
deckhand Documentation
Release 0.1

Deckhand Authors

Feb 27, 2023





Contents

1 Overview 3
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 User’s Guide 7
2.1 User’s Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Operator’s Guide 51
3.1 Operator’s Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Contrbitutor’s Guide 71
4.1 Contributor’s Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Release Notes 123
5.1 Deckhand Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Glossary 125
6.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Python Module Index 127

Index 129

i



ii



deckhand Documentation, Release 0.1

Deckhand is a document-based configuration storage service built with auditability and validation in mind. It serves
as the back-end storage service for Airship.

Deckhand’s primary responsibilities include validating and storing YAML documents that are layered together to
produce finalized documents, containing site configuration data, including sensitive data. Secrets can be stored us-
ing specialized secret storage management services like Barbican and later substituted into finalized or “rendered”
documents.

The service understands a variety of document types, the combination of which describe the manner in which Deck-
hand renders finalized documents for consumption by other Airship services.

Contents 1



deckhand Documentation, Release 0.1

2 Contents



CHAPTER 1

Overview

1.1 Overview

Deckhand provides document revision management, storage and mutation functionality upon which the rest of the
Airship components rely for orchestration of infrastructure provisioning. Deckhand understands declarative YAML
documents that define, end-to-end, the configuration of sites: from the hardware – encompassing network topology
and hardware and host profile information – up to the software level that comprises the overcloud.

1.1.1 Core Responsibilities

• revision history - improves auditability and enables services to provide functional validation of a well-defined
collection of documents that are meant to operate together

• validation - allows services to implement and register different kinds of validations and report errors

• buckets - allow documents to be owned by different services, providing write protections around collections of
documents

• layering - helps reduce duplication in configuration while maintaining auditability across many sites

• substitution - provides separation between secret data and other configuration data, while also providing a mech-
anism for documents to share data among themselves

1.1.2 Revision History

Like other version control software, Deckhand allows users to track incremental changes to documents via a revision
history, built up through individual payloads to Deckhand, each forming a separate revision. Each revision, in other
words, contains its own set of immutable documents: Creating a new revision maintains the existing revision history.

For more information, see the Revision History section.

3

https://www.airshipit.org


deckhand Documentation, Release 0.1

1.1.3 Validation

For each created revision, built-in Document Types are automatically validated. Validations are always stored in the
database, including detailed error messages explaining why validation failed, to help deployers rectify syntactical or
semantical issues with configuration documents. Regardless of validation failure, a new revision is always created,
except when the documents are completely malformed.

Deckhand validation functionality is extensible via DataSchema documents, allowing the data sections of regis-
tered document types to be subjected to user-provided JSON schemas.

Note: While Deckhand ingests YAML documents, internally it translates them to Python objects and can use JSON
schemas to validate those objects.

For more information, see the Document Validation section.

1.1.4 Buckets

Collections of documents, called buckets, are managed together. All documents belong to a bucket and all documents
that are part of a bucket must be fully specified together.

To create or update a new document in, e.g. bucket mop, one must PUT the entire set of documents already in mop
along with the new or modified document. Any documents not included in that PUT will be automatically deleted in
the created revision.

Each bucket provides write protections around a group of documents. That is, only the bucket that owns a collection of
documents can manage those documents. However, documents can be read across different buckets and used together
to render finalized configuration documents, to be consumed by other services like Armada, Drydock, Promenade or
Shipyard.

In other words:

• Documents can be read from any bucket.

This is useful so that documents from different buckets can be used together for layering and substitution.

• Documents can only be written to by the bucket that owns them.

This is useful because it offers the concept of ownership to a document in which only the bucket that owns the
document can manage it.

Todo: Deckhand should offer RBAC (Role-Based Access Control) around buckets. This will allow deployers to
control permissions around who can write or read documents to or from buckets.

Note: The best analogy for a bucket is a folder. Like a folder, which houses files and offers read and write permissions,
a bucket houses documents and offers read and write permissions around them.

A bucket is not akin to a repository, because a repository has its own distinct revision history. A bucket, on the other
hand, shares its revision history with every other bucket.

1.1.5 Layering

Layering provides a restricted data inheritance model intended to help reduce duplication in configuration. A
LayeringPolicy can be created to declare the order of inheritance via layers for documents. Parent documents

4 Chapter 1. Overview



deckhand Documentation, Release 0.1

can provide common data to child documents, who can override their parent data or tweak it in order to achieve more
nuanced configuration that builds on top of common configurations.

For more information, see the Document Layering section.

1.1.6 Substitution

Substitution is a mechanism for documents to share data among themselves. It is particularly useful for documents
that possess secrets to be stored securely and on demand provide the secrets to documents that need them. However,
substitution can also apply to any data, not just secrets.

For more information, see the Document Substitution section.

1.1.7 Replacement

Document replacement provides an advanced mechanism for reducing the overhead with data duplication across mul-
tiple documents.

For more information, see the Document Replacement section.

1.1. Overview 5



deckhand Documentation, Release 0.1

6 Chapter 1. Overview



CHAPTER 2

User’s Guide

2.1 User’s Guide

2.1.1 Getting Started

Pre-requisites

• tox

To install tox run:

$ [sudo] apt-get install tox

• PostgreSQL

Deckhand only supports PostgreSQL. Install it by running:

$ [sudo] apt-get update
$ [sudo] apt-get install postgresql postgresql-contrib

Quickstart

SQLite

The guide below provides details on how to run Deckhand quickly using SQLite.

Docker can be used to quickly instantiate the Deckhand image. After installing Docker, create a basic configuration
file:

$ tox -e genconfig

7

https://docs.docker.com/install/
https://docs.docker.com/install/


deckhand Documentation, Release 0.1

Resulting deckhand.conf.sample file is output to :path:etc/deckhand/deckhand.conf.sample

Move the sample configuration file into a desired directory (i.e. $CONF_DIR).

Set the database string in the configuration file to sqlite://

[database]

#
# From oslo.db
#

# The SQLAlchemy connection string to use to connect to the database.
# (string value)
connection = sqlite://

Finally, run Deckhand via Docker:

$ [sudo] docker run --rm \
--net=host \
-p 9000:9000 \
-v $CONF_DIR:/etc/deckhand \
quay.io/airshipit/deckhand:latest-ubuntu_bionic

PostgreSQL

The guide below provides details on how to run Deckhand quickly using PostgreSQL.

Docker can be used to quickly instantiate the Deckhand image. After installing Docker, create a basic configuration
file:

$ tox -e genconfig

Resulting deckhand.conf.sample file is output to :path:etc/deckhand/deckhand.conf.sample

Move the sample configuration file into a desired directory (i.e. $CONF_DIR).

At a minimum the [database].connection config option must be set. Provide it with a PostgreSQL database
connection. Or to conveniently create an ephemeral PostgreSQL DB run:

$ eval `pifpaf run postgresql`

Substitute the connection information (which can be retrieved by running export | grep
PIFPAF_POSTGRESQL_URL) into the config file inside etc/deckhand/deckhand.conf.sample:

[database]

#
# From oslo.db
#

# The SQLAlchemy connection string to use to connect to the database.
# (string value)
connection = postgresql://localhost/postgres?host=/tmp/tmpsg6tn3l9&port=9824

Run an update to the Database to bring it to the current code level:

8 Chapter 2. User’s Guide

https://docs.docker.com/install/
https://docs.docker.com/install/


deckhand Documentation, Release 0.1

$ [sudo] docker run --rm \
--net=host \
-v $CONF_DIR:/etc/deckhand \
quay.io/airshipit/deckhand:latest-ubuntu_bionic\
alembic upgrade head

Finally, run Deckhand via Docker:

$ [sudo] docker run --rm \
--net=host \
-p 9000:9000 \
-v $CONF_DIR:/etc/deckhand \
quay.io/airshipit/deckhand:latest-ubuntu_bionic

To kill the ephemeral DB afterward:

$ pifpaf_stop

Manual Installation

Note: The commands below assume that they are being executed from the root Deckhand directory.

Install dependencies needed to spin up Deckhand via uwsgi:

$ [sudo] pip install uwsgi
$ virtualenv -p python3 /var/tmp/deckhand
$ . /var/tmp/deckhand/bin/activate
$ pip install -r requirements.txt -r test-requirements.txt
$ python setup.py install

Afterward, create a sample configuration file automatically:

$ tox -e genconfig

Resulting deckhand.conf.sample file is output to :path:etc/deckhand/deckhand.conf.sample

Create the directory /etc/deckhand and copy the config file there:

$ [sudo] cp etc/deckhand/deckhand.conf.sample /etc/deckhand/deckhand.conf

To specify an alternative directory for the config file, run:

$ export DECKHAND_CONFIG_DIR=<PATH>
$ [sudo] cp etc/deckhand/deckhand.conf.sample ${DECKHAND_CONFIG_DIR}/deckhand.conf

To conveniently create an ephemeral PostgreSQL DB run:

$ eval `pifpaf run postgresql`

Retrieve the environment variable which contains connection information:

$ export | grep PIFPAF_POSTGRESQL_URL
declare -x PIFPAF_POSTGRESQL_URL="postgresql://localhost/postgres?host=/tmp/
→˓tmpsg6tn3l9&port=9824"

2.1. User’s Guide 9



deckhand Documentation, Release 0.1

Substitute the connection information into the config file in ${DECKHAND_CONFIG_DIR}:

[database]

#
# From oslo.db
#

# The SQLAlchemy connection string to use to connect to the database.
# (string value)
connection = postgresql://localhost/postgres?host=/tmp/tmpsg6tn3l9&port=9824

Finally, run Deckhand:

# Perform DB migrations
$ ./entrypoint.sh alembic upgrade head
# Instantiate the Deckhand server
$ ./entrypoint.sh server

To kill the ephemeral DB afterward:

$ pifpaf_stop

Development Mode

Development mode means running Deckhand without Keystone authentication. Note that enabling development mode
will effectively disable all authN and authZ in Deckhand.

To enable development mode, add the following to the deckhand.conf inside $CONF_DIR:

[DEFAULT]
development_mode = True

After, from the command line, execute:

$ [sudo] docker run --rm \
--net=host \
-p 9000:9000 \
-v $CONF_DIR:/etc/deckhand \
quay.io/airshipit/deckhand:latest-ubuntu_bionic server

Development Utilities

Deckhand comes equipped with many utilities useful for developers, such as unit test or linting jobs.

Many of these commands require that tox be installed. To do so, run:

$ pip3 install tox

To run the Python linter, execute:

$ tox -e pep8

To run unit tests, execute:

10 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

$ tox -e py36

To run the test coverage job:

$ tox -e coverage

To run security checks via Bandit execute:

$ tox -e bandit

To build all Deckhand charts, execute:

$ make charts

To generate sample configuration and policy files needed for Deckhand deployment, execute (respectively):

$ tox -e genconfig
$ tox -e genpolicy

For additional commands, reference the tox.ini file for a list of all the jobs.

Database Model Updates

Deckhand utilizes Alembic to handle database setup and upgrades. Alembic provides a straightforward way to man-
age the migrations necessary from one database structure version to another through the use of scripts found in deck-
hand/alembic/versions.

Setting up a migration can be automatic or manual. The Alembic documentation provides instructions for how to
create a new migration.

Creating automatic migrations requires that the Deckhand database model is updated in the source code first. With
that database model in the code, and pointing to an existing Deckhand database structure, Alembic can produce the
steps necessary to move from the current version to the next version.

One way of creating an automatic migration is to deploy a development Deckhand database using the pre-updated data
model and following the following steps:

Navigate to the root Deckhand directory
$ export DH_ROOT=$(pwd)
$ mkdir ${DH_ROOT}/alembic_tmp

Create a deckhand.conf file that will have the correct DB connection string.
$ tox -e genconfig
$ cp ${DH_ROOT}/etc/deckhand/deckhand.conf.sample ${DH_ROOT}/alembic_tmp/deckhand.conf

Update the connection string to the deckhand db instance e.g.::

[Database]
connection = postgresql+psycopg2://deckhand:password@postgresql.airship.svc.cluster.

→˓local:5432/deckhand

$ export DECKHAND_CONFIG_DIR=${DH_ROOT}/alembic_tmp
$ alembic revision --autogenerate -m "The short description for this change"

$ rm -r ${DH_ROOT}/alembic_tmp

2.1. User’s Guide 11

https://github.com/openstack/bandit
http://alembic.zzzcomputing.com/en/latest/
http://alembic.zzzcomputing.com/en/latest/


deckhand Documentation, Release 0.1

This will create a new .py file in the deckhand/alembic/versions directory that can then be modified to indicate exact
steps. The generated migration should always be inspected to ensure correctness.

Migrations exist in a linked list of files (the files in versions). Each file is updated by Alembic to reference its revision
linkage. E.g.:

# revision identifiers, used by Alembic.
revision = '918bbfd28185'
down_revision = None
branch_labels = None
depends_on = None

Any manual changes to this linkage must be approached carefully or Alembic will fail to operate.

Troubleshooting

The error messages are included in bullets below and tips to resolution are included beneath each bullet.

• “FileNotFoundError: [Errno 2] No such file or directory: ‘/etc/deckhand/api-paste.ini’”

Reason: this means that Deckhand is trying to instantiate the server but failing to do so because it can’t find an
essential configuration file.

Solution:

$ cp etc/deckhand/deckhand.conf.sample /etc/deckhand/deckhand.conf

This copies the sample Deckhand configuration file to the appropriate directory.

• For any errors related to tox:

Ensure that tox is installed:

$ [sudo] apt-get install tox -y

• For any errors related to running tox -e py36:

Ensure that python3-dev is installed:

$ [sudo] apt-get install python3-dev -y

2.1.2 Revision History

Revision History

Documents will be ingested in batches which will be given a revision index. This provides a common language for
describing complex validations on sets of documents.

Revisions can be thought of as commits in a linear git history, thus looking at a revision includes all content from
previous revisions.

Revision Diffing

By maintaining a linear history of all the documents in each revision, Deckhand is able to diff different revisions
together to report what has changed across revisions, allowing external services to determine whether the Deckhand
configuration undergone any changes since the service last queried the Deckhand API.

12 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

The revision difference is calculated by comparing the overall difference across all the documents in the buckets
associated with the two revisions that are diffed. For example, if a bucket shared between two revisions contains
two documents, and between the first revision and the second revision, if only one of those two documents has been
modified, the bucket itself is tagged as modified. For more information about revision diffing, please reference the
Deckhand API Documentation.

Revision DeepDiffing

Revision DeepDiffing is an extended version of existing revision diff api. When any bucket state gets changed to
modified, It shows deep difference between revisions. DeepDiffing resultset will consist of document_added,
document_deleted and document_changed count and details. For more information about revision deepdiff-
ing, please reference the Deckhand API Documentation.

Revision Rollback

As all the changes to documents are maintained via revisions, it is possible to rollback the latest revision in Deckhand
to a prior revision. This behavior can be loosely compared to a git rebase in which it is possible to squash the
latest revision in order to go back to the previous revision. This behavior is useful for undoing accidental changes and
returning to a stable internal configuration.

2.1.3 Documents

All configuration data is stored entirely as structured documents, for which schemas must be registered. Documents
satisfy the following use cases:

• layering - helps reduce duplication in configuration while maintaining auditability across many sites

• substitution - provides separation between secret data and other configuration data, while allowing a simple
interface for clients

• revision history - improves auditability and enables services to provide functional validation of a well-defined
collection of documents that are meant to operate together

• validation - allows services to implement and register different kinds of validations and report errors

Detailed documentation for Document Layering, Document Substitution, Revision History and Document Validation
should be reviewed for a more thorough understanding of each concept.

Document Format

The document format is modeled loosely after Kubernetes practices. The top level of each document is a dictionary
with 3 keys: schema, metadata, and data.

• schema - Defines the name of the JSON schema to be used for validation. Must have the form:
<namespace>/<kind>/<version>, where the meaning of each component is:

– namespace - Identifies the owner of this type of document. The values deckhand and metadata are
reserved for internal use.

– kind - Identifies a type of configuration resource in the namespace.

– version - Describe the version of this resource, e.g. v1.

• metadata - Defines details that Deckhand will inspect and understand. There are multiple schemas for this
section as discussed below. All the various types of metadata include a metadata.name field which must be
unique for each document schema.

2.1. User’s Guide 13



deckhand Documentation, Release 0.1

• data - Data to be validated by the schema described by the schema field. Deckhand only interacts with
content here as instructed to do so by the metadata section. The form of this section is considered to be
completely owned by the namespace in the schema.

At the database level, documents are uniquely identified by the combination of:

1. metadata.name

2. schema

3. metadata.layeringDefinition.layer

This means that raw revision documents – which are persisted in Deckhand’s database – require that the combination
of all 3 parameters be unique.

However, post-rendered documents are only uniquely identified by the combination of:

1. metadata.name

2. schema

Because collisions with respect to the third parameter – metadata.layeringDefinition.layer – can only
occur with Document Replacement. But after document rendering, the replacement-parent documents are never re-
turned.

Below is a fictitious example of a complete document, which illustrates all the valid fields in the metadata section:

---
schema: some-service/ResourceType/v1
metadata:

schema: metadata/Document/v1
name: unique-name-given-schema
storagePolicy: cleartext
labels:
genesis: enabled
master: enabled

layeringDefinition:
abstract: true
layer: region
parentSelector:
required_key_a: required_label_a
required_key_b: required_label_b

actions:
- method: merge

path: .path.to.merge.into.parent
- method: delete

path: .path.to.delete
substitutions:
- dest:

path: .substitution.target
src:

schema: another-service/SourceType/v1
name: name-of-source-document
path: .source.path

data:
path:
to:

merge:
into:
parent:

foo: bar

(continues on next page)

14 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

(continued from previous page)

ignored:
data: here

substitution:
target: null

Document Metadata

There are 2 supported kinds of document metadata. Documents with Document metadata are the most common, and
are used for normal configuration data. Documents with Control metadata are used to customize the behavior of
Deckhand.

schema: metadata/Document/v1

This type of metadata allows the following metadata hierarchy:

• name - string, required - Unique within a revision for a given schema and metadata.
layeringDefinition.layer.

• storagePolicy - string, required - Either cleartext or encrypted. If encyrpted is specified,
then the data section of the document will be stored in a secure backend (likely via OpenStack Barbican).
metadata and schema fields are always stored in cleartext. More information on document encryption is
available here.

• layeringDefinition - dict, required - Specifies layering details. See the Layering section below for
details.

– abstract - boolean, required - An abstract document is not expected to pass schema validation after
layering and substitution are applied. Non-abstract (concrete) documents are.

– layer - string, required - References a layer in the LayeringPolicy control document.

– parentSelector - labels, optional - Used to construct document chains for executing merges.

– actions - list, optional - A sequence of actions to apply this documents data during the merge process.
* method - string, required - How to layer this content. * path - string, required - What content in this
document to layer onto parent content.

• substitutions - list, optional - A sequence of substitutions to apply. See the Substitutions section for
additional details.

– dest - dict, required - A description of the inserted content destination.

* path - string, required - The JSON path where the data will be placed into the data section of this
document.

* pattern - string, optional - A regex to search for in the string specified at path in this document
and replace with the source data

– src - dict, required - A description of the inserted content source.

* schema - string, required - The schema of the source document.

* name - string, required - The metadata.name of the source document.

* path - string, required - The JSON path from which to extract data in the source document relative
to its data section.

2.1. User’s Guide 15



deckhand Documentation, Release 0.1

schema: metadata/Control/v1

This schema is the same as the Document schema, except it omits the storagePolicy,
layeringDefinition, and substitutions keys, as these actions are not supported on Control doc-
uments.

The complete list of valid Control document kinds is specified below along with descriptions of each document
kind.

Document Abstraction

Document abstraction can be compared to an abstract class in programming languages: The idea is to declare an
abstract base class used for declaring common data to be overridden and customized by subclasses. In fact, this is the
predominant use case for document abstraction: Defining base abstract documents that other concrete (non-abstract)
documents can layer with.

An abstract document is a document whose metadata.abstract property is True. A concrete document is a
document whose metadata.abstract property is False. Concrete and non-abstract are terms that are used inter-
changeably.

In Deckhand, document abstraction has certain implications:

• An abstract document, like all other documents, will be persisted in Deckhand’s database and will be subjected
to Revision History.

• However, abstract documents are not returned by Deckhand’s rendered-documents endpoint: That is,
rendered documents never include abstract documents.

• Concrete documents can layer with abstract documents – and this is encouraged.

• Abstract documents can layer with other documents as well – but unless a concrete document layers with or
substitutes from the resultant abstract document, no meaningful data will be returned via rendering, as only
concrete documents are returned.

• Likewise, abstract documents can substitute from other documents. The same reasoning as the bullet point
above applies.

• However, abstract documents cannot be used as substitution sources. Only concrete documents may be used as
substitution sources.

2.1.4 Document Types

Application Documents

Application documents are those whose metadata.schema begins with metadata/Document. These docu-
ments define all the data that make up a site deployment, including but not limited to: networking, hardware, host,
bare metal, software, etc. site information. Prior to ingestion by Deckhand, application documents are known as “raw
documents”. After rendering, they are known as “rendered documents”. Application documents are subject to the
following Document Rendering operations:

• Data Encryption

• Document Layering

• Document Substitution

• Document Replacement

16 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

Control Documents

Control documents (documents which have metadata.schema of metadata/Control/v1), are special, and
are used to control the behavior of Deckhand at runtime. Control documents are immutable so any document mutation
or manipulation does not apply to them.

Control documents only exist to control how Application Documents are validated and rendered.

Note: Unlike Application Documents, control documents do not require storagePolicy or
layeringDefinition properties; in fact, it is recommended that such properties not be used for control
documents. Again, this is because such documents should not themselves undergo layering, substitution or encryp-
tion. It is not meaningful to treat them like normal documents. See Validation Schemas for more information on
required document properties.

Only the following types of control documents are allowed:

DataSchema

DataSchema documents are used by various services to register new schemas that Deckhand can use for valida-
tion. No DataSchema documents with names beginning with deckhand/ or metadata/ are allowed. The
metadata.name field of each DataSchema document references the top-level schema of Application Docu-
ments: when there is a match between both values, the data section of all Application Documents is validated against
the JSON schema found in the matching DataSchema document.

The JSON schema definition is found in the data key of each DataSchema document. The entire data section of
the target document is validated.

The following is an example of a sample DataSchema document, whose data section features a simplistic JSON
schema:

---
# This specifies the official JSON schema meta-schema.
schema: deckhand/DataSchema/v1
metadata:

schema: metadata/Control/v1
name: promenade/Node/v1 # Specifies the documents to be used for validation.
labels:
application: promenade

data: # Valid JSON Schema is expected here.
$schema: http://blah
properties:
foo:

enum:
- bar
- baz
- qux

required:
- foo

...

The JSON schema abvove requires that the data section of Application Documents that match this DataSchema
have a property called foo whose value must be one of: “bar”, “baz”, or “qux”.

Reference the JSON schema documentation for more information on writing correct schemas.

2.1. User’s Guide 17

http://json-schema.org


deckhand Documentation, Release 0.1

LayeringPolicy

This document defines the strict order in which documents are layered together from their component parts.

Only one LayeringPolicy document can exist within the system at any time. It is an error to attempt to insert a
new LayeringPolicy document if it has a different metadata.name than the existing document. If the names
match, it is treated as an update to the existing document.

Note: In order to create a new LayeringPolicy document in Deckhand, submit an empty payload via PUT
/buckets/{bucket_name}/documents. Afterward, submit another request containing the new batch of doc-
uments, including the new LayeringPolicy.

This document defines the strict order in which documents are merged together from their component parts. An error
is raised if a document refers to a layer not specified in the LayeringPolicy.

Below is an example of a LayeringPolicy document:

---
schema: deckhand/LayeringPolicy/v1
metadata:

schema: metadata/Control/v1
name: layering-policy

data:
layerOrder:
- global
- site-type
- region
- site
- force

...

In the LayeringPolicy above, a 5-tier layerOrder is created, in which the topmost layer is global and
the bottommost layer is force. This means that global constitutes the “base” layer onto which other documents
belonging to sub-layers can be layered. In practice, this means that documents with site-type can layer with
documents with global and documents with region can layer with documents with site-type, etc.

Note that in the absence of any document belonging to an “intermediate” layer, base layers can layer with “inter-
spersed” sub-layers, no matter the number of layers between them. This means that a document with layer force
could layer with a document with layer global, provided no document exists with a layer of site-type, region,
or site. For more information about document layering, reference the Document Layering documentation.

ValidationPolicy

Unlike LayeringPolicy, many ValidationPolicy documents are allowed. This allows services to check
whether a particular revision (described below) of documents meets a configurable set of validations without having
to know up front the complete list of validations.

Each validation name specified here is a reference to data that is POSTable by other services. Names beginning with
deckhand are reserved for internal use. See the Validation section below for more details.

Since validations may indicate interactions with external and changing circumstances, an optional expiresAfter
key may be specified for each validation as an ISO8601 duration. If no expiresAfter is specified, a success-
ful validation does not expire. Note that expirations are specific to the combination of ValidationPolicy and
validation, not to each validation by itself.

18 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

---
schema: deckhand/ValidationPolicy/v1
metadata:

schema: metadata/Control/v1
name: site-deploy-ready

data:
validations:
- name: deckhand-schema-validation
- name: drydock-site-validation

expiresAfter: P1W
- name: promenade-site-validation

expiresAfter: P1W
- name: armada-deployability-validation

...

Provided Utility Document Kinds

These are documents that use the Document metadata schema, but live in the deckhand namespace.

Certificate

---
schema: deckhand/Certificate/v1
metadata:

schema: metadata/Document/v1
name: application-api
storagePolicy: cleartext

data: |-
-----BEGIN CERTIFICATE-----
MIIDYDCCAkigAwIBAgIUKG41PW4VtiphzASAMY4/3hL8OtAwDQYJKoZIhvcNAQEL
...snip...
P3WT9CfFARnsw2nKjnglQcwKkKLYip0WY2wh3FE7nrQZP6xKNaSRlh6p2pCGwwwH
HkvVwA==
-----END CERTIFICATE-----

...

CertificateAuthority

---
schema: deckhand/CertificateAuthority/v1
metadata:

schema: metadata/Document/v1
name: application-ca
storagePolicy: cleartext

data: some-ca
...

2.1. User’s Guide 19



deckhand Documentation, Release 0.1

CertificateAuthorityKey

---
schema: deckhand/CertificateAuthorityKey/v1
metadata:

schema: metadata/Document/v1
name: application-ca-key
storagePolicy: encrypted

data: |-
-----BEGIN CERTIFICATE-----
MIIDYDCCAkigAwIBAgIUKG41PW4VtiphzASAMY4/3hL8OtAwDQYJKoZIhvcNAQEL
...snip...
P3WT9CfFARnsw2nKjnglQcwKkKLYip0WY2wh3FE7nrQZP6xKNaSRlh6p2pCGwwwH
HkvVwA==
-----END CERTIFICATE-----

...

CertificateKey

---
schema: deckhand/CertificateKey/v1
metadata:

schema: metadata/Document/v1
name: application-api
storagePolicy: encrypted

data: |-
-----BEGIN RSA PRIVATE KEY-----
MIIEpQIBAAKCAQEAx+m1+ao7uTVEs+I/Sie9YsXL0B9mOXFlzEdHX8P8x4nx78/T
...snip...
Zf3ykIG8l71pIs4TGsPlnyeO6LzCWP5WRSh+BHnyXXjzx/uxMOpQ/6I=
-----END RSA PRIVATE KEY-----

...

Passphrase

---
schema: deckhand/Passphrase/v1
metadata:

schema: metadata/Document/v1
name: application-admin-password
storagePolicy: encrypted

data: some-password
...

PrivateKey

---
schema: deckhand/PrivateKey/v1
metadata:

schema: metadata/Document/v1

(continues on next page)

20 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

(continued from previous page)

name: application-private-key
storagePolicy: encrypted

data: some-private-key
...

PublicKey

---
schema: deckhand/PublicKey/v1
metadata:

schema: metadata/Document/v1
name: application-public-key
storagePolicy: cleartext

data: some-password
...

2.1.5 Data Encryption

Deckhand supports encrypting the data section of documents at-rest to secure sensitive data. This encryption be-
havior is triggered by setting metadata.storagePolicy: encrypted. It is solely the document author’s
responsibility to decide the appropriate storagePolicy for the data contained in the document.

