
Airflow Documentation
Release 2.0.0.dev0+

Apache Airflow

Jan 20, 2019

Contents

1 Principles 3

2 Beyond the Horizon 5

3 Content 7
3.1 Project . 7

3.1.1 History . 7
3.1.2 Committers . 7
3.1.3 Resources & links . 8
3.1.4 Roadmap . 8

3.2 License . 8
3.3 Quick Start . 11

3.3.1 What’s Next? . 12
3.4 Installation . 12

3.4.1 Getting Airflow . 12
3.4.2 Extra Packages . 12
3.4.3 Initiating Airflow Database . 13

3.5 Tutorial . 13
3.5.1 Example Pipeline definition . 14
3.5.2 It’s a DAG definition file . 15
3.5.3 Importing Modules . 15
3.5.4 Default Arguments . 15
3.5.5 Instantiate a DAG . 16
3.5.6 Tasks . 16
3.5.7 Templating with Jinja . 16
3.5.8 Setting up Dependencies . 17
3.5.9 Recap . 18
3.5.10 Testing . 19

3.5.10.1 Running the Script . 19
3.5.10.2 Command Line Metadata Validation . 19
3.5.10.3 Testing . 19
3.5.10.4 Backfill . 20

3.5.11 What’s Next? . 20
3.6 How-to Guides . 20

3.6.1 Add a new role in RBAC UI . 21
3.6.2 Setting Configuration Options . 21
3.6.3 Initializing a Database Backend . 22

i

3.6.4 Using Operators . 23
3.6.4.1 BashOperator . 27
3.6.4.2 PythonOperator . 28
3.6.4.3 Google Cloud Storage Operators . 29
3.6.4.4 Google Compute Engine Operators . 29
3.6.4.5 Google Cloud Bigtable Operators . 34
3.6.4.6 Google Cloud Functions Operators . 38
3.6.4.7 Google Cloud Spanner Operators . 41
3.6.4.8 Google Cloud Sql Operators . 46
3.6.4.9 Google Cloud Storage Operators . 61

3.6.5 Managing Connections . 63
3.6.5.1 Creating a Connection with the UI . 63
3.6.5.2 Editing a Connection with the UI . 64
3.6.5.3 Creating a Connection with Environment Variables 65
3.6.5.4 Connection Types . 65

3.6.6 Securing Connections . 70
3.6.7 Writing Logs . 71

3.6.7.1 Writing Logs Locally . 71
3.6.7.2 Writing Logs to Amazon S3 . 71
3.6.7.3 Writing Logs to Azure Blob Storage . 71
3.6.7.4 Writing Logs to Google Cloud Storage . 72

3.6.8 Scaling Out with Celery . 73
3.6.9 Scaling Out with Dask . 73
3.6.10 Scaling Out with Mesos (community contributed) . 74

3.6.10.1 Tasks executed directly on mesos slaves . 74
3.6.10.2 Tasks executed in containers on mesos slaves . 75

3.6.11 Running Airflow with systemd . 75
3.6.12 Running Airflow with upstart . 75
3.6.13 Using the Test Mode Configuration . 76
3.6.14 Checking Airflow Health Status . 76

3.7 UI / Screenshots . 76
3.7.1 DAGs View . 76
3.7.2 Tree View . 77
3.7.3 Graph View . 77
3.7.4 Variable View . 78
3.7.5 Gantt Chart . 79
3.7.6 Task Duration . 80
3.7.7 Code View . 80
3.7.8 Task Instance Context Menu . 81

3.8 Concepts . 81
3.8.1 Core Ideas . 82

3.8.1.1 DAGs . 82
3.8.1.2 Operators . 83
3.8.1.3 Tasks . 85
3.8.1.4 Task Instances . 85
3.8.1.5 Workflows . 85

3.8.2 Additional Functionality . 86
3.8.2.1 Hooks . 86
3.8.2.2 Pools . 86
3.8.2.3 Connections . 86
3.8.2.4 Queues . 87
3.8.2.5 XComs . 87
3.8.2.6 Variables . 88
3.8.2.7 Branching . 88

ii

3.8.2.8 SubDAGs . 89
3.8.2.9 SLAs . 92
3.8.2.10 Trigger Rules . 92
3.8.2.11 Latest Run Only . 92
3.8.2.12 Zombies & Undeads . 93
3.8.2.13 Cluster Policy . 94
3.8.2.14 Documentation & Notes . 94
3.8.2.15 Jinja Templating . 95

3.8.3 Packaged dags . 95
3.8.4 .airflowignore . 96

3.9 Data Profiling . 96
3.9.1 Adhoc Queries . 96
3.9.2 Charts . 97

3.9.2.1 Chart Screenshot . 98
3.9.2.2 Chart Form Screenshot . 99

3.10 Command Line Interface . 99
3.10.1 Positional Arguments . 99
3.10.2 Sub-commands: . 100

3.10.2.1 resetdb . 100
3.10.2.2 render . 100
3.10.2.3 variables . 100
3.10.2.4 connections . 101
3.10.2.5 users . 102
3.10.2.6 pause . 102
3.10.2.7 sync_perm . 103
3.10.2.8 task_failed_deps . 103
3.10.2.9 version . 103
3.10.2.10 trigger_dag . 103
3.10.2.11 initdb . 104
3.10.2.12 test . 104
3.10.2.13 unpause . 104
3.10.2.14 list_dag_runs . 105
3.10.2.15 dag_state . 105
3.10.2.16 run . 106
3.10.2.17 list_tasks . 107
3.10.2.18 backfill . 107
3.10.2.19 list_dags . 109
3.10.2.20 kerberos . 109
3.10.2.21 worker . 109
3.10.2.22 webserver . 110
3.10.2.23 flower . 111
3.10.2.24 scheduler . 112
3.10.2.25 task_state . 112
3.10.2.26 pool . 113
3.10.2.27 serve_logs . 113
3.10.2.28 clear . 113
3.10.2.29 next_execution . 114
3.10.2.30 upgradedb . 115
3.10.2.31 delete_dag . 115

3.11 Scheduling & Triggers . 115
3.11.1 DAG Runs . 115
3.11.2 Backfill and Catchup . 116
3.11.3 External Triggers . 117
3.11.4 To Keep in Mind . 117

iii

3.12 Plugins . 118
3.12.1 What for? . 118
3.12.2 Why build on top of Airflow? . 118
3.12.3 Interface . 118
3.12.4 Example . 119
3.12.5 Note on role based views . 121
3.12.6 Plugins as Python packages . 121

3.13 Security . 122
3.13.1 Reporting Vulnerabilities . 122
3.13.2 Web Authentication . 122

3.13.2.1 Password . 122
3.13.2.2 LDAP . 123
3.13.2.3 Roll your own . 124

3.13.3 Multi-tenancy . 124
3.13.4 Kerberos . 124

3.13.4.1 Limitations . 124
3.13.4.2 Enabling kerberos . 125
3.13.4.3 Using kerberos authentication . 125

3.13.5 OAuth Authentication . 126
3.13.5.1 GitHub Enterprise (GHE) Authentication . 126
3.13.5.2 Google Authentication . 127

3.13.6 SSL . 128
3.13.7 Impersonation . 128

3.13.7.1 Default Impersonation . 128
3.13.8 Flower Authentication . 129

3.14 Time zones . 129
3.14.1 Concepts . 129

3.14.1.1 Naïve and aware datetime objects . 129
3.14.1.2 Interpretation of naive datetime objects . 130
3.14.1.3 Default time zone . 130

3.14.2 Time zone aware DAGs . 130
3.14.2.1 Templates . 131
3.14.2.2 Cron schedules . 131
3.14.2.3 Time deltas . 131

3.15 Experimental Rest API . 131
3.15.1 Endpoints . 131
3.15.2 CLI . 132
3.15.3 Authentication . 132

3.16 Integration . 133
3.16.1 Reverse Proxy . 133
3.16.2 Azure: Microsoft Azure . 134

3.16.2.1 Azure Blob Storage . 134
3.16.2.2 Azure File Share . 134
3.16.2.3 Logging . 135
3.16.2.4 Azure CosmosDB . 135
3.16.2.5 Azure Data Lake . 135
3.16.2.6 Azure Container Instances . 135

3.16.3 AWS: Amazon Web Services . 136
3.16.3.1 AWS EMR . 136
3.16.3.2 AWS S3 . 137
3.16.3.3 AWS EC2 Container Service . 144
3.16.3.4 AWS Batch Service . 145
3.16.3.5 AWS RedShift . 146
3.16.3.6 AWS DynamoDB . 148

iv

3.16.3.7 AWS Lambda . 149
3.16.3.8 AWS Kinesis . 149
3.16.3.9 Amazon SageMaker . 150

3.16.4 Databricks . 158
3.16.4.1 DatabricksSubmitRunOperator . 158

3.16.5 GCP: Google Cloud Platform . 160
3.16.5.1 Logging . 160
3.16.5.2 GoogleCloudBaseHook . 161
3.16.5.3 BigQuery . 161
3.16.5.4 Cloud Spanner . 171
3.16.5.5 Cloud SQL . 171
3.16.5.6 Cloud Bigtable . 180
3.16.5.7 Compute Engine . 181
3.16.5.8 Cloud Functions . 186
3.16.5.9 Cloud DataFlow . 188
3.16.5.10 Cloud DataProc . 192
3.16.5.11 Cloud Datastore . 201
3.16.5.12 Cloud ML Engine . 204
3.16.5.13 Cloud Storage . 209
3.16.5.14 Google Kubernetes Engine . 221

3.16.6 Qubole . 221
3.16.6.1 QuboleOperator . 221
3.16.6.2 QubolePartitionSensor . 224
3.16.6.3 QuboleFileSensor . 224
3.16.6.4 QuboleCheckOperator . 225
3.16.6.5 QuboleValueCheckOperator . 225

3.17 Metrics . 226
3.17.1 Configuration . 226
3.17.2 Counters . 226
3.17.3 Gauges . 226
3.17.4 Timers . 227

3.18 Lineage . 227
3.18.1 Apache Atlas . 228

3.19 FAQ . 228
3.19.1 Why isn’t my task getting scheduled? . 228
3.19.2 How do I trigger tasks based on another task’s failure? . 229
3.19.3 Why are connection passwords still not encrypted in the metadata db after I installed air-

flow[crypto]? . 229
3.19.4 What’s the deal with start_date? . 229
3.19.5 How can I create DAGs dynamically? . 230
3.19.6 What are all the airflow run commands in my process list? 230
3.19.7 How can my airflow dag run faster? . 230
3.19.8 How can we reduce the airflow UI page load time? . 230
3.19.9 How to fix Exception: Global variable explicit_defaults_for_timestamp needs to be on (1)? . 231
3.19.10 How to reduce airflow dag scheduling latency in production? 231

3.20 API Reference . 231
3.20.1 Operators . 231

3.20.1.1 BaseOperator . 231
3.20.1.2 BaseSensorOperator . 235
3.20.1.3 Core Operators . 236
3.20.1.4 Community-contributed Operators . 256

3.20.2 Macros . 316
3.20.2.1 Default Variables . 317
3.20.2.2 Macros . 317

v

3.20.3 Models . 319
3.20.4 Hooks . 335

3.20.4.1 Community contributed hooks . 349
3.20.5 Executors . 387

3.20.5.1 Community-contributed executors . 388

HTTP Routing Table 389

Python Module Index 391

vi

Airflow Documentation, Release 2.0.0.dev0+

Airflow is a platform to programmatically author, schedule and monitor workflows.

Use airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The airflow scheduler executes your tasks
on an array of workers while following the specified dependencies. Rich command line utilities make performing
complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production,
monitor progress, and troubleshoot issues when needed.

When workflows are defined as code, they become more maintainable, versionable, testable, and collaborative.

Contents 1

Airflow Documentation, Release 2.0.0.dev0+

2 Contents

CHAPTER 1

Principles

• Dynamic: Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This
allows for writing code that instantiates pipelines dynamically.

• Extensible: Easily define your own operators, executors and extend the library so that it fits the level of abstrac-
tion that suits your environment.

• Elegant: Airflow pipelines are lean and explicit. Parameterizing your scripts is built into the core of Airflow
using the powerful Jinja templating engine.

• Scalable: Airflow has a modular architecture and uses a message queue to orchestrate an arbitrary number of
workers. Airflow is ready to scale to infinity.

3

Airflow Documentation, Release 2.0.0.dev0+

4 Chapter 1. Principles

CHAPTER 2

Beyond the Horizon

Airflow is not a data streaming solution. Tasks do not move data from one to the other (though tasks can exchange
metadata!). Airflow is not in the Spark Streaming or Storm space, it is more comparable to Oozie or Azkaban.

Workflows are expected to be mostly static or slowly changing. You can think of the structure of the tasks in your
workflow as slightly more dynamic than a database structure would be. Airflow workflows are expected to look similar
from a run to the next, this allows for clarity around unit of work and continuity.

5

http://spark.apache.org/streaming/
https://storm.apache.org/
http://oozie.apache.org/
http://data.linkedin.com/opensource/azkaban

Airflow Documentation, Release 2.0.0.dev0+

6 Chapter 2. Beyond the Horizon

CHAPTER 3

Content

3.1 Project

3.1.1 History

Airflow was started in October 2014 by Maxime Beauchemin at Airbnb. It was open source from the very first commit
and officially brought under the Airbnb Github and announced in June 2015.

The project joined the Apache Software Foundation’s incubation program in March 2016.

3.1.2 Committers

• @mistercrunch (Maxime “Max” Beauchemin)

• @r39132 (Siddharth “Sid” Anand)

• @criccomini (Chris Riccomini)

• @bolkedebruin (Bolke de Bruin)

• @artwr (Arthur Wiedmer)

• @jlowin (Jeremiah Lowin)

• @aoen (Dan Davydov)

• @msumit (Sumit Maheshwari)

• @alexvanboxel (Alex Van Boxel)

• @saguziel (Alex Guziel)

• @joygao (Joy Gao)

• @fokko (Fokko Driesprong)

• @ash (Ash Berlin-Taylor)

7

Airflow Documentation, Release 2.0.0.dev0+

• @kaxilnaik (Kaxil Naik)

• @feng-tao (Tao Feng)

• @hiteshs (Hitesh Shah)

• @jghoman (Jakob Homan)

For the full list of contributors, take a look at Airflow’s Github Contributor page:

3.1.3 Resources & links

• Airflow’s official documentation

• Mailing list (send emails to dev-subscribe@airflow.apache.org and/or
commits-subscribe@airflow.apache.org to subscribe to each)

• Issues on Apache’s Jira

• Slack (chat) Channel

• More resources and links to Airflow related content on the Wiki

3.1.4 Roadmap

Please refer to the Roadmap on the wiki

3.2 License

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the

(continues on next page)

8 Chapter 3. Content

https://github.com/apache/airflow/graphs/contributors
http://airflow.apache.org/
https://issues.apache.org/jira/browse/AIRFLOW
https://apache-airflow-slack.herokuapp.com/
https://cwiki.apache.org/confluence/display/AIRFLOW/Airflow+Links
https://cwiki.apache.org/confluence/display/AIRFLOW/Airflow+Home

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,

(continues on next page)

3.2. License 9

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify

(continues on next page)

10 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

3.3 Quick Start

The installation is quick and straightforward.

airflow needs a home, ~/airflow is the default,
but you can lay foundation somewhere else if you prefer
(optional)
export AIRFLOW_HOME=~/airflow

install from pypi using pip
pip install apache-airflow

initialize the database

(continues on next page)

3.3. Quick Start 11

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

airflow initdb

start the web server, default port is 8080
airflow webserver -p 8080

start the scheduler
airflow scheduler

visit localhost:8080 in the browser and enable the example dag in the home page

Upon running these commands, Airflow will create the $AIRFLOW_HOME folder and lay an “airflow.cfg” file with
defaults that get you going fast. You can inspect the file either in $AIRFLOW_HOME/airflow.cfg, or through the
UI in the Admin->Configuration menu. The PID file for the webserver will be stored in $AIRFLOW_HOME/
airflow-webserver.pid or in /run/airflow/webserver.pid if started by systemd.

Out of the box, Airflow uses a sqlite database, which you should outgrow fairly quickly since no parallelization is
possible using this database backend. It works in conjunction with the SequentialExecutor which will only run
task instances sequentially. While this is very limiting, it allows you to get up and running quickly and take a tour of
the UI and the command line utilities.

Here are a few commands that will trigger a few task instances. You should be able to see the status of the jobs change
in the example_bash_operator DAG as you run the commands below.

run your first task instance
airflow run example_bash_operator runme_0 2015-01-01
run a backfill over 2 days
airflow backfill example_bash_operator -s 2015-01-01 -e 2015-01-02

3.3.1 What’s Next?

From this point, you can head to the Tutorial section for further examples or the How-to Guides section if you’re ready
to get your hands dirty.

3.4 Installation

3.4.1 Getting Airflow

The easiest way to install the latest stable version of Airflow is with pip:

pip install apache-airflow

You can also install Airflow with support for extra features like s3 or postgres:

pip install apache-airflow[postgres,s3]

3.4.2 Extra Packages

The apache-airflow PyPI basic package only installs what’s needed to get started. Subpackages can be installed
depending on what will be useful in your environment. For instance, if you don’t need connectivity with Postgres,
you won’t have to go through the trouble of installing the postgres-devel yum package, or whatever equivalent
applies on the distribution you are using.

12 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Behind the scenes, Airflow does conditional imports of operators that require these extra dependencies.

Here’s the list of the subpackages and what they enable:

subpackage install command enables
all pip install apache-airflow[all] All Airflow features known to man
all_dbs pip install apache-airflow[all_dbs] All databases integrations
async pip install apache-airflow[async] Async worker classes for Gunicorn
celery pip install apache-airflow[celery] CeleryExecutor
cloudant pip install apache-airflow[cloudant] Cloudant hook
crypto pip install apache-airflow[crypto] Encrypt connection passwords in metadata db
devel pip install apache-airflow[devel] Minimum dev tools requirements
devel_hadoop pip install apache-airflow[devel_hadoop] Airflow + dependencies on the Hadoop stack
druid pip install apache-airflow[druid] Druid related operators & hooks
gcp_api pip install apache-airflow[gcp_api] Google Cloud Platform hooks and operators (using google-api-python-client)
github_enterprise pip install apache-airflow[github_enterprise] Github Enterprise auth backend
google_auth pip install apache-airflow[google_auth] Google auth backend
hdfs pip install apache-airflow[hdfs] HDFS hooks and operators
hive pip install apache-airflow[hive] All Hive related operators
jdbc pip install apache-airflow[jdbc] JDBC hooks and operators
kerberos pip install apache-airflow[kerberos] Kerberos integration for Kerberized Hadoop
kubernetes pip install apache-airflow[kubernetes] Kubernetes Executor and operator
ldap pip install apache-airflow[ldap] LDAP authentication for users
mssql pip install apache-airflow[mssql] Microsoft SQL Server operators and hook, support as an Airflow backend
mysql pip install apache-airflow[mysql] MySQL operators and hook, support as an Airflow backend. The version of MySQL server has to be 5.6.4+. The exact version upper bound depends on version of mysqlclient package. For example, mysqlclient 1.3.12 can only be used with MySQL server 5.6.4 through 5.7.
password pip install apache-airflow[password] Password authentication for users
postgres pip install apache-airflow[postgres] PostgreSQL operators and hook, support as an Airflow backend
qds pip install apache-airflow[qds] Enable QDS (Qubole Data Service) support
rabbitmq pip install apache-airflow[rabbitmq] RabbitMQ support as a Celery backend
redis pip install apache-airflow[redis] Redis hooks and sensors
s3 pip install apache-airflow[s3] S3KeySensor, S3PrefixSensor
samba pip install apache-airflow[samba] Hive2SambaOperator
slack pip install apache-airflow[slack] SlackAPIPostOperator
ssh pip install apache-airflow[ssh] SSH hooks and Operator
vertica pip install apache-airflow[vertica] Vertica hook support as an Airflow backend

3.4.3 Initiating Airflow Database

Airflow requires a database to be initiated before you can run tasks. If you’re just experimenting and learning Airflow,
you can stick with the default SQLite option. If you don’t want to use SQLite, then take a look at Initializing a
Database Backend to setup a different database.

After configuration, you’ll need to initialize the database before you can run tasks:

airflow initdb

3.5 Tutorial

This tutorial walks you through some of the fundamental Airflow concepts, objects, and their usage while writing your
first pipeline.

3.5. Tutorial 13

Airflow Documentation, Release 2.0.0.dev0+

3.5.1 Example Pipeline definition

Here is an example of a basic pipeline definition. Do not worry if this looks complicated, a line by line explanation
follows below.

"""
Code that goes along with the Airflow tutorial located at:
https://github.com/apache/airflow/blob/master/airflow/example_dags/tutorial.py
"""
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta

default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date': datetime(2015, 6, 1),
'email': ['airflow@example.com'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),
'queue': 'bash_queue',
'pool': 'backfill',
'priority_weight': 10,
'end_date': datetime(2016, 1, 1),

}

dag = DAG('tutorial', default_args=default_args, schedule_interval=timedelta(days=1))

t1, t2 and t3 are examples of tasks created by instantiating operators
t1 = BashOperator(

task_id='print_date',
bash_command='date',
dag=dag)

t2 = BashOperator(
task_id='sleep',
bash_command='sleep 5',
retries=3,
dag=dag)

templated_command = """
{% for i in range(5) %}

echo "{{ ds }}"
echo "{{ macros.ds_add(ds, 7)}}"
echo "{{ params.my_param }}"

{% endfor %}
"""

t3 = BashOperator(
task_id='templated',
bash_command=templated_command,
params={'my_param': 'Parameter I passed in'},
dag=dag)

t2.set_upstream(t1)
(continues on next page)

14 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

t3.set_upstream(t1)

3.5.2 It’s a DAG definition file

One thing to wrap your head around (it may not be very intuitive for everyone at first) is that this Airflow Python script
is really just a configuration file specifying the DAG’s structure as code. The actual tasks defined here will run in a
different context from the context of this script. Different tasks run on different workers at different points in time,
which means that this script cannot be used to cross communicate between tasks. Note that for this purpose we have a
more advanced feature called XCom.

People sometimes think of the DAG definition file as a place where they can do some actual data processing - that is
not the case at all! The script’s purpose is to define a DAG object. It needs to evaluate quickly (seconds, not minutes)
since the scheduler will execute it periodically to reflect the changes if any.

3.5.3 Importing Modules

An Airflow pipeline is just a Python script that happens to define an Airflow DAG object. Let’s start by importing the
libraries we will need.

The DAG object; we'll need this to instantiate a DAG
from airflow import DAG

Operators; we need this to operate!
from airflow.operators.bash_operator import BashOperator

3.5.4 Default Arguments

We’re about to create a DAG and some tasks, and we have the choice to explicitly pass a set of arguments to each
task’s constructor (which would become redundant), or (better!) we can define a dictionary of default parameters that
we can use when creating tasks.

from datetime import datetime, timedelta

default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date': datetime(2015, 6, 1),
'email': ['airflow@example.com'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),
'queue': 'bash_queue',
'pool': 'backfill',
'priority_weight': 10,
'end_date': datetime(2016, 1, 1),

}

For more information about the BaseOperator’s parameters and what they do, refer to the airflow.models.
BaseOperator documentation.

Also, note that you could easily define different sets of arguments that would serve different purposes. An example of
that would be to have different settings between a production and development environment.

3.5. Tutorial 15

Airflow Documentation, Release 2.0.0.dev0+

3.5.5 Instantiate a DAG

We’ll need a DAG object to nest our tasks into. Here we pass a string that defines the dag_id, which serves as
a unique identifier for your DAG. We also pass the default argument dictionary that we just defined and define a
schedule_interval of 1 day for the DAG.

dag = DAG(
'tutorial', default_args=default_args, schedule_interval=timedelta(days=1))

3.5.6 Tasks

Tasks are generated when instantiating operator objects. An object instantiated from an operator is called a constructor.
The first argument task_id acts as a unique identifier for the task.

t1 = BashOperator(
task_id='print_date',
bash_command='date',
dag=dag)

t2 = BashOperator(
task_id='sleep',
bash_command='sleep 5',
retries=3,
dag=dag)

Notice how we pass a mix of operator specific arguments (bash_command) and an argument common to all operators
(retries) inherited from BaseOperator to the operator’s constructor. This is simpler than passing every argument
for every constructor call. Also, notice that in the second task we override the retries parameter with 3.

The precedence rules for a task are as follows:

1. Explicitly passed arguments

2. Values that exist in the default_args dictionary

3. The operator’s default value, if one exists

A task must include or inherit the arguments task_id and owner, otherwise Airflow will raise an exception.

3.5.7 Templating with Jinja

Airflow leverages the power of Jinja Templating and provides the pipeline author with a set of built-in parameters and
macros. Airflow also provides hooks for the pipeline author to define their own parameters, macros and templates.

This tutorial barely scratches the surface of what you can do with templating in Airflow, but the goal of this section is
to let you know this feature exists, get you familiar with double curly brackets, and point to the most common template
variable: {{ ds }} (today’s “date stamp”).

templated_command = """
{% for i in range(5) %}

echo "{{ ds }}"
echo "{{ macros.ds_add(ds, 7) }}"
echo "{{ params.my_param }}"

{% endfor %}
"""

(continues on next page)

16 Chapter 3. Content

http://jinja.pocoo.org/docs/dev/

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

t3 = BashOperator(
task_id='templated',
bash_command=templated_command,
params={'my_param': 'Parameter I passed in'},
dag=dag)

Notice that the templated_command contains code logic in {% %} blocks, references parameters like {{ ds }},
calls a function as in {{ macros.ds_add(ds, 7)}}, and references a user-defined parameter in {{ params.
my_param }}.

The params hook in BaseOperator allows you to pass a dictionary of parameters and/or objects to your templates.
Please take the time to understand how the parameter my_param makes it through to the template.

Files can also be passed to the bash_command argument, like bash_command='templated_command.sh',
where the file location is relative to the directory containing the pipeline file (tutorial.py in this case). This
may be desirable for many reasons, like separating your script’s logic and pipeline code, allowing for proper code
highlighting in files composed in different languages, and general flexibility in structuring pipelines. It is also possible
to define your template_searchpath as pointing to any folder locations in the DAG constructor call.

Using that same DAG constructor call, it is possible to define user_defined_macros which allow you to specify
your own variables. For example, passing dict(foo='bar') to this argument allows you to use {{ foo }}
in your templates. Moreover, specifying user_defined_filters allow you to register you own filters. For
example, passing dict(hello=lambda name: 'Hello %s' % name) to this argument allows you to use
{{ 'world' | hello }} in your templates. For more information regarding custom filters have a look at the
Jinja Documentation

For more information on the variables and macros that can be referenced in templates, make sure to read through the
Macros section

3.5.8 Setting up Dependencies

We have tasks t1, t2 and t3 that do not depend on each other. Here’s a few ways you can define dependencies between
them:

t1.set_downstream(t2)

This means that t2 will depend on t1
running successfully to run.
It is equivalent to:
t2.set_upstream(t1)

The bit shift operator can also be
used to chain operations:
t1 >> t2

And the upstream dependency with the
bit shift operator:
t2 << t1

Chaining multiple dependencies becomes
concise with the bit shift operator:
t1 >> t2 >> t3

A list of tasks can also be set as
dependencies. These operations

(continues on next page)

3.5. Tutorial 17

http://jinja.pocoo.org/docs/dev/api/#writing-filters

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

all have the same effect:
t1.set_downstream([t2, t3])
t1 >> [t2, t3]
[t2, t3] << t1

Note that when executing your script, Airflow will raise exceptions when it finds cycles in your DAG or when a
dependency is referenced more than once.

3.5.9 Recap

Alright, so we have a pretty basic DAG. At this point your code should look something like this:

"""
Code that goes along with the Airflow tutorial located at:
https://github.com/apache/airflow/blob/master/airflow/example_dags/tutorial.py
"""
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta

default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date': datetime(2015, 6, 1),
'email': ['airflow@example.com'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),
'queue': 'bash_queue',
'pool': 'backfill',
'priority_weight': 10,
'end_date': datetime(2016, 1, 1),

}

dag = DAG(
'tutorial', default_args=default_args, schedule_interval=timedelta(days=1))

t1, t2 and t3 are examples of tasks created by instantiating operators
t1 = BashOperator(

task_id='print_date',
bash_command='date',
dag=dag)

t2 = BashOperator(
task_id='sleep',
bash_command='sleep 5',
retries=3,
dag=dag)

templated_command = """
{% for i in range(5) %}

echo "{{ ds }}"
echo "{{ macros.ds_add(ds, 7)}}"

(continues on next page)

18 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

echo "{{ params.my_param }}"
{% endfor %}

"""

t3 = BashOperator(
task_id='templated',
bash_command=templated_command,
params={'my_param': 'Parameter I passed in'},
dag=dag)

t2.set_upstream(t1)
t3.set_upstream(t1)

3.5.10 Testing

3.5.10.1 Running the Script

Time to run some tests. First let’s make sure that the pipeline parses. Let’s assume we’re saving the code from the
previous step in tutorial.py in the DAGs folder referenced in your airflow.cfg. The default location for
your DAGs is ~/airflow/dags.

python ~/airflow/dags/tutorial.py

If the script does not raise an exception it means that you haven’t done anything horribly wrong, and that your Airflow
environment is somewhat sound.

3.5.10.2 Command Line Metadata Validation

Let’s run a few commands to validate this script further.

print the list of active DAGs
airflow list_dags

prints the list of tasks in the "tutorial" DAG
airflow list_tasks tutorial

prints the hierarchy of tasks in the "tutorial" DAG
airflow list_tasks tutorial --tree

3.5.10.3 Testing

Let’s test by running the actual task instances on a specific date. The date specified in this context is an
execution_date, which simulates the scheduler running your task or dag at a specific date + time:

command layout: command subcommand dag_id task_id date

testing print_date
airflow test tutorial print_date 2015-06-01

testing sleep
airflow test tutorial sleep 2015-06-01

3.5. Tutorial 19

Airflow Documentation, Release 2.0.0.dev0+

Now remember what we did with templating earlier? See how this template gets rendered and executed by running
this command:

testing templated
airflow test tutorial templated 2015-06-01

This should result in displaying a verbose log of events and ultimately running your bash command and printing the
result.

Note that the airflow test command runs task instances locally, outputs their log to stdout (on screen), doesn’t
bother with dependencies, and doesn’t communicate state (running, success, failed, . . .) to the database. It simply
allows testing a single task instance.

3.5.10.4 Backfill

Everything looks like it’s running fine so let’s run a backfill. backfill will respect your dependencies, emit logs
into files and talk to the database to record status. If you do have a webserver up, you’ll be able to track the progress.
airflow webserver will start a web server if you are interested in tracking the progress visually as your backfill
progresses.

Note that if you use depends_on_past=True, individual task instances will depend on the success of the preced-
ing task instance, except for the start_date specified itself, for which this dependency is disregarded.

The date range in this context is a start_date and optionally an end_date, which are used to populate the run
schedule with task instances from this dag.

optional, start a web server in debug mode in the background
airflow webserver --debug &

start your backfill on a date range
airflow backfill tutorial -s 2015-06-01 -e 2015-06-07

3.5.11 What’s Next?

That’s it, you’ve written, tested and backfilled your very first Airflow pipeline. Merging your code into a code reposi-
tory that has a master scheduler running against it should get it to get triggered and run every day.

Here’s a few things you might want to do next:

• Take an in-depth tour of the UI - click all the things!

• Keep reading the docs! Especially the sections on:

– Command line interface

– Operators

– Macros

• Write your first pipeline!

3.6 How-to Guides

Setting up the sandbox in the Quick Start section was easy; building a production-grade environment requires a bit
more work!

These how-to guides will step you through common tasks in using and configuring an Airflow environment.

20 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

3.6.1 Add a new role in RBAC UI

There are five roles created for Airflow by default: Admin, User, Op, Viewer, and Public. The master branch adds beta
support for DAG level access for RBAC UI. Each DAG comes with two permissions: read and write.

The Admin could create a specific role which is only allowed to read / write certain DAGs. To configure a new role,
go to Security tab and click List Roles in the new UI.

The image shows a role which could only write to example_python_operator is created. And we could assign the given
role to a new user using airflow users --role cli command.

3.6.2 Setting Configuration Options

The first time you run Airflow, it will create a file called airflow.cfg in your $AIRFLOW_HOME directory (~/
airflow by default). This file contains Airflow’s configuration and you can edit it to change any of the settings. You
can also set options with environment variables by using this format: $AIRFLOW__{SECTION}__{KEY} (note the
double underscores).

For example, the metadata database connection string can either be set in airflow.cfg like this:

[core]
sql_alchemy_conn = my_conn_string

or by creating a corresponding environment variable:

3.6. How-to Guides 21

Airflow Documentation, Release 2.0.0.dev0+

AIRFLOW__CORE__SQL_ALCHEMY_CONN=my_conn_string

You can also derive the connection string at run time by appending _cmd to the key like this:

[core]
sql_alchemy_conn_cmd = bash_command_to_run

The following config options support this _cmd version:

• sql_alchemy_conn in [core] section

• fernet_key in [core] section

• broker_url in [celery] section

• result_backend in [celery] section

• password in [atlas] section

• smtp_password in [smtp] section

• bind_password in [ldap] section

• git_password in [kubernetes] section

The idea behind this is to not store passwords on boxes in plain text files.

The order of precedence for all config options is as follows -

1. environment variable

2. configuration in airflow.cfg

3. command in airflow.cfg

4. Airflow’s built in defaults

3.6.3 Initializing a Database Backend

If you want to take a real test drive of Airflow, you should consider setting up a real database backend and switching
to the LocalExecutor.

As Airflow was built to interact with its metadata using the great SqlAlchemy library, you should be able to use any
database backend supported as a SqlAlchemy backend. We recommend using MySQL or Postgres.

Note: We rely on more strict ANSI SQL settings for MySQL in order to have sane defaults. Make sure to have
specified explicit_defaults_for_timestamp=1 in your my.cnf under [mysqld]

Note: If you decide to use Postgres, we recommend using the psycopg2 driver and specifying it in your
SqlAlchemy connection string. Also note that since SqlAlchemy does not expose a way to target a specific schema in
the Postgres connection URI, you may want to set a default schema for your role with a command similar to ALTER
ROLE username SET search_path = airflow, foobar;

Once you’ve setup your database to host Airflow, you’ll need to alter the SqlAlchemy connection string located in
your configuration file $AIRFLOW_HOME/airflow.cfg. You should then also change the “executor” setting to
use “LocalExecutor”, an executor that can parallelize task instances locally.

22 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

initialize the database
airflow initdb

3.6.4 Using Operators

An operator represents a single, ideally idempotent, task. Operators determine what actually executes when your DAG
runs.

See the Operators Concepts documentation and the Operators API Reference for more information.

• BashOperator

– Templating

– Troubleshooting

* Jinja template not found

• PythonOperator

– Passing in arguments

– Templating

• Google Cloud Storage Operators

– GoogleCloudStorageToBigQueryOperator

• Google Compute Engine Operators

– GceInstanceStartOperator

* Arguments

* Using the operator

* Templating

* More information

– GceInstanceStopOperator

* Arguments

* Using the operator

* Templating

* More information

– GceSetMachineTypeOperator

* Arguments

* Using the operator

* Templating

* More information

– GceInstanceTemplateCopyOperator

* Arguments

3.6. How-to Guides 23

Airflow Documentation, Release 2.0.0.dev0+

* Using the operator

* Templating

* More information

– GceInstanceGroupManagerUpdateTemplateOperator

* Arguments

* Using the operator

* Templating

* Troubleshooting

* More information

• Google Cloud Bigtable Operators

– BigtableInstanceCreateOperator

* Using the operator

– BigtableInstanceDeleteOperator

* Using the operator

– BigtableClusterUpdateOperator

* Using the operator

– BigtableTableCreateOperator

* Using the operator

* Advanced

– BigtableTableDeleteOperator

* Using the operator

– BigtableTableWaitForReplicationSensor

* Using the operator

• Google Cloud Functions Operators

– GcfFunctionDeleteOperator

* Arguments

* Using the operator

* Templating

* More information

– GcfFunctionDeployOperator

* Arguments

* Using the operator

* Templating

* Troubleshooting

* More information

24 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• Google Cloud Spanner Operators

– CloudSpannerInstanceDatabaseDeleteOperator

* Arguments

* Using the operator

* Templating

* More information

– CloudSpannerInstanceDatabaseDeployOperator

* Arguments

* Using the operator

* Templating

* More information

– CloudSpannerInstanceDatabaseUpdateOperator

* Arguments

* Using the operator

* Templating

* More information

– CloudSpannerInstanceDatabaseQueryOperator

* Arguments

* Using the operator

* Templating

* More information

– CloudSpannerInstanceDeleteOperator

* Arguments

* Using the operator

* Templating

* More information

• Google Cloud Sql Operators

– CloudSqlInstanceDatabaseCreateOperator

* Arguments

* Using the operator

* Templating

* More information

– CloudSqlInstanceDatabaseDeleteOperator

* Arguments

* Using the operator

3.6. How-to Guides 25

Airflow Documentation, Release 2.0.0.dev0+

* Templating

* More information

– CloudSqlInstanceDatabasePatchOperator

* Arguments

* Using the operator

* Templating

* More information

– CloudSqlInstanceDeleteOperator

* Arguments

* Using the operator

* Templating

* More information

– CloudSqlInstanceExportOperator

* Arguments

* Using the operator

* Templating

* More information

* Troubleshooting

– CloudSqlInstanceImportOperator

* CSV import:

* SQL import:

* Arguments

* Using the operator

* Templating

* More information

* Troubleshooting

– CloudSqlInstanceCreateOperator

* Arguments

* Using the operator

* Templating

* More information

– CloudSqlInstancePatchOperator

* Arguments

* Using the operator

* Templating

26 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

* More information

– CloudSqlQueryOperator

* Arguments

* Using the operator

* Templating

* More information

• Google Cloud Storage Operators

– GoogleCloudStorageBucketCreateAclEntryOperator

* Arguments

* Using the operator

* Templating

* More information

– GoogleCloudStorageObjectCreateAclEntryOperator

* Arguments

* Using the operator

* Templating

* More information

3.6.4.1 BashOperator

Use the BashOperator to execute commands in a Bash shell.

run_this = BashOperator(
task_id='run_after_loop',
bash_command='echo 1',
dag=dag,

)

Templating

You can use Jinja templates to parameterize the bash_command argument.

also_run_this = BashOperator(
task_id='also_run_this',
bash_command='echo "run_id={{ run_id }} | dag_run={{ dag_run }}"',
dag=dag,

)

3.6. How-to Guides 27

https://www.gnu.org/software/bash/

Airflow Documentation, Release 2.0.0.dev0+

Troubleshooting

Jinja template not found

Add a space after the script name when directly calling a Bash script with the bash_command argument. This is
because Airflow tries to apply a Jinja template to it, which will fail.

t2 = BashOperator(
task_id='bash_example',

This fails with `Jinja template not found` error
bash_command="/home/batcher/test.sh",

This works (has a space after)
bash_command="/home/batcher/test.sh ",
dag=dag)

3.6.4.2 PythonOperator

Use the PythonOperator to execute Python callables.

def print_context(ds, **kwargs):
pprint(kwargs)
print(ds)
return 'Whatever you return gets printed in the logs'

run_this = PythonOperator(
task_id='print_the_context',
provide_context=True,
python_callable=print_context,
dag=dag,

)

Passing in arguments

Use the op_args and op_kwargs arguments to pass additional arguments to the Python callable.

def my_sleeping_function(random_base):
"""This is a function that will run within the DAG execution"""
time.sleep(random_base)

Generate 5 sleeping tasks, sleeping from 0.0 to 0.4 seconds respectively
for i in range(5):

task = PythonOperator(
task_id='sleep_for_' + str(i),
python_callable=my_sleeping_function,
op_kwargs={'random_base': float(i) / 10},
dag=dag,

)

run_this >> task

28 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Templating

When you set the provide_context argument to True, Airflow passes in an additional set of keyword arguments:
one for each of the Jinja template variables and a templates_dict argument.

The templates_dict argument is templated, so each value in the dictionary is evaluated as a Jinja template.

3.6.4.3 Google Cloud Storage Operators

GoogleCloudStorageToBigQueryOperator

Use the GoogleCloudStorageToBigQueryOperator to execute a BigQuery load job.

load_csv = gcs_to_bq.GoogleCloudStorageToBigQueryOperator(
task_id='gcs_to_bq_example',
bucket='cloud-samples-data',
source_objects=['bigquery/us-states/us-states.csv'],
destination_project_dataset_table='airflow_test.gcs_to_bq_table',
schema_fields=[

{'name': 'name', 'type': 'STRING', 'mode': 'NULLABLE'},
{'name': 'post_abbr', 'type': 'STRING', 'mode': 'NULLABLE'},

],
write_disposition='WRITE_TRUNCATE',
dag=dag)

3.6.4.4 Google Compute Engine Operators

GceInstanceStartOperator

Use the GceInstanceStartOperator to start an existing Google Compute Engine instance.

Arguments

The following examples of OS environment variables used to pass arguments to the operator:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCE_ZONE = os.environ.get('GCE_ZONE', 'europe-west1-b')
GCE_INSTANCE = os.environ.get('GCE_INSTANCE', 'testinstance')

Using the operator

The code to create the operator:

gce_instance_start = GceInstanceStartOperator(
project_id=GCP_PROJECT_ID,
zone=GCE_ZONE,
resource_id=GCE_INSTANCE,
task_id='gcp_compute_start_task'

)

You can also create the operator without project id - project id will be retrieved from the GCP connection id used:

3.6. How-to Guides 29

Airflow Documentation, Release 2.0.0.dev0+

gce_instance_start2 = GceInstanceStartOperator(
zone=GCE_ZONE,
resource_id=GCE_INSTANCE,
task_id='gcp_compute_start_task2'

)

Templating

template_fields = ('project_id', 'zone', 'resource_id', 'gcp_conn_id', 'api_version')

More information

See Google Compute Engine API documentation.

GceInstanceStopOperator

Use the operator to stop Google Compute Engine instance.

For parameter definition, take a look at GceInstanceStopOperator

Arguments

The following examples of OS environment variables used to pass arguments to the operator:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCE_ZONE = os.environ.get('GCE_ZONE', 'europe-west1-b')
GCE_INSTANCE = os.environ.get('GCE_INSTANCE', 'testinstance')

Using the operator

The code to create the operator:

gce_instance_stop = GceInstanceStopOperator(
project_id=GCP_PROJECT_ID,
zone=GCE_ZONE,
resource_id=GCE_INSTANCE,
task_id='gcp_compute_stop_task'

)

You can also create the operator without project id - project id will be retrieved from the GCP connection used:

gce_instance_stop2 = GceInstanceStopOperator(
zone=GCE_ZONE,
resource_id=GCE_INSTANCE,
task_id='gcp_compute_stop_task2'

)

30 Chapter 3. Content

https://cloud.google.com/compute/docs/reference/rest/v1/instances/start

Airflow Documentation, Release 2.0.0.dev0+

Templating

template_fields = ('project_id', 'zone', 'resource_id', 'gcp_conn_id', 'api_version')

More information

See Google Compute Engine API documentation.

GceSetMachineTypeOperator

Use the operator to change machine type of a Google Compute Engine instance.

For parameter definition, take a look at GceSetMachineTypeOperator.

Arguments

The following examples of OS environment variables used to pass arguments to the operator:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCE_ZONE = os.environ.get('GCE_ZONE', 'europe-west1-b')
GCE_INSTANCE = os.environ.get('GCE_INSTANCE', 'testinstance')

GCE_SHORT_MACHINE_TYPE_NAME = os.environ.get('GCE_SHORT_MACHINE_TYPE_NAME', 'n1-
→˓standard-1')
SET_MACHINE_TYPE_BODY = {

'machineType': 'zones/{}/machineTypes/{}'.format(GCE_ZONE, GCE_SHORT_MACHINE_TYPE_
→˓NAME)
}

Using the operator

The code to create the operator:

gce_set_machine_type = GceSetMachineTypeOperator(
project_id=GCP_PROJECT_ID,
zone=GCE_ZONE,
resource_id=GCE_INSTANCE,
body=SET_MACHINE_TYPE_BODY,
task_id='gcp_compute_set_machine_type'

)

You can also create the operator without project id - project id will be retrieved from the GCP connection used:

gce_set_machine_type2 = GceSetMachineTypeOperator(
zone=GCE_ZONE,
resource_id=GCE_INSTANCE,
body=SET_MACHINE_TYPE_BODY,
task_id='gcp_compute_set_machine_type2'

)

3.6. How-to Guides 31

https://cloud.google.com/compute/docs/reference/rest/v1/instances/stop

Airflow Documentation, Release 2.0.0.dev0+

Templating

template_fields = ('project_id', 'zone', 'resource_id', 'gcp_conn_id', 'api_version')

More information

See Google Compute Engine API documentation.

GceInstanceTemplateCopyOperator

Use the operator to copy an existing Google Compute Engine instance template applying a patch to it.

For parameter definition, take a look at GceInstanceTemplateCopyOperator.

Arguments

The following examples of OS environment variables used to pass arguments to the operator:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCE_ZONE = os.environ.get('GCE_ZONE', 'europe-west1-b')

GCE_TEMPLATE_NAME = os.environ.get('GCE_TEMPLATE_NAME', 'instance-template-test')
GCE_NEW_TEMPLATE_NAME = os.environ.get('GCE_NEW_TEMPLATE_NAME',

'instance-template-test-new')
GCE_NEW_DESCRIPTION = os.environ.get('GCE_NEW_DESCRIPTION', 'Test new description')
GCE_INSTANCE_TEMPLATE_BODY_UPDATE = {

"name": GCE_NEW_TEMPLATE_NAME,
"description": GCE_NEW_DESCRIPTION,
"properties": {

"machineType": "n1-standard-2"
}

}

Using the operator

The code to create the operator:

gce_instance_template_copy = GceInstanceTemplateCopyOperator(
project_id=GCP_PROJECT_ID,
resource_id=GCE_TEMPLATE_NAME,
body_patch=GCE_INSTANCE_TEMPLATE_BODY_UPDATE,
task_id='gcp_compute_igm_copy_template_task'

)

You can also create the operator without project id - project id will be retrieved from the GCP connection used:

gce_instance_template_copy2 = GceInstanceTemplateCopyOperator(
resource_id=GCE_TEMPLATE_NAME,
body_patch=GCE_INSTANCE_TEMPLATE_BODY_UPDATE,
task_id='gcp_compute_igm_copy_template_task_2'

)

32 Chapter 3. Content

https://cloud.google.com/compute/docs/reference/rest/v1/instances/setMachineType

Airflow Documentation, Release 2.0.0.dev0+

Templating

template_fields = ('project_id', 'resource_id', 'request_id',
'gcp_conn_id', 'api_version')

More information

See Google Compute Engine API documentation.

GceInstanceGroupManagerUpdateTemplateOperator

Use the operator to update template in Google Compute Engine Instance Group Manager.

For parameter definition, take a look at GceInstanceGroupManagerUpdateTemplateOperator.

Arguments

The following examples of OS environment variables used to pass arguments to the operator:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCE_ZONE = os.environ.get('GCE_ZONE', 'europe-west1-b')

GCE_INSTANCE_GROUP_MANAGER_NAME = os.environ.get('GCE_INSTANCE_GROUP_MANAGER_NAME',
'instance-group-test')

SOURCE_TEMPLATE_URL = os.environ.get(
'SOURCE_TEMPLATE_URL',
"https://www.googleapis.com/compute/beta/projects/" + GCP_PROJECT_ID +
"/global/instanceTemplates/instance-template-test")

DESTINATION_TEMPLATE_URL = os.environ.get(
'DESTINATION_TEMPLATE_URL',
"https://www.googleapis.com/compute/beta/projects/" + GCP_PROJECT_ID +
"/global/instanceTemplates/" + GCE_NEW_TEMPLATE_NAME)

UPDATE_POLICY = {
"type": "OPPORTUNISTIC",
"minimalAction": "RESTART",
"maxSurge": {

"fixed": 1
},
"minReadySec": 1800

}

Using the operator

The code to create the operator:

3.6. How-to Guides 33

https://cloud.google.com/compute/docs/reference/rest/v1/instanceTemplates

Airflow Documentation, Release 2.0.0.dev0+

gce_instance_group_manager_update_template = \
GceInstanceGroupManagerUpdateTemplateOperator(

project_id=GCP_PROJECT_ID,
resource_id=GCE_INSTANCE_GROUP_MANAGER_NAME,
zone=GCE_ZONE,
source_template=SOURCE_TEMPLATE_URL,
destination_template=DESTINATION_TEMPLATE_URL,
update_policy=UPDATE_POLICY,
task_id='gcp_compute_igm_group_manager_update_template'

)

You can also create the operator without project id - project id will be retrieved from the GCP connection used:

gce_instance_group_manager_update_template2 = \
GceInstanceGroupManagerUpdateTemplateOperator(

resource_id=GCE_INSTANCE_GROUP_MANAGER_NAME,
zone=GCE_ZONE,
source_template=SOURCE_TEMPLATE_URL,
destination_template=DESTINATION_TEMPLATE_URL,
task_id='gcp_compute_igm_group_manager_update_template_2'

)

Templating

template_fields = ('project_id', 'resource_id', 'zone', 'request_id',
'source_template', 'destination_template',
'gcp_conn_id', 'api_version')

Troubleshooting

You might find that your GceInstanceGroupManagerUpdateTemplateOperator fails with missing permissions. To ex-
ecute the operation, the service account requires the permissions that theService Account User role provides (assigned
via Google Cloud IAM).

More information

See Google Compute Engine API documentation.

3.6.4.5 Google Cloud Bigtable Operators

All examples below rely on the following variables, which can be passed via environment variables.

GCP_PROJECT_ID = getenv('GCP_PROJECT_ID', 'example-project')
CBT_INSTANCE_ID = getenv('CBT_INSTANCE_ID', 'some-instance-id')
CBT_INSTANCE_DISPLAY_NAME = getenv('CBT_INSTANCE_DISPLAY_NAME', 'Human-readable name')
CBT_INSTANCE_TYPE = getenv('CBT_INSTANCE_TYPE', '2')
CBT_INSTANCE_LABELS = getenv('CBT_INSTANCE_LABELS', '{}')
CBT_CLUSTER_ID = getenv('CBT_CLUSTER_ID', 'some-cluster-id')
CBT_CLUSTER_ZONE = getenv('CBT_CLUSTER_ZONE', 'europe-west1-b')
CBT_CLUSTER_NODES = getenv('CBT_CLUSTER_NODES', '3')

(continues on next page)

34 Chapter 3. Content

https://cloud.google.com/compute/docs/reference/rest/v1/instanceGroupManagers

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

CBT_CLUSTER_NODES_UPDATED = getenv('CBT_CLUSTER_NODES_UPDATED', '5')
CBT_CLUSTER_STORAGE_TYPE = getenv('CBT_CLUSTER_STORAGE_TYPE', '2')
CBT_TABLE_ID = getenv('CBT_TABLE_ID', 'some-table-id')
CBT_POKE_INTERVAL = getenv('CBT_POKE_INTERVAL', '60')

BigtableInstanceCreateOperator

Use the BigtableInstanceCreateOperator to create a Google Cloud Bigtable instance.

If the Cloud Bigtable instance with the given ID exists, the operator does not compare its configuration and immedi-
ately succeeds. No changes are made to the existing instance.

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

create_instance_task = BigtableInstanceCreateOperator(
project_id=GCP_PROJECT_ID,
instance_id=CBT_INSTANCE_ID,
main_cluster_id=CBT_CLUSTER_ID,
main_cluster_zone=CBT_CLUSTER_ZONE,
instance_display_name=CBT_INSTANCE_DISPLAY_NAME,
instance_type=int(CBT_INSTANCE_TYPE),
instance_labels=json.loads(CBT_INSTANCE_LABELS),
cluster_nodes=int(CBT_CLUSTER_NODES),
cluster_storage_type=int(CBT_CLUSTER_STORAGE_TYPE),
task_id='create_instance_task',

)
create_instance_task2 = BigtableInstanceCreateOperator(

instance_id=CBT_INSTANCE_ID,
main_cluster_id=CBT_CLUSTER_ID,
main_cluster_zone=CBT_CLUSTER_ZONE,
instance_display_name=CBT_INSTANCE_DISPLAY_NAME,
instance_type=int(CBT_INSTANCE_TYPE),
instance_labels=json.loads(CBT_INSTANCE_LABELS),
cluster_nodes=int(CBT_CLUSTER_NODES),
cluster_storage_type=int(CBT_CLUSTER_STORAGE_TYPE),
task_id='create_instance_task2',

)
create_instance_task >> create_instance_task2

BigtableInstanceDeleteOperator

Use the BigtableInstanceDeleteOperator to delete a Google Cloud Bigtable instance.

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

3.6. How-to Guides 35

Airflow Documentation, Release 2.0.0.dev0+

delete_instance_task = BigtableInstanceDeleteOperator(
project_id=GCP_PROJECT_ID,
instance_id=CBT_INSTANCE_ID,
task_id='delete_instance_task',

)
delete_instance_task2 = BigtableInstanceDeleteOperator(

instance_id=CBT_INSTANCE_ID,
task_id='delete_instance_task2',

)

BigtableClusterUpdateOperator

Use the BigtableClusterUpdateOperator to modify number of nodes in a Cloud Bigtable cluster.

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

cluster_update_task = BigtableClusterUpdateOperator(
project_id=GCP_PROJECT_ID,
instance_id=CBT_INSTANCE_ID,
cluster_id=CBT_CLUSTER_ID,
nodes=int(CBT_CLUSTER_NODES_UPDATED),
task_id='update_cluster_task',

)
cluster_update_task2 = BigtableClusterUpdateOperator(

instance_id=CBT_INSTANCE_ID,
cluster_id=CBT_CLUSTER_ID,
nodes=int(CBT_CLUSTER_NODES_UPDATED),
task_id='update_cluster_task2',

)
cluster_update_task >> cluster_update_task2

BigtableTableCreateOperator

Creates a table in a Cloud Bigtable instance.

If the table with given ID exists in the Cloud Bigtable instance, the operator compares the Column Families. If the
Column Families are identical operator succeeds. Otherwise, the operator fails with the appropriate error message.

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

create_table_task = BigtableTableCreateOperator(
project_id=GCP_PROJECT_ID,
instance_id=CBT_INSTANCE_ID,
table_id=CBT_TABLE_ID,
task_id='create_table',

(continues on next page)

36 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

)
create_table_task2 = BigtableTableCreateOperator(

instance_id=CBT_INSTANCE_ID,
table_id=CBT_TABLE_ID,
task_id='create_table_task2',

)
create_table_task >> create_table_task2

Advanced

When creating a table, you can specify the optional initial_split_keys and column_familes. Please refer
to the Python Client for Google Cloud Bigtable documentation for Table and for Column Families.

BigtableTableDeleteOperator

Use the BigtableTableDeleteOperator to delete a table in Google Cloud Bigtable.

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

delete_table_task = BigtableTableDeleteOperator(
project_id=GCP_PROJECT_ID,
instance_id=CBT_INSTANCE_ID,
table_id=CBT_TABLE_ID,
task_id='delete_table_task',

)
delete_table_task2 = BigtableTableDeleteOperator(

instance_id=CBT_INSTANCE_ID,
table_id=CBT_TABLE_ID,
task_id='delete_table_task2',

)

BigtableTableWaitForReplicationSensor

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

Use the BigtableTableWaitForReplicationSensor to wait for the table to replicate fully.

The same arguments apply to this sensor as the BigtableTableCreateOperator.

Note: If the table or the Cloud Bigtable instance does not exist, this sensor waits for the table until timeout hits and
does not raise any exception.

Using the operator

3.6. How-to Guides 37

https://googleapis.github.io/google-cloud-python/latest/bigtable/table.html
https://googleapis.github.io/google-cloud-python/latest/bigtable/column-family.html

Airflow Documentation, Release 2.0.0.dev0+

wait_for_table_replication_task = BigtableTableWaitForReplicationSensor(
project_id=GCP_PROJECT_ID,
instance_id=CBT_INSTANCE_ID,
table_id=CBT_TABLE_ID,
poke_interval=int(CBT_POKE_INTERVAL),
timeout=180,
task_id='wait_for_table_replication_task',

)
wait_for_table_replication_task2 = BigtableTableWaitForReplicationSensor(

instance_id=CBT_INSTANCE_ID,
table_id=CBT_TABLE_ID,
poke_interval=int(CBT_POKE_INTERVAL),
timeout=180,
task_id='wait_for_table_replication_task2',

)

3.6.4.6 Google Cloud Functions Operators

GcfFunctionDeleteOperator

Use the operator to delete a function from Google Cloud Functions.

For parameter definition, take a look at GcfFunctionDeleteOperator.

Arguments

The following examples of OS environment variables show how you can build function name to use in the operator:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_LOCATION = os.environ.get('GCP_LOCATION', 'europe-west1')
GCF_SHORT_FUNCTION_NAME = os.environ.get('GCF_SHORT_FUNCTION_NAME', 'hello').\

replace("-", "_") # make sure there are no dashes in function name (!)
FUNCTION_NAME = 'projects/{}/locations/{}/functions/{}'.format(GCP_PROJECT_ID,

GCP_LOCATION,
GCF_SHORT_FUNCTION_

→˓NAME)

Using the operator

delete_task = GcfFunctionDeleteOperator(
task_id="gcf_delete_task",
name=FUNCTION_NAME

)

Templating

template_fields = ('name', 'gcp_conn_id', 'api_version')

38 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

More information

See Google Cloud Functions API documentation.

GcfFunctionDeployOperator

Use the operator to deploy a function to Google Cloud Functions. If a function with this name already exists, it will
be updated.

For parameter definition, take a look at GcfFunctionDeployOperator.

Arguments

In the example DAG the following environment variables are used to parameterize the operator’s definition:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_LOCATION = os.environ.get('GCP_LOCATION', 'europe-west1')
GCF_SHORT_FUNCTION_NAME = os.environ.get('GCF_SHORT_FUNCTION_NAME', 'hello').\

replace("-", "_") # make sure there are no dashes in function name (!)
FUNCTION_NAME = 'projects/{}/locations/{}/functions/{}'.format(GCP_PROJECT_ID,

GCP_LOCATION,
GCF_SHORT_FUNCTION_

→˓NAME)

GCF_SOURCE_ARCHIVE_URL = os.environ.get('GCF_SOURCE_ARCHIVE_URL', '')
GCF_SOURCE_UPLOAD_URL = os.environ.get('GCF_SOURCE_UPLOAD_URL', '')
GCF_SOURCE_REPOSITORY = os.environ.get(

'GCF_SOURCE_REPOSITORY',
'https://source.developers.google.com/'
'projects/{}/repos/hello-world/moveable-aliases/master'.format(GCP_PROJECT_ID))

GCF_ZIP_PATH = os.environ.get('GCF_ZIP_PATH', '')
GCF_ENTRYPOINT = os.environ.get('GCF_ENTRYPOINT', 'helloWorld')
GCF_RUNTIME = 'nodejs6'
GCP_VALIDATE_BODY = os.environ.get('GCP_VALIDATE_BODY', True)

Some of those variables are used to create the request’s body:

body = {
"name": FUNCTION_NAME,
"entryPoint": GCF_ENTRYPOINT,
"runtime": GCF_RUNTIME,
"httpsTrigger": {}

}

When a DAG is created, the default_args dictionary can be used to pass arguments common with other tasks:

default_args = {
'start_date': dates.days_ago(1)

}

Note that the neither the body nor the default args are complete in the above examples. Depending on the vari-
ables set, there might be different variants on how to pass source code related fields. Currently, you can pass either
sourceArchiveUrl, sourceRepository or sourceUploadUrl as described in the Cloud Functions API
specification.

3.6. How-to Guides 39

https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions/delete
https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions#CloudFunction
https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions#CloudFunction

Airflow Documentation, Release 2.0.0.dev0+

Additionally, default_args or direct operator args might contain zip_path parameter to run the extra step of
uploading the source code before deploying it. In this case, you also need to provide an empty sourceUploadUrl
parameter in the body.

Using the operator

Depending on the combination of parameters, the Function’s source code can be obtained from different sources:

if GCF_SOURCE_ARCHIVE_URL:
body['sourceArchiveUrl'] = GCF_SOURCE_ARCHIVE_URL

elif GCF_SOURCE_REPOSITORY:
body['sourceRepository'] = {

'url': GCF_SOURCE_REPOSITORY
}

elif GCF_ZIP_PATH:
body['sourceUploadUrl'] = ''
default_args['zip_path'] = GCF_ZIP_PATH

elif GCF_SOURCE_UPLOAD_URL:
body['sourceUploadUrl'] = GCF_SOURCE_UPLOAD_URL

else:
raise Exception("Please provide one of the source_code parameters")

The code to create the operator:

deploy_task = GcfFunctionDeployOperator(
task_id="gcf_deploy_task",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
body=body,
validate_body=GCP_VALIDATE_BODY

)

You can also create the operator without project id - project id will be retrieved from the GCP connection used:

deploy2_task = GcfFunctionDeployOperator(
task_id="gcf_deploy2_task",
location=GCP_LOCATION,
body=body,
validate_body=GCP_VALIDATE_BODY

)

Templating

template_fields = ('project_id', 'location', 'gcp_conn_id', 'api_version')

Troubleshooting

If during the deploy you see an error similar to:

“HttpError 403: Missing necessary permission iam.serviceAccounts.actAs for on resource project-
name@appspot.gserviceaccount.com. Please grant the roles/iam.serviceAccountUser role.”

it means that your service account does not have the correct Cloud IAM permissions.

40 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

1. Assign your Service Account the Cloud Functions Developer role.

2. Grant the user the Cloud IAM Service Account User role on the Cloud Functions runtime service account.

The typical way of assigning Cloud IAM permissions with gcloud is shown below. Just replace PROJECT_ID with
ID of your Google Cloud Platform project and SERVICE_ACCOUNT_EMAIL with the email ID of your service
account.

gcloud iam service-accounts add-iam-policy-binding \
PROJECT_ID@appspot.gserviceaccount.com \
--member="serviceAccount:[SERVICE_ACCOUNT_EMAIL]" \
--role="roles/iam.serviceAccountUser"

You can also do that via the GCP Web console.

See Adding the IAM service agent user role to the runtime service for details.

If the source code for your function is in Google Source Repository, make sure that your service account has the
Source Repository Viewer role so that the source code can be downloaded if necessary.

More information

See Google Cloud Functions API documentation.

3.6.4.7 Google Cloud Spanner Operators

CloudSpannerInstanceDatabaseDeleteOperator

Deletes a database from the specified Cloud Spanner instance. If the database does not exist, no action is taken, and
the operator succeeds.

For parameter definition, take a look at CloudSpannerInstanceDatabaseDeleteOperator.

Arguments

Some arguments in the example DAG are taken from environment variables.

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_SPANNER_INSTANCE_ID = os.environ.get('GCP_SPANNER_INSTANCE_ID', 'testinstance')
GCP_SPANNER_DATABASE_ID = os.environ.get('GCP_SPANNER_DATABASE_ID', 'testdatabase')
GCP_SPANNER_CONFIG_NAME = os.environ.get('GCP_SPANNER_CONFIG_NAME',

'projects/example-project/instanceConfigs/
→˓eur3')
GCP_SPANNER_NODE_COUNT = os.environ.get('GCP_SPANNER_NODE_COUNT', '1')
GCP_SPANNER_DISPLAY_NAME = os.environ.get('GCP_SPANNER_DISPLAY_NAME', 'Test Instance')
OPERATION_ID should be unique per operation
OPERATION_ID = 'unique_operation_id'

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

3.6. How-to Guides 41

https://cloud.google.com/functions/docs/reference/iam/roles#adding_the_iam_service_agent_user_role_to_the_runtime_service_account
https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions/create

Airflow Documentation, Release 2.0.0.dev0+

spanner_database_delete_task = CloudSpannerInstanceDatabaseDeleteOperator(
project_id=GCP_PROJECT_ID,
instance_id=GCP_SPANNER_INSTANCE_ID,
database_id=GCP_SPANNER_DATABASE_ID,
task_id='spanner_database_delete_task'

)
spanner_database_delete_task2 = CloudSpannerInstanceDatabaseDeleteOperator(

instance_id=GCP_SPANNER_INSTANCE_ID,
database_id=GCP_SPANNER_DATABASE_ID,
task_id='spanner_database_delete_task2'

)

Templating

template_fields = ('project_id', 'instance_id', 'gcp_conn_id')

More information

See Google Cloud Spanner API documentation for database drop call.

CloudSpannerInstanceDatabaseDeployOperator

Creates a new Cloud Spanner database in the specified instance, or if the desired database exists, assumes success
with no changes applied to database configuration. No structure of the database is verified - it’s enough if the database
exists with the same name.

For parameter definition, take a look at CloudSpannerInstanceDatabaseDeployOperator.

Arguments

Some arguments in the example DAG are taken from environment variables.

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_SPANNER_INSTANCE_ID = os.environ.get('GCP_SPANNER_INSTANCE_ID', 'testinstance')
GCP_SPANNER_DATABASE_ID = os.environ.get('GCP_SPANNER_DATABASE_ID', 'testdatabase')
GCP_SPANNER_CONFIG_NAME = os.environ.get('GCP_SPANNER_CONFIG_NAME',

'projects/example-project/instanceConfigs/
→˓eur3')
GCP_SPANNER_NODE_COUNT = os.environ.get('GCP_SPANNER_NODE_COUNT', '1')
GCP_SPANNER_DISPLAY_NAME = os.environ.get('GCP_SPANNER_DISPLAY_NAME', 'Test Instance')
OPERATION_ID should be unique per operation
OPERATION_ID = 'unique_operation_id'

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

42 Chapter 3. Content

https://cloud.google.com/spanner/docs/reference/rest/v1/projects.instances.databases/dropDatabase

Airflow Documentation, Release 2.0.0.dev0+

spanner_database_deploy_task = CloudSpannerInstanceDatabaseDeployOperator(
project_id=GCP_PROJECT_ID,
instance_id=GCP_SPANNER_INSTANCE_ID,
database_id=GCP_SPANNER_DATABASE_ID,
ddl_statements=[

"CREATE TABLE my_table1 (id INT64, name STRING(MAX)) PRIMARY KEY (id)",
"CREATE TABLE my_table2 (id INT64, name STRING(MAX)) PRIMARY KEY (id)",

],
task_id='spanner_database_deploy_task'

)
spanner_database_deploy_task2 = CloudSpannerInstanceDatabaseDeployOperator(

instance_id=GCP_SPANNER_INSTANCE_ID,
database_id=GCP_SPANNER_DATABASE_ID,
ddl_statements=[

"CREATE TABLE my_table1 (id INT64, name STRING(MAX)) PRIMARY KEY (id)",
"CREATE TABLE my_table2 (id INT64, name STRING(MAX)) PRIMARY KEY (id)",

],
task_id='spanner_database_deploy_task2'

)

Templating

template_fields = ('project_id', 'instance_id', 'database_id', 'ddl_statements',
'gcp_conn_id')

template_ext = ('.sql',)

More information

See Google Cloud Spanner API documentation for database create

CloudSpannerInstanceDatabaseUpdateOperator

Runs a DDL query in a Cloud Spanner database and allows you to modify the structure of an existing database.

You can optionally specify an operation_id parameter which simplifies determining whether the statements were ex-
ecuted in case the update_database call is replayed (idempotency check). The operation_id should be unique within
the database, and must be a valid identifier: [a-z][a-z0-9_]*. More information can be found in the documentation of
updateDdl API

For parameter definition take a look at CloudSpannerInstanceDatabaseUpdateOperator.

Arguments

Some arguments in the example DAG are taken from environment variables.

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_SPANNER_INSTANCE_ID = os.environ.get('GCP_SPANNER_INSTANCE_ID', 'testinstance')
GCP_SPANNER_DATABASE_ID = os.environ.get('GCP_SPANNER_DATABASE_ID', 'testdatabase')
GCP_SPANNER_CONFIG_NAME = os.environ.get('GCP_SPANNER_CONFIG_NAME',

'projects/example-project/instanceConfigs/
→˓eur3')

(continues on next page)

3.6. How-to Guides 43

https://cloud.google.com/spanner/docs/reference/rest/v1/projects.instances.databases/create
https://cloud.google.com/spanner/docs/reference/rest/v1/projects.instances.databases/updateDdl
https://cloud.google.com/spanner/docs/reference/rest/v1/projects.instances.databases/updateDdl

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

GCP_SPANNER_NODE_COUNT = os.environ.get('GCP_SPANNER_NODE_COUNT', '1')
GCP_SPANNER_DISPLAY_NAME = os.environ.get('GCP_SPANNER_DISPLAY_NAME', 'Test Instance')
OPERATION_ID should be unique per operation
OPERATION_ID = 'unique_operation_id'

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

spanner_database_update_task = CloudSpannerInstanceDatabaseUpdateOperator(
project_id=GCP_PROJECT_ID,
instance_id=GCP_SPANNER_INSTANCE_ID,
database_id=GCP_SPANNER_DATABASE_ID,
ddl_statements=[

"CREATE TABLE my_table3 (id INT64, name STRING(MAX)) PRIMARY KEY (id)",
],
task_id='spanner_database_update_task'

)

spanner_database_update_idempotent1_task = CloudSpannerInstanceDatabaseUpdateOperator(
project_id=GCP_PROJECT_ID,
instance_id=GCP_SPANNER_INSTANCE_ID,
database_id=GCP_SPANNER_DATABASE_ID,
operation_id=OPERATION_ID,
ddl_statements=[

"CREATE TABLE my_table_unique (id INT64, name STRING(MAX)) PRIMARY KEY (id)",
],
task_id='spanner_database_update_idempotent1_task'

)
spanner_database_update_idempotent2_task = CloudSpannerInstanceDatabaseUpdateOperator(

instance_id=GCP_SPANNER_INSTANCE_ID,
database_id=GCP_SPANNER_DATABASE_ID,
operation_id=OPERATION_ID,
ddl_statements=[

"CREATE TABLE my_table_unique (id INT64, name STRING(MAX)) PRIMARY KEY (id)",
],
task_id='spanner_database_update_idempotent2_task'

)

Templating

template_fields = ('project_id', 'instance_id', 'database_id', 'ddl_statements',
'gcp_conn_id')

template_ext = ('.sql',)

More information

See Google Cloud Spanner API documentation for database update_ddl.

44 Chapter 3. Content

https://cloud.google.com/spanner/docs/reference/rest/v1/projects.instances.databases/updateDdl

Airflow Documentation, Release 2.0.0.dev0+

CloudSpannerInstanceDatabaseQueryOperator

Executes an arbitrary DML query (INSERT, UPDATE, DELETE).

For parameter definition take a look at CloudSpannerInstanceDatabaseQueryOperator.

Arguments

Some arguments in the example DAG are taken from environment variables.

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_SPANNER_INSTANCE_ID = os.environ.get('GCP_SPANNER_INSTANCE_ID', 'testinstance')
GCP_SPANNER_DATABASE_ID = os.environ.get('GCP_SPANNER_DATABASE_ID', 'testdatabase')
GCP_SPANNER_CONFIG_NAME = os.environ.get('GCP_SPANNER_CONFIG_NAME',

'projects/example-project/instanceConfigs/
→˓eur3')
GCP_SPANNER_NODE_COUNT = os.environ.get('GCP_SPANNER_NODE_COUNT', '1')
GCP_SPANNER_DISPLAY_NAME = os.environ.get('GCP_SPANNER_DISPLAY_NAME', 'Test Instance')
OPERATION_ID should be unique per operation
OPERATION_ID = 'unique_operation_id'

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

spanner_instance_query_task = CloudSpannerInstanceDatabaseQueryOperator(
project_id=GCP_PROJECT_ID,
instance_id=GCP_SPANNER_INSTANCE_ID,
database_id=GCP_SPANNER_DATABASE_ID,
query=["DELETE FROM my_table2 WHERE true"],
task_id='spanner_instance_query_task'

)
spanner_instance_query_task2 = CloudSpannerInstanceDatabaseQueryOperator(

instance_id=GCP_SPANNER_INSTANCE_ID,
database_id=GCP_SPANNER_DATABASE_ID,
query=["DELETE FROM my_table2 WHERE true"],
task_id='spanner_instance_query_task2'

)

Templating

template_fields = ('project_id', 'instance_id', 'database_id', 'query', 'gcp_conn_id')
template_ext = ('.sql',)

More information

See Google Cloud Spanner API documentation for the DML syntax.

3.6. How-to Guides 45

https://cloud.google.com/spanner/docs/dml-syntax

Airflow Documentation, Release 2.0.0.dev0+

CloudSpannerInstanceDeleteOperator

Deletes a Cloud Spanner instance. If an instance does not exist, no action is taken, and the operator succeeds.

For parameter definition take a look at CloudSpannerInstanceDeleteOperator.

Arguments

Some arguments in the example DAG are taken from environment variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_SPANNER_INSTANCE_ID = os.environ.get('GCP_SPANNER_INSTANCE_ID', 'testinstance')
GCP_SPANNER_DATABASE_ID = os.environ.get('GCP_SPANNER_DATABASE_ID', 'testdatabase')
GCP_SPANNER_CONFIG_NAME = os.environ.get('GCP_SPANNER_CONFIG_NAME',

'projects/example-project/instanceConfigs/
→˓eur3')
GCP_SPANNER_NODE_COUNT = os.environ.get('GCP_SPANNER_NODE_COUNT', '1')
GCP_SPANNER_DISPLAY_NAME = os.environ.get('GCP_SPANNER_DISPLAY_NAME', 'Test Instance')
OPERATION_ID should be unique per operation
OPERATION_ID = 'unique_operation_id'

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

spanner_instance_delete_task = CloudSpannerInstanceDeleteOperator(
project_id=GCP_PROJECT_ID,
instance_id=GCP_SPANNER_INSTANCE_ID,
task_id='spanner_instance_delete_task'

)
spanner_instance_delete_task2 = CloudSpannerInstanceDeleteOperator(

instance_id=GCP_SPANNER_INSTANCE_ID,
task_id='spanner_instance_delete_task2'

)

Templating

template_fields = ('project_id', 'instance_id', 'gcp_conn_id')

More information

See Google Cloud Spanner API documentation for instance delete.

3.6.4.8 Google Cloud Sql Operators

CloudSqlInstanceDatabaseCreateOperator

Creates a new database inside a Cloud SQL instance.

46 Chapter 3. Content

https://cloud.google.com/spanner/docs/reference/rest/v1/projects.instances/delete

Airflow Documentation, Release 2.0.0.dev0+

For parameter definition, take a look at CloudSqlInstanceDatabaseCreateOperator.

Arguments

Some arguments in the example DAG are taken from environment variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
INSTANCE_NAME = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME', 'test-mysql')
INSTANCE_NAME2 = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME2', 'test-mysql2')
DB_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'testdb')

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

sql_db_create_task = CloudSqlInstanceDatabaseCreateOperator(
project_id=GCP_PROJECT_ID,
body=db_create_body,
instance=INSTANCE_NAME,
task_id='sql_db_create_task'

)
sql_db_create_task2 = CloudSqlInstanceDatabaseCreateOperator(

body=db_create_body,
instance=INSTANCE_NAME,
task_id='sql_db_create_task2'

)

Example request body:

db_create_body = {
"instance": INSTANCE_NAME,
"name": DB_NAME,
"project": GCP_PROJECT_ID

}

Templating

template_fields = ('project_id', 'instance', 'gcp_conn_id', 'api_version')

More information

See Google Cloud SQL API documentation for database insert.

CloudSqlInstanceDatabaseDeleteOperator

Deletes a database from a Cloud SQL instance.

For parameter definition, take a look at CloudSqlInstanceDatabaseDeleteOperator.

3.6. How-to Guides 47

https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/insert

Airflow Documentation, Release 2.0.0.dev0+

Arguments

Some arguments in the example DAG are taken from environment variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
INSTANCE_NAME = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME', 'test-mysql')
INSTANCE_NAME2 = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME2', 'test-mysql2')
DB_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'testdb')

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

sql_db_delete_task = CloudSqlInstanceDatabaseDeleteOperator(
project_id=GCP_PROJECT_ID,
instance=INSTANCE_NAME,
database=DB_NAME,
task_id='sql_db_delete_task'

)
sql_db_delete_task2 = CloudSqlInstanceDatabaseDeleteOperator(

instance=INSTANCE_NAME,
database=DB_NAME,
task_id='sql_db_delete_task2'

)

Templating

template_fields = ('project_id', 'instance', 'database', 'gcp_conn_id',
'api_version')

More information

See Google Cloud SQL API documentation for database delete.

CloudSqlInstanceDatabasePatchOperator

Updates a resource containing information about a database inside a Cloud SQL instance using patch semantics. See:
https://cloud.google.com/sql/docs/mysql/admin-api/how-tos/performance#patch

For parameter definition, take a look at CloudSqlInstanceDatabasePatchOperator.

Arguments

Some arguments in the example DAG are taken from environment variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
INSTANCE_NAME = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME', 'test-mysql')
INSTANCE_NAME2 = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME2', 'test-mysql2')
DB_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'testdb')

48 Chapter 3. Content

https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/delete
https://cloud.google.com/sql/docs/mysql/admin-api/how-tos/performance#patch

Airflow Documentation, Release 2.0.0.dev0+

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

sql_db_patch_task = CloudSqlInstanceDatabasePatchOperator(
project_id=GCP_PROJECT_ID,
body=db_patch_body,
instance=INSTANCE_NAME,
database=DB_NAME,
task_id='sql_db_patch_task'

)
sql_db_patch_task2 = CloudSqlInstanceDatabasePatchOperator(

body=db_patch_body,
instance=INSTANCE_NAME,
database=DB_NAME,
task_id='sql_db_patch_task2'

)

Example request body:

db_patch_body = {
"charset": "utf16",
"collation": "utf16_general_ci"

}

Templating

template_fields = ('project_id', 'instance', 'database', 'gcp_conn_id',
'api_version')

More information

See Google Cloud SQL API documentation for database patch.

CloudSqlInstanceDeleteOperator

Deletes a Cloud SQL instance in Google Cloud Platform.

For parameter definition, take a look at CloudSqlInstanceDeleteOperator.

Arguments

Some arguments in the example DAG are taken from OS environment variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
INSTANCE_NAME = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME', 'test-mysql')
INSTANCE_NAME2 = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME2', 'test-mysql2')
DB_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'testdb')

3.6. How-to Guides 49

https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/patch

Airflow Documentation, Release 2.0.0.dev0+

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

sql_instance_delete_task = CloudSqlInstanceDeleteOperator(
project_id=GCP_PROJECT_ID,
instance=INSTANCE_NAME,
task_id='sql_instance_delete_task'

)
sql_instance_delete_task2 = CloudSqlInstanceDeleteOperator(

instance=INSTANCE_NAME2,
task_id='sql_instance_delete_task2'

)

Templating

template_fields = ('project_id', 'instance', 'gcp_conn_id', 'api_version')

More information

See Google Cloud SQL API documentation for delete.

CloudSqlInstanceExportOperator

Exports data from a Cloud SQL instance to a Cloud Storage bucket as a SQL dump or CSV file.

Note: This operator is idempotent. If executed multiple times with the same export file URI, the export file in GCS
will simply be overridden.

For parameter definition take a look at CloudSqlInstanceExportOperator.

Arguments

Some arguments in the example DAG are taken from Airflow variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
INSTANCE_NAME = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME', 'test-mysql')
INSTANCE_NAME2 = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME2', 'test-mysql2')
DB_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'testdb')

EXPORT_URI = os.environ.get('GCSQL_MYSQL_EXPORT_URI', 'gs://bucketName/fileName')
IMPORT_URI = os.environ.get('GCSQL_MYSQL_IMPORT_URI', 'gs://bucketName/fileName')

Example body defining the export operation:

export_body = {
"exportContext": {

"fileType": "sql",
"uri": EXPORT_URI,
"sqlExportOptions": {

(continues on next page)

50 Chapter 3. Content

https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/delete

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

"schemaOnly": False
}

}
}

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

sql_export_task = CloudSqlInstanceExportOperator(
project_id=GCP_PROJECT_ID,
body=export_body,
instance=INSTANCE_NAME,
task_id='sql_export_task'

)
sql_export_task2 = CloudSqlInstanceExportOperator(

body=export_body,
instance=INSTANCE_NAME,
task_id='sql_export_task2'

)

Templating

template_fields = ('project_id', 'instance', 'gcp_conn_id', 'api_version')

More information

See Google Cloud SQL API documentation for export.

Troubleshooting

If you receive an “Unauthorized” error in GCP, make sure that the service account of the Cloud SQL instance is
authorized to write to the selected GCS bucket.

It is not the service account configured in Airflow that communicates with GCS, but rather the service account of the
particular Cloud SQL instance.

To grant the service account with the appropriate WRITE permissions for the GCS bucket you can use the
GoogleCloudStorageBucketCreateAclEntryOperator, as shown in the example:

sql_gcp_add_bucket_permission_task = GoogleCloudStorageBucketCreateAclEntryOperator(
entity="user-{{ task_instance.xcom_pull("

"'sql_instance_create_task', key='service_account_email') "
"}}",

role="WRITER",
bucket=export_url_split[1], # netloc (bucket)
task_id='sql_gcp_add_bucket_permission_task'

)

3.6. How-to Guides 51

https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/export

Airflow Documentation, Release 2.0.0.dev0+

CloudSqlInstanceImportOperator

Imports data into a Cloud SQL instance from a SQL dump or CSV file in Cloud Storage.

CSV import:

This operator is NOT idempotent for a CSV import. If the same file is imported multiple times, the imported data will
be duplicated in the database. Moreover, if there are any unique constraints the duplicate import may result in an error.

SQL import:

This operator is idempotent for a SQL import if it was also exported by Cloud SQL. The exported SQL contains
‘DROP TABLE IF EXISTS’ statements for all tables to be imported.

If the import file was generated in a different way, idempotence is not guaranteed. It has to be ensured on the SQL file
level.

For parameter definition take a look at CloudSqlInstanceImportOperator.

Arguments

Some arguments in the example DAG are taken from Airflow variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
INSTANCE_NAME = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME', 'test-mysql')
INSTANCE_NAME2 = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME2', 'test-mysql2')
DB_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'testdb')

EXPORT_URI = os.environ.get('GCSQL_MYSQL_EXPORT_URI', 'gs://bucketName/fileName')
IMPORT_URI = os.environ.get('GCSQL_MYSQL_IMPORT_URI', 'gs://bucketName/fileName')

Example body defining the import operation:

import_body = {
"importContext": {

"fileType": "sql",
"uri": IMPORT_URI

}
}

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

sql_import_task = CloudSqlInstanceImportOperator(
project_id=GCP_PROJECT_ID,
body=import_body,
instance=INSTANCE_NAME2,
task_id='sql_import_task'

)

(continues on next page)

52 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

sql_import_task2 = CloudSqlInstanceImportOperator(
body=import_body,
instance=INSTANCE_NAME2,
task_id='sql_import_task2'

)

Templating

template_fields = ('project_id', 'instance', 'gcp_conn_id', 'api_version')

More information

See Google Cloud SQL API documentation for import.

Troubleshooting

If you receive an “Unauthorized” error in GCP, make sure that the service account of the Cloud SQL instance is
authorized to read from the selected GCS object.

It is not the service account configured in Airflow that communicates with GCS, but rather the service account of the
particular Cloud SQL instance.

To grant the service account with the appropriate READ permissions for the GCS object you can use the
GoogleCloudStorageObjectCreateAclEntryOperator, as shown in the example:

sql_gcp_add_object_permission_task = GoogleCloudStorageObjectCreateAclEntryOperator(
entity="user-{{ task_instance.xcom_pull("

"'sql_instance_create_task2', key='service_account_email')"
" }}",

role="READER",
bucket=import_url_split[1], # netloc (bucket)
object_name=import_url_split[2][1:], # path (strip first '/')
task_id='sql_gcp_add_object_permission_task',

)
prev_task = next_dep(sql_gcp_add_object_permission_task, prev_task)

For import to work we also need to add the Cloud SQL instance's Service Account
write access to the whole bucket!.
sql_gcp_add_bucket_permission_2_task = GoogleCloudStorageBucketCreateAclEntryOperator(

entity="user-{{ task_instance.xcom_pull("
"'sql_instance_create_task2', key='service_account_email') "
"}}",

role="WRITER",
bucket=import_url_split[1], # netloc
task_id='sql_gcp_add_bucket_permission_2_task',

)

CloudSqlInstanceCreateOperator

Creates a new Cloud SQL instance in Google Cloud Platform.

3.6. How-to Guides 53

https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/import

Airflow Documentation, Release 2.0.0.dev0+

For parameter definition, take a look at CloudSqlInstanceCreateOperator.

If an instance with the same name exists, no action will be taken and the operator will succeed.

Arguments

Some arguments in the example DAG are taken from OS environment variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
INSTANCE_NAME = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME', 'test-mysql')
INSTANCE_NAME2 = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME2', 'test-mysql2')
DB_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'testdb')

Example body defining the instance:

body = {
"name": INSTANCE_NAME,
"settings": {

"tier": "db-n1-standard-1",
"backupConfiguration": {

"binaryLogEnabled": True,
"enabled": True,
"startTime": "05:00"

},
"activationPolicy": "ALWAYS",
"dataDiskSizeGb": 30,
"dataDiskType": "PD_SSD",
"databaseFlags": [],
"ipConfiguration": {

"ipv4Enabled": True,
"requireSsl": True,

},
"locationPreference": {

"zone": "europe-west4-a"
},
"maintenanceWindow": {

"hour": 5,
"day": 7,
"updateTrack": "canary"

},
"pricingPlan": "PER_USE",
"replicationType": "ASYNCHRONOUS",
"storageAutoResize": False,
"storageAutoResizeLimit": 0,
"userLabels": {

"my-key": "my-value"
}

},
"databaseVersion": "MYSQL_5_7",
"region": "europe-west4",

}

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

54 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

sql_instance_create_task = CloudSqlInstanceCreateOperator(
project_id=GCP_PROJECT_ID,
body=body,
instance=INSTANCE_NAME,
task_id='sql_instance_create_task'

)

Templating

template_fields = ('project_id', 'instance', 'gcp_conn_id', 'api_version')

More information

See Google Cloud SQL API documentation for insert.

CloudSqlInstancePatchOperator

Updates settings of a Cloud SQL instance in Google Cloud Platform (partial update).

For parameter definition, take a look at CloudSqlInstancePatchOperator.

This is a partial update, so only values for the settings specified in the body will be set / updated. The rest of the
existing instance’s configuration will remain unchanged.

Arguments

Some arguments in the example DAG are taken from OS environment variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
INSTANCE_NAME = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME', 'test-mysql')
INSTANCE_NAME2 = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME2', 'test-mysql2')
DB_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'testdb')

Example body defining the instance:

patch_body = {
"name": INSTANCE_NAME,
"settings": {

"dataDiskSizeGb": 35,
"maintenanceWindow": {

"hour": 3,
"day": 6,
"updateTrack": "canary"

},
"userLabels": {

"my-key-patch": "my-value-patch"
}

}
}

3.6. How-to Guides 55

https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/insert

Airflow Documentation, Release 2.0.0.dev0+

Using the operator

You can create the operator with or without project id. If project id is missing it will be retrieved from the GCP
connection used. Both variants are shown:

sql_instance_patch_task = CloudSqlInstancePatchOperator(
project_id=GCP_PROJECT_ID,
body=patch_body,
instance=INSTANCE_NAME,
task_id='sql_instance_patch_task'

)

sql_instance_patch_task2 = CloudSqlInstancePatchOperator(
body=patch_body,
instance=INSTANCE_NAME,
task_id='sql_instance_patch_task2'

)

Templating

template_fields = ('project_id', 'instance', 'gcp_conn_id', 'api_version')

More information

See Google Cloud SQL API documentation for patch.

CloudSqlQueryOperator

Performs DDL or DML SQL queries in Google Cloud SQL instance. The DQL (retrieving data from Google Cloud
SQL) is not supported. You might run the SELECT queries, but the results of those queries are discarded.

You can specify various connectivity methods to connect to running instance, starting from public IP plain connection
through public IP with SSL or both TCP and socket connection via Cloud SQL Proxy. The proxy is downloaded and
started/stopped dynamically as needed by the operator.

There is a gcpcloudsql:// connection type that you should use to define what kind of connectivity you want the operator
to use. The connection is a “meta” type of connection. It is not used to make an actual connectivity on its own, but
it determines whether Cloud SQL Proxy should be started by CloudSqlDatabaseHook and what kind of database
connection (Postgres or MySQL) should be created dynamically to connect to Cloud SQL via public IP address or
via the proxy. The ‘CloudSqlDatabaseHook‘ uses CloudSqlProxyRunner to manage Cloud SQL Proxy lifecycle
(each task has its own Cloud SQL Proxy)

When you build connection, you should use connection parameters as described in CloudSqlDatabaseHook.
You can see examples of connections below for all the possible types of connectivity. Such connection can be reused
between different tasks (instances of CloudSqlQueryOperator). Each task will get their own proxy started if needed
with their own TCP or UNIX socket.

For parameter definition, take a look at CloudSqlQueryOperator.

Since query operator can run arbitrary query, it cannot be guaranteed to be idempotent. SQL query designer should
design the queries to be idempotent. For example, both Postgres and MySQL support CREATE TABLE IF NOT
EXISTS statements that can be used to create tables in an idempotent way.

56 Chapter 3. Content

https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/patch

Airflow Documentation, Release 2.0.0.dev0+

Arguments

If you define connection via AIRFLOW_CONN_* URL defined in an environment variable, make sure the URL com-
ponents in the URL are URL-encoded. See examples below for details.

Note that in case of SSL connections you need to have a mechanism to make the certificate/key files available in
predefined locations for all the workers on which the operator can run. This can be provided for example by mounting
NFS-like volumes in the same path for all the workers.

