExplainer

__init__(predictor, loss_fn, sim_fn='grad_dot', task='classification', precompute_grads=False,
backend='tensorflow', device=None, verbose=False)

GradientSimilarity explainer.

The gradient similarity explainer is used to find examples in the training data that the predictor considers
similar to test instances the user wants to explain. It uses the gradients of the loss between the model output
and the training data labels. These are compared using the similarity function specified by sim_fn. The
GradientSimilarity explainer can be applied to models trained for both classification and regression tasks.

Parameters
• predictor (Union[Model, Module]) – Model to explain.

• loss_fn (Union[Callable[[Tensor, Tensor], Tensor], Callable[[Tensor, Tensor],
Tensor]]) – Loss function used. The gradient of the loss function is used to compute the
similarity between the test instances and the training set.

• sim_fn (Literal[‘grad_dot’, ‘grad_cos’, ‘grad_asym_dot’]) – Similarity function to use.
The 'grad_dot' similarity function computes the dot product of the gradients, see alibi.
explainers.similarity.metrics.dot(). The 'grad_cos' similarity function com-
putes the cosine similarity between the gradients, see alibi.explainers.similarity.
metrics.cos(). The 'grad_asym_dot' similarity function is similar to 'grad_dot'
but is asymmetric, see alibi.explainers.similarity.metrics.asym_dot().

• task (Literal[‘classification’, ‘regression’]) – Type of task performed by the model. If
the task is 'classification', the target value passed to the explain method of the test
instance can be specified either directly or left as None, if left None we use the model’s
maximum prediction. If the task is 'regression', the target value of the test instance
must be specified directly.

• precompute_grads (bool) – Whether to precompute the gradients. If False, gradients
are computed on the fly otherwise we precompute them which can be faster when it comes
to computing explanations. Note this option may be memory intensive if the model is large.

• backend (Literal[‘tensorflow’, ‘pytorch’]) – Backend to use.

• device (Union[int, str, device, None]) – Device to use. If None, the default device for
the backend is used. If using pytorch backend see pytorch device docs for correct options.
Note that in the pytorch backend case this parameter can be a torch.device. If using
tensorflow backend see tensorflow docs for correct options.

• verbose (bool) – Whether to print the progress of the explainer.

Raises
• ValueError – If the task is not 'classification' or 'regression'.

• ValueError – If the sim_fn is not 'grad_dot', 'grad_cos' or 'grad_asym_dot'.

13.1. alibi package 675

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://pytorch.org/docs/stable/tensor_attributes.html#torch-device
https://www.tensorflow.org/api_docs/python/tf/device
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

alibi Documentation, Release 0.9.5dev

• ValueError – If the backend is not 'tensorflow' or 'pytorch'.

• TypeError – If the device is not an int, str, torch.device or None for the torch back-
end option or if the device is not str or None for the tensorflow backend option.

explain(X, Y=None)
Explain the predictor’s predictions for a given input.

Computes the similarity score between the inputs and the training set. Returns an explainer object contain-
ing the scores, the indices of the training set instances sorted by descending similarity and the most similar
and least similar instances of the data set for the input. Note that the input may be a single instance or a
batch of instances.

Parameters
• X (Union[ndarray, Tensor, Tensor, Any, List[Any]]) – X can be a numpy array, tensor-

flow tensor, pytorch tensor of the same shape as the training data or a list of objects, with
or without a leading batch dimension. If the batch dimension is missing it’s added.

• Y (Union[ndarray, Tensor, Tensor, None]) – Y can be a numpy array, tensorflow tensor
or a pytorch tensor. In the case of a regression task, the Y argument must be present. If the
task is classification then Y defaults to the model prediction.

Return type
Explanation

Returns
Explanation object containing the ordered similarity scores for the test instance(s) with addi-
tional metadata as attributes. Contains the following data-related attributes –

• scores: np.ndarray - similarity scores for each pair of instances in the training and test
set sorted in descending order.

• ordered_indices: np.ndarray - indices of the paired training and test set instances sorted
by the similarity score in descending order.

• most_similar: np.ndarray - 5 most similar instances in the training set for each test in-
stance The first element is the most similar instance.

• least_similar: np.ndarray - 5 least similar instances in the training set for each test in-
stance. The first element is the least similar instance.

Raises
• ValueError – If Y is None and the task is 'regression'.

• ValueError – If the shape of X or Y does not match the shape of the training or target
data.

• ValueError – If the fit method has not been called prior to calling this method.

fit(X_train, Y_train)
Fit the explainer.

The GradientSimilarity explainer requires the model gradients over the training data. In the explain method
it compares them to the model gradients for the test instance(s). If precompute_grads=True on initial-
ization then the gradients are precomputed here and stored. This will speed up the explain method call but
storing the gradients may not be feasible for large models.

Parameters
• X_train (Union[ndarray, List[Any]]) – Training data.

676 Chapter 13. alibi

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any

alibi Documentation, Release 0.9.5dev

• Y_train (ndarray) – Training labels.

Return type
Explainer

Returns
self – Returns self.

class alibi.explainers.similarity.grad.Task(value)
Bases: str, Enum

Enum of supported tasks.

CLASSIFICATION = 'classification'

REGRESSION = 'regression'

alibi.explainers.similarity.metrics module

alibi.explainers.similarity.metrics.asym_dot(X, Y , eps=1e-07)
Computes the influence of training instances Y to test instances X. This is an asymmetric kernel. (𝑋𝑇𝑌/‖𝑌 ‖2).
See the paper for more details. Each of X and Y should have a leading batch dimension of size at least 1.

Parameters
• X (ndarray) – Matrix of vectors.

• Y (ndarray) – Matrix of vectors.

• eps (float) – Numerical stability.

Return type
Union[float, ndarray]

Returns
Matrix of asymmetric dot product similarity values between the vector(s) in X and vectors in Y.

alibi.explainers.similarity.metrics.cos(X, Y , eps=1e-07)
Computes the cosine between the vector(s) in X and vector Y. (𝑋𝑇𝑌/‖𝑋‖‖𝑌 ‖). Each of X and Y should have
a leading batch dimension of size at least 1.

Parameters
• X (ndarray) – Matrix of vectors.

• Y (ndarray) – Matrix of vectors.

• eps (float) – Numerical stability.

Return type
Union[float, ndarray]

Returns
Matrix of cosine similarities between the vector(s) in X and vectors in Y.

alibi.explainers.similarity.metrics.dot(X, Y)
Performs a dot product between the vector(s) in X and vector Y. (𝑋𝑇𝑌 =

∑︀
𝑖 𝑋𝑖𝑌𝑖). Each of X and Y should

have a leading batch dimension of size at least 1.

Parameters
• X (ndarray) – Matrix of vectors.

13.1. alibi package 677

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum
https://arxiv.org/abs/2102.05262
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

• Y (ndarray) – Matrix of vectors.

Return type
Union[float, ndarray]

Returns
Matrix of dot products between the vector(s) in X and vectors in Y.

Submodules

alibi.explainers.ale module

class alibi.explainers.ale.ALE(predictor, feature_names=None, target_names=None,
check_feature_resolution=True, low_resolution_threshold=10,
extrapolate_constant=True, extrapolate_constant_perc=10.0,
extrapolate_constant_min=0.1)

Bases: Explainer

__init__(predictor, feature_names=None, target_names=None, check_feature_resolution=True,
low_resolution_threshold=10, extrapolate_constant=True, extrapolate_constant_perc=10.0,
extrapolate_constant_min=0.1)

Accumulated Local Effects for tabular datasets. Current implementation supports first order feature effects
of numerical features.

Parameters
• predictor (Callable[[ndarray], ndarray]) – A callable that takes in an N x F array

as input and outputs an N x T array (N - number of data points, F - number of features, T
- number of outputs/targets (e.g. 1 for single output regression, >=2 for classification)).

• feature_names (Optional[List[str]]) – A list of feature names used for displaying
results.

• target_names (Optional[List[str]]) – A list of target/output names used for displaying
results.

• check_feature_resolution (bool) – If True, the number of unique values is calcu-
lated for each feature and if it is less than low_resolution_threshold then the feature values
are used for grid-points instead of quantiles. This may increase the runtime of the algo-
rithm for large datasets. Only used for features without custom grid-points specified in
alibi.explainers.ale.ALE.explain().

• low_resolution_threshold (int) – If a feature has at most this many unique values,
these are used as the grid points instead of quantiles. This is to avoid situations when
the quantile algorithm returns quantiles between discrete values which can result in jumps
in the ALE plot obscuring the true effect. Only used if check_feature_resolution is True
and for features without custom grid-points specified in alibi.explainers.ale.ALE.
explain().

• extrapolate_constant (bool) – If a feature is constant, only one quantile exists where
all the data points lie. In this case the ALE value at that point is zero, however this may
be misleading if the feature does have an effect on the model. If this parameter is set to
True, the ALE values are calculated on an interval surrounding the constant value. The in-
terval length is controlled by the extrapolate_constant_perc and extrapolate_constant_min
arguments.

• extrapolate_constant_perc (float) – Percentage by which to extrapolate a constant
feature value to create an interval for ALE calculation. If q is the constant feature value,

678 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

creates an interval [q - q/extrapolate_constant_perc, q + q/extrapolate_constant_perc] for
which ALE is calculated. Only relevant if extrapolate_constant is set to True.

• extrapolate_constant_min (float) – Controls the minimum extrapolation length for
constant features. An interval constructed for constant features is guaranteed to be 2 x
extrapolate_constant_min wide centered on the feature value. This allows for captur-
ing model behaviour around constant features which have small value so that extrapo-
late_constant_perc is not so helpful. Only relevant if extrapolate_constant is set to True.

explain(X, features=None, min_bin_points=4, grid_points=None)
Calculate the ALE curves for each feature with respect to the dataset X.

Parameters
• X (ndarray) – An N x F tabular dataset used to calculate the ALE curves. This is typically

the training dataset or a representative sample.

• features (Optional[List[int]]) – Features for which to calculate ALE.

• min_bin_points (int) – Minimum number of points each discretized interval should
contain to ensure more precise ALE estimation. Only relevant for adaptive grid points
(i.e., features without an entry in the grid_points dictionary).

• grid_points (Optional[Dict[int, ndarray]]) – Custom grid points. Must be a dict
where the keys are features indices and the values are monotonically increasing numpy ar-
rays defining the grid points for each feature. See the Notes section for the default behavior
when potential edge-cases arise when using grid-points. If no grid points are specified
(i.e. the feature is missing from the grid_points dictionary), deciles discretization is used
instead.

Return type
Explanation

Returns
explanation – An Explanation object containing the data and the metadata of the calculated
ALE curves. See usage at ALE examples for details.

Notes

Consider f to be a feature of interest. We denote possible feature values of f by X (i.e. the values from the
dataset column corresponding to feature f), by O a user-specified grid-point value, and by (X|O) an overlap
between a grid-point and a feature value. We can encounter the following edge-cases:

• Grid points outside the feature range. Consider the following example: O O O X X O X O X O O, where
3 grid-points are smaller than the minimum value in f, and 2 grid-points are larger than the maximum
value in f. The empty leading and ending bins are removed. The grid-points considered

will be: O X X O X O X O.

• Grid points that do not cover the entire feature range. Consider the following example: X X O X X O
X O X X X X X. Two auxiliary grid-points are added which correspond the value of the minimum and
maximum value of feature f. The grid-points considered will be: (O|X) X O X X O X O X X X X (X|O).

• Grid points that do not contain any values in between. Consider the following example: (O|X) X X O
O O X O X O O (X|O). The intervals which do not contain any feature values are removed/merged.
The grid-points considered will be: (O|X) X X O X O X O (X|O).

reset_predictor(predictor)
Resets the predictor function.

13.1. alibi package 679

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.seldon.io/projects/alibi/en/latest/methods/ALE.html

alibi Documentation, Release 0.9.5dev

Parameters
predictor (Callable) – New predictor function.

Return type
None

alibi.explainers.ale.adaptive_grid(values, min_bin_points=1)
Find the optimal number of quantiles for the range of values so that each resulting bin contains at least
min_bin_points. Uses bisection.

Parameters
• values (ndarray) – Array of feature values.

• min_bin_points (int) – Minimum number of points each discretized interval should con-
tain to ensure more precise ALE estimation.

Return type
Tuple[ndarray, int]

Returns
• q – Unique quantiles.

• num_quantiles – Number of non-unique quantiles the feature array was subdivided into.

Notes

This is a heuristic procedure since the bisection algorithm is applied to a function which is not monotonic. This
will not necessarily find the maximum number of bins the interval can be subdivided into to satisfy the minimum
number of points in each resulting bin.

alibi.explainers.ale.ale_num(predictor, X, feature, feature_grid_points=None, min_bin_points=4,
check_feature_resolution=True, low_resolution_threshold=10,
extrapolate_constant=True, extrapolate_constant_perc=10.0,
extrapolate_constant_min=0.1)

Calculate the first order ALE curve for a numerical feature.

Parameters
• predictor (Callable) – Model prediction function.

• X (ndarray) – Dataset for which ALE curves are computed.

• feature (int) – Index of the numerical feature for which to calculate ALE.

• feature_grid_points (Optional[ndarray]) – Custom grid points. An numpy array
defining the grid points for the given features.

• min_bin_points (int) – Minimum number of points each discretized interval should con-
tain to ensure more precise ALE estimation. Only relevant for adaptive grid points (i.e.,
feature for which feature_grid_points=None).

• check_feature_resolution (bool) – Refer to ALE documentation.

• low_resolution_threshold (int) – Refer to ALE documentation.

• extrapolate_constant (bool) – Refer to ALE documentation.

• extrapolate_constant_perc (float) – Refer to ALE documentation.

• extrapolate_constant_min (float) – Refer to ALE documentation.

680 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

Return type
Tuple[ndarray, ...]

Returns
• fvals – Array of quantiles or custom grid-points of the input values.

• ale – ALE values for each feature at each of the points in fvals.

• ale0 – The constant offset used to center the ALE curves.

alibi.explainers.ale.bisect_fun(fun, target, lo, hi)
Bisection algorithm for function evaluation with integer support.

Assumes the function is non-decreasing on the interval [lo, hi]. Return an integer value v such that for all x<v,
fun(x)<target and for all x>=v, fun(x)>=target. This is equivalent to the library function bisect.bisect_left but
for functions defined on integers.

Parameters
• fun (Callable) – A function defined on integers in the range [lo, hi] and returning floats.

• target (float) – Target value to be searched for.

• lo (int) – Lower bound of the domain.

• hi (int) – Upper bound of the domain.

Return type
int

Returns
Integer index.

alibi.explainers.ale.get_quantiles(values, num_quantiles=11, interpolation='linear')
Calculate quantiles of values in an array.

Parameters
• values (ndarray) – Array of values.

• num_quantiles (int) – Number of quantiles to calculate.

Return type
ndarray

Returns
Array of quantiles of the input values.

alibi.explainers.ale.minimum_satisfied(values, min_bin_points, n)
Calculates whether the partition into bins induced by n quantiles has the minimum number of points in each
resulting bin.

Parameters
• values (ndarray) – Array of feature values.

• min_bin_points (int) – Minimum number of points each discretized interval needs to
contain.

• n (int) – Number of quantiles.

Return type
int

13.1. alibi package 681

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

Returns
Integer encoded boolean with 1 - each bin has at least min_bin_points and 0 otherwise.

alibi.explainers.ale.plot_ale(exp, features='all', targets='all', n_cols=3, sharey='all', constant=False,
ax=None, line_kw=None, fig_kw=None)

Plot ALE curves on matplotlib axes.

Parameters
• exp – An Explanation object produced by a call to the alibi.explainers.ale.ALE.
explain() method.

• features – A list of features for which to plot the ALE curves or 'all' for all features. Can
be a mix of integers denoting feature index or strings denoting entries in exp.feature_names.
Defaults to 'all'.

• targets – A list of targets for which to plot the ALE curves or 'all' for all targets. Can
be a mix of integers denoting target index or strings denoting entries in exp.target_names.
Defaults to 'all'.

• n_cols – Number of columns to organize the resulting plot into.

• sharey – A parameter specifying whether the y-axis of the ALE curves should be on the
same scale for several features. Possible values are: 'all' | 'row' | None.

• constant – A parameter specifying whether the constant zeroth order effects should be
added to the ALE first order effects.

• ax – A matplotlib axes object or a numpy array of matplotlib axes to plot on.

• line_kw – Keyword arguments passed to the plt.plot function.

• fig_kw – Keyword arguments passed to the fig.set function.

Returns
An array of matplotlib axes with the resulting ALE plots.

alibi.explainers.cem module

class alibi.explainers.cem.CEM(predict, mode, shape, kappa=0.0, beta=0.1,
feature_range=(-10000000000.0, 10000000000.0), gamma=0.0,
ae_model=None, learning_rate_init=0.01, max_iterations=1000,
c_init=10.0, c_steps=10, eps=(0.001, 0.001), clip=(-100.0, 100.0),
update_num_grad=1, no_info_val=None, write_dir=None, sess=None)

Bases: Explainer, FitMixin

__init__(predict, mode, shape, kappa=0.0, beta=0.1, feature_range=(-10000000000.0, 10000000000.0),
gamma=0.0, ae_model=None, learning_rate_init=0.01, max_iterations=1000, c_init=10.0,
c_steps=10, eps=(0.001, 0.001), clip=(-100.0, 100.0), update_num_grad=1, no_info_val=None,
write_dir=None, sess=None)

Initialize contrastive explanation method. Paper: https://arxiv.org/abs/1802.07623

Parameters
• predict (Union[Callable[[ndarray], ndarray], Model]) – tensorflow model or any

other model’s prediction function returning class probabilities.

• mode (str) – Find pertinent negatives (PN) or pertinent positives (PP).

• shape (tuple) – Shape of input data starting with batch size.

682 Chapter 13. alibi

https://arxiv.org/abs/1802.07623
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

alibi Documentation, Release 0.9.5dev

• kappa (float) – Confidence parameter for the attack loss term.

• beta (float) – Regularization constant for L1 loss term.

• feature_range (tuple) – Tuple with min and max ranges to allow for perturbed in-
stances. Min and max ranges can be float or numpy arrays with dimension (1x nb of fea-
tures) for feature-wise ranges.

• gamma (float) – Regularization constant for optional auto-encoder loss term.

• ae_model (Optional[Model]) – Optional auto-encoder model used for loss regulariza-
tion.

• learning_rate_init (float) – Initial learning rate of optimizer.

• max_iterations (int) – Maximum number of iterations for finding a PN or PP.

• c_init (float) – Initial value to scale the attack loss term.

• c_steps (int) – Number of iterations to adjust the constant scaling the attack loss term.

• eps (tuple) – If numerical gradients are used to compute dL/dx = (dL/dp) * (dp/dx), then
eps[0] is used to calculate dL/dp and eps[1] is used for dp/dx. eps[0] and eps[1] can be a
combination of float values and numpy arrays. For eps[0], the array dimension should be
(1x nb of prediction categories) and for eps[1] it should be (1x nb of features).

• clip (tuple) – Tuple with min and max clip ranges for both the numerical gradients and
the gradients obtained from the tensorflow graph.

• update_num_grad (int) – If numerical gradients are used, they will be updated every
update_num_grad iterations.

• no_info_val (Union[float, ndarray, None]) – Global or feature-wise value considered
as containing no information.

• write_dir (Optional[str]) – Directory to write tensorboard files to.

• sess (Optional[Session]) – Optional tensorflow session that will be used if passed in-
stead of creating or inferring one internally.

attack(X, Y , verbose=False)
Find pertinent negative or pertinent positive for instance X using a fast iterative shrinkage-thresholding
algorithm (FISTA).

Parameters
• X (ndarray) – Instance to attack.

• Y (ndarray) – Labels for X.

• verbose (bool) – Print intermediate results of optimization if True.

Return type
Tuple[ndarray, Tuple[ndarray, ndarray]]

Returns
Overall best attack and gradients for that attack.

explain(X, Y=None, verbose=False)
Explain instance and return PP or PN with metadata.

Parameters
• X (ndarray) – Instances to attack.

• Y (Optional[ndarray]) – Labels for X.

13.1. alibi package 683

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional

alibi Documentation, Release 0.9.5dev

• verbose (bool) – Print intermediate results of optimization if True.

Return type
Explanation

Returns
explanation – Explanation object containing the PP or PN with additional metadata as at-
tributes. See usage at CEM examples for details.

fit(train_data, no_info_type='median')
Get ‘no information’ values from the training data.

Parameters
• train_data (ndarray) – Representative sample from the training data.

• no_info_type (str) – Median or mean value by feature supported.

Return type
CEM

get_gradients(X, Y)
Compute numerical gradients of the attack loss term: dL/dx = (dL/dP)*(dP/dx) with L = loss_attack_s; P
= predict; x = adv_s

Parameters
• X (ndarray) – Instance around which gradient is evaluated.

• Y (ndarray) – One-hot representation of instance labels.

Return type
ndarray

Returns
Array with gradients.

loss_fn(pred_proba, Y)
Compute the attack loss.

Parameters
• pred_proba (ndarray) – Prediction probabilities of an instance.

• Y (ndarray) – One-hot representation of instance labels.

Return type
ndarray

Returns
Loss of the attack.

perturb(X, eps, proba=False)
Apply perturbation to instance or prediction probabilities. Used for numerical calculation of gradients.

Parameters
• X (ndarray) – Array to be perturbed.

• eps (Union[float, ndarray]) – Size of perturbation.

• proba (bool) – If True, the net effect of the perturbation needs to be 0 to keep the sum of
the probabilities equal to 1.

684 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#bool
https://docs.seldon.io/projects/alibi/en/stable/methods/CEM.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

alibi Documentation, Release 0.9.5dev

Return type
Tuple[ndarray, ndarray]

Returns
Instances where a positive and negative perturbation is applied.

reset_predictor(predictor)
Resets the predictor function/model.

Parameters
predictor (Union[Callable, Model]) – New predictor function/model.

Return type
None

alibi.explainers.cfproto module

alibi.explainers.cfproto.CounterFactualProto(*args, **kwargs)
The class name CounterFactualProto is deprecated, please use CounterfactualProto.

class alibi.explainers.cfproto.CounterfactualProto(predict, shape, kappa=0.0, beta=0.1,
feature_range=(-10000000000.0,
10000000000.0), gamma=0.0, ae_model=None,
enc_model=None, theta=0.0, cat_vars=None,
ohe=False, use_kdtree=False,
learning_rate_init=0.01, max_iterations=1000,
c_init=10.0, c_steps=10, eps=(0.001, 0.001),
clip=(-1000.0, 1000.0), update_num_grad=1,
write_dir=None, sess=None)

Bases: Explainer, FitMixin

__init__(predict, shape, kappa=0.0, beta=0.1, feature_range=(-10000000000.0, 10000000000.0),
gamma=0.0, ae_model=None, enc_model=None, theta=0.0, cat_vars=None, ohe=False,
use_kdtree=False, learning_rate_init=0.01, max_iterations=1000, c_init=10.0, c_steps=10,
eps=(0.001, 0.001), clip=(-1000.0, 1000.0), update_num_grad=1, write_dir=None, sess=None)

Initialize prototypical counterfactual method.

Parameters
• predict (Union[Callable[[ndarray], ndarray], Model]) – tensorflow model or any

other model’s prediction function returning class probabilities.

• shape (tuple) – Shape of input data starting with batch size.

• kappa (float) – Confidence parameter for the attack loss term.

• beta (float) – Regularization constant for L1 loss term.

• feature_range (Tuple[Union[float, ndarray], Union[float, ndarray]]) – Tuple
with min and max ranges to allow for perturbed instances. Min and max ranges can be
float or numpy arrays with dimension (1x nb of features) for feature-wise ranges.

• gamma (float) – Regularization constant for optional auto-encoder loss term.

• ae_model (Optional[Model]) – Optional auto-encoder model used for loss regulariza-
tion.

• enc_model (Optional[Model]) – Optional encoder model used to guide instance pertur-
bations towards a class prototype.

13.1. alibi package 685

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional

alibi Documentation, Release 0.9.5dev

• theta (float) – Constant for the prototype search loss term.

• cat_vars (Optional[Dict[int, int]]) – Dict with as keys the categorical columns and
as values the number of categories per categorical variable.

• ohe (bool) – Whether the categorical variables are one-hot encoded (OHE) or not. If not
OHE, they are assumed to have ordinal encodings.

• use_kdtree (bool) – Whether to use k-d trees for the prototype loss term if no encoder
is available.

• learning_rate_init (float) – Initial learning rate of optimizer.

• max_iterations (int) – Maximum number of iterations for finding a counterfactual.

• c_init (float) – Initial value to scale the attack loss term.

• c_steps (int) – Number of iterations to adjust the constant scaling the attack loss term.

• eps (tuple) – If numerical gradients are used to compute dL/dx = (dL/dp) * (dp/dx), then
eps[0] is used to calculate dL/dp and eps[1] is used for dp/dx. eps[0] and eps[1] can be a
combination of float values and numpy arrays. For eps[0], the array dimension should be
(1x nb of prediction categories) and for eps[1] it should be (1x nb of features).

• clip (tuple) – Tuple with min and max clip ranges for both the numerical gradients and
the gradients obtained from the tensorflow graph.

• update_num_grad (int) – If numerical gradients are used, they will be updated every
update_num_grad iterations.

• write_dir (Optional[str]) – Directory to write tensorboard files to.

• sess (Optional[Session]) – Optional tensorflow session that will be used if passed in-
stead of creating or inferring one internally.

attack(X, Y , target_class=None, k=None, k_type='mean', threshold=0.0, verbose=False, print_every=100,
log_every=100)

Find a counterfactual (CF) for instance X using a fast iterative shrinkage-thresholding algorithm (FISTA).

Parameters
• X (ndarray) – Instance to attack.

• Y (ndarray) – Labels for X as one-hot-encoding.

• target_class (Optional[list]) – List with target classes used to find closest prototype.
If None, the nearest prototype except for the predict class on the instance is used.

• k (Optional[int]) – Number of nearest instances used to define the prototype for a class.
Defaults to using all instances belonging to the class if an encoder is used and to 1 for k-d
trees.

• k_type (str) – Use either the average encoding of the k nearest instances in a class
(k_type='mean') or the k-nearest encoding in the class (k_type='point') to define the
prototype of that class. Only relevant if an encoder is used to define the prototypes.

• threshold (float) – Threshold level for the ratio between the distance of the counter-
factual to the prototype of the predicted class for the original instance over the distance to
the prototype of the predicted class for the counterfactual. If the trust score is below the
threshold, the proposed counterfactual does not meet the requirements.

• verbose (bool) – Print intermediate results of optimization if True.

• print_every (int) – Print frequency if verbose is True.

686 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

• log_every (int) – tensorboard log frequency if write directory is specified.

Return type
Tuple[ndarray, Tuple[ndarray, ndarray]]

Returns
Overall best attack and gradients for that attack.

explain(X, Y=None, target_class=None, k=None, k_type='mean', threshold=0.0, verbose=False,
print_every=100, log_every=100)

Explain instance and return counterfactual with metadata.

Parameters
• X (ndarray) – Instances to attack.

• Y (Optional[ndarray]) – Labels for X as one-hot-encoding.

• target_class (Optional[list]) – List with target classes used to find closest prototype.
If None, the nearest prototype except for the predict class on the instance is used.

• k (Optional[int]) – Number of nearest instances used to define the prototype for a class.
Defaults to using all instances belonging to the class if an encoder is used and to 1 for k-d
trees.

• k_type (str) – Use either the average encoding of the k nearest instances in a class
(k_type='mean') or the k-nearest encoding in the class (k_type='point') to define the
prototype of that class. Only relevant if an encoder is used to define the prototypes.

• threshold (float) – Threshold level for the ratio between the distance of the counter-
factual to the prototype of the predicted class for the original instance over the distance to
the prototype of the predicted class for the counterfactual. If the trust score is below the
threshold, the proposed counterfactual does not meet the requirements.

• verbose (bool) – Print intermediate results of optimization if True.

• print_every (int) – Print frequency if verbose is True.

• log_every (int) – tensorboard log frequency if write directory is specified

Return type
Explanation

Returns
explanation – Explanation object containing the counterfactual with additional metadata as
attributes. See usage at CFProto examples for details.

fit(train_data, trustscore_kwargs=None, d_type='abdm', w=None, disc_perc=(25, 50, 75),
standardize_cat_vars=False, smooth=1.0, center=True, update_feature_range=True)
Get prototypes for each class using the encoder or k-d trees. The prototypes are used for the encoder loss
term or to calculate the optional trust scores.

Parameters
• train_data (ndarray) – Representative sample from the training data.

• trustscore_kwargs (Optional[dict]) – Optional arguments to initialize the trust
scores method.

• d_type (str) – Pairwise distance metric used for categorical variables. Currently, 'abdm',
'mvdm' and 'abdm-mvdm' are supported. 'abdm' infers context from the other variables
while 'mvdm' uses the model predictions. 'abdm-mvdm' is a weighted combination of the
two metrics.

13.1. alibi package 687

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.seldon.io/projects/alibi/en/stable/methods/CFProto.html
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

• w (Optional[float]) – Weight on 'abdm' (between 0. and 1.) distance if d_type equals
'abdm-mvdm'.

• disc_perc (Sequence[Union[int, float]]) – List with percentiles used in binning of
numerical features used for the 'abdm' and 'abdm-mvdm' pairwise distance measures.

• standardize_cat_vars (bool) – Standardize numerical values of categorical variables
if True.

• smooth (float) – Smoothing exponent between 0 and 1 for the distances. Lower values
will smooth the difference in distance metric between different features.

• center (bool) – Whether to center the scaled distance measures. If False, the min dis-
tance for each feature except for the feature with the highest raw max distance will be the
lower bound of the feature range, but the upper bound will be below the max feature range.

• update_feature_range (bool) – Update feature range with scaled values.

Return type
CounterfactualProto

get_gradients(X, Y , grads_shape, cat_vars_ord)
Compute numerical gradients of the attack loss term: dL/dx = (dL/dP)*(dP/dx) with L = loss_attack_s; P
= predict; x = adv_s.

Parameters
• X (ndarray) – Instance around which gradient is evaluated.

• Y (ndarray) – One-hot representation of instance labels.

• grads_shape (tuple) – Shape of gradients.

• cat_vars_ord (dict) – Dict with as keys the categorical columns and as values the num-
ber of categories per categorical variable.

Return type
ndarray

Returns
Array with gradients.

loss_fn(pred_proba, Y)
Compute the attack loss.

Parameters
• pred_proba (ndarray) – Prediction probabilities of an instance.

• Y (ndarray) – One-hot representation of instance labels.

Return type
ndarray

Returns
Loss of the attack.

reset_predictor(predictor)
Resets the predictor function/model.

Parameters
predictor (Union[Callable, Model]) – New predictor function/model.

Return type
None

688 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

score(X, adv_class, orig_class, eps=1e-10)

Parameters
• X (ndarray) – Instance to encode and calculate distance metrics for.

• adv_class (int) – Predicted class on the perturbed instance.

• orig_class (int) – Predicted class on the original instance.

• eps (float) – Small number to avoid dividing by 0.

Return type
float

Returns
Ratio between the distance to the prototype of the predicted class for the original instance and
the prototype of the predicted class for the perturbed instance.

alibi.explainers.cfrl_base module

class alibi.explainers.cfrl_base.Callback

Bases: ABC

Training callback class.

abstract __call__(step, update, model, sample, losses)
Training callback applied after every training step.

Parameters
• step (int) – Current experience step.

• update (int) – Current update step. The ration between the number experience steps and
the number of training updates is bound to 1.

• model (CounterfactualRL) – CounterfactualRL explainer. All the parameters defined
in alibi.explainers.cfrl_base.DEFAULT_BASE_PARAMS can be accessed through
model.params.

• sample (Dict[str, ndarray]) – Dictionary of samples used for an update which contains

– 'X' : np.ndarray - input instances.

– 'Y_m' : np.ndarray - predictor outputs for the input instances.

– 'Y_t' : np.ndarray - target outputs.

– 'Z' : np.ndarray - input embeddings.

– 'Z_cf_tilde' : np.ndarray - noised counterfactual embeddings.

– 'X_cf_tilde' : np.ndarray - noised counterfactual instances obtained ofter decoding
the noised counterfactual embeddings Z_cf_tilde and apply post-processing functions.

– 'C' : Optional[np.ndarray] - conditional vector.

– 'R_tilde' : np.ndarray - reward obtained for the noised counterfactual instances.

– 'Z_cf' : np.ndarray - counterfactual embeddings.

– 'X_cf' : np.ndarray - counterfactual instances obtained after decoding the counter-
factual embeddings Z_cf and apply post-processing functions.

• losses (Dict[str, float]) – Dictionary of losses which contains

13.1. alibi package 689

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

– 'loss_actor' : Callable - actor network loss.

– 'loss_critic' : Callable - critic network loss.

– 'sparsity_loss' : Callable - sparsity loss for the alibi.explainers.
cfrl_base.CounterfactualRL class.

– 'sparsity_num_loss' : Callable - numerical features sparsity loss for the alibi.
explainers.cfrl_tabular.CounterfactualRLTabular class.

– 'sparsity_cat_loss' : Callable - categorical features sparsity loss for the alibi.
explainers.cfrl_tabular.CounterfactualRLTabular class.

– 'consistency_loss' : Callable - consistency loss if used.

Return type
None

class alibi.explainers.cfrl_base.CounterfactualRL(predictor, encoder, decoder, coeff_sparsity,
coeff_consistency, latent_dim=None,
backend='tensorflow', seed=0, **kwargs)

Bases: Explainer, FitMixin

Counterfactual Reinforcement Learning.

__init__(predictor, encoder, decoder, coeff_sparsity, coeff_consistency, latent_dim=None,
backend='tensorflow', seed=0, **kwargs)

Constructor.

Parameters
• predictor (Callable[[ndarray], ndarray]) – A callable that takes a numpy array of N

data points as inputs and returns N outputs. For classification task, the second dimension
of the output should match the number of classes. Thus, the output can be either a soft
label distribution or a hard label distribution (i.e. one-hot encoding) without affecting the
performance since argmax is applied to the predictor’s output.

• encoder (Union[Model, Module]) – Pretrained encoder network.

• decoder (Union[Model, Module]) – Pretrained decoder network.

• coeff_sparsity (float) – Sparsity loss coefficient.

• coeff_consistency (float) – Consistency loss coefficient.

• latent_dim (Optional[int]) – Auto-encoder latent dimension. Can be omitted if the
actor network is user specified.

• backend (str) – Deep learning backend: 'tensorflow' | 'pytorch'. Default
'tensorflow'.

• seed (int) – Seed for reproducibility. The results are not reproducible for 'tensorflow'
backend.

• **kwargs – Used to replace any default parameter from alibi.explainers.
cfrl_base.DEFAULT_BASE_PARAMS.

explain(X, Y_t, C=None, batch_size=100)
Explains an input instance

Parameters
• X (ndarray) – Instances to be explained.

• Y_t (ndarray) – Counterfactual targets.

690 Chapter 13. alibi

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

• C (Optional[ndarray]) – Conditional vectors. If None, it means that no conditioning was
used during training (i.e. the conditional_func returns None).

• batch_size (int) – Batch size to be used when generating counterfactuals.

Return type
Explanation

Returns
explanation – Explanation object containing the counterfactual with additional metadata as
attributes. See usage at CFRL examples for details.

fit(X)
Fit the model agnostic counterfactual generator.

Parameters
X (ndarray) – Training data array.

Return type
Explainer

Returns
self – The explainer itself.

classmethod load(path, predictor)
Load an explainer from disk.

Parameters
• path (Union[str, PathLike]) – Path to a directory containing the saved explainer.

• predictor (Any) – Model or prediction function used to originally initialize the explainer.

Return type
Explainer

Returns
An explainer instance.

reset_predictor(predictor)
Resets the predictor.

Parameters
predictor (Any) – New predictor.

Return type
None

save(path)
Save an explainer to disk. Uses the dill module.

Parameters
path (Union[str, PathLike]) – Path to a directory. A new directory will be created if one
does not exist.

Return type
None

13.1. alibi package 691

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.seldon.io/projects/alibi/en/stable/methods/CFRL.html
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

alibi.explainers.cfrl_base.DEFAULT_BASE_PARAMS = {'act_high': 1.0, 'act_low': -1.0,
'act_noise': 0.1, 'actor': None, 'actor_hidden_dim': 256, 'backend': 'tensorflow',
'batch_size': 100, 'callbacks': [], 'conditional_func': <function
generate_empty_condition>, 'critic': None, 'critic_hidden_dim': 256,
'decoder_inv_preprocessor': <function identity_function>, 'encoder_preprocessor':
<function identity_function>, 'exploration_steps': 100, 'lr_actor': 0.001, 'lr_critic':
0.001, 'num_workers': 4, 'optimizer_actor': None, 'optimizer_critic': None,
'postprocessing_funcs': [], 'replay_buffer_size': 1000, 'reward_func': <function
get_classification_reward>, 'shuffle': True, 'train_steps': 100000, 'update_after': 10,
'update_every': 1}

Default Counterfactual with Reinforcement Learning parameters.

• 'act_noise' : float - standard deviation for the normal noise added to the actor for exploration.

• 'act_low' : float - minimum action value. Each action component takes values between [act_low,
act_high].

• 'act_high' : float - maximum action value. Each action component takes values between [act_low,
act_high].

• 'replay_buffer_size' : int - dimension of the replay buffer in batch_size units. The total memory
allocated is proportional with the size x batch_size.

• 'batch_size' : int - training batch size.

• 'num_workers' : int - number of workers used by the data loader if 'pytorch' backend is selected.

• 'shuffle' : bool - whether to shuffle the datasets every epoch.

• 'exploration_steps' : int - number of exploration steps. For the first exploration_steps, the counter-
factual embedding coordinates are sampled uniformly at random from the interval [act_low, act_high].

• 'update_every' : int - number of steps that should elapse between gradient updates. Regardless of the
waiting steps, the ratio of waiting steps to gradient steps is locked to 1.

• 'update_after' : int - number of steps to wait before start updating the actor and critic. This ensures
that the replay buffers is full enough for useful updates.

• 'backend' : str - backend to be used: 'tensorflow' | 'pytorch'. Default 'tensorflow'.

• 'train_steps' : int - number of train steps.

• 'encoder_preprocessor' : Callable - encoder/auto-encoder data preprocessors. Transforms the input
data into the format expected by the auto-encoder. By default, the identity function.

• 'decoder_inv_preprocessor' : Callable - decoder/auto-encoder data inverse preprocessor. Trans-
forms data from the auto-encoder output format to the original input format. Before calling the prediction
function, the data is inverse preprocessed to match the original input format. By default, the identity func-
tion.

• 'reward_func' : Callable - element-wise reward function. By default, considers classification task and
checks if the counterfactual prediction label matches the target label. Note that this is element-wise, so a
tensor is expected to be returned.

• 'postprocessing_funcs' : List[Postprocessing] - list of post-processing functions. The function
are applied in the order, from low to high index. Non-differentiable post-processing can be applied. The
function expects as arguments X_cf - the counterfactual instance, X - the original input instance and C -
the conditional vector, and returns the post-processed counterfactual instance X_cf_pp which is passed as
X_cf for the following functions. By default, no post-processing is applied (empty list).

• 'conditional_func' : Callable - generates a conditional vector given a pre-processed input instance.
By default, the function returns None which is equivalent to no conditioning.