Note: Note that encryption of document data incurs runtime overhead as the price of encryption is performance.
As a general rule, the more documents with storagePolicy: encrypted, the longer it will take to render
the documents, particularly because Barbican has a built-in restriction around retrieving only one encrypted payload
a time. This means that if 50 documents have storagePolicy: encrypted within a revision, then Deckhand
must perform 50 API calls to Barbican when rendering the documents for that revision.

Encrypted documents, like cleartext documents, are stored in Deckhand’s database, except the data section of each
encrypted document is replaced with a reference to Barbican.

Supported Data Types

Barbican supports encrypting any data type via its “opaque” secret type. Thus, Deckhand supports encryption of any
data type by utilizing this secret type.

However, Deckhand will attempt to use Barbican’s other secret types where possible. For example, Deckhand will use
“public” for document types with kind PublicKey.

2.1.6 Data Redaction

Deckhand supports redacting sensitive document data, including:

• data section:

– to avoid exposing the Barbican secret reference, in the case of the “GET documents” endpoint

– to avoid exposing actual secret payloads, in the case of the “GET rendered-documents” endpoint

• substitutions[n].src|dest sections:

2.1. User’s Guide 21

https://docs.openstack.org/barbican/latest/api/
https://docs.openstack.org/barbican/latest/api/reference/secrets.html#get-v1-secrets
https://docs.openstack.org/barbican/latest/api/
https://github.com/openstack/barbican/blob/7991f8b4850d76d97c3482428638f788f5798a56/barbican/plugin/interface/secret_store.py#L272
https://docs.openstack.org/barbican/latest/api/reference/secret_types.html


deckhand Documentation, Release 0.1

– to avoid reverse-engineering where sensitive data is substituted from or into (in case the sensitive data is
derived via Document Substitution)

Note: Document sections related to Document Layering do not require redaction because secret documents are
Control Documents, which cannot be layered together.

See the Deckhand API Documentation for more information on how to redact sensitive data.

2.1.7 Document Validation

Validations

The validation system provides a unified approach to complex validations that require coordination of multiple docu-
ments and business logic that resides in consumer services.

Deckhand focuses on two types of validations: schema validations and policy validations.

Deckhand-Provided Validations

Deckhand provides a few internal validations which are made available immediately upon document ingestion. Deck-
hand’s internal schema validations are defined as DataSchema documents.

Here is a list of internal validations:

• deckhand-document-schema-validation - All concrete documents in the revision successfully pass
their JSON schema validations. Will cause this to report an error.

Externally Provided Validations

As mentioned, other services can report whether named validations that have been registered by those services as
success or failure. DataSchema control documents are used to register a new validation mapping that other services
can reference to verify whether a Deckhand bucket is in a valid configuration. For more information, refer to the
DataSchema section in Document Types.

Validation Codes

• D001 - Indicates document sanity-check validation failure pre- or post-rendering. This means that the document
structure is fundamentally broken.

• D002 - Indicates document post-rendering validation failure. This means that after a document has rendered,
the document may fail validation. For example, if a DataSchema document for a given revision indicates
that .data.a is a required field but a layering action during rendering deletes .data.a, then post-rendering
validation will necessarily fail. This implies a conflict in the set of document requirements.

Schema Validations

Schema validations are controlled by two mechanisms:

1) Deckhand’s internal schema validation for sanity-checking the formatting of the default documents that it
understands. For example, Deckhand will check that a LayeringPolicy, ValidationPolicy or
DataSchema adhere to the appropriate internal schemas.

22 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

2) Externally provided validations via DataSchema documents. These documents can be registered by external
services and subject the target document’s data section to additional validations, validations specified by the
data section of the DataSchema document.

Validation Stages

Deckhand performs pre- and post-rendering validation on documents.

Pre-Rendering

Carried out during document ingestion.

For pre-rendering validation 3 types of behavior are possible:

1. Successfully validated documents are stored in Deckhand’s database.

2. Failure to validate a document’s basic properties will result in a 400 Bad Request error getting raised.

3. Failure to validate a document’s schema-specific properties will result in a validation error created in the
database, which can be later returned via the Validations API.

Post-Rendering

Carried out after rendering all documents.

For post-rendering validation, 2 types of behavior are possible:

1. Successfully validated post-rendered documents are returned to the user.

2. Failure to validate post-rendered documents results in a 500 Internal Server Error getting raised.

2.1.8 Validation Schemas

Below are the schemas Deckhand uses to validate documents.

Base Schema

• Base schema.

Base JSON schema against which all Deckhand documents are validated.

Listing 1: Base schema that applies to all documents.

---
schema: deckhand/DataSchema/v1
metadata:
name: deckhand/Base/v1
schema: metadata/Control/v1

data:
$schema: http://json-schema.org/schema#
properties:

schema:
type: string
pattern: ^[A-Za-z]+/[A-Za-z]+/v\d+$

(continues on next page)

2.1. User’s Guide 23



deckhand Documentation, Release 0.1

(continued from previous page)

metadata:
# True validation of the metadata section will be done using
# the schema specfied in the metadata section
type: object
properties:
name:
type: string

schema:
anyOf:
- type: string
pattern: ^metadata/Document/v\d+$

- type: string
pattern: ^metadata/Control/v\d+$

additionalProperties: true
required:
- 'name'
- 'schema'

# This schema should allow anything in the data section
data:
type:
- 'null'
- 'string'
- 'object'
- 'array'
- 'number'
- 'boolean'

additionalProperties: false
required:

- schema
- metadata
- data

This schema is used to sanity-check all documents that are passed to Deckhand. Failure to pass this schema
results in a critical error.

Metadata Schemas

Metadata schemas validate the metadata section of every document ingested by Deckhand.

• Metadata Control schema.

JSON schema against which the metadata section of each metadata/Control document type is validated.
Applies to all static documents meant to configure Deckhand behavior, like LayeringPolicy, ValidationPolicy,
and DataSchema documents.

Listing 2: Schema for metadata/Control metadata document sec-
tions.

labels:
type: object
additionalProperties:
type: string

additionalProperties: true
required:

- schema
- name

(continues on next page)

24 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

(continued from previous page)

# NOTE(felipemonteiro): layeringDefinition is not needed for any control
# documents as neither LayeringPolicy, ValidationPolicy or DataSchema
# documents are ever layered together.

• Metadata Document schema.

JSON schema against which the metadata section of each metadata/Document document type is validated.
Applies to all site definition documents or “regular” documents that require rendering.

Listing 3: Schema for metadata/Document metadata document sec-
tions.

- actions
actions_requires_parent_selector:

dependencies:
# Requires that if actions are provided, then so too must
# parentSelector.
actions:
required:
- parentSelector

substitution_dest:
type: object
properties:
path:
type: string

pattern:
type: string

recurse:
type: object
properties:
depth:
type: integer
minimum: -1
# -1 indicates that the recursion depth is infinite. Refinements
# to this value should be specified by the caller.
default: -1

required:
- depth

additionalProperties: false
required:

- path
type: object
properties:

schema:
type: string
pattern: ^metadata/Document/v\d+$

name:
type: string

labels:
type: object

replacement:
type: boolean

layeringDefinition:
type: object
properties:
layer:
type: string

(continues on next page)

2.1. User’s Guide 25



deckhand Documentation, Release 0.1

(continued from previous page)

abstract:
type: boolean

parentSelector:
type: object
minProperties: 1

actions:
type: array
minItems: 1
items:
type: object
properties:
method:
enum:
- replace
- delete
- merge

path:
type: string

additionalProperties: false
required:
- method
- path

additionalProperties: false
required:
- 'layer'

allOf:
- $ref: "#/definitions/parent_selector_requires_actions"
- $ref: "#/definitions/actions_requires_parent_selector"

substitutions:
type: array
items:
type: object
properties:

dest:
anyOf:
- $ref: "#/definitions/substitution_dest"
- type: array
minItems: 1
items:
$ref: "#/definitions/substitution_dest"

src:
type: object
properties:
schema:

type: string
pattern: ^[A-Za-z]+/[A-Za-z]+/v\d+$

name:
type: string

path:
type: string

pattern:
type: string

match_group:
type: integer

additionalProperties: false
required:
- schema

(continues on next page)

26 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

(continued from previous page)

- name
- path

additionalProperties: false
required:

- dest
- src

storagePolicy:
type: string
enum:
- encrypted
- cleartext

additionalProperties: false
required:

- schema
- name
- storagePolicy
- layeringDefinition

Validation Schemas

DataSchema schemas validate the data section of every document ingested by Deckhand.

All schemas below are DataSchema documents. They define additional properties not included in the base schema
or override default properties in the base schema.

These schemas are only enforced after validation for the base schema has passed. Failure to pass these schemas will re-
sult in an error entry being created for the validation with name deckhand-schema-validation corresponding
to the created revision.

• CertificateAuthorityKey schema.

JSON schema against which all documents with deckhand/CertificateAuthorityKey/v1 schema
are validated.

Listing 4: Schema for CertificateAuthorityKey documents.

---
schema: deckhand/DataSchema/v1
metadata:
name: deckhand/CertificateAuthorityKey/v1
schema: metadata/Control/v1

data:
$schema: http://json-schema.org/schema#
type: string

This schema is used to sanity-check all CertificateAuthorityKey documents that are passed to Deckhand.

• CertificateAuthority schema.

JSON schema against which all documents with deckhand/CertificateAuthority/v1 schema are
validated.

Listing 5: Schema for CertificateAuthority documents.

---
schema: deckhand/DataSchema/v1
metadata:

(continues on next page)

2.1. User’s Guide 27



deckhand Documentation, Release 0.1

(continued from previous page)

name: deckhand/CertificateAuthority/v1
schema: metadata/Control/v1

data:
$schema: http://json-schema.org/schema#
type: string

This schema is used to sanity-check all CertificateAuthority documents that are passed to Deckhand.

• CertificateKey schema.

JSON schema against which all documents with deckhand/CertificateKey/v1 schema are validated.

Listing 6: Schema for CertificateKey documents.

---
schema: deckhand/DataSchema/v1
metadata:
name: deckhand/CertificateKey/v1
schema: metadata/Control/v1

data:
$schema: http://json-schema.org/schema#
type: string

This schema is used to sanity-check all CertificateKey documents that are passed to Deckhand.

• Certificate schema.

JSON schema against which all documents with deckhand/Certificate/v1 schema are validated.

Listing 7: Schema for Certificate documents.

---
schema: deckhand/DataSchema/v1
metadata:
name: deckhand/Certificate/v1
schema: metadata/Control/v1

data:
$schema: http://json-schema.org/schema#
type: string

This schema is used to sanity-check all Certificate documents that are passed to Deckhand.

• LayeringPolicy schema.

JSON schema against which all documents with deckhand/LayeringPolicy/v1 schema are validated.

Listing 8: Schema for LayeringPolicy documents.

---
schema: deckhand/DataSchema/v1
metadata:
name: deckhand/LayeringPolicy/v1
schema: metadata/Control/v1

data:
$schema: http://json-schema.org/schema#
type: object
properties:

layerOrder:
type: array

(continues on next page)

28 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

(continued from previous page)

items:
type: string

additionalProperties: false
required:

- layerOrder

This schema is used to sanity-check all LayeringPolicy documents that are passed to Deckhand.

• PrivateKey schema.

JSON schema against which all documents with deckhand/PrivateKey/v1 schema are validated.

Listing 9: Schema for PrivateKey documents.

---
schema: deckhand/DataSchema/v1
metadata:
name: deckhand/Passphrase/v1
schema: metadata/Control/v1

data:
$schema: http://json-schema.org/schema#
type: string

This schema is used to sanity-check all PrivateKey documents that are passed to Deckhand.

• PublicKey schema.

JSON schema against which all documents with deckhand/PublicKey/v1 schema are validated.

Listing 10: Schema for PublicKey documents.

---
schema: deckhand/DataSchema/v1
metadata:
name: deckhand/PublicKey/v1
schema: metadata/Control/v1

data:
$schema: http://json-schema.org/schema#
type: string

This schema is used to sanity-check all PublicKey documents that are passed to Deckhand.

• Passphrase schema.

JSON schema against which all documents with deckhand/Passphrase/v1 schema are validated.

Listing 11: Schema for Passphrase documents.

---
schema: deckhand/DataSchema/v1
metadata:
name: deckhand/PrivateKey/v1
schema: metadata/Control/v1

data:
$schema: http://json-schema.org/schema#
type: string

This schema is used to sanity-check all Passphrase documents that are passed to Deckhand.

• ValidationPolicy schema.

2.1. User’s Guide 29



deckhand Documentation, Release 0.1

JSON schema against which all documents with deckhand/ValidationPolicy/v1 schema are vali-
dated.

Listing 12: Schema for ValidationPolicy documents.

---
schema: deckhand/DataSchema/v1
metadata:
name: deckhand/ValidationPolicy/v1
schema: metadata/Control/v1

data:
$schema: http://json-schema.org/schema#
type: object
properties:

validations:
type: array
items:
type: object
properties:

name:
type: string
pattern: ^.*-(validation|verification)$

expiresAfter:
type: string

additionalProperties: false
required:
- name

required:
- validations

additionalProperties: false

This schema is used to sanity-check all ValidationPolicy documents that are passed to Deckhand.

2.1.9 Document Rendering

Document rendering involves extracting all raw revision documents from Deckhand’s database, retrieving encrypted
information from Barbican, and applying substitution, layering and replacement algorithms on the data.

The following algorithms are involved during the rendering process:

Document Substitution

Substitution provides an “open” data sharing model in which any source document can be used to substitute data into
any destination document.

Use Cases

• Sharing of data between specific documents no matter their schema.

• Data sharing using pattern matching.

• Fine-grained sharing of specific sections of data.

30 Chapter 2. User’s Guide

https://docs.openstack.org/barbican/latest/api/


deckhand Documentation, Release 0.1

Document Layering

Layering provides a “restricted” data inheritance model intended to help reduce duplication in configuration.

Use Cases

• Sharing of data between documents with the same schema.

• Deep merging of objects and lists.

• Layer order with multiple layers, resulting in a larger hierarchy of documents.

• Source document for data sharing can be identified via labels, allowing for different documents to be used as
the source for sharing, depending on Parent Selection.

Document Replacement

Replacement builds on top of layering to provide yet another mechanism for reducing data duplication.

Use Cases

• Same as layering, but with a need to replace higher-layer documents with lower-layer documents for specific
site deployments.

2.1.10 Document Substitution

Introduction

Document substitution, simply put, allows one document to overwrite parts of its own data with that of another
document. Substitution involves a source document sharing data with a destination document, which replaces its own
data with the shared data.

Substitution may be leveraged as a mechanism for:

• inserting secrets into configuration documents

• reducing data duplication by declaring common data within one document and having multiple other documents
substitute data from the common location as needed

During document rendering, substitution is applied at each layer after all merge actions occur. For more information
on the interaction between document layering and substitution, see: Document Rendering.

Requirements

Substitutions between documents are not restricted by schema, name, nor layer. Source and destination documents
do not need to share the same schema.

No substitution dependency cycle may exist between a series of substitutions. For example, if A substitutes from B,
B from C, and C from A, then Deckhand will raise an exception as it is impossible to determine the source data to use
for substitution in the presence of a dependency cycle.

Substitution works like this:

2.1. User’s Guide 31



deckhand Documentation, Release 0.1

The source document is resolved via the src.schema and src.name keys and the src.path key is used relative
to the source document’s data section to retrieve the substitution data, which is then injected into the data section
of the destination document using the dest.path key.

If all the constraints above are correct, then the substitution source data is injected into the destination document’s
data section, at the path specified by dest.path.

The injection of data into the destination document can be more fine-tuned using a regular expression; see the Substi-
tution with Patterns section below for more information.

Note: Substitution is only applied to the data section of a document. This is because a document’s metadata and
schema sections should be immutable within the scope of a revision, for obvious reasons.

Rendering Documents with Substitution

Concrete (non-abstract) documents can be used as a source of substitution into other documents. This substitution
is layer-independent, so given the 3 layer example above, which includes global, region and site layers, a
document in the region layer could insert data from a document in the site layer.

Example

Here is a sample set of documents demonstrating substitution:

---
schema: deckhand/Certificate/v1
metadata:

name: example-cert
storagePolicy: cleartext
layeringDefinition:
layer: site

data: |
CERTIFICATE DATA

---
schema: deckhand/CertificateKey/v1
metadata:

name: example-key
storagePolicy: encrypted
layeringDefinition:
layer: site

data: |
KEY DATA

---
schema: deckhand/Passphrase/v1
metadata:

name: example-password
storagePolicy: encrypted
layeringDefinition:
layer: site

data: my-secret-password
---
schema: armada/Chart/v1
metadata:

name: example-chart-01
storagePolicy: cleartext

(continues on next page)

32 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

(continued from previous page)

layeringDefinition:
layer: region

substitutions:
- dest:

path: .chart.values.tls.certificate
src:

schema: deckhand/Certificate/v1
name: example-cert
path: .

- dest:
path: .chart.values.tls.key

src:
schema: deckhand/CertificateKey/v1
name: example-key
path: .

- dest:
path: .chart.values.some_url
pattern: INSERT_[A-Z]+_HERE

src:
schema: deckhand/Passphrase/v1
name: example-password
path: .

data:
chart:
details:
data: here

values:
some_url: http://admin:INSERT_PASSWORD_HERE@service-name:8080/v1

...

The rendered document will look like:

---
schema: armada/Chart/v1
metadata:

name: example-chart-01
storagePolicy: cleartext
layeringDefinition:
layer: region

substitutions:
- dest:

path: .chart.values.tls.certificate
src:

schema: deckhand/Certificate/v1
name: example-cert
path: .

- dest:
path: .chart.values.tls.key

src:
schema: deckhand/CertificateKey/v1
name: example-key
path: .

- dest:
path: .chart.values.some_url
pattern: INSERT_[A-Z]+_HERE

src:
schema: deckhand/Passphrase/v1

(continues on next page)

2.1. User’s Guide 33



deckhand Documentation, Release 0.1

(continued from previous page)

name: example-password
path: .

data:
chart:
details:
data: here

values:
some_url: http://admin:my-secret-password@service-name:8080/v1
tls:

certificate: |
CERTIFICATE DATA

key: |
KEY DATA

...

Substitution with Patterns

Substitution can be controlled in a more fine-tuned fashion using dest.pattern (optional) which functions as a
regular expression underneath the hood. The dest.pattern has the following constraints:

• dest.path key must already exist in the data section of the destination document and must have an associ-
ated value.

• The dest.pattern must be a valid regular expression string.

• The dest.pattern must be resolvable in the value of dest.path.

If the above constraints are met, then more precise substitution via a pattern can be carried out. If dest.path is a
string or multiline string then all occurrences of dest.pattern found in dest.path will be replaced. To handle
a more complex dest.path read Recursive Replacement of Patterns.

Example

---
# Source document.
schema: deckhand/Passphrase/v1
metadata:

name: example-password
schema: metadata/Document/v1
layeringDefinition:
layer: site

storagePolicy: cleartext
data: my-secret-password
---
# Another source document.
schema: deckhand/Passphrase/v1
metadata:

name: another-password
schema: metadata/Document/v1
layeringDefinition:
layer: site

storagePolicy: cleartext
data: another-secret-password
---

(continues on next page)

34 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

(continued from previous page)

# Destination document.
schema: armada/Chart/v1
metadata:

name: example-chart-01
schema: metadata/Document/v1
layeringDefinition:
layer: region

substitutions:
- dest:

path: .chart.values.some_url
pattern: INSERT_[A-Z]+_HERE

src:
schema: deckhand/Passphrase/v1
name: example-password
path: .

- dest:
path: .chart.values.script
pattern: INSERT_ANOTHER_PASSWORD

src:
schema: deckhand/Passphrase/v1
name: another-password
path: .

data:
chart:
details:
data: here

values:
some_url: http://admin:INSERT_PASSWORD_HERE@service-name:8080/v1
script: |
some_function("INSERT_ANOTHER_PASSWORD")
another_function("INSERT_ANOTHER_PASSWORD")

After document rendering, the output for example-chart-01 (the destination document) will be:

---
schema: armada/Chart/v1
metadata:

name: example-chart-01
schema: metadata/Document/v1
[...]

data:
chart:
details:
data: here

values:
# Notice string replacement occurs at exact location specified by
# ``dest.pattern``.
some_url: http://admin:my-secret-password@service-name:8080/v1
script: |
some_function("another-secret-password")
another_function("another-secret-password")

2.1. User’s Guide 35



deckhand Documentation, Release 0.1

Recursive Replacement of Patterns

Patterns may also be replaced recursively. This can be achieved by specifying a pattern value and recurse as
True (it otherwise defaults to False). Best practice is to limit the scope of the recursion as much as possible: e.g.
avoid passing in “$” as the jsonpath, but rather a JSON path that lives closer to the nested strings in question.

Note: Recursive selection of patterns will only consider matching patterns. Non-matching patterns will be ignored.
Thus, even if recursion can “pass over” non-matching patterns, they will be silently ignored.

---
# Source document.
schema: deckhand/Passphrase/v1
metadata:

name: example-password
schema: metadata/Document/v1
layeringDefinition:
layer: site

storagePolicy: cleartext
data: my-secret-password
---
# Destination document.
schema: armada/Chart/v1
metadata:

name: example-chart-01
schema: metadata/Document/v1
layeringDefinition:
layer: region

substitutions:
- dest:

# Note that the path encapsulates all 3 entries that require pattern
# replacement.
path: .chart.values
pattern: INSERT_[A-Z]+_HERE
recurse:
# Note that specifying the depth is mandatory. -1 means that all
# layers are recursed through.
depth: -1

src:
schema: deckhand/Passphrase/v1
name: example-password
path: .

data:
chart:
details:
data: here

values:
# Notice string replacement occurs for all paths recursively captured
# by dest.path, since all their patterns match dest.pattern.
admin_url: http://admin:INSERT_PASSWORD_HERE@service-name:35357/v1
internal_url: http://internal:INSERT_PASSWORD_HERE@service-name:5000/v1
public_url: http://public:INSERT_PASSWORD_HERE@service-name:5000/v1

After document rendering, the output for example-chart-01 (the destination document) will be:

---
(continues on next page)

36 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

(continued from previous page)

schema: armada/Chart/v1
metadata:

name: example-chart-01
schema: metadata/Document/v1
[...]

data:
chart:
details:
data: here

values:
# Notice how the data from the source document is injected into the
# exact location specified by ``dest.pattern``.
admin_url: http://admin:my-secret-password@service-name:35357/v1
internal_url: http://internal:my-secret-passwor@service-name:5000/v1
public_url: http://public:my-secret-passwor@service-name:5000/v1

Note that the recursion depth must be specified. -1 effectively ignores the depth. Any other positive integer will specify
how many levels deep to recurse in order to optimize recursive pattern replacement. Take care to specify the required
recursion depth or else too-deep patterns won’t be replaced.

Source Pattern Matching (Substring Extraction)

In some cases, only a substring of the substitution source is needed in the destination document. For example, the
source document may specify a full image path, while the destination chart requires the repo and tag as separate fields.

This type of substitution can be accomplished with the optional parameters: * src.pattern - a regular expression,
with optional capture groups. * src.match_group - the number of the desired capture group.

Note: It is an error to specify src.pattern if the substitution source is not a string (e.g. an object or an array).

Note: If the regex does not match, a warning is logged, and the entire source string is used.

Note: The default src.match_group is 0 (i.e. the entire match). This allows the use of expressions like
sha256:.* without parentheses, and without explicitly specifying a match group.

For example, given the following source documents, the distinct values for repo and tag will be extracted from the
source image:

---
# Source document.
schema: pegleg/SoftwareVersions/v1
metadata:

schema: metadata/Document/v1
name: software-versions
layeringDefinition:
abstract: false
layer: global

storagePolicy: cleartext
data:
images:

(continues on next page)

2.1. User’s Guide 37



deckhand Documentation, Release 0.1

(continued from previous page)

hello: docker.io/library/hello-world:latest
---
# Destination document.
schema: armada/Chart/v1
metadata:

name: example-chart-01
schema: metadata/Document/v1
layeringDefinition:
abstract: false
layer: global

substitutions:
- src:

schema: pegleg/SoftwareVersions/v1
name: software-versions
path: .images.hello
pattern: '^(.*):(.*)'
match_group: 1

dest:
path: .values.images.hello.repo

- src:
schema: pegleg/SoftwareVersions/v1
name: software-versions
path: .images.hello
pattern: '^(.*):(.*)'
match_group: 2

dest:
path: .values.images.hello.tag

data:
values:
images:

hello:
repo: # docker.io/library/hello-world
tag: # latest

Substitution of Encrypted Data

Deckhand allows data to be encrypted using Barbican. Substitution of encrypted data works the same as substitution
of cleartext data.

Note that during the rendering process, source and destination documents receive the secrets stored in Barbican.

2.1.11 Document Layering

Introduction

Layering provides a restricted data inheritance model intended to help reduce duplication in configuration. With
layering, child documents can inherit data from parent documents. Through Layering Actions, child documents can
control exactly what they inherit from their parent. Document layering, conceptually speaking, works much like class
inheritance: A child class inherits all variables and methods from its parent, but can elect to override its parent’s
functionality.

Goals behind layering include:

• model site deployment data hierarchically

38 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

• lessen data duplication across site layers (as well as other conceptual layers)

Document Abstraction

Layering works with Document Abstraction: child documents can inherit from abstract as well as concrete parent
documents.

Pre-Conditions

A document only has one parent, but its parent is computed dynamically using the Parent Selection algorithm. That
is, the notion of “multiple inheritance” does not apply to document layering.

Documents with different schema values are never layered together (see the Document Substitution section if you
need to combine data from multiple types of documents).

Document layering requires a LayeringPolicy to exist in the revision whose documents will be layered together (ren-
dered). An error will be issued otherwise.

Terminology

Note: Whether a layer is “lower” or “higher” has entirely to do with its order of initialization in a layerOrder and,
by extension, its precedence in the Parent Selection algorithm described below.

• Layer - A position in a hierarchy used to control Parent Selection by the Algorithm. It can be likened to a position
in an inheritance hierarchy, where object in Python can be likened to the highest layer in a layerOrder in
Deckhand and a leaf class can be likened to the lowest layer in a layerOrder.

• Child - Meaningful only in a parent-child document relationship. A document with a lower layer (but higher
priority) than its parent, determined using using Parent Selection.

• Parent - Meaningful only in a parent-child document relationship. A document with a higher layer (but lower
priority) than its child.

• Layering Policy - A control document that defines the strict layerOrder in which documents are layered
together. See LayeringPolicy documentation for more information.

• Layer Order (layerOrder) - Corresponds to the data.layerOrder of the LayeringPolicy document. Es-
tablishes the layering hierarchy for a set of layers in the system.

• Layering Definition (layeringDefinition) - Metadata in each document for controlling the following:

– layer: the document layer itself

– parentSelector: Parent Selection

– abstract: Document Abstraction

– actions: Layering Actions

• Parent Selector (parentSelector) - Key-value pairs or labels for identifying the document’s parent. Note
that these key-value pairs are not unique and that multiple documents can use them. All the key-value pairs in
the parentSelector must be found among the target parent’s metadata.labels: this means that the
parentSelector key-value pairs must be a subset of the target parent’s metadata.labels key-value
pairs. See Parent Selection for further details.

2.1. User’s Guide 39



deckhand Documentation, Release 0.1

• Layering Actions (actions) - A list of actions that control what data are inherited from the parent by the child.
See Layering Actions for further details.

Algorithm

Layering is applied at the bottommost layer of the layerOrder first and at the topmost layer of the layerOrder
last, such that the “base” layers are processed first and the “leaf” layers are processed last. For each layer in
the layerOrder, the documents that correspond to that layer are retrieved. For each document retrieved, the
layerOrder hierarchy is resolved using Parent Selection to identify the parent document. Finally, the current
document is layered with its parent using Layering Actions.

After layering is complete, the Document Substitution algorithm is applied to the current document, if applicable.

Layering Configuration

Layering is configured in 2 places:

1. The LayeringPolicy control document (described in LayeringPolicy), which defines the valid layers and
their order of precedence.