Some arguments in the example DAG are taken from the OS environment variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_REGION = os.environ.get('GCP_REGION', 'europe-west-1b')

GCSQL_POSTGRES_INSTANCE_NAME_QUERY = os.environ.get(
'GCSQL_POSTGRES_INSTANCE_NAME_QUERY',
'testpostgres')

GCSQL_POSTGRES_DATABASE_NAME = os.environ.get('GCSQL_POSTGRES_DATABASE_NAME',
'postgresdb')

GCSQL_POSTGRES_USER = os.environ.get('GCSQL_POSTGRES_USER', 'postgres_user')
GCSQL_POSTGRES_PASSWORD = os.environ.get('GCSQL_POSTGRES_PASSWORD', 'password')
GCSQL_POSTGRES_PUBLIC_IP = os.environ.get('GCSQL_POSTGRES_PUBLIC_IP', '0.0.0.0')
GCSQL_POSTGRES_PUBLIC_PORT = os.environ.get('GCSQL_POSTGRES_PUBLIC_PORT', 5432)
GCSQL_POSTGRES_CLIENT_CERT_FILE = os.environ.get('GCSQL_POSTGRES_CLIENT_CERT_FILE',

".key/postgres-client-cert.pem")
GCSQL_POSTGRES_CLIENT_KEY_FILE = os.environ.get('GCSQL_POSTGRES_CLIENT_KEY_FILE',

".key/postgres-client-key.pem")
GCSQL_POSTGRES_SERVER_CA_FILE = os.environ.get('GCSQL_POSTGRES_SERVER_CA_FILE',

".key/postgres-server-ca.pem")

GCSQL_MYSQL_INSTANCE_NAME_QUERY = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME_QUERY',
'testmysql')

GCSQL_MYSQL_DATABASE_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'mysqldb')
GCSQL_MYSQL_USER = os.environ.get('GCSQL_MYSQL_USER', 'mysql_user')
GCSQL_MYSQL_PASSWORD = os.environ.get('GCSQL_MYSQL_PASSWORD', 'password')
GCSQL_MYSQL_PUBLIC_IP = os.environ.get('GCSQL_MYSQL_PUBLIC_IP', '0.0.0.0')
GCSQL_MYSQL_PUBLIC_PORT = os.environ.get('GCSQL_MYSQL_PUBLIC_PORT', 3306)
GCSQL_MYSQL_CLIENT_CERT_FILE = os.environ.get('GCSQL_MYSQL_CLIENT_CERT_FILE',

".key/mysql-client-cert.pem")
GCSQL_MYSQL_CLIENT_KEY_FILE = os.environ.get('GCSQL_MYSQL_CLIENT_KEY_FILE',

".key/mysql-client-key.pem")
GCSQL_MYSQL_SERVER_CA_FILE = os.environ.get('GCSQL_MYSQL_SERVER_CA_FILE',

".key/mysql-server-ca.pem")

SQL = [
'CREATE TABLE IF NOT EXISTS TABLE_TEST (I INTEGER)',
'CREATE TABLE IF NOT EXISTS TABLE_TEST (I INTEGER)', # shows warnings logged
'INSERT INTO TABLE_TEST VALUES (0)',
'CREATE TABLE IF NOT EXISTS TABLE_TEST2 (I INTEGER)',
'DROP TABLE TABLE_TEST',
'DROP TABLE TABLE_TEST2',

]

Example connection definitions for all connectivity cases. Note that all the components of the connection URI should
be URL-encoded:

3.6. How-to Guides 57

Airflow Documentation, Release 2.0.0.dev0+

HOME_DIR = expanduser("~")

def get_absolute_path(path):
if path.startswith("/"):

return path
else:

return os.path.join(HOME_DIR, path)

postgres_kwargs = dict(
user=quote_plus(GCSQL_POSTGRES_USER),
password=quote_plus(GCSQL_POSTGRES_PASSWORD),
public_port=GCSQL_POSTGRES_PUBLIC_PORT,
public_ip=quote_plus(GCSQL_POSTGRES_PUBLIC_IP),
project_id=quote_plus(GCP_PROJECT_ID),
location=quote_plus(GCP_REGION),
instance=quote_plus(GCSQL_POSTGRES_INSTANCE_NAME_QUERY),
database=quote_plus(GCSQL_POSTGRES_DATABASE_NAME),
client_cert_file=quote_plus(get_absolute_path(GCSQL_POSTGRES_CLIENT_CERT_FILE)),
client_key_file=quote_plus(get_absolute_path(GCSQL_POSTGRES_CLIENT_KEY_FILE)),
server_ca_file=quote_plus(get_absolute_path(GCSQL_POSTGRES_SERVER_CA_FILE))

)

The connections below are created using one of the standard approaches - via
→˓environment
variables named AIRFLOW_CONN_* . The connections can also be created in the database
of AIRFLOW (using command line or UI).

Postgres: connect via proxy over TCP
os.environ['AIRFLOW_CONN_PROXY_POSTGRES_TCP'] = \

"gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
"database_type=postgres&" \
"project_id={project_id}&" \
"location={location}&" \
"instance={instance}&" \
"use_proxy=True&" \
"sql_proxy_use_tcp=True".format(**postgres_kwargs)

Postgres: connect via proxy over UNIX socket (specific proxy version)
os.environ['AIRFLOW_CONN_PROXY_POSTGRES_SOCKET'] = \

"gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
"database_type=postgres&" \
"project_id={project_id}&" \
"location={location}&" \
"instance={instance}&" \
"use_proxy=True&" \
"sql_proxy_version=v1.13&" \
"sql_proxy_use_tcp=False".format(**postgres_kwargs)

Postgres: connect directly via TCP (non-SSL)
os.environ['AIRFLOW_CONN_PUBLIC_POSTGRES_TCP'] = \

"gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
"database_type=postgres&" \
"project_id={project_id}&" \
"location={location}&" \

(continues on next page)

58 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

"instance={instance}&" \
"use_proxy=False&" \
"use_ssl=False".format(**postgres_kwargs)

Postgres: connect directly via TCP (SSL)
os.environ['AIRFLOW_CONN_PUBLIC_POSTGRES_TCP_SSL'] = \

"gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
"database_type=postgres&" \
"project_id={project_id}&" \
"location={location}&" \
"instance={instance}&" \
"use_proxy=False&" \
"use_ssl=True&" \
"sslcert={client_cert_file}&" \
"sslkey={client_key_file}&" \
"sslrootcert={server_ca_file}"\
.format(**postgres_kwargs)

mysql_kwargs = dict(
user=quote_plus(GCSQL_MYSQL_USER),
password=quote_plus(GCSQL_MYSQL_PASSWORD),
public_port=GCSQL_MYSQL_PUBLIC_PORT,
public_ip=quote_plus(GCSQL_MYSQL_PUBLIC_IP),
project_id=quote_plus(GCP_PROJECT_ID),
location=quote_plus(GCP_REGION),
instance=quote_plus(GCSQL_MYSQL_INSTANCE_NAME_QUERY),
database=quote_plus(GCSQL_MYSQL_DATABASE_NAME),
client_cert_file=quote_plus(get_absolute_path(GCSQL_MYSQL_CLIENT_CERT_FILE)),
client_key_file=quote_plus(get_absolute_path(GCSQL_MYSQL_CLIENT_KEY_FILE)),
server_ca_file=quote_plus(get_absolute_path(GCSQL_MYSQL_SERVER_CA_FILE))

)

MySQL: connect via proxy over TCP (specific proxy version)
os.environ['AIRFLOW_CONN_PROXY_MYSQL_TCP'] = \

"gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
"database_type=mysql&" \
"project_id={project_id}&" \
"location={location}&" \
"instance={instance}&" \
"use_proxy=True&" \
"sql_proxy_version=v1.13&" \
"sql_proxy_use_tcp=True".format(**mysql_kwargs)

MySQL: connect via proxy over UNIX socket using pre-downloaded Cloud Sql Proxy
→˓binary
try:

sql_proxy_binary_path = subprocess.check_output(
['which', 'cloud_sql_proxy']).decode('utf-8').rstrip()

except subprocess.CalledProcessError:
sql_proxy_binary_path = "/tmp/anyhow_download_cloud_sql_proxy"

os.environ['AIRFLOW_CONN_PROXY_MYSQL_SOCKET'] = \
"gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
"database_type=mysql&" \
"project_id={project_id}&" \
"location={location}&" \
"instance={instance}&" \

(continues on next page)

3.6. How-to Guides 59

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

"use_proxy=True&" \
"sql_proxy_binary_path={sql_proxy_binary_path}&" \
"sql_proxy_use_tcp=False".format(

sql_proxy_binary_path=quote_plus(sql_proxy_binary_path), **mysql_kwargs)

MySQL: connect directly via TCP (non-SSL)
os.environ['AIRFLOW_CONN_PUBLIC_MYSQL_TCP'] = \

"gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
"database_type=mysql&" \
"project_id={project_id}&" \
"location={location}&" \
"instance={instance}&" \
"use_proxy=False&" \
"use_ssl=False".format(**mysql_kwargs)

MySQL: connect directly via TCP (SSL) and with fixed Cloud Sql Proxy binary path
os.environ['AIRFLOW_CONN_PUBLIC_MYSQL_TCP_SSL'] = \

"gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
"database_type=mysql&" \
"project_id={project_id}&" \
"location={location}&" \
"instance={instance}&" \
"use_proxy=False&" \
"use_ssl=True&" \
"sslcert={client_cert_file}&" \
"sslkey={client_key_file}&" \
"sslrootcert={server_ca_file}".format(**mysql_kwargs)

Special case: MySQL: connect directly via TCP (SSL) and with fixed Cloud Sql
Proxy binary path AND with missing project_id

os.environ['AIRFLOW_CONN_PUBLIC_MYSQL_TCP_SSL_NO_PROJECT_ID'] = \
"gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
"database_type=mysql&" \
"location={location}&" \
"instance={instance}&" \
"use_proxy=False&" \
"use_ssl=True&" \
"sslcert={client_cert_file}&" \
"sslkey={client_key_file}&" \
"sslrootcert={server_ca_file}".format(**mysql_kwargs)

Using the operator

Example operators below are using all connectivity options. Note connection id from the operator matches the AIR-
FLOW_CONN_* postfix uppercase. This is standard AIRFLOW notation for defining connection via environment
variables):

connection_names = [
"proxy_postgres_tcp",
"proxy_postgres_socket",
"public_postgres_tcp",

(continues on next page)

60 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

"public_postgres_tcp_ssl",
"proxy_mysql_tcp",
"proxy_mysql_socket",
"public_mysql_tcp",
"public_mysql_tcp_ssl",
"public_mysql_tcp_ssl_no_project_id"

]

tasks = []

with models.DAG(
dag_id='example_gcp_sql_query',
default_args=default_args,
schedule_interval=None

) as dag:
prev_task = None

for connection_name in connection_names:
task = CloudSqlQueryOperator(

gcp_cloudsql_conn_id=connection_name,
task_id="example_gcp_sql_task_" + connection_name,
sql=SQL

)
tasks.append(task)
if prev_task:

prev_task >> task
prev_task = task

Templating

template_fields = ('sql', 'gcp_cloudsql_conn_id', 'gcp_conn_id')
template_ext = ('.sql',)

More information

See Google Cloud SQL Proxy documentation.

3.6.4.9 Google Cloud Storage Operators

GoogleCloudStorageBucketCreateAclEntryOperator

Creates a new ACL entry on the specified bucket.

For parameter definition, take a look at GoogleCloudStorageBucketCreateAclEntryOperator

Arguments

Some arguments in the example DAG are taken from the OS environment variables:

3.6. How-to Guides 61

https://cloud.google.com/sql/docs/postgres/sql-proxy

Airflow Documentation, Release 2.0.0.dev0+

GCS_ACL_BUCKET = os.environ.get('GCS_ACL_BUCKET', 'example-bucket')
GCS_ACL_OBJECT = os.environ.get('GCS_ACL_OBJECT', 'example-object')
GCS_ACL_ENTITY = os.environ.get('GCS_ACL_ENTITY', 'example-entity')
GCS_ACL_BUCKET_ROLE = os.environ.get('GCS_ACL_BUCKET_ROLE', 'example-bucket-role')
GCS_ACL_OBJECT_ROLE = os.environ.get('GCS_ACL_OBJECT_ROLE', 'example-object-role')

Using the operator

gcs_bucket_create_acl_entry_task = GoogleCloudStorageBucketCreateAclEntryOperator(
bucket=GCS_ACL_BUCKET,
entity=GCS_ACL_ENTITY,
role=GCS_ACL_BUCKET_ROLE,
task_id="gcs_bucket_create_acl_entry_task"

)

Templating

template_fields = ('bucket', 'entity', 'role', 'user_project')

More information

See Google Cloud Storage BucketAccessControls insert documentation.

GoogleCloudStorageObjectCreateAclEntryOperator

Creates a new ACL entry on the specified object.

For parameter definition, take a look at GoogleCloudStorageObjectCreateAclEntryOperator

Arguments

Some arguments in the example DAG are taken from the OS environment variables:

GCS_ACL_BUCKET = os.environ.get('GCS_ACL_BUCKET', 'example-bucket')
GCS_ACL_OBJECT = os.environ.get('GCS_ACL_OBJECT', 'example-object')
GCS_ACL_ENTITY = os.environ.get('GCS_ACL_ENTITY', 'example-entity')
GCS_ACL_BUCKET_ROLE = os.environ.get('GCS_ACL_BUCKET_ROLE', 'example-bucket-role')
GCS_ACL_OBJECT_ROLE = os.environ.get('GCS_ACL_OBJECT_ROLE', 'example-object-role')

Using the operator

gcs_object_create_acl_entry_task = GoogleCloudStorageObjectCreateAclEntryOperator(
bucket=GCS_ACL_BUCKET,
object_name=GCS_ACL_OBJECT,
entity=GCS_ACL_ENTITY,
role=GCS_ACL_OBJECT_ROLE,

(continues on next page)

62 Chapter 3. Content

https://cloud.google.com/storage/docs/json_api/v1/bucketAccessControls/insert

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

task_id="gcs_object_create_acl_entry_task"
)

Templating

template_fields = ('bucket', 'object_name', 'entity', 'role', 'generation',
'user_project')

More information

See Google Cloud Storage ObjectAccessControls insert documentation.

3.6.5 Managing Connections

Airflow needs to know how to connect to your environment. Information such as hostname, port, login and passwords
to other systems and services is handled in the Admin->Connections section of the UI. The pipeline code you
will author will reference the ‘conn_id’ of the Connection objects.

Connections can be created and managed using either the UI or environment variables.

See the Connenctions Concepts documentation for more information.

3.6.5.1 Creating a Connection with the UI

Open the Admin->Connections section of the UI. Click the Create link to create a new connection.

3.6. How-to Guides 63

https://cloud.google.com/storage/docs/json_api/v1/objectAccessControls/insert

Airflow Documentation, Release 2.0.0.dev0+

1. Fill in the Conn Id field with the desired connection ID. It is recommended that you use lower-case characters
and separate words with underscores.

2. Choose the connection type with the Conn Type field.

3. Fill in the remaining fields. See Connection Types for a description of the fields belonging to the different
connection types.

4. Click the Save button to create the connection.

3.6.5.2 Editing a Connection with the UI

Open the Admin->Connections section of the UI. Click the pencil icon next to the connection you wish to edit in
the connection list.

64 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Modify the connection properties and click the Save button to save your changes.

3.6.5.3 Creating a Connection with Environment Variables

Connections in Airflow pipelines can be created using environment variables. The environment variable needs to have
a prefix of AIRFLOW_CONN_ for Airflow with the value in a URI format to use the connection properly.

When referencing the connection in the Airflow pipeline, the conn_id should be the name of the variable with-
out the prefix. For example, if the conn_id is named postgres_master the environment variable should
be named AIRFLOW_CONN_POSTGRES_MASTER (note that the environment variable must be all uppercase).
Airflow assumes the value returned from the environment variable to be in a URI format (e.g. postgres://
user:password@localhost:5432/master or s3://accesskey:secretkey@S3).

3.6.5.4 Connection Types

Google Cloud Platform

The Google Cloud Platform connection type enables the GCP Integrations.

Authenticating to GCP

There are two ways to connect to GCP using Airflow.

1. Use Application Default Credentials, such as via the metadata server when running on Google Compute Engine.

2. Use a service account key file (JSON format) on disk.

Default Connection IDs

The following connection IDs are used by default.

bigquery_default Used by the BigQueryHook hook.

google_cloud_datastore_default Used by the DatastoreHook hook.

3.6. How-to Guides 65

https://google-auth.readthedocs.io/en/latest/reference/google.auth.html#google.auth.default
https://cloud.google.com/docs/authentication/#service_accounts

Airflow Documentation, Release 2.0.0.dev0+

google_cloud_default Used by those hooks:

• GoogleCloudBaseHook

• DataFlowHook

• DataProcHook

• MLEngineHook

• GoogleCloudStorageHook

• BigtableHook

• GceHook

• GcfHook

• CloudSpannerHook

• CloudSqlHook

Configuring the Connection

Project Id (optional) The Google Cloud project ID to connect to. It is used as default project id by operators using it
and can usually be overridden at the operator level.

Keyfile Path Path to a service account key file (JSON format) on disk.

Not required if using application default credentials.

Keyfile JSON Contents of a service account key file (JSON format) on disk. It is recommended to Secure your
connections if using this method to authenticate.

Not required if using application default credentials.

Scopes (comma separated) A list of comma-separated Google Cloud scopes to authenticate with.

Note: Scopes are ignored when using application default credentials. See issue AIRFLOW-2522.

MySQL

The MySQL connection type provides connection to a MySQL database.

Configuring the Connection

Host (required) The host to connect to.

Schema (optional) Specify the schema name to be used in the database.

Login (required) Specify the user name to connect.

Password (required) Specify the password to connect.

Extra (optional) Specify the extra parameters (as json dictionary) that can be used in MySQL connection. The
following parameters are supported:

• charset: specify charset of the connection

• cursor: one of “sscursor”, “dictcursor, “ssdictcursor” . Specifies cursor class to be used

66 Chapter 3. Content

https://cloud.google.com/docs/authentication/#service_accounts
https://cloud.google.com/docs/authentication/#service_accounts
https://developers.google.com/identity/protocols/googlescopes
https://issues.apache.org/jira/browse/AIRFLOW-2522

Airflow Documentation, Release 2.0.0.dev0+

• local_infile: controls MySQL’s LOCAL capability (permitting local data loading by clients). See
MySQLdb docs for details.

• unix_socket: UNIX socket used instead of the default socket.

• ssl: Dictionary of SSL parameters that control connecting using SSL. Those parameters are server specific
and should contain “ca”, “cert”, “key”, “capath”, “cipher” parameters. See MySQLdb docs for details.
Note that to be useful in URL notation, this parameter might also be a string where the SSL dictionary is
a string-encoded JSON dictionary.

Example “extras” field:

{
"charset": "utf8",
"cursorclass": "sscursor",
"local_infile": true,
"unix_socket": "/var/socket",
"ssl": {

"cert": "/tmp/client-cert.pem",
"ca": "/tmp/server-ca.pem'",
"key": "/tmp/client-key.pem"

}
}

or

{
"charset": "utf8",
"cursorclass": "sscursor",
"local_infile": true,
"unix_socket": "/var/socket",
"ssl": "{\"cert\": \"/tmp/client-cert.pem\", \"ca\": \"/tmp/server-ca.pem\", \

→˓"key\": \"/tmp/client-key.pem\"}"
}

When specifying the connection as URI (in AIRFLOW_CONN_* variable) you should specify it following the
standard syntax of DB connections - where extras are passed as parameters of the URI. Note that all components
of the URI should be URL-encoded.

For example:

mysql://mysql_user:XXXXXXXXXXXX@1.1.1.1:3306/mysqldb?ssl=%7B%22cert%22%3A+%22
→˓%2Ftmp%2Fclient-cert.pem%22%2C+%22ca%22%3A+%22%2Ftmp%2Fserver-ca.pem%22%2C+
→˓%22key%22%3A+%22%2Ftmp%2Fclient-key.pem%22%7D

Note: If encounter UnicodeDecodeError while working with MySQL connection, check the charset defined is
matched to the database charset.

Postgres

The Postgres connection type provides connection to a Postgres database.

Configuring the Connection

Host (required) The host to connect to.

3.6. How-to Guides 67

https://mysqlclient.readthedocs.io/user_guide.html
https://mysqlclient.readthedocs.io/user_guide.html

Airflow Documentation, Release 2.0.0.dev0+

Schema (optional) Specify the schema name to be used in the database.

Login (required) Specify the user name to connect.

Password (required) Specify the password to connect.

Extra (optional) Specify the extra parameters (as json dictionary) that can be used in postgres connection. The
following parameters out of the standard python parameters are supported:

• sslmode - This option determines whether or with what priority a secure SSL TCP/IP connection will
be negotiated with the server. There are six modes: ‘disable’, ‘allow’, ‘prefer’, ‘require’, ‘verify-ca’,
‘verify-full’.

• sslcert - This parameter specifies the file name of the client SSL certificate, replacing the default.

• sslkey - This parameter specifies the file name of the client SSL key, replacing the default.

• sslrootcert - This parameter specifies the name of a file containing SSL certificate authority (CA) certifi-
cate(s).

• sslcrl - This parameter specifies the file name of the SSL certificate revocation list (CRL).

• application_name - Specifies a value for the application_name configuration parameter.

• keepalives_idle - Controls the number of seconds of inactivity after which TCP should send a keepalive
message to the server.

More details on all Postgres parameters supported can be found in Postgres documentation.

Example “extras” field:

{
"sslmode": "verify-ca",
"sslcert": "/tmp/client-cert.pem",
"sslca": "/tmp/server-ca.pem",
"sslkey": "/tmp/client-key.pem"

}

When specifying the connection as URI (in AIRFLOW_CONN_* variable) you should specify it following the
standard syntax of DB connections, where extras are passed as parameters of the URI (note that all components
of the URI should be URL-encoded).

For example:

postgresql://postgres_user:XXXXXXXXXXXX@1.1.1.1:5432/postgresdb?sslmode=verify-ca&
→˓sslcert=%2Ftmp%2Fclient-cert.pem&sslkey=%2Ftmp%2Fclient-key.pem&sslrootcert=
→˓%2Ftmp%2Fserver-ca.pem

Cloudsql

The gcpcloudsql:// connection is used by airflow.contrib.operators.gcp_sql_operator.
CloudSqlQueryOperator to perform query on a Google Cloud SQL database. Google Cloud SQL database can
be either Postgres or MySQL, so this is a “meta” connection type. It introduces common schema for both MySQL
and Postgres, including what kind of connectivity should be used. Google Cloud SQL supports connecting via public
IP or via Cloud SQL Proxy. In the latter case the CloudSqlDatabaseHook uses CloudSqlProxyRunner to
automatically prepare and use temporary Postgres or MySQL connection that will use the proxy to connect (either via
TCP or UNIX socket.

68 Chapter 3. Content

https://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNSTRING

Airflow Documentation, Release 2.0.0.dev0+

Configuring the Connection

Host (required) The host to connect to.

Schema (optional) Specify the schema name to be used in the database.

Login (required) Specify the user name to connect.

Password (required) Specify the password to connect.

Extra (optional) Specify the extra parameters (as JSON dictionary) that can be used in Google Cloud SQL connec-
tion.

Details of all the parameters supported in extra field can be found in CloudSqlDatabaseHook

Example “extras” field:

{
"database_type": "mysql",
"project_id": "example-project",
"location": "europe-west1",
"instance": "testinstance",
"use_proxy": true,
"sql_proxy_use_tcp": false

}

When specifying the connection as URI (in AIRFLOW_CONN_* variable), you should specify it following the
standard syntax of DB connection, where extras are passed as parameters of the URI. Note that all components
of the URI should be URL-encoded.

For example:

gcpcloudsql://user:XXXXXXXXX@1.1.1.1:3306/mydb?database_type=mysql&project_
→˓id=example-project&location=europe-west1&instance=testinstance&use_proxy=True&
→˓sql_proxy_use_tcp=False

SSH

The SSH connection type provides connection to use SSHHook to run commands on a remote server using
SSHOperator or transfer file from/to the remote server using SFTPOperator.

Configuring the Connection

Host (required) The Remote host to connect.

Username (optional) The Username to connect to the remote_host.

Password (optional) Specify the password of the username to connect to the remote_host.

Port (optional) Port of remote host to connect. Default is 22.

Extra (optional) Specify the extra parameters (as json dictionary) that can be used in ssh connection. The following
parameters out of the standard python parameters are supported:

• timeout - An optional timeout (in seconds) for the TCP connect. Default is 10.

• compress - true to ask the remote client/server to compress traffic; false to refuse compression. Default
is true.

3.6. How-to Guides 69

Airflow Documentation, Release 2.0.0.dev0+

• no_host_key_check - Set to false to restrict connecting to hosts with no entries in ~/.ssh/
known_hosts (Hosts file). This provides maximum protection against trojan horse attacks, but can
be troublesome when the /etc/ssh/ssh_known_hosts file is poorly maintained or connections to
new hosts are frequently made. This option forces the user to manually add all new hosts. Default is true,
ssh will automatically add new host keys to the user known hosts files.

• allow_host_key_change - Set to true if you want to allow connecting to hosts that has host key changed
or when you get ‘REMOTE HOST IDENTIFICATION HAS CHANGED’ error. This wont protect
against Man-In-The-Middle attacks. Other possible solution is to remove the host entry from ~/.ssh/
known_hosts file. Default is false.

Example “extras” field:

{
"timeout": "10",
"compress": "false",
"no_host_key_check": "false",
"allow_host_key_change": "false"

}

When specifying the connection as URI (in AIRFLOW_CONN_* variable) you should specify it following the
standard syntax of connections, where extras are passed as parameters of the URI (note that all components of
the URI should be URL-encoded).

For example:

ssh://user:pass@localhost:22?timeout=10&compress=false&no_host_key_check=false&
→˓allow_host_key_change=true

3.6.6 Securing Connections

By default, Airflow will save the passwords for the connection in plain text within the metadata database. The crypto
package is highly recommended during installation. The crypto package does require that your operating system
has libffi-dev installed.

If crypto package was not installed initially, it means that your Fernet key in airflow.cfg is empty.

You can still enable encryption for passwords within connections by following below steps:

1. Install crypto package pip install apache-airflow[crypto]

2. Generate fernet_key, using this code snippet below. fernet_key must be a base64-encoded 32-byte key.

from cryptography.fernet import Fernet
fernet_key= Fernet.generate_key()
print(fernet_key.decode()) # your fernet_key, keep it in secured place!

3. Replace airflow.cfg fernet_key value with the one from step 2. Alternatively, you can store your fernet_key
in OS environment variable. You do not need to change airflow.cfg in this case as Airflow will use environment
variable over the value in airflow.cfg:

Note the double underscores
export AIRFLOW__CORE__FERNET_KEY=your_fernet_key

4. Restart Airflow webserver.

5. For existing connections (the ones that you had defined before installing airflow[crypto] and creating a
Fernet key), you need to open each connection in the connection admin UI, re-type the password, and save it.

70 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

3.6.7 Writing Logs

3.6.7.1 Writing Logs Locally

Users can specify a logs folder in airflow.cfg using the base_log_folder setting. By default, it is in the
AIRFLOW_HOME directory.

In addition, users can supply a remote location for storing logs and log backups in cloud storage.

In the Airflow Web UI, local logs take precedence over remote logs. If local logs can not be found or accessed, the
remote logs will be displayed. Note that logs are only sent to remote storage once a task completes (including failure).
In other words, remote logs for running tasks are unavailable. Logs are stored in the log folder as {dag_id}/
{task_id}/{execution_date}/{try_number}.log.

3.6.7.2 Writing Logs to Amazon S3

Before you begin

Remote logging uses an existing Airflow connection to read/write logs. If you don’t have a connection properly setup,
this will fail.

Enabling remote logging

To enable this feature, airflow.cfg must be configured as in this example:

[core]
Airflow can store logs remotely in AWS S3. Users must supply a remote
location URL (starting with either 's3://...') and an Airflow connection
id that provides access to the storage location.
remote_logging = True
remote_base_log_folder = s3://my-bucket/path/to/logs
remote_log_conn_id = MyS3Conn
Use server-side encryption for logs stored in S3
encrypt_s3_logs = False

In the above example, Airflow will try to use S3Hook('MyS3Conn').

3.6.7.3 Writing Logs to Azure Blob Storage

Airflow can be configured to read and write task logs in Azure Blob Storage. Follow the steps below to enable Azure
Blob Storage logging.

1. Airflow’s logging system requires a custom .py file to be located in the PYTHONPATH, so that it’s importable
from Airflow. Start by creating a directory to store the config file. $AIRFLOW_HOME/config is recom-
mended.

2. Create empty files called $AIRFLOW_HOME/config/log_config.py and $AIRFLOW_HOME/
config/__init__.py.

3. Copy the contents of airflow/config_templates/airflow_local_settings.py into the
log_config.py file that was just created in the step above.

4. Customize the following portions of the template:

3.6. How-to Guides 71

Airflow Documentation, Release 2.0.0.dev0+

wasb buckets should start with "wasb" just to help Airflow select
→˓correct handler
REMOTE_BASE_LOG_FOLDER = 'wasb-<whatever you want here>'

Rename DEFAULT_LOGGING_CONFIG to LOGGING CONFIG
LOGGING_CONFIG = ...

5. Make sure a Azure Blob Storage (Wasb) connection hook has been defined in Airflow. The hook should have
read and write access to the Azure Blob Storage bucket defined above in REMOTE_BASE_LOG_FOLDER.

6. Update $AIRFLOW_HOME/airflow.cfg to contain:

remote_logging = True
logging_config_class = log_config.LOGGING_CONFIG
remote_log_conn_id = <name of the Azure Blob Storage connection>

7. Restart the Airflow webserver and scheduler, and trigger (or wait for) a new task execution.

8. Verify that logs are showing up for newly executed tasks in the bucket you’ve defined.

3.6.7.4 Writing Logs to Google Cloud Storage

Follow the steps below to enable Google Cloud Storage logging.

To enable this feature, airflow.cfg must be configured as in this example:

[core]
Airflow can store logs remotely in AWS S3, Google Cloud Storage or Elastic Search.
Users must supply an Airflow connection id that provides access to the storage
location. If remote_logging is set to true, see UPDATING.md for additional
configuration requirements.
remote_logging = True
remote_base_log_folder = gs://my-bucket/path/to/logs
remote_log_conn_id = MyGCSConn

1. Install the gcp_api package first, like so: pip install apache-airflow[gcp_api].

2. Make sure a Google Cloud Platform connection hook has been defined in Airflow. The hook should have read
and write access to the Google Cloud Storage bucket defined above in remote_base_log_folder.

3. Restart the Airflow webserver and scheduler, and trigger (or wait for) a new task execution.

4. Verify that logs are showing up for newly executed tasks in the bucket you’ve defined.

5. Verify that the Google Cloud Storage viewer is working in the UI. Pull up a newly executed task, and verify that
you see something like:

*** Reading remote log from gs://<bucket where logs should be persisted>/
→˓example_bash_operator/run_this_last/2017-10-03T00:00:00/16.log.
[2017-10-03 21:57:50,056] {cli.py:377} INFO - Running on host chrisr-00532
[2017-10-03 21:57:50,093] {base_task_runner.py:115} INFO - Running: ['bash
→˓', '-c', u'airflow run example_bash_operator run_this_last 2017-10-
→˓03T00:00:00 --job_id 47 --raw -sd DAGS_FOLDER/example_dags/example_bash_
→˓operator.py']
[2017-10-03 21:57:51,264] {base_task_runner.py:98} INFO - Subtask: [2017-
→˓10-03 21:57:51,263] {__init__.py:45} INFO - Using executor
→˓SequentialExecutor
[2017-10-03 21:57:51,306] {base_task_runner.py:98} INFO - Subtask: [2017-
→˓10-03 21:57:51,306] {models.py:186} INFO - Filling up the DagBag from /
→˓airflow/dags/example_dags/example_bash_operator.py (continues on next page)

72 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

Note the top line that says it’s reading from the remote log file.

3.6.8 Scaling Out with Celery

CeleryExecutor is one of the ways you can scale out the number of workers. For this to work, you need to
setup a Celery backend (RabbitMQ, Redis, . . .) and change your airflow.cfg to point the executor parameter to
CeleryExecutor and provide the related Celery settings.

For more information about setting up a Celery broker, refer to the exhaustive Celery documentation on the topic.

Here are a few imperative requirements for your workers:

• airflow needs to be installed, and the CLI needs to be in the path

• Airflow configuration settings should be homogeneous across the cluster

• Operators that are executed on the worker need to have their dependencies met in that context. For ex-
ample, if you use the HiveOperator, the hive CLI needs to be installed on that box, or if you use the
MySqlOperator, the required Python library needs to be available in the PYTHONPATH somehow

• The worker needs to have access to its DAGS_FOLDER, and you need to synchronize the filesystems by your
own means. A common setup would be to store your DAGS_FOLDER in a Git repository and sync it across
machines using Chef, Puppet, Ansible, or whatever you use to configure machines in your environment. If all
your boxes have a common mount point, having your pipelines files shared there should work as well

To kick off a worker, you need to setup Airflow and kick off the worker subcommand

airflow worker

Your worker should start picking up tasks as soon as they get fired in its direction.

Note that you can also run “Celery Flower”, a web UI built on top of Celery, to monitor your workers. You can use
the shortcut command airflow flower to start a Flower web server.

Please note that you must have the flower python library already installed on your system. The recommend way is
to install the airflow celery bundle.

pip install 'apache-airflow[celery]'

Some caveats:

• Make sure to use a database backed result backend

• Make sure to set a visibility timeout in [celery_broker_transport_options] that exceeds the ETA of your longest
running task

• Tasks can consume resources. Make sure your worker has enough resources to run worker_concurrency tasks

3.6.9 Scaling Out with Dask

DaskExecutor allows you to run Airflow tasks in a Dask Distributed cluster.

Dask clusters can be run on a single machine or on remote networks. For complete details, consult the Distributed
documentation.

To create a cluster, first start a Scheduler:

3.6. How-to Guides 73

http://docs.celeryproject.org/en/latest/getting-started/brokers/index.html
https://distributed.readthedocs.io/
https://distributed.readthedocs.io/

Airflow Documentation, Release 2.0.0.dev0+

default settings for a local cluster
DASK_HOST=127.0.0.1
DASK_PORT=8786

dask-scheduler --host $DASK_HOST --port $DASK_PORT

Next start at least one Worker on any machine that can connect to the host:

dask-worker $DASK_HOST:$DASK_PORT

Edit your airflow.cfg to set your executor to DaskExecutor and provide the Dask Scheduler address in the
[dask] section.

Please note:

• Each Dask worker must be able to import Airflow and any dependencies you require.

• Dask does not support queues. If an Airflow task was created with a queue, a warning will be raised but the task
will be submitted to the cluster.

3.6.10 Scaling Out with Mesos (community contributed)

There are two ways you can run airflow as a mesos framework:

1. Running airflow tasks directly on mesos slaves, requiring each mesos slave to have airflow installed and config-
ured.

2. Running airflow tasks inside a docker container that has airflow installed, which is run on a mesos slave.

3.6.10.1 Tasks executed directly on mesos slaves

MesosExecutor allows you to schedule airflow tasks on a Mesos cluster. For this to work, you need a running
mesos cluster and you must perform the following steps -

1. Install airflow on a mesos slave where web server and scheduler will run, let’s refer to this as the “Airflow
server”.

2. On the Airflow server, install mesos python eggs from mesos downloads.

3. On the Airflow server, use a database (such as mysql) which can be accessed from all mesos slaves and add
configuration in airflow.cfg.

4. Change your airflow.cfg to point executor parameter to MesosExecutor and provide related Mesos settings.

5. On all mesos slaves, install airflow. Copy the airflow.cfg from Airflow server (so that it uses same sql
alchemy connection).

6. On all mesos slaves, run the following for serving logs:

airflow serve_logs

7. On Airflow server, to start processing/scheduling DAGs on mesos, run:

airflow scheduler -p

Note: We need -p parameter to pickle the DAGs.

You can now see the airflow framework and corresponding tasks in mesos UI. The logs for airflow tasks can be seen
in airflow UI as usual.

74 Chapter 3. Content

http://open.mesosphere.com/downloads/mesos/

Airflow Documentation, Release 2.0.0.dev0+

For more information about mesos, refer to mesos documentation. For any queries/bugs on MesosExecutor, please
contact @kapil-malik.

3.6.10.2 Tasks executed in containers on mesos slaves

This gist contains all files and configuration changes necessary to achieve the following:

1. Create a dockerized version of airflow with mesos python eggs installed.

We recommend taking advantage of docker’s multi stage builds in order to achieve this. We have one
Dockerfile that defines building a specific version of mesos from source (Dockerfile-mesos), in order to
create the python eggs. In the airflow Dockerfile (Dockerfile-airflow) we copy the python eggs from the
mesos image.

2. Create a mesos configuration block within the airflow.cfg.

The configuration block remains the same as the default airflow configuration (default_airflow.cfg), but
has the addition of an option docker_image_slave. This should be set to the name of the image you
would like mesos to use when running airflow tasks. Make sure you have the proper configuration of the
DNS record for your mesos master and any sort of authorization if any exists.

3. Change your airflow.cfg to point the executor parameter to MesosExecutor (executor = SequentialExecu-
tor).

4. Make sure your mesos slave has access to the docker repository you are using for your
docker_image_slave.

Instructions are available in the mesos docs.

The rest is up to you and how you want to work with a dockerized airflow configuration.

3.6.11 Running Airflow with systemd

Airflow can integrate with systemd based systems. This makes watching your daemons easy as systemd can take care
of restarting a daemon on failure. In the scripts/systemd directory you can find unit files that have been tested
on Redhat based systems. You can copy those to /usr/lib/systemd/system. It is assumed that Airflow will
run under airflow:airflow. If not (or if you are running on a non Redhat based system) you probably need to
adjust the unit files.

Environment configuration is picked up from /etc/sysconfig/airflow. An example file is supplied. You can
also define here, for example, AIRFLOW_HOME or AIRFLOW_CONFIG.

3.6.12 Running Airflow with upstart

Airflow can integrate with upstart based systems. Upstart automatically starts all airflow services for which you have
a corresponding *.conf file in /etc/init upon system boot. On failure, upstart automatically restarts the process
(until it reaches re-spawn limit set in a *.conf file).

You can find sample upstart job files in the scripts/upstart directory. These files have been tested on Ubuntu
14.04 LTS. You may have to adjust start on and stop on stanzas to make it work on other upstart systems. Some
of the possible options are listed in scripts/upstart/README.

Modify *.conf files as needed and copy to /etc/init directory. It is assumed that airflow will run under
airflow:airflow. Change setuid and setgid in *.conf files if you use other user/group

You can use initctl to manually start, stop, view status of the airflow process that has been integrated with upstart

3.6. How-to Guides 75

http://mesos.apache.org/documentation/latest/
https://github.com/kapil-malik
https://gist.github.com/sebradloff/f158874e615bda0005c6f4577b20036e
https://mesos.readthedocs.io/en/latest/docker-containerizer/#private-docker-repository

Airflow Documentation, Release 2.0.0.dev0+

initctl airflow-webserver status

3.6.13 Using the Test Mode Configuration

Airflow has a fixed set of “test mode” configuration options. You can load these at any time by calling airflow.
configuration.load_test_config() (note this operation is not reversible!). However, some options (like
the DAG_FOLDER) are loaded before you have a chance to call load_test_config(). In order to eagerly load the test
configuration, set test_mode in airflow.cfg:

[tests]
unit_test_mode = True

Due to Airflow’s automatic environment variable expansion (see Setting Configuration Options), you can also set the
env var AIRFLOW__CORE__UNIT_TEST_MODE to temporarily overwrite airflow.cfg.

3.6.14 Checking Airflow Health Status

To check the health status of your Airflow instance, you can simply access the endpoint "/health". It will return a
JSON object in which a high-level glance is provided.

{
"metadatabase":{
"status":"healthy"

},
"scheduler":{
"status":"healthy",
"latest_scheduler_heartbeat":"2018-12-26 17:15:11+00:00"

}
}

• The status of each component can be either “healthy” or “unhealthy”.

– The status of metadatabase is depending on whether a valid connection can be initiated with the
database backend of Airflow.

– The status of scheduler is depending on when the latest scheduler heartbeat happened. If the
latest scheduler heartbeat happened 30 seconds (default value) earlier than the current time, sched-
uler component is considered unhealthy. You can also specify this threshold value by changing
scheduler_health_check_threshold in scheduler section of the airflow.cfg file.

• The response code of "/health" endpoint is not used to label the health status of the application (it would
always be 200). Hence please be reminded not to use the response code here for health-check purpose.

3.7 UI / Screenshots

The Airflow UI makes it easy to monitor and troubleshoot your data pipelines. Here’s a quick overview of some of the
features and visualizations you can find in the Airflow UI.

3.7.1 DAGs View

List of the DAGs in your environment, and a set of shortcuts to useful pages. You can see exactly how many tasks
succeeded, failed, or are currently running at a glance.

76 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

3.7.2 Tree View

A tree representation of the DAG that spans across time. If a pipeline is late, you can quickly see where the different
steps are and identify the blocking ones.

3.7.3 Graph View

The graph view is perhaps the most comprehensive. Visualize your DAG’s dependencies and their current status for a
specific run.

3.7. UI / Screenshots 77

Airflow Documentation, Release 2.0.0.dev0+

3.7.4 Variable View

The variable view allows you to list, create, edit or delete the key-value pair of a variable used during jobs. Value of
a variable will be hidden if the key contains any words in (‘password’, ‘secret’, ‘passwd’, ‘authorization’, ‘api_key’,
‘apikey’, ‘access_token’) by default, but can be configured to show in clear-text.

78 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

3.7.5 Gantt Chart

The Gantt chart lets you analyse task duration and overlap. You can quickly identify bottlenecks and where the bulk
of the time is spent for specific DAG runs.

3.7. UI / Screenshots 79

Airflow Documentation, Release 2.0.0.dev0+

3.7.6 Task Duration

The duration of your different tasks over the past N runs. This view lets you find outliers and quickly understand
where the time is spent in your DAG over many runs.

3.7.7 Code View

Transparency is everything. While the code for your pipeline is in source control, this is a quick way to get to the code
that generates the DAG and provide yet more context.

80 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

3.7.8 Task Instance Context Menu

From the pages seen above (tree view, graph view, gantt, . . .), it is always possible to click on a task instance, and get
to this rich context menu that can take you to more detailed metadata, and perform some actions.

3.8 Concepts

The Airflow Platform is a tool for describing, executing, and monitoring workflows.

3.8. Concepts 81

Airflow Documentation, Release 2.0.0.dev0+

3.8.1 Core Ideas

3.8.1.1 DAGs

In Airflow, a DAG – or a Directed Acyclic Graph – is a collection of all the tasks you want to run, organized in a way
that reflects their relationships and dependencies.

For example, a simple DAG could consist of three tasks: A, B, and C. It could say that A has to run successfully before
B can run, but C can run anytime. It could say that task A times out after 5 minutes, and B can be restarted up to 5
times in case it fails. It might also say that the workflow will run every night at 10pm, but shouldn’t start until a certain
date.

In this way, a DAG describes how you want to carry out your workflow; but notice that we haven’t said anything about
what we actually want to do! A, B, and C could be anything. Maybe A prepares data for B to analyze while C sends
an email. Or perhaps A monitors your location so B can open your garage door while C turns on your house lights.
The important thing is that the DAG isn’t concerned with what its constituent tasks do; its job is to make sure that
whatever they do happens at the right time, or in the right order, or with the right handling of any unexpected issues.

DAGs are defined in standard Python files that are placed in Airflow’s DAG_FOLDER. Airflow will execute the code in
each file to dynamically build the DAG objects. You can have as many DAGs as you want, each describing an arbitrary
number of tasks. In general, each one should correspond to a single logical workflow.

Note: When searching for DAGs, Airflow will only consider files where the string “airflow” and “DAG” both appear
in the contents of the .py file.

Scope

Airflow will load any DAG object it can import from a DAGfile. Critically, that means the DAG must appear in
globals(). Consider the following two DAGs. Only dag_1 will be loaded; the other one only appears in a local
scope.

dag_1 = DAG('this_dag_will_be_discovered')

def my_function():
dag_2 = DAG('but_this_dag_will_not')

my_function()

Sometimes this can be put to good use. For example, a common pattern with SubDagOperator is to define the
subdag inside a function so that Airflow doesn’t try to load it as a standalone DAG.

Default Arguments

If a dictionary of default_args is passed to a DAG, it will apply them to any of its operators. This makes it easy
to apply a common parameter to many operators without having to type it many times.

default_args = {
'start_date': datetime(2016, 1, 1),
'owner': 'Airflow'

}

dag = DAG('my_dag', default_args=default_args)

(continues on next page)

82 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

op = DummyOperator(task_id='dummy', dag=dag)
print(op.owner) # Airflow

Context Manager

Added in Airflow 1.8

DAGs can be used as context managers to automatically assign new operators to that DAG.

with DAG('my_dag', start_date=datetime(2016, 1, 1)) as dag:
op = DummyOperator('op')

op.dag is dag # True

3.8.1.2 Operators

While DAGs describe how to run a workflow, Operators determine what actually gets done.

An operator describes a single task in a workflow. Operators are usually (but not always) atomic, meaning they can
stand on their own and don’t need to share resources with any other operators. The DAG will make sure that operators
run in the correct certain order; other than those dependencies, operators generally run independently. In fact, they
may run on two completely different machines.

This is a subtle but very important point: in general, if two operators need to share information, like a filename or small
amount of data, you should consider combining them into a single operator. If it absolutely can’t be avoided, Airflow
does have a feature for operator cross-communication called XCom that is described elsewhere in this document.

Airflow provides operators for many common tasks, including:

• BashOperator - executes a bash command

• PythonOperator - calls an arbitrary Python function

• EmailOperator - sends an email

• SimpleHttpOperator - sends an HTTP request

• MySqlOperator, SqliteOperator, PostgresOperator, MsSqlOperator, OracleOperator,
JdbcOperator, etc. - executes a SQL command

• Sensor - waits for a certain time, file, database row, S3 key, etc. . .

In addition to these basic building blocks, there are many more specific operators: DockerOperator,
HiveOperator, S3FileTransformOperator, PrestoToMysqlOperator, SlackOperator. . . you
get the idea!

The airflow/contrib/ directory contains yet more operators built by the community. These operators aren’t
always as complete or well-tested as those in the main distribution, but allow users to more easily add new functionality
to the platform.

Operators are only loaded by Airflow if they are assigned to a DAG.

See Using Operators for how to use Airflow operators.

3.8. Concepts 83

Airflow Documentation, Release 2.0.0.dev0+

DAG Assignment

Added in Airflow 1.8

Operators do not have to be assigned to DAGs immediately (previously dag was a required argument). However, once
an operator is assigned to a DAG, it can not be transferred or unassigned. DAG assignment can be done explicitly
when the operator is created, through deferred assignment, or even inferred from other operators.

dag = DAG('my_dag', start_date=datetime(2016, 1, 1))

sets the DAG explicitly
explicit_op = DummyOperator(task_id='op1', dag=dag)

deferred DAG assignment
deferred_op = DummyOperator(task_id='op2')
deferred_op.dag = dag

inferred DAG assignment (linked operators must be in the same DAG)
inferred_op = DummyOperator(task_id='op3')
inferred_op.set_upstream(deferred_op)

Bitshift Composition

Added in Airflow 1.8

Traditionally, operator relationships are set with the set_upstream() and set_downstream() methods. In
Airflow 1.8, this can be done with the Python bitshift operators >> and <<. The following four statements are all
functionally equivalent:

op1 >> op2
op1.set_downstream(op2)

op2 << op1
op2.set_upstream(op1)

When using the bitshift to compose operators, the relationship is set in the direction that the bitshift operator points.
For example, op1 >> op2 means that op1 runs first and op2 runs second. Multiple operators can be composed –
keep in mind the chain is executed left-to-right and the rightmost object is always returned. For example:

op1 >> op2 >> op3 << op4

is equivalent to:

op1.set_downstream(op2)
op2.set_downstream(op3)
op3.set_upstream(op4)

For convenience, the bitshift operators can also be used with DAGs. For example:

dag >> op1 >> op2

is equivalent to:

op1.dag = dag
op1.set_downstream(op2)

84 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

We can put this all together to build a simple pipeline:

with DAG('my_dag', start_date=datetime(2016, 1, 1)) as dag:
(

DummyOperator(task_id='dummy_1')
>> BashOperator(

task_id='bash_1',
bash_command='echo "HELLO!"')

>> PythonOperator(
task_id='python_1',
python_callable=lambda: print("GOODBYE!"))

)

Bitshift can also be used with lists. For example:

op1 >> [op2, op3]

is equivalent to:

op1 >> op2
op1 >> op3

and equivalent to:

op1.set_downstream([op2, op3])

3.8.1.3 Tasks

Once an operator is instantiated, it is referred to as a “task”. The instantiation defines specific values when calling the
abstract operator, and the parameterized task becomes a node in a DAG.

3.8.1.4 Task Instances

A task instance represents a specific run of a task and is characterized as the combination of a dag, a task, and a point
in time. Task instances also have an indicative state, which could be “running”, “success”, “failed”, “skipped”, “up for
retry”, etc.

3.8.1.5 Workflows

You’re now familiar with the core building blocks of Airflow. Some of the concepts may sound very similar, but the
vocabulary can be conceptualized like this:

• DAG: a description of the order in which work should take place

• Operator: a class that acts as a template for carrying out some work

• Task: a parameterized instance of an operator

• Task Instance: a task that 1) has been assigned to a DAG and 2) has a state associated with a specific run of the
DAG

By combining DAGs and Operators to create TaskInstances, you can build complex workflows.

3.8. Concepts 85

Airflow Documentation, Release 2.0.0.dev0+

3.8.2 Additional Functionality

In addition to the core Airflow objects, there are a number of more complex features that enable behaviors like limiting
simultaneous access to resources, cross-communication, conditional execution, and more.

3.8.2.1 Hooks

Hooks are interfaces to external platforms and databases like Hive, S3, MySQL, Postgres, HDFS, and Pig. Hooks
implement a common interface when possible, and act as a building block for operators. They also use the airflow.
models.connection.Connection model to retrieve hostnames and authentication information. Hooks keep
authentication code and information out of pipelines, centralized in the metadata database.

Hooks are also very useful on their own to use in Python scripts, Airflow airflow.operators.PythonOperator, and in
interactive environments like iPython or Jupyter Notebook.

3.8.2.2 Pools

Some systems can get overwhelmed when too many processes hit them at the same time. Airflow pools can be used to
limit the execution parallelism on arbitrary sets of tasks. The list of pools is managed in the UI (Menu -> Admin
-> Pools) by giving the pools a name and assigning it a number of worker slots. Tasks can then be associated with
one of the existing pools by using the pool parameter when creating tasks (i.e., instantiating operators).

aggregate_db_message_job = BashOperator(
task_id='aggregate_db_message_job',
execution_timeout=timedelta(hours=3),
pool='ep_data_pipeline_db_msg_agg',
bash_command=aggregate_db_message_job_cmd,
dag=dag)

aggregate_db_message_job.set_upstream(wait_for_empty_queue)

The pool parameter can be used in conjunction with priority_weight to define priorities in the queue, and
which tasks get executed first as slots open up in the pool. The default priority_weight is 1, and can be
bumped to any number. When sorting the queue to evaluate which task should be executed next, we use the
priority_weight, summed up with all of the priority_weight values from tasks downstream from this
task. You can use this to bump a specific important task and the whole path to that task gets prioritized accordingly.

Tasks will be scheduled as usual while the slots fill up. Once capacity is reached, runnable tasks get queued and their
state will show as such in the UI. As slots free up, queued tasks start running based on the priority_weight (of
the task and its descendants).

Note that by default tasks aren’t assigned to any pool and their execution parallelism is only limited to the executor’s
setting.

3.8.2.3 Connections

The connection information to external systems is stored in the Airflow metadata database and managed in the UI
(Menu -> Admin -> Connections). A conn_id is defined there and hostname / login / password / schema
information attached to it. Airflow pipelines can simply refer to the centrally managed conn_id without having to
hard code any of this information anywhere.

Many connections with the same conn_id can be defined and when that is the case, and when the hooks uses the
get_connection method from BaseHook, Airflow will choose one connection randomly, allowing for some
basic load balancing and fault tolerance when used in conjunction with retries.

86 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Airflow also has the ability to reference connections via environment variables from the operating system. But it only
supports URI format. If you need to specify extra for your connection, please use web UI.

If connections with the same conn_id are defined in both Airflow metadata database and environment variables, only
the one in environment variables will be referenced by Airflow (for example, given conn_id postgres_master,
Airflow will search for AIRFLOW_CONN_POSTGRES_MASTER in environment variables first and directly reference
it if found, before it starts to search in metadata database).

Many hooks have a default conn_id, where operators using that hook do not need to supply an explicit connection
ID. For example, the default conn_id for the PostgresHook is postgres_default.

See Managing Connections for how to create and manage connections.

3.8.2.4 Queues

When using the CeleryExecutor, the Celery queues that tasks are sent to can be specified. queue is an attribute
of BaseOperator, so any task can be assigned to any queue. The default queue for the environment is defined in
the airflow.cfg’s celery -> default_queue. This defines the queue that tasks get assigned to when not
specified, as well as which queue Airflow workers listen to when started.

Workers can listen to one or multiple queues of tasks. When a worker is started (using the command airflow
worker), a set of comma-delimited queue names can be specified (e.g. airflow worker -q spark). This
worker will then only pick up tasks wired to the specified queue(s).

This can be useful if you need specialized workers, either from a resource perspective (for say very lightweight tasks
where one worker could take thousands of tasks without a problem), or from an environment perspective (you want a
worker running from within the Spark cluster itself because it needs a very specific environment and security rights).

3.8.2.5 XComs

XComs let tasks exchange messages, allowing more nuanced forms of control and shared state. The name is an
abbreviation of “cross-communication”. XComs are principally defined by a key, value, and timestamp, but also track
attributes like the task/DAG that created the XCom and when it should become visible. Any object that can be pickled
can be used as an XCom value, so users should make sure to use objects of appropriate size.

XComs can be “pushed” (sent) or “pulled” (received). When a task pushes an XCom, it makes it generally available to
other tasks. Tasks can push XComs at any time by calling the xcom_push() method. In addition, if a task returns a
value (either from its Operator’s execute() method, or from a PythonOperator’s python_callable function),
then an XCom containing that value is automatically pushed.

Tasks call xcom_pull() to retrieve XComs, optionally applying filters based on criteria like key, source
task_ids, and source dag_id. By default, xcom_pull() filters for the keys that are automatically given to
XComs when they are pushed by being returned from execute functions (as opposed to XComs that are pushed man-
ually).

If xcom_pull is passed a single string for task_ids, then the most recent XCom value from that task is returned;
if a list of task_ids is passed, then a corresponding list of XCom values is returned.

inside a PythonOperator called 'pushing_task'
def push_function():

return value

inside another PythonOperator where provide_context=True
def pull_function(**context):

value = context['task_instance'].xcom_pull(task_ids='pushing_task')

It is also possible to pull XCom directly in a template, here’s an example of what this may look like:

3.8. Concepts 87

Airflow Documentation, Release 2.0.0.dev0+

SELECT * FROM {{ task_instance.xcom_pull(task_ids='foo', key='table_name') }}

Note that XComs are similar to Variables, but are specifically designed for inter-task communication rather than global
settings.

3.8.2.6 Variables

Variables are a generic way to store and retrieve arbitrary content or settings as a simple key value store within
Airflow. Variables can be listed, created, updated and deleted from the UI (Admin -> Variables), code or CLI.
In addition, json settings files can be bulk uploaded through the UI. While your pipeline code definition and most of
your constants and variables should be defined in code and stored in source control, it can be useful to have some
variables or configuration items accessible and modifiable through the UI.

from airflow.models import Variable
foo = Variable.get("foo")
bar = Variable.get("bar", deserialize_json=True)

The second call assumes json content and will be deserialized into bar. Note that Variable is a sqlalchemy
model and can be used as such.

You can use a variable from a jinja template with the syntax :

echo {{ var.value.<variable_name> }}

or if you need to deserialize a json object from the variable :

echo {{ var.json.<variable_name> }}

3.8.2.7 Branching

Sometimes you need a workflow to branch, or only go down a certain path based on an arbitrary condition
which is typically related to something that happened in an upstream task. One way to do this is by using the
BranchPythonOperator.

The BranchPythonOperator is much like the PythonOperator except that it expects a python_callable that returns
a task_id (or list of task_ids). The task_id returned is followed, and all of the other paths are skipped. The task_id
returned by the Python function has to be referencing a task directly downstream from the BranchPythonOperator task.

Note that using tasks with depends_on_past=True downstream from BranchPythonOperator is logically
unsound as skipped status will invariably lead to block tasks that depend on their past successes. skipped states
propagates where all directly upstream tasks are skipped.

If you want to skip some tasks, keep in mind that you can’t have an empty path, if so make a dummy task.

like this, the dummy task “branch_false” is skipped

88 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Not like this, where the join task is skipped

The BranchPythonOperator can also be used with XComs allowing branching context to dynamically decide
what branch to follow based on previous tasks. For example:

def branch_func(**kwargs):
ti = kwargs['ti']
xcom_value = int(ti.xcom_pull(task_ids='start_task'))
if xcom_value >= 5:

return 'continue_task'
else:

return 'stop_task'

start_op = BashOperator(
task_id='start_task',
bash_command="echo 5",
xcom_push=True,
dag=dag)

branch_op = BranchPythonOperator(
task_id='branch_task',
provide_context=True,
python_callable=branch_func,
dag=dag)

continue_op = DummyOperator(task_id='continue_task', dag=dag)
stop_op = DummyOperator(task_id='stop_task', dag=dag)

start_op >> branch_op >> [continue_op, stop_op]

3.8.2.8 SubDAGs

SubDAGs are perfect for repeating patterns. Defining a function that returns a DAG object is a nice design pattern
when using Airflow.

Airbnb uses the stage-check-exchange pattern when loading data. Data is staged in a temporary table, after which data
quality checks are performed against that table. Once the checks all pass the partition is moved into the production
table.

As another example, consider the following DAG:

3.8. Concepts 89

Airflow Documentation, Release 2.0.0.dev0+

We can combine all of the parallel task-* operators into a single SubDAG, so that the resulting DAG resembles the
following:

Note that SubDAG operators should contain a factory method that returns a DAG object. This will prevent the SubDAG
from being treated like a separate DAG in the main UI. For example:

#dags/subdag.py
from airflow.models import DAG
from airflow.operators.dummy_operator import DummyOperator

Dag is returned by a factory method
def sub_dag(parent_dag_name, child_dag_name, start_date, schedule_interval):
dag = DAG(
'%s.%s' % (parent_dag_name, child_dag_name),
schedule_interval=schedule_interval,
start_date=start_date,

)

dummy_operator = DummyOperator(
task_id='dummy_task',
dag=dag,

)

return dag

This SubDAG can then be referenced in your main DAG file:

main_dag.py
from datetime import datetime, timedelta
from airflow.models import DAG
from airflow.operators.subdag_operator import SubDagOperator
from dags.subdag import sub_dag

PARENT_DAG_NAME = 'parent_dag'
CHILD_DAG_NAME = 'child_dag'

main_dag = DAG(
dag_id=PARENT_DAG_NAME,
schedule_interval=timedelta(hours=1),
start_date=datetime(2016, 1, 1)

)
(continues on next page)

90 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

sub_dag = SubDagOperator(
subdag=sub_dag(PARENT_DAG_NAME, CHILD_DAG_NAME, main_dag.start_date,

main_dag.schedule_interval),
task_id=CHILD_DAG_NAME,
dag=main_dag,

)

You can zoom into a SubDagOperator from the graph view of the main DAG to show the tasks contained within the
SubDAG:

Some other tips when using SubDAGs:

• by convention, a SubDAG’s dag_id should be prefixed by its parent and a dot. As in parent.child

• share arguments between the main DAG and the SubDAG by passing arguments to the SubDAG operator (as
demonstrated above)

• SubDAGs must have a schedule and be enabled. If the SubDAG’s schedule is set to None or @once, the
SubDAG will succeed without having done anything

• clearing a SubDagOperator also clears the state of the tasks within

• marking success on a SubDagOperator does not affect the state of the tasks within

• refrain from using depends_on_past=True in tasks within the SubDAG as this can be confusing

• it is possible to specify an executor for the SubDAG. It is common to use the SequentialExecutor if you want to
run the SubDAG in-process and effectively limit its parallelism to one. Using LocalExecutor can be problematic
as it may over-subscribe your worker, running multiple tasks in a single slot

See airflow/example_dags for a demonstration.

3.8. Concepts 91

Airflow Documentation, Release 2.0.0.dev0+

3.8.2.9 SLAs

Service Level Agreements, or time by which a task or DAG should have succeeded, can be set at a task level as
a timedelta. If one or many instances have not succeeded by that time, an alert email is sent detailing the list
of tasks that missed their SLA. The event is also recorded in the database and made available in the web UI under
Browse->Missed SLAs where events can be analyzed and documented.

3.8.2.10 Trigger Rules

Though the normal workflow behavior is to trigger tasks when all their directly upstream tasks have succeeded, Airflow
allows for more complex dependency settings.

All operators have a trigger_rule argument which defines the rule by which the generated task get triggered.
The default value for trigger_rule is all_success and can be defined as “trigger this task when all directly
upstream tasks have succeeded”. All other rules described here are based on direct parent tasks and are values that can
be passed to any operator while creating tasks:

• all_success: (default) all parents have succeeded

• all_failed: all parents are in a failed or upstream_failed state

• all_done: all parents are done with their execution

• one_failed: fires as soon as at least one parent has failed, it does not wait for all parents to be done

• one_success: fires as soon as at least one parent succeeds, it does not wait for all parents to be done

• none_failed: all parents have not failed (failed or upstream_failed) i.e. all parents have succeeded
or been skipped

• dummy: dependencies are just for show, trigger at will

Note that these can be used in conjunction with depends_on_past (boolean) that, when set to True, keeps a task
from getting triggered if the previous schedule for the task hasn’t succeeded.

3.8.2.11 Latest Run Only

Standard workflow behavior involves running a series of tasks for a particular date/time range. Some workflows,
however, perform tasks that are independent of run time but need to be run on a schedule, much like a standard cron
job. In these cases, backfills or running jobs missed during a pause just wastes CPU cycles.

For situations like this, you can use the LatestOnlyOperator to skip tasks that are not being run during the most
recent scheduled run for a DAG. The LatestOnlyOperator skips all immediate downstream tasks, and itself, if
the time right now is not between its execution_time and the next scheduled execution_time.

One must be aware of the interaction between skipped tasks and trigger rules. Skipped tasks will cascade through
trigger rules all_success and all_failed but not all_done, one_failed, one_success, and dummy.
If you would like to use the LatestOnlyOperator with trigger rules that do not cascade skips, you will need to
ensure that the LatestOnlyOperator is directly upstream of the task you would like to skip.

It is possible, through use of trigger rules to mix tasks that should run in the typical date/time dependent mode and
those using the LatestOnlyOperator.

For example, consider the following dag:

#dags/latest_only_with_trigger.py
import datetime as dt

from airflow.models import DAG

(continues on next page)

92 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.latest_only_operator import LatestOnlyOperator
from airflow.utils.trigger_rule import TriggerRule

dag = DAG(
dag_id='latest_only_with_trigger',
schedule_interval=dt.timedelta(hours=4),
start_date=dt.datetime(2016, 9, 20),

)

latest_only = LatestOnlyOperator(task_id='latest_only', dag=dag)

task1 = DummyOperator(task_id='task1', dag=dag)
task1.set_upstream(latest_only)

task2 = DummyOperator(task_id='task2', dag=dag)

task3 = DummyOperator(task_id='task3', dag=dag)
task3.set_upstream([task1, task2])

task4 = DummyOperator(task_id='task4', dag=dag,
trigger_rule=TriggerRule.ALL_DONE)

task4.set_upstream([task1, task2])

In the case of this dag, the latest_only task will show up as skipped for all runs except the latest run. task1 is
directly downstream of latest_only and will also skip for all runs except the latest. task2 is entirely independent
of latest_only and will run in all scheduled periods. task3 is downstream of task1 and task2 and because of
the default trigger_rule being all_success will receive a cascaded skip from task1. task4 is downstream
of task1 and task2 but since its trigger_rule is set to all_done it will trigger as soon as task1 has been
skipped (a valid completion state) and task2 has succeeded.

3.8.2.12 Zombies & Undeads

Task instances die all the time, usually as part of their normal life cycle, but sometimes unexpectedly.

Zombie tasks are characterized by the absence of an heartbeat (emitted by the job periodically) and a running status
in the database. They can occur when a worker node can’t reach the database, when Airflow processes are killed

3.8. Concepts 93

Airflow Documentation, Release 2.0.0.dev0+

externally, or when a node gets rebooted for instance. Zombie killing is performed periodically by the scheduler’s
process.

Undead processes are characterized by the existence of a process and a matching heartbeat, but Airflow isn’t aware
of this task as running in the database. This mismatch typically occurs as the state of the database is altered, most
likely by deleting rows in the “Task Instances” view in the UI. Tasks are instructed to verify their state as part of the
heartbeat routine, and terminate themselves upon figuring out that they are in this “undead” state.

3.8.2.13 Cluster Policy

Your local airflow settings file can define a policy function that has the ability to mutate task attributes based on
other task or DAG attributes. It receives a single argument as a reference to task objects, and is expected to alter its
attributes.

For example, this function could apply a specific queue property when using a specific operator, or enforce a task
timeout policy, making sure that no tasks run for more than 48 hours. Here’s an example of what this may look like
inside your airflow_settings.py:

def policy(task):
if task.__class__.__name__ == 'HivePartitionSensor':

task.queue = "sensor_queue"
if task.timeout > timedelta(hours=48):

task.timeout = timedelta(hours=48)

3.8.2.14 Documentation & Notes

It’s possible to add documentation or notes to your dags & task objects that become visible in the web interface
(“Graph View” for dags, “Task Details” for tasks). There are a set of special task attributes that get rendered as rich
content if defined:

attribute rendered to
doc monospace
doc_json json
doc_yaml yaml
doc_md markdown
doc_rst reStructuredText

Please note that for dags, doc_md is the only attribute interpreted.

This is especially useful if your tasks are built dynamically from configuration files, it allows you to expose the
configuration that led to the related tasks in Airflow.

"""
My great DAG
"""

dag = DAG('my_dag', default_args=default_args)
dag.doc_md = __doc__

t = BashOperator("foo", dag=dag)
t.doc_md = """\
#Title"
Here's a [url](www.airbnb.com)
"""

94 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

This content will get rendered as markdown respectively in the “Graph View” and “Task Details” pages.

3.8.2.15 Jinja Templating

Airflow leverages the power of Jinja Templating and this can be a powerful tool to use in combination with macros
(see the Macros section).

For example, say you want to pass the execution date as an environment variable to a Bash script using the
BashOperator.

The execution date as YYYY-MM-DD
date = "{{ ds }}"
t = BashOperator(

task_id='test_env',
bash_command='/tmp/test.sh ',
dag=dag,
env={'EXECUTION_DATE': date})

Here, {{ ds }} is a macro, and because the env parameter of the BashOperator is templated with Jinja, the
execution date will be available as an environment variable named EXECUTION_DATE in your Bash script.

You can use Jinja templating with every parameter that is marked as “templated” in the documentation. Template
substitution occurs just before the pre_execute function of your operator is called.

3.8.3 Packaged dags

While often you will specify dags in a single .py file it might sometimes be required to combine dag and its depen-
dencies. For example, you might want to combine several dags together to version them together or you might want
to manage them together or you might need an extra module that is not available by default on the system you are
running airflow on. To allow this you can create a zip file that contains the dag(s) in the root of the zip file and have
the extra modules unpacked in directories.

For instance you can create a zip file that looks like this:

my_dag1.py
my_dag2.py
package1/__init__.py
package1/functions.py

Airflow will scan the zip file and try to load my_dag1.py and my_dag2.py. It will not go into subdirectories as
these are considered to be potential packages.

In case you would like to add module dependencies to your DAG you basically would do the same, but then it is more
to use a virtualenv and pip.

virtualenv zip_dag
source zip_dag/bin/activate

mkdir zip_dag_contents
cd zip_dag_contents

pip install --install-option="--install-lib=$PWD" my_useful_package
cp ~/my_dag.py .

zip -r zip_dag.zip *

3.8. Concepts 95

http://jinja.pocoo.org/docs/dev/

Airflow Documentation, Release 2.0.0.dev0+

Note: the zip file will be inserted at the beginning of module search list (sys.path) and as such it will be available to
any other code that resides within the same interpreter.

Note: packaged dags cannot be used with pickling turned on.

Note: packaged dags cannot contain dynamic libraries (eg. libz.so) these need to be available on the system if a
module needs those. In other words only pure python modules can be packaged.

3.8.4 .airflowignore

A .airflowignore file specifies the directories or files in DAG_FOLDER that Airflow should intentionally ignore.
Each line in .airflowignore specifies a regular expression pattern, and directories or files whose names (not
DAG id) match any of the patterns would be ignored (under the hood, re.findall() is used to match the pattern).
Overall it works like a .gitignore file.

.airflowignore file should be put in your DAG_FOLDER. For example, you can prepare a .airflowignore
file with contents

project_a
tenant_[\d]

Then files like “project_a_dag_1.py”, “TESTING_project_a.py”, “tenant_1.py”, “project_a/dag_1.py”, and “ten-
ant_1/dag_1.py” in your DAG_FOLDER would be ignored (If a directory’s name matches any of the patterns, this
directory and all its subfolders would not be scanned by Airflow at all. This improves efficiency of DAG finding).

The scope of a .airflowignore file is the directory it is in plus all its subfolders. You can also prepare .
airflowignore file for a subfolder in DAG_FOLDER and it would only be applicable for that subfolder.

3.9 Data Profiling

Note: Adhoc Queries and Charts are no longer supported in the new FAB-based webserver and UI, due to
security concerns.

Part of being productive with data is having the right weapons to profile the data you are working with. Airflow
provides a simple query interface to write SQL and get results quickly, and a charting application letting you visualize
data.

3.9.1 Adhoc Queries

The adhoc query UI allows for simple SQL interactions with the database connections registered in Airflow.

96 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

3.9.2 Charts

A simple UI built on top of flask-admin and highcharts allows building data visualizations and charts easily. Fill in a
form with a label, SQL, chart type, pick a source database from your environment’s connections, select a few other
options, and save it for later use.

You can even use the same templating and macros available when writing airflow pipelines, parameterizing your
queries and modifying parameters directly in the URL.

These charts are basic, but they’re easy to create, modify and share.

3.9. Data Profiling 97

Airflow Documentation, Release 2.0.0.dev0+

3.9.2.1 Chart Screenshot

98 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

3.9.2.2 Chart Form Screenshot

3.10 Command Line Interface

Airflow has a very rich command line interface that allows for many types of operation on a DAG, starting services,
and supporting development and testing.

usage: airflow [-h]
{resetdb,render,variables,connections,users,pause,sync_perm,task_

→˓failed_deps,version,trigger_dag,initdb,test,unpause,list_dag_runs,dag_state,run,
→˓list_tasks,backfill,list_dags,kerberos,worker,webserver,flower,scheduler,task_state,
→˓pool,serve_logs,clear,next_execution,upgradedb,delete_dag}

...

3.10.1 Positional Arguments

subcommand Possible choices: resetdb, render, variables, connections, users, pause,
sync_perm, task_failed_deps, version, trigger_dag, initdb, test, unpause,
list_dag_runs, dag_state, run, list_tasks, backfill, list_dags, kerberos, worker,

3.10. Command Line Interface 99

Airflow Documentation, Release 2.0.0.dev0+

webserver, flower, scheduler, task_state, pool, serve_logs, clear, next_execution,
upgradedb, delete_dag

sub-command help

3.10.2 Sub-commands:

3.10.2.1 resetdb

Burn down and rebuild the metadata database

airflow resetdb [-h] [-y]

Named Arguments

-y, --yes Do not prompt to confirm reset. Use with care!

Default: False

3.10.2.2 render

Render a task instance’s template(s)

airflow render [-h] [-sd SUBDIR] dag_id task_id execution_date

Positional Arguments

dag_id The id of the dag

task_id The id of the task

execution_date The execution date of the DAG

Named Arguments

-sd, --subdir File location or directory from which to look for the dag. Defaults to ‘[AIR-
FLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIR-
FLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

3.10.2.3 variables

CRUD operations on variables

airflow variables [-h] [-s KEY VAL] [-g KEY] [-j] [-d VAL] [-i FILEPATH]
[-e FILEPATH] [-x KEY]

100 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Named Arguments

-s, --set Set a variable

-g, --get Get value of a variable

-j, --json Deserialize JSON variable

Default: False

-d, --default Default value returned if variable does not exist

-i, --import Import variables from JSON file

-e, --export Export variables to JSON file

-x, --delete Delete a variable

3.10.2.4 connections

List/Add/Delete connections

airflow connections [-h] [-l] [-a] [-d] [--conn_id CONN_ID]
[--conn_uri CONN_URI] [--conn_extra CONN_EXTRA]
[--conn_type CONN_TYPE] [--conn_host CONN_HOST]
[--conn_login CONN_LOGIN] [--conn_password CONN_PASSWORD]
[--conn_schema CONN_SCHEMA] [--conn_port CONN_PORT]

Named Arguments

-l, --list List all connections

Default: False

-a, --add Add a connection

Default: False

-d, --delete Delete a connection

Default: False

--conn_id Connection id, required to add/delete a connection

--conn_uri Connection URI, required to add a connection without conn_type

--conn_extra Connection Extra field, optional when adding a connection

--conn_type Connection type, required to add a connection without conn_uri

--conn_host Connection host, optional when adding a connection

--conn_login Connection login, optional when adding a connection

--conn_password Connection password, optional when adding a connection

--conn_schema Connection schema, optional when adding a connection

--conn_port Connection port, optional when adding a connection

3.10. Command Line Interface 101

Airflow Documentation, Release 2.0.0.dev0+

3.10.2.5 users

List/Create/Delete users

airflow users [-h] [-l] [-c] [-d] [--username USERNAME] [--email EMAIL]
[--firstname FIRSTNAME] [--lastname LASTNAME] [--role ROLE]
[--password PASSWORD] [--use_random_password]

Named Arguments

-l, --list List all users

Default: False

-c, --create Create a user

Default: False

-d, --delete Delete a user

Default: False

--username Username of the user, required to create/delete a user

--email Email of the user, required to create a user

--firstname First name of the user, required to create a user

--lastname Last name of the user, required to create a user

--role Role of the user. Existing roles include Admin, User, Op, Viewer, and Public.
Required to create a user

--password Password of the user, required to create a user without –use_random_password

--use_random_password Do not prompt for password. Use random string instead. Required to create
a user without –password

Default: False

3.10.2.6 pause

Pause a DAG

airflow pause [-h] [-sd SUBDIR] dag_id

Positional Arguments

dag_id The id of the dag

Named Arguments

-sd, --subdir File location or directory from which to look for the dag. Defaults to ‘[AIR-
FLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIR-
FLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

102 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

3.10.2.7 sync_perm

Update existing role’s permissions.

airflow sync_perm [-h]

3.10.2.8 task_failed_deps

Returns the unmet dependencies for a task instance from the perspective of the scheduler. In other words, why a task
instance doesn’t get scheduled and then queued by the scheduler, and then run by an executor).

airflow task_failed_deps [-h] [-sd SUBDIR] dag_id task_id execution_date

Positional Arguments

dag_id The id of the dag

task_id The id of the task

execution_date The execution date of the DAG

Named Arguments

-sd, --subdir File location or directory from which to look for the dag. Defaults to ‘[AIR-
FLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIR-
FLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

3.10.2.9 version

Show the version

airflow version [-h]

3.10.2.10 trigger_dag

Trigger a DAG run

airflow trigger_dag [-h] [-sd SUBDIR] [-r RUN_ID] [-c CONF] [-e EXEC_DATE]
dag_id

Positional Arguments

dag_id The id of the dag

3.10. Command Line Interface 103

Airflow Documentation, Release 2.0.0.dev0+

Named Arguments

-sd, --subdir File location or directory from which to look for the dag. Defaults to ‘[AIR-
FLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIR-
FLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

-r, --run_id Helps to identify this run

-c, --conf JSON string that gets pickled into the DagRun’s conf attribute

-e, --exec_date The execution date of the DAG

3.10.2.11 initdb

Initialize the metadata database

airflow initdb [-h]

3.10.2.12 test

Test a task instance. This will run a task without checking for dependencies or recording its state in the database.

airflow test [-h] [-sd SUBDIR] [-dr] [-tp TASK_PARAMS]
dag_id task_id execution_date

Positional Arguments

dag_id The id of the dag

task_id The id of the task

execution_date The execution date of the DAG

Named Arguments

-sd, --subdir File location or directory from which to look for the dag. Defaults to ‘[AIR-
FLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIR-
FLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

-dr, --dry_run Perform a dry run

Default: False

-tp, --task_params Sends a JSON params dict to the task

3.10.2.13 unpause

Resume a paused DAG

104 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

airflow unpause [-h] [-sd SUBDIR] dag_id

Positional Arguments

dag_id The id of the dag

Named Arguments

-sd, --subdir File location or directory from which to look for the dag. Defaults to ‘[AIR-
FLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIR-
FLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

3.10.2.14 list_dag_runs

List dag runs given a DAG id. If state option is given, it will onlysearch for all the dagruns with the given state. If
no_backfill option is given, it will filter outall backfill dagruns for given dag id.

airflow list_dag_runs [-h] [--no_backfill] [--state STATE] dag_id

Positional Arguments

dag_id The id of the dag

Named Arguments

--no_backfill filter all the backfill dagruns given the dag id

Default: False

--state Only list the dag runs corresponding to the state

3.10.2.15 dag_state

Get the status of a dag run

airflow dag_state [-h] [-sd SUBDIR] dag_id execution_date

Positional Arguments

dag_id The id of the dag

execution_date The execution date of the DAG

3.10. Command Line Interface 105

Airflow Documentation, Release 2.0.0.dev0+

Named Arguments

-sd, --subdir File location or directory from which to look for the dag. Defaults to ‘[AIR-
FLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIR-
FLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

3.10.2.16 run

Run a single task instance

airflow run [-h] [-sd SUBDIR] [-m] [-f] [--pool POOL] [--cfg_path CFG_PATH]
[-l] [-A] [-i] [-I] [--ship_dag] [-p PICKLE] [-int]
dag_id task_id execution_date

Positional Arguments

dag_id The id of the dag

task_id The id of the task

execution_date The execution date of the DAG

Named Arguments

-sd, --subdir File location or directory from which to look for the dag. Defaults to ‘[AIR-
FLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIR-
FLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

-m, --mark_success Mark jobs as succeeded without running them

Default: False

-f, --force Ignore previous task instance state, rerun regardless if task already suc-
ceeded/failed

Default: False

--pool Resource pool to use

--cfg_path Path to config file to use instead of airflow.cfg

-l, --local Run the task using the LocalExecutor

Default: False

-A, --ignore_all_dependencies Ignores all non-critical dependencies, including ignore_ti_state and ig-
nore_task_deps

Default: False

-i, --ignore_dependencies Ignore task-specific dependencies, e.g. upstream, depends_on_past, and
retry delay dependencies

Default: False

106 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

-I, --ignore_depends_on_past Ignore depends_on_past dependencies (but respect upstream depen-
dencies)

Default: False

--ship_dag Pickles (serializes) the DAG and ships it to the worker

Default: False

-p, --pickle Serialized pickle object of the entire dag (used internally)

-int, --interactive Do not capture standard output and error streams (useful for interactive debug-
ging)

Default: False

3.10.2.17 list_tasks

List the tasks within a DAG

airflow list_tasks [-h] [-t] [-sd SUBDIR] dag_id

Positional Arguments

dag_id The id of the dag

Named Arguments

-t, --tree Tree view

Default: False

-sd, --subdir File location or directory from which to look for the dag. Defaults to ‘[AIR-
FLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIR-
FLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

3.10.2.18 backfill

Run subsections of a DAG for a specified date range. If reset_dag_run option is used, backfill will first prompt
users whether airflow should clear all the previous dag_run and task_instances within the backfill date range. If
rerun_failed_tasks is used, backfill will auto re-run the previous failed task instances within the backfill date range.

airflow backfill [-h] [-t TASK_REGEX] [-s START_DATE] [-e END_DATE] [-m] [-l]
[-x] [-i] [-I] [-sd SUBDIR] [--pool POOL]
[--delay_on_limit DELAY_ON_LIMIT] [-dr] [-v] [-c CONF]
[--reset_dagruns] [--rerun_failed_tasks]
dag_id

Positional Arguments

dag_id The id of the dag

3.10. Command Line Interface 107

Airflow Documentation, Release 2.0.0.dev0+

Named Arguments

-t, --task_regex The regex to filter specific task_ids to backfill (optional)

-s, --start_date Override start_date YYYY-MM-DD

-e, --end_date Override end_date YYYY-MM-DD

-m, --mark_success Mark jobs as succeeded without running them

Default: False

-l, --local Run the task using the LocalExecutor

Default: False

-x, --donot_pickle Do not attempt to pickle the DAG object to send over to the workers, just tell the
workers to run their version of the code.

Default: False

-i, --ignore_dependencies Skip upstream tasks, run only the tasks matching the regexp. Only works
in conjunction with task_regex

Default: False

-I, --ignore_first_depends_on_past Ignores depends_on_past dependencies for the first set of tasks
only (subsequent executions in the backfill DO respect depends_on_past).

Default: False

-sd, --subdir File location or directory from which to look for the dag. Defaults to ‘[AIR-
FLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIR-
FLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

--pool Resource pool to use

--delay_on_limit Amount of time in seconds to wait when the limit on maximum active dag runs
(max_active_runs) has been reached before trying to execute a dag run again.

Default: 1.0

-dr, --dry_run Perform a dry run

Default: False

-v, --verbose Make logging output more verbose

Default: False

-c, --conf JSON string that gets pickled into the DagRun’s conf attribute

--reset_dagruns if set, the backfill will delete existing backfill-related DAG runs and start anew
with fresh, running DAG runs

Default: False

--rerun_failed_tasks if set, the backfill will auto-rerun all the failed tasks for the backfill date range
instead of throwing exceptions

Default: False

108 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

3.10.2.19 list_dags

List all the DAGs

airflow list_dags [-h] [-sd SUBDIR] [-r]

Named Arguments

-sd, --subdir File location or directory from which to look for the dag. Defaults to ‘[AIR-
FLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIR-
FLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

-r, --report Show DagBag loading report

Default: False

3.10.2.20 kerberos

Start a kerberos ticket renewer

airflow kerberos [-h] [-kt [KEYTAB]] [--pid [PID]] [-D] [--stdout STDOUT]
[--stderr STDERR] [-l LOG_FILE]
[principal]

Positional Arguments

principal kerberos principal

Named Arguments

-kt, --keytab keytab

Default: airflow.keytab

--pid PID file location

-D, --daemon Daemonize instead of running in the foreground

Default: False

--stdout Redirect stdout to this file

--stderr Redirect stderr to this file

-l, --log-file Location of the log file

3.10.2.21 worker

Start a Celery worker node

airflow worker [-h] [-p] [-q QUEUES] [-c CONCURRENCY] [-cn CELERY_HOSTNAME]
[--pid [PID]] [-D] [--stdout STDOUT] [--stderr STDERR]
[-l LOG_FILE] [-a AUTOSCALE]

3.10. Command Line Interface 109

Airflow Documentation, Release 2.0.0.dev0+

Named Arguments

-p, --do_pickle Attempt to pickle the DAG object to send over to the workers, instead of letting
workers run their version of the code.

Default: False

-q, --queues Comma delimited list of queues to serve

Default: default

-c, --concurrency The number of worker processes

Default: 16

-cn, --celery_hostname Set the hostname of celery worker if you have multiple workers on a single
machine.

--pid PID file location

-D, --daemon Daemonize instead of running in the foreground

Default: False

--stdout Redirect stdout to this file

--stderr Redirect stderr to this file

-l, --log-file Location of the log file

-a, --autoscale Minimum and Maximum number of worker to autoscale

3.10.2.22 webserver

Start a Airflow webserver instance

airflow webserver [-h] [-p PORT] [-w WORKERS]
[-k {sync,eventlet,gevent,tornado}] [-t WORKER_TIMEOUT]
[-hn HOSTNAME] [--pid [PID]] [-D] [--stdout STDOUT]
[--stderr STDERR] [-A ACCESS_LOGFILE] [-E ERROR_LOGFILE]
[-l LOG_FILE] [--ssl_cert SSL_CERT] [--ssl_key SSL_KEY] [-d]

Named Arguments

-p, --port The port on which to run the server

Default: 8080

-w, --workers Number of workers to run the webserver on

Default: 4

-k, --workerclass Possible choices: sync, eventlet, gevent, tornado

The worker class to use for Gunicorn

Default: sync

-t, --worker_timeout The timeout for waiting on webserver workers

Default: 120

110 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

-hn, --hostname Set the hostname on which to run the web server

Default: 0.0.0.0

--pid PID file location

-D, --daemon Daemonize instead of running in the foreground

Default: False

--stdout Redirect stdout to this file

--stderr Redirect stderr to this file

-A, --access_logfile The logfile to store the webserver access log. Use ‘-‘ to print to stderr.

Default: -

-E, --error_logfile The logfile to store the webserver error log. Use ‘-‘ to print to stderr.

Default: -

-l, --log-file Location of the log file

--ssl_cert Path to the SSL certificate for the webserver

--ssl_key Path to the key to use with the SSL certificate

-d, --debug Use the server that ships with Flask in debug mode

Default: False

3.10.2.23 flower

Start a Celery Flower

airflow flower [-h] [-hn HOSTNAME] [-p PORT] [-fc FLOWER_CONF] [-u URL_PREFIX]
[-ba BASIC_AUTH] [-a BROKER_API] [--pid [PID]] [-D]
[--stdout STDOUT] [--stderr STDERR] [-l LOG_FILE]

Named Arguments

-hn, --hostname Set the hostname on which to run the server

Default: 0.0.0.0

-p, --port The port on which to run the server

Default: 5555

-fc, --flower_conf Configuration file for flower

-u, --url_prefix URL prefix for Flower

-ba, --basic_auth Securing Flower with Basic Authentication. Accepts user:password
pairs separated by a comma. Example: flower_basic_auth =
user1:password1,user2:password2

-a, --broker_api Broker api

--pid PID file location

-D, --daemon Daemonize instead of running in the foreground

Default: False

3.10. Command Line Interface 111

Airflow Documentation, Release 2.0.0.dev0+

--stdout Redirect stdout to this file

--stderr Redirect stderr to this file

-l, --log-file Location of the log file

3.10.2.24 scheduler

Start a scheduler instance

airflow scheduler [-h] [-d DAG_ID] [-sd SUBDIR] [-n NUM_RUNS] [-p]
[--pid [PID]] [-D] [--stdout STDOUT] [--stderr STDERR]
[-l LOG_FILE]

Named Arguments

-d, --dag_id The id of the dag to run

-sd, --subdir File location or directory from which to look for the dag. Defaults to ‘[AIR-
FLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIR-
FLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

-n, --num_runs Set the number of runs to execute before exiting

Default: -1

-p, --do_pickle Attempt to pickle the DAG object to send over to the workers, instead of letting
workers run their version of the code.

Default: False

--pid PID file location

-D, --daemon Daemonize instead of running in the foreground

Default: False

--stdout Redirect stdout to this file

--stderr Redirect stderr to this file

-l, --log-file Location of the log file

3.10.2.25 task_state

Get the status of a task instance

airflow task_state [-h] [-sd SUBDIR] dag_id task_id execution_date

Positional Arguments

dag_id The id of the dag

task_id The id of the task

execution_date The execution date of the DAG

112 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Named Arguments

-sd, --subdir File location or directory from which to look for the dag. Defaults to ‘[AIR-
FLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIR-
FLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

3.10.2.26 pool

CRUD operations on pools

airflow pool [-h] [-s NAME SLOT_COUNT POOL_DESCRIPTION] [-g NAME] [-x NAME]
[-i FILEPATH] [-e FILEPATH]

Named Arguments

-s, --set Set pool slot count and description, respectively

-g, --get Get pool info

-x, --delete Delete a pool

-i, --import Import pool from JSON file

-e, --export Export pool to JSON file

3.10.2.27 serve_logs

Serve logs generate by worker

airflow serve_logs [-h]

3.10.2.28 clear

Clear a set of task instance, as if they never ran

airflow clear [-h] [-t TASK_REGEX] [-s START_DATE] [-e END_DATE] [-sd SUBDIR]
[-u] [-d] [-c] [-f] [-r] [-x] [-xp] [-dx]
dag_id

Positional Arguments

dag_id The id of the dag

Named Arguments

-t, --task_regex The regex to filter specific task_ids to backfill (optional)

-s, --start_date Override start_date YYYY-MM-DD

-e, --end_date Override end_date YYYY-MM-DD

3.10. Command Line Interface 113

Airflow Documentation, Release 2.0.0.dev0+

-sd, --subdir File location or directory from which to look for the dag. Defaults to ‘[AIR-
FLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIR-
FLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

-u, --upstream Include upstream tasks

Default: False

-d, --downstream Include downstream tasks

Default: False

-c, --no_confirm Do not request confirmation

Default: False

-f, --only_failed Only failed jobs

Default: False

-r, --only_running Only running jobs

Default: False

-x, --exclude_subdags Exclude subdags

Default: False

-xp, --exclude_parentdag Exclude ParentDAGS if the task cleared is a part of a SubDAG

Default: False

-dx, --dag_regex Search dag_id as regex instead of exact string

Default: False

3.10.2.29 next_execution

Get the next execution datetime of a DAG.

airflow next_execution [-h] [-sd SUBDIR] dag_id

Positional Arguments

dag_id The id of the dag

Named Arguments

-sd, --subdir File location or directory from which to look for the dag. Defaults to ‘[AIR-
FLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIR-
FLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

114 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

3.10.2.30 upgradedb

Upgrade the metadata database to latest version

airflow upgradedb [-h]

3.10.2.31 delete_dag

Delete all DB records related to the specified DAG

airflow delete_dag [-h] [-y] dag_id

Positional Arguments

dag_id The id of the dag

Named Arguments

-y, --yes Do not prompt to confirm reset. Use with care!