692 Chapter 13. alibi

alibi Documentation, Release 0.9.5dev

• 'callbacks' : List[Callback] - list of callback functions applied at the end of each training step.

• 'actor' : Optional[Union[tensorflow.keras.Model, torch.nn.Module]] - actor network.

• 'critic; : Optional[Union[tensorflow.keras.Model, torch.nn.Module]] - critic network.

• 'optimizer_actor' : Optional[Union[tensorflow.keras.optimizers.Optimizer, torch.
optim.Optimizer]] - actor optimizer.

• 'optimizer_critic' : Optional[Union[tensorflow.keras.optimizer.Optimizer, torch.
optim.Optimizer]] - critic optimizer.

• 'lr_actor' : float - actor learning rate.

• 'lr_critic' : float - critic learning rate.

• 'actor_hidden_dim' : int - actor hidden layer dimension.

• 'critic_hidden_dim' : int - critic hidden layer dimension.

class alibi.explainers.cfrl_base.NormalActionNoise(mu, sigma)
Bases: object

Normal noise generator.

__call__(shape)
Generates normal noise with the appropriate mean and standard deviation.

Parameters
shape (Tuple[int, ...]) – Shape of the array to be generated

Return type
ndarray

Returns
Normal noise with the appropriate mean, standard deviation and shape.

__init__(mu, sigma)
Constructor.

Parameters
• mu (float) – Mean of the normal noise.

• sigma (float) – Standard deviation of the noise.

class alibi.explainers.cfrl_base.Postprocessing

Bases: ABC

abstract __call__(X_cf , X, C)
Post-processing function

Parameters
• X_cf (Any) – Counterfactual instance. The datatype depends on the output of the de-

coder. For example, for an image dataset, the output is np.ndarray. For a tabular
dataset, the output is List[np.ndarray] where each element of the list corresponds to
a feature. This corresponds to the decoder’s output from the heterogeneous autoencoder
(see alibi.models.tensorflow.autoencoder.HeAE and alibi.models.pytorch.
autoencoder.HeAE).

• X (ndarray) – Input instance.

• C (Optional[ndarray]) – Conditional vector. If None, it means that no conditioning was
used during training (i.e. the conditional_func returns None).

13.1. alibi package 693

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional

alibi Documentation, Release 0.9.5dev

Return type
Any

Returns
X_cf – Post-processed X_cf.

class alibi.explainers.cfrl_base.ReplayBuffer(size=1000)
Bases: object

Circular experience replay buffer for CounterfactualRL (DDPG). When the buffer is filled, then the oldest ex-
perience is replaced by the new one (FIFO). The experience batch size is kept constant and inferred when the
first batch of data is stored. Allowing flexible batch size can generate tensorflow warning due to the tf.function
retracing, which can lead to a drop in performance.

R_tilde: ndarray

Noise counterfactual rewards buffer.

X: ndarray

Inputs buffer.

Y_m: ndarray

Model’s prediction buffer.

Y_t: ndarray

Counterfactual targets buffer.

Z: ndarray

Input embedding buffer.

Z_cf_tilde: ndarray

Noised counterfactual embedding buffer.

__init__(size=1000)
Constructor.

Parameters
size (int) – Dimension of the buffer in batch size. This that the total memory allocated is
proportional with the size x batch_size, where batch_size is inferred from the first array to be
stored.

append(X, Y_m, Y_t, Z , Z_cf_tilde, C, R_tilde, **kwargs)
Adds experience to the replay buffer. When the buffer is filled, then the oldest experience is replaced by
the new one (FIFO).

Parameters
• X (ndarray) – Input array.

• Y_m (ndarray) – Model’s prediction class of X.

• Y_t (ndarray) – Counterfactual target class.

• Z (ndarray) – Input’s embedding.

• Z_cf_tilde (ndarray) – Noised counterfactual embedding.

• C (Optional[ndarray]) – Conditional array.

• R_tilde (ndarray) – Noised counterfactual reward array.

• **kwargs – Other arguments. Not used.

694 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional

alibi Documentation, Release 0.9.5dev

Return type
None

sample()

Sample a batch of experience form the replay buffer.

Return type
Dict[str, Optional[ndarray]]

Returns
A batch experience. For a description of the keys and values returned, see parameter de-
scriptions in alibi.explainers.cfrl_base.ReplayBuffer.append() method. The
batch size returned is the same as the one passed in the alibi.explainers.cfrl_base.
ReplayBuffer.append().

alibi.explainers.cfrl_tabular module

class alibi.explainers.cfrl_tabular.ConcatTabularPostprocessing

Bases: Postprocessing

Tabular feature columns concatenation post-processing.

__call__(X_cf , X, C)
Performs a concatenation of the counterfactual feature columns along the axis 1.

Parameters
• X_cf (List[ndarray]) – List of counterfactual feature columns.

• X (ndarray) – Input instance. Not used. Included for consistency.

• C (Optional[ndarray]) – Conditional vector. Not used. Included for consistency.

Return type
ndarray

Returns
Concatenation of the counterfactual feature columns.

class alibi.explainers.cfrl_tabular.CounterfactualRLTabular(predictor, encoder, decoder,
encoder_preprocessor,
decoder_inv_preprocessor,
coeff_sparsity, coeff_consistency,
feature_names, category_map,
immutable_features=None,
ranges=None, weight_num=1.0,
weight_cat=1.0, latent_dim=None,
backend='tensorflow', seed=0,
**kwargs)

Bases: CounterfactualRL

Counterfactual Reinforcement Learning Tabular.

__init__(predictor, encoder, decoder, encoder_preprocessor, decoder_inv_preprocessor, coeff_sparsity,
coeff_consistency, feature_names, category_map, immutable_features=None, ranges=None,
weight_num=1.0, weight_cat=1.0, latent_dim=None, backend='tensorflow', seed=0, **kwargs)

Constructor.

Parameters

13.1. alibi package 695

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional

alibi Documentation, Release 0.9.5dev

• predictor (Callable[[ndarray], ndarray]) – A callable that takes a numpy array of N
data points as inputs and returns N outputs. For classification task, the second dimension
of the output should match the number of classes. Thus, the output can be either a soft
label distribution or a hard label distribution (i.e. one-hot encoding) without affecting the
performance since argmax is applied to the predictor’s output.

• encoder (Union[Model, Module]) – Pretrained heterogeneous encoder network.

• decoder (Union[Model, Module]) – Pretrained heterogeneous decoder network. The out-
put of the decoder must be a list of tensors.

• encoder_preprocessor (Callable) – Auto-encoder data pre-processor. Depending on
the input format, the pre-processor can normalize numerical attributes, transform label
encoding to one-hot encoding etc.

• decoder_inv_preprocessor (Callable) – Auto-encoder data inverse pre-processor.
This is the inverse function of the pre-processor. It can denormalize numerical attributes,
transform one-hot encoding to label encoding, feature type casting etc.

• coeff_sparsity (float) – Sparsity loss coefficient.

• coeff_consistency (float) – Consistency loss coefficient.

• feature_names (List[str]) – List of feature names. This should be provided by the
dataset.

• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are
column indexes and the values are lists containing the possible values for a feature. This
should be provided by the dataset.

• immutable_features (Optional[List[str]]) – List of immutable features.

• ranges (Optional[Dict[str, Tuple[int, int]]]) – Numerical feature ranges. Note that
exist numerical features such as 'Age', which are allowed to increase only. We denote
those by 'inc_feat'. Similarly, there exist features allowed to decrease only. We de-
note them by 'dec_feat'. Finally, there are some free feature, which we denote by
'free_feat'. With the previous notation, we can define range = {'inc_feat': [0,
1], 'dec_feat': [-1, 0], 'free_feat': [-1, 1]}. 'free_feat' can be omit-
ted, as any unspecified feature is considered free. Having the ranges of a feature {‘feat’:
[a_low, a_high}, when sampling is performed the numerical value will be clipped between
[a_low * (max_val - min_val), a_high * [max_val - min_val]], where a_low and a_high
are the minimum and maximum values the feature 'feat'. This implies that a_low and
a_high are not restricted to {-1, 0} and {0, 1}, but can be any float number in-between
[-1, 0] and [0, 1].

• weight_num (float) – Numerical loss weight.

• weight_cat (float) – Categorical loss weight.

• latent_dim (Optional[int]) – Auto-encoder latent dimension. Can be omitted if the
actor network is user specified.

• backend (str) – Deep learning backend: 'tensorflow' | 'pytorch'. Default
'tensorflow'.

• seed (int) – Seed for reproducibility. The results are not reproducible for 'tensorflow'
backend.

• **kwargs – Used to replace any default parameter from alibi.explainers.
cfrl_base.DEFAULT_BASE_PARAMS.

696 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

explain(X, Y_t, C=None, batch_size=100, diversity=False, num_samples=1, patience=1000,
tolerance=0.001)

Computes counterfactuals for the given instances conditioned on the target and the conditional vector.

Parameters
• X (ndarray) – Input instances to generate counterfactuals for.

• Y_t (ndarray) – Target labels.

• C (Optional[List[Dict[str, List[Union[float, str]]]]]) – List of conditional dictio-
naries. If None, it means that no conditioning was used during training (i.e. the condi-
tional_func returns None). If conditioning was used during training but no conditioning is
desired for the current input, an empty list is expected.

• diversity (bool) – Whether to generate diverse counterfactual set for the given instance.
Only supported for a single input instance.

• num_samples (int) – Number of diversity samples to be generated. Considered only if
diversity=True.

• batch_size (int) – Batch size to use when generating counterfactuals.

• patience (int) – Maximum number of iterations to perform diversity search stops. If -1,
the search stops only if the desired number of samples has been found.

• tolerance (float) – Tolerance to distinguish two counterfactual instances.

Return type
Explanation

Returns
explanation – Explanation object containing the counterfactual with additional metadata as
attributes. See usage CFRL examples for details.

fit(X)
Fit the model agnostic counterfactual generator.

Parameters
X (ndarray) – Training data array.

Return type
Explainer

Returns
self – The explainer itself.

class alibi.explainers.cfrl_tabular.SampleTabularPostprocessing(category_map, stats)
Bases: Postprocessing

Tabular sampling post-processing. Given the output of the heterogeneous auto-encoder the post-processing func-
tions samples the output according to the conditional vector. Note that the original input instance is required to
perform the conditional sampling.

__call__(X_cf , X, C)
Performs counterfactual conditional sampling according to the conditional vector and the original input.

Parameters
• X_cf (List[ndarray]) – Decoder reconstruction of the counterfactual instance. The de-

coded instance is a list where each element in the list correspond to the reconstruction of a
feature.

13.1. alibi package 697

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.seldon.io/projects/alibi/en/stable/methods/CFRL.html
https://docs.python.org/3/library/typing.html#typing.List

alibi Documentation, Release 0.9.5dev

• X (ndarray) – Input instance.

• C (Optional[ndarray]) – Conditional vector.

Return type
List[ndarray]

Returns
Conditional sampled counterfactual instance.

__init__(category_map, stats)
Constructor.

Parameters
• category_map (Dict[int, List[str]]) – Dictionary of category mapping. The keys are

column indexes and the values are lists containing the possible feature values.

• stats (Dict[int, Dict[str, float]]) – Dictionary of statistic of the training data. Con-
tains the minimum and maximum value of each numerical feature in the training set. Each
key is an index of the column and each value is another dictionary containing 'min' and
'max' keys.

alibi.explainers.counterfactual module

alibi.explainers.counterfactual.CounterFactual(*args, **kwargs)
The class name CounterFactual is deprecated, please use Counterfactual.

class alibi.explainers.counterfactual.Counterfactual(predict_fn, shape, distance_fn='l1',
target_proba=1.0, target_class='other',
max_iter=1000, early_stop=50, lam_init=0.1,
max_lam_steps=10, tol=0.05,
learning_rate_init=0.1,
feature_range=(-10000000000.0,
10000000000.0), eps=0.01, init='identity',
decay=True, write_dir=None, debug=False,
sess=None)

Bases: Explainer

__init__(predict_fn, shape, distance_fn='l1', target_proba=1.0, target_class='other', max_iter=1000,
early_stop=50, lam_init=0.1, max_lam_steps=10, tol=0.05, learning_rate_init=0.1,
feature_range=(-10000000000.0, 10000000000.0), eps=0.01, init='identity', decay=True,
write_dir=None, debug=False, sess=None)

Initialize counterfactual explanation method based on Wachter et al. (2017)

Parameters
• predict_fn (Union[Callable[[ndarray], ndarray], Model]) – tensorflow model or

any other model’s prediction function returning class probabilities.

• shape (Tuple[int, ...]) – Shape of input data starting with batch size.

• distance_fn (str) – Distance function to use in the loss term.

• target_proba (float) – Target probability for the counterfactual to reach.

• target_class (Union[str, int]) – Target class for the counterfactual to reach, one of
'other', 'same' or an integer denoting desired class membership for the counterfactual
instance.

698 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

• max_iter (int) – Maximum number of iterations to run the gradient descent for (inner
loop).

• early_stop (int) – Number of steps after which to terminate gradient descent if all or
none of found instances are solutions.

• lam_init (float) – Initial regularization constant for the prediction part of the Wachter
loss.

• max_lam_steps (int) – Maximum number of times to adjust the regularization constant
(outer loop) before terminating the search.

• tol (float) – Tolerance for the counterfactual target probability.

• learning_rate_init – Initial learning rate for each outer loop of lambda.

• feature_range (Union[Tuple, str]) – Tuple with min and max ranges to allow for per-
turbed instances. Min and max ranges can be float or numpy arrays with dimension (1 x nb
of features) for feature-wise ranges.

• eps (Union[float, ndarray]) – Gradient step sizes used in calculating numerical gradi-
ents, defaults to a single value for all features, but can be passed an array for feature-wise
step sizes.

• init (str) – Initialization method for the search of counterfactuals, currently must be
'identity'.

• decay (bool) – Flag to decay learning rate to zero for each outer loop over lambda.

• write_dir (Optional[str]) – Directory to write tensorboard files to.

• debug (bool) – Flag to write tensorboard summaries for debugging.

• sess (Optional[Session]) – Optional tensorflow session that will be used if passed in-
stead of creating or inferring one internally.

explain(X)
Explain an instance and return the counterfactual with metadata.

Parameters
X (ndarray) – Instance to be explained.

Return type
Explanation

Returns
explanation – Explanation object containing the counterfactual with additional metadata as
attributes. See usage at Counterfactual examples for details.

fit(X, y)
Fit method - currently unused as the counterfactual search is fully unsupervised.

Parameters
• X (ndarray) – Not used. Included for consistency.

• y (Optional[ndarray]) – Not used. Included for consistency.

Return type
Counterfactual

Returns
self – Explainer itself.

13.1. alibi package 699

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.seldon.io/projects/alibi/en/stable/methods/CF.html
https://docs.python.org/3/library/typing.html#typing.Optional

alibi Documentation, Release 0.9.5dev

reset_predictor(predictor)
Resets the predictor function/model.

Parameters
predictor (Union[Callable, Model]) – New predictor function/model.

Return type
None

alibi.explainers.integrated_gradients module

class alibi.explainers.integrated_gradients.IntegratedGradients(model, layer=None,
target_fn=None,
method='gausslegendre',
n_steps=50,
internal_batch_size=100)

Bases: Explainer

__init__(model, layer=None, target_fn=None, method='gausslegendre', n_steps=50,
internal_batch_size=100)

An implementation of the integrated gradients method for tensorflow models.

For details of the method see the original paper: https://arxiv.org/abs/1703.01365 .

Parameters
• model (Model) – tensorflow model.

• layer (Union[Callable[[Model], Layer], Layer, None]) – A layer or a function having
as parameter the model and returning a layer with respect to which the gradients are calcu-
lated. If not provided, the gradients are calculated with respect to the input. To guarantee
saving and loading of the explainer, the layer has to be specified as a callable which returns
a layer given the model. E.g. lambda model: model.layers[0].embeddings.

• target_fn (Optional[Callable]) – A scalar function that is applied to the predictions
of the model. This can be used to specify which scalar output the attributions should be
calculated for. This can be particularly useful if the desired output is not known before
calling the model (e.g. explaining the argmax output for a probabilistic classifier, in this
case we could pass target_fn=partial(np.argmax, axis=1)).

• method (str) – Method for the integral approximation. Methods available:
"riemann_left", "riemann_right", "riemann_middle", "riemann_trapezoid",
"gausslegendre".

• n_steps (int) – Number of step in the path integral approximation from the baseline to
the input instance.

• internal_batch_size (int) – Batch size for the internal batching.

explain(X, forward_kwargs=None, baselines=None, target=None, attribute_to_layer_inputs=False)
Calculates the attributions for each input feature or element of layer and returns an Explanation object.

Parameters
• X (Union[ndarray, List[ndarray]]) – Instance for which integrated gradients attribution

are computed.

• forward_kwargs (Optional[dict]) – Input keyword args. If it’s not None, it must be a
dict with numpy arrays as values. The first dimension of the arrays must correspond to the

700 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://arxiv.org/abs/1703.01365
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict

alibi Documentation, Release 0.9.5dev

number of examples. It will be repeated for each of n_steps along the integrated path. The
attributions are not computed with respect to these arguments.

• baselines (Union[int, float, ndarray, List[int], List[float], List[ndarray],
None]) – Baselines (starting point of the path integral) for each instance. If the passed
value is an np.ndarray must have the same shape as X. If not provided, all features values
for the baselines are set to 0.

• target (Union[int, list, ndarray, None]) – Defines which element of the model output
is considered to compute the gradients. Target can be a numpy array, a list or a numeric
value. Numeric values are only valid if the model’s output is a rank-n tensor with n <=
2 (regression and classification models). If a numeric value is passed, the gradients are
calculated for the same element of the output for all data points. For regression models
whose output is a scalar, target should not be provided. For classification models target
can be either the true classes or the classes predicted by the model. It must be provided
for classification models and regression models whose output is a vector. If the model’s
output is a rank-n tensor with n > 2, the target must be a rank-2 numpy array or a list of lists
(a matrix) with dimensions nb_samples X (n-1) .

• attribute_to_layer_inputs (bool) – In case of layers gradients, controls whether the
gradients are computed for the layer’s inputs or outputs. If True, gradients are computed
for the layer’s inputs, if False for the layer’s outputs.

Return type
Explanation

Returns
explanation – Explanation object including meta and data attributes with integrated gradients
attributions for each feature. See usage at IG examples for details.

reset_predictor(predictor)
Resets the predictor model.

Parameters
predictor (Model) – New prediction model.

Return type
None

class alibi.explainers.integrated_gradients.LayerState(value)
Bases: str, Enum

An enumeration.

CALLABLE = 'callable'

NON_SERIALIZABLE = 'non-serializable'

UNSPECIFIED = 'unspecified'

13.1. alibi package 701

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.seldon.io/projects/alibi/en/stable/methods/IntegratedGradients.html
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum

alibi Documentation, Release 0.9.5dev

alibi.explainers.partial_dependence module

class alibi.explainers.partial_dependence.Kind(value)
Bases: str, Enum

Enumeration of supported kind.

AVERAGE = 'average'

BOTH = 'both'

INDIVIDUAL = 'individual'

class alibi.explainers.partial_dependence.PartialDependence(predictor, feature_names=None,
categorical_names=None,
target_names=None, verbose=False)

Bases: PartialDependenceBase

Black-box implementation of partial dependence for tabular datasets. Supports multiple feature interactions.

__init__(predictor, feature_names=None, categorical_names=None, target_names=None, verbose=False)
Initialize black-box model implementation of partial dependence.

Parameters
• predictor (Callable[[ndarray], ndarray]) – A prediction function which receives as

input a numpy array of size N x F and outputs a numpy array of size N (i.e. (N,)) or N x T,
where N is the number of input instances, F is the number of features and T is the number
of targets.

• feature_names (Optional[List[str]]) – A list of feature names used for displaying
results.

• categorical_names (Optional[Dict[int, List[str]]]) – Dictionary where keys are
feature columns and values are the categories for the feature. Necessary to identify the
categorical features in the dataset. An example for categorical_names would be:

category_map = {0: ["married", "divorced"], 3: ["high school diploma
→˓", "master's degree"]}

• target_names (Optional[List[str]]) – A list of target/output names used for displaying
results.

• verbose (bool) – Whether to print the progress of the explainer.

Notes

The length of the target_names should match the number of columns returned by a call to the predictor.
For example, in the case of a binary classifier, if the predictor outputs a decision score (i.e. uses the de-
cision_function method) which returns one column, then the length of the target_names should be one.
On the other hand, if the predictor outputs a prediction probability (i.e. uses the predict_proba method)
which returns two columns (one for the negative class and one for the positive class), then the length of the
target_names should be two.

explain(X, features=None, kind='average', percentiles=(0.0, 1.0), grid_resolution=100, grid_points=None)
Calculates the partial dependence for each feature and/or tuples of features with respect to the all targets
and the reference dataset X.

702 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

alibi Documentation, Release 0.9.5dev

Parameters
• X (ndarray) – A N x F tabular dataset used to calculate partial dependence curves. This

is typically the training dataset or a representative sample.

• features (Optional[List[Union[int, Tuple[int, int]]]]) – An optional list of fea-
tures or tuples of features for which to calculate the partial dependence. If not provided,
the partial dependence will be computed for every single features in the dataset. Some
example for features would be: [0, 2], [0, 2, (0, 2)], [(0, 2)], where 0 and 2
correspond to column 0 and 2 in X, respectively.

• kind (Literal[‘average’, ‘individual’, ‘both’]) – If set to 'average', then only the par-
tial dependence (PD) averaged across all samples from the dataset is returned. If set to
'individual', then only the individual conditional expectation (ICE) is returned for each
data point from the dataset. Otherwise, if set to 'both', then both the PD and the ICE are
returned.

• percentiles (Tuple[float, float]) – Lower and upper percentiles used to limit the
feature values to potentially remove outliers from low-density regions. Note that for fea-
tures with not many data points with large/low values, the PD estimates are less reliable in
those extreme regions. The values must be in [0, 1]. Only used with grid_resolution.

• grid_resolution (int) – Number of equidistant points to split the range of each target
feature. Only applies if the number of unique values of a target feature in the reference
dataset X is greater than the grid_resolution value. For example, consider a case where a
feature can take the following values: [0.1, 0.3, 0.35, 0.351, 0.4, 0.41, 0.44,
..., 0.5, 0.54, 0.56, 0.6, 0.65, 0.7, 0.9], and we are not interested in eval-
uating the marginal effect at every single point as it can become computationally costly
(assume hundreds/thousands of points) without providing any additional information for
nearby points (e.g., 0.35 and 351). By setting grid_resolution=5, the marginal effect is
computed for the values [0.1, 0.3, 0.5, 0.7, 0.9] instead, which is less computa-
tionally demanding and can provide similar insights regarding the model’s behaviour. Note
that the extreme values of the grid can be controlled using the percentiles argument.

• grid_points (Optional[Dict[int, Union[List, ndarray]]]) – Custom grid points.
Must be a dict where the keys are the target features indices and the values are mono-
tonically increasing arrays defining the grid points for a numerical feature, and a subset
of categorical feature values for a categorical feature. If the grid_points are not specified,
then the grid will be constructed based on the unique target feature values available in the
dataset X, or based on the grid_resolution and percentiles (check grid_resolution to see
when it applies). For categorical features, the corresponding value in the grid_points can
be specified either as array of strings or array of integers corresponding the label encod-
ings. Note that the label encoding must match the ordering of the values provided in the
categorical_names.

Return type
Explanation

Returns
explanation – An Explanation object containing the data and the metadata of the calculated
partial dependence curves. See usage at Partial dependence examples for details

class alibi.explainers.partial_dependence.PartialDependenceBase(predictor, feature_names=None,
categorical_names=None,
target_names=None,
verbose=False)

Bases: Explainer, ABC

13.1. alibi package 703

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependence.html
https://docs.python.org/3/library/abc.html#abc.ABC

alibi Documentation, Release 0.9.5dev

__init__(predictor, feature_names=None, categorical_names=None, target_names=None, verbose=False)
Base class of the partial dependence for tabular datasets. Supports multiple feature interactions.

Parameters
• predictor (Union[BaseEstimator, Callable[[ndarray], ndarray]]) – A sklearn es-

timator or a prediction function which receives as input a numpy array of size N x F and
outputs a numpy array of size N (i.e. (N,)) or N x T, where N is the number of input
instances, F is the number of features and T is the number of targets.

• feature_names (Optional[List[str]]) – A list of feature names used for displaying
results.

• categorical_names (Optional[Dict[int, List[str]]]) – Dictionary where keys are
feature columns and values are the categories for the feature. Necessary to identify the
categorical features in the dataset. An example for categorical_names would be:

category_map = {0: ["married", "divorced"], 3: ["high school diploma
→˓", "master's degree"]}

• target_names (Optional[List[str]]) – A list of target/output names used for displaying
results.

• verbose (bool) – Whether to print the progress of the explainer.

explain(X, features=None, kind='average', percentiles=(0.0, 1.0), grid_resolution=100, grid_points=None)
Calculates the partial dependence for each feature and/or tuples of features with respect to the all targets
and the reference dataset X.

Parameters
• X (ndarray) – A N x F tabular dataset used to calculate partial dependence curves. This

is typically the training dataset or a representative sample.

• features (Optional[List[Union[int, Tuple[int, int]]]]) – An optional list of fea-
tures or tuples of features for which to calculate the partial dependence. If not provided,
the partial dependence will be computed for every single features in the dataset. Some
example for features would be: [0, 2], [0, 2, (0, 2)], [(0, 2)], where 0 and 2
correspond to column 0 and 2 in X, respectively.

• kind (Literal[‘average’, ‘individual’, ‘both’]) – If set to 'average', then only the par-
tial dependence (PD) averaged across all samples from the dataset is returned. If set to
'individual', then only the individual conditional expectation (ICE) is returned for each
data point from the dataset. Otherwise, if set to 'both', then both the PD and the ICE are
returned.

• percentiles (Tuple[float, float]) – Lower and upper percentiles used to limit the
feature values to potentially remove outliers from low-density regions. Note that for fea-
tures with not many data points with large/low values, the PD estimates are less reliable in
those extreme regions. The values must be in [0, 1]. Only used with grid_resolution.

• grid_resolution (int) – Number of equidistant points to split the range of each target
feature. Only applies if the number of unique values of a target feature in the reference
dataset X is greater than the grid_resolution value. For example, consider a case where a
feature can take the following values: [0.1, 0.3, 0.35, 0.351, 0.4, 0.41, 0.44,
..., 0.5, 0.54, 0.56, 0.6, 0.65, 0.7, 0.9], and we are not interested in eval-
uating the marginal effect at every single point as it can become computationally costly
(assume hundreds/thousands of points) without providing any additional information for
nearby points (e.g., 0.35 and 351). By setting grid_resolution=5, the marginal effect is

704 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

computed for the values [0.1, 0.3, 0.5, 0.7, 0.9] instead, which is less computa-
tionally demanding and can provide similar insights regarding the model’s behaviour. Note
that the extreme values of the grid can be controlled using the percentiles argument.

• grid_points (Optional[Dict[int, Union[List, ndarray]]]) – Custom grid points.
Must be a dict where the keys are the target features indices and the values are mono-
tonically increasing arrays defining the grid points for a numerical feature, and a subset
of categorical feature values for a categorical feature. If the grid_points are not specified,
then the grid will be constructed based on the unique target feature values available in the
dataset X, or based on the grid_resolution and percentiles (check grid_resolution to see
when it applies). For categorical features, the corresponding value in the grid_points can
be specified either as array of strings or array of integers corresponding the label encod-
ings. Note that the label encoding must match the ordering of the values provided in the
categorical_names.

Return type
Explanation

Returns
explanation – An Explanation object containing the data and the metadata of the calculated
partial dependence curves. See usage at Partial dependence examples for details

reset_predictor(predictor)
Resets the predictor function or tree-based sklearn estimator.

Parameters
predictor (Union[Callable[[ndarray], ndarray], BaseEstimator]) – New predictor
function or tree-based sklearn estimator.

Return type
None

class alibi.explainers.partial_dependence.TreePartialDependence(predictor, feature_names=None,
categorical_names=None,
target_names=None,
verbose=False)

Bases: PartialDependenceBase

Tree-based model sklearn implementation of the partial dependence for tabular datasets. Supports multiple fea-
ture interactions. This method is faster than the general black-box implementation but is only supported by
some tree-based estimators. The computation is based on a weighted tree traversal. For more details on the
computation, check the sklearn documentation page. The supported sklearn models are: GradientBoostingClas-
sifier, GradientBoostingRegressor, HistGradientBoostingClassifier, HistGradientBoostingRegressor, HistGra-
dientBoostingRegressor, DecisionTreeRegressor, RandomForestRegressor.

__init__(predictor, feature_names=None, categorical_names=None, target_names=None, verbose=False)
Initialize tree-based model sklearn implementation of partial dependence.

Parameters
• predictor (BaseEstimator) – A tree-based sklearn estimator.

• feature_names (Optional[List[str]]) – A list of feature names used for displaying
results.

• categorical_names (Optional[Dict[int, List[str]]]) – Dictionary where keys are
feature columns and values are the categories for the feature. Necessary to identify the
categorical features in the dataset. An example for categorical_names would be:

13.1. alibi package 705

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependence.html
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://scikit-learn.org/stable/modules/partial_dependence.html#computation-methods
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

category_map = {0: ["married", "divorced"], 3: ["high school diploma
→˓", "master's degree"]}

• target_names (Optional[List[str]]) – A list of target/output names used for displaying
results.

• verbose (bool) – Whether to print the progress of the explainer.

Notes

The length of the target_names should match the number of columns returned by a call to the predic-
tor.decision_function. In the case of a binary classifier, the decision score consists of a single column.
Thus, the length of the target_names should be one.

explain(X, features=None, percentiles=(0.0, 1.0), grid_resolution=100, grid_points=None)
Calculates the partial dependence for each feature and/or tuples of features with respect to the all targets
and the reference dataset X.

Parameters
• X (ndarray) – A N x F tabular dataset used to calculate partial dependence curves. This

is typically the training dataset or a representative sample.

• features (Optional[List[Union[int, Tuple[int, int]]]]) – An optional list of fea-
tures or tuples of features for which to calculate the partial dependence. If not provided,
the partial dependence will be computed for every single features in the dataset. Some
example for features would be: [0, 2], [0, 2, (0, 2)], [(0, 2)], where 0 and 2
correspond to column 0 and 2 in X, respectively.

• percentiles (Tuple[float, float]) – Lower and upper percentiles used to limit the
feature values to potentially remove outliers from low-density regions. Note that for fea-
tures with not many data points with large/low values, the PD estimates are less reliable in
those extreme regions. The values must be in [0, 1]. Only used with grid_resolution.

• grid_resolution (int) – Number of equidistant points to split the range of each target
feature. Only applies if the number of unique values of a target feature in the reference
dataset X is greater than the grid_resolution value. For example, consider a case where a
feature can take the following values: [0.1, 0.3, 0.35, 0.351, 0.4, 0.41, 0.44,
..., 0.5, 0.54, 0.56, 0.6, 0.65, 0.7, 0.9], and we are not interested in eval-
uating the marginal effect at every single point as it can become computationally costly
(assume hundreds/thousands of points) without providing any additional information for
nearby points (e.g., 0.35 and 351). By setting grid_resolution=5, the marginal effect is
computed for the values [0.1, 0.3, 0.5, 0.7, 0.9] instead, which is less computa-
tionally demanding and can provide similar insights regarding the model’s behaviour. Note
that the extreme values of the grid can be controlled using the percentiles argument.

• grid_points (Optional[Dict[int, Union[List, ndarray]]]) – Custom grid points.
Must be a dict where the keys are the target features indices and the values are mono-
tonically increasing arrays defining the grid points for a numerical feature, and a subset
of categorical feature values for a categorical feature. If the grid_points are not specified,
then the grid will be constructed based on the unique target feature values available in the
dataset X, or based on the grid_resolution and percentiles (check grid_resolution to see
when it applies). For categorical features, the corresponding value in the grid_points can
be specified either as array of strings or array of integers corresponding the label encod-
ings. Note that the label encoding must match the ordering of the values provided in the
categorical_names.

706 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List

alibi Documentation, Release 0.9.5dev

Return type
Explanation

alibi.explainers.partial_dependence.plot_pd(exp, features='all', target=0, n_cols=3, n_ice=100,
center=False, pd_limits=None, levels=8, ax=None,
sharey='all', pd_num_kw=None, ice_num_kw=None,
pd_cat_kw=None, ice_cat_kw=None,
pd_num_num_kw=None, pd_num_cat_kw=None,
pd_cat_cat_kw=None, fig_kw=None)

Plot partial dependence curves on matplotlib axes.

Parameters
• exp – An Explanation object produced by a call to the alibi.explainers.
partial_dependence.PartialDependence.explain() method.

• features – A list of features entries in the exp.data[‘feature_names’] to plot the partial
dependence curves for, or 'all' to plot all the explained feature or tuples of features. This
includes tuples of features. For example, if exp.data['feature_names'] = ['temp',
'hum', ('temp', 'windspeed')] and we want to plot the partial dependence only for
the 'temp' and ('temp', 'windspeed'), then we would set features=[0, 2]. De-
faults to 'all'.

• target – The target name or index for which to plot the partial dependence (PD)
curves. Can be a mix of integers denoting target index or strings denoting entries in
exp.meta[‘params’][‘target_names’].

• n_cols – Number of columns to organize the resulting plot into.

• n_ice – Number of ICE plots to be displayed. Can be

– a string taking the value 'all' to display the ICE curves for every instance in the reference
dataset.

– an integer for which n_ice instances from the reference dataset will be sampled uniformly
at random to display their ICE curves.

– a list of integers, where each integer represents an index of an instance in the reference
dataset to display their ICE curves.

• center – Boolean flag to center the individual conditional expectation (ICE) curves. As
mentioned in Goldstein et al. (2014), the heterogeneity in the model can be difficult to discern
when the intercepts of the ICE curves cover a wide range. Centering the ICE curves removes
the level effects and helps to visualise the heterogeneous effect.

• pd_limits – Minimum and maximum y-limits for all the one-way PD plots. If None will
be automatically inferred.

• levels – Number of levels in the contour plot.

• ax – A matplotlib axes object or a numpy array of matplotlib axes to plot on.

• sharey – A parameter specifying whether the y-axis of the PD and ICE curves should be on
the same scale for several features. Possible values are: 'all' | 'row' | None.

• pd_num_kw – Keyword arguments passed to the matplotlib.pyplot.plot function when plot-
ting the PD for a numerical feature.

• ice_num_kw – Keyword arguments passed to the matplotlib.pyplot.plot function when plot-
ting the ICE for a numerical feature.

• pd_cat_kw – Keyword arguments passed to the matplotlib.pyplot.plot function when plot-
ting the PD for a categorical feature.

13.1. alibi package 707

https://arxiv.org/abs/1309.6392
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html

alibi Documentation, Release 0.9.5dev

• ice_cat_kw – Keyword arguments passed to the matplotlib.pyplot.plot function when plot-
ting the ICE for a categorical feature.

• pd_num_num_kw – Keyword arguments passed to the matplotlib.pyplot.contourf function
when plotting the PD for two numerical features.

• pd_num_cat_kw – Keyword arguments passed to the matplotlib.pyplot.plot function when
plotting the PD for a numerical and a categorical feature.

• pd_cat_cat_kw – Keyword arguments passed to the alibi.utils.visualization.
heatmap() functon when plotting the PD for two categorical features.

• fig_kw – Keyword arguments passed to the matplotlib.figure.set function.

Returns
An array of plt.Axes with the resulting partial dependence plots.

alibi.explainers.pd_variance module

class alibi.explainers.pd_variance.Method(value)
Bases: str, Enum

Enumeration of supported methods.

IMPORTANCE = 'importance'

INTERACTION = 'interaction'

class alibi.explainers.pd_variance.PartialDependenceVariance(predictor, feature_names=None,
categorical_names=None,
target_names=None,
verbose=False)

Bases: Explainer

Implementation of the partial dependence(PD) variance feature importance and feature interaction for tabu-
lar datasets. The method measure the importance feature importance as the variance within the PD function.
Similar, the potential feature interaction is measured by computing the variance within the two-way PD func-
tion by holding one variable constant and letting the other vary. Supports black-box models and the follow-
ing sklearn tree-based models: GradientBoostingClassifier, GradientBoostingRegressor, HistGradientBoosting-
Classifier, HistGradientBoostingRegressor, HistGradientBoostingRegressor, DecisionTreeRegressor, Random-
ForestRegressor.

For details of the method see the original paper: https://arxiv.org/abs/1805.04755 .

__init__(predictor, feature_names=None, categorical_names=None, target_names=None, verbose=False)
Initialize black-box/tree-based model implementation for the partial dependence variance feature impor-
tance.

Parameters
• predictor (Union[BaseEstimator, Callable[[ndarray], ndarray]]) – A sklearn es-

timator or a prediction function which receives as input a numpy array of size N x F and
outputs a numpy array of size N (i.e. (N,)) or N x T, where N is the number of input
instances, F is the number of features and T is the number of targets.

• feature_names (Optional[List[str]]) – A list of feature names used for displaying
results.E

708 Chapter 13. alibi

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.contourf.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/figure_api.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum
https://arxiv.org/abs/1805.04755
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

• categorical_names (Optional[Dict[int, List[str]]]) – Dictionary where keys are
feature columns and values are the categories for the feature. Necessary to identify the
categorical features in the dataset. An example for categorical_names would be:

category_map = {0: ["married", "divorced"], 3: ["high school diploma
→˓", "master's degree"]}

• target_names (Optional[List[str]]) – A list of target/output names used for displaying
results.

• verbose (bool) – Whether to print the progress of the explainer.

Notes

The length of the target_names should match the number of columns returned by a call to the predictor.
For example, in the case of a binary classifier, if the predictor outputs a decision score (i.e. uses the de-
cision_function method) which returns one column, then the length of the target_names should be one.
On the other hand, if the predictor outputs a prediction probability (i.e. uses the predict_proba method)
which returns two columns (one for the negative class and one for the positive class), then the length of the
target_names should be two.

explain(X, features=None, method='importance', percentiles=(0.0, 1.0), grid_resolution=100,
grid_points=None)

Calculates the variance partial dependence feature importance for each feature with respect to the all targets
and the reference dataset X.

Parameters
• X (ndarray) – A N x F tabular dataset used to calculate partial dependence curves. This

is typically the training dataset or a representative sample.

• features (Union[List[int], List[Tuple[int, int]], None]) – A list of features for
which to compute the feature importance or a list of feature pairs for which to compute the
feature interaction. Some example of features would be: [0, 1, 3], [(0, 1), (0, 3),
(1, 3)], where 0,``1``, and 3 correspond to the columns 0, 1, and 3 in X. If not provided,
the feature importance or the feature interaction will be computed for every feature or for
every combination of feature pairs, depending on the parameter method.

• method (Literal[‘importance’, ‘interaction’]) – Flag to specify whether to compute the
feature importance or the feature interaction of the elements provided in features. Sup-
ported values: 'importance' | 'interaction'.

• percentiles (Tuple[float, float]) – Lower and upper percentiles used to limit the
feature values to potentially remove outliers from low-density regions. Note that for fea-
tures with not many data points with large/low values, the PD estimates are less reliable in
those extreme regions. The values must be in [0, 1]. Only used with grid_resolution.

