

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Authorisation

Authorisation is about whether a request to a resource is allowed. It’s closely
connected to authentication, which is concerned with who the request is from.
Airship doesn’t directly provide a mechanism for authentication, you are free to
choose how this is done.

To force authorisation on a resource airship provides an isAuthorised
callback.
e.g.

 dirigibleResourceV1 :: (Applicative m, MonadIO m) => Resource State m
 dirigibleResourceV1 = defaultResource {
 allowedMethods = return [HTTP.methodGet]
 , isAuthorised = checkAuthorisation
 }

 checkAuthorisation :: (Applicative m, MonadIO m) => Webmachine s m Bool
 checkAuthorisation = do
 headers <- lift $ requestHeaders <$> request
 let header = lookup hAuthorization headers
 return . isJust $ header

Versioning APIs

Often when building APIs we need a way to version them. Versioning allows
evolving APIs without adding hacks around how to detect which version has been requested.
There are two good approaches available for versioning APIs with Airship (Webmachine).

By URL

Present different urls prefixed by the version of the api
e.g.
/v1/dirigible/ and /v2/dirigible

Define the routing urls like so:

 routes :: RoutingSpec State IO ()
 routes = do
 "v1" </> "dirigible" #> dirigibleResourceV1
 "v2" </> "dirigible" #> dirigibleResourceV2

Then define the 2 versions of your resource. Here we handle a json GET and
json response.

 dirigibleResourceV1 :: (Applicative m, MonadIO m) => Resource State m
 dirigibleResourceV1 = defaultResource {
 allowedMethods = return [HTTP.methodGet]
 , knownContentType = contentTypeMatches ["application/json"]
 , contentTypesProvided = return [("application/json", handleJsonV1)]
 }

 dirigibleResourceV2 :: (Applicative m, MonadIO m) => Resource State m
 dirigibleResourceV2 = defaultResource {
 allowedMethods = return [HTTP.methodGet]
 , knownContentType = contentTypeMatches ["application/json"]
 , contentTypesProvided = return [("application/json", handleJsonV2)]
 }

You can test this by using curl against the correct url.
curl -X GET http://localhost:port/v1/dirigible -H "Content-Type: application/json"
or
curl -X GET http://localhost:port/v2/dirigible -H "Content-Type: application/json"

By Content-Type

Place the API version into the HTTP Content-Type header.

 routes :: RoutingSpec State IO ()
 routes = do
 "dirigible" #> dirigibleResource

Then within the resource we handle both versions.

 dirigibleResource :: (Applicative m, MonadIO m) => Resource State m
 dirigibleResource = defaultResource {
 allowedMethods = return [HTTP.methodGet]
 , knownContentType = contentTypeMatches ["application/json"]
 , knownContentTypes = contentTypesProvided ["application/v1+json", "application/v2+json"]
 , contentTypesProvided = return [("application/v1+json", handleJsonV1)
 , ("application/v2+json", handleJsonV2)]
 }

Testing this using curl requires setting a custom content type header.

curl -X GET http://localhost:port/dirigible -H "Content-Type: application/v1+json"

or

curl -X GET http://localhost:port/dirigible -H "Content-Type: application/v2+json"

If you don’t supply a Content-Type you’ll get a 406 Not Acceptable, indicating that no content-type matches.

Also it’s important to note that when testing using curl it will by default set an Accept: */* indicating that you accept any content-type. This will perform matching on the contentTypesProvided list starting at the beginning. So in the example above, V1 appears before V2 which means an Accept */* will match V1 first and never get to V2.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