Default: False

3.11 Scheduling & Triggers

The Airflow scheduler monitors all tasks and all DAGs, and triggers the task instances whose dependencies have been
met. Behind the scenes, it spins up a subprocess, which monitors and stays in sync with a folder for all DAG objects
it may contain, and periodically (every minute or so) collects DAG parsing results and inspects active tasks to see
whether they can be triggered.

The Airflow scheduler is designed to run as a persistent service in an Airflow production environment. To kick it off,
all you need to do is execute airflow scheduler. It will use the configuration specified in airflow.cfg.

Note that if you run a DAG on a schedule_interval of one day, the run stamped 2016-01-01will be triggered
soon after 2016-01-01T23:59. In other words, the job instance is started once the period it covers has ended.

Let’s Repeat That The scheduler runs your job one schedule_interval AFTER the start date, at the END of
the period.

The scheduler starts an instance of the executor specified in the your airflow.cfg. If it happens to be the
LocalExecutor, tasks will be executed as subprocesses; in the case of CeleryExecutor, DaskExecutor,
and MesosExecutor, tasks are executed remotely.

To start a scheduler, simply run the command:

airflow scheduler

3.11.1 DAG Runs

A DAG Run is an object representing an instantiation of the DAG in time.

3.11. Scheduling & Triggers 115

Airflow Documentation, Release 2.0.0.dev0+

Each DAG may or may not have a schedule, which informs how DAG Runs are created. schedule_interval
is defined as a DAG arguments, and receives preferably a cron expression as a str, or a datetime.timedelta
object. Alternatively, you can also use one of these cron “preset”:

preset meaning cron
None Don’t schedule, use for exclusively “externally triggered” DAGs
@once Schedule once and only once
@hourly Run once an hour at the beginning of the hour 0 * * * *
@daily Run once a day at midnight 0 0 * * *
@weekly Run once a week at midnight on Sunday morning 0 0 * * 0
@monthly Run once a month at midnight of the first day of the month 0 0 1 * *
@yearly Run once a year at midnight of January 1 0 0 1 1 *

Note: Use schedule_interval=None and not schedule_interval='None' when you don’t want to
schedule your DAG.

Your DAG will be instantiated for each schedule, while creating a DAG Run entry for each schedule.

DAG runs have a state associated to them (running, failed, success) and informs the scheduler on which set of schedules
should be evaluated for task submissions. Without the metadata at the DAG run level, the Airflow scheduler would
have much more work to do in order to figure out what tasks should be triggered and come to a crawl. It might also
create undesired processing when changing the shape of your DAG, by say adding in new tasks.

3.11.2 Backfill and Catchup

An Airflow DAG with a start_date, possibly an end_date, and a schedule_interval defines a series of
intervals which the scheduler turn into individual Dag Runs and execute. A key capability of Airflow is that these
DAG Runs are atomic, idempotent items, and the scheduler, by default, will examine the lifetime of the DAG (from
start to end/now, one interval at a time) and kick off a DAG Run for any interval that has not been run (or has been
cleared). This concept is called Catchup.

If your DAG is written to handle its own catchup (IE not limited to the interval, but instead to “Now” for instance.),
then you will want to turn catchup off (Either on the DAG itself with dag.catchup = False) or by default at the
configuration file level with catchup_by_default = False. What this will do, is to instruct the scheduler to
only create a DAG Run for the most current instance of the DAG interval series.

"""
Code that goes along with the Airflow tutorial located at:
https://github.com/apache/airflow/blob/master/airflow/example_dags/tutorial.py
"""
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta

default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date': datetime(2015, 12, 1),
'email': ['airflow@example.com'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5)

}

(continues on next page)

116 Chapter 3. Content

https://en.wikipedia.org/wiki/Cron#CRON_expression

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

dag = DAG(
'tutorial',
default_args=default_args,
description='A simple tutorial DAG',
schedule_interval='@daily',
catchup=False)

In the example above, if the DAG is picked up by the scheduler daemon on 2016-01-02 at 6 AM, (or from the command
line), a single DAG Run will be created, with an execution_date of 2016-01-01, and the next one will be created
just after midnight on the morning of 2016-01-03 with an execution date of 2016-01-02.

If the dag.catchup value had been True instead, the scheduler would have created a DAG Run for each completed
interval between 2015-12-01 and 2016-01-02 (but not yet one for 2016-01-02, as that interval hasn’t completed) and
the scheduler will execute them sequentially. This behavior is great for atomic datasets that can easily be split into
periods. Turning catchup off is great if your DAG Runs perform backfill internally.

3.11.3 External Triggers

Note that DAG Runs can also be created manually through the CLI while running an airflow trigger_dag
command, where you can define a specific run_id. The DAG Runs created externally to the scheduler get associated
to the trigger’s timestamp, and will be displayed in the UI alongside scheduled DAG runs.

In addition, you can also manually trigger a DAG Run using the web UI (tab “DAGs” -> column “Links” -> button
“Trigger Dag”).

3.11.4 To Keep in Mind

• The first DAG Run is created based on the minimum start_date for the tasks in your DAG.

• Subsequent DAG Runs are created by the scheduler process, based on your DAG’s schedule_interval,
sequentially.

• When clearing a set of tasks’ state in hope of getting them to re-run, it is important to keep in mind the DAG
Run’s state too as it defines whether the scheduler should look into triggering tasks for that run.

Here are some of the ways you can unblock tasks:

• From the UI, you can clear (as in delete the status of) individual task instances from the task instances dialog,
while defining whether you want to includes the past/future and the upstream/downstream dependencies. Note
that a confirmation window comes next and allows you to see the set you are about to clear. You can also clear
all task instances associated with the dag.

• The CLI command airflow clear -h has lots of options when it comes to clearing task instance states,
including specifying date ranges, targeting task_ids by specifying a regular expression, flags for including up-
stream and downstream relatives, and targeting task instances in specific states (failed, or success)

• Clearing a task instance will no longer delete the task instance record. Instead it updates max_tries and set the
current task instance state to be None.

• Marking task instances as failed can be done through the UI. This can be used to stop running task instances.

• Marking task instances as successful can be done through the UI. This is mostly to fix false negatives, or for
instance when the fix has been applied outside of Airflow.

• The airflow backfill CLI subcommand has a flag to --mark_success and allows selecting subsec-
tions of the DAG as well as specifying date ranges.

3.11. Scheduling & Triggers 117

Airflow Documentation, Release 2.0.0.dev0+

3.12 Plugins

Airflow has a simple plugin manager built-in that can integrate external features to its core by simply dropping files in
your $AIRFLOW_HOME/plugins folder.

The python modules in the plugins folder get imported, and hooks, operators, sensors, macros, executors and
web views get integrated to Airflow’s main collections and become available for use.

3.12.1 What for?

Airflow offers a generic toolbox for working with data. Different organizations have different stacks and different
needs. Using Airflow plugins can be a way for companies to customize their Airflow installation to reflect their
ecosystem.

Plugins can be used as an easy way to write, share and activate new sets of features.

There’s also a need for a set of more complex applications to interact with different flavors of data and metadata.

Examples:

• A set of tools to parse Hive logs and expose Hive metadata (CPU /IO / phases/ skew /. . .)

• An anomaly detection framework, allowing people to collect metrics, set thresholds and alerts

• An auditing tool, helping understand who accesses what

• A config-driven SLA monitoring tool, allowing you to set monitored tables and at what time they should land,
alert people, and expose visualizations of outages

• . . .

3.12.2 Why build on top of Airflow?

Airflow has many components that can be reused when building an application:

• A web server you can use to render your views

• A metadata database to store your models

• Access to your databases, and knowledge of how to connect to them

• An array of workers that your application can push workload to

• Airflow is deployed, you can just piggy back on its deployment logistics

• Basic charting capabilities, underlying libraries and abstractions

3.12.3 Interface

To create a plugin you will need to derive the airflow.plugins_manager.AirflowPlugin class and refer-
ence the objects you want to plug into Airflow. Here’s what the class you need to derive looks like:

class AirflowPlugin(object):
The name of your plugin (str)
name = None
A list of class(es) derived from BaseOperator
operators = []
A list of class(es) derived from BaseSensorOperator

(continues on next page)

118 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

sensors = []
A list of class(es) derived from BaseHook
hooks = []
A list of class(es) derived from BaseExecutor
executors = []
A list of references to inject into the macros namespace
macros = []
A list of objects created from a class derived
from flask_admin.BaseView
admin_views = []
A list of Blueprint object created from flask.Blueprint. For use with the flask_

→˓admin based GUI
flask_blueprints = []
A list of menu links (flask_admin.base.MenuLink). For use with the flask_admin

→˓based GUI
menu_links = []
A list of dictionaries containing FlaskAppBuilder BaseView object and some

→˓metadata. See example below
appbuilder_views = []
A list of dictionaries containing FlaskAppBuilder BaseView object and some

→˓metadata. See example below
appbuilder_menu_items = []

You can derive it by inheritance (please refer to the example below). Please note name inside this class must be
specified.

After the plugin is imported into Airflow, you can invoke it using statement like

from airflow.{type, like "operators", "sensors"}.{name specified inside the plugin
→˓class} import *

When you write your own plugins, make sure you understand them well. There are some essential properties for each
type of plugin. For example,

• For Operator plugin, an execute method is compulsory.

• For Sensor plugin, a poke method returning a Boolean value is compulsory.

Make sure you restart the webserver and scheduler after making changes to plugins so that they take effect.

3.12.4 Example

The code below defines a plugin that injects a set of dummy object definitions in Airflow.

This is the class you derive to create a plugin
from airflow.plugins_manager import AirflowPlugin

from flask import Blueprint
from flask_admin import BaseView, expose
from flask_admin.base import MenuLink
from flask_appbuilder import BaseView as AppBuilderBaseView

Importing base classes that we need to derive
from airflow.hooks.base_hook import BaseHook
from airflow.models import BaseOperator
from airflow.sensors.base_sensor_operator import BaseSensorOperator

(continues on next page)

3.12. Plugins 119

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

from airflow.executors.base_executor import BaseExecutor

Will show up under airflow.hooks.test_plugin.PluginHook
class PluginHook(BaseHook):

pass

Will show up under airflow.operators.test_plugin.PluginOperator
class PluginOperator(BaseOperator):

pass

Will show up under airflow.sensors.test_plugin.PluginSensorOperator
class PluginSensorOperator(BaseSensorOperator):

pass

Will show up under airflow.executors.test_plugin.PluginExecutor
class PluginExecutor(BaseExecutor):

pass

Will show up under airflow.macros.test_plugin.plugin_macro
def plugin_macro():

pass

Creating a flask admin BaseView
class TestView(BaseView):

@expose('/')
def test(self):

in this example, put your test_plugin/test.html template at airflow/plugins/
→˓templates/test_plugin/test.html

return self.render("test_plugin/test.html", content="Hello galaxy!")
v = TestView(category="Test Plugin", name="Test View")

Creating a flask blueprint to integrate the templates and static folder
bp = Blueprint(

"test_plugin", __name__,
template_folder='templates', # registers airflow/plugins/templates as a Jinja

→˓template folder
static_folder='static',
static_url_path='/static/test_plugin')

ml = MenuLink(
category='Test Plugin',
name='Test Menu Link',
url='https://airflow.apache.org/')

Creating a flask appbuilder BaseView
class TestAppBuilderBaseView(AppBuilderBaseView):

default_view = "test"

@expose("/")
def test(self):

return self.render("test_plugin/test.html", content="Hello galaxy!")
v_appbuilder_view = TestAppBuilderBaseView()
v_appbuilder_package = {"name": "Test View",

"category": "Test Plugin",
"view": v_appbuilder_view}

Creating a flask appbuilder Menu Item
(continues on next page)

120 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

appbuilder_mitem = {"name": "Google",
"category": "Search",
"category_icon": "fa-th",
"href": "https://www.google.com"}

Defining the plugin class
class AirflowTestPlugin(AirflowPlugin):

name = "test_plugin"
operators = [PluginOperator]
sensors = [PluginSensorOperator]
hooks = [PluginHook]
executors = [PluginExecutor]
macros = [plugin_macro]
admin_views = [v]
flask_blueprints = [bp]
menu_links = [ml]
appbuilder_views = [v_appbuilder_package]
appbuilder_menu_items = [appbuilder_mitem]

3.12.5 Note on role based views

Airflow 1.10 introduced role based views using FlaskAppBuilder. You can configure which UI is used by setting rbac
= True. To support plugin views and links for both versions of the UI and maintain backwards compatibility, the fields
appbuilder_views and appbuilder_menu_items were added to the AirflowTestPlugin class.

3.12.6 Plugins as Python packages

It is possible to load plugins via ‘setuptools’ entrypoint<https://packaging.python.org/guides/creating-and-
discovering-plugins/#using-package-metadata>‘_ mechanism. To do this link your plugin using an entrypoint in
your package. If the package is installed, airflow will automatically load the registered plugins from the entrypoint
list.

Note: Neither the entrypoint name (eg, my_plugin) nor the name of the plugin class will contribute towards the mod-
ule and class name of the plugin itself. The structure is determined by airflow.plugins_manager.AirflowPlugin.name
and the class name of the plugin component with the pattern airflow.{component}.{name}.{component_class_name}.

my_package/my_plugin.py
from airflow.plugins_manager import AirflowPlugin
from airflow.models import BaseOperator
from airflow.hooks.base_hook import BaseHook

class MyOperator(BaseOperator):
pass

class MyHook(BaseHook):
pass

class MyAirflowPlugin(AirflowPlugin):
name = 'my_namespace'
operators = [MyOperator]
hooks = [MyHook]

3.12. Plugins 121

Airflow Documentation, Release 2.0.0.dev0+

from setuptools import setup

setup(
name="my-package",
...
entry_points = {

'airflow.plugins': [
'my_plugin = my_package.my_plugin:MyAirflowPlugin'

]
}

)

This will create a hook, and an operator accessible at:

• airflow.hooks.my_namespace.MyHook

• airflow.operators.my_namespace.MyOperator

3.13 Security

By default, all gates are opened. An easy way to restrict access to the web application is to do it at the network level,
or by using SSH tunnels.

It is however possible to switch on authentication by either using one of the supplied backends or creating your own.

Be sure to checkout Experimental Rest API for securing the API.

Note: Airflow uses the config parser of Python. This config parser interpolates ‘%’-signs. Make sure escape any %
signs in your config file (but not environment variables) as %%, otherwise Airflow might leak these passwords on a
config parser exception to a log.

3.13.1 Reporting Vulnerabilities

The Apache Software Foundation takes security issues very seriously. Apache Airflow specifically offers security
features and is responsive to issues around its features. If you have any concern around Airflow Security or believe
you have uncovered a vulnerability, we suggest that you get in touch via the e-mail address security@apache.org. In
the message, try to provide a description of the issue and ideally a way of reproducing it. The security team will get
back to you after assessing the description.

Note that this security address should be used only for undisclosed vulnerabilities. Dealing with fixed issues or general
questions on how to use the security features should be handled regularly via the user and the dev lists. Please report
any security problems to the project security address before disclosing it publicly.

The ASF Security team’s page describes how vulnerability reports are handled, and includes PGP keys if you wish to
use that.

3.13.2 Web Authentication

3.13.2.1 Password

122 Chapter 3. Content

mailto:security@apache.org
https://www.apache.org/security/

Airflow Documentation, Release 2.0.0.dev0+

Note: This is for flask-admin based web UI only. If you are using FAB-based web UI with RBAC feature, please use
command line interface airflow users --create to create accounts, or do that in the FAB-based UI itself.

One of the simplest mechanisms for authentication is requiring users to specify a password before logging in. Password
authentication requires the used of the password subpackage in your requirements file. Password hashing uses
bcrypt before storing passwords.

[webserver]
authenticate = True
auth_backend = airflow.contrib.auth.backends.password_auth

When password auth is enabled, an initial user credential will need to be created before anyone can login. An initial
user was not created in the migrations for this authentication backend to prevent default Airflow installations from
attack. Creating a new user has to be done via a Python REPL on the same machine Airflow is installed.

navigate to the airflow installation directory
$ cd ~/airflow
$ python
Python 2.7.9 (default, Feb 10 2015, 03:28:08)
Type "help", "copyright", "credits" or "license" for more information.
>>> import airflow
>>> from airflow import models, settings
>>> from airflow.contrib.auth.backends.password_auth import PasswordUser
>>> user = PasswordUser(models.User())
>>> user.username = 'new_user_name'
>>> user.email = 'new_user_email@example.com'
>>> user.password = 'set_the_password'
>>> session = settings.Session()
>>> session.add(user)
>>> session.commit()
>>> session.close()
>>> exit()

3.13.2.2 LDAP

To turn on LDAP authentication configure your airflow.cfg as follows. Please note that the example uses an
encrypted connection to the ldap server as we do not want passwords be readable on the network level.

Additionally, if you are using Active Directory, and are not explicitly specifying an OU that your users are in, you will
need to change search_scope to “SUBTREE”.

Valid search_scope options can be found in the ldap3 Documentation

[webserver]
authenticate = True
auth_backend = airflow.contrib.auth.backends.ldap_auth

[ldap]
set a connection without encryption: uri = ldap://<your.ldap.server>:<port>
uri = ldaps://<your.ldap.server>:<port>
user_filter = objectClass=*
in case of Active Directory you would use: user_name_attr = sAMAccountName
user_name_attr = uid
group_member_attr should be set accordingly with *_filter
eg :

(continues on next page)

3.13. Security 123

http://ldap3.readthedocs.org/searches.html?highlight=search_scope

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

group_member_attr = groupMembership
superuser_filter = groupMembership=CN=airflow-super-users...
group_member_attr = memberOf
superuser_filter = memberOf=CN=airflow-super-users,OU=Groups,OU=RWC,OU=US,OU=NORAM,
→˓DC=example,DC=com
data_profiler_filter = memberOf=CN=airflow-data-profilers,OU=Groups,OU=RWC,OU=US,
→˓OU=NORAM,DC=example,DC=com
bind_user = cn=Manager,dc=example,dc=com
bind_password = insecure
basedn = dc=example,dc=com
cacert = /etc/ca/ldap_ca.crt
Set search_scope to one of them: BASE, LEVEL , SUBTREE
Set search_scope to SUBTREE if using Active Directory, and not specifying an
→˓Organizational Unit
search_scope = LEVEL

The superuser_filter and data_profiler_filter are optional. If defined, these configurations allow you to specify LDAP
groups that users must belong to in order to have superuser (admin) and data-profiler permissions. If undefined, all
users will be superusers and data profilers.

3.13.2.3 Roll your own

Airflow uses flask_login and exposes a set of hooks in the airflow.default_login module. You can alter
the content and make it part of the PYTHONPATH and configure it as a backend in airflow.cfg.

[webserver]
authenticate = True
auth_backend = mypackage.auth

3.13.3 Multi-tenancy

You can filter the list of dags in webserver by owner name when authentication is turned on by setting
webserver:filter_by_owner in your config. With this, a user will see only the dags which it is owner of,
unless it is a superuser.

[webserver]
filter_by_owner = True

3.13.4 Kerberos

Airflow has initial support for Kerberos. This means that airflow can renew kerberos tickets for itself and store it in
the ticket cache. The hooks and dags can make use of ticket to authenticate against kerberized services.

3.13.4.1 Limitations

Please note that at this time, not all hooks have been adjusted to make use of this functionality. Also it does not
integrate kerberos into the web interface and you will have to rely on network level security for now to make sure your
service remains secure.

Celery integration has not been tried and tested yet. However, if you generate a key tab for every host and launch a
ticket renewer next to every worker it will most likely work.

124 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

3.13.4.2 Enabling kerberos

Airflow

To enable kerberos you will need to generate a (service) key tab.

in the kadmin.local or kadmin shell, create the airflow principal
kadmin: addprinc -randkey airflow/fully.qualified.domain.name@YOUR-REALM.COM

Create the airflow keytab file that will contain the airflow principal
kadmin: xst -norandkey -k airflow.keytab airflow/fully.qualified.domain.name

Now store this file in a location where the airflow user can read it (chmod 600). And then add the following to your
airflow.cfg

[core]
security = kerberos

[kerberos]
keytab = /etc/airflow/airflow.keytab
reinit_frequency = 3600
principal = airflow

Launch the ticket renewer by

run ticket renewer
airflow kerberos

Hadoop

If want to use impersonation this needs to be enabled in core-site.xml of your hadoop config.

<property>
<name>hadoop.proxyuser.airflow.groups</name>
<value>*</value>

</property>

<property>
<name>hadoop.proxyuser.airflow.users</name>
<value>*</value>

</property>

<property>
<name>hadoop.proxyuser.airflow.hosts</name>
<value>*</value>

</property>

Of course if you need to tighten your security replace the asterisk with something more appropriate.

3.13.4.3 Using kerberos authentication

The hive hook has been updated to take advantage of kerberos authentication. To allow your DAGs to use it, simply
update the connection details with, for example:

3.13. Security 125

Airflow Documentation, Release 2.0.0.dev0+

{ "use_beeline": true, "principal": "hive/_HOST@EXAMPLE.COM"}

Adjust the principal to your settings. The _HOST part will be replaced by the fully qualified domain name of the
server.

You can specify if you would like to use the dag owner as the user for the connection or the user specified in the login
section of the connection. For the login user, specify the following as extra:

{ "use_beeline": true, "principal": "hive/_HOST@EXAMPLE.COM", "proxy_user": "login"}

For the DAG owner use:

{ "use_beeline": true, "principal": "hive/_HOST@EXAMPLE.COM", "proxy_user": "owner"}

and in your DAG, when initializing the HiveOperator, specify:

run_as_owner=True

To use kerberos authentication, you must install Airflow with the kerberos extras group:

pip install apache-airflow[kerberos]

3.13.5 OAuth Authentication

3.13.5.1 GitHub Enterprise (GHE) Authentication

The GitHub Enterprise authentication backend can be used to authenticate users against an installation of GitHub
Enterprise using OAuth2. You can optionally specify a team whitelist (composed of slug cased team names) to restrict
login to only members of those teams.

[webserver]
authenticate = True
auth_backend = airflow.contrib.auth.backends.github_enterprise_auth

[github_enterprise]
host = github.example.com
client_id = oauth_key_from_github_enterprise
client_secret = oauth_secret_from_github_enterprise
oauth_callback_route = /example/ghe_oauth/callback
allowed_teams = 1, 345, 23

Note: If you do not specify a team whitelist, anyone with a valid account on your GHE installation will be able to
login to Airflow.

To use GHE authentication, you must install Airflow with the github_enterprise extras group:

pip install apache-airflow[github_enterprise]

Setting up GHE Authentication

An application must be setup in GHE before you can use the GHE authentication backend. In order to setup an
application:

126 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

1. Navigate to your GHE profile

2. Select ‘Applications’ from the left hand nav

3. Select the ‘Developer Applications’ tab

4. Click ‘Register new application’

5. Fill in the required information (the ‘Authorization callback URL’ must be fully qualified e.g. http://airflow.
example.com/example/ghe_oauth/callback)

6. Click ‘Register application’

7. Copy ‘Client ID’, ‘Client Secret’, and your callback route to your airflow.cfg according to the above example

Using GHE Authentication with github.com

It is possible to use GHE authentication with github.com:

1. Create an Oauth App

2. Copy ‘Client ID’, ‘Client Secret’ to your airflow.cfg according to the above example

3. Set host = github.com and oauth_callback_route = /oauth/callback in airflow.cfg

3.13.5.2 Google Authentication

The Google authentication backend can be used to authenticate users against Google using OAuth2. You must specify
the email domains to restrict login, separated with a comma, to only members of those domains.

[webserver]
authenticate = True
auth_backend = airflow.contrib.auth.backends.google_auth

[google]
client_id = google_client_id
client_secret = google_client_secret
oauth_callback_route = /oauth2callback
domain = example1.com,example2.com

To use Google authentication, you must install Airflow with the google_auth extras group:

pip install apache-airflow[google_auth]

Setting up Google Authentication

An application must be setup in the Google API Console before you can use the Google authentication backend. In
order to setup an application:

1. Navigate to https://console.developers.google.com/apis/

2. Select ‘Credentials’ from the left hand nav

3. Click ‘Create credentials’ and choose ‘OAuth client ID’

4. Choose ‘Web application’

5. Fill in the required information (the ‘Authorized redirect URIs’ must be fully qualified e.g. http://airflow.
example.com/oauth2callback)

3.13. Security 127

http://airflow.example.com/example/ghe_oauth/callback
http://airflow.example.com/example/ghe_oauth/callback
https://developer.github.com/apps/building-oauth-apps/creating-an-oauth-app/
https://console.developers.google.com/apis/
http://airflow.example.com/oauth2callback
http://airflow.example.com/oauth2callback

Airflow Documentation, Release 2.0.0.dev0+

6. Click ‘Create’

7. Copy ‘Client ID’, ‘Client Secret’, and your redirect URI to your airflow.cfg according to the above example

3.13.6 SSL

SSL can be enabled by providing a certificate and key. Once enabled, be sure to use “https://” in your browser.

[webserver]
web_server_ssl_cert = <path to cert>
web_server_ssl_key = <path to key>

Enabling SSL will not automatically change the web server port. If you want to use the standard port 443, you’ll need
to configure that too. Be aware that super user privileges (or cap_net_bind_service on Linux) are required to listen on
port 443.

Optionally, set the server to listen on the standard SSL port.
web_server_port = 443
base_url = http://<hostname or IP>:443

Enable CeleryExecutor with SSL. Ensure you properly generate client and server certs and keys.

[celery]
ssl_active = True
ssl_key = <path to key>
ssl_cert = <path to cert>
ssl_cacert = <path to cacert>

3.13.7 Impersonation

Airflow has the ability to impersonate a unix user while running task instances based on the task’s run_as_user
parameter, which takes a user’s name.

NOTE: For impersonations to work, Airflow must be run with sudo as subtasks are run with sudo -u and permissions
of files are changed. Furthermore, the unix user needs to exist on the worker. Here is what a simple sudoers file entry
could look like to achieve this, assuming as airflow is running as the airflow user. Note that this means that the airflow
user must be trusted and treated the same way as the root user.

airflow ALL=(ALL) NOPASSWD: ALL

Subtasks with impersonation will still log to the same folder, except that the files they log to will have permissions
changed such that only the unix user can write to it.

3.13.7.1 Default Impersonation

To prevent tasks that don’t use impersonation to be run with sudo privileges, you can set the
core:default_impersonation config which sets a default user impersonate if run_as_user is not set.

[core]
default_impersonation = airflow

128 Chapter 3. Content

https://

Airflow Documentation, Release 2.0.0.dev0+

3.13.8 Flower Authentication

Basic authentication for Celery Flower is supported.

You can specify the details either as an optional argument in the Flower process launching command, or as a configu-
ration item in your airflow.cfg. For both cases, please provide user:password pairs separated by a comma.

airflow flower --basic_auth=user1:password1,user2:password2

[celery]
flower_basic_auth = user1:password1,user2:password2

3.14 Time zones

Support for time zones is enabled by default. Airflow stores datetime information in UTC internally and in the
database. It allows you to run your DAGs with time zone dependent schedules. At the moment Airflow does not
convert them to the end user’s time zone in the user interface. There it will always be displayed in UTC. Also
templates used in Operators are not converted. Time zone information is exposed and it is up to the writer of DAG
what do with it.

This is handy if your users live in more than one time zone and you want to display datetime information according to
each user’s wall clock.

Even if you are running Airflow in only one time zone it is still good practice to store data in UTC in your database
(also before Airflow became time zone aware this was also to recommended or even required setup). The main reason
is Daylight Saving Time (DST). Many countries have a system of DST, where clocks are moved forward in spring
and backward in autumn. If you’re working in local time, you’re likely to encounter errors twice a year, when the
transitions happen. (The pendulum and pytz documentation discusses these issues in greater detail.) This probably
doesn’t matter for a simple DAG, but it’s a problem if you are in, for example, financial services where you have end
of day deadlines to meet.

The time zone is set in airflow.cfg. By default it is set to utc, but you change it to use the system’s settings or an
arbitrary IANA time zone, e.g. Europe/Amsterdam. It is dependent on pendulum, which is more accurate than pytz.
Pendulum is installed when you install Airflow.

Please note that the Web UI currently only runs in UTC.

3.14.1 Concepts

3.14.1.1 Naïve and aware datetime objects

Python’s datetime.datetime objects have a tzinfo attribute that can be used to store time zone information, represented
as an instance of a subclass of datetime.tzinfo. When this attribute is set and describes an offset, a datetime object is
aware. Otherwise, it’s naive.

You can use timezone.is_aware() and timezone.is_naive() to determine whether datetimes are aware or naive.

Because Airflow uses time-zone-aware datetime objects. If your code creates datetime objects they need to be aware
too.

from airflow.utils import timezone

now = timezone.utcnow()
a_date = timezone.datetime(2017,1,1)

3.14. Time zones 129

Airflow Documentation, Release 2.0.0.dev0+

3.14.1.2 Interpretation of naive datetime objects

Although Airflow operates fully time zone aware, it still accepts naive date time objects for start_dates and end_dates
in your DAG definitions. This is mostly in order to preserve backwards compatibility. In case a naive start_date or
end_date is encountered the default time zone is applied. It is applied in such a way that it is assumed that the naive date
time is already in the default time zone. In other words if you have a default time zone setting of Europe/Amsterdam
and create a naive datetime start_date of datetime(2017,1,1) it is assumed to be a start_date of Jan 1, 2017 Amsterdam
time.

default_args=dict(
start_date=datetime(2016, 1, 1),
owner='Airflow'

)

dag = DAG('my_dag', default_args=default_args)
op = DummyOperator(task_id='dummy', dag=dag)
print(op.owner) # Airflow

Unfortunately, during DST transitions, some datetimes don’t exist or are ambiguous. In such situations, pendulum
raises an exception. That’s why you should always create aware datetime objects when time zone support is enabled.

In practice, this is rarely an issue. Airflow gives you aware datetime objects in the models and DAGs, and most often,
new datetime objects are created from existing ones through timedelta arithmetic. The only datetime that’s often
created in application code is the current time, and timezone.utcnow() automatically does the right thing.

3.14.1.3 Default time zone

The default time zone is the time zone defined by the default_timezone setting under [core]. If you just in-
stalled Airflow it will be set to utc, which is recommended. You can also set it to system or an IANA time zone
(e.g.‘Europe/Amsterdam‘). DAGs are also evaluated on Airflow workers, it is therefore important to make sure this
setting is equal on all Airflow nodes.

[core]
default_timezone = utc

3.14.2 Time zone aware DAGs

Creating a time zone aware DAG is quite simple. Just make sure to supply a time zone aware start_date. It is
recommended to use pendulum for this, but pytz (to be installed manually) can also be used for this.

import pendulum

local_tz = pendulum.timezone("Europe/Amsterdam")

default_args=dict(
start_date=datetime(2016, 1, 1, tzinfo=local_tz),
owner='Airflow'

)

dag = DAG('my_tz_dag', default_args=default_args)
op = DummyOperator(task_id='dummy', dag=dag)
print(dag.timezone) # <Timezone [Europe/Amsterdam]>

Please note that while it is possible to set a start_date and end_date for Tasks always the DAG timezone or global
timezone (in that order) will be used to calculate the next execution date. Upon first encounter the start date or end

130 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

date will be converted to UTC using the timezone associated with start_date or end_date, then for calculations this
timezone information will be disregarded.

3.14.2.1 Templates

Airflow returns time zone aware datetimes in templates, but does not convert them to local time so they remain in
UTC. It is left up to the DAG to handle this.

import pendulum

local_tz = pendulum.timezone("Europe/Amsterdam")
local_tz.convert(execution_date)

3.14.2.2 Cron schedules

In case you set a cron schedule, Airflow assumes you will always want to run at the exact same time. It will then ignore
day light savings time. Thus, if you have a schedule that says run at the end of interval every day at 08:00 GMT+1 it
will always run at the end of interval 08:00 GMT+1, regardless if day light savings time is in place.

3.14.2.3 Time deltas

For schedules with time deltas Airflow assumes you always will want to run with the specified interval. So if you
specify a timedelta(hours=2) you will always want to run two hours later. In this case day light savings time will be
taken into account.

3.15 Experimental Rest API

Airflow exposes an experimental Rest API. It is available through the webserver. Endpoints are available at
/api/experimental/. Please note that we expect the endpoint definitions to change.

3.15.1 Endpoints

POST /api/experimental/dags/<DAG_ID>/dag_runs
Creates a dag_run for a given dag id.

Trigger DAG with config, example:

curl -X POST \
http://localhost:8080/api/experimental/dags/<DAG_ID>/dag_runs \
-H 'Cache-Control: no-cache' \
-H 'Content-Type: application/json' \
-d '{"conf":"{\"key\":\"value\"}"}'

GET /api/experimental/dags/<DAG_ID>/dag_runs
Returns a list of Dag Runs for a specific DAG ID.

GET /api/experimental/dags/<string:dag_id>/dag_runs/<string:execution_date>
Returns a JSON with a dag_run’s public instance variables. The format for the <string:execution_date> is
expected to be “YYYY-mm-DDTHH:MM:SS”, for example: “2016-11-16T11:34:15”.

GET /api/experimental/test
To check REST API server correct work. Return status ‘OK’.

3.15. Experimental Rest API 131

Airflow Documentation, Release 2.0.0.dev0+

GET /api/experimental/dags/<DAG_ID>/tasks/<TASK_ID>
Returns info for a task.

GET /api/experimental/dags/<DAG_ID>/dag_runs/<string:execution_date>/tasks/<TASK_ID>
Returns a JSON with a task instance’s public instance variables. The format for the <string:execution_date> is
expected to be “YYYY-mm-DDTHH:MM:SS”, for example: “2016-11-16T11:34:15”.

GET /api/experimental/dags/<DAG_ID>/paused/<string:paused>
‘<string:paused>’ must be a ‘true’ to pause a DAG and ‘false’ to unpause.

GET /api/experimental/latest_runs
Returns the latest DagRun for each DAG formatted for the UI.

GET /api/experimental/pools
Get all pools.

GET /api/experimental/pools/<string:name>
Get pool by a given name.

POST /api/experimental/pools
Create a pool.

DELETE /api/experimental/pools/<string:name>
Delete pool.

3.15.2 CLI

For some functions the cli can use the API. To configure the CLI to use the API when available configure as follows:

[cli]
api_client = airflow.api.client.json_client
endpoint_url = http://<WEBSERVER>:<PORT>

3.15.3 Authentication

Authentication for the API is handled separately to the Web Authentication. The default is to not require any au-
thentication on the API – i.e. wide open by default. This is not recommended if your Airflow webserver is publicly
accessible, and you should probably use the deny all backend:

[api]
auth_backend = airflow.api.auth.backend.deny_all

Two “real” methods for authentication are currently supported for the API.

To enabled Password authentication, set the following in the configuration:

[api]
auth_backend = airflow.contrib.auth.backends.password_auth

It’s usage is similar to the Password Authentication used for the Web interface.

To enable Kerberos authentication, set the following in the configuration:

[api]
auth_backend = airflow.api.auth.backend.kerberos_auth

[kerberos]
keytab = <KEYTAB>

132 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

The Kerberos service is configured as airflow/fully.qualified.domainname@REALM. Make sure this
principal exists in the keytab file.

3.16 Integration

• Reverse Proxy

• Azure: Microsoft Azure

• AWS: Amazon Web Services

• Databricks

• GCP: Google Cloud Platform

• Qubole

3.16.1 Reverse Proxy

Airflow can be set up behind a reverse proxy, with the ability to set its endpoint with great flexibility.

For example, you can configure your reverse proxy to get:

https://lab.mycompany.com/myorg/airflow/

To do so, you need to set the following setting in your airflow.cfg:

base_url = http://my_host/myorg/airflow

Additionally if you use Celery Executor, you can get Flower in /myorg/flower with:

flower_url_prefix = /myorg/flower

Your reverse proxy (ex: nginx) should be configured as follow:

• pass the url and http header as it for the Airflow webserver, without any rewrite, for example:

server {
listen 80;
server_name lab.mycompany.com;

location /myorg/airflow/ {
proxy_pass http://localhost:8080;
proxy_set_header Host $host;
proxy_redirect off;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";

}
}

• rewrite the url for the flower endpoint:

server {
listen 80;
server_name lab.mycompany.com;

(continues on next page)

3.16. Integration 133

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

location /myorg/flower/ {
rewrite ^/myorg/flower/(.*)$ /$1 break; # remove prefix from http header
proxy_pass http://localhost:5555;
proxy_set_header Host $host;
proxy_redirect off;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";

}
}

To ensure that Airflow generates URLs with the correct scheme when running behind a TLS-terminating proxy, you
should configure the proxy to set the X-Forwarded-Proto header, and enable the ProxyFix middleware in your air-
flow.cfg:

enable_proxy_fix = True

Note: you should only enable the ProxyFix middleware when running Airflow behind a trusted proxy (AWS ELB,
nginx, etc.).

3.16.2 Azure: Microsoft Azure

Airflow has limited support for Microsoft Azure: interfaces exist only for Azure Blob Storage and Azure Data Lake.
Hook, Sensor and Operator for Blob Storage and Azure Data Lake Hook are in contrib section.

3.16.2.1 Azure Blob Storage

All classes communicate via the Window Azure Storage Blob protocol. Make sure that a Airflow connection of type
wasb exists. Authorization can be done by supplying a login (=Storage account name) and password (=KEY), or login
and SAS token in the extra field (see connection wasb_default for an example).

• WasbBlobSensor: Checks if a blob is present on Azure Blob storage.

• WasbPrefixSensor: Checks if blobs matching a prefix are present on Azure Blob storage.

• FileToWasbOperator: Uploads a local file to a container as a blob.

• WasbHook: Interface with Azure Blob Storage.

WasbBlobSensor

WasbPrefixSensor

FileToWasbOperator

WasbHook

3.16.2.2 Azure File Share

Cloud variant of a SMB file share. Make sure that a Airflow connection of type wasb exists. Authorization can be
done by supplying a login (=Storage account name) and password (=Storage account key), or login and SAS token in
the extra field (see connection wasb_default for an example).

134 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

AzureFileShareHook

3.16.2.3 Logging

Airflow can be configured to read and write task logs in Azure Blob Storage. See Writing Logs to Azure Blob Storage.

3.16.2.4 Azure CosmosDB

AzureCosmosDBHook communicates via the Azure Cosmos library. Make sure that a Airflow connection of type
azure_cosmos exists. Authorization can be done by supplying a login (=Endpoint uri), password (=secret key) and
extra fields database_name and collection_name to specify the default database and collection to use (see connection
azure_cosmos_default for an example).

• AzureCosmosDBHook: Interface with Azure CosmosDB.

• AzureCosmosInsertDocumentOperator: Simple operator to insert document into CosmosDB.

• AzureCosmosDocumentSensor: Simple sensor to detect document existence in CosmosDB.

AzureCosmosDBHook

AzureCosmosInsertDocumentOperator

AzureCosmosDocumentSensor

3.16.2.5 Azure Data Lake

AzureDataLakeHook communicates via a REST API compatible with WebHDFS. Make sure that a Airflow connection
of type azure_data_lake exists. Authorization can be done by supplying a login (=Client ID), password (=Client
Secret) and extra fields tenant (Tenant) and account_name (Account Name)

(see connection azure_data_lake_default for an example).

• AzureDataLakeHook: Interface with Azure Data Lake.

• AzureDataLakeStorageListOperator: Lists the files located in a specified Azure Data Lake path.

• AdlsToGoogleCloudStorageOperator: Copies files from an Azure Data Lake path to a Google Cloud Storage
bucket.

AzureDataLakeHook

AzureDataLakeStorageListOperator

AdlsToGoogleCloudStorageOperator

3.16.2.6 Azure Container Instances

Azure Container Instances provides a method to run a docker container without having to worry about managing
infrastructure. The AzureContainerInstanceHook requires a service principal. The credentials for this principal can
either be defined in the extra field key_path, as an environment variable named AZURE_AUTH_LOCATION, or by
providing a login/password and tenantId in extras.

The AzureContainerRegistryHook requires a host/login/password to be defined in the connection.

3.16. Integration 135

Airflow Documentation, Release 2.0.0.dev0+

• AzureContainerInstancesOperator : Start/Monitor a new ACI.

• AzureContainerInstanceHook : Wrapper around a single ACI.

• AzureContainerRegistryHook : Wrapper around a ACR

• AzureContainerVolumeHook : Wrapper around Container Volumes

AzureContainerInstancesOperator

AzureContainerInstanceHook

AzureContainerRegistryHook

AzureContainerVolumeHook

3.16.3 AWS: Amazon Web Services

Airflow has extensive support for Amazon Web Services. But note that the Hooks, Sensors and Operators are in the
contrib section.

3.16.3.1 AWS EMR

• EmrAddStepsOperator : Adds steps to an existing EMR JobFlow.

• EmrCreateJobFlowOperator : Creates an EMR JobFlow, reading the config from the EMR connection.

• EmrTerminateJobFlowOperator : Terminates an EMR JobFlow.

• EmrHook : Interact with AWS EMR.

EmrAddStepsOperator

class airflow.contrib.operators.emr_add_steps_operator.EmrAddStepsOperator(**kwargs)
Bases: airflow.models.BaseOperator

An operator that adds steps to an existing EMR job_flow.

Parameters

• job_flow_id (str) – id of the JobFlow to add steps to. (templated)

• aws_conn_id (str) – aws connection to uses

• steps (list) – boto3 style steps to be added to the jobflow. (templated)

EmrCreateJobFlowOperator

class airflow.contrib.operators.emr_create_job_flow_operator.EmrCreateJobFlowOperator(**kwargs)
Bases: airflow.models.BaseOperator

Creates an EMR JobFlow, reading the config from the EMR connection. A dictionary of JobFlow overrides can
be passed that override the config from the connection.

Parameters

136 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• aws_conn_id (str) – aws connection to uses

• emr_conn_id (str) – emr connection to use

• job_flow_overrides (dict) – boto3 style arguments to override emr_connection ex-
tra. (templated)

EmrTerminateJobFlowOperator

class airflow.contrib.operators.emr_terminate_job_flow_operator.EmrTerminateJobFlowOperator(**kwargs)
Bases: airflow.models.BaseOperator

Operator to terminate EMR JobFlows.

Parameters

• job_flow_id (str) – id of the JobFlow to terminate. (templated)

• aws_conn_id (str) – aws connection to uses

EmrHook

class airflow.contrib.hooks.emr_hook.EmrHook(emr_conn_id=None, region_name=None,
*args, **kwargs)

Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS EMR. emr_conn_id is only necessary for using the create_job_flow method.

create_job_flow(job_flow_overrides)
Creates a job flow using the config from the EMR connection. Keys of the json extra hash may have
the arguments of the boto3 run_job_flow method. Overrides for this config may be passed as the
job_flow_overrides.

3.16.3.2 AWS S3

• S3Hook : Interact with AWS S3.

• S3FileTransformOperator : Copies data from a source S3 location to a temporary location on the local filesys-
tem.

• S3ListOperator : Lists the files matching a key prefix from a S3 location.

• S3ToGoogleCloudStorageOperator : Syncs an S3 location with a Google Cloud Storage bucket.

• S3ToGoogleCloudStorageTransferOperator : Syncs an S3 bucket with a Google Cloud Storage bucket using the
GCP Storage Transfer Service.

• S3ToHiveTransfer : Moves data from S3 to Hive. The operator downloads a file from S3, stores the file locally
before loading it into a Hive table.

S3Hook

class airflow.hooks.S3_hook.S3Hook(aws_conn_id=’aws_default’, verify=None)
Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS S3, using the boto3 library.

3.16. Integration 137

Airflow Documentation, Release 2.0.0.dev0+

check_for_bucket(bucket_name)
Check if bucket_name exists.

Parameters bucket_name (str) – the name of the bucket

check_for_key(key, bucket_name=None)
Checks if a key exists in a bucket

Parameters

• key (str) – S3 key that will point to the file

• bucket_name (str) – Name of the bucket in which the file is stored

check_for_prefix(bucket_name, prefix, delimiter)
Checks that a prefix exists in a bucket

Parameters

• bucket_name (str) – the name of the bucket

• prefix (str) – a key prefix

• delimiter (str) – the delimiter marks key hierarchy.

check_for_wildcard_key(wildcard_key, bucket_name=None, delimiter=”)
Checks that a key matching a wildcard expression exists in a bucket

Parameters

• wildcard_key (str) – the path to the key

• bucket_name (str) – the name of the bucket

• delimiter (str) – the delimiter marks key hierarchy

copy_object(source_bucket_key, dest_bucket_key, source_bucket_name=None,
dest_bucket_name=None, source_version_id=None)

Creates a copy of an object that is already stored in S3.

Note: the S3 connection used here needs to have access to both source and destination bucket/key.

Parameters

• source_bucket_key (str) – The key of the source object.

It can be either full s3:// style url or relative path from root level.

When it’s specified as a full s3:// url, please omit source_bucket_name.

• dest_bucket_key (str) – The key of the object to copy to.

The convention to specify dest_bucket_key is the same as source_bucket_key.

• source_bucket_name (str) – Name of the S3 bucket where the source object is in.

It should be omitted when source_bucket_key is provided as a full s3:// url.

• dest_bucket_name (str) – Name of the S3 bucket to where the object is copied.

It should be omitted when dest_bucket_key is provided as a full s3:// url.

• source_version_id (str) – Version ID of the source object (OPTIONAL)

create_bucket(bucket_name, region_name=None)
Creates an Amazon S3 bucket.

Parameters

• bucket_name (str) – The name of the bucket

138 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• region_name (str) – The name of the aws region in which to create the bucket.

delete_objects(bucket, keys)

Parameters

• bucket (str) – Name of the bucket in which you are going to delete object(s)

• keys (str or list) – The key(s) to delete from S3 bucket.

When keys is a string, it’s supposed to be the key name of the single object to delete.

When keys is a list, it’s supposed to be the list of the keys to delete.

get_bucket(bucket_name)
Returns a boto3.S3.Bucket object

Parameters bucket_name (str) – the name of the bucket

get_key(key, bucket_name=None)
Returns a boto3.s3.Object

Parameters

• key (str) – the path to the key

• bucket_name (str) – the name of the bucket

get_wildcard_key(wildcard_key, bucket_name=None, delimiter=”)
Returns a boto3.s3.Object object matching the wildcard expression

Parameters

• wildcard_key (str) – the path to the key

• bucket_name (str) – the name of the bucket

• delimiter (str) – the delimiter marks key hierarchy

list_keys(bucket_name, prefix=”, delimiter=”, page_size=None, max_items=None)
Lists keys in a bucket under prefix and not containing delimiter

Parameters

• bucket_name (str) – the name of the bucket

• prefix (str) – a key prefix

• delimiter (str) – the delimiter marks key hierarchy.

• page_size (int) – pagination size

• max_items (int) – maximum items to return

list_prefixes(bucket_name, prefix=”, delimiter=”, page_size=None, max_items=None)
Lists prefixes in a bucket under prefix

Parameters

• bucket_name (str) – the name of the bucket

• prefix (str) – a key prefix

• delimiter (str) – the delimiter marks key hierarchy.

• page_size (int) – pagination size

• max_items (int) – maximum items to return

3.16. Integration 139

Airflow Documentation, Release 2.0.0.dev0+

load_bytes(bytes_data, key, bucket_name=None, replace=False, encrypt=False)
Loads bytes to S3

This is provided as a convenience to drop a string in S3. It uses the boto infrastructure to ship a file to s3.

Parameters

• bytes_data (bytes) – bytes to set as content for the key.

• key (str) – S3 key that will point to the file

• bucket_name (str) – Name of the bucket in which to store the file

• replace (bool) – A flag to decide whether or not to overwrite the key if it already exists

• encrypt (bool) – If True, the file will be encrypted on the server-side by S3 and will
be stored in an encrypted form while at rest in S3.

load_file(filename, key, bucket_name=None, replace=False, encrypt=False)
Loads a local file to S3

Parameters

• filename (str) – name of the file to load.

• key (str) – S3 key that will point to the file

• bucket_name (str) – Name of the bucket in which to store the file

• replace (bool) – A flag to decide whether or not to overwrite the key if it already
exists. If replace is False and the key exists, an error will be raised.

• encrypt (bool) – If True, the file will be encrypted on the server-side by S3 and will
be stored in an encrypted form while at rest in S3.

load_file_obj(file_obj, key, bucket_name=None, replace=False, encrypt=False)
Loads a file object to S3

Parameters

• file_obj (file-like object) – The file-like object to set as the content for the
S3 key.

• key (str) – S3 key that will point to the file

• bucket_name (str) – Name of the bucket in which to store the file

• replace (bool) – A flag that indicates whether to overwrite the key if it already exists.

• encrypt (bool) – If True, S3 encrypts the file on the server, and the file is stored in
encrypted form at rest in S3.

load_string(string_data, key, bucket_name=None, replace=False, encrypt=False, encoding=’utf-
8’)

Loads a string to S3

This is provided as a convenience to drop a string in S3. It uses the boto infrastructure to ship a file to s3.

Parameters

• string_data (str) – str to set as content for the key.

• key (str) – S3 key that will point to the file

• bucket_name (str) – Name of the bucket in which to store the file

• replace (bool) – A flag to decide whether or not to overwrite the key if it already exists

140 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• encrypt (bool) – If True, the file will be encrypted on the server-side by S3 and will
be stored in an encrypted form while at rest in S3.

read_key(key, bucket_name=None)
Reads a key from S3

Parameters

• key (str) – S3 key that will point to the file

• bucket_name (str) – Name of the bucket in which the file is stored

select_key(key, bucket_name=None, expression=’SELECT * FROM S3Object’, expres-
sion_type=’SQL’, input_serialization=None, output_serialization=None)

Reads a key with S3 Select.

Parameters

• key (str) – S3 key that will point to the file

• bucket_name (str) – Name of the bucket in which the file is stored

• expression (str) – S3 Select expression

• expression_type (str) – S3 Select expression type

• input_serialization (dict) – S3 Select input data serialization format

• output_serialization (dict) – S3 Select output data serialization format

Returns retrieved subset of original data by S3 Select

Return type str

See also:

For more details about S3 Select parameters: http://boto3.readthedocs.io/en/latest/reference/services/s3.
html#S3.Client.select_object_content

S3FileTransformOperator

class airflow.operators.s3_file_transform_operator.S3FileTransformOperator(**kwargs)
Bases: airflow.models.BaseOperator

Copies data from a source S3 location to a temporary location on the local filesystem. Runs a transformation on
this file as specified by the transformation script and uploads the output to a destination S3 location.

The locations of the source and the destination files in the local filesystem is provided as an first and second
arguments to the transformation script. The transformation script is expected to read the data from source,
transform it and write the output to the local destination file. The operator then takes over control and uploads
the local destination file to S3.

S3 Select is also available to filter the source contents. Users can omit the transformation script if S3 Select
expression is specified.

Parameters

• source_s3_key (str) – The key to be retrieved from S3. (templated)

• source_aws_conn_id (str) – source s3 connection

• source_verify (bool or str) – Whether or not to verify SSL certificates for S3
connetion. By default SSL certificates are verified. You can provide the following values:

3.16. Integration 141

http://boto3.readthedocs.io/en/latest/reference/services/s3.html#S3.Client.select_object_content
http://boto3.readthedocs.io/en/latest/reference/services/s3.html#S3.Client.select_object_content

Airflow Documentation, Release 2.0.0.dev0+

– False: do not validate SSL certificates. SSL will still be used (unless use_ssl is
False), but SSL certificates will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You
can specify this argument if you want to use a different CA cert bundle than the one
used by botocore.

This is also applicable to dest_verify.

• dest_s3_key (str) – The key to be written from S3. (templated)

• dest_aws_conn_id (str) – destination s3 connection

• replace (bool) – Replace dest S3 key if it already exists

• transform_script (str) – location of the executable transformation script

• select_expression (str) – S3 Select expression

S3ListOperator

class airflow.contrib.operators.s3_list_operator.S3ListOperator(**kwargs)
Bases: airflow.models.BaseOperator

List all objects from the bucket with the given string prefix in name.

This operator returns a python list with the name of objects which can be used by xcom in the downstream task.

Parameters

• bucket (str) – The S3 bucket where to find the objects. (templated)

• prefix (str) – Prefix string to filters the objects whose name begin with such prefix.
(templated)

• delimiter (str) – the delimiter marks key hierarchy. (templated)

• aws_conn_id (str) – The connection ID to use when connecting to S3 storage.

• verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified. You can provide the following values:

– False: do not validate SSL certificates. SSL will still be used (unless use_ssl is
False), but SSL certificates will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You
can specify this argument if you want to use a different CA cert bundle than the one
used by botocore.

Example: The following operator would list all the files (excluding subfolders) from the S3 customers/
2018/04/ key in the data bucket.

s3_file = S3ListOperator(
task_id='list_3s_files',
bucket='data',
prefix='customers/2018/04/',
delimiter='/',
aws_conn_id='aws_customers_conn'

)

142 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

S3ToGoogleCloudStorageOperator

class airflow.contrib.operators.s3_to_gcs_operator.S3ToGoogleCloudStorageOperator(**kwargs)
Bases: airflow.contrib.operators.s3_list_operator.S3ListOperator

Synchronizes an S3 key, possibly a prefix, with a Google Cloud Storage destination path.

Parameters

• bucket (str) – The S3 bucket where to find the objects. (templated)

• prefix (str) – Prefix string which filters objects whose name begin with such prefix.
(templated)

• delimiter (str) – the delimiter marks key hierarchy. (templated)

• aws_conn_id (str) – The source S3 connection

• verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified. You can provide the following values:

– False: do not validate SSL certificates. SSL will still be used (unless use_ssl is
False), but SSL certificates will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You
can specify this argument if you want to use a different CA cert bundle than the one
used by botocore.

• dest_gcs_conn_id (str) – The destination connection ID to use when connecting to
Google Cloud Storage.

• dest_gcs (str) – The destination Google Cloud Storage bucket and prefix where you
want to store the files. (templated)

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• replace (bool) – Whether you want to replace existing destination files or not.

Example:

s3_to_gcs_op = S3ToGoogleCloudStorageOperator(
task_id='s3_to_gcs_example',
bucket='my-s3-bucket',
prefix='data/customers-201804',
dest_gcs_conn_id='google_cloud_default',
dest_gcs='gs://my.gcs.bucket/some/customers/',
replace=False,
dag=my-dag)

Note that bucket, prefix, delimiter and dest_gcs are templated, so you can use variables in them if
you wish.

S3ToGoogleCloudStorageTransferOperator

S3ToHiveTransfer

class airflow.operators.s3_to_hive_operator.S3ToHiveTransfer(**kwargs)
Bases: airflow.models.BaseOperator

3.16. Integration 143

Airflow Documentation, Release 2.0.0.dev0+

Moves data from S3 to Hive. The operator downloads a file from S3, stores the file locally before loading it into
a Hive table. If the create or recreate arguments are set to True, a CREATE TABLE and DROP TABLE
statements are generated. Hive data types are inferred from the cursor’s metadata from.

Note that the table generated in Hive uses STORED AS textfile which isn’t the most efficient serialization
format. If a large amount of data is loaded and/or if the tables gets queried considerably, you may want to use
this operator only to stage the data into a temporary table before loading it into its final destination using a
HiveOperator.

Parameters

• s3_key (str) – The key to be retrieved from S3. (templated)

• field_dict (dict) – A dictionary of the fields name in the file as keys and their Hive
types as values

• hive_table (str) – target Hive table, use dot notation to target a specific database.
(templated)

• create (bool) – whether to create the table if it doesn’t exist

• recreate (bool) – whether to drop and recreate the table at every execution

• partition (dict) – target partition as a dict of partition columns and values. (templated)

• headers (bool) – whether the file contains column names on the first line

• check_headers (bool) – whether the column names on the first line should be checked
against the keys of field_dict

• wildcard_match (bool) – whether the s3_key should be interpreted as a Unix wildcard
pattern

• delimiter (str) – field delimiter in the file

• aws_conn_id (str) – source s3 connection

• verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified. You can provide the following values:

– False: do not validate SSL certificates. SSL will still be used (unless use_ssl is
False), but SSL certificates will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You
can specify this argument if you want to use a different CA cert bundle than the one
used by botocore.

• hive_cli_conn_id (str) – destination hive connection

• input_compressed (bool) – Boolean to determine if file decompression is required to
process headers

• tblproperties (dict) – TBLPROPERTIES of the hive table being created

• select_expression (str) – S3 Select expression

3.16.3.3 AWS EC2 Container Service

• ECSOperator : Execute a task on AWS EC2 Container Service.

144 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

ECSOperator

class airflow.contrib.operators.ecs_operator.ECSOperator(**kwargs)
Bases: airflow.models.BaseOperator

Execute a task on AWS EC2 Container Service

Parameters

• task_definition (str) – the task definition name on EC2 Container Service

• cluster (str) – the cluster name on EC2 Container Service

• overrides (dict) – the same parameter that boto3 will receive (templated): http://boto3.
readthedocs.org/en/latest/reference/services/ecs.html#ECS.Client.run_task

• aws_conn_id (str) – connection id of AWS credentials / region name. If None, creden-
tial boto3 strategy will be used (http://boto3.readthedocs.io/en/latest/guide/configuration.
html).

• region_name (str) – region name to use in AWS Hook. Override the region_name in
connection (if provided)

• launch_type (str) – the launch type on which to run your task (‘EC2’ or ‘FARGATE’)

• group (str) – the name of the task group associated with the task

• placement_constraints (list) – an array of placement constraint objects to use for
the task

• platform_version (str) – the platform version on which your task is running

• network_configuration (dict) – the network configuration for the task

3.16.3.4 AWS Batch Service

• AWSBatchOperator : Execute a task on AWS Batch Service.

AWSBatchOperator

class airflow.contrib.operators.awsbatch_operator.AWSBatchOperator(**kwargs)
Bases: airflow.models.BaseOperator

Execute a job on AWS Batch Service

Parameters

• job_name (str) – the name for the job that will run on AWS Batch (templated)

• job_definition (str) – the job definition name on AWS Batch

• job_queue (str) – the queue name on AWS Batch

• overrides (dict) – the same parameter that boto3 will receive on con-
tainerOverrides (templated): http://boto3.readthedocs.io/en/latest/reference/services/batch.
html#submit_job

• max_retries (int) – exponential backoff retries while waiter is not merged, 4200 = 48
hours

3.16. Integration 145

http://boto3.readthedocs.org/en/latest/reference/services/ecs.html#ECS.Client.run_task
http://boto3.readthedocs.org/en/latest/reference/services/ecs.html#ECS.Client.run_task
http://boto3.readthedocs.io/en/latest/guide/configuration.html
http://boto3.readthedocs.io/en/latest/guide/configuration.html
http://boto3.readthedocs.io/en/latest/reference/services/batch.html#submit_job
http://boto3.readthedocs.io/en/latest/reference/services/batch.html#submit_job

Airflow Documentation, Release 2.0.0.dev0+

• aws_conn_id (str) – connection id of AWS credentials / region name. If None, creden-
tial boto3 strategy will be used (http://boto3.readthedocs.io/en/latest/guide/configuration.
html).

• region_name (str) – region name to use in AWS Hook. Override the region_name in
connection (if provided)

3.16.3.5 AWS RedShift

• AwsRedshiftClusterSensor : Waits for a Redshift cluster to reach a specific status.

• RedshiftHook : Interact with AWS Redshift, using the boto3 library.

• RedshiftToS3Transfer : Executes an unload command to S3 as CSV with or without headers.

• S3ToRedshiftTransfer : Executes an copy command from S3 as CSV with or without headers.

AwsRedshiftClusterSensor

class airflow.contrib.sensors.aws_redshift_cluster_sensor.AwsRedshiftClusterSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a Redshift cluster to reach a specific status.

Parameters

• cluster_identifier (str) – The identifier for the cluster being pinged.

• target_status (str) – The cluster status desired.

poke(context)
Function that the sensors defined while deriving this class should override.

RedshiftHook

class airflow.contrib.hooks.redshift_hook.RedshiftHook(aws_conn_id=’aws_default’,
verify=None)

Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS Redshift, using the boto3 library

cluster_status(cluster_identifier)
Return status of a cluster

Parameters cluster_identifier (str) – unique identifier of a cluster

create_cluster_snapshot(snapshot_identifier, cluster_identifier)
Creates a snapshot of a cluster

Parameters

• snapshot_identifier (str) – unique identifier for a snapshot of a cluster

• cluster_identifier (str) – unique identifier of a cluster

delete_cluster(cluster_identifier, skip_final_cluster_snapshot=True, fi-
nal_cluster_snapshot_identifier=”)

Delete a cluster and optionally create a snapshot

Parameters

146 Chapter 3. Content

http://boto3.readthedocs.io/en/latest/guide/configuration.html
http://boto3.readthedocs.io/en/latest/guide/configuration.html

Airflow Documentation, Release 2.0.0.dev0+

• cluster_identifier (str) – unique identifier of a cluster

• skip_final_cluster_snapshot (bool) – determines cluster snapshot creation

• final_cluster_snapshot_identifier (str) – name of final cluster snapshot

describe_cluster_snapshots(cluster_identifier)
Gets a list of snapshots for a cluster

Parameters cluster_identifier (str) – unique identifier of a cluster

restore_from_cluster_snapshot(cluster_identifier, snapshot_identifier)
Restores a cluster from its snapshot

Parameters

• cluster_identifier (str) – unique identifier of a cluster

• snapshot_identifier (str) – unique identifier for a snapshot of a cluster

RedshiftToS3Transfer

class airflow.operators.redshift_to_s3_operator.RedshiftToS3Transfer(**kwargs)
Bases: airflow.models.BaseOperator

Executes an UNLOAD command to s3 as a CSV with headers

Parameters

• schema (str) – reference to a specific schema in redshift database

• table (str) – reference to a specific table in redshift database

• s3_bucket (str) – reference to a specific S3 bucket

• s3_key (str) – reference to a specific S3 key

• redshift_conn_id (str) – reference to a specific redshift database

• aws_conn_id (str) – reference to a specific S3 connection

• verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified. You can provide the following values:

– False: do not validate SSL certificates. SSL will still be used (unless use_ssl is
False), but SSL certificates will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You
can specify this argument if you want to use a different CA cert bundle than the one
used by botocore.

• unload_options (list) – reference to a list of UNLOAD options

S3ToRedshiftTransfer

class airflow.operators.s3_to_redshift_operator.S3ToRedshiftTransfer(**kwargs)
Bases: airflow.models.BaseOperator

Executes an COPY command to load files from s3 to Redshift

Parameters

• schema (str) – reference to a specific schema in redshift database

3.16. Integration 147

Airflow Documentation, Release 2.0.0.dev0+

• table (str) – reference to a specific table in redshift database

• s3_bucket (str) – reference to a specific S3 bucket

• s3_key (str) – reference to a specific S3 key

• redshift_conn_id (str) – reference to a specific redshift database

• aws_conn_id (str) – reference to a specific S3 connection

• verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified. You can provide the following values:

– False: do not validate SSL certificates. SSL will still be used (unless use_ssl is
False), but SSL certificates will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You
can specify this argument if you want to use a different CA cert bundle than the one
used by botocore.

• copy_options (list) – reference to a list of COPY options

3.16.3.6 AWS DynamoDB

• HiveToDynamoDBTransferOperator : Moves data from Hive to DynamoDB.

• AwsDynamoDBHook : Interact with AWS DynamoDB.

HiveToDynamoDBTransferOperator

class airflow.contrib.operators.hive_to_dynamodb.HiveToDynamoDBTransferOperator(**kwargs)
Bases: airflow.models.BaseOperator

Moves data from Hive to DynamoDB, note that for now the data is loaded into memory before being pushed to
DynamoDB, so this operator should be used for smallish amount of data.

Parameters

• sql (str) – SQL query to execute against the hive database. (templated)

• table_name (str) – target DynamoDB table

• table_keys (list) – partition key and sort key

• pre_process (function) – implement pre-processing of source data

• pre_process_args (list) – list of pre_process function arguments

• pre_process_kwargs (dict) – dict of pre_process function arguments

• region_name (str) – aws region name (example: us-east-1)

• schema (str) – hive database schema

• hiveserver2_conn_id (str) – source hive connection

• aws_conn_id (str) – aws connection

148 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

AwsDynamoDBHook

class airflow.contrib.hooks.aws_dynamodb_hook.AwsDynamoDBHook(table_keys=None,
ta-
ble_name=None,
re-
gion_name=None,
*args, **kwargs)

Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS DynamoDB.

Parameters

• table_keys (list) – partition key and sort key

• table_name (str) – target DynamoDB table

• region_name (str) – aws region name (example: us-east-1)

write_batch_data(items)
Write batch items to dynamodb table with provisioned throughout capacity.

3.16.3.7 AWS Lambda

• AwsLambdaHook : Interact with AWS Lambda.

AwsLambdaHook

class airflow.contrib.hooks.aws_lambda_hook.AwsLambdaHook(function_name, re-
gion_name=None,
log_type=’None’, qual-
ifier=’$LATEST’,
invoca-
tion_type=’RequestResponse’,
*args, **kwargs)

Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS Lambda

Parameters

• function_name (str) – AWS Lambda Function Name

• region_name (str) – AWS Region Name (example: us-west-2)

• log_type (str) – Tail Invocation Request

• qualifier (str) – AWS Lambda Function Version or Alias Name

• invocation_type (str) – AWS Lambda Invocation Type (RequestResponse, Event
etc)

invoke_lambda(payload)
Invoke Lambda Function

3.16.3.8 AWS Kinesis

• AwsFirehoseHook : Interact with AWS Kinesis Firehose.

3.16. Integration 149

Airflow Documentation, Release 2.0.0.dev0+

AwsFirehoseHook

class airflow.contrib.hooks.aws_firehose_hook.AwsFirehoseHook(delivery_stream,
re-
gion_name=None,
*args, **kwargs)

Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS Kinesis Firehose. :param delivery_stream: Name of the delivery stream :type deliv-
ery_stream: str :param region_name: AWS region name (example: us-east-1) :type region_name: str

get_conn()
Returns AwsHook connection object.

put_records(records)
Write batch records to Kinesis Firehose

3.16.3.9 Amazon SageMaker

For more instructions on using Amazon SageMaker in Airflow, please see the SageMaker Python SDK README.

• SageMakerHook : Interact with Amazon SageMaker.

• SageMakerTrainingOperator : Create a SageMaker training job.

• SageMakerTuningOperator : Create a SageMaker tuning job.

• SageMakerModelOperator : Create a SageMaker model.

• SageMakerTransformOperator : Create a SageMaker transform job.

• SageMakerEndpointConfigOperator : Create a SageMaker endpoint config.

• SageMakerEndpointOperator : Create a SageMaker endpoint.

SageMakerHook

class airflow.contrib.hooks.sagemaker_hook.SageMakerHook(*args, **kwargs)
Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with Amazon SageMaker.

check_s3_url(s3url)
Check if an S3 URL exists

Parameters s3url (str) – S3 url

Return type bool

check_status(job_name, key, describe_function, check_interval, max_ingestion_time,
non_terminal_states=None)

Check status of a SageMaker job

Parameters

• job_name (str) – name of the job to check status

• key (str) – the key of the response dict that points to the state

• describe_function (python callable) – the function used to retrieve the status

• args – the arguments for the function

150 Chapter 3. Content

https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/workflow/README.rst

Airflow Documentation, Release 2.0.0.dev0+

• check_interval (int) – the time interval in seconds which the operator will check
the status of any SageMaker job

• max_ingestion_time (int) – the maximum ingestion time in seconds. Any Sage-
Maker jobs that run longer than this will fail. Setting this to None implies no timeout for
any SageMaker job.

• non_terminal_states (set) – the set of nonterminal states

Returns response of describe call after job is done

check_training_config(training_config)
Check if a training configuration is valid

Parameters training_config (dict) – training_config

Returns None

check_training_status_with_log(job_name, non_terminal_states, failed_states,
wait_for_completion, check_interval,
max_ingestion_time)

Display the logs for a given training job, optionally tailing them until the job is complete.

Parameters

• job_name (str) – name of the training job to check status and display logs for

• non_terminal_states (set) – the set of non_terminal states

• failed_states (set) – the set of failed states

• wait_for_completion (bool) – Whether to keep looking for new log entries until
the job completes

• check_interval (int) – The interval in seconds between polling for new log entries
and job completion

• max_ingestion_time (int) – the maximum ingestion time in seconds. Any Sage-
Maker jobs that run longer than this will fail. Setting this to None implies no timeout for
any SageMaker job.

Returns None

check_tuning_config(tuning_config)
Check if a tuning configuration is valid

Parameters tuning_config (dict) – tuning_config

Returns None

configure_s3_resources(config)
Extract the S3 operations from the configuration and execute them.

Parameters config (dict) – config of SageMaker operation

Return type dict

create_endpoint(config, wait_for_completion=True, check_interval=30,
max_ingestion_time=None)

Create an endpoint

Parameters

• config (dict) – the config for endpoint

• wait_for_completion (bool) – if the program should keep running until job fin-
ishes

3.16. Integration 151

Airflow Documentation, Release 2.0.0.dev0+

• check_interval (int) – the time interval in seconds which the operator will check
the status of any SageMaker job

• max_ingestion_time (int) – the maximum ingestion time in seconds. Any Sage-
Maker jobs that run longer than this will fail. Setting this to None implies no timeout for
any SageMaker job.

Returns A response to endpoint creation

create_endpoint_config(config)
Create an endpoint config

Parameters config (dict) – the config for endpoint-config

Returns A response to endpoint config creation

create_model(config)
Create a model job

Parameters config (dict) – the config for model

Returns A response to model creation

create_training_job(config, wait_for_completion=True, print_log=True, check_interval=30,
max_ingestion_time=None)

Create a training job

Parameters

• config (dict) – the config for training

• wait_for_completion (bool) – if the program should keep running until job fin-
ishes

• check_interval (int) – the time interval in seconds which the operator will check
the status of any SageMaker job

• max_ingestion_time (int) – the maximum ingestion time in seconds. Any Sage-
Maker jobs that run longer than this will fail. Setting this to None implies no timeout for
any SageMaker job.

Returns A response to training job creation

create_transform_job(config, wait_for_completion=True, check_interval=30,
max_ingestion_time=None)

Create a transform job

Parameters

• config (dict) – the config for transform job

• wait_for_completion (bool) – if the program should keep running until job fin-
ishes

• check_interval (int) – the time interval in seconds which the operator will check
the status of any SageMaker job

• max_ingestion_time (int) – the maximum ingestion time in seconds. Any Sage-
Maker jobs that run longer than this will fail. Setting this to None implies no timeout for
any SageMaker job.

Returns A response to transform job creation

create_tuning_job(config, wait_for_completion=True, check_interval=30,
max_ingestion_time=None)

Create a tuning job

152 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Parameters

• config (dict) – the config for tuning

• wait_for_completion – if the program should keep running until job finishes

• wait_for_completion – bool

• check_interval (int) – the time interval in seconds which the operator will check
the status of any SageMaker job

• max_ingestion_time (int) – the maximum ingestion time in seconds. Any Sage-
Maker jobs that run longer than this will fail. Setting this to None implies no timeout for
any SageMaker job.

Returns A response to tuning job creation

describe_endpoint(name)

Parameters name (string) – the name of the endpoint

Returns A dict contains all the endpoint info

describe_endpoint_config(name)
Return the endpoint config info associated with the name

Parameters name (string) – the name of the endpoint config

Returns A dict contains all the endpoint config info

describe_model(name)
Return the SageMaker model info associated with the name

Parameters name (string) – the name of the SageMaker model

Returns A dict contains all the model info

describe_training_job(name)
Return the training job info associated with the name

Parameters name (str) – the name of the training job

Returns A dict contains all the training job info

describe_training_job_with_log(job_name, positions, stream_names, instance_count, state,
last_description, last_describe_job_call)

Return the training job info associated with job_name and print CloudWatch logs

describe_transform_job(name)
Return the transform job info associated with the name

Parameters name (string) – the name of the transform job

Returns A dict contains all the transform job info

describe_tuning_job(name)
Return the tuning job info associated with the name

Parameters name (string) – the name of the tuning job

Returns A dict contains all the tuning job info

get_conn()
Establish an AWS connection for SageMaker

Return type SageMaker.Client

3.16. Integration 153

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client

Airflow Documentation, Release 2.0.0.dev0+

get_log_conn()
Establish an AWS connection for retrieving logs during training

Return type CloudWatchLog.Client

log_stream(log_group, stream_name, start_time=0, skip=0)
A generator for log items in a single stream. This will yield all the items that are available at the current
moment.

Parameters

• log_group (str) – The name of the log group.

• stream_name (str) – The name of the specific stream.

• start_time (int) – The time stamp value to start reading the logs from (default: 0).

• skip (int) – The number of log entries to skip at the start (default: 0). This is for when
there are multiple entries at the same timestamp.

Return type dict

Returns

A CloudWatch log event with the following key-value pairs:
’timestamp’ (int): The time in milliseconds of the event.
’message’ (str): The log event data.
’ingestionTime’ (int): The time in milliseconds the event was ingested.

multi_stream_iter(log_group, streams, positions=None)
Iterate over the available events coming from a set of log streams in a single log group interleaving the
events from each stream so they’re yielded in timestamp order.

Parameters

• log_group (str) – The name of the log group.

• streams (list) – A list of the log stream names. The position of the stream in this list
is the stream number.

• positions (list) – A list of pairs of (timestamp, skip) which represents the last record
read from each stream.

Returns A tuple of (stream number, cloudwatch log event).

tar_and_s3_upload(path, key, bucket)
Tar the local file or directory and upload to s3

Parameters

• path (str) – local file or directory

• key (str) – s3 key

• bucket (str) – s3 bucket

Returns None

update_endpoint(config, wait_for_completion=True, check_interval=30,
max_ingestion_time=None)

Update an endpoint

Parameters

154 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• config (dict) – the config for endpoint

• wait_for_completion (bool) – if the program should keep running until job fin-
ishes

• check_interval (int) – the time interval in seconds which the operator will check
the status of any SageMaker job

• max_ingestion_time (int) – the maximum ingestion time in seconds. Any Sage-
Maker jobs that run longer than this will fail. Setting this to None implies no timeout for
any SageMaker job.

Returns A response to endpoint update

SageMakerTrainingOperator

class airflow.contrib.operators.sagemaker_training_operator.SageMakerTrainingOperator(**kwargs)
Bases: airflow.contrib.operators.sagemaker_base_operator.
SageMakerBaseOperator

Initiate a SageMaker training job.

This operator returns The ARN of the training job created in Amazon SageMaker.

Parameters

• config (dict) – The configuration necessary to start a training job (templated).

For details of the configuration parameter see SageMaker.Client.
create_training_job()

• aws_conn_id (str) – The AWS connection ID to use.

• wait_for_completion (bool) – If wait is set to True, the time interval, in seconds,
that the operation waits to check the status of the training job.

• print_log (bool) – if the operator should print the cloudwatch log during training

• check_interval (int) – if wait is set to be true, this is the time interval in seconds
which the operator will check the status of the training job

• max_ingestion_time (int) – If wait is set to True, the operation fails if the training
job doesn’t finish within max_ingestion_time seconds. If you set this parameter to None,
the operation does not timeout.

SageMakerTuningOperator

class airflow.contrib.operators.sagemaker_tuning_operator.SageMakerTuningOperator(**kwargs)
Bases: airflow.contrib.operators.sagemaker_base_operator.
SageMakerBaseOperator

Initiate a SageMaker hyperparameter tuning job.

This operator returns The ARN of the tuning job created in Amazon SageMaker.

Parameters

• config (dict) – The configuration necessary to start a tuning job (templated).

For details of the configuration parameter see SageMaker.Client.
create_hyper_parameter_tuning_job()

3.16. Integration 155

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_training_job
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_training_job
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_hyper_parameter_tuning_job
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_hyper_parameter_tuning_job

Airflow Documentation, Release 2.0.0.dev0+

• aws_conn_id (str) – The AWS connection ID to use.

• wait_for_completion (bool) – Set to True to wait until the tuning job finishes.

• check_interval (int) – If wait is set to True, the time interval, in seconds, that this
operation waits to check the status of the tuning job.

• max_ingestion_time (int) – If wait is set to True, the operation fails if the tuning job
doesn’t finish within max_ingestion_time seconds. If you set this parameter to None, the
operation does not timeout.

SageMakerModelOperator

class airflow.contrib.operators.sagemaker_model_operator.SageMakerModelOperator(**kwargs)
Bases: airflow.contrib.operators.sagemaker_base_operator.
SageMakerBaseOperator

Create a SageMaker model.

This operator returns The ARN of the model created in Amazon SageMaker

Parameters

• config (dict) – The configuration necessary to create a model.

For details of the configuration parameter see SageMaker.Client.
create_model()

• aws_conn_id (str) – The AWS connection ID to use.

SageMakerTransformOperator

class airflow.contrib.operators.sagemaker_transform_operator.SageMakerTransformOperator(**kwargs)
Bases: airflow.contrib.operators.sagemaker_base_operator.
SageMakerBaseOperator

Initiate a SageMaker transform job.

This operator returns The ARN of the model created in Amazon SageMaker.

Parameters

• config (dict) – The configuration necessary to start a transform job (templated).

If you need to create a SageMaker transform job based on an existed SageMaker model:

config = transform_config

If you need to create both SageMaker model and SageMaker Transform job:

config = {
'Model': model_config,
'Transform': transform_config

}

For details of the configuration parameter of transform_config see SageMaker.Client.
create_transform_job()

For details of the configuration parameter of model_config, See: SageMaker.Client.
create_model()

156 Chapter 3. Content

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_transform_job
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_transform_job
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model

Airflow Documentation, Release 2.0.0.dev0+

• aws_conn_id (string) – The AWS connection ID to use.

• wait_for_completion (bool) – Set to True to wait until the transform job finishes.

• check_interval (int) – If wait is set to True, the time interval, in seconds, that this
operation waits to check the status of the transform job.

• max_ingestion_time (int) – If wait is set to True, the operation fails if the transform
job doesn’t finish within max_ingestion_time seconds. If you set this parameter to None,
the operation does not timeout.

SageMakerEndpointConfigOperator

class airflow.contrib.operators.sagemaker_endpoint_config_operator.SageMakerEndpointConfigOperator(**kwargs)
Bases: airflow.contrib.operators.sagemaker_base_operator.
SageMakerBaseOperator

Create a SageMaker endpoint config.

This operator returns The ARN of the endpoint config created in Amazon SageMaker

Parameters

• config (dict) – The configuration necessary to create an endpoint config.

For details of the configuration parameter see SageMaker.Client.
create_endpoint_config()

• aws_conn_id (str) – The AWS connection ID to use.

SageMakerEndpointOperator

class airflow.contrib.operators.sagemaker_endpoint_operator.SageMakerEndpointOperator(**kwargs)
Bases: airflow.contrib.operators.sagemaker_base_operator.
SageMakerBaseOperator

Create a SageMaker endpoint.

This operator returns The ARN of the endpoint created in Amazon SageMaker

Parameters

• config (dict) – The configuration necessary to create an endpoint.

If you need to create a SageMaker endpoint based on an existed SageMaker model and an
existed SageMaker endpoint config:

config = endpoint_configuration;

If you need to create all of SageMaker model, SageMaker endpoint-config and SageMaker
endpoint:

config = {
'Model': model_configuration,
'EndpointConfig': endpoint_config_configuration,
'Endpoint': endpoint_configuration

}

3.16. Integration 157

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint_config
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint_config

Airflow Documentation, Release 2.0.0.dev0+

For details of the configuration parameter of model_configuration see SageMaker.
Client.create_model()

For details of the configuration parameter of endpoint_config_configuration see
SageMaker.Client.create_endpoint_config()

For details of the configuration parameter of endpoint_configuration see SageMaker.
Client.create_endpoint()

• aws_conn_id (str) – The AWS connection ID to use.

• wait_for_completion (bool) – Whether the operator should wait until the endpoint
creation finishes.

• check_interval (int) – If wait is set to True, this is the time interval, in seconds, that
this operation waits before polling the status of the endpoint creation.

• max_ingestion_time (int) – If wait is set to True, this operation fails if the endpoint
creation doesn’t finish within max_ingestion_time seconds. If you set this parameter to
None it never times out.

• operation (str) – Whether to create an endpoint or update an endpoint. Must be either
‘create or ‘update’.

3.16.4 Databricks

Databricks has contributed an Airflow operator which enables submitting runs to the Databricks platform. Internally
the operator talks to the api/2.0/jobs/runs/submit endpoint.

3.16.4.1 DatabricksSubmitRunOperator

class airflow.contrib.operators.databricks_operator.DatabricksSubmitRunOperator(**kwargs)
Bases: airflow.models.BaseOperator

Submits a Spark job run to Databricks using the api/2.0/jobs/runs/submit API endpoint.

There are two ways to instantiate this operator.

In the first way, you can take the JSON payload that you typically use to call the api/2.0/jobs/runs/
submit endpoint and pass it directly to our DatabricksSubmitRunOperator through the json param-
eter. For example

json = {
'new_cluster': {

'spark_version': '2.1.0-db3-scala2.11',
'num_workers': 2

},
'notebook_task': {

'notebook_path': '/Users/airflow@example.com/PrepareData',
},

}
notebook_run = DatabricksSubmitRunOperator(task_id='notebook_run', json=json)

Another way to accomplish the same thing is to use the named parameters of the
DatabricksSubmitRunOperator directly. Note that there is exactly one named parameter for
each top level parameter in the runs/submit endpoint. In this method, your code would look like this:

158 Chapter 3. Content

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint_config
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint
https://databricks.com/
https://docs.databricks.com/api/latest/jobs.html#runs-submit
https://docs.databricks.com/api/latest/jobs.html#runs-submit

Airflow Documentation, Release 2.0.0.dev0+

new_cluster = {
'spark_version': '2.1.0-db3-scala2.11',
'num_workers': 2

}
notebook_task = {
'notebook_path': '/Users/airflow@example.com/PrepareData',

}
notebook_run = DatabricksSubmitRunOperator(

task_id='notebook_run',
new_cluster=new_cluster,
notebook_task=notebook_task)

In the case where both the json parameter AND the named parameters are provided, they will be merged together.
If there are conflicts during the merge, the named parameters will take precedence and override the top level
json keys.

Currently the named parameters that DatabricksSubmitRunOperator supports are

• spark_jar_task

• notebook_task

• new_cluster

• existing_cluster_id

• libraries

• run_name

• timeout_seconds

Parameters

• json (dict) – A JSON object containing API parameters which will be passed directly
to the api/2.0/jobs/runs/submit endpoint. The other named parameters (i.e.
spark_jar_task, notebook_task..) to this operator will be merged with this json
dictionary if they are provided. If there are conflicts during the merge, the named parameters
will take precedence and override the top level json keys. (templated)

See also:

For more information about templating see Jinja Templating. https://docs.databricks.com/
api/latest/jobs.html#runs-submit

• spark_jar_task (dict) – The main class and parameters for the JAR task. Note
that the actual JAR is specified in the libraries. EITHER spark_jar_task OR
notebook_task should be specified. This field will be templated.

See also:

https://docs.databricks.com/api/latest/jobs.html#jobssparkjartask

• notebook_task (dict) – The notebook path and parameters for the notebook task.
EITHER spark_jar_task OR notebook_task should be specified. This field will
be templated.

See also:

https://docs.databricks.com/api/latest/jobs.html#jobsnotebooktask

3.16. Integration 159

https://docs.databricks.com/api/latest/jobs.html#runs-submit
https://docs.databricks.com/api/latest/jobs.html#runs-submit
https://docs.databricks.com/api/latest/jobs.html#jobssparkjartask
https://docs.databricks.com/api/latest/jobs.html#jobsnotebooktask

Airflow Documentation, Release 2.0.0.dev0+

• new_cluster (dict) – Specs for a new cluster on which this task will be run. EITHER
new_cluster OR existing_cluster_id should be specified. This field will be
templated.

See also:

https://docs.databricks.com/api/latest/jobs.html#jobsclusterspecnewcluster

• existing_cluster_id (str) – ID for existing cluster on which to run this task. EI-
THER new_cluster OR existing_cluster_id should be specified. This field will
be templated.

• libraries (list of dicts) – Libraries which this run will use. This field will be
templated.

See also:

https://docs.databricks.com/api/latest/libraries.html#managedlibrarieslibrary

• run_name (str) – The run name used for this task. By default this will be set to the Air-
flow task_id. This task_id is a required parameter of the superclass BaseOperator.
This field will be templated.

• timeout_seconds (int32) – The timeout for this run. By default a value of 0 is used
which means to have no timeout. This field will be templated.

• databricks_conn_id (str) – The name of the Airflow connection to use. By de-
fault and in the common case this will be databricks_default. To use token based
authentication, provide the key token in the extra field for the connection.

• polling_period_seconds (int) – Controls the rate which we poll for the result of
this run. By default the operator will poll every 30 seconds.

• databricks_retry_limit (int) – Amount of times retry if the Databricks backend
is unreachable. Its value must be greater than or equal to 1.

• databricks_retry_delay (float) – Number of seconds to wait between retries (it
might be a floating point number).

• do_xcom_push (bool) – Whether we should push run_id and run_page_url to xcom.

3.16.5 GCP: Google Cloud Platform

Airflow has extensive support for the Google Cloud Platform. But note that most Hooks and Operators are in the
contrib section. Meaning that they have a beta status, meaning that they can have breaking changes between minor
releases.

See the GCP connection type documentation to configure connections to GCP.

3.16.5.1 Logging

Airflow can be configured to read and write task logs in Google Cloud Storage. See Writing Logs to Google Cloud
Storage.

160 Chapter 3. Content

https://docs.databricks.com/api/latest/jobs.html#jobsclusterspecnewcluster
https://docs.databricks.com/api/latest/libraries.html#managedlibrarieslibrary

Airflow Documentation, Release 2.0.0.dev0+

3.16.5.2 GoogleCloudBaseHook

class airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook(gcp_conn_id=’google_cloud_default’,
dele-
gate_to=None)

Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.
LoggingMixin

A base hook for Google cloud-related hooks. Google cloud has a shared REST API client that is built in the
same way no matter which service you use. This class helps construct and authorize the credentials needed to
then call googleapiclient.discovery.build() to actually discover and build a client for a Google cloud service.

The class also contains some miscellaneous helper functions.

All hook derived from this base hook use the ‘Google Cloud Platform’ connection type. Three ways of authen-
tication are supported:

Default credentials: Only the ‘Project Id’ is required. You’ll need to have set up default credentials, such
as by the GOOGLE_APPLICATION_DEFAULT environment variable or from the metadata server on Google
Compute Engine.

JSON key file: Specify ‘Project Id’, ‘Keyfile Path’ and ‘Scope’.

Legacy P12 key files are not supported.

JSON data provided in the UI: Specify ‘Keyfile JSON’.

static fallback_to_default_project_id(func)
Decorator that provides fallback for Google Cloud Platform project id. If the project is None it will be
replaced with the project_id from the service account the Hook is authenticated with. Project id can be
specified either via project_id kwarg or via first parameter in positional args.

Parameters func – function to wrap

Returns result of the function call

3.16.5.3 BigQuery

BigQuery Operators

• BigQueryCheckOperator : Performs checks against a SQL query that will return a single row with different
values.

• BigQueryValueCheckOperator : Performs a simple value check using SQL code.

• BigQueryIntervalCheckOperator : Checks that the values of metrics given as SQL expressions are within a
certain tolerance of the ones from days_back before.

• BigQueryGetDataOperator : Fetches the data from a BigQuery table and returns data in a python list

• BigQueryCreateEmptyDatasetOperator : Creates an empty BigQuery dataset.

• BigQueryCreateEmptyTableOperator : Creates a new, empty table in the specified BigQuery dataset optionally
with schema.

• BigQueryCreateExternalTableOperator : Creates a new, external table in the dataset with the data in Google
Cloud Storage.

• BigQueryDeleteDatasetOperator : Deletes an existing BigQuery dataset.

• BigQueryTableDeleteOperator : Deletes an existing BigQuery table.

• BigQueryOperator : Executes BigQuery SQL queries in a specific BigQuery database.

3.16. Integration 161

Airflow Documentation, Release 2.0.0.dev0+

• BigQueryToBigQueryOperator : Copy a BigQuery table to another BigQuery table.

• BigQueryToCloudStorageOperator : Transfers a BigQuery table to a Google Cloud Storage bucket

BigQueryCheckOperator

class airflow.contrib.operators.bigquery_check_operator.BigQueryCheckOperator(**kwargs)
Bases: airflow.operators.check_operator.CheckOperator

Performs checks against BigQuery. The BigQueryCheckOperator expects a sql query that will return a
single row. Each value on that first row is evaluated using python bool casting. If any of the values return
False the check is failed and errors out.

Note that Python bool casting evals the following as False:

• False

• 0

• Empty string ("")

• Empty list ([])

• Empty dictionary or set ({})

Given a query like SELECT COUNT(*) FROM foo, it will fail only if the count == 0. You can craft much
more complex query that could, for instance, check that the table has the same number of rows as the source
table upstream, or that the count of today’s partition is greater than yesterday’s partition, or that a set of metrics
are less than 3 standard deviation for the 7 day average.

This operator can be used as a data quality check in your pipeline, and depending on where you put it in your
DAG, you have the choice to stop the critical path, preventing from publishing dubious data, or on the side and
receive email alterts without stopping the progress of the DAG.

Parameters

• sql (str) – the sql to be executed

• bigquery_conn_id (str) – reference to the BigQuery database

• use_legacy_sql (bool) – Whether to use legacy SQL (true) or standard SQL (false).

BigQueryValueCheckOperator

class airflow.contrib.operators.bigquery_check_operator.BigQueryValueCheckOperator(**kwargs)
Bases: airflow.operators.check_operator.ValueCheckOperator

Performs a simple value check using sql code.

Parameters

• sql (str) – the sql to be executed

• use_legacy_sql (bool) – Whether to use legacy SQL (true) or standard SQL (false).

BigQueryIntervalCheckOperator

class airflow.contrib.operators.bigquery_check_operator.BigQueryIntervalCheckOperator(**kwargs)
Bases: airflow.operators.check_operator.IntervalCheckOperator

162 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Checks that the values of metrics given as SQL expressions are within a certain tolerance of the ones from
days_back before.