• grid_resolution (int) – Number of equidistant points to split the range of each target
feature. Only applies if the number of unique values of a target feature in the reference
dataset X is greater than the grid_resolution value. For example, consider a case where a
feature can take the following values: [0.1, 0.3, 0.35, 0.351, 0.4, 0.41, 0.44,
..., 0.5, 0.54, 0.56, 0.6, 0.65, 0.7, 0.9], and we are not interested in eval-
uating the marginal effect at every single point as it can become computationally costly
(assume hundreds/thousands of points) without providing any additional information for
nearby points (e.g., 0.35 and 351). By setting grid_resolution=5, the marginal effect is

13.1. alibi package 709

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

computed for the values [0.1, 0.3, 0.5, 0.7, 0.9] instead, which is less computa-
tionally demanding and can provide similar insights regarding the model’s behaviour. Note
that the extreme values of the grid can be controlled using the percentiles argument.

• grid_points (Optional[Dict[int, Union[List, ndarray]]]) – Custom grid points.
Must be a dict where the keys are the target features indices and the values are mono-
tonically increasing arrays defining the grid points for a numerical feature, and a subset
of categorical feature values for a categorical feature. If the grid_points are not specified,
then the grid will be constructed based on the unique target feature values available in the
dataset X, or based on the grid_resolution and percentiles (check grid_resolution to see
when it applies). For categorical features, the corresponding value in the grid_points can
be specified either as array of strings or array of integers corresponding the label encod-
ings. Note that the label encoding must match the ordering of the values provided in the
categorical_names.

Return type
Explanation

Returns
explanation – An Explanation object containing the data and the metadata of the calculated
partial dependence curves and feature importance/interaction. See usage at Partial depen-
dence variance examples for details

alibi.explainers.pd_variance.plot_pd_variance(exp, features='all', targets='all', summarise=True,
n_cols=3, sort=True, top_k=None, plot_limits=None,
ax=None, sharey='all', bar_kw=None, line_kw=None,
fig_kw=None)

Plot feature importance and feature interaction based on partial dependence curves on matplotlib axes.

Parameters
• exp (Explanation) – An Explanation object produced by a call to the alibi.
explainers.pd_variance.PartialDependenceVariance.explain() method.

• features (Union[List[int], Literal[‘all’]]) – A list of features entries pro-
vided in feature_names argument to the alibi.explainers.pd_variance.
PartialDependenceVariance.explain() method, or 'all' to plot all the explained
features. For example, if feature_names = ['temp', 'hum', 'windspeed'] and
we want to plot the values only for the 'temp' and 'windspeed', then we would set
features=[0, 2]. Defaults to 'all'.

• targets (Union[List[Union[int, str]], Literal[‘all’]]) – A target name/index, or
a list of target names/indices, for which to plot the feature importance/interaction, or
'all'. Can be a mix of integers denoting target index or strings denoting entries in
exp.meta[‘params’][‘target_names’]. By default 'all' to plot the importance for all fea-
tures or to plot all the feature interactions.

• summarise (bool) – Whether to plot only the summary of the feature importance/interaction
as a bar plot, or plot comprehensive exposition including partial dependence plots and con-
ditional importance plots.

• n_cols (int) – Number of columns to organize the resulting plot into.

• sort (bool) – Boolean flag whether to sort the values in descending order.

• top_k (Optional[int]) – Number of top k values to be displayed if the sort=True. If not
provided, then all values will be displayed.

• plot_limits (Optional[Tuple[float, float]]) – Minimum and maximum y-limits for
all the line plots. If None will be automatically inferred.

710 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependenceVariance.html
https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependenceVariance.html
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

• ax (Union[Axes, ndarray, None]) – A matplotlib axes object or a numpy array of matplotlib
axes to plot on.

• sharey (Optional[Literal[‘all’, ‘row’]]) – A parameter specifying whether the y-axis of
the PD and ICE curves should be on the same scale for several features. Possible values are:
'all' | 'row' | None.

• bar_kw (Optional[dict]) – Keyword arguments passed to the matplotlib.pyplot.barh func-
tion.

• line_kw (Optional[dict]) – Keyword arguments passed to the matplotlib.pyplot.plot
function.

• fig_kw (Optional[dict]) – Keyword arguments passed to the matplotlib.figure.set func-
tion.

Returns
plt.Axes with the summary/detailed exposition plot of the feature importance or feature interac-
tion.

alibi.explainers.permutation_importance module

class alibi.explainers.permutation_importance.Kind(value)
Bases: str, Enum

Enumeration of supported kind.

DIFFERENCE = 'difference'

RATIO = 'ratio'

alibi.explainers.permutation_importance.LOSS_FNS = {'log_loss': sklearn.metrics.log_loss,
'mean_absolute_error': sklearn.metrics.mean_absolute_error,
'mean_absolute_percentage_error': sklearn.metrics.mean_absolute_percentage_error,
'mean_squared_error': sklearn.metrics.mean_squared_error, 'mean_squared_log_error':
sklearn.metrics.mean_squared_log_error}

Dictionary of supported string specified loss functions

• 'mean_absolute_error' - Mean absolute error regression loss. See
sklearn.metrics.mean_absolute_error for documentation.

• 'mean_squared_error' - Mean squared error regression loss. See sklearn.metrics.mean_squared_error
for documentation.

• 'mean_squared_log_error' - Mean squared logarithmic error regression loss. See
sklearn.metrics.mean_squared_log_error for documentation.

• 'mean_absolute_percentage_error' - Mean absolute percentage error (MAPE) regression loss. See
sklearn.metrics.mean_absolute_percentage_error for documentation.

• 'log_loss' - Log loss, aka logistic loss or cross-entropy loss. See sklearn.metrics.log_loss for documen-
tation.

class alibi.explainers.permutation_importance.Method(value)
Bases: str, Enum

Enumeration of supported method.

13.1. alibi package 711

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.barh.html
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/figure_api.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_log_error.html#sklearn.metrics.mean_squared_log_error
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_percentage_error.html#sklearn.metrics.mean_absolute_percentage_error
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html#sklearn.metrics.log_loss
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum

alibi Documentation, Release 0.9.5dev

ESTIMATE = 'estimate'

EXACT = 'exact'

class alibi.explainers.permutation_importance.PermutationImportance(predictor, loss_fns=None,
score_fns=None,
feature_names=None,
verbose=False)

Bases: Explainer

Implementation of the permutation feature importance for tabular datasets. The method measure the importance
of a feature as the relative increase/decrease in the loss/score function when the feature values are permuted.
Supports black-box models.

For details of the method see the papers:

• https://link.springer.com/article/10.1023/A:1010933404324

• https://arxiv.org/abs/1801.01489

__init__(predictor, loss_fns=None, score_fns=None, feature_names=None, verbose=False)
Initialize the permutation feature importance.

Parameters
• predictor (Callable[[ndarray], ndarray]) – A prediction function which receives as

input a numpy array of size N x F, and outputs a numpy array of size N (i.e. (N,)) or N x T,
where N is the number of input instances, F is the number of features, and T is the number
of targets. Note that the output shape must be compatible with the loss and score functions
provided in loss_fns and score_fns.

• loss_fns (Union[Literal[‘mean_absolute_error’, ‘mean_squared_error’,
‘mean_squared_log_error’, ‘mean_absolute_percentage_error’,
‘log_loss’], List[Literal[‘mean_absolute_error’, ‘mean_squared_error’,
‘mean_squared_log_error’, ‘mean_absolute_percentage_error’, ‘log_loss’]],
Callable[[ndarray, ndarray, Optional[ndarray]], float], Dict[str,
Callable[[ndarray, ndarray, Optional[ndarray]], float]], None]) – A literal,
or a list of literals, or a loss function, or a dictionary of loss functions having as
keys the names of the loss functions and as values the loss functions (i.e., lower
values are better). The available literal values are described in alibi.explainers.
permutation_importance.LOSS_FNS. Note that the predictor output must be
compatible with every loss function. Every loss function is expected to receive the
following arguments:

– y_true : np.ndarray - a numpy array of ground-truth labels.

– y_pred | y_score : np.ndarray - a numpy array of model predictions. This corresponds
to the output of the model.

– sample_weight: Optional[np.ndarray] - a numpy array of sample weights.

• score_fns (Union[Literal[‘accuracy’, ‘precision’, ‘recall’, ‘f1’, ‘roc_auc’,
‘r2’], List[Literal[‘accuracy’, ‘precision’, ‘recall’, ‘f1’, ‘roc_auc’, ‘r2’]],
Callable[[ndarray, ndarray, Optional[ndarray]], float], Dict[str,
Callable[[ndarray, ndarray, Optional[ndarray]], float]], None]) – A literal,
or a list or literals, or a score function, or a dictionary of score functions having as
keys the names of the score functions and as values the score functions (i.e, higher
values are better). The available literal values are described in alibi.explainers.
permutation_importance.SCORE_FNS. As with the loss_fns, the predictor output

712 Chapter 13. alibi

https://link.springer.com/article/10.1023/A:1010933404324
https://arxiv.org/abs/1801.01489
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

must be compatible with every score function and the score function must have the same
signature presented in the loss_fns parameter description.

• feature_names (Optional[List[str]]) – A list of feature names used for displaying
results.

• verbose (bool) – Whether to print the progress of the explainer.

explain(X, y, features=None, method='estimate', kind='ratio', n_repeats=50, sample_weight=None)
Computes the permutation feature importance for each feature with respect to the given loss or score func-
tions and the dataset (X, y).

Parameters
• X (ndarray) – A N x F input feature dataset used to calculate the permutation feature

importance. This is typically the test dataset.

• y (ndarray) – Ground-truth labels array of size N (i.e. (N,)) corresponding the input
feature X.

• features (Optional[List[Union[int, Tuple[int, ...]]]]) – An optional list of fea-
tures or tuples of features for which to compute the permutation feature importance. If not
provided, the permutation feature importance will be computed for every single features in
the dataset. Some example of features would be: [0, 2], [0, 2, (0, 2)], [(0, 2)],
where 0 and 2 correspond to column 0 and 2 in X, respectively.

• method (Literal[‘estimate’, ‘exact’]) – The method to be used to compute the feature
importance. If set to 'exact', a “switch” operation is performed across all observed pairs,
by excluding pairings that are actually observed in the original dataset. This operation is
quadratic in the number of samples (N x (N - 1) samples) and thus can be computationally
intensive. If set to 'estimate', the dataset will be divided in half. The values of the first
half containing the ground-truth labels the rest of the features (i.e. features that are left
intact) is matched with the values of the second half of the permuted features, and the other
way around. This method is computationally lighter and provides estimate error bars given
by the standard deviation. Note that for some specific loss and score functions, the estimate
does not converge to the exact metric value.

• kind (Literal[‘ratio’, ‘difference’]) – Whether to report the importance as the loss/score
ratio or the loss/score difference. Available values are: 'ratio' | 'difference'.

• n_repeats (int) – Number of times to permute the feature values. Considered only when
method='estimate'.

• sample_weight (Optional[ndarray]) – Optional weight for each sample instance.

Return type
Explanation

Returns
explanation – An Explanation object containing the data and the metadata of the permutation
feature importance. See usage at Permutation feature importance examples for details

reset_predictor(predictor)
Resets the predictor function.

Parameters
predictor (Callable) – New predictor function.

Return type
None

13.1. alibi package 713

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.seldon.io/projects/alibi/en/stable/methods/PermutationImportance.html
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

alibi.explainers.permutation_importance.SCORE_FNS = {'accuracy':
sklearn.metrics.accuracy_score, 'f1': sklearn.metrics.f1_score, 'precision':
sklearn.metrics.precision_score, 'r2': sklearn.metrics.r2_score, 'recall':
sklearn.metrics.recall_score, 'roc_auc': sklearn.metrics.roc_auc_score}

Dictionary of supported string specified score functions

• 'accuracy' - Accuracy classification score. See sklearn.metrics.accuracy_score for documentation.

• 'precision' - Precision score. See sklearn.metrics.precision_score for documentation.

• 'recall' - Recall score. See sklearn.metrics.recall_score for documentation.

• 'f1_score' - F1 score. See sklearn.metrics.f1_score for documentation.

• 'roc_auc_score' - Area Under the Receiver Operating Characteristic Curve (ROC AUC) score. See
sklearn.metrics.roc_auc_score for documentation.

• 'r2_score' - 𝑅2 (coefficient of determination) regression score. See sklearn.metrics.r2_score for docu-
mentation.

alibi.explainers.permutation_importance.plot_permutation_importance(exp, features='all',
metric_names='all',
n_cols=3, sort=True,
top_k=None, ax=None,
bar_kw=None,
fig_kw=None)

Plot permutation feature importance on matplotlib axes.

Parameters
• exp – An Explanation object produced by a call to the alibi.explainers.
permutation_importance.PermutationImportance.explain() method.

• features – A list of feature entries provided in feature_names argument to the alibi.
explainers.permutation_importance.PermutationImportance.explain()
method, or 'all' to plot all the explained features. For example, consider that the
feature_names = ['temp', 'hum', 'windspeed', 'season']. If we set fea-
tures=None in the explain method, meaning that all the feature were explained, and
we want to plot only the values for the 'temp' and 'windspeed', then we would set
features=[0, 2]. Otherwise, if we set features=[1, 2, 3] in the explain method, meaning
that we explained ['hum', 'windspeed', 'season'], and we want to plot the values
only for ['windspeed', 'season'], then we would set features=[1, 2] (i.e., their
index in the features list passed to the explain method). Defaults to 'all'.

• metric_names – A list of metric entries in the exp.data[‘metrics’] to plot the permutation
feature importance for, or 'all' to plot the permutation feature importance for all metrics
(i.e., loss and score functions). The ordering is given by the concatenation of the loss metrics
followed by the score metrics.

• n_cols – Number of columns to organize the resulting plot into.

• sort – Boolean flag whether to sort the values in descending order.

• top_k – Number of top k values to be displayed if the sort=True. If not provided, then all
values will be displayed.

• ax – A matplotlib axes object or a numpy array of matplotlib axes to plot on.

• bar_kw – Keyword arguments passed to the matplotlib.pyplot.barh function.

714 Chapter 13. alibi

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html#sklearn.metrics.accuracy_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html#sklearn.metrics.precision_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html#sklearn.metrics.recall_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.barh.html

alibi Documentation, Release 0.9.5dev

• fig_kw – Keyword arguments passed to the matplotlib.figure.set function.

Returns
plt.Axes with the feature importance plot.

alibi.explainers.shap_wrappers module

alibi.explainers.shap_wrappers.DISTRIBUTED_OPTS: Dict = {'batch_size': 1, 'n_cpus': None}

Default distributed options for KernelShap:

• 'ncpus' : int - number of available CPUs available to parallelize explanations. Performance is sig-
nificantly boosted when the number specified represents physical CPUs, but small (nonlinear) gains are
observed when virtual CPUs are specified. If set to None, the code will run sequentially.

• 'batch_size': int, how many instances are explained in the same remote process at once. The shap
library of KernelShap is not vectorised, so no significant gains are made by specifying batches. See blog
post for batch size experiments results. If set to None, an input array is split in (roughly) equal parts and
distributed across the available CPUs.

class alibi.explainers.shap_wrappers.KernelExplainerWrapper(*args, **kwargs)
Bases: KernelExplainer

A wrapper around shap.KernelExplainer that supports:

• fixing the seed when instantiating the KernelExplainer in a separate process.

• passing a batch index to the explainer so that a parallel explainer pool can return batches in arbitrary order.

__init__(*args, **kwargs)

Parameters
• *args – Arguments and keyword arguments for shap.KernelExplainer constructor.

• **kwargs – Arguments and keyword arguments for shap.KernelExplainer constructor.

get_explanation(X, **kwargs)
Wrapper around shap.KernelExplainer.shap_values that allows calling the method with a tuple containing
a batch index and a batch of instances.

Parameters
• X (Union[Tuple[int, ndarray], ndarray]) – When called from a distributed context, it

is a tuple containing a batch index and a batch to be explained. Otherwise, it is an array of
instances to be explained.

• **kwargs – shap.KernelExplainer.shap_values kwarg values.

Return type
Union[Tuple[int, ndarray], Tuple[int, List[ndarray]], ndarray, List[ndarray]]

return_attribute(name)
Returns an attribute specified by its name. Used in a distributed context where the actor properties cannot
be accessed using the dot syntax.

Return type
Any

class alibi.explainers.shap_wrappers.KernelShap(predictor, link='identity', feature_names=None,
categorical_names=None, task='classification',
seed=None, distributed_opts=None)

13.1. alibi package 715

https://matplotlib.org/stable/api/figure_api.html
https://docs.python.org/3/library/typing.html#typing.Dict
https://www.seldon.io/how-seldons-alibi-and-ray-make-model-explainability-easy-and-scalable/
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any

alibi Documentation, Release 0.9.5dev

Bases: Explainer, FitMixin

__init__(predictor, link='identity', feature_names=None, categorical_names=None, task='classification',
seed=None, distributed_opts=None)

A wrapper around the shap.KernelExplainer class. It extends the current shap library functionality by
allowing the user to specify variable groups in order to treat one-hot encoded categorical as one during
sampling. The user can also specify whether to aggregate the shap values estimate for the encoded levels
of categorical variables as an optional argument to explain, if grouping arguments are not passed to fit.

Parameters
• predictor (Callable[[ndarray], ndarray]) – A callable that takes as an input a sam-

ples x features array and outputs a samples x n_outputs model outputs. The n_outputs
should represent model output in margin space. If the model outputs probabilities, then the
link should be set to 'logit' to ensure correct force plots.

• link (str) – Valid values are 'identity' or 'logit'. A generalized linear model link
to connect the feature importance values to the model output. Since the feature importance
values, 𝜑, sum up to the model output, it often makes sense to connect them to the ouput
with a link function where 𝑙𝑖𝑛𝑘(𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒) = 𝑠𝑢𝑚(𝜑). Therefore, for a
model which outputs probabilities, link='logit'makes the feature effects have log-odds
(evidence) units and link='identity' means that the feature effects have probability
units. Please see this example for an in-depth discussion about the semantics of explaining
the model in the probability or margin space.

• feature_names (Union[List[str], Tuple[str], None]) – Used to infer group names
when categorical data is treated by grouping and group_names input to fit is not spec-
ified, assuming it has the same length as the groups argument of fit method. It is also
used to compute the names field, which appears as a key in each of the values of explana-
tion.data[‘raw’][‘importances’].

• categorical_names (Optional[Dict[int, List[str]]]) – Keys are feature column in-
dices in the background_data matrix (see fit). Each value contains strings with the names
of the categories for the feature. Used to select the method for background data summari-
sation (if specified, subsampling is performed as opposed to k-means clustering). In the
future it may be used for visualisation.

• task (str) – Can have values 'classification' and 'regression'. It is only used to
set the contents of explanation.data[‘raw’][‘prediction’]

• seed (Optional[int]) – Fixes the random number stream, which influences which subsets
are sampled during shap value estimation.

• distributed_opts (Optional[Dict]) – A dictionary that controls the algorithm dis-
tributed execution. See alibi.explainers.shap_wrappers.DISTRIBUTED_OPTS
documentation for details.

explain(X, summarise_result=False, cat_vars_start_idx=None, cat_vars_enc_dim=None, **kwargs)
Explains the instances in the array X.

Parameters
• X (Union[ndarray, DataFrame, spmatrix]) – Instances to be explained.

• summarise_result (bool) – Specifies whether the shap values corresponding to dimen-
sions of encoded categorical variables should be summed so that a single shap value is
returned for each categorical variable. Both the start indices of the categorical variables
(cat_vars_start_idx) and the encoding dimensions (cat_vars_enc_dim) have to be specified

716 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/slundberg/shap/blob/master/notebooks/tabular_examples/model_agnostic/Squashing%20Effect.ipynb
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool

alibi Documentation, Release 0.9.5dev

• cat_vars_start_idx (Optional[Sequence[int]]) – The start indices of the categori-
cal variables. If specified, cat_vars_enc_dim should also be specified.

• cat_vars_enc_dim (Optional[Sequence[int]]) – The length of the encoding dimen-
sion for each categorical variable. If specified cat_vars_start_idx should also be specified.

• **kwargs – Keyword arguments specifying explain behaviour. Valid arguments are:

– nsamples - controls the number of predictor calls and therefore runtime.

– l1_reg - the algorithm is exponential in the feature dimension. If set to auto the algo-
rithm will first run a feature selection algorithm to select the top features, provided the
fraction of sampled sets of missing features is less than 0.2 from the number of total
subsets. The Akaike Information Criterion is used in this case. See our examples for
more details about available settings for this parameter. Note that by first running a fea-
ture selection step, the shapley values of the remainder of the features will be different
to those estimated from the entire set.

For more details, please see the shap library documentation .

Return type
Explanation

Returns
explanation – An explanation object containing the shap values and prediction in the data
field, along with a meta field containing additional data. See usage at KernelSHAP examples
for details.

fit(background_data, summarise_background=False, n_background_samples=300, group_names=None,
groups=None, weights=None, **kwargs)
This takes a background dataset (usually a subsample of the training set) as an input along with several
user specified options and initialises a KernelShap explainer. The runtime of the algorithm depends on
the number of samples in this dataset and on the number of features in the dataset. To reduce the size of
the dataset, the summarise_background option and n_background_samples should be used. To reduce the
feature dimensionality, encoded categorical variables can be treated as one during the feature perturbation
process; this decreases the effective feature dimensionality, can reduce the variance of the shap values
estimation and reduces slightly the number of calls to the predictor. Further runtime savings can be achieved
by changing the nsamples parameter in the call to explain. Runtime reduction comes with an accuracy trade-
off, so it is better to experiment with a runtime reduction method and understand results stability before
using the system.

Parameters
• background_data (Union[ndarray, spmatrix, DataFrame, Data]) – Data used to esti-

mate feature contributions and baseline values for force plots. The rows of the background
data should represent samples and the columns features.

• summarise_background (Union[bool, str]) – A large background dataset impacts the
runtime and memory footprint of the algorithm. By setting this argument to True, only
n_background_samples from the provided data are selected. If group_names or groups ar-
guments are specified, the algorithm assumes that the data contains categorical variables so
the records are selected uniformly at random. Otherwise, shap.kmeans (a wrapper around
sklearn k-means implementation) is used for selection. If set to 'auto', a default of KER-
NEL_SHAP_BACKGROUND_THRESHOLD samples is selected.

• n_background_samples (int) – The number of samples to keep in the background
dataset if summarise_background=True.

13.1. alibi package 717

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://shap.readthedocs.io/en/stable/.
https://docs.seldon.io/projects/alibi/en/stable/methods/KernelSHAP.html
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

• groups (Optional[List[Union[Tuple[int], List[int]]]]) – A list containing sub-lists
specifying the indices of features belonging to the same group.

• group_names (Union[List[str], Tuple[str], None]) – If specified, this array is used
to treat groups of features as one during feature perturbation. This feature can be useful,
for example, to treat encoded categorical variables as one and can result in computational
savings (this may require adjusting the nsamples parameter).

• weights (Union[List[float], Tuple[float], ndarray, None]) – A sequence or array
of weights. This is used only if grouping is specified and assigns a weight to each point in
the dataset.

• **kwargs – Expected keyword arguments include keep_index (bool) and should be used
if a data frame containing an index column is passed to the algorithm.

Return type
KernelShap

reset_predictor(predictor)
Resets the prediction function.

Parameters
predictor (Callable) – New prediction function.

Return type
None

class alibi.explainers.shap_wrappers.TreeShap(predictor, model_output='raw', feature_names=None,
categorical_names=None, task='classification',
seed=None)

Bases: Explainer, FitMixin

__init__(predictor, model_output='raw', feature_names=None, categorical_names=None,
task='classification', seed=None)

A wrapper around the shap.TreeExplainer class. It adds the following functionality:

1. Input summarisation options to allow control over background dataset size and hence runtime

2. Output summarisation for sklearn models with one-hot encoded categorical variables.

Users are strongly encouraged to familiarise themselves with the algorithm by reading the method overview
in the documentation.

Parameters
• predictor (Any) – A fitted model to be explained. XGBoost, LightGBM, CatBoost and

most tree-based scikit-learn models are supported. In the future, Pyspark could also be
supported. Please open an issue if this is a use case for you.

• model_output (str) – Supported values are: 'raw', 'probability',
'probability_doubled', 'log_loss':

– 'raw' - the raw model of the output, which varies by task, is explained. This option
should always be used if the fit is called without arguments. It should also be set to
compute shap interaction values. For regression models it is the standard output, for
binary classification in XGBoost it is the log odds ratio.

– 'probability' - the probability output is explained. This option should only be
used if fit was called with the background_data argument set. The effect of spec-
ifying this parameter is that the shap library will use this information to transform
the shap values computed in margin space (aka using the raw output) to shap val-
ues that sum to the probability output by the model plus the model expected output

718 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

probability. This requires knowledge of the type of output for predictor which is in-
ferred by the shap library from the model type (e.g., most sklearn models with excep-
tion of sklearn.tree.DecisionTreeClassifier, sklearn.ensemble.RandomForestClassifier,
sklearn.ensemble.ExtraTreesClassifier output logits) or on the basis of the mapping im-
plemented in the shap.TreeEnsemble constructor. Only trees that output log odds and
probabilities are supported currently.

– 'probability_doubled' - used for binary classification problem in situations where
the model outputs the logits/probabilities for the positive class but shap values for both
outcomes are desired. This option should be used only if fit was called with the back-
ground_data argument set. In this case the expected value for the negative class is 1 -
expected_value for positive class and the shap values for the negative class are the neg-
ative values of the positive class shap values. As before, the explanation happens in the
margin space, and the shap values are subsequently adjusted. convert the model output
to probabilities. The same considerations as for probability apply for this output type
too.

– 'log_loss' - logarithmic loss is explained. This option shoud be used only if fit was
called with the background_data argument set and requires specifying labels, y, when
calling explain. If the objective is squared error, then the transformation (𝑜𝑢𝑡𝑝𝑢𝑡−𝑦)2 is
applied. For binary cross-entropy objective, the transformation 𝑙𝑜𝑔(1+𝑒𝑥𝑝(𝑜𝑢𝑡𝑝𝑢𝑡))−
𝑦*𝑜𝑢𝑡𝑝𝑢𝑡 with 𝑦 ∈ {0, 1}. Currently only binary cross-entropy and squared error losses
can be explained.

• feature_names (Union[List[str], Tuple[str], None]) – Used to compute the names
field, which appears as a key in each of the values of the importances sub-field of the
response raw field.

• categorical_names (Optional[Dict[int, List[str]]]) – Keys are feature column in-
dices. Each value contains strings with the names of the categories for the feature. Used
to select the method for background data summarisation (if specified, subsampling is per-
formed as opposed to kmeans clustering). In the future it may be used for visualisation.

• task (str) – Can have values 'classification' and 'regression'. It is only used to
set the contents of the prediction field in the data[‘raw’] response field.

Notes

Tree SHAP is an additive attribution method so it is best suited to explaining output in margin space (the
entire real line). For discussion related to explaining models in output vs probability space, please consult
this resource.

explain(X, y=None, interactions=False, approximate=False, check_additivity=True, tree_limit=None,
summarise_result=False, cat_vars_start_idx=None, cat_vars_enc_dim=None, **kwargs)

Explains the instances in X. y should be passed if the model loss function is to be explained, which can be
useful in order to understand how various features affect model performance over time. This is only possible
if the explainer has been fitted with a background dataset and requires setting model_output=’log_loss’.

Parameters
• X (Union[ndarray, DataFrame, Pool]) – Instances to be explained.

• y (Optional[ndarray]) – Labels corresponding to rows of X. Should be passed only if a
background dataset was passed to the fit method.

• interactions (bool) – If True, the shap value for every feature of every instance in X is
decomposed into X.shape[1] - 1 shap value interactions and one main effect. This is only
supported if fit is called with background_dataset=None.

13.1. alibi package 719

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/slundberg/shap/blob/master/notebooks/tabular_examples/model_agnostic/Squashing%20Effect.ipynb
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool

alibi Documentation, Release 0.9.5dev

• approximate (bool) – If True, an approximation to the shap values that does not account
for feature order is computed. This was proposed by Ando Sabaas here . Check this re-
source for more details. This option is currently only supported for xgboost and sklearn
models.

• check_additivity (bool) – If True, output correctness is ensured if
model_output='raw' has been passed to the constructor.

• tree_limit (Optional[int]) – Explain the output of a subset of the first tree_limit trees
in an ensemble model.

• summarise_result (bool) – This should be set to True only when some of the columns
in X represent encoded dimensions of a categorical variable and one single shap value per
categorical variable is desired. Both cat_vars_start_idx and cat_vars_enc_dim should be
specified as detailed below to allow this.

• cat_vars_start_idx (Optional[Sequence[int]]) – The start indices of the categori-
cal variables.

• cat_vars_enc_dim (Optional[Sequence[int]]) – The length of the encoding dimen-
sion for each categorical variable.

Return type
Explanation

Returns
explanation – An Explanation object containing the shap values and prediction in the data
field, along with a meta field containing additional data. See usage at TreeSHAP examples
for details.

fit(background_data=None, summarise_background=False, n_background_samples=1000, **kwargs)
This function instantiates an explainer which can then be use to explain instances using the explain method.
If no background dataset is passed, the explainer uses the path-dependent feature perturbation algorithm
to explain the values. As such, only the model raw output can be explained and this should be reflected
by passing model_output='raw' when instantiating the explainer. If a background dataset is passed, the
interventional feature perturbation algorithm is used. Using this algorithm, probability outputs can also be
explained. Additionally, if the model_output='log_loss' option is passed to the explainer constructor,
then the model loss function can be explained by passing the labels as the y argument to the explain method.
A limited number of loss functions are supported, as detailed in the constructor documentation.

Parameters
• background_data (Union[ndarray, DataFrame, None]) – Data used to estimate feature

contributions and baseline values for force plots. The rows of the background data should
represent samples and the columns features.

• summarise_background (Union[bool, str]) – A large background dataset may impact
the runtime and memory footprint of the algorithm. By setting this argument to True, only
n_background_samples from the provided data are selected. If the categorical_names ar-
gument has been passed to the constructor, subsampling of the data is used. Otherwise,
shap.kmeans (a wrapper around sklearn.kmeans implementation) is used for selection.
If set to 'auto', a default of TREE_SHAP_BACKGROUND_WARNING_THRESHOLD
samples is selected.

• n_background_samples (int) – The number of samples to keep in the background
dataset if summarise_background=True.

Return type
TreeShap

720 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#bool
https://github.com/andosa/treeinterpreter
https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-019-0138-9/MediaObjects/42256_2019_138_MOESM1_ESM.pdf
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

reset_predictor(predictor)
Resets the predictor.

Parameters
predictor (Any) – New prediction.

Return type
None

alibi.explainers.shap_wrappers.rank_by_importance(shap_values, feature_names=None)
Given the shap values estimated for a multi-output model, this function ranks features according to their impor-
tance. The feature importance is the average absolute value for a given feature.

Parameters
• shap_values (List[ndarray]) – Each element corresponds to a samples x features array

of shap values corresponding to each model output.

• feature_names (Union[List[str], Tuple[str], None]) – Each element is the name of
the column with the corresponding index in each of the arrays in the shap_values list.

Return type
Dict

Returns
importances –

A dictionary of the form:

{
'0': {'ranked_effect': array([0.2, 0.5, ...]), 'names': ['feat_3',

→˓'feat_5', ...]},
'1': {'ranked_effect': array([0.3, 0.2, ...]), 'names': ['feat_6',

→˓'feat_1', ...]},
...
'aggregated': {'ranked_effect': array([0.9, 0.7, ...]), 'names': [

→˓'feat_3', 'feat_6', ...]}
}

The keys of the first level represent the index of the model output. The feature effects in
ranked_effect and the corresponding feature names in names are sorted from highest (most impor-
tant) to lowest (least important). The values in the aggregated field are obtained by summing the
shap values for all the model outputs and then computing the effects. Given an output, the effects
are defined as the average magnitude of the shap values across the instances to be explained.

alibi.explainers.shap_wrappers.sum_categories(values, start_idx, enc_feat_dim)

This function is used to reduce specified slices in a two- or three- dimensional array.

For two-dimensional values arrays, for each entry in start_idx, the function sums the following k columns where
k is the corresponding entry in the enc_feat_dim sequence. The columns whose indices are not in start_idx are
left unchanged. This arises when the slices contain the shap values for each dimension of an encoded categorical
variable and a single shap value for each variable is desired.

For three-dimensional values arrays, the reduction is applied for each rank 2 subarray, first along the column
dimension and then across the row dimension. This arises when summarising shap interaction values. Each rank
2 array is a E x E matrix of shap interaction values, where E is the dimension of the data after one-hot encoding.
The result of applying the reduction yields a rank 2 array of dimension F x F, where F is the number of features
(i.e., the feature dimension of the data matrix before encoding). By applying this transformation, a single value

13.1. alibi package 721

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict

alibi Documentation, Release 0.9.5dev

describing the interaction of categorical features i and j and a single value describing the interaction of j and i is
returned.

Parameters
• values (ndarray) – A two or three dimensional array to be reduced, as described above.

• start_idx (Sequence[int]) – The start indices of the columns to be summed.

• enc_feat_dim (Sequence[int]) – The number of columns to be summed, one for each
start index.

Returns
new_values – An array whose columns have been summed according to the entries in start_idx
and enc_feat_dim.

alibi.models package

Subpackages

alibi.models.pytorch package

Submodules

alibi.models.pytorch.actor_critic module

This module contains the Pytorch implementation of actor-critic networks used in the Counterfactual with Reinforce-
ment Learning for both data modalities. The models’ architectures follow the standard actor-critic design and can have
broader use-cases.

class alibi.models.pytorch.actor_critic.Actor(hidden_dim, output_dim)

Bases: Module

Actor network. The network follows the standard actor-critic architecture used in Deep Reinforcement Learning.
The model is used in Counterfactual with Reinforcement Learning (CFRL) for both data modalities (images
and tabular). The hidden dimension used for the all experiments is 256, which is a common choice in most
benchmarks.

__init__(hidden_dim, output_dim)

Constructor.

Parameters
• hidden_dim (int) – Hidden dimension.

• output_dim (int) – Output dimension

forward(x)
Forward pass

Parameters
x (Tensor) – Input tensor.

Return type
Tensor

Returns
Continuous action.

722 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

class alibi.models.pytorch.actor_critic.Critic(hidden_dim)

Bases: Module

Critic network. The network follows the standard actor-critic architecture used in Deep Reinforcement Learning.
The model is used in Counterfactual with Reinforcement Learning (CFRL) for both data modalities (images
and tabular). The hidden dimension used for the all experiments is 256, which is a common choice in most
benchmarks.

__init__(hidden_dim)

Constructor.

Parameters
hidden_dim (int) – Hidden dimension.

forward(x)
Forward pass.

Parameters
x (Tensor) – Input tensor.

Return type
Tensor

Returns
Critic value.

alibi.models.pytorch.autoencoder module

This module contains a Pytorch general implementation of an autoencoder, by combining the encoder and the decoder
module. In addition it provides an implementation of a heterogeneous autoencoder which includes a type checking of
the output.

class alibi.models.pytorch.autoencoder.AE(encoder, decoder, **kwargs)
Bases: Model

Autoencoder. Standard autoencoder architecture. The model is composed from two submodules, the encoder
and the decoder. The forward pass consist of passing the input to the encoder, obtain the input embedding and
pass the embedding through the decoder. The abstraction can be used for multiple data modalities.

__init__(encoder, decoder, **kwargs)
Constructor. Combine encoder and decoder in AE.

Parameters
• encoder (Module) – Encoder network.

• decoder (Module) – Decoder network.

forward(x)
Forward pass.

Parameters
x (Tensor) – Input tensor.

Return type
Union[Tensor, List[Tensor]]

Returns
x_hat – Reconstruction of the input tensor.

13.1. alibi package 723

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List

alibi Documentation, Release 0.9.5dev

class alibi.models.pytorch.autoencoder.HeAE(encoder, decoder, **kwargs)
Bases: AE

Heterogeneous autoencoder. The model follows the standard autoencoder architecture and includes and addi-
tional type check to ensure that the output of the model is a list of tensors. For more details, see alibi.models.
pytorch.autoencoder.AE.

__init__(encoder, decoder, **kwargs)
Constructor. Combine encoder and decoder in HeAE.

Parameters
• encoder (Module) – Encoder network.

• decoder (Module) – Decoder network.

forward(x)
Forward pass.

Parameters
x (Tensor) – Input tensor.

Return type
List[Tensor]

Returns
List of reconstruction of the input tensor. First element corresponds to the reconstruction
of all the numerical features if they exist, and the rest of the elements correspond to each
categorical feature.

alibi.models.pytorch.cfrl_models module

This module contains the Pytorch implementation of models used for the Counterfactual with Reinforcement Learning
experiments for both data modalities (image and tabular).

class alibi.models.pytorch.cfrl_models.ADULTDecoder(hidden_dim, output_dims)
Bases: Module

ADULT decoder used in the Counterfactual with Reinforcement Learning experiments. The model consists of
of a fully connected layer with ReLU nonlinearity, and a multiheaded layer, one for each categorical feature and
a single head for the rest of numerical features. The hidden dimension used in the paper is 128.

__init__(hidden_dim, output_dims)
Constructor.

Parameters
• hidden_dim (int) – Hidden dimension.

• output_dims (List[int]) – List of output dimensions.

forward(x)
Forward pass.

Parameters
x (Tensor) – Input tensor.

Return type
List[Tensor]

724 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List

alibi Documentation, Release 0.9.5dev

Returns
List of reconstruction of the input tensor. First element corresponds to the reconstruction
of all the numerical features if they exist, and the rest of the elements correspond to each
categorical feature.

class alibi.models.pytorch.cfrl_models.ADULTEncoder(hidden_dim, latent_dim)

Bases: Module

ADULT encoder used in the Counterfactual with Reinforcement Learning experiments. The model consists of
two fully connected layers with ReLU and tanh nonlinearities. The tanh nonlinearity clips the embedding in [-1,
1] as required in the DDPG algorithm (e.g., [act_low, act_high]). The layers’ dimensions used in the paper are
128 and 15, although those can vary as they were selected to generalize across many datasets.

__init__(hidden_dim, latent_dim)

Constructor.

Parameters
• hidden_dim (int) – Hidden dimension.

• latent_dim (int) – Latent dimension.

forward(x)
Forward pass.

Parameters
x (Tensor) – Input tensor.

Return type
Tensor

Returns
Encoding representation having each component in the interval [-1, 1]

class alibi.models.pytorch.cfrl_models.MNISTClassifier(output_dim)

Bases: Model

MNIST classifier used in the experiments for Counterfactual with Reinforcement Learning. The model consists
of two convolutional layers having 64 and 32 channels and a kernel size of 2 with ReLU nonlinearities, followed
by maxpooling of size 2 and dropout of 0.3. The convolutional block is followed by a fully connected layer of
256 with ReLU nonlinearity, and finally a fully connected layer is used to predict the class logits (10 in MNIST
case).

__init__(output_dim)

Constructor.

Parameters
output_dim (int) – Output dimension.

forward(x)
Forward pass.

Parameters
x (Tensor) – Input tensor.

Return type
Tensor

Returns
Classification logits.