2. In the metadata.layeringDefinition section of normal (metadata.schema=metadata/
Document/v1) documents. For more information about document structure, reference Document Format.

An example layeringDefinition may look like:

layeringDefinition:
# Controls whether the document is abstract or concrete.
abstract: true
# A layer in the ``layerOrder``. Must be valid or else an error is raised.
layer: region
# Key-value pairs or labels for identifying the document's parent.
parentSelector:
required_key_a: required_label_a
required_key_b: required_label_b

# Actions which specify which data to add to the child document.
actions:
- method: merge

path: .path.to.merge.into.parent
- method: delete

path: .path.to.delete

Layering Actions

Introduction

Layering actions allow child documents to modify data that is inherited from the parent. What if the child document
should only inherit some of the parent data? No problem. A merge action can be performed, followed by delete
and replace actions to trim down on what should be inherited.

Each layer action consists of an action and a path. Whenever any action is specified, all the parent data is
automatically inherited by the child document. The path specifies which data from the child document to prioritize
over that of the parent document. Stated differently, all data from the parent is considered while only the child data
at path is considered during an action. However, whenever a conflict occurs during an action, the child data takes
priority over that of the parent.

40 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

Layering actions are queued – meaning that if a merge is specified before a replace then the merge will neces-
sarily be applied before the replace. For example, a merge followed by a replace is not necessarily the same
as a replace followed by a merge.

Layering actions can be applied to primitives, lists and dictionaries alike.

Action Types

Supported actions are:

• merge - “deep” merge child data and parent data into the child data, at the specified JSONPath

Note: For conflicts between the child and parent data, the child document’s data is always prioritized. No other
conflict resolution strategy for this action currently exists.

merge behavior depends upon the data types getting merged. For objects and lists, Deckhand uses JSONPath
resolution to retrieve data from those entities, after which Deckhand applies merge strategies (see below) to
combine merge child and parent data into the child document’s data section.

Merge Strategies

Deckhand applies the following merge strategies for each data type:

– object: “Deep-merge” child and parent data together; conflicts are resolved by prioritizing child data over
parent data. “Deep-merge” means recursively combining data for each key-value pair in both objects.

– array: The merge strategy involves:

* When using an index in the action path (e.g. a[0]):

1. Copying the parent array into the child’s data section at the specified JSONPath.

2. Appending each child entry in the original child array into the parent array. This behavior is
synonymous with the extend list function in Python.

* When not using an index in the action path (e.g. a):

1. The child’s array replaces the parent’s array.

– primitives: Includes all other data types, except for null. In this case JSONPath resolution is impossible,
so child data is prioritized over that of the parent.

Examples

Given:

Child Data: ``{'a': {'x': 7, 'z': 3}, 'b': 4}``
Parent Data: ``{'a': {'x': 1, 'y': 2}, 'c': 9}``

– When:

Merge Path: ``.``

Then:

Rendered Data: ``{'a': {'x': 7, 'y': 2, 'z': 3}, 'b': 4, 'c': 9}``

All data from parent is automatically considered, all data from child
is considered due to ``.`` (selects everything), then both merged.

2.1. User’s Guide 41

http://goessner.net/articles/JsonPath/
http://goessner.net/articles/JsonPath/


deckhand Documentation, Release 0.1

– When:

Merge Path: ``.a``

Then:

Rendered Data: ``{'a': {'x': 7, 'y': 2, 'z': 3}, 'c': 9}``

All data from parent is automatically considered, all data from child
at ``.a`` is considered, then both merged.

– When:

Merge Path: ``.b``

Then:

Rendered Data: ``{'a': {'x': 1, 'y': 2}, 'b': 4, 'c': 9}``

All data from parent is automatically considered, all data from child
at ``.b`` is considered, then both merged.

– When:

Merge Path: ``.c``

Then:

Error raised (``.c`` missing in child).

• replace - overwrite existing data with child data at the specified JSONPath.

Examples

Given:

Child Data: ``{'a': {'x': 7, 'z': 3}, 'b': 4}``
Parent Data: ``{'a': {'x': 1, 'y': 2}, 'c': 9}``

– When:

Replace Path: ``.``

Then:

Rendered Data: ``{'a': {'x': 7, 'z': 3}, 'b': 4}``

All data from parent is automatically considered, but is replaced by all
data from child at ``.`` (selects everything), so replaces everything
in parent.

– When:

Replace Path: ``.a``

Then:

42 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

Rendered Data: ``{'a': {'x': 7, 'z': 3}, 'c': 9}``

All data from parent is automatically considered, but is replaced by all
data from child at ``.a``, so replaces all parent data at ``.a``.

– When:

Replace Path: ``.b``

Then:

Rendered Data: ``{'a': {'x': 1, 'y': 2}, 'b': 4, 'c': 9}``

All data from parent is automatically considered, but is replaced by all
data from child at ``.b``, so replaces all parent data at ``.b``.

While ``.b`` isn't in the parent, it only needs to exist in the child.
In this case, something (from the child) replaces nothing (from the
parent).

– When:

Replace Path: ``.c``

Then:

Error raised (``.c`` missing in child).

• delete - remove the existing data at the specified JSONPath.

Examples

Given:

Child Data: ``{'a': {'x': 7, 'z': 3}, 'b': 4}``
Parent Data: ``{'a': {'x': 1, 'y': 2}, 'c': 9}``

– When:

Delete Path: ``.``

Then:

Rendered Data: ``{}``

Note that deletion of everything results in an empty dictionary by
default.

– When:

Delete Path: ``.a``

Then:

Rendered Data: ``{'c': 9}``

All data from Parent Data at ``.a`` was deleted, rest copied over.

2.1. User’s Guide 43



deckhand Documentation, Release 0.1

– When:

Delete Path: ``.c``

Then:

Rendered Data: ``{'a': {'x': 1, 'y': 2}}``

All data from Parent Data at ``.c`` was deleted, rest copied over.

– When:

Replace Path: ``.b``

Then:

Error raised (``.b`` missing in child).

After actions are applied for a given layer, substitutions are applied (see the Document Substitution section for details).

Parent Selection

Parent selection is performed dynamically. Unlike Document Substitution, parent selection does not target a specific
document using schema and name identifiers. Rather, parent selection respects the layerOrder, selecting the
highest precedence parent in accordance with the algorithm that follows. This allows flexibility in parent selection: if
a document’s immediate parent is removed in a revision, then, if applicable, the grandparent (in the previous revision)
can become the document’s parent (in the latest revision).

Selection of document parents is controlled by the parentSelector field and works as follows:

• A given document, C, that specifies a parentSelector, will have exactly one parent, P. If comparing layer-
ing with inheritance, layering, then, does not allow multi-inheritance.

• Both C and P must have the same schema.

• Both C and P should have different metadata.name values except in the case of Document Replacement.

• Document P will be the highest-precedence document whose metadata.labels are a superset of document
C’s parentSelector. Where:

– Highest precedence means that P belongs to the lowest layer defined in the layerOrder list from the
LayeringPolicy which is at least one level higher than the layer for C. For example, if C has layer
site, then its parent P must at least have layer type or above in the following layerOrder:

---
...
layerOrder:

- global # Highest layer
- type
- site # Lowest layer

– Superset means that P at least has all the labels in its metadata.labels that child C references via its
parentSelector. In other words, parent P can have more labels than C uses to reference it, but C must
at least have one matching label in its parentSelector with P.

• Deckhand will select P if it belongs to the highest-precedence layer. For example, if C belongs to layer site,
P belongs to layer type, and G belongs to layer global, then Deckhand will use P as the parent for C. If P is
non-existent, then G will be selected instead.

44 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

For example, consider the following sample documents:

---
schema: deckhand/LayeringPolicy/v1
metadata:

schema: metadata/Control/v1
name: layering-policy

data:
layerOrder:
- global
- region
- site

---
schema: example/Kind/v1
metadata:

schema: metadata/Document/v1
name: global-1234
labels:
key1: value1

layeringDefinition:
abstract: true
layer: global

data:
a:
x: 1
y: 2

---
schema: example/Kind/v1
metadata:

schema: metadata/Document/v1
name: region-1234
labels:
key1: value1

layeringDefinition:
abstract: true
layer: region
parentSelector:
key1: value1

actions:
- method: replace

path: .a
data:
a:
z: 3

---
schema: example/Kind/v1
metadata:

schema: metadata/Document/v1
name: site-1234
layeringDefinition:
layer: site
parentSelector:

key1: value1
actions:

- method: merge
path: .

data:
b: 4

2.1. User’s Guide 45



deckhand Documentation, Release 0.1

When rendering, the parent chosen for site-1234 will be region-1234, since it is the highest precedence docu-
ment that matches the label selector defined by parentSelector, and the parent chosen for region-1234 will
be global-1234 for the same reason. The rendered result for site-1234 would be:

---
schema: example/Kind/v1
metadata:

name: site-1234
data:
a:
z: 3

b: 4

If region-1234 were later removed, then the parent chosen for site-1234 would become global-1234, and the
rendered result would become:

---
schema: example/Kind/v1
metadata:

name: site-1234
data:
a:
x: 1
y: 2

b: 4

2.1.12 Document Replacement

Note: Document replacement is an advanced concept in Deckhand. This section assumes that the reader already has
an understanding of Document Layering and Document Substitution.

Document replacement, in the simplest terms, involves a child document replacing its parent. That is, the entire child
document replaces its parent document. Replacement aims to lessen data duplication by taking advantage of Document
Abstraction and document layering patterns.

Unlike the Document Layering replace action, which allows a child document to selectively replace portions of the
parent’s data section with that of its own, document replacement allows a child document to replace the entire parent
document.

Todo: Elaborate on these patterns in a separate section.

Replacement introduces the replacement: true property underneath the top-level metadata section. This
property is subject to certain preconditions, discussed in the Requirements section below.

Replacement aims to replace specific values in a parent document via document replacement for particular sites, while
allowing the same parent document to be consumed directly (layered with, substituted from) for completely different
sites. This means that the same YAML template can be referenced from a global namespace by different site-level
documents, and when necessary, specific sites can override the global defaults with specific overrides via document
replacement. Effectively, this means that the same template can be referenced without having to duplicate all of its
data, just to override a few values between the otherwise-exactly-the-same templates.

Like abstract documents, documents that are replaced are not returned from Deckhand’s rendered-documents
endpoint. (Documents that do replace – those with the replacement: true property – are returned instead.)

46 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

Requirements

Document replacement has the following requirements:

• Only a child document can replace its parent.

• The child document must have the replacement: true property underneath its metadata section.

• The child document must be able to select the correct parent. For more information on this, please reference the
Parent Selection section.

• Additionally, the child document must have the same metadata.name and schema as its parent. Their
metadata.layeringDefinition.layer must differ.

The following result in validation errors:

• A document with replacement: true doesn’t have a parent.

• A document with replacement: true doesn’t have the same metadata.name and schema as its
parent.

• A replacement document cannot itself be replaced. That is, only one level of replacement is allowed.

Here are the following possible scenarios regarding child and parent replacement values:

Child | Parent | Status
True | True | Throws InvalidDocumentReplacement exception
False | True | Throws InvalidDocumentReplacement exception
True | False | Valid scenario
False | False | Throws InvalidDocumentReplacement exception

Examples

Note that each key in the examples below is mandatory and that the parentSelector labels should be able to
select the parent to be replaced.

Document replacer (child):

---
# Note that the schema and metadata.name keys are the same as below.
schema: armada/Chart/v1
metadata:

name: airship-deckhand
# The replacement: true key is mandatory.
replacement: true
layeringDefinition:
# Note that the layer differs from that of the parent below.
layer: N-1
# The key-value pairs underneath `parentSelector` must be compatible with
# key-value pairs underneath the `labels` section in the parent document
# below.
parentSelector:

selector: foo
actions:

- ...
data: ...

Which replaces the document replacee (parent):

2.1. User’s Guide 47



deckhand Documentation, Release 0.1

---
# Note that the schema and metadata.name keys are the same as above.
schema: armada/Chart/v1
metadata:

name: airship-deckhand
labels:
selector: foo

layeringDefinition:
# Note that the layer differs from that of the child above.
layer: N

data: ...

Why Replacement?

Layering without Replacement

Layering without replacement can introduce a lot of data duplication across documents. Take the following use case:
Some sites need to be deployed with log debugging enabled and other sites need to be deployed with log debugging
disabled.

To achieve this, two top-layer documents can be created:

---
schema: armada/Chart/v1
metadata:

name: airship-deckhand-1
layeringDefinition:
layer: global
...

data:
debug: false
# Note that the data below can be arbitrarily long and complex.
...

And:

---
schema: armada/Chart/v1
metadata:

name: airship-deckhand-2
layeringDefinition:
layer: global
...

data:
debug: true
# Note that the data below can be arbitrarily long and complex.
...

However, what if the only thing that differs between the two documents is just debug: true|false and every
other value in both documents is precisely the same?

Clearly, the pattern above leads to a lot of data duplication.

48 Chapter 2. User’s Guide



deckhand Documentation, Release 0.1

Layering with Replacement

Using document replacement, the above duplication can be partially eliminated. For example:

# Replacer (child document).
---
schema: armada/Chart/v1
metadata:

name: airship-deckhand
replacement: true
layeringDefinition:
layer: site
parentSelector:

selector: foo
actions:

- method: merge
path: .

- method: replace
path: .debug

data:
debug: true
...

And:

# Replacee (parent document).
---
schema: armada/Chart/v1
metadata:

name: airship-deckhand
labels:
selector: foo

layeringDefinition:
layer: global
...

data:
debug: false
...

In the case above, for sites that require debug: false, only the global-level document should be included in the
payload to Deckhand, along with all other documents required for site deployment.

However, for sites that require debug: true, both documents should be included in the payload to Deckhand,
along with all other documents required for site deployment.

Implications for Pegleg

In practice, when using Pegleg, each document above can be placed in a separate file and Pegleg can either reference
only the parent document if log debugging needs to be enabled or both documents if log debugging needs to be
disabled. This pattern allows data duplication to be lessened.

How It Works

Document replacement involves a child document replacing its parent. There are three fundamental cases that are
handled:

2.1. User’s Guide 49

https://airship-pegleg.readthedocs.io/


deckhand Documentation, Release 0.1

1. A child document replaces its parent. Only the child is returned.

2. Same as (1), except that the parent document is used as a substitution source. With replacement, the child is
used as the substitution source instead.

3. Same as (2), except that the parent document is used as a layering source (that is, yet another child document
layers with the parent). With replacement, the child is used as the layering source instead.

2.1.13 Indices and tables

• genindex

• modindex

• search

50 Chapter 2. User’s Guide



CHAPTER 3

Operator’s Guide

3.1 Operator’s Guide

3.1.1 Deckhand API Documentation

API

This API will only support YAML as a serialization format. Since the IETF does not provide an official media type
for YAML, this API will use application/x-yaml.

This is a description of the v1.0 API. Documented paths are considered relative to /api/v1.0.

PUT /buckets/{bucket_name}/documents

Accepts a multi-document YAML body and creates a new revision that updates the contents of the bucket_name
bucket. Documents from the specified bucket that exist in previous revisions, but are absent from the request are
removed from that revision (though still accessible via older revisions).

Documents in other buckets are not changed and will be included in queries for documents of the newly created
revision.

Updates are detected based on exact match to an existing document of schema + metadata.name. It is an error
that responds with 409 Conflict to attempt to PUT a document with the same schema + metadata.name as
an existing document from a different bucket in the most-recent revision.

This endpoint is the only way to add, update, and delete documents. This triggers Deckhand’s internal schema valida-
tions for all documents.

If no changes are detected, a new revision should not be created. This allows services to periodically re-register their
schemas without creating unnecessary revisions.

51



deckhand Documentation, Release 0.1

GET /revisions/{revision_id}/documents

Returns a multi-document YAML response containing all the documents matching the filters specified via query string
parameters. Returned documents will be as originally added with no substitutions or layering applied.

Supported query string parameters:

• schema - string, optional - The top-level schema field to select. This may be partially specified by sec-
tion, e.g., schema=promenade would select all kind and version schemas owned by promenade, or
schema=promenade/Node which would select all versions of promenade/Node documents. One may
not partially specify the namespace or kind, so schema=promenade/No would not select promenade/
Node/v1 documents, and schema=prom would not select promenade documents.

• metadata.name - string, optional

• metadata.layeringDefinition.abstract - string, optional - Valid values are the “true” and “false”.

• metadata.layeringDefinition.layer - string, optional - Only return documents from the specified
layer.

• metadata.label - string, optional, repeatable - Uses the format metadata.label=key=value. Re-
peating this parameter indicates all requested labels must apply (AND not OR).

• status.bucket - string, optional, repeatable - Used to select documents only from a particular bucket.
Repeating this parameter indicates documents from any of the specified buckets should be returned.

• sort - string, optional, repeatable - Defines the sort order for returning results. Default is by creation date.
Repeating this parameter indicates use of multi-column sort with the most significant sorting column applied
first.

• order - string, optional - Valid values are “asc” and “desc”. Default is “asc”. Controls the order in which
the sort result is returned: “asc” returns sorted results in ascending order, while “desc” returns results in
descending order.

• limit - int, optional - Controls number of documents returned by this endpoint.

• cleartext-secrets - boolean, optional - Determines if data and substitutions paths should be
redacted (sha256) if a user has access to encrypted files. Default is to redact the values.

GET /revisions/{revision_id}/rendered-documents

Returns a multi-document YAML of fully layered and substituted documents. No abstract documents will be returned.
This is the primary endpoint that consumers will interact with for their configuration.

Valid query parameters are the same as for /revisions/{revision_id}/documents, minus the parameters
in metadata.layeringDefinition, which are not supported.

Raises a 409 Conflict if a layeringPolicy document could not be found.

Raises a 500 Internal Server Error if rendered documents fail schema validation.

GET /revisions

Lists existing revisions and reports basic details including a summary of validation status for each deckhand/
ValidationPolicy that is part of that revision.

Supported query string parameters:

• tag - string, optional, repeatable - Used to select revisions that have been tagged with particular tags.

52 Chapter 3. Operator’s Guide



deckhand Documentation, Release 0.1

• sort - string, optional, repeatable - Defines the sort order for returning results. Default is by creation date.
Repeating this parameter indicates use of multi-column sort with the most significant sorting column applied
first.

• order - string, optional - Valid values are “asc” and “desc”. Default is “asc”. Controls the order in which
the sort result is returned: “asc” returns sorted results in ascending order, while “desc” returns results in
descending order.

Sample response:

---
count: 7
next: https://deckhand/api/v1.0/revisions?limit=2&offset=2
prev: null
results:
- id: 1
url: https://deckhand/api/v1.0/revisions/1
createdAt: 2017-07-14T21:23Z
buckets: [mop]
tags:

a: {}
validationPolicies:
site-deploy-validation:
status: failure

- id: 2
url: https://deckhand/api/v1.0/revisions/2
createdAt: 2017-07-16T01:15Z
buckets: [flop, mop]
tags:

b:
random: stuff
foo: bar

validationPolicies:
site-deploy-validation:
status: success

DELETE /revisions

Permanently delete all documents.

Warning: This removes all revisions and resets the data store.

GET /revisions/{{revision_id}}

Get a detailed description of a particular revision. The status of each ValidationPolicy belonging to the revision
is also included. Valid values for the status of each validation policy are:

• success - All validations associated with the policy are success.

• failure - Any validation associated with the policy has status failure, expired or missing.

Sample response:

3.1. Operator’s Guide 53



deckhand Documentation, Release 0.1

---
id: 1
url: https://deckhand/api/v1.0/revisions/1
createdAt: 2017-07-14T021:23Z
buckets: [mop]
tags:
a:
random: stuff
url: https://deckhand/api/v1.0/revisions/1/tags/a

validationPolicies:
site-deploy-validation:
url: https://deckhand/api/v1.0/revisions/1/documents?schema=deckhand/

→˓ValidationPolicy/v1&name=site-deploy-validation
status: failure
validations:

- name: deckhand-schema-validation
url: https://deckhand/api/v1.0/revisions/1/validations/deckhand-schema-

→˓validation/entries/0
status: success

- name: drydock-site-validation
status: missing

- name: promenade-site-validation
url: https://deckhand/api/v1.0/revisions/1/validations/promenade-site-

→˓validation/entries/0
status: expired

- name: armada-deployability-validation
url: https://deckhand/api/v1.0/revisions/1/validations/armada-deployability-

→˓validation/entries/0
status: failure

Validation status is always for the most recent entry for a given validation. A status of missing indicates that no
entries have been created. A status of expired indicates that the validation had succeeded, but the expiresAfter
limit specified in the ValidationPolicy has been exceeded.

GET /revisions/{{revision_id}}/diff/{{comparison_revision_id}}

This endpoint provides a basic comparison of revisions in terms of how the buckets involved have changed. Only
buckets with existing documents in either of the two revisions in question will be reported; buckets with documents
that are only present in revisions between the two being compared are omitted from this report. That is, buckets with
documents that were accidentally created (and then deleted to rectify the mistake) that are not directly present in the
two revisions being compared are omitted.

The response will contain a status of created, deleted, modified, or unmodified for each bucket.

The ordering of the two revision ids is not important.

For the purposes of diffing, the revision_id “0” is treated as a revision with no documents, so queries comparing
revision “0” to any other revision will report “created” for each bucket in the compared revision.

Diffing a revision against itself will respond with the each of the buckets in the revision as unmodified.

Diffing revision “0” against itself results in an empty dictionary as the response.

54 Chapter 3. Operator’s Guide



deckhand Documentation, Release 0.1

Examples

A response for a typical case, GET /api/v1.0/revisions/6/diff/3 (or equivalently GET /api/v1.0/
revisions/3/diff/6).

---
bucket_a: created
bucket_b: deleted
bucket_c: modified
bucket_d: unmodified

A response for diffing against an empty revision, GET /api/v1.0/revisions/0/diff/6:

---
bucket_a: created
bucket_c: created
bucket_d: created

A response for diffing a revision against itself, GET /api/v1.0/revisions/6/diff/6:

---
bucket_a: unmodified
bucket_c: unmodified
bucket_d: unmodified

Diffing two revisions that contain the same documents, GET /api/v1.0/revisions/8/diff/11:

---
bucket_e: unmodified
bucket_f: unmodified
bucket_d: unmodified

Diffing revision zero with itself, GET /api/v1.0/revisions/0/diff/0:

---
{}

GET /revisions/{{revision_id}}/deepdiff/{{comparison_revision_id}}

This is an advanced version of diff api. It provides deepdiff between two revisions of modified buckets.

The response will contain modified, added, deleted documents deepdiff details. Modified documents diff will
consist of data and metadata change details. In case the document storagePolicy is encrypted, deepdiff will hide data
and will return only {'encrypted': True}.

Examples

A response for a typical case, GET /api/v1.0/revisions/3/deepdiff/4

---
bucket_a: created
bucket_b: deleted
bucket_c: modified
bucket_c diff:

(continues on next page)

3.1. Operator’s Guide 55



deckhand Documentation, Release 0.1

(continued from previous page)

document_changed:
count: 1
details:

('example/Kind/v1', 'doc-b'):
data_changed:
values_changed:
root['foo']: {new_value: 3, old_value: 2}

metadata_changed: {}

Document added deepdiff response, GET /api/v1.0/revisions/4/deepdiff/5

---
bucket_a: created
bucket_c: modified
bucket_c diff:

document_added:
count: 1
details:
- [example/Kind/v1, doc-c]

Document deleted deepdiff response, GET /api/v1.0/revisions/5/deepdiff/6

---
bucket_a: created
bucket_c: modified
bucket_c diff:

document_deleted:
count: 1
details:
- [example/Kind/v1, doc-c]

A response for deepdiffing against an empty revision, GET /api/v1.0/revisions/0/deepdiff/2:

---
bucket_a: created
bucket_b: created

A response for deepdiffing a revision against itself, GET /api/v1.0/revisions/6/deepdiff/6:

---
bucket_a: unmodified
bucket_c: unmodified
bucket_d: unmodified

DeepDiffing two revisions that contain the same documents, GET /api/v1.0/revisions/1/deepdiff/2:

---
bucket_a: unmodified
bucket_b: unmodified

DeepDiffing revision zero with itself, GET /api/v1.0/revisions/0/deepdiff/0:

---
{}

56 Chapter 3. Operator’s Guide



deckhand Documentation, Release 0.1

POST /revisions/{{revision_id}}/validations/{{name}}

Add the results of a validation for a particular revision.

An example POST request body indicating validation success:

---
status: success
validator:
name: promenade
version: 1.1.2

An example POST request indicating validation failure:

POST /api/v1.0/revisions/3/validations/promenade-site-validation
Content-Type: application/x-yaml

---
status: failure
errors:

- documents:
- schema: promenade/Node/v1

name: node-document-name
- schema: promenade/Masters/v1

name: kubernetes-masters
message: Node has master role, but not included in cluster masters list.

validator:
name: promenade
version: 1.1.2

GET /revisions/{{revision_id}}/validations

Gets the list of validations which have been reported for this revision.

Sample response:

---
count: 2
next: null
prev: null
results:
- name: deckhand-schema-validation
url: https://deckhand/api/v1.0/revisions/4/validations/deckhand-schema-validation
status: success

- name: promenade-site-validation
url: https://deckhand/api/v1.0/revisions/4/validations/promenade-site-validation
status: failure

GET /revisions/{{revision_id}}/validations/detail

Gets the list of validations, with details, which have been reported for this revision.

Sample response:

3.1. Operator’s Guide 57



deckhand Documentation, Release 0.1

---
count: 1
next: null
prev: null
results:
- name: promenade-site-validation
url: https://deckhand/api/v1.0/revisions/4/validations/promenade-site-validation/

→˓entries/0
status: failure
createdAt: 2017-07-16T02:03Z
expiresAfter: null
expiresAt: null
errors:

- documents:
- schema: promenade/Node/v1

name: node-document-name
- schema: promenade/Masters/v1

name: kubernetes-masters
message: Node has master role, but not included in cluster masters list.

GET /revisions/{{revision_id}}/validations/{{name}}

Gets the list of validation entry summaries that have been posted.

Sample response:

---
count: 1
next: null
prev: null
results:
- id: 0
url: https://deckhand/api/v1.0/revisions/4/validations/promenade-site-validation/

→˓entries/0
status: failure

GET /revisions/{{revision_id}}/validations/{{name}}/entries/{{entry_id}}

Gets the full details of a particular validation entry, including all posted error details.

Sample response:

---
name: promenade-site-validation
url: https://deckhand/api/v1.0/revisions/4/validations/promenade-site-validation/
→˓entries/0
status: failure
createdAt: 2017-07-16T02:03Z
expiresAfter: null
expiresAt: null
errors:

- documents:
- schema: promenade/Node/v1

name: node-document-name

(continues on next page)

58 Chapter 3. Operator’s Guide



deckhand Documentation, Release 0.1

(continued from previous page)

- schema: promenade/Masters/v1
name: kubernetes-masters

message: Node has master role, but not included in cluster masters list.

POST /revisions/{{revision_id}}/tags/{{tag}}

Associate the revision with a collection of metadata, if provided, by way of a tag. The tag itself can be used to label
the revision. If a tag by name tag already exists, the tag’s associated metadata is updated.

Sample request with body:

POST ``/revisions/0615b731-7f3e-478d-8ba8-a223eab4757e/tags/foobar``
Content-Type: application/x-yaml

---
thing: bar

Sample response:

Content-Type: application/x-yaml
HTTP/1.1 201 Created
Location: https://deckhand/api/v1.0/revisions/0615b731-7f3e-478d-8ba8-a223eab4757e/
→˓tags/foobar

---
tag: foobar
data:

thing: bar

Sample request without body:

POST ``/revisions/0615b731-7f3e-478d-8ba8-a223eab4757e/tags/foobar``
Content-Type: application/x-yaml

Sample response:

Content-Type: application/x-yaml
HTTP/1.1 201 Created
Location: https://deckhand/api/v1.0/revisions/0615b731-7f3e-478d-8ba8-a223eab4757e/
→˓tags/foobar

---
tag: foobar
data: {}

GET /revisions/{{revision_id}}/tags

List the tags associated with a revision.