This method constructs a query like so

SELECT {metrics_threshold_dict_key} FROM {table}
WHERE {date_filter_column}=<date>

Parameters

• table (str) – the table name

• days_back (int) – number of days between ds and the ds we want to check against.
Defaults to 7 days

• metrics_threshold (dict) – a dictionary of ratios indexed by metrics, for example
‘COUNT(*)’: 1.5 would require a 50 percent or less difference between the current day, and
the prior days_back.

• use_legacy_sql (bool) – Whether to use legacy SQL (true) or standard SQL (false).

BigQueryGetDataOperator

class airflow.contrib.operators.bigquery_get_data.BigQueryGetDataOperator(**kwargs)
Bases: airflow.models.BaseOperator

Fetches the data from a BigQuery table (alternatively fetch data for selected columns) and returns data in a
python list. The number of elements in the returned list will be equal to the number of rows fetched. Each
element in the list will again be a list where element would represent the columns values for that row.

Example Result: [['Tony', '10'], ['Mike', '20'], ['Steve', '15']]

Note: If you pass fields to selected_fields which are in different order than the order of columns already
in BQ table, the data will still be in the order of BQ table. For example if the BQ table has 3 columns as
[A,B,C] and you pass ‘B,A’ in the selected_fields the data would still be of the form 'A,B'.

Example:

get_data = BigQueryGetDataOperator(
task_id='get_data_from_bq',
dataset_id='test_dataset',
table_id='Transaction_partitions',
max_results='100',
selected_fields='DATE',
bigquery_conn_id='airflow-service-account'

)

Parameters

• dataset_id (str) – The dataset ID of the requested table. (templated)

• table_id (str) – The table ID of the requested table. (templated)

• max_results (str) – The maximum number of records (rows) to be fetched from the
table. (templated)

• selected_fields (str) – List of fields to return (comma-separated). If unspecified,
all fields are returned.

3.16. Integration 163

Airflow Documentation, Release 2.0.0.dev0+

• bigquery_conn_id (str) – reference to a specific BigQuery hook.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

BigQueryCreateEmptyTableOperator

class airflow.contrib.operators.bigquery_operator.BigQueryCreateEmptyTableOperator(**kwargs)
Bases: airflow.models.BaseOperator

Creates a new, empty table in the specified BigQuery dataset, optionally with schema.

The schema to be used for the BigQuery table may be specified in one of two ways. You may either directly pass
the schema fields in, or you may point the operator to a Google cloud storage object name. The object in Google
cloud storage must be a JSON file with the schema fields in it. You can also create a table without schema.

Parameters

• project_id (str) – The project to create the table into. (templated)

• dataset_id (str) – The dataset to create the table into. (templated)

• table_id (str) – The Name of the table to be created. (templated)

• schema_fields (list) – If set, the schema field list as defined here: https://cloud.
google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema

Example:

schema_fields=[{"name": "emp_name", "type": "STRING", "mode":
→˓"REQUIRED"},

{"name": "salary", "type": "INTEGER", "mode":
→˓"NULLABLE"}]

• gcs_schema_object (str) – Full path to the JSON file containing schema (templated).
For example: gs://test-bucket/dir1/dir2/employee_schema.json

• time_partitioning (dict) – configure optional time partitioning fields i.e. partition
by field, type and expiration as per API specifications.

See also:

https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#timePartitioning

• bigquery_conn_id (str) – Reference to a specific BigQuery hook.

• google_cloud_storage_conn_id (str) – Reference to a specific Google cloud
storage hook.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• labels (dict) – a dictionary containing labels for the table, passed to BigQuery

Example (with schema JSON in GCS):

CreateTable = BigQueryCreateEmptyTableOperator(
task_id='BigQueryCreateEmptyTableOperator_task',
dataset_id='ODS',
table_id='Employees',
project_id='internal-gcp-project',
gcs_schema_object='gs://schema-bucket/employee_schema.json',

(continues on next page)

164 Chapter 3. Content

https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema
https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#timePartitioning

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

bigquery_conn_id='airflow-service-account',
google_cloud_storage_conn_id='airflow-service-account'

)

Corresponding Schema file (employee_schema.json):

[
{
"mode": "NULLABLE",
"name": "emp_name",
"type": "STRING"

},
{
"mode": "REQUIRED",
"name": "salary",
"type": "INTEGER"

}
]

Example (with schema in the DAG):

CreateTable = BigQueryCreateEmptyTableOperator(
task_id='BigQueryCreateEmptyTableOperator_task',
dataset_id='ODS',
table_id='Employees',
project_id='internal-gcp-project',
schema_fields=[{"name": "emp_name", "type": "STRING", "mode":

→˓"REQUIRED"},
{"name": "salary", "type": "INTEGER", "mode":

→˓"NULLABLE"}],
bigquery_conn_id='airflow-service-account',
google_cloud_storage_conn_id='airflow-service-account'

)

BigQueryCreateExternalTableOperator

class airflow.contrib.operators.bigquery_operator.BigQueryCreateExternalTableOperator(**kwargs)
Bases: airflow.models.BaseOperator

Creates a new external table in the dataset with the data in Google Cloud Storage.

The schema to be used for the BigQuery table may be specified in one of two ways. You may either directly
pass the schema fields in, or you may point the operator to a Google cloud storage object name. The object in
Google cloud storage must be a JSON file with the schema fields in it.

Parameters

• bucket (str) – The bucket to point the external table to. (templated)

• source_objects (list) – List of Google cloud storage URIs to point table to. (tem-
plated) If source_format is ‘DATASTORE_BACKUP’, the list must only contain a single
URI.

• destination_project_dataset_table (str) – The dotted
(<project>.)<dataset>.<table> BigQuery table to load data into (templated). If <project> is
not included, project will be the project defined in the connection json.

3.16. Integration 165

Airflow Documentation, Release 2.0.0.dev0+

• schema_fields (list) – If set, the schema field list as defined here: https://cloud.
google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema

Example:

schema_fields=[{"name": "emp_name", "type": "STRING", "mode":
→˓"REQUIRED"},

{"name": "salary", "type": "INTEGER", "mode":
→˓"NULLABLE"}]

Should not be set when source_format is ‘DATASTORE_BACKUP’.

• schema_object (str) – If set, a GCS object path pointing to a .json file that contains
the schema for the table. (templated)

• source_format (str) – File format of the data.

• compression (str) – [Optional] The compression type of the data source. Possible
values include GZIP and NONE. The default value is NONE. This setting is ignored for
Google Cloud Bigtable, Google Cloud Datastore backups and Avro formats.

• skip_leading_rows (int) – Number of rows to skip when loading from a CSV.

• field_delimiter (str) – The delimiter to use for the CSV.

• max_bad_records (int) – The maximum number of bad records that BigQuery can
ignore when running the job.

• quote_character (str) – The value that is used to quote data sections in a CSV file.

• allow_quoted_newlines (bool) – Whether to allow quoted newlines (true) or not
(false).

• allow_jagged_rows (bool) – Accept rows that are missing trailing optional columns.
The missing values are treated as nulls. If false, records with missing trailing columns are
treated as bad records, and if there are too many bad records, an invalid error is returned in
the job result. Only applicable to CSV, ignored for other formats.

• bigquery_conn_id (str) – Reference to a specific BigQuery hook.

• google_cloud_storage_conn_id (str) – Reference to a specific Google cloud
storage hook.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• src_fmt_configs (dict) – configure optional fields specific to the source format

• labels (dict) – a dictionary containing labels for the table, passed to BigQuery

BigQueryCreateEmptyDatasetOperator

class airflow.contrib.operators.bigquery_operator.BigQueryCreateEmptyDatasetOperator(**kwargs)
Bases: airflow.models.BaseOperator

This operator is used to create new dataset for your Project in Big query. https://cloud.google.com/bigquery/
docs/reference/rest/v2/datasets#resource

Parameters

• project_id (str) – The name of the project where we want to create the dataset. Don’t
need to provide, if projectId in dataset_reference.

166 Chapter 3. Content

https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema
https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource
https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource

Airflow Documentation, Release 2.0.0.dev0+

• dataset_id (str) – The id of dataset. Don’t need to provide, if datasetId in
dataset_reference.

• dataset_reference – Dataset reference that could be provided with request body.
More info: https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource

BigQueryDeleteDatasetOperator

class airflow.contrib.operators.bigquery_operator.BigQueryDeleteDatasetOperator(**kwargs)
Bases: airflow.models.BaseOperator

This operator deletes an existing dataset from your Project in Big query. https://cloud.google.com/bigquery/
docs/reference/rest/v2/datasets/delete

Parameters

• project_id (str) – The project id of the dataset.

• dataset_id (str) – The dataset to be deleted.

Example:

delete_temp_data = BigQueryDeleteDatasetOperator(dataset_id = 'temp-dataset',
project_id = 'temp-project',
bigquery_conn_id='_my_gcp_conn_',
task_id='Deletetemp',
dag=dag)

BigQueryTableDeleteOperator

class airflow.contrib.operators.bigquery_table_delete_operator.BigQueryTableDeleteOperator(**kwargs)
Bases: airflow.models.BaseOperator

Deletes BigQuery tables

Parameters

• deletion_dataset_table (str) – A dotted (<project>.|<project>:)<dataset>.<table>
that indicates which table will be deleted. (templated)

• bigquery_conn_id (str) – reference to a specific BigQuery hook.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• ignore_if_missing (bool) – if True, then return success even if the requested table
does not exist.

BigQueryOperator

class airflow.contrib.operators.bigquery_operator.BigQueryOperator(**kwargs)
Bases: airflow.models.BaseOperator

Executes BigQuery SQL queries in a specific BigQuery database

Parameters

3.16. Integration 167

https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource
https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/delete
https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/delete

Airflow Documentation, Release 2.0.0.dev0+

• sql (Can receive a str representing a sql statement, a list
of str (sql statements), or reference to a template file.
Template reference are recognized by str ending in '.sql'.) –
the sql code to be executed (templated)

• destination_dataset_table (str) – A dotted
(<project>.|<project>:)<dataset>.<table> that, if set, will store the results of the query.
(templated)

• write_disposition (str) – Specifies the action that occurs if the destination table
already exists. (default: ‘WRITE_EMPTY’)

• create_disposition (str) – Specifies whether the job is allowed to create new ta-
bles. (default: ‘CREATE_IF_NEEDED’)

• allow_large_results (bool) – Whether to allow large results.

• flatten_results (bool) – If true and query uses legacy SQL dialect, flattens all
nested and repeated fields in the query results. allow_large_results must be true
if this is set to false. For standard SQL queries, this flag is ignored and results are never
flattened.

• bigquery_conn_id (str) – reference to a specific BigQuery hook.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• udf_config (list) – The User Defined Function configuration for the query. See https:
//cloud.google.com/bigquery/user-defined-functions for details.

• use_legacy_sql (bool) – Whether to use legacy SQL (true) or standard SQL (false).

• maximum_billing_tier (int) – Positive integer that serves as a multiplier of the
basic price. Defaults to None, in which case it uses the value set in the project.

• maximum_bytes_billed (float) – Limits the bytes billed for this job. Queries that
will have bytes billed beyond this limit will fail (without incurring a charge). If unspecified,
this will be set to your project default.

• api_resource_configs (dict) – a dictionary that contain params ‘configuration’
applied for Google BigQuery Jobs API: https://cloud.google.com/bigquery/docs/reference/
rest/v2/jobs for example, {‘query’: {‘useQueryCache’: False}}. You could use it if you
need to provide some params that are not supported by BigQueryOperator like args.

• schema_update_options (tuple) – Allows the schema of the destination table to be
updated as a side effect of the load job.

• query_params (dict) – a dictionary containing query parameter types and values,
passed to BigQuery.

• labels (dict) – a dictionary containing labels for the job/query, passed to BigQuery

• priority (str) – Specifies a priority for the query. Possible values include INTERAC-
TIVE and BATCH. The default value is INTERACTIVE.

• time_partitioning (dict) – configure optional time partitioning fields i.e. partition
by field, type and expiration as per API specifications.

• cluster_fields (list of str) – Request that the result of this query be stored
sorted by one or more columns. This is only available in conjunction with time_partitioning.
The order of columns given determines the sort order.

168 Chapter 3. Content

https://cloud.google.com/bigquery/user-defined-functions
https://cloud.google.com/bigquery/user-defined-functions
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs

Airflow Documentation, Release 2.0.0.dev0+

• location (str) – The geographic location of the job. Required except for US and EU.
See details at https://cloud.google.com/bigquery/docs/locations#specifying_your_location

BigQueryToBigQueryOperator

class airflow.contrib.operators.bigquery_to_bigquery.BigQueryToBigQueryOperator(**kwargs)
Bases: airflow.models.BaseOperator

Copies data from one BigQuery table to another.

See also:

For more details about these parameters: https://cloud.google.com/bigquery/docs/reference/v2/jobs#
configuration.copy

Parameters

• source_project_dataset_tables (list|string) – One or more dotted
(project:|project.)<dataset>.<table> BigQuery tables to use as the source data. If <project>
is not included, project will be the project defined in the connection json. Use a list if there
are multiple source tables. (templated)

• destination_project_dataset_table (str) – The destination BigQuery table.
Format is: (project:|project.)<dataset>.<table> (templated)

• write_disposition (str) – The write disposition if the table already exists.

• create_disposition (str) – The create disposition if the table doesn’t exist.

• bigquery_conn_id (str) – reference to a specific BigQuery hook.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• labels (dict) – a dictionary containing labels for the job/query, passed to BigQuery

BigQueryToCloudStorageOperator

class airflow.contrib.operators.bigquery_to_gcs.BigQueryToCloudStorageOperator(**kwargs)
Bases: airflow.models.BaseOperator

Transfers a BigQuery table to a Google Cloud Storage bucket.

See also:

For more details about these parameters: https://cloud.google.com/bigquery/docs/reference/v2/jobs

Parameters

• source_project_dataset_table (str) – The dotted (<project>.
|<project>:)<dataset>.<table> BigQuery table to use as the source data.
If <project> is not included, project will be the project defined in the connection json.
(templated)

• destination_cloud_storage_uris (list) – The destination Google Cloud Stor-
age URI (e.g. gs://some-bucket/some-file.txt). (templated) Follows convention defined here:
https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple

• compression (str) – Type of compression to use.

3.16. Integration 169

https://cloud.google.com/bigquery/docs/locations#specifying_your_location
https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.copy
https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.copy
https://cloud.google.com/bigquery/docs/reference/v2/jobs

Airflow Documentation, Release 2.0.0.dev0+

• export_format (str) – File format to export.

• field_delimiter (str) – The delimiter to use when extracting to a CSV.

• print_header (bool) – Whether to print a header for a CSV file extract.

• bigquery_conn_id (str) – reference to a specific BigQuery hook.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• labels (dict) – a dictionary containing labels for the job/query, passed to BigQuery

BigQueryHook

class airflow.contrib.hooks.bigquery_hook.BigQueryHook(bigquery_conn_id=’bigquery_default’,
delegate_to=None,
use_legacy_sql=True,
location=None)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook, airflow.
hooks.dbapi_hook.DbApiHook, airflow.utils.log.logging_mixin.LoggingMixin

Interact with BigQuery. This hook uses the Google Cloud Platform connection.

get_conn()
Returns a BigQuery PEP 249 connection object.

get_pandas_df(sql, parameters=None, dialect=None)
Returns a Pandas DataFrame for the results produced by a BigQuery query. The DbApiHook method must
be overridden because Pandas doesn’t support PEP 249 connections, except for SQLite. See:

https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447 https://github.com/pydata/pandas/
issues/6900

Parameters

• sql (str) – The BigQuery SQL to execute.

• parameters (mapping or iterable) – The parameters to render the SQL query
with (not used, leave to override superclass method)

• dialect (str in {'legacy', 'standard'}) – Dialect of BigQuery SQL –
legacy SQL or standard SQL defaults to use self.use_legacy_sql if not specified

get_service()
Returns a BigQuery service object.

insert_rows(table, rows, target_fields=None, commit_every=1000)
Insertion is currently unsupported. Theoretically, you could use BigQuery’s streaming API to insert rows
into a table, but this hasn’t been implemented.

table_exists(project_id, dataset_id, table_id)
Checks for the existence of a table in Google BigQuery.

Parameters

• project_id (str) – The Google cloud project in which to look for the table. The
connection supplied to the hook must provide access to the specified project.

• dataset_id (str) – The name of the dataset in which to look for the table.

• table_id (str) – The name of the table to check the existence of.

170 Chapter 3. Content

https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447
https://github.com/pydata/pandas/issues/6900
https://github.com/pydata/pandas/issues/6900

Airflow Documentation, Release 2.0.0.dev0+

3.16.5.4 Cloud Spanner

Cloud Spanner Operators

• CloudSpannerInstanceDatabaseDeleteOperator : deletes an existing database from a Google Cloud Spanner
instance or returns success if the database is missing.

• CloudSpannerInstanceDatabaseDeployOperator : creates a new database in a Google Cloud instance or returns
success if the database already exists.

• CloudSpannerInstanceDatabaseUpdateOperator : updates the structure of a Google Cloud Spanner database.

• CloudSpannerInstanceDatabaseQueryOperator : executes an arbitrary DML query (INSERT, UPDATE,
DELETE).

• CloudSpannerInstanceDeployOperator : creates a new Google Cloud Spanner instance, or if an instance with
the same name exists, updates the instance.

• CloudSpannerInstanceDeleteOperator : deletes a Google Cloud Spanner instance.

CloudSpannerInstanceDatabaseDeleteOperator

CloudSpannerInstanceDatabaseDeployOperator

CloudSpannerInstanceDatabaseUpdateOperator

CloudSpannerInstanceDatabaseQueryOperator

CloudSpannerInstanceDeployOperator

CloudSpannerInstanceDeleteOperator

CloudSpannerHook

3.16.5.5 Cloud SQL

Cloud SQL Operators

• CloudSqlInstanceDatabaseDeleteOperator : deletes a database from a Cloud SQL instance.

• CloudSqlInstanceDatabaseCreateOperator : creates a new database inside a Cloud SQL instance.

• CloudSqlInstanceDatabasePatchOperator : updates a database inside a Cloud SQL instance.

• CloudSqlInstanceDeleteOperator : delete a Cloud SQL instance.

• CloudSqlInstanceExportOperator : exports data from a Cloud SQL instance.

• CloudSqlInstanceImportOperator : imports data into a Cloud SQL instance.

• CloudSqlInstanceCreateOperator : create a new Cloud SQL instance.

• CloudSqlInstancePatchOperator : patch a Cloud SQL instance.

• CloudSqlQueryOperator : run query in a Cloud SQL instance.

3.16. Integration 171

Airflow Documentation, Release 2.0.0.dev0+

CloudSqlInstanceDatabaseDeleteOperator

class airflow.contrib.operators.gcp_sql_operator.CloudSqlInstanceDatabaseDeleteOperator(**kwargs)
Bases: airflow.contrib.operators.gcp_sql_operator.CloudSqlBaseOperator

Deletes a database from a Cloud SQL instance.

Parameters

• instance (str) – Database instance ID. This does not include the project ID.

• database (str) – Name of the database to be deleted in the instance.

• project_id (str) – Optional, Google Cloud Platform Project ID. If set to None or
missing, the default project_id from the GCP connection is used.

• gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform.

• api_version (str) – API version used (e.g. v1beta4).

CloudSqlInstanceDatabaseCreateOperator

class airflow.contrib.operators.gcp_sql_operator.CloudSqlInstanceDatabaseCreateOperator(**kwargs)
Bases: airflow.contrib.operators.gcp_sql_operator.CloudSqlBaseOperator

Creates a new database inside a Cloud SQL instance.

Parameters

• instance (str) – Database instance ID. This does not include the project ID.

• body (dict) – The request body, as described in https://cloud.google.com/sql/docs/mysql/
admin-api/v1beta4/databases/insert#request-body

• project_id (str) – Optional, Google Cloud Platform Project ID. If set to None or
missing, the default project_id from the GCP connection is used.

• gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform.

• api_version (str) – API version used (e.g. v1beta4).

• validate_body (bool) – Whether the body should be validated. Defaults to True.

CloudSqlInstanceDatabasePatchOperator

class airflow.contrib.operators.gcp_sql_operator.CloudSqlInstanceDatabasePatchOperator(**kwargs)
Bases: airflow.contrib.operators.gcp_sql_operator.CloudSqlBaseOperator

Updates a resource containing information about a database inside a Cloud SQL instance using patch semantics.
See: https://cloud.google.com/sql/docs/mysql/admin-api/how-tos/performance#patch

Parameters

• instance (str) – Database instance ID. This does not include the project ID.

• database (str) – Name of the database to be updated in the instance.

• body (dict) – The request body, as described in https://cloud.google.com/sql/docs/mysql/
admin-api/v1beta4/databases/patch#request-body

• project_id (str) – Optional, Google Cloud Platform Project ID.

• gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform.

172 Chapter 3. Content

https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/insert#request-body
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/insert#request-body
https://cloud.google.com/sql/docs/mysql/admin-api/how-tos/performance#patch
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/patch#request-body
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/patch#request-body

Airflow Documentation, Release 2.0.0.dev0+

• api_version (str) – API version used (e.g. v1beta4).

• validate_body (bool) – Whether the body should be validated. Defaults to True.

CloudSqlInstanceDeleteOperator

class airflow.contrib.operators.gcp_sql_operator.CloudSqlInstanceDeleteOperator(**kwargs)
Bases: airflow.contrib.operators.gcp_sql_operator.CloudSqlBaseOperator

Deletes a Cloud SQL instance.

Parameters

• instance (str) – Cloud SQL instance ID. This does not include the project ID.

• project_id (str) – Optional, Google Cloud Platform Project ID. If set to None or
missing, the default project_id from the GCP connection is used.

• gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform.

• api_version (str) – API version used (e.g. v1beta4).

CloudSqlInstanceExportOperator

class airflow.contrib.operators.gcp_sql_operator.CloudSqlInstanceExportOperator(**kwargs)
Bases: airflow.contrib.operators.gcp_sql_operator.CloudSqlBaseOperator

Exports data from a Cloud SQL instance to a Cloud Storage bucket as a SQL dump or CSV file.

Note: This operator is idempotent. If executed multiple times with the same export file URI, the export file in
GCS will simply be overridden.

Parameters

• instance (str) – Cloud SQL instance ID. This does not include the project ID.

• body (dict) – The request body, as described in https://cloud.google.com/sql/docs/mysql/
admin-api/v1beta4/instances/export#request-body

• project_id (str) – Optional, Google Cloud Platform Project ID. If set to None or
missing, the default project_id from the GCP connection is used.

• gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform.

• api_version (str) – API version used (e.g. v1beta4).

• validate_body (bool) – Whether the body should be validated. Defaults to True.

CloudSqlInstanceImportOperator

class airflow.contrib.operators.gcp_sql_operator.CloudSqlInstanceImportOperator(**kwargs)
Bases: airflow.contrib.operators.gcp_sql_operator.CloudSqlBaseOperator

Imports data into a Cloud SQL instance from a SQL dump or CSV file in Cloud Storage.

CSV IMPORT:

This operator is NOT idempotent for a CSV import. If the same file is imported multiple times, the imported
data will be duplicated in the database. Moreover, if there are any unique constraints the duplicate import may
result in an error.

3.16. Integration 173

https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/export#request-body
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/export#request-body

Airflow Documentation, Release 2.0.0.dev0+

SQL IMPORT:

This operator is idempotent for a SQL import if it was also exported by Cloud SQL. The exported SQL contains
‘DROP TABLE IF EXISTS’ statements for all tables to be imported.

If the import file was generated in a different way, idempotence is not guaranteed. It has to be ensured on the
SQL file level.

Parameters

• instance (str) – Cloud SQL instance ID. This does not include the project ID.

• body (dict) – The request body, as described in https://cloud.google.com/sql/docs/mysql/
admin-api/v1beta4/instances/export#request-body

• project_id (str) – Optional, Google Cloud Platform Project ID. If set to None or
missing, the default project_id from the GCP connection is used.

• gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform.

• api_version (str) – API version used (e.g. v1beta4).

• validate_body (bool) – Whether the body should be validated. Defaults to True.

CloudSqlInstanceCreateOperator

class airflow.contrib.operators.gcp_sql_operator.CloudSqlInstanceCreateOperator(**kwargs)
Bases: airflow.contrib.operators.gcp_sql_operator.CloudSqlBaseOperator

Creates a new Cloud SQL instance. If an instance with the same name exists, no action will be taken and the
operator will succeed.

Parameters

• body (dict) – Body required by the Cloud SQL insert API, as described in https://cloud.
google.com/sql/docs/mysql/admin-api/v1beta4/instances/insert #request-body

• instance (str) – Cloud SQL instance ID. This does not include the project ID.

• project_id (str) – Optional, Google Cloud Platform Project ID. If set to None or
missing, the default project_id from the GCP connection is used.

• gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform.

• api_version (str) – API version used (e.g. v1beta4).

• validate_body (bool) – True if body should be validated, False otherwise.

CloudSqlInstancePatchOperator

class airflow.contrib.operators.gcp_sql_operator.CloudSqlInstancePatchOperator(**kwargs)
Bases: airflow.contrib.operators.gcp_sql_operator.CloudSqlBaseOperator

Updates settings of a Cloud SQL instance.

Caution: This is a partial update, so only included values for the settings will be updated.

In the request body, supply the relevant portions of an instance resource, according to the rules of patch seman-
tics. https://cloud.google.com/sql/docs/mysql/admin-api/how-tos/performance#patch

Parameters

174 Chapter 3. Content

https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/export#request-body
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/export#request-body
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/insert
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/insert
https://cloud.google.com/sql/docs/mysql/admin-api/how-tos/performance#patch

Airflow Documentation, Release 2.0.0.dev0+

• body (dict) – Body required by the Cloud SQL patch API, as described in https://cloud.
google.com/sql/docs/mysql/admin-api/v1beta4/instances/patch#request-body

• instance (str) – Cloud SQL instance ID. This does not include the project ID.

• project_id (str) – Optional, Google Cloud Platform Project ID. If set to None or
missing, the default project_id from the GCP connection is used.

• gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform.

• api_version (str) – API version used (e.g. v1beta4).

CloudSqlQueryOperator

class airflow.contrib.operators.gcp_sql_operator.CloudSqlQueryOperator(**kwargs)
Bases: airflow.models.BaseOperator

Performs DML or DDL query on an existing Cloud Sql instance. It optionally uses cloud-sql-proxy to establish
secure connection with the database.

Parameters

• sql (str or [str]) – SQL query or list of queries to run (should be DML or DDL
query - this operator does not return any data from the database, so it is useless to pass it
DQL queries. Note that it is responsibility of the author of the queries to make sure that
the queries are idempotent. For example you can use CREATE TABLE IF NOT EXISTS to
create a table.

• parameters (mapping or iterable) – (optional) the parameters to render the SQL
query with.

• autocommit (bool) – if True, each command is automatically committed. (default value:
False)

• gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform for
cloud-sql-proxy authentication.

• gcp_cloudsql_conn_id (str) – The connection ID used to connect to Google Cloud
SQL its schema should be gcpcloudsql://. See CloudSqlDatabaseHook for details on
how to define gcpcloudsql:// connection.

Cloud SQL Hooks

class airflow.contrib.hooks.gcp_sql_hook.CloudSqlHook(api_version,
gcp_conn_id=’google_cloud_default’,
delegate_to=None)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Hook for Google Cloud SQL APIs.

All the methods in the hook where project_id is used must be called with keyword arguments rather than posi-
tional.

create_database(*args, **kwargs)
Creates a new database inside a Cloud SQL instance.

Parameters

• instance (str) – Database instance ID. This does not include the project ID.

3.16. Integration 175

https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/patch#request-body
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/patch#request-body

Airflow Documentation, Release 2.0.0.dev0+

• body (dict) – The request body, as described in https://cloud.google.com/sql/docs/
mysql/admin-api/v1beta4/databases/insert#request-body.

• project_id (str) – Project ID of the project that contains the instance. If set to None
or missing, the default project_id from the GCP connection is used.

Returns None

create_instance(*args, **kwargs)
Creates a new Cloud SQL instance.

Parameters

• body (dict) – Body required by the Cloud SQL insert API, as described in https://cloud.
google.com/sql/docs/mysql/admin-api/v1beta4/instances/insert#request-body.

• project_id (str) – Project ID of the project that contains the instance. If set to None
or missing, the default project_id from the GCP connection is used.

Returns None

delete_database(*args, **kwargs)
Deletes a database from a Cloud SQL instance.

Parameters

• instance (str) – Database instance ID. This does not include the project ID.

• database (str) – Name of the database to be deleted in the instance.

• project_id (str) – Project ID of the project that contains the instance. If set to None
or missing, the default project_id from the GCP connection is used.

Returns None

delete_instance(*args, **kwargs)
Deletes a Cloud SQL instance.

Parameters

• project_id (str) – Project ID of the project that contains the instance. If set to None
or missing, the default project_id from the GCP connection is used.

• instance (str) – Cloud SQL instance ID. This does not include the project ID.

Returns None

export_instance(*args, **kwargs)
Exports data from a Cloud SQL instance to a Cloud Storage bucket as a SQL dump or CSV file.

Parameters

• instance (str) – Database instance ID of the Cloud SQL instance. This does not
include the project ID.

• body (dict) – The request body, as described in https://cloud.google.com/sql/docs/
mysql/admin-api/v1beta4/instances/export#request-body

• project_id (str) – Project ID of the project that contains the instance. If set to None
or missing, the default project_id from the GCP connection is used.

Returns None

get_conn()
Retrieves connection to Cloud SQL.

Returns Google Cloud SQL services object.

176 Chapter 3. Content

https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/insert#request-body
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/insert#request-body
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/insert#request-body
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/insert#request-body
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/export#request-body
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/export#request-body

Airflow Documentation, Release 2.0.0.dev0+

Return type dict

get_database(*args, **kwargs)
Retrieves a database resource from a Cloud SQL instance.

Parameters

• instance (str) – Database instance ID. This does not include the project ID.

• database (str) – Name of the database in the instance.

• project_id (str) – Project ID of the project that contains the instance. If set to None
or missing, the default project_id from the GCP connection is used.

Returns A Cloud SQL database resource, as described in https://cloud.google.com/sql/docs/
mysql/admin-api/v1beta4/databases#resource.

Return type dict

get_instance(*args, **kwargs)
Retrieves a resource containing information about a Cloud SQL instance.

Parameters

• instance (str) – Database instance ID. This does not include the project ID.

• project_id (str) – Project ID of the project that contains the instance. If set to None
or missing, the default project_id from the GCP connection is used.

Returns A Cloud SQL instance resource.

Return type dict

import_instance(*args, **kwargs)
Imports data into a Cloud SQL instance from a SQL dump or CSV file in Cloud Storage.

Parameters

• instance (str) – Database instance ID. This does not include the project ID.

• body (dict) – The request body, as described in https://cloud.google.com/sql/docs/
mysql/admin-api/v1beta4/instances/export#request-body

• project_id (str) – Project ID of the project that contains the instance. If set to None
or missing, the default project_id from the GCP connection is used.

Returns None

patch_database(*args, **kwargs)
Updates a database resource inside a Cloud SQL instance.

This method supports patch semantics. See https://cloud.google.com/sql/docs/mysql/admin-api/how-tos/
performance#patch.

Parameters

• instance (str) – Database instance ID. This does not include the project ID.

• database (str) – Name of the database to be updated in the instance.

• body (dict) – The request body, as described in https://cloud.google.com/sql/docs/
mysql/admin-api/v1beta4/databases/insert#request-body.

• project_id (str) – Project ID of the project that contains the instance. If set to None
or missing, the default project_id from the GCP connection is used.

Returns None

3.16. Integration 177

https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases#resource
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases#resource
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/export#request-body
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/export#request-body
https://cloud.google.com/sql/docs/mysql/admin-api/how-tos/performance#patch
https://cloud.google.com/sql/docs/mysql/admin-api/how-tos/performance#patch
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/insert#request-body
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/insert#request-body

Airflow Documentation, Release 2.0.0.dev0+

patch_instance(*args, **kwargs)
Updates settings of a Cloud SQL instance.

Caution: This is not a partial update, so you must include values for all the settings that you want to retain.

Parameters

• body (dict) – Body required by the Cloud SQL patch API, as described in https://cloud.
google.com/sql/docs/mysql/admin-api/v1beta4/instances/patch#request-body.

• instance (str) – Cloud SQL instance ID. This does not include the project ID.

• project_id (str) – Project ID of the project that contains the instance. If set to None
or missing, the default project_id from the GCP connection is used.

Returns None

class airflow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook(gcp_cloudsql_conn_id=’google_cloud_sql_default’,
de-
fault_gcp_project_id=None)

Bases: airflow.hooks.base_hook.BaseHook

Serves DB connection configuration for Google Cloud SQL (Connections of gcpcloudsql:// type).

The hook is a “meta” one. It does not perform an actual connection. It is there to retrieve all the parameters
configured in gcpcloudsql:// connection, start/stop Cloud SQL Proxy if needed, dynamically generate Postgres
or MySQL connection in the database and return an actual Postgres or MySQL hook. The returned Post-
gres/MySQL hooks are using direct connection or Cloud SQL Proxy socket/TCP as configured.

Main parameters of the hook are retrieved from the standard URI components:

• user - User name to authenticate to the database (from login of the URI).

• password - Password to authenticate to the database (from password of the URI).

• public_ip - IP to connect to for public connection (from host of the URI).

• public_port - Port to connect to for public connection (from port of the URI).

• database - Database to connect to (from schema of the URI).

Remaining parameters are retrieved from the extras (URI query parameters):

• project_id - Optional, Google Cloud Platform project where the Cloud SQL instance exists. If miss-
ing, default project id passed is used.

• instance - Name of the instance of the Cloud SQL database instance.

• location - The location of the Cloud SQL instance (for example europe-west1).

• database_type - The type of the database instance (MySQL or Postgres).

• use_proxy - (default False) Whether SQL proxy should be used to connect to Cloud SQL DB.

• use_ssl - (default False) Whether SSL should be used to connect to Cloud SQL DB. You cannot use proxy
and SSL together.

• sql_proxy_use_tcp - (default False) If set to true, TCP is used to connect via proxy, otherwise UNIX
sockets are used.

• sql_proxy_binary_path - Optional path to Cloud SQL Proxy binary. If the binary is not specified or the
binary is not present, it is automatically downloaded.

• sql_proxy_version - Specific version of the proxy to download (for example v1.13). If not specified, the
latest version is downloaded.

• sslcert - Path to client certificate to authenticate when SSL is used.

178 Chapter 3. Content

https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/patch#request-body
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/patch#request-body

Airflow Documentation, Release 2.0.0.dev0+

• sslkey - Path to client private key to authenticate when SSL is used.

• sslrootcert - Path to server’s certificate to authenticate when SSL is used.

Parameters

• gcp_cloudsql_conn_id (str) – URL of the connection

• default_gcp_project_id (str) – Default project id used if project_id not specified
in the connection URL

cleanup_database_hook()
Clean up database hook after it was used.

create_connection(**kwargs)
Create connection in the Connection table, according to whether it uses proxy, TCP, UNIX sockets, SSL.
Connection ID will be randomly generated.

Parameters session – Session of the SQL Alchemy ORM (automatically generated with dec-
orator).

delete_connection(**kwargs)
Delete the dynamically created connection from the Connection table.

Parameters session – Session of the SQL Alchemy ORM (automatically generated with dec-
orator).

free_reserved_port()
Free TCP port. Makes it immediately ready to be used by Cloud SQL Proxy.

get_database_hook()
Retrieve database hook. This is the actual Postgres or MySQL database hook that uses proxy or connects
directly to the Google Cloud SQL database.

get_sqlproxy_runner()
Retrieve Cloud SQL Proxy runner. It is used to manage the proxy lifecycle per task.

Returns The Cloud SQL Proxy runner.

Return type CloudSqlProxyRunner

reserve_free_tcp_port()
Reserve free TCP port to be used by Cloud SQL Proxy

retrieve_connection(**kwargs)
Retrieves the dynamically created connection from the Connection table.

Parameters session – Session of the SQL Alchemy ORM (automatically generated with dec-
orator).

class airflow.contrib.hooks.gcp_sql_hook.CloudSqlProxyRunner(path_prefix, in-
stance_specification,
gcp_conn_id=’google_cloud_default’,
project_id=None,
sql_proxy_version=None,
sql_proxy_binary_path=None)

Bases: airflow.utils.log.logging_mixin.LoggingMixin

Downloads and runs cloud-sql-proxy as subprocess of the Python process.

The cloud-sql-proxy needs to be downloaded and started before we can connect to the Google Cloud SQL
instance via database connection. It establishes secure tunnel connection to the database. It authorizes using the
GCP credentials that are passed by the configuration.

3.16. Integration 179

Airflow Documentation, Release 2.0.0.dev0+

More details about the proxy can be found here: https://cloud.google.com/sql/docs/mysql/sql-proxy

get_proxy_version()
Returns version of the Cloud SQL Proxy.

get_socket_path()
Retrieves UNIX socket path used by Cloud SQL Proxy.

Returns The dynamically generated path for the socket created by the proxy.

Return type str

start_proxy()
Starts Cloud SQL Proxy.

You have to remember to stop the proxy if you started it!

stop_proxy()
Stops running proxy.

You should stop the proxy after you stop using it.

3.16.5.6 Cloud Bigtable

Cloud Bigtable Operators

• BigtableInstanceCreateOperator : creates a Cloud Bigtable instance.

• BigtableInstanceDeleteOperator : deletes a Google Cloud Bigtable instance.

• BigtableClusterUpdateOperator : updates the number of nodes in a Google Cloud Bigtable cluster.

• BigtableTableCreateOperator : creates a table in a Google Cloud Bigtable instance.

• BigtableTableDeleteOperator : deletes a table in a Google Cloud Bigtable instance.

• BigtableTableWaitForReplicationSensor : (sensor) waits for a table to be fully replicated.

180 Chapter 3. Content

https://cloud.google.com/sql/docs/mysql/sql-proxy

Airflow Documentation, Release 2.0.0.dev0+

BigtableInstanceCreateOperator

BigtableInstanceDeleteOperator

BigtableClusterUpdateOperator

BigtableTableCreateOperator

BigtableTableDeleteOperator

BigtableTableWaitForReplicationSensor

Cloud Bigtable Hook

3.16.5.7 Compute Engine

Compute Engine Operators

• GceInstanceStartOperator : start an existing Google Compute Engine instance.

• GceInstanceStopOperator : stop an existing Google Compute Engine instance.

• GceSetMachineTypeOperator : change the machine type for a stopped instance.

• GceInstanceTemplateCopyOperator : copy the Instance Template, applying specified changes.

• GceInstanceGroupManagerUpdateTemplateOperator : patch the Instance Group Manager, replacing source
Instance Template URL with the destination one.

The operators have the common base operator:

class airflow.contrib.operators.gcp_compute_operator.GceBaseOperator(**kwargs)
Bases: airflow.models.BaseOperator

Abstract base operator for Google Compute Engine operators to inherit from.

They also use Compute Engine Hook to communicate with Google Cloud Platform.

GceInstanceStartOperator

class airflow.contrib.operators.gcp_compute_operator.GceInstanceStartOperator(**kwargs)
Bases: airflow.contrib.operators.gcp_compute_operator.GceBaseOperator

Starts an instance in Google Compute Engine.

Parameters

• zone (str) – Google Cloud Platform zone where the instance exists.

• resource_id (str) – Name of the Compute Engine instance resource.

• project_id (str) – Optional, Google Cloud Platform Project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP
connection is used.

• gcp_conn_id (str) – Optional, The connection ID used to connect to Google Cloud
Platform. Defaults to ‘google_cloud_default’.

3.16. Integration 181

Airflow Documentation, Release 2.0.0.dev0+

• api_version (str) – Optional, API version used (for example v1 - or beta). Defaults to
v1.

• validate_body – Optional, If set to False, body validation is not performed. Defaults to
False.

GceInstanceStopOperator

class airflow.contrib.operators.gcp_compute_operator.GceInstanceStopOperator(**kwargs)
Bases: airflow.contrib.operators.gcp_compute_operator.GceBaseOperator

Stops an instance in Google Compute Engine.

Parameters

• zone (str) – Google Cloud Platform zone where the instance exists.

• resource_id (str) – Name of the Compute Engine instance resource.

• project_id (str) – Optional, Google Cloud Platform Project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP
connection is used.

• gcp_conn_id (str) – Optional, The connection ID used to connect to Google Cloud
Platform. Defaults to ‘google_cloud_default’.

• api_version (str) – Optional, API version used (for example v1 - or beta). Defaults to
v1.

• validate_body – Optional, If set to False, body validation is not performed. Defaults to
False.

GceSetMachineTypeOperator

class airflow.contrib.operators.gcp_compute_operator.GceSetMachineTypeOperator(**kwargs)
Bases: airflow.contrib.operators.gcp_compute_operator.GceBaseOperator

Changes the machine type for a stopped instance to the machine type specified in the request.

Parameters

• zone (str) – Google Cloud Platform zone where the instance exists.

• resource_id (str) – Name of the Compute Engine instance resource.

• body (dict) – Body required by the Compute Engine setMachineType API, as described
in https://cloud.google.com/compute/docs/reference/rest/v1/instances/setMachineType#
request-body

• project_id (str) – Optional, Google Cloud Platform Project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP
connection is used.

• gcp_conn_id (str) – Optional, The connection ID used to connect to Google Cloud
Platform. Defaults to ‘google_cloud_default’.

• api_version (str) – Optional, API version used (for example v1 - or beta). Defaults to
v1.

• validate_body (bool) – Optional, If set to False, body validation is not performed.
Defaults to False.

182 Chapter 3. Content

https://cloud.google.com/compute/docs/reference/rest/v1/instances/setMachineType#request-body
https://cloud.google.com/compute/docs/reference/rest/v1/instances/setMachineType#request-body

Airflow Documentation, Release 2.0.0.dev0+

GceInstanceTemplateCopyOperator

class airflow.contrib.operators.gcp_compute_operator.GceInstanceTemplateCopyOperator(**kwargs)
Bases: airflow.contrib.operators.gcp_compute_operator.GceBaseOperator

Copies the instance template, applying specified changes.

Parameters

• resource_id (str) – Name of the Instance Template

• body_patch (dict) – Patch to the body of instanceTemplates object following rfc7386
PATCH semantics. The body_patch content follows https://cloud.google.com/compute/
docs/reference/rest/v1/instanceTemplates Name field is required as we need to rename the
template, all the other fields are optional. It is important to follow PATCH semantics - ar-
rays are replaced fully, so if you need to update an array you should provide the whole target
array as patch element.

• project_id (str) – Optional, Google Cloud Platform Project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP
connection is used.

• request_id (str) – Optional, unique request_id that you might add to achieve full idem-
potence (for example when client call times out repeating the request with the same request
id will not create a new instance template again). It should be in UUID format as defined in
RFC 4122.

• gcp_conn_id (str) – Optional, The connection ID used to connect to Google Cloud
Platform. Defaults to ‘google_cloud_default’.

• api_version (str) – Optional, API version used (for example v1 - or beta). Defaults to
v1.

• validate_body (bool) – Optional, If set to False, body validation is not performed.
Defaults to False.

GceInstanceGroupManagerUpdateTemplateOperator

class airflow.contrib.operators.gcp_compute_operator.GceInstanceGroupManagerUpdateTemplateOperator(**kwargs)
Bases: airflow.contrib.operators.gcp_compute_operator.GceBaseOperator

Patches the Instance Group Manager, replacing source template URL with the destination one. API V1 does not
have update/patch operations for Instance Group Manager, so you must use beta or newer API version. Beta is
the default.

Parameters

• resource_id (str) – Name of the Instance Group Manager

• zone (str) – Google Cloud Platform zone where the Instance Group Manager exists.

• source_template (str) – URL of the template to replace.

• destination_template (str) – URL of the target template.

• project_id (str) – Optional, Google Cloud Platform Project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP
connection is used.

• request_id (str) – Optional, unique request_id that you might add to achieve full idem-
potence (for example when client call times out repeating the request with the same request

3.16. Integration 183

https://cloud.google.com/compute/docs/reference/rest/v1/instanceTemplates
https://cloud.google.com/compute/docs/reference/rest/v1/instanceTemplates

Airflow Documentation, Release 2.0.0.dev0+

id will not create a new instance template again). It should be in UUID format as defined in
RFC 4122.

• gcp_conn_id (str) – Optional, The connection ID used to connect to Google Cloud
Platform. Defaults to ‘google_cloud_default’.

• api_version (str) – Optional, API version used (for example v1 - or beta). Defaults to
v1.

• validate_body (bool) – Optional, If set to False, body validation is not performed.
Defaults to False.

Compute Engine Hook

class airflow.contrib.hooks.gcp_compute_hook.GceHook(api_version=’v1’,
gcp_conn_id=’google_cloud_default’,
delegate_to=None)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Hook for Google Compute Engine APIs.

All the methods in the hook where project_id is used must be called with keyword arguments rather than posi-
tional.

get_conn()
Retrieves connection to Google Compute Engine.

Returns Google Compute Engine services object

Return type dict

get_instance_group_manager(*args, **kwargs)
Retrieves Instance Group Manager by project_id, zone and resource_id. Must be called with keyword
arguments rather than positional.

Parameters

• zone (str) – Google Cloud Platform zone where the Instance Group Manager exists

• resource_id (str) – Name of the Instance Group Manager

• project_id (str) – Optional, Google Cloud Platform project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP
connection is used.

Returns Instance group manager representation as object according to https://cloud.google.com/
compute/docs/reference/rest/beta/instanceGroupManagers

Return type dict

get_instance_template(*args, **kwargs)
Retrieves instance template by project_id and resource_id. Must be called with keyword arguments rather
than positional.

Parameters

• resource_id (str) – Name of the instance template

• project_id (str) – Optional, Google Cloud Platform project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP
connection is used.

184 Chapter 3. Content

https://cloud.google.com/compute/docs/reference/rest/beta/instanceGroupManagers
https://cloud.google.com/compute/docs/reference/rest/beta/instanceGroupManagers

Airflow Documentation, Release 2.0.0.dev0+

Returns Instance template representation as object according to https://cloud.google.com/
compute/docs/reference/rest/v1/instanceTemplates

Return type dict

insert_instance_template(*args, **kwargs)
Inserts instance template using body specified Must be called with keyword arguments rather than posi-
tional.

Parameters

• body (dict) – Instance template representation as object according to https://cloud.
google.com/compute/docs/reference/rest/v1/instanceTemplates

• request_id (str) – Optional, unique request_id that you might add to achieve full
idempotence (for example when client call times out repeating the request with the same
request id will not create a new instance template again) It should be in UUID format as
defined in RFC 4122

• project_id (str) – Optional, Google Cloud Platform project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP
connection is used.

Returns None

patch_instance_group_manager(*args, **kwargs)
Patches Instance Group Manager with the specified body. Must be called with keyword arguments rather
than positional.

Parameters

• zone (str) – Google Cloud Platform zone where the Instance Group Manager exists

• resource_id (str) – Name of the Instance Group Manager

• body (dict) – Instance Group Manager representation as json-merge-patch object ac-
cording to https://cloud.google.com/compute/docs/reference/rest/beta/instanceTemplates/
patch

• request_id (str) – Optional, unique request_id that you might add to achieve full
idempotence (for example when client call times out repeating the request with the same
request id will not create a new instance template again). It should be in UUID format as
defined in RFC 4122

• project_id (str) – Optional, Google Cloud Platform project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP
connection is used.

:return None

set_machine_type(*args, **kwargs)
Sets machine type of an instance defined by project_id, zone and resource_id. Must be called with keyword
arguments rather than positional.

Parameters

• zone (str) – Google Cloud Platform zone where the instance exists.

• resource_id (str) – Name of the Compute Engine instance resource

• body (dict) – Body required by the Compute Engine setMachineType API, as described
in https://cloud.google.com/compute/docs/reference/rest/v1/instances/setMachineType

3.16. Integration 185

https://cloud.google.com/compute/docs/reference/rest/v1/instanceTemplates
https://cloud.google.com/compute/docs/reference/rest/v1/instanceTemplates
https://cloud.google.com/compute/docs/reference/rest/v1/instanceTemplates
https://cloud.google.com/compute/docs/reference/rest/v1/instanceTemplates
https://cloud.google.com/compute/docs/reference/rest/beta/instanceTemplates/patch
https://cloud.google.com/compute/docs/reference/rest/beta/instanceTemplates/patch
https://cloud.google.com/compute/docs/reference/rest/v1/instances/setMachineType

Airflow Documentation, Release 2.0.0.dev0+

• project_id (str) – Optional, Google Cloud Platform project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP
connection is used.

Returns None

start_instance(*args, **kwargs)
Starts an existing instance defined by project_id, zone and resource_id. Must be called with keyword
arguments rather than positional.

Parameters

• zone (str) – Google Cloud Platform zone where the instance exists

• resource_id (str) – Name of the Compute Engine instance resource

• project_id (str) – Optional, Google Cloud Platform project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP
connection is used.

Returns None

stop_instance(*args, **kwargs)
Stops an instance defined by project_id, zone and resource_id Must be called with keyword arguments
rather than positional.

Parameters

• zone (str) – Google Cloud Platform zone where the instance exists

• resource_id (str) – Name of the Compute Engine instance resource

• project_id (str) – Optional, Google Cloud Platform project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP
connection is used.

Returns None

members

3.16.5.8 Cloud Functions

Cloud Functions Operators

• GcfFunctionDeployOperator : deploy Google Cloud Function to Google Cloud Platform

• GcfFunctionDeleteOperator : delete Google Cloud Function in Google Cloud Platform

They also use Cloud Functions Hook to communicate with Google Cloud Platform.

GcfFunctionDeployOperator

class airflow.contrib.operators.gcp_function_operator.GcfFunctionDeployOperator(**kwargs)
Bases: airflow.models.BaseOperator

Creates a function in Google Cloud Functions. If a function with this name already exists, it will be updated.

Parameters

• location (str) – Google Cloud Platform region where the function should be created.

186 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• body (dict or google.cloud.functions.v1.CloudFunction) – Body of
the Cloud Functions definition. The body must be a Cloud Functions dictionary as described
in: https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions .
Different API versions require different variants of the Cloud Functions dictionary.

• project_id (str) – (Optional) Google Cloud Platform project ID where the function
should be created.

• gcp_conn_id (str) – (Optional) The connection ID used to connect to Google Cloud
Platform - default ‘google_cloud_default’.

• api_version (str) – (Optional) API version used (for example v1 - default - or
v1beta1).

• zip_path (str) – Path to zip file containing source code of the function. If the path is
set, the sourceUploadUrl should not be specified in the body or it should be empty. Then
the zip file will be uploaded using the upload URL generated via generateUploadUrl from
the Cloud Functions API.

• validate_body (bool) – If set to False, body validation is not performed.

GcfFunctionDeleteOperator

class airflow.contrib.operators.gcp_function_operator.GcfFunctionDeleteOperator(**kwargs)
Bases: airflow.models.BaseOperator

Deletes the specified function from Google Cloud Functions.

Parameters

• name (str) – A fully-qualified function name, matching the pattern:
^projects/[^/]+/locations/[^/]+/functions/[^/]+$

• gcp_conn_id (str) – The connection ID to use to connect to Google Cloud Platform.

• api_version (str) – API version used (for example v1 or v1beta1).

Cloud Functions Hook

class airflow.contrib.hooks.gcp_function_hook.GcfHook(api_version,
gcp_conn_id=’google_cloud_default’,
delegate_to=None)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Hook for the Google Cloud Functions APIs.

All the methods in the hook where project_id is used must be called with keyword arguments rather than posi-
tional.

create_new_function(*args, **kwargs)
Creates a new function in Cloud Function in the location specified in the body.

Parameters

• location (str) – The location of the function.

• body (dict) – The body required by the Cloud Functions insert API.

• project_id (str) – Optional, Google Cloud Project project_id where the function
belongs. If set to None or missing, the default project_id from the GCP connection is
used.

3.16. Integration 187

https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions

Airflow Documentation, Release 2.0.0.dev0+

Returns None

delete_function(name)
Deletes the specified Cloud Function.

Parameters name (str) – The name of the function.

Returns None

get_conn()
Retrieves the connection to Cloud Functions.

Returns Google Cloud Function services object.

Return type dict

get_function(name)
Returns the Cloud Function with the given name.

Parameters name (str) – Name of the function.

Returns A Cloud Functions object representing the function.

Return type dict

update_function(name, body, update_mask)
Updates Cloud Functions according to the specified update mask.

Parameters

• name (str) – The name of the function.

• body (dict) – The body required by the cloud function patch API.

• update_mask ([str]) – The update mask - array of fields that should be patched.

Returns None

upload_function_zip(*args, **kwargs)
Uploads zip file with sources.

Parameters

• location (str) – The location where the function is created.

• zip_path (str) – The path of the valid .zip file to upload.

• project_id (str) – Optional, Google Cloud Project project_id where the function
belongs. If set to None or missing, the default project_id from the GCP connection is
used.

Returns The upload URL that was returned by generateUploadUrl method.

3.16.5.9 Cloud DataFlow

DataFlow Operators

• DataFlowJavaOperator : launching Cloud Dataflow jobs written in Java.

• DataflowTemplateOperator : launching a templated Cloud DataFlow batch job.

• DataFlowPythonOperator : launching Cloud Dataflow jobs written in python.

188 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

DataFlowJavaOperator

class airflow.contrib.operators.dataflow_operator.DataFlowJavaOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a Java Cloud DataFlow batch job. The parameters of the operation will be passed to the job.

See also:

For more detail on job submission have a look at the reference: https://cloud.google.com/dataflow/pipelines/
specifying-exec-params

Parameters

• jar (str) – The reference to a self executing DataFlow jar (templated).

• job_name (str) – The ‘jobName’ to use when executing the DataFlow job (templated).
This ends up being set in the pipeline options, so any entry with key 'jobName' in
options will be overwritten.

• dataflow_default_options (dict) – Map of default job options.

• options (dict) – Map of job specific options.

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• poll_sleep (int) – The time in seconds to sleep between polling Google Cloud Plat-
form for the dataflow job status while the job is in the JOB_STATE_RUNNING state.

• job_class (str) – The name of the dataflow job class to be executued, it is often not the
main class configured in the dataflow jar file.

jar, options, and job_name are templated so you can use variables in them.

Note that both dataflow_default_options and options will be merged to specify pipeline execution
parameter, and dataflow_default_options is expected to save high-level options, for instances, project
and zone information, which apply to all dataflow operators in the DAG.

It’s a good practice to define dataflow_* parameters in the default_args of the dag like the project, zone and
staging location.

default_args = {
'dataflow_default_options': {

'project': 'my-gcp-project',
'zone': 'europe-west1-d',
'stagingLocation': 'gs://my-staging-bucket/staging/'

}
}

You need to pass the path to your dataflow as a file reference with the jar parameter, the jar needs to
be a self executing jar (see documentation here: https://beam.apache.org/documentation/runners/dataflow/
#self-executing-jar). Use options to pass on options to your job.

t1 = DataFlowJavaOperator(
task_id='datapflow_example',
jar='{{var.value.gcp_dataflow_base}}pipeline/build/libs/pipeline-example-1.0.

→˓jar',
options={

(continues on next page)

3.16. Integration 189

https://cloud.google.com/dataflow/pipelines/specifying-exec-params
https://cloud.google.com/dataflow/pipelines/specifying-exec-params
https://beam.apache.org/documentation/runners/dataflow/#self-executing-jar
https://beam.apache.org/documentation/runners/dataflow/#self-executing-jar

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

'autoscalingAlgorithm': 'BASIC',
'maxNumWorkers': '50',
'start': '{{ds}}',
'partitionType': 'DAY',
'labels': {'foo' : 'bar'}

},
gcp_conn_id='gcp-airflow-service-account',
dag=my-dag)

default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date':

(2016, 8, 1),
'email': ['alex@vanboxel.be'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=30),
'dataflow_default_options': {

'project': 'my-gcp-project',
'zone': 'us-central1-f',
'stagingLocation': 'gs://bucket/tmp/dataflow/staging/',

}
}

dag = DAG('test-dag', default_args=default_args)

task = DataFlowJavaOperator(
gcp_conn_id='gcp_default',
task_id='normalize-cal',
jar='{{var.value.gcp_dataflow_base}}pipeline-ingress-cal-normalize-1.0.jar',
options={

'autoscalingAlgorithm': 'BASIC',
'maxNumWorkers': '50',
'start': '{{ds}}',
'partitionType': 'DAY'

},
dag=dag)

DataflowTemplateOperator

class airflow.contrib.operators.dataflow_operator.DataflowTemplateOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a Templated Cloud DataFlow batch job. The parameters of the operation will be passed to the job.

Parameters

• template (str) – The reference to the DataFlow template.

• job_name – The ‘jobName’ to use when executing the DataFlow template (templated).

• dataflow_default_options (dict) – Map of default job environment options.

• parameters (dict) – Map of job specific parameters for the template.

190 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• poll_sleep (int) – The time in seconds to sleep between polling Google Cloud Plat-
form for the dataflow job status while the job is in the JOB_STATE_RUNNING state.

It’s a good practice to define dataflow_* parameters in the default_args of the dag like the project, zone and
staging location.

See also:

https://cloud.google.com/dataflow/docs/reference/rest/v1b3/LaunchTemplateParameters https://cloud.google.
com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment

default_args = {
'dataflow_default_options': {

'project': 'my-gcp-project',
'region': 'europe-west1',
'zone': 'europe-west1-d',
'tempLocation': 'gs://my-staging-bucket/staging/',
}

}
}

You need to pass the path to your dataflow template as a file reference with the template parameter. Use
parameters to pass on parameters to your job. Use environment to pass on runtime environment variables
to your job.

t1 = DataflowTemplateOperator(
task_id='datapflow_example',
template='{{var.value.gcp_dataflow_base}}',
parameters={

'inputFile': "gs://bucket/input/my_input.txt",
'outputFile': "gs://bucket/output/my_output.txt"

},
gcp_conn_id='gcp-airflow-service-account',
dag=my-dag)

template, dataflow_default_options, parameters, and job_name are templated so you can
use variables in them.

Note that dataflow_default_options is expected to save high-level options for project information,
which apply to all dataflow operators in the DAG.

See also:

https://cloud.google.com/dataflow/docs/reference/rest/v1b3 /LaunchTemplateParameters
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment For more de-
tail on job template execution have a look at the reference: https://cloud.google.com/dataflow/docs/
templates/executing-templates

DataFlowPythonOperator

class airflow.contrib.operators.dataflow_operator.DataFlowPythonOperator(**kwargs)
Bases: airflow.models.BaseOperator

3.16. Integration 191

https://cloud.google.com/dataflow/docs/reference/rest/v1b3/LaunchTemplateParameters
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment
https://cloud.google.com/dataflow/docs/reference/rest/v1b3
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment
https://cloud.google.com/dataflow/docs/templates/executing-templates
https://cloud.google.com/dataflow/docs/templates/executing-templates

Airflow Documentation, Release 2.0.0.dev0+

Launching Cloud Dataflow jobs written in python. Note that both dataflow_default_options and options will
be merged to specify pipeline execution parameter, and dataflow_default_options is expected to save high-level
options, for instances, project and zone information, which apply to all dataflow operators in the DAG.

See also:

For more detail on job submission have a look at the reference: https://cloud.google.com/dataflow/pipelines/
specifying-exec-params

Parameters

• py_file (str) – Reference to the python dataflow pipleline file.py, e.g.,
/some/local/file/path/to/your/python/pipeline/file.

• job_name (str) – The ‘job_name’ to use when executing the DataFlow job (templated).
This ends up being set in the pipeline options, so any entry with key 'jobName' or
'job_name' in options will be overwritten.

• py_options – Additional python options.

• dataflow_default_options (dict) – Map of default job options.

• options (dict) – Map of job specific options.

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• poll_sleep (int) – The time in seconds to sleep between polling Google Cloud Plat-
form for the dataflow job status while the job is in the JOB_STATE_RUNNING state.

execute(context)
Execute the python dataflow job.

DataFlowHook

class airflow.contrib.hooks.gcp_dataflow_hook.DataFlowHook(gcp_conn_id=’google_cloud_default’,
delegate_to=None,
poll_sleep=10)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

get_conn()
Returns a Google Cloud Dataflow service object.

3.16.5.10 Cloud DataProc

DataProc Operators

• DataprocClusterCreateOperator : Create a new cluster on Google Cloud Dataproc.

• DataprocClusterDeleteOperator : Delete a cluster on Google Cloud Dataproc.

• DataprocClusterScaleOperator : Scale up or down a cluster on Google Cloud Dataproc.

• DataProcPigOperator : Start a Pig query Job on a Cloud DataProc cluster.

• DataProcHiveOperator : Start a Hive query Job on a Cloud DataProc cluster.

• DataProcSparkSqlOperator : Start a Spark SQL query Job on a Cloud DataProc cluster.

192 Chapter 3. Content

https://cloud.google.com/dataflow/pipelines/specifying-exec-params
https://cloud.google.com/dataflow/pipelines/specifying-exec-params

Airflow Documentation, Release 2.0.0.dev0+

• DataProcSparkOperator : Start a Spark Job on a Cloud DataProc cluster.

• DataProcHadoopOperator : Start a Hadoop Job on a Cloud DataProc cluster.

• DataProcPySparkOperator : Start a PySpark Job on a Cloud DataProc cluster.

• DataprocWorkflowTemplateInstantiateOperator : Instantiate a WorkflowTemplate on Google Cloud Dataproc.

• DataprocWorkflowTemplateInstantiateInlineOperator : Instantiate a WorkflowTemplate Inline on Google Cloud
Dataproc.

DataprocClusterCreateOperator

class airflow.contrib.operators.dataproc_operator.DataprocClusterCreateOperator(**kwargs)
Bases: airflow.models.BaseOperator

Create a new cluster on Google Cloud Dataproc. The operator will wait until the creation is successful or an
error occurs in the creation process.

The parameters allow to configure the cluster. Please refer to

https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters

for a detailed explanation on the different parameters. Most of the configuration parameters detailed in the link
are available as a parameter to this operator.

Parameters

• cluster_name (str) – The name of the DataProc cluster to create. (templated)

• project_id (str) – The ID of the google cloud project in which to create the cluster.
(templated)

• num_workers (int) – The # of workers to spin up. If set to zero will spin up cluster in a
single node mode

• storage_bucket (str) – The storage bucket to use, setting to None lets dataproc gen-
erate a custom one for you

• init_actions_uris (list[string]) – List of GCS uri’s containing dataproc ini-
tialization scripts

• init_action_timeout (str) – Amount of time executable scripts in init_actions_uris
has to complete

• metadata (dict) – dict of key-value google compute engine metadata entries to add to
all instances

• image_version (str) – the version of software inside the Dataproc cluster

• custom_image (str) – custom Dataproc image for more info see https://cloud.google.
com/dataproc/docs/guides/dataproc-images

• properties (dict) – dict of properties to set on config files (e.g. spark-defaults.conf),
see https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters#
SoftwareConfig

• master_machine_type (str) – Compute engine machine type to use for the master
node

• master_disk_type (str) – Type of the boot disk for the master node (default
is pd-standard). Valid values: pd-ssd (Persistent Disk Solid State Drive) or
pd-standard (Persistent Disk Hard Disk Drive).

3.16. Integration 193

https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters
https://cloud.google.com/dataproc/docs/guides/dataproc-images
https://cloud.google.com/dataproc/docs/guides/dataproc-images
https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters#SoftwareConfig
https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters#SoftwareConfig

Airflow Documentation, Release 2.0.0.dev0+

• master_disk_size (int) – Disk size for the master node

• worker_machine_type (str) – Compute engine machine type to use for the worker
nodes

• worker_disk_type (str) – Type of the boot disk for the worker node (default
is pd-standard). Valid values: pd-ssd (Persistent Disk Solid State Drive) or
pd-standard (Persistent Disk Hard Disk Drive).

• worker_disk_size (int) – Disk size for the worker nodes

• num_preemptible_workers (int) – The # of preemptible worker nodes to spin up

• labels (dict) – dict of labels to add to the cluster

• zone (str) – The zone where the cluster will be located. (templated)

• network_uri (str) – The network uri to be used for machine communication, cannot
be specified with subnetwork_uri

• subnetwork_uri (str) – The subnetwork uri to be used for machine communication,
cannot be specified with network_uri

• internal_ip_only (bool) – If true, all instances in the cluster will only have internal
IP addresses. This can only be enabled for subnetwork enabled networks

• tags (list[string]) – The GCE tags to add to all instances

• region (str) – leave as ‘global’, might become relevant in the future. (templated)

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• service_account (str) – The service account of the dataproc instances.

• service_account_scopes (list[string]) – The URIs of service account scopes
to be included.

• idle_delete_ttl (int) – The longest duration that cluster would keep alive while
staying idle. Passing this threshold will cause cluster to be auto-deleted. A duration in
seconds.

• auto_delete_time (datetime.datetime) – The time when cluster will be auto-
deleted.

• auto_delete_ttl (int) – The life duration of cluster, the cluster will be auto-deleted
at the end of this duration. A duration in seconds. (If auto_delete_time is set this parameter
will be ignored)

• customer_managed_key (str) – The customer-managed key used for disk encryption
(projects/[PROJECT_STORING_KEYS]/locations/[LOCATION]/keyRings/[KEY_RING_NAME]/cryptoKeys/[KEY_NAME])

DataprocClusterScaleOperator

class airflow.contrib.operators.dataproc_operator.DataprocClusterScaleOperator(**kwargs)
Bases: airflow.models.BaseOperator

Scale, up or down, a cluster on Google Cloud Dataproc. The operator will wait until the cluster is re-scaled.

Example:

194 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

t1 = DataprocClusterScaleOperator(
task_id='dataproc_scale',
project_id='my-project',
cluster_name='cluster-1',
num_workers=10,
num_preemptible_workers=10,
graceful_decommission_timeout='1h',
dag=dag)

See also:

For more detail on about scaling clusters have a look at the reference: https://cloud.google.com/dataproc/docs/
concepts/configuring-clusters/scaling-clusters

Parameters

• cluster_name (str) – The name of the cluster to scale. (templated)

• project_id (str) – The ID of the google cloud project in which the cluster runs. (tem-
plated)

• region (str) – The region for the dataproc cluster. (templated)

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• num_workers (int) – The new number of workers

• num_preemptible_workers (int) – The new number of preemptible workers

• graceful_decommission_timeout (str) – Timeout for graceful YARN decomis-
sioning. Maximum value is 1d

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

DataprocClusterDeleteOperator

class airflow.contrib.operators.dataproc_operator.DataprocClusterDeleteOperator(**kwargs)
Bases: airflow.models.BaseOperator

Delete a cluster on Google Cloud Dataproc. The operator will wait until the cluster is destroyed.

Parameters

• cluster_name (str) – The name of the cluster to create. (templated)

• project_id (str) – The ID of the google cloud project in which the cluster runs. (tem-
plated)

• region (str) – leave as ‘global’, might become relevant in the future. (templated)

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

DataProcPigOperator

class airflow.contrib.operators.dataproc_operator.DataProcPigOperator(**kwargs)
Bases: airflow.models.BaseOperator

3.16. Integration 195

https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/scaling-clusters
https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/scaling-clusters

Airflow Documentation, Release 2.0.0.dev0+

Start a Pig query Job on a Cloud DataProc cluster. The parameters of the operation will be passed to the cluster.

It’s a good practice to define dataproc_* parameters in the default_args of the dag like the cluster name and
UDFs.

default_args = {
'cluster_name': 'cluster-1',
'dataproc_pig_jars': [

'gs://example/udf/jar/datafu/1.2.0/datafu.jar',
'gs://example/udf/jar/gpig/1.2/gpig.jar'

]
}

You can pass a pig script as string or file reference. Use variables to pass on variables for the pig script to be
resolved on the cluster or use the parameters to be resolved in the script as template parameters.

Example:

t1 = DataProcPigOperator(
task_id='dataproc_pig',
query='a_pig_script.pig',
variables={'out': 'gs://example/output/{{ds}}'},
dag=dag)

See also:

For more detail on about job submission have a look at the reference: https://cloud.google.com/dataproc/
reference/rest/v1/projects.regions.jobs

Parameters

• query (str) – The query or reference to the query file (pg or pig extension). (templated)

• query_uri (str) – The uri of a pig script on Cloud Storage.

• variables (dict) – Map of named parameters for the query. (templated)

• job_name (str) – The job name used in the DataProc cluster. This name by default is the
task_id appended with the execution data, but can be templated. The name will always be
appended with a random number to avoid name clashes. (templated)

• cluster_name (str) – The name of the DataProc cluster. (templated)

• dataproc_pig_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

• dataproc_pig_jars (list) – URIs to jars provisioned in Cloud Storage (example:
for UDFs and libs) and are ideal to put in default arguments.

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• region (str) – The specified region where the dataproc cluster is created.

• job_error_states (list) – Job states that should be considered error states. Any
states in this list will result in an error being raised and failure of the task. Eg, if
the CANCELLED state should also be considered a task failure, pass in ['ERROR',
'CANCELLED']. Possible values are currently only 'ERROR' and 'CANCELLED', but
could change in the future. Defaults to ['ERROR'].

196 Chapter 3. Content

https://cloud.google.com/dataproc/reference/rest/v1/projects.regions.jobs
https://cloud.google.com/dataproc/reference/rest/v1/projects.regions.jobs

Airflow Documentation, Release 2.0.0.dev0+

Variables dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API. This
is useful for identifying or linking to the job in the Google Cloud Console Dataproc UI, as the
actual “jobId” submitted to the Dataproc API is appended with an 8 character random string.

DataProcHiveOperator

class airflow.contrib.operators.dataproc_operator.DataProcHiveOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a Hive query Job on a Cloud DataProc cluster.

Parameters

• query (str) – The query or reference to the query file (q extension).

• query_uri (str) – The uri of a hive script on Cloud Storage.

• variables (dict) – Map of named parameters for the query.

• job_name (str) – The job name used in the DataProc cluster. This name by default is the
task_id appended with the execution data, but can be templated. The name will always be
appended with a random number to avoid name clashes.

• cluster_name (str) – The name of the DataProc cluster.

• dataproc_hive_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

• dataproc_hive_jars (list) – URIs to jars provisioned in Cloud Storage (example:
for UDFs and libs) and are ideal to put in default arguments.

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• region (str) – The specified region where the dataproc cluster is created.

• job_error_states (list) – Job states that should be considered error states. Any
states in this list will result in an error being raised and failure of the task. Eg, if
the CANCELLED state should also be considered a task failure, pass in ['ERROR',
'CANCELLED']. Possible values are currently only 'ERROR' and 'CANCELLED', but
could change in the future. Defaults to ['ERROR'].

Variables dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API. This
is useful for identifying or linking to the job in the Google Cloud Console Dataproc UI, as the
actual “jobId” submitted to the Dataproc API is appended with an 8 character random string.

DataProcSparkSqlOperator

class airflow.contrib.operators.dataproc_operator.DataProcSparkSqlOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a Spark SQL query Job on a Cloud DataProc cluster.

Parameters

• query (str) – The query or reference to the query file (q extension). (templated)

• query_uri (str) – The uri of a spark sql script on Cloud Storage.

3.16. Integration 197

Airflow Documentation, Release 2.0.0.dev0+

• variables (dict) – Map of named parameters for the query. (templated)

• job_name (str) – The job name used in the DataProc cluster. This name by default is the
task_id appended with the execution data, but can be templated. The name will always be
appended with a random number to avoid name clashes. (templated)

• cluster_name (str) – The name of the DataProc cluster. (templated)

• dataproc_spark_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

• dataproc_spark_jars (list) – URIs to jars provisioned in Cloud Storage (example:
for UDFs and libs) and are ideal to put in default arguments.

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• region (str) – The specified region where the dataproc cluster is created.

• job_error_states (list) – Job states that should be considered error states. Any
states in this list will result in an error being raised and failure of the task. Eg, if
the CANCELLED state should also be considered a task failure, pass in ['ERROR',
'CANCELLED']. Possible values are currently only 'ERROR' and 'CANCELLED', but
could change in the future. Defaults to ['ERROR'].

Variables dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API. This
is useful for identifying or linking to the job in the Google Cloud Console Dataproc UI, as the
actual “jobId” submitted to the Dataproc API is appended with an 8 character random string.

DataProcSparkOperator

class airflow.contrib.operators.dataproc_operator.DataProcSparkOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a Spark Job on a Cloud DataProc cluster.

Parameters

• main_jar (str) – URI of the job jar provisioned on Cloud Storage. (use this or the
main_class, not both together).

• main_class (str) – Name of the job class. (use this or the main_jar, not both together).

• arguments (list) – Arguments for the job. (templated)

• archives (list) – List of archived files that will be unpacked in the work directory.
Should be stored in Cloud Storage.

• files (list) – List of files to be copied to the working directory

• job_name (str) – The job name used in the DataProc cluster. This name by default is the
task_id appended with the execution data, but can be templated. The name will always be
appended with a random number to avoid name clashes. (templated)

• cluster_name (str) – The name of the DataProc cluster. (templated)

• dataproc_spark_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

• dataproc_spark_jars (list) – URIs to jars provisioned in Cloud Storage (example:
for UDFs and libs) and are ideal to put in default arguments.

198 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• region (str) – The specified region where the dataproc cluster is created.

• job_error_states (list) – Job states that should be considered error states. Any
states in this list will result in an error being raised and failure of the task. Eg, if
the CANCELLED state should also be considered a task failure, pass in ['ERROR',
'CANCELLED']. Possible values are currently only 'ERROR' and 'CANCELLED', but
could change in the future. Defaults to ['ERROR'].

Variables dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API. This
is useful for identifying or linking to the job in the Google Cloud Console Dataproc UI, as the
actual “jobId” submitted to the Dataproc API is appended with an 8 character random string.

DataProcHadoopOperator

class airflow.contrib.operators.dataproc_operator.DataProcHadoopOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a Hadoop Job on a Cloud DataProc cluster.

Parameters

• main_jar (str) – URI of the job jar provisioned on Cloud Storage. (use this or the
main_class, not both together).

• main_class (str) – Name of the job class. (use this or the main_jar, not both together).

• arguments (list) – Arguments for the job. (templated)

• archives (list) – List of archived files that will be unpacked in the work directory.
Should be stored in Cloud Storage.

• files (list) – List of files to be copied to the working directory

• job_name (str) – The job name used in the DataProc cluster. This name by default is the
task_id appended with the execution data, but can be templated. The name will always be
appended with a random number to avoid name clashes. (templated)

• cluster_name (str) – The name of the DataProc cluster. (templated)

• dataproc_hadoop_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

• dataproc_hadoop_jars (list) – URIs to jars provisioned in Cloud Storage (exam-
ple: for UDFs and libs) and are ideal to put in default arguments.

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• region (str) – The specified region where the dataproc cluster is created.

• job_error_states (list) – Job states that should be considered error states. Any
states in this list will result in an error being raised and failure of the task. Eg, if
the CANCELLED state should also be considered a task failure, pass in ['ERROR',
'CANCELLED']. Possible values are currently only 'ERROR' and 'CANCELLED', but
could change in the future. Defaults to ['ERROR'].

3.16. Integration 199

Airflow Documentation, Release 2.0.0.dev0+

Variables dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API. This
is useful for identifying or linking to the job in the Google Cloud Console Dataproc UI, as the
actual “jobId” submitted to the Dataproc API is appended with an 8 character random string.

DataProcPySparkOperator

class airflow.contrib.operators.dataproc_operator.DataProcPySparkOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a PySpark Job on a Cloud DataProc cluster.

Parameters

• main (str) – [Required] The Hadoop Compatible Filesystem (HCFS) URI of the main
Python file to use as the driver. Must be a .py file.

• arguments (list) – Arguments for the job. (templated)

• archives (list) – List of archived files that will be unpacked in the work directory.
Should be stored in Cloud Storage.

• files (list) – List of files to be copied to the working directory

• pyfiles (list) – List of Python files to pass to the PySpark framework. Supported file
types: .py, .egg, and .zip

• job_name (str) – The job name used in the DataProc cluster. This name by default is the
task_id appended with the execution data, but can be templated. The name will always be
appended with a random number to avoid name clashes. (templated)

• cluster_name (str) – The name of the DataProc cluster.

• dataproc_pyspark_properties (dict) – Map for the Pig properties. Ideal to put
in default arguments

• dataproc_pyspark_jars (list) – URIs to jars provisioned in Cloud Storage (exam-
ple: for UDFs and libs) and are ideal to put in default arguments.

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• region (str) – The specified region where the dataproc cluster is created.

• job_error_states (list) – Job states that should be considered error states. Any
states in this list will result in an error being raised and failure of the task. Eg, if
the CANCELLED state should also be considered a task failure, pass in ['ERROR',
'CANCELLED']. Possible values are currently only 'ERROR' and 'CANCELLED', but
could change in the future. Defaults to ['ERROR'].

Variables dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API. This
is useful for identifying or linking to the job in the Google Cloud Console Dataproc UI, as the
actual “jobId” submitted to the Dataproc API is appended with an 8 character random string.

DataprocWorkflowTemplateInstantiateOperator

class airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateInstantiateOperator(**kwargs)
Bases: airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateBaseOperator

200 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Instantiate a WorkflowTemplate on Google Cloud Dataproc. The operator will wait until the WorkflowTemplate
is finished executing.

See also:

Please refer to: https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.
workflowTemplates/instantiate

Parameters

• template_id (str) – The id of the template. (templated)

• project_id (str) – The ID of the google cloud project in which the template runs

• region (str) – leave as ‘global’, might become relevant in the future

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

DataprocWorkflowTemplateInstantiateInlineOperator

class airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateInstantiateInlineOperator(**kwargs)
Bases: airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateBaseOperator

Instantiate a WorkflowTemplate Inline on Google Cloud Dataproc. The operator will wait until the Work-
flowTemplate is finished executing.

See also:

Please refer to: https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.
workflowTemplates/instantiateInline

Parameters

• template (map) – The template contents. (templated)

• project_id (str) – The ID of the google cloud project in which the template runs

• region (str) – leave as ‘global’, might become relevant in the future

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

3.16.5.11 Cloud Datastore

Datastore Operators

• DatastoreExportOperator : Export entities from Google Cloud Datastore to Cloud Storage.

• DatastoreImportOperator : Import entities from Cloud Storage to Google Cloud Datastore.

3.16. Integration 201

https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.workflowTemplates/instantiate
https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.workflowTemplates/instantiate
https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.workflowTemplates/instantiateInline
https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.workflowTemplates/instantiateInline

Airflow Documentation, Release 2.0.0.dev0+

DatastoreExportOperator

class airflow.contrib.operators.datastore_export_operator.DatastoreExportOperator(**kwargs)
Bases: airflow.models.BaseOperator

Export entities from Google Cloud Datastore to Cloud Storage

Parameters

• bucket (str) – name of the cloud storage bucket to backup data

• namespace (str) – optional namespace path in the specified Cloud Storage bucket to
backup data. If this namespace does not exist in GCS, it will be created.

• datastore_conn_id (str) – the name of the Datastore connection id to use

• cloud_storage_conn_id (str) – the name of the cloud storage connection id to
force-write backup

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• entity_filter (dict) – description of what data from the project is included in
the export, refer to https://cloud.google.com/datastore/docs/reference/rest/Shared.Types/
EntityFilter

• labels (dict) – client-assigned labels for cloud storage

• polling_interval_in_seconds (int) – number of seconds to wait before polling
for execution status again

• overwrite_existing (bool) – if the storage bucket + namespace is not empty, it will
be emptied prior to exports. This enables overwriting existing backups.

• xcom_push (bool) – push operation name to xcom for reference

DatastoreImportOperator

class airflow.contrib.operators.datastore_import_operator.DatastoreImportOperator(**kwargs)
Bases: airflow.models.BaseOperator

Import entities from Cloud Storage to Google Cloud Datastore

Parameters

• bucket (str) – container in Cloud Storage to store data

• file (str) – path of the backup metadata file in the specified Cloud Storage bucket. It
should have the extension .overall_export_metadata

• namespace (str) – optional namespace of the backup metadata file in the specified Cloud
Storage bucket.

• entity_filter (dict) – description of what data from the project is included in
the export, refer to https://cloud.google.com/datastore/docs/reference/rest/Shared.Types/
EntityFilter

• labels (dict) – client-assigned labels for cloud storage

• datastore_conn_id (str) – the name of the connection id to use

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

202 Chapter 3. Content

https://cloud.google.com/datastore/docs/reference/rest/Shared.Types/EntityFilter
https://cloud.google.com/datastore/docs/reference/rest/Shared.Types/EntityFilter
https://cloud.google.com/datastore/docs/reference/rest/Shared.Types/EntityFilter
https://cloud.google.com/datastore/docs/reference/rest/Shared.Types/EntityFilter

Airflow Documentation, Release 2.0.0.dev0+

• polling_interval_in_seconds (int) – number of seconds to wait before polling
for execution status again

• xcom_push (bool) – push operation name to xcom for reference

DatastoreHook

class airflow.contrib.hooks.datastore_hook.DatastoreHook(datastore_conn_id=’google_cloud_datastore_default’,
delegate_to=None)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Interact with Google Cloud Datastore. This hook uses the Google Cloud Platform connection.

This object is not threads safe. If you want to make multiple requests simultaneously, you will need to create a
hook per thread.

allocate_ids(partialKeys)
Allocate IDs for incomplete keys. see https://cloud.google.com/datastore/docs/reference/rest/v1/projects/
allocateIds

Parameters partialKeys – a list of partial keys

Returns a list of full keys.

begin_transaction()
Get a new transaction handle

See also:

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/beginTransaction

Returns a transaction handle

commit(body)
Commit a transaction, optionally creating, deleting or modifying some entities.

See also:

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/commit

Parameters body – the body of the commit request

Returns the response body of the commit request

delete_operation(name)
Deletes the long-running operation

Parameters name – the name of the operation resource

export_to_storage_bucket(bucket, namespace=None, entity_filter=None, labels=None)
Export entities from Cloud Datastore to Cloud Storage for backup

get_conn(version=’v1’)
Returns a Google Cloud Datastore service object.

get_operation(name)
Gets the latest state of a long-running operation

Parameters name – the name of the operation resource

import_from_storage_bucket(bucket, file, namespace=None, entity_filter=None, labels=None)
Import a backup from Cloud Storage to Cloud Datastore

3.16. Integration 203

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/allocateIds
https://cloud.google.com/datastore/docs/reference/rest/v1/projects/allocateIds
https://cloud.google.com/datastore/docs/reference/rest/v1/projects/beginTransaction
https://cloud.google.com/datastore/docs/reference/rest/v1/projects/commit

Airflow Documentation, Release 2.0.0.dev0+

lookup(keys, read_consistency=None, transaction=None)
Lookup some entities by key

See also:

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/lookup

Parameters

• keys – the keys to lookup

• read_consistency – the read consistency to use. default, strong or eventual. Cannot
be used with a transaction.

• transaction – the transaction to use, if any.

Returns the response body of the lookup request.

poll_operation_until_done(name, polling_interval_in_seconds)
Poll backup operation state until it’s completed

rollback(transaction)
Roll back a transaction

See also:

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/rollback

Parameters transaction – the transaction to roll back

run_query(body)
Run a query for entities.

See also:

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/runQuery

Parameters body – the body of the query request

Returns the batch of query results.

3.16.5.12 Cloud ML Engine

Cloud ML Engine Operators

• MLEngineBatchPredictionOperator : Start a Cloud ML Engine batch prediction job.

• MLEngineModelOperator : Manages a Cloud ML Engine model.

• MLEngineTrainingOperator : Start a Cloud ML Engine training job.

• MLEngineVersionOperator : Manages a Cloud ML Engine model version.

MLEngineBatchPredictionOperator

class airflow.contrib.operators.mlengine_operator.MLEngineBatchPredictionOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a Google Cloud ML Engine prediction job.

204 Chapter 3. Content

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/lookup
https://cloud.google.com/datastore/docs/reference/rest/v1/projects/rollback
https://cloud.google.com/datastore/docs/reference/rest/v1/projects/runQuery

Airflow Documentation, Release 2.0.0.dev0+

NOTE: For model origin, users should consider exactly one from the three options below: 1. Populate ‘uri’
field only, which should be a GCS location that points to a tensorflow savedModel directory. 2. Populate
‘model_name’ field only, which refers to an existing model, and the default version of the model will be used. 3.
Populate both ‘model_name’ and ‘version_name’ fields, which refers to a specific version of a specific model.

In options 2 and 3, both model and version name should contain the minimal identifier. For instance, call

MLEngineBatchPredictionOperator(
...,
model_name='my_model',
version_name='my_version',
...)

if the desired model version is “projects/my_project/models/my_model/versions/my_version”.

See https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs for further documentation on the param-
eters.

Parameters

• project_id (str) – The Google Cloud project name where the prediction job is submit-
ted. (templated)

• job_id (str) – A unique id for the prediction job on Google Cloud ML Engine. (tem-
plated)

• data_format (str) – The format of the input data. It will default to
‘DATA_FORMAT_UNSPECIFIED’ if is not provided or is not one of [“TEXT”,
“TF_RECORD”, “TF_RECORD_GZIP”].

• input_paths (list of string) – A list of GCS paths of input data for batch pre-
diction. Accepting wildcard operator *, but only at the end. (templated)

• output_path (str) – The GCS path where the prediction results are written to. (tem-
plated)

• region (str) – The Google Compute Engine region to run the prediction job in. (tem-
plated)

• model_name (str) – The Google Cloud ML Engine model to use for prediction. If
version_name is not provided, the default version of this model will be used. Should not be
None if version_name is provided. Should be None if uri is provided. (templated)

• version_name (str) – The Google Cloud ML Engine model version to use for predic-
tion. Should be None if uri is provided. (templated)

• uri (str) – The GCS path of the saved model to use for prediction. Should be None if
model_name is provided. It should be a GCS path pointing to a tensorflow SavedModel.
(templated)

• max_worker_count (int) – The maximum number of workers to be used for parallel
processing. Defaults to 10 if not specified.

• runtime_version (str) – The Google Cloud ML Engine runtime version to use for
batch prediction.

• gcp_conn_id (str) – The connection ID used for connection to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have doamin-wide delegation enabled.

Raises: ValueError: if a unique model/version origin cannot be determined.

3.16. Integration 205

https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs

Airflow Documentation, Release 2.0.0.dev0+

MLEngineModelOperator

class airflow.contrib.operators.mlengine_operator.MLEngineModelOperator(**kwargs)
Bases: airflow.models.BaseOperator

Operator for managing a Google Cloud ML Engine model.

Parameters

• project_id (str) – The Google Cloud project name to which MLEngine model be-
longs. (templated)

• model (dict) – A dictionary containing the information about the model. If the operation
is create, then the model parameter should contain all the information about this model such
as name.

If the operation is get, the model parameter should contain the name of the model.

• operation (str) – The operation to perform. Available operations are:

– create: Creates a new model as provided by the model parameter.

– get: Gets a particular model where the name is specified in model.

• gcp_conn_id (str) – The connection ID to use when fetching connection info.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

MLEngineTrainingOperator

class airflow.contrib.operators.mlengine_operator.MLEngineTrainingOperator(**kwargs)
Bases: airflow.models.BaseOperator

Operator for launching a MLEngine training job.

Parameters

• project_id (str) – The Google Cloud project name within which MLEngine training
job should run (templated).

• job_id (str) – A unique templated id for the submitted Google MLEngine training job.
(templated)

• package_uris (str) – A list of package locations for MLEngine training job, which
should include the main training program + any additional dependencies. (templated)

• training_python_module (str) – The Python module name to run within
MLEngine training job after installing ‘package_uris’ packages. (templated)

• training_args (str) – A list of templated command line arguments to pass to the
MLEngine training program. (templated)

• region (str) – The Google Compute Engine region to run the MLEngine training job in
(templated).

• scale_tier (str) – Resource tier for MLEngine training job. (templated)

• master_type (str) – Cloud ML Engine machine name. Must be set when scale_tier is
CUSTOM. (templated)

• runtime_version (str) – The Google Cloud ML runtime version to use for training.
(templated)

206 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• python_version (str) – The version of Python used in training. (templated)

• job_dir (str) – A Google Cloud Storage path in which to store training outputs and
other data needed for training. (templated)

• gcp_conn_id (str) – The connection ID to use when fetching connection info.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• mode (str) – Can be one of ‘DRY_RUN’/’CLOUD’. In ‘DRY_RUN’ mode, no real train-
ing job will be launched, but the MLEngine training job request will be printed out. In
‘CLOUD’ mode, a real MLEngine training job creation request will be issued.

MLEngineVersionOperator

class airflow.contrib.operators.mlengine_operator.MLEngineVersionOperator(**kwargs)
Bases: airflow.models.BaseOperator

Operator for managing a Google Cloud ML Engine version.

Parameters

• project_id (str) – The Google Cloud project name to which MLEngine model be-
longs.

• model_name (str) – The name of the Google Cloud ML Engine model that the version
belongs to. (templated)

• version_name (str) – A name to use for the version being operated upon. If not None
and the version argument is None or does not have a value for the name key, then this will
be populated in the payload for the name key. (templated)

• version (dict) – A dictionary containing the information about the version. If the oper-
ation is create, version should contain all the information about this version such as name,
and deploymentUrl. If the operation is get or delete, the version parameter should contain
the name of the version. If it is None, the only operation possible would be list. (templated)

• operation (str) – The operation to perform. Available operations are:

– create: Creates a new version in the model specified by model_name, in which case
the version parameter should contain all the information to create that version (e.g. name,
deploymentUrl).

– get: Gets full information of a particular version in the model specified by model_name.
The name of the version should be specified in the version parameter.

– list: Lists all available versions of the model specified by model_name.

– delete: Deletes the version specified in version parameter from the model specified by
model_name). The name of the version should be specified in the version parameter.

• gcp_conn_id (str) – The connection ID to use when fetching connection info.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

3.16. Integration 207

Airflow Documentation, Release 2.0.0.dev0+

Cloud ML Engine Hook

MLEngineHook

class airflow.contrib.hooks.gcp_mlengine_hook.MLEngineHook(gcp_conn_id=’google_cloud_default’,
delegate_to=None)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

create_job(project_id, job, use_existing_job_fn=None)
Launches a MLEngine job and wait for it to reach a terminal state.

Parameters

• project_id (str) – The Google Cloud project id within which MLEngine job will be
launched.