13.1. alibi package 725

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

class alibi.models.pytorch.cfrl_models.MNISTDecoder(latent_dim)

Bases: Module

MNIST decoder used in the Counterfactual with Reinforcement Learning experiments. The model consists of a
fully connected layer of 128 units with ReLU activation followed by a convolutional block. The convolutional
block consists fo 4 convolutional layers having 8, 8, 8 and 1 channels and a kernel size of 3. Each convolutional
layer, except the last one, has ReLU nonlinearities and is followed by an upsampling layer of size 2. The final
layers uses a sigmoid activation to clip the output values in [0, 1].

__init__(latent_dim)

Constructor.

Parameters
latent_dim (int) – Latent dimension.

forward(x)
Forward pass.

Parameters
x (Tensor) – Input tensor.

Return type
Tensor

Returns
Decoded input having each component in the interval [0, 1].

class alibi.models.pytorch.cfrl_models.MNISTEncoder(latent_dim)

Bases: Module

MNIST encoder used in the experiments for the Counterfactual with Reinforcement Learning. The model consists
of 3 convolutional layers having 16, 8 and 8 channels and a kernel size of 3, with ReLU nonlinearities. Each
convolutional layer is followed by a maxpooling layer of size 2. Finally, a fully connected layer follows the
convolutional block with a tanh nonlinearity. The tanh clips the output between [-1, 1], required in the DDPG
algorithm (e.g., [act_low, act_high]). The embedding dimension used in the paper is 32, although this can vary.

__init__(latent_dim)

Constructor.

Parameters
latent_dim (int) – Latent dimension.

forward(x)
Forward pass.

Parameters
x (Tensor) – Input tensor.

Return type
Tensor

Returns
Encoding representation having each component in the interval [-1, 1]

726 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

alibi.models.pytorch.metrics module

This module contains a loss wrapper and a definition of various monitoring metrics used during training. The model to
be trained inherits form alibi.explainers.models.pytorch.model.Model and represents a simplified version of
the tensorflow.keras API for training and monitoring the model. Currently it is used internally to test the functionalities
for the Pytorch backend. To be discussed if the module will be exposed to the user in future versions.

class alibi.models.pytorch.metrics.AccuracyMetric(name='accuracy')
Bases: Metric

Accuracy monitoring metric.

compute_metric(y_pred, y_true)
Computes accuracy metric given the predicted label and the true label.

Parameters
• y_pred (Union[Tensor, ndarray]) – Predicted label.

• y_true (Union[Tensor, ndarray]) – True label.

Return type
None

class alibi.models.pytorch.metrics.LossContainer(loss, name)
Bases: object

Loss wrapped to monitor the average loss throughout training.

__call__(y_pred, y_true)
Computes and accumulates the loss given the prediction labels and the true labels.

Parameters
• y_pred (Tensor) – Prediction labels.

• y_true (Tensor) – True labels.

Return type
Tensor

Returns
Loss value.

__init__(loss, name)
Constructor.

Parameters
• loss (Callable[[Tensor, Tensor], Tensor]) – Loss function.

• name (str) – Name of the loss function

reset()

Resets the loss.

result()

Computes the average loss obtain by dividing the cumulated loss by the number of steps

Return type
Dict[str, float]

Returns
Average loss.

13.1. alibi package 727

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

class alibi.models.pytorch.metrics.Metric(reduction=Reduction.MEAN , name='unknown')
Bases: ABC

Monitoring metric object. Supports two types of reduction: mean and sum.

__init__(reduction=Reduction.MEAN , name='unknown')
Constructor.

Parameters
• reduction (Reduction) – Metric’s reduction type. Possible values mean`|`sum. By de-

fault mean.

• name (str) – Name of the metric.

abstract compute_metric(y_pred, y_true)

reset()

Resets the monitoring metric.

result()

Computes the result according to the reduction procedure.

Return type
Dict[str, float]

Returns
Monitoring metric.

update_state(values)
Update the state of the metric by summing up the metric values and updating the counts by adding the
number of instances for which the metric was computed (first dimension).

class alibi.models.pytorch.metrics.Reduction(value)
Bases: Enum

Reduction operation supported by the monitoring metrics.

MEAN: str = 'mean'

SUM: str = 'sum'

alibi.models.pytorch.model module

This module tries to provided a class wrapper to mimic the TensorFlow API of tensorflow.keras.Model. It is intended
to simplify the training of a model through methods like compile, fit and evaluate which allow the user to define custom
loss functions, optimizers, evaluation metrics, train a model and evaluate it. Currently it is used internally to test the
functionalities for the Pytorch backend. To be discussed if the module will be exposed to the user in future versions.

class alibi.models.pytorch.model.Model(*args: Any, **kwargs: Any)
Bases: Module

compile(optimizer, loss, loss_weights=None, metrics=None)
Compiles a model by setting the optimizer and the loss functions, loss weights and metrics to monitor the
training of the model.

Parameters
• optimizer (Optimizer) – Optimizer to be used.

728 Chapter 13. alibi

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

alibi Documentation, Release 0.9.5dev

• loss (Union[Callable, List[Callable]]) – Loss function to be used. Can be a list of
the loss function which will be weighted and summed up to compute the total loss.

• loss_weights (Optional[List[float]]) – Weights corresponding to each loss function.
Only used if the loss argument is a list.

• metrics (Optional[List[Metric]]) – Metrics used to monitor the training process.

compute_loss(y_pred, y_true)
Computes the loss given the prediction labels and the true labels.

Parameters
• y_pred (Union[Tensor, List[Tensor]]) – Prediction labels.

• y_true (Union[Tensor, List[Tensor]]) – True labels.

Return type
Tuple[Tensor, Dict[str, float]]

Returns
A tuple consisting of the total loss computed as a weighted sum of individual losses and a
dictionary of individual losses used of logging.

compute_metrics(y_pred, y_true)
Computes the metrics given the prediction labels and the true labels.

Parameters
• y_pred (Union[Tensor, List[Tensor]]) – Prediction labels.

• y_true (Union[Tensor, List[Tensor]]) – True labels.

Return type
Dict[str, float]

evaluate(testloader)
Evaluation function. The function reports the evaluation metrics used for monitoring the training loop.

Parameters
testloader (DataLoader) – Test dataloader.

Return type
Dict[str, float]

Returns
Evaluation metrics.

fit(trainloader, epochs)
Fit method. Equivalent of a training loop.

Parameters
• trainloader (DataLoader) – Training data loader.

• epochs (int) – Number of epochs to train the model.

Return type
Dict[str, float]

Returns
Final epoch monitoring metrics.

13.1. alibi package 729

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

load_weights(path)
Loads the weight of the current model.

Return type
None

save_weights(path)
Save the weight of the current model.

Return type
None

test_step(x, y)
Performs a test step.

Parameters
• x (Tensor) – Input tensor.

• y (Union[Tensor, List[Tensor]]) – Label tensor.

train_step(x, y)
Performs a train step.

Parameters
• x (Tensor) – Input tensor.

• y (Union[Tensor, List[Tensor]]) – Label tensor.

Return type
Dict[str, float]

validate_prediction_labels(y_pred, y_true)
Validates the loss functions, loss weights, training labels and prediction labels.

Parameters
• y_pred (Union[Tensor, List[Tensor]]) – Prediction labels.

• y_true (Union[Tensor, List[Tensor]]) – True labels.

alibi.models.tensorflow package

Submodules

alibi.models.tensorflow.actor_critic module

This module contains the Tensorflow implementation of actor-critic networks used in the Counterfactual with Rein-
forcement Learning for both data modalities. The models’ architectures follow the standard actor-critic design and can
have broader use-cases.

class alibi.models.tensorflow.actor_critic.Actor(hidden_dim, output_dim, **kwargs)
Bases: Model

Actor network. The network follows the standard actor-critic architecture used in Deep Reinforcement Learning.
The model is used in Counterfactual with Reinforcement Learning (CFRL) for both data modalities (images
and tabular). The hidden dimension used for the all experiments is 256, which is a common choice in most
benchmarks.

730 Chapter 13. alibi

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List

alibi Documentation, Release 0.9.5dev

__init__(hidden_dim, output_dim, **kwargs)
Constructor.

Parameters
• hidden_dim (int) – Hidden dimension

• output_dim (int) – Output dimension

call(x, **kwargs)
Forward pass.

Parameters
• x (Tensor) – Input tensor.

• **kwargs – Other arguments. Not used.

Return type
Tensor

Returns
Continuous action.

class alibi.models.tensorflow.actor_critic.Critic(hidden_dim, **kwargs)
Bases: Model

Critic network. The network follows the standard actor-critic architecture used in Deep Reinforcement Learning.
The model is used in Counterfactual with Reinforcement Learning (CFRL) for both data modalities (images
and tabular). The hidden dimension used for the all experiments is 256, which is a common choice in most
benchmarks.

__init__(hidden_dim, **kwargs)
Constructor.

Parameters
hidden_dim (int) – Hidden dimension.

call(x, **kwargs)
Forward pass.

Parameters
x (Tensor) – Input tensor.

Return type
Tensor

Returns
Critic value.

alibi.models.tensorflow.autoencoder module

This module contains a Tensorflow general implementation of an autoencoder, by combining the encoder and the
decoder module. In addition it provides an implementation of a heterogeneous autoencoder which includes a type
checking of the output.

class alibi.models.tensorflow.autoencoder.AE(encoder, decoder, **kwargs)
Bases: Model

13.1. alibi package 731

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

Autoencoder. Standard autoencoder architecture. The model is composed from two submodules, the encoder
and the decoder. The forward pass consists of passing the input to the encoder, obtain the input embedding and
pass the embedding through the decoder. The abstraction can be used for multiple data modalities.

__init__(encoder, decoder, **kwargs)
Constructor. Combine encoder and decoder in AE

Parameters
• encoder (Model) – Encoder network.

• decoder (Model) – Decoder network.

call(x, **kwargs)
Forward pass.

Parameters
• x (Tensor) – Input tensor.

• **kwargs – Other arguments passed to encoder/decoder call method.

Return type
Union[Tensor, List[Tensor]]

Returns
x_hat – Reconstruction of the input tensor.

class alibi.models.tensorflow.autoencoder.HeAE(encoder, decoder, **kwargs)
Bases: AE

Heterogeneous autoencoder. The model follows the standard autoencoder architecture and includes and addi-
tional type check to ensure that the output of the model is a list of tensors. For more details, see alibi.models.
pytorch.autoencoder.AE.

__init__(encoder, decoder, **kwargs)
Constructor. Combine encoder and decoder in HeAE.

Parameters
• encoder (Model) – Encoder network.

• decoder (Model) – Decoder network.

build(input_shape)
Build method.

Parameters
input_shape (Tuple[int, ...]) – Tensor’s input shape.

Return type
None

call(x, **kwargs)
Forward pass.

Parameters
• x (Tensor) – Input tensor.

• **kwargs – Other arguments passed to the encoder/decoder.

Return type
List[Tensor]

732 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List

alibi Documentation, Release 0.9.5dev

Returns
List of reconstruction of the input tensor. First element corresponds to the reconstruction
of all the numerical features if they exist, and the rest of the elements correspond to each
categorical feature.

alibi.models.tensorflow.cfrl_models module

This module contains the Tensorflow implementation of models used for the Counterfactual with Reinforcement Learn-
ing experiments for both data modalities (image and tabular).

class alibi.models.tensorflow.cfrl_models.ADULTDecoder(hidden_dim, output_dims, **kwargs)
Bases: Model

ADULT decoder used in the Counterfactual with Reinforcement Learning experiments. The model consists of
of a fully connected layer with ReLU nonlinearity, and a multiheaded layer, one for each categorical feature and
a single head for the rest of numerical features. The hidden dimension used in the paper is 128.

__init__(hidden_dim, output_dims, **kwargs)
Constructor.

Parameters
• hidden_dim (int) – Hidden dimension.

• output_dim – List of output dimensions.

call(x, **kwargs)
Forward pass.

Parameters
• x (Tensor) – Input tensor.

• **kwargs – Other arguments. Not used.

Return type
List[Tensor]

Returns
List of reconstruction of the input tensor. First element corresponds to the reconstruction
of all the numerical features if they exist, and the rest of the elements correspond to each
categorical feature.

class alibi.models.tensorflow.cfrl_models.ADULTEncoder(hidden_dim, latent_dim, **kwargs)
Bases: Model

ADULT encoder used in the Counterfactual with Reinforcement Learning experiments. The model consists of
two fully connected layers with ReLU and tanh nonlinearities. The tanh nonlinearity clips the embedding in [-1,
1] as required in the DDPG algorithm (e.g., [act_low, act_high]). The layers’ dimensions used in the paper are
128 and 15, although those can vary as they were selected to generalize across many datasets.

__init__(hidden_dim, latent_dim, **kwargs)
Constructor.

Parameters
• hidden_dim (int) – Hidden dimension.

• latent_dim (int) – Latent dimension.

13.1. alibi package 733

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

call(x, **kwargs)
Forward pass.

Parameters
• x (Tensor) – Input tensor.

• **kwargs – Other arguments.

Return type
Tensor

Returns
Encoding representation having each component in the interval [-1, 1].

class alibi.models.tensorflow.cfrl_models.MNISTClassifier(output_dim=10, **kwargs)
Bases: Model

MNIST classifier used in the experiments for Counterfactual with Reinforcement Learning. The model consists
of two convolutional layers having 64 and 32 channels and a kernel size of 2 with ReLU nonlinearities, followed
by maxpooling of size 2 and dropout of 0.3. The convolutional block is followed by a fully connected layer of
256 with ReLU nonlinearity, and finally a fully connected layer is used to predict the class logits (10 in MNIST
case).

__init__(output_dim=10, **kwargs)
Constructor.

Parameters
output_dim (int) – Output dimension

call(x, training=True, **kwargs)
Forward pass.

Parameters
• x (Tensor) – Input tensor.

• training (bool) – Training flag.

• **kwargs – Other arguments. Not used.

Return type
Tensor

Returns
Classification logits.

class alibi.models.tensorflow.cfrl_models.MNISTDecoder(**kwargs)
Bases: Model

MNIST decoder used in the Counterfactual with Reinforcement Learning experiments. The model consists of a
fully connected layer of 128 units with ReLU activation followed by a convolutional block. The convolutional
block consists fo 4 convolutional layers having 8, 8, 8 and 1 channels and a kernel size of 3. Each convolutional
layer, except the last one, has ReLU nonlinearities and is followed by an up-sampling layer of size 2. The final
layers uses a sigmoid activation to clip the output values in [0, 1].

__init__(**kwargs)
Constructor.

call(x, **kwargs)
Forward pass.

Parameters

734 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

alibi Documentation, Release 0.9.5dev

• x (Tensor) – Input tensor

• **kwargs – Other arguments. Not used.

Return type
Tensor

Returns
Decoded input having each component in the interval [0, 1].

class alibi.models.tensorflow.cfrl_models.MNISTEncoder(latent_dim, **kwargs)
Bases: Model

MNIST encoder used in the experiments for the Counterfactual with Reinforcement Learning. The model consists
of 3 convolutional layers having 16, 8 and 8 channels and a kernel size of 3, with ReLU nonlinearities. Each
convolutional layer is followed by a maxpooling layer of size 2. Finally, a fully connected layer follows the
convolutional block with a tanh nonlinearity. The tanh clips the output between [-1, 1], required in the DDPG
algorithm (e.g., [act_low, act_high]). The embedding dimension used in the paper is 32, although this can vary.

__init__(latent_dim, **kwargs)
Constructor.

Parameters
latent_dim (int) – Latent dimension.

call(x, **kwargs)
Forward pass.

Parameters
• x (Tensor) – Input tensor.

• **kwargs – Other arguments. Not used.

Return type
Tensor

Returns
Encoding representation having each component in the interval [-1, 1]

alibi.prototypes package

The ‘alibi.prototypes’ modules includes prototypes and criticism selection methods.

class alibi.prototypes.ProtoSelect(kernel_distance, eps, lambda_penalty=None,
batch_size=10000000000, preprocess_fn=None, verbose=False)

Bases: Summariser, FitMixin

__init__(kernel_distance, eps, lambda_penalty=None, batch_size=10000000000, preprocess_fn=None,
verbose=False)

Prototype selection for dataset distillation and interpretable classification proposed by Bien and Tibshirani
(2012): https://arxiv.org/abs/1202.5933

Parameters
• kernel_distance (Callable[[ndarray, ndarray], ndarray]) – Kernel distance to be

used. Expected to support computation in batches. Given an input x of size Nx x f1 x f2
x . . . and an input y of size Ny x f1 x f2 x . . . , the kernel distance should return a kernel
matrix of size Nx x Ny.

• eps (float) – Epsilon ball size.

13.1. alibi package 735

https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1202.5933
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

• lambda_penalty (Optional[float]) – Penalty for each prototype. Encourages a lower
number of prototypes to be selected. Corresponds to 𝜆 in the paper notation. If not speci-
fied, the default value is set to 1 / N where N is the size of the dataset to choose the prototype
instances from, passed to the alibi.prototypes.protoselect.ProtoSelect.fit()
method.

• batch_size (int) – Batch size to be used for kernel matrix computation.

• preprocess_fn (Optional[Callable[[Union[list, ndarray]], ndarray]]) – Prepro-
cessing function used for kernel matrix computation. The preprocessing function takes the
input as a list or a numpy array and transforms it into a numpy array which is then fed to
the kernel_distance function. The use of preprocess_fn allows the method to be applied to
any data modality.

• verbose (bool) – Whether to display progression bar while computing prototype points.

fit(X, y=None, Z=None)
Fit the summariser. This step forms the kernel matrix in memory which has a shape of NX x NX, where NX
is the number of instances in X, if the optional dataset Z is not provided. Otherwise, if the optional dataset
Z is provided, the kernel matrix has a shape of NZ x NX, where NZ is the number of instances in Z.

Parameters
• X (Union[list, ndarray]) – Dataset to be summarised.

• y (Optional[ndarray]) – Labels of the dataset X to be summarised. The labels are ex-
pected to be represented as integers [0, 1, . . . , L-1], where L is the number of classes in the
dataset X.

• Z (Union[list, ndarray, None]) – Optional dataset to choose the prototypes from. If
Z=None, the prototypes will be selected from the dataset X. Otherwise, if Z is provided,
the dataset to be summarised is still X, but it is summarised by prototypes belonging to the
dataset Z.

Return type
ProtoSelect

Returns
self – Reference to itself.

summarise(num_prototypes=1)
Searches for the requested number of prototypes. Note that the algorithm can return a lower number of
prototypes than the requested one. To increase the number of prototypes, reduce the epsilon-ball radius
(eps), and the penalty for adding a prototype (lambda_penalty).

Parameters
num_prototypes (int) – Maximum number of prototypes to be selected.

Return type
Explanation

Returns
An Explanation object containing the prototypes, prototype indices and prototype labels with
additional metadata as attributes.

alibi.prototypes.visualize_image_prototypes(summary, trainset, reducer, preprocess_fn=None,
knn_kw=None, ax=None, fig_kw=None, image_size=(28,
28), zoom_lb=1.0, zoom_ub=3.0)

Plot the images of the prototypes at the location given by the reducer representation. The size of each prototype
is proportional to the logarithm of the number of assigned training instances correctly classified according to the
1-KNN classifier (Bien and Tibshirani (2012): https://arxiv.org/abs/1202.5933).

736 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1202.5933

alibi Documentation, Release 0.9.5dev

Parameters
• summary (Explanation) – An Explanation object produced by a call to the alibi.
prototypes.protoselect.ProtoSelect.summarise() method.

• trainset (Tuple[ndarray, ndarray]) – Tuple, (X_train, y_train), consisting of the train-
ing data instances with the corresponding labels.

• reducer (Callable[[ndarray], ndarray]) – 2D reducer. Reduces the input feature
representation to 2D. Note that the reducer operates directly on the input instances if
preprocess_fn=None. If the preprocess_fn is specified, the reducer will be called on the
feature representation obtained after passing the input instances through the preprocess_fn.

• preprocess_fn (Optional[Callable[[ndarray], ndarray]]) – Optional preprocessor
function. If preprocess_fn=None, no preprocessing is applied.

• knn_kw (Optional[dict]) – Keyword arguments passed to
sklearn.neighbors.KNeighborsClassifier. The n_neighbors will be set automatically
to 1, but the metric has to be specified according to the kernel distance used. If the metric is
not specified, it will be set by default to 'euclidean'. See parameters description: https:
//scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

• ax (Optional[Axes]) – A matplotlib axes object to plot on.

• fig_kw (Optional[dict]) – Keyword arguments passed to the fig.set function.

• image_size (Tuple[int, int]) – Shape to which the prototype images will be resized. A
zoom of 1 will display the image having the shape image_size.

• zoom_lb (float) – Zoom lower bound. The zoom will be scaled linearly between [zoom_lb,
zoom_ub].

• zoom_ub (float) – Zoom upper bound. The zoom will be scaled linearly between [zoom_lb,
zoom_ub].

Return type
Axes

Submodules

alibi.prototypes.protoselect module

class alibi.prototypes.protoselect.ProtoSelect(kernel_distance, eps, lambda_penalty=None,
batch_size=10000000000, preprocess_fn=None,
verbose=False)

Bases: Summariser, FitMixin

__init__(kernel_distance, eps, lambda_penalty=None, batch_size=10000000000, preprocess_fn=None,
verbose=False)

Prototype selection for dataset distillation and interpretable classification proposed by Bien and Tibshirani
(2012): https://arxiv.org/abs/1202.5933

Parameters
• kernel_distance (Callable[[ndarray, ndarray], ndarray]) – Kernel distance to be

used. Expected to support computation in batches. Given an input x of size Nx x f1 x f2
x . . . and an input y of size Ny x f1 x f2 x . . . , the kernel distance should return a kernel
matrix of size Nx x Ny.

13.1. alibi package 737

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1202.5933
https://docs.python.org/3/library/typing.html#typing.Callable

alibi Documentation, Release 0.9.5dev

• eps (float) – Epsilon ball size.

• lambda_penalty (Optional[float]) – Penalty for each prototype. Encourages a lower
number of prototypes to be selected. Corresponds to 𝜆 in the paper notation. If not speci-
fied, the default value is set to 1 / N where N is the size of the dataset to choose the prototype
instances from, passed to the alibi.prototypes.protoselect.ProtoSelect.fit()
method.

• batch_size (int) – Batch size to be used for kernel matrix computation.

• preprocess_fn (Optional[Callable[[Union[list, ndarray]], ndarray]]) – Prepro-
cessing function used for kernel matrix computation. The preprocessing function takes the
input as a list or a numpy array and transforms it into a numpy array which is then fed to
the kernel_distance function. The use of preprocess_fn allows the method to be applied to
any data modality.

• verbose (bool) – Whether to display progression bar while computing prototype points.

fit(X, y=None, Z=None)
Fit the summariser. This step forms the kernel matrix in memory which has a shape of NX x NX, where NX
is the number of instances in X, if the optional dataset Z is not provided. Otherwise, if the optional dataset
Z is provided, the kernel matrix has a shape of NZ x NX, where NZ is the number of instances in Z.

Parameters
• X (Union[list, ndarray]) – Dataset to be summarised.

• y (Optional[ndarray]) – Labels of the dataset X to be summarised. The labels are ex-
pected to be represented as integers [0, 1, . . . , L-1], where L is the number of classes in the
dataset X.

• Z (Union[list, ndarray, None]) – Optional dataset to choose the prototypes from. If
Z=None, the prototypes will be selected from the dataset X. Otherwise, if Z is provided,
the dataset to be summarised is still X, but it is summarised by prototypes belonging to the
dataset Z.

Return type
ProtoSelect

Returns
self – Reference to itself.

summarise(num_prototypes=1)
Searches for the requested number of prototypes. Note that the algorithm can return a lower number of
prototypes than the requested one. To increase the number of prototypes, reduce the epsilon-ball radius
(eps), and the penalty for adding a prototype (lambda_penalty).

Parameters
num_prototypes (int) – Maximum number of prototypes to be selected.

Return type
Explanation

Returns
An Explanation object containing the prototypes, prototype indices and prototype labels with
additional metadata as attributes.

alibi.prototypes.protoselect.compute_prototype_importances(summary, trainset,
preprocess_fn=None, knn_kw=None)

Computes the importance of each prototype. The importance of a prototype is the number of assigned training

738 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

instances correctly classified according to the 1-KNN classifier (Bien and Tibshirani (2012): https://arxiv.org/
abs/1202.5933).

Parameters
• summary (Explanation) – An Explanation object produced by a call to the alibi.
prototypes.protoselect.ProtoSelect.summarise() method.

• trainset (Tuple[ndarray, ndarray]) – Tuple, (X_train, y_train), consisting of the train-
ing data instances with the corresponding labels.

• preprocess_fn (Optional[Callable[[ndarray], ndarray]]) – Optional preprocessor
function. If preprocess_fn=None, no preprocessing is applied.

• knn_kw (Optional[dict]) – Keyword arguments passed to
sklearn.neighbors.KNeighborsClassifier. The n_neighbors will be set automatically
to 1, but the metric has to be specified according to the kernel distance used. If the metric is
not specified, it will be set by default to 'euclidean'. See parameters description: https:
//scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

Return type
Dict[str, Optional[ndarray]]

Returns
A dictionary containing –

• 'prototype_indices' - an array of the prototype indices.

• 'prototype_importances' - an array of prototype importances.

• 'X_protos' - an array of raw prototypes.

• 'X_protos_ft' - an optional array of preprocessed prototypes. If the
preprocess_fn=None, no preprocessing is applied and None is returned instead.

alibi.prototypes.protoselect.cv_protoselect_euclidean(trainset, protoset=None, valset=None,
num_prototypes=1, eps_grid=None,
quantiles=None, grid_size=25, n_splits=2,
batch_size=10000000000,
preprocess_fn=None, protoselect_kw=None,
knn_kw=None, kfold_kw=None)

Cross-validation parameter selection for ProtoSelect with Euclidean distance. The method computes the best
epsilon radius.

Parameters
• trainset (Tuple[ndarray, ndarray]) – Tuple, (X_train, y_train), consisting of the train-

ing data instances with the corresponding labels.

• protoset (Optional[Tuple[ndarray]]) – Tuple, (Z,), consisting of the dataset to choose
the prototypes from. If Z is not provided (i.e., protoset=None), the prototypes will be
selected from the training dataset X. Otherwise, if Z is provided, the dataset to be summarised
is still X, but it is summarised by prototypes belonging to the dataset Z. Note that the argument
is passed as a tuple with a single element for consistency reasons.

• valset (Optional[Tuple[ndarray, ndarray]]) – Optional tuple (X_val, y_val) consisting
of validation data instances with the corresponding validation labels. 1-KNN classifier is
evaluated on the validation dataset to obtain the best epsilon radius. In case valset=None,
then n-splits cross-validation is performed on the trainset.

• num_prototypes (int) – The number of prototypes to be selected.

13.1. alibi package 739

https://arxiv.org/abs/1202.5933
https://arxiv.org/abs/1202.5933
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

• eps_grid (Optional[ndarray]) – Optional grid of values to select the epsilon radius from.
If not specified, the search grid is automatically proposed based on the inter-distances be-
tween X and Z. The distances are filtered by considering only values in between the quantiles
values. The minimum and maximum distance values are used to define the range of values
to search the epsilon radius. The interval is discretized in grid_size equidistant bins.

• quantiles (Optional[Tuple[float, float]]) – Quantiles, (q_min, q_max), to be used to
filter the range of values of the epsilon radius. The expected quantile values are in [0, 1] and
clipped to [0, 1] if outside the range. See eps_grid for usage. If not specified, no filtering is
applied. Only used if eps_grid=None.

• grid_size (int) – The number of equidistant bins to be used to discretize the eps_grid
automatically proposed interval. Only used if eps_grid=None.

• batch_size (int) – Batch size to be used for kernel matrix computation.

• preprocess_fn (Optional[Callable[[ndarray], ndarray]]) – Preprocessing function
to be applied to the data instance before applying the kernel.

• protoselect_kw (Optional[dict]) – Keyword arguments passed to alibi.
prototypes.protoselect.ProtoSelect.__init__().

• knn_kw (Optional[dict]) – Keyword arguments passed to
sklearn.neighbors.KNeighborsClassifier. The n_neighbors will be set automatically
to 1 and the metric will be set to 'euclidean. See parameters description: https:
//scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

• kfold_kw (Optional[dict]) – Keyword arguments passed to
sklearn.model_selection.KFold. See parameters description: https://scikit-learn.org/
stable/modules/generated/sklearn.model_selection.KFold.html

Return type
dict

Returns
Dictionary containing –

• 'best_eps': float - the best epsilon radius according to the accuracy of a 1-KNN classi-
fier.

• 'meta': dict - dictionary containing argument and data gather throughout cross-validation.

alibi.prototypes.protoselect.visualize_image_prototypes(summary, trainset, reducer,
preprocess_fn=None, knn_kw=None,
ax=None, fig_kw=None, image_size=(28,
28), zoom_lb=1.0, zoom_ub=3.0)

Plot the images of the prototypes at the location given by the reducer representation. The size of each prototype
is proportional to the logarithm of the number of assigned training instances correctly classified according to the
1-KNN classifier (Bien and Tibshirani (2012): https://arxiv.org/abs/1202.5933).

Parameters
• summary (Explanation) – An Explanation object produced by a call to the alibi.
prototypes.protoselect.ProtoSelect.summarise() method.

• trainset (Tuple[ndarray, ndarray]) – Tuple, (X_train, y_train), consisting of the train-
ing data instances with the corresponding labels.

• reducer (Callable[[ndarray], ndarray]) – 2D reducer. Reduces the input feature
representation to 2D. Note that the reducer operates directly on the input instances if

740 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://docs.python.org/3/library/stdtypes.html#dict
https://arxiv.org/abs/1202.5933
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Callable

alibi Documentation, Release 0.9.5dev

preprocess_fn=None. If the preprocess_fn is specified, the reducer will be called on the
feature representation obtained after passing the input instances through the preprocess_fn.

• preprocess_fn (Optional[Callable[[ndarray], ndarray]]) – Optional preprocessor
function. If preprocess_fn=None, no preprocessing is applied.

• knn_kw (Optional[dict]) – Keyword arguments passed to
sklearn.neighbors.KNeighborsClassifier. The n_neighbors will be set automatically
to 1, but the metric has to be specified according to the kernel distance used. If the metric is
not specified, it will be set by default to 'euclidean'. See parameters description: https:
//scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

• ax (Optional[Axes]) – A matplotlib axes object to plot on.

• fig_kw (Optional[dict]) – Keyword arguments passed to the fig.set function.

• image_size (Tuple[int, int]) – Shape to which the prototype images will be resized. A
zoom of 1 will display the image having the shape image_size.

• zoom_lb (float) – Zoom lower bound. The zoom will be scaled linearly between [zoom_lb,
zoom_ub].

• zoom_ub (float) – Zoom upper bound. The zoom will be scaled linearly between [zoom_lb,
zoom_ub].

Return type
Axes

alibi.tests package

Submodules

alibi.tests.utils module

class alibi.tests.utils.MockPredictor(out_dim, out_type='proba', model_type=None, seed=None)
Bases: object

A class the mimicks the output of a classifier or regressor to allow testing of functionality that depends on it
without inference overhead.

__init__(out_dim, out_type='proba', model_type=None, seed=None)

Parameters
• out_dim (int) – The number of output classes.

• out_type (str) – Indicates if probabilities, class predictions or continuous outputs are
generated.

predict(*args, **kwargs)

alibi.tests.utils.assert_message_in_logs(msg, records)
Helper function to check if a msg is present in any of the records (an iterable of strings).

alibi.tests.utils.issorted(arr, reverse=False)
Checks if a numpy array is sorted.

alibi.tests.utils.not_raises(ExpectedException)
A context manager used to check that ExpectedException does not occur during testing.

13.1. alibi package 741

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

alibi.utils package

class alibi.utils.BertBaseUncased(preloading=True)
Bases: LanguageModel

SUBWORD_PREFIX = '##'

Language model subword prefix.

__init__(preloading=True)
Initialize BertBaseUncased.

Parameters
preloading (bool) – See alibi.utils.lang_model.LanguageModel.__init__().

is_subword_prefix(token)
Checks if the given token is a part of the tail of a word. Note that a word can be split in multiple tokens (e.g.,
word = [head_token tail_token_1 tail_token_2 ... tail_token_k]). Each language model
has a convention on how to mark a tail token. For example DistilbertBaseUncased and BertBaseUncased
have the tail tokens prefixed with the special set of characters '##'. On the other hand, for RobertaBase
only the head token is prefixed with the special character 'Ġ' and thus we need to check the absence
of the prefix to identify the tail tokens. We call those special characters SUBWORD_PREFIX. Due to
different conventions, this method has to be implemented for each language model. See module docstring
for namings.

Parameters
token (str) – Token to be checked if it is a subword.

Return type
bool

Returns
True if the given token is a subword prefix. False otherwise.

property mask: str

Returns the mask token.

Return type
str

class alibi.utils.DistilbertBaseUncased(preloading=True)
Bases: LanguageModel

SUBWORD_PREFIX = '##'

Language model subword prefix.

__init__(preloading=True)
Initialize DistilbertBaseUncased.

Parameters
preloading (bool) – See alibi.utils.lang_model.LanguageModel.__init__().

is_subword_prefix(token)
Checks if the given token is a part of the tail of a word. Note that a word can be split in multiple tokens (e.g.,
word = [head_token tail_token_1 tail_token_2 ... tail_token_k]). Each language model
has a convention on how to mark a tail token. For example DistilbertBaseUncased and BertBaseUncased
have the tail tokens prefixed with the special set of characters '##'. On the other hand, for RobertaBase
only the head token is prefixed with the special character 'Ġ' and thus we need to check the absence
of the prefix to identify the tail tokens. We call those special characters SUBWORD_PREFIX. Due to

742 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

alibi Documentation, Release 0.9.5dev

different conventions, this method has to be implemented for each language model. See module docstring
for namings.

Parameters
token (str) – Token to be checked if it is a subword.

Return type
bool

Returns
True if the given token is a subword prefix. False otherwise.

property mask: str

Returns the mask token.

Return type
str

class alibi.utils.DistributedExplainer(distributed_opts, explainer_type, explainer_init_args,
explainer_init_kwargs, concatenate_results=True,
return_generator=False)

Bases: object

A class that orchestrates the execution of the execution of a batch of explanations in parallel.

__getattr__(item)

Accesses actor attributes. Use sparingly as this involves a remote call (that is, these attributes are of an
object in a different process). The intended use is for retrieving any common state across the actor at the
end of the computation in order to form the response (see notes 2 & 3).

Parameters
item (str) – The explainer attribute to be returned.

Return type
Any

Returns
The value of the attribute specified by item.

Raises
ValueError – If the actor index is invalid.

Notes

1. This method assumes that the actor implements a return_attribute method.

2. Note that we are indexing the idle actors. This means that if a pool was initialised with 5 actors and 3
are busy, indexing with index 2 will raise an IndexError.

3. The order of _idle_actors constantly changes - an actor is removed from it if there is a task to execute
and appended back when the task is complete. Therefore, indexing at the same position as computation
proceeds will result in retrieving state from different processes.

__init__(distributed_opts, explainer_type, explainer_init_args, explainer_init_kwargs,
concatenate_results=True, return_generator=False)

Creates a pool of actors (i.e., replicas of an instantiated explainer_type in a separate process) which can
explain batches of instances in parallel via calls to get_explanation.

Parameters

13.1. alibi package 743

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError

alibi Documentation, Release 0.9.5dev

• distributed_opts (Dict[str, Any]) – A dictionary with the following type (minimal
signature):

class DistributedOpts(TypedDict):
n_cpus: Optional[int]
batch_size: Optional[int]

The dictionary may contain two additional keys:

– 'actor_cpu_frac' : (float, <= 1.0, >0.0) - This is used to create more
than one process on one CPU/GPU. This may not speed up CPU intensive tasks but
it is worth experimenting with when few physical cores are available. In particular,
this is highly useful when the user wants to share a GPU for multiple tasks, with the
caviat that the machine learning framework itself needs to support running multiple
replicas on the same GPU. See the ray documentation here for details.

– 'algorithm' : str - this is specified internally by the caller. It is used in order to
register target function callbacks for the parallel pool These should be implemented
in the global scope. If not specified, its value will be 'default', which will select
a default target function which expects the actor has a get_explanation method.

• explainer_type (Any) – Explainer class.

• explainer_init_args (Tuple) – Positional arguments to explainer constructor.

• explainer_init_kwargs (dict) – Keyword arguments to explainer constructor.

• concatenate_results (bool) – If True concatenates the results. See alibi.utils.
distributed.concatenate_minibatches() for more details.

• return_generator (bool) – If True a generator that returns the results in the order the
computation finishes is returned when get_explanation is called. Otherwise, the order of
the results is the same as the order of the minibatches.

Notes

When return_generator=True, the caller has to take elements from the generator (e.g., by calling next)
in order to start computing the results (because the ray pool is implemented as a generator).

property actor_index: int

Returns the index of the actor for which state is returned.

Return type
int

concatenate: Callable

create_parallel_pool(explainer_type, explainer_init_args, explainer_init_kwargs)
Creates a pool of actors that can explain the rows of a dataset in parallel.

Parameters
documentation. (See constructor) –

get_explanation(X, **kwargs)
Performs distributed explanations of instances in X.

Parameters

744 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.ray.io/en/latest/ray-core/scheduling/resources.html#fractional-resource-requirements
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Callable

alibi Documentation, Release 0.9.5dev

• X (ndarray) – A batch of instances to be explained. Split into batches according to the
settings passed to the constructor.

• **kwargs – Any keyword-arguments for the explainer explain method.

Return type
Union[Generator[Tuple[int, Any], None, None], List[Any], Any]

Returns
The explanations are returned as –

• a generator, if the return_generator option is specified. This is used so that the caller
can access the results as they are computed. This is the only case when this method is
non-blocking and the caller needs to call next on the generator to trigger the parallel com-
putation.

• a list of objects, whose type depends on the return type of the explainer. This is returned if
no custom preprocessing function is specified.

• an object, whose type depends on the return type of the concatenation function return when
called with a list of minibatch results with the same order as the minibatches.

return_attribute(name)
Returns an attribute specified by its name. Used in a distributed context where the properties cannot be
accessed using the dot syntax.

Return type
Any

set_actor_index(value)
Sets actor index. This is used when the DistributedExplainer is in a separate process because ray does not
support calling property setters remotely

class alibi.utils.LanguageModel(model_path, preloading=True)
Bases: ABC

SUBWORD_PREFIX = ''

Language model subword prefix.

__init__(model_path, preloading=True)
Initialize the language model.

Parameters
• model_path (str) – transformers package model path.

• preloading (bool) – Whether to preload the online version of the transformer. If False,
a call to from_disk method is expected.

caller: Callable

from_disk(path)
Loads a model from disk.

Parameters
path (Union[str, Path]) – Path to the checkpoint.

head_tail_split(text)
Split the text in head and tail. Some language models support a maximum number of tokens. Thus is
necessary to split the text to meet this constraint. After the text is split in head and tail, only the head is
considered for operation. Thus the tail will remain unchanged.

13.1. alibi package 745

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

alibi Documentation, Release 0.9.5dev

Parameters
text (str) – Text to be split in head and tail.

Return type
Tuple[str, str, List[str], List[str]]

Returns
Tuple consisting of the head, tail and their corresponding list of tokens.

is_punctuation(token, punctuation)
Checks if the given token is punctuation.

Parameters
• token (str) – Token to be checked if it is punctuation.