Sample request with body:

GET ``/revisions/0615b731-7f3e-478d-8ba8-a223eab4757e/tags``

Sample response:

3.1. Operator’s Guide 59



deckhand Documentation, Release 0.1

Content-Type: application/x-yaml
HTTP/1.1 200 OK

---
- tag: foo

data:
thing: bar

- tag: baz
data:
thing: qux

GET /revisions/{{revision_id}}/tags/{{tag}}

Show tag details for tag associated with a revision.

Sample request with body:

GET ``/revisions/0615b731-7f3e-478d-8ba8-a223eab4757e/tags/foo``

Sample response:

Content-Type: application/x-yaml
HTTP/1.1 200 OK

---
tag: foo
data:

thing: bar

DELETE /revisions/{{revision_id}}/tags/{{tag}}

Delete tag associated with a revision.

Sample request with body:

GET ``/revisions/0615b731-7f3e-478d-8ba8-a223eab4757e/tags/foo``

Sample response:

Content-Type: application/x-yaml
HTTP/1.1 204 No Content

DELETE /revisions/{{revision_id}}/tags

Delete all tags associated with a revision.

Sample request with body:

GET ``/revisions/0615b731-7f3e-478d-8ba8-a223eab4757e/tags``

Sample response:

60 Chapter 3. Operator’s Guide



deckhand Documentation, Release 0.1

Content-Type: application/x-yaml
HTTP/1.1 204 No Content

POST /rollback/{target_revision_id}

Creates a new revision that contains exactly the same set of documents as the revision specified by
target_revision_id.

3.1.2 Deckhand API Client Library Documentation

The recommended approach to instantiate the Deckhand client is via a Keystone session:

from keystoneauth1.identity import v3
from keystoneauth1 import session

keystone_auth = {
'project_domain_name': PROJECT_DOMAIN_NAME,
'project_name': PROJECT_NAME,
'user_domain_name': USER_DOMAIN_NAME,
'password': PASSWORD,
'username': USERNAME,
'auth_url': AUTH_URL,

}
auth = v3.Password(**keystone_auth)
sess = session.Session(auth=auth)
deckhandclient = client.Client(session=sess)

You can also instantiate the client via one of Keystone’s supported auth plugins:

from keystoneauth1.identity import v3

keystone_auth = {
'auth_url': AUTH_URL,
'token': TOKEN,
'project_id': PROJECT_ID,
'project_domain_name': PROJECT_DOMAIN_NAME

}
auth = v3.Token(**keystone_auth)
deckhandclient = client.Client(auth=auth)

Which will allow you to authenticate using a pre-existing, project-scoped token.

Alternatively, you can use non-session authentication to instantiate the client, though this approach has been depre-
cated.

from deckhand.client import client

deckhandclient = client.Client(
username=USERNAME,
password=PASSWORD,
project_name=PROECT_NAME,
project_domain_name=PROJECT_DOMAIN_NAME,
user_domain_name=USER_DOMAIN_NAME,
auth_url=AUTH_URL)

3.1. Operator’s Guide 61

https://docs.openstack.org/python-keystoneclient/latest/using-api-v3.html#non-session-authentication-deprecated
https://docs.openstack.org/python-keystoneclient/latest/using-api-v3.html#non-session-authentication-deprecated


deckhand Documentation, Release 0.1

Note: The Deckhand client by default expects that the service be registered under the Keystone service catalog as
deckhand. To provide a different value pass service_type=SERVICE_TYPE to the Client constructor.

After you have instantiated an instance of the Deckhand client, you can invoke the client managers’ functionality:

# Generate a sample document.
payload = """
---
schema: deckhand/Certificate/v1
metadata:

schema: metadata/Document/v1
name: application-api
storagePolicy: cleartext

data: |-
-----BEGIN CERTIFICATE-----
MIIDYDCCAkigAwIBAgIUKG41PW4VtiphzASAMY4/3hL8OtAwDQYJKoZIhvcNAQEL
...snip...
P3WT9CfFARnsw2nKjnglQcwKkKLYip0WY2wh3FE7nrQZP6xKNaSRlh6p2pCGwwwH
HkvVwA==
-----END CERTIFICATE-----

"""

# Create a bucket and associate it with the document.
result = client.buckets.update('mop', payload)

>>> result
<Bucket name: mop>

# Convert the response to a dictionary.
>>> result.to_dict()
{'status': {'bucket': 'mop', 'revision': 1},
'schema': 'deckhand/Certificate/v1', 'data': {...} 'id': 1,
'metadata': {'layeringDefinition': {'abstract': False},
'storagePolicy': 'cleartext', 'name': 'application-api',
'schema': 'metadata/Document/v1'}}

# Show the revision that was created.
revision = client.revisions.get(1)

>>> revision.to_dict()
{'status': 'success', 'tags': {},
'url': 'https://deckhand/api/v1.0/revisions/1',
'buckets': ['mop'], 'validationPolicies': [], 'id': 1,
'createdAt': '2017-12-09T00:15:04.309071'}

# List all revisions.
revisions = client.revisions.list()

>>> revisions.to_dict()
{'count': 1, 'results': [{'buckets': ['mop'], 'id': 1,
'createdAt': '2017-12-09T00:29:34.031460', 'tags': []}]}

# List raw documents for the created revision.
raw_documents = client.revisions.documents(1, rendered=False)

>>> [r.to_dict() for r in raw_documents]

(continues on next page)

62 Chapter 3. Operator’s Guide



deckhand Documentation, Release 0.1

(continued from previous page)

[{'status': {'bucket': 'foo', 'revision': 1},
'schema': 'deckhand/Certificate/v1', 'data': {...}, 'id': 1,
'metadata': {'layeringDefinition': {'abstract': False},
'storagePolicy': 'cleartext', 'name': 'application-api',
'schema': 'metadata/Document/v1'}}]

Client Reference

For more information about how to use the Deckhand client, refer to the client module.

3.1.3 Deckhand Configuration

Cache Configuration

Deckhand currently uses 3 different caches for the following use cases:

• Caching rendered documents (see Document Rendering) for faster future look-ups

• Caching Barbican secret payloads

• Caching jsonschema results for quickly resolving deeply nested dictionary data

All 3 caches are implemented in memory.

Please reference the configuration groups below to enable or customize the timeout for each cache:

• [barbican]

• [engine]

• [jsonschema]

Sample Configuration File

The following is a sample Deckhand config file for adaptation and use. It is auto-generated from Deckhand when this
documentation is built, so if you are having issues with an option, please compare your version of Deckhand with the
version of this documentation.

The sample configuration can also be viewed in file form.

[DEFAULT]

#
# From oslo.log
#

# If set to true, the logging level will be set to DEBUG instead of the default
# INFO level. (boolean value)
# Note: This option can be changed without restarting.
#debug = false

# The name of a logging configuration file. This file is appended to any
# existing logging configuration files. For details about logging configuration
# files, see the Python logging module documentation. Note that when logging
# configuration files are used then all logging configuration is set in the

(continues on next page)

3.1. Operator’s Guide 63

../contributor/api/deckhand.client.html
_static/deckhand.conf.sample


deckhand Documentation, Release 0.1

(continued from previous page)

# configuration file and other logging configuration options are ignored (for
# example, log-date-format). (string value)
# Note: This option can be changed without restarting.
# Deprecated group/name - [DEFAULT]/log_config
#log_config_append = <None>

# Defines the format string for %%(asctime)s in log records. Default:
# %(default)s . This option is ignored if log_config_append is set. (string
# value)
#log_date_format = %Y-%m-%d %H:%M:%S

# (Optional) Name of log file to send logging output to. If no default is set,
# logging will go to stderr as defined by use_stderr. This option is ignored if
# log_config_append is set. (string value)
# Deprecated group/name - [DEFAULT]/logfile
#log_file = <None>

# (Optional) The base directory used for relative log_file paths. This option
# is ignored if log_config_append is set. (string value)
# Deprecated group/name - [DEFAULT]/logdir
#log_dir = <None>

# Uses logging handler designed to watch file system. When log file is moved or
# removed this handler will open a new log file with specified path
# instantaneously. It makes sense only if log_file option is specified and Linux
# platform is used. This option is ignored if log_config_append is set. (boolean
# value)
#watch_log_file = false

# Use syslog for logging. Existing syslog format is DEPRECATED and will be
# changed later to honor RFC5424. This option is ignored if log_config_append is
# set. (boolean value)
#use_syslog = false

# Enable journald for logging. If running in a systemd environment you may wish
# to enable journal support. Doing so will use the journal native protocol which
# includes structured metadata in addition to log messages.This option is
# ignored if log_config_append is set. (boolean value)
#use_journal = false

# Syslog facility to receive log lines. This option is ignored if
# log_config_append is set. (string value)
#syslog_log_facility = LOG_USER

# Use JSON formatting for logging. This option is ignored if log_config_append
# is set. (boolean value)
#use_json = false

# Log output to standard error. This option is ignored if log_config_append is
# set. (boolean value)
#use_stderr = false

# Log output to Windows Event Log. (boolean value)
#use_eventlog = false

# The amount of time before the log files are rotated. This option is ignored
# unless log_rotation_type is setto "interval". (integer value)

(continues on next page)

64 Chapter 3. Operator’s Guide



deckhand Documentation, Release 0.1

(continued from previous page)

#log_rotate_interval = 1

# Rotation interval type. The time of the last file change (or the time when the
# service was started) is used when scheduling the next rotation. (string value)
# Possible values:
# Seconds - <No description provided>
# Minutes - <No description provided>
# Hours - <No description provided>
# Days - <No description provided>
# Weekday - <No description provided>
# Midnight - <No description provided>
#log_rotate_interval_type = days

# Maximum number of rotated log files. (integer value)
#max_logfile_count = 30

# Log file maximum size in MB. This option is ignored if "log_rotation_type" is
# not set to "size". (integer value)
#max_logfile_size_mb = 200

# Log rotation type. (string value)
# Possible values:
# interval - Rotate logs at predefined time intervals.
# size - Rotate logs once they reach a predefined size.
# none - Do not rotate log files.
#log_rotation_type = none

# Format string to use for log messages with context. Used by
# oslo_log.formatters.ContextFormatter (string value)
#logging_context_format_string = %(asctime)s.%(msecs)03d %(process)d %(levelname)s
→˓%(name)s [%(request_id)s %(user_identity)s] %(instance)s%(message)s

# Format string to use for log messages when context is undefined. Used by
# oslo_log.formatters.ContextFormatter (string value)
#logging_default_format_string = %(asctime)s.%(msecs)03d %(process)d %(levelname)s
→˓%(name)s [-] %(instance)s%(message)s

# Additional data to append to log message when logging level for the message is
# DEBUG. Used by oslo_log.formatters.ContextFormatter (string value)
#logging_debug_format_suffix = %(funcName)s %(pathname)s:%(lineno)d

# Prefix each line of exception output with this format. Used by
# oslo_log.formatters.ContextFormatter (string value)
#logging_exception_prefix = %(asctime)s.%(msecs)03d %(process)d ERROR %(name)s
→˓%(instance)s

# Defines the format string for %(user_identity)s that is used in
# logging_context_format_string. Used by oslo_log.formatters.ContextFormatter
# (string value)
#logging_user_identity_format = %(user)s %(tenant)s %(domain)s %(user_domain)s
→˓%(project_domain)s

# List of package logging levels in logger=LEVEL pairs. This option is ignored
# if log_config_append is set. (list value)
#default_log_levels = amqp=WARN,amqplib=WARN,boto=WARN,qpid=WARN,sqlalchemy=WARN,
→˓suds=INFO,oslo.messaging=INFO,oslo_messaging=INFO,iso8601=WARN,requests.packages.
→˓urllib3.connectionpool=WARN,urllib3.connectionpool=WARN,websocket=WARN,requests.
→˓packages.urllib3.util.retry=WARN,urllib3.util.retry=WARN,keystonemiddleware=WARN,
→˓routes.middleware=WARN,stevedore=WARN,taskflow=WARN,keystoneauth=WARN,oslo.
→˓cache=INFO,oslo_policy=INFO,dogpile.core.dogpile=INFO

(continues on next page)

3.1. Operator’s Guide 65



deckhand Documentation, Release 0.1

(continued from previous page)

# Enables or disables publication of error events. (boolean value)
#publish_errors = false

# The format for an instance that is passed with the log message. (string value)
#instance_format = "[instance: %(uuid)s] "

# The format for an instance UUID that is passed with the log message. (string
# value)
#instance_uuid_format = "[instance: %(uuid)s] "

# Interval, number of seconds, of log rate limiting. (integer value)
#rate_limit_interval = 0

# Maximum number of logged messages per rate_limit_interval. (integer value)
#rate_limit_burst = 0

# Log level name used by rate limiting: CRITICAL, ERROR, INFO, WARNING, DEBUG or
# empty string. Logs with level greater or equal to rate_limit_except_level are
# not filtered. An empty string means that all levels are filtered. (string
# value)
#rate_limit_except_level = CRITICAL

# Enables or disables fatal status of deprecations. (boolean value)
#fatal_deprecations = false

[database]

#
# From oslo.db
#

# If True, SQLite uses synchronous mode. (boolean value)
#sqlite_synchronous = true

# The back end to use for the database. (string value)
# Deprecated group/name - [DEFAULT]/db_backend
#backend = sqlalchemy

# The SQLAlchemy connection string to use to connect to the database. (string
# value)
# Deprecated group/name - [DEFAULT]/sql_connection
# Deprecated group/name - [DATABASE]/sql_connection
# Deprecated group/name - [sql]/connection
#connection = <None>

# The SQLAlchemy connection string to use to connect to the slave database.
# (string value)
#slave_connection = <None>

# The SQL mode to be used for MySQL sessions. This option, including the
# default, overrides any server-set SQL mode. To use whatever SQL mode is set by
# the server configuration, set this to no value. Example: mysql_sql_mode=
# (string value)
#mysql_sql_mode = TRADITIONAL

(continues on next page)

66 Chapter 3. Operator’s Guide



deckhand Documentation, Release 0.1

(continued from previous page)

# If True, transparently enables support for handling MySQL Cluster (NDB).
# (boolean value)
#mysql_enable_ndb = false

# Connections which have been present in the connection pool longer than this
# number of seconds will be replaced with a new one the next time they are
# checked out from the pool. (integer value)
# Deprecated group/name - [DATABASE]/idle_timeout
# Deprecated group/name - [database]/idle_timeout
# Deprecated group/name - [DEFAULT]/sql_idle_timeout
# Deprecated group/name - [DATABASE]/sql_idle_timeout
# Deprecated group/name - [sql]/idle_timeout
#connection_recycle_time = 3600

# DEPRECATED: Minimum number of SQL connections to keep open in a pool. (integer
# value)
# Deprecated group/name - [DEFAULT]/sql_min_pool_size
# Deprecated group/name - [DATABASE]/sql_min_pool_size
# This option is deprecated for removal.
# Its value may be silently ignored in the future.
# Reason: The option to set the minimum pool size is not supported by
# sqlalchemy.
#min_pool_size = 1

# Maximum number of SQL connections to keep open in a pool. Setting a value of 0
# indicates no limit. (integer value)
# Deprecated group/name - [DEFAULT]/sql_max_pool_size
# Deprecated group/name - [DATABASE]/sql_max_pool_size
#max_pool_size = 5

# Maximum number of database connection retries during startup. Set to -1 to
# specify an infinite retry count. (integer value)
# Deprecated group/name - [DEFAULT]/sql_max_retries
# Deprecated group/name - [DATABASE]/sql_max_retries
#max_retries = 10

# Interval between retries of opening a SQL connection. (integer value)
# Deprecated group/name - [DEFAULT]/sql_retry_interval
# Deprecated group/name - [DATABASE]/reconnect_interval
#retry_interval = 10

# If set, use this value for max_overflow with SQLAlchemy. (integer value)
# Deprecated group/name - [DEFAULT]/sql_max_overflow
# Deprecated group/name - [DATABASE]/sqlalchemy_max_overflow
#max_overflow = 50

# Verbosity of SQL debugging information: 0=None, 100=Everything. (integer
# value)
# Minimum value: 0
# Maximum value: 100
# Deprecated group/name - [DEFAULT]/sql_connection_debug
#connection_debug = 0

# Add Python stack traces to SQL as comment strings. (boolean value)
# Deprecated group/name - [DEFAULT]/sql_connection_trace
#connection_trace = false

(continues on next page)

3.1. Operator’s Guide 67



deckhand Documentation, Release 0.1

(continued from previous page)

# If set, use this value for pool_timeout with SQLAlchemy. (integer value)
# Deprecated group/name - [DATABASE]/sqlalchemy_pool_timeout
#pool_timeout = <None>

# Enable the experimental use of database reconnect on connection lost. (boolean
# value)
#use_db_reconnect = false

# Seconds between retries of a database transaction. (integer value)
#db_retry_interval = 1

# If True, increases the interval between retries of a database operation up to
# db_max_retry_interval. (boolean value)
#db_inc_retry_interval = true

# If db_inc_retry_interval is set, the maximum seconds between retries of a
# database operation. (integer value)
#db_max_retry_interval = 10

# Maximum retries in case of connection error or deadlock error before error is
# raised. Set to -1 to specify an infinite retry count. (integer value)
#db_max_retries = 20

# Optional URL parameters to append onto the connection URL at connect time;
# specify as param1=value1&param2=value2&... (string value)
#connection_parameters =

[oslo_policy]

#
# From oslo.policy
#

# This option controls whether or not to enforce scope when evaluating policies.
# If ``True``, the scope of the token used in the request is compared to the
# ``scope_types`` of the policy being enforced. If the scopes do not match, an
# ``InvalidScope`` exception will be raised. If ``False``, a message will be
# logged informing operators that policies are being invoked with mismatching
# scope. (boolean value)
#enforce_scope = false

# This option controls whether or not to use old deprecated defaults when
# evaluating policies. If ``True``, the old deprecated defaults are not going to
# be evaluated. This means if any existing token is allowed for old defaults but
# is disallowed for new defaults, it will be disallowed. It is encouraged to
# enable this flag along with the ``enforce_scope`` flag so that you can get the
# benefits of new defaults and ``scope_type`` together. If ``False``, the
# deprecated policy check string is logically OR'd with the new policy check
# string, allowing for a graceful upgrade experience between releases with new
# policies, which is the default behavior. (boolean value)
#enforce_new_defaults = false

# The relative or absolute path of a file that maps roles to permissions for a
# given service. Relative paths must be specified in relation to the
# configuration file setting this option. (string value)
#policy_file = policy.json

(continues on next page)

68 Chapter 3. Operator’s Guide



deckhand Documentation, Release 0.1

(continued from previous page)

# Default rule. Enforced when a requested rule is not found. (string value)
#policy_default_rule = default

# Directories where policy configuration files are stored. They can be relative
# to any directory in the search path defined by the config_dir option, or
# absolute paths. The file defined by policy_file must exist for these
# directories to be searched. Missing or empty directories are ignored. (multi
# valued)
#policy_dirs = policy.d

# Content Type to send and receive data for REST based policy check (string
# value)
# Possible values:
# application/x-www-form-urlencoded - <No description provided>
# application/json - <No description provided>
#remote_content_type = application/x-www-form-urlencoded

# server identity verification for REST based policy check (boolean value)
#remote_ssl_verify_server_crt = false

# Absolute path to ca cert file for REST based policy check (string value)
#remote_ssl_ca_crt_file = <None>

# Absolute path to client cert for REST based policy check (string value)
#remote_ssl_client_crt_file = <None>

# Absolute path client key file REST based policy check (string value)
#remote_ssl_client_key_file = <None>

3.1.4 Deckhand Exceptions

For a list of Deckhand exceptions as well as debugging information related to each please reference Deckhand’s errors
module.

3.1.5 Multiple Distro Support

This project builds images for Deckhand component only. Currently, it supports building images for ubuntu and
opensuse ( leap 15.1 as base image).

By default, Ubuntu images are built and are published to public registry server. Recently support for publishing
opensuse image has been added.

If you need to build opensuse images locally, the following parameters can be passed to the make command in deck-
hand repository’s root directory with images as target:

DISTRO: opensuse_15
DISTRO_BASE_IMAGE: "opensuse/leap:15.1"
DOCKER_REGISTRY: { your_docker_registry }
IMAGE_TAG: latest
PUSH_IMAGE: false

Following is an example in command format to build and publish images locally. Command is run in deckhand
repository’s root directory.

3.1. Operator’s Guide 69

../contributor/api/deckhand.errors.html
../contributor/api/deckhand.errors.html


deckhand Documentation, Release 0.1

make images DISTRO=opensuse_15 DOCKER_REGISTRY={ your_docker_registry} IM-
AGE_TAG=latest PUSH_IMAGE=true

Following parameters need to be passed as environment/shell variable to make command:

DISTRO parameter to identify distro specific Dockerfile, ubuntu_xenial (Default)

DISTRO_BASE_IMAGE parameter to use different base image other than what’s used in DISTRO specific Docker-
file (optional)

DOCKER_REGISTRY parameter to specify local/internal docker registry if need to publish image (optional),
quay.io (Default)

IMAGE_TAG tag to be used for image built, untagged (Default)

PUSH_IMAGE flag to indicate if images needs to be pushed to a docker registry, false (Default)

This work is done as per approved spec multi_distro_support. Currently only image building logic is enhanced to
support multiple distro.

Adding New Distro Support

To add support for building images for a new distro, following steps can be followed.

1. Distro specific deckhand image can be built and tested locally first.

2. Add distro specific Dockerfile which will have steps to include necessary packages and run environment config-
uration. Use existing Dockerfile as sample to identify needed packages and environment information.

3. New dockerfile can be named as Dockefile.{DISTRO} where DISTRO is expected to be distro identifier which
is passed to makefile.

4. Respective dockerfile needs to be placed in {deckahnd_repo}/images/deckhand/

5. Add check, gate, and post jobs for building, testing and publishing images. These entries need to be added in
{deckhand_repo}/.zuul.yaml file. You may refer to existing zuul file to opensuse support to understand its usage
pattern.

6. Add any relevant information to this document.

3.1.6 Indices and tables

• genindex

• modindex

• search

70 Chapter 3. Operator’s Guide

https://airship-specs.readthedocs.io/en/latest/specs/approved/airship_multi_linux_distros.html


CHAPTER 4

Contrbitutor’s Guide

4.1 Contributor’s Guide

4.1.1 Contributor Overview

Developer Overview of Deckhand

The core objective of Deckhand is to provide storage, rendering, validation and version control for declarative YAML
documents. Deckhand ingests raw, Airship-formatted documents and outputs fully rendered documents to other Air-
ship components.

71



deckhand Documentation, Release 0.1

Architecture

From a high-level perspective, Deckhand consists of a RESTful API, a document rendering engine, and a PostgreSQL
relational database for document storage. Deckhand ingests Airship-formatted documents, validates them, and stores
them in its database for future processing. On demand, Deckhand will fully render the documents, after which they
can be consumed by the other Airship components.

Deckhand uses Barbican to securely storage sensitive document data.

Pegleg in effect provides Deckhand with a CLI, which facilitates communication with Deckhand.

72 Chapter 4. Contrbitutor’s Guide

https://airship-pegleg.readthedocs.io/


deckhand Documentation, Release 0.1

Components

control

The control module is simply the RESTful API. It is based on the Falcon Framework and utilizes oslo.policy for
RBAC enforcement of the API endpoints. The normal deployment of Deckhand uses uWSGI and PasteDeploy to build
a pipeline that includes Keystone Middleware for authentication and role decoration of the request.

The control module is also responsible for communicating with Barbican, which it uses to store and retrieve docu-
ment secrets, which it passes to the engine module for Document Rendering.

engine

The engine module is the interface responsible for all Document Rendering. Rendering consists of applying a
series of algorithms to the documents, including: topological sorting, Document Layering, Document Substitution,
and Document Replacement. This module also realizes revision-diffing and revision-deepdiffing functionality.

4.1. Contributor’s Guide 73

https://falconframework.org/
https://docs.openstack.org/oslo.policy/latest/
http://uwsgi-docs.readthedocs.io/
https://docs.openstack.org/barbican/latest/


deckhand Documentation, Release 0.1

db

The db module is responsible for implementing the database tables needed to store all Airship documents. This
module also realizes version control.

client

The API client library provides an interface for other services to communicate with Deckhand’s API. Requires Key-
stone authentication to use.

Developer Workflow

Because Airship is a container-centric platform, the developer workflow heavily utilizes containers for testing and
publishing. It also requires Deckhand to produce multiple artifacts that are related, but separate: the Python package,
the Docker image and the Helm chart. The code is published via the Docker image artifact.

Deckhand strives to conform to the Airship coding conventions.

Python

The Deckhand code base lives under /deckhand. Deckhand supports py36 through py37 versions of interpreters.

See Deckhand Coding Guide for more information on contribution guidelines.

Docker

The distribution specific Deckhand Dockerfile.{DISTRO} is located in /images/deckhand along with any arti-
facts built specifically to enable the container image. Make targets are used for generating and testing the artifacts.

• make images - Build the Deckhand Docker image.

Helm

The Deckhand Helm chart is located in /charts/deckhand. Local testing currently only supports linting and
previewing the rendered artifacts. Richer functional chart testing is a TODO.

• make charts - Pull down dependencies for the Deckhand charts and package everything into a .tgz file.

• make helm_lint - Lint the Helm charts.

• make dry-run - Render the chart and output the Kubernetes manifest YAML documents.

Testing

All Deckhand tests are nested under /deckhand/tests.

Deckhand comes equipped with a number of tox targets for running unit and functional tests. See Development
Utilities for a list of commands.

See Testing for more information on testing guidelines.

74 Chapter 4. Contrbitutor’s Guide

https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/keystone/latest/
https://airshipit.readthedocs.io/en/latest/conventions.html
https://tox.readthedocs.io/


deckhand Documentation, Release 0.1

4.1.2 Contribution Guidelines

Deckhand Coding Guide

Deckhand Style Commandments

• Step 1: Read the OpenStack Style Commandments https://docs.openstack.org/hacking/latest/

• Step 2: Read on

Deckhand Specific Commandments

• [D316] Change assertTrue(isinstance(A, B)) by optimal assert like assertIsInstance(A, B).

• [D317] Change assertEqual(type(A), B) by optimal assert like assertIsInstance(A, B).

• [D320] Setting CONF.* attributes directly in tests is forbidden.

• [D322] Method’s default argument shouldn’t be mutable.

• [D324] Ensure that jsonutils.%(fun)s must be used instead of json.%(fun)s

• [D325] str() and unicode() cannot be used on an exception. Remove use or use six.text_type()

• [D334] Change assertTrue/False(A in/not in B, message) to the more specific assertIn/NotIn(A, B, message)

• [D335] Check for usage of deprecated assertRaisesRegexp

• [D336] Must use a dict comprehension instead of a dict constructor with a sequence of key-value pairs.

• [D338] Change assertEqual(A in B, True), assertEqual(True, A in B), assertEqual(A in B, False) or assertE-
qual(False, A in B) to the more specific assertIn/NotIn(A, B)

• [D339] Check common raise_feature_not_supported() is used for v2.1 HTTPNotImplemented response.

• [D344] Python 3: do not use dict.iteritems.

• [D345] Python 3: do not use dict.iterkeys.

• [D346] Python 3: do not use dict.itervalues.

• [D350] Policy registration should be in the central location deckhand/policies/.

• [D352] LOG.warn is deprecated. Enforce use of LOG.warning.

• [D355] Enforce use of assertTrue/assertFalse

• [D356] Enforce use of assertIs/assertIsNot

• [D357] Use oslo_utils.uuidutils or uuidsentinel(in case of test cases) to generate UUID instead of uuid4().

• [D358] Return must always be followed by a space when returning a value.

Creating Unit Tests

For every new feature, unit tests should be created that both test and (implicitly) document the usage of said feature.
If submitting a patch for a bug that had no unit test, a new passing unit test should be added. If a submitted bug fix
does have a unit test, be sure to add a new one that fails without the patch and passes with the patch.

4.1. Contributor’s Guide 75

https://docs.openstack.org/hacking/latest/


deckhand Documentation, Release 0.1

Running Tests

The testing system is based on a combination of tox and testr. The canonical approach to running tests is to simply
run the command tox. This will create virtual environments, populate them with dependencies and run all of the
tests that OpenStack CI systems run. Behind the scenes, tox is running testr run --parallel, but is set up
such that you can supply any additional testr arguments that are needed to tox. For example, you can run: tox --
--analyze-isolation to cause tox to tell testr to add –analyze-isolation to its argument list.