• job (dict) – MLEngine Job object that should be provided to the MLEngine API, such
as:

{
'jobId': 'my_job_id',
'trainingInput': {
'scaleTier': 'STANDARD_1',
...

}
}

• use_existing_job_fn (function) – In case that a MLEngine job with the same
job_id already exist, this method (if provided) will decide whether we should use this
existing job, continue waiting for it to finish and returning the job object. It should accepts
a MLEngine job object, and returns a boolean value indicating whether it is OK to reuse
the existing job. If ‘use_existing_job_fn’ is not provided, we by default reuse the existing
MLEngine job.

Returns The MLEngine job object if the job successfully reach a terminal state (which might be
FAILED or CANCELLED state).

Return type dict

create_model(project_id, model)
Create a Model. Blocks until finished.

create_version(project_id, model_name, version_spec)
Creates the Version on Google Cloud ML Engine.

Returns the operation if the version was created successfully and raises an error otherwise.

delete_version(project_id, model_name, version_name)
Deletes the given version of a model. Blocks until finished.

get_conn()
Returns a Google MLEngine service object.

get_model(project_id, model_name)
Gets a Model. Blocks until finished.

list_versions(project_id, model_name)
Lists all available versions of a model. Blocks until finished.

set_default_version(project_id, model_name, version_name)
Sets a version to be the default. Blocks until finished.

208 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

3.16.5.13 Cloud Storage

Storage Operators

• FileToGoogleCloudStorageOperator : Uploads a file to Google Cloud Storage.

• GoogleCloudStorageCreateBucketOperator : Creates a new ACL entry on the specified bucket.

• GoogleCloudStorageBucketCreateAclEntryOperator : Creates a new cloud storage bucket.

• GoogleCloudStorageDownloadOperator : Downloads a file from Google Cloud Storage.

• GoogleCloudStorageListOperator : List all objects from the bucket with the give string prefix and delimiter in
name.

• GoogleCloudStorageToBigQueryOperator : Creates a new ACL entry on the specified object.

• GoogleCloudStorageObjectCreateAclEntryOperator : Loads files from Google cloud storage into BigQuery.

• GoogleCloudStorageToGoogleCloudStorageOperator : Copies objects from a bucket to another, with renaming
if requested.

• GoogleCloudStorageToGoogleCloudStorageTransferOperator : Copies objects from a bucket to another using
Google Transfer service.

• MySqlToGoogleCloudStorageOperator: Copy data from any MySQL Database to Google cloud storage in
JSON format.

FileToGoogleCloudStorageOperator

class airflow.contrib.operators.file_to_gcs.FileToGoogleCloudStorageOperator(**kwargs)
Bases: airflow.models.BaseOperator

Uploads a file to Google Cloud Storage. Optionally can compress the file for upload.

Parameters

• src (str) – Path to the local file. (templated)

• dst (str) – Destination path within the specified bucket. (templated)

• bucket (str) – The bucket to upload to. (templated)

• google_cloud_storage_conn_id (str) – The Airflow connection ID to upload
with

• mime_type (str) – The mime-type string

• delegate_to (str) – The account to impersonate, if any

• gzip (bool) – Allows for file to be compressed and uploaded as gzip

execute(context)
Uploads the file to Google cloud storage

GoogleCloudStorageBucketCreateAclEntryOperator

class airflow.contrib.operators.gcs_acl_operator.GoogleCloudStorageBucketCreateAclEntryOperator(**kwargs)
Bases: airflow.models.BaseOperator

Creates a new ACL entry on the specified bucket.

3.16. Integration 209

Airflow Documentation, Release 2.0.0.dev0+

Parameters

• bucket (str) – Name of a bucket.

• entity (str) – The entity holding the permission, in one of the following forms: user-
userId, user-email, group-groupId, group-email, domain-domain, project-team-projectId,
allUsers, allAuthenticatedUsers

• role (str) – The access permission for the entity. Acceptable values are: “OWNER”,
“READER”, “WRITER”.

• user_project (str) – (Optional) The project to be billed for this request. Required for
Requester Pays buckets.

• google_cloud_storage_conn_id (str) – The connection ID to use when connect-
ing to Google Cloud Storage.

GoogleCloudStorageCreateBucketOperator

class airflow.contrib.operators.gcs_operator.GoogleCloudStorageCreateBucketOperator(**kwargs)
Bases: airflow.models.BaseOperator

Creates a new bucket. Google Cloud Storage uses a flat namespace, so you can’t create a bucket with a name
that is already in use.

See also:

For more information, see Bucket Naming Guidelines: https://cloud.google.com/storage/docs/
bucketnaming.html#requirements

Parameters

• bucket_name (str) – The name of the bucket. (templated)

• storage_class (str) – This defines how objects in the bucket are stored and deter-
mines the SLA and the cost of storage (templated). Values include

– MULTI_REGIONAL

– REGIONAL

– STANDARD

– NEARLINE

– COLDLINE.

If this value is not specified when the bucket is created, it will default to STANDARD.

• location (str) – The location of the bucket. (templated) Object data for objects in the
bucket resides in physical storage within this region. Defaults to US.

See also:

https://developers.google.com/storage/docs/bucket-locations

• project_id (str) – The ID of the GCP Project. (templated)

• labels (dict) – User-provided labels, in key/value pairs.

• google_cloud_storage_conn_id (str) – The connection ID to use when connect-
ing to Google cloud storage.

210 Chapter 3. Content

https://cloud.google.com/storage/docs/bucketnaming.html#requirements
https://cloud.google.com/storage/docs/bucketnaming.html#requirements
https://developers.google.com/storage/docs/bucket-locations

Airflow Documentation, Release 2.0.0.dev0+

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

Example: The following Operator would create a new bucket test-bucket with MULTI_REGIONAL stor-
age class in EU region

CreateBucket = GoogleCloudStorageCreateBucketOperator(
task_id='CreateNewBucket',
bucket_name='test-bucket',
storage_class='MULTI_REGIONAL',
location='EU',
labels={'env': 'dev', 'team': 'airflow'},
google_cloud_storage_conn_id='airflow-service-account'

)

GoogleCloudStorageDownloadOperator

class airflow.contrib.operators.gcs_download_operator.GoogleCloudStorageDownloadOperator(**kwargs)
Bases: airflow.models.BaseOperator

Downloads a file from Google Cloud Storage.

Parameters

• bucket (str) – The Google cloud storage bucket where the object is. (templated)

• object (str) – The name of the object to download in the Google cloud storage bucket.
(templated)

• filename (str) – The file path on the local file system (where the operator is being
executed) that the file should be downloaded to. (templated) If no filename passed, the
downloaded data will not be stored on the local file system.

• store_to_xcom_key (str) – If this param is set, the operator will push the contents of
the downloaded file to XCom with the key set in this parameter. If not set, the downloaded
data will not be pushed to XCom. (templated)

• google_cloud_storage_conn_id (str) – The connection ID to use when connect-
ing to Google cloud storage.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

GoogleCloudStorageListOperator

class airflow.contrib.operators.gcs_list_operator.GoogleCloudStorageListOperator(**kwargs)
Bases: airflow.models.BaseOperator

List all objects from the bucket with the give string prefix and delimiter in name.

This operator returns a python list with the name of objects which can be used by xcom in the down-
stream task.

Parameters

• bucket (str) – The Google cloud storage bucket to find the objects. (templated)

3.16. Integration 211

Airflow Documentation, Release 2.0.0.dev0+

• prefix (str) – Prefix string which filters objects whose name begin with this prefix.
(templated)

• delimiter (str) – The delimiter by which you want to filter the objects. (templated)
For e.g to lists the CSV files from in a directory in GCS you would use delimiter=’.csv’.

• google_cloud_storage_conn_id (str) – The connection ID to use when connect-
ing to Google cloud storage.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

Example: The following Operator would list all the Avro files from sales/sales-2017 folder in data
bucket.

GCS_Files = GoogleCloudStorageListOperator(
task_id='GCS_Files',
bucket='data',
prefix='sales/sales-2017/',
delimiter='.avro',
google_cloud_storage_conn_id=google_cloud_conn_id

)

GoogleCloudStorageObjectCreateAclEntryOperator

class airflow.contrib.operators.gcs_acl_operator.GoogleCloudStorageObjectCreateAclEntryOperator(**kwargs)
Bases: airflow.models.BaseOperator

Creates a new ACL entry on the specified object.

Parameters

• bucket (str) – Name of a bucket.

• object_name (str) – Name of the object. For information about how to URL encode ob-
ject names to be path safe, see: https://cloud.google.com/storage/docs/json_api/#encoding

• entity (str) – The entity holding the permission, in one of the following forms: user-
userId, user-email, group-groupId, group-email, domain-domain, project-team-projectId,
allUsers, allAuthenticatedUsers

• role (str) – The access permission for the entity. Acceptable values are: “OWNER”,
“READER”.

• generation (str) – (Optional) If present, selects a specific revision of this object (as
opposed to the latest version, the default).

• user_project (str) – (Optional) The project to be billed for this request. Required for
Requester Pays buckets.

• google_cloud_storage_conn_id (str) – The connection ID to use when connect-
ing to Google Cloud Storage.

GoogleCloudStorageToBigQueryOperator

class airflow.contrib.operators.gcs_to_bq.GoogleCloudStorageToBigQueryOperator(**kwargs)
Bases: airflow.models.BaseOperator

Loads files from Google cloud storage into BigQuery.

212 Chapter 3. Content

https://cloud.google.com/storage/docs/json_api/#encoding

Airflow Documentation, Release 2.0.0.dev0+

The schema to be used for the BigQuery table may be specified in one of two ways. You may either directly
pass the schema fields in, or you may point the operator to a Google cloud storage object name. The object in
Google cloud storage must be a JSON file with the schema fields in it.

Parameters

• bucket (str) – The bucket to load from. (templated)

• source_objects (list of str) – List of Google cloud storage URIs to load from.
(templated) If source_format is ‘DATASTORE_BACKUP’, the list must only contain a sin-
gle URI.

• destination_project_dataset_table (str) – The dotted
(<project>.)<dataset>.<table> BigQuery table to load data into. If <project> is not
included, project will be the project defined in the connection json. (templated)

• schema_fields (list) – If set, the schema field list as defined here: https://cloud.
google.com/bigquery/docs/reference/v2/jobs#configuration.load Should not be set when
source_format is ‘DATASTORE_BACKUP’.

• schema_object (str) – If set, a GCS object path pointing to a .json file that contains
the schema for the table. (templated)

• source_format (str) – File format to export.

• compression (str) – [Optional] The compression type of the data source. Possible
values include GZIP and NONE. The default value is NONE. This setting is ignored for
Google Cloud Bigtable, Google Cloud Datastore backups and Avro formats.

• create_disposition (str) – The create disposition if the table doesn’t exist.

• skip_leading_rows (int) – Number of rows to skip when loading from a CSV.

• write_disposition (str) – The write disposition if the table already exists.

• field_delimiter (str) – The delimiter to use when loading from a CSV.

• max_bad_records (int) – The maximum number of bad records that BigQuery can
ignore when running the job.

• quote_character (str) – The value that is used to quote data sections in a CSV file.

• ignore_unknown_values (bool) – [Optional] Indicates if BigQuery should allow
extra values that are not represented in the table schema. If true, the extra values are ignored.
If false, records with extra columns are treated as bad records, and if there are too many bad
records, an invalid error is returned in the job result.

• allow_quoted_newlines (bool) – Whether to allow quoted newlines (true) or not
(false).

• allow_jagged_rows (bool) – Accept rows that are missing trailing optional columns.
The missing values are treated as nulls. If false, records with missing trailing columns are
treated as bad records, and if there are too many bad records, an invalid error is returned in
the job result. Only applicable to CSV, ignored for other formats.

• max_id_key (str) – If set, the name of a column in the BigQuery table that’s to be
loaded. This will be used to select the MAX value from BigQuery after the load occurs. The
results will be returned by the execute() command, which in turn gets stored in XCom for
future operators to use. This can be helpful with incremental loads–during future executions,
you can pick up from the max ID.

• bigquery_conn_id (str) – Reference to a specific BigQuery hook.

3.16. Integration 213

https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load
https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load

Airflow Documentation, Release 2.0.0.dev0+

• google_cloud_storage_conn_id (str) – Reference to a specific Google cloud
storage hook.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• schema_update_options (list) – Allows the schema of the destination table to be
updated as a side effect of the load job.

• src_fmt_configs (dict) – configure optional fields specific to the source format

• external_table (bool) – Flag to specify if the destination table should be a BigQuery
external table. Default Value is False.

• time_partitioning (dict) – configure optional time partitioning fields i.e. partition
by field, type and expiration as per API specifications. Note that ‘field’ is not available in
concurrency with dataset.table$partition.

• cluster_fields (list of str) – Request that the result of this load be stored sorted
by one or more columns. This is only available in conjunction with time_partitioning. The
order of columns given determines the sort order. Not applicable for external tables.

GoogleCloudStorageToGoogleCloudStorageOperator

class airflow.contrib.operators.gcs_to_gcs.GoogleCloudStorageToGoogleCloudStorageOperator(**kwargs)
Bases: airflow.models.BaseOperator

Copies objects from a bucket to another, with renaming if requested.

Parameters

• source_bucket (str) – The source Google cloud storage bucket where the object is.
(templated)

• source_object (str) – The source name of the object to copy in the Google cloud
storage bucket. (templated) You can use only one wildcard for objects (filenames) within
your bucket. The wildcard can appear inside the object name or at the end of the object
name. Appending a wildcard to the bucket name is unsupported.

• destination_bucket (str) – The destination Google cloud storage bucket where the
object should be. (templated)

• destination_object (str) – The destination name of the object in the destination
Google cloud storage bucket. (templated) If a wildcard is supplied in the source_object ar-
gument, this is the prefix that will be prepended to the final destination objects’ paths. Note
that the source path’s part before the wildcard will be removed; if it needs to be retained
it should be appended to destination_object. For example, with prefix foo/* and destina-
tion_object blah/, the file foo/baz will be copied to blah/baz; to retain the prefix
write the destination_object as e.g. blah/foo, in which case the copied file will be named
blah/foo/baz.

• move_object (bool) – When move object is True, the object is moved instead of copied
to the new location. This is the equivalent of a mv command as opposed to a cp command.

• google_cloud_storage_conn_id (str) – The connection ID to use when connect-
ing to Google cloud storage.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

214 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• last_modified_time (datetime) – When specified, if the object(s) were modified
after last_modified_time, they will be copied/moved. If tzinfo has not been set, UTC will
be assumed.

Examples: The following Operator would copy a single file named sales/sales-2017/january.
avro in the data bucket to the file named copied_sales/2017/january-backup.avro in
the data_backup bucket

copy_single_file = GoogleCloudStorageToGoogleCloudStorageOperator(
task_id='copy_single_file',
source_bucket='data',
source_object='sales/sales-2017/january.avro',
destination_bucket='data_backup',
destination_object='copied_sales/2017/january-backup.avro',
google_cloud_storage_conn_id=google_cloud_conn_id

)

The following Operator would copy all the Avro files from sales/sales-2017 folder (i.e. with names
starting with that prefix) in data bucket to the copied_sales/2017 folder in the data_backup
bucket.

copy_files = GoogleCloudStorageToGoogleCloudStorageOperator(
task_id='copy_files',
source_bucket='data',
source_object='sales/sales-2017/*.avro',
destination_bucket='data_backup',
destination_object='copied_sales/2017/',
google_cloud_storage_conn_id=google_cloud_conn_id

)

The following Operator would move all the Avro files from sales/sales-2017 folder (i.e. with names
starting with that prefix) in data bucket to the same folder in the data_backup bucket, deleting the
original files in the process.

move_files = GoogleCloudStorageToGoogleCloudStorageOperator(
task_id='move_files',
source_bucket='data',
source_object='sales/sales-2017/*.avro',
destination_bucket='data_backup',
move_object=True,
google_cloud_storage_conn_id=google_cloud_conn_id

)

GoogleCloudStorageToGoogleCloudStorageTransferOperator

class airflow.contrib.operators.gcs_to_gcs_transfer_operator.GoogleCloudStorageToGoogleCloudStorageTransferOperator(**kwargs)
Bases: airflow.models.BaseOperator

Copies objects from a bucket to another using the GCP Storage Transfer Service.

Parameters

• source_bucket (str) – The source Google cloud storage bucket where the object is.
(templated)

• destination_bucket (str) – The destination Google cloud storage bucket where the
object should be. (templated)

3.16. Integration 215

Airflow Documentation, Release 2.0.0.dev0+

• project_id (str) – The ID of the Google Cloud Platform Console project that owns the
job

• gcp_conn_id (str) – Optional connection ID to use when connecting to Google Cloud
Storage.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• description (str) – Optional transfer service job description

• schedule (dict) – Optional transfer service schedule; see https://cloud.google.com/
storage-transfer/docs/reference/rest/v1/transferJobs. If not set, run transfer job once as soon
as the operator runs

• object_conditions (dict) – Optional transfer service object conditions; see https://
cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec#ObjectConditions

• transfer_options (dict) – Optional transfer service transfer options; see https://
cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec#TransferOptions

• wait (bool) – Wait for transfer to finish; defaults to True

Example:

gcs_to_gcs_transfer_op = GoogleCloudStorageToGoogleCloudStorageTransferOperator(
task_id='gcs_to_gcs_transfer_example',
source_bucket='my-source-bucket',
destination_bucket='my-destination-bucket',
project_id='my-gcp-project',
dag=my_dag)

MySqlToGoogleCloudStorageOperator

class airflow.contrib.operators.mysql_to_gcs.MySqlToGoogleCloudStorageOperator(**kwargs)
Bases: airflow.models.BaseOperator

Copy data from MySQL to Google cloud storage in JSON format.

Parameters

• sql (str) – The SQL to execute on the MySQL table.

• bucket (str) – The bucket to upload to.

• filename (str) – The filename to use as the object name when uploading to Google
cloud storage. A {} should be specified in the filename to allow the operator to inject file
numbers in cases where the file is split due to size.

• schema_filename (str) – If set, the filename to use as the object name when upload-
ing a .json file containing the BigQuery schema fields for the table that was dumped from
MySQL.

• approx_max_file_size_bytes (long) – This operator supports the ability to split
large table dumps into multiple files (see notes in the filenamed param docs above). Google
cloud storage allows for files to be a maximum of 4GB. This param allows developers to
specify the file size of the splits.

• mysql_conn_id (str) – Reference to a specific MySQL hook.

• google_cloud_storage_conn_id (str) – Reference to a specific Google cloud
storage hook.

216 Chapter 3. Content

https://cloud.google.com/storage-transfer/docs/reference/rest/v1/transferJobs
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/transferJobs
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec#ObjectConditions
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec#ObjectConditions
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec#TransferOptions
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec#TransferOptions

Airflow Documentation, Release 2.0.0.dev0+

• schema (str or list) – The schema to use, if any. Should be a list of dict or a str.
Pass a string if using Jinja template, otherwise, pass a list of dict. Examples could be seen:
https://cloud.google.com/bigquery/docs /schemas#specifying_a_json_schema_file

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

classmethod type_map(mysql_type)
Helper function that maps from MySQL fields to BigQuery fields. Used when a schema_filename is set.

GoogleCloudStorageHook

class airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook(google_cloud_storage_conn_id=’google_cloud_default’,
delegate_to=None)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Interact with Google Cloud Storage. This hook uses the Google Cloud Platform connection.

copy(source_bucket, source_object, destination_bucket=None, destination_object=None)
Copies an object from a bucket to another, with renaming if requested.

destination_bucket or destination_object can be omitted, in which case source bucket/object is used, but
not both.

Parameters

• source_bucket (str) – The bucket of the object to copy from.

• source_object (str) – The object to copy.

• destination_bucket (str) – The destination of the object to copied to. Can be
omitted; then the same bucket is used.

• destination_object (str) – The (renamed) path of the object if given. Can be
omitted; then the same name is used.

create_bucket(bucket_name, storage_class=’MULTI_REGIONAL’, location=’US’,
project_id=None, labels=None)

Creates a new bucket. Google Cloud Storage uses a flat namespace, so you can’t create a bucket with a
name that is already in use.

See also:

For more information, see Bucket Naming Guidelines: https://cloud.google.com/storage/docs/
bucketnaming.html#requirements

Parameters

• bucket_name (str) – The name of the bucket.

• storage_class (str) – This defines how objects in the bucket are stored and deter-
mines the SLA and the cost of storage. Values include

– MULTI_REGIONAL

– REGIONAL

– STANDARD

– NEARLINE

– COLDLINE.

If this value is not specified when the bucket is created, it will default to STANDARD.

3.16. Integration 217

https://cloud.google.com/bigquery/docs
https://cloud.google.com/storage/docs/bucketnaming.html#requirements
https://cloud.google.com/storage/docs/bucketnaming.html#requirements

Airflow Documentation, Release 2.0.0.dev0+

• location (str) – The location of the bucket. Object data for objects in the bucket
resides in physical storage within this region. Defaults to US.

See also:

https://developers.google.com/storage/docs/bucket-locations

• project_id (str) – The ID of the GCP Project.

• labels (dict) – User-provided labels, in key/value pairs.

Returns If successful, it returns the id of the bucket.

delete(bucket, object, generation=None)
Delete an object if versioning is not enabled for the bucket, or if generation parameter is used.

Parameters

• bucket (str) – name of the bucket, where the object resides

• object (str) – name of the object to delete

• generation (str) – if present, permanently delete the object of this generation

Returns True if succeeded

download(bucket, object, filename=None)
Get a file from Google Cloud Storage.

Parameters

• bucket (str) – The bucket to fetch from.

• object (str) – The object to fetch.

• filename (str) – If set, a local file path where the file should be written to.

exists(bucket, object)
Checks for the existence of a file in Google Cloud Storage.

Parameters

• bucket (str) – The Google cloud storage bucket where the object is.

• object (str) – The name of the object to check in the Google cloud storage bucket.

get_conn()
Returns a Google Cloud Storage service object.

get_crc32c(bucket, object)
Gets the CRC32c checksum of an object in Google Cloud Storage.

Parameters

• bucket (str) – The Google cloud storage bucket where the object is.

• object (str) – The name of the object to check in the Google cloud storage bucket.

get_md5hash(bucket, object)
Gets the MD5 hash of an object in Google Cloud Storage.

Parameters

• bucket (str) – The Google cloud storage bucket where the object is.

• object (str) – The name of the object to check in the Google cloud storage bucket.

218 Chapter 3. Content

https://developers.google.com/storage/docs/bucket-locations

Airflow Documentation, Release 2.0.0.dev0+

get_size(bucket, object)
Gets the size of a file in Google Cloud Storage.

Parameters

• bucket (str) – The Google cloud storage bucket where the object is.

• object (str) – The name of the object to check in the Google cloud storage bucket.

insert_bucket_acl(bucket, entity, role, user_project)
Creates a new ACL entry on the specified bucket. See: https://cloud.google.com/storage/docs/json_api/v1/
bucketAccessControls/insert

Parameters

• bucket (str) – Name of a bucket.

• entity (str) – The entity holding the permission, in one of the following forms:
user-userId, user-email, group-groupId, group-email, domain-domain, project-team-
projectId, allUsers, allAuthenticatedUsers. See: https://cloud.google.com/storage/docs/
access-control/lists#scopes

• role (str) – The access permission for the entity. Acceptable values are: “OWNER”,
“READER”, “WRITER”.

• user_project (str) – (Optional) The project to be billed for this request. Required
for Requester Pays buckets.

insert_object_acl(bucket, object_name, entity, role, generation, user_project)
Creates a new ACL entry on the specified object. See: https://cloud.google.com/storage/docs/json_api/v1/
objectAccessControls/insert

Parameters

• bucket (str) – Name of a bucket.

• object_name (str) – Name of the object. For information about how to URL en-
code object names to be path safe, see: https://cloud.google.com/storage/docs/json_api/
#encoding

• entity (str) – The entity holding the permission, in one of the following forms:
user-userId, user-email, group-groupId, group-email, domain-domain, project-team-
projectId, allUsers, allAuthenticatedUsers See: https://cloud.google.com/storage/docs/
access-control/lists#scopes

• role (str) – The access permission for the entity. Acceptable values are: “OWNER”,
“READER”.

• generation (str) – (Optional) If present, selects a specific revision of this object (as
opposed to the latest version, the default).

• user_project (str) – (Optional) The project to be billed for this request. Required
for Requester Pays buckets.

is_updated_after(bucket, object, ts)
Checks if an object is updated in Google Cloud Storage.

Parameters

• bucket (str) – The Google cloud storage bucket where the object is.

• object (str) – The name of the object to check in the Google cloud storage bucket.

• ts (datetime) – The timestamp to check against.

3.16. Integration 219

https://cloud.google.com/storage/docs/json_api/v1/bucketAccessControls/insert
https://cloud.google.com/storage/docs/json_api/v1/bucketAccessControls/insert
https://cloud.google.com/storage/docs/access-control/lists#scopes
https://cloud.google.com/storage/docs/access-control/lists#scopes
https://cloud.google.com/storage/docs/json_api/v1/objectAccessControls/insert
https://cloud.google.com/storage/docs/json_api/v1/objectAccessControls/insert
https://cloud.google.com/storage/docs/json_api/#encoding
https://cloud.google.com/storage/docs/json_api/#encoding
https://cloud.google.com/storage/docs/access-control/lists#scopes
https://cloud.google.com/storage/docs/access-control/lists#scopes

Airflow Documentation, Release 2.0.0.dev0+

list(bucket, versions=None, maxResults=None, prefix=None, delimiter=None)
List all objects from the bucket with the give string prefix in name

Parameters

• bucket (str) – bucket name

• versions (bool) – if true, list all versions of the objects

• maxResults (int) – max count of items to return in a single page of responses

• prefix (str) – prefix string which filters objects whose name begin with this prefix

• delimiter (str) – filters objects based on the delimiter (for e.g ‘.csv’)

Returns a stream of object names matching the filtering criteria

rewrite(source_bucket, source_object, destination_bucket, destination_object=None)
Has the same functionality as copy, except that will work on files over 5 TB, as well as when copying
between locations and/or storage classes.

destination_object can be omitted, in which case source_object is used.

Parameters

• source_bucket (str) – The bucket of the object to copy from.

• source_object (str) – The object to copy.

• destination_bucket (str) – The destination of the object to copied to.

• destination_object (str) – The (renamed) path of the object if given. Can be
omitted; then the same name is used.

upload(bucket, object, filename, mime_type=’application/octet-stream’, gzip=False, multipart=False,
num_retries=0)

Uploads a local file to Google Cloud Storage.

Parameters

• bucket (str) – The bucket to upload to.

• object (str) – The object name to set when uploading the local file.

• filename (str) – The local file path to the file to be uploaded.

• mime_type (str) – The MIME type to set when uploading the file.

• gzip (bool) – Option to compress file for upload

• multipart (bool or int) – If True, the upload will be split into multiple HTTP
requests. The default size is 256MiB per request. Pass a number instead of True to specify
the request size, which must be a multiple of 262144 (256KiB).

• num_retries (int) – The number of times to attempt to re-upload the file (or indi-
vidual chunks, in the case of multipart uploads). Retries are attempted with exponential
backoff.

GCPTransferServiceHook

class airflow.contrib.hooks.gcp_transfer_hook.GCPTransferServiceHook(api_version=’v1’,
gcp_conn_id=’google_cloud_default’,
dele-
gate_to=None)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

220 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Hook for GCP Storage Transfer Service.

get_conn()
Retrieves connection to Google Storage Transfer service.

Returns Google Storage Transfer service object

Return type dict

3.16.5.14 Google Kubernetes Engine

Google Kubernetes Engine Cluster Operators

• GKEClusterDeleteOperator : Creates a Kubernetes Cluster in Google Cloud Platform

• GKEPodOperator : Deletes a Kubernetes Cluster in Google Cloud Platform

GKEClusterCreateOperator

GKEClusterDeleteOperator

GKEPodOperator

Google Kubernetes Engine Hook

3.16.6 Qubole

Apache Airflow has a native operator and hooks to talk to Qubole, which lets you submit your big data jobs directly
to Qubole from Apache Airflow.

3.16.6.1 QuboleOperator

class airflow.contrib.operators.qubole_operator.QuboleOperator(**kwargs)
Bases: airflow.models.BaseOperator

Execute tasks (commands) on QDS (https://qubole.com).

Parameters qubole_conn_id (str) – Connection id which consists of qds auth_token

kwargs:

command_type type of command to be executed, e.g. hivecmd, shellcmd, hadoopcmd

tags array of tags to be assigned with the command

cluster_label cluster label on which the command will be executed

name name to be given to command

notify whether to send email on command completion or not (default is False)

Arguments specific to command types

hivecmd:

query inline query statement

3.16. Integration 221

https://qubole.com/
https://qubole.com

Airflow Documentation, Release 2.0.0.dev0+

script_location s3 location containing query statement

sample_size size of sample in bytes on which to run query

macros macro values which were used in query

sample_size size of sample in bytes on which to run query

hive-version Specifies the hive version to be used. eg: 0.13,1.2,etc.

prestocmd:

query inline query statement

script_location s3 location containing query statement

macros macro values which were used in query

hadoopcmd:

sub_commnad must be one these [“jar”, “s3distcp”, “streaming”] followed by 1 or more
args

shellcmd:

script inline command with args

script_location s3 location containing query statement

files list of files in s3 bucket as file1,file2 format. These files will be copied into the working
directory where the qubole command is being executed.

archives list of archives in s3 bucket as archive1,archive2 format. These will be unarchived
intothe working directory where the qubole command is being executed

parameters any extra args which need to be passed to script (only when script_location is
supplied)

pigcmd:

script inline query statement (latin_statements)

script_location s3 location containing pig query

parameters any extra args which need to be passed to script (only when script_location is
supplied

sparkcmd:

program the complete Spark Program in Scala, SQL, Command, R, or Python

cmdline spark-submit command line, all required information must be specify in cmdline
itself.

sql inline sql query

script_location s3 location containing query statement

language language of the program, Scala, SQL, Command, R, or Python

app_id ID of an Spark job server app

arguments spark-submit command line arguments

user_program_arguments arguments that the user program takes in

macros macro values which were used in query

note_id Id of the Notebook to run

222 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

dbtapquerycmd:

db_tap_id data store ID of the target database, in Qubole.

query inline query statement

macros macro values which were used in query

dbexportcmd:

mode Can be 1 for Hive export or 2 for HDFS/S3 export

schema Db schema name assumed accordingly by database if not specified

hive_table Name of the hive table

partition_spec partition specification for Hive table.

dbtap_id data store ID of the target database, in Qubole.

db_table name of the db table

db_update_mode allowinsert or updateonly

db_update_keys columns used to determine the uniqueness of rows

export_dir HDFS/S3 location from which data will be exported.

fields_terminated_by hex of the char used as column separator in the dataset

use_customer_cluster To use cluster to run command

customer_cluster_label the label of the cluster to run the command on

additional_options Additional Sqoop options which are needed enclose options in double
or single quotes e.g. ‘–map-column-hive id=int,data=string’

dbimportcmd:

mode 1 (simple), 2 (advance)

hive_table Name of the hive table

schema Db schema name assumed accordingly by database if not specified

hive_serde Output format of the Hive Table

dbtap_id data store ID of the target database, in Qubole.

db_table name of the db table

where_clause where clause, if any

parallelism number of parallel db connections to use for extracting data

extract_query SQL query to extract data from db. $CONDITIONS must be part of the
where clause.

boundary_query Query to be used get range of row IDs to be extracted

split_column Column used as row ID to split data into ranges (mode 2)

use_customer_cluster To use cluster to run command

customer_cluster_label the label of the cluster to run the command on

additional_options Additional Sqoop options which are needed enclose options in double
or single quotes

3.16. Integration 223

Airflow Documentation, Release 2.0.0.dev0+

Note: Following fields are template-supported : query, script_location, sub_command,
script, files, archives, program, cmdline, sql, where_clause, extract_query,
boundary_query, macros, tags, name, parameters, dbtap_id, hive_table,
db_table, split_column, note_id, db_update_keys, export_dir, partition_spec,
qubole_conn_id, arguments, user_program_arguments.

You can also use .txt files for template driven use cases.

Note: In QuboleOperator there is a default handler for task failures and retries, which generally kills the
command running at QDS for the corresponding task instance. You can override this behavior by providing
your own failure and retry handler in task definition.

3.16.6.2 QubolePartitionSensor

class airflow.contrib.sensors.qubole_sensor.QubolePartitionSensor(**kwargs)
Bases: airflow.contrib.sensors.qubole_sensor.QuboleSensor

Wait for a Hive partition to show up in QHS (Qubole Hive Service) and check for its presence via QDS APIs

Parameters

• qubole_conn_id (str) – Connection id which consists of qds auth_token

• data (a JSON object) – a JSON object containing payload, whose presence needs to
be checked. Check this example for sample payload structure.

Note: Both data and qubole_conn_id fields support templating. You can also use .txt files for
template-driven use cases.

3.16.6.3 QuboleFileSensor

class airflow.contrib.sensors.qubole_sensor.QuboleFileSensor(**kwargs)
Bases: airflow.contrib.sensors.qubole_sensor.QuboleSensor

Wait for a file or folder to be present in cloud storage and check for its presence via QDS APIs

Parameters

• qubole_conn_id (str) – Connection id which consists of qds auth_token

• data (a JSON object) – a JSON object containing payload, whose presence needs to
be checked Check this example for sample payload structure.

Note: Both data and qubole_conn_id fields support templating. You can also use .txt files for
template-driven use cases.

224 Chapter 3. Content

https://github.com/apache/airflow/blob/master/airflow/contrib/example_dags/example_qubole_sensor.py
https://github.com/apache/airflow/blob/master/airflow/contrib/example_dags/example_qubole_sensor.py

Airflow Documentation, Release 2.0.0.dev0+

3.16.6.4 QuboleCheckOperator

class airflow.contrib.operators.qubole_check_operator.QuboleCheckOperator(**kwargs)
Bases: airflow.operators.check_operator.CheckOperator, airflow.contrib.
operators.qubole_operator.QuboleOperator

Performs checks against Qubole Commands. QuboleCheckOperator expects a command that will be
executed on QDS. By default, each value on first row of the result of this Qubole Command is evaluated using
python bool casting. If any of the values return False, the check is failed and errors out.

Note that Python bool casting evals the following as False:

• False

• 0

• Empty string ("")

• Empty list ([])

• Empty dictionary or set ({})

Given a query like SELECT COUNT(*) FROM foo, it will fail only if the count == 0. You can craft much
more complex query that could, for instance, check that the table has the same number of rows as the source
table upstream, or that the count of today’s partition is greater than yesterday’s partition, or that a set of metrics
are less than 3 standard deviation for the 7 day average.

This operator can be used as a data quality check in your pipeline, and depending on where you put it in your
DAG, you have the choice to stop the critical path, preventing from publishing dubious data, or on the side and
receive email alerts without stopping the progress of the DAG.

Parameters qubole_conn_id (str) – Connection id which consists of qds auth_token

kwargs:

Arguments specific to Qubole command can be referred from QuboleOperator docs.

results_parser_callable This is an optional parameter to extend the flexibility of parsing
the results of Qubole command to the users. This is a python callable which can hold
the logic to parse list of rows returned by Qubole command. By default, only the values
on first row are used for performing checks. This callable should return a list of records
on which the checks have to be performed.

Note: All fields in common with template fields of QuboleOperator and CheckOperator are template-supported.

3.16.6.5 QuboleValueCheckOperator

class airflow.contrib.operators.qubole_check_operator.QuboleValueCheckOperator(**kwargs)
Bases: airflow.operators.check_operator.ValueCheckOperator, airflow.contrib.
operators.qubole_operator.QuboleOperator

Performs a simple value check using Qubole command. By default, each value on the first row of this Qubole
command is compared with a pre-defined value. The check fails and errors out if the output of the command is
not within the permissible limit of expected value.

Parameters

• qubole_conn_id (str) – Connection id which consists of qds auth_token

• pass_value (str/int/float) – Expected value of the query results.

3.16. Integration 225

Airflow Documentation, Release 2.0.0.dev0+

• tolerance (int/float) – Defines the permissible pass_value range, for example if
tolerance is 2, the Qubole command output can be anything between -2*pass_value and
2*pass_value, without the operator erring out.

kwargs:

Arguments specific to Qubole command can be referred from QuboleOperator docs.

results_parser_callable This is an optional parameter to extend the flexibility of parsing
the results of Qubole command to the users. This is a python callable which can hold
the logic to parse list of rows returned by Qubole command. By default, only the values
on first row are used for performing checks. This callable should return a list of records
on which the checks have to be performed.

Note: All fields in common with template fields of QuboleOperator and ValueCheckOperator are template-
supported.

3.17 Metrics

3.17.1 Configuration

Airflow can be set up to send metrics to StatsD:

[scheduler]
statsd_on = True
statsd_host = localhost
statsd_port = 8125
statsd_prefix = airflow

3.17.2 Counters

Name Description
<job_name>_start Number of started <job_name> job, ex. SchedulerJob, LocalTaskJob
<job_name>_end Number of ended <job_name> job, ex. SchedulerJob, LocalTaskJob
operator_failures_<operator_name> Operator <operator_name> failures
operator_successes_<operator_name> Operator <operator_name> successes
ti_failures Overall task instances failures
ti_successes Overall task instances successes
zombies_killed Zombie tasks killed
scheduler_heartbeat Scheduler heartbeats

3.17.3 Gauges

Name Description
collect_dags Seconds taken to scan and import DAGs
dagbag_import_errors DAG import errors
dagbag_size DAG bag size

226 Chapter 3. Content

https://github.com/etsy/statsd

Airflow Documentation, Release 2.0.0.dev0+

3.17.4 Timers

Name Description
dagrun.dependency-check.<dag_id> Seconds taken to check DAG dependencies

3.18 Lineage

Note: Lineage support is very experimental and subject to change.

Airflow can help track origins of data, what happens to it and where it moves over time. This can aid having audit
trails and data governance, but also debugging of data flows.

Airflow tracks data by means of inlets and outlets of the tasks. Let’s work from an example and see how it works.

from airflow.operators.bash_operator import BashOperator
from airflow.operators.dummy_operator import DummyOperator
from airflow.lineage.datasets import File
from airflow.models import DAG
from datetime import timedelta

FILE_CATEGORIES = ["CAT1", "CAT2", "CAT3"]

args = {
'owner': 'airflow',
'start_date': airflow.utils.dates.days_ago(2)

}

dag = DAG(
dag_id='example_lineage', default_args=args,
schedule_interval='0 0 * * *',
dagrun_timeout=timedelta(minutes=60))

f_final = File("/tmp/final")
run_this_last = DummyOperator(task_id='run_this_last', dag=dag,

inlets={"auto": True},
outlets={"datasets": [f_final,]})

f_in = File("/tmp/whole_directory/")
outlets = []
for file in FILE_CATEGORIES:

f_out = File("/tmp/{}/{{{{ execution_date }}}}".format(file))
outlets.append(f_out)

run_this = BashOperator(
task_id='run_me_first', bash_command='echo 1', dag=dag,
inlets={"datasets": [f_in,]},
outlets={"datasets": outlets}
)

run_this.set_downstream(run_this_last)

Tasks take the parameters inlets and outlets. Inlets can be manually defined by a list of dataset {“datasets”: [dataset1,
dataset2]} or can be configured to look for outlets from upstream tasks {“task_ids”: [“task_id1”, “task_id2”]} or
can be configured to pick up outlets from direct upstream tasks {“auto”: True} or a combination of them. Outlets are

3.18. Lineage 227

Airflow Documentation, Release 2.0.0.dev0+

defined as list of dataset {“datasets”: [dataset1, dataset2]}. Any fields for the dataset are templated with the context
when the task is being executed.

Note: Operators can add inlets and outlets automatically if the operator supports it.

In the example DAG task run_me_first is a BashOperator that takes 3 inlets: CAT1, CAT2, CAT3, that are generated
from a list. Note that execution_date is a templated field and will be rendered when the task is running.

Note: Behind the scenes Airflow prepares the lineage metadata as part of the pre_execute method of a task. When
the task has finished execution post_execute is called and lineage metadata is pushed into XCOM. Thus if you are
creating your own operators that override this method make sure to decorate your method with prepare_lineage and
apply_lineage respectively.

3.18.1 Apache Atlas

Airflow can send its lineage metadata to Apache Atlas. You need to enable the atlas backend and configure it properly,
e.g. in your airflow.cfg:

[lineage]
backend = airflow.lineage.backend.atlas

[atlas]
username = my_username
password = my_password
host = host
port = 21000

Please make sure to have the atlasclient package installed.

3.19 FAQ

3.19.1 Why isn’t my task getting scheduled?

There are very many reasons why your task might not be getting scheduled. Here are some of the common causes:

• Does your script “compile”, can the Airflow engine parse it and find your DAG object. To test this, you can
run airflow list_dags and confirm that your DAG shows up in the list. You can also run airflow
list_tasks foo_dag_id --tree and confirm that your task shows up in the list as expected. If you
use the CeleryExecutor, you may want to confirm that this works both where the scheduler runs as well as where
the worker runs.

• Does the file containing your DAG contain the string “airflow” and “DAG” somewhere in the contents? When
searching the DAG directory, Airflow ignores files not containing “airflow” and “DAG” in order to prevent the
DagBag parsing from importing all python files collocated with user’s DAGs.

• Is your start_date set properly? The Airflow scheduler triggers the task soon after the start_date +
scheduler_interval is passed.

• Is your schedule_interval set properly? The default schedule_interval is one day (datetime.
timedelta(1)). You must specify a different schedule_interval directly to the DAG ob-
ject you instantiate, not as a default_param, as task instances do not override their parent DAG’s
schedule_interval.

228 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• Is your start_date beyond where you can see it in the UI? If you set your start_date to some time say 3
months ago, you won’t be able to see it in the main view in the UI, but you should be able to see it in the Menu
-> Browse ->Task Instances.

• Are the dependencies for the task met. The task instances directly upstream from the task need to be in a
success state. Also, if you have set depends_on_past=True, the previous task instance needs to have
succeeded (except if it is the first run for that task). Also, if wait_for_downstream=True, make sure you
understand what it means. You can view how these properties are set from the Task Instance Details
page for your task.

• Are the DagRuns you need created and active? A DagRun represents a specific execution of an entire DAG and
has a state (running, success, failed, . . .). The scheduler creates new DagRun as it moves forward, but never goes
back in time to create new ones. The scheduler only evaluates running DagRuns to see what task instances
it can trigger. Note that clearing tasks instances (from the UI or CLI) does set the state of a DagRun back to
running. You can bulk view the list of DagRuns and alter states by clicking on the schedule tag for a DAG.

• Is the concurrency parameter of your DAG reached? concurrency defines how many running task
instances a DAG is allowed to have, beyond which point things get queued.

• Is the max_active_runs parameter of your DAG reached? max_active_runs defines how many
running concurrent instances of a DAG there are allowed to be.

You may also want to read the Scheduler section of the docs and make sure you fully understand how it proceeds.

3.19.2 How do I trigger tasks based on another task’s failure?

Check out the Trigger Rule section in the Concepts section of the documentation.

3.19.3 Why are connection passwords still not encrypted in the metadata db after I
installed airflow[crypto]?

Check out the Securing Connections section in the How-to Guides section of the documentation.

3.19.4 What’s the deal with start_date?

start_date is partly legacy from the pre-DagRun era, but it is still relevant in many ways. When creating a new
DAG, you probably want to set a global start_date for your tasks using default_args. The first DagRun to
be created will be based on the min(start_date) for all your task. From that point on, the scheduler creates new
DagRuns based on your schedule_interval and the corresponding task instances run as your dependencies are
met. When introducing new tasks to your DAG, you need to pay special attention to start_date, and may want to
reactivate inactive DagRuns to get the new task onboarded properly.

We recommend against using dynamic values as start_date, especially datetime.now() as it can be quite
confusing. The task is triggered once the period closes, and in theory an @hourly DAG would never get to an hour
after now as now() moves along.

Previously we also recommended using rounded start_date in relation to your schedule_interval. This
meant an @hourly would be at 00:00 minutes:seconds, a @daily job at midnight, a @monthly job on
the first of the month. This is no longer required. Airflow will now auto align the start_date and the
schedule_interval, by using the start_date as the moment to start looking.

You can use any sensor or a TimeDeltaSensor to delay the execution of tasks within the schedule interval. While
schedule_interval does allow specifying a datetime.timedelta object, we recommend using the macros
or cron expressions instead, as it enforces this idea of rounded schedules.

3.19. FAQ 229

Airflow Documentation, Release 2.0.0.dev0+

When using depends_on_past=True it’s important to pay special attention to start_date as the past depen-
dency is not enforced only on the specific schedule of the start_date specified for the task. It’s also important to
watch DagRun activity status in time when introducing new depends_on_past=True, unless you are planning
on running a backfill for the new task(s).

Also important to note is that the tasks start_date, in the context of a backfill CLI command, get overridden by
the backfill’s command start_date. This allows for a backfill on tasks that have depends_on_past=True to
actually start, if that wasn’t the case, the backfill just wouldn’t start.

3.19.5 How can I create DAGs dynamically?

Airflow looks in your DAGS_FOLDER for modules that contain DAG objects in their global namespace, and adds
the objects it finds in the DagBag. Knowing this all we need is a way to dynamically assign variable in the global
namespace, which is easily done in python using the globals() function for the standard library which behaves
like a simple dictionary.

for i in range(10):
dag_id = 'foo_{}'.format(i)
globals()[dag_id] = DAG(dag_id)
or better, call a function that returns a DAG object!

3.19.6 What are all the airflow run commands in my process list?

There are many layers of airflow run commands, meaning it can call itself.

• Basic airflow run: fires up an executor, and tell it to run an airflow run --local command. If using
Celery, this means it puts a command in the queue for it to run remotely on the worker. If using LocalExecutor,
that translates into running it in a subprocess pool.

• Local airflow run --local: starts an airflow run --raw command (described below) as a sub-
process and is in charge of emitting heartbeats, listening for external kill signals and ensures some cleanup takes
place if the subprocess fails.

• Raw airflow run --raw runs the actual operator’s execute method and performs the actual work.

3.19.7 How can my airflow dag run faster?

There are three variables we could control to improve airflow dag performance:

• parallelism: This variable controls the number of task instances that the airflow worker can run simultane-
ously. User could increase the parallelism variable in the airflow.cfg.

• concurrency: The Airflow scheduler will run no more than $concurrency task instances for your DAG
at any given time. Concurrency is defined in your Airflow DAG. If you do not set the concurrency on your DAG,
the scheduler will use the default value from the dag_concurrency entry in your airflow.cfg.

• max_active_runs: the Airflow scheduler will run no more than max_active_runs DagRuns of your
DAG at a given time. If you do not set the max_active_runs in your DAG, the scheduler will use the default
value from the max_active_runs_per_dag entry in your airflow.cfg.

3.19.8 How can we reduce the airflow UI page load time?

If your dag takes long time to load, you could reduce the value of default_dag_run_display_number con-
figuration in airflow.cfg to a smaller value. This configurable controls the number of dag run to show in UI with

230 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

default value 25.

3.19.9 How to fix Exception: Global variable explicit_defaults_for_timestamp
needs to be on (1)?

This means explicit_defaults_for_timestamp is disabled in your mysql server and you need to enable it
by:

1. Set explicit_defaults_for_timestamp = 1 under the mysqld section in your my.cnf file.

2. Restart the Mysql server.

3.19.10 How to reduce airflow dag scheduling latency in production?

• max_threads: Scheduler will spawn multiple threads in parallel to schedule dags. This is controlled by
max_threads with default value of 2. User should increase this value to a larger value(e.g numbers of cpus
where scheduler runs - 1) in production.

• scheduler_heartbeat_sec: User should consider to increase scheduler_heartbeat_sec config
to a higher value(e.g 60 secs) which controls how frequent the airflow scheduler gets the heartbeat and updates
the job’s entry in database.

3.20 API Reference

3.20.1 Operators

Operators allow for generation of certain types of tasks that become nodes in the DAG when instantiated. All op-
erators derive from BaseOperator and inherit many attributes and methods that way. Refer to the BaseOperator
documentation for more details.

There are 3 main types of operators:

• Operators that performs an action, or tell another system to perform an action

• Transfer operators move data from one system to another

• Sensors are a certain type of operator that will keep running until a certain criterion is met. Examples include
a specific file landing in HDFS or S3, a partition appearing in Hive, or a specific time of the day. Sensors are
derived from BaseSensorOperator and run a poke method at a specified poke_interval until it returns
True.

3.20.1.1 BaseOperator

All operators are derived from BaseOperator and acquire much functionality through inheritance. Since this is
the core of the engine, it’s worth taking the time to understand the parameters of BaseOperator to understand the
primitive features that can be leveraged in your DAGs.

class airflow.models.BaseOperator(**kwargs)
Bases: airflow.utils.log.logging_mixin.LoggingMixin

Abstract base class for all operators. Since operators create objects that become nodes in the dag, BaseOperator
contains many recursive methods for dag crawling behavior. To derive this class, you are expected to override
the constructor as well as the ‘execute’ method.

3.20. API Reference 231

Airflow Documentation, Release 2.0.0.dev0+

Operators derived from this class should perform or trigger certain tasks synchronously (wait for comple-
tion). Example of operators could be an operator that runs a Pig job (PigOperator), a sensor operator that
waits for a partition to land in Hive (HiveSensorOperator), or one that moves data from Hive to MySQL
(Hive2MySqlOperator). Instances of these operators (tasks) target specific operations, running specific scripts,
functions or data transfers.

This class is abstract and shouldn’t be instantiated. Instantiating a class derived from this one results in the
creation of a task object, which ultimately becomes a node in DAG objects. Task dependencies should be set by
using the set_upstream and/or set_downstream methods.

Parameters

• task_id (str) – a unique, meaningful id for the task

• owner (str) – the owner of the task, using the unix username is recommended

• retries (int) – the number of retries that should be performed before failing the task

• retry_delay (timedelta) – delay between retries

• retry_exponential_backoff (bool) – allow progressive longer waits between re-
tries by using exponential backoff algorithm on retry delay (delay will be converted into
seconds)

• max_retry_delay (timedelta) – maximum delay interval between retries

• start_date (datetime) – The start_date for the task, determines the
execution_date for the first task instance. The best practice is to have the start_date
rounded to your DAG’s schedule_interval. Daily jobs have their start_date some
day at 00:00:00, hourly jobs have their start_date at 00:00 of a specific hour. Note that Air-
flow simply looks at the latest execution_date and adds the schedule_interval
to determine the next execution_date. It is also very important to note that differ-
ent tasks’ dependencies need to line up in time. If task A depends on task B and their
start_date are offset in a way that their execution_date don’t line up, A’s dependencies will
never be met. If you are looking to delay a task, for example running a daily task at 2AM,
look into the TimeSensor and TimeDeltaSensor. We advise against using dynamic
start_date and recommend using fixed ones. Read the FAQ entry about start_date for
more information.

• end_date (datetime) – if specified, the scheduler won’t go beyond this date

• depends_on_past (bool) – when set to true, task instances will run sequentially while
relying on the previous task’s schedule to succeed. The task instance for the start_date is
allowed to run.

• wait_for_downstream (bool) – when set to true, an instance of task X will wait
for tasks immediately downstream of the previous instance of task X to finish successfully
before it runs. This is useful if the different instances of a task X alter the same asset, and
this asset is used by tasks downstream of task X. Note that depends_on_past is forced to
True wherever wait_for_downstream is used.

• queue (str) – which queue to target when running this job. Not all executors implement
queue management, the CeleryExecutor does support targeting specific queues.

• dag (DAG) – a reference to the dag the task is attached to (if any)

• priority_weight (int) – priority weight of this task against other task. This allows
the executor to trigger higher priority tasks before others when things get backed up. Set
priority_weight as a higher number for more important tasks.

• weight_rule (str) – weighting method used for the effective total priority weight
of the task. Options are: { downstream | upstream | absolute } default is

232 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

downstream When set to downstream the effective weight of the task is the aggregate
sum of all downstream descendants. As a result, upstream tasks will have higher weight and
will be scheduled more aggressively when using positive weight values. This is useful when
you have multiple dag run instances and desire to have all upstream tasks to complete for all
runs before each dag can continue processing downstream tasks. When set to upstream
the effective weight is the aggregate sum of all upstream ancestors. This is the opposite
where downtream tasks have higher weight and will be scheduled more aggressively when
using positive weight values. This is useful when you have multiple dag run instances and
prefer to have each dag complete before starting upstream tasks of other dags. When set to
absolute, the effective weight is the exact priority_weight specified without ad-
ditional weighting. You may want to do this when you know exactly what priority weight
each task should have. Additionally, when set to absolute, there is bonus effect of signif-
icantly speeding up the task creation process as for very large DAGS. Options can be set as
string or using the constants defined in the static class airflow.utils.WeightRule

• pool (str) – the slot pool this task should run in, slot pools are a way to limit concurrency
for certain tasks

• sla (datetime.timedelta) – time by which the job is expected to succeed. Note that
this represents the timedelta after the period is closed. For example if you set an SLA
of 1 hour, the scheduler would send an email soon after 1:00AM on the 2016-01-02 if
the 2016-01-01 instance has not succeeded yet. The scheduler pays special attention for
jobs with an SLA and sends alert emails for sla misses. SLA misses are also recorded in the
database for future reference. All tasks that share the same SLA time get bundled in a single
email, sent soon after that time. SLA notification are sent once and only once for each task
instance.

• execution_timeout (datetime.timedelta) – max time allowed for the execu-
tion of this task instance, if it goes beyond it will raise and fail.

• on_failure_callback (callable) – a function to be called when a task instance of
this task fails. a context dictionary is passed as a single parameter to this function. Con-
text contains references to related objects to the task instance and is documented under the
macros section of the API.

• on_retry_callback (callable) – much like the on_failure_callback except
that it is executed when retries occur.

• on_success_callback (callable) – much like the on_failure_callback ex-
cept that it is executed when the task succeeds.

• trigger_rule (str) – defines the rule by which dependencies are applied for
the task to get triggered. Options are: { all_success | all_failed |
all_done | one_success | one_failed | none_failed | dummy} de-
fault is all_success. Options can be set as string or using the constants defined in
the static class airflow.utils.TriggerRule

• resources (dict) – A map of resource parameter names (the argument names of the
Resources constructor) to their values.

• run_as_user (str) – unix username to impersonate while running the task

• task_concurrency (int) – When set, a task will be able to limit the concurrent runs
across execution_dates

• executor_config (dict) – Additional task-level configuration parameters that are in-
terpreted by a specific executor. Parameters are namespaced by the name of executor.

Example: to run this task in a specific docker container through the KubernetesExecutor

3.20. API Reference 233

Airflow Documentation, Release 2.0.0.dev0+

MyOperator(...,
executor_config={
"KubernetesExecutor":

{"image": "myCustomDockerImage"}
}

)

• do_xcom_push (bool) – if True, an XCom is pushed containing the Operator’s result

clear(**kwargs)
Clears the state of task instances associated with the task, following the parameters specified.

dag
Returns the Operator’s DAG if set, otherwise raises an error

deps
Returns the list of dependencies for the operator. These differ from execution context dependencies in that
they are specific to tasks and can be extended/overridden by subclasses.

downstream_list
@property: list of tasks directly downstream

execute(context)
This is the main method to derive when creating an operator. Context is the same dictionary used as when
rendering jinja templates.

Refer to get_template_context for more context.

get_direct_relative_ids(upstream=False)
Get the direct relative ids to the current task, upstream or downstream.

get_direct_relatives(upstream=False)
Get the direct relatives to the current task, upstream or downstream.

get_flat_relative_ids(upstream=False, found_descendants=None)
Get a flat list of relatives’ ids, either upstream or downstream.

get_flat_relatives(upstream=False)
Get a flat list of relatives, either upstream or downstream.

get_task_instances(session, start_date=None, end_date=None)
Get a set of task instance related to this task for a specific date range.

has_dag()
Returns True if the Operator has been assigned to a DAG.

on_kill()
Override this method to cleanup subprocesses when a task instance gets killed. Any use of the threading,
subprocess or multiprocessing module within an operator needs to be cleaned up or it will leave ghost
processes behind.

post_execute(context, *args, **kwargs)
This hook is triggered right after self.execute() is called. It is passed the execution context and any results
returned by the operator.

pre_execute(context, *args, **kwargs)
This hook is triggered right before self.execute() is called.

prepare_template()
Hook that is triggered after the templated fields get replaced by their content. If you need your operator to
alter the content of the file before the template is rendered, it should override this method to do so.

234 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

render_template(attr, content, context)
Renders a template either from a file or directly in a field, and returns the rendered result.

render_template_from_field(attr, content, context, jinja_env)
Renders a template from a field. If the field is a string, it will simply render the string and return the result.
If it is a collection or nested set of collections, it will traverse the structure and render all strings in it.

run(start_date=None, end_date=None, ignore_first_depends_on_past=False, ignore_ti_state=False,
mark_success=False)
Run a set of task instances for a date range.

schedule_interval
The schedule interval of the DAG always wins over individual tasks so that tasks within a DAG always
line up. The task still needs a schedule_interval as it may not be attached to a DAG.

set_downstream(task_or_task_list)
Set a task or a task list to be directly downstream from the current task.

set_upstream(task_or_task_list)
Set a task or a task list to be directly upstream from the current task.

upstream_list
@property: list of tasks directly upstream

xcom_pull(context, task_ids=None, dag_id=None, key=u’return_value’, include_prior_dates=None)
See TaskInstance.xcom_pull()

xcom_push(context, key, value, execution_date=None)
See TaskInstance.xcom_push()

3.20.1.2 BaseSensorOperator

All sensors are derived from BaseSensorOperator. All sensors inherit the timeout and poke_interval on
top of the BaseOperator attributes.

class airflow.sensors.base_sensor_operator.BaseSensorOperator(**kwargs)
Bases: airflow.models.BaseOperator, airflow.models.SkipMixin

Sensor operators are derived from this class and inherit these attributes.

Sensor operators keep executing at a time interval and succeed when a criteria is met and fail if and when they
time out.

Parameters

• soft_fail (bool) – Set to true to mark the task as SKIPPED on failure

• poke_interval (int) – Time in seconds that the job should wait in between each tries

• timeout (int) – Time, in seconds before the task times out and fails.

• mode (str) – How the sensor operates. Options are: { poke | reschedule }, de-
fault is poke. When set to poke the sensor is taking up a worker slot for its whole execution
time and sleeps between pokes. Use this mode if the expected runtime of the sensor is short
or if a short poke interval is required. When set to reschedule the sensor task frees the
worker slot when the criteria is not yet met and it’s rescheduled at a later time. Use this
mode if the expected time until the criteria is met is. The poke inteval should be more than
one minute to prevent too much load on the scheduler.

deps
Adds one additional dependency for all sensor operators that checks if a sensor task instance can be
rescheduled.

3.20. API Reference 235

Airflow Documentation, Release 2.0.0.dev0+

poke(context)
Function that the sensors defined while deriving this class should override.

3.20.1.3 Core Operators

Operators

class airflow.operators.bash_operator.BashOperator(**kwargs)
Bases: airflow.models.BaseOperator

Execute a Bash script, command or set of commands.

Parameters

• bash_command (str) – The command, set of commands or reference to a bash script
(must be ‘.sh’) to be executed. (templated)

• xcom_push (bool) – If xcom_push is True, the last line written to stdout will also be
pushed to an XCom when the bash command completes.

• env (dict) – If env is not None, it must be a mapping that defines the environment vari-
ables for the new process; these are used instead of inheriting the current process environ-
ment, which is the default behavior. (templated)

• output_encoding (str) – Output encoding of bash command

On execution of this operator the task will be up for retry when exception is raised. However, if a sub-command
exits with non-zero value Airflow will not recognize it as failure unless the whole shell exits with a failure. The
easiest way of achieving this is to prefix the command with set -e; Example:

bash_command = "set -e; python3 script.py '{{ next_execution_date }}'"

execute(context)
Execute the bash command in a temporary directory which will be cleaned afterwards

class airflow.operators.python_operator.BranchPythonOperator(**kwargs)
Bases: airflow.operators.python_operator.PythonOperator, airflow.models.
SkipMixin

Allows a workflow to “branch” or follow a path following the execution of this task.

It derives the PythonOperator and expects a Python function that returns a single task_id or list of task_ids to
follow. The task_id(s) returned should point to a task directly downstream from {self}. All other “branches”
or directly downstream tasks are marked with a state of skipped so that these paths can’t move forward. The
skipped states are propagated downstream to allow for the DAG state to fill up and the DAG run’s state to be
inferred.

Note that using tasks with depends_on_past=True downstream from BranchPythonOperator is
logically unsound as skipped status will invariably lead to block tasks that depend on their past successes.
skipped states propagates where all directly upstream tasks are skipped.

class airflow.operators.check_operator.CheckOperator(**kwargs)
Bases: airflow.models.BaseOperator

Performs checks against a db. The CheckOperator expects a sql query that will return a single row. Each
value on that first row is evaluated using python bool casting. If any of the values return False the check is
failed and errors out.

Note that Python bool casting evals the following as False:

• False

236 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• 0

• Empty string ("")

• Empty list ([])

• Empty dictionary or set ({})

Given a query like SELECT COUNT(*) FROM foo, it will fail only if the count == 0. You can craft much
more complex query that could, for instance, check that the table has the same number of rows as the source
table upstream, or that the count of today’s partition is greater than yesterday’s partition, or that a set of metrics
are less than 3 standard deviation for the 7 day average.

This operator can be used as a data quality check in your pipeline, and depending on where you put it in your
DAG, you have the choice to stop the critical path, preventing from publishing dubious data, or on the side and
receive email alerts without stopping the progress of the DAG.

Note that this is an abstract class and get_db_hook needs to be defined. Whereas a get_db_hook is hook that
gets a single record from an external source.

Parameters sql (str) – the sql to be executed. (templated)

class airflow.operators.docker_operator.DockerOperator(**kwargs)
Bases: airflow.models.BaseOperator

Execute a command inside a docker container.

A temporary directory is created on the host and mounted into a container to allow storing files that together
exceed the default disk size of 10GB in a container. The path to the mounted directory can be accessed via the
environment variable AIRFLOW_TMP_DIR.

If a login to a private registry is required prior to pulling the image, a Docker connection needs to be configured
in Airflow and the connection ID be provided with the parameter docker_conn_id.

Parameters

• image (str) – Docker image from which to create the container. If image tag is omitted,
“latest” will be used.

• api_version (str) – Remote API version. Set to auto to automatically detect the
server’s version.

• auto_remove (bool) – Auto-removal of the container on daemon side when the con-
tainer’s process exits. The default is False.

• command (str or list) – Command to be run in the container. (templated)

• cpus (float) – Number of CPUs to assign to the container. This value gets multiplied
with 1024. See https://docs.docker.com/engine/reference/run/#cpu-share-constraint

• dns (list of strings) – Docker custom DNS servers

• dns_search (list of strings) – Docker custom DNS search domain

• docker_url (str) – URL of the host running the docker daemon. Default is
unix://var/run/docker.sock

• environment (dict) – Environment variables to set in the container. (templated)

• force_pull (bool) – Pull the docker image on every run. Default is False.

• mem_limit (float or str) – Maximum amount of memory the container can use.
Either a float value, which represents the limit in bytes, or a string like 128m or 1g.

• network_mode (str) – Network mode for the container.

3.20. API Reference 237

https://docs.docker.com/engine/reference/run/#cpu-share-constraint

Airflow Documentation, Release 2.0.0.dev0+

• tls_ca_cert (str) – Path to a PEM-encoded certificate authority to secure the docker
connection.

• tls_client_cert (str) – Path to the PEM-encoded certificate used to authenticate
docker client.

• tls_client_key (str) – Path to the PEM-encoded key used to authenticate docker
client.

• tls_hostname (str or bool) – Hostname to match against the docker server certifi-
cate or False to disable the check.

• tls_ssl_version (str) – Version of SSL to use when communicating with docker
daemon.

• tmp_dir (str) – Mount point inside the container to a temporary directory created on
the host by the operator. The path is also made available via the environment variable
AIRFLOW_TMP_DIR inside the container.

• user (int or str) – Default user inside the docker container.

• volumes – List of volumes to mount into the container, e.g. ['/host/path:/
container/path', '/host/path2:/container/path2:ro'].

• working_dir (str) – Working directory to set on the container (equivalent to the -w
switch the docker client)

• xcom_push (bool) – Does the stdout will be pushed to the next step using XCom. The
default is False.

• xcom_all (bool) – Push all the stdout or just the last line. The default is False (last line).

• docker_conn_id (str) – ID of the Airflow connection to use

• shm_size (int) – Size of /dev/shm in bytes. The size must be greater than 0. If
omitted uses system default.

class airflow.operators.dummy_operator.DummyOperator(**kwargs)
Bases: airflow.models.BaseOperator

Operator that does literally nothing. It can be used to group tasks in a DAG.

class airflow.operators.druid_check_operator.DruidCheckOperator(**kwargs)
Bases: airflow.operators.check_operator.CheckOperator

Performs checks against Druid. The DruidCheckOperator expects a sql query that will return a single row.
Each value on that first row is evaluated using python bool casting. If any of the values return False the
check is failed and errors out.

Note that Python bool casting evals the following as False:

• False

• 0

• Empty string ("")

• Empty list ([])

• Empty dictionary or set ({})

Given a query like SELECT COUNT(*) FROM foo, it will fail only if the count == 0. You can craft much
more complex query that could, for instance, check that the table has the same number of rows as the source
table upstream, or that the count of today’s partition is greater than yesterday’s partition, or that a set of metrics
are less than 3 standard deviation for the 7 day average. This operator can be used as a data quality check in

238 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

your pipeline, and depending on where you put it in your DAG, you have the choice to stop the critical path,
preventing from publishing dubious data, or on the side and receive email alterts without stopping the progress
of the DAG.

Parameters

• sql (str) – the sql to be executed

• druid_broker_conn_id (str) – reference to the druid broker

get_db_hook()
Return the druid db api hook.

get_first(sql)
Executes the druid sql to druid broker and returns the first resulting row.

Parameters sql (str) – the sql statement to be executed (str)

class airflow.operators.email_operator.EmailOperator(**kwargs)
Bases: airflow.models.BaseOperator

Sends an email.

Parameters

• to (list or string (comma or semicolon delimited)) – list of emails to
send the email to. (templated)

• subject (str) – subject line for the email. (templated)

• html_content (str) – content of the email, html markup is allowed. (templated)

• files (list) – file names to attach in email

• cc (list or string (comma or semicolon delimited)) – list of recipients
to be added in CC field

• bcc (list or string (comma or semicolon delimited)) – list of recipi-
ents to be added in BCC field

• mime_subtype (str) – MIME sub content type

• mime_charset (str) – character set parameter added to the Content-Type header.

class airflow.operators.generic_transfer.GenericTransfer(**kwargs)
Bases: airflow.models.BaseOperator

Moves data from a connection to another, assuming that they both provide the required methods in their respec-
tive hooks. The source hook needs to expose a get_records method, and the destination a insert_rows method.

This is meant to be used on small-ish datasets that fit in memory.

Parameters

• sql (str) – SQL query to execute against the source database. (templated)

• destination_table (str) – target table. (templated)

• source_conn_id (str) – source connection

• destination_conn_id (str) – source connection

• preoperator (str or list of str) – sql statement or list of statements to be
executed prior to loading the data. (templated)

3.20. API Reference 239

Airflow Documentation, Release 2.0.0.dev0+

class airflow.operators.hive_to_druid.HiveToDruidTransfer(**kwargs)
Bases: airflow.models.BaseOperator

Moves data from Hive to Druid, [del]note that for now the data is loaded into memory before being pushed to
Druid, so this operator should be used for smallish amount of data.[/del]

Parameters

• sql (str) – SQL query to execute against the Druid database. (templated)

• druid_datasource (str) – the datasource you want to ingest into in druid

• ts_dim (str) – the timestamp dimension

• metric_spec (list) – the metrics you want to define for your data

• hive_cli_conn_id (str) – the hive connection id

• druid_ingest_conn_id (str) – the druid ingest connection id

• metastore_conn_id (str) – the metastore connection id

• hadoop_dependency_coordinates (list of str) – list of coordinates to
squeeze int the ingest json

• intervals (list) – list of time intervals that defines segments, this is passed as is to the
json object. (templated)

• hive_tblproperties (dict) – additional properties for tblproperties in hive for the
staging table

• job_properties (dict) – additional properties for job

construct_ingest_query(static_path, columns)
Builds an ingest query for an HDFS TSV load.

Parameters

• static_path (str) – The path on hdfs where the data is

• columns (list) – List of all the columns that are available

class airflow.operators.hive_to_mysql.HiveToMySqlTransfer(**kwargs)
Bases: airflow.models.BaseOperator

Moves data from Hive to MySQL, note that for now the data is loaded into memory before being pushed to
MySQL, so this operator should be used for smallish amount of data.

Parameters

• sql (str) – SQL query to execute against Hive server. (templated)

• mysql_table (str) – target MySQL table, use dot notation to target a specific database.
(templated)

• mysql_conn_id (str) – source mysql connection

• hiveserver2_conn_id (str) – destination hive connection

• mysql_preoperator (str) – sql statement to run against mysql prior to import, typi-
cally use to truncate of delete in place of the data coming in, allowing the task to be idem-
potent (running the task twice won’t double load data). (templated)

• mysql_postoperator (str) – sql statement to run against mysql after the import,
typically used to move data from staging to production and issue cleanup commands. (tem-
plated)

240 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• bulk_load (bool) – flag to use bulk_load option. This loads mysql directly from a tab-
delimited text file using the LOAD DATA LOCAL INFILE command. This option requires
an extra connection parameter for the destination MySQL connection: {‘local_infile’: true}.

class airflow.operators.hive_operator.HiveOperator(**kwargs)
Bases: airflow.models.BaseOperator

Executes hql code or hive script in a specific Hive database.

Parameters

• hql (str) – the hql to be executed. Note that you may also use a relative path from the dag
file of a (template) hive script. (templated)

• hive_cli_conn_id (str) – reference to the Hive database. (templated)

• hiveconfs (dict) – if defined, these key value pairs will be passed to hive as
-hiveconf "key"="value"

• hiveconf_jinja_translate (bool) – when True, hiveconf-type templating ${var}
gets translated into jinja-type templating {{ var }} and ${hiveconf:var} gets translated
into jinja-type templating {{ var }}. Note that you may want to use this along with the
DAG(user_defined_macros=myargs) parameter. View the DAG object documen-
tation for more details.

• script_begin_tag (str) – If defined, the operator will get rid of the part of the script
before the first occurrence of script_begin_tag

• mapred_queue (str) – queue used by the Hadoop CapacityScheduler. (templated)

• mapred_queue_priority (str) – priority within CapacityScheduler queue. Possible
settings include: VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW

• mapred_job_name (str) – This name will appear in the jobtracker. This can make
monitoring easier.

class airflow.operators.hive_stats_operator.HiveStatsCollectionOperator(**kwargs)
Bases: airflow.models.BaseOperator

Gathers partition statistics using a dynamically generated Presto query, inserts the stats into a MySql table with
this format. Stats overwrite themselves if you rerun the same date/partition.

CREATE TABLE hive_stats (
ds VARCHAR(16),
table_name VARCHAR(500),
metric VARCHAR(200),
value BIGINT

);

Parameters

• table (str) – the source table, in the format database.table_name. (templated)

• partition (dict of {col:value}) – the source partition. (templated)

• extra_exprs (dict) – dict of expression to run against the table where keys are metric
names and values are Presto compatible expressions

• col_blacklist (list) – list of columns to blacklist, consider blacklisting blobs, large
json columns, . . .

• assignment_func (function) – a function that receives a column name and a type,
and returns a dict of metric names and an Presto expressions. If None is returned, the global

3.20. API Reference 241

Airflow Documentation, Release 2.0.0.dev0+

defaults are applied. If an empty dictionary is returned, no stats are computed for that
column.

class airflow.operators.check_operator.IntervalCheckOperator(**kwargs)
Bases: airflow.models.BaseOperator

Checks that the values of metrics given as SQL expressions are within a certain tolerance of the ones from
days_back before.

Note that this is an abstract class and get_db_hook needs to be defined. Whereas a get_db_hook is hook that
gets a single record from an external source.

Parameters

• table (str) – the table name

• days_back (int) – number of days between ds and the ds we want to check against.
Defaults to 7 days

• metrics_threshold (dict) – a dictionary of ratios indexed by metrics

class airflow.operators.latest_only_operator.LatestOnlyOperator(**kwargs)
Bases: airflow.models.BaseOperator, airflow.models.SkipMixin

Allows a workflow to skip tasks that are not running during the most recent schedule interval.

If the task is run outside of the latest schedule interval, all directly downstream tasks will be skipped.

class airflow.operators.mssql_operator.MsSqlOperator(**kwargs)
Bases: airflow.models.BaseOperator

Executes sql code in a specific Microsoft SQL database

Parameters

• sql (str or string pointing to a template file with .sql
extension. (templated)) – the sql code to be executed

• mssql_conn_id (str) – reference to a specific mssql database

• parameters (mapping or iterable) – (optional) the parameters to render the SQL
query with.

• autocommit (bool) – if True, each command is automatically committed. (default value:
False)

• database (str) – name of database which overwrite defined one in connection

class airflow.operators.mssql_to_hive.MsSqlToHiveTransfer(**kwargs)
Bases: airflow.models.BaseOperator

Moves data from Microsoft SQL Server to Hive. The operator runs your query against Microsoft SQL Server,
stores the file locally before loading it into a Hive table. If the create or recreate arguments are set to
True, a CREATE TABLE and DROP TABLE statements are generated. Hive data types are inferred from the
cursor’s metadata. Note that the table generated in Hive uses STORED AS textfile which isn’t the most
efficient serialization format. If a large amount of data is loaded and/or if the table gets queried considerably,
you may want to use this operator only to stage the data into a temporary table before loading it into its final
destination using a HiveOperator.

Parameters

• sql (str) – SQL query to execute against the Microsoft SQL Server database. (templated)

• hive_table (str) – target Hive table, use dot notation to target a specific database.
(templated)

242 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• create (bool) – whether to create the table if it doesn’t exist

• recreate (bool) – whether to drop and recreate the table at every execution

• partition (dict) – target partition as a dict of partition columns and values. (templated)

• delimiter (str) – field delimiter in the file

• mssql_conn_id (str) – source Microsoft SQL Server connection

• hive_conn_id (str) – destination hive connection

• tblproperties (dict) – TBLPROPERTIES of the hive table being created

class airflow.operators.mysql_operator.MySqlOperator(**kwargs)
Bases: airflow.models.BaseOperator

Executes sql code in a specific MySQL database

Parameters

• sql (Can receive a str representing a sql statement, a list
of str (sql statements), or reference to a template file.
Template reference are recognized by str ending in '.sql') –
the sql code to be executed. (templated)

• mysql_conn_id (str) – reference to a specific mysql database

• parameters (mapping or iterable) – (optional) the parameters to render the SQL
query with.

• autocommit (bool) – if True, each command is automatically committed. (default value:
False)

• database (str) – name of database which overwrite defined one in connection

class airflow.operators.mysql_to_hive.MySqlToHiveTransfer(**kwargs)
Bases: airflow.models.BaseOperator

Moves data from MySql to Hive. The operator runs your query against MySQL, stores the file locally before
loading it into a Hive table. If the create or recreate arguments are set to True, a CREATE TABLE and
DROP TABLE statements are generated. Hive data types are inferred from the cursor’s metadata. Note that the
table generated in Hive uses STORED AS textfile which isn’t the most efficient serialization format. If a
large amount of data is loaded and/or if the table gets queried considerably, you may want to use this operator
only to stage the data into a temporary table before loading it into its final destination using a HiveOperator.

Parameters

• sql (str) – SQL query to execute against the MySQL database. (templated)

• hive_table (str) – target Hive table, use dot notation to target a specific database.
(templated)

• create (bool) – whether to create the table if it doesn’t exist

• recreate (bool) – whether to drop and recreate the table at every execution

• partition (dict) – target partition as a dict of partition columns and values. (templated)

• delimiter (str) – field delimiter in the file

• mysql_conn_id (str) – source mysql connection

• hive_conn_id (str) – destination hive connection

• tblproperties (dict) – TBLPROPERTIES of the hive table being created

3.20. API Reference 243

Airflow Documentation, Release 2.0.0.dev0+

class airflow.operators.pig_operator.PigOperator(**kwargs)
Bases: airflow.models.BaseOperator

Executes pig script.

Parameters

• pig (str) – the pig latin script to be executed. (templated)

• pig_cli_conn_id (str) – reference to the Hive database

• pigparams_jinja_translate (bool) – when True, pig params-type templating
${var} gets translated into jinja-type templating {{ var }}. Note that you may want to
use this along with the DAG(user_defined_macros=myargs) parameter. View the
DAG object documentation for more details.

class airflow.operators.postgres_operator.PostgresOperator(**kwargs)
Bases: airflow.models.BaseOperator

Executes sql code in a specific Postgres database

Parameters

• sql (Can receive a str representing a sql statement, a list
of str (sql statements), or reference to a template file.
Template reference are recognized by str ending in '.sql') –
the sql code to be executed. (templated)

• postgres_conn_id (str) – reference to a specific postgres database

• autocommit (bool) – if True, each command is automatically committed. (default value:
False)

• parameters (mapping or iterable) – (optional) the parameters to render the SQL
query with.

• database (str) – name of database which overwrite defined one in connection

class airflow.operators.presto_check_operator.PrestoCheckOperator(**kwargs)
Bases: airflow.operators.check_operator.CheckOperator

Performs checks against Presto. The PrestoCheckOperator expects a sql query that will return a single
row. Each value on that first row is evaluated using python bool casting. If any of the values return False the
check is failed and errors out.

Note that Python bool casting evals the following as False:

• False

• 0

• Empty string ("")

• Empty list ([])

• Empty dictionary or set ({})

Given a query like SELECT COUNT(*) FROM foo, it will fail only if the count == 0. You can craft much
more complex query that could, for instance, check that the table has the same number of rows as the source
table upstream, or that the count of today’s partition is greater than yesterday’s partition, or that a set of metrics
are less than 3 standard deviation for the 7 day average.

This operator can be used as a data quality check in your pipeline, and depending on where you put it in your
DAG, you have the choice to stop the critical path, preventing from publishing dubious data, or on the side and
receive email alterts without stopping the progress of the DAG.

244 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Parameters

• sql (str) – the sql to be executed

• presto_conn_id (str) – reference to the Presto database

class airflow.operators.presto_check_operator.PrestoIntervalCheckOperator(**kwargs)
Bases: airflow.operators.check_operator.IntervalCheckOperator

Checks that the values of metrics given as SQL expressions are within a certain tolerance of the ones from
days_back before.

Parameters

• table (str) – the table name

• days_back (int) – number of days between ds and the ds we want to check against.
Defaults to 7 days

• metrics_threshold (dict) – a dictionary of ratios indexed by metrics

• presto_conn_id (str) – reference to the Presto database

class airflow.operators.presto_to_mysql.PrestoToMySqlTransfer(**kwargs)
Bases: airflow.models.BaseOperator

Moves data from Presto to MySQL, note that for now the data is loaded into memory before being pushed to
MySQL, so this operator should be used for smallish amount of data.

Parameters

• sql (str) – SQL query to execute against Presto. (templated)

• mysql_table (str) – target MySQL table, use dot notation to target a specific database.
(templated)

• mysql_conn_id (str) – source mysql connection

• presto_conn_id (str) – source presto connection

• mysql_preoperator (str) – sql statement to run against mysql prior to import, typi-
cally use to truncate of delete in place of the data coming in, allowing the task to be idem-
potent (running the task twice won’t double load data). (templated)

class airflow.operators.presto_check_operator.PrestoValueCheckOperator(**kwargs)
Bases: airflow.operators.check_operator.ValueCheckOperator

Performs a simple value check using sql code.

Parameters

• sql (str) – the sql to be executed

• presto_conn_id (str) – reference to the Presto database

class airflow.operators.python_operator.PythonOperator(**kwargs)
Bases: airflow.models.BaseOperator

Executes a Python callable

Parameters

• python_callable (python callable) – A reference to an object that is callable

• op_kwargs (dict) – a dictionary of keyword arguments that will get unpacked in your
function

3.20. API Reference 245

Airflow Documentation, Release 2.0.0.dev0+

• op_args (list) – a list of positional arguments that will get unpacked when calling your
callable

• provide_context (bool) – if set to true, Airflow will pass a set of keyword arguments
that can be used in your function. This set of kwargs correspond exactly to what you can
use in your jinja templates. For this to work, you need to define **kwargs in your function
header.

• templates_dict (dict of str) – a dictionary where the values are templates that
will get templated by the Airflow engine sometime between __init__ and execute
takes place and are made available in your callable’s context after the template has been
applied. (templated)

• templates_exts (list(str)) – a list of file extensions to resolve while processing
templated fields, for examples ['.sql', '.hql']

class airflow.operators.python_operator.PythonVirtualenvOperator(**kwargs)
Bases: airflow.operators.python_operator.PythonOperator

Allows one to run a function in a virtualenv that is created and destroyed automatically (with certain caveats).

The function must be defined using def, and not be part of a class. All imports must happen inside the function
and no variables outside of the scope may be referenced. A global scope variable named virtualenv_string_args
will be available (populated by string_args). In addition, one can pass stuff through op_args and op_kwargs, and
one can use a return value. Note that if your virtualenv runs in a different Python major version than Airflow,
you cannot use return values, op_args, or op_kwargs. You can use string_args though.

Parameters

• python_callable (function) – A python function with no references to outside vari-
ables, defined with def, which will be run in a virtualenv

• requirements (list(str)) – A list of requirements as specified in a pip install com-
mand

• python_version (str) – The Python version to run the virtualenv with. Note that both
2 and 2.7 are acceptable forms.

• use_dill (bool) – Whether to use dill to serialize the args and result (pickle is default).
This allow more complex types but requires you to include dill in your requirements.

• system_site_packages (bool) – Whether to include system_site_packages in your
virtualenv. See virtualenv documentation for more information.

• op_args – A list of positional arguments to pass to python_callable.

• op_kwargs (dict) – A dict of keyword arguments to pass to python_callable.

• string_args (list(str)) – Strings that are present in the global var vir-
tualenv_string_args, available to python_callable at runtime as a list(str). Note that args
are split by newline.

• templates_dict (dict of str) – a dictionary where the values are templates that
will get templated by the Airflow engine sometime between __init__ and execute
takes place and are made available in your callable’s context after the template has been
applied

• templates_exts (list(str)) – a list of file extensions to resolve while processing
templated fields, for examples ['.sql', '.hql']

class airflow.operators.s3_file_transform_operator.S3FileTransformOperator(**kwargs)
Bases: airflow.models.BaseOperator

246 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Copies data from a source S3 location to a temporary location on the local filesystem. Runs a transformation on
this file as specified by the transformation script and uploads the output to a destination S3 location.

The locations of the source and the destination files in the local filesystem is provided as an first and second
arguments to the transformation script. The transformation script is expected to read the data from source,
transform it and write the output to the local destination file. The operator then takes over control and uploads
the local destination file to S3.

S3 Select is also available to filter the source contents. Users can omit the transformation script if S3 Select
expression is specified.

Parameters

• source_s3_key (str) – The key to be retrieved from S3. (templated)

• source_aws_conn_id (str) – source s3 connection

• source_verify (bool or str) – Whether or not to verify SSL certificates for S3
connetion. By default SSL certificates are verified. You can provide the following values:

– False: do not validate SSL certificates. SSL will still be used (unless use_ssl is
False), but SSL certificates will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You
can specify this argument if you want to use a different CA cert bundle than the one
used by botocore.

This is also applicable to dest_verify.

• dest_s3_key (str) – The key to be written from S3. (templated)

• dest_aws_conn_id (str) – destination s3 connection

• replace (bool) – Replace dest S3 key if it already exists

• transform_script (str) – location of the executable transformation script

• select_expression (str) – S3 Select expression

class airflow.operators.s3_to_hive_operator.S3ToHiveTransfer(**kwargs)
Bases: airflow.models.BaseOperator

Moves data from S3 to Hive. The operator downloads a file from S3, stores the file locally before loading it into
a Hive table. If the create or recreate arguments are set to True, a CREATE TABLE and DROP TABLE
statements are generated. Hive data types are inferred from the cursor’s metadata from.

Note that the table generated in Hive uses STORED AS textfile which isn’t the most efficient serialization
format. If a large amount of data is loaded and/or if the tables gets queried considerably, you may want to use
this operator only to stage the data into a temporary table before loading it into its final destination using a
HiveOperator.

Parameters

• s3_key (str) – The key to be retrieved from S3. (templated)

• field_dict (dict) – A dictionary of the fields name in the file as keys and their Hive
types as values

• hive_table (str) – target Hive table, use dot notation to target a specific database.
(templated)

• create (bool) – whether to create the table if it doesn’t exist

• recreate (bool) – whether to drop and recreate the table at every execution

• partition (dict) – target partition as a dict of partition columns and values. (templated)

3.20. API Reference 247

Airflow Documentation, Release 2.0.0.dev0+

• headers (bool) – whether the file contains column names on the first line

• check_headers (bool) – whether the column names on the first line should be checked
against the keys of field_dict

• wildcard_match (bool) – whether the s3_key should be interpreted as a Unix wildcard
pattern

• delimiter (str) – field delimiter in the file

• aws_conn_id (str) – source s3 connection

• verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified. You can provide the following values:

– False: do not validate SSL certificates. SSL will still be used (unless use_ssl is
False), but SSL certificates will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You
can specify this argument if you want to use a different CA cert bundle than the one
used by botocore.

• hive_cli_conn_id (str) – destination hive connection

• input_compressed (bool) – Boolean to determine if file decompression is required to
process headers

• tblproperties (dict) – TBLPROPERTIES of the hive table being created

• select_expression (str) – S3 Select expression

class airflow.operators.s3_to_redshift_operator.S3ToRedshiftTransfer(**kwargs)
Bases: airflow.models.BaseOperator

Executes an COPY command to load files from s3 to Redshift

Parameters

• schema (str) – reference to a specific schema in redshift database

• table (str) – reference to a specific table in redshift database

• s3_bucket (str) – reference to a specific S3 bucket

• s3_key (str) – reference to a specific S3 key

• redshift_conn_id (str) – reference to a specific redshift database

• aws_conn_id (str) – reference to a specific S3 connection

• verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified. You can provide the following values:

– False: do not validate SSL certificates. SSL will still be used (unless use_ssl is
False), but SSL certificates will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You
can specify this argument if you want to use a different CA cert bundle than the one
used by botocore.

• copy_options (list) – reference to a list of COPY options

class airflow.operators.python_operator.ShortCircuitOperator(**kwargs)
Bases: airflow.operators.python_operator.PythonOperator, airflow.models.
SkipMixin

248 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Allows a workflow to continue only if a condition is met. Otherwise, the workflow “short-circuits” and down-
stream tasks are skipped.

The ShortCircuitOperator is derived from the PythonOperator. It evaluates a condition and short-circuits the
workflow if the condition is False. Any downstream tasks are marked with a state of “skipped”. If the condition
is True, downstream tasks proceed as normal.

The condition is determined by the result of python_callable.

class airflow.operators.http_operator.SimpleHttpOperator(**kwargs)
Bases: airflow.models.BaseOperator

Calls an endpoint on an HTTP system to execute an action

Parameters

• http_conn_id (str) – The connection to run the operator against

• endpoint (str) – The relative part of the full url. (templated)

• method (str) – The HTTP method to use, default = “POST”

• data (For POST/PUT, depends on the content-type parameter,
for GET a dictionary of key/value string pairs) – The data to pass.
POST-data in POST/PUT and params in the URL for a GET request. (templated)

• headers (a dictionary of string key/value pairs) – The HTTP headers
to be added to the GET request

• response_check (A lambda or defined function.) – A check against the
‘requests’ response object. Returns True for ‘pass’ and False otherwise.

• extra_options (A dictionary of options, where key is string
and value depends on the option that's being modified.) – Extra
options for the ‘requests’ library, see the ‘requests’ documentation (options to modify
timeout, ssl, etc.)

• xcom_push (bool) – Push the response to Xcom (default: False). If xcom_push is True,
response of an HTTP request will also be pushed to an XCom.

• log_response (bool) – Log the response (default: False)

class airflow.operators.slack_operator.SlackAPIOperator(**kwargs)
Bases: airflow.models.BaseOperator

Base Slack Operator The SlackAPIPostOperator is derived from this operator. In the future additional Slack
API Operators will be derived from this class as well

Parameters

• slack_conn_id (str) – Slack connection ID which its password is Slack API token

• token (str) – Slack API token (https://api.slack.com/web)

• method (str) – The Slack API Method to Call (https://api.slack.com/methods)

• api_params (dict) – API Method call parameters (https://api.slack.com/methods)

construct_api_call_params()
Used by the execute function. Allows templating on the source fields of the api_call_params dict before
construction

Override in child classes. Each SlackAPIOperator child class is responsible for having a con-
struct_api_call_params function which sets self.api_call_params with a dict of API call parameters
(https://api.slack.com/methods)

3.20. API Reference 249

https://api.slack.com/web
https://api.slack.com/methods
https://api.slack.com/methods
https://api.slack.com/methods

Airflow Documentation, Release 2.0.0.dev0+

execute(**kwargs)
SlackAPIOperator calls will not fail even if the call is not unsuccessful. It should not prevent a DAG from
completing in success

class airflow.operators.slack_operator.SlackAPIPostOperator(**kwargs)
Bases: airflow.operators.slack_operator.SlackAPIOperator

Posts messages to a slack channel

Parameters

• channel (str) – channel in which to post message on slack name (#general) or ID
(C12318391). (templated)

• username (str) – Username that airflow will be posting to Slack as. (templated)

• text (str) – message to send to slack. (templated)

• icon_url (str) – url to icon used for this message

• attachments (array of hashes) – extra formatting details. (templated) - see https:
//api.slack.com/docs/attachments.

construct_api_call_params()
Used by the execute function. Allows templating on the source fields of the api_call_params dict before
construction

Override in child classes. Each SlackAPIOperator child class is responsible for having a con-
struct_api_call_params function which sets self.api_call_params with a dict of API call parameters
(https://api.slack.com/methods)

class airflow.operators.sqlite_operator.SqliteOperator(**kwargs)
Bases: airflow.models.BaseOperator

Executes sql code in a specific Sqlite database

Parameters

• sql (str or string pointing to a template file. File must
have a '.sql' extensions.) – the sql code to be executed. (templated)

• sqlite_conn_id (str) – reference to a specific sqlite database

• parameters (mapping or iterable) – (optional) the parameters to render the SQL
query with.

class airflow.operators.subdag_operator.SubDagOperator(**kwargs)
Bases: airflow.models.BaseOperator

This runs a sub dag. By convention, a sub dag’s dag_id should be prefixed by its parent and a dot. As in
parent.child.