• punctuation (str) – String containing all punctuation to be considered.

Return type
bool

Returns
True if the token is a punctuation. False otherwise.

is_stop_word(tokenized_text, start_idx, punctuation, stopwords)
Checks if the given word starting at the given index is in the list of stopwords.

Parameters
• tokenized_text (List[str]) – Tokenized text.

• start_idx (int) – Starting index of a word.

• stopwords (Optional[List[str]]) – List of stop words. The words in this list should be
lowercase.

• punctuation (str) – Punctuation to be considered. See alibi.utils.lang_model.
LanguageModel.select_entire_word().

Return type
bool

Returns
True if the token is in the stopwords list. False otherwise.

abstract is_subword_prefix(token)
Checks if the given token is a part of the tail of a word. Note that a word can be split in multiple tokens (e.g.,
word = [head_token tail_token_1 tail_token_2 ... tail_token_k]). Each language model
has a convention on how to mark a tail token. For example DistilbertBaseUncased and BertBaseUncased
have the tail tokens prefixed with the special set of characters '##'. On the other hand, for RobertaBase
only the head token is prefixed with the special character 'Ġ' and thus we need to check the absence
of the prefix to identify the tail tokens. We call those special characters SUBWORD_PREFIX. Due to
different conventions, this method has to be implemented for each language model. See module docstring
for namings.

Parameters
token (str) – Token to be checked if it is a subword.

Return type
bool

Returns
True if the given token is a subword prefix. False otherwise.

746 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

alibi Documentation, Release 0.9.5dev

abstract property mask: str

Returns the mask token.

Return type
str

property mask_id: int

Returns the mask token id

Return type
int

property max_num_tokens: int

Returns the maximum number of token allowed by the model.

Return type
int

model: Any

predict_batch_lm(x, vocab_size, batch_size)
Tensorflow language model batch predictions for AnchorText.

Parameters
• x (BatchEncoding) – Batch of instances.

• vocab_size (int) – Vocabulary size of language model.

• batch_size (int) – Batch size used for predictions.

Return type
ndarray

Returns
y – Array with model predictions.

select_word(tokenized_text, start_idx, punctuation)
Given a tokenized text and the starting index of a word, the function selects the entire word. Note that a
word is composed of multiple tokens (e.g., word = [head_token tail_token_1 tail_token_2 ...
tail_token_k]). The tail tokens can be identified based on the presence/absence of SUBWORD_PREFIX.
See alibi.utils.lang_model.LanguageModel.is_subword_prefix() for more details.

Parameters
• tokenized_text (List[str]) – Tokenized text.

• start_idx (int) – Starting index of a word.

• punctuation (str) – String of punctuation to be considered. If it encounters a token
composed only of characters in punctuation it terminates the search.

Return type
str

Returns
The word obtained by concatenation [head_token tail_token_1 tail_token_2 ...
tail_token_k].

to_disk(path)
Saves a model to disk.

13.1. alibi package 747

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

Parameters
path (Union[str, Path]) – Path to the checkpoint.

tokenizer: Any

class alibi.utils.RobertaBase(preloading=True)
Bases: LanguageModel

SUBWORD_PREFIX = 'Ġ'

Language model subword prefix.

__init__(preloading=True)
Initialize RobertaBase.

Parameters
preloading (bool) – See alibi.utils.lang_model.LanguageModel.__init__()
constructor.

is_subword_prefix(token)
Checks if the given token is a part of the tail of a word. Note that a word can be split in multiple tokens (e.g.,
word = [head_token tail_token_1 tail_token_2 ... tail_token_k]). Each language model
has a convention on how to mark a tail token. For example DistilbertBaseUncased and BertBaseUncased
have the tail tokens prefixed with the special set of characters '##'. On the other hand, for RobertaBase
only the head token is prefixed with the special character 'Ġ' and thus we need to check the absence
of the prefix to identify the tail tokens. We call those special characters SUBWORD_PREFIX. Due to
different conventions, this method has to be implemented for each language model. See module docstring
for namings.

Parameters
token (str) – Token to be checked if it is a subword.

Return type
bool

Returns
True if the given token is a subword prefix. False otherwise.

property mask: str

Returns the mask token.

Return type
str

alibi.utils.gen_category_map(data, categorical_columns=None)

Parameters
• data (Union[DataFrame, ndarray]) – 2-dimensional pandas dataframe or numpy array.

• categorical_columns (Union[List[int], List[str], None]) – A list of columns indi-
cating categorical variables. Optional if passing a pandas dataframe as inference will be
used based on dtype 'O'. If passing a numpy array this is compulsory.

Return type
Dict[int, list]

Returns
category_map – A dictionary with keys being the indices of the categorical columns and values
being lists of categories for that column. Implicitly each category is mapped to the index of its
position in the list.

748 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

alibi Documentation, Release 0.9.5dev

alibi.utils.ohe_to_ord(X_ohe, cat_vars_ohe)
Convert one-hot encoded variables to ordinal encodings.

Parameters
• X_ohe (ndarray) – Data with mixture of one-hot encoded and numerical variables.

• cat_vars_ohe (dict) – Dict with as keys the first column index for each one-hot encoded
categorical variable and as values the number of categories per categorical variable.

Return type
Tuple[ndarray, dict]

Returns
Ordinal equivalent of one-hot encoded data and dict with categorical columns and number of
categories.

alibi.utils.ord_to_ohe(X_ord, cat_vars_ord)
Convert ordinal to one-hot encoded variables.

Parameters
• X_ord (ndarray) – Data with mixture of ordinal encoded and numerical variables.

• cat_vars_ord (dict) – Dict with as keys the categorical columns and as values the number
of categories per categorical variable.

Return type
Tuple[ndarray, dict]

Returns
One-hot equivalent of ordinal encoded data and dict with categorical columns and number of
categories.

alibi.utils.spacy_model(model='en_core_web_md')
Download spaCy model.

Parameters
model (str) – Model to be downloaded.

Return type
None

alibi.utils.visualize_image_attr(attr, original_image=None, method='heat_map', sign='absolute_value',
plt_fig_axis=None, outlier_perc=2, cmap=None, alpha_overlay=0.5,
show_colorbar=False, title=None, fig_size=(6, 6), use_pyplot=True)

Visualizes attribution for a given image by normalizing attribution values of the desired sign ('positive' |
'negative' | 'absolute_value' | 'all') and displaying them using the desired mode in a matplotlib figure.

Parameters
• attr (ndarray) – Numpy array corresponding to attributions to be visualized. Shape must

be in the form (H, W, C), with channels as last dimension. Shape must also match that of the
original image if provided.

• original_image (Optional[ndarray]) – Numpy array corresponding to original image.
Shape must be in the form (H, W, C), with channels as the last dimension. Image can be
provided either with float values in range 0-1 or int values between 0-255. This is a necessary
argument for any visualization method which utilizes the original image.

• method (str) – Chosen method for visualizing attribution. Supported options are:

– 'heat_map' - Display heat map of chosen attributions

13.1. alibi package 749

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

alibi Documentation, Release 0.9.5dev

– 'blended_heat_map' - Overlay heat map over greyscale version of original image. Pa-
rameter alpha_overlay corresponds to alpha of heat map.

– 'original_image' - Only display original image.

– 'masked_image’ - Mask image (pixel-wise multiply) by normalized attribution values.

– 'alpha_scaling' - Sets alpha channel of each pixel to be equal to normalized attribution
value.

Default: 'heat_map'.

• sign (str) – Chosen sign of attributions to visualize. Supported options are:

– 'positive' - Displays only positive pixel attributions.

– 'absolute_value' - Displays absolute value of attributions.

– 'negative' - Displays only negative pixel attributions.

– 'all' - Displays both positive and negative attribution values. This is not supported
for 'masked_image' or 'alpha_scaling' modes, since signed information cannot be
represented in these modes.

• plt_fig_axis (Optional[Tuple[Figure, Axes]]) – Tuple of matplotlib.pyplot.figure and
axis on which to visualize. If None is provided, then a new figure and axis are created.

• outlier_perc (Union[int, float]) – Top attribution values which correspond to a total
of outlier_perc percentage of the total attribution are set to 1 and scaling is performed using
the minimum of these values. For sign='all', outliers and scale value are computed using
absolute value of attributions.

• cmap (Optional[str]) – String corresponding to desired colormap for heatmap visualiza-
tion. This defaults to 'Reds' for negative sign, 'Blues' for absolute value, 'Greens' for
positive sign, and a spectrum from red to green for all. Note that this argument is only used
for visualizations displaying heatmaps.

• alpha_overlay (float) – Visualizes attribution for a given image by normalizing attribu-
tion values of the desired sign (positive, negative, absolute value, or all) and displaying them
using the desired mode in a matplotlib figure.

• show_colorbar (bool) – Displays colorbar for heatmap below the visualization. If given
method does not use a heatmap, then a colormap axis is created and hidden. This is necessary
for appropriate alignment when visualizing multiple plots, some with colorbars and some
without.

• title (Optional[str]) – The title for the plot. If None, no title is set.

• fig_size (Tuple[int, int]) – Size of figure created.

• use_pyplot (bool) – If True, uses pyplot to create and show figure and displays the figure
after creating. If False, uses matplotlib object-oriented API and simply returns a figure
object without showing.

Return type
Tuple[Figure, Axes]

Returns
2-element tuple of consisting of –

• figure : matplotlib.pyplot.Figure - Figure object on which visualization is created. If
plt_fig_axis argument is given, this is the same figure provided.

750 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple

alibi Documentation, Release 0.9.5dev

• axis : matplotlib.pyplot.Axes - Axes object on which visualization is created. If
plt_fig_axis argument is given, this is the same axis provided.

Submodules

alibi.utils.approximation_methods module

class alibi.utils.approximation_methods.Riemann(value)
Bases: Enum

An enumeration.

left = 1

middle = 3

right = 2

trapezoid = 4

alibi.utils.approximation_methods.SUPPORTED_RIEMANN_METHODS = ['riemann_left',
'riemann_right', 'riemann_middle', 'riemann_trapezoid']

Riemann integration methods.

alibi.utils.approximation_methods.approximation_parameters(method)
Retrieves parameters for the input approximation method.

Parameters
method (str) – The name of the approximation method. Currently supported only:
'riemann_*' and 'gausslegendre’. Check alibi.utils.approximation_methods.
SUPPORTED_RIEMANN_METHODS for all 'riemann_*' possible values.

Return type
Tuple[Callable[[int], List[float]], Callable[[int], List[float]]]

alibi.utils.approximation_methods.gauss_legendre_builders()

np.polynomial.legendre function helps to compute step sizes and alpha coefficients using gauss-legendre quadra-
ture rule. Since numpy returns the integration parameters in different scales we need to rescale them to adjust to
the desired scale.

Gauss Legendre quadrature rule for approximating the integrals was originally proposed by [Xue Feng and her
intern Hauroun Habeeb] (https://research.fb.com/people/feng-xue/).

Parameters
n – The number of integration steps.

Return type
Tuple[Callable[[int], List[float]], Callable[[int], List[float]]]

Returns
2-element tuple consisting of –

• step_sizes : Callable - step_sizes takes the number of steps as an input argument and returns
an array of steps sizes which sum is smaller than or equal to one.

• alphas : Callable - alphas takes the number of steps as an input argument and returns the
multipliers/coefficients for the inputs of integrand in the range of [0, 1].

13.1. alibi package 751

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://research.fb.com/people/feng-xue/
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

alibi.utils.approximation_methods.riemann_builders(method=Riemann.trapezoid)
Step sizes are identical and alphas are scaled in [0, 1].

Parameters
• n – The number of integration steps.

• method (Riemann) – Riemann method: Riemann.left | Riemann.right | Riemann.
middle | Riemann.trapezoid.

Return type
Tuple[Callable[[int], List[float]], Callable[[int], List[float]]]

Returns
2-element tuple consisting of –

• step_sizes : Callable - step_sizes takes the number of steps as an input argument and returns
an array of steps sizes which sum is smaller than or equal to one.

• alphas : Callable - alphas takes the number of steps as an input argument and returns the
multipliers/coefficients for the inputs of integrand in the range of [0, 1].

alibi.utils.data module

class alibi.utils.data.Bunch(**kwargs)
Bases: dict

Container object for internal datasets. Dictionary-like object that exposes its keys as attributes.

alibi.utils.data.gen_category_map(data, categorical_columns=None)

Parameters
• data (Union[DataFrame, ndarray]) – 2-dimensional pandas dataframe or numpy array.

• categorical_columns (Union[List[int], List[str], None]) – A list of columns indi-
cating categorical variables. Optional if passing a pandas dataframe as inference will be
used based on dtype 'O'. If passing a numpy array this is compulsory.

Return type
Dict[int, list]

Returns
category_map – A dictionary with keys being the indices of the categorical columns and values
being lists of categories for that column. Implicitly each category is mapped to the index of its
position in the list.

alibi.utils.discretizer module

class alibi.utils.discretizer.Discretizer(data, numerical_features, feature_names, percentiles=(25, 50,
75))

Bases: object

__init__(data, numerical_features, feature_names, percentiles=(25, 50, 75))
Initialize the discretizer.

Parameters
• data (ndarray) – Data to discretize.

752 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object

alibi Documentation, Release 0.9.5dev

• numerical_features (List[int]) – List of indices corresponding to the continuous fea-
ture columns. Only these features will be discretized.

• feature_names (List[str]) – List with feature names.

• percentiles (Sequence[Union[int, float]]) – Percentiles used for discretization.

bins(data)

Parameters
data (ndarray) – Data to discretize.

Return type
List[ndarray]

Returns
List with bin values for each feature that is discretized.

discretize(data)

Parameters
data (ndarray) – Data to discretize.

Return type
ndarray

Returns
Discretized version of data with the same dimension.

static get_percentiles(x, qts)
Discretizes the the data in x using the quantiles in qts. This is achieved by searching for the index of each
value in x into qts, which is assumed to be a 1-D sorted array.

Parameters
• x (ndarray) – A numpy array of data to be discretized

• qts (ndarray) – A numpy array of percentiles. This should be a 1-D array sorted in
ascending order.

Return type
ndarray

Returns
A discretized data numpy array.

alibi.utils.distance module

alibi.utils.distance.abdm(X, cat_vars, cat_vars_bin={})
Calculate the pair-wise distances between categories of a categorical variable using the Association-Based Dis-
tance Metric based on Le et al (2005). http://www.jaist.ac.jp/~bao/papers/N26.pdf

Parameters
• X (ndarray) – Batch of arrays.

• cat_vars (dict) – Dict with as keys the categorical columns and as optional values the
number of categories per categorical variable.

• cat_vars_bin (dict) – Dict with as keys the binned numerical columns and as optional
values the number of bins per variable.

13.1. alibi package 753

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
http://www.jaist.ac.jp/~bao/papers/N26.pdf
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

alibi Documentation, Release 0.9.5dev

Returns
Dict with as keys the categorical columns and as values the pairwise distance matrix for the
variable.

alibi.utils.distance.batch_compute_kernel_matrix(x, y, kernel, batch_size=10000000000,
preprocess_fn=None)

Compute the kernel matrix between x and y by filling in blocks of size batch_size x batch_size at a time.

Parameters
• x (Union[list, ndarray]) – The first list/numpy array of data instances.

• y (Union[list, ndarray]) – The second list/numpy array of data instances.

• kernel (Callable[[ndarray, ndarray], ndarray]) – Kernel function to be used for kernel
matrix computation.

• batch_size (int) – Batch size to be used for each prediction.

• preprocess_fn (Optional[Callable[[Union[list, ndarray]], ndarray]]) – Optional
preprocessing function for each batch.

Return type
ndarray

Returns
Kernel matrix in the form of a numpy array.

alibi.utils.distance.cityblock_batch(X, y)
Calculate the L1 distances between a batch of arrays X and an array of the same shape y.

Parameters
• X (ndarray) – Batch of arrays to calculate the distances from.

• y (ndarray) – Array to calculate the distance to.

Return type
ndarray

Returns
Array of distances from each array in X to y.

alibi.utils.distance.multidim_scaling(d_pair, feature_range, n_components=2, use_metric=True,
standardize_cat_vars=True, smooth=1.0, center=True,
update_feature_range=True)

Apply multidimensional scaling to pairwise distance matrices.

Parameters
• d_pair (dict) – Dict with as keys the column index of the categorical variables and as

values a pairwise distance matrix for the categories of the variable.

• feature_range (Tuple[ndarray, ndarray]) – Tuple with min and max ranges to allow
for perturbed instances. Min and max ranges are numpy arrays with dimension (1 x nb of
features).

• n_components (int) – Number of dimensions in which to immerse the dissimilarities.

• use_metric (bool) – If True, perform metric MDS; otherwise, perform nonmetric MDS.

• standardize_cat_vars (bool) – Standardize numerical values of categorical variables if
True.

754 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

alibi Documentation, Release 0.9.5dev

• smooth (float) – Smoothing exponent between 0 and 1 for the distances. Lower values
than 1 will smooth the difference in distance metric between different features.

• center (bool) – Whether to center the scaled distance measures. If False, the min distance
for each feature except for the feature with the highest raw max distance will be the lower
bound of the feature range, but the upper bound will be below the max feature range.

• update_feature_range (bool) – Update feature range with scaled values.

Return type
Tuple[dict, tuple]

Returns
Dict with multidimensional scaled version of pairwise distance matrices.

alibi.utils.distance.mvdm(X, y, cat_vars, alpha=1)
Calculate the pair-wise distances between categories of a categorical variable using the Modified Value Differ-
ence Measure based on Cost et al (1993). https://link.springer.com/article/10.1023/A:1022664626993

Parameters
• X (ndarray) – Batch of arrays.

• y (ndarray) – Batch of labels or predictions.

• cat_vars (dict) – Dict with as keys the categorical columns and as optional values the
number of categories per categorical variable.

• alpha (int) – Power of absolute difference between conditional probabilities.

Return type
Dict[int, ndarray]

Returns
Dict with as keys the categorical columns and as values the pairwise distance matrix for the
variable.

alibi.utils.distance.squared_pairwise_distance(x, y, a_min=1e-07, a_max=1e+30)
numpy pairwise squared Euclidean distance between samples x and y.

Parameters
• x (ndarray) – A batch of instances of shape Nx x features.

• y (ndarray) – A batch of instances of shape Ny x features.

• a_min (float) – Lower bound to clip distance values.

• a_max (float) – Upper bound to clip distance values.

Return type
ndarray

Returns
Pairwise squared Euclidean distance Nx x Ny.

13.1. alibi package 755

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://link.springer.com/article/10.1023/A:1022664626993
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

alibi.utils.distributed module

class alibi.utils.distributed.ActorPool(actors)
Bases: object

__init__(actors)
Taken fom the ray repository: https://github.com/ray-project/ray/pull/5945 . Create an actor pool from a
list of existing actors. An actor pool is a utility class similar to multiprocessing.Pool that lets you schedule
ray tasks over a fixed pool of actors.

Parameters
actors – List of ray actor handles to use in this pool.

Examples

>>> a1, a2 = Actor.remote(), Actor.remote()
>>> pool = ActorPool([a1, a2])
>>> print(pool.map(lambda a, v: a.double.remote(v), [1, 2, 3, 4]))
[2, 4, 6, 8]

get_next(timeout=None)
Returns the next pending result in order. This returns the next result produced by alibi.utils.
distributed.ActorPool.submit(), blocking for up to the specified timeout until it is available.

Returns
The next result.

Raises
TimeoutError – If the timeout is reached.

Examples

>>> pool = ActorPool(...)
>>> pool.submit(lambda a, v: a.double.remote(v), 1)
>>> print(pool.get_next())
2

get_next_unordered(timeout=None)
Returns any of the next pending results. This returns some result produced by alibi.utils.
distributed.ActorPool.submit(), blocking for up to the specified timeout until it is available. Unlike
alibi.utils.distributed.ActorPool.get_next(), the results are not always returned in same order
as submitted, which can improve performance.

Returns
The next result.

Raises
TimeoutError –

756 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#object
https://github.com/ray-project/ray/pull/5945
https://docs.python.org/3/library/exceptions.html#TimeoutError
https://docs.python.org/3/library/exceptions.html#TimeoutError

alibi Documentation, Release 0.9.5dev

Examples

>>> pool = ActorPool(...)
>>> pool.submit(lambda a, v: a.double.remote(v), 1)
>>> pool.submit(lambda a, v: a.double.remote(v), 2)
>>> print(pool.get_next_unordered())
4
>>> print(pool.get_next_unordered())
2

has_next()

Returns whether there are any pending results to return.

Returns
True if there are any pending results not yet returned.

Examples

>>> pool = ActorPool(...)
>>> pool.submit(lambda a, v: a.double.remote(v), 1)
>>> print(pool.has_next())
True
>>> print(pool.get_next())
2
>>> print(pool.has_next())
False

map(fn, values, chunksize=1)
Apply the given function in parallel over the actors and values. This returns an ordered iterator that will
return results of the map as they finish. Note that you must iterate over the iterator to force the computation
to finish.

Parameters
• fn (Callable) – Function that takes (actor, value) as argument and returns an ObjectID

computing the result over the value. The actor will be considered busy until the ObjectID
completes.

• values (list) – List of values that fn(actor, value) should be applied to.

• chunksize (int) – Splits the list of values to be submitted to the parallel process into
sublists of size chunksize or less.

Returns
Iterator over results from applying fn to the actors and values.

13.1. alibi package 757

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

Examples

>>> pool = ActorPool(...)
>>> print(pool.map(lambda a, v: a.double.remote(v), [1, 2, 3, 4]))
[2, 4, 6, 8]

map_unordered(fn, values, chunksize=1)
Similar to alibi.utils.distributed.ActorPool.map(), but returning an unordered iterator. This
returns an unordered iterator that will return results of the map as they finish. This can be more efficient
that alibi.utils.distributed.ActorPool.map() if some results take longer to compute than others.

Parameters
• fn (Callable) – Function that takes (actor, value) as argument and returns an ObjectID

computing the result over the value. The actor will be considered busy until the ObjectID
completes.

• values (list) – List of values that fn(actor, value) should be applied to.

• chunksize (int) – Splits the list of values to be submitted to the parallel process into
sublists of size chunksize or less.

Returns
Iterator over results from applying fn to the actors and values.

Examples

>>> pool = ActorPool(...)
>>> print(pool.map(lambda a, v: a.double.remote(v), [1, 2, 3, 4]))
[6, 2, 4, 8]

submit(fn, value)
Schedule a single task to run in the pool. This has the same argument semantics as alibi.utils.
distributed.ActorPool.map(), but takes on a single value instead of a list of values. The re-
sult can be retrieved using alibi.utils.distributed.ActorPool.get_next() / alibi.utils.
distributed.ActorPool.get_next_unordered().

Parameters
• fn (Callable) – Function that takes (actor, value) as argument and returns an ObjectID

computing the result over the value. The actor will be considered busy until the ObjectID
completes.

• value (object) – Value to compute a result for.

Examples

>>> pool = ActorPool(...)
>>> pool.submit(lambda a, v: a.double.remote(v), 1)
>>> pool.submit(lambda a, v: a.double.remote(v), 2)
>>> print(pool.get_next(), pool.get_next())
2, 4

758 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#object

alibi Documentation, Release 0.9.5dev

class alibi.utils.distributed.DistributedExplainer(distributed_opts, explainer_type,
explainer_init_args, explainer_init_kwargs,
concatenate_results=True,
return_generator=False)

Bases: object

A class that orchestrates the execution of the execution of a batch of explanations in parallel.

__getattr__(item)

Accesses actor attributes. Use sparingly as this involves a remote call (that is, these attributes are of an
object in a different process). The intended use is for retrieving any common state across the actor at the
end of the computation in order to form the response (see notes 2 & 3).

Parameters
item (str) – The explainer attribute to be returned.

Return type
Any

Returns
The value of the attribute specified by item.

Raises
ValueError – If the actor index is invalid.

Notes

1. This method assumes that the actor implements a return_attribute method.

2. Note that we are indexing the idle actors. This means that if a pool was initialised with 5 actors and 3
are busy, indexing with index 2 will raise an IndexError.

3. The order of _idle_actors constantly changes - an actor is removed from it if there is a task to execute
and appended back when the task is complete. Therefore, indexing at the same position as computation
proceeds will result in retrieving state from different processes.

__init__(distributed_opts, explainer_type, explainer_init_args, explainer_init_kwargs,
concatenate_results=True, return_generator=False)

Creates a pool of actors (i.e., replicas of an instantiated explainer_type in a separate process) which can
explain batches of instances in parallel via calls to get_explanation.

Parameters
• distributed_opts (Dict[str, Any]) – A dictionary with the following type (minimal

signature):

class DistributedOpts(TypedDict):
n_cpus: Optional[int]
batch_size: Optional[int]

The dictionary may contain two additional keys:

– 'actor_cpu_frac' : (float, <= 1.0, >0.0) - This is used to create more
than one process on one CPU/GPU. This may not speed up CPU intensive tasks but
it is worth experimenting with when few physical cores are available. In particular,
this is highly useful when the user wants to share a GPU for multiple tasks, with the
caviat that the machine learning framework itself needs to support running multiple
replicas on the same GPU. See the ray documentation here for details.

13.1. alibi package 759

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.ray.io/en/latest/ray-core/scheduling/resources.html#fractional-resource-requirements

alibi Documentation, Release 0.9.5dev

– 'algorithm' : str - this is specified internally by the caller. It is used in order to
register target function callbacks for the parallel pool These should be implemented
in the global scope. If not specified, its value will be 'default', which will select
a default target function which expects the actor has a get_explanation method.

• explainer_type (Any) – Explainer class.

• explainer_init_args (Tuple) – Positional arguments to explainer constructor.

• explainer_init_kwargs (dict) – Keyword arguments to explainer constructor.

• concatenate_results (bool) – If True concatenates the results. See alibi.utils.
distributed.concatenate_minibatches() for more details.

• return_generator (bool) – If True a generator that returns the results in the order the
computation finishes is returned when get_explanation is called. Otherwise, the order of
the results is the same as the order of the minibatches.

Notes

When return_generator=True, the caller has to take elements from the generator (e.g., by calling next)
in order to start computing the results (because the ray pool is implemented as a generator).

property actor_index: int

Returns the index of the actor for which state is returned.

Return type
int

concatenate: Callable

create_parallel_pool(explainer_type, explainer_init_args, explainer_init_kwargs)
Creates a pool of actors that can explain the rows of a dataset in parallel.

Parameters
documentation. (See constructor) –

get_explanation(X, **kwargs)
Performs distributed explanations of instances in X.

Parameters
• X (ndarray) – A batch of instances to be explained. Split into batches according to the

settings passed to the constructor.

• **kwargs – Any keyword-arguments for the explainer explain method.

Return type
Union[Generator[Tuple[int, Any], None, None], List[Any], Any]

Returns
The explanations are returned as –

• a generator, if the return_generator option is specified. This is used so that the caller
can access the results as they are computed. This is the only case when this method is
non-blocking and the caller needs to call next on the generator to trigger the parallel com-
putation.

• a list of objects, whose type depends on the return type of the explainer. This is returned if
no custom preprocessing function is specified.

760 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

alibi Documentation, Release 0.9.5dev

• an object, whose type depends on the return type of the concatenation function return when
called with a list of minibatch results with the same order as the minibatches.

return_attribute(name)
Returns an attribute specified by its name. Used in a distributed context where the properties cannot be
accessed using the dot syntax.

Return type
Any

set_actor_index(value)
Sets actor index. This is used when the DistributedExplainer is in a separate process because ray does not
support calling property setters remotely

class alibi.utils.distributed.PoolCollection(distributed_opts, explainer_type, explainer_init_args,
explainer_init_kwargs, **kwargs)

Bases: object

A wrapper object that turns a DistributedExplainer into a remote actor. This allows running multiple distributed
explainers in parallel.

__getattr__(item)

Access attributes of the distributed explainer or the distributed explainer contained.

Return type
Any

__init__(distributed_opts, explainer_type, explainer_init_args, explainer_init_kwargs, **kwargs)
Initialises a list of distinct distributed explainers which can explain the same batch in parallel. It generalizes
the DistributedExplainer, which contains replicas of one explainer object, speeding up the task of explaining
batches of instances.

Parameters
• distributed_opts (Dict[str, Any]) – See alibi.utils.distributed.
DistributedExplainer() constructor documentation for explanations. Each entry
in the list is a different explainer configuration (e.g., CEM in PN vs PP mode, different
background dataset sizes for SHAP, etc).

• explainer_type (Any) – See alibi.utils.distributed.
DistributedExplainer() constructor documentation for explanations. Each entry
in the list is a different explainer configuration (e.g., CEM in PN vs PP mode, different
background dataset sizes for SHAP, etc).

• explainer_init_args (List[Tuple]) – See alibi.utils.distributed.
DistributedExplainer() constructor documentation for explanations. Each entry
in the list is a different explainer configuration (e.g., CEM in PN vs PP mode, different
background dataset sizes for SHAP, etc).

• explainer_init_kwargs (List[Dict]) – See alibi.utils.distributed.
DistributedExplainer() constructor documentation for explanations. Each entry
in the list is a different explainer configuration (e.g., CEM in PN vs PP mode, different
background dataset sizes for SHAP, etc).

• **kwargs – Any other kwargs, passed to the DistributedExplainer objects.

Raises
• ResourceError – If the number of CPUs specified by the user is smaller than the number

of distributed explainers.

13.1. alibi package 761

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict

alibi Documentation, Release 0.9.5dev

• ValueError – If the number of entries in the explainers args/kwargs list differ.

static create_explainer_handles(distributed_opts, explainer_type, explainer_init_args,
explainer_init_kwargs, **kwargs)

Creates multiple actors for DistributedExplainer so that tasks can be executed in parallel. The actors are
initialised with different arguments, so they represent different explainers.

Parameters
• distributed_opts (Dict[str, Any]) – See alibi.utils.distributed.
PoolCollection().

• explainer_type (Any) – See alibi.utils.distributed.PoolCollection().

• explainer_init_args (List[Tuple]) – See alibi.utils.distributed.
PoolCollection().

• explainer_init_kwargs (List[Dict]) – See alibi.utils.distributed.
PoolCollection().

• **kwargs – See alibi.utils.distributed.PoolCollection().

get_explanation(X, **kwargs)
Calls a collection of distributed explainers in parallel. Each distributed explainer will explain each row in
X in parallel.

Parameters
X – Batch of instances to be explained.

Return type
List

Returns
A list of responses collected from each explainer.

Notes

Note that the call to ray.get is blocking.

Raises
TypeError – If the user sets return_generator=True for the DistributedExplainer. This
is because generators cannot be pickled so one cannot call ray.get.

property remote_explainer_index: int

Returns the index of the actor for which state is returned.

Return type
int

exception alibi.utils.distributed.ResourceError

Bases: Exception

alibi.utils.distributed.batch(X, batch_size=None, n_batches=4)
Splits the input into sub-arrays.

Parameters
• X (ndarray) – Array to be split.

• batch_size (Optional[int]) – The size of each batch. In particular

762 Chapter 13. alibi

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

alibi Documentation, Release 0.9.5dev

– if batch_size is not None, batches of this size are created. The sizes of the batches created
might vary if the 0-th dimension of X is not divisible by batch_size. For an array of length
l that should be split into n sections, it returns l % n sub-arrays of size l//n + 1 and the rest
of size l//n

– if batch_size is None, then X is split into n_batches sub-arrays.

• n_batches (int) – Number of batches in which to split the sub-array. Only used if
batch_size = None

Return type
List[ndarray]

Returns
A list of sub-arrays of X.

alibi.utils.distributed.concatenate_minibatches(minibatch_results)
Merges the explanations computed on minibatches so that the distributed explainer returns the same output as
the sequential version. If the type returned by the explainer is not supported by the function, expand this function
by adding an appropriately named private function and use this function to check the input type and call it.

Parameters
minibatch_results (Union[List[ndarray], List[List[ndarray]]]) – Explanations for
each minibatch.

Return type
Union[ndarray, List[ndarray]]

Returns
• If the input is List[np.ndarray], a single numpy array obtained by concatenating mini-

batch results along the 0th axis.

• If the input is List[List[np.ndarray]] A list of numpy arrays obtained by concatenating
arrays in with the same position in the sublists along the 0th axis.

alibi.utils.distributed.default_target_fcn(actor, instances, kwargs=None)
A target function that is executed in parallel given an actor pool. Its arguments must be an actor and a batch of
values to be processed by the actor. Its role is to execute distributed computations when an actor is available.

Parameters
• actor (Any) – A ray actor. This is typically a class decorated with the @ray.remote deco-

rator, that has been subsequently instantiated using cls.remote(*args, **kwargs).

• instances (tuple) – A (batch_index, batch) tuple containing the batch of instances to be
explained along with a batch index.

• kwargs (Optional[Dict]) – A list of keyword arguments for the actor get_explanation
method.

Returns
A future that can be used to later retrieve the results of a distributed computation.

13.1. alibi package 763

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict

alibi Documentation, Release 0.9.5dev

Notes

This function can be customized (e.g., if one does not desire to wrap the explainer such that it has get_explanation
method. The customized function should be called *_target_fcn with the wildcard being replaced by the name
of the explanation method (e.g., cem, cfproto, etc). The same name should be added to the distributed_opts
dictionary passed by the user prior to instantiating the DistributedExplainer.

alibi.utils.distributed.invert_permutation(p)
Inverts a permutation.

Parameters
p (list) – Some permutation of 0, 1, . . . , len(p)-1. Returns an array s, where s[i] gives the index
of i in p.

Return type
ndarray

Returns
s – s[i] gives the index of i in p.

alibi.utils.distributed.order_result(unordered_result)
Re-orders the result of a distributed explainer so that the explanations follow the same order as the input to the
explainer.

Parameters
unordered_result (Generator[Tuple[int, Any], None, None]) – Each tuple contains the
batch id as the first entry and the explanations for that batch as the second.

Return type
List

Returns
A list with re-ordered results.

Notes

This should not be used if one wants to take advantage of the results being returned as they are calculated.

alibi.utils.distributions module

alibi.utils.distributions.kl_bernoulli(p, q)
Compute KL-divergence between 2 probabilities p and q. len(p) divergences are calculated simultaneously.

Parameters
• p (ndarray) – Probability.

• q (ndarray) – Probability.

Return type
ndarray

Returns
Array with the KL-divergence between p and q.

764 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List

alibi Documentation, Release 0.9.5dev

alibi.utils.download module

alibi.utils.download.spacy_model(model='en_core_web_md')
Download spaCy model.

Parameters
model (str) – Model to be downloaded.

Return type
None

alibi.utils.frameworks module

class alibi.utils.frameworks.Framework(value)
Bases: str, Enum

An enumeration.

PYTORCH = 'pytorch'

TENSORFLOW = 'tensorflow'

alibi.utils.gradients module

alibi.utils.gradients.num_grad_batch(func, X, args=(), eps=1e-08)
Calculate the numerical gradients of a vector-valued function (typically a prediction function in classification)
with respect to a batch of arrays X.

Parameters
• func (Callable) – Function to be differentiated.

• X (ndarray) – A batch of vectors at which to evaluate the gradient of the function.

• args (Tuple) – Any additional arguments to pass to the function.

• eps (Union[float, ndarray]) – Gradient step to use in the numerical calculation, can be a
single float or one for each feature.

Return type
ndarray

Returns
An array of gradients at each point in the batch X.

alibi.utils.gradients.perturb(X, eps=1e-08, proba=False)
Apply perturbation to instance or prediction probabilities. Used for numerical calculation of gradients.

Parameters
• X (ndarray) – Array to be perturbed.

• eps (Union[float, ndarray]) – Size of perturbation.

• proba (bool) – If True, the net effect of the perturbation needs to be 0 to keep the sum of
the probabilities equal to 1.

Return type
Tuple[ndarray, ndarray]

13.1. alibi package 765

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple

alibi Documentation, Release 0.9.5dev

Returns
Instances where a positive and negative perturbation is applied.

alibi.utils.kernel module

class alibi.utils.kernel.EuclideanDistance

Bases: object

__call__(x, y)
Computes the kernel distance matrix between x and y.

Parameters
• x (ndarray) – The first array of data instances.

• y (ndarray) – The second array of data instances.

Return type
ndarray

Returns
Kernel distance matrix between x and y having the size of Nx x Ny, where Nx is the number
of instances in x and y is the number of instances in y.

__init__()

Euclidean distance: 𝑘(𝑥, 𝑦) = ||𝑥 − 𝑦||. A forward pass takes a batch of instances x of size Nx x f1 x f2 x
. . . ` and `y of size Ny x f1 x f2 x . . . and returns the kernel matrix Nx x Ny.

class alibi.utils.kernel.GaussianRBF(sigma=None)
Bases: object

__call__(x, y, infer_sigma=False)
Computes the kernel matrix between x and y.

Parameters
• x (ndarray) – The first array of data instances.

• y (ndarray) – The second array of data instances.

• infer_sigma (bool) – Whether to infer sigma automatically. The sigma value is com-
puted based on the median distance value between the instances from x and y.

Return type
ndarray

Returns
Kernel matrix between x and y having the size of Nx x Ny where Nx is the number of instances
in x and y is the number of instances in y.

__init__(sigma=None)

Gaussian RBF kernel: 𝑘(𝑥, 𝑦) = exp(− ||𝑥−𝑦||2
2𝜎2). A forward pass takes a batch of instances x of size Nx x

f1 x f2 x . . . and y of size Ny x f1 x f2 x . . . ` and returns the kernel matrix of size `Nx x Ny.

Parameters
sigma (Union[float, ndarray, None]) – Kernel bandwidth. Not to be specified if being
inferred or trained. Can pass multiple values to evaluate the kernel with and then average.

766 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

alibi Documentation, Release 0.9.5dev

property sigma: ndarray

Return type
ndarray

class alibi.utils.kernel.GaussianRBFDistance(sigma=None)
Bases: object

__init__(sigma=None)

Gaussian RBF kernel dissimilarity/distance: 𝑘(𝑥, 𝑦) = 1− exp(− ||𝑥−𝑦||2
2𝜎2). A forward pass takes a batch

of instances x of size Nx x f1 x f2 x . . . and y of size Ny x f1 x f2 x . . . and returns the kernel matrix of size
Nx x Ny.

Parameters
sigma (Union[float, ndarray, None]) – See alibi.utils.kernel.GaussianRBF.
__init__().

alibi.utils.lang_model module

This module defines a wrapper for transformer-based masked language models used in AnchorText as a perturbation
strategy. The LanguageModel base class defines basic functionalities as loading, storing, and predicting.

Language model’s tokenizers usually work at a subword level, and thus, a word can be split into subwords. For example,
a word can be decomposed as: word = [head_token tail_token_1 tail_token_2 ... tail_token_k]. For
language models such as DistilbertBaseUncased and BertBaseUncased, the tail tokens can be identified by a special
prefix '##'. On the other hand, for RobertaBase only the head is prefixed with the special character 'Ġ', thus the tail
tokens can be identified by the absence of the special token. In this module, we refer to a tail token as a subword prefix.
We will use the notion of a subword to refer to either a head or a tail token.

To generate interpretable perturbed instances, we do not mask subwords, but entire words. Note that this operation is
equivalent to replacing the head token with the special mask token, and removing the tail tokens if they exist. Thus,
the LanguageModel class offers additional functionalities such as: checking if a token is a subword prefix, selection of
a word (head_token along with the tail_tokens), etc.