Functional testing leverages gabbi and requires docker as a prerequisite to be run. Functional tests can be executing
by running the command tox -e functional.

Building Docs

Normal Sphinx docs can be built via the setuptools build_sphinx command. To do this via tox, simply run tox
-e docs, which will cause a virtualenv with all of the needed dependencies to be created and then inside of the
virtualenv, the docs will be created and put into doc/build/html.

Reviewing Deckhand Code

Reviewing Deckhand Code

To start read the OpenStack Common Review Checklist

Unit Tests

For any change that adds new functionality to either common functionality or fixes a bug unit tests are required. This
is to ensure we don’t introduce future regressions and to test conditions which we may not hit in the gate runs.

Functional Tests

For any change that adds major new functionality functional tests are required. This is to ensure that the Deckhand
API follows the contract it promises. In addition, functional tests are run against the Deckhand container, which uses
an image built from the latest source code to validate the integrity of the image.

Deprecated Code

Deprecated code should go through a deprecation cycle – long enough for other Airship projects to modify their code
base to reference new code. Features, APIs or configuration options are marked deprecated in the code. Appropriate
warnings will be sent to the end user, operator or library user.

When to approve

• Every patch needs two +2s before being approved.

• Its OK to hold off on an approval until a subject matter expert reviews it.

• If a patch has already been approved but requires a trivial rebase to merge, you do not have to wait for a second
+2, since the patch has already had two +2s.

76 Chapter 4. Contrbitutor’s Guide

https://docs.openstack.org/infra/manual/developers.html#peer-review


deckhand Documentation, Release 0.1

4.1.3 Other Resources

Rest API Policy Enforcement

Policy enforcement in Deckhand leverages the oslo.policy library like all OpenStack projects. The implementa-
tion is located in deckhand.policy. Two types of policy authorization exist in Deckhand:

1) Decorator-level authorization used for wrapping around falcon “on_{HTTP_VERB}” methods. In this case,
if policy authorization fails a 403 Forbidden is always raised.

2) Conditional authorization, which means that the policy is only enforced if a certain set of conditions are true.

Deckhand, for example, will only conditionally enforce listing encrypted documents if a document’s metadata.
storagePolicy is “encrypted”.

Policy Implementation

Deckhand uses authorize from oslo.policy as the latter supports both enforce and authorize.
authorize is stricter because it’ll raise an exception if the policy action is not registered under deckhand.
policies (which enumerates all the legal policy actions and their default rules). This means that attempting to
enforce anything not found in deckhand.policies will error out with a ‘Policy not registered’ message.

See Deckhand’s policy module for more details.

Sample Policy File

The following is a sample Deckhand policy file for adaptation and use. It is auto-generated from Deckhand when this
documentation is built, so if you are having issues with an option, please compare your version of Deckhand with the
version of this documentation.

The sample configuration can also be viewed in file form.

Testing

Note: Deckhand has only been tested against a Ubuntu 16.04 environment. The guide below assumes the user is
using Ubuntu.

Unit testing

Prerequisites

pifpaf is used to spin up a temporary postgresql database for unit tests. The DB URL is set up as an environment
variable via PIFPAF_URL which is referenced by Deckhand’s unit test suite.

1. PostgreSQL must be installed. To do so, run:

$ sudo apt-get update
$ sudo apt-get install postgresql postgresql-contrib -y

4.1. Contributor’s Guide 77

../contributor/api/deckhand.policy.html
_static/deckhand.policy.yaml.sample
https://github.com/jd/pifpaf


deckhand Documentation, Release 0.1

2. When running pifpaf run postgresql (implicitly called by unit tests below), pifpaf uses pg_config
which can be installed by running:

$ sudo apt-get install libpq-dev -y

Overview

Unit testing currently uses an in-memory SQLite database. Since Deckhand’s primary function is to serve as the
back-end storage for Airship, the majority of unit tests perform actual database operations. Mocking is used spar-
ingly because Deckhand is a fairly insular application that lives at the bottom of a very deep stack; Deckhand only
communicates with Keystone and Barbican. As such, validating database operations is paramount to correctly testing
Deckhand.

To run unit tests using SQLite, execute:

$ tox -epy36

against a py36-backed environment, respectively.

To run unit tests using PostgreSQL, execute:

$ tox -epy36-postgresql

To run individual unit tests, run (for example):

$ tox -e py36 -- deckhand.tests.unit.db.test_revisions

Warning: It is not recommended to run postgresql-backed unit tests concurrently. Only run them serially.
This is because, to guarantee true test isolation, the DB tables are re-created each test run. Only one instance of
PostgreSQL is created across all threads, thus causing major conflicts if concurrency > 1.

Functional testing

Prerequisites

• Docker

Deckhand requires Docker to run its functional tests. A basic installation guide for Docker for Ubuntu can be
found here

• uwsgi

Can be installed on Ubuntu systems via:

sudo apt-get install uwsgi -y

Overview

Deckhand uses gabbi as its functional testing framework. Functional tests can be executed via:

$ tox -e functional-dev

78 Chapter 4. Contrbitutor’s Guide

https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://github.com/cdent/gabbi


deckhand Documentation, Release 0.1

You can also run a subset of tests via a regex:

$ tox -e functional-dev -- gabbi.suitemaker.test_gabbi_document-crud-success-multi-
→˓bucket

The command executes tools/functional-tests.sh which:

1) Launches Postgresql inside a Docker container.

2) Sets up a basic Deckhand configuration file that uses Postgresql in its oslo_db connection string.

3) Sets up a custom policy file with very liberal permissions so that gabbi can talk to Deckhand without having to
authenticate against Keystone and pass an admin token to Deckhand.

4) Instantiates Deckhand via uwisgi.

5) Calls gabbi which runs a battery of functional tests.

6) An HTML report that visualizes the result of the test run is output to results/index.html.

Note that functional tests can be run concurrently; the flags --workers and --threads which are passed to
uwsgi can be > 1.

Todo: At this time, there are no functional tests for policy enforcement verification. Negative tests will be added at
a later date to confirm that a 403 Forbidden is raised for each endpoint that does policy enforcement absent necessary
permissions.

CICD

Since it is important to validate the Deckhand image itself, CICD:

• Generates the Deckhand image from the new patchset

• Runs functional tests against the just-produced Deckhand image

Deckhand uses the same script – tools/functional-tests.sh – for CICD testing. To test Deckhand against
a containerized image, run, for example:

export DECKHAND_IMAGE=quay.io/airshipit/deckhand:latest-ubuntu_bionic
tox -e functional-dev

Which will result in the following script output:

Running Deckhand via Docker
+ sleep 5
+ sudo docker run --rm --net=host -p 9000:9000 -v /opt/stack/deckhand/tmp.oBJ6XScFgC:/
→˓etc/deckhand quay.io/airshipit/deckhand:latest-ubuntu_bionic

Warning: For testing dev changes, it is not recommended to follow this approach, as the most up-to-date code is
located in the repository itself. Running tests against a remote image will likely result in false positives.

Troubleshooting

• For any errors related to tox:

4.1. Contributor’s Guide 79



deckhand Documentation, Release 0.1

Ensure that tox is installed:

$ sudo apt-get install tox -y

• For any errors related to running tox -e py36:

Ensure that python3-dev is installed:

$ sudo apt-get install python3-dev -y

deckhand

deckhand package

Subpackages

deckhand.barbican package

Submodules

deckhand.barbican.cache module

deckhand.barbican.cache.invalidate()

deckhand.barbican.cache.lookup_by_payload(barbicanclient, **kwargs)
Look up secret reference using the secret payload.

Allows for quick lookup of secret references using secret_payload via caching (essentially a reverse-
lookup).

Useful for ensuring that documents with the same secret payload (which occurs when the same document is
recreated across different revisions) persist the same secret reference in the database – and thus quicker future
lookup_by_ref lookups.

deckhand.barbican.cache.lookup_by_ref(barbicanclient, secret_ref)
Look up secret object using secret reference.

Allows for quick lookup of secret payloads using secret_ref via caching.

deckhand.barbican.client_wrapper module

class deckhand.barbican.client_wrapper.BarbicanClientWrapper
Bases: object

Barbican client wrapper class that encapsulates authentication logic.

call(method, *args, **kwargs)
Call a barbican client method and retry on stale token.

Parameters

• method – Name of the client method to call as a string.

• args – Client method arguments.

• kwargs – Client method keyword arguments.

80 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

• retry_on_conflict – Boolean value. Whether the request should be retried in case
of a conflict error (HTTP 409) or not. If retry_on_conflict is False the cached instance of
the client won’t be used. Defaults to True.

deckhand.barbican.driver module

class deckhand.barbican.driver.BarbicanDriver
Bases: object

create_secret(secret_doc)
Create a secret.

Parameters secret_doc (document.DocumentDict) – Document with
storagePolicy of “encrypted”.

Returns Secret reference returned by Barbican

Return type str

delete_secret(secret_ref)
Delete a secret.

get_secret(secret_ref, src_doc)
Get a secret.

Module contents

deckhand.client package

Submodules

deckhand.client.base module

Base utilities to build API operation managers and objects on top of.

class deckhand.client.base.Manager(api)
Bases: object

Manager for API service.

Managers interact with a particular type of API (buckets, revisions, etc.) and provide CRUD operations for
them.

api_version

client

resource_class = None

class deckhand.client.base.Resource(manager, info, loaded=False)
Bases: object

Base class for OpenStack resources (tenant, user, etc.).

This is pretty much just a bag for attributes.

HUMAN_ID = False

NAME_ATTR = 'name'

4.1. Contributor’s Guide 81



deckhand Documentation, Release 0.1

api_version

get()
Support for lazy loading details.

Some clients, such as novaclient have the option to lazy load the details, details which can be loaded with
this function.

human_id
Human-readable ID which can be used for bash completion.

is_loaded()

set_info(key, value)

set_loaded(val)

to_dict()

deckhand.client.base.get_url_with_filter(url, filters)

deckhand.client.base.getid(obj)
Get object’s ID or object.

Abstracts the common pattern of allowing both an object or an object’s ID as a parameter when dealing with
relationships.

deckhand.client.base.prepare_query_string(params)
Convert dict params to query string

deckhand.client.buckets module

class deckhand.client.buckets.Bucket(manager, info, loaded=False)
Bases: deckhand.client.base.Resource

class deckhand.client.buckets.BucketManager(api)
Bases: deckhand.client.base.Manager

Manage Bucket resources.

resource_class
alias of Bucket

update(bucket_name, documents)
Create, update or delete documents associated with a bucket.

Parameters

• bucket_name (str) – Gets or creates a bucket by this name.

• documents (str) – YAML-formatted string of Deckhand-compatible documents to cre-
ate in the bucket.

Returns The created documents along with their associated bucket and revision.

deckhand.client.client module

Deckhand Client interface. Handles the REST calls and responses.

82 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

class deckhand.client.client.Client(api_version=None, auth=None, auth_token=None,
auth_url=None, cacert=None, cert=None, di-
rect_use=True, endpoint_override=None, end-
point_type=’publicURL’, http_log_debug=False,
insecure=False, logger=None, password=None,
project_domain_id=None, project_domain_name=None,
project_id=None, project_name=None, re-
gion_name=None, service_name=None, ser-
vice_type=’deckhand’, session=None, timeout=None,
user_domain_id=None, user_domain_name=None,
user_id=None, username=None, **kwargs)

Bases: object

Top-level object to access the Deckhand API.

api_version

projectid

tenant_id

class deckhand.client.client.SessionClient(*args, **kwargs)
Bases: keystoneauth1.adapter.Adapter

Wrapper around keystoneauth1 client session implementation and used internally by Client below.

Injects Deckhand-specific YAML headers necessary for communication with the Deckhand API.

client_name = 'python-deckhandclient'

client_version = '1.0'

request(url, method, **kwargs)

deckhand.client.exceptions module

Exception definitions.

exception deckhand.client.exceptions.BadRequest(code, url, method, message=None,
details=None, reason=None, apiVer-
sion=None, retry=False, status=None,
kind=None, metadata=None)

Bases: deckhand.client.exceptions.ClientException

HTTP 400 - Bad request: you sent some malformed data.

http_status = 400

message = 'Bad request'

exception deckhand.client.exceptions.ClientException(code, url, method, mes-
sage=None, details=None, rea-
son=None, apiVersion=None,
retry=False, status=None,
kind=None, metadata=None)

Bases: Exception

The base exception class for all exceptions this library raises.

message = 'Unknown Error'

4.1. Contributor’s Guide 83



deckhand Documentation, Release 0.1

exception deckhand.client.exceptions.Conflict(code, url, method, message=None,
details=None, reason=None, apiVer-
sion=None, retry=False, status=None,
kind=None, metadata=None)

Bases: deckhand.client.exceptions.ClientException

HTTP 409 - Conflict

http_status = 409

message = 'Conflict'

exception deckhand.client.exceptions.Forbidden(code, url, method, message=None,
details=None, reason=None, apiVer-
sion=None, retry=False, status=None,
kind=None, metadata=None)

Bases: deckhand.client.exceptions.ClientException

HTTP 403 - Forbidden: your credentials don’t give you access to this resource.

http_status = 403

message = 'Forbidden'

exception deckhand.client.exceptions.HTTPNotImplemented(code, url, method, mes-
sage=None, details=None,
reason=None, apiVer-
sion=None, retry=False,
status=None, kind=None,
metadata=None)

Bases: deckhand.client.exceptions.ClientException

HTTP 501 - Not Implemented: the server does not support this operation.

http_status = 501

message = 'Not Implemented'

exception deckhand.client.exceptions.MethodNotAllowed(code, url, method, mes-
sage=None, details=None,
reason=None, apiVer-
sion=None, retry=False,
status=None, kind=None,
metadata=None)

Bases: deckhand.client.exceptions.ClientException

HTTP 405 - Method Not Allowed

http_status = 405

message = 'Method Not Allowed'

exception deckhand.client.exceptions.NotFound(code, url, method, message=None,
details=None, reason=None, apiVer-
sion=None, retry=False, status=None,
kind=None, metadata=None)

Bases: deckhand.client.exceptions.ClientException

HTTP 404 - Not found

http_status = 404

message = 'Not found'

84 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

exception deckhand.client.exceptions.Unauthorized(code, url, method, message=None,
details=None, reason=None,
apiVersion=None, retry=False,
status=None, kind=None, meta-
data=None)

Bases: deckhand.client.exceptions.ClientException

HTTP 401 - Unauthorized: bad credentials.

http_status = 401

message = 'Unauthorized'

deckhand.client.exceptions.from_response(response, body, url, method=None)
Return an instance of a ClientException or subclass based on a request’s response.

deckhand.client.revisions module

class deckhand.client.revisions.Revision(manager, info, loaded=False)
Bases: deckhand.client.base.Resource

class deckhand.client.revisions.RevisionManager(api)
Bases: deckhand.client.base.Manager

Manage Revision resources.

deepdiff(revision_id, comparison_revision_id)
Get revision deepdiff between two revisions.

delete_all()
Delete all revisions.

Warning: Effectively the same as purging the entire database.

diff(revision_id, comparison_revision_id)
Get revision diff between two revisions.

documents(revision_id, rendered=True, **filters)
Get a list of revision documents or rendered documents.

Parameters

• revision_id (int) – Revision ID.

• rendered (bool) – If True, returns list of rendered documents. Else returns list of
unmodified, raw documents.

• filters – Filters to apply to response body.

Returns List of documents or rendered documents.

Return type list[Revision]

get(revision_id)
Get details for a revision.

list(**filters)
Get a list of revisions.

resource_class
alias of Revision

4.1. Contributor’s Guide 85



deckhand Documentation, Release 0.1

rollback(revision_id)
Rollback to a previous revision, effectively creating a new one.

deckhand.client.tags module

class deckhand.client.tags.RevisionTag(manager, info, loaded=False)
Bases: deckhand.client.base.Resource

class deckhand.client.tags.RevisionTagManager(api)
Bases: deckhand.client.base.Manager

Manage RevisionTag resources.

create(revision_id, tag, data=None)
Create a revision tag.

delete(revision_id, tag)
Delete a revision tag.

delete_all(revision_id)
Delete all revision tags.

get(revision_id, tag)
Get details for a revision tag.

list(revision_id)
Get list of revision tags.

resource_class
alias of RevisionTag

Module contents

deckhand.common package

Submodules

deckhand.common.document module

class deckhand.common.document.DocumentDict
Bases: dict

Wrapper for a document.

Implements convenient properties for nested, commonly accessed document keys. Property setters are only
implemented for mutable data.

Useful for accessing nested dictionary keys without having to worry about exceptions getting thrown.

Note: As a rule of thumb, setters for any metadata properties should be avoided. Only implement or use for
well-understood edge cases.

actions

data

86 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

classmethod from_list(documents)
Convert an iterable of documents into instances of this class.

Parameters documents (iterable) – Documents to wrap in this class.

has_barbican_ref

has_replacement

is_abstract

is_control

is_encrypted

is_replacement

labels

layer

layer_order

layeringDefinition

layering_definition

meta

metadata

name

parent_selector

classmethod redact(field)

replaced_by

schema

storage_policy

substitutions

deckhand.common.document.document_dict_representer(dumper, data)

deckhand.common.utils module

deckhand.common.utils.deepfilter(dct, **filters)
Match dct against all the filters in filters.

Check whether dct matches all the fitlers in filters. The filters can reference nested attributes, attributes
that are contained within other dictionaries within dct.

Useful for querying whether metadata.name or metadata.layeringDefinition.layerOrder
match specific values.

Parameters

• dct (dict) – The dictionary to check against all the filters.

• filters (dict) – Dictionary of key-value pairs used for filtering out unwanted results.

Returns True if the dictionary satisfies all the filters, else False.

4.1. Contributor’s Guide 87



deckhand Documentation, Release 0.1

deckhand.common.utils.jsonpath_parse(data, jsonpath, match_all=False)
Parse value in the data for the given jsonpath.

Retrieve the nested entry corresponding to data[jsonpath]. For example, a jsonpath of “.foo.bar.baz”
means that the data section should conform to:

---
foo:

bar:
baz: <data_to_be_extracted_here>

Parameters

• data – The data section of a document.

• jsonpath – A multi-part key that references a nested path in data.

• match_all – Whether to return all matches or just the first one.

Returns Entry that corresponds to data[jsonpath] if present, else None.

Example:

src_name = sub['src']['name']
src_path = sub['src']['path']
src_doc = db_api.document_get(schema=src_schema, name=src_name)
src_secret = utils.jsonpath_parse(src_doc['data'], src_path)
# Do something with the extracted secret from the source document.

deckhand.common.utils.jsonpath_replace(data, value, jsonpath, pattern=None, recurse=None,
src_pattern=None, src_match_group=0)

Update value in data at the path specified by jsonpath.

If the nested path corresponding to jsonpath isn’t found in data, the path is created as an empty {} for each
sub-path along the jsonpath.

Example:

doc = {
'data': {

'some_url': http://admin:INSERT_PASSWORD_HERE@svc-name:8080/v1
}

}
secret = 'super-duper-secret'
path = '$.some_url'
pattern = 'INSERT_[A-Z]+_HERE'
replaced_data = utils.jsonpath_replace(

doc['data'], secret, path, pattern)
# The returned URL will look like:
# http://admin:super-duper-secret@svc-name:8080/v1
doc['data'].update(replaced_data)

Parameters

• data – The data section of a document.

• value – The new value for data[jsonpath].

• jsonpath – A multi-part key that references a nested path in data. Must begin with “.”
or “$” (without quotes).

88 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

• pattern – A regular expression pattern.

• recurse – Dictionary containing a single key called “depth” which specifies the recursion
depth. If provided, indicates that recursive pattern substitution should be performed, begin-
ning at jsonpath. Best practice is to limit the scope of the recursion as much as possible:
e.g. avoid passing in “$” as the jsonpath, but rather a JSON path that lives closer to the
nested strings in question. Optimize performance by choosing an ideal depth value; -1
will cause recursion depth to be infinite.

• src_pattern – An optional regular expression pattern to apply to the source value.
The pattern is applied using re.search(), and may include parenthesized subgroups. Only the
matched portion of value is considered when substituting into the destination document.

• src_match_group – The numbered subgroup of the src_pattern match to use as
the substitution source, where 0 (the default) represents the entire match, 1 is the first paren-
thesized subgroup, etc.

Returns Updated value at data[jsonpath].

Raises MissingDocumentPattern if pattern is not None and data[jsonpath] doesn’t exist.

Raises ValueError – If jsonpath doesn’t begin with “.”

deckhand.common.utils.multisort(data, sort_by=None, order_by=None)
Sort a dictionary by multiple keys.

The order of the keys is important. The first key takes precedence over the second key, and so forth.

Parameters

• data – Dictionary to be sorted.

• sort_by (list or string) – list or string of keys to sort data by.

Returns Sorted dictionary by each key.

deckhand.common.utils.redact_document(document)
Redact data and substitutions sections for document.

Parameters document (dict) – Document whose data to redact.

Returns Document with redacted data.

Return type dict

deckhand.common.utils.redact_documents(documents)
Redact sensitive data for each document in documents.

Sensitive data includes data, substitutions[n].src.path, and substitutions[n].dest.
path fields.

Parameters documents (list[dict]) – List of documents whose data to redact.

Returns Documents with redacted sensitive data.

Return type list[dict]

deckhand.common.utils.to_camel_case(s)
Convert string to camel case.

deckhand.common.utils.to_snake_case(name)
Convert string to snake case.

4.1. Contributor’s Guide 89



deckhand Documentation, Release 0.1

deckhand.common.validation_message module

class deckhand.common.validation_message.ValidationMessage(message=’Document
validation er-
ror.’, error=True,
name=’Deckhand
validation error’,
level=’Error’,
doc_schema=”,
doc_name=”,
doc_layer=”, di-
agnostic=”)

Bases: object

ValidationMessage per Airship convention: https://github.com/openstack/airship-in-a-bottle/blob/master/doc/
source/api-conventions.rst#output-structure # noqa

Construction of ValidationMessage message:

Parameters

• message (string) – Validation failure message.

• error (boolean) – True or False, if this is an error message.

• name (string) – Identifying name of the validation.

• level (string) – The severity of validation result, as “Error”, “Warning”, or “Info”

• schema (string) – The schema of the document being validated.

• doc_name (string) – The name of the document being validated.

• diagnostic (string) – Information about what lead to the message, or details for
resolution.

format_message()
Return ValidationMessage message.

Returns The ValidationMessage for the Validation API response.

Return type dict

Module contents

deckhand.conf package

Submodules

deckhand.conf.config module

deckhand.conf.config.list_opts()

deckhand.conf.config.register_opts(conf)

90 Chapter 4. Contrbitutor’s Guide

https://github.com/openstack/airship-in-a-bottle/blob/master/doc/source/api-conventions.rst#output-structure
https://github.com/openstack/airship-in-a-bottle/blob/master/doc/source/api-conventions.rst#output-structure


deckhand Documentation, Release 0.1

deckhand.conf.opts module

deckhand.conf.opts.list_opts()
Entry point used only in the context of sample file generation.

This is the single point of entry to generate the sample configuration file for Deckhand. It collects all the
necessary info from the other modules in this package. It is assumed that:

• every other module in this package has a ‘list_opts’ function which return a dict where * the keys are
strings which are the group names * the value of each key is a list of config options for that group

• the deckhand.conf package doesn’t have further packages with config options

Module contents

deckhand.control package

Subpackages

deckhand.control.views package

Submodules

deckhand.control.views.document module

class deckhand.control.views.document.ViewBuilder
Bases: deckhand.control.common.ViewBuilder

Model document API responses as a python dictionary.

There are 2 cases for rendering the response body below.

1. Treat the case where all documents in a bucket have been deleted as a special case. The response body
must still include the revision_id and bucket_id. It is not meaningful to include other data about the deleted
documents as technically they don’t exist. 2. Add all non-deleted documents to the response body.

list(documents)

deckhand.control.views.revision module

class deckhand.control.views.revision.ViewBuilder
Bases: deckhand.control.common.ViewBuilder

Model revision API responses as a python dictionary.

list(revisions)

show(revision)
Generate view for showing revision details.

Each revision’s documents should only be validation policies.

4.1. Contributor’s Guide 91



deckhand Documentation, Release 0.1

deckhand.control.views.revision_tag module

class deckhand.control.views.revision_tag.ViewBuilder
Bases: deckhand.control.common.ViewBuilder

Model revision tag API responses as a python dictionary.

list(tags)

show(tag)

deckhand.control.views.validation module

class deckhand.control.views.validation.ViewBuilder
Bases: deckhand.control.common.ViewBuilder

Model validation API responses as a python dictionary.

detail(entries)

list(validations)

list_entries(entries)

show(validation)

show_entry(entry)

Module contents

Submodules

deckhand.control.api module

deckhand.control.api.init_application()
Main entry point for initializing the Deckhand API service.

Create routes for the v1.0 API and sets up logging.

deckhand.control.api.setup_logging(conf)

deckhand.control.base module

class deckhand.control.base.BaseResource
Bases: object

Base resource class for implementing API resources.

from_yaml(req, expect_list=True, allow_empty=False)
Reads and converts YAML-formatted request body into a dict or list of dicts.

Parameters

• req – Falcon Request object.

• expect_list – Whether to expect a list or an object.

• allow_empty – Whether the request body can be empty.

92 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

Returns List of dicts if expect_list is True or else a dict.

no_authentication_methods = []

on_options(req, resp)

class deckhand.control.base.DeckhandRequest(env, options=None)
Bases: falcon.request.Request

context_type
alias of deckhand.context.RequestContext

project_id

roles

user_id

deckhand.control.buckets module

class deckhand.control.buckets.BucketsResource
Bases: deckhand.control.base.BaseResource

API resource for realizing CRUD operations for buckets.

on_put(req, resp, bucket_name=None)

view_builder = <deckhand.control.views.document.ViewBuilder object>

deckhand.control.common module

class deckhand.control.common.ViewBuilder
Bases: object

Model API responses as dictionaries.

deckhand.control.common.get_rendered_docs(revision_id, cleartext_secrets=False, **filters)
Helper for retrieving rendered documents for revision_id.

Retrieves raw documents from DB, renders them, and returns rendered result set.

Parameters

• revision_id (int) – Revision ID whose documents to render.

• cleartext_secrets (bool) – Whether to show unencrypted data as cleartext.

• filters – Filters used for retrieving raw documents from DB.

Returns List of rendered documents.

Return type list[dict]

deckhand.control.common.invalidate_cache_data()
Invalidate all data associated with document rendering.

deckhand.control.common.sanitize_params(allowed_params)
Sanitize query string parameters passed to an HTTP request.

Overrides the params attribute in the req object with the sanitized params. Invalid parameters are ignored.

Parameters allowed_params – The request’s query string parameters.

4.1. Contributor’s Guide 93



deckhand Documentation, Release 0.1

deckhand.control.health module

class deckhand.control.health.HealthResource
Bases: deckhand.control.base.BaseResource

Basic health check for Deckhand

A resource that allows other Airship components to access and validate Deckhand’s health status. The response
must be returned within 30 seconds for Deckhand to be deemed “healthy”. Unauthenticated GET.

no_authentication_methods = ['GET']

on_get(req, resp)

deckhand.control.middleware module

class deckhand.control.middleware.ContextMiddleware
Bases: object

process_resource(req, resp, resource, params)
Handle the authentication needs of the routed request.

Parameters

• req – falcon request object that will be examined for method

• resource – falcon resource class that will be examined for authentication needs by
looking at the no_authentication_methods list of http methods. By default, this will assume
that all requests need authentication unless noted in this array. Note that this does not
bypass any authorization checks, which will fail if the user is not authenticated.

Raises falcon.HTTPUnauthorized: when value of the ‘X-Identity-Status’ header is not ‘Con-
firmed’ and anonymous access is disallowed.

class deckhand.control.middleware.HookableMiddlewareMixin
Bases: object

Provides methods to extract before and after hooks from WSGI Middleware Prior to falcon 0.2.0b1, it’s neces-
sary to provide falcon with middleware as “hook” functions that are either invoked before (to process requests)
or after (to process responses) the API endpoint code runs. This mixin allows the process_request and pro-
cess_response methods from a typical WSGI middleware object to be extracted for use as these hooks, with the
appropriate method signatures.

as_after_hook()
Extract process_response method as “after” hook :return: after hook function

as_before_hook()
Extract process_request method as “before” hook :return: before hook function

class deckhand.control.middleware.LoggingMiddleware
Bases: object

process_resource(req, resp, resource, params)

process_response(req, resp, resource, req_succeeded)

class deckhand.control.middleware.YAMLTranslator
Bases: deckhand.control.middleware.HookableMiddlewareMixin, object

Middleware for converting all responses (error and success) to YAML.