Parameters

• subdag (airflow.DAG.) – the DAG object to run as a subdag of the current DAG.

• dag (airflow.DAG.) – the parent DAG for the subdag.

• executor (airflow.executors.) – the executor for this subdag. Default to use
SequentialExecutor. Please find AIRFLOW-74 for more details.

class airflow.operators.dagrun_operator.TriggerDagRunOperator(**kwargs)
Bases: airflow.models.BaseOperator

Triggers a DAG run for a specified dag_id

250 Chapter 3. Content

https://api.slack.com/docs/attachments
https://api.slack.com/docs/attachments
https://api.slack.com/methods

Airflow Documentation, Release 2.0.0.dev0+

Parameters

• trigger_dag_id (str) – the dag_id to trigger (templated)

• python_callable (python callable) – a reference to a python function that will
be called while passing it the context object and a placeholder object obj for your
callable to fill and return if you want a DagRun created. This obj object contains a run_id
and payload attribute that you can modify in your function. The run_id should be a
unique identifier for that DAG run, and the payload has to be a picklable object that will be
made available to your tasks while executing that DAG run. Your function header should
look like def foo(context, dag_run_obj):

• execution_date (str or datetime.datetime) – Execution date for the dag
(templated)

class airflow.operators.check_operator.ValueCheckOperator(**kwargs)
Bases: airflow.models.BaseOperator

Performs a simple value check using sql code.

Note that this is an abstract class and get_db_hook needs to be defined. Whereas a get_db_hook is hook that
gets a single record from an external source.

Parameters sql (str) – the sql to be executed. (templated)

class airflow.operators.redshift_to_s3_operator.RedshiftToS3Transfer(**kwargs)
Bases: airflow.models.BaseOperator

Executes an UNLOAD command to s3 as a CSV with headers

Parameters

• schema (str) – reference to a specific schema in redshift database

• table (str) – reference to a specific table in redshift database

• s3_bucket (str) – reference to a specific S3 bucket

• s3_key (str) – reference to a specific S3 key

• redshift_conn_id (str) – reference to a specific redshift database

• aws_conn_id (str) – reference to a specific S3 connection

• verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified. You can provide the following values:

– False: do not validate SSL certificates. SSL will still be used (unless use_ssl is
False), but SSL certificates will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You
can specify this argument if you want to use a different CA cert bundle than the one
used by botocore.

• unload_options (list) – reference to a list of UNLOAD options

Sensors

class airflow.sensors.external_task_sensor.ExternalTaskSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a different DAG or a task in a different DAG to complete for a specific execution_date

Parameters

3.20. API Reference 251

Airflow Documentation, Release 2.0.0.dev0+

• external_dag_id (str) – The dag_id that contains the task you want to wait for

• external_task_id (str) – The task_id that contains the task you want to wait for. If
None the sensor waits for the DAG

• allowed_states (list) – list of allowed states, default is ['success']

• execution_delta (datetime.timedelta) – time difference with the previous ex-
ecution to look at, the default is the same execution_date as the current task or DAG. For
yesterday, use [positive!] datetime.timedelta(days=1). Either execution_delta or execu-
tion_date_fn can be passed to ExternalTaskSensor, but not both.

• execution_date_fn (callable) – function that receives the current execution
date and returns the desired execution dates to query. Either execution_delta or execu-
tion_date_fn can be passed to ExternalTaskSensor, but not both.

• check_existence (bool) – Set to True to check if the external task exists (when ex-
ternal_task_id is not None) or check if the DAG to wait for exists (when external_task_id
is None), and immediately cease waiting if the external task or DAG does not exist (default
value: False).

poke(**kwargs)
Function that the sensors defined while deriving this class should override.

class airflow.sensors.hdfs_sensor.HdfsSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a file or folder to land in HDFS

static filter_for_filesize(result, size=None)
Will test the filepath result and test if its size is at least self.filesize

Parameters

• result – a list of dicts returned by Snakebite ls

• size – the file size in MB a file should be at least to trigger True

Returns (bool) depending on the matching criteria

static filter_for_ignored_ext(result, ignored_ext, ignore_copying)
Will filter if instructed to do so the result to remove matching criteria

Parameters

• result – (list) of dicts returned by Snakebite ls

• ignored_ext – (list) of ignored extensions

• ignore_copying – (bool) shall we ignore ?

Returns (list) of dicts which were not removed

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.sensors.hive_partition_sensor.HivePartitionSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a partition to show up in Hive.

Note: Because partition supports general logical operators, it can be inefficient. Consider using Named-
HivePartitionSensor instead if you don’t need the full flexibility of HivePartitionSensor.

Parameters

252 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• table (str) – The name of the table to wait for, supports the dot notation
(my_database.my_table)

• partition (str) – The partition clause to wait for. This is passed as is to the metastore
Thrift client get_partitions_by_filter method, and apparently supports SQL like
notation as in ds='2015-01-01' AND type='value' and comparison operators as
in "ds>=2015-01-01"

• metastore_conn_id (str) – reference to the metastore thrift service connection id

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.sensors.http_sensor.HttpSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Executes a HTTP GET statement and returns False on failure caused by 404 Not Found or response_check
returning False.

HTTP Error codes other than 404 (like 403) or Connection Refused Error would fail the sensor itself directly
(no more poking).

Parameters

• http_conn_id (str) – The connection to run the sensor against

• method (str) – The HTTP request method to use

• endpoint (str) – The relative part of the full url

• request_params (a dictionary of string key/value pairs) – The pa-
rameters to be added to the GET url

• headers (a dictionary of string key/value pairs) – The HTTP headers
to be added to the GET request

• response_check (A lambda or defined function.) – A check against the
‘requests’ response object. Returns True for ‘pass’ and False otherwise.

• extra_options (A dictionary of options, where key is string
and value depends on the option that's being modified.) – Extra
options for the ‘requests’ library, see the ‘requests’ documentation (options to modify
timeout, ssl, etc.)

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.sensors.metastore_partition_sensor.MetastorePartitionSensor(**kwargs)
Bases: airflow.sensors.sql_sensor.SqlSensor

An alternative to the HivePartitionSensor that talk directly to the MySQL db. This was created as a result of
observing sub optimal queries generated by the Metastore thrift service when hitting subpartitioned tables. The
Thrift service’s queries were written in a way that wouldn’t leverage the indexes.

Parameters

• schema (str) – the schema

• table (str) – the table

• partition_name (str) – the partition name, as defined in the PARTITIONS table
of the Metastore. Order of the fields does matter. Examples: ds=2016-01-01 or
ds=2016-01-01/sub=foo for a sub partitioned table

• mysql_conn_id (str) – a reference to the MySQL conn_id for the metastore

3.20. API Reference 253

Airflow Documentation, Release 2.0.0.dev0+

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.sensors.named_hive_partition_sensor.NamedHivePartitionSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a set of partitions to show up in Hive.

Parameters

• partition_names (list of strings) – List of fully qualified names of the par-
titions to wait for. A fully qualified name is of the form schema.table/pk1=pv1/
pk2=pv2, for example, default.users/ds=2016-01-01. This is passed as is to the metastore
Thrift client get_partitions_by_name method. Note that you cannot use logical or
comparison operators as in HivePartitionSensor.

• metastore_conn_id (str) – reference to the metastore thrift service connection id

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.sensors.s3_key_sensor.S3KeySensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a key (a file-like instance on S3) to be present in a S3 bucket. S3 being a key/value it does not support
folders. The path is just a key a resource.

Parameters

• bucket_key (str) – The key being waited on. Supports full s3:// style url or relative path
from root level. When it’s specified as a full s3:// url, please leave bucket_name as None.

• bucket_name (str) – Name of the S3 bucket. Only needed when bucket_key is not
provided as a full s3:// url.

• wildcard_match (bool) – whether the bucket_key should be interpreted as a Unix
wildcard pattern

• aws_conn_id (str) – a reference to the s3 connection

• verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified. You can provide the following values:

– False: do not validate SSL certificates. SSL will still be used (unless use_ssl is
False), but SSL certificates will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You
can specify this argument if you want to use a different CA cert bundle than the one
used by botocore.

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.sensors.s3_prefix_sensor.S3PrefixSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a prefix to exist. A prefix is the first part of a key, thus enabling checking of constructs similar to glob
airfl* or SQL LIKE ‘airfl%’. There is the possibility to precise a delimiter to indicate the hierarchy or keys,
meaning that the match will stop at that delimiter. Current code accepts sane delimiters, i.e. characters that are
NOT special characters in the Python regex engine.

Parameters

• bucket_name (str) – Name of the S3 bucket

254 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• prefix (str) – The prefix being waited on. Relative path from bucket root level.

• delimiter (str) – The delimiter intended to show hierarchy. Defaults to ‘/’.

• aws_conn_id (str) – a reference to the s3 connection

• verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified. You can provide the following values:

– False: do not validate SSL certificates. SSL will still be used (unless use_ssl is
False), but SSL certificates will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You
can specify this argument if you want to use a different CA cert bundle than the one
used by botocore.

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.sensors.sql_sensor.SqlSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Runs a sql statement until a criteria is met. It will keep trying while sql returns no row, or if the first cell in (0,
‘0’, ‘’).

Parameters

• conn_id (str) – The connection to run the sensor against

• sql (str) – The sql to run. To pass, it needs to return at least one cell that contains a
non-zero / empty string value.

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.sensors.time_sensor.TimeSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits until the specified time of the day.

Parameters target_time (datetime.time) – time after which the job succeeds

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.sensors.time_delta_sensor.TimeDeltaSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a timedelta after the task’s execution_date + schedule_interval. In Airflow, the daily task stamped with
execution_date 2016-01-01 can only start running on 2016-01-02. The timedelta here represents the time
after the execution period has closed.

Parameters delta (datetime.timedelta) – time length to wait after execution_date before
succeeding

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.sensors.web_hdfs_sensor.WebHdfsSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a file or folder to land in HDFS

poke(context)
Function that the sensors defined while deriving this class should override.

3.20. API Reference 255

Airflow Documentation, Release 2.0.0.dev0+

3.20.1.4 Community-contributed Operators

Operators

class airflow.contrib.operators.aws_athena_operator.AWSAthenaOperator(**kwargs)
Bases: airflow.models.BaseOperator

An operator that submit presto query to athena.

Parameters

• query (str) – Presto to be run on athena. (templated)

• database (str) – Database to select. (templated)

• output_location (str) – s3 path to write the query results into. (templated)

• aws_conn_id (str) – aws connection to use

• sleep_time (int) – Time to wait between two consecutive call to check query status on
athena

execute(context)
Run Presto Query on Athena

on_kill()
Cancel the submitted athena query

class airflow.contrib.operators.awsbatch_operator.AWSBatchOperator(**kwargs)
Bases: airflow.models.BaseOperator

Execute a job on AWS Batch Service

Parameters

• job_name (str) – the name for the job that will run on AWS Batch (templated)

• job_definition (str) – the job definition name on AWS Batch

• job_queue (str) – the queue name on AWS Batch

• overrides (dict) – the same parameter that boto3 will receive on con-
tainerOverrides (templated): http://boto3.readthedocs.io/en/latest/reference/services/batch.
html#submit_job

• max_retries (int) – exponential backoff retries while waiter is not merged, 4200 = 48
hours

• aws_conn_id (str) – connection id of AWS credentials / region name. If None, creden-
tial boto3 strategy will be used (http://boto3.readthedocs.io/en/latest/guide/configuration.
html).

• region_name (str) – region name to use in AWS Hook. Override the region_name in
connection (if provided)

class airflow.contrib.operators.bigquery_check_operator.BigQueryCheckOperator(**kwargs)
Bases: airflow.operators.check_operator.CheckOperator

Performs checks against BigQuery. The BigQueryCheckOperator expects a sql query that will return a
single row. Each value on that first row is evaluated using python bool casting. If any of the values return
False the check is failed and errors out.

Note that Python bool casting evals the following as False:

• False

256 Chapter 3. Content

http://boto3.readthedocs.io/en/latest/reference/services/batch.html#submit_job
http://boto3.readthedocs.io/en/latest/reference/services/batch.html#submit_job
http://boto3.readthedocs.io/en/latest/guide/configuration.html
http://boto3.readthedocs.io/en/latest/guide/configuration.html

Airflow Documentation, Release 2.0.0.dev0+

• 0

• Empty string ("")

• Empty list ([])

• Empty dictionary or set ({})

Given a query like SELECT COUNT(*) FROM foo, it will fail only if the count == 0. You can craft much
more complex query that could, for instance, check that the table has the same number of rows as the source
table upstream, or that the count of today’s partition is greater than yesterday’s partition, or that a set of metrics
are less than 3 standard deviation for the 7 day average.

This operator can be used as a data quality check in your pipeline, and depending on where you put it in your
DAG, you have the choice to stop the critical path, preventing from publishing dubious data, or on the side and
receive email alterts without stopping the progress of the DAG.

Parameters

• sql (str) – the sql to be executed

• bigquery_conn_id (str) – reference to the BigQuery database

• use_legacy_sql (bool) – Whether to use legacy SQL (true) or standard SQL (false).

class airflow.contrib.operators.bigquery_check_operator.BigQueryValueCheckOperator(**kwargs)
Bases: airflow.operators.check_operator.ValueCheckOperator

Performs a simple value check using sql code.

Parameters

• sql (str) – the sql to be executed

• use_legacy_sql (bool) – Whether to use legacy SQL (true) or standard SQL (false).

class airflow.contrib.operators.bigquery_check_operator.BigQueryIntervalCheckOperator(**kwargs)
Bases: airflow.operators.check_operator.IntervalCheckOperator

Checks that the values of metrics given as SQL expressions are within a certain tolerance of the ones from
days_back before.

This method constructs a query like so

SELECT {metrics_threshold_dict_key} FROM {table}
WHERE {date_filter_column}=<date>

Parameters

• table (str) – the table name

• days_back (int) – number of days between ds and the ds we want to check against.
Defaults to 7 days

• metrics_threshold (dict) – a dictionary of ratios indexed by metrics, for example
‘COUNT(*)’: 1.5 would require a 50 percent or less difference between the current day, and
the prior days_back.

• use_legacy_sql (bool) – Whether to use legacy SQL (true) or standard SQL (false).

class airflow.contrib.operators.bigquery_get_data.BigQueryGetDataOperator(**kwargs)
Bases: airflow.models.BaseOperator

3.20. API Reference 257

Airflow Documentation, Release 2.0.0.dev0+

Fetches the data from a BigQuery table (alternatively fetch data for selected columns) and returns data in a
python list. The number of elements in the returned list will be equal to the number of rows fetched. Each
element in the list will again be a list where element would represent the columns values for that row.

Example Result: [['Tony', '10'], ['Mike', '20'], ['Steve', '15']]

Note: If you pass fields to selected_fields which are in different order than the order of columns already
in BQ table, the data will still be in the order of BQ table. For example if the BQ table has 3 columns as
[A,B,C] and you pass ‘B,A’ in the selected_fields the data would still be of the form 'A,B'.

Example:

get_data = BigQueryGetDataOperator(
task_id='get_data_from_bq',
dataset_id='test_dataset',
table_id='Transaction_partitions',
max_results='100',
selected_fields='DATE',
bigquery_conn_id='airflow-service-account'

)

Parameters

• dataset_id (str) – The dataset ID of the requested table. (templated)

• table_id (str) – The table ID of the requested table. (templated)

• max_results (str) – The maximum number of records (rows) to be fetched from the
table. (templated)

• selected_fields (str) – List of fields to return (comma-separated). If unspecified,
all fields are returned.

• bigquery_conn_id (str) – reference to a specific BigQuery hook.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

class airflow.contrib.operators.bigquery_operator.BigQueryCreateEmptyTableOperator(**kwargs)
Bases: airflow.models.BaseOperator

Creates a new, empty table in the specified BigQuery dataset, optionally with schema.

The schema to be used for the BigQuery table may be specified in one of two ways. You may either directly pass
the schema fields in, or you may point the operator to a Google cloud storage object name. The object in Google
cloud storage must be a JSON file with the schema fields in it. You can also create a table without schema.

Parameters

• project_id (str) – The project to create the table into. (templated)

• dataset_id (str) – The dataset to create the table into. (templated)

• table_id (str) – The Name of the table to be created. (templated)

• schema_fields (list) – If set, the schema field list as defined here: https://cloud.
google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema

Example:

258 Chapter 3. Content

https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema

Airflow Documentation, Release 2.0.0.dev0+

schema_fields=[{"name": "emp_name", "type": "STRING", "mode":
→˓"REQUIRED"},

{"name": "salary", "type": "INTEGER", "mode":
→˓"NULLABLE"}]

• gcs_schema_object (str) – Full path to the JSON file containing schema (templated).
For example: gs://test-bucket/dir1/dir2/employee_schema.json

• time_partitioning (dict) – configure optional time partitioning fields i.e. partition
by field, type and expiration as per API specifications.

See also:

https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#timePartitioning

• bigquery_conn_id (str) – Reference to a specific BigQuery hook.

• google_cloud_storage_conn_id (str) – Reference to a specific Google cloud
storage hook.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• labels (dict) – a dictionary containing labels for the table, passed to BigQuery

Example (with schema JSON in GCS):

CreateTable = BigQueryCreateEmptyTableOperator(
task_id='BigQueryCreateEmptyTableOperator_task',
dataset_id='ODS',
table_id='Employees',
project_id='internal-gcp-project',
gcs_schema_object='gs://schema-bucket/employee_schema.json',
bigquery_conn_id='airflow-service-account',
google_cloud_storage_conn_id='airflow-service-account'

)

Corresponding Schema file (employee_schema.json):

[
{
"mode": "NULLABLE",
"name": "emp_name",
"type": "STRING"

},
{
"mode": "REQUIRED",
"name": "salary",
"type": "INTEGER"

}
]

Example (with schema in the DAG):

CreateTable = BigQueryCreateEmptyTableOperator(
task_id='BigQueryCreateEmptyTableOperator_task',
dataset_id='ODS',
table_id='Employees',
project_id='internal-gcp-project',
schema_fields=[{"name": "emp_name", "type": "STRING", "mode":

→˓"REQUIRED"}, (continues on next page)

3.20. API Reference 259

https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#timePartitioning

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

{"name": "salary", "type": "INTEGER", "mode":
→˓"NULLABLE"}],

bigquery_conn_id='airflow-service-account',
google_cloud_storage_conn_id='airflow-service-account'

)

class airflow.contrib.operators.bigquery_operator.BigQueryCreateExternalTableOperator(**kwargs)
Bases: airflow.models.BaseOperator

Creates a new external table in the dataset with the data in Google Cloud Storage.

The schema to be used for the BigQuery table may be specified in one of two ways. You may either directly
pass the schema fields in, or you may point the operator to a Google cloud storage object name. The object in
Google cloud storage must be a JSON file with the schema fields in it.

Parameters

• bucket (str) – The bucket to point the external table to. (templated)

• source_objects (list) – List of Google cloud storage URIs to point table to. (tem-
plated) If source_format is ‘DATASTORE_BACKUP’, the list must only contain a single
URI.

• destination_project_dataset_table (str) – The dotted
(<project>.)<dataset>.<table> BigQuery table to load data into (templated). If <project> is
not included, project will be the project defined in the connection json.

• schema_fields (list) – If set, the schema field list as defined here: https://cloud.
google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema

Example:

schema_fields=[{"name": "emp_name", "type": "STRING", "mode":
→˓"REQUIRED"},

{"name": "salary", "type": "INTEGER", "mode":
→˓"NULLABLE"}]

Should not be set when source_format is ‘DATASTORE_BACKUP’.

• schema_object (str) – If set, a GCS object path pointing to a .json file that contains
the schema for the table. (templated)

• source_format (str) – File format of the data.

• compression (str) – [Optional] The compression type of the data source. Possible
values include GZIP and NONE. The default value is NONE. This setting is ignored for
Google Cloud Bigtable, Google Cloud Datastore backups and Avro formats.

• skip_leading_rows (int) – Number of rows to skip when loading from a CSV.

• field_delimiter (str) – The delimiter to use for the CSV.

• max_bad_records (int) – The maximum number of bad records that BigQuery can
ignore when running the job.

• quote_character (str) – The value that is used to quote data sections in a CSV file.

• allow_quoted_newlines (bool) – Whether to allow quoted newlines (true) or not
(false).

• allow_jagged_rows (bool) – Accept rows that are missing trailing optional columns.
The missing values are treated as nulls. If false, records with missing trailing columns are

260 Chapter 3. Content

https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema

Airflow Documentation, Release 2.0.0.dev0+

treated as bad records, and if there are too many bad records, an invalid error is returned in
the job result. Only applicable to CSV, ignored for other formats.

• bigquery_conn_id (str) – Reference to a specific BigQuery hook.

• google_cloud_storage_conn_id (str) – Reference to a specific Google cloud
storage hook.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• src_fmt_configs (dict) – configure optional fields specific to the source format

• labels (dict) – a dictionary containing labels for the table, passed to BigQuery

class airflow.contrib.operators.bigquery_operator.BigQueryDeleteDatasetOperator(**kwargs)
Bases: airflow.models.BaseOperator

This operator deletes an existing dataset from your Project in Big query. https://cloud.google.com/bigquery/
docs/reference/rest/v2/datasets/delete

Parameters

• project_id (str) – The project id of the dataset.

• dataset_id (str) – The dataset to be deleted.

Example:

delete_temp_data = BigQueryDeleteDatasetOperator(dataset_id = 'temp-dataset',
project_id = 'temp-project',
bigquery_conn_id='_my_gcp_conn_',
task_id='Deletetemp',
dag=dag)

class airflow.contrib.operators.bigquery_operator.BigQueryCreateEmptyDatasetOperator(**kwargs)
Bases: airflow.models.BaseOperator

This operator is used to create new dataset for your Project in Big query. https://cloud.google.com/bigquery/
docs/reference/rest/v2/datasets#resource

Parameters

• project_id (str) – The name of the project where we want to create the dataset. Don’t
need to provide, if projectId in dataset_reference.

• dataset_id (str) – The id of dataset. Don’t need to provide, if datasetId in
dataset_reference.

• dataset_reference – Dataset reference that could be provided with request body.
More info: https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource

class airflow.contrib.operators.bigquery_operator.BigQueryOperator(**kwargs)
Bases: airflow.models.BaseOperator

Executes BigQuery SQL queries in a specific BigQuery database

Parameters

• sql (Can receive a str representing a sql statement, a list
of str (sql statements), or reference to a template file.
Template reference are recognized by str ending in '.sql'.) –
the sql code to be executed (templated)

3.20. API Reference 261

https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/delete
https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/delete
https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource
https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource
https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource

Airflow Documentation, Release 2.0.0.dev0+

• destination_dataset_table (str) – A dotted
(<project>.|<project>:)<dataset>.<table> that, if set, will store the results of the query.
(templated)

• write_disposition (str) – Specifies the action that occurs if the destination table
already exists. (default: ‘WRITE_EMPTY’)

• create_disposition (str) – Specifies whether the job is allowed to create new ta-
bles. (default: ‘CREATE_IF_NEEDED’)

• allow_large_results (bool) – Whether to allow large results.

• flatten_results (bool) – If true and query uses legacy SQL dialect, flattens all
nested and repeated fields in the query results. allow_large_results must be true
if this is set to false. For standard SQL queries, this flag is ignored and results are never
flattened.

• bigquery_conn_id (str) – reference to a specific BigQuery hook.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• udf_config (list) – The User Defined Function configuration for the query. See https:
//cloud.google.com/bigquery/user-defined-functions for details.

• use_legacy_sql (bool) – Whether to use legacy SQL (true) or standard SQL (false).

• maximum_billing_tier (int) – Positive integer that serves as a multiplier of the
basic price. Defaults to None, in which case it uses the value set in the project.

• maximum_bytes_billed (float) – Limits the bytes billed for this job. Queries that
will have bytes billed beyond this limit will fail (without incurring a charge). If unspecified,
this will be set to your project default.

• api_resource_configs (dict) – a dictionary that contain params ‘configuration’
applied for Google BigQuery Jobs API: https://cloud.google.com/bigquery/docs/reference/
rest/v2/jobs for example, {‘query’: {‘useQueryCache’: False}}. You could use it if you
need to provide some params that are not supported by BigQueryOperator like args.

• schema_update_options (tuple) – Allows the schema of the destination table to be
updated as a side effect of the load job.

• query_params (dict) – a dictionary containing query parameter types and values,
passed to BigQuery.

• labels (dict) – a dictionary containing labels for the job/query, passed to BigQuery

• priority (str) – Specifies a priority for the query. Possible values include INTERAC-
TIVE and BATCH. The default value is INTERACTIVE.

• time_partitioning (dict) – configure optional time partitioning fields i.e. partition
by field, type and expiration as per API specifications.

• cluster_fields (list of str) – Request that the result of this query be stored
sorted by one or more columns. This is only available in conjunction with time_partitioning.
The order of columns given determines the sort order.

• location (str) – The geographic location of the job. Required except for US and EU.
See details at https://cloud.google.com/bigquery/docs/locations#specifying_your_location

class airflow.contrib.operators.bigquery_table_delete_operator.BigQueryTableDeleteOperator(**kwargs)
Bases: airflow.models.BaseOperator

Deletes BigQuery tables

262 Chapter 3. Content

https://cloud.google.com/bigquery/user-defined-functions
https://cloud.google.com/bigquery/user-defined-functions
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs
https://cloud.google.com/bigquery/docs/locations#specifying_your_location

Airflow Documentation, Release 2.0.0.dev0+

Parameters

• deletion_dataset_table (str) – A dotted (<project>.|<project>:)<dataset>.<table>
that indicates which table will be deleted. (templated)

• bigquery_conn_id (str) – reference to a specific BigQuery hook.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• ignore_if_missing (bool) – if True, then return success even if the requested table
does not exist.

class airflow.contrib.operators.bigquery_to_bigquery.BigQueryToBigQueryOperator(**kwargs)
Bases: airflow.models.BaseOperator

Copies data from one BigQuery table to another.

See also:

For more details about these parameters: https://cloud.google.com/bigquery/docs/reference/v2/jobs#
configuration.copy

Parameters

• source_project_dataset_tables (list|string) – One or more dotted
(project:|project.)<dataset>.<table> BigQuery tables to use as the source data. If <project>
is not included, project will be the project defined in the connection json. Use a list if there
are multiple source tables. (templated)

• destination_project_dataset_table (str) – The destination BigQuery table.
Format is: (project:|project.)<dataset>.<table> (templated)

• write_disposition (str) – The write disposition if the table already exists.

• create_disposition (str) – The create disposition if the table doesn’t exist.

• bigquery_conn_id (str) – reference to a specific BigQuery hook.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• labels (dict) – a dictionary containing labels for the job/query, passed to BigQuery

class airflow.contrib.operators.bigquery_to_gcs.BigQueryToCloudStorageOperator(**kwargs)
Bases: airflow.models.BaseOperator

Transfers a BigQuery table to a Google Cloud Storage bucket.

See also:

For more details about these parameters: https://cloud.google.com/bigquery/docs/reference/v2/jobs

Parameters

• source_project_dataset_table (str) – The dotted (<project>.
|<project>:)<dataset>.<table> BigQuery table to use as the source data.
If <project> is not included, project will be the project defined in the connection json.
(templated)

• destination_cloud_storage_uris (list) – The destination Google Cloud Stor-
age URI (e.g. gs://some-bucket/some-file.txt). (templated) Follows convention defined here:
https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple

3.20. API Reference 263

https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.copy
https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.copy
https://cloud.google.com/bigquery/docs/reference/v2/jobs

Airflow Documentation, Release 2.0.0.dev0+

• compression (str) – Type of compression to use.

• export_format (str) – File format to export.

• field_delimiter (str) – The delimiter to use when extracting to a CSV.

• print_header (bool) – Whether to print a header for a CSV file extract.

• bigquery_conn_id (str) – reference to a specific BigQuery hook.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• labels (dict) – a dictionary containing labels for the job/query, passed to BigQuery

class airflow.contrib.operators.cassandra_to_gcs.CassandraToGoogleCloudStorageOperator(**kwargs)
Bases: airflow.models.BaseOperator

Copy data from Cassandra to Google cloud storage in JSON format

Note: Arrays of arrays are not supported.

classmethod convert_map_type(name, value)
Converts a map to a repeated RECORD that contains two fields: ‘key’ and ‘value’, each will be converted
to its corresopnding data type in BQ.

classmethod convert_tuple_type(name, value)
Converts a tuple to RECORD that contains n fields, each will be converted to its corresponding data type in
bq and will be named ‘field_<index>’, where index is determined by the order of the tuple elments defined
in cassandra.

classmethod convert_user_type(name, value)
Converts a user type to RECORD that contains n fields, where n is the number of attributes. Each element
in the user type class will be converted to its corresponding data type in BQ.

class airflow.contrib.operators.databricks_operator.DatabricksSubmitRunOperator(**kwargs)
Bases: airflow.models.BaseOperator

Submits a Spark job run to Databricks using the api/2.0/jobs/runs/submit API endpoint.

There are two ways to instantiate this operator.

In the first way, you can take the JSON payload that you typically use to call the api/2.0/jobs/runs/
submit endpoint and pass it directly to our DatabricksSubmitRunOperator through the json param-
eter. For example

json = {
'new_cluster': {

'spark_version': '2.1.0-db3-scala2.11',
'num_workers': 2

},
'notebook_task': {

'notebook_path': '/Users/airflow@example.com/PrepareData',
},

}
notebook_run = DatabricksSubmitRunOperator(task_id='notebook_run', json=json)

Another way to accomplish the same thing is to use the named parameters of the
DatabricksSubmitRunOperator directly. Note that there is exactly one named parameter for
each top level parameter in the runs/submit endpoint. In this method, your code would look like this:

264 Chapter 3. Content

https://docs.databricks.com/api/latest/jobs.html#runs-submit

Airflow Documentation, Release 2.0.0.dev0+

new_cluster = {
'spark_version': '2.1.0-db3-scala2.11',
'num_workers': 2

}
notebook_task = {
'notebook_path': '/Users/airflow@example.com/PrepareData',

}
notebook_run = DatabricksSubmitRunOperator(

task_id='notebook_run',
new_cluster=new_cluster,
notebook_task=notebook_task)

In the case where both the json parameter AND the named parameters are provided, they will be merged together.
If there are conflicts during the merge, the named parameters will take precedence and override the top level
json keys.

Currently the named parameters that DatabricksSubmitRunOperator supports are

• spark_jar_task

• notebook_task

• new_cluster

• existing_cluster_id

• libraries

• run_name

• timeout_seconds

Parameters

• json (dict) – A JSON object containing API parameters which will be passed directly
to the api/2.0/jobs/runs/submit endpoint. The other named parameters (i.e.
spark_jar_task, notebook_task..) to this operator will be merged with this json
dictionary if they are provided. If there are conflicts during the merge, the named parameters
will take precedence and override the top level json keys. (templated)

See also:

For more information about templating see Jinja Templating. https://docs.databricks.com/
api/latest/jobs.html#runs-submit

• spark_jar_task (dict) – The main class and parameters for the JAR task. Note
that the actual JAR is specified in the libraries. EITHER spark_jar_task OR
notebook_task should be specified. This field will be templated.

See also:

https://docs.databricks.com/api/latest/jobs.html#jobssparkjartask

• notebook_task (dict) – The notebook path and parameters for the notebook task.
EITHER spark_jar_task OR notebook_task should be specified. This field will
be templated.

See also:

https://docs.databricks.com/api/latest/jobs.html#jobsnotebooktask

3.20. API Reference 265

https://docs.databricks.com/api/latest/jobs.html#runs-submit
https://docs.databricks.com/api/latest/jobs.html#runs-submit
https://docs.databricks.com/api/latest/jobs.html#jobssparkjartask
https://docs.databricks.com/api/latest/jobs.html#jobsnotebooktask

Airflow Documentation, Release 2.0.0.dev0+

• new_cluster (dict) – Specs for a new cluster on which this task will be run. EITHER
new_cluster OR existing_cluster_id should be specified. This field will be
templated.

See also:

https://docs.databricks.com/api/latest/jobs.html#jobsclusterspecnewcluster

• existing_cluster_id (str) – ID for existing cluster on which to run this task. EI-
THER new_cluster OR existing_cluster_id should be specified. This field will
be templated.

• libraries (list of dicts) – Libraries which this run will use. This field will be
templated.

See also:

https://docs.databricks.com/api/latest/libraries.html#managedlibrarieslibrary

• run_name (str) – The run name used for this task. By default this will be set to the Air-
flow task_id. This task_id is a required parameter of the superclass BaseOperator.
This field will be templated.

• timeout_seconds (int32) – The timeout for this run. By default a value of 0 is used
which means to have no timeout. This field will be templated.

• databricks_conn_id (str) – The name of the Airflow connection to use. By de-
fault and in the common case this will be databricks_default. To use token based
authentication, provide the key token in the extra field for the connection.

• polling_period_seconds (int) – Controls the rate which we poll for the result of
this run. By default the operator will poll every 30 seconds.

• databricks_retry_limit (int) – Amount of times retry if the Databricks backend
is unreachable. Its value must be greater than or equal to 1.

• databricks_retry_delay (float) – Number of seconds to wait between retries (it
might be a floating point number).

• do_xcom_push (bool) – Whether we should push run_id and run_page_url to xcom.

class airflow.contrib.operators.dataflow_operator.DataFlowJavaOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a Java Cloud DataFlow batch job. The parameters of the operation will be passed to the job.

See also:

For more detail on job submission have a look at the reference: https://cloud.google.com/dataflow/pipelines/
specifying-exec-params

Parameters

• jar (str) – The reference to a self executing DataFlow jar (templated).

• job_name (str) – The ‘jobName’ to use when executing the DataFlow job (templated).
This ends up being set in the pipeline options, so any entry with key 'jobName' in
options will be overwritten.

• dataflow_default_options (dict) – Map of default job options.

• options (dict) – Map of job specific options.

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

266 Chapter 3. Content

https://docs.databricks.com/api/latest/jobs.html#jobsclusterspecnewcluster
https://docs.databricks.com/api/latest/libraries.html#managedlibrarieslibrary
https://cloud.google.com/dataflow/pipelines/specifying-exec-params
https://cloud.google.com/dataflow/pipelines/specifying-exec-params

Airflow Documentation, Release 2.0.0.dev0+

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• poll_sleep (int) – The time in seconds to sleep between polling Google Cloud Plat-
form for the dataflow job status while the job is in the JOB_STATE_RUNNING state.

• job_class (str) – The name of the dataflow job class to be executued, it is often not the
main class configured in the dataflow jar file.

jar, options, and job_name are templated so you can use variables in them.

Note that both dataflow_default_options and options will be merged to specify pipeline execution
parameter, and dataflow_default_options is expected to save high-level options, for instances, project
and zone information, which apply to all dataflow operators in the DAG.

It’s a good practice to define dataflow_* parameters in the default_args of the dag like the project, zone and
staging location.

default_args = {
'dataflow_default_options': {

'project': 'my-gcp-project',
'zone': 'europe-west1-d',
'stagingLocation': 'gs://my-staging-bucket/staging/'

}
}

You need to pass the path to your dataflow as a file reference with the jar parameter, the jar needs to
be a self executing jar (see documentation here: https://beam.apache.org/documentation/runners/dataflow/
#self-executing-jar). Use options to pass on options to your job.

t1 = DataFlowJavaOperator(
task_id='datapflow_example',
jar='{{var.value.gcp_dataflow_base}}pipeline/build/libs/pipeline-example-1.0.

→˓jar',
options={

'autoscalingAlgorithm': 'BASIC',
'maxNumWorkers': '50',
'start': '{{ds}}',
'partitionType': 'DAY',
'labels': {'foo' : 'bar'}

},
gcp_conn_id='gcp-airflow-service-account',
dag=my-dag)

class airflow.contrib.operators.dataflow_operator.DataflowTemplateOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a Templated Cloud DataFlow batch job. The parameters of the operation will be passed to the job.

Parameters

• template (str) – The reference to the DataFlow template.

• job_name – The ‘jobName’ to use when executing the DataFlow template (templated).

• dataflow_default_options (dict) – Map of default job environment options.

• parameters (dict) – Map of job specific parameters for the template.

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

3.20. API Reference 267

https://beam.apache.org/documentation/runners/dataflow/#self-executing-jar
https://beam.apache.org/documentation/runners/dataflow/#self-executing-jar

Airflow Documentation, Release 2.0.0.dev0+

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• poll_sleep (int) – The time in seconds to sleep between polling Google Cloud Plat-
form for the dataflow job status while the job is in the JOB_STATE_RUNNING state.

It’s a good practice to define dataflow_* parameters in the default_args of the dag like the project, zone and
staging location.

See also:

https://cloud.google.com/dataflow/docs/reference/rest/v1b3/LaunchTemplateParameters https://cloud.google.
com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment

default_args = {
'dataflow_default_options': {

'project': 'my-gcp-project',
'region': 'europe-west1',
'zone': 'europe-west1-d',
'tempLocation': 'gs://my-staging-bucket/staging/',
}

}
}

You need to pass the path to your dataflow template as a file reference with the template parameter. Use
parameters to pass on parameters to your job. Use environment to pass on runtime environment variables
to your job.

t1 = DataflowTemplateOperator(
task_id='datapflow_example',
template='{{var.value.gcp_dataflow_base}}',
parameters={

'inputFile': "gs://bucket/input/my_input.txt",
'outputFile': "gs://bucket/output/my_output.txt"

},
gcp_conn_id='gcp-airflow-service-account',
dag=my-dag)

template, dataflow_default_options, parameters, and job_name are templated so you can
use variables in them.

Note that dataflow_default_options is expected to save high-level options for project information,
which apply to all dataflow operators in the DAG.

See also:

https://cloud.google.com/dataflow/docs/reference/rest/v1b3 /LaunchTemplateParameters
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment For more de-
tail on job template execution have a look at the reference: https://cloud.google.com/dataflow/docs/
templates/executing-templates

class airflow.contrib.operators.dataflow_operator.DataFlowPythonOperator(**kwargs)
Bases: airflow.models.BaseOperator

Launching Cloud Dataflow jobs written in python. Note that both dataflow_default_options and options will
be merged to specify pipeline execution parameter, and dataflow_default_options is expected to save high-level
options, for instances, project and zone information, which apply to all dataflow operators in the DAG.

See also:

268 Chapter 3. Content

https://cloud.google.com/dataflow/docs/reference/rest/v1b3/LaunchTemplateParameters
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment
https://cloud.google.com/dataflow/docs/reference/rest/v1b3
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment
https://cloud.google.com/dataflow/docs/templates/executing-templates
https://cloud.google.com/dataflow/docs/templates/executing-templates

Airflow Documentation, Release 2.0.0.dev0+

For more detail on job submission have a look at the reference: https://cloud.google.com/dataflow/pipelines/
specifying-exec-params

Parameters

• py_file (str) – Reference to the python dataflow pipleline file.py, e.g.,
/some/local/file/path/to/your/python/pipeline/file.

• job_name (str) – The ‘job_name’ to use when executing the DataFlow job (templated).
This ends up being set in the pipeline options, so any entry with key 'jobName' or
'job_name' in options will be overwritten.

• py_options – Additional python options.

• dataflow_default_options (dict) – Map of default job options.

• options (dict) – Map of job specific options.

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• poll_sleep (int) – The time in seconds to sleep between polling Google Cloud Plat-
form for the dataflow job status while the job is in the JOB_STATE_RUNNING state.

execute(context)
Execute the python dataflow job.

class airflow.contrib.operators.dataproc_operator.DataprocClusterCreateOperator(**kwargs)
Bases: airflow.models.BaseOperator

Create a new cluster on Google Cloud Dataproc. The operator will wait until the creation is successful or an
error occurs in the creation process.

The parameters allow to configure the cluster. Please refer to

https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters

for a detailed explanation on the different parameters. Most of the configuration parameters detailed in the link
are available as a parameter to this operator.

Parameters

• cluster_name (str) – The name of the DataProc cluster to create. (templated)

• project_id (str) – The ID of the google cloud project in which to create the cluster.
(templated)

• num_workers (int) – The # of workers to spin up. If set to zero will spin up cluster in a
single node mode

• storage_bucket (str) – The storage bucket to use, setting to None lets dataproc gen-
erate a custom one for you

• init_actions_uris (list[string]) – List of GCS uri’s containing dataproc ini-
tialization scripts

• init_action_timeout (str) – Amount of time executable scripts in init_actions_uris
has to complete

• metadata (dict) – dict of key-value google compute engine metadata entries to add to
all instances

• image_version (str) – the version of software inside the Dataproc cluster

3.20. API Reference 269

https://cloud.google.com/dataflow/pipelines/specifying-exec-params
https://cloud.google.com/dataflow/pipelines/specifying-exec-params
https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters

Airflow Documentation, Release 2.0.0.dev0+

• custom_image (str) – custom Dataproc image for more info see https://cloud.google.
com/dataproc/docs/guides/dataproc-images

• properties (dict) – dict of properties to set on config files (e.g. spark-defaults.conf),
see https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters#
SoftwareConfig

• master_machine_type (str) – Compute engine machine type to use for the master
node

• master_disk_type (str) – Type of the boot disk for the master node (default
is pd-standard). Valid values: pd-ssd (Persistent Disk Solid State Drive) or
pd-standard (Persistent Disk Hard Disk Drive).

• master_disk_size (int) – Disk size for the master node

• worker_machine_type (str) – Compute engine machine type to use for the worker
nodes

• worker_disk_type (str) – Type of the boot disk for the worker node (default
is pd-standard). Valid values: pd-ssd (Persistent Disk Solid State Drive) or
pd-standard (Persistent Disk Hard Disk Drive).

• worker_disk_size (int) – Disk size for the worker nodes

• num_preemptible_workers (int) – The # of preemptible worker nodes to spin up

• labels (dict) – dict of labels to add to the cluster

• zone (str) – The zone where the cluster will be located. (templated)

• network_uri (str) – The network uri to be used for machine communication, cannot
be specified with subnetwork_uri

• subnetwork_uri (str) – The subnetwork uri to be used for machine communication,
cannot be specified with network_uri

• internal_ip_only (bool) – If true, all instances in the cluster will only have internal
IP addresses. This can only be enabled for subnetwork enabled networks

• tags (list[string]) – The GCE tags to add to all instances

• region (str) – leave as ‘global’, might become relevant in the future. (templated)

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• service_account (str) – The service account of the dataproc instances.

• service_account_scopes (list[string]) – The URIs of service account scopes
to be included.

• idle_delete_ttl (int) – The longest duration that cluster would keep alive while
staying idle. Passing this threshold will cause cluster to be auto-deleted. A duration in
seconds.

• auto_delete_time (datetime.datetime) – The time when cluster will be auto-
deleted.

• auto_delete_ttl (int) – The life duration of cluster, the cluster will be auto-deleted
at the end of this duration. A duration in seconds. (If auto_delete_time is set this parameter
will be ignored)

270 Chapter 3. Content

https://cloud.google.com/dataproc/docs/guides/dataproc-images
https://cloud.google.com/dataproc/docs/guides/dataproc-images
https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters#SoftwareConfig
https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters#SoftwareConfig

Airflow Documentation, Release 2.0.0.dev0+

• customer_managed_key (str) – The customer-managed key used for disk encryption
(projects/[PROJECT_STORING_KEYS]/locations/[LOCATION]/keyRings/[KEY_RING_NAME]/cryptoKeys/[KEY_NAME])

class airflow.contrib.operators.dataproc_operator.DataprocClusterScaleOperator(**kwargs)
Bases: airflow.models.BaseOperator

Scale, up or down, a cluster on Google Cloud Dataproc. The operator will wait until the cluster is re-scaled.

Example:

t1 = DataprocClusterScaleOperator(
task_id='dataproc_scale',
project_id='my-project',
cluster_name='cluster-1',
num_workers=10,
num_preemptible_workers=10,
graceful_decommission_timeout='1h',
dag=dag)

See also:

For more detail on about scaling clusters have a look at the reference: https://cloud.google.com/dataproc/docs/
concepts/configuring-clusters/scaling-clusters

Parameters

• cluster_name (str) – The name of the cluster to scale. (templated)

• project_id (str) – The ID of the google cloud project in which the cluster runs. (tem-
plated)

• region (str) – The region for the dataproc cluster. (templated)

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• num_workers (int) – The new number of workers

• num_preemptible_workers (int) – The new number of preemptible workers

• graceful_decommission_timeout (str) – Timeout for graceful YARN decomis-
sioning. Maximum value is 1d

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

class airflow.contrib.operators.dataproc_operator.DataprocClusterDeleteOperator(**kwargs)
Bases: airflow.models.BaseOperator

Delete a cluster on Google Cloud Dataproc. The operator will wait until the cluster is destroyed.

Parameters

• cluster_name (str) – The name of the cluster to create. (templated)

• project_id (str) – The ID of the google cloud project in which the cluster runs. (tem-
plated)

• region (str) – leave as ‘global’, might become relevant in the future. (templated)

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

3.20. API Reference 271

https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/scaling-clusters
https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/scaling-clusters

Airflow Documentation, Release 2.0.0.dev0+

class airflow.contrib.operators.dataproc_operator.DataProcPigOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a Pig query Job on a Cloud DataProc cluster. The parameters of the operation will be passed to the cluster.

It’s a good practice to define dataproc_* parameters in the default_args of the dag like the cluster name and
UDFs.

default_args = {
'cluster_name': 'cluster-1',
'dataproc_pig_jars': [

'gs://example/udf/jar/datafu/1.2.0/datafu.jar',
'gs://example/udf/jar/gpig/1.2/gpig.jar'

]
}

You can pass a pig script as string or file reference. Use variables to pass on variables for the pig script to be
resolved on the cluster or use the parameters to be resolved in the script as template parameters.

Example:

t1 = DataProcPigOperator(
task_id='dataproc_pig',
query='a_pig_script.pig',
variables={'out': 'gs://example/output/{{ds}}'},
dag=dag)

See also:

For more detail on about job submission have a look at the reference: https://cloud.google.com/dataproc/
reference/rest/v1/projects.regions.jobs

Parameters

• query (str) – The query or reference to the query file (pg or pig extension). (templated)

• query_uri (str) – The uri of a pig script on Cloud Storage.

• variables (dict) – Map of named parameters for the query. (templated)

• job_name (str) – The job name used in the DataProc cluster. This name by default is the
task_id appended with the execution data, but can be templated. The name will always be
appended with a random number to avoid name clashes. (templated)

• cluster_name (str) – The name of the DataProc cluster. (templated)

• dataproc_pig_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

• dataproc_pig_jars (list) – URIs to jars provisioned in Cloud Storage (example:
for UDFs and libs) and are ideal to put in default arguments.

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• region (str) – The specified region where the dataproc cluster is created.

• job_error_states (list) – Job states that should be considered error states. Any
states in this list will result in an error being raised and failure of the task. Eg, if
the CANCELLED state should also be considered a task failure, pass in ['ERROR',

272 Chapter 3. Content

https://cloud.google.com/dataproc/reference/rest/v1/projects.regions.jobs
https://cloud.google.com/dataproc/reference/rest/v1/projects.regions.jobs

Airflow Documentation, Release 2.0.0.dev0+

'CANCELLED']. Possible values are currently only 'ERROR' and 'CANCELLED', but
could change in the future. Defaults to ['ERROR'].

Variables dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API. This
is useful for identifying or linking to the job in the Google Cloud Console Dataproc UI, as the
actual “jobId” submitted to the Dataproc API is appended with an 8 character random string.

class airflow.contrib.operators.dataproc_operator.DataProcHiveOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a Hive query Job on a Cloud DataProc cluster.

Parameters

• query (str) – The query or reference to the query file (q extension).

• query_uri (str) – The uri of a hive script on Cloud Storage.

• variables (dict) – Map of named parameters for the query.

• job_name (str) – The job name used in the DataProc cluster. This name by default is the
task_id appended with the execution data, but can be templated. The name will always be
appended with a random number to avoid name clashes.

• cluster_name (str) – The name of the DataProc cluster.

• dataproc_hive_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

• dataproc_hive_jars (list) – URIs to jars provisioned in Cloud Storage (example:
for UDFs and libs) and are ideal to put in default arguments.

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• region (str) – The specified region where the dataproc cluster is created.

• job_error_states (list) – Job states that should be considered error states. Any
states in this list will result in an error being raised and failure of the task. Eg, if
the CANCELLED state should also be considered a task failure, pass in ['ERROR',
'CANCELLED']. Possible values are currently only 'ERROR' and 'CANCELLED', but
could change in the future. Defaults to ['ERROR'].

Variables dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API. This
is useful for identifying or linking to the job in the Google Cloud Console Dataproc UI, as the
actual “jobId” submitted to the Dataproc API is appended with an 8 character random string.

class airflow.contrib.operators.dataproc_operator.DataProcSparkSqlOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a Spark SQL query Job on a Cloud DataProc cluster.

Parameters

• query (str) – The query or reference to the query file (q extension). (templated)

• query_uri (str) – The uri of a spark sql script on Cloud Storage.

• variables (dict) – Map of named parameters for the query. (templated)

• job_name (str) – The job name used in the DataProc cluster. This name by default is the
task_id appended with the execution data, but can be templated. The name will always be
appended with a random number to avoid name clashes. (templated)

3.20. API Reference 273

Airflow Documentation, Release 2.0.0.dev0+

• cluster_name (str) – The name of the DataProc cluster. (templated)

• dataproc_spark_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

• dataproc_spark_jars (list) – URIs to jars provisioned in Cloud Storage (example:
for UDFs and libs) and are ideal to put in default arguments.

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• region (str) – The specified region where the dataproc cluster is created.

• job_error_states (list) – Job states that should be considered error states. Any
states in this list will result in an error being raised and failure of the task. Eg, if
the CANCELLED state should also be considered a task failure, pass in ['ERROR',
'CANCELLED']. Possible values are currently only 'ERROR' and 'CANCELLED', but
could change in the future. Defaults to ['ERROR'].

Variables dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API. This
is useful for identifying or linking to the job in the Google Cloud Console Dataproc UI, as the
actual “jobId” submitted to the Dataproc API is appended with an 8 character random string.

class airflow.contrib.operators.dataproc_operator.DataProcSparkOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a Spark Job on a Cloud DataProc cluster.

Parameters

• main_jar (str) – URI of the job jar provisioned on Cloud Storage. (use this or the
main_class, not both together).

• main_class (str) – Name of the job class. (use this or the main_jar, not both together).

• arguments (list) – Arguments for the job. (templated)

• archives (list) – List of archived files that will be unpacked in the work directory.
Should be stored in Cloud Storage.

• files (list) – List of files to be copied to the working directory

• job_name (str) – The job name used in the DataProc cluster. This name by default is the
task_id appended with the execution data, but can be templated. The name will always be
appended with a random number to avoid name clashes. (templated)

• cluster_name (str) – The name of the DataProc cluster. (templated)

• dataproc_spark_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

• dataproc_spark_jars (list) – URIs to jars provisioned in Cloud Storage (example:
for UDFs and libs) and are ideal to put in default arguments.

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• region (str) – The specified region where the dataproc cluster is created.

• job_error_states (list) – Job states that should be considered error states. Any
states in this list will result in an error being raised and failure of the task. Eg, if

274 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

the CANCELLED state should also be considered a task failure, pass in ['ERROR',
'CANCELLED']. Possible values are currently only 'ERROR' and 'CANCELLED', but
could change in the future. Defaults to ['ERROR'].

Variables dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API. This
is useful for identifying or linking to the job in the Google Cloud Console Dataproc UI, as the
actual “jobId” submitted to the Dataproc API is appended with an 8 character random string.

class airflow.contrib.operators.dataproc_operator.DataProcHadoopOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a Hadoop Job on a Cloud DataProc cluster.

Parameters

• main_jar (str) – URI of the job jar provisioned on Cloud Storage. (use this or the
main_class, not both together).

• main_class (str) – Name of the job class. (use this or the main_jar, not both together).

• arguments (list) – Arguments for the job. (templated)

• archives (list) – List of archived files that will be unpacked in the work directory.
Should be stored in Cloud Storage.

• files (list) – List of files to be copied to the working directory

• job_name (str) – The job name used in the DataProc cluster. This name by default is the
task_id appended with the execution data, but can be templated. The name will always be
appended with a random number to avoid name clashes. (templated)

• cluster_name (str) – The name of the DataProc cluster. (templated)

• dataproc_hadoop_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

• dataproc_hadoop_jars (list) – URIs to jars provisioned in Cloud Storage (exam-
ple: for UDFs and libs) and are ideal to put in default arguments.

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• region (str) – The specified region where the dataproc cluster is created.

• job_error_states (list) – Job states that should be considered error states. Any
states in this list will result in an error being raised and failure of the task. Eg, if
the CANCELLED state should also be considered a task failure, pass in ['ERROR',
'CANCELLED']. Possible values are currently only 'ERROR' and 'CANCELLED', but
could change in the future. Defaults to ['ERROR'].

Variables dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API. This
is useful for identifying or linking to the job in the Google Cloud Console Dataproc UI, as the
actual “jobId” submitted to the Dataproc API is appended with an 8 character random string.

class airflow.contrib.operators.dataproc_operator.DataProcPySparkOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a PySpark Job on a Cloud DataProc cluster.

Parameters

• main (str) – [Required] The Hadoop Compatible Filesystem (HCFS) URI of the main
Python file to use as the driver. Must be a .py file.

3.20. API Reference 275

Airflow Documentation, Release 2.0.0.dev0+

• arguments (list) – Arguments for the job. (templated)

• archives (list) – List of archived files that will be unpacked in the work directory.
Should be stored in Cloud Storage.

• files (list) – List of files to be copied to the working directory

• pyfiles (list) – List of Python files to pass to the PySpark framework. Supported file
types: .py, .egg, and .zip

• job_name (str) – The job name used in the DataProc cluster. This name by default is the
task_id appended with the execution data, but can be templated. The name will always be
appended with a random number to avoid name clashes. (templated)

• cluster_name (str) – The name of the DataProc cluster.

• dataproc_pyspark_properties (dict) – Map for the Pig properties. Ideal to put
in default arguments

• dataproc_pyspark_jars (list) – URIs to jars provisioned in Cloud Storage (exam-
ple: for UDFs and libs) and are ideal to put in default arguments.

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• region (str) – The specified region where the dataproc cluster is created.

• job_error_states (list) – Job states that should be considered error states. Any
states in this list will result in an error being raised and failure of the task. Eg, if
the CANCELLED state should also be considered a task failure, pass in ['ERROR',
'CANCELLED']. Possible values are currently only 'ERROR' and 'CANCELLED', but
could change in the future. Defaults to ['ERROR'].

Variables dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API. This
is useful for identifying or linking to the job in the Google Cloud Console Dataproc UI, as the
actual “jobId” submitted to the Dataproc API is appended with an 8 character random string.

class airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateBaseOperator(**kwargs)
Bases: airflow.models.BaseOperator

class airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateInstantiateOperator(**kwargs)
Bases: airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateBaseOperator

Instantiate a WorkflowTemplate on Google Cloud Dataproc. The operator will wait until the WorkflowTemplate
is finished executing.

See also:

Please refer to: https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.
workflowTemplates/instantiate

Parameters

• template_id (str) – The id of the template. (templated)

• project_id (str) – The ID of the google cloud project in which the template runs

• region (str) – leave as ‘global’, might become relevant in the future

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

276 Chapter 3. Content

https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.workflowTemplates/instantiate
https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.workflowTemplates/instantiate

Airflow Documentation, Release 2.0.0.dev0+

class airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateInstantiateInlineOperator(**kwargs)
Bases: airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateBaseOperator

Instantiate a WorkflowTemplate Inline on Google Cloud Dataproc. The operator will wait until the Work-
flowTemplate is finished executing.

See also:

Please refer to: https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.
workflowTemplates/instantiateInline

Parameters

• template (map) – The template contents. (templated)

• project_id (str) – The ID of the google cloud project in which the template runs

• region (str) – leave as ‘global’, might become relevant in the future

• gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

class airflow.contrib.operators.datastore_export_operator.DatastoreExportOperator(**kwargs)
Bases: airflow.models.BaseOperator

Export entities from Google Cloud Datastore to Cloud Storage

Parameters

• bucket (str) – name of the cloud storage bucket to backup data

• namespace (str) – optional namespace path in the specified Cloud Storage bucket to
backup data. If this namespace does not exist in GCS, it will be created.

• datastore_conn_id (str) – the name of the Datastore connection id to use

• cloud_storage_conn_id (str) – the name of the cloud storage connection id to
force-write backup

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• entity_filter (dict) – description of what data from the project is included in
the export, refer to https://cloud.google.com/datastore/docs/reference/rest/Shared.Types/
EntityFilter

• labels (dict) – client-assigned labels for cloud storage

• polling_interval_in_seconds (int) – number of seconds to wait before polling
for execution status again

• overwrite_existing (bool) – if the storage bucket + namespace is not empty, it will
be emptied prior to exports. This enables overwriting existing backups.

• xcom_push (bool) – push operation name to xcom for reference

class airflow.contrib.operators.datastore_import_operator.DatastoreImportOperator(**kwargs)
Bases: airflow.models.BaseOperator

Import entities from Cloud Storage to Google Cloud Datastore

Parameters

• bucket (str) – container in Cloud Storage to store data

3.20. API Reference 277

https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.workflowTemplates/instantiateInline
https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.workflowTemplates/instantiateInline
https://cloud.google.com/datastore/docs/reference/rest/Shared.Types/EntityFilter
https://cloud.google.com/datastore/docs/reference/rest/Shared.Types/EntityFilter

Airflow Documentation, Release 2.0.0.dev0+

• file (str) – path of the backup metadata file in the specified Cloud Storage bucket. It
should have the extension .overall_export_metadata

• namespace (str) – optional namespace of the backup metadata file in the specified Cloud
Storage bucket.

• entity_filter (dict) – description of what data from the project is included in
the export, refer to https://cloud.google.com/datastore/docs/reference/rest/Shared.Types/
EntityFilter

• labels (dict) – client-assigned labels for cloud storage

• datastore_conn_id (str) – the name of the connection id to use

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• polling_interval_in_seconds (int) – number of seconds to wait before polling
for execution status again

• xcom_push (bool) – push operation name to xcom for reference

class airflow.contrib.operators.discord_webhook_operator.DiscordWebhookOperator(**kwargs)
Bases: airflow.operators.http_operator.SimpleHttpOperator

This operator allows you to post messages to Discord using incoming webhooks. Takes a Discord connection ID
with a default relative webhook endpoint. The default endpoint can be overridden using the webhook_endpoint
parameter (https://discordapp.com/developers/docs/resources/webhook).

Each Discord webhook can be pre-configured to use a specific username and avatar_url. You can override these
defaults in this operator.

Parameters

• http_conn_id (str) – Http connection ID with host as “https://discord.com/api/” and
default webhook endpoint in the extra field in the form of {“webhook_endpoint”: “web-
hooks/{webhook.id}/{webhook.token}”}

• webhook_endpoint (str) – Discord webhook endpoint in the form of “web-
hooks/{webhook.id}/{webhook.token}”

• message (str) – The message you want to send to your Discord channel (max 2000
characters). (templated)

• username (str) – Override the default username of the webhook. (templated)

• avatar_url (str) – Override the default avatar of the webhook

• tts (bool) – Is a text-to-speech message

• proxy (str) – Proxy to use to make the Discord webhook call

execute(context)
Call the DiscordWebhookHook to post message

class airflow.contrib.operators.druid_operator.DruidOperator(**kwargs)
Bases: airflow.models.BaseOperator

Allows to submit a task directly to druid

Parameters

• json_index_file (str) – The filepath to the druid index specification

• druid_ingest_conn_id (str) – The connection id of the Druid overlord which ac-
cepts index jobs

278 Chapter 3. Content

https://cloud.google.com/datastore/docs/reference/rest/Shared.Types/EntityFilter
https://cloud.google.com/datastore/docs/reference/rest/Shared.Types/EntityFilter
https://discordapp.com/developers/docs/resources/webhook
https://discord.com/api/

Airflow Documentation, Release 2.0.0.dev0+

class airflow.contrib.operators.ecs_operator.ECSOperator(**kwargs)
Bases: airflow.models.BaseOperator

Execute a task on AWS EC2 Container Service

Parameters

• task_definition (str) – the task definition name on EC2 Container Service

• cluster (str) – the cluster name on EC2 Container Service

• overrides (dict) – the same parameter that boto3 will receive (templated): http://boto3.
readthedocs.org/en/latest/reference/services/ecs.html#ECS.Client.run_task

• aws_conn_id (str) – connection id of AWS credentials / region name. If None, creden-
tial boto3 strategy will be used (http://boto3.readthedocs.io/en/latest/guide/configuration.
html).

• region_name (str) – region name to use in AWS Hook. Override the region_name in
connection (if provided)

• launch_type (str) – the launch type on which to run your task (‘EC2’ or ‘FARGATE’)

• group (str) – the name of the task group associated with the task

• placement_constraints (list) – an array of placement constraint objects to use for
the task

• platform_version (str) – the platform version on which your task is running

• network_configuration (dict) – the network configuration for the task

class airflow.contrib.operators.emr_add_steps_operator.EmrAddStepsOperator(**kwargs)
Bases: airflow.models.BaseOperator

An operator that adds steps to an existing EMR job_flow.

Parameters

• job_flow_id (str) – id of the JobFlow to add steps to. (templated)

• aws_conn_id (str) – aws connection to uses

• steps (list) – boto3 style steps to be added to the jobflow. (templated)

class airflow.contrib.operators.emr_create_job_flow_operator.EmrCreateJobFlowOperator(**kwargs)
Bases: airflow.models.BaseOperator

Creates an EMR JobFlow, reading the config from the EMR connection. A dictionary of JobFlow overrides can
be passed that override the config from the connection.

Parameters

• aws_conn_id (str) – aws connection to uses

• emr_conn_id (str) – emr connection to use

• job_flow_overrides (dict) – boto3 style arguments to override emr_connection ex-
tra. (templated)

class airflow.contrib.operators.emr_terminate_job_flow_operator.EmrTerminateJobFlowOperator(**kwargs)
Bases: airflow.models.BaseOperator

Operator to terminate EMR JobFlows.

Parameters

• job_flow_id (str) – id of the JobFlow to terminate. (templated)

3.20. API Reference 279

http://boto3.readthedocs.org/en/latest/reference/services/ecs.html#ECS.Client.run_task
http://boto3.readthedocs.org/en/latest/reference/services/ecs.html#ECS.Client.run_task
http://boto3.readthedocs.io/en/latest/guide/configuration.html
http://boto3.readthedocs.io/en/latest/guide/configuration.html

Airflow Documentation, Release 2.0.0.dev0+

• aws_conn_id (str) – aws connection to uses

class airflow.contrib.operators.file_to_gcs.FileToGoogleCloudStorageOperator(**kwargs)
Bases: airflow.models.BaseOperator

Uploads a file to Google Cloud Storage. Optionally can compress the file for upload.

Parameters

• src (str) – Path to the local file. (templated)

• dst (str) – Destination path within the specified bucket. (templated)

• bucket (str) – The bucket to upload to. (templated)

• google_cloud_storage_conn_id (str) – The Airflow connection ID to upload
with

• mime_type (str) – The mime-type string

• delegate_to (str) – The account to impersonate, if any

• gzip (bool) – Allows for file to be compressed and uploaded as gzip

execute(context)
Uploads the file to Google cloud storage

class airflow.contrib.operators.gcs_download_operator.GoogleCloudStorageDownloadOperator(**kwargs)
Bases: airflow.models.BaseOperator

Downloads a file from Google Cloud Storage.

Parameters

• bucket (str) – The Google cloud storage bucket where the object is. (templated)

• object (str) – The name of the object to download in the Google cloud storage bucket.
(templated)

• filename (str) – The file path on the local file system (where the operator is being
executed) that the file should be downloaded to. (templated) If no filename passed, the
downloaded data will not be stored on the local file system.

• store_to_xcom_key (str) – If this param is set, the operator will push the contents of
the downloaded file to XCom with the key set in this parameter. If not set, the downloaded
data will not be pushed to XCom. (templated)

• google_cloud_storage_conn_id (str) – The connection ID to use when connect-
ing to Google cloud storage.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

class airflow.contrib.operators.gcs_list_operator.GoogleCloudStorageListOperator(**kwargs)
Bases: airflow.models.BaseOperator

List all objects from the bucket with the give string prefix and delimiter in name.

This operator returns a python list with the name of objects which can be used by xcom in the down-
stream task.

Parameters

• bucket (str) – The Google cloud storage bucket to find the objects. (templated)

280 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• prefix (str) – Prefix string which filters objects whose name begin with this prefix.
(templated)

• delimiter (str) – The delimiter by which you want to filter the objects. (templated)
For e.g to lists the CSV files from in a directory in GCS you would use delimiter=’.csv’.

• google_cloud_storage_conn_id (str) – The connection ID to use when connect-
ing to Google cloud storage.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

Example: The following Operator would list all the Avro files from sales/sales-2017 folder in data
bucket.

GCS_Files = GoogleCloudStorageListOperator(
task_id='GCS_Files',
bucket='data',
prefix='sales/sales-2017/',
delimiter='.avro',
google_cloud_storage_conn_id=google_cloud_conn_id

)

class airflow.contrib.operators.gcs_operator.GoogleCloudStorageCreateBucketOperator(**kwargs)
Bases: airflow.models.BaseOperator

Creates a new bucket. Google Cloud Storage uses a flat namespace, so you can’t create a bucket with a name
that is already in use.

See also:

For more information, see Bucket Naming Guidelines: https://cloud.google.com/storage/docs/
bucketnaming.html#requirements

Parameters

• bucket_name (str) – The name of the bucket. (templated)

• storage_class (str) – This defines how objects in the bucket are stored and deter-
mines the SLA and the cost of storage (templated). Values include

– MULTI_REGIONAL

– REGIONAL

– STANDARD

– NEARLINE

– COLDLINE.

If this value is not specified when the bucket is created, it will default to STANDARD.

• location (str) – The location of the bucket. (templated) Object data for objects in the
bucket resides in physical storage within this region. Defaults to US.

See also:

https://developers.google.com/storage/docs/bucket-locations

• project_id (str) – The ID of the GCP Project. (templated)

• labels (dict) – User-provided labels, in key/value pairs.

3.20. API Reference 281

https://cloud.google.com/storage/docs/bucketnaming.html#requirements
https://cloud.google.com/storage/docs/bucketnaming.html#requirements
https://developers.google.com/storage/docs/bucket-locations

Airflow Documentation, Release 2.0.0.dev0+

• google_cloud_storage_conn_id (str) – The connection ID to use when connect-
ing to Google cloud storage.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

Example: The following Operator would create a new bucket test-bucket with MULTI_REGIONAL stor-
age class in EU region

CreateBucket = GoogleCloudStorageCreateBucketOperator(
task_id='CreateNewBucket',
bucket_name='test-bucket',
storage_class='MULTI_REGIONAL',
location='EU',
labels={'env': 'dev', 'team': 'airflow'},
google_cloud_storage_conn_id='airflow-service-account'

)

class airflow.contrib.operators.gcs_to_bq.GoogleCloudStorageToBigQueryOperator(**kwargs)
Bases: airflow.models.BaseOperator

Loads files from Google cloud storage into BigQuery.

The schema to be used for the BigQuery table may be specified in one of two ways. You may either directly
pass the schema fields in, or you may point the operator to a Google cloud storage object name. The object in
Google cloud storage must be a JSON file with the schema fields in it.

Parameters

• bucket (str) – The bucket to load from. (templated)

• source_objects (list of str) – List of Google cloud storage URIs to load from.
(templated) If source_format is ‘DATASTORE_BACKUP’, the list must only contain a sin-
gle URI.

• destination_project_dataset_table (str) – The dotted
(<project>.)<dataset>.<table> BigQuery table to load data into. If <project> is not
included, project will be the project defined in the connection json. (templated)

• schema_fields (list) – If set, the schema field list as defined here: https://cloud.
google.com/bigquery/docs/reference/v2/jobs#configuration.load Should not be set when
source_format is ‘DATASTORE_BACKUP’.

• schema_object (str) – If set, a GCS object path pointing to a .json file that contains
the schema for the table. (templated)

• source_format (str) – File format to export.

• compression (str) – [Optional] The compression type of the data source. Possible
values include GZIP and NONE. The default value is NONE. This setting is ignored for
Google Cloud Bigtable, Google Cloud Datastore backups and Avro formats.

• create_disposition (str) – The create disposition if the table doesn’t exist.

• skip_leading_rows (int) – Number of rows to skip when loading from a CSV.

• write_disposition (str) – The write disposition if the table already exists.

• field_delimiter (str) – The delimiter to use when loading from a CSV.

• max_bad_records (int) – The maximum number of bad records that BigQuery can
ignore when running the job.

282 Chapter 3. Content

https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load
https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load

Airflow Documentation, Release 2.0.0.dev0+

• quote_character (str) – The value that is used to quote data sections in a CSV file.

• ignore_unknown_values (bool) – [Optional] Indicates if BigQuery should allow
extra values that are not represented in the table schema. If true, the extra values are ignored.
If false, records with extra columns are treated as bad records, and if there are too many bad
records, an invalid error is returned in the job result.

• allow_quoted_newlines (bool) – Whether to allow quoted newlines (true) or not
(false).

• allow_jagged_rows (bool) – Accept rows that are missing trailing optional columns.
The missing values are treated as nulls. If false, records with missing trailing columns are
treated as bad records, and if there are too many bad records, an invalid error is returned in
the job result. Only applicable to CSV, ignored for other formats.

• max_id_key (str) – If set, the name of a column in the BigQuery table that’s to be
loaded. This will be used to select the MAX value from BigQuery after the load occurs. The
results will be returned by the execute() command, which in turn gets stored in XCom for
future operators to use. This can be helpful with incremental loads–during future executions,
you can pick up from the max ID.

• bigquery_conn_id (str) – Reference to a specific BigQuery hook.

• google_cloud_storage_conn_id (str) – Reference to a specific Google cloud
storage hook.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• schema_update_options (list) – Allows the schema of the destination table to be
updated as a side effect of the load job.

• src_fmt_configs (dict) – configure optional fields specific to the source format

• external_table (bool) – Flag to specify if the destination table should be a BigQuery
external table. Default Value is False.

• time_partitioning (dict) – configure optional time partitioning fields i.e. partition
by field, type and expiration as per API specifications. Note that ‘field’ is not available in
concurrency with dataset.table$partition.

• cluster_fields (list of str) – Request that the result of this load be stored sorted
by one or more columns. This is only available in conjunction with time_partitioning. The
order of columns given determines the sort order. Not applicable for external tables.

class airflow.contrib.operators.gcs_to_gcs.GoogleCloudStorageToGoogleCloudStorageOperator(**kwargs)
Bases: airflow.models.BaseOperator

Copies objects from a bucket to another, with renaming if requested.

Parameters

• source_bucket (str) – The source Google cloud storage bucket where the object is.
(templated)

• source_object (str) – The source name of the object to copy in the Google cloud
storage bucket. (templated) You can use only one wildcard for objects (filenames) within
your bucket. The wildcard can appear inside the object name or at the end of the object
name. Appending a wildcard to the bucket name is unsupported.

• destination_bucket (str) – The destination Google cloud storage bucket where the
object should be. (templated)

3.20. API Reference 283

Airflow Documentation, Release 2.0.0.dev0+

• destination_object (str) – The destination name of the object in the destination
Google cloud storage bucket. (templated) If a wildcard is supplied in the source_object ar-
gument, this is the prefix that will be prepended to the final destination objects’ paths. Note
that the source path’s part before the wildcard will be removed; if it needs to be retained
it should be appended to destination_object. For example, with prefix foo/* and destina-
tion_object blah/, the file foo/baz will be copied to blah/baz; to retain the prefix
write the destination_object as e.g. blah/foo, in which case the copied file will be named
blah/foo/baz.

• move_object (bool) – When move object is True, the object is moved instead of copied
to the new location. This is the equivalent of a mv command as opposed to a cp command.

• google_cloud_storage_conn_id (str) – The connection ID to use when connect-
ing to Google cloud storage.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• last_modified_time (datetime) – When specified, if the object(s) were modified
after last_modified_time, they will be copied/moved. If tzinfo has not been set, UTC will
be assumed.

Examples: The following Operator would copy a single file named sales/sales-2017/january.
avro in the data bucket to the file named copied_sales/2017/january-backup.avro in
the data_backup bucket

copy_single_file = GoogleCloudStorageToGoogleCloudStorageOperator(
task_id='copy_single_file',
source_bucket='data',
source_object='sales/sales-2017/january.avro',
destination_bucket='data_backup',
destination_object='copied_sales/2017/january-backup.avro',
google_cloud_storage_conn_id=google_cloud_conn_id

)

The following Operator would copy all the Avro files from sales/sales-2017 folder (i.e. with names
starting with that prefix) in data bucket to the copied_sales/2017 folder in the data_backup
bucket.

copy_files = GoogleCloudStorageToGoogleCloudStorageOperator(
task_id='copy_files',
source_bucket='data',
source_object='sales/sales-2017/*.avro',
destination_bucket='data_backup',
destination_object='copied_sales/2017/',
google_cloud_storage_conn_id=google_cloud_conn_id

)

The following Operator would move all the Avro files from sales/sales-2017 folder (i.e. with names
starting with that prefix) in data bucket to the same folder in the data_backup bucket, deleting the
original files in the process.

move_files = GoogleCloudStorageToGoogleCloudStorageOperator(
task_id='move_files',
source_bucket='data',
source_object='sales/sales-2017/*.avro',
destination_bucket='data_backup',
move_object=True,

(continues on next page)

284 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

(continued from previous page)

google_cloud_storage_conn_id=google_cloud_conn_id
)

class airflow.contrib.operators.gcs_to_gcs_transfer_operator.GoogleCloudStorageToGoogleCloudStorageTransferOperator(**kwargs)
Bases: airflow.models.BaseOperator

Copies objects from a bucket to another using the GCP Storage Transfer Service.

Parameters

• source_bucket (str) – The source Google cloud storage bucket where the object is.
(templated)

• destination_bucket (str) – The destination Google cloud storage bucket where the
object should be. (templated)

• project_id (str) – The ID of the Google Cloud Platform Console project that owns the
job

• gcp_conn_id (str) – Optional connection ID to use when connecting to Google Cloud
Storage.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• description (str) – Optional transfer service job description

• schedule (dict) – Optional transfer service schedule; see https://cloud.google.com/
storage-transfer/docs/reference/rest/v1/transferJobs. If not set, run transfer job once as soon
as the operator runs

• object_conditions (dict) – Optional transfer service object conditions; see https://
cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec#ObjectConditions

• transfer_options (dict) – Optional transfer service transfer options; see https://
cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec#TransferOptions

• wait (bool) – Wait for transfer to finish; defaults to True

Example:

gcs_to_gcs_transfer_op = GoogleCloudStorageToGoogleCloudStorageTransferOperator(
task_id='gcs_to_gcs_transfer_example',
source_bucket='my-source-bucket',
destination_bucket='my-destination-bucket',
project_id='my-gcp-project',
dag=my_dag)

class airflow.contrib.operators.gcs_to_s3.GoogleCloudStorageToS3Operator(**kwargs)
Bases: airflow.contrib.operators.gcs_list_operator.GoogleCloudStorageListOperator

Synchronizes a Google Cloud Storage bucket with an S3 bucket.

Parameters

• bucket (str) – The Google Cloud Storage bucket to find the objects. (templated)

• prefix (str) – Prefix string which filters objects whose name begin with this prefix.
(templated)

• delimiter (str) – The delimiter by which you want to filter the objects. (templated)
For e.g to lists the CSV files from in a directory in GCS you would use delimiter=’.csv’.

3.20. API Reference 285

https://cloud.google.com/storage-transfer/docs/reference/rest/v1/transferJobs
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/transferJobs
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec#ObjectConditions
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec#ObjectConditions
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec#TransferOptions
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec#TransferOptions

Airflow Documentation, Release 2.0.0.dev0+

• google_cloud_storage_conn_id (str) – The connection ID to use when connect-
ing to Google Cloud Storage.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• dest_aws_conn_id (str) – The destination S3 connection

• dest_s3_key (str) – The base S3 key to be used to store the files. (templated)

• dest_verify (bool or str) – Whether or not to verify SSL certificates for S3 con-
nection. By default SSL certificates are verified. You can provide the following values:

– False: do not validate SSL certificates. SSL will still be used (unless use_ssl is
False), but SSL certificates will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You
can specify this argument if you want to use a different CA cert bundle than the one
used by botocore.

class airflow.contrib.operators.hipchat_operator.HipChatAPIOperator(**kwargs)
Bases: airflow.models.BaseOperator

Base HipChat Operator. All derived HipChat operators reference from HipChat’s official REST API docu-
mentation at https://www.hipchat.com/docs/apiv2. Before using any HipChat API operators you need to get
an authentication token at https://www.hipchat.com/docs/apiv2/auth. In the future additional HipChat operators
will be derived from this class as well.

Parameters

• token (str) – HipChat REST API authentication token

• base_url (str) – HipChat REST API base url.

prepare_request()
Used by the execute function. Set the request method, url, and body of HipChat’s REST API call. Override
in child class. Each HipChatAPI child operator is responsible for having a prepare_request method call
which sets self.method, self.url, and self.body.

class airflow.contrib.operators.hipchat_operator.HipChatAPISendRoomNotificationOperator(**kwargs)
Bases: airflow.contrib.operators.hipchat_operator.HipChatAPIOperator

Send notification to a specific HipChat room. More info: https://www.hipchat.com/docs/apiv2/method/send_
room_notification

Parameters

• room_id (str) – Room in which to send notification on HipChat. (templated)

• message (str) – The message body. (templated)

• frm (str) – Label to be shown in addition to sender’s name

• message_format (str) – How the notification is rendered: html or text

• color (str) – Background color of the msg: yellow, green, red, purple, gray, or random

• attach_to (str) – The message id to attach this notification to

• notify (bool) – Whether this message should trigger a user notification

• card (dict) – HipChat-defined card object

prepare_request()
Used by the execute function. Set the request method, url, and body of HipChat’s REST API call. Override

286 Chapter 3. Content

https://www.hipchat.com/docs/apiv2
https://www.hipchat.com/docs/apiv2/auth
https://www.hipchat.com/docs/apiv2/method/send_room_notification
https://www.hipchat.com/docs/apiv2/method/send_room_notification

Airflow Documentation, Release 2.0.0.dev0+

in child class. Each HipChatAPI child operator is responsible for having a prepare_request method call
which sets self.method, self.url, and self.body.

class airflow.contrib.operators.hive_to_dynamodb.HiveToDynamoDBTransferOperator(**kwargs)
Bases: airflow.models.BaseOperator

Moves data from Hive to DynamoDB, note that for now the data is loaded into memory before being pushed to
DynamoDB, so this operator should be used for smallish amount of data.

Parameters

• sql (str) – SQL query to execute against the hive database. (templated)

• table_name (str) – target DynamoDB table

• table_keys (list) – partition key and sort key

• pre_process (function) – implement pre-processing of source data

• pre_process_args (list) – list of pre_process function arguments

• pre_process_kwargs (dict) – dict of pre_process function arguments

• region_name (str) – aws region name (example: us-east-1)

• schema (str) – hive database schema

• hiveserver2_conn_id (str) – source hive connection

• aws_conn_id (str) – aws connection

class airflow.contrib.operators.mlengine_operator.MLEngineBatchPredictionOperator(**kwargs)
Bases: airflow.models.BaseOperator

Start a Google Cloud ML Engine prediction job.

NOTE: For model origin, users should consider exactly one from the three options below: 1. Populate ‘uri’
field only, which should be a GCS location that points to a tensorflow savedModel directory. 2. Populate
‘model_name’ field only, which refers to an existing model, and the default version of the model will be used. 3.
Populate both ‘model_name’ and ‘version_name’ fields, which refers to a specific version of a specific model.

In options 2 and 3, both model and version name should contain the minimal identifier. For instance, call

MLEngineBatchPredictionOperator(
...,
model_name='my_model',
version_name='my_version',
...)

if the desired model version is “projects/my_project/models/my_model/versions/my_version”.

See https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs for further documentation on the param-
eters.

Parameters

• project_id (str) – The Google Cloud project name where the prediction job is submit-
ted. (templated)

• job_id (str) – A unique id for the prediction job on Google Cloud ML Engine. (tem-
plated)

• data_format (str) – The format of the input data. It will default to
‘DATA_FORMAT_UNSPECIFIED’ if is not provided or is not one of [“TEXT”,
“TF_RECORD”, “TF_RECORD_GZIP”].

3.20. API Reference 287

https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs

Airflow Documentation, Release 2.0.0.dev0+

• input_paths (list of string) – A list of GCS paths of input data for batch pre-
diction. Accepting wildcard operator *, but only at the end. (templated)

• output_path (str) – The GCS path where the prediction results are written to. (tem-
plated)

• region (str) – The Google Compute Engine region to run the prediction job in. (tem-
plated)

• model_name (str) – The Google Cloud ML Engine model to use for prediction. If
version_name is not provided, the default version of this model will be used. Should not be
None if version_name is provided. Should be None if uri is provided. (templated)

• version_name (str) – The Google Cloud ML Engine model version to use for predic-
tion. Should be None if uri is provided. (templated)

• uri (str) – The GCS path of the saved model to use for prediction. Should be None if
model_name is provided. It should be a GCS path pointing to a tensorflow SavedModel.
(templated)

• max_worker_count (int) – The maximum number of workers to be used for parallel
processing. Defaults to 10 if not specified.

• runtime_version (str) – The Google Cloud ML Engine runtime version to use for
batch prediction.

• gcp_conn_id (str) – The connection ID used for connection to Google Cloud Platform.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have doamin-wide delegation enabled.

Raises: ValueError: if a unique model/version origin cannot be determined.

class airflow.contrib.operators.mlengine_operator.MLEngineModelOperator(**kwargs)
Bases: airflow.models.BaseOperator

Operator for managing a Google Cloud ML Engine model.

Parameters

• project_id (str) – The Google Cloud project name to which MLEngine model be-
longs. (templated)

• model (dict) – A dictionary containing the information about the model. If the operation
is create, then the model parameter should contain all the information about this model such
as name.

If the operation is get, the model parameter should contain the name of the model.

• operation (str) – The operation to perform. Available operations are:

– create: Creates a new model as provided by the model parameter.

– get: Gets a particular model where the name is specified in model.

• gcp_conn_id (str) – The connection ID to use when fetching connection info.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

class airflow.contrib.operators.mlengine_operator.MLEngineVersionOperator(**kwargs)
Bases: airflow.models.BaseOperator

Operator for managing a Google Cloud ML Engine version.

288 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Parameters

• project_id (str) – The Google Cloud project name to which MLEngine model be-
longs.

• model_name (str) – The name of the Google Cloud ML Engine model that the version
belongs to. (templated)

• version_name (str) – A name to use for the version being operated upon. If not None
and the version argument is None or does not have a value for the name key, then this will
be populated in the payload for the name key. (templated)

• version (dict) – A dictionary containing the information about the version. If the oper-
ation is create, version should contain all the information about this version such as name,
and deploymentUrl. If the operation is get or delete, the version parameter should contain
the name of the version. If it is None, the only operation possible would be list. (templated)

• operation (str) – The operation to perform. Available operations are:

– create: Creates a new version in the model specified by model_name, in which case
the version parameter should contain all the information to create that version (e.g. name,
deploymentUrl).

– get: Gets full information of a particular version in the model specified by model_name.
The name of the version should be specified in the version parameter.

– list: Lists all available versions of the model specified by model_name.

– delete: Deletes the version specified in version parameter from the model specified by
model_name). The name of the version should be specified in the version parameter.

• gcp_conn_id (str) – The connection ID to use when fetching connection info.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

class airflow.contrib.operators.mlengine_operator.MLEngineTrainingOperator(**kwargs)
Bases: airflow.models.BaseOperator

Operator for launching a MLEngine training job.

Parameters

• project_id (str) – The Google Cloud project name within which MLEngine training
job should run (templated).

• job_id (str) – A unique templated id for the submitted Google MLEngine training job.
(templated)

• package_uris (str) – A list of package locations for MLEngine training job, which
should include the main training program + any additional dependencies. (templated)

• training_python_module (str) – The Python module name to run within
MLEngine training job after installing ‘package_uris’ packages. (templated)

• training_args (str) – A list of templated command line arguments to pass to the
MLEngine training program. (templated)

• region (str) – The Google Compute Engine region to run the MLEngine training job in
(templated).

• scale_tier (str) – Resource tier for MLEngine training job. (templated)

• master_type (str) – Cloud ML Engine machine name. Must be set when scale_tier is
CUSTOM. (templated)

3.20. API Reference 289

Airflow Documentation, Release 2.0.0.dev0+

• runtime_version (str) – The Google Cloud ML runtime version to use for training.
(templated)

• python_version (str) – The version of Python used in training. (templated)

• job_dir (str) – A Google Cloud Storage path in which to store training outputs and
other data needed for training. (templated)

• gcp_conn_id (str) – The connection ID to use when fetching connection info.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• mode (str) – Can be one of ‘DRY_RUN’/’CLOUD’. In ‘DRY_RUN’ mode, no real train-
ing job will be launched, but the MLEngine training job request will be printed out. In
‘CLOUD’ mode, a real MLEngine training job creation request will be issued.

class airflow.contrib.operators.mongo_to_s3.MongoToS3Operator(**kwargs)
Bases: airflow.models.BaseOperator

Mongo -> S3 A more specific baseOperator meant to move data from mongo via pymongo to s3 via boto

things to note .execute() is written to depend on .transform() .transform() is meant to be extended by child
classes to perform transformations unique to those operators needs

execute(context)
Executed by task_instance at runtime

static transform(docs)

Processes pyMongo cursor and returns an iterable with each element being a JSON serializable dic-
tionary

Base transform() assumes no processing is needed ie. docs is a pyMongo cursor of documents and cursor
just needs to be passed through

Override this method for custom transformations

class airflow.contrib.operators.mysql_to_gcs.MySqlToGoogleCloudStorageOperator(**kwargs)
Bases: airflow.models.BaseOperator

Copy data from MySQL to Google cloud storage in JSON format.

Parameters

• sql (str) – The SQL to execute on the MySQL table.

• bucket (str) – The bucket to upload to.

• filename (str) – The filename to use as the object name when uploading to Google
cloud storage. A {} should be specified in the filename to allow the operator to inject file
numbers in cases where the file is split due to size.

• schema_filename (str) – If set, the filename to use as the object name when upload-
ing a .json file containing the BigQuery schema fields for the table that was dumped from
MySQL.

• approx_max_file_size_bytes (long) – This operator supports the ability to split
large table dumps into multiple files (see notes in the filenamed param docs above). Google
cloud storage allows for files to be a maximum of 4GB. This param allows developers to
specify the file size of the splits.

• mysql_conn_id (str) – Reference to a specific MySQL hook.

290 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• google_cloud_storage_conn_id (str) – Reference to a specific Google cloud
storage hook.

• schema (str or list) – The schema to use, if any. Should be a list of dict or a str.
Pass a string if using Jinja template, otherwise, pass a list of dict. Examples could be seen:
https://cloud.google.com/bigquery/docs /schemas#specifying_a_json_schema_file

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

classmethod type_map(mysql_type)
Helper function that maps from MySQL fields to BigQuery fields. Used when a schema_filename is set.

class airflow.contrib.operators.postgres_to_gcs_operator.PostgresToGoogleCloudStorageOperator(**kwargs)
Bases: airflow.models.BaseOperator

Copy data from Postgres to Google Cloud Storage in JSON format.

classmethod convert_types(value)
Takes a value from Postgres, and converts it to a value that’s safe for JSON/Google Cloud Stor-
age/BigQuery. Dates are converted to UTC seconds. Decimals are converted to floats. Times are converted
to seconds.

classmethod type_map(postgres_type)
Helper function that maps from Postgres fields to BigQuery fields. Used when a schema_filename is set.

class airflow.contrib.operators.pubsub_operator.PubSubTopicCreateOperator(**kwargs)
Bases: airflow.models.BaseOperator

Create a PubSub topic.

By default, if the topic already exists, this operator will not cause the DAG to fail.

with DAG('successful DAG') as dag:
(

dag
>> PubSubTopicCreateOperator(project='my-project',

topic='my_new_topic')
>> PubSubTopicCreateOperator(project='my-project',

topic='my_new_topic')
)

The operator can be configured to fail if the topic already exists.

with DAG('failing DAG') as dag:
(

dag
>> PubSubTopicCreateOperator(project='my-project',

topic='my_new_topic')
>> PubSubTopicCreateOperator(project='my-project',

topic='my_new_topic',
fail_if_exists=True)

)

Both project and topic are templated so you can use variables in them.

class airflow.contrib.operators.pubsub_operator.PubSubTopicDeleteOperator(**kwargs)
Bases: airflow.models.BaseOperator

Delete a PubSub topic.

By default, if the topic does not exist, this operator will not cause the DAG to fail.

3.20. API Reference 291

https://cloud.google.com/bigquery/docs

Airflow Documentation, Release 2.0.0.dev0+

with DAG('successful DAG') as dag:
(

dag
>> PubSubTopicDeleteOperator(project='my-project',

topic='non_existing_topic')
)

The operator can be configured to fail if the topic does not exist.

with DAG('failing DAG') as dag:
(

dag
>> PubSubTopicCreateOperator(project='my-project',

topic='non_existing_topic',
fail_if_not_exists=True)

)

Both project and topic are templated so you can use variables in them.

class airflow.contrib.operators.pubsub_operator.PubSubSubscriptionCreateOperator(**kwargs)
Bases: airflow.models.BaseOperator

Create a PubSub subscription.

By default, the subscription will be created in topic_project. If subscription_project is specified
and the GCP credentials allow, the Subscription can be created in a different project from its topic.