Some language models can work with a limited number of tokens, thus the input text has to be split. Thus, a text will be
split in head and tail, where the number of tokens in the head is less or equal to the maximum allowed number of tokens
to be processed by the language model. In the AnchorText only the head is perturbed. To keep the results interpretable,
we ensure that the head will not end with a subword, and will contain only full words.

class alibi.utils.lang_model.BertBaseUncased(preloading=True)
Bases: LanguageModel

SUBWORD_PREFIX = '##'

Language model subword prefix.

__init__(preloading=True)
Initialize BertBaseUncased.

Parameters
preloading (bool) – See alibi.utils.lang_model.LanguageModel.__init__().

caller: Callable

is_subword_prefix(token)
Checks if the given token is a part of the tail of a word. Note that a word can be split in multiple tokens (e.g.,
word = [head_token tail_token_1 tail_token_2 ... tail_token_k]). Each language model
has a convention on how to mark a tail token. For example DistilbertBaseUncased and BertBaseUncased

13.1. alibi package 767

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable

alibi Documentation, Release 0.9.5dev

have the tail tokens prefixed with the special set of characters '##'. On the other hand, for RobertaBase
only the head token is prefixed with the special character 'Ġ' and thus we need to check the absence
of the prefix to identify the tail tokens. We call those special characters SUBWORD_PREFIX. Due to
different conventions, this method has to be implemented for each language model. See module docstring
for namings.

Parameters
token (str) – Token to be checked if it is a subword.

Return type
bool

Returns
True if the given token is a subword prefix. False otherwise.

property mask: str

Returns the mask token.

Return type
str

model: Any

tokenizer: Any

class alibi.utils.lang_model.DistilbertBaseUncased(preloading=True)
Bases: LanguageModel

SUBWORD_PREFIX = '##'

Language model subword prefix.

__init__(preloading=True)
Initialize DistilbertBaseUncased.

Parameters
preloading (bool) – See alibi.utils.lang_model.LanguageModel.__init__().

caller: Callable

is_subword_prefix(token)
Checks if the given token is a part of the tail of a word. Note that a word can be split in multiple tokens (e.g.,
word = [head_token tail_token_1 tail_token_2 ... tail_token_k]). Each language model
has a convention on how to mark a tail token. For example DistilbertBaseUncased and BertBaseUncased
have the tail tokens prefixed with the special set of characters '##'. On the other hand, for RobertaBase
only the head token is prefixed with the special character 'Ġ' and thus we need to check the absence
of the prefix to identify the tail tokens. We call those special characters SUBWORD_PREFIX. Due to
different conventions, this method has to be implemented for each language model. See module docstring
for namings.

Parameters
token (str) – Token to be checked if it is a subword.

Return type
bool

Returns
True if the given token is a subword prefix. False otherwise.

768 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

alibi Documentation, Release 0.9.5dev

property mask: str

Returns the mask token.

Return type
str

model: Any

tokenizer: Any

class alibi.utils.lang_model.LanguageModel(model_path, preloading=True)
Bases: ABC

SUBWORD_PREFIX = ''

Language model subword prefix.

__init__(model_path, preloading=True)
Initialize the language model.

Parameters
• model_path (str) – transformers package model path.

• preloading (bool) – Whether to preload the online version of the transformer. If False,
a call to from_disk method is expected.

caller: Callable

from_disk(path)
Loads a model from disk.

Parameters
path (Union[str, Path]) – Path to the checkpoint.

head_tail_split(text)
Split the text in head and tail. Some language models support a maximum number of tokens. Thus is
necessary to split the text to meet this constraint. After the text is split in head and tail, only the head is
considered for operation. Thus the tail will remain unchanged.

Parameters
text (str) – Text to be split in head and tail.

Return type
Tuple[str, str, List[str], List[str]]

Returns
Tuple consisting of the head, tail and their corresponding list of tokens.

is_punctuation(token, punctuation)
Checks if the given token is punctuation.

Parameters
• token (str) – Token to be checked if it is punctuation.

• punctuation (str) – String containing all punctuation to be considered.

Return type
bool

Returns
True if the token is a punctuation. False otherwise.

13.1. alibi package 769

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

alibi Documentation, Release 0.9.5dev

is_stop_word(tokenized_text, start_idx, punctuation, stopwords)
Checks if the given word starting at the given index is in the list of stopwords.

Parameters
• tokenized_text (List[str]) – Tokenized text.

• start_idx (int) – Starting index of a word.

• stopwords (Optional[List[str]]) – List of stop words. The words in this list should be
lowercase.

• punctuation (str) – Punctuation to be considered. See alibi.utils.lang_model.
LanguageModel.select_entire_word().

Return type
bool

Returns
True if the token is in the stopwords list. False otherwise.

abstract is_subword_prefix(token)
Checks if the given token is a part of the tail of a word. Note that a word can be split in multiple tokens (e.g.,
word = [head_token tail_token_1 tail_token_2 ... tail_token_k]). Each language model
has a convention on how to mark a tail token. For example DistilbertBaseUncased and BertBaseUncased
have the tail tokens prefixed with the special set of characters '##'. On the other hand, for RobertaBase
only the head token is prefixed with the special character 'Ġ' and thus we need to check the absence
of the prefix to identify the tail tokens. We call those special characters SUBWORD_PREFIX. Due to
different conventions, this method has to be implemented for each language model. See module docstring
for namings.

Parameters
token (str) – Token to be checked if it is a subword.

Return type
bool

Returns
True if the given token is a subword prefix. False otherwise.

abstract property mask: str

Returns the mask token.

Return type
str

property mask_id: int

Returns the mask token id

Return type
int

property max_num_tokens: int

Returns the maximum number of token allowed by the model.

Return type
int

model: Any

770 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any

alibi Documentation, Release 0.9.5dev

predict_batch_lm(x, vocab_size, batch_size)
Tensorflow language model batch predictions for AnchorText.

Parameters
• x (BatchEncoding) – Batch of instances.

• vocab_size (int) – Vocabulary size of language model.

• batch_size (int) – Batch size used for predictions.

Return type
ndarray

Returns
y – Array with model predictions.

select_word(tokenized_text, start_idx, punctuation)
Given a tokenized text and the starting index of a word, the function selects the entire word. Note that a
word is composed of multiple tokens (e.g., word = [head_token tail_token_1 tail_token_2 ...
tail_token_k]). The tail tokens can be identified based on the presence/absence of SUBWORD_PREFIX.
See alibi.utils.lang_model.LanguageModel.is_subword_prefix() for more details.

Parameters
• tokenized_text (List[str]) – Tokenized text.

• start_idx (int) – Starting index of a word.

• punctuation (str) – String of punctuation to be considered. If it encounters a token
composed only of characters in punctuation it terminates the search.

Return type
str

Returns
The word obtained by concatenation [head_token tail_token_1 tail_token_2 ...
tail_token_k].

to_disk(path)
Saves a model to disk.

Parameters
path (Union[str, Path]) – Path to the checkpoint.

tokenizer: Any

class alibi.utils.lang_model.RobertaBase(preloading=True)
Bases: LanguageModel

SUBWORD_PREFIX = 'Ġ'

Language model subword prefix.

__init__(preloading=True)
Initialize RobertaBase.

Parameters
preloading (bool) – See alibi.utils.lang_model.LanguageModel.__init__()
constructor.

caller: Callable

13.1. alibi package 771

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable

alibi Documentation, Release 0.9.5dev

is_subword_prefix(token)
Checks if the given token is a part of the tail of a word. Note that a word can be split in multiple tokens (e.g.,
word = [head_token tail_token_1 tail_token_2 ... tail_token_k]). Each language model
has a convention on how to mark a tail token. For example DistilbertBaseUncased and BertBaseUncased
have the tail tokens prefixed with the special set of characters '##'. On the other hand, for RobertaBase
only the head token is prefixed with the special character 'Ġ' and thus we need to check the absence
of the prefix to identify the tail tokens. We call those special characters SUBWORD_PREFIX. Due to
different conventions, this method has to be implemented for each language model. See module docstring
for namings.

Parameters
token (str) – Token to be checked if it is a subword.

Return type
bool

Returns
True if the given token is a subword prefix. False otherwise.

property mask: str

Returns the mask token.

Return type
str

model: Any

tokenizer: Any

alibi.utils.mapping module

alibi.utils.mapping.num_to_ord(data, dist)
Transform numerical values into categories using the map calculated under the fit method.

Parameters
• data (ndarray) – Numpy array with the numerical data.

• dist (dict) – Dict with as keys the categorical variables and as values the numerical value
for each category.

Return type
ndarray

Returns
Numpy array with transformed numerical data into categories.

alibi.utils.mapping.ohe_to_ord(X_ohe, cat_vars_ohe)
Convert one-hot encoded variables to ordinal encodings.

Parameters
• X_ohe (ndarray) – Data with mixture of one-hot encoded and numerical variables.

• cat_vars_ohe (dict) – Dict with as keys the first column index for each one-hot encoded
categorical variable and as values the number of categories per categorical variable.

Return type
Tuple[ndarray, dict]

772 Chapter 13. alibi

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict

alibi Documentation, Release 0.9.5dev

Returns
Ordinal equivalent of one-hot encoded data and dict with categorical columns and number of
categories.

alibi.utils.mapping.ohe_to_ord_shape(shape, cat_vars, is_ohe=False)
Infer shape of instance if the categorical variables have ordinal instead of one-hot encoding.

Parameters
• shape (tuple) – Instance shape, starting with batch dimension.

• cat_vars (Dict[int, int]) – Dict with as keys the categorical columns and as values the
number of categories per categorical variable.

• is_ohe (bool) – Whether instance is OHE.

Return type
tuple

Returns
Tuple with shape of instance with ordinal encoding of categorical variables.

alibi.utils.mapping.ord_to_num(data, dist)
Transform categorical into numerical values using a mapping.

Parameters
• data (ndarray) – Numpy array with the categorical data.

• dist (dict) – Dict with as keys the categorical variables and as values the numerical value
for each category.

Return type
ndarray

Returns
Numpy array with transformed categorical data into numerical values.

alibi.utils.mapping.ord_to_ohe(X_ord, cat_vars_ord)
Convert ordinal to one-hot encoded variables.

Parameters
• X_ord (ndarray) – Data with mixture of ordinal encoded and numerical variables.

• cat_vars_ord (dict) – Dict with as keys the categorical columns and as values the number
of categories per categorical variable.

Return type
Tuple[ndarray, dict]

Returns
One-hot equivalent of ordinal encoded data and dict with categorical columns and number of
categories.

13.1. alibi package 773

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict

alibi Documentation, Release 0.9.5dev

alibi.utils.missing_optional_dependency module

Functionality for optional importing

This module provides a way to import optional dependencies. In the case that the user imports some functionality from
alibi that is not usable due to missing optional dependencies this code is used to allow the import but replace it with
an object that throws an error on use. This way we avoid errors at import time that prevent the user using functionality
independent of the missing dependency.

class alibi.utils.missing_optional_dependency.MissingDependency(object_name, err,
missing_dependency='all')

Bases: object

Missing Dependency Class

Used to replace any object that requires unmet optional dependencies. Attribute access or calling the __call__
method on this object will raise an error.

__call__(*args, **kwargs)
If called, raise an error.

__getattr__(key)
Raise an error when attributes are accessed.

__init__(object_name, err, missing_dependency='all')
Metaclass for MissingDependency classes

Parameters
• object_name (str) – Name of object we are replacing

• missing_dependency (str) – Name of missing dependency required for object

• err (Union[ModuleNotFoundError, ImportError]) – Error to be raised when the class
is initialized or used

property err_msg

Generate error message informing user to install missing dependencies.

alibi.utils.missing_optional_dependency.err_msg_template = <string.Template object>

Mapping used to ensure correct pip install message is generated if a missing optional dependency is detected.
This dict is used to control two behaviours:

1. When we import objects from missing dependencies we check that any ModuleNotFoundError or ImportEr-
ror corresponds to a missing optional dependency by checking the name of the missing dependency is in ER-
ROR_TYPES. We then map this name to the corresponding optional dependency bucket that will resolve the
issue.

2. Some optional dependencies have multiple names such as torch and pytorch, instead of enforcing a single
naming convention across the whole code base we instead use ERROR_TYPES to capture both cases. This is
done right before the pip install message is issued as this is the most robust place to capture these differences.

alibi.utils.missing_optional_dependency.import_optional(module_name, names=None)
Import a module that depends on optional dependencies

Note: This function is used to import modules that depend on optional dependencies. Because it mirrors the
python import functionality its return type has to be Any. Using objects imported with this function can lead to
misspecification of types as Any when the developer intended to be more restrictive.

Parameters

774 Chapter 13. alibi

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/exceptions.html#ModuleNotFoundError
https://docs.python.org/3/library/exceptions.html#ImportError

alibi Documentation, Release 0.9.5dev

• module_name (str) – The module to import

• names (Optional[List[str]]) – The names to import from the module. If None, all names
are imported.

Return type
Any

Returns
• The module or named objects within the modules if names is not None. If the import fails

due to a

• ModuleNotFoundError or ImportError then the requested module or named objects are re-
placed with instances of

• the MissingDependency class above.

alibi.utils.tf module

alibi.utils.tf.argmax_grad(x)

alibi.utils.tf.argmin_grad(x, y)

alibi.utils.tf.one_hot_grad(x, y)

alibi.utils.tf.round_grad(x)

alibi.utils.visualization module

class alibi.utils.visualization.ImageVisualizationMethod(value)
Bases: Enum

An enumeration.

alpha_scaling = 5

blended_heat_map = 2

heat_map = 1

masked_image = 4

original_image = 3

class alibi.utils.visualization.VisualizeSign(value)
Bases: Enum

An enumeration.

absolute_value = 2

all = 4

negative = 3

positive = 1

13.1. alibi package 775

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.Enum

alibi Documentation, Release 0.9.5dev

alibi.utils.visualization.heatmap(data, xticklabels, yticklabels, vmin=None, vmax=None, cmap='magma',
robust=False, annot=True, linewidths=3, linecolor='w', cbar=True,
cbar_label='', cbar_ax=None, cbar_kws=None, fmt='{x:.2f}',
textcolors=('white', 'black'), threshold=None, text_kws=None, ax=None,
**kwargs)

Constructs a heatmap with annotation.

Parameters
• data (ndarray) – A 2D numpy array of shape M x N.

• yticklabels (List[str]) – A list or array of length M with the labels for the rows.

• xticklabels (List[str]) – A list or array of length N with the labels for the columns.

• vmin (Optional[float]) – When using scalar data and no explicit norm, vmin and vmax
define the data range that the colormap covers. By default, the colormap covers the complete
value range of the supplied data. It is an error to use vmin/vmax when norm is given. When
using RGB(A) data, parameters vmin/vmax are ignored.

• vmax (Optional[float]) – When using scalar data and no explicit norm, vmin and vmax
define the data range that the colormap covers. By default, the colormap covers the complete
value range of the supplied data. It is an error to use vmin/vmax when norm is given. When
using RGB(A) data, parameters vmin/vmax are ignored.

• cmap (Union[str, Colormap]) – The Colormap instance or registered colormap name used
to map scalar data to colors. This parameter is ignored for RGB(A) data.

• robust (Optional[bool]) – If True and vmin or vmax are absent, the colormap range is
computed with robust quantiles instead of the extreme values. Uses numpy.nanpercentile
with q values set to 2 and 98, respectively.

• annot (Optional[bool]) – Boolean flag whether to annotate the heatmap. Default True.

• linewidths (float) – Width of the lines that will divide each cell. Default 3.

• linecolor (str) – Color of the lines that will divide each cell. Default "w".

• cbar (bool) – Boolean flag whether to draw a colorbar.

• cbar_label (str) – Optional label for the colorbar.

• cbar_ax (Optional[Axes]) – Optional axes in which to draw the colorbar, otherwise take
space from the main axes.

• cbar_kws (Optional[dict]) – An optional dictionary with arguments to mat-
plotlib.figure.Figure.colorbar.

• fmt (Union[str, Formatter]) – Format of the annotations inside the heatmap. This should
either use the string format method, e.g. "{x:.2f}", or be a matplotlib.ticker.Formatter.
Default "{x:.2f}".

• textcolors (Tuple[str, str]) – A tuple of matplotlib colors. The first is used for values
below a threshold, the second for those above. Default ("black", "white").

• threshold (Optional[float]) – Optional value in data units according to which the col-
ors from textcolors are applied. If None (the default) uses the middle of the colormap as
separation.

• text_kws (Optional[dict]) – An optional dictionary with arguments to mat-
plotlib.axes.Axes.text.

• ax (Optional[Axes]) – Axes in which to draw the plot, otherwise use the currently-active
axes.

776 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.nanpercentile.html
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.colorbar
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.colorbar
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/ticker_api.html#matplotlib.ticker.Formatter
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.text.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.text.html
https://docs.python.org/3/library/typing.html#typing.Optional

alibi Documentation, Release 0.9.5dev

• kwargs – All other keyword arguments are passed to matplotlib.axes.Axes.imshow.

Return type
Axes

Returns
Axes object with the heatmap.

alibi.utils.visualization.visualize_image_attr(attr, original_image=None, method='heat_map',
sign='absolute_value', plt_fig_axis=None,
outlier_perc=2, cmap=None, alpha_overlay=0.5,
show_colorbar=False, title=None, fig_size=(6, 6),
use_pyplot=True)

Visualizes attribution for a given image by normalizing attribution values of the desired sign ('positive' |
'negative' | 'absolute_value' | 'all') and displaying them using the desired mode in a matplotlib figure.

Parameters
• attr (ndarray) – Numpy array corresponding to attributions to be visualized. Shape must

be in the form (H, W, C), with channels as last dimension. Shape must also match that of the
original image if provided.

• original_image (Optional[ndarray]) – Numpy array corresponding to original image.
Shape must be in the form (H, W, C), with channels as the last dimension. Image can be
provided either with float values in range 0-1 or int values between 0-255. This is a necessary
argument for any visualization method which utilizes the original image.

• method (str) – Chosen method for visualizing attribution. Supported options are:

– 'heat_map' - Display heat map of chosen attributions

– 'blended_heat_map' - Overlay heat map over greyscale version of original image. Pa-
rameter alpha_overlay corresponds to alpha of heat map.

– 'original_image' - Only display original image.

– 'masked_image’ - Mask image (pixel-wise multiply) by normalized attribution values.

– 'alpha_scaling' - Sets alpha channel of each pixel to be equal to normalized attribution
value.

Default: 'heat_map'.

• sign (str) – Chosen sign of attributions to visualize. Supported options are:

– 'positive' - Displays only positive pixel attributions.

– 'absolute_value' - Displays absolute value of attributions.

– 'negative' - Displays only negative pixel attributions.

– 'all' - Displays both positive and negative attribution values. This is not supported
for 'masked_image' or 'alpha_scaling' modes, since signed information cannot be
represented in these modes.

• plt_fig_axis (Optional[Tuple[Figure, Axes]]) – Tuple of matplotlib.pyplot.figure and
axis on which to visualize. If None is provided, then a new figure and axis are created.

• outlier_perc (Union[int, float]) – Top attribution values which correspond to a total
of outlier_perc percentage of the total attribution are set to 1 and scaling is performed using
the minimum of these values. For sign='all', outliers and scale value are computed using
absolute value of attributions.

13.1. alibi package 777

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

alibi Documentation, Release 0.9.5dev

• cmap (Optional[str]) – String corresponding to desired colormap for heatmap visualiza-
tion. This defaults to 'Reds' for negative sign, 'Blues' for absolute value, 'Greens' for
positive sign, and a spectrum from red to green for all. Note that this argument is only used
for visualizations displaying heatmaps.

• alpha_overlay (float) – Visualizes attribution for a given image by normalizing attribu-
tion values of the desired sign (positive, negative, absolute value, or all) and displaying them
using the desired mode in a matplotlib figure.

• show_colorbar (bool) – Displays colorbar for heatmap below the visualization. If given
method does not use a heatmap, then a colormap axis is created and hidden. This is necessary
for appropriate alignment when visualizing multiple plots, some with colorbars and some
without.

• title (Optional[str]) – The title for the plot. If None, no title is set.

• fig_size (Tuple[int, int]) – Size of figure created.

• use_pyplot (bool) – If True, uses pyplot to create and show figure and displays the figure
after creating. If False, uses matplotlib object-oriented API and simply returns a figure
object without showing.

Return type
Tuple[Figure, Axes]

Returns
2-element tuple of consisting of –

• figure : matplotlib.pyplot.Figure - Figure object on which visualization is created. If
plt_fig_axis argument is given, this is the same figure provided.

• axis : matplotlib.pyplot.Axes - Axes object on which visualization is created. If
plt_fig_axis argument is given, this is the same axis provided.

alibi.utils.wrappers module

class alibi.utils.wrappers.ArgmaxTransformer(predictor)
Bases: object

A transformer for converting classification output probability tensors to class labels. It assumes the predictor is
a callable that can be called with a N-tensor of data points x and produces an N-tensor of outputs.

class alibi.utils.wrappers.Predictor(clf , preprocessor=None)
Bases: object

alibi.utils.wrappers.methdispatch(func)
A decorator that is used to support singledispatch style functionality for instance methods. By default, singledis-
patch selects a function to call from registered based on the type of args[0]:

def wrapper(*args, **kw):
return dispatch(args[0].__class__)(*args, **kw)

This uses singledispatch to do achieve this but instead uses args[1] since args[0] will always be self.

778 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

alibi Documentation, Release 0.9.5dev

13.1.2 Submodules

alibi.exceptions module

This module defines the Alibi exception hierarchy and common exceptions used across the library.

exception alibi.exceptions.AlibiException(message)
Bases: Exception, ABC

Abstract base class of all alibi exceptions.

class alibi.exceptions.AlibiPredictorCallException

Bases: object

class alibi.exceptions.AlibiPredictorReturnTypeError

Bases: object

exception alibi.exceptions.NotFittedError(object_name)
Bases: AlibiException

This exception is raised whenever a compulsory call to a fit method has not been carried out.

exception alibi.exceptions.PredictorCallError(message)
Bases: AlibiException, AlibiPredictorCallException

This exception is raised whenever a call to a user supplied predictor fails at runtime.

exception alibi.exceptions.PredictorReturnTypeError(message)
Bases: AlibiException, AlibiPredictorReturnTypeError

This exception is raised whenever the return type of a user supplied predictor is of an unexpected or unsupported
type.

exception alibi.exceptions.SerializationError(message)
Bases: AlibiException

This exception is raised whenever an explainer cannot be serialized.

alibi.saving module

class alibi.saving.NumpyEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, sort_keys=False, indent=None, separators=None,
default=None)

Bases: JSONEncoder

default(obj)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base imple-
mentation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

(continues on next page)

13.1. alibi package 779

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

alibi Documentation, Release 0.9.5dev

(continued from previous page)

return list(iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

alibi.saving.load_explainer(path, predictor)
Load an explainer from disk.

Parameters
• path (Union[str, PathLike]) – Path to a directory containing the saved explainer.

• predictor – Model or prediction function used to originally initialize the explainer.

Return type
Explainer

Returns
An explainer instance.

alibi.saving.save_explainer(explainer, path)
Save an explainer to disk. Uses the dill module.

Parameters
• explainer (Explainer) – Explainer instance to save to disk.

• path (Union[str, PathLike]) – Path to a directory. A new directory will be created if one
does not exist.

Return type
None

alibi.version module

780 Chapter 13. alibi

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None

PYTHON MODULE INDEX

a
alibi, 561
alibi.api, 561
alibi.api.defaults, 561
alibi.api.interfaces, 564
alibi.confidence, 566
alibi.confidence.model_linearity, 569
alibi.confidence.trustscore, 570
alibi.datasets, 572
alibi.datasets.default, 574
alibi.datasets.tensorflow, 576
alibi.exceptions, 779
alibi.explainers, 576
alibi.explainers.ale, 678
alibi.explainers.anchors, 619
alibi.explainers.anchors.anchor_base, 619
alibi.explainers.anchors.anchor_explanation,

624
alibi.explainers.anchors.anchor_image, 625
alibi.explainers.anchors.anchor_tabular, 630
alibi.explainers.anchors.anchor_tabular_distributed,

637
alibi.explainers.anchors.anchor_text, 640
alibi.explainers.anchors.language_model_text_sampler,

644
alibi.explainers.anchors.text_samplers, 647
alibi.explainers.backends, 650
alibi.explainers.backends.cfrl_base, 664
alibi.explainers.backends.cfrl_tabular, 665
alibi.explainers.backends.pytorch, 650
alibi.explainers.backends.pytorch.cfrl_base,

650
alibi.explainers.backends.pytorch.cfrl_tabular,

655
alibi.explainers.backends.tensorflow, 657
alibi.explainers.backends.tensorflow.cfrl_base,

657
alibi.explainers.backends.tensorflow.cfrl_tabular,

663
alibi.explainers.cem, 682
alibi.explainers.cfproto, 685
alibi.explainers.cfrl_base, 689

alibi.explainers.cfrl_tabular, 695
alibi.explainers.counterfactual, 698
alibi.explainers.integrated_gradients, 700
alibi.explainers.partial_dependence, 702
alibi.explainers.pd_variance, 708
alibi.explainers.permutation_importance, 711
alibi.explainers.shap_wrappers, 715
alibi.explainers.similarity, 673
alibi.explainers.similarity.backends, 673
alibi.explainers.similarity.backends.pytorch,

673
alibi.explainers.similarity.backends.pytorch.base,

673
alibi.explainers.similarity.backends.tensorflow,

673
alibi.explainers.similarity.backends.tensorflow.base,

673
alibi.explainers.similarity.base, 674
alibi.explainers.similarity.grad, 675
alibi.explainers.similarity.metrics, 677
alibi.models, 722
alibi.models.pytorch, 722
alibi.models.pytorch.actor_critic, 722
alibi.models.pytorch.autoencoder, 723
alibi.models.pytorch.cfrl_models, 724
alibi.models.pytorch.metrics, 727
alibi.models.pytorch.model, 728
alibi.models.tensorflow, 730
alibi.models.tensorflow.actor_critic, 730
alibi.models.tensorflow.autoencoder, 731
alibi.models.tensorflow.cfrl_models, 733
alibi.prototypes, 735
alibi.prototypes.protoselect, 737
alibi.saving, 779
alibi.tests, 741
alibi.tests.utils, 741
alibi.utils, 742
alibi.utils.approximation_methods, 751
alibi.utils.data, 752
alibi.utils.discretizer, 752
alibi.utils.distance, 753
alibi.utils.distributed, 756

781

alibi Documentation, Release 0.9.5dev

alibi.utils.distributions, 764
alibi.utils.download, 765
alibi.utils.frameworks, 765
alibi.utils.gradients, 765
alibi.utils.kernel, 766
alibi.utils.lang_model, 767
alibi.utils.mapping, 772
alibi.utils.missing_optional_dependency, 774
alibi.utils.tf, 775
alibi.utils.visualization, 775
alibi.utils.wrappers, 778
alibi.version, 780

782 Python Module Index

INDEX

Symbols
__attrs_post_init__() (al-

ibi.api.interfaces.Explanation method), 564
__call__() (alibi.explainers.anchors.anchor_image.AnchorImageSampler

method), 628
__call__() (alibi.explainers.anchors.anchor_tabular.TabularSampler

method), 633
__call__() (alibi.explainers.anchors.anchor_tabular_distributed.RemoteSampler

method), 639
__call__() (alibi.explainers.anchors.language_model_text_sampler.LanguageModelSampler

method), 644
__call__() (alibi.explainers.anchors.text_samplers.SimilaritySampler

method), 648
__call__() (alibi.explainers.anchors.text_samplers.UnknownSampler

method), 649
__call__() (alibi.explainers.cfrl_base.Callback

method), 689
__call__() (alibi.explainers.cfrl_base.NormalActionNoise

method), 693
__call__() (alibi.explainers.cfrl_base.Postprocessing

method), 693
__call__() (alibi.explainers.cfrl_tabular.ConcatTabularPostprocessing

method), 695
__call__() (alibi.explainers.cfrl_tabular.SampleTabularPostprocessing

method), 697
__call__() (alibi.models.pytorch.metrics.LossContainer

method), 727
__call__() (alibi.utils.kernel.EuclideanDistance

method), 766
__call__() (alibi.utils.kernel.GaussianRBF method),

766
__call__() (alibi.utils.missing_optional_dependency.MissingDependency

method), 774
__getattr__() (alibi.utils.DistributedExplainer

method), 743
__getattr__() (alibi.utils.distributed.DistributedExplainer

method), 759
__getattr__() (alibi.utils.distributed.PoolCollection

method), 761
__getattr__() (alibi.utils.missing_optional_dependency.MissingDependency

method), 774
__getitem__() (alibi.api.interfaces.Explanation

method), 565
__init__() (alibi.confidence.LinearityMeasure

method), 566
__init__() (alibi.confidence.TrustScore method), 566
__init__() (alibi.confidence.model_linearity.LinearityMeasure

method), 569
__init__() (alibi.confidence.trustscore.TrustScore

method), 570
__init__() (alibi.explainers.ALE method), 576
__init__() (alibi.explainers.AnchorImage method),

578
__init__() (alibi.explainers.AnchorTabular method),

581
__init__() (alibi.explainers.AnchorText method), 584
__init__() (alibi.explainers.CEM method), 587
__init__() (alibi.explainers.Counterfactual method),

590
__init__() (alibi.explainers.CounterfactualProto

method), 591
__init__() (alibi.explainers.CounterfactualRL

method), 595
__init__() (alibi.explainers.CounterfactualRLTabular

method), 597
__init__() (alibi.explainers.GradientSimilarity

method), 600
__init__() (alibi.explainers.IntegratedGradients

method), 602
__init__() (alibi.explainers.KernelShap method), 604
__init__() (alibi.explainers.PartialDependence

method), 606
__init__() (alibi.explainers.PartialDependenceVariance

method), 608
__init__() (alibi.explainers.PermutationImportance

method), 610
__init__() (alibi.explainers.TreePartialDependence

method), 612
__init__() (alibi.explainers.TreeShap method), 613
__init__() (alibi.explainers.ale.ALE method), 678
__init__() (alibi.explainers.anchors.anchor_base.AnchorBaseBeam

method), 619
__init__() (alibi.explainers.anchors.anchor_explanation.AnchorExplanation

method), 624

783

alibi Documentation, Release 0.9.5dev

__init__() (alibi.explainers.anchors.anchor_image.AnchorImage
method), 625

__init__() (alibi.explainers.anchors.anchor_image.AnchorImageSampler
method), 628

__init__() (alibi.explainers.anchors.anchor_tabular.AnchorTabular
method), 630

__init__() (alibi.explainers.anchors.anchor_tabular.TabularSampler
method), 633

__init__() (alibi.explainers.anchors.anchor_text.AnchorText
method), 640

__init__() (alibi.explainers.anchors.language_model_text_sampler.LanguageModelSampler
method), 645

__init__() (alibi.explainers.anchors.text_samplers.Neighbors
method), 647

__init__() (alibi.explainers.anchors.text_samplers.SimilaritySampler
method), 648

__init__() (alibi.explainers.anchors.text_samplers.UnknownSampler
method), 649

__init__() (alibi.explainers.backends.pytorch.cfrl_base.PtCounterfactualRLDataset
method), 650

__init__() (alibi.explainers.backends.tensorflow.cfrl_base.TfCounterfactualRLDataset
method), 657

__init__() (alibi.explainers.cem.CEM method), 682
__init__() (alibi.explainers.cfproto.CounterfactualProto

method), 685
__init__() (alibi.explainers.cfrl_base.CounterfactualRL

method), 690
__init__() (alibi.explainers.cfrl_base.NormalActionNoise

method), 693
__init__() (alibi.explainers.cfrl_base.ReplayBuffer

method), 694
__init__() (alibi.explainers.cfrl_tabular.CounterfactualRLTabular

method), 695
__init__() (alibi.explainers.cfrl_tabular.SampleTabularPostprocessing

method), 698
__init__() (alibi.explainers.counterfactual.Counterfactual

method), 698
__init__() (alibi.explainers.integrated_gradients.IntegratedGradients

method), 700
__init__() (alibi.explainers.partial_dependence.PartialDependence

method), 702
__init__() (alibi.explainers.partial_dependence.PartialDependenceBase

method), 703
__init__() (alibi.explainers.partial_dependence.TreePartialDependence

method), 705
__init__() (alibi.explainers.pd_variance.PartialDependenceVariance

method), 708
__init__() (alibi.explainers.permutation_importance.PermutationImportance

method), 712
__init__() (alibi.explainers.shap_wrappers.KernelExplainerWrapper

method), 715
__init__() (alibi.explainers.shap_wrappers.KernelShap

method), 716
__init__() (alibi.explainers.shap_wrappers.TreeShap

method), 718
__init__() (alibi.explainers.similarity.base.BaseSimilarityExplainer

method), 674
__init__() (alibi.explainers.similarity.grad.GradientSimilarity

method), 675
__init__() (alibi.models.pytorch.actor_critic.Actor

method), 722
__init__() (alibi.models.pytorch.actor_critic.Critic

method), 723
__init__() (alibi.models.pytorch.autoencoder.AE

method), 723
__init__() (alibi.models.pytorch.autoencoder.HeAE

method), 724
__init__() (alibi.models.pytorch.cfrl_models.ADULTDecoder

method), 724
__init__() (alibi.models.pytorch.cfrl_models.ADULTEncoder

method), 725
__init__() (alibi.models.pytorch.cfrl_models.MNISTClassifier

method), 725
__init__() (alibi.models.pytorch.cfrl_models.MNISTDecoder

method), 726
__init__() (alibi.models.pytorch.cfrl_models.MNISTEncoder

method), 726
__init__() (alibi.models.pytorch.metrics.LossContainer

method), 727
__init__() (alibi.models.pytorch.metrics.Metric

method), 728
__init__() (alibi.models.tensorflow.actor_critic.Actor

method), 730
__init__() (alibi.models.tensorflow.actor_critic.Critic

method), 731
__init__() (alibi.models.tensorflow.autoencoder.AE

method), 732
__init__() (alibi.models.tensorflow.autoencoder.HeAE

method), 732
__init__() (alibi.models.tensorflow.cfrl_models.ADULTDecoder

method), 733
__init__() (alibi.models.tensorflow.cfrl_models.ADULTEncoder

method), 733
__init__() (alibi.models.tensorflow.cfrl_models.MNISTClassifier

method), 734
__init__() (alibi.models.tensorflow.cfrl_models.MNISTDecoder

method), 734
__init__() (alibi.models.tensorflow.cfrl_models.MNISTEncoder

method), 735
__init__() (alibi.prototypes.ProtoSelect method), 735
__init__() (alibi.prototypes.protoselect.ProtoSelect

method), 737
__init__() (alibi.tests.utils.MockPredictor method),

741
__init__() (alibi.utils.BertBaseUncased method), 742
__init__() (alibi.utils.DistilbertBaseUncased method),

742
__init__() (alibi.utils.DistributedExplainer method),

784 Index

alibi Documentation, Release 0.9.5dev

743
__init__() (alibi.utils.LanguageModel method), 745
__init__() (alibi.utils.RobertaBase method), 748
__init__() (alibi.utils.discretizer.Discretizer method),