94 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

falcon error exceptions use JSON formatting and headers by default. This middleware will intercept all
responses and guarantee they are YAML format.

Note: This does not include the 401 Unauthorized that is raised by keystonemiddleware which is exe-
cuted in the pipeline before falcon middleware.

process_request(req, resp)
Performs content type enforcement on behalf of REST verbs.

process_response(req, resp, resource, req_succeeded)
Converts responses to application/x-yaml content type.

deckhand.control.no_oauth_middleware module

class deckhand.control.no_oauth_middleware.NoAuthFilter(app, forged_roles=None)
Bases: object

PasteDeploy filter for NoAuth to be used in testing.

deckhand.control.no_oauth_middleware.noauth_filter_factory(global_conf,
forged_roles)

Create a NoAuth paste deploy filter

Parameters forged_roles – A space seperated list for roles to forge on requests

deckhand.control.revision_deepdiffing module

class deckhand.control.revision_deepdiffing.RevisionDeepDiffingResource
Bases: deckhand.control.base.BaseResource

API resource for realizing revision deepdiffing.

on_get(req, resp, revision_id, comparison_revision_id)

deckhand.control.revision_diffing module

class deckhand.control.revision_diffing.RevisionDiffingResource
Bases: deckhand.control.base.BaseResource

API resource for realizing revision diffing.

on_get(req, resp, revision_id, comparison_revision_id)

deckhand.control.revision_documents module

class deckhand.control.revision_documents.RenderedDocumentsResource
Bases: deckhand.control.base.BaseResource

API resource for realizing rendered documents endpoint.

Rendered documents are also revision documents, but unlike revision documents, they are finalized documents,
having undergone secret substitution and document layering.

4.1. Contributor’s Guide 95



deckhand Documentation, Release 0.1

Returns a multi-document YAML response containing all the documents matching the filters specified via query
string parameters. Returned documents will have secrets substituted into them and be layered with other docu-
ments in the revision, in accordance with the LayeringPolicy that currently exists in the system.

on_get(req, resp, revision_id)

view_builder = <deckhand.control.views.document.ViewBuilder object>

class deckhand.control.revision_documents.RevisionDocumentsResource
Bases: deckhand.control.base.BaseResource

API resource for realizing revision documents endpoint.

on_get(req, resp, revision_id)
Returns all documents for a revision_id.

Returns a multi-document YAML response containing all the documents matching the filters specified via
query string parameters. Returned documents will be as originally posted with no substitutions or layering
applied.

view_builder = <deckhand.control.views.document.ViewBuilder object>

deckhand.control.revision_tags module

class deckhand.control.revision_tags.RevisionTagsResource
Bases: deckhand.control.base.BaseResource

API resource for realizing CRUD for revision tags.

on_delete(req, resp, revision_id, tag=None)
Deletes a single tag or deletes all tags for a revision.

on_get(req, resp, revision_id, tag=None)
Show tag details or list all tags for a revision.

on_post(req, resp, revision_id, tag=None)
Creates a revision tag.

deckhand.control.revisions module

class deckhand.control.revisions.RevisionsResource
Bases: deckhand.control.base.BaseResource

API resource for realizing CRUD operations for revisions.

on_delete(req, resp)

on_get(req, resp, revision_id=None)
Returns list of existing revisions.

Lists existing revisions and reports basic details including a summary of validation status for each deck-
hand/ValidationPolicy that is part of each revision.

view_builder = <deckhand.control.views.revision.ViewBuilder object>

deckhand.control.rollback module

class deckhand.control.rollback.RollbackResource
Bases: deckhand.control.base.BaseResource

96 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

API resource for realizing revision rollback.

on_post(req, resp, revision_id)

view_builder = <deckhand.control.views.revision.ViewBuilder object>

deckhand.control.validations module

class deckhand.control.validations.ValidationsDetailsResource
Bases: deckhand.control.base.BaseResource

API resource for listing revision validations with details.

on_get(req, resp, revision_id)

view_builder = <deckhand.control.views.validation.ViewBuilder object>

class deckhand.control.validations.ValidationsResource
Bases: deckhand.control.base.BaseResource

API resource for realizing validations endpoints.

on_get(req, resp, revision_id, validation_name=None, entry_id=None)

on_post(req, resp, revision_id, validation_name)

view_builder = <deckhand.control.views.validation.ViewBuilder object>

deckhand.control.versions module

class deckhand.control.versions.VersionsResource
Bases: deckhand.control.base.BaseResource

Versions resource

Returns the list of supported versions of the Deckhand API. Unauthenticated GET.

no_authentication_methods = ['GET']

on_get(req, resp)

Module contents

deckhand.db package

Subpackages

deckhand.db.sqlalchemy package

Submodules

deckhand.db.sqlalchemy.api module

Defines interface for DB access.

deckhand.db.sqlalchemy.api.bucket_get_all(session=None, **filters)
Return list of all buckets.

4.1. Contributor’s Guide 97



deckhand Documentation, Release 0.1

Parameters session – Database session object.

Returns List of dictionary representations of retrieved buckets.

deckhand.db.sqlalchemy.api.bucket_get_or_create(bucket_name, session=None)
Retrieve or create bucket.

Retrieve the Bucket DB object by bucket_name if it exists or else create a new Bucket DB object by
bucket_name.

Parameters

• bucket_name – Unique identifier used for creating or retrieving a bucket.

• session – Database session object.

Returns Dictionary representation of created/retrieved bucket.

deckhand.db.sqlalchemy.api.document_delete(document, revision_id, bucket, session=None)
Delete a document

Creates a new document with the bare minimum information about the document that is to be deleted, and then
sets the appropriate deleted fields

Parameters

• document – document object/dict to be deleted

• revision_id – id of the revision where the document is to be deleted

• bucket – bucket object/dict where the document will be deleted from

• session – Database session object.

Returns dict representation of deleted document

deckhand.db.sqlalchemy.api.document_get(session=None, raw_dict=False, revision_id=None,
**filters)

Retrieve the first document for revision_id that match filters.

Parameters

• session – Database session object.

• raw_dict – Whether to retrieve the exact way the data is stored in DB if True, else the
way users expect the data.

• revision_id – The ID corresponding to the Revision object. If the it is “latest”, then
retrieve the latest revision, if one exists.

• filters – Dictionary attributes (including nested) used to filter out revision documents.

Returns Dictionary representation of retrieved document.

Raises DocumentNotFound if the document wasn’t found.

deckhand.db.sqlalchemy.api.document_get_all(session=None, raw_dict=False, revi-
sion_id=None, **filters)

Retrieve all documents for revision_id that match filters.

Parameters

• session – Database session object.

• raw_dict – Whether to retrieve the exact way the data is stored in DB if True, else the
way users expect the data.

98 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

• revision_id – The ID corresponding to the Revision object. If the it is “latest”, then
retrieve the latest revision, if one exists.

• filters – Dictionary attributes (including nested) used to filter out revision documents.

Returns Dictionary representation of each retrieved document.

deckhand.db.sqlalchemy.api.documents_create(bucket_name, documents, session=None)
Create a set of documents and associated bucket.

If no changes are detected, a new revision will not be created. This allows services to periodically re-register
their schemas without creating unnecessary revisions.

Parameters

• bucket_name – The name of the bucket with which to associate created documents.

• documents – List of documents to be created.

• session – Database session object.

Returns List of created documents in dictionary format.

Raises DocumentExists – If the document already exists in the DB for any bucket.

deckhand.db.sqlalchemy.api.documents_delete_from_buckets_list(bucket_names,
session=None)

Delete all documents in the provided list of buckets

Parameters

• bucket_names – list of bucket names for which the associated buckets and their docu-
ments need to be deleted.

• session – Database session object.

Returns A new model.Revisions object after all the documents have been deleted.

deckhand.db.sqlalchemy.api.drop_db()

deckhand.db.sqlalchemy.api.get_engine()

deckhand.db.sqlalchemy.api.get_session(autocommit=True, expire_on_commit=False)

deckhand.db.sqlalchemy.api.raw_query(query, **kwargs)
Execute a raw query against the database.

deckhand.db.sqlalchemy.api.require_revision_exists(f)
Decorator to require the specified revision to exist.

Requires the wrapped function to use revision_id as the first argument. If revision_id is not provided, then the
check is not performed.

deckhand.db.sqlalchemy.api.require_unique_document_schema(schema=None)
Decorator to enforce only one singleton document exists in the system.

An example of a singleton document is a LayeringPolicy document.

Only one singleton document can exist within the system at any time. It is an error to attempt to insert a new
document with the same schema if it has a different metadata.name than the existing document.

A singleton document that already exists can be updated, if the document that is passed in has the same
name/schema as the existing one.

The existing singleton document can be replaced by first deleting it and only then creating a new one.

4.1. Contributor’s Guide 99



deckhand Documentation, Release 0.1

Raises SingletonDocumentConflict – if a singleton document in the system already exists
and any of the documents to be created has the same schema but has a metadata.name that
differs from the one already registered.

deckhand.db.sqlalchemy.api.revision_create(session=None)
Create a revision.

Parameters session – Database session object.

Returns Dictionary representation of created revision.

deckhand.db.sqlalchemy.api.revision_delete_all()
Delete all revisions and resets primary key index back to 1 for each table in the database.

Warning: Effectively purges all data from database.

Parameters session – Database session object.

Returns None

deckhand.db.sqlalchemy.api.revision_documents_get(revision_id=None, in-
clude_history=True,
unique_only=True, session=None,
**filters)

Return the documents that match filters for the specified revision_id.

Parameters

• revision_id – The ID corresponding to the Revision object. If the ID is None, then
retrieve the latest revision, if one exists.

• include_history – Return all documents for revision history prior and up to current
revision, if True. Default is True.

• unique_only – Return only unique documents if True. Default is True.

• session – Database session object.

• filters – Key-value pairs used for filtering out revision documents.

Returns All revision documents for revision_id that match the filters, including document
revision history if applicable.

Raises RevisionNotFound – if the revision was not found.

deckhand.db.sqlalchemy.api.revision_get(revision_id=None, session=None)
Return the specified revision_id.

Parameters

• revision_id – The ID corresponding to the Revision object.

• session – Database session object.

Returns Dictionary representation of retrieved revision.

Raises RevisionNotFound – if the revision was not found.

deckhand.db.sqlalchemy.api.revision_get_all(session=None, **filters)
Return list of all revisions.

Parameters session – Database session object.

Returns List of dictionary representations of retrieved revisions.

100 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

deckhand.db.sqlalchemy.api.revision_get_latest(session=None)
Return the latest revision.

Parameters session – Database session object.

Returns Dictionary representation of latest revision.

deckhand.db.sqlalchemy.api.revision_rollback(revision_id, latest_revision, session=None)
Rollback the latest revision to revision specified by revision_id.

Rolls back the latest revision to the revision specified by revision_id thereby creating a new, carbon-copy
revision.

Parameters

• revision_id – Revision ID to which to rollback.

• latest_revision – Dictionary representation of the latest revision in the system.

Returns The newly created revision.

deckhand.db.sqlalchemy.api.revision_tag_create(revision_id, tag, data=None, ses-
sion=None)

Create a revision tag.

If a tag already exists by name tag, the request is ignored.

Parameters

• revision_id – ID corresponding to Revision DB object.

• tag – Name of the revision tag.

• data – Dictionary of data to be associated with tag.

• session – Database session object.

Returns The tag that was created if not already present in the database, else None.

Raises RevisionTagBadFormat – If data is neither None nor dictionary.

deckhand.db.sqlalchemy.api.revision_tag_delete(revision_id, tag, session=None)
Delete a specific tag for a revision.

Parameters

• revision_id – ID corresponding to Revision DB object.

• tag – Name of the revision tag.

• session – Database session object.

Returns None

deckhand.db.sqlalchemy.api.revision_tag_delete_all(revision_id, session=None)
Delete all tags for a revision.

Parameters

• revision_id – ID corresponding to Revision DB object.

• session – Database session object.

Returns None

deckhand.db.sqlalchemy.api.revision_tag_get(revision_id, tag, session=None)
Retrieve tag details.

Parameters

4.1. Contributor’s Guide 101



deckhand Documentation, Release 0.1

• revision_id – ID corresponding to Revision DB object.

• tag – Name of the revision tag.

• session – Database session object.

Returns None

Raises RevisionTagNotFound – If tag for revision_id was not found.

deckhand.db.sqlalchemy.api.revision_tag_get_all(revision_id, session=None)
Return list of tags for a revision.

Parameters

• revision_id – ID corresponding to Revision DB object.

• tag – Name of the revision tag.

• session – Database session object.

Returns List of tags for revision_id, ordered by the tag name by default.

deckhand.db.sqlalchemy.api.setup_db(connection_string, create_tables=False)

deckhand.db.sqlalchemy.api.validation_create(revision_id, val_name, val_data, ses-
sion=None)

deckhand.db.sqlalchemy.api.validation_get_all(revision_id, session=None)

deckhand.db.sqlalchemy.api.validation_get_all_entries(revision_id, val_name=None,
session=None)

deckhand.db.sqlalchemy.api.validation_get_entry(revision_id, val_name, entry_id, ses-
sion=None)

deckhand.db.sqlalchemy.models module

class deckhand.db.sqlalchemy.models.DeckhandBase
Bases: oslo_db.sqlalchemy.models.ModelBase, oslo_db.sqlalchemy.models.
TimestampMixin

Base class for Deckhand Models.

created_at = Column(None, DateTime(), table=None, nullable=False, default=CallableColumnDefault(<function DeckhandBase.<lambda>>))

deleted = Column(None, Boolean(), table=None, nullable=False, default=ScalarElementColumnDefault(False))

deleted_at = Column(None, DateTime(), table=None)

items()
Make the model object behave like a dict.

keys()
Make the model object behave like a dict.

safe_delete(session=None)

save(session=None)
Save this object.

to_dict()
Convert the object into dictionary format.

updated_at = Column(None, DateTime(), table=None, onupdate=CallableColumnDefault(<function DeckhandBase.<lambda>>), default=CallableColumnDefault(<function DeckhandBase.<lambda>>))

values()

102 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

deckhand.db.sqlalchemy.models.create_tables(engine)
Creates database tables for all models with the given engine.

This will be done only by tests that do not have their tables set up by Alembic running during the associated
helm chart db_sync job.

deckhand.db.sqlalchemy.models.register_models(engine, connection_string)
Register the sqlalchemy tables itno the BASE.metadata

Sets up the database model objects. Does not create the tables in the associated configured database. (see
create_tables)

deckhand.db.sqlalchemy.models.unregister_models(engine)
Drop database tables for all models with the given engine.

Module contents

Module contents

deckhand.engine package

Submodules

deckhand.engine.cache module

deckhand.engine.cache.invalidate()
Invalidate the entire cache.

deckhand.engine.cache.invalidate_one(revision_id)
Invalidate single entry in cache.

Parameters revision_id (int) – Revision to invalidate.

deckhand.engine.cache.lookup_by_revision_id(revision_id, documents, **kwargs)
Look up rendered documents by revision_id.

Parameters

• revision_id (int) – Revision ID for which to render documents. Used as key in cache.

• documents (List[dict]) – List of raw documents to render.

• kwargs – Kwargs to pass to render.

Returns Tuple, where first arg is rendered documents and second arg indicates whether cache was
hit.

Return type Tuple[dict, boolean]

deckhand.engine.document_validation module

class deckhand.engine.document_validation.BaseValidator
Bases: object

Abstract base validator.

Sub-classes should override this to implement schema-specific document validation.

4.1. Contributor’s Guide 103



deckhand Documentation, Release 0.1

validate(document)
Validate whether document passes schema validation.

class deckhand.engine.document_validation.DataSchemaValidator(data_schemas)
Bases: deckhand.engine.document_validation.GenericValidator

Validator for validating DataSchema documents.

validate(document, pre_validate=True)
Validate document against built-in schema-specific schemas.

Does not apply to abstract documents.

Parameters

• document (DocumentDict) – Document to validate.

• pre_validate (bool) – Whether to pre-validate documents using built-in schema val-
idation. Skips over externally registered DataSchema documents to avoid false posi-
tives. Default is True.

Raises RuntimeError – If the Deckhand schema itself is invalid.

Returns Tuple of (error message, parent path for failing property) following schema validation
failure.

Return type Generator[Tuple[str, str]]

class deckhand.engine.document_validation.DocumentValidation(documents, exist-
ing_data_schemas=None,
pre_validate=True)

Bases: object

validate_all()
Validate that all documents are correctly formatted.

All concrete documents in the revision must successfully pass their JSON schema validations. The result
of the validation is stored under the “deckhand-document-schema-validation” validation namespace for a
document revision.

All abstract documents must themselves be sanity-checked.

Validation is broken up into 2 “main” stages:

1) Validate that each document contains the basic bulding blocks needed: i.e. schema and metadata
using a “base” schema. Failing this validation is deemed a critical failure, resulting in an exception.

2) Execute DataSchema validations if applicable. Includes all built-in DataSchema documents by
default.

Returns A list of validations (one for each document validated).

Return type List[dict]

Raises

• errors.InvalidDocumentFormat – If the document failed schema validation and
the failure is deemed critical.

• RuntimeError – If a Deckhand schema itself is invalid.

class deckhand.engine.document_validation.DuplicateDocumentValidator
Bases: deckhand.engine.document_validation.BaseValidator

Validator used for guarding against duplicate documents.

104 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

validate(document, **kwargs)
Validates that duplicate document doesn’t exist.

class deckhand.engine.document_validation.GenericValidator
Bases: deckhand.engine.document_validation.BaseValidator

Validator used for validating all documents, regardless whether concrete or abstract, or what version its schema
is.

base_schema

validate(document, **kwargs)
Validate document against basic schema validation.

Sanity-checks each document for mandatory keys like “metadata” and “schema”.

Applies even to abstract documents, as they must be consumed by concrete documents, so basic formatting
is mandatory.

Failure to pass this check results in an error.

Parameters document (dict) – Document to validate.

Raises

• RuntimeError – If the Deckhand schema itself is invalid.

• errors.InvalidDocumentFormat – If the document failed schema validation.

Returns None

validate_metadata(metadata)
Validate metadata against the given schema.

The metadata section of a Deckhand document describes a schema defining just the metadata section.
Use that declaration to choose a schema for validating metadata.

Parameters metadata (dict) – Document metadata section to validate

Returns list of validation errors or empty list for success

deckhand.engine.layering module

class deckhand.engine.layering.DocumentLayering(documents, validate=True,
fail_on_missing_sub_src=True,
encryption_sources=None, cleart-
ext_secrets=False)

Bases: object

Class responsible for handling document layering.

Layering is controlled in two places:

1. The LayeringPolicy control document, which defines the valid layers and their order of precedence.

2. In the metadata.layeringDefinition section of normal (metadata.schema=metadata/
Document/v1.0) documents.

Note: Only documents with the same schema are allowed to be layered together into a fully rendered docu-
ment.

documents

4.1. Contributor’s Guide 105



deckhand Documentation, Release 0.1

render()
Perform layering on the list of documents passed to __init__.

Each concrete document will undergo layering according to the actions defined by its metadata.
layeringDefinition. Documents are layered with their parents. A parent document’s schema
must match that of the child, and its metadata.labels must much the child’s metadata.
layeringDefinition.parentSelector.

Returns The list of concrete rendered documents.

Return type List[dict]

Raises

• UnsupportedActionMethod – If the layering action isn’t found among self.
SUPPORTED_METHODS.

• MissingDocumentKey – If a layering action path isn’t found in both the parent and
child documents being layered together.

secrets_substitution

deckhand.engine.render module

deckhand.engine.render.render(revision_id, documents, encryption_sources=None, cleart-
ext_secrets=False)

Render revision documents for revision_id using raw documents.

Parameters

• revision_id (int) – Key used for caching rendered documents by.

• documents (List[dict]) – List of raw documents corresponding to revision_id
to render.

• encryption_sources (dict) – A dictionary that maps the reference contained in the
destination document’s data section to the actual unecrypted data. If encrypting data with
Barbican, the reference will be a Barbican secret reference.

• cleartext_secrets (bool) – Whether to show unencrypted data as cleartext.

Returns Rendered documents for revision_id.

Return type List[dict]

deckhand.engine.render.validate_render(revision_id, rendered_documents, validator)
Validate rendered documents using validator.

Parameters

• revision_id (int) – Key used for caching rendered documents by.

• documents (List[dict]) – List of rendered documents corresponding to
revision_id.

• validator (deckhand.engine.document_validation.
DocumentValidation) – Validation object used for validating
rendered_documents.

Raises InvalidDocumentFormat if validation fails.

106 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

deckhand.engine.revision_diff module

deckhand.engine.revision_diff.revision_diff(revision_id, comparison_revision_id, deep-
diff=False)

Generate the diff between two revisions.

Generate the diff between the two revisions: revision_id and comparison_revision_id. a. When deepdiff=False:
A basic comparison of the revisions in terms of how the buckets involved have changed is generated. Only buck-
ets with existing documents in either of the two revisions in question will be reported. b. When deepdiff=True:
Along with basic comparision, It will generate deep diff between revisions’ modified buckets.

Only in case of diff, The ordering of the two revision IDs is interchangeable, i.e. no matter the order, the same
result is generated.

The differences include:

• “created”: A bucket has been created between the revisions.

• “deleted”: A bucket has been deleted between the revisions.

• “modified”: A bucket has been modified between the revisions. When deepdiff is enabled, It also in-
cludes deep difference between the revisions.

• “unmodified”: A bucket remains unmodified between the revisions.

Parameters

• revision_id – ID of the first revision.

• comparison_revision_id – ID of the second revision.

• deepdiff – Whether deepdiff needed or not.

Returns A dictionary, keyed with the bucket IDs, containing any of the differences enumerated
above.

Examples Diff:

# GET /api/v1.0/revisions/6/diff/3
bucket_a: created
bucket_b: deleted
bucket_c: modified
bucket_d: unmodified

# GET /api/v1.0/revisions/0/diff/6
bucket_a: created
bucket_c: created
bucket_d: created

# GET /api/v1.0/revisions/6/diff/6
bucket_a: unmodified
bucket_c: unmodified
bucket_d: unmodified

# GET /api/v1.0/revisions/0/diff/0
{}

Examples DeepDiff:

4.1. Contributor’s Guide 107



deckhand Documentation, Release 0.1

# GET /api/v1.0/revisions/3/deepdiff/4
bucket_a: modified
bucket_a diff:
document_changed:

count: 1
details:

('example/Kind/v1', 'doc-b'):
data_changed:
values_changed:
root['foo']: {new_value: 3, old_value: 2}

metadata_changed: {}

# GET /api/v1.0/revisions/2/deepdiff/3
bucket_a: modified
bucket_a diff:
document_added:

count: 1
details:
- [example/Kind/v1, doc-c]

# GET /api/v1.0/revisions/0/deepdiff/0
{}

# GET /api/v1.0/revisions/0/deepdiff/3
bucket_a: created

deckhand.engine.secrets_manager module

class deckhand.engine.secrets_manager.SecretsManager
Bases: object

Internal API resource for interacting with Barbican.

Currently only supports Barbican.

barbican_driver = <deckhand.barbican.driver.BarbicanDriver object>

classmethod create(secret_doc)
Securely store secrets contained in secret_doc.

Documents with metadata.storagePolicy == “clearText” have their secrets stored directly in
Deckhand.

Documents with metadata.storagePolicy == “encrypted” are stored in Barbican directly. Deck-
hand in turn stores the reference returned by Barbican in its own DB.

Parameters secret_doc – A Deckhand document with a schema that belongs to types.
DOCUMENT_SECRET_TYPES.

Returns Unecrypted data section from secret_doc if the document’s storagePolicy is
“cleartext” or a Barbican secret reference if the storagePolicy is “encrypted’.

classmethod delete(document)
Delete a secret from Barbican.

Parameters document (dict) – Document with secret_ref in data section with format:
“https://{barbican_host}/v1/secrets/{secret_uuid}”

Returns None

108 Chapter 4. Contrbitutor’s Guide

https:/


deckhand Documentation, Release 0.1

classmethod get(secret_ref, src_doc)
Retrieve a secret payload from Barbican.

Extracts {secret_uuid} from a secret reference and queries Barbican’s Secrets API with it.

Parameters secret_ref (str) – A string formatted like: “https:
//{barbican_host}/v1/secrets/{secret_uuid}”

Returns Secret payload from Barbican.

static requires_encryption(document)

class deckhand.engine.secrets_manager.SecretsSubstitution(substitution_sources=None,
fail_on_missing_sub_src=True,
encryp-
tion_sources=None,
cleart-
ext_secrets=False)

Bases: object

Class for document substitution logic for YAML files.

get_unencrypted_data(secret_ref, src_doc, dest_doc)

static sanitize_potential_secrets(error, document)
Sanitize all secret data that may have been substituted into the document or contained in the document itself
(if the document has metadata.storagePolicy == ‘encrypted’). Uses references in document.
substitutions to determine which values to sanitize. Only meaningful to call this on post-rendered
documents.

Parameters

• error – Error message produced by jsonschema.

• document (DocumentDict) – Document to sanitize.

substitute_all(documents)
Substitute all documents that have a metadata.substitutions field.

Concrete (non-abstract) documents can be used as a source of substitution into other documents. This
substitution is layer-independent, a document in the region layer could insert data from a document in the
site layer.

Parameters documents (dict or List[dict]) – List of documents that are candidates
for substitution.

Returns List of fully substituted documents.

Return type Generator[DocumentDict]

Raises

• SubstitutionSourceNotFound – If a substitution source document is referenced
by another document but wasn’t found.

• UnknownSubstitutionError – If an unknown error occurred during substitution.

update_substitution_sources(meta, data)
Update substitution sources with rendered data so that future layering and substitution sources reference
the latest rendered data rather than stale data.

Parameters

• meta (tuple) – Tuple of (schema, layer, name).

4.1. Contributor’s Guide 109

https:/
https:/


deckhand Documentation, Release 0.1

• data (dict) – Dictionary of just-rendered document data that belongs to the document
uniquely identified by meta.

Returns None

deckhand.engine.utils module

deckhand.engine.utils.deep_delete(target, value, parent)
Recursively search for then delete target from parent.

Parameters

• target – Target value to remove.

• value – Current value in a list or dict to compare against target and removed from
parent given match.

• parent (list or dict) – Tracks the parent data structure from which value is re-
moved.

Returns Whether target was found.

Return type bool

deckhand.engine.utils.deep_merge(dct, merge_dct)
Recursive dict merge. Inspired by :meth:dict.update(), instead of updating only top-level keys,
deep_merge recurses down into dicts nested to an arbitrary depth, updating keys. The merge_dct is merged
into dct, except for merge conflicts, which are resolved by prioritizing the dct value.

Borrowed from: https://gist.github.com/angstwad/bf22d1822c38a92ec0a9#file-deep_merge-py # noqa

Parameters

• dct – dict onto which the merge is executed

• merge_dct – dct merged into dct

Returns None

deckhand.engine.utils.deep_scrub(value, parent)
Scrubs all primitives in document data recursively. Useful for scrubbing any and all secret data that may have
been substituted into the document data section before logging it out safely following an error.

deckhand.engine.utils.exclude_deleted_documents(documents)
Excludes all documents that have been deleted including all documents earlier in the revision history with the
same metadata.name and schema from documents.

deckhand.engine.utils.filter_revision_documents(documents, unique_only, **filters)
Return the list of documents that match filters.

Parameters

• documents – List of documents to apply filters to.

• unique_only – Return only unique documents if True.

• filters – Dictionary attributes (including nested) used to filter out revision documents.

Returns List of documents that match specified filters.

deckhand.engine.utils.meta(document)

110 Chapter 4. Contrbitutor’s Guide

https://gist.github.com/angstwad/bf22d1822c38a92ec0a9#file-deep_merge-py


deckhand Documentation, Release 0.1

Module contents

deckhand.engine.render(revision_id, documents, encryption_sources=None, cleart-
ext_secrets=False)

Render revision documents for revision_id using raw documents.