By default, if the subscription already exists, this operator will not cause the DAG to fail. However, the topic
must exist in the project.

with DAG('successful DAG') as dag:
(

dag
>> PubSubSubscriptionCreateOperator(

topic_project='my-project', topic='my-topic',
subscription='my-subscription')

>> PubSubSubscriptionCreateOperator(
topic_project='my-project', topic='my-topic',
subscription='my-subscription')

)

The operator can be configured to fail if the subscription already exists.

with DAG('failing DAG') as dag:
(

dag
>> PubSubSubscriptionCreateOperator(

topic_project='my-project', topic='my-topic',
subscription='my-subscription')

>> PubSubSubscriptionCreateOperator(
topic_project='my-project', topic='my-topic',
subscription='my-subscription', fail_if_exists=True)

)

Finally, subscription is not required. If not passed, the operator will generated a universally unique identifier for
the subscription’s name.

292 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

with DAG('DAG') as dag:
(

dag >> PubSubSubscriptionCreateOperator(
topic_project='my-project', topic='my-topic')

)

topic_project, topic, subscription, and subscription are templated so you can use variables
in them.

class airflow.contrib.operators.pubsub_operator.PubSubSubscriptionDeleteOperator(**kwargs)
Bases: airflow.models.BaseOperator

Delete a PubSub subscription.

By default, if the subscription does not exist, this operator will not cause the DAG to fail.

with DAG('successful DAG') as dag:
(

dag
>> PubSubSubscriptionDeleteOperator(project='my-project',

subscription='non-existing')
)

The operator can be configured to fail if the subscription already exists.

with DAG('failing DAG') as dag:
(

dag
>> PubSubSubscriptionDeleteOperator(

project='my-project', subscription='non-existing',
fail_if_not_exists=True)

)

project, and subscription are templated so you can use variables in them.

class airflow.contrib.operators.pubsub_operator.PubSubPublishOperator(**kwargs)
Bases: airflow.models.BaseOperator

Publish messages to a PubSub topic.

Each Task publishes all provided messages to the same topic in a single GCP project. If the topic does not exist,
this task will fail.

from base64 import b64encode as b64e

m1 = {'data': b64e('Hello, World!'),
'attributes': {'type': 'greeting'}

}
m2 = {'data': b64e('Knock, knock')}
m3 = {'attributes': {'foo': ''}}

t1 = PubSubPublishOperator(
project='my-project',topic='my_topic',
messages=[m1, m2, m3],
create_topic=True,
dag=dag)

project , topic, and messages are templated so you can use variables in them.

3.20. API Reference 293

Airflow Documentation, Release 2.0.0.dev0+

class airflow.contrib.operators.qubole_check_operator.QuboleCheckOperator(**kwargs)
Bases: airflow.operators.check_operator.CheckOperator, airflow.contrib.
operators.qubole_operator.QuboleOperator

Performs checks against Qubole Commands. QuboleCheckOperator expects a command that will be
executed on QDS. By default, each value on first row of the result of this Qubole Command is evaluated using
python bool casting. If any of the values return False, the check is failed and errors out.

Note that Python bool casting evals the following as False:

• False

• 0

• Empty string ("")

• Empty list ([])

• Empty dictionary or set ({})

Given a query like SELECT COUNT(*) FROM foo, it will fail only if the count == 0. You can craft much
more complex query that could, for instance, check that the table has the same number of rows as the source
table upstream, or that the count of today’s partition is greater than yesterday’s partition, or that a set of metrics
are less than 3 standard deviation for the 7 day average.

This operator can be used as a data quality check in your pipeline, and depending on where you put it in your
DAG, you have the choice to stop the critical path, preventing from publishing dubious data, or on the side and
receive email alerts without stopping the progress of the DAG.

Parameters qubole_conn_id (str) – Connection id which consists of qds auth_token

kwargs:

Arguments specific to Qubole command can be referred from QuboleOperator docs.

results_parser_callable This is an optional parameter to extend the flexibility of parsing
the results of Qubole command to the users. This is a python callable which can hold
the logic to parse list of rows returned by Qubole command. By default, only the values
on first row are used for performing checks. This callable should return a list of records
on which the checks have to be performed.

Note: All fields in common with template fields of QuboleOperator and CheckOperator are template-supported.

class airflow.contrib.operators.qubole_check_operator.QuboleValueCheckOperator(**kwargs)
Bases: airflow.operators.check_operator.ValueCheckOperator, airflow.contrib.
operators.qubole_operator.QuboleOperator

Performs a simple value check using Qubole command. By default, each value on the first row of this Qubole
command is compared with a pre-defined value. The check fails and errors out if the output of the command is
not within the permissible limit of expected value.

Parameters

• qubole_conn_id (str) – Connection id which consists of qds auth_token

• pass_value (str/int/float) – Expected value of the query results.

• tolerance (int/float) – Defines the permissible pass_value range, for example if
tolerance is 2, the Qubole command output can be anything between -2*pass_value and
2*pass_value, without the operator erring out.

kwargs:

294 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Arguments specific to Qubole command can be referred from QuboleOperator docs.

results_parser_callable This is an optional parameter to extend the flexibility of parsing
the results of Qubole command to the users. This is a python callable which can hold
the logic to parse list of rows returned by Qubole command. By default, only the values
on first row are used for performing checks. This callable should return a list of records
on which the checks have to be performed.

Note: All fields in common with template fields of QuboleOperator and ValueCheckOperator are template-
supported.

class airflow.contrib.operators.qubole_operator.QuboleOperator(**kwargs)
Bases: airflow.models.BaseOperator

Execute tasks (commands) on QDS (https://qubole.com).

Parameters qubole_conn_id (str) – Connection id which consists of qds auth_token

kwargs:

command_type type of command to be executed, e.g. hivecmd, shellcmd, hadoopcmd

tags array of tags to be assigned with the command

cluster_label cluster label on which the command will be executed

name name to be given to command

notify whether to send email on command completion or not (default is False)

Arguments specific to command types

hivecmd:

query inline query statement

script_location s3 location containing query statement

sample_size size of sample in bytes on which to run query

macros macro values which were used in query

sample_size size of sample in bytes on which to run query

hive-version Specifies the hive version to be used. eg: 0.13,1.2,etc.

prestocmd:

query inline query statement

script_location s3 location containing query statement

macros macro values which were used in query

hadoopcmd:

sub_commnad must be one these [“jar”, “s3distcp”, “streaming”] followed by 1 or more
args

shellcmd:

script inline command with args

script_location s3 location containing query statement

3.20. API Reference 295

https://qubole.com

Airflow Documentation, Release 2.0.0.dev0+

files list of files in s3 bucket as file1,file2 format. These files will be copied into the working
directory where the qubole command is being executed.

archives list of archives in s3 bucket as archive1,archive2 format. These will be unarchived
intothe working directory where the qubole command is being executed

parameters any extra args which need to be passed to script (only when script_location is
supplied)

pigcmd:

script inline query statement (latin_statements)

script_location s3 location containing pig query

parameters any extra args which need to be passed to script (only when script_location is
supplied

sparkcmd:

program the complete Spark Program in Scala, SQL, Command, R, or Python

cmdline spark-submit command line, all required information must be specify in cmdline
itself.

sql inline sql query

script_location s3 location containing query statement

language language of the program, Scala, SQL, Command, R, or Python

app_id ID of an Spark job server app

arguments spark-submit command line arguments

user_program_arguments arguments that the user program takes in

macros macro values which were used in query

note_id Id of the Notebook to run

dbtapquerycmd:

db_tap_id data store ID of the target database, in Qubole.

query inline query statement

macros macro values which were used in query

dbexportcmd:

mode Can be 1 for Hive export or 2 for HDFS/S3 export

schema Db schema name assumed accordingly by database if not specified

hive_table Name of the hive table

partition_spec partition specification for Hive table.

dbtap_id data store ID of the target database, in Qubole.

db_table name of the db table

db_update_mode allowinsert or updateonly

db_update_keys columns used to determine the uniqueness of rows

export_dir HDFS/S3 location from which data will be exported.

fields_terminated_by hex of the char used as column separator in the dataset

296 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

use_customer_cluster To use cluster to run command

customer_cluster_label the label of the cluster to run the command on

additional_options Additional Sqoop options which are needed enclose options in double
or single quotes e.g. ‘–map-column-hive id=int,data=string’

dbimportcmd:

mode 1 (simple), 2 (advance)

hive_table Name of the hive table

schema Db schema name assumed accordingly by database if not specified

hive_serde Output format of the Hive Table

dbtap_id data store ID of the target database, in Qubole.

db_table name of the db table

where_clause where clause, if any

parallelism number of parallel db connections to use for extracting data

extract_query SQL query to extract data from db. $CONDITIONS must be part of the
where clause.

boundary_query Query to be used get range of row IDs to be extracted

split_column Column used as row ID to split data into ranges (mode 2)

use_customer_cluster To use cluster to run command

customer_cluster_label the label of the cluster to run the command on

additional_options Additional Sqoop options which are needed enclose options in double
or single quotes

Note: Following fields are template-supported : query, script_location, sub_command,
script, files, archives, program, cmdline, sql, where_clause, extract_query,
boundary_query, macros, tags, name, parameters, dbtap_id, hive_table,
db_table, split_column, note_id, db_update_keys, export_dir, partition_spec,
qubole_conn_id, arguments, user_program_arguments.

You can also use .txt files for template driven use cases.

Note: In QuboleOperator there is a default handler for task failures and retries, which generally kills the
command running at QDS for the corresponding task instance. You can override this behavior by providing
your own failure and retry handler in task definition.

class airflow.contrib.operators.s3_copy_object_operator.S3CopyObjectOperator(**kwargs)
Bases: airflow.models.BaseOperator

Creates a copy of an object that is already stored in S3.

Note: the S3 connection used here needs to have access to both source and destination bucket/key.

Parameters

3.20. API Reference 297

Airflow Documentation, Release 2.0.0.dev0+

• source_bucket_key (str) – The key of the source object.

It can be either full s3:// style url or relative path from root level.

When it’s specified as a full s3:// url, please omit source_bucket_name.

• dest_bucket_key (str) – The key of the object to copy to.

The convention to specify dest_bucket_key is the same as source_bucket_key.

• source_bucket_name (str) – Name of the S3 bucket where the source object is in.

It should be omitted when source_bucket_key is provided as a full s3:// url.

• dest_bucket_name (str) – Name of the S3 bucket to where the object is copied.

It should be omitted when dest_bucket_key is provided as a full s3:// url.

• source_version_id (str) – Version ID of the source object (OPTIONAL)

• aws_conn_id (str) – Connection id of the S3 connection to use

• verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.

You can provide the following values:

– False: do not validate SSL certificates. SSL will still be used, but SSL certificates
will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You can specify
this argument if you want to use a different CA cert bundle than the one used by boto-
core.

class airflow.contrib.operators.s3_delete_objects_operator.S3DeleteObjectsOperator(**kwargs)
Bases: airflow.models.BaseOperator

To enable users to delete single object or multiple objects from a bucket using a single HTTP request.

Users may specify up to 1000 keys to delete.

Parameters

• bucket (str) – Name of the bucket in which you are going to delete object(s)

• keys (str or list) – The key(s) to delete from S3 bucket.

When keys is a string, it’s supposed to be the key name of the single object to delete.

When keys is a list, it’s supposed to be the list of the keys to delete.

You may specify up to 1000 keys.

• aws_conn_id (str) – Connection id of the S3 connection to use

• verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.

You can provide the following values:

– False: do not validate SSL certificates. SSL will still be used, but SSL certificates
will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You
can specify this argument if you want to use a different CA cert bundle than the one
used by botocore.

298 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

class airflow.contrib.operators.s3_list_operator.S3ListOperator(**kwargs)
Bases: airflow.models.BaseOperator

List all objects from the bucket with the given string prefix in name.

This operator returns a python list with the name of objects which can be used by xcom in the downstream task.

Parameters

• bucket (str) – The S3 bucket where to find the objects. (templated)

• prefix (str) – Prefix string to filters the objects whose name begin with such prefix.
(templated)

• delimiter (str) – the delimiter marks key hierarchy. (templated)

• aws_conn_id (str) – The connection ID to use when connecting to S3 storage.

• verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified. You can provide the following values:

– False: do not validate SSL certificates. SSL will still be used (unless use_ssl is
False), but SSL certificates will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You
can specify this argument if you want to use a different CA cert bundle than the one
used by botocore.

Example: The following operator would list all the files (excluding subfolders) from the S3 customers/
2018/04/ key in the data bucket.

s3_file = S3ListOperator(
task_id='list_3s_files',
bucket='data',
prefix='customers/2018/04/',
delimiter='/',
aws_conn_id='aws_customers_conn'

)

class airflow.contrib.operators.s3_to_gcs_operator.S3ToGoogleCloudStorageOperator(**kwargs)
Bases: airflow.contrib.operators.s3_list_operator.S3ListOperator

Synchronizes an S3 key, possibly a prefix, with a Google Cloud Storage destination path.

Parameters

• bucket (str) – The S3 bucket where to find the objects. (templated)

• prefix (str) – Prefix string which filters objects whose name begin with such prefix.
(templated)

• delimiter (str) – the delimiter marks key hierarchy. (templated)

• aws_conn_id (str) – The source S3 connection

• verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified. You can provide the following values:

– False: do not validate SSL certificates. SSL will still be used (unless use_ssl is
False), but SSL certificates will not be verified.

– path/to/cert/bundle.pem: A filename of the CA cert bundle to uses. You
can specify this argument if you want to use a different CA cert bundle than the one
used by botocore.

3.20. API Reference 299

Airflow Documentation, Release 2.0.0.dev0+

• dest_gcs_conn_id (str) – The destination connection ID to use when connecting to
Google Cloud Storage.

• dest_gcs (str) – The destination Google Cloud Storage bucket and prefix where you
want to store the files. (templated)

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• replace (bool) – Whether you want to replace existing destination files or not.

Example:

s3_to_gcs_op = S3ToGoogleCloudStorageOperator(
task_id='s3_to_gcs_example',
bucket='my-s3-bucket',
prefix='data/customers-201804',
dest_gcs_conn_id='google_cloud_default',
dest_gcs='gs://my.gcs.bucket/some/customers/',
replace=False,
dag=my-dag)

Note that bucket, prefix, delimiter and dest_gcs are templated, so you can use variables in them if
you wish.

class airflow.contrib.operators.s3_to_gcs_transfer_operator.S3ToGoogleCloudStorageTransferOperator(**kwargs)
Bases: airflow.models.BaseOperator

Synchronizes an S3 bucket with a Google Cloud Storage bucket using the GCP Storage Transfer Service.

Parameters

• s3_bucket (str) – The S3 bucket where to find the objects. (templated)

• gcs_bucket (str) – The destination Google Cloud Storage bucket where you want to
store the files. (templated)

• project_id (str) – Optional ID of the Google Cloud Platform Console project that
owns the job

• aws_conn_id (str) – The source S3 connection

• gcp_conn_id (str) – The destination connection ID to use when connecting to Google
Cloud Storage.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

• description (str) – Optional transfer service job description

• schedule (dict) – Optional transfer service schedule; see https://cloud.google.com/
storage-transfer/docs/reference/rest/v1/transferJobs. If not set, run transfer job once as soon
as the operator runs

• object_conditions (dict) – Optional transfer service object conditions; see https:
//cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec

• transfer_options (dict) – Optional transfer service transfer options; see https://
cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec

• wait (bool) – Wait for transfer to finish

Example:

300 Chapter 3. Content

https://cloud.google.com/storage-transfer/docs/reference/rest/v1/transferJobs
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/transferJobs
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec

Airflow Documentation, Release 2.0.0.dev0+

s3_to_gcs_transfer_op = S3ToGoogleCloudStorageTransferOperator(
task_id='s3_to_gcs_transfer_example',
s3_bucket='my-s3-bucket',
project_id='my-gcp-project',
gcs_bucket='my-gcs-bucket',
dag=my_dag)

class airflow.contrib.operators.sagemaker_base_operator.SageMakerBaseOperator(**kwargs)
Bases: airflow.models.BaseOperator

This is the base operator for all SageMaker operators.

Parameters

• config (dict) – The configuration necessary to start a training job (templated)

• aws_conn_id (str) – The AWS connection ID to use.

class airflow.contrib.operators.sagemaker_endpoint_operator.SageMakerEndpointOperator(**kwargs)
Bases: airflow.contrib.operators.sagemaker_base_operator.
SageMakerBaseOperator

Create a SageMaker endpoint.

This operator returns The ARN of the endpoint created in Amazon SageMaker

Parameters

• config (dict) – The configuration necessary to create an endpoint.

If you need to create a SageMaker endpoint based on an existed SageMaker model and an
existed SageMaker endpoint config:

config = endpoint_configuration;

If you need to create all of SageMaker model, SageMaker endpoint-config and SageMaker
endpoint:

config = {
'Model': model_configuration,
'EndpointConfig': endpoint_config_configuration,
'Endpoint': endpoint_configuration

}

For details of the configuration parameter of model_configuration see SageMaker.
Client.create_model()

For details of the configuration parameter of endpoint_config_configuration see
SageMaker.Client.create_endpoint_config()

For details of the configuration parameter of endpoint_configuration see SageMaker.
Client.create_endpoint()

• aws_conn_id (str) – The AWS connection ID to use.

• wait_for_completion (bool) – Whether the operator should wait until the endpoint
creation finishes.

• check_interval (int) – If wait is set to True, this is the time interval, in seconds, that
this operation waits before polling the status of the endpoint creation.

3.20. API Reference 301

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint_config
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint

Airflow Documentation, Release 2.0.0.dev0+

• max_ingestion_time (int) – If wait is set to True, this operation fails if the endpoint
creation doesn’t finish within max_ingestion_time seconds. If you set this parameter to
None it never times out.

• operation (str) – Whether to create an endpoint or update an endpoint. Must be either
‘create or ‘update’.

class airflow.contrib.operators.sagemaker_endpoint_config_operator.SageMakerEndpointConfigOperator(**kwargs)
Bases: airflow.contrib.operators.sagemaker_base_operator.
SageMakerBaseOperator

Create a SageMaker endpoint config.

This operator returns The ARN of the endpoint config created in Amazon SageMaker

Parameters

• config (dict) – The configuration necessary to create an endpoint config.

For details of the configuration parameter see SageMaker.Client.
create_endpoint_config()

• aws_conn_id (str) – The AWS connection ID to use.

class airflow.contrib.operators.sagemaker_model_operator.SageMakerModelOperator(**kwargs)
Bases: airflow.contrib.operators.sagemaker_base_operator.
SageMakerBaseOperator

Create a SageMaker model.

This operator returns The ARN of the model created in Amazon SageMaker

Parameters

• config (dict) – The configuration necessary to create a model.

For details of the configuration parameter see SageMaker.Client.
create_model()

• aws_conn_id (str) – The AWS connection ID to use.

class airflow.contrib.operators.sagemaker_training_operator.SageMakerTrainingOperator(**kwargs)
Bases: airflow.contrib.operators.sagemaker_base_operator.
SageMakerBaseOperator

Initiate a SageMaker training job.

This operator returns The ARN of the training job created in Amazon SageMaker.

Parameters

• config (dict) – The configuration necessary to start a training job (templated).

For details of the configuration parameter see SageMaker.Client.
create_training_job()

• aws_conn_id (str) – The AWS connection ID to use.

• wait_for_completion (bool) – If wait is set to True, the time interval, in seconds,
that the operation waits to check the status of the training job.

• print_log (bool) – if the operator should print the cloudwatch log during training

• check_interval (int) – if wait is set to be true, this is the time interval in seconds
which the operator will check the status of the training job

302 Chapter 3. Content

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint_config
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint_config
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_training_job
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_training_job

Airflow Documentation, Release 2.0.0.dev0+

• max_ingestion_time (int) – If wait is set to True, the operation fails if the training
job doesn’t finish within max_ingestion_time seconds. If you set this parameter to None,
the operation does not timeout.

class airflow.contrib.operators.sagemaker_transform_operator.SageMakerTransformOperator(**kwargs)
Bases: airflow.contrib.operators.sagemaker_base_operator.
SageMakerBaseOperator

Initiate a SageMaker transform job.

This operator returns The ARN of the model created in Amazon SageMaker.

Parameters

• config (dict) – The configuration necessary to start a transform job (templated).

If you need to create a SageMaker transform job based on an existed SageMaker model:

config = transform_config

If you need to create both SageMaker model and SageMaker Transform job:

config = {
'Model': model_config,
'Transform': transform_config

}

For details of the configuration parameter of transform_config see SageMaker.Client.
create_transform_job()

For details of the configuration parameter of model_config, See: SageMaker.Client.
create_model()

• aws_conn_id (string) – The AWS connection ID to use.

• wait_for_completion (bool) – Set to True to wait until the transform job finishes.

• check_interval (int) – If wait is set to True, the time interval, in seconds, that this
operation waits to check the status of the transform job.

• max_ingestion_time (int) – If wait is set to True, the operation fails if the transform
job doesn’t finish within max_ingestion_time seconds. If you set this parameter to None,
the operation does not timeout.

class airflow.contrib.operators.sagemaker_tuning_operator.SageMakerTuningOperator(**kwargs)
Bases: airflow.contrib.operators.sagemaker_base_operator.
SageMakerBaseOperator

Initiate a SageMaker hyperparameter tuning job.

This operator returns The ARN of the tuning job created in Amazon SageMaker.

Parameters

• config (dict) – The configuration necessary to start a tuning job (templated).

For details of the configuration parameter see SageMaker.Client.
create_hyper_parameter_tuning_job()

• aws_conn_id (str) – The AWS connection ID to use.

• wait_for_completion (bool) – Set to True to wait until the tuning job finishes.

• check_interval (int) – If wait is set to True, the time interval, in seconds, that this
operation waits to check the status of the tuning job.

3.20. API Reference 303

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_transform_job
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_transform_job
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_hyper_parameter_tuning_job
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_hyper_parameter_tuning_job

Airflow Documentation, Release 2.0.0.dev0+

• max_ingestion_time (int) – If wait is set to True, the operation fails if the tuning job
doesn’t finish within max_ingestion_time seconds. If you set this parameter to None, the
operation does not timeout.

class airflow.contrib.operators.sftp_operator.SFTPOperator(**kwargs)
Bases: airflow.models.BaseOperator

SFTPOperator for transferring files from remote host to local or vice a versa. This operator uses ssh_hook to
open sftp transport channel that serve as basis for file transfer.

Parameters

• ssh_hook (SSHHook) – predefined ssh_hook to use for remote execution. Either
ssh_hook or ssh_conn_id needs to be provided.

• ssh_conn_id (str) – connection id from airflow Connections. ssh_conn_id will be
ingored if ssh_hook is provided.

• remote_host (str) – remote host to connect (templated) Nullable. If provided, it will
replace the remote_host which was defined in ssh_hook or predefined in the connection of
ssh_conn_id.

• local_filepath (str) – local file path to get or put. (templated)

• remote_filepath (str) – remote file path to get or put. (templated)

• operation (str) – specify operation ‘get’ or ‘put’, defaults to put

• confirm (bool) – specify if the SFTP operation should be confirmed, defaults to True

• create_intermediate_dirs (bool) – create missing intermediate directories when
copying from remote to local and vice-versa. Default is False.

Example: The following task would copy file.txt to the remote host at /tmp/tmp1/
tmp2/ while creating tmp,‘‘tmp1‘‘ and tmp2 if they don’t exist. If the parameter is not
passed it would error as the directory does not exist.

put_file = SFTPOperator(
task_id="test_sftp",
ssh_conn_id="ssh_default",
local_filepath="/tmp/file.txt",
remote_filepath="/tmp/tmp1/tmp2/file.txt",
operation="put",
create_intermediate_dirs=True,
dag=dag

)

class airflow.contrib.operators.slack_webhook_operator.SlackWebhookOperator(**kwargs)
Bases: airflow.operators.http_operator.SimpleHttpOperator

This operator allows you to post messages to Slack using incoming webhooks. Takes both Slack webhook token
directly and connection that has Slack webhook token. If both supplied, Slack webhook token will be used.

Each Slack webhook token can be pre-configured to use a specific channel, username and icon. You can override
these defaults in this hook.

Parameters

• http_conn_id (str) – connection that has Slack webhook token in the extra field

• webhook_token (str) – Slack webhook token

• message (str) – The message you want to send on Slack

304 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• attachments (list) – The attachments to send on Slack. Should be a list of dictionaries
representing Slack attachments.

• channel (str) – The channel the message should be posted to

• username (str) – The username to post to slack with

• icon_emoji (str) – The emoji to use as icon for the user posting to Slack

• link_names (bool) – Whether or not to find and link channel and usernames in your
message

• proxy (str) – Proxy to use to make the Slack webhook call

execute(context)
Call the SlackWebhookHook to post the provided Slack message

class airflow.contrib.operators.sns_publish_operator.SnsPublishOperator(**kwargs)
Bases: airflow.models.BaseOperator

Publish a message to Amazon SNS.

Parameters

• aws_conn_id (str) – aws connection to use

• target_arn (str) – either a TopicArn or an EndpointArn

• message (str) – the default message you want to send (templated)

class airflow.contrib.operators.spark_jdbc_operator.SparkJDBCOperator(**kwargs)
Bases: airflow.contrib.operators.spark_submit_operator.SparkSubmitOperator

This operator extends the SparkSubmitOperator specifically for performing data transfers to/from JDBC-based
databases with Apache Spark. As with the SparkSubmitOperator, it assumes that the “spark-submit” binary is
available on the PATH.

Parameters

• spark_app_name (str) – Name of the job (default airflow-spark-jdbc)

• spark_conn_id (str) – Connection id as configured in Airflow administration

• spark_conf (dict) – Any additional Spark configuration properties

• spark_py_files (str) – Additional python files used (.zip, .egg, or .py)

• spark_files (str) – Additional files to upload to the container running the job

• spark_jars (str) – Additional jars to upload and add to the driver and executor class-
path

• num_executors (int) – number of executor to run. This should be set so as to manage
the number of connections made with the JDBC database

• executor_cores (int) – Number of cores per executor

• executor_memory (str) – Memory per executor (e.g. 1000M, 2G)

• driver_memory (str) – Memory allocated to the driver (e.g. 1000M, 2G)

• verbose (bool) – Whether to pass the verbose flag to spark-submit for debugging

• keytab (str) – Full path to the file that contains the keytab

• principal (str) – The name of the kerberos principal used for keytab

3.20. API Reference 305

Airflow Documentation, Release 2.0.0.dev0+

• cmd_type (str) – Which way the data should flow. 2 possible values: spark_to_jdbc:
data written by spark from metastore to jdbc jdbc_to_spark: data written by spark from jdbc
to metastore

• jdbc_table (str) – The name of the JDBC table

• jdbc_conn_id (str) – Connection id used for connection to JDBC database

• jdbc_driver (str) – Name of the JDBC driver to use for the JDBC connection. This
driver (usually a jar) should be passed in the ‘jars’ parameter

• metastore_table (str) – The name of the metastore table,

• jdbc_truncate (bool) – (spark_to_jdbc only) Whether or not Spark should truncate or
drop and recreate the JDBC table. This only takes effect if ‘save_mode’ is set to Overwrite.
Also, if the schema is different, Spark cannot truncate, and will drop and recreate

• save_mode (str) – The Spark save-mode to use (e.g. overwrite, append, etc.)

• save_format (str) – (jdbc_to_spark-only) The Spark save-format to use (e.g. parquet)

• batch_size (int) – (spark_to_jdbc only) The size of the batch to insert per round trip
to the JDBC database. Defaults to 1000

• fetch_size (int) – (jdbc_to_spark only) The size of the batch to fetch per round trip
from the JDBC database. Default depends on the JDBC driver

• num_partitions (int) – The maximum number of partitions that can be used by Spark
simultaneously, both for spark_to_jdbc and jdbc_to_spark operations. This will also cap the
number of JDBC connections that can be opened

• partition_column (str) – (jdbc_to_spark-only) A numeric column to be used to
partition the metastore table by. If specified, you must also specify: num_partitions,
lower_bound, upper_bound

• lower_bound (int) – (jdbc_to_spark-only) Lower bound of the range of the numeric
partition column to fetch. If specified, you must also specify: num_partitions, parti-
tion_column, upper_bound

• upper_bound (int) – (jdbc_to_spark-only) Upper bound of the range of the numeric
partition column to fetch. If specified, you must also specify: num_partitions, parti-
tion_column, lower_bound

• create_table_column_types – (spark_to_jdbc-only) The database column data
types to use instead of the defaults, when creating the table. Data type information should be
specified in the same format as CREATE TABLE columns syntax (e.g: “name CHAR(64),
comments VARCHAR(1024)”). The specified types should be valid spark sql data types.

execute(context)
Call the SparkSubmitHook to run the provided spark job

class airflow.contrib.operators.spark_sql_operator.SparkSqlOperator(**kwargs)
Bases: airflow.models.BaseOperator

Execute Spark SQL query

Parameters

• sql (str) – The SQL query to execute. (templated)

• conf (str (format: PROP=VALUE)) – arbitrary Spark configuration property

• conn_id (str) – connection_id string

306 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• total_executor_cores (int) – (Standalone & Mesos only) Total cores for all ex-
ecutors (Default: all the available cores on the worker)

• executor_cores (int) – (Standalone & YARN only) Number of cores per executor
(Default: 2)

• executor_memory (str) – Memory per executor (e.g. 1000M, 2G) (Default: 1G)

• keytab (str) – Full path to the file that contains the keytab

• master (str) – spark://host:port, mesos://host:port, yarn, or local

• name (str) – Name of the job

• num_executors (int) – Number of executors to launch

• verbose (bool) – Whether to pass the verbose flag to spark-sql

• yarn_queue (str) – The YARN queue to submit to (Default: “default”)

execute(context)
Call the SparkSqlHook to run the provided sql query

class airflow.contrib.operators.spark_submit_operator.SparkSubmitOperator(**kwargs)
Bases: airflow.models.BaseOperator

This hook is a wrapper around the spark-submit binary to kick off a spark-submit job. It requires that the
“spark-submit” binary is in the PATH or the spark-home is set in the extra on the connection.

Parameters

• application (str) – The application that submitted as a job, either jar or py file. (tem-
plated)

• conf (dict) – Arbitrary Spark configuration properties

• conn_id (str) – The connection id as configured in Airflow administration. When an
invalid connection_id is supplied, it will default to yarn.

• files (str) – Upload additional files to the executor running the job, separated by a
comma. Files will be placed in the working directory of each executor. For example, serial-
ized objects.

• py_files (str) – Additional python files used by the job, can be .zip, .egg or .py.

• jars (str) – Submit additional jars to upload and place them in executor classpath.

• driver_classpath (str) – Additional, driver-specific, classpath settings.

• java_class (str) – the main class of the Java application

• packages (str) – Comma-separated list of maven coordinates of jars to include on the
driver and executor classpaths. (templated)

• exclude_packages (str) – Comma-separated list of maven coordinates of jars to ex-
clude while resolving the dependencies provided in ‘packages’

• repositories (str) – Comma-separated list of additional remote repositories to search
for the maven coordinates given with ‘packages’

• total_executor_cores (int) – (Standalone & Mesos only) Total cores for all ex-
ecutors (Default: all the available cores on the worker)

• executor_cores (int) – (Standalone & YARN only) Number of cores per executor
(Default: 2)

• executor_memory (str) – Memory per executor (e.g. 1000M, 2G) (Default: 1G)

3.20. API Reference 307

Airflow Documentation, Release 2.0.0.dev0+

• driver_memory (str) – Memory allocated to the driver (e.g. 1000M, 2G) (Default: 1G)

• keytab (str) – Full path to the file that contains the keytab

• principal (str) – The name of the kerberos principal used for keytab

• name (str) – Name of the job (default airflow-spark). (templated)

• num_executors (int) – Number of executors to launch

• application_args (list) – Arguments for the application being submitted

• env_vars (dict) – Environment variables for spark-submit. It supports yarn and k8s
mode too.

• verbose (bool) – Whether to pass the verbose flag to spark-submit process for debugging

execute(context)
Call the SparkSubmitHook to run the provided spark job

class airflow.contrib.operators.sqoop_operator.SqoopOperator(**kwargs)
Bases: airflow.models.BaseOperator

Execute a Sqoop job. Documentation for Apache Sqoop can be found here:

https://sqoop.apache.org/docs/1.4.2/SqoopUserGuide.html.

execute(context)
Execute sqoop job

class airflow.contrib.operators.ssh_operator.SSHOperator(**kwargs)
Bases: airflow.models.BaseOperator

SSHOperator to execute commands on given remote host using the ssh_hook.

Parameters

• ssh_hook (SSHHook) – predefined ssh_hook to use for remote execution. Either
ssh_hook or ssh_conn_id needs to be provided.

• ssh_conn_id (str) – connection id from airflow Connections. ssh_conn_id will be
ingored if ssh_hook is provided.

• remote_host (str) – remote host to connect (templated) Nullable. If provided, it will
replace the remote_host which was defined in ssh_hook or predefined in the connection of
ssh_conn_id.

• command (str) – command to execute on remote host. (templated)

• timeout (int) – timeout (in seconds) for executing the command.

• do_xcom_push (bool) – return the stdout which also get set in xcom by airflow platform

class airflow.contrib.operators.vertica_operator.VerticaOperator(**kwargs)
Bases: airflow.models.BaseOperator

Executes sql code in a specific Vertica database

Parameters

• vertica_conn_id (str) – reference to a specific Vertica database

• sql (Can receive a str representing a sql statement, a list
of str (sql statements), or reference to a template file.
Template reference are recognized by str ending in '.sql') –
the sql code to be executed. (templated)

308 Chapter 3. Content

https://sqoop.apache.org/docs/1.4.2/SqoopUserGuide.html

Airflow Documentation, Release 2.0.0.dev0+

class airflow.contrib.operators.vertica_to_hive.VerticaToHiveTransfer(**kwargs)
Bases: airflow.models.BaseOperator

Moves data from Vertica to Hive. The operator runs your query against Vertica, stores the file locally before
loading it into a Hive table. If the create or recreate arguments are set to True, a CREATE TABLE and
DROP TABLE statements are generated. Hive data types are inferred from the cursor’s metadata. Note that the
table generated in Hive uses STORED AS textfile which isn’t the most efficient serialization format. If a
large amount of data is loaded and/or if the table gets queried considerably, you may want to use this operator
only to stage the data into a temporary table before loading it into its final destination using a HiveOperator.

Parameters

• sql (str) – SQL query to execute against the Vertica database. (templated)

• hive_table (str) – target Hive table, use dot notation to target a specific database.
(templated)

• create (bool) – whether to create the table if it doesn’t exist

• recreate (bool) – whether to drop and recreate the table at every execution

• partition (dict) – target partition as a dict of partition columns and values. (templated)

• delimiter (str) – field delimiter in the file

• vertica_conn_id (str) – source Vertica connection

• hive_conn_id (str) – destination hive connection

Sensors

class airflow.contrib.sensors.aws_athena_sensor.AthenaSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Asks for the state of the Query until it reaches a failure state or success state. If it fails, failing the task.

Parameters

• query_execution_id (str) – query_execution_id to check the state of

• max_retires (int) – Number of times to poll for query state before returning the current
state, defaults to None

• aws_conn_id (str) – aws connection to use, defaults to ‘aws_default’

• sleep_time (int) – Time to wait between two consecutive call to check query status on
athena, defaults to 10

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.contrib.sensors.aws_glue_catalog_partition_sensor.AwsGlueCatalogPartitionSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a partition to show up in AWS Glue Catalog.

Parameters

• table_name (str) – The name of the table to wait for, supports the dot notation
(my_database.my_table)

• expression (str) – The partition clause to wait for. This is passed as is
to the AWS Glue Catalog API’s get_partitions function, and supports SQL like

3.20. API Reference 309

Airflow Documentation, Release 2.0.0.dev0+

notation as in ds='2015-01-01' AND type='value' and comparison opera-
tors as in "ds>=2015-01-01". See https://docs.aws.amazon.com/glue/latest/dg/
aws-glue-api-catalog-partitions.html #aws-glue-api-catalog-partitions-GetPartitions

• aws_conn_id (str) – ID of the Airflow connection where credentials and extra config-
uration are stored

• region_name (str) – Optional aws region name (example: us-east-1). Uses region from
connection if not specified.

• database_name (str) – The name of the catalog database where the partitions reside.

• poke_interval (int) – Time in seconds that the job should wait in between each tries

get_hook()
Gets the AwsGlueCatalogHook

poke(context)
Checks for existence of the partition in the AWS Glue Catalog table

class airflow.contrib.sensors.aws_redshift_cluster_sensor.AwsRedshiftClusterSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a Redshift cluster to reach a specific status.

Parameters

• cluster_identifier (str) – The identifier for the cluster being pinged.

• target_status (str) – The cluster status desired.

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.contrib.sensors.bash_sensor.BashSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Executes a bash command/script and returns True if and only if the return code is 0.

Parameters

• bash_command (str) – The command, set of commands or reference to a bash script
(must be ‘.sh’) to be executed.

• env (dict) – If env is not None, it must be a mapping that defines the environment vari-
ables for the new process; these are used instead of inheriting the current process environ-
ment, which is the default behavior. (templated)

• output_encoding (str) – output encoding of bash command.

poke(context)
Execute the bash command in a temporary directory which will be cleaned afterwards

class airflow.contrib.sensors.bigquery_sensor.BigQueryTableSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Checks for the existence of a table in Google Bigquery.

Parameters

• project_id (str) – The Google cloud project in which to look for the table. The con-
nection supplied to the hook must provide access to the specified project.

• dataset_id (str) – The name of the dataset in which to look for the table. storage
bucket.

310 Chapter 3. Content

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html

Airflow Documentation, Release 2.0.0.dev0+

• table_id (str) – The name of the table to check the existence of.

• bigquery_conn_id (str) – The connection ID to use when connecting to Google Big-
Query.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.contrib.sensors.cassandra_record_sensor.CassandraRecordSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Checks for the existence of a record in a Cassandra cluster.

For example, if you want to wait for a record that has values ‘v1’ and ‘v2’ for each primary keys ‘p1’ and ‘p2’
to be populated in keyspace ‘k’ and table ‘t’, instantiate it as follows:

>>> cassandra_sensor = CassandraRecordSensor(table="k.t",
... keys={"p1": "v1", "p2": "v2"},
... cassandra_conn_id="cassandra_default
→˓",
... task_id="cassandra_sensor")

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.contrib.sensors.cassandra_table_sensor.CassandraTableSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Checks for the existence of a table in a Cassandra cluster.

For example, if you want to wait for a table called ‘t’ to be created in a keyspace ‘k’, instantiate it as follows:

>>> cassandra_sensor = CassandraTableSensor(table="k.t",
... cassandra_conn_id="cassandra_default",
... task_id="cassandra_sensor")

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.contrib.sensors.emr_base_sensor.EmrBaseSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Contains general sensor behavior for EMR. Subclasses should implement get_emr_response() and
state_from_response() methods. Subclasses should also implement NON_TERMINAL_STATES and
FAILED_STATE constants.

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.contrib.sensors.emr_job_flow_sensor.EmrJobFlowSensor(**kwargs)
Bases: airflow.contrib.sensors.emr_base_sensor.EmrBaseSensor

Asks for the state of the JobFlow until it reaches a terminal state. If it fails the sensor errors, failing the task.

Parameters job_flow_id (str) – job_flow_id to check the state of

class airflow.contrib.sensors.emr_step_sensor.EmrStepSensor(**kwargs)
Bases: airflow.contrib.sensors.emr_base_sensor.EmrBaseSensor

Asks for the state of the step until it reaches a terminal state. If it fails the sensor errors, failing the task.

3.20. API Reference 311

Airflow Documentation, Release 2.0.0.dev0+

Parameters

• job_flow_id (str) – job_flow_id which contains the step check the state of

• step_id (str) – step to check the state of

class airflow.contrib.sensors.file_sensor.FileSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a file or folder to land in a filesystem.

If the path given is a directory then this sensor will only return true if any files exist inside it (either directly, or
within a subdirectory)

Parameters

• fs_conn_id (str) – reference to the File (path) connection id

• filepath – File or folder name (relative to the base path set within the connection)

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.contrib.sensors.ftp_sensor.FTPSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a file or directory to be present on FTP.

poke(context)
Function that the sensors defined while deriving this class should override.

template_fields = ('path',)
Errors that are transient in nature, and where action can be retried

class airflow.contrib.sensors.ftp_sensor.FTPSSensor(**kwargs)
Bases: airflow.contrib.sensors.ftp_sensor.FTPSensor

Waits for a file or directory to be present on FTP over SSL.

class airflow.contrib.sensors.gcs_sensor.GoogleCloudStorageObjectSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Checks for the existence of a file in Google Cloud Storage.

Parameters

• bucket (str) – The Google cloud storage bucket where the object is.

• object (str) – The name of the object to check in the Google cloud storage bucket.

• google_cloud_conn_id (str) – The connection ID to use when connecting to Google
cloud storage.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.contrib.sensors.gcs_sensor.GoogleCloudStorageObjectUpdatedSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Checks if an object is updated in Google Cloud Storage.

Parameters

• bucket (str) – The Google cloud storage bucket where the object is.

312 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• object (str) – The name of the object to download in the Google cloud storage bucket.

• ts_func (function) – Callback for defining the update condition. The default callback
returns execution_date + schedule_interval. The callback takes the context as parameter.

• google_cloud_conn_id (str) – The connection ID to use when connecting to Google
cloud storage.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.contrib.sensors.gcs_sensor.GoogleCloudStoragePrefixSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Checks for the existence of a files at prefix in Google Cloud Storage bucket.

Parameters

• bucket (str) – The Google cloud storage bucket where the object is.

• prefix (str) – The name of the prefix to check in the Google cloud storage bucket.

• google_cloud_conn_id (str) – The connection ID to use when connecting to Google
cloud storage.

• delegate_to (str) – The account to impersonate, if any. For this to work, the service
account making the request must have domain-wide delegation enabled.

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.contrib.sensors.hdfs_sensor.HdfsSensorFolder(be_empty=False,
*args, **kwargs)

Bases: airflow.sensors.hdfs_sensor.HdfsSensor

poke(context)
poke for a non empty directory

Returns Bool depending on the search criteria

class airflow.contrib.sensors.hdfs_sensor.HdfsSensorRegex(regex, *args,
**kwargs)

Bases: airflow.sensors.hdfs_sensor.HdfsSensor

poke(context)
poke matching files in a directory with self.regex

Returns Bool depending on the search criteria

class airflow.contrib.sensors.imap_attachment_sensor.ImapAttachmentSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a specific attachment on a mail server.

Parameters

• attachment_name (str) – The name of the attachment that will be checked.

• check_regex (bool) – If set to True the attachment’s name will be parsed as regular
expression. Through this you can get a broader set of attachments that it will look for than
just only the equality of the attachment name. The default value is False.

3.20. API Reference 313

Airflow Documentation, Release 2.0.0.dev0+

• mail_folder (str) – The mail folder in where to search for the attachment. The default
value is ‘INBOX’.

• conn_id (str) – The connection to run the sensor against. The default value is
‘imap_default’.

poke(context)
Pokes for a mail attachment on the mail server.

Parameters context (dict) – The context that is being provided when poking.

Returns True if attachment with the given name is present and False if not.

Return type bool

class airflow.contrib.sensors.pubsub_sensor.PubSubPullSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Pulls messages from a PubSub subscription and passes them through XCom.

This sensor operator will pull up to max_messages messages from the specified PubSub subscription. When
the subscription returns messages, the poke method’s criteria will be fulfilled and the messages will be returned
from the operator and passed through XCom for downstream tasks.

If ack_messages is set to True, messages will be immediately acknowledged before being returned, other-
wise, downstream tasks will be responsible for acknowledging them.

project and subscription are templated so you can use variables in them.

execute(context)
Overridden to allow messages to be passed

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.contrib.sensors.python_sensor.PythonSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a Python callable to return True.

User could put input argument in templates_dict e.g templates_dict = {‘start_ds’: 1970}

and access the argument by calling kwargs[‘templates_dict’][‘start_ds’] in the the callable

Parameters

• python_callable (python callable) – A reference to an object that is callable

• op_kwargs (dict) – a dictionary of keyword arguments that will get unpacked in your
function

• op_args (list) – a list of positional arguments that will get unpacked when calling your
callable

• provide_context (bool) – if set to true, Airflow will pass a set of keyword arguments
that can be used in your function. This set of kwargs correspond exactly to what you can
use in your jinja templates. For this to work, you need to define **kwargs in your function
header.

• templates_dict (dict of str) – a dictionary where the values are templates that
will get templated by the Airflow engine sometime between __init__ and execute
takes place and are made available in your callable’s context after the template has been
applied.

314 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.contrib.sensors.qubole_sensor.QuboleSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Base class for all Qubole Sensors

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.contrib.sensors.sagemaker_base_sensor.SageMakerBaseSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Contains general sensor behavior for SageMaker. Subclasses should implement get_sagemaker_response()
and state_from_response() methods. Subclasses should also implement NON_TERMINAL_STATES and
FAILED_STATE methods.

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.contrib.sensors.sagemaker_endpoint_sensor.SageMakerEndpointSensor(**kwargs)
Bases: airflow.contrib.sensors.sagemaker_base_sensor.SageMakerBaseSensor

Asks for the state of the endpoint state until it reaches a terminal state. If it fails the sensor errors, the task fails.

Parameters job_name (str) – job_name of the endpoint instance to check the state of

class airflow.contrib.sensors.sagemaker_training_sensor.SageMakerTrainingSensor(**kwargs)
Bases: airflow.contrib.sensors.sagemaker_base_sensor.SageMakerBaseSensor

Asks for the state of the training state until it reaches a terminal state. If it fails the sensor errors, failing the task.

Parameters

• job_name (str) – name of the SageMaker training job to check the state of

• print_log (bool) – if the operator should print the cloudwatch log

class airflow.contrib.sensors.sagemaker_transform_sensor.SageMakerTransformSensor(**kwargs)
Bases: airflow.contrib.sensors.sagemaker_base_sensor.SageMakerBaseSensor

Asks for the state of the transform state until it reaches a terminal state. The sensor will error if the job errors,
throwing a AirflowException containing the failure reason.

Parameters job_name (string) – job_name of the transform job instance to check the state of

class airflow.contrib.sensors.sagemaker_tuning_sensor.SageMakerTuningSensor(**kwargs)
Bases: airflow.contrib.sensors.sagemaker_base_sensor.SageMakerBaseSensor

Asks for the state of the tuning state until it reaches a terminal state. The sensor will error if the job errors,
throwing a AirflowException containing the failure reason.

Parameters job_name (str) – job_name of the tuning instance to check the state of

class airflow.contrib.sensors.sftp_sensor.SFTPSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a file or directory to be present on SFTP.

Parameters

• path (str) – Remote file or directory path

• sftp_conn_id (str) – The connection to run the sensor against

3.20. API Reference 315

Airflow Documentation, Release 2.0.0.dev0+

poke(context)
Function that the sensors defined while deriving this class should override.

class airflow.contrib.sensors.weekday_sensor.DayOfWeekSensor(**kwargs)
Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits until the first specified day of the week. For example, if the execution day of the task is ‘2018-12-22’
(Saturday) and you pass ‘FRIDAY’, the task will wait until next Friday.

Example (with single day):

weekend_check = DayOfWeekSensor(
task_id='weekend_check',
week_day='Saturday',
use_task_execution_day=True,
dag=dag)

Example (with multiple day using set):

weekend_check = DayOfWeekSensor(
task_id='weekend_check',
week_day={'Saturday', 'Sunday'},
use_task_execution_day=True,
dag=dag)

Example (with WeekDay enum):

import WeekDay Enum
from airflow.contrib.utils.weekday import WeekDay

weekend_check = DayOfWeekSensor(
task_id='weekend_check',
week_day={WeekDay.SATURDAY, WeekDay.SUNDAY},
use_task_execution_day=True,
dag=dag)

Parameters

• week_day (set or str or WeekDay) – Day of the week to check (full name). Op-
tionally, a set of days can also be provided using a set. Example values:

– "MONDAY",

– {"Saturday", "Sunday"}

– {WeekDay.TUESDAY}

– {WeekDay.SATURDAY, WeekDay.SUNDAY}

• use_task_execution_day (bool) – If True, uses task’s execution day to compare
with week_day. Execution Date is Useful for backfilling. If False, uses system’s day of
the week. Useful when you don’t want to run anything on weekdays on the system.

poke(context)
Function that the sensors defined while deriving this class should override.

3.20.2 Macros

Here’s a list of variables and macros that can be used in templates

316 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

3.20.2.1 Default Variables

The Airflow engine passes a few variables by default that are accessible in all templates

Variable Description
{{ ds }} the execution date as YYYY-MM-DD
{{ ds_nodash }} the execution date as YYYYMMDD
{{ prev_ds }} the previous execution date as YYYY-MM-DD if {{ ds }} is 2018-01-08 and schedule_interval is @weekly, {{ prev_ds }} will be 2016-01-01
{{ prev_ds_nodash }} the previous execution date as YYYYMMDD if exists, else ‘‘None‘
{{ next_ds }} the next execution date as YYYY-MM-DD if {{ ds }} is 2018-01-01 and schedule_interval is @weekly, {{ next_ds }} will be 2018-01-08
{{ next_ds_nodash }} the next execution date as YYYYMMDD if exists, else ‘‘None‘
{{ yesterday_ds }} the day before the execution date as YYYY-MM-DD
{{ yesterday_ds_nodash }} the day before the execution date as YYYYMMDD
{{ tomorrow_ds }} the day after the execution date as YYYY-MM-DD
{{ tomorrow_ds_nodash }} the day after the execution date as YYYYMMDD
{{ ts }} same as execution_date.isoformat(). Example: 2018-01-01T00:00:00+00:00
{{ ts_nodash }} same as ts without -, : and TimeZone info. Example: 20180101T000000
{{ ts_nodash_with_tz }} same as ts without - and :. Example: 20180101T000000+0000
{{ execution_date }} the execution_date, (datetime.datetime)
{{ prev_execution_date }} the previous execution date (if available) (datetime.datetime)
{{ next_execution_date }} the next execution date (datetime.datetime)
{{ dag }} the DAG object
{{ task }} the Task object
{{ macros }} a reference to the macros package, described below
{{ task_instance }} the task_instance object
{{ end_date }} same as {{ ds }}
{{ latest_date }} same as {{ ds }}
{{ ti }} same as {{ task_instance }}
{{ params }} a reference to the user-defined params dictionary which can be overridden by the dictionary passed through trigger_dag -c if you enabled dag_run_conf_overrides_params` in ``airflow.cfg
{{ var.value.my_var }} global defined variables represented as a dictionary
{{ var.json.my_var.path }} global defined variables represented as a dictionary with deserialized JSON object, append the path to the key within the JSON object
{{ task_instance_key_str }} a unique, human-readable key to the task instance formatted {dag_id}_{task_id}_{ds}
{{ conf }} the full configuration object located at airflow.configuration.conf which represents the content of your airflow.cfg
{{ run_id }} the run_id of the current DAG run
{{ dag_run }} a reference to the DagRun object
{{ test_mode }} whether the task instance was called using the CLI’s test subcommand

Note that you can access the object’s attributes and methods with simple dot notation. Here are some examples of what
is possible: {{ task.owner }}, {{ task.task_id }}, {{ ti.hostname }}, . . . Refer to the models
documentation for more information on the objects’ attributes and methods.

The var template variable allows you to access variables defined in Airflow’s UI. You can access them as either
plain-text or JSON. If you use JSON, you are also able to walk nested structures, such as dictionaries like: {{ var.
json.my_dict_var.key1 }}

3.20.2.2 Macros

Macros are a way to expose objects to your templates and live under the macros namespace in your templates.

A few commonly used libraries and methods are made available.

3.20. API Reference 317

Airflow Documentation, Release 2.0.0.dev0+

Variable Description
macros.datetime The standard lib’s datetime.datetime
macros.timedelta The standard lib’s datetime.timedelta
macros.dateutil A reference to the dateutil package
macros.time The standard lib’s time
macros.uuid The standard lib’s uuid
macros.random The standard lib’s random

Some airflow specific macros are also defined:

airflow.macros.ds_add(ds, days)
Add or subtract days from a YYYY-MM-DD

Parameters

• ds (str) – anchor date in YYYY-MM-DD format to add to

• days (int) – number of days to add to the ds, you can use negative values

>>> ds_add('2015-01-01', 5)
'2015-01-06'
>>> ds_add('2015-01-06', -5)
'2015-01-01'

airflow.macros.ds_format(ds, input_format, output_format)
Takes an input string and outputs another string as specified in the output format

Parameters

• ds (str) – input string which contains a date

• input_format (str) – input string format. E.g. %Y-%m-%d

• output_format (str) – output string format E.g. %Y-%m-%d

>>> ds_format('2015-01-01', "%Y-%m-%d", "%m-%d-%y")
'01-01-15'
>>> ds_format('1/5/2015', "%m/%d/%Y", "%Y-%m-%d")
'2015-01-05'

airflow.macros.random()→ x in the interval [0, 1).

airflow.macros.hive.closest_ds_partition(table, ds, before=True, schema=’default’, metas-
tore_conn_id=’metastore_default’)

This function finds the date in a list closest to the target date. An optional parameter can be given to get the
closest before or after.

Parameters

• table (str) – A hive table name

• ds (datetime.date list) – A datestamp %Y-%m-%d e.g. yyyy-mm-dd

• before (bool or None) – closest before (True), after (False) or either side of ds

Returns The closest date

Return type str or None

>>> tbl = 'airflow.static_babynames_partitioned'
>>> closest_ds_partition(tbl, '2015-01-02')
'2015-01-01'

318 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

airflow.macros.hive.max_partition(table, schema=’default’, field=None, filter_map=None,
metastore_conn_id=’metastore_default’)

Gets the max partition for a table.

Parameters

• schema (str) – The hive schema the table lives in

• table (str) – The hive table you are interested in, supports the dot notation as in
“my_database.my_table”, if a dot is found, the schema param is disregarded

• metastore_conn_id (str) – The hive connection you are interested in. If your default
is set you don’t need to use this parameter.

• filter_map (map) – partition_key:partition_value map used for partition filtering,
e.g. {‘key1’: ‘value1’, ‘key2’: ‘value2’}. Only partitions matching all parti-
tion_key:partition_value pairs will be considered as candidates of max partition.

• field (str) – the field to get the max value from. If there’s only one partition field, this
will be inferred

>>> max_partition('airflow.static_babynames_partitioned')
'2015-01-01'

3.20.3 Models

Models are built on top of the SQLAlchemy ORM Base class, and instances are persisted in the database.

class airflow.models.BaseOperator(**kwargs)
Bases: airflow.utils.log.logging_mixin.LoggingMixin

Abstract base class for all operators. Since operators create objects that become nodes in the dag, BaseOperator
contains many recursive methods for dag crawling behavior. To derive this class, you are expected to override
the constructor as well as the ‘execute’ method.

Operators derived from this class should perform or trigger certain tasks synchronously (wait for comple-
tion). Example of operators could be an operator that runs a Pig job (PigOperator), a sensor operator that
waits for a partition to land in Hive (HiveSensorOperator), or one that moves data from Hive to MySQL
(Hive2MySqlOperator). Instances of these operators (tasks) target specific operations, running specific scripts,
functions or data transfers.

This class is abstract and shouldn’t be instantiated. Instantiating a class derived from this one results in the
creation of a task object, which ultimately becomes a node in DAG objects. Task dependencies should be set by
using the set_upstream and/or set_downstream methods.

Parameters

• task_id (str) – a unique, meaningful id for the task

• owner (str) – the owner of the task, using the unix username is recommended

• retries (int) – the number of retries that should be performed before failing the task

• retry_delay (timedelta) – delay between retries

• retry_exponential_backoff (bool) – allow progressive longer waits between re-
tries by using exponential backoff algorithm on retry delay (delay will be converted into
seconds)

• max_retry_delay (timedelta) – maximum delay interval between retries

3.20. API Reference 319

Airflow Documentation, Release 2.0.0.dev0+

• start_date (datetime) – The start_date for the task, determines the
execution_date for the first task instance. The best practice is to have the start_date
rounded to your DAG’s schedule_interval. Daily jobs have their start_date some
day at 00:00:00, hourly jobs have their start_date at 00:00 of a specific hour. Note that Air-
flow simply looks at the latest execution_date and adds the schedule_interval
to determine the next execution_date. It is also very important to note that differ-
ent tasks’ dependencies need to line up in time. If task A depends on task B and their
start_date are offset in a way that their execution_date don’t line up, A’s dependencies will
never be met. If you are looking to delay a task, for example running a daily task at 2AM,
look into the TimeSensor and TimeDeltaSensor. We advise against using dynamic
start_date and recommend using fixed ones. Read the FAQ entry about start_date for
more information.

• end_date (datetime) – if specified, the scheduler won’t go beyond this date

• depends_on_past (bool) – when set to true, task instances will run sequentially while
relying on the previous task’s schedule to succeed. The task instance for the start_date is
allowed to run.

• wait_for_downstream (bool) – when set to true, an instance of task X will wait
for tasks immediately downstream of the previous instance of task X to finish successfully
before it runs. This is useful if the different instances of a task X alter the same asset, and
this asset is used by tasks downstream of task X. Note that depends_on_past is forced to
True wherever wait_for_downstream is used.

• queue (str) – which queue to target when running this job. Not all executors implement
queue management, the CeleryExecutor does support targeting specific queues.

• dag (DAG) – a reference to the dag the task is attached to (if any)

• priority_weight (int) – priority weight of this task against other task. This allows
the executor to trigger higher priority tasks before others when things get backed up. Set
priority_weight as a higher number for more important tasks.

• weight_rule (str) – weighting method used for the effective total priority weight
of the task. Options are: { downstream | upstream | absolute } default is
downstream When set to downstream the effective weight of the task is the aggregate
sum of all downstream descendants. As a result, upstream tasks will have higher weight and
will be scheduled more aggressively when using positive weight values. This is useful when
you have multiple dag run instances and desire to have all upstream tasks to complete for all
runs before each dag can continue processing downstream tasks. When set to upstream
the effective weight is the aggregate sum of all upstream ancestors. This is the opposite
where downtream tasks have higher weight and will be scheduled more aggressively when
using positive weight values. This is useful when you have multiple dag run instances and
prefer to have each dag complete before starting upstream tasks of other dags. When set to
absolute, the effective weight is the exact priority_weight specified without ad-
ditional weighting. You may want to do this when you know exactly what priority weight
each task should have. Additionally, when set to absolute, there is bonus effect of signif-
icantly speeding up the task creation process as for very large DAGS. Options can be set as
string or using the constants defined in the static class airflow.utils.WeightRule

• pool (str) – the slot pool this task should run in, slot pools are a way to limit concurrency
for certain tasks

• sla (datetime.timedelta) – time by which the job is expected to succeed. Note that
this represents the timedelta after the period is closed. For example if you set an SLA
of 1 hour, the scheduler would send an email soon after 1:00AM on the 2016-01-02 if
the 2016-01-01 instance has not succeeded yet. The scheduler pays special attention for

320 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

jobs with an SLA and sends alert emails for sla misses. SLA misses are also recorded in the
database for future reference. All tasks that share the same SLA time get bundled in a single
email, sent soon after that time. SLA notification are sent once and only once for each task
instance.

• execution_timeout (datetime.timedelta) – max time allowed for the execu-
tion of this task instance, if it goes beyond it will raise and fail.

• on_failure_callback (callable) – a function to be called when a task instance of
this task fails. a context dictionary is passed as a single parameter to this function. Con-
text contains references to related objects to the task instance and is documented under the
macros section of the API.

• on_retry_callback (callable) – much like the on_failure_callback except
that it is executed when retries occur.

• on_success_callback (callable) – much like the on_failure_callback ex-
cept that it is executed when the task succeeds.

• trigger_rule (str) – defines the rule by which dependencies are applied for
the task to get triggered. Options are: { all_success | all_failed |
all_done | one_success | one_failed | none_failed | dummy} de-
fault is all_success. Options can be set as string or using the constants defined in
the static class airflow.utils.TriggerRule

• resources (dict) – A map of resource parameter names (the argument names of the
Resources constructor) to their values.

• run_as_user (str) – unix username to impersonate while running the task

• task_concurrency (int) – When set, a task will be able to limit the concurrent runs
across execution_dates

• executor_config (dict) – Additional task-level configuration parameters that are in-
terpreted by a specific executor. Parameters are namespaced by the name of executor.

Example: to run this task in a specific docker container through the KubernetesExecutor

MyOperator(...,
executor_config={
"KubernetesExecutor":

{"image": "myCustomDockerImage"}
}

)

• do_xcom_push (bool) – if True, an XCom is pushed containing the Operator’s result

clear(**kwargs)
Clears the state of task instances associated with the task, following the parameters specified.

dag
Returns the Operator’s DAG if set, otherwise raises an error

deps
Returns the list of dependencies for the operator. These differ from execution context dependencies in that
they are specific to tasks and can be extended/overridden by subclasses.

downstream_list
@property: list of tasks directly downstream

3.20. API Reference 321

Airflow Documentation, Release 2.0.0.dev0+

execute(context)
This is the main method to derive when creating an operator. Context is the same dictionary used as when
rendering jinja templates.

Refer to get_template_context for more context.

get_direct_relative_ids(upstream=False)
Get the direct relative ids to the current task, upstream or downstream.

get_direct_relatives(upstream=False)
Get the direct relatives to the current task, upstream or downstream.

get_flat_relative_ids(upstream=False, found_descendants=None)
Get a flat list of relatives’ ids, either upstream or downstream.

get_flat_relatives(upstream=False)
Get a flat list of relatives, either upstream or downstream.

get_task_instances(session, start_date=None, end_date=None)
Get a set of task instance related to this task for a specific date range.

has_dag()
Returns True if the Operator has been assigned to a DAG.

on_kill()
Override this method to cleanup subprocesses when a task instance gets killed. Any use of the threading,
subprocess or multiprocessing module within an operator needs to be cleaned up or it will leave ghost
processes behind.

post_execute(context, *args, **kwargs)
This hook is triggered right after self.execute() is called. It is passed the execution context and any results
returned by the operator.

pre_execute(context, *args, **kwargs)
This hook is triggered right before self.execute() is called.

prepare_template()
Hook that is triggered after the templated fields get replaced by their content. If you need your operator to
alter the content of the file before the template is rendered, it should override this method to do so.

render_template(attr, content, context)
Renders a template either from a file or directly in a field, and returns the rendered result.

render_template_from_field(attr, content, context, jinja_env)
Renders a template from a field. If the field is a string, it will simply render the string and return the result.
If it is a collection or nested set of collections, it will traverse the structure and render all strings in it.

run(start_date=None, end_date=None, ignore_first_depends_on_past=False, ignore_ti_state=False,
mark_success=False)
Run a set of task instances for a date range.

schedule_interval
The schedule interval of the DAG always wins over individual tasks so that tasks within a DAG always
line up. The task still needs a schedule_interval as it may not be attached to a DAG.

set_downstream(task_or_task_list)
Set a task or a task list to be directly downstream from the current task.

set_upstream(task_or_task_list)
Set a task or a task list to be directly upstream from the current task.

upstream_list
@property: list of tasks directly upstream

322 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

xcom_pull(context, task_ids=None, dag_id=None, key=u’return_value’, include_prior_dates=None)
See TaskInstance.xcom_pull()

xcom_push(context, key, value, execution_date=None)
See TaskInstance.xcom_push()

class airflow.models.Chart(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

class airflow.models.DAG(dag_id, description=u”, schedule_interval=datetime.timedelta(1),
start_date=None, end_date=None, full_filepath=None,
template_searchpath=None, user_defined_macros=None,
user_defined_filters=None, default_args=None, concur-
rency=16, max_active_runs=16, dagrun_timeout=None,
sla_miss_callback=None, default_view=None, orientation=’LR’,
catchup=True, on_success_callback=None, on_failure_callback=None,
params=None)

Bases: airflow.dag.base_dag.BaseDag, airflow.utils.log.logging_mixin.
LoggingMixin

A dag (directed acyclic graph) is a collection of tasks with directional dependencies. A dag also has a schedule,
a start date and an end date (optional). For each schedule, (say daily or hourly), the DAG needs to run each
individual tasks as their dependencies are met. Certain tasks have the property of depending on their own past,
meaning that they can’t run until their previous schedule (and upstream tasks) are completed.

DAGs essentially act as namespaces for tasks. A task_id can only be added once to a DAG.

Parameters

• dag_id (str) – The id of the DAG

• description (str) – The description for the DAG to e.g. be shown on the webserver

• schedule_interval (datetime.timedelta or dateutil.
relativedelta.relativedelta or str that acts as a cron
expression) – Defines how often that DAG runs, this timedelta object gets added
to your latest task instance’s execution_date to figure out the next schedule

• start_date (datetime.datetime) – The timestamp from which the scheduler will
attempt to backfill

• end_date (datetime.datetime) – A date beyond which your DAG won’t run, leave
to None for open ended scheduling

• template_searchpath (str or list of stings) – This list of folders (non
relative) defines where jinja will look for your templates. Order matters. Note that
jinja/airflow includes the path of your DAG file by default

• user_defined_macros (dict) – a dictionary of macros that will be exposed in your
jinja templates. For example, passing dict(foo='bar') to this argument allows you to
{{ foo }} in all jinja templates related to this DAG. Note that you can pass any type of
object here.

• user_defined_filters (dict) – a dictionary of filters that will be exposed in your
jinja templates. For example, passing dict(hello=lambda name: 'Hello %s'
% name) to this argument allows you to {{ 'world' | hello }} in all jinja tem-
plates related to this DAG.

• default_args (dict) – A dictionary of default parameters to be used as constructor
keyword parameters when initialising operators. Note that operators have the same hook,
and precede those defined here, meaning that if your dict contains ‘depends_on_past’: True

3.20. API Reference 323

Airflow Documentation, Release 2.0.0.dev0+

here and ‘depends_on_past’: False in the operator’s call default_args, the actual value will
be False.

• params (dict) – a dictionary of DAG level parameters that are made accessible in tem-
plates, namespaced under params. These params can be overridden at the task level.

• concurrency (int) – the number of task instances allowed to run concurrently

• max_active_runs (int) – maximum number of active DAG runs, beyond this number
of DAG runs in a running state, the scheduler won’t create new active DAG runs

• dagrun_timeout (datetime.timedelta) – specify how long a DagRun should be
up before timing out / failing, so that new DagRuns can be created

• sla_miss_callback (types.FunctionType) – specify a function to call when re-
porting SLA timeouts.

• default_view (str) – Specify DAG default view (tree, graph, duration, gantt, land-
ing_times)

• orientation (str) – Specify DAG orientation in graph view (LR, TB, RL, BT)

• catchup (bool) – Perform scheduler catchup (or only run latest)? Defaults to True

• on_failure_callback (callable) – A function to be called when a DagRun of this
dag fails. A context dictionary is passed as a single parameter to this function.

• on_success_callback (callable) – Much like the on_failure_callback ex-
cept that it is executed when the dag succeeds.

add_task(task)
Add a task to the DAG

Parameters task (task) – the task you want to add

add_tasks(tasks)
Add a list of tasks to the DAG

Parameters tasks (list of tasks) – a lit of tasks you want to add

clear(**kwargs)
Clears a set of task instances associated with the current dag for a specified date range.

cli()
Exposes a CLI specific to this DAG

concurrency_reached
Returns a boolean indicating whether the concurrency limit for this DAG has been reached

create_dagrun(**kwargs)
Creates a dag run from this dag including the tasks associated with this dag. Returns the dag run.

Parameters

• run_id (str) – defines the the run id for this dag run

• execution_date (datetime) – the execution date of this dag run

• state (State) – the state of the dag run

• start_date (datetime) – the date this dag run should be evaluated

• external_trigger (bool) – whether this dag run is externally triggered

• session (Session) – database session

324 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

static deactivate_stale_dags(*args, **kwargs)
Deactivate any DAGs that were last touched by the scheduler before the expiration date. These DAGs were
likely deleted.

Parameters expiration_date (datetime) – set inactive DAGs that were touched before
this time

Returns None

static deactivate_unknown_dags(*args, **kwargs)
Given a list of known DAGs, deactivate any other DAGs that are marked as active in the ORM

Parameters active_dag_ids (list[unicode]) – list of DAG IDs that are active

Returns None

filepath
File location of where the dag object is instantiated

folder
Folder location of where the dag object is instantiated

following_schedule(dttm)
Calculates the following schedule for this dag in UTC.

Parameters dttm – utc datetime

Returns utc datetime

get_active_runs(**kwargs)
Returns a list of dag run execution dates currently running

Parameters session –

Returns List of execution dates

get_dagrun(**kwargs)
Returns the dag run for a given execution date if it exists, otherwise none.

Parameters

• execution_date – The execution date of the DagRun to find.

• session –

Returns The DagRun if found, otherwise None.

get_default_view()
This is only there for backward compatible jinja2 templates

get_num_active_runs(**kwargs)
Returns the number of active “running” dag runs

Parameters

• external_trigger (bool) – True for externally triggered active dag runs

• session –

Returns number greater than 0 for active dag runs

static get_num_task_instances(*args, **kwargs)
Returns the number of task instances in the given DAG.

Parameters

• session – ORM session

3.20. API Reference 325

Airflow Documentation, Release 2.0.0.dev0+

• dag_id (unicode) – ID of the DAG to get the task concurrency of

• task_ids (list[unicode]) – A list of valid task IDs for the given DAG

• states (list[state]) – A list of states to filter by if supplied

Returns The number of running tasks

Return type int

get_run_dates(start_date, end_date=None)
Returns a list of dates between the interval received as parameter using this dag’s schedule interval. Re-
turned dates can be used for execution dates.

Parameters

• start_date (datetime) – the start date of the interval

• end_date (datetime) – the end date of the interval, defaults to timezone.utcnow()

Returns a list of dates within the interval following the dag’s schedule

Return type list

get_template_env()
Returns a jinja2 Environment while taking into account the DAGs template_searchpath,
user_defined_macros and user_defined_filters

handle_callback(**kwargs)
Triggers the appropriate callback depending on the value of success, namely the on_failure_callback or
on_success_callback. This method gets the context of a single TaskInstance part of this DagRun and
passes that to the callable along with a ‘reason’, primarily to differentiate DagRun failures. .. note:

The logs end up in $AIRFLOW_HOME/logs/scheduler/latest/PROJECT/DAG_FILE.py.log

Parameters

• dagrun – DagRun object

• success – Flag to specify if failure or success callback should be called

• reason – Completion reason

• session – Database session

is_fixed_time_schedule()
Figures out if the DAG schedule has a fixed time (e.g. 3 AM).

Returns True if the schedule has a fixed time, False if not.

is_paused
Returns a boolean indicating whether this DAG is paused

latest_execution_date
Returns the latest date for which at least one dag run exists

normalize_schedule(dttm)
Returns dttm + interval unless dttm is first interval then it returns dttm

previous_schedule(dttm)
Calculates the previous schedule for this dag in UTC

Parameters dttm – utc datetime

Returns utc datetime

326 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

run(start_date=None, end_date=None, mark_success=False, local=False, executor=None,
donot_pickle=False, ignore_task_deps=False, ignore_first_depends_on_past=False, pool=None,
delay_on_limit_secs=1.0, verbose=False, conf=None, rerun_failed_tasks=False)
Runs the DAG.

Parameters

• start_date (datetime) – the start date of the range to run

• end_date (datetime) – the end date of the range to run

• mark_success (bool) – True to mark jobs as succeeded without running them

• local (bool) – True to run the tasks using the LocalExecutor

• executor (BaseExecutor) – The executor instance to run the tasks

• donot_pickle (bool) – True to avoid pickling DAG object and send to workers

• ignore_task_deps (bool) – True to skip upstream tasks

• ignore_first_depends_on_past (bool) – True to ignore depends_on_past de-
pendencies for the first set of tasks only

• pool (str) – Resource pool to use

• delay_on_limit_secs (float) – Time in seconds to wait before next attempt to
run dag run when max_active_runs limit has been reached

• verbose (bool) – Make logging output more verbose

• conf (dict) – user defined dictionary passed from CLI

set_dependency(upstream_task_id, downstream_task_id)
Simple utility method to set dependency between two tasks that already have been added to the DAG using
add_task()

sub_dag(task_regex, include_downstream=False, include_upstream=True)
Returns a subset of the current dag as a deep copy of the current dag based on a regex that should match
one or many tasks, and includes upstream and downstream neighbours based on the flag passed.

subdags
Returns a list of the subdag objects associated to this DAG

sync_to_db(**kwargs)
Save attributes about this DAG to the DB. Note that this method can be called for both DAGs and Sub-
DAGs. A SubDag is actually a SubDagOperator.

Parameters

• dag (DAG) – the DAG object to save to the DB

• sync_time (datetime) – The time that the DAG should be marked as sync’ed

Returns None

test_cycle()
Check to see if there are any cycles in the DAG. Returns False if no cycle found, otherwise raises exception.

topological_sort()
Sorts tasks in topographical order, such that a task comes after any of its upstream dependencies.

Heavily inspired by: http://blog.jupo.org/2012/04/06/topological-sorting-acyclic-directed-graphs/

Returns list of tasks in topological order

3.20. API Reference 327

http://blog.jupo.org/2012/04/06/topological-sorting-acyclic-directed-graphs/

Airflow Documentation, Release 2.0.0.dev0+

tree_view()
Shows an ascii tree representation of the DAG

class airflow.models.DagBag(dag_folder=None, executor=None, include_examples=True)
Bases: airflow.dag.base_dag.BaseDagBag, airflow.utils.log.logging_mixin.
LoggingMixin

A dagbag is a collection of dags, parsed out of a folder tree and has high level configuration settings, like what
database to use as a backend and what executor to use to fire off tasks. This makes it easier to run distinct
environments for say production and development, tests, or for different teams or security profiles. What would
have been system level settings are now dagbag level so that one system can run multiple, independent settings
sets.

Parameters

• dag_folder (unicode) – the folder to scan to find DAGs

• executor – the executor to use when executing task instances in this DagBag

• include_examples (bool) – whether to include the examples that ship with airflow or
not

• has_logged – an instance boolean that gets flipped from False to True after a file has
been skipped. This is to prevent overloading the user with logging messages about skipped
files. Therefore only once per DagBag is a file logged being skipped.

bag_dag(dag, parent_dag, root_dag)
Adds the DAG into the bag, recurses into sub dags. Throws AirflowDagCycleException if a cycle is
detected in this dag or its subdags

collect_dags(dag_folder=None, only_if_updated=True, include_examples=True)
Given a file path or a folder, this method looks for python modules, imports them and adds them to the
dagbag collection.

Note that if a .airflowignore file is found while processing the directory, it will behave much like a
.gitignore, ignoring files that match any of the regex patterns specified in the file.

Note: The patterns in .airflowignore are treated as un-anchored regexes, not shell-like glob patterns.

dagbag_report()
Prints a report around DagBag loading stats

get_dag(dag_id)
Gets the DAG out of the dictionary, and refreshes it if expired

kill_zombies(**kwargs)
Fail given zombie tasks, which are tasks that haven’t had a heartbeat for too long, in the current DagBag.

Parameters

• zombies (SimpleTaskInstance) – zombie task instances to kill.

• session – DB session.

:type Session.

process_file(filepath, only_if_updated=True, safe_mode=True)
Given a path to a python module or zip file, this method imports the module and look for dag objects within
it.

size()

Returns the amount of dags contained in this dagbag

328 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

class airflow.models.DagModel(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

create_dagrun(**kwargs)
Creates a dag run from this dag including the tasks associated with this dag. Returns the dag run.

Parameters

• run_id (str) – defines the the run id for this dag run

• execution_date (datetime) – the execution date of this dag run

• state (State) – the state of the dag run

• start_date (datetime) – the date this dag run should be evaluated

• external_trigger (bool) – whether this dag run is externally triggered

• session (Session) – database session

class airflow.models.DagRun(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, airflow.utils.log.logging_mixin.
LoggingMixin

DagRun describes an instance of a Dag. It can be created by the scheduler (for regular runs) or by an external
trigger

static find(*args, **kwargs)
Returns a set of dag runs for the given search criteria.

Parameters

• dag_id (int, list) – the dag_id to find dag runs for

• run_id (str) – defines the the run id for this dag run

• execution_date (datetime) – the execution date

• state (State) – the state of the dag run

• external_trigger (bool) – whether this dag run is externally triggered

• no_backfills – return no backfills (True), return all (False).

Defaults to False :type no_backfills: bool :param session: database session :type session: Session

get_dag()
Returns the Dag associated with this DagRun.

Returns DAG

classmethod get_latest_runs(**kwargs)
Returns the latest DagRun for each DAG.

get_previous_dagrun(**kwargs)
The previous DagRun, if there is one

get_previous_scheduled_dagrun(**kwargs)
The previous, SCHEDULED DagRun, if there is one

static get_run(session, dag_id, execution_date)

Parameters

• dag_id (unicode) – DAG ID

• execution_date (datetime) – execution date

3.20. API Reference 329

Airflow Documentation, Release 2.0.0.dev0+

Returns DagRun corresponding to the given dag_id and execution date

if one exists. None otherwise. :rtype: DagRun

get_task_instance(**kwargs)
Returns the task instance specified by task_id for this dag run

Parameters task_id – the task id

get_task_instances(**kwargs)
Returns the task instances for this dag run

refresh_from_db(**kwargs)
Reloads the current dagrun from the database :param session: database session

update_state(**kwargs)
Determines the overall state of the DagRun based on the state of its TaskInstances.

Returns State

verify_integrity(**kwargs)
Verifies the DagRun by checking for removed tasks or tasks that are not in the database yet. It will set state
to removed or add the task if required.

exception airflow.models.InvalidFernetToken
Bases: exceptions.Exception

class airflow.models.KubeResourceVersion(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

class airflow.models.KubeWorkerIdentifier(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

class airflow.models.Log(event, task_instance, owner=None, extra=None, **kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

Used to actively log events to the database

class airflow.models.NullFernet
Bases: future.types.newobject.newobject

A “Null” encryptor class that doesn’t encrypt or decrypt but that presents a similar interface to Fernet.

The purpose of this is to make the rest of the code not have to know the difference, and to only display the
message once, not 20 times when airflow initdb is ran.

class airflow.models.Pool(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

open_slots(**kwargs)
Returns the number of slots open at the moment

queued_slots(**kwargs)
Returns the number of slots used at the moment

used_slots(**kwargs)
Returns the number of slots used at the moment

class airflow.models.SlaMiss(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

Model that stores a history of the SLA that have been missed. It is used to keep track of SLA failures over time
and to avoid double triggering alert emails.

330 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

class airflow.models.TaskFail(task, execution_date, start_date, end_date)
Bases: sqlalchemy.ext.declarative.api.Base

TaskFail tracks the failed run durations of each task instance.

class airflow.models.TaskInstance(task, execution_date, state=None)
Bases: sqlalchemy.ext.declarative.api.Base, airflow.utils.log.logging_mixin.
LoggingMixin

Task instances store the state of a task instance. This table is the authority and single source of truth around
what tasks have run and the state they are in.

The SqlAlchemy model doesn’t have a SqlAlchemy foreign key to the task or dag model deliberately to have
more control over transactions.

Database transactions on this table should insure double triggers and any confusion around what task instances
are or aren’t ready to run even while multiple schedulers may be firing task instances.

are_dependencies_met(**kwargs)
Returns whether or not all the conditions are met for this task instance to be run given the context for the
dependencies (e.g. a task instance being force run from the UI will ignore some dependencies).

Parameters

• dep_context (DepContext) – The execution context that determines the dependen-
cies that should be evaluated.

• session (Session) – database session

• verbose (bool) – whether log details on failed dependencies on info or debug log level

are_dependents_done(**kwargs)
Checks whether the dependents of this task instance have all succeeded. This is meant to be used by
wait_for_downstream.

This is useful when you do not want to start processing the next schedule of a task until the dependents are
done. For instance, if the task DROPs and recreates a table.

clear_xcom_data(**kwargs)
Clears all XCom data from the database for the task instance

command(mark_success=False, ignore_all_deps=False, ignore_depends_on_past=False, ig-
nore_task_deps=False, ignore_ti_state=False, local=False, pickle_id=None, raw=False,
job_id=None, pool=None, cfg_path=None)

Returns a command that can be executed anywhere where airflow is installed. This command is part of the
message sent to executors by the orchestrator.

command_as_list(mark_success=False, ignore_all_deps=False, ignore_task_deps=False,
ignore_depends_on_past=False, ignore_ti_state=False, local=False,
pickle_id=None, raw=False, job_id=None, pool=None, cfg_path=None)

Returns a command that can be executed anywhere where airflow is installed. This command is part of the
message sent to executors by the orchestrator.

current_state(**kwargs)
Get the very latest state from the database, if a session is passed, we use and looking up the state becomes
part of the session, otherwise a new session is used.

error(**kwargs)
Forces the task instance’s state to FAILED in the database.

3.20. API Reference 331

Airflow Documentation, Release 2.0.0.dev0+

static generate_command(dag_id, task_id, execution_date, mark_success=False, ig-
nore_all_deps=False, ignore_depends_on_past=False, ig-
nore_task_deps=False, ignore_ti_state=False, local=False,
pickle_id=None, file_path=None, raw=False, job_id=None,
pool=None, cfg_path=None)

Generates the shell command required to execute this task instance.

Parameters

• dag_id (unicode) – DAG ID

• task_id (unicode) – Task ID

• execution_date (datetime) – Execution date for the task

• mark_success (bool) – Whether to mark the task as successful

• ignore_all_deps (bool) – Ignore all ignorable dependencies. Overrides the other
ignore_* parameters.

• ignore_depends_on_past (bool) – Ignore depends_on_past parameter of DAGs
(e.g. for Backfills)

• ignore_task_deps (bool) – Ignore task-specific dependencies such as de-
pends_on_past and trigger rule

• ignore_ti_state (bool) – Ignore the task instance’s previous failure/success

• local (bool) – Whether to run the task locally

• pickle_id (unicode) – If the DAG was serialized to the DB, the ID associated with
the pickled DAG

• file_path – path to the file containing the DAG definition

• raw – raw mode (needs more details)

• job_id – job ID (needs more details)

• pool (unicode) – the Airflow pool that the task should run in

• cfg_path (basestring) – the Path to the configuration file

Returns shell command that can be used to run the task instance

get_dagrun(**kwargs)
Returns the DagRun for this TaskInstance

Parameters session –

Returns DagRun

init_on_load()
Initialize the attributes that aren’t stored in the DB.

init_run_context(raw=False)
Sets the log context.

is_eligible_to_retry()
Is task instance is eligible for retry

is_premature
Returns whether a task is in UP_FOR_RETRY state and its retry interval has elapsed.

key
Returns a tuple that identifies the task instance uniquely

332 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

next_retry_datetime()
Get datetime of the next retry if the task instance fails. For exponential backoff, retry_delay is used as base
and will be converted to seconds.

pool_full(**kwargs)
Returns a boolean as to whether the slot pool has room for this task to run

previous_ti
The task instance for the task that ran before this task instance

ready_for_retry()
Checks on whether the task instance is in the right state and timeframe to be retried.

refresh_from_db(**kwargs)
Refreshes the task instance from the database based on the primary key

Parameters lock_for_update – if True, indicates that the database should lock the TaskIn-
stance (issuing a FOR UPDATE clause) until the session is committed.

try_number
Return the try number that this task number will be when it is actually run.

If the TI is currently running, this will match the column in the databse, in all othercases this will be
incremenetd

xcom_pull(task_ids=None, dag_id=None, key=u’return_value’, include_prior_dates=False)
Pull XComs that optionally meet certain criteria.

The default value for key limits the search to XComs that were returned by other tasks (as opposed to those
that were pushed manually). To remove this filter, pass key=None (or any desired value).

If a single task_id string is provided, the result is the value of the most recent matching XCom from
that task_id. If multiple task_ids are provided, a tuple of matching values is returned. None is returned
whenever no matches are found.

Parameters

• key (str) – A key for the XCom. If provided, only XComs with matching keys
will be returned. The default key is ‘return_value’, also available as a constant
XCOM_RETURN_KEY. This key is automatically given to XComs returned by tasks (as
opposed to being pushed manually). To remove the filter, pass key=None.

• task_ids (str or iterable of strings (representing task_ids))
– Only XComs from tasks with matching ids will be pulled. Can pass None to remove the
filter.

• dag_id (str) – If provided, only pulls XComs from this DAG. If None (default), the
DAG of the calling task is used.

• include_prior_dates (bool) – If False, only XComs from the current execu-
tion_date are returned. If True, XComs from previous dates are returned as well.

xcom_push(key, value, execution_date=None)
Make an XCom available for tasks to pull.

Parameters

• key (str) – A key for the XCom

• value (any pickleable object) – A value for the XCom. The value is pickled
and stored in the database.

3.20. API Reference 333

Airflow Documentation, Release 2.0.0.dev0+

• execution_date (datetime) – if provided, the XCom will not be visible until this
date. This can be used, for example, to send a message to a task on a future date without it
being immediately visible.

class airflow.models.TaskReschedule(task, execution_date, try_number, start_date, end_date,
reschedule_date)

Bases: sqlalchemy.ext.declarative.api.Base

TaskReschedule tracks rescheduled task instances.

static find_for_task_instance(*args, **kwargs)
Returns all task reschedules for the task instance and try number, in ascending order.

Parameters task_instance (TaskInstance) – the task instance to find task reschedules
for

class airflow.models.User(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

class airflow.models.Variable(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, airflow.utils.log.logging_mixin.
LoggingMixin

classmethod setdefault(key, default, deserialize_json=False)
Like a Python builtin dict object, setdefault returns the current value for a key, and if it isn’t there, stores
the default value and returns it.

Parameters

• key (String) – Dict key for this Variable

• default – Default value to set and return if the variable

isn’t already in the DB :type default: Mixed :param deserialize_json: Store this as a JSON encoded value
in the DB

and un-encode it when retrieving a value

Returns Mixed

class airflow.models.XCom(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, airflow.utils.log.logging_mixin.
LoggingMixin

Base class for XCom objects.

classmethod get_many(**kwargs)
Retrieve an XCom value, optionally meeting certain criteria TODO: “pickling” has been deprecated and
JSON is preferred.

“pickling” will be removed in Airflow 2.0.

classmethod get_one(**kwargs)
Retrieve an XCom value, optionally meeting certain criteria. TODO: “pickling” has been deprecated and
JSON is preferred.

“pickling” will be removed in Airflow 2.0.

Returns XCom value

classmethod set(**kwargs)
Store an XCom value. TODO: “pickling” has been deprecated and JSON is preferred.

334 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

“pickling” will be removed in Airflow 2.0.

Returns None

airflow.models.clear_task_instances(tis, session, activate_dag_runs=True, dag=None)
Clears a set of task instances, but makes sure the running ones get killed.

Parameters

• tis – a list of task instances

• session – current session

• activate_dag_runs – flag to check for active dag run

• dag – DAG object

airflow.models.get_fernet()
Deferred load of Fernet key.

This function could fail either because Cryptography is not installed or because the Fernet key is invalid.

Returns Fernet object

Raises AirflowException if there’s a problem trying to load Fernet

airflow.models.get_last_dagrun(dag_id, session, include_externally_triggered=False)
Returns the last dag run for a dag, None if there was none. Last dag run can be any type of run eg. scheduled or
backfilled. Overridden DagRuns are ignored.

3.20.4 Hooks

Hooks are interfaces to external platforms and databases, implementing a common interface when possible and acting
as building blocks for operators.

class airflow.hooks.dbapi_hook.DbApiHook(*args, **kwargs)
Bases: airflow.hooks.base_hook.BaseHook

Abstract base class for sql hooks.

bulk_dump(table, tmp_file)
Dumps a database table into a tab-delimited file

Parameters

• table (str) – The name of the source table

• tmp_file (str) – The path of the target file

bulk_load(table, tmp_file)
Loads a tab-delimited file into a database table

Parameters

• table (str) – The name of the target table

• tmp_file (str) – The path of the file to load into the table

get_autocommit(conn)
Get autocommit setting for the provided connection. Return True if conn.autocommit is set to True. Return
False if conn.autocommit is not set or set to False or conn does not support autocommit.

Parameters conn (connection object.) – Connection to get autocommit setting from.

Returns connection autocommit setting.

3.20. API Reference 335

Airflow Documentation, Release 2.0.0.dev0+

:rtype bool.

get_conn()
Returns a connection object

get_cursor()
Returns a cursor

get_first(sql, parameters=None)
Executes the sql and returns the first resulting row.

Parameters

• sql (str or list) – the sql statement to be executed (str) or a list of sql statements
to execute

• parameters (mapping or iterable) – The parameters to render the SQL query
with.

get_pandas_df(sql, parameters=None)
Executes the sql and returns a pandas dataframe

Parameters

• sql (str or list) – the sql statement to be executed (str) or a list of sql statements
to execute

• parameters (mapping or iterable) – The parameters to render the SQL query
with.

get_records(sql, parameters=None)
Executes the sql and returns a set of records.

Parameters

• sql (str or list) – the sql statement to be executed (str) or a list of sql statements
to execute

• parameters (mapping or iterable) – The parameters to render the SQL query
with.

insert_rows(table, rows, target_fields=None, commit_every=1000, replace=False)
A generic way to insert a set of tuples into a table, a new transaction is created every commit_every rows

Parameters

• table (str) – Name of the target table

• rows (iterable of tuples) – The rows to insert into the table

• target_fields (iterable of strings) – The names of the columns to fill in
the table

• commit_every (int) – The maximum number of rows to insert in one transaction. Set
to 0 to insert all rows in one transaction.

• replace (bool) – Whether to replace instead of insert

run(sql, autocommit=False, parameters=None)
Runs a command or a list of commands. Pass a list of sql statements to the sql parameter to get them to
execute sequentially

Parameters

• sql (str or list) – the sql statement to be executed (str) or a list of sql statements
to execute

336 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• autocommit (bool) – What to set the connection’s autocommit setting to before exe-
cuting the query.

• parameters (mapping or iterable) – The parameters to render the SQL query
with.

set_autocommit(conn, autocommit)
Sets the autocommit flag on the connection

class airflow.hooks.docker_hook.DockerHook(docker_conn_id=’docker_default’,
base_url=None, version=None, tls=None)

Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.
LoggingMixin

Interact with a private Docker registry.