752
__init__() (alibi.utils.distributed.ActorPool method),

756
__init__() (alibi.utils.distributed.DistributedExplainer

method), 759
__init__() (alibi.utils.distributed.PoolCollection

method), 761
__init__() (alibi.utils.kernel.EuclideanDistance

method), 766
__init__() (alibi.utils.kernel.GaussianRBF method),

766
__init__() (alibi.utils.kernel.GaussianRBFDistance

method), 767
__init__() (alibi.utils.lang_model.BertBaseUncased

method), 767
__init__() (alibi.utils.lang_model.DistilbertBaseUncased

method), 768
__init__() (alibi.utils.lang_model.LanguageModel

method), 769
__init__() (alibi.utils.lang_model.RobertaBase

method), 771
__init__() (alibi.utils.missing_optional_dependency.MissingDependency

method), 774

A
abdm() (in module alibi.utils.distance), 753
absolute_value (alibi.utils.visualization.VisualizeSign

attribute), 775
AccuracyMetric (class in alibi.models.pytorch.metrics),

727
Actor (class in alibi.models.pytorch.actor_critic), 722
Actor (class in alibi.models.tensorflow.actor_critic), 730
actor_index (alibi.utils.distributed.DistributedExplainer

property), 760
actor_index (alibi.utils.DistributedExplainer prop-

erty), 744
ActorPool (class in alibi.utils.distributed), 756
adaptive_grid() (in module alibi.explainers.ale), 680
add_names_to_exp() (al-

ibi.explainers.anchors.anchor_tabular.AnchorTabular
method), 630

add_names_to_exp() (alibi.explainers.AnchorTabular
method), 581

add_noise() (in module al-
ibi.explainers.backends.pytorch.cfrl_base),
651

add_noise() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
657

ADULTDecoder (class in al-
ibi.models.pytorch.cfrl_models), 724

ADULTDecoder (class in al-
ibi.models.tensorflow.cfrl_models), 733

ADULTEncoder (class in al-
ibi.models.pytorch.cfrl_models), 725

ADULTEncoder (class in al-
ibi.models.tensorflow.cfrl_models), 733

AE (class in alibi.models.pytorch.autoencoder), 723
AE (class in alibi.models.tensorflow.autoencoder), 731
ALE (class in alibi.explainers), 576
ALE (class in alibi.explainers.ale), 678
ale_num() (in module alibi.explainers.ale), 680
alibi

module, 561
alibi.api

module, 561
alibi.api.defaults

module, 561
alibi.api.interfaces

module, 564
alibi.confidence

module, 566
alibi.confidence.model_linearity

module, 569
alibi.confidence.trustscore

module, 570
alibi.datasets

module, 572
alibi.datasets.default

module, 574
alibi.datasets.tensorflow

module, 576
alibi.exceptions

module, 779
alibi.explainers

module, 576
alibi.explainers.ale

module, 678
alibi.explainers.anchors

module, 619
alibi.explainers.anchors.anchor_base

module, 619
alibi.explainers.anchors.anchor_explanation

module, 624
alibi.explainers.anchors.anchor_image

module, 625
alibi.explainers.anchors.anchor_tabular

module, 630
alibi.explainers.anchors.anchor_tabular_distributed

module, 637
alibi.explainers.anchors.anchor_text

module, 640
alibi.explainers.anchors.language_model_text_sampler

Index 785

alibi Documentation, Release 0.9.5dev

module, 644
alibi.explainers.anchors.text_samplers

module, 647
alibi.explainers.backends

module, 650
alibi.explainers.backends.cfrl_base

module, 664
alibi.explainers.backends.cfrl_tabular

module, 665
alibi.explainers.backends.pytorch

module, 650
alibi.explainers.backends.pytorch.cfrl_base

module, 650
alibi.explainers.backends.pytorch.cfrl_tabular

module, 655
alibi.explainers.backends.tensorflow

module, 657
alibi.explainers.backends.tensorflow.cfrl_base

module, 657
alibi.explainers.backends.tensorflow.cfrl_tabular

module, 663
alibi.explainers.cem

module, 682
alibi.explainers.cfproto

module, 685
alibi.explainers.cfrl_base

module, 689
alibi.explainers.cfrl_tabular

module, 695
alibi.explainers.counterfactual

module, 698
alibi.explainers.integrated_gradients

module, 700
alibi.explainers.partial_dependence

module, 702
alibi.explainers.pd_variance

module, 708
alibi.explainers.permutation_importance

module, 711
alibi.explainers.shap_wrappers

module, 715
alibi.explainers.similarity

module, 673
alibi.explainers.similarity.backends

module, 673
alibi.explainers.similarity.backends.pytorch

module, 673
alibi.explainers.similarity.backends.pytorch.base

module, 673
alibi.explainers.similarity.backends.tensorflow

module, 673
alibi.explainers.similarity.backends.tensorflow.base

module, 673
alibi.explainers.similarity.base

module, 674
alibi.explainers.similarity.grad

module, 675
alibi.explainers.similarity.metrics

module, 677
alibi.models

module, 722
alibi.models.pytorch

module, 722
alibi.models.pytorch.actor_critic

module, 722
alibi.models.pytorch.autoencoder

module, 723
alibi.models.pytorch.cfrl_models

module, 724
alibi.models.pytorch.metrics

module, 727
alibi.models.pytorch.model

module, 728
alibi.models.tensorflow

module, 730
alibi.models.tensorflow.actor_critic

module, 730
alibi.models.tensorflow.autoencoder

module, 731
alibi.models.tensorflow.cfrl_models

module, 733
alibi.prototypes

module, 735
alibi.prototypes.protoselect

module, 737
alibi.saving

module, 779
alibi.tests

module, 741
alibi.tests.utils

module, 741
alibi.utils

module, 742
alibi.utils.approximation_methods

module, 751
alibi.utils.data

module, 752
alibi.utils.discretizer

module, 752
alibi.utils.distance

module, 753
alibi.utils.distributed

module, 756
alibi.utils.distributions

module, 764
alibi.utils.download

module, 765
alibi.utils.frameworks

786 Index

alibi Documentation, Release 0.9.5dev

module, 765
alibi.utils.gradients

module, 765
alibi.utils.kernel

module, 766
alibi.utils.lang_model

module, 767
alibi.utils.mapping

module, 772
alibi.utils.missing_optional_dependency

module, 774
alibi.utils.tf

module, 775
alibi.utils.visualization

module, 775
alibi.utils.wrappers

module, 778
alibi.version

module, 780
AlibiException, 779
AlibiPredictorCallException (class in al-

ibi.exceptions), 779
AlibiPredictorReturnTypeError (class in al-

ibi.exceptions), 779
AlibiPrettyPrinter (class in alibi.api.interfaces), 564
all (alibi.utils.visualization.VisualizeSign attribute), 775
alpha_scaling (alibi.utils.visualization.ImageVisualizationMethod

attribute), 775
anchor_beam() (alibi.explainers.anchors.anchor_base.AnchorBaseBeam

method), 619
AnchorBaseBeam (class in al-

ibi.explainers.anchors.anchor_base), 619
AnchorExplanation (class in al-

ibi.explainers.anchors.anchor_explanation),
624

AnchorImage (class in alibi.explainers), 578
AnchorImage (class in al-

ibi.explainers.anchors.anchor_image), 625
AnchorImageSampler (class in al-

ibi.explainers.anchors.anchor_image), 628
AnchorTabular (class in alibi.explainers), 581
AnchorTabular (class in al-

ibi.explainers.anchors.anchor_tabular),
630

AnchorText (class in alibi.explainers), 583
AnchorText (class in al-

ibi.explainers.anchors.anchor_text), 640
AnchorTextSampler (class in al-

ibi.explainers.anchors.text_samplers), 647
append() (alibi.explainers.cfrl_base.ReplayBuffer

method), 694
apply_category_mapping() (in module al-

ibi.explainers.backends.cfrl_tabular), 665

approximation_parameters() (in module al-
ibi.utils.approximation_methods), 751

argmax_grad() (in module alibi.utils.tf), 775
ArgmaxTransformer (class in alibi.utils.wrappers), 778
argmin_grad() (in module alibi.utils.tf), 775
assert_message_in_logs() (in module al-

ibi.tests.utils), 741
asym_dot() (in module al-

ibi.explainers.similarity.metrics), 677
attack() (alibi.explainers.CEM method), 588
attack() (alibi.explainers.cem.CEM method), 683
attack() (alibi.explainers.cfproto.CounterfactualProto

method), 686
attack() (alibi.explainers.CounterfactualProto

method), 592
AVERAGE (alibi.explainers.partial_dependence.Kind at-

tribute), 702

B
Base (class in alibi.api.interfaces), 564
BaseSimilarityExplainer (class in al-

ibi.explainers.similarity.base), 674
batch() (in module alibi.utils.distributed), 762
batch_compute_kernel_matrix() (in module al-

ibi.utils.distance), 754
BertBaseUncased (class in alibi.utils), 742
BertBaseUncased (class in alibi.utils.lang_model), 767
bins() (alibi.utils.discretizer.Discretizer method), 753
bisect_fun() (in module alibi.explainers.ale), 681
blended_heat_map (al-

ibi.utils.visualization.ImageVisualizationMethod
attribute), 775

BOTH (alibi.explainers.partial_dependence.Kind at-
tribute), 702

build() (alibi.models.tensorflow.autoencoder.HeAE
method), 732

build_lookups() (al-
ibi.explainers.anchors.anchor_tabular.TabularSampler
method), 634

build_lookups() (al-
ibi.explainers.anchors.anchor_tabular_distributed.RemoteSampler
method), 639

Bunch (class in alibi.utils.data), 752

C
call() (alibi.models.tensorflow.actor_critic.Actor

method), 731
call() (alibi.models.tensorflow.actor_critic.Critic

method), 731
call() (alibi.models.tensorflow.autoencoder.AE

method), 732
call() (alibi.models.tensorflow.autoencoder.HeAE

method), 732

Index 787

alibi Documentation, Release 0.9.5dev

call() (alibi.models.tensorflow.cfrl_models.ADULTDecoder
method), 733

call() (alibi.models.tensorflow.cfrl_models.ADULTEncoder
method), 733

call() (alibi.models.tensorflow.cfrl_models.MNISTClassifier
method), 734

call() (alibi.models.tensorflow.cfrl_models.MNISTDecoder
method), 734

call() (alibi.models.tensorflow.cfrl_models.MNISTEncoder
method), 735

CALLABLE (alibi.explainers.integrated_gradients.LayerState
attribute), 701

Callback (class in alibi.explainers.cfrl_base), 689
caller (alibi.utils.lang_model.BertBaseUncased at-

tribute), 767
caller (alibi.utils.lang_model.DistilbertBaseUncased

attribute), 768
caller (alibi.utils.lang_model.LanguageModel at-

tribute), 769
caller (alibi.utils.lang_model.RobertaBase attribute),

771
caller (alibi.utils.LanguageModel attribute), 745
CEM (class in alibi.explainers), 587
CEM (class in alibi.explainers.cem), 682
cityblock_batch() (in module alibi.utils.distance),

754
CLASS_SAMPLER (alibi.explainers.anchors.anchor_text.AnchorText

attribute), 640
CLASS_SAMPLER (alibi.explainers.AnchorText attribute),

583
CLASSIFICATION (alibi.explainers.similarity.grad.Task

attribute), 677
compare_labels() (al-

ibi.explainers.anchors.anchor_image.AnchorImageSampler
method), 629

compare_labels() (al-
ibi.explainers.anchors.anchor_tabular.TabularSampler
method), 634

compare_labels() (al-
ibi.explainers.anchors.anchor_text.AnchorText
method), 641

compare_labels() (alibi.explainers.AnchorText
method), 584

compile() (alibi.models.pytorch.model.Model method),
728

compute_beta() (alibi.explainers.anchors.anchor_base.AnchorBaseBeam
static method), 620

compute_loss() (alibi.models.pytorch.model.Model
method), 729

compute_metric() (al-
ibi.models.pytorch.metrics.AccuracyMetric
method), 727

compute_metric() (al-
ibi.models.pytorch.metrics.Metric method),

728
compute_metrics() (al-

ibi.models.pytorch.model.Model method),
729

compute_prototype_importances() (in module al-
ibi.prototypes.protoselect), 738

concatenate (alibi.utils.distributed.DistributedExplainer
attribute), 760

concatenate (alibi.utils.DistributedExplainer attribute),
744

concatenate_minibatches() (in module al-
ibi.utils.distributed), 763

ConcatTabularPostprocessing (class in al-
ibi.explainers.cfrl_tabular), 695

consistency_loss() (in module al-
ibi.explainers.backends.pytorch.cfrl_base),
651

consistency_loss() (in module al-
ibi.explainers.backends.pytorch.cfrl_tabular),
655

consistency_loss() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
658

consistency_loss() (in module al-
ibi.explainers.backends.tensorflow.cfrl_tabular),
663

cos() (in module alibi.explainers.similarity.metrics), 677
Counterfactual (class in alibi.explainers), 589
Counterfactual (class in al-

ibi.explainers.counterfactual), 698
CounterFactual() (in module al-

ibi.explainers.counterfactual), 698
CounterfactualProto (class in alibi.explainers), 591
CounterfactualProto (class in al-

ibi.explainers.cfproto), 685
CounterFactualProto() (in module al-

ibi.explainers.cfproto), 685
CounterfactualRL (class in alibi.explainers), 595
CounterfactualRL (class in alibi.explainers.cfrl_base),

690
CounterfactualRLDataset (class in al-

ibi.explainers.backends.cfrl_base), 664
CounterfactualRLTabular (class in alibi.explainers),

597
CounterfactualRLTabular (class in al-

ibi.explainers.cfrl_tabular), 695
coverage() (alibi.explainers.anchors.anchor_explanation.AnchorExplanation

method), 624
create_explainer_handles() (al-

ibi.utils.distributed.PoolCollection static
method), 762

create_mask() (alibi.explainers.anchors.language_model_text_sampler.LanguageModelSampler
method), 645

create_parallel_pool() (al-

788 Index

alibi Documentation, Release 0.9.5dev

ibi.utils.distributed.DistributedExplainer
method), 760

create_parallel_pool() (al-
ibi.utils.DistributedExplainer method), 744

Critic (class in alibi.models.pytorch.actor_critic), 722
Critic (class in alibi.models.tensorflow.actor_critic),

731
cv_protoselect_euclidean() (in module al-

ibi.prototypes.protoselect), 739

D
data (alibi.api.interfaces.Explanation attribute), 565
data_generator() (in module al-

ibi.explainers.backends.pytorch.cfrl_base),
651

data_generator() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
658

decode() (in module al-
ibi.explainers.backends.pytorch.cfrl_base),
652

decode() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
658

default() (alibi.saving.NumpyEncoder method), 779
DEFAULT_BASE_PARAMS (in module al-

ibi.explainers.cfrl_base), 691
DEFAULT_DATA_ALE (in module alibi.api.defaults), 561
DEFAULT_DATA_ANCHOR (in module alibi.api.defaults),

561
DEFAULT_DATA_ANCHOR_IMG (in module al-

ibi.api.defaults), 561
DEFAULT_DATA_CEM (in module alibi.api.defaults), 561
DEFAULT_DATA_CF (in module alibi.api.defaults), 561
DEFAULT_DATA_CFP (in module alibi.api.defaults), 561
DEFAULT_DATA_CFRL (in module alibi.api.defaults), 561
DEFAULT_DATA_INTGRAD (in module alibi.api.defaults),

562
DEFAULT_DATA_KERNEL_SHAP (in module al-

ibi.api.defaults), 562
DEFAULT_DATA_PD (in module alibi.api.defaults), 562
DEFAULT_DATA_PDVARIANCE (in module al-

ibi.api.defaults), 562
DEFAULT_DATA_PERMUTATION_IMPORTANCE (in module

alibi.api.defaults), 562
DEFAULT_DATA_PROTOSELECT (in module al-

ibi.api.defaults), 562
DEFAULT_DATA_SIM (in module alibi.api.defaults), 562
DEFAULT_DATA_TREE_SHAP (in module al-

ibi.api.defaults), 562
default_meta() (in module alibi.api.interfaces), 565
DEFAULT_META_ALE (in module alibi.api.defaults), 562
DEFAULT_META_ANCHOR (in module alibi.api.defaults),

562

DEFAULT_META_CEM (in module alibi.api.defaults), 562
DEFAULT_META_CF (in module alibi.api.defaults), 562
DEFAULT_META_CFP (in module alibi.api.defaults), 562
DEFAULT_META_CFRL (in module alibi.api.defaults), 563
DEFAULT_META_INTGRAD (in module alibi.api.defaults),

563
DEFAULT_META_KERNEL_SHAP (in module al-

ibi.api.defaults), 563
DEFAULT_META_PD (in module alibi.api.defaults), 563
DEFAULT_META_PDVARIANCE (in module al-

ibi.api.defaults), 563
DEFAULT_META_PERMUTATION_IMPORTANCE (in module

alibi.api.defaults), 563
DEFAULT_META_PROTOSELECT (in module al-

ibi.api.defaults), 563
DEFAULT_META_SIM (in module alibi.api.defaults), 563
DEFAULT_META_TREE_SHAP (in module al-

ibi.api.defaults), 563
DEFAULT_SAMPLING_LANGUAGE_MODEL (in module al-

ibi.explainers.anchors.anchor_text), 643
DEFAULT_SAMPLING_SIMILARITY (in module al-

ibi.explainers.anchors.anchor_text), 644
DEFAULT_SAMPLING_UNKNOWN (in module al-

ibi.explainers.anchors.anchor_text), 644
default_target_fcn() (in module al-

ibi.utils.distributed), 763
DEFAULTS (alibi.explainers.anchors.anchor_text.AnchorText

attribute), 640
DEFAULTS (alibi.explainers.AnchorText attribute), 583
deferred_init() (al-

ibi.explainers.anchors.anchor_tabular.TabularSampler
method), 634

DIFFERENCE (alibi.explainers.permutation_importance.Kind
attribute), 711

discretize() (alibi.utils.discretizer.Discretizer
method), 753

Discretizer (class in alibi.utils.discretizer), 752
DistilbertBaseUncased (class in alibi.utils), 742
DistilbertBaseUncased (class in al-

ibi.utils.lang_model), 768
DISTRIBUTED_OPTS (in module al-

ibi.explainers.shap_wrappers), 715
DistributedAnchorBaseBeam (class in al-

ibi.explainers.anchors.anchor_tabular_distributed),
637

DistributedAnchorTabular (class in al-
ibi.explainers), 599

DistributedAnchorTabular (class in al-
ibi.explainers.anchors.anchor_tabular_distributed),
637

DistributedExplainer (class in alibi.utils), 743
DistributedExplainer (class in al-

ibi.utils.distributed), 758
dlow_bernoulli() (al-

Index 789

alibi Documentation, Release 0.9.5dev

ibi.explainers.anchors.anchor_base.AnchorBaseBeam
static method), 620

dot() (in module alibi.explainers.similarity.metrics), 677
draw_samples() (alibi.explainers.anchors.anchor_base.AnchorBaseBeam

method), 621
draw_samples() (alibi.explainers.anchors.anchor_tabular_distributed.DistributedAnchorBaseBeam

method), 637
dup_bernoulli() (al-

ibi.explainers.anchors.anchor_base.AnchorBaseBeam
static method), 621

E
encode() (in module al-

ibi.explainers.backends.pytorch.cfrl_base),
652

encode() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
659

err_msg (alibi.utils.missing_optional_dependency.MissingDependency
property), 774

err_msg_template (in module al-
ibi.utils.missing_optional_dependency), 774

ESTIMATE (alibi.explainers.permutation_importance.Method
attribute), 711

EuclideanDistance (class in alibi.utils.kernel), 766
evaluate() (alibi.models.pytorch.model.Model

method), 729
EXACT (alibi.explainers.permutation_importance.Method

attribute), 712
examples() (alibi.explainers.anchors.anchor_explanation.AnchorExplanation

method), 624
explain() (alibi.api.interfaces.Explainer method), 564
explain() (alibi.explainers.ALE method), 577
explain() (alibi.explainers.ale.ALE method), 679
explain() (alibi.explainers.AnchorImage method), 578
explain() (alibi.explainers.anchors.anchor_image.AnchorImage

method), 626
explain() (alibi.explainers.anchors.anchor_tabular.AnchorTabular

method), 631
explain() (alibi.explainers.anchors.anchor_tabular_distributed.DistributedAnchorTabular

method), 637
explain() (alibi.explainers.anchors.anchor_text.AnchorText

method), 641
explain() (alibi.explainers.AnchorTabular method),

581
explain() (alibi.explainers.AnchorText method), 584
explain() (alibi.explainers.CEM method), 588
explain() (alibi.explainers.cem.CEM method), 683
explain() (alibi.explainers.cfproto.CounterfactualProto

method), 687
explain() (alibi.explainers.cfrl_base.CounterfactualRL

method), 690
explain() (alibi.explainers.cfrl_tabular.CounterfactualRLTabular

method), 696

explain() (alibi.explainers.Counterfactual method),
590

explain() (alibi.explainers.counterfactual.Counterfactual
method), 699

explain() (alibi.explainers.CounterfactualProto
method), 593

explain() (alibi.explainers.CounterfactualRL method),
596

explain() (alibi.explainers.CounterfactualRLTabular
method), 598

explain() (alibi.explainers.DistributedAnchorTabular
method), 599

explain() (alibi.explainers.GradientSimilarity method),
601

explain() (alibi.explainers.integrated_gradients.IntegratedGradients
method), 700

explain() (alibi.explainers.IntegratedGradients
method), 603

explain() (alibi.explainers.KernelShap method), 604
explain() (alibi.explainers.partial_dependence.PartialDependence

method), 702
explain() (alibi.explainers.partial_dependence.PartialDependenceBase

method), 704
explain() (alibi.explainers.partial_dependence.TreePartialDependence

method), 706
explain() (alibi.explainers.PartialDependence

method), 607
explain() (alibi.explainers.PartialDependenceVariance

method), 609
explain() (alibi.explainers.pd_variance.PartialDependenceVariance

method), 709
explain() (alibi.explainers.permutation_importance.PermutationImportance

method), 713
explain() (alibi.explainers.PermutationImportance

method), 611
explain() (alibi.explainers.shap_wrappers.KernelShap

method), 716
explain() (alibi.explainers.shap_wrappers.TreeShap

method), 719
explain() (alibi.explainers.similarity.grad.GradientSimilarity

method), 676
explain() (alibi.explainers.TreePartialDependence

method), 612
explain() (alibi.explainers.TreeShap method), 614
Explainer (class in alibi.api.interfaces), 564
Explanation (class in alibi.api.interfaces), 564

F
features() (alibi.explainers.anchors.anchor_explanation.AnchorExplanation

method), 624
fetch_adult() (in module alibi.datasets), 572
fetch_adult() (in module alibi.datasets.default), 574
fetch_fashion_mnist() (in module alibi.datasets),

572

790 Index

alibi Documentation, Release 0.9.5dev

fetch_fashion_mnist() (in module al-
ibi.datasets.tensorflow), 576

fetch_imagenet() (in module alibi.datasets), 572
fetch_imagenet() (in module alibi.datasets.default),

574
fetch_imagenet_10() (in module alibi.datasets), 572
fetch_imagenet_10() (in module al-

ibi.datasets.default), 574
fetch_movie_sentiment() (in module alibi.datasets),

573
fetch_movie_sentiment() (in module al-

ibi.datasets.default), 575
fill_mask() (alibi.explainers.anchors.language_model_text_sampler.LanguageModelSampler

method), 645
FILLING_AUTOREGRESSIVE (al-

ibi.explainers.anchors.language_model_text_sampler.LanguageModelSampler
attribute), 644

FILLING_PARALLEL (al-
ibi.explainers.anchors.language_model_text_sampler.LanguageModelSampler
attribute), 644

filter_by_distance_knn() (al-
ibi.confidence.TrustScore method), 567

filter_by_distance_knn() (al-
ibi.confidence.trustscore.TrustScore method),
571

filter_by_probability_knn() (al-
ibi.confidence.TrustScore method), 567

filter_by_probability_knn() (al-
ibi.confidence.trustscore.TrustScore method),
571

find_similar_words() (al-
ibi.explainers.anchors.text_samplers.SimilaritySampler
method), 648

fit() (alibi.api.interfaces.FitMixin method), 565
fit() (alibi.confidence.LinearityMeasure method), 566
fit() (alibi.confidence.model_linearity.LinearityMeasure

method), 569
fit() (alibi.confidence.TrustScore method), 567
fit() (alibi.confidence.trustscore.TrustScore method),

571
fit() (alibi.explainers.anchors.anchor_tabular.AnchorTabular

method), 632
fit() (alibi.explainers.anchors.anchor_tabular_distributed.DistributedAnchorTabular

method), 638
fit() (alibi.explainers.AnchorTabular method), 583
fit() (alibi.explainers.CEM method), 588
fit() (alibi.explainers.cem.CEM method), 684
fit() (alibi.explainers.cfproto.CounterfactualProto

method), 687
fit() (alibi.explainers.cfrl_base.CounterfactualRL

method), 691
fit() (alibi.explainers.cfrl_tabular.CounterfactualRLTabular

method), 697
fit() (alibi.explainers.Counterfactual method), 591

fit() (alibi.explainers.counterfactual.Counterfactual
method), 699

fit() (alibi.explainers.CounterfactualProto method),
593

fit() (alibi.explainers.CounterfactualRL method), 596
fit() (alibi.explainers.CounterfactualRLTabular

method), 599
fit() (alibi.explainers.DistributedAnchorTabular

method), 600
fit() (alibi.explainers.GradientSimilarity method), 602
fit() (alibi.explainers.KernelShap method), 605
fit() (alibi.explainers.shap_wrappers.KernelShap

method), 717
fit() (alibi.explainers.shap_wrappers.TreeShap

method), 720
fit() (alibi.explainers.similarity.base.BaseSimilarityExplainer

method), 674
fit() (alibi.explainers.similarity.grad.GradientSimilarity

method), 676
fit() (alibi.explainers.TreeShap method), 615
fit() (alibi.models.pytorch.model.Model method), 729
fit() (alibi.prototypes.ProtoSelect method), 736
fit() (alibi.prototypes.protoselect.ProtoSelect method),

738
FitMixin (class in alibi.api.interfaces), 565
forward() (alibi.models.pytorch.actor_critic.Actor

method), 722
forward() (alibi.models.pytorch.actor_critic.Critic

method), 723
forward() (alibi.models.pytorch.autoencoder.AE

method), 723
forward() (alibi.models.pytorch.autoencoder.HeAE

method), 724
forward() (alibi.models.pytorch.cfrl_models.ADULTDecoder

method), 724
forward() (alibi.models.pytorch.cfrl_models.ADULTEncoder

method), 725
forward() (alibi.models.pytorch.cfrl_models.MNISTClassifier

method), 725
forward() (alibi.models.pytorch.cfrl_models.MNISTDecoder

method), 726
forward() (alibi.models.pytorch.cfrl_models.MNISTEncoder

method), 726
Framework (class in alibi.utils.frameworks), 765
from_disk() (alibi.utils.lang_model.LanguageModel

method), 769
from_disk() (alibi.utils.LanguageModel method), 745
from_json() (alibi.api.interfaces.Explanation class

method), 565

G
gauss_legendre_builders() (in module al-

ibi.utils.approximation_methods), 751
GaussianRBF (class in alibi.utils.kernel), 766

Index 791

alibi Documentation, Release 0.9.5dev

GaussianRBFDistance (class in alibi.utils.kernel), 767
gen_category_map() (in module alibi.utils), 748
gen_category_map() (in module alibi.utils.data), 752
generate_categorical_condition() (in module al-

ibi.explainers.backends.cfrl_tabular), 666
generate_cf() (in module al-

ibi.explainers.backends.pytorch.cfrl_base),
652

generate_cf() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
659

generate_condition() (in module al-
ibi.explainers.backends.cfrl_tabular), 666

generate_empty_condition() (in module al-
ibi.explainers.backends.cfrl_base), 664

generate_numerical_condition() (in module al-
ibi.explainers.backends.cfrl_tabular), 667

generate_superpixels() (al-
ibi.explainers.AnchorImage method), 580

generate_superpixels() (al-
ibi.explainers.anchors.anchor_image.AnchorImage
method), 627

generate_superpixels() (al-
ibi.explainers.anchors.anchor_image.AnchorImageSampler
method), 629

get_actor() (in module al-
ibi.explainers.backends.pytorch.cfrl_base),
653

get_actor() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
659

get_anchor_metadata() (al-
ibi.explainers.anchors.anchor_base.AnchorBaseBeam
method), 621

get_categorical_conditional_vector() (in mod-
ule alibi.explainers.backends.cfrl_tabular), 667

get_classification_reward() (in module al-
ibi.explainers.backends.cfrl_base), 665

get_conditional_dim() (in module al-
ibi.explainers.backends.cfrl_tabular), 668

get_conditional_vector() (in module al-
ibi.explainers.backends.cfrl_tabular), 668

get_critic() (in module al-
ibi.explainers.backends.pytorch.cfrl_base),
653

get_critic() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
659

get_device() (in module al-
ibi.explainers.backends.pytorch.cfrl_base),
653

get_explanation() (al-
ibi.explainers.shap_wrappers.KernelExplainerWrapper
method), 715

get_explanation() (al-
ibi.utils.distributed.DistributedExplainer
method), 760

get_explanation() (al-
ibi.utils.distributed.PoolCollection method),
762

get_explanation() (alibi.utils.DistributedExplainer
method), 744

get_features_index() (al-
ibi.explainers.anchors.anchor_tabular.TabularSampler
method), 635

get_gradients() (alibi.explainers.CEM method), 588
get_gradients() (alibi.explainers.cem.CEM method),

684
get_gradients() (al-

ibi.explainers.cfproto.CounterfactualProto
method), 688

get_gradients() (al-
ibi.explainers.CounterfactualProto method),
594

get_hard_distribution() (in module al-
ibi.explainers.backends.cfrl_base), 665

get_he_preprocessor() (in module al-
ibi.explainers.backends.cfrl_tabular), 669

get_init_stats() (al-
ibi.explainers.anchors.anchor_base.AnchorBaseBeam
method), 621

get_next() (alibi.utils.distributed.ActorPool method),
756

get_next_unordered() (al-
ibi.utils.distributed.ActorPool method), 756

get_numerical_conditional_vector() (in module
alibi.explainers.backends.cfrl_tabular), 670

get_optimizer() (in module al-
ibi.explainers.backends.pytorch.cfrl_base),
653

get_optimizer() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
660

get_percentiles() (alibi.utils.discretizer.Discretizer
static method), 753

get_quantiles() (in module alibi.explainers.ale), 681
get_sample_ids() (al-

ibi.explainers.anchors.language_model_text_sampler.LanguageModelSampler
method), 646

get_statistics() (in module al-
ibi.explainers.backends.cfrl_tabular), 671

GradientSimilarity (class in alibi.explainers), 600
GradientSimilarity (class in al-

ibi.explainers.similarity.grad), 675

H
handle_unk_features() (al-

ibi.explainers.anchors.anchor_tabular.TabularSampler

792 Index

alibi Documentation, Release 0.9.5dev

method), 635
has_next() (alibi.utils.distributed.ActorPool method),

757
head_tail_split() (al-

ibi.utils.lang_model.LanguageModel method),
769

head_tail_split() (alibi.utils.LanguageModel
method), 745

HeAE (class in alibi.models.pytorch.autoencoder), 723
HeAE (class in alibi.models.tensorflow.autoencoder), 732
heat_map (alibi.utils.visualization.ImageVisualizationMethod

attribute), 775
heatmap() (in module alibi.utils.visualization), 775

I
identity_function() (in module al-

ibi.explainers.backends.cfrl_base), 665
ImageVisualizationMethod (class in al-

ibi.utils.visualization), 775
import_optional() (in module al-

ibi.utils.missing_optional_dependency), 774
IMPORTANCE (alibi.explainers.pd_variance.Method at-

tribute), 708
INDIVIDUAL (alibi.explainers.partial_dependence.Kind

attribute), 702
infer_feature_range() (in module al-

ibi.confidence.model_linearity), 569
initialize_actor_critic() (in module al-

ibi.explainers.backends.tensorflow.cfrl_base),
660

initialize_optimizer() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
660

initialize_optimizers() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
660

instance_label (alibi.explainers.anchors.anchor_tabular.AnchorTabular
attribute), 632

instance_label (alibi.explainers.anchors.anchor_tabular.TabularSampler
attribute), 635

instance_label (alibi.explainers.AnchorTabular
attribute), 583

IntegratedGradients (class in alibi.explainers), 602
IntegratedGradients (class in al-

ibi.explainers.integrated_gradients), 700
INTERACTION (alibi.explainers.pd_variance.Method at-

tribute), 708
invert_permutation() (in module al-

ibi.utils.distributed), 764
is_punctuation() (al-

ibi.utils.lang_model.LanguageModel method),
769

is_punctuation() (alibi.utils.LanguageModel
method), 746

is_stop_word() (alibi.utils.lang_model.LanguageModel
method), 769

is_stop_word() (alibi.utils.LanguageModel method),
746

is_subword_prefix() (alibi.utils.BertBaseUncased
method), 742

is_subword_prefix() (al-
ibi.utils.DistilbertBaseUncased method),
742

is_subword_prefix() (al-
ibi.utils.lang_model.BertBaseUncased
method), 767

is_subword_prefix() (al-
ibi.utils.lang_model.DistilbertBaseUncased
method), 768

is_subword_prefix() (al-
ibi.utils.lang_model.LanguageModel method),
770

is_subword_prefix() (al-
ibi.utils.lang_model.RobertaBase method),
771

is_subword_prefix() (alibi.utils.LanguageModel
method), 746

is_subword_prefix() (alibi.utils.RobertaBase
method), 748

issorted() (in module alibi.tests.utils), 741

K
KERNEL_SHAP_PARAMS (in module alibi.api.defaults),

563
KernelExplainerWrapper (class in al-

ibi.explainers.shap_wrappers), 715
KernelShap (class in alibi.explainers), 604
KernelShap (class in alibi.explainers.shap_wrappers),

715
Kind (class in alibi.explainers.partial_dependence), 702
Kind (class in alibi.explainers.permutation_importance),

711
kl_bernoulli() (in module alibi.utils.distributions),

764
kllucb() (alibi.explainers.anchors.anchor_base.AnchorBaseBeam

method), 622

L
l0_ohe() (in module al-

ibi.explainers.backends.pytorch.cfrl_tabular),
655

l0_ohe() (in module al-
ibi.explainers.backends.tensorflow.cfrl_tabular),
663

l1_loss() (in module al-
ibi.explainers.backends.pytorch.cfrl_tabular),
656

Index 793

alibi Documentation, Release 0.9.5dev

l1_loss() (in module al-
ibi.explainers.backends.tensorflow.cfrl_tabular),
663

LanguageModel (class in alibi.utils), 745
LanguageModel (class in alibi.utils.lang_model), 769
LanguageModelSampler (class in al-

ibi.explainers.anchors.language_model_text_sampler),
644

LayerState (class in al-
ibi.explainers.integrated_gradients), 701

left (alibi.utils.approximation_methods.Riemann
attribute), 751

linearity_measure() (in module alibi.confidence),
568

linearity_measure() (in module al-
ibi.confidence.model_linearity), 570

LinearityMeasure (class in alibi.confidence), 566
LinearityMeasure (class in al-

ibi.confidence.model_linearity), 569
load() (alibi.api.interfaces.Explainer class method), 564
load() (alibi.api.interfaces.Summariser class method),

565
load() (alibi.explainers.cfrl_base.CounterfactualRL

class method), 691
load() (alibi.explainers.CounterfactualRL class

method), 596
load_cats() (in module alibi.datasets), 573
load_cats() (in module alibi.datasets.default), 575
load_explainer() (in module alibi.saving), 780
load_model() (in module al-

ibi.explainers.backends.pytorch.cfrl_base),
653

load_model() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
661

load_spacy_lexeme_prob() (in module al-
ibi.explainers.anchors.text_samplers), 650

load_weights() (alibi.models.pytorch.model.Model
method), 729

loss_fn() (alibi.explainers.CEM method), 589
loss_fn() (alibi.explainers.cem.CEM method), 684
loss_fn() (alibi.explainers.cfproto.CounterfactualProto

method), 688
loss_fn() (alibi.explainers.CounterfactualProto

method), 594
LOSS_FNS (in module al-

ibi.explainers.permutation_importance),
711

LossContainer (class in alibi.models.pytorch.metrics),
727

M
map() (alibi.utils.distributed.ActorPool method), 757

map_unordered() (alibi.utils.distributed.ActorPool
method), 758

mask (alibi.utils.BertBaseUncased property), 742
mask (alibi.utils.DistilbertBaseUncased property), 743
mask (alibi.utils.lang_model.BertBaseUncased property),

768
mask (alibi.utils.lang_model.DistilbertBaseUncased

property), 768
mask (alibi.utils.lang_model.LanguageModel property),

770
mask (alibi.utils.lang_model.RobertaBase property), 772
mask (alibi.utils.LanguageModel property), 746
mask (alibi.utils.RobertaBase property), 748
mask_id (alibi.utils.lang_model.LanguageModel prop-

erty), 770
mask_id (alibi.utils.LanguageModel property), 747
masked_image (alibi.utils.visualization.ImageVisualizationMethod

attribute), 775
max_num_tokens (alibi.utils.lang_model.LanguageModel

property), 770
max_num_tokens (alibi.utils.LanguageModel property),

747
MEAN (alibi.models.pytorch.metrics.Reduction attribute),

728
meta (alibi.api.interfaces.Base attribute), 564
meta (alibi.api.interfaces.Explanation attribute), 565
meta (alibi.explainers.anchors.anchor_tabular.AnchorTabular

attribute), 632
meta (alibi.explainers.anchors.anchor_text.AnchorText

attribute), 642
methdispatch() (in module alibi.utils.wrappers), 778
Method (class in alibi.explainers.pd_variance), 708
Method (class in alibi.explainers.permutation_importance),

711
Metric (class in alibi.models.pytorch.metrics), 728
middle (alibi.utils.approximation_methods.Riemann at-

tribute), 751
minimum_satisfied() (in module alibi.explainers.ale),

681
MissingDependency (class in al-

ibi.utils.missing_optional_dependency), 774
MNISTClassifier (class in al-

ibi.models.pytorch.cfrl_models), 725
MNISTClassifier (class in al-

ibi.models.tensorflow.cfrl_models), 734
MNISTDecoder (class in al-

ibi.models.pytorch.cfrl_models), 725
MNISTDecoder (class in al-

ibi.models.tensorflow.cfrl_models), 734
MNISTEncoder (class in al-

ibi.models.pytorch.cfrl_models), 726
MNISTEncoder (class in al-

ibi.models.tensorflow.cfrl_models), 735
MockPredictor (class in alibi.tests.utils), 741

794 Index

alibi Documentation, Release 0.9.5dev

model (alibi.explainers.anchors.anchor_text.AnchorText
attribute), 642

model (alibi.explainers.AnchorText attribute), 586
model (alibi.utils.lang_model.BertBaseUncased at-

tribute), 768
model (alibi.utils.lang_model.DistilbertBaseUncased at-

tribute), 769
model (alibi.utils.lang_model.LanguageModel attribute),

770
model (alibi.utils.lang_model.RobertaBase attribute),

772
model (alibi.utils.LanguageModel attribute), 747
Model (class in alibi.models.pytorch.model), 728
module

alibi, 561
alibi.api, 561
alibi.api.defaults, 561
alibi.api.interfaces, 564
alibi.confidence, 566
alibi.confidence.model_linearity, 569
alibi.confidence.trustscore, 570
alibi.datasets, 572
alibi.datasets.default, 574
alibi.datasets.tensorflow, 576
alibi.exceptions, 779
alibi.explainers, 576
alibi.explainers.ale, 678
alibi.explainers.anchors, 619
alibi.explainers.anchors.anchor_base, 619
alibi.explainers.anchors.anchor_explanation,

624
alibi.explainers.anchors.anchor_image,

625
alibi.explainers.anchors.anchor_tabular,

630
alibi.explainers.anchors.anchor_tabular_distributed,

637
alibi.explainers.anchors.anchor_text, 640
alibi.explainers.anchors.language_model_text_sampler,

644
alibi.explainers.anchors.text_samplers,

647
alibi.explainers.backends, 650
alibi.explainers.backends.cfrl_base, 664
alibi.explainers.backends.cfrl_tabular,

665
alibi.explainers.backends.pytorch, 650
alibi.explainers.backends.pytorch.cfrl_base,

650
alibi.explainers.backends.pytorch.cfrl_tabular,

655
alibi.explainers.backends.tensorflow, 657
alibi.explainers.backends.tensorflow.cfrl_base,

657

alibi.explainers.backends.tensorflow.cfrl_tabular,
663

alibi.explainers.cem, 682
alibi.explainers.cfproto, 685
alibi.explainers.cfrl_base, 689
alibi.explainers.cfrl_tabular, 695
alibi.explainers.counterfactual, 698
alibi.explainers.integrated_gradients,

700
alibi.explainers.partial_dependence, 702
alibi.explainers.pd_variance, 708
alibi.explainers.permutation_importance,

711
alibi.explainers.shap_wrappers, 715
alibi.explainers.similarity, 673
alibi.explainers.similarity.backends, 673
alibi.explainers.similarity.backends.pytorch,

673
alibi.explainers.similarity.backends.pytorch.base,

673
alibi.explainers.similarity.backends.tensorflow,

673
alibi.explainers.similarity.backends.tensorflow.base,

673
alibi.explainers.similarity.base, 674
alibi.explainers.similarity.grad, 675
alibi.explainers.similarity.metrics, 677
alibi.models, 722
alibi.models.pytorch, 722
alibi.models.pytorch.actor_critic, 722
alibi.models.pytorch.autoencoder, 723
alibi.models.pytorch.cfrl_models, 724
alibi.models.pytorch.metrics, 727
alibi.models.pytorch.model, 728
alibi.models.tensorflow, 730
alibi.models.tensorflow.actor_critic, 730
alibi.models.tensorflow.autoencoder, 731
alibi.models.tensorflow.cfrl_models, 733
alibi.prototypes, 735
alibi.prototypes.protoselect, 737
alibi.saving, 779
alibi.tests, 741
alibi.tests.utils, 741
alibi.utils, 742
alibi.utils.approximation_methods, 751
alibi.utils.data, 752
alibi.utils.discretizer, 752
alibi.utils.distance, 753
alibi.utils.distributed, 756
alibi.utils.distributions, 764
alibi.utils.download, 765
alibi.utils.frameworks, 765
alibi.utils.gradients, 765
alibi.utils.kernel, 766

Index 795

alibi Documentation, Release 0.9.5dev

alibi.utils.lang_model, 767
alibi.utils.mapping, 772
alibi.utils.missing_optional_dependency,

774
alibi.utils.tf, 775
alibi.utils.visualization, 775
alibi.utils.wrappers, 778
alibi.version, 780

multidim_scaling() (in module alibi.utils.distance),
754

mvdm() (in module alibi.utils.distance), 755

N
names() (alibi.explainers.anchors.anchor_explanation.AnchorExplanation

method), 624
negative (alibi.utils.visualization.VisualizeSign at-

tribute), 775
Neighbors (class in al-

ibi.explainers.anchors.text_samplers), 647
neighbors() (alibi.explainers.anchors.text_samplers.Neighbors

method), 647
NON_SERIALIZABLE (al-

ibi.explainers.integrated_gradients.LayerState
attribute), 701

NormalActionNoise (class in al-
ibi.explainers.cfrl_base), 693

not_raises() (in module alibi.tests.utils), 741
NotFittedError, 779
num_grad_batch() (in module alibi.utils.gradients),