Parameters

• revision_id (int) – Key used for caching rendered documents by.

• documents (List[dict]) – List of raw documents corresponding to revision_id
to render.

• encryption_sources (dict) – A dictionary that maps the reference contained in the
destination document’s data section to the actual unecrypted data. If encrypting data with
Barbican, the reference will be a Barbican secret reference.

• cleartext_secrets (bool) – Whether to show unencrypted data as cleartext.

Returns Rendered documents for revision_id.

Return type List[dict]

deckhand.engine.validate_render(revision_id, rendered_documents, validator)
Validate rendered documents using validator.

Parameters

• revision_id (int) – Key used for caching rendered documents by.

• documents (List[dict]) – List of rendered documents corresponding to
revision_id.

• validator (deckhand.engine.document_validation.
DocumentValidation) – Validation object used for validating
rendered_documents.

Raises InvalidDocumentFormat if validation fails.

deckhand.policies package

Submodules

deckhand.policies.base module

deckhand.policies.base.list_rules()

deckhand.policies.document module

deckhand.policies.document.list_rules()

deckhand.policies.revision module

deckhand.policies.revision.list_rules()

4.1. Contributor’s Guide 111



deckhand Documentation, Release 0.1

deckhand.policies.revision_tag module

deckhand.policies.revision_tag.list_rules()

deckhand.policies.validation module

deckhand.policies.validation.list_rules()

Module contents

deckhand.policies.list_rules()

Submodules

deckhand.context module

class deckhand.context.RequestContext(project=None, context_marker=’-’, end_user=’-’,
**kwargs)

Bases: oslo_context.context.RequestContext

User security context object

Stores information about the security context under which the user accesses the system, as well as additional
request information.

classmethod from_dict(values)
Construct a context object from a provided dictionary.

to_dict()
Return a dictionary of context attributes.

deckhand.context.get_context()
A helper method to get a blank context (useful for tests).

deckhand.errors module

exception deckhand.errors.BarbicanClientException(message=None, code=500,
**kwargs)

Bases: deckhand.errors.DeckhandException

A client-side 4xx error occurred with Barbican.

Troubleshoot:

• Ensure that Deckhand can authenticate against Keystone.

• Ensure that Deckhand’s Barbican configuration options are correct.

• Ensure that Deckhand and Barbican are contained in the Keystone service catalog.

code = 400

msg_fmt = 'Barbican raised a client error. Details: %(details)s'

112 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

exception deckhand.errors.BarbicanServerException(message=None, code=500,
**kwargs)

Bases: deckhand.errors.DeckhandException

A server-side 5xx error occurred with Barbican.

code = 500

msg_fmt = 'Barbican raised a server error. Details: %(details)s'

exception deckhand.errors.DeckhandException(message=None, code=500, **kwargs)
Bases: Exception

Base Deckhand Exception To correctly use this class, inherit from it and define a ‘msg_fmt’ property. That
msg_fmt will get printf’d with the keyword arguments provided to the constructor.

format_message()

msg_fmt = 'An unknown exception occurred'

exception deckhand.errors.DeepDiffException(message=None, code=500, **kwargs)
Bases: deckhand.errors.DeckhandException

An Exception occurred while deep diffing

code = 500

msg_fmt = 'An Exception occurred while deep diffing. Details: %(details)s'

exception deckhand.errors.DocumentNotFound(message=None, code=500, **kwargs)
Bases: deckhand.errors.DeckhandException

The requested document could not be found.

Troubleshoot:

code = 404

msg_fmt = 'The requested document using filters: %(filters)s was not found'

exception deckhand.errors.DuplicateDocumentExists(message=None, code=500,
**kwargs)

Bases: deckhand.errors.DeckhandException

A document attempted to be put into a bucket where another document with the same schema and metadata.name
already exist.

Troubleshoot:

code = 409

msg_fmt = 'Document [%(schema)s, %(layer)s] %(name)s already exists in bucket: %(bucket)s'

exception deckhand.errors.EncryptionSourceNotFound(message=None, code=500,
**kwargs)

Bases: deckhand.errors.DeckhandException

Required encryption source reference was not found.

Troubleshoot:

• Ensure that the secret reference exists among the encryption sources.

code = 400

msg_fmt = 'Required encryption source reference could not be resolved into a secret because it was not found among encryption sources. Ref: %(secret_ref)s. Referenced by: [%(schema)s, %(layer)s] %(name)s'

4.1. Contributor’s Guide 113



deckhand Documentation, Release 0.1

exception deckhand.errors.IndeterminateDocumentParent(message=None, code=500,
**kwargs)

Bases: deckhand.errors.DeckhandException

More than one parent document was found for a document.

Troubleshoot:

code = 400

msg_fmt = 'Too many parent documents found for document [%(schema)s, %(layer)s] %(name)s. Found: %(found)s. Expected: 1'

exception deckhand.errors.InvalidDocumentFormat(message=None, code=500, **kwargs)
Bases: deckhand.errors.DeckhandException

Schema validations failed for the provided document(s).

Troubleshoot:

code = 400

msg_fmt = 'The provided documents failed schema validation'

exception deckhand.errors.InvalidDocumentLayer(message=None, code=500, **kwargs)
Bases: deckhand.errors.DeckhandException

The document layer is invalid.

Troubleshoot:

• Check that the document layer is contained in the layerOrder in the registered LayeringPolicy in the system.

code = 400

msg_fmt = "Invalid layer '%(document_layer)s' for document [%(document_schema)s] %(document_name)s was not found in layerOrder: %(layer_order)s for provided LayeringPolicy: %(layering_policy_name)s"

exception deckhand.errors.InvalidDocumentParent(message=None, code=500, **kwargs)
Bases: deckhand.errors.DeckhandException

The document parent is invalid.

Troubleshoot:

• Check that the document schema and parent schema match.

• Check that the document layer is lower-order than the parent layer.

code = 400

msg_fmt = 'The document parent [%(parent_schema)s] %(parent_name)s is invalid for document [%(document_schema)s] %(document_name)s. Reason: %(reason)s'

exception deckhand.errors.InvalidDocumentReplacement(message=None, code=500,
**kwargs)

Bases: deckhand.errors.DeckhandException

The document replacement is invalid.

Troubleshoot:

• Check that the replacement document has the same schema and metadata.name as the document it
replaces.

• Check that the document with replacement: true has a parent.

• Check that the document replacement isn’t being replaced by another document. Only one level of re-
placement is permitted.

code = 400

114 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

msg_fmt = 'Replacement document [%(schema)s, %(layer)s] %(name)s is invalid. Reason: %(reason)s'

exception deckhand.errors.InvalidInputException(message=None, code=500, **kwargs)
Bases: deckhand.errors.DeckhandException

An Invalid Input provided due to which unable to process request.

code = 400

msg_fmt = 'Failed to process request due to invalid input: %(input_var)s'

exception deckhand.errors.LayeringPolicyNotFound(message=None, code=500,
**kwargs)

Bases: deckhand.errors.DeckhandException

Required LayeringPolicy was not found for layering.

Troubleshoot:

code = 409

msg_fmt = 'Required LayeringPolicy was not found for layering'

exception deckhand.errors.MissingDocumentKey(message=None, code=500, **kwargs)
Bases: deckhand.errors.DeckhandException

Either the parent or child document data is missing the action path used for layering.

Troubleshoot:

• Check that the action path exists in the data section for both child and parent documents being layered
together.

• Note that previous delete layering actions can affect future layering actions by removing a path needed by
a future layering action.

• Note that substitutions that substitute in lists or objects into the rendered data for a document can also
complicate debugging this issue.

code = 400

msg_fmt = 'Missing action path in %(action)s needed for layering from either the data section of the parent [%(parent_schema)s, %(parent_layer)s] %(parent_name)s or child [%(child_schema)s, %(child_layer)s] %(child_name)s document'

exception deckhand.errors.MissingDocumentPattern(message=None, code=500,
**kwargs)

Bases: deckhand.errors.DeckhandException

‘Pattern’ is not None and data[jsonpath] doesn’t exist.

Troubleshoot:

• Check that the destination document’s data section contains the pattern specified under substitu-
tions.dest.pattern in its data section at substitutions.dest.path.

code = 400

msg_fmt = "The destination document's `data` section is missing the pattern %(pattern)s specified under `substitutions.dest.pattern` at path %(jsonpath)s, specified under `substitutions.dest.path`"

exception deckhand.errors.PolicyNotAuthorized(message=None, code=500, **kwargs)
Bases: deckhand.errors.DeckhandException

The policy action is not found in the list of registered rules.

Troubleshoot:

code = 403

msg_fmt = "Policy doesn't allow %(action)s to be performed"

4.1. Contributor’s Guide 115



deckhand Documentation, Release 0.1

exception deckhand.errors.RevisionNotFound(message=None, code=500, **kwargs)
Bases: deckhand.errors.DeckhandException

The revision cannot be found or doesn’t exist.

Troubleshoot:

code = 404

msg_fmt = 'The requested revision=%(revision_id)s was not found'

exception deckhand.errors.RevisionTagBadFormat(message=None, code=500, **kwargs)
Bases: deckhand.errors.DeckhandException

The tag data is neither None nor dictionary.

Troubleshoot:

code = 400

msg_fmt = 'The requested tag data %(data)s must either be null or dictionary'

exception deckhand.errors.RevisionTagNotFound(message=None, code=500, **kwargs)
Bases: deckhand.errors.DeckhandException

The tag for the revision id was not found.

Troubleshoot:

code = 404

msg_fmt = "The requested tag '%(tag)s' for revision %(revision)s was not found"

exception deckhand.errors.SingletonDocumentConflict(message=None, code=500,
**kwargs)

Bases: deckhand.errors.DeckhandException

A singleton document already exist within the system.

Troubleshoot:

code = 409

msg_fmt = 'A singleton document [%(schema)s, %(layer)s] %(name)s already exists in the system. The new document(s) %(conflict)s cannot be created. To create a document with a new name, delete the current one first'

exception deckhand.errors.SubstitutionDependencyCycle(message=None, code=500,
**kwargs)

Bases: deckhand.errors.DeckhandException

An illegal substitution depdencency cycle was detected.

Troubleshoot:

• Check that there is no two-way substitution dependency between documents.

code = 400

msg_fmt = 'Cannot determine substitution order as a dependency cycle exists for the following documents: %(cycle)s'

exception deckhand.errors.SubstitutionSourceDataNotFound(message=None,
code=500, **kwargs)

Bases: deckhand.errors.DeckhandException

Required substitution source secret was not found in the substitution source document at the path metadata.
substitutions.[*].src.path in the destination document.

Troubleshoot:

116 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

• Ensure that the missing source secret exists at the src.path specified under the given substitution in the
destination document and that the src.path itself exists in the source document.

code = 400

msg_fmt = 'Required substitution source secret was not found at path %(src_path)s in source document [%(src_schema)s, %(src_layer)s] %(src_name)s which is referenced by destination document [%(dest_schema)s, %(dest_layer)s] %(dest_name)s under its `metadata.substitutions`'

exception deckhand.errors.SubstitutionSourceNotFound(message=None, code=500,
**kwargs)

Bases: deckhand.errors.DeckhandException

Required substitution source document was not found.

Troubleshoot:

• Ensure that the missing source document being referenced exists in the system or was passed to the layering
module.

code = 409

msg_fmt = 'Required substitution source document [%(src_schema)s] %(src_name)s was not found, yet is referenced by [%(document_schema)s] %(document_name)s'

exception deckhand.errors.UnknownSubstitutionError(*args, **kwargs)
Bases: deckhand.errors.DeckhandException

An unknown error occurred during substitution.

Troubleshoot:

code = 500

exception deckhand.errors.UnsupportedActionMethod(message=None, code=500,
**kwargs)

Bases: deckhand.errors.DeckhandException

The action is not in the list of supported methods.

Troubleshoot:

code = 400

msg_fmt = 'Method in %(actions)s is invalid for document %(document)s'

exception deckhand.errors.ValidationNotFound(message=None, code=500, **kwargs)
Bases: deckhand.errors.DeckhandException

The requested validation was not found.

Troubleshoot:

code = 404

msg_fmt = 'The requested validation entry %(entry_id)s was not found for validation name %(validation_name)s and revision ID %(revision_id)s'

deckhand.errors.default_exception_handler(req, resp, ex, params)
Catch-all exception handler for standardized output.

If this is a standard falcon HTTPError, rethrow it for handling by default_exception_serializer
below.

deckhand.errors.default_exception_serializer(req, resp, exception)
Serializes instances of falcon.HTTPError into YAML format and formats the error body so it adheres to
the Airship error formatting standard.

4.1. Contributor’s Guide 117



deckhand Documentation, Release 0.1

deckhand.errors.format_error_resp(req, resp, status_code=’500 Internal Server Error’, mes-
sage=”, reason=None, error_type=None, error_list=None,
info_list=None)

Generate a error message body and throw a Falcon exception to trigger an HTTP status.

Parameters

• req – falcon request object.

• resp – falcon response object to update.

• status_code – falcon status_code constant.

• message – Optional error message to include in the body. This should be the summary
level of the error message, encompassing an overall result. If no other messages are passed
in the error_list, this message will be repeated in a generated message for the output mes-
sage_list.

• reason – Optional reason code to include in the body

• error_type – If specified, the error type will be used; otherwise, this will be set to
‘Unspecified Exception’.

• error_list – optional list of error dictionaries. Minimally, the dictionary will contain
the ‘message’ field, but should also contain ‘error’: True.

• info_list – optional list of info message dictionaries. Minimally, the dictionary needs
to contain a ‘message’ field, but should also have a ‘error’: False field.

deckhand.errors.get_version_from_request(req)
Attempt to extract the API version string.

deckhand.factories module

class deckhand.factories.DataSchemaFactory
Bases: deckhand.factories.DeckhandFactory

Class for auto-generating DataSchema templates for testing.

DATA_SCHEMA_TEMPLATE = {'data': {'$schema': ''}, 'metadata': {'labels': {}, 'layeringDefinition': {'abstract': True, 'layer': 'site'}, 'name': '', 'schema': 'metadata/Control/v1'}, 'schema': 'deckhand/DataSchema/v1'}

gen_test(metadata_name, data, **metadata_labels)
Generate an object with randomized values for a test.

class deckhand.factories.DeckhandFactory
Bases: object

gen_test(*args, **kwargs)
Generate an object with randomized values for a test.

class deckhand.factories.DocumentFactory(num_layers, docs_per_layer)
Bases: deckhand.factories.DeckhandFactory

Class for auto-generating document templates for testing.

DOCUMENT_TEMPLATE = {'data': {}, 'metadata': {'labels': {'': ''}, 'layeringDefinition': {'abstract': False, 'layer': 'layer'}, 'name': '', 'schema': 'metadata/Document/v1', 'storagePolicy': 'cleartext'}, 'schema': 'example/Kind/v1'}

LAYERING_POLICY_TEMPLATE = {'data': {'layerOrder': []}, 'metadata': {'layeringDefinition': {'abstract': False, 'layer': 'layer'}, 'name': 'placeholder', 'schema': 'metadata/Control/v1'}, 'schema': 'deckhand/LayeringPolicy/v1'}

gen_test(mapping, site_abstract=True, region_abstract=True, global_abstract=True,
site_parent_selectors=None)

Generate the document template.

Generate the document template based on the arguments passed to the constructor and to this function.

118 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

Parameters

• mapping (dict) – A list of dictionaries that specify the “data” and “actions” parameters
for each document. A valid mapping is:

mapping = {
"_GLOBAL_DATA_1_": {"data": {"a": {"x": 1, "y": 2}}},
"_SITE_DATA_1_": {"data": {"a": {"x": 7, "z": 3}, "b": 4}},
"_SITE_ACTIONS_1_": {

"actions": [{"method": "merge", "path": path}]}
}

Each key must be of the form “_{LAYER_NAME}_{KEY_NAME}_{N}_” where:

– {LAYER_NAME} is the name of the layer (“global”, “region”, ”site”)

– {KEY_NAME} is either “DATA” or “ACTIONS”

– {N} is the occurrence of the document based on the values in docs_per_layer.
If docs_per_layer is (1, 2) then _GLOBAL_DATA_1_, _SITE_DATA_1_,
_SITE_DATA_2_, _SITE_ACTIONS_1_ and _SITE_ACTIONS_2_ must be pro-
vided. _GLOBAL_ACTIONS_{N}_ is ignored.

• site_abstract (boolean) – Whether site layers are abstract/concrete.

• region_abstract (boolean) – Whether region layers are abstract/concrete.

• global_abstract (boolean) – Whether global layers are abstract/concrete.

• site_parent_selectors (list) – Override the default parent selector for each
site. Assuming that docs_per_layer is (2, 2), for example, a valid value is:

[{'global': 'global1'}, {'global': 'global2'}]

If not specified, each site will default to the first parent.

Returns Rendered template of the form specified above.

class deckhand.factories.DocumentSecretFactory
Bases: deckhand.factories.DeckhandFactory

Class for auto-generating document secrets templates for testing.

Returns formats that adhere to the following supported schemas:

• deckhand/Certificate/v1

• deckhand/CertificateKey/v1

• deckhand/Passphrase/v1

DOCUMENT_SECRET_TEMPLATE = {'data': {}, 'metadata': {'layeringDefinition': {'abstract': False, 'layer': 'site'}, 'name': '', 'schema': 'metadata/Document/v1', 'storagePolicy': ''}, 'schema': 'deckhand/%s/v1'}

gen_test(schema, storage_policy, data=None, name=None)
Generate an object with randomized values for a test.

class deckhand.factories.RenderedDocumentFactory(bucket, revision)
Bases: deckhand.factories.DeckhandFactory

Class for auto-generating Rendered document for testing.

RENDERED_DOCUMENT_TEMPLATE = {'data': {}, 'data_hash': '', 'metadata': {'layeringDefinition': {'abstract': False, 'layer': 'site'}, 'name': '', 'schema': 'metadata/Document/v1', 'storagePolicy': ''}, 'metadata_hash': '', 'name': '', 'schema': 'deckhand/%s/v1', 'status': {'bucket': '', 'revision': ''}}

gen_test(schema, name, storagePolicy, data, doc_no=1)
Generate Test Rendered Document.

4.1. Contributor’s Guide 119



deckhand Documentation, Release 0.1

deckhand.policy module

deckhand.policy.authorize(action)
Verifies whether a policy action can be performed given the credentials found in the falcon request context.

Parameters action – The policy action to enforce.

Returns True if policy enforcement succeeded, else False.

Raises falcon.HTTPForbidden if policy enforcement failed or if the policy action isn’t registered
under deckhand.policies.

deckhand.policy.conditional_authorize(action, context, do_raise=True)
Conditionally authorize a policy action.

Parameters

• action – The policy action to enforce.

• context – The falcon request context object.

• do_raise – Whether to raise the exception if policy enforcement fails. True by de-
fault.

Raises falcon.HTTPForbidden if policy enforcement failed or if the policy action isn’t registered
under deckhand.policies.

Example:

# If any requested documents' metadata.storagePolicy == 'cleartext'.
if cleartext_documents:

policy.conditional_authorize('deckhand:create_cleartext_documents',
req.context)

deckhand.policy.init(policy_file=None, rules=None, default_rule=None, use_conf=True)
Init an Enforcer class.

Parameters

• policy_file – Custom policy file to use, if none is specified, CONF.policy_file
will be used.

• rules – Default dictionary / Rules to use. It will be considered just in the first instanti-
ation.

• default_rule – Default rule to use; CONF.default_rule will be used if none is
specified.

• use_conf – Whether to load rules from config file.

deckhand.policy.register_rules(enforcer)

deckhand.policy.reset()

deckhand.service module

deckhand.service.configure_app(app, version=”)

deckhand.service.deckhand_app_factory(global_config, **local_config)

120 Chapter 4. Contrbitutor’s Guide



deckhand Documentation, Release 0.1

deckhand.types module

Module contents

4.1.4 Indices and tables

• genindex

• modindex

• search

4.1. Contributor’s Guide 121



deckhand Documentation, Release 0.1

122 Chapter 4. Contrbitutor’s Guide



CHAPTER 5

Release Notes

5.1 Deckhand Release Notes

5.1.1 Current Series Release Notes

0.0.0

New Features

• Development mode has been added to Deckhand, allowing for the possibility of running Deckhand without
Keystone. A new paste file has been added to etc/deckhand called noauth-paste.ini which excludes
Keystone authentication. To run Deckhand in development mode, set development_mode as True in deck-
hand.conf. Note that Deckhand will expect to find noauth-paste.ini on the host with development_mode
set as True in etc/deckhand/deckhand.conf.sample.

• Adds a new endpoint to the Deckhand Validations API, GET /api/v1.0/{revision_id}/validations/detail, which
allows for the possibility of listing all validations for a revision with details. The response body includes all
details returned by retrieving validation details for a specific validation entry.

• The oslo.policy framework has been integrated into Deckhand. All currently supported endpoints are cov-
ered by RBAC enforcement. All default policy rules are admin-only by default. The defaults can be overridden
via a custom policy.yaml file.

• Deckhand now supports the following filter arguments for filtering revision documents:

– schema

– metadata.name

– metadata.label

– metadata.layeringDefinition.abstract

– metadata.layeringDefinition.layer

– status.bucket

123



deckhand Documentation, Release 0.1

Deckhand now supports the following filter arguments for filtering revisions:

– tag

• Deckhand now supports secret substitution for documents. The endpoint GET revisions/
{revision_id}/rendered-documents has been added to Deckhand, which allows the possibility of
listing fully substituted documents. Only documents with metadata.substitutions field undergo secret
substitution dynamically.

• The Validations API has been introduced to Deckhand, allowing users to register new validation results in
Deckhand, as well as query the API for validation results for a revision. The validation results include a list of
errors that occurred during document validation.

The following endpoints have been implemented:

– /api/v1.0/revisions/{revision_id}/validations

– /api/v1.0/revisions/{revision_id}/validations/{validation_name}

– /api/v1.0/revisions/{revision_id}/validations/{validation_name}/entries

– /api/v1.0/revisions/{revision_id}/validations/{validation_name}/entries/{entry_id}

Bug Fixes

• Deckhand will no longer throw an AttributeError after a yaml.scanner.ScannerError is raised
when attempting to parse a malformed YAML document. Deckhand should now correctly raise a “400 Bad
Request” instead.

• Deckhand will allow only one document with the schema LayeringPolicy to exist in the system at a time.
To update the existing layering policy, the layerign policy with the same name as the existing one should be
passed in. To create a new layering policy, delete the existing one first.

• Removed indentation rules E127, E128, E129 and E131 from pep8 exclusion.

124 Chapter 5. Release Notes



CHAPTER 6

Glossary

6.1 Glossary

6.1.1 A

Airship Airship is a collection of interoperable and loosely coupled open source tools, among which is Deckhand,
that provide automated cloud provisioning and management in a declarative way.

Alembic Database migration software for Python and SQLAlchemy based databases.

6.1.2 B

barbican Code name of the Key Manager service.

bucket A bucket manages collections of documents together, providing write protections around them. Any bucket
can read documents from any other bucket.

6.1.3 D

document A collection of metadata and data in YAML format. The data document format is modeled loosely after
Kubernetes practices. The top level of each document is a dictionary with 3 keys: schema, metadata, and data.

6.1.4 K

Key Manager service (barbican) The project that produces a secret storage and generation system capable of pro-
viding key management for services wishing to enable encryption features.

125



deckhand Documentation, Release 0.1

6.1.5 M

migration (databse) A transformation of a databse from one version or structure to another. Migrations for Deck-
hand’s database are performed using Alembic.

6.1.6 S

SQLAlchemy Databse toolkit for Python.

126 Chapter 6. Glossary



Python Module Index

d
deckhand, 121
deckhand.barbican, 81
deckhand.barbican.cache, 80
deckhand.barbican.client_wrapper, 80
deckhand.barbican.driver, 81
deckhand.client, 86
deckhand.client.base, 81
deckhand.client.buckets, 82
deckhand.client.client, 82
deckhand.client.exceptions, 83
deckhand.client.revisions, 85
deckhand.client.tags, 86
deckhand.common, 90
deckhand.common.document, 86
deckhand.common.utils, 87
deckhand.common.validation_message, 90
deckhand.conf, 91
deckhand.conf.config, 90
deckhand.conf.opts, 91
deckhand.context, 112
deckhand.control, 97
deckhand.control.api, 92
deckhand.control.base, 92
deckhand.control.buckets, 93
deckhand.control.common, 93
deckhand.control.health, 94
deckhand.control.middleware, 94
deckhand.control.no_oauth_middleware,

95
deckhand.control.revision_deepdiffing,

95
deckhand.control.revision_diffing, 95
deckhand.control.revision_documents, 95
deckhand.control.revision_tags, 96
deckhand.control.revisions, 96
deckhand.control.rollback, 96
deckhand.control.validations, 97
deckhand.control.versions, 97

deckhand.control.views, 92
deckhand.control.views.document, 91
deckhand.control.views.revision, 91
deckhand.control.views.revision_tag, 92
deckhand.control.views.validation, 92
deckhand.db, 103
deckhand.db.sqlalchemy, 103
deckhand.db.sqlalchemy.api, 97
deckhand.db.sqlalchemy.models, 102
deckhand.engine, 111
deckhand.engine.cache, 103
deckhand.engine.document_validation, 103
deckhand.engine.layering, 105
deckhand.engine.render, 106
deckhand.engine.revision_diff, 107
deckhand.engine.secrets_manager, 108
deckhand.engine.utils, 110
deckhand.errors, 112
deckhand.factories, 118
deckhand.policies, 112
deckhand.policies.base, 111
deckhand.policies.document, 111
deckhand.policies.revision, 111
deckhand.policies.revision_tag, 112
deckhand.policies.validation, 112
deckhand.policy, 120
deckhand.service, 120
deckhand.types, 121