765
num_to_ord() (in module alibi.utils.mapping), 772
NumpyEncoder (class in alibi.saving), 779

O
ohe_to_ord() (in module alibi.utils), 748
ohe_to_ord() (in module alibi.utils.mapping), 772
ohe_to_ord_shape() (in module alibi.utils.mapping),

773
on_epoch_end() (alibi.explainers.backends.tensorflow.cfrl_base.TfCounterfactualRLDataset

method), 657
one_hot_grad() (in module alibi.utils.tf), 775
ord_to_num() (in module alibi.utils.mapping), 773
ord_to_ohe() (in module alibi.utils), 749
ord_to_ohe() (in module alibi.utils.mapping), 773
order_result() (in module alibi.utils.distributed), 764
original_image (alibi.utils.visualization.ImageVisualizationMethod

attribute), 775
overlay_mask() (alibi.explainers.AnchorImage

method), 580
overlay_mask() (alibi.explainers.anchors.anchor_image.AnchorImage

method), 627

P
PartialDependence (class in alibi.explainers), 606

PartialDependence (class in al-
ibi.explainers.partial_dependence), 702

PartialDependenceBase (class in al-
ibi.explainers.partial_dependence), 703

PartialDependenceVariance (class in al-
ibi.explainers), 608

PartialDependenceVariance (class in al-
ibi.explainers.pd_variance), 708

PermutationImportance (class in alibi.explainers),
610

PermutationImportance (class in al-
ibi.explainers.permutation_importance),
712

perturb() (alibi.explainers.CEM method), 589
perturb() (alibi.explainers.cem.CEM method), 684
perturb() (in module alibi.utils.gradients), 765
perturb_sentence() (al-

ibi.explainers.anchors.language_model_text_sampler.LanguageModelSampler
method), 646

perturb_sentence_similarity() (al-
ibi.explainers.anchors.text_samplers.SimilaritySampler
method), 648

perturbation (alibi.explainers.anchors.anchor_text.AnchorText
attribute), 642

perturbation (alibi.explainers.AnchorText attribute),
586

perturbation() (alibi.explainers.anchors.anchor_image.AnchorImageSampler
method), 629

perturbation() (alibi.explainers.anchors.anchor_tabular.TabularSampler
method), 635

plot_ale() (in module alibi.explainers), 616
plot_ale() (in module alibi.explainers.ale), 682
plot_pd() (in module alibi.explainers), 616
plot_pd() (in module al-

ibi.explainers.partial_dependence), 707
plot_pd_variance() (in module alibi.explainers), 617
plot_pd_variance() (in module al-

ibi.explainers.pd_variance), 710
plot_permutation_importance() (in module al-

ibi.explainers), 618
plot_permutation_importance() (in module al-

ibi.explainers.permutation_importance), 714
PoolCollection (class in alibi.utils.distributed), 761
positive (alibi.utils.visualization.VisualizeSign at-

tribute), 775
Postprocessing (class in alibi.explainers.cfrl_base),

693
precision() (alibi.explainers.anchors.anchor_explanation.AnchorExplanation

method), 625
predict() (alibi.tests.utils.MockPredictor method), 741
predict_batch_lm() (al-

ibi.utils.lang_model.LanguageModel method),
770

predict_batch_lm() (alibi.utils.LanguageModel

796 Index

alibi Documentation, Release 0.9.5dev

method), 747
predict_batches() (al-

ibi.explainers.backends.cfrl_base.CounterfactualRLDataset
static method), 664

predictor (alibi.explainers.anchors.anchor_tabular.AnchorTabular
property), 632

predictor (alibi.explainers.AnchorTabular property),
583

Predictor (class in alibi.utils.wrappers), 778
PredictorCallError, 779
PredictorReturnTypeError, 779
propose_anchors() (al-

ibi.explainers.anchors.anchor_base.AnchorBaseBeam
method), 622

ProtoSelect (class in alibi.prototypes), 735
ProtoSelect (class in alibi.prototypes.protoselect), 737
PtCounterfactualRLDataset (class in al-

ibi.explainers.backends.pytorch.cfrl_base),
650

PYTORCH (alibi.utils.frameworks.Framework attribute),
765

R
R_tilde (alibi.explainers.cfrl_base.ReplayBuffer at-

tribute), 694
rank_by_importance() (in module al-

ibi.explainers.shap_wrappers), 721
RATIO (alibi.explainers.permutation_importance.Kind

attribute), 711
Reduction (class in alibi.models.pytorch.metrics), 728
REGRESSION (alibi.explainers.similarity.grad.Task

attribute), 677
remote_explainer_index (al-

ibi.utils.distributed.PoolCollection property),
762

RemoteSampler (class in al-
ibi.explainers.anchors.anchor_tabular_distributed),
639

replace_features() (al-
ibi.explainers.anchors.anchor_tabular.TabularSampler
method), 636

ReplayBuffer (class in alibi.explainers.cfrl_base), 694
reset() (alibi.models.pytorch.metrics.LossContainer

method), 727
reset() (alibi.models.pytorch.metrics.Metric method),

728
reset_predictor() (alibi.api.interfaces.Explainer

method), 564
reset_predictor() (alibi.explainers.ALE method),

578
reset_predictor() (alibi.explainers.ale.ALE method),

679
reset_predictor() (alibi.explainers.AnchorImage

method), 580

reset_predictor() (al-
ibi.explainers.anchors.anchor_image.AnchorImage
method), 627

reset_predictor() (al-
ibi.explainers.anchors.anchor_tabular.AnchorTabular
method), 632

reset_predictor() (al-
ibi.explainers.anchors.anchor_tabular_distributed.DistributedAnchorTabular
method), 638

reset_predictor() (al-
ibi.explainers.anchors.anchor_text.AnchorText
method), 642

reset_predictor() (alibi.explainers.AnchorTabular
method), 583

reset_predictor() (alibi.explainers.AnchorText
method), 586

reset_predictor() (alibi.explainers.CEM method),
589

reset_predictor() (alibi.explainers.cem.CEM
method), 685

reset_predictor() (al-
ibi.explainers.cfproto.CounterfactualProto
method), 688

reset_predictor() (al-
ibi.explainers.cfrl_base.CounterfactualRL
method), 691

reset_predictor() (alibi.explainers.Counterfactual
method), 591

reset_predictor() (al-
ibi.explainers.counterfactual.Counterfactual
method), 699

reset_predictor() (al-
ibi.explainers.CounterfactualProto method),
595

reset_predictor() (al-
ibi.explainers.CounterfactualRL method),
596

reset_predictor() (al-
ibi.explainers.DistributedAnchorTabular
method), 600

reset_predictor() (al-
ibi.explainers.integrated_gradients.IntegratedGradients
method), 701

reset_predictor() (al-
ibi.explainers.IntegratedGradients method),
603

reset_predictor() (alibi.explainers.KernelShap
method), 606

reset_predictor() (al-
ibi.explainers.partial_dependence.PartialDependenceBase
method), 705

reset_predictor() (al-
ibi.explainers.permutation_importance.PermutationImportance
method), 713

Index 797

alibi Documentation, Release 0.9.5dev

reset_predictor() (al-
ibi.explainers.PermutationImportance method),
611

reset_predictor() (al-
ibi.explainers.shap_wrappers.KernelShap
method), 718

reset_predictor() (al-
ibi.explainers.shap_wrappers.TreeShap
method), 720

reset_predictor() (al-
ibi.explainers.similarity.base.BaseSimilarityExplainer
method), 674

reset_predictor() (alibi.explainers.TreeShap
method), 616

ResourceError, 762
result() (alibi.models.pytorch.metrics.LossContainer

method), 727
result() (alibi.models.pytorch.metrics.Metric method),

728
return_attribute() (al-

ibi.explainers.shap_wrappers.KernelExplainerWrapper
method), 715

return_attribute() (al-
ibi.utils.distributed.DistributedExplainer
method), 761

return_attribute() (alibi.utils.DistributedExplainer
method), 745

Riemann (class in alibi.utils.approximation_methods),
751

riemann_builders() (in module al-
ibi.utils.approximation_methods), 751

right (alibi.utils.approximation_methods.Riemann at-
tribute), 751

RobertaBase (class in alibi.utils), 748
RobertaBase (class in alibi.utils.lang_model), 771
round_grad() (in module alibi.utils.tf), 775

S
sample() (alibi.explainers.cfrl_base.ReplayBuffer

method), 695
sample() (in module al-

ibi.explainers.backends.cfrl_tabular), 671
sample_categorical() (in module al-

ibi.explainers.backends.cfrl_tabular), 672
sample_differentiable() (in module al-

ibi.explainers.backends.pytorch.cfrl_tabular),
656

sample_differentiable() (in module al-
ibi.explainers.backends.tensorflow.cfrl_tabular),
663

sample_numerical() (in module al-
ibi.explainers.backends.cfrl_tabular), 672

sampler() (alibi.explainers.anchors.anchor_text.AnchorText
method), 643

sampler() (alibi.explainers.AnchorText method), 586
samplers (alibi.explainers.anchors.anchor_tabular.AnchorTabular

attribute), 632
SampleTabularPostprocessing (class in al-

ibi.explainers.cfrl_tabular), 697
SAMPLING_LANGUAGE_MODEL (al-

ibi.explainers.anchors.anchor_text.AnchorText
attribute), 640

SAMPLING_LANGUAGE_MODEL (al-
ibi.explainers.AnchorText attribute), 583

SAMPLING_SIMILARITY (al-
ibi.explainers.anchors.anchor_text.AnchorText
attribute), 640

SAMPLING_SIMILARITY (alibi.explainers.AnchorText at-
tribute), 583

SAMPLING_UNKNOWN (al-
ibi.explainers.anchors.anchor_text.AnchorText
attribute), 640

SAMPLING_UNKNOWN (alibi.explainers.AnchorText at-
tribute), 583

save() (alibi.api.interfaces.Explainer method), 564
save() (alibi.api.interfaces.Summariser method), 565
save() (alibi.explainers.cfrl_base.CounterfactualRL

method), 691
save() (alibi.explainers.CounterfactualRL method), 597
save_explainer() (in module alibi.saving), 780
save_model() (in module al-

ibi.explainers.backends.pytorch.cfrl_base),
653

save_model() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
661

save_weights() (alibi.models.pytorch.model.Model
method), 730

scale_image() (in module al-
ibi.explainers.anchors.anchor_image), 629

score() (alibi.confidence.LinearityMeasure method),
566

score() (alibi.confidence.model_linearity.LinearityMeasure
method), 569

score() (alibi.confidence.TrustScore method), 568
score() (alibi.confidence.trustscore.TrustScore

method), 571
score() (alibi.explainers.cfproto.CounterfactualProto

method), 688
score() (alibi.explainers.CounterfactualProto method),

595
SCORE_FNS (in module al-

ibi.explainers.permutation_importance),
713

seed() (alibi.explainers.anchors.language_model_text_sampler.LanguageModelSampler
method), 646

select_critical_arms() (al-
ibi.explainers.anchors.anchor_base.AnchorBaseBeam

798 Index

alibi Documentation, Release 0.9.5dev

method), 622
select_word() (alibi.utils.lang_model.LanguageModel

method), 771
select_word() (alibi.utils.LanguageModel method),

747
SerializationError, 779
set_actor_index() (al-

ibi.utils.distributed.DistributedExplainer
method), 761

set_actor_index() (alibi.utils.DistributedExplainer
method), 745

set_data_type() (al-
ibi.explainers.anchors.language_model_text_sampler.LanguageModelSampler
method), 646

set_data_type() (al-
ibi.explainers.anchors.text_samplers.SimilaritySampler
method), 649

set_data_type() (al-
ibi.explainers.anchors.text_samplers.UnknownSampler
method), 650

set_instance_label() (al-
ibi.explainers.anchors.anchor_tabular.TabularSampler
method), 636

set_instance_label() (al-
ibi.explainers.anchors.anchor_tabular_distributed.RemoteSampler
method), 639

set_n_covered() (al-
ibi.explainers.anchors.anchor_tabular.TabularSampler
method), 636

set_n_covered() (al-
ibi.explainers.anchors.anchor_tabular_distributed.RemoteSampler
method), 639

set_seed() (in module al-
ibi.explainers.backends.pytorch.cfrl_base),
654

set_seed() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
661

set_text() (alibi.explainers.anchors.language_model_text_sampler.LanguageModelSampler
method), 647

set_text() (alibi.explainers.anchors.text_samplers.AnchorTextSampler
method), 647

set_text() (alibi.explainers.anchors.text_samplers.SimilaritySampler
method), 649

set_text() (alibi.explainers.anchors.text_samplers.UnknownSampler
method), 650

sigma (alibi.utils.kernel.GaussianRBF property), 766
SimilaritySampler (class in al-

ibi.explainers.anchors.text_samplers), 647
spacy_model() (in module alibi.utils), 749
spacy_model() (in module alibi.utils.download), 765
sparsity_loss() (in module al-

ibi.explainers.backends.pytorch.cfrl_base),
654

sparsity_loss() (in module al-
ibi.explainers.backends.pytorch.cfrl_tabular),
656

sparsity_loss() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
661

sparsity_loss() (in module al-
ibi.explainers.backends.tensorflow.cfrl_tabular),
664

split_ohe() (in module al-
ibi.explainers.backends.cfrl_tabular), 672

squared_pairwise_distance() (in module al-
ibi.utils.distance), 755

submit() (alibi.utils.distributed.ActorPool method), 758
SUBWORD_PREFIX (alibi.utils.BertBaseUncased at-

tribute), 742
SUBWORD_PREFIX (alibi.utils.DistilbertBaseUncased at-

tribute), 742
SUBWORD_PREFIX (alibi.utils.lang_model.BertBaseUncased

attribute), 767
SUBWORD_PREFIX (alibi.utils.lang_model.DistilbertBaseUncased

attribute), 768
SUBWORD_PREFIX (alibi.utils.lang_model.LanguageModel

attribute), 769
SUBWORD_PREFIX (alibi.utils.lang_model.RobertaBase

attribute), 771
SUBWORD_PREFIX (alibi.utils.LanguageModel attribute),

745
SUBWORD_PREFIX (alibi.utils.RobertaBase attribute), 748
SUM (alibi.models.pytorch.metrics.Reduction attribute),

728
sum_categories() (in module al-

ibi.explainers.shap_wrappers), 721
summarise() (alibi.api.interfaces.Summariser method),

565
summarise() (alibi.prototypes.ProtoSelect method), 736
summarise() (alibi.prototypes.protoselect.ProtoSelect

method), 738
Summariser (class in alibi.api.interfaces), 565
SUPPORTED_RIEMANN_METHODS (in module al-

ibi.utils.approximation_methods), 751

T
TabularSampler (class in al-

ibi.explainers.anchors.anchor_tabular),
632

Task (class in alibi.explainers.similarity.grad), 677
TENSORFLOW (alibi.utils.frameworks.Framework at-

tribute), 765
test_step() (alibi.models.pytorch.model.Model

method), 730
TfCounterfactualRLDataset (class in al-

ibi.explainers.backends.tensorflow.cfrl_base),
657

Index 799

alibi Documentation, Release 0.9.5dev

to_disk() (alibi.utils.lang_model.LanguageModel
method), 771

to_disk() (alibi.utils.LanguageModel method), 747
to_json() (alibi.api.interfaces.Explanation method),

565
to_numpy() (in module al-

ibi.explainers.backends.pytorch.cfrl_base),
654

to_numpy() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
661

to_sample() (alibi.explainers.anchors.anchor_base.AnchorBaseBeam
static method), 623

to_tensor() (in module al-
ibi.explainers.backends.pytorch.cfrl_base),
654

to_tensor() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),
661

tokenizer (alibi.utils.lang_model.BertBaseUncased at-
tribute), 768

tokenizer (alibi.utils.lang_model.DistilbertBaseUncased
attribute), 769

tokenizer (alibi.utils.lang_model.LanguageModel at-
tribute), 771

tokenizer (alibi.utils.lang_model.RobertaBase at-
tribute), 772

tokenizer (alibi.utils.LanguageModel attribute), 748
train_step() (alibi.models.pytorch.model.Model

method), 730
trapezoid (alibi.utils.approximation_methods.Riemann

attribute), 751
TREE_SHAP_PARAMS (in module alibi.api.defaults), 563
TreePartialDependence (class in alibi.explainers),

612
TreePartialDependence (class in al-

ibi.explainers.partial_dependence), 705
TreeShap (class in alibi.explainers), 613
TreeShap (class in alibi.explainers.shap_wrappers), 718
TrustScore (class in alibi.confidence), 566
TrustScore (class in alibi.confidence.trustscore), 570

U
UNK (alibi.explainers.anchors.text_samplers.UnknownSampler

attribute), 649
UnknownSampler (class in al-

ibi.explainers.anchors.text_samplers), 649
UNSPECIFIED (alibi.explainers.integrated_gradients.LayerState

attribute), 701
update_actor_critic() (in module al-

ibi.explainers.backends.pytorch.cfrl_base),
654

update_actor_critic() (in module al-
ibi.explainers.backends.tensorflow.cfrl_base),

662
update_state() (alibi.explainers.anchors.anchor_base.AnchorBaseBeam

method), 623
update_state() (alibi.models.pytorch.metrics.Metric

method), 728

V
validate_prediction_labels() (al-

ibi.models.pytorch.model.Model method),
730

visualize_image_attr() (in module alibi.utils), 749
visualize_image_attr() (in module al-

ibi.utils.visualization), 777
visualize_image_prototypes() (in module al-

ibi.prototypes), 736
visualize_image_prototypes() (in module al-

ibi.prototypes.protoselect), 740
VisualizeSign (class in alibi.utils.visualization), 775

X
X (alibi.explainers.cfrl_base.ReplayBuffer attribute), 694

Y
Y_m (alibi.explainers.cfrl_base.ReplayBuffer attribute),

694
Y_t (alibi.explainers.cfrl_base.ReplayBuffer attribute),

694

Z
Z (alibi.explainers.cfrl_base.ReplayBuffer attribute), 694
Z_cf_tilde (alibi.explainers.cfrl_base.ReplayBuffer at-

tribute), 694

800 Index

	Introduction
	What is Explainability?
	Applications
	Black-box vs White-box methods
	Global and Local Insights
	Biases

	Types of Insights
	1. Global Feature Attribution
	Accumulated Local Effects
	Partial Dependence
	Partial Dependence Variance
	Permutation Importance

	2. Local Necessary Features
	Anchors
	Contrastive Explanation Method (Pertinent Positives)

	3. Local Feature Attribution
	Integrated Gradients
	Kernel SHAP
	Path-dependent Tree SHAP
	Interventional Tree SHAP

	4. Counterfactual instances
	Counterfactual Instances
	Contrastive Explanation Method (Pertinent Negatives)
	Counterfactuals Guided by Prototypes
	Counterfactuals with Reinforcement Learning
	Counterfactual Example Results

	5. Similarity explanations

	Getting Started
	Installation
	Features
	Basic Usage

	Algorithm overview
	Model Explanations
	Model Confidence
	Prototypes

	White-box and black-box models
	Wrapping white-box models into black-box models
	Scikit-learn models
	Tensorflow models
	Pytorch models
	General models

	Saving and loading
	Details and limitations

	Frequently Asked Questions
	General troubleshooting
	I’m getting code errors using a method on my model and my data
	My model works on different input types, e.g. pandas dataframes instead of numpy arrays so the explainers don’t work
	Explanations are taking a long time to complete
	The explanation returned doesn’t make sense to me
	Is there a way I can get more information from the library during the explanation generation process?

	Anchor explanations
	Why is my anchor explanation empty (tabular or text data) or black (image data)?
	Why is my anchor explanation so long (tabular or text data) or covers much of the image (image data)?

	Counterfactual explanations
	I’m using the methods Counterfactual, CounterfactualProto, or CEM on a tree-based model such as decision trees, random forests, or gradient boosted models (e.g. xgboost) but not finding any counterfactual examples
	I’m getting an error using the methods Counterfactual, CounterfactualProto, or CEM, especially if trying to use one of these methods together with IntegratedGradients or CFRL
	Why am I’m unable to restrict the features allowed to changed in CounterfactualProto?

	Similarity explanations
	I’m using the GradientSimilarity method on a large model and it runs very slow. If I use precompute_grads=True I get out of memory errors. How do I solve this?
	I’m using the GradientSimilarity method on a tensorflow model and I keep getting warnings about non-trainable parameters but I haven’t set any to be non-trainable?

	Methods
	Accumulated Local Effects
	Overview
	Usage
	Examples
	Motivation and definition
	Partial Dependence
	ALE

	Anchors
	Overview
	Concepts and use-case insights
	Data modalities
	Text
	Tabular Data
	Images
	Efficiently Computing Anchors

	Usage
	Text
	Predictor
	Simple sampling strategies
	Language model
	Sampling parameters
	Explanation

	Tabular Data
	Initialization and fit
	Explanation

	Images
	Initialization
	Explanation

	Examples
	Image
	Tabular Data
	Text

	Contrastive Explanation Method
	Overview
	Usage
	Initialization
	Explanation
	Numerical Gradients

	Examples

	Counterfactual Instances
	Overview
	Usage
	Initialization
	Fit
	Explanation
	Numerical Gradients

	Examples

	Counterfactuals Guided by Prototypes
	Overview
	Categorical Variables
	Usage
	Initialization
	Fit
	Explanation
	Numerical Gradients
	k-d trees

	Examples

	Counterfactuals with Reinforcement Learning
	Overview
	Tabular
	Images

	Usage
	Image
	Predictor
	Autoencoder
	Initialization
	Fit
	Explanation

	Tabular
	Predictor
	Heterogeneous autoencoder
	Constraints
	Initialization
	Fit
	Explanation
	Diversity
	Possible corner case

	Logging
	MNIST Logs
	Adult Census Logs

	Examples

	Integrated Gradients
	Overview
	Integrated gradients method
	Usage
	Layer attributions
	Baselines
	Targets

	Examples

	Kernel SHAP
	Overview
	Usage
	Explaining continuous datasets
	Initialisation and fit
	Explanation

	Explaining heterogeneous (continuous and categorical) datasets
	By grouping categorical data
	Initialisation and fit
	Explanation

	By summing output
	Initialisation and fit
	Explanation

	By combining preprocessor and predictor
	Initialisation and fit
	Explanation

	Running batches of explanations in parallel
	Miscellaneous
	Runtime considerations
	Adjusting the size of the reference dataset
	The dimensionality of the data and the number of samples used in shap value estimation

	Imbalanced datasets

	Theoretical overview
	Comparison to other methods

	Examples
	Continuous Data
	Mixed Data

	Partial Dependence
	Overview
	Usage
	Theoretical exposition
	Examples
	References

	Partial Dependence Variance
	Overview
	Usage
	Theoretical exposition
	Feature importance
	Connection to t-statistic

	Feature interaction

	Examples
	References

	Permutation Importance
	Overview
	Usage
	Theoretical exposition
	Notation
	Definition
	Estimation of model reliance with U-statistics

	Examples
	References

	Similarity explanations
	Overview
	Theory

	Usage
	Initialization
	Fit
	Explanation
	Notes on usage
	Fitting and train set
	Similarity metrics
	Batch explanations

	Examples

	Tree SHAP
	Overview
	Usage
	Path-dependent feature perturbation algorithm
	Initialiastion and fit
	Explanation
	Shapley interaction values
	Initialisation and fit
	Explanation

	Interventional feature perturbation algorithm
	Explaining model output
	Initialiastion and fit
	Explanation

	Explaining loss functions
	Initialisation and fit
	Explanation

	Miscellaneous
	Runtime considerations
	Adjusting the size of the reference dataset

	Theoretical overview
	Interventional feature perturbation
	Computing contributions with interventional Tree SHAP: a practical example.
	Explaining loss functions
	Computational complexity

	Path dependent feature perturbation
	Computational complexity
	Expected value for the path-dependent perturbation algorithm

	Shapley interaction values
	Computational complexity

	Comparison to other methods

	References
	Examples
	Path-dependent Feature Perturbation Tree SHAP
	Interventional Feature Perturbation Tree SHAP

	Examples
	Alibi Overview Example
	Preparing the data.
	Select good wine instance

	Training models
	Creating an Autoencoder
	Random Forest Model
	Tensorflow Model
	Load/Make models

	Util functions
	Local Feature Attribution
	Integrated Gradients
	Kernel SHAP
	Interventional treeSHAP
	Path Dependent treeSHAP

	Local Necessary Features
	Anchors

	Global Feature Attribution
	ALE

	Counterfactuals
	Counter Factuals with Reinforcement Learning
	Counterfactual Instances
	Contrastive Explanations Method
	Counterfactual With Prototypes

	Accumulated Local Effects
	Accumulated Local Effects for classifying flowers
	Load and prepare the dataset
	Fit and evaluate a logistic regression model
	Calculate Accumulated Local Effects
	ALE in logit space
	ALE in probability space
	ALE for gradient boosting
	ALE in logit space
	ALE in probability space
	Comparing ALE between models

	Accumulated Local Effects for predicting house prices
	Fetch and prepare the dataset
	Fit and evaluate models
	Feature Effects: Motivation
	Calculate Accumulated Local Effects
	ALE for the linear regression model
	Effect of the median income
	Effect of the crime level
	Linearity of ALE

	ALE for the random forest model

	Anchors
	Anchor explanations for fashion MNIST
	Load and prepare fashion MNIST data
	Define CNN model
	Train model
	Define superpixels
	Define prediction function
	Initialize anchor image explainer
	Explain a prediction

	Anchor explanations for ImageNet
	Load InceptionV3 model pre-trained on ImageNet
	Load and pre-process sample images
	Define prediction function
	Initialize anchor image explainer
	Explain a prediction

	Anchor explanations for income prediction
	Load adult dataset
	Create feature transformation pipeline
	Train Random Forest model
	Initialize and fit anchor explainer for tabular data
	Getting an anchor
	…or not?

	Anchor explanations on the Iris dataset
	Load iris dataset
	Train Random Forest model
	Initialize and fit anchor explainer for tabular data
	Getting an anchor

	Anchor explanations for movie sentiment
	Load movie review dataset
	Apply CountVectorizer to training set
	Fit model
	Define prediction function
	Make predictions on train and test sets
	Load spaCy model
	Instance to be explained
	Initialize anchor text explainer with unknown sampling
	Explanation
	Initialize anchor text explainer with word similarity sampling
	Initialize language model
	Initialize anchor text explainer with language_model sampling (parallel filling)
	Initialize anchor text explainer with language_model sampling (autoregressive filling)

	Contrastive Explanation Method
	Contrastive Explanations Method (CEM) applied to Iris dataset
	Load and prepare Iris dataset
	Define and train logistic regression model
	Generate contrastive explanation with pertinent negative
	Generate pertinent positive
	Visualize PN and PP
	Use numerical gradients in CEM

	Contrastive Explanations Method (CEM) applied to MNIST
	Load and prepare MNIST data
	Define and train CNN model
	Define and train auto-encoder
	Generate contrastive explanation with pertinent negative
	Generate pertinent positive

	Counterfactual Instances
	Counterfactual instances on MNIST
	Load and prepare MNIST data
	Define and train CNN model
	Generate counterfactuals

	Counterfactuals Guided by Prototypes
	Counterfactual explanations with one-hot encoded categorical variables
	Load adult dataset
	Preprocess data
	Train neural net
	Generate counterfactual
	Change the categorical distance metric
	Use k-d trees to build prototypes
	Use an autoencoder to build prototypes
	Black box model with k-d trees

	Counterfactual explanations with ordinally encoded categorical variables
	Load adult dataset
	Preprocess data
	Train a neural net
	Generate counterfactual

	Counterfactuals guided by prototypes on California housing dataset
	Load and prepare California housing dataset
	Train model
	Generate counterfactual guided by the nearest class prototype

	Counterfactuals guided by prototypes on MNIST
	Load and prepare MNIST data
	Define and train CNN model
	Define and train auto-encoder
	Generate counterfactual guided by the nearest class prototype
	Prototypes defined by the k nearest encoded instances
	Remove the autoencoder loss term LAE
	Specify prototype classes
	Speed up the counterfactual search by removing the predict function loss term

	Counterfactuals with Reinforcement Learning
	Counterfactual with Reinforcement Learning (CFRL) on Adult Census
	Load Adult Census Dataset
	Train black-box classifier
	Define the predictor (black-box)
	Define and train autoencoder
	Counterfactual with Reinforcement Learning
	Define dataset specific attributes and constraints
	Define and fit the explainer
	Test explainer
	Diversity

	Logging
	Logging reward callback
	Logging losses callback
	Logging tables callback

	Counterfactual with Reinforcement Learning (CFRL) on MNIST
	Load MNIST dataset
	Define and train CNN classifier
	Define the predictor (black-box)
	Define and train autoencoder
	Test the autoencoder
	Counterfactual with Reinforcement Learning
	Define and fit the explainer
	Test explainer

	Logging
	Logging reward callback
	Logging images callback
	Logging losses callback

	Integrated Gradients
	Integrated gradients for a ResNet model trained on Imagenet dataset
	Load data
	Load model
	Calculate integrated gradients
	Visualize attributions
	Black image baseline
	Random baselines

	Integrated gradients for text classification on the IMDB dataset
	Load data
	Train Model
	Calculate integrated gradients
	Sum attributions
	Visualize attributions

	Integrated gradients for MNIST
	Load data
	Train model
	Calculate integrated gradients
	Visualize attributions

	Integrated gradients for transformers models
	Automodel
	Calculate integrated gradients

	Sentiment analysis on IMDB with fine-tuned model head.
	Load and process data
	Load model and corresponding tokenizer
	Train model
	Calculate integrated gradients
	Check attributions for our example
	Check attribution for some test examples

	Kernel SHAP
	Distributed KernelSHAP
	Introduction
	Data preparation
	Load and split
	Create feature transformation pipeline
	Preprocess the data
	Select a subset of test instances to explain

	Fit a binary logistic regression classifier to the Adult dataset
	Training
	Model assessment

	Running KernelSHAP in sequential mode
	Running KernelSHAP in distributed mode
	Results analysis
	Timing
	Explanations comparison

	Conclusion

	KernelSHAP: combining preprocessor and predictor
	Introduction
	Data preparation
	Load and split
	Create feature transformation pipeline

	Fit a binary logistic regression classifier to the preprocessed Adult dataset
	Preprocess the data
	Training
	Model assessment

	Explaining the model with an explainer fitted on the preprocessed data
	Explaining with an explainer fitted on the raw data
	Results comparison
	References

	Handling categorical variables with KernelSHAP
	Introduction
	Data preparation
	Load and split
	Create feature transformation pipeline
	Create feature transformation pipeline
	Preprocess the data

	Fit a binary logistic regression classifier to the Adult dataset
	Training
	Model assessment

	Intepreting the logistic regression model
	Apply KernelSHAP to explain the model
	Exploiting explanation model additivity to estimate the effects of categorical features
	Grouping features with KernelShap
	Investigating the feature effects given a range of feature values
	Checking if prediction paths significantly differ for extreme probability predictions
	Investigating the effect of the background dataset size on shap value estimates
	Footnotes
	References

	Kernel SHAP explanation for SVM models
	Introduction
	Data preparation
	Fitting a support vector classifier (SVC) to the Wine dataset
	Training
	Model assessment

	Apply KernelSHAP to explain the model
	Local explanation
	Global explanation
	Stacked force plots
	Summary plots
	Dependence plots

	Footnotes
	References

	Kernel SHAP explanation for multinomial logistic regression models
	Introduction
	Data preparation: load and split Wine dataset
	Fitting a multinomial logistic regression classifier to the Wine dataset
	Training
	Model assessment

	Interpreting the logistic regression model
	Apply KernelSHAP to explain the model
	Locally explaining multi-output models with KernelShap
	Explaining the logitstic regression model globally with KernelSHAP
	Summary plots

	References

	Partial Dependence
	Partial Dependence and Individual Conditional Expectation for predicting bike renting
	Read and process the dataset
	Train regressor
	Partial dependence
	Individual conditional expectation
	Partial dependence for two features
	References

	Partial Dependence Variance
	Feature importance and feature interaction based on partial dependece variance
	Friedman’s regression problem
	Train MLP regressor
	Define explainer
	Feature importance
	Feature interaction
	References

	Permutation Importance
	Permutation Feature Importance on “Who’s Going to Leave Next?”
	Read the dataset
	Data analysis
	Data preprocessing
	Train and evaluate random forest classifier
	Permutation importance
	Custom metrics
	References

	Similarity explanations
	Similarity explanations for 20 newsgroups dataset
	Utils
	Load data
	Define and train model
	Define model
	Get sentence embeddings and define dataloaders
	Train model
	Evaluate model

	Find similar instances
	Visualizations
	Most similar instances
	Most similar labels distributions

	Similarity explanations for ImageNet
	Utils
	Load data
	Load model
	Find similar instances
	Visualizations
	Most similar instances
	Most similar labels distributions

	Similarity explanations for MNIST
	Utils
	Load data
	Train model
	Find similar instances
	Visualizations
	Most similar instances
	Most similar labels distributions

	Tree SHAP
	Explaining Tree Models with Interventional Feature Perturbation Tree SHAP
	Introduction
	Data preparation
	Load and split

	Model definition
	Explaining xgboost with interventional Tree SHAP: global knowledge from local explanations
	White-box vs black-box model explanations: a comparison with Kernel SHAP

	References

	Explaining Tree Models with Path-Dependent Feature Perturbation Tree SHAP
	Introduction
	Data preparation
	Load and split

	Model definition
	Explaining xgboost via global feature importance
	Explaining xgboost with path-dependent Tree SHAP: global knowledge from local explanations
	Model explanations with Shapley interaction values

	Model explanations using xgboost predict method
	Footnotes

	Methods
	Measuring the linearity of machine learning models
	Overview
	Application to machine learning models
	Implementation
	Sampling
	Pairwise vs global linearity

	Usage
	LinearityMeasure class
	linearity_measure function

	Examples

	Trust Scores
	Overview
	Usage
	Initialization and fit
	Scores

	Examples

	Examples
	Measuring the linearity of machine learning models
	Linearity measure applied to fashion MNIST
	General definition
	Alibi implementation
	Fashion MNIST data set
	Load data fashion mnist
	Convolutional neural network
	Define model
	Training

	Linearity of each Layer
	Extract layers
	Calculate linearity

	Linearity and categories

	Linearity measure applied to Iris
	General definition
	Alibi implementation
	Iris Data set
	Dataset
	Models
	Decision boundaries and linearity
	Logistic regression
	Random forest
	Xgboost
	SVM
	NN

	Average linearity over the whole feature space

	Trust Scores
	Trust Scores applied to Iris
	Load and prepare Iris dataset
	Fit model and make predictions
	Basic Trust Score Usage
	Initialise Trust Scores and fit on training data
	Calculate Trust Scores on test data

	Comparison of Trust Scores with model prediction probabilities
	Detect correctly classified examples
	Detect incorrectly classified examples

	Trust Scores applied to MNIST
	Define and train model
	Define and train auto-encoder
	Calculate Trust Scores
	Low Trust Scores
	High Trust Scores
	High model confidence, low trust score

	Comparison of Trust Scores with model prediction probabilities
	Detect correctly classified examples

	Methods
	ProtoSelect
	Overview
	ProtoSelect method
	Usage
	Hyperparameter selection
	Data modalities
	Prototypes visualization for image modality
	Examples

	Examples
	ProtoSelect
	ProtoSelect on Adult Census and CIFAR10
	Utils
	Adult Census dataset
	Load Adult Census dataset
	Preprocessing function
	Prototypes selection
	Display prototypes
	Train 1-KNN

	CIFAR10 dataset
	Load dataset
	Preprocessing function
	Prototypes selection
	Display prototypes
	Train 1-KNN

	alibi
	alibi package
	Subpackages
	alibi.api package
	Submodules
	alibi.api.defaults module
	alibi.api.interfaces module

	alibi.confidence package
	Submodules
	alibi.confidence.model_linearity module
	alibi.confidence.trustscore module

	alibi.datasets package
	Submodules
	alibi.datasets.default module
	alibi.datasets.tensorflow module

	alibi.explainers package
	Subpackages
	alibi.explainers.anchors package
	Submodules
	alibi.explainers.anchors.anchor_base module
	alibi.explainers.anchors.anchor_explanation module
	alibi.explainers.anchors.anchor_image module
	alibi.explainers.anchors.anchor_tabular module
	alibi.explainers.anchors.anchor_tabular_distributed module
	alibi.explainers.anchors.anchor_text module
	alibi.explainers.anchors.language_model_text_sampler module
	alibi.explainers.anchors.text_samplers module
	alibi.explainers.backends package
	Subpackages
	alibi.explainers.backends.pytorch package
	Submodules
	alibi.explainers.backends.pytorch.cfrl_base module
	alibi.explainers.backends.pytorch.cfrl_tabular module
	alibi.explainers.backends.tensorflow package
	Submodules
	alibi.explainers.backends.tensorflow.cfrl_base module
	alibi.explainers.backends.tensorflow.cfrl_tabular module
	Submodules
	alibi.explainers.backends.cfrl_base module
	alibi.explainers.backends.cfrl_tabular module
	alibi.explainers.similarity package
	Subpackages
	alibi.explainers.similarity.backends package
	Subpackages
	alibi.explainers.similarity.backends.pytorch package
	Submodules
	alibi.explainers.similarity.backends.pytorch.base module
	alibi.explainers.similarity.backends.tensorflow package
	Submodules
	alibi.explainers.similarity.backends.tensorflow.base module
	Submodules
	alibi.explainers.similarity.base module
	alibi.explainers.similarity.grad module
	alibi.explainers.similarity.metrics module

	Submodules
	alibi.explainers.ale module
	alibi.explainers.cem module
	alibi.explainers.cfproto module
	alibi.explainers.cfrl_base module
	alibi.explainers.cfrl_tabular module
	alibi.explainers.counterfactual module
	alibi.explainers.integrated_gradients module
	alibi.explainers.partial_dependence module
	alibi.explainers.pd_variance module
	alibi.explainers.permutation_importance module
	alibi.explainers.shap_wrappers module

	alibi.models package
	Subpackages
	alibi.models.pytorch package
	Submodules
	alibi.models.pytorch.actor_critic module
	alibi.models.pytorch.autoencoder module
	alibi.models.pytorch.cfrl_models module
	alibi.models.pytorch.metrics module
	alibi.models.pytorch.model module
	alibi.models.tensorflow package
	Submodules
	alibi.models.tensorflow.actor_critic module
	alibi.models.tensorflow.autoencoder module
	alibi.models.tensorflow.cfrl_models module

	alibi.prototypes package
	Submodules
	alibi.prototypes.protoselect module

	alibi.tests package
	Submodules
	alibi.tests.utils module

	alibi.utils package
	Submodules
	alibi.utils.approximation_methods module
	alibi.utils.data module
	alibi.utils.discretizer module
	alibi.utils.distance module
	alibi.utils.distributed module
	alibi.utils.distributions module
	alibi.utils.download module
	alibi.utils.frameworks module
	alibi.utils.gradients module
	alibi.utils.kernel module
	alibi.utils.lang_model module
	alibi.utils.mapping module
	alibi.utils.missing_optional_dependency module
	alibi.utils.tf module
	alibi.utils.visualization module
	alibi.utils.wrappers module

	Submodules
	alibi.exceptions module
	alibi.saving module
	alibi.version module

	Python Module Index
	Index