127



deckhand Documentation, Release 0.1

128 Python Module Index



Index

A
actions (deckhand.common.document.DocumentDict

attribute), 86
Airship, 125
Alembic, 125
api_version (deckhand.client.base.Manager at-

tribute), 81
api_version (deckhand.client.base.Resource at-

tribute), 81
api_version (deckhand.client.client.Client attribute),

83
as_after_hook() (deck-

hand.control.middleware.HookableMiddlewareMixin
method), 94

as_before_hook() (deck-
hand.control.middleware.HookableMiddlewareMixin
method), 94

authorize() (in module deckhand.policy), 120

B
BadRequest, 83
barbican, 125
barbican_driver (deck-

hand.engine.secrets_manager.SecretsManager
attribute), 108

BarbicanClientException, 112
BarbicanClientWrapper (class in deck-

hand.barbican.client_wrapper), 80
BarbicanDriver (class in deck-

hand.barbican.driver), 81
BarbicanServerException, 112
base_schema (deck-

hand.engine.document_validation.GenericValidator
attribute), 105

BaseResource (class in deckhand.control.base), 92
BaseValidator (class in deck-

hand.engine.document_validation), 103
bucket, 125
Bucket (class in deckhand.client.buckets), 82

bucket_get_all() (in module deck-
hand.db.sqlalchemy.api), 97

bucket_get_or_create() (in module deck-
hand.db.sqlalchemy.api), 98

BucketManager (class in deckhand.client.buckets), 82
BucketsResource (class in deck-

hand.control.buckets), 93

C
call() (deckhand.barbican.client_wrapper.BarbicanClientWrapper

method), 80
Client (class in deckhand.client.client), 82
client (deckhand.client.base.Manager attribute), 81
client_name (deckhand.client.client.SessionClient at-

tribute), 83
client_version (deck-

hand.client.client.SessionClient attribute),
83

ClientException, 83
code (deckhand.errors.BarbicanClientException at-

tribute), 112
code (deckhand.errors.BarbicanServerException at-

tribute), 113
code (deckhand.errors.DeepDiffException attribute),

113
code (deckhand.errors.DocumentNotFound attribute),

113
code (deckhand.errors.DuplicateDocumentExists

attribute), 113
code (deckhand.errors.EncryptionSourceNotFound at-

tribute), 113
code (deckhand.errors.IndeterminateDocumentParent

attribute), 114
code (deckhand.errors.InvalidDocumentFormat at-

tribute), 114
code (deckhand.errors.InvalidDocumentLayer at-

tribute), 114
code (deckhand.errors.InvalidDocumentParent at-

tribute), 114

129



deckhand Documentation, Release 0.1

code (deckhand.errors.InvalidDocumentReplacement
attribute), 114

code (deckhand.errors.InvalidInputException attribute),
115

code (deckhand.errors.LayeringPolicyNotFound at-
tribute), 115

code (deckhand.errors.MissingDocumentKey attribute),
115

code (deckhand.errors.MissingDocumentPattern at-
tribute), 115

code (deckhand.errors.PolicyNotAuthorized attribute),
115

code (deckhand.errors.RevisionNotFound attribute), 116
code (deckhand.errors.RevisionTagBadFormat at-

tribute), 116
code (deckhand.errors.RevisionTagNotFound attribute),

116
code (deckhand.errors.SingletonDocumentConflict at-

tribute), 116
code (deckhand.errors.SubstitutionDependencyCycle at-

tribute), 116
code (deckhand.errors.SubstitutionSourceDataNotFound

attribute), 117
code (deckhand.errors.SubstitutionSourceNotFound at-

tribute), 117
code (deckhand.errors.UnknownSubstitutionError at-

tribute), 117
code (deckhand.errors.UnsupportedActionMethod at-

tribute), 117
code (deckhand.errors.ValidationNotFound attribute),

117
conditional_authorize() (in module deck-

hand.policy), 120
configure_app() (in module deckhand.service), 120
Conflict, 83
context_type (deck-

hand.control.base.DeckhandRequest attribute),
93

ContextMiddleware (class in deck-
hand.control.middleware), 94

create() (deckhand.client.tags.RevisionTagManager
method), 86

create() (deckhand.engine.secrets_manager.SecretsManager
class method), 108

create_secret() (deck-
hand.barbican.driver.BarbicanDriver method),
81

create_tables() (in module deck-
hand.db.sqlalchemy.models), 103

created_at (deckhand.db.sqlalchemy.models.DeckhandBase
attribute), 102

D
data (deckhand.common.document.DocumentDict at-

tribute), 86
DATA_SCHEMA_TEMPLATE (deck-

hand.factories.DataSchemaFactory attribute),
118

DataSchemaFactory (class in deckhand.factories),
118

DataSchemaValidator (class in deck-
hand.engine.document_validation), 104

deckhand (module), 121
deckhand.barbican (module), 81
deckhand.barbican.cache (module), 80
deckhand.barbican.client_wrapper (mod-

ule), 80
deckhand.barbican.driver (module), 81
deckhand.client (module), 86
deckhand.client.base (module), 81
deckhand.client.buckets (module), 82
deckhand.client.client (module), 82
deckhand.client.exceptions (module), 83
deckhand.client.revisions (module), 85
deckhand.client.tags (module), 86
deckhand.common (module), 90
deckhand.common.document (module), 86
deckhand.common.utils (module), 87
deckhand.common.validation_message (mod-

ule), 90
deckhand.conf (module), 91
deckhand.conf.config (module), 90
deckhand.conf.opts (module), 91
deckhand.context (module), 112
deckhand.control (module), 97
deckhand.control.api (module), 92
deckhand.control.base (module), 92
deckhand.control.buckets (module), 93
deckhand.control.common (module), 93
deckhand.control.health (module), 94
deckhand.control.middleware (module), 94
deckhand.control.no_oauth_middleware

(module), 95
deckhand.control.revision_deepdiffing

(module), 95
deckhand.control.revision_diffing (mod-

ule), 95
deckhand.control.revision_documents

(module), 95
deckhand.control.revision_tags (module),

96
deckhand.control.revisions (module), 96
deckhand.control.rollback (module), 96
deckhand.control.validations (module), 97
deckhand.control.versions (module), 97
deckhand.control.views (module), 92
deckhand.control.views.document (module),

91

130 Index



deckhand Documentation, Release 0.1

deckhand.control.views.revision (module),
91

deckhand.control.views.revision_tag
(module), 92

deckhand.control.views.validation (mod-
ule), 92

deckhand.db (module), 103
deckhand.db.sqlalchemy (module), 103
deckhand.db.sqlalchemy.api (module), 97
deckhand.db.sqlalchemy.models (module),

102
deckhand.engine (module), 111
deckhand.engine.cache (module), 103
deckhand.engine.document_validation

(module), 103
deckhand.engine.layering (module), 105
deckhand.engine.render (module), 106
deckhand.engine.revision_diff (module),

107
deckhand.engine.secrets_manager (module),

108
deckhand.engine.utils (module), 110
deckhand.errors (module), 112
deckhand.factories (module), 118
deckhand.policies (module), 112
deckhand.policies.base (module), 111
deckhand.policies.document (module), 111
deckhand.policies.revision (module), 111
deckhand.policies.revision_tag (module),

112
deckhand.policies.validation (module), 112
deckhand.policy (module), 120
deckhand.service (module), 120
deckhand.types (module), 121
deckhand_app_factory() (in module deck-

hand.service), 120
DeckhandBase (class in deck-

hand.db.sqlalchemy.models), 102
DeckhandException, 113
DeckhandFactory (class in deckhand.factories), 118
DeckhandRequest (class in deckhand.control.base),

93
deep_delete() (in module deckhand.engine.utils),

110
deep_merge() (in module deckhand.engine.utils), 110
deep_scrub() (in module deckhand.engine.utils), 110
deepdiff() (deckhand.client.revisions.RevisionManager

method), 85
DeepDiffException, 113
deepfilter() (in module deckhand.common.utils),

87
default_exception_handler() (in module deck-

hand.errors), 117
default_exception_serializer() (in module

deckhand.errors), 117
delete() (deckhand.client.tags.RevisionTagManager

method), 86
delete() (deckhand.engine.secrets_manager.SecretsManager

class method), 108
delete_all() (deck-

hand.client.revisions.RevisionManager
method), 85

delete_all() (deck-
hand.client.tags.RevisionTagManager method),
86

delete_secret() (deck-
hand.barbican.driver.BarbicanDriver method),
81

deleted (deckhand.db.sqlalchemy.models.DeckhandBase
attribute), 102

deleted_at (deckhand.db.sqlalchemy.models.DeckhandBase
attribute), 102

detail() (deckhand.control.views.validation.ViewBuilder
method), 92

diff() (deckhand.client.revisions.RevisionManager
method), 85

document, 125
document_delete() (in module deck-

hand.db.sqlalchemy.api), 98
document_dict_representer() (in module deck-

hand.common.document), 87
document_get() (in module deck-

hand.db.sqlalchemy.api), 98
document_get_all() (in module deck-

hand.db.sqlalchemy.api), 98
DOCUMENT_SECRET_TEMPLATE (deck-

hand.factories.DocumentSecretFactory at-
tribute), 119

DOCUMENT_TEMPLATE (deck-
hand.factories.DocumentFactory attribute),
118

DocumentDict (class in deck-
hand.common.document), 86

DocumentFactory (class in deckhand.factories), 118
DocumentLayering (class in deck-

hand.engine.layering), 105
DocumentNotFound, 113
documents (deckhand.engine.layering.DocumentLayering

attribute), 105
documents() (deck-

hand.client.revisions.RevisionManager
method), 85

documents_create() (in module deck-
hand.db.sqlalchemy.api), 99

documents_delete_from_buckets_list() (in
module deckhand.db.sqlalchemy.api), 99

DocumentSecretFactory (class in deck-
hand.factories), 119

Index 131



deckhand Documentation, Release 0.1

DocumentValidation (class in deck-
hand.engine.document_validation), 104

drop_db() (in module deckhand.db.sqlalchemy.api),
99

DuplicateDocumentExists, 113
DuplicateDocumentValidator (class in deck-

hand.engine.document_validation), 104

E
EncryptionSourceNotFound, 113
exclude_deleted_documents() (in module deck-

hand.engine.utils), 110

F
filter_revision_documents() (in module deck-

hand.engine.utils), 110
Forbidden, 84
format_error_resp() (in module deck-

hand.errors), 117
format_message() (deck-

hand.common.validation_message.ValidationMessage
method), 90

format_message() (deck-
hand.errors.DeckhandException method),
113

from_dict() (deckhand.context.RequestContext class
method), 112

from_list() (deck-
hand.common.document.DocumentDict class
method), 86

from_response() (in module deck-
hand.client.exceptions), 85

from_yaml() (deckhand.control.base.BaseResource
method), 92

G
gen_test() (deckhand.factories.DataSchemaFactory

method), 118
gen_test() (deckhand.factories.DeckhandFactory

method), 118
gen_test() (deckhand.factories.DocumentFactory

method), 118
gen_test() (deckhand.factories.DocumentSecretFactory

method), 119
gen_test() (deckhand.factories.RenderedDocumentFactory

method), 119
GenericValidator (class in deck-

hand.engine.document_validation), 105
get() (deckhand.client.base.Resource method), 82
get() (deckhand.client.revisions.RevisionManager

method), 85
get() (deckhand.client.tags.RevisionTagManager

method), 86

get() (deckhand.engine.secrets_manager.SecretsManager
class method), 108

get_context() (in module deckhand.context), 112
get_engine() (in module deck-

hand.db.sqlalchemy.api), 99
get_rendered_docs() (in module deck-

hand.control.common), 93
get_secret() (deck-

hand.barbican.driver.BarbicanDriver method),
81

get_session() (in module deck-
hand.db.sqlalchemy.api), 99

get_unencrypted_data() (deck-
hand.engine.secrets_manager.SecretsSubstitution
method), 109

get_url_with_filter() (in module deck-
hand.client.base), 82

get_version_from_request() (in module deck-
hand.errors), 118

getid() (in module deckhand.client.base), 82

H
has_barbican_ref (deck-

hand.common.document.DocumentDict at-
tribute), 87

has_replacement (deck-
hand.common.document.DocumentDict at-
tribute), 87

HealthResource (class in deckhand.control.health),
94

HookableMiddlewareMixin (class in deck-
hand.control.middleware), 94

http_status (deckhand.client.exceptions.BadRequest
attribute), 83

http_status (deckhand.client.exceptions.Conflict at-
tribute), 84

http_status (deckhand.client.exceptions.Forbidden
attribute), 84

http_status (deck-
hand.client.exceptions.HTTPNotImplemented
attribute), 84

http_status (deck-
hand.client.exceptions.MethodNotAllowed
attribute), 84

http_status (deckhand.client.exceptions.NotFound
attribute), 84

http_status (deck-
hand.client.exceptions.Unauthorized attribute),
85

HTTPNotImplemented, 84
HUMAN_ID (deckhand.client.base.Resource attribute),

81
human_id (deckhand.client.base.Resource attribute),

82

132 Index



deckhand Documentation, Release 0.1

I
IndeterminateDocumentParent, 113
init() (in module deckhand.policy), 120
init_application() (in module deck-

hand.control.api), 92
invalidate() (in module deckhand.barbican.cache),

80
invalidate() (in module deckhand.engine.cache),

103
invalidate_cache_data() (in module deck-

hand.control.common), 93
invalidate_one() (in module deck-

hand.engine.cache), 103
InvalidDocumentFormat, 114
InvalidDocumentLayer, 114
InvalidDocumentParent, 114
InvalidDocumentReplacement, 114
InvalidInputException, 115
is_abstract (deck-

hand.common.document.DocumentDict at-
tribute), 87

is_control (deckhand.common.document.DocumentDict
attribute), 87

is_encrypted (deck-
hand.common.document.DocumentDict at-
tribute), 87

is_loaded() (deckhand.client.base.Resource
method), 82

is_replacement (deck-
hand.common.document.DocumentDict at-
tribute), 87

items() (deckhand.db.sqlalchemy.models.DeckhandBase
method), 102

J
jsonpath_parse() (in module deck-

hand.common.utils), 87
jsonpath_replace() (in module deck-

hand.common.utils), 88

K
Key Manager service (barbican), 125
keys() (deckhand.db.sqlalchemy.models.DeckhandBase

method), 102

L
labels (deckhand.common.document.DocumentDict

attribute), 87
layer (deckhand.common.document.DocumentDict at-

tribute), 87
layer_order (deck-

hand.common.document.DocumentDict at-
tribute), 87

layering_definition (deck-
hand.common.document.DocumentDict at-
tribute), 87

LAYERING_POLICY_TEMPLATE (deck-
hand.factories.DocumentFactory attribute),
118

layeringDefinition (deck-
hand.common.document.DocumentDict at-
tribute), 87

LayeringPolicyNotFound, 115
list() (deckhand.client.revisions.RevisionManager

method), 85
list() (deckhand.client.tags.RevisionTagManager

method), 86
list() (deckhand.control.views.document.ViewBuilder

method), 91
list() (deckhand.control.views.revision.ViewBuilder

method), 91
list() (deckhand.control.views.revision_tag.ViewBuilder

method), 92
list() (deckhand.control.views.validation.ViewBuilder

method), 92
list_entries() (deck-

hand.control.views.validation.ViewBuilder
method), 92

list_opts() (in module deckhand.conf.config), 90
list_opts() (in module deckhand.conf.opts), 91
list_rules() (in module deckhand.policies), 112
list_rules() (in module deckhand.policies.base),

111
list_rules() (in module deck-

hand.policies.document), 111
list_rules() (in module deck-

hand.policies.revision), 111
list_rules() (in module deck-

hand.policies.revision_tag), 112
list_rules() (in module deck-

hand.policies.validation), 112
LoggingMiddleware (class in deck-

hand.control.middleware), 94
lookup_by_payload() (in module deck-

hand.barbican.cache), 80
lookup_by_ref() (in module deck-

hand.barbican.cache), 80
lookup_by_revision_id() (in module deck-

hand.engine.cache), 103

M
Manager (class in deckhand.client.base), 81
message (deckhand.client.exceptions.BadRequest at-

tribute), 83
message (deckhand.client.exceptions.ClientException

attribute), 83

Index 133



deckhand Documentation, Release 0.1

message (deckhand.client.exceptions.Conflict at-
tribute), 84

message (deckhand.client.exceptions.Forbidden at-
tribute), 84

message (deckhand.client.exceptions.HTTPNotImplemented
attribute), 84

message (deckhand.client.exceptions.MethodNotAllowed
attribute), 84

message (deckhand.client.exceptions.NotFound at-
tribute), 84

message (deckhand.client.exceptions.Unauthorized at-
tribute), 85

meta (deckhand.common.document.DocumentDict at-
tribute), 87

meta() (in module deckhand.engine.utils), 110
metadata (deckhand.common.document.DocumentDict

attribute), 87
MethodNotAllowed, 84
migration (databse), 126
MissingDocumentKey, 115
MissingDocumentPattern, 115
msg_fmt (deckhand.errors.BarbicanClientException at-

tribute), 112
msg_fmt (deckhand.errors.BarbicanServerException

attribute), 113
msg_fmt (deckhand.errors.DeckhandException at-

tribute), 113
msg_fmt (deckhand.errors.DeepDiffException at-

tribute), 113
msg_fmt (deckhand.errors.DocumentNotFound at-

tribute), 113
msg_fmt (deckhand.errors.DuplicateDocumentExists

attribute), 113
msg_fmt (deckhand.errors.EncryptionSourceNotFound

attribute), 113
msg_fmt (deckhand.errors.IndeterminateDocumentParent

attribute), 114
msg_fmt (deckhand.errors.InvalidDocumentFormat at-

tribute), 114
msg_fmt (deckhand.errors.InvalidDocumentLayer at-

tribute), 114
msg_fmt (deckhand.errors.InvalidDocumentParent at-

tribute), 114
msg_fmt (deckhand.errors.InvalidDocumentReplacement

attribute), 114
msg_fmt (deckhand.errors.InvalidInputException at-

tribute), 115
msg_fmt (deckhand.errors.LayeringPolicyNotFound at-

tribute), 115
msg_fmt (deckhand.errors.MissingDocumentKey

attribute), 115
msg_fmt (deckhand.errors.MissingDocumentPattern at-

tribute), 115
msg_fmt (deckhand.errors.PolicyNotAuthorized at-

tribute), 115
msg_fmt (deckhand.errors.RevisionNotFound at-

tribute), 116
msg_fmt (deckhand.errors.RevisionTagBadFormat at-

tribute), 116
msg_fmt (deckhand.errors.RevisionTagNotFound at-

tribute), 116
msg_fmt (deckhand.errors.SingletonDocumentConflict

attribute), 116
msg_fmt (deckhand.errors.SubstitutionDependencyCycle

attribute), 116
msg_fmt (deckhand.errors.SubstitutionSourceDataNotFound

attribute), 117
msg_fmt (deckhand.errors.SubstitutionSourceNotFound

attribute), 117
msg_fmt (deckhand.errors.UnsupportedActionMethod

attribute), 117
msg_fmt (deckhand.errors.ValidationNotFound at-

tribute), 117
multisort() (in module deckhand.common.utils), 89

N
name (deckhand.common.document.DocumentDict at-

tribute), 87
NAME_ATTR (deckhand.client.base.Resource attribute),

81
no_authentication_methods (deck-

hand.control.base.BaseResource attribute),
93

no_authentication_methods (deck-
hand.control.health.HealthResource attribute),
94

no_authentication_methods (deck-
hand.control.versions.VersionsResource at-
tribute), 97

noauth_filter_factory() (in module deck-
hand.control.no_oauth_middleware), 95

NoAuthFilter (class in deck-
hand.control.no_oauth_middleware), 95

NotFound, 84

O
on_delete() (deck-

hand.control.revision_tags.RevisionTagsResource
method), 96

on_delete() (deck-
hand.control.revisions.RevisionsResource
method), 96

on_get() (deckhand.control.health.HealthResource
method), 94

on_get() (deckhand.control.revision_deepdiffing.RevisionDeepDiffingResource
method), 95

on_get() (deckhand.control.revision_diffing.RevisionDiffingResource
method), 95

134 Index



deckhand Documentation, Release 0.1

on_get() (deckhand.control.revision_documents.RenderedDocumentsResource
method), 96

on_get() (deckhand.control.revision_documents.RevisionDocumentsResource
method), 96

on_get() (deckhand.control.revision_tags.RevisionTagsResource
method), 96

on_get() (deckhand.control.revisions.RevisionsResource
method), 96

on_get() (deckhand.control.validations.ValidationsDetailsResource
method), 97

on_get() (deckhand.control.validations.ValidationsResource
method), 97

on_get() (deckhand.control.versions.VersionsResource
method), 97

on_options() (deckhand.control.base.BaseResource
method), 93

on_post() (deckhand.control.revision_tags.RevisionTagsResource
method), 96

on_post() (deckhand.control.rollback.RollbackResource
method), 97

on_post() (deckhand.control.validations.ValidationsResource
method), 97

on_put() (deckhand.control.buckets.BucketsResource
method), 93

P
parent_selector (deck-

hand.common.document.DocumentDict at-
tribute), 87

PolicyNotAuthorized, 115
prepare_query_string() (in module deck-

hand.client.base), 82
process_request() (deck-

hand.control.middleware.YAMLTranslator
method), 95

process_resource() (deck-
hand.control.middleware.ContextMiddleware
method), 94

process_resource() (deck-
hand.control.middleware.LoggingMiddleware
method), 94

process_response() (deck-
hand.control.middleware.LoggingMiddleware
method), 94

process_response() (deck-
hand.control.middleware.YAMLTranslator
method), 95

project_id (deckhand.control.base.DeckhandRequest
attribute), 93

projectid (deckhand.client.client.Client attribute), 83

R
raw_query() (in module deck-

hand.db.sqlalchemy.api), 99

redact() (deckhand.common.document.DocumentDict
class method), 87

redact_document() (in module deck-
hand.common.utils), 89

redact_documents() (in module deck-
hand.common.utils), 89

register_models() (in module deck-
hand.db.sqlalchemy.models), 103

register_opts() (in module deckhand.conf.config),
90

register_rules() (in module deckhand.policy),
120

render() (deckhand.engine.layering.DocumentLayering
method), 105

render() (in module deckhand.engine), 111
render() (in module deckhand.engine.render), 106
RENDERED_DOCUMENT_TEMPLATE (deck-

hand.factories.RenderedDocumentFactory
attribute), 119

RenderedDocumentFactory (class in deck-
hand.factories), 119

RenderedDocumentsResource (class in deck-
hand.control.revision_documents), 95

replaced_by (deck-
hand.common.document.DocumentDict at-
tribute), 87

request() (deckhand.client.client.SessionClient
method), 83

RequestContext (class in deckhand.context), 112
require_revision_exists() (in module deck-

hand.db.sqlalchemy.api), 99
require_unique_document_schema() (in mod-

ule deckhand.db.sqlalchemy.api), 99
requires_encryption() (deck-

hand.engine.secrets_manager.SecretsManager
static method), 109

reset() (in module deckhand.policy), 120
Resource (class in deckhand.client.base), 81
resource_class (deckhand.client.base.Manager at-

tribute), 81
resource_class (deck-

hand.client.buckets.BucketManager attribute),
82

resource_class (deck-
hand.client.revisions.RevisionManager at-
tribute), 85

resource_class (deck-
hand.client.tags.RevisionTagManager at-
tribute), 86

Revision (class in deckhand.client.revisions), 85
revision_create() (in module deck-

hand.db.sqlalchemy.api), 100
revision_delete_all() (in module deck-

hand.db.sqlalchemy.api), 100

Index 135



deckhand Documentation, Release 0.1

revision_diff() (in module deck-
hand.engine.revision_diff ), 107

revision_documents_get() (in module deck-
hand.db.sqlalchemy.api), 100

revision_get() (in module deck-
hand.db.sqlalchemy.api), 100

revision_get_all() (in module deck-
hand.db.sqlalchemy.api), 100

revision_get_latest() (in module deck-
hand.db.sqlalchemy.api), 101

revision_rollback() (in module deck-
hand.db.sqlalchemy.api), 101

revision_tag_create() (in module deck-
hand.db.sqlalchemy.api), 101

revision_tag_delete() (in module deck-
hand.db.sqlalchemy.api), 101

revision_tag_delete_all() (in module deck-
hand.db.sqlalchemy.api), 101

revision_tag_get() (in module deck-
hand.db.sqlalchemy.api), 101

revision_tag_get_all() (in module deck-
hand.db.sqlalchemy.api), 102

RevisionDeepDiffingResource (class in deck-
hand.control.revision_deepdiffing), 95

RevisionDiffingResource (class in deck-
hand.control.revision_diffing), 95

RevisionDocumentsResource (class in deck-
hand.control.revision_documents), 96

RevisionManager (class in deck-
hand.client.revisions), 85

RevisionNotFound, 115
RevisionsResource (class in deck-

hand.control.revisions), 96
RevisionTag (class in deckhand.client.tags), 86
RevisionTagBadFormat, 116
RevisionTagManager (class in deck-

hand.client.tags), 86
RevisionTagNotFound, 116
RevisionTagsResource (class in deck-

hand.control.revision_tags), 96
roles (deckhand.control.base.DeckhandRequest at-

tribute), 93
rollback() (deckhand.client.revisions.RevisionManager

method), 85
RollbackResource (class in deck-

hand.control.rollback), 96

S
safe_delete() (deck-

hand.db.sqlalchemy.models.DeckhandBase
method), 102

sanitize_params() (in module deck-
hand.control.common), 93

sanitize_potential_secrets() (deck-
hand.engine.secrets_manager.SecretsSubstitution
static method), 109

save() (deckhand.db.sqlalchemy.models.DeckhandBase
method), 102

schema (deckhand.common.document.DocumentDict
attribute), 87

secrets_substitution (deck-
hand.engine.layering.DocumentLayering
attribute), 106

SecretsManager (class in deck-
hand.engine.secrets_manager), 108

SecretsSubstitution (class in deck-
hand.engine.secrets_manager), 109

SessionClient (class in deckhand.client.client), 83
set_info() (deckhand.client.base.Resource method),

82
set_loaded() (deckhand.client.base.Resource

method), 82
setup_db() (in module deckhand.db.sqlalchemy.api),

102
setup_logging() (in module deckhand.control.api),

92
show() (deckhand.control.views.revision.ViewBuilder

method), 91
show() (deckhand.control.views.revision_tag.ViewBuilder

method), 92
show() (deckhand.control.views.validation.ViewBuilder

method), 92
show_entry() (deck-

hand.control.views.validation.ViewBuilder
method), 92

SingletonDocumentConflict, 116
SQLAlchemy, 126
storage_policy (deck-

hand.common.document.DocumentDict at-
tribute), 87

substitute_all() (deck-
hand.engine.secrets_manager.SecretsSubstitution
method), 109

SubstitutionDependencyCycle, 116
substitutions (deck-

hand.common.document.DocumentDict at-
tribute), 87

SubstitutionSourceDataNotFound, 116
SubstitutionSourceNotFound, 117

T
tenant_id (deckhand.client.client.Client attribute), 83
to_camel_case() (in module deck-

hand.common.utils), 89
to_dict() (deckhand.client.base.Resource method),

82

136 Index



deckhand Documentation, Release 0.1

to_dict() (deckhand.context.RequestContext
method), 112

to_dict() (deckhand.db.sqlalchemy.models.DeckhandBase
method), 102

to_snake_case() (in module deck-
hand.common.utils), 89

U
Unauthorized, 84
UnknownSubstitutionError, 117
unregister_models() (in module deck-

hand.db.sqlalchemy.models), 103
UnsupportedActionMethod, 117
update() (deckhand.client.buckets.BucketManager

method), 82
update_substitution_sources() (deck-

hand.engine.secrets_manager.SecretsSubstitution
method), 109

updated_at (deckhand.db.sqlalchemy.models.DeckhandBase
attribute), 102

user_id (deckhand.control.base.DeckhandRequest at-
tribute), 93

V
validate() (deckhand.engine.document_validation.BaseValidator

method), 103
validate() (deckhand.engine.document_validation.DataSchemaValidator

method), 104
validate() (deckhand.engine.document_validation.DuplicateDocumentValidator

method), 104
validate() (deckhand.engine.document_validation.GenericValidator

method), 105
validate_all() (deck-

hand.engine.document_validation.DocumentValidation
method), 104

validate_metadata() (deck-
hand.engine.document_validation.GenericValidator
method), 105

validate_render() (in module deckhand.engine),
111

validate_render() (in module deck-
hand.engine.render), 106

validation_create() (in module deck-
hand.db.sqlalchemy.api), 102

validation_get_all() (in module deck-
hand.db.sqlalchemy.api), 102

validation_get_all_entries() (in module
deckhand.db.sqlalchemy.api), 102

validation_get_entry() (in module deck-
hand.db.sqlalchemy.api), 102

ValidationMessage (class in deck-
hand.common.validation_message), 90

ValidationNotFound, 117

ValidationsDetailsResource (class in deck-
hand.control.validations), 97

ValidationsResource (class in deck-
hand.control.validations), 97

values() (deckhand.db.sqlalchemy.models.DeckhandBase
method), 102

VersionsResource (class in deck-
hand.control.versions), 97

view_builder (deck-
hand.control.buckets.BucketsResource at-
tribute), 93

view_builder (deck-
hand.control.revision_documents.RenderedDocumentsResource
attribute), 96

view_builder (deck-
hand.control.revision_documents.RevisionDocumentsResource
attribute), 96

view_builder (deck-
hand.control.revisions.RevisionsResource
attribute), 96

view_builder (deck-
hand.control.rollback.RollbackResource
attribute), 97

view_builder (deck-
hand.control.validations.ValidationsDetailsResource
attribute), 97

view_builder (deck-
hand.control.validations.ValidationsResource
attribute), 97

ViewBuilder (class in deckhand.control.common), 93
ViewBuilder (class in deck-

hand.control.views.document), 91
ViewBuilder (class in deck-

hand.control.views.revision), 91
ViewBuilder (class in deck-

hand.control.views.revision_tag), 92
ViewBuilder (class in deck-

hand.control.views.validation), 92

Y
YAMLTranslator (class in deck-

hand.control.middleware), 94

Index 137


	Overview
	Overview

	User’s Guide
	User’s Guide

	Operator’s Guide
	Operator’s Guide

	Contrbitutor’s Guide
	Contributor’s Guide

	Release Notes
	Deckhand Release Notes

	Glossary
	Glossary

	Python Module Index
	Index