Parameters docker_conn_id (str) – ID of the Airflow connection where credentials and extra
configuration are stored

class airflow.hooks.hive_hooks.HiveCliHook(hive_cli_conn_id=u’hive_cli_default’,
run_as=None, mapred_queue=None,
mapred_queue_priority=None,
mapred_job_name=None)

Bases: airflow.hooks.base_hook.BaseHook

Simple wrapper around the hive CLI.

It also supports the beeline a lighter CLI that runs JDBC and is replacing the heavier traditional CLI. To
enable beeline, set the use_beeline param in the extra field of your connection as in { "use_beeline":
true }

Note that you can also set default hive CLI parameters using the hive_cli_params to be used
in your connection as in {"hive_cli_params": "-hiveconf mapred.job.tracker=some.
jobtracker:444"} Parameters passed here can be overridden by run_cli’s hive_conf param

The extra connection parameter auth gets passed as in the jdbc connection string as is.

Parameters

• mapred_queue (str) – queue used by the Hadoop Scheduler (Capacity or Fair)

• mapred_queue_priority (str) – priority within the job queue. Possible settings
include: VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW

• mapred_job_name (str) – This name will appear in the jobtracker. This can make
monitoring easier.

load_df(df, table, field_dict=None, delimiter=u’, ’, encoding=u’utf8’, pandas_kwargs=None,
**kwargs)

Loads a pandas DataFrame into hive.

Hive data types will be inferred if not passed but column names will not be sanitized.

Parameters

• df (DataFrame) – DataFrame to load into a Hive table

• table (str) – target Hive table, use dot notation to target a specific database

• field_dict (OrderedDict) – mapping from column name to hive data type. Note
that it must be OrderedDict so as to keep columns’ order.

• delimiter (str) – field delimiter in the file

• encoding (str) – str encoding to use when writing DataFrame to file

3.20. API Reference 337

Airflow Documentation, Release 2.0.0.dev0+

• pandas_kwargs (dict) – passed to DataFrame.to_csv

• kwargs – passed to self.load_file

load_file(filepath, table, delimiter=u’, ’, field_dict=None, create=True, overwrite=True, parti-
tion=None, recreate=False, tblproperties=None)

Loads a local file into Hive

Note that the table generated in Hive uses STORED AS textfile which isn’t the most efficient seri-
alization format. If a large amount of data is loaded and/or if the tables gets queried considerably, you
may want to use this operator only to stage the data into a temporary table before loading it into its final
destination using a HiveOperator.

Parameters

• filepath (str) – local filepath of the file to load

• table (str) – target Hive table, use dot notation to target a specific database

• delimiter (str) – field delimiter in the file

• field_dict (OrderedDict) – A dictionary of the fields name in the file as keys and
their Hive types as values. Note that it must be OrderedDict so as to keep columns’ order.

• create (bool) – whether to create the table if it doesn’t exist

• overwrite (bool) – whether to overwrite the data in table or partition

• partition (dict) – target partition as a dict of partition columns and values

• recreate (bool) – whether to drop and recreate the table at every execution

• tblproperties (dict) – TBLPROPERTIES of the hive table being created

run_cli(hql, schema=None, verbose=True, hive_conf=None)
Run an hql statement using the hive cli. If hive_conf is specified it should be a dict and the entries will be
set as key/value pairs in HiveConf

Parameters hive_conf (dict) – if specified these key value pairs will be passed to
hive as -hiveconf "key"="value". Note that they will be passed after the
hive_cli_params and thus will override whatever values are specified in the database.

>>> hh = HiveCliHook()
>>> result = hh.run_cli("USE airflow;")
>>> ("OK" in result)
True

test_hql(hql)
Test an hql statement using the hive cli and EXPLAIN

class airflow.hooks.hive_hooks.HiveMetastoreHook(metastore_conn_id=u’metastore_default’)
Bases: airflow.hooks.base_hook.BaseHook

Wrapper to interact with the Hive Metastore

check_for_named_partition(schema, table, partition_name)
Checks whether a partition with a given name exists

Parameters

• schema (str) – Name of hive schema (database) @table belongs to

• table – Name of hive table @partition belongs to

Partition Name of the partitions to check for (eg a=b/c=d)

338 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Return type bool

>>> hh = HiveMetastoreHook()
>>> t = 'static_babynames_partitioned'
>>> hh.check_for_named_partition('airflow', t, "ds=2015-01-01")
True
>>> hh.check_for_named_partition('airflow', t, "ds=xxx")
False

check_for_partition(schema, table, partition)
Checks whether a partition exists

Parameters

• schema (str) – Name of hive schema (database) @table belongs to

• table – Name of hive table @partition belongs to

Partition Expression that matches the partitions to check for (eg a = ‘b’ AND c = ‘d’)

Return type bool

>>> hh = HiveMetastoreHook()
>>> t = 'static_babynames_partitioned'
>>> hh.check_for_partition('airflow', t, "ds='2015-01-01'")
True

get_databases(pattern=u’*’)
Get a metastore table object

get_metastore_client()
Returns a Hive thrift client.

get_partitions(schema, table_name, filter=None)
Returns a list of all partitions in a table. Works only for tables with less than 32767 (java short max val).
For subpartitioned table, the number might easily exceed this.

>>> hh = HiveMetastoreHook()
>>> t = 'static_babynames_partitioned'
>>> parts = hh.get_partitions(schema='airflow', table_name=t)
>>> len(parts)
1
>>> parts
[{'ds': '2015-01-01'}]

get_table(table_name, db=u’default’)
Get a metastore table object

>>> hh = HiveMetastoreHook()
>>> t = hh.get_table(db='airflow', table_name='static_babynames')
>>> t.tableName
'static_babynames'
>>> [col.name for col in t.sd.cols]
['state', 'year', 'name', 'gender', 'num']

get_tables(db, pattern=u’*’)
Get a metastore table object

max_partition(schema, table_name, field=None, filter_map=None)
Returns the maximum value for all partitions with given field in a table. If only one partition key exist in

3.20. API Reference 339

Airflow Documentation, Release 2.0.0.dev0+

the table, the key will be used as field. filter_map should be a partition_key:partition_value map and will
be used to filter out partitions.

Parameters

• schema (str) – schema name.

• table_name (str) – table name.

• field (str) – partition key to get max partition from.

• filter_map (map) – partition_key:partition_value map used for partition filtering.

>>> hh = HiveMetastoreHook()
>>> filter_map = {'ds': '2015-01-01', 'ds': '2014-01-01'}
>>> t = 'static_babynames_partitioned'
>>> hh.max_partition(schema='airflow', ... table_name=t, field='ds',
→˓filter_map=filter_map)
'2015-01-01'

table_exists(table_name, db=u’default’)
Check if table exists

>>> hh = HiveMetastoreHook()
>>> hh.table_exists(db='airflow', table_name='static_babynames')
True
>>> hh.table_exists(db='airflow', table_name='does_not_exist')
False

class airflow.hooks.hive_hooks.HiveServer2Hook(hiveserver2_conn_id=u’hiveserver2_default’)
Bases: airflow.hooks.base_hook.BaseHook

Wrapper around the pyhive library

Note that the default authMechanism is PLAIN, to override it you can specify it in the extra of your connection
in the UI as in

get_pandas_df(hql, schema=u’default’)
Get a pandas dataframe from a Hive query

>>> hh = HiveServer2Hook()
>>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100"
>>> df = hh.get_pandas_df(sql)
>>> len(df.index)
100

get_records(hql, schema=u’default’, hive_conf=None)
Get a set of records from a Hive query.

>>> hh = HiveServer2Hook()
>>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100"
>>> len(hh.get_records(sql))
100

get_results(hql, schema=u’default’, fetch_size=None, hive_conf=None)
Get results of the provided hql in target schema. :param hql: hql to be executed. :param schema: target
schema, default to ‘default’. :param fetch_size max size of result to fetch. :param hive_conf: hive_conf to
execute alone with the hql. :return: results of hql execution.

340 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

to_csv(hql, csv_filepath, schema=u’default’, delimiter=u’, ’, lineterminator=u’\r\n’, out-
put_header=True, fetch_size=1000, hive_conf=None)

Execute hql in target schema and write results to a csv file. :param hql: hql to be executed. :param
csv_filepath: filepath of csv to write results into. :param schema: target schema, default to ‘default’.
:param delimiter: delimiter of the csv file. :param lineterminator: lineterminator of the csv file. :param
output_header: header of the csv file. :param fetch_size: number of result rows to write into the csv file.
:param hive_conf: hive_conf to execute alone with the hql. :return:

airflow.hooks.hive_hooks.get_context_from_env_var()
Extract context from env variable, e.g. dag_id, task_id and execution_date, so that they can be used inside
BashOperator and PythonOperator. :return: The context of interest.

class airflow.hooks.http_hook.HttpHook(method=’POST’, http_conn_id=’http_default’)
Bases: airflow.hooks.base_hook.BaseHook

Interact with HTTP servers. :param http_conn_id: connection that has the base API url i.e https://www.google.
com/

and optional authentication credentials. Default headers can also be specified in the Extra field in
json format.

Parameters method (str) – the API method to be called

check_response(response)
Checks the status code and raise an AirflowException exception on non 2XX or 3XX status codes :param
response: A requests response object :type response: requests.response

get_conn(headers=None)
Returns http session for use with requests :param headers: additional headers to be passed through as a
dictionary :type headers: dict

run(endpoint, data=None, headers=None, extra_options=None)
Performs the request :param endpoint: the endpoint to be called i.e. resource/v1/query? :type endpoint:
str :param data: payload to be uploaded or request parameters :type data: dict :param headers: additional
headers to be passed through as a dictionary :type headers: dict :param extra_options: additional options
to be used when executing the request

i.e. {‘check_response’: False} to avoid checking raising exceptions on non 2XX or 3XX status
codes

run_and_check(session, prepped_request, extra_options)
Grabs extra options like timeout and actually runs the request, checking for the result :param session:
the session to be used to execute the request :type session: requests.Session :param prepped_request: the
prepared request generated in run() :type prepped_request: session.prepare_request :param extra_options:
additional options to be used when executing the request

i.e. {‘check_response’: False} to avoid checking raising exceptions on non 2XX or 3XX status
codes

run_with_advanced_retry(_retry_args, *args, **kwargs)
Runs Hook.run() with a Tenacity decorator attached to it. This is useful for connectors which might be
disturbed by intermittent issues and should not instantly fail. :param _retry_args: Arguments which define
the retry behaviour.

See Tenacity documentation at https://github.com/jd/tenacity

3.20. API Reference 341

https://www.google.com/
https://www.google.com/
https://github.com/jd/tenacity

Airflow Documentation, Release 2.0.0.dev0+

Example: :: hook = HttpHook(http_conn_id=’my_conn’,method=’GET’) retry_args = dict(

wait=tenacity.wait_exponential(), stop=tenacity.stop_after_attempt(10),
retry=requests.exceptions.ConnectionError

) hook.run_with_advanced_retry(

endpoint=’v1/test’, _retry_args=retry_args

)

class airflow.hooks.druid_hook.DruidDbApiHook(*args, **kwargs)
Bases: airflow.hooks.dbapi_hook.DbApiHook

Interact with Druid broker

This hook is purely for users to query druid broker. For ingestion, please use druidHook.

get_conn()
Establish a connection to druid broker.

get_pandas_df(sql, parameters=None)
Executes the sql and returns a pandas dataframe

Parameters

• sql (str or list) – the sql statement to be executed (str) or a list of sql statements
to execute

• parameters (mapping or iterable) – The parameters to render the SQL query
with.

get_uri()
Get the connection uri for druid broker.

e.g: druid://localhost:8082/druid/v2/sql/

insert_rows(table, rows, target_fields=None, commit_every=1000)
A generic way to insert a set of tuples into a table, a new transaction is created every commit_every rows

Parameters

• table (str) – Name of the target table

• rows (iterable of tuples) – The rows to insert into the table

• target_fields (iterable of strings) – The names of the columns to fill in
the table

• commit_every (int) – The maximum number of rows to insert in one transaction. Set
to 0 to insert all rows in one transaction.

• replace (bool) – Whether to replace instead of insert

set_autocommit(conn, autocommit)
Sets the autocommit flag on the connection

class airflow.hooks.druid_hook.DruidHook(druid_ingest_conn_id=’druid_ingest_default’,
timeout=1, max_ingestion_time=None)

Bases: airflow.hooks.base_hook.BaseHook

Connection to Druid overlord for ingestion

Parameters

342 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• druid_ingest_conn_id (str) – The connection id to the Druid overlord machine
which accepts index jobs

• timeout (int) – The interval between polling the Druid job for the status of the ingestion
job. Must be greater than or equal to 1

• max_ingestion_time (int) – The maximum ingestion time before assuming the job
failed

class airflow.hooks.hdfs_hook.HDFSHook(hdfs_conn_id=’hdfs_default’, proxy_user=None,
autoconfig=False)

Bases: airflow.hooks.base_hook.BaseHook

Interact with HDFS. This class is a wrapper around the snakebite library.

Parameters

• hdfs_conn_id – Connection id to fetch connection info

• proxy_user (str) – effective user for HDFS operations

• autoconfig (bool) – use snakebite’s automatically configured client

get_conn()
Returns a snakebite HDFSClient object.

class airflow.hooks.mssql_hook.MsSqlHook(*args, **kwargs)
Bases: airflow.hooks.dbapi_hook.DbApiHook

Interact with Microsoft SQL Server.

get_autocommit(conn)
Get autocommit setting for the provided connection. Return True if conn.autocommit is set to True. Return
False if conn.autocommit is not set or set to False or conn does not support autocommit.

Parameters conn (connection object.) – Connection to get autocommit setting from.

Returns connection autocommit setting.

:rtype bool.

get_conn()
Returns a mssql connection object

set_autocommit(conn, autocommit)
Sets the autocommit flag on the connection

class airflow.hooks.mysql_hook.MySqlHook(*args, **kwargs)
Bases: airflow.hooks.dbapi_hook.DbApiHook

Interact with MySQL.

You can specify charset in the extra field of your connection as {"charset": "utf8"}. Also you can
choose cursor as {"cursor": "SSCursor"}. Refer to the MySQLdb.cursors for more details.

bulk_dump(table, tmp_file)
Dumps a database table into a tab-delimited file

bulk_load(table, tmp_file)
Loads a tab-delimited file into a database table

get_autocommit(conn)
MySql connection gets autocommit in a different way.

Parameters conn (connection object.) – connection to get autocommit setting from.

Returns connection autocommit setting

3.20. API Reference 343

Airflow Documentation, Release 2.0.0.dev0+

:rtype bool

get_conn()
Returns a mysql connection object

set_autocommit(conn, autocommit)
MySql connection sets autocommit in a different way.

class airflow.hooks.pig_hook.PigCliHook(pig_cli_conn_id=’pig_cli_default’)
Bases: airflow.hooks.base_hook.BaseHook

Simple wrapper around the pig CLI.

Note that you can also set default pig CLI properties using the pig_properties to be used in your connection
as in {"pig_properties": "-Dpig.tmpfilecompression=true"}

run_cli(pig, verbose=True)
Run an pig script using the pig cli

>>> ph = PigCliHook()
>>> result = ph.run_cli("ls /;")
>>> ("hdfs://" in result)
True

class airflow.hooks.postgres_hook.PostgresHook(*args, **kwargs)
Bases: airflow.hooks.dbapi_hook.DbApiHook

Interact with Postgres. You can specify ssl parameters in the extra field of your connection as {"sslmode":
"require", "sslcert": "/path/to/cert.pem", etc}.

Note: For Redshift, use keepalives_idle in the extra connection parameters and set it to less than 300 seconds.

bulk_dump(table, tmp_file)
Dumps a database table into a tab-delimited file

bulk_load(table, tmp_file)
Loads a tab-delimited file into a database table

copy_expert(sql, filename, open=<built-in function open>)
Executes SQL using psycopg2 copy_expert method. Necessary to execute COPY command without access
to a superuser.

Note: if this method is called with a “COPY FROM” statement and the specified input file does not exist,
it creates an empty file and no data is loaded, but the operation succeeds. So if users want to be aware
when the input file does not exist, they have to check its existence by themselves.

get_conn()
Returns a connection object

class airflow.hooks.presto_hook.PrestoHook(*args, **kwargs)
Bases: airflow.hooks.dbapi_hook.DbApiHook

Interact with Presto through PyHive!

>>> ph = PrestoHook()
>>> sql = "SELECT count(1) AS num FROM airflow.static_babynames"
>>> ph.get_records(sql)
[[340698]]

get_conn()
Returns a connection object

344 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

get_first(hql, parameters=None)
Returns only the first row, regardless of how many rows the query returns.

get_pandas_df(hql, parameters=None)
Get a pandas dataframe from a sql query.

get_records(hql, parameters=None)
Get a set of records from Presto

insert_rows(table, rows, target_fields=None)
A generic way to insert a set of tuples into a table.

Parameters

• table (str) – Name of the target table

• rows (iterable of tuples) – The rows to insert into the table

• target_fields (iterable of strings) – The names of the columns to fill in
the table

run(hql, parameters=None)
Execute the statement against Presto. Can be used to create views.

class airflow.hooks.S3_hook.S3Hook(aws_conn_id=’aws_default’, verify=None)
Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS S3, using the boto3 library.

check_for_bucket(bucket_name)
Check if bucket_name exists.

Parameters bucket_name (str) – the name of the bucket

check_for_key(key, bucket_name=None)
Checks if a key exists in a bucket

Parameters

• key (str) – S3 key that will point to the file

• bucket_name (str) – Name of the bucket in which the file is stored

check_for_prefix(bucket_name, prefix, delimiter)
Checks that a prefix exists in a bucket

Parameters

• bucket_name (str) – the name of the bucket

• prefix (str) – a key prefix

• delimiter (str) – the delimiter marks key hierarchy.

check_for_wildcard_key(wildcard_key, bucket_name=None, delimiter=”)
Checks that a key matching a wildcard expression exists in a bucket

Parameters

• wildcard_key (str) – the path to the key

• bucket_name (str) – the name of the bucket

• delimiter (str) – the delimiter marks key hierarchy

3.20. API Reference 345

Airflow Documentation, Release 2.0.0.dev0+

copy_object(source_bucket_key, dest_bucket_key, source_bucket_name=None,
dest_bucket_name=None, source_version_id=None)

Creates a copy of an object that is already stored in S3.

Note: the S3 connection used here needs to have access to both source and destination bucket/key.

Parameters

• source_bucket_key (str) – The key of the source object.

It can be either full s3:// style url or relative path from root level.

When it’s specified as a full s3:// url, please omit source_bucket_name.

• dest_bucket_key (str) – The key of the object to copy to.

The convention to specify dest_bucket_key is the same as source_bucket_key.

• source_bucket_name (str) – Name of the S3 bucket where the source object is in.

It should be omitted when source_bucket_key is provided as a full s3:// url.

• dest_bucket_name (str) – Name of the S3 bucket to where the object is copied.

It should be omitted when dest_bucket_key is provided as a full s3:// url.

• source_version_id (str) – Version ID of the source object (OPTIONAL)

create_bucket(bucket_name, region_name=None)
Creates an Amazon S3 bucket.

Parameters

• bucket_name (str) – The name of the bucket

• region_name (str) – The name of the aws region in which to create the bucket.

delete_objects(bucket, keys)

Parameters

• bucket (str) – Name of the bucket in which you are going to delete object(s)

• keys (str or list) – The key(s) to delete from S3 bucket.

When keys is a string, it’s supposed to be the key name of the single object to delete.

When keys is a list, it’s supposed to be the list of the keys to delete.

get_bucket(bucket_name)
Returns a boto3.S3.Bucket object

Parameters bucket_name (str) – the name of the bucket

get_key(key, bucket_name=None)
Returns a boto3.s3.Object

Parameters

• key (str) – the path to the key

• bucket_name (str) – the name of the bucket

get_wildcard_key(wildcard_key, bucket_name=None, delimiter=”)
Returns a boto3.s3.Object object matching the wildcard expression

Parameters

• wildcard_key (str) – the path to the key

346 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• bucket_name (str) – the name of the bucket

• delimiter (str) – the delimiter marks key hierarchy

list_keys(bucket_name, prefix=”, delimiter=”, page_size=None, max_items=None)
Lists keys in a bucket under prefix and not containing delimiter

Parameters

• bucket_name (str) – the name of the bucket

• prefix (str) – a key prefix

• delimiter (str) – the delimiter marks key hierarchy.

• page_size (int) – pagination size

• max_items (int) – maximum items to return

list_prefixes(bucket_name, prefix=”, delimiter=”, page_size=None, max_items=None)
Lists prefixes in a bucket under prefix

Parameters

• bucket_name (str) – the name of the bucket

• prefix (str) – a key prefix

• delimiter (str) – the delimiter marks key hierarchy.

• page_size (int) – pagination size

• max_items (int) – maximum items to return

load_bytes(bytes_data, key, bucket_name=None, replace=False, encrypt=False)
Loads bytes to S3

This is provided as a convenience to drop a string in S3. It uses the boto infrastructure to ship a file to s3.

Parameters

• bytes_data (bytes) – bytes to set as content for the key.

• key (str) – S3 key that will point to the file

• bucket_name (str) – Name of the bucket in which to store the file

• replace (bool) – A flag to decide whether or not to overwrite the key if it already exists

• encrypt (bool) – If True, the file will be encrypted on the server-side by S3 and will
be stored in an encrypted form while at rest in S3.

load_file(filename, key, bucket_name=None, replace=False, encrypt=False)
Loads a local file to S3

Parameters

• filename (str) – name of the file to load.

• key (str) – S3 key that will point to the file

• bucket_name (str) – Name of the bucket in which to store the file

• replace (bool) – A flag to decide whether or not to overwrite the key if it already
exists. If replace is False and the key exists, an error will be raised.

• encrypt (bool) – If True, the file will be encrypted on the server-side by S3 and will
be stored in an encrypted form while at rest in S3.

3.20. API Reference 347

Airflow Documentation, Release 2.0.0.dev0+

load_file_obj(file_obj, key, bucket_name=None, replace=False, encrypt=False)
Loads a file object to S3

Parameters

• file_obj (file-like object) – The file-like object to set as the content for the
S3 key.

• key (str) – S3 key that will point to the file

• bucket_name (str) – Name of the bucket in which to store the file

• replace (bool) – A flag that indicates whether to overwrite the key if it already exists.

• encrypt (bool) – If True, S3 encrypts the file on the server, and the file is stored in
encrypted form at rest in S3.

load_string(string_data, key, bucket_name=None, replace=False, encrypt=False, encoding=’utf-
8’)

Loads a string to S3

This is provided as a convenience to drop a string in S3. It uses the boto infrastructure to ship a file to s3.

Parameters

• string_data (str) – str to set as content for the key.

• key (str) – S3 key that will point to the file

• bucket_name (str) – Name of the bucket in which to store the file

• replace (bool) – A flag to decide whether or not to overwrite the key if it already exists

• encrypt (bool) – If True, the file will be encrypted on the server-side by S3 and will
be stored in an encrypted form while at rest in S3.

read_key(key, bucket_name=None)
Reads a key from S3

Parameters

• key (str) – S3 key that will point to the file

• bucket_name (str) – Name of the bucket in which the file is stored

select_key(key, bucket_name=None, expression=’SELECT * FROM S3Object’, expres-
sion_type=’SQL’, input_serialization=None, output_serialization=None)

Reads a key with S3 Select.

Parameters

• key (str) – S3 key that will point to the file

• bucket_name (str) – Name of the bucket in which the file is stored

• expression (str) – S3 Select expression

• expression_type (str) – S3 Select expression type

• input_serialization (dict) – S3 Select input data serialization format

• output_serialization (dict) – S3 Select output data serialization format

Returns retrieved subset of original data by S3 Select

Return type str

348 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

See also:

For more details about S3 Select parameters: http://boto3.readthedocs.io/en/latest/reference/services/s3.
html#S3.Client.select_object_content

class airflow.hooks.slack_hook.SlackHook(token=None, slack_conn_id=None)
Bases: airflow.hooks.base_hook.BaseHook

Interact with Slack, using slackclient library.

class airflow.hooks.sqlite_hook.SqliteHook(*args, **kwargs)
Bases: airflow.hooks.dbapi_hook.DbApiHook

Interact with SQLite.

get_conn()
Returns a sqlite connection object

3.20.4.1 Community contributed hooks

class airflow.contrib.hooks.aws_athena_hook.AWSAthenaHook(aws_conn_id=’aws_default’,
sleep_time=30, *args,
**kwargs)

Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS Athena to run, poll queries and return query results

Parameters

• aws_conn_id (str) – aws connection to use.

• sleep_time (int) – Time to wait between two consecutive call to check query status on
athena

check_query_status(query_execution_id)
Fetch the status of submitted athena query. Returns None or one of valid query states.

Parameters query_execution_id (str) – Id of submitted athena query

Returns str

get_conn()
check if aws conn exists already or create one and return it

Returns boto3 session

get_query_results(query_execution_id)
Fetch submitted athena query results. returns none if query is in intermediate state or failed/cancelled state
else dict of query output

Parameters query_execution_id (str) – Id of submitted athena query

Returns dict

poll_query_status(query_execution_id, max_tries=None)
Poll the status of submitted athena query until query state reaches final state. Returns one of the final states

Parameters

• query_execution_id (str) – Id of submitted athena query

• max_tries (int) – Number of times to poll for query state before function exits

Returns str

3.20. API Reference 349

http://boto3.readthedocs.io/en/latest/reference/services/s3.html#S3.Client.select_object_content
http://boto3.readthedocs.io/en/latest/reference/services/s3.html#S3.Client.select_object_content

Airflow Documentation, Release 2.0.0.dev0+

run_query(query, query_context, result_configuration, client_request_token=None)
Run Presto query on athena with provided config and return submitted query_execution_id

Parameters

• query (str) – Presto query to run

• query_context (dict) – Context in which query need to be run

• result_configuration (dict) – Dict with path to store results in and config re-
lated to encryption

• client_request_token (str) – Unique token created by user to avoid multiple
executions of same query

Returns str

stop_query(query_execution_id)
Cancel the submitted athena query

Parameters query_execution_id (str) – Id of submitted athena query

Returns dict

class airflow.contrib.hooks.aws_dynamodb_hook.AwsDynamoDBHook(table_keys=None,
ta-
ble_name=None,
re-
gion_name=None,
*args, **kwargs)

Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS DynamoDB.

Parameters

• table_keys (list) – partition key and sort key

• table_name (str) – target DynamoDB table

• region_name (str) – aws region name (example: us-east-1)

write_batch_data(items)
Write batch items to dynamodb table with provisioned throughout capacity.

class airflow.contrib.hooks.aws_firehose_hook.AwsFirehoseHook(delivery_stream,
re-
gion_name=None,
*args, **kwargs)

Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS Kinesis Firehose. :param delivery_stream: Name of the delivery stream :type deliv-
ery_stream: str :param region_name: AWS region name (example: us-east-1) :type region_name: str

get_conn()
Returns AwsHook connection object.

put_records(records)
Write batch records to Kinesis Firehose

class airflow.contrib.hooks.aws_glue_catalog_hook.AwsGlueCatalogHook(aws_conn_id=’aws_default’,
re-
gion_name=None,
*args,
**kwargs)

350 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS Glue Catalog

Parameters

• aws_conn_id (str) – ID of the Airflow connection where credentials and extra config-
uration are stored

• region_name (str) – aws region name (example: us-east-1)

check_for_partition(database_name, table_name, expression)
Checks whether a partition exists

Parameters

• database_name (str) – Name of hive database (schema) @table belongs to

• table_name (str) – Name of hive table @partition belongs to

Expression Expression that matches the partitions to check for (eg a = ‘b’ AND c = ‘d’)

Return type bool

>>> hook = AwsGlueCatalogHook()
>>> t = 'static_babynames_partitioned'
>>> hook.check_for_partition('airflow', t, "ds='2015-01-01'")
True

get_conn()
Returns glue connection object.

get_partitions(database_name, table_name, expression=”, page_size=None, max_items=None)
Retrieves the partition values for a table.

Parameters

• database_name (str) – The name of the catalog database where the partitions reside.

• table_name (str) – The name of the partitions’ table.

• expression (str) – An expression filtering the partitions to be re-
turned. Please see official AWS documentation for further information.
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#
aws-glue-api-catalog-partitions-GetPartitions

• page_size (int) – pagination size

• max_items (int) – maximum items to return

Returns set of partition values where each value is a tuple since a partition may be composed of
multiple columns. For example:

{(‘2018-01-01’,‘1’), (‘2018-01-01’,‘2’)}

class airflow.contrib.hooks.aws_hook.AwsHook(aws_conn_id=’aws_default’, ver-
ify=None)

Bases: airflow.hooks.base_hook.BaseHook

Interact with AWS. This class is a thin wrapper around the boto3 python library.

expand_role(role)
If the IAM role is a role name, get the Amazon Resource Name (ARN) for the role. If IAM role is already
an IAM role ARN, no change is made.

Parameters role – IAM role name or ARN

3.20. API Reference 351

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-api-catalog-partitions-GetPartitions
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-api-catalog-partitions-GetPartitions

Airflow Documentation, Release 2.0.0.dev0+

Returns IAM role ARN

get_credentials(region_name=None)
Get the underlying botocore.Credentials object.

This contains the following authentication attributes: access_key, secret_key and token.

get_session(region_name=None)
Get the underlying boto3.session.

class airflow.contrib.hooks.aws_lambda_hook.AwsLambdaHook(function_name, re-
gion_name=None,
log_type=’None’, qual-
ifier=’$LATEST’,
invoca-
tion_type=’RequestResponse’,
*args, **kwargs)

Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS Lambda

Parameters

• function_name (str) – AWS Lambda Function Name

• region_name (str) – AWS Region Name (example: us-west-2)

• log_type (str) – Tail Invocation Request

• qualifier (str) – AWS Lambda Function Version or Alias Name

• invocation_type (str) – AWS Lambda Invocation Type (RequestResponse, Event
etc)

invoke_lambda(payload)
Invoke Lambda Function

class airflow.contrib.hooks.aws_sns_hook.AwsSnsHook(*args, **kwargs)
Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with Amazon Simple Notification Service.

get_conn()
Get an SNS connection

publish_to_target(target_arn, message)
Publish a message to a topic or an endpoint.

Parameters

• target_arn (str) – either a TopicArn or an EndpointArn

• message – the default message you want to send

• message – str

class airflow.contrib.hooks.bigquery_hook.BigQueryHook(bigquery_conn_id=’bigquery_default’,
delegate_to=None,
use_legacy_sql=True,
location=None)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook, airflow.
hooks.dbapi_hook.DbApiHook, airflow.utils.log.logging_mixin.LoggingMixin

Interact with BigQuery. This hook uses the Google Cloud Platform connection.

352 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

get_conn()
Returns a BigQuery PEP 249 connection object.

get_pandas_df(sql, parameters=None, dialect=None)
Returns a Pandas DataFrame for the results produced by a BigQuery query. The DbApiHook method must
be overridden because Pandas doesn’t support PEP 249 connections, except for SQLite. See:

https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447 https://github.com/pydata/pandas/
issues/6900

Parameters

• sql (str) – The BigQuery SQL to execute.

• parameters (mapping or iterable) – The parameters to render the SQL query
with (not used, leave to override superclass method)

• dialect (str in {'legacy', 'standard'}) – Dialect of BigQuery SQL –
legacy SQL or standard SQL defaults to use self.use_legacy_sql if not specified

get_service()
Returns a BigQuery service object.

insert_rows(table, rows, target_fields=None, commit_every=1000)
Insertion is currently unsupported. Theoretically, you could use BigQuery’s streaming API to insert rows
into a table, but this hasn’t been implemented.

table_exists(project_id, dataset_id, table_id)
Checks for the existence of a table in Google BigQuery.

Parameters

• project_id (str) – The Google cloud project in which to look for the table. The
connection supplied to the hook must provide access to the specified project.

• dataset_id (str) – The name of the dataset in which to look for the table.

• table_id (str) – The name of the table to check the existence of.

class airflow.contrib.hooks.cassandra_hook.CassandraHook(cassandra_conn_id=’cassandra_default’)
Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.
LoggingMixin

Hook used to interact with Cassandra

Contact points can be specified as a comma-separated string in the ‘hosts’ field of the connection.

Port can be specified in the port field of the connection.

If SSL is enabled in Cassandra, pass in a dict in the extra field as kwargs for ssl.wrap_socket(). For
example:

{

‘ssl_options’ [{] ‘ca_certs’ : PATH_TO_CA_CERTS

}

}

Default load balancing policy is RoundRobinPolicy. To specify a different LB policy:

• DCAwareRoundRobinPolicy

{

3.20. API Reference 353

https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447
https://github.com/pydata/pandas/issues/6900
https://github.com/pydata/pandas/issues/6900

Airflow Documentation, Release 2.0.0.dev0+

‘load_balancing_policy’: ‘DCAwareRoundRobinPolicy’, ‘load_balancing_policy_args’:
{

‘local_dc’: LOCAL_DC_NAME, // optional ‘used_hosts_per_remote_dc’:
SOME_INT_VALUE, // optional

}

}

• WhiteListRoundRobinPolicy

{ ‘load_balancing_policy’: ‘WhiteListRoundRobinPolicy’, ‘load_balancing_policy_args’: {

‘hosts’: [‘HOST1’, ‘HOST2’, ‘HOST3’]

}

}

• TokenAwarePolicy

{ ‘load_balancing_policy’: ‘TokenAwarePolicy’, ‘load_balancing_policy_args’: {

‘child_load_balancing_policy’: CHILD_POLICY_NAME, // optional
‘child_load_balancing_policy_args’: { . . . } // optional

}

}

For details of the Cluster config, see cassandra.cluster.

get_conn()
Returns a cassandra Session object

record_exists(table, keys)
Checks if a record exists in Cassandra

Parameters

• table (str) – Target Cassandra table. Use dot notation to target a specific keyspace.

• keys (dict) – The keys and their values to check the existence.

shutdown_cluster()
Closes all sessions and connections associated with this Cluster.

table_exists(table)
Checks if a table exists in Cassandra

Parameters table (str) – Target Cassandra table. Use dot notation to target a specific
keyspace.

class airflow.contrib.hooks.cloudant_hook.CloudantHook(cloudant_conn_id=’cloudant_default’)
Bases: airflow.hooks.base_hook.BaseHook

Interact with Cloudant.

This class is a thin wrapper around the cloudant python library. See the documentation here.

db()
Returns the Database object for this hook.

See the documentation for cloudant-python here https://github.com/cloudant-labs/cloudant-python.

354 Chapter 3. Content

https://github.com/cloudant-labs/cloudant-python
https://github.com/cloudant-labs/cloudant-python

Airflow Documentation, Release 2.0.0.dev0+

class airflow.contrib.hooks.databricks_hook.DatabricksHook(databricks_conn_id=’databricks_default’,
time-
out_seconds=180,
retry_limit=3,
retry_delay=1.0)

Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.
LoggingMixin

Interact with Databricks.

run_now(json)
Utility function to call the api/2.0/jobs/run-now endpoint.

Parameters json (dict) – The data used in the body of the request to the run-now end-
point.

Returns the run_id as a string

Return type str

submit_run(json)
Utility function to call the api/2.0/jobs/runs/submit endpoint.

Parameters json (dict) – The data used in the body of the request to the submit end-
point.

Returns the run_id as a string

Return type str

class airflow.contrib.hooks.datastore_hook.DatastoreHook(datastore_conn_id=’google_cloud_datastore_default’,
delegate_to=None)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Interact with Google Cloud Datastore. This hook uses the Google Cloud Platform connection.

This object is not threads safe. If you want to make multiple requests simultaneously, you will need to create a
hook per thread.

allocate_ids(partialKeys)
Allocate IDs for incomplete keys. see https://cloud.google.com/datastore/docs/reference/rest/v1/projects/
allocateIds

Parameters partialKeys – a list of partial keys

Returns a list of full keys.

begin_transaction()
Get a new transaction handle

See also:

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/beginTransaction

Returns a transaction handle

commit(body)
Commit a transaction, optionally creating, deleting or modifying some entities.

See also:

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/commit

Parameters body – the body of the commit request

3.20. API Reference 355

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/allocateIds
https://cloud.google.com/datastore/docs/reference/rest/v1/projects/allocateIds
https://cloud.google.com/datastore/docs/reference/rest/v1/projects/beginTransaction
https://cloud.google.com/datastore/docs/reference/rest/v1/projects/commit

Airflow Documentation, Release 2.0.0.dev0+

Returns the response body of the commit request

delete_operation(name)
Deletes the long-running operation

Parameters name – the name of the operation resource

export_to_storage_bucket(bucket, namespace=None, entity_filter=None, labels=None)
Export entities from Cloud Datastore to Cloud Storage for backup

get_conn(version=’v1’)
Returns a Google Cloud Datastore service object.

get_operation(name)
Gets the latest state of a long-running operation

Parameters name – the name of the operation resource

import_from_storage_bucket(bucket, file, namespace=None, entity_filter=None, la-
bels=None)

Import a backup from Cloud Storage to Cloud Datastore

lookup(keys, read_consistency=None, transaction=None)
Lookup some entities by key

See also:

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/lookup

Parameters

• keys – the keys to lookup

• read_consistency – the read consistency to use. default, strong or eventual.
Cannot be used with a transaction.

• transaction – the transaction to use, if any.

Returns the response body of the lookup request.

poll_operation_until_done(name, polling_interval_in_seconds)
Poll backup operation state until it’s completed

rollback(transaction)
Roll back a transaction

See also:

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/rollback

Parameters transaction – the transaction to roll back

run_query(body)
Run a query for entities.

See also:

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/runQuery

Parameters body – the body of the query request

Returns the batch of query results.

356 Chapter 3. Content

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/lookup
https://cloud.google.com/datastore/docs/reference/rest/v1/projects/rollback
https://cloud.google.com/datastore/docs/reference/rest/v1/projects/runQuery

Airflow Documentation, Release 2.0.0.dev0+

class airflow.contrib.hooks.discord_webhook_hook.DiscordWebhookHook(http_conn_id=None,
web-
hook_endpoint=None,
mes-
sage=”,
user-
name=None,
avatar_url=None,
tts=False,
proxy=None,
*args,
**kwargs)

Bases: airflow.hooks.http_hook.HttpHook

This hook allows you to post messages to Discord using incoming webhooks. Takes a Discord connection ID
with a default relative webhook endpoint. The default endpoint can be overridden using the webhook_endpoint
parameter (https://discordapp.com/developers/docs/resources/webhook).

Each Discord webhook can be pre-configured to use a specific username and avatar_url. You can override these
defaults in this hook.

Parameters

• http_conn_id (str) – Http connection ID with host as “https://discord.com/api/”
and default webhook endpoint in the extra field in the form of {“webhook_endpoint”:
“webhooks/{webhook.id}/{webhook.token}”}

• webhook_endpoint (str) – Discord webhook endpoint in the form of “web-
hooks/{webhook.id}/{webhook.token}”

• message (str) – The message you want to send to your Discord channel (max 2000
characters)

• username (str) – Override the default username of the webhook

• avatar_url (str) – Override the default avatar of the webhook

• tts (bool) – Is a text-to-speech message

• proxy (str) – Proxy to use to make the Discord webhook call

execute()
Execute the Discord webhook call

class airflow.contrib.hooks.emr_hook.EmrHook(emr_conn_id=None, region_name=None,
*args, **kwargs)

Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS EMR. emr_conn_id is only necessary for using the create_job_flow method.

create_job_flow(job_flow_overrides)
Creates a job flow using the config from the EMR connection. Keys of the json extra hash may have
the arguments of the boto3 run_job_flow method. Overrides for this config may be passed as the
job_flow_overrides.

class airflow.contrib.hooks.fs_hook.FSHook(conn_id=’fs_default’)
Bases: airflow.hooks.base_hook.BaseHook

Allows for interaction with an file server.

Connection should have a name and a path specified under extra:

3.20. API Reference 357

https://discordapp.com/developers/docs/resources/webhook
https://discord.com/api/

Airflow Documentation, Release 2.0.0.dev0+

example: Conn Id: fs_test Conn Type: File (path) Host, Shchema, Login, Password, Port: empty Extra: {“path”:
“/tmp”}

class airflow.contrib.hooks.ftp_hook.FTPHook(ftp_conn_id=’ftp_default’)
Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.
LoggingMixin

Interact with FTP.

Errors that may occur throughout but should be handled downstream.

close_conn()
Closes the connection. An error will occur if the connection wasn’t ever opened.

create_directory(path)
Creates a directory on the remote system.

Parameters path (str) – full path to the remote directory to create

delete_directory(path)
Deletes a directory on the remote system.

Parameters path (str) – full path to the remote directory to delete

delete_file(path)
Removes a file on the FTP Server.

Parameters path (str) – full path to the remote file

describe_directory(path)
Returns a dictionary of {filename: {attributes}} for all files on the remote system (where the MLSD
command is supported).

Parameters path (str) – full path to the remote directory

get_conn()
Returns a FTP connection object

get_mod_time(path)
Returns a datetime object representing the last time the file was modified

Parameters path (string) – remote file path

get_size(path)
Returns the size of a file (in bytes)

Parameters path (string) – remote file path

list_directory(path, nlst=False)
Returns a list of files on the remote system.

Parameters path (str) – full path to the remote directory to list

rename(from_name, to_name)
Rename a file.

Parameters

• from_name – rename file from name

• to_name – rename file to name

retrieve_file(remote_full_path, local_full_path_or_buffer, callback=None)
Transfers the remote file to a local location.

358 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

If local_full_path_or_buffer is a string path, the file will be put at that location; if it is a file-like buffer,
the file will be written to the buffer but not closed.

Parameters

• remote_full_path (str) – full path to the remote file

• local_full_path_or_buffer (str or file-like buffer) – full path
to the local file or a file-like buffer

• callback (callable) – callback which is called each time a block of data is read.
if you do not use a callback, these blocks will be written to the file or buffer passed
in. if you do pass in a callback, note that writing to a file or buffer will need to be
handled inside the callback. [default: output_handle.write()]

Example:: hook = FTPHook(ftp_conn_id=’my_conn’)

remote_path = ‘/path/to/remote/file’ local_path = ‘/path/to/local/file’

with a custom callback (in this case displaying progress on each read) def
print_progress(percent_progress):

self.log.info(‘Percent Downloaded: %s%%’ % percent_progress)

total_downloaded = 0 total_file_size = hook.get_size(remote_path) output_handle =
open(local_path, ‘wb’) def write_to_file_with_progress(data):

total_downloaded += len(data) output_handle.write(data) percent_progress = (to-
tal_downloaded / total_file_size) * 100 print_progress(percent_progress)

hook.retrieve_file(remote_path, None, callback=write_to_file_with_progress)

without a custom callback data is written to the local_path hook.retrieve_file(remote_path, lo-
cal_path)

store_file(remote_full_path, local_full_path_or_buffer)
Transfers a local file to the remote location.

If local_full_path_or_buffer is a string path, the file will be read from that location; if it is a file-like buffer,
the file will be read from the buffer but not closed.

Parameters

• remote_full_path (str) – full path to the remote file

• local_full_path_or_buffer (str or file-like buffer) – full path
to the local file or a file-like buffer

class airflow.contrib.hooks.ftp_hook.FTPSHook(ftp_conn_id=’ftp_default’)
Bases: airflow.contrib.hooks.ftp_hook.FTPHook

get_conn()
Returns a FTPS connection object.

class airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook(gcp_conn_id=’google_cloud_default’,
dele-
gate_to=None)

Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.
LoggingMixin

A base hook for Google cloud-related hooks. Google cloud has a shared REST API client that is built in the
same way no matter which service you use. This class helps construct and authorize the credentials needed to
then call googleapiclient.discovery.build() to actually discover and build a client for a Google cloud service.

3.20. API Reference 359

Airflow Documentation, Release 2.0.0.dev0+

The class also contains some miscellaneous helper functions.

All hook derived from this base hook use the ‘Google Cloud Platform’ connection type. Three ways of authen-
tication are supported:

Default credentials: Only the ‘Project Id’ is required. You’ll need to have set up default credentials, such
as by the GOOGLE_APPLICATION_DEFAULT environment variable or from the metadata server on Google
Compute Engine.

JSON key file: Specify ‘Project Id’, ‘Keyfile Path’ and ‘Scope’.

Legacy P12 key files are not supported.

JSON data provided in the UI: Specify ‘Keyfile JSON’.

static fallback_to_default_project_id(func)
Decorator that provides fallback for Google Cloud Platform project id. If the project is None it will be
replaced with the project_id from the service account the Hook is authenticated with. Project id can be
specified either via project_id kwarg or via first parameter in positional args.

Parameters func – function to wrap

Returns result of the function call

class airflow.contrib.hooks.gcp_dataflow_hook.DataFlowHook(gcp_conn_id=’google_cloud_default’,
delegate_to=None,
poll_sleep=10)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

get_conn()
Returns a Google Cloud Dataflow service object.

class airflow.contrib.hooks.gcp_dataproc_hook.DataProcHook(gcp_conn_id=’google_cloud_default’,
delegate_to=None,
api_version=’v1beta2’)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Hook for Google Cloud Dataproc APIs.

await(operation)
Awaits for Google Cloud Dataproc Operation to complete.

get_conn()
Returns a Google Cloud Dataproc service object.

wait(operation)
Awaits for Google Cloud Dataproc Operation to complete.

class airflow.contrib.hooks.gcp_mlengine_hook.MLEngineHook(gcp_conn_id=’google_cloud_default’,
delegate_to=None)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

create_job(project_id, job, use_existing_job_fn=None)
Launches a MLEngine job and wait for it to reach a terminal state.

Parameters

• project_id (str) – The Google Cloud project id within which MLEngine job
will be launched.

• job (dict) – MLEngine Job object that should be provided to the MLEngine API,
such as:

360 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

{
'jobId': 'my_job_id',
'trainingInput': {
'scaleTier': 'STANDARD_1',
...

}
}

• use_existing_job_fn (function) – In case that a MLEngine job with the
same job_id already exist, this method (if provided) will decide whether we should
use this existing job, continue waiting for it to finish and returning the job object. It
should accepts a MLEngine job object, and returns a boolean value indicating whether
it is OK to reuse the existing job. If ‘use_existing_job_fn’ is not provided, we by
default reuse the existing MLEngine job.

Returns The MLEngine job object if the job successfully reach a terminal state (which might
be FAILED or CANCELLED state).

Return type dict

create_model(project_id, model)
Create a Model. Blocks until finished.

create_version(project_id, model_name, version_spec)
Creates the Version on Google Cloud ML Engine.

Returns the operation if the version was created successfully and raises an error otherwise.

delete_version(project_id, model_name, version_name)
Deletes the given version of a model. Blocks until finished.

get_conn()
Returns a Google MLEngine service object.

get_model(project_id, model_name)
Gets a Model. Blocks until finished.

list_versions(project_id, model_name)
Lists all available versions of a model. Blocks until finished.

set_default_version(project_id, model_name, version_name)
Sets a version to be the default. Blocks until finished.

class airflow.contrib.hooks.gcp_pubsub_hook.PubSubHook(gcp_conn_id=’google_cloud_default’,
delegate_to=None)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Hook for accessing Google Pub/Sub.

The GCP project against which actions are applied is determined by the project embedded in the Connection
referenced by gcp_conn_id.

acknowledge(project, subscription, ack_ids)
Pulls up to max_messages messages from Pub/Sub subscription.

Parameters

• project (str) – the GCP project name or ID in which to create the topic

• subscription (str) – the Pub/Sub subscription name to delete; do not include
the ‘projects/{project}/topics/’ prefix.

• ack_ids (list) – List of ReceivedMessage ackIds from a previous pull response

3.20. API Reference 361

Airflow Documentation, Release 2.0.0.dev0+

create_subscription(topic_project, topic, subscription=None, subscription_project=None,
ack_deadline_secs=10, fail_if_exists=False)

Creates a Pub/Sub subscription, if it does not already exist.

Parameters

• topic_project (str) – the GCP project ID of the topic that the subscription will
be bound to.

• topic (str) – the Pub/Sub topic name that the subscription will be bound to create;
do not include the projects/{project}/subscriptions/ prefix.

• subscription (str) – the Pub/Sub subscription name. If empty, a random name
will be generated using the uuid module

• subscription_project (str) – the GCP project ID where the subscription
will be created. If unspecified, topic_project will be used.

• ack_deadline_secs (int) – Number of seconds that a subscriber has to ac-
knowledge each message pulled from the subscription

• fail_if_exists (bool) – if set, raise an exception if the topic already exists

Returns subscription name which will be the system-generated value if the subscription
parameter is not supplied

Return type str

create_topic(project, topic, fail_if_exists=False)
Creates a Pub/Sub topic, if it does not already exist.

Parameters

• project (str) – the GCP project ID in which to create the topic

• topic (str) – the Pub/Sub topic name to create; do not include the projects/
{project}/topics/ prefix.

• fail_if_exists (bool) – if set, raise an exception if the topic already exists

delete_subscription(project, subscription, fail_if_not_exists=False)
Deletes a Pub/Sub subscription, if it exists.

Parameters

• project (str) – the GCP project ID where the subscription exists

• subscription (str) – the Pub/Sub subscription name to delete; do not include
the projects/{project}/subscriptions/ prefix.

• fail_if_not_exists (bool) – if set, raise an exception if the topic does not
exist

delete_topic(project, topic, fail_if_not_exists=False)
Deletes a Pub/Sub topic if it exists.

Parameters

• project (str) – the GCP project ID in which to delete the topic

• topic (str) – the Pub/Sub topic name to delete; do not include the projects/
{project}/topics/ prefix.

• fail_if_not_exists (bool) – if set, raise an exception if the topic does not
exist

362 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

get_conn()
Returns a Pub/Sub service object.

Return type googleapiclient.discovery.Resource

publish(project, topic, messages)
Publishes messages to a Pub/Sub topic.

Parameters

• project (str) – the GCP project ID in which to publish

• topic (str) – the Pub/Sub topic to which to publish; do not include the
projects/{project}/topics/ prefix.

• messages (list of PubSub messages; see http://cloud.google.com/pubsub/docs/
reference/rest/v1/PubsubMessage) – messages to publish; if the data field in a mes-
sage is set, it should already be base64 encoded.

pull(project, subscription, max_messages, return_immediately=False)
Pulls up to max_messages messages from Pub/Sub subscription.

Parameters

• project (str) – the GCP project ID where the subscription exists

• subscription (str) – the Pub/Sub subscription name to pull from; do not include
the ‘projects/{project}/topics/’ prefix.

• max_messages (int) – The maximum number of messages to return from the
Pub/Sub API.

• return_immediately (bool) – If set, the Pub/Sub API will immediately return
if no messages are available. Otherwise, the request will block for an undisclosed, but
bounded period of time

:return A list of Pub/Sub ReceivedMessage objects each containing an ackId property and
a message property, which includes the base64-encoded message content. See https:
//cloud.google.com/pubsub/docs/reference/rest/v1/ projects.subscriptions/pull#ReceivedMessage

class airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook(google_cloud_storage_conn_id=’google_cloud_default’,
delegate_to=None)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Interact with Google Cloud Storage. This hook uses the Google Cloud Platform connection.

copy(source_bucket, source_object, destination_bucket=None, destination_object=None)
Copies an object from a bucket to another, with renaming if requested.

destination_bucket or destination_object can be omitted, in which case source bucket/object is used, but
not both.

Parameters

• source_bucket (str) – The bucket of the object to copy from.

• source_object (str) – The object to copy.

• destination_bucket (str) – The destination of the object to copied to. Can
be omitted; then the same bucket is used.

• destination_object (str) – The (renamed) path of the object if given. Can
be omitted; then the same name is used.

3.20. API Reference 363

http://cloud.google.com/pubsub/docs/reference/rest/v1/PubsubMessage
http://cloud.google.com/pubsub/docs/reference/rest/v1/PubsubMessage
https://cloud.google.com/pubsub/docs/reference/rest/v1/
https://cloud.google.com/pubsub/docs/reference/rest/v1/

Airflow Documentation, Release 2.0.0.dev0+

create_bucket(bucket_name, storage_class=’MULTI_REGIONAL’, location=’US’,
project_id=None, labels=None)

Creates a new bucket. Google Cloud Storage uses a flat namespace, so you can’t create a bucket with a
name that is already in use.

See also:

For more information, see Bucket Naming Guidelines: https://cloud.google.com/storage/docs/
bucketnaming.html#requirements

Parameters

• bucket_name (str) – The name of the bucket.

• storage_class (str) – This defines how objects in the bucket are stored and
determines the SLA and the cost of storage. Values include

– MULTI_REGIONAL

– REGIONAL

– STANDARD

– NEARLINE

– COLDLINE.

If this value is not specified when the bucket is created, it will default to STANDARD.

• location (str) – The location of the bucket. Object data for objects in the bucket
resides in physical storage within this region. Defaults to US.

See also:

https://developers.google.com/storage/docs/bucket-locations

• project_id (str) – The ID of the GCP Project.

• labels (dict) – User-provided labels, in key/value pairs.

Returns If successful, it returns the id of the bucket.

delete(bucket, object, generation=None)
Delete an object if versioning is not enabled for the bucket, or if generation parameter is used.

Parameters

• bucket (str) – name of the bucket, where the object resides

• object (str) – name of the object to delete

• generation (str) – if present, permanently delete the object of this generation

Returns True if succeeded

download(bucket, object, filename=None)
Get a file from Google Cloud Storage.

Parameters

• bucket (str) – The bucket to fetch from.

• object (str) – The object to fetch.

• filename (str) – If set, a local file path where the file should be written to.

exists(bucket, object)
Checks for the existence of a file in Google Cloud Storage.

364 Chapter 3. Content

https://cloud.google.com/storage/docs/bucketnaming.html#requirements
https://cloud.google.com/storage/docs/bucketnaming.html#requirements
https://developers.google.com/storage/docs/bucket-locations

Airflow Documentation, Release 2.0.0.dev0+

Parameters

• bucket (str) – The Google cloud storage bucket where the object is.

• object (str) – The name of the object to check in the Google cloud storage bucket.

get_conn()
Returns a Google Cloud Storage service object.

get_crc32c(bucket, object)
Gets the CRC32c checksum of an object in Google Cloud Storage.

Parameters

• bucket (str) – The Google cloud storage bucket where the object is.

• object (str) – The name of the object to check in the Google cloud storage bucket.

get_md5hash(bucket, object)
Gets the MD5 hash of an object in Google Cloud Storage.

Parameters

• bucket (str) – The Google cloud storage bucket where the object is.

• object (str) – The name of the object to check in the Google cloud storage bucket.

get_size(bucket, object)
Gets the size of a file in Google Cloud Storage.

Parameters

• bucket (str) – The Google cloud storage bucket where the object is.

• object (str) – The name of the object to check in the Google cloud storage bucket.

insert_bucket_acl(bucket, entity, role, user_project)
Creates a new ACL entry on the specified bucket. See: https://cloud.google.com/storage/docs/json_api/
v1/bucketAccessControls/insert

Parameters

• bucket (str) – Name of a bucket.

• entity (str) – The entity holding the permission, in one of the following forms:
user-userId, user-email, group-groupId, group-email, domain-domain, project-team-
projectId, allUsers, allAuthenticatedUsers. See: https://cloud.google.com/storage/
docs/access-control/lists#scopes

• role (str) – The access permission for the entity. Acceptable values are:
“OWNER”, “READER”, “WRITER”.

• user_project (str) – (Optional) The project to be billed for this request. Re-
quired for Requester Pays buckets.

insert_object_acl(bucket, object_name, entity, role, generation, user_project)
Creates a new ACL entry on the specified object. See: https://cloud.google.com/storage/docs/json_api/
v1/objectAccessControls/insert

Parameters

• bucket (str) – Name of a bucket.

• object_name (str) – Name of the object. For information about how to URL
encode object names to be path safe, see: https://cloud.google.com/storage/docs/json_
api/#encoding

3.20. API Reference 365

https://cloud.google.com/storage/docs/json_api/v1/bucketAccessControls/insert
https://cloud.google.com/storage/docs/json_api/v1/bucketAccessControls/insert
https://cloud.google.com/storage/docs/access-control/lists#scopes
https://cloud.google.com/storage/docs/access-control/lists#scopes
https://cloud.google.com/storage/docs/json_api/v1/objectAccessControls/insert
https://cloud.google.com/storage/docs/json_api/v1/objectAccessControls/insert
https://cloud.google.com/storage/docs/json_api/#encoding
https://cloud.google.com/storage/docs/json_api/#encoding

Airflow Documentation, Release 2.0.0.dev0+

• entity (str) – The entity holding the permission, in one of the following forms:
user-userId, user-email, group-groupId, group-email, domain-domain, project-team-
projectId, allUsers, allAuthenticatedUsers See: https://cloud.google.com/storage/
docs/access-control/lists#scopes

• role (str) – The access permission for the entity. Acceptable values are:
“OWNER”, “READER”.

• generation (str) – (Optional) If present, selects a specific revision of this object
(as opposed to the latest version, the default).

• user_project (str) – (Optional) The project to be billed for this request. Re-
quired for Requester Pays buckets.

is_updated_after(bucket, object, ts)
Checks if an object is updated in Google Cloud Storage.

Parameters

• bucket (str) – The Google cloud storage bucket where the object is.

• object (str) – The name of the object to check in the Google cloud storage bucket.

• ts (datetime) – The timestamp to check against.

list(bucket, versions=None, maxResults=None, prefix=None, delimiter=None)
List all objects from the bucket with the give string prefix in name

Parameters

• bucket (str) – bucket name

• versions (bool) – if true, list all versions of the objects

• maxResults (int) – max count of items to return in a single page of responses

• prefix (str) – prefix string which filters objects whose name begin with this prefix

• delimiter (str) – filters objects based on the delimiter (for e.g ‘.csv’)

Returns a stream of object names matching the filtering criteria

rewrite(source_bucket, source_object, destination_bucket, destination_object=None)
Has the same functionality as copy, except that will work on files over 5 TB, as well as when copying
between locations and/or storage classes.

destination_object can be omitted, in which case source_object is used.

Parameters

• source_bucket (str) – The bucket of the object to copy from.

• source_object (str) – The object to copy.

• destination_bucket (str) – The destination of the object to copied to.

• destination_object (str) – The (renamed) path of the object if given. Can
be omitted; then the same name is used.

upload(bucket, object, filename, mime_type=’application/octet-stream’, gzip=False, multipart=False,
num_retries=0)

Uploads a local file to Google Cloud Storage.

Parameters

• bucket (str) – The bucket to upload to.

• object (str) – The object name to set when uploading the local file.

366 Chapter 3. Content

https://cloud.google.com/storage/docs/access-control/lists#scopes
https://cloud.google.com/storage/docs/access-control/lists#scopes

Airflow Documentation, Release 2.0.0.dev0+

• filename (str) – The local file path to the file to be uploaded.

• mime_type (str) – The MIME type to set when uploading the file.

• gzip (bool) – Option to compress file for upload

• multipart (bool or int) – If True, the upload will be split into multiple HTTP
requests. The default size is 256MiB per request. Pass a number instead of True to
specify the request size, which must be a multiple of 262144 (256KiB).

• num_retries (int) – The number of times to attempt to re-upload the file (or
individual chunks, in the case of multipart uploads). Retries are attempted with expo-
nential backoff.

class airflow.contrib.hooks.gcp_transfer_hook.GCPTransferServiceHook(api_version=’v1’,
gcp_conn_id=’google_cloud_default’,
dele-
gate_to=None)

Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Hook for GCP Storage Transfer Service.

get_conn()
Retrieves connection to Google Storage Transfer service.

Returns Google Storage Transfer service object

Return type dict

class airflow.contrib.hooks.imap_hook.ImapHook(imap_conn_id=’imap_default’)
Bases: airflow.hooks.base_hook.BaseHook

This hook connects to a mail server by using the imap protocol.

Parameters imap_conn_id (str) – The connection id that contains the information used to
authenticate the client. The default value is ‘imap_default’.

download_mail_attachments(name, local_output_directory, mail_folder=’INBOX’,
check_regex=False, latest_only=False)

Downloads mail’s attachments in the mail folder by its name to the local directory.

Parameters

• name (str) – The name of the attachment that will be downloaded.

• local_output_directory (str) – The output directory on the local machine
where the files will be downloaded to.

• mail_folder (str) – The mail folder where to look at. The default value is ‘IN-
BOX’.

• check_regex (bool) – Checks the name for a regular expression. The default
value is False.

• latest_only (bool) – If set to True it will only download the first matched at-
tachment. The default value is False.

has_mail_attachment(name, mail_folder=’INBOX’, check_regex=False)
Checks the mail folder for mails containing attachments with the given name.

Parameters

• name (str) – The name of the attachment that will be searched for.

• mail_folder (str) – The mail folder where to look at. The default value is ‘IN-
BOX’.

3.20. API Reference 367

Airflow Documentation, Release 2.0.0.dev0+

• check_regex (bool) – Checks the name for a regular expression. The default
value is False.

Returns True if there is an attachment with the given name and False if not.

Return type bool

retrieve_mail_attachments(name, mail_folder=’INBOX’, check_regex=False, lat-
est_only=False)

Retrieves mail’s attachments in the mail folder by its name.

Parameters

• name (str) – The name of the attachment that will be downloaded.

• mail_folder (str) – The mail folder where to look at. The default value is ‘IN-
BOX’.

• check_regex (bool) – Checks the name for a regular expression. The default
value is False.

• latest_only (bool) – If set to True it will only retrieve the first matched attach-
ment. The default value is False.

Returns a list of tuple each containing the attachment filename and its payload.

Return type a list of tuple

class airflow.contrib.hooks.mongo_hook.MongoHook(conn_id=’mongo_default’, *args,
**kwargs)

Bases: airflow.hooks.base_hook.BaseHook

PyMongo Wrapper to Interact With Mongo Database Mongo Connection Documentation https://docs.
mongodb.com/manual/reference/connection-string/index.html You can specify connection string options
in extra field of your connection https://docs.mongodb.com/manual/reference/connection-string/index.html#
connection-string-options ex.

{replicaSet: test, ssl: True, connectTimeoutMS: 30000}

aggregate(mongo_collection, aggregate_query, mongo_db=None, **kwargs)
Runs an aggregation pipeline and returns the results https://api.mongodb.com/python/current/api/
pymongo/collection.html#pymongo.collection.Collection.aggregate https://api.mongodb.com/python/
current/examples/aggregation.html

delete_many(mongo_collection, filter_doc, mongo_db=None, **kwargs)
Deletes one or more documents in a mongo collection. https://api.mongodb.com/python/current/api/
pymongo/collection.html#pymongo.collection.Collection.delete_many

Parameters

• mongo_collection (str) – The name of the collection to delete from.

• filter_doc (dict) – A query that matches the documents to delete.

• mongo_db (str) – The name of the database to use. Can be omitted; then the
database from the connection string is used.

delete_one(mongo_collection, filter_doc, mongo_db=None, **kwargs)
Deletes a single document in a mongo collection. https://api.mongodb.com/python/current/api/pymongo/
collection.html#pymongo.collection.Collection.delete_one

Parameters

• mongo_collection (str) – The name of the collection to delete from.

• filter_doc (dict) – A query that matches the document to delete.

368 Chapter 3. Content

https://docs.mongodb.com/manual/reference/connection-string/index.html
https://docs.mongodb.com/manual/reference/connection-string/index.html
https://docs.mongodb.com/manual/reference/connection-string/index.html#connection-string-options
https://docs.mongodb.com/manual/reference/connection-string/index.html#connection-string-options
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.aggregate
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.aggregate
https://api.mongodb.com/python/current/examples/aggregation.html
https://api.mongodb.com/python/current/examples/aggregation.html
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.delete_many
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.delete_many
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.delete_one
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.delete_one

Airflow Documentation, Release 2.0.0.dev0+

• mongo_db (str) – The name of the database to use. Can be omitted; then the
database from the connection string is used.

find(mongo_collection, query, find_one=False, mongo_db=None, **kwargs)
Runs a mongo find query and returns the results https://api.mongodb.com/python/current/api/pymongo/
collection.html#pymongo.collection.Collection.find

get_collection(mongo_collection, mongo_db=None)
Fetches a mongo collection object for querying.

Uses connection schema as DB unless specified.

get_conn()
Fetches PyMongo Client

insert_many(mongo_collection, docs, mongo_db=None, **kwargs)
Inserts many docs into a mongo collection. https://api.mongodb.com/python/current/api/pymongo/
collection.html#pymongo.collection.Collection.insert_many

insert_one(mongo_collection, doc, mongo_db=None, **kwargs)
Inserts a single document into a mongo collection https://api.mongodb.com/python/current/api/pymongo/
collection.html#pymongo.collection.Collection.insert_one

replace_many(mongo_collection, docs, filter_docs=None, mongo_db=None, upsert=False, colla-
tion=None, **kwargs)

Replaces many documents in a mongo collection.

Uses bulk_write with multiple ReplaceOne operations https://api.mongodb.com/python/current/api/
pymongo/collection.html#pymongo.collection.Collection.bulk_write

Note: If no filter_docs``are given, it is assumed that all replacement
documents contain the ``_id field which are then used as filters.

Parameters

• mongo_collection (str) – The name of the collection to update.

• docs (list(dict)) – The new documents.

• filter_docs (list(dict)) – A list of queries that match the documents to
replace. Can be omitted; then the _id fields from docs will be used.

• mongo_db (str) – The name of the database to use. Can be omitted; then the
database from the connection string is used.

• upsert (bool) – If True, perform an insert if no documents match the filters for
the replace operation.

• collation (Collation) – An instance of Collation. This option is only
supported on MongoDB 3.4 and above.

replace_one(mongo_collection, doc, filter_doc=None, mongo_db=None, **kwargs)
Replaces a single document in a mongo collection. https://api.mongodb.com/python/current/api/
pymongo/collection.html#pymongo.collection.Collection.replace_one

Note: If no filter_doc is given, it is assumed that the replacement document contain the _id field
which is then used as filters.

3.20. API Reference 369

https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.find
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.find
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.insert_many
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.insert_many
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.insert_one
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.insert_one
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.bulk_write
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.bulk_write
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.replace_one
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.replace_one

Airflow Documentation, Release 2.0.0.dev0+

Parameters

• mongo_collection (str) – The name of the collection to update.

• doc (dict) – The new document.

• filter_doc (dict) – A query that matches the documents to replace. Can be
omitted; then the _id field from doc will be used.

• mongo_db (str) – The name of the database to use. Can be omitted; then the
database from the connection string is used.

update_many(mongo_collection, filter_doc, update_doc, mongo_db=None, **kwargs)
Updates one or more documents in a mongo collection. https://api.mongodb.com/python/current/api/
pymongo/collection.html#pymongo.collection.Collection.update_many

Parameters

• mongo_collection (str) – The name of the collection to update.

• filter_doc (dict) – A query that matches the documents to update.

• update_doc (dict) – The modifications to apply.

• mongo_db (str) – The name of the database to use. Can be omitted; then the
database from the connection string is used.

update_one(mongo_collection, filter_doc, update_doc, mongo_db=None, **kwargs)
Updates a single document in a mongo collection. https://api.mongodb.com/python/current/api/pymongo/
collection.html#pymongo.collection.Collection.update_one

Parameters

• mongo_collection (str) – The name of the collection to update.

• filter_doc (dict) – A query that matches the documents to update.

• update_doc (dict) – The modifications to apply.

• mongo_db (str) – The name of the database to use. Can be omitted; then the
database from the connection string is used.

class airflow.contrib.hooks.openfaas_hook.OpenFaasHook(function_name=None,
conn_id=’open_faas_default’,
*args, **kwargs)

Bases: airflow.hooks.base_hook.BaseHook

Interact with Openfaas to query, deploy, invoke and update function

Parameters

• function_name – Name of the function, Defaults to None

• conn_id (str) – openfass connection to use, Defaults to open_faas_default for exam-
ple host : http://openfaas.faas.com, Conn Type : Http

class airflow.contrib.hooks.pinot_hook.PinotDbApiHook(*args, **kwargs)
Bases: airflow.hooks.dbapi_hook.DbApiHook

Connect to pinot db(https://github.com/linkedin/pinot) to issue pql

get_conn()
Establish a connection to pinot broker through pinot dbqpi.

get_first(sql)
Executes the sql and returns the first resulting row.

370 Chapter 3. Content

https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.update_many
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.update_many
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.update_one
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.update_one
http://openfaas.faas.com
https://github.com/linkedin/pinot

Airflow Documentation, Release 2.0.0.dev0+

Parameters sql (str or list) – the sql statement to be executed (str) or a list of sql
statements to execute

get_pandas_df(sql, parameters=None)
Executes the sql and returns a pandas dataframe

Parameters

• sql (str or list) – the sql statement to be executed (str) or a list of sql state-
ments to execute

• parameters (mapping or iterable) – The parameters to render the SQL
query with.

get_records(sql)
Executes the sql and returns a set of records.

Parameters sql (str) – the sql statement to be executed (str) or a list of sql statements to
execute

get_uri()
Get the connection uri for pinot broker.

e.g: http://localhost:9000/pql

insert_rows(table, rows, target_fields=None, commit_every=1000)
A generic way to insert a set of tuples into a table, a new transaction is created every commit_every rows

Parameters

• table (str) – Name of the target table

• rows (iterable of tuples) – The rows to insert into the table

• target_fields (iterable of strings) – The names of the columns to fill
in the table

• commit_every (int) – The maximum number of rows to insert in one transaction.
Set to 0 to insert all rows in one transaction.

• replace (bool) – Whether to replace instead of insert

set_autocommit(conn, autocommit)
Sets the autocommit flag on the connection

class airflow.contrib.hooks.qubole_hook.QuboleHook(*args, **kwargs)
Bases: airflow.hooks.base_hook.BaseHook

get_jobs_id(ti)
Get jobs associated with a Qubole commands :param ti: Task Instance of the dag, used to determine the
Quboles command id :return: Job informations assoiciated with command

get_log(ti)
Get Logs of a command from Qubole :param ti: Task Instance of the dag, used to determine the Quboles
command id :return: command log as text

get_results(ti=None, fp=None, inline=True, delim=None, fetch=True)
Get results (or just s3 locations) of a command from Qubole and save into a file :param ti: Task Instance
of the dag, used to determine the Quboles command id :param fp: Optional file pointer, will create one
and return if None passed :param inline: True to download actual results, False to get s3 locations only
:param delim: Replaces the CTL-A chars with the given delim, defaults to ‘,’ :param fetch: when inline
is True, get results directly from s3 (if large) :return: file location containing actual results or s3 locations
of results

3.20. API Reference 371

http://localhost:9000/pql

Airflow Documentation, Release 2.0.0.dev0+

kill(ti)
Kill (cancel) a Qubole command :param ti: Task Instance of the dag, used to determine the Quboles
command id :return: response from Qubole

class airflow.contrib.hooks.redshift_hook.RedshiftHook(aws_conn_id=’aws_default’,
verify=None)

Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS Redshift, using the boto3 library

cluster_status(cluster_identifier)
Return status of a cluster

Parameters cluster_identifier (str) – unique identifier of a cluster

create_cluster_snapshot(snapshot_identifier, cluster_identifier)
Creates a snapshot of a cluster

Parameters

• snapshot_identifier (str) – unique identifier for a snapshot of a cluster

• cluster_identifier (str) – unique identifier of a cluster

delete_cluster(cluster_identifier, skip_final_cluster_snapshot=True, fi-
nal_cluster_snapshot_identifier=”)

Delete a cluster and optionally create a snapshot

Parameters

• cluster_identifier (str) – unique identifier of a cluster

• skip_final_cluster_snapshot (bool) – determines cluster snapshot cre-
ation

• final_cluster_snapshot_identifier (str) – name of final cluster snap-
shot

describe_cluster_snapshots(cluster_identifier)
Gets a list of snapshots for a cluster

Parameters cluster_identifier (str) – unique identifier of a cluster

restore_from_cluster_snapshot(cluster_identifier, snapshot_identifier)
Restores a cluster from its snapshot

Parameters

• cluster_identifier (str) – unique identifier of a cluster

• snapshot_identifier (str) – unique identifier for a snapshot of a cluster

class airflow.contrib.hooks.sagemaker_hook.SageMakerHook(*args, **kwargs)
Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with Amazon SageMaker.

check_s3_url(s3url)
Check if an S3 URL exists

Parameters s3url (str) – S3 url

Return type bool

check_status(job_name, key, describe_function, check_interval, max_ingestion_time,
non_terminal_states=None)

Check status of a SageMaker job

372 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

Parameters

• job_name (str) – name of the job to check status

• key (str) – the key of the response dict that points to the state

• describe_function (python callable) – the function used to retrieve the
status

• args – the arguments for the function

• check_interval (int) – the time interval in seconds which the operator will
check the status of any SageMaker job

• max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to None implies no
timeout for any SageMaker job.

• non_terminal_states (set) – the set of nonterminal states

Returns response of describe call after job is done

check_training_config(training_config)
Check if a training configuration is valid

Parameters training_config (dict) – training_config

Returns None

check_training_status_with_log(job_name, non_terminal_states, failed_states,
wait_for_completion, check_interval,
max_ingestion_time)

Display the logs for a given training job, optionally tailing them until the job is complete.

Parameters

• job_name (str) – name of the training job to check status and display logs for

• non_terminal_states (set) – the set of non_terminal states

• failed_states (set) – the set of failed states

• wait_for_completion (bool) – Whether to keep looking for new log entries
until the job completes

• check_interval (int) – The interval in seconds between polling for new log
entries and job completion

• max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to None implies no
timeout for any SageMaker job.

Returns None

check_tuning_config(tuning_config)
Check if a tuning configuration is valid

Parameters tuning_config (dict) – tuning_config

Returns None

configure_s3_resources(config)
Extract the S3 operations from the configuration and execute them.

Parameters config (dict) – config of SageMaker operation

Return type dict

3.20. API Reference 373

Airflow Documentation, Release 2.0.0.dev0+

create_endpoint(config, wait_for_completion=True, check_interval=30,
max_ingestion_time=None)

Create an endpoint

Parameters

• config (dict) – the config for endpoint

• wait_for_completion (bool) – if the program should keep running until job
finishes

• check_interval (int) – the time interval in seconds which the operator will
check the status of any SageMaker job

• max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to None implies no
timeout for any SageMaker job.

Returns A response to endpoint creation

create_endpoint_config(config)
Create an endpoint config

Parameters config (dict) – the config for endpoint-config

Returns A response to endpoint config creation

create_model(config)
Create a model job

Parameters config (dict) – the config for model

Returns A response to model creation

create_training_job(config, wait_for_completion=True, print_log=True, check_interval=30,
max_ingestion_time=None)

Create a training job

Parameters

• config (dict) – the config for training

• wait_for_completion (bool) – if the program should keep running until job
finishes

• check_interval (int) – the time interval in seconds which the operator will
check the status of any SageMaker job

• max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to None implies no
timeout for any SageMaker job.

Returns A response to training job creation

create_transform_job(config, wait_for_completion=True, check_interval=30,
max_ingestion_time=None)

Create a transform job

Parameters

• config (dict) – the config for transform job

• wait_for_completion (bool) – if the program should keep running until job
finishes

374 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• check_interval (int) – the time interval in seconds which the operator will
check the status of any SageMaker job

• max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to None implies no
timeout for any SageMaker job.

Returns A response to transform job creation

create_tuning_job(config, wait_for_completion=True, check_interval=30,
max_ingestion_time=None)

Create a tuning job

Parameters

• config (dict) – the config for tuning

• wait_for_completion – if the program should keep running until job finishes

• wait_for_completion – bool

• check_interval (int) – the time interval in seconds which the operator will
check the status of any SageMaker job

• max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to None implies no
timeout for any SageMaker job.

Returns A response to tuning job creation

describe_endpoint(name)

Parameters name (string) – the name of the endpoint

Returns A dict contains all the endpoint info

describe_endpoint_config(name)
Return the endpoint config info associated with the name

Parameters name (string) – the name of the endpoint config

Returns A dict contains all the endpoint config info

describe_model(name)
Return the SageMaker model info associated with the name

Parameters name (string) – the name of the SageMaker model

Returns A dict contains all the model info

describe_training_job(name)
Return the training job info associated with the name

Parameters name (str) – the name of the training job

Returns A dict contains all the training job info

describe_training_job_with_log(job_name, positions, stream_names, instance_count, state,
last_description, last_describe_job_call)

Return the training job info associated with job_name and print CloudWatch logs

describe_transform_job(name)
Return the transform job info associated with the name

Parameters name (string) – the name of the transform job

Returns A dict contains all the transform job info

3.20. API Reference 375

Airflow Documentation, Release 2.0.0.dev0+

describe_tuning_job(name)
Return the tuning job info associated with the name

Parameters name (string) – the name of the tuning job

Returns A dict contains all the tuning job info

get_conn()
Establish an AWS connection for SageMaker

Return type SageMaker.Client

get_log_conn()
Establish an AWS connection for retrieving logs during training

Return type CloudWatchLog.Client

log_stream(log_group, stream_name, start_time=0, skip=0)
A generator for log items in a single stream. This will yield all the items that are available at the current
moment.

Parameters

• log_group (str) – The name of the log group.

• stream_name (str) – The name of the specific stream.

• start_time (int) – The time stamp value to start reading the logs from (default:
0).

• skip (int) – The number of log entries to skip at the start (default: 0). This is for
when there are multiple entries at the same timestamp.

Return type dict

Returns

A CloudWatch log event with the following key-value pairs:
’timestamp’ (int): The time in milliseconds of the event.
’message’ (str): The log event data.
’ingestionTime’ (int): The time in milliseconds the event was ingested.

multi_stream_iter(log_group, streams, positions=None)
Iterate over the available events coming from a set of log streams in a single log group interleaving the
events from each stream so they’re yielded in timestamp order.

Parameters

• log_group (str) – The name of the log group.

• streams (list) – A list of the log stream names. The position of the stream in this
list is the stream number.

• positions (list) – A list of pairs of (timestamp, skip) which represents the last
record read from each stream.

Returns A tuple of (stream number, cloudwatch log event).

tar_and_s3_upload(path, key, bucket)
Tar the local file or directory and upload to s3

Parameters

376 Chapter 3. Content

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client

Airflow Documentation, Release 2.0.0.dev0+

• path (str) – local file or directory

• key (str) – s3 key

• bucket (str) – s3 bucket

Returns None

update_endpoint(config, wait_for_completion=True, check_interval=30,
max_ingestion_time=None)

Update an endpoint

Parameters

• config (dict) – the config for endpoint

• wait_for_completion (bool) – if the program should keep running until job
finishes

• check_interval (int) – the time interval in seconds which the operator will
check the status of any SageMaker job

• max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to None implies no
timeout for any SageMaker job.

Returns A response to endpoint update

class airflow.contrib.hooks.salesforce_hook.SalesforceHook(conn_id, *args,
**kwargs)

Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.
LoggingMixin

describe_object(obj)
Get the description of an object from Salesforce.

This description is the object’s schema and some extra metadata that Salesforce stores for each object

Parameters obj – Name of the Salesforce object that we are getting a description of.

get_available_fields(obj)
Get a list of all available fields for an object.

This only returns the names of the fields.

get_object_from_salesforce(obj, fields)
Get all instances of the object from Salesforce. For each model, only get the fields specified in fields.

All we really do underneath the hood is run: SELECT <fields> FROM <obj>;

make_query(query)
Make a query to Salesforce. Returns result in dictionary

Parameters query – The query to make to Salesforce

sign_in()
Sign into Salesforce.

If we have already signed it, this will just return the original object

write_object_to_file(query_results, filename, fmt=’csv’, coerce_to_timestamp=False,
record_time_added=False)

Write query results to file.

Acceptable formats are:

• csv: comma-separated-values file. This is the default format.

3.20. API Reference 377

Airflow Documentation, Release 2.0.0.dev0+

• json: JSON array. Each element in the array is a different row.

• ndjson: JSON array but each element is new-line delimited instead of comma delimited like
in json

This requires a significant amount of cleanup. Pandas doesn’t handle output to CSV and json in a uniform
way. This is especially painful for datetime types. Pandas wants to write them as strings in CSV, but as
millisecond Unix timestamps.

By default, this function will try and leave all values as they are represented in Salesforce. You use the
coerce_to_timestamp flag to force all datetimes to become Unix timestamps (UTC). This is can be greatly
beneficial as it will make all of your datetime fields look the same, and makes it easier to work with in
other database environments

Parameters

• query_results – the results from a SQL query

• filename – the name of the file where the data should be dumped to

• fmt – the format you want the output in. Default: csv.

• coerce_to_timestamp – True if you want all datetime fields to be converted
into Unix timestamps. False if you want them to be left in the same format as they
were in Salesforce. Leaving the value as False will result in datetimes being strings.
Defaults to False

• record_time_added – (optional) True if you want to add a Unix timestamp field
to the resulting data that marks when the data was fetched from Salesforce. Default:
False.

class airflow.contrib.hooks.sftp_hook.SFTPHook(ftp_conn_id=’sftp_default’, *args,
**kwargs)

Bases: airflow.contrib.hooks.ssh_hook.SSHHook

This hook is inherited from SSH hook. Please refer to SSH hook for the input arguments.

Interact with SFTP. Aims to be interchangeable with FTPHook.

Pitfalls: - In contrast with FTPHook describe_directory only returns size, type and

modify. It doesn’t return unix.owner, unix.mode, perm, unix.group and unique.

• retrieve_file and store_file only take a local full path and not a buffer.

• If no mode is passed to create_directory it will be created with 777 permissions.

Errors that may occur throughout but should be handled downstream.

close_conn()
Closes the connection. An error will occur if the connection wasnt ever opened.

create_directory(path, mode=777)
Creates a directory on the remote system. :param path: full path to the remote directory to create :type
path: str :param mode: int representation of octal mode for directory

delete_directory(path)
Deletes a directory on the remote system. :param path: full path to the remote directory to delete :type
path: str

delete_file(path)
Removes a file on the FTP Server :param path: full path to the remote file :type path: str

378 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

describe_directory(path)
Returns a dictionary of {filename: {attributes}} for all files on the remote system (where the MLSD
command is supported). :param path: full path to the remote directory :type path: str

get_conn()
Returns an SFTP connection object

list_directory(path)
Returns a list of files on the remote system. :param path: full path to the remote directory to list :type
path: str

retrieve_file(remote_full_path, local_full_path)
Transfers the remote file to a local location. If local_full_path is a string path, the file will be put at
that location :param remote_full_path: full path to the remote file :type remote_full_path: str :param
local_full_path: full path to the local file :type local_full_path: str

store_file(remote_full_path, local_full_path)
Transfers a local file to the remote location. If local_full_path_or_buffer is a string path, the file will be
read from that location :param remote_full_path: full path to the remote file :type remote_full_path: str
:param local_full_path: full path to the local file :type local_full_path: str

class airflow.contrib.hooks.slack_webhook_hook.SlackWebhookHook(http_conn_id=None,
web-
hook_token=None,
message=”,
attach-
ments=None,
chan-
nel=None,
user-
name=None,
icon_emoji=None,
link_names=False,
proxy=None,
*args,
**kwargs)

Bases: airflow.hooks.http_hook.HttpHook

This hook allows you to post messages to Slack using incoming webhooks. Takes both Slack webhook token
directly and connection that has Slack webhook token. If both supplied, Slack webhook token will be used.

Each Slack webhook token can be pre-configured to use a specific channel, username and icon. You can override
these defaults in this hook.

Parameters

• http_conn_id (str) – connection that has Slack webhook token in the extra field

• webhook_token (str) – Slack webhook token

• message (str) – The message you want to send on Slack

• attachments (list) – The attachments to send on Slack. Should be a list of dictio-
naries representing Slack attachments.

• channel (str) – The channel the message should be posted to

• username (str) – The username to post to slack with

• icon_emoji (str) – The emoji to use as icon for the user posting to Slack

3.20. API Reference 379

Airflow Documentation, Release 2.0.0.dev0+

• link_names (bool) – Whether or not to find and link channel and usernames in your
message

• proxy (str) – Proxy to use to make the Slack webhook call

execute()
Remote Popen (actually execute the slack webhook call)

Parameters

• cmd – command to remotely execute

• kwargs – extra arguments to Popen (see subprocess.Popen)

class airflow.contrib.hooks.spark_jdbc_hook.SparkJDBCHook(spark_app_name=’airflow-
spark-jdbc’,
spark_conn_id=’spark-
default’,
spark_conf=None,
spark_py_files=None,
spark_files=None,
spark_jars=None,
num_executors=None,
executor_cores=None,
execu-
tor_memory=None,
driver_memory=None,
verbose=False,
principal=None,
keytab=None,
cmd_type=’spark_to_jdbc’,
jdbc_table=None,
jdbc_conn_id=’jdbc-
default’,
jdbc_driver=None,
metastore_table=None,
jdbc_truncate=False,
save_mode=None,
save_format=None,
batch_size=None,
fetch_size=None,
num_partitions=None,
parti-
tion_column=None,
lower_bound=None,
upper_bound=None,
cre-
ate_table_column_types=None,
*args, **kwargs)

Bases: airflow.contrib.hooks.spark_submit_hook.SparkSubmitHook

This hook extends the SparkSubmitHook specifically for performing data transfers to/from JDBC-based
databases with Apache Spark.

Parameters

• spark_app_name (str) – Name of the job (default airflow-spark-jdbc)

• spark_conn_id (str) – Connection id as configured in Airflow administration

380 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• spark_conf (dict) – Any additional Spark configuration properties

• spark_py_files (str) – Additional python files used (.zip, .egg, or .py)

• spark_files (str) – Additional files to upload to the container running the job

• spark_jars (str) – Additional jars to upload and add to the driver and executor
classpath

• num_executors (int) – number of executor to run. This should be set so as to man-
age the number of connections made with the JDBC database

• executor_cores (int) – Number of cores per executor

• executor_memory (str) – Memory per executor (e.g. 1000M, 2G)

• driver_memory (str) – Memory allocated to the driver (e.g. 1000M, 2G)

• verbose (bool) – Whether to pass the verbose flag to spark-submit for debugging

• keytab (str) – Full path to the file that contains the keytab

• principal (str) – The name of the kerberos principal used for keytab

• cmd_type (str) – Which way the data should flow. 2 possible values: spark_to_jdbc:
data written by spark from metastore to jdbc jdbc_to_spark: data written by spark from
jdbc to metastore

• jdbc_table (str) – The name of the JDBC table

• jdbc_conn_id – Connection id used for connection to JDBC database

• jdbc_driver (str) – Name of the JDBC driver to use for the JDBC connection. This
driver (usually a jar) should be passed in the ‘jars’ parameter

• metastore_table (str) – The name of the metastore table,

• jdbc_truncate (bool) – (spark_to_jdbc only) Whether or not Spark should truncate
or drop and recreate the JDBC table. This only takes effect if ‘save_mode’ is set to
Overwrite. Also, if the schema is different, Spark cannot truncate, and will drop and
recreate

• save_mode (str) – The Spark save-mode to use (e.g. overwrite, append, etc.)

• save_format (str) – (jdbc_to_spark-only) The Spark save-format to use (e.g. par-
quet)

• batch_size (int) – (spark_to_jdbc only) The size of the batch to insert per round
trip to the JDBC database. Defaults to 1000

• fetch_size (int) – (jdbc_to_spark only) The size of the batch to fetch per round trip
from the JDBC database. Default depends on the JDBC driver

• num_partitions (int) – The maximum number of partitions that can be used by
Spark simultaneously, both for spark_to_jdbc and jdbc_to_spark operations. This will
also cap the number of JDBC connections that can be opened

• partition_column (str) – (jdbc_to_spark-only) A numeric column to be used to
partition the metastore table by. If specified, you must also specify: num_partitions,
lower_bound, upper_bound

• lower_bound (int) – (jdbc_to_spark-only) Lower bound of the range of the numeric
partition column to fetch. If specified, you must also specify: num_partitions, parti-
tion_column, upper_bound

3.20. API Reference 381

Airflow Documentation, Release 2.0.0.dev0+

• upper_bound (int) – (jdbc_to_spark-only) Upper bound of the range of the numeric
partition column to fetch. If specified, you must also specify: num_partitions, parti-
tion_column, lower_bound

• create_table_column_types – (spark_to_jdbc-only) The database column data
types to use instead of the defaults, when creating the table. Data type information
should be specified in the same format as CREATE TABLE columns syntax (e.g: “name
CHAR(64), comments VARCHAR(1024)”). The specified types should be valid spark
sql data types.

Type jdbc_conn_id: str

class airflow.contrib.hooks.spark_sql_hook.SparkSqlHook(sql, conf=None,
conn_id=’spark_sql_default’,
to-
tal_executor_cores=None,
executor_cores=None,
executor_memory=None,
keytab=None, princi-
pal=None, master=’yarn’,
name=’default-name’,
num_executors=None,
verbose=True,
yarn_queue=’default’)

Bases: airflow.hooks.base_hook.BaseHook

This hook is a wrapper around the spark-sql binary. It requires that the “spark-sql” binary is in the PATH. :param
sql: The SQL query to execute :type sql: str :param conf: arbitrary Spark configuration property :type conf: str
(format: PROP=VALUE) :param conn_id: connection_id string :type conn_id: str :param total_executor_cores:
(Standalone & Mesos only) Total cores for all executors

(Default: all the available cores on the worker)

Parameters

• executor_cores (int) – (Standalone & YARN only) Number of cores per executor
(Default: 2)

• executor_memory (str) – Memory per executor (e.g. 1000M, 2G) (Default: 1G)

• keytab (str) – Full path to the file that contains the keytab

• master (str) – spark://host:port, mesos://host:port, yarn, or local

• name (str) – Name of the job.

• num_executors (int) – Number of executors to launch

• verbose (bool) – Whether to pass the verbose flag to spark-sql

• yarn_queue (str) – The YARN queue to submit to (Default: “default”)

run_query(cmd=”, **kwargs)
Remote Popen (actually execute the Spark-sql query)

Parameters

• cmd – command to remotely execute

• kwargs – extra arguments to Popen (see subprocess.Popen)

382 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

class airflow.contrib.hooks.spark_submit_hook.SparkSubmitHook(conf=None,
conn_id=’spark_default’,
files=None,
py_files=None,
driver_classpath=None,
jars=None,
java_class=None,
pack-
ages=None, ex-
clude_packages=None,
reposito-
ries=None, to-
tal_executor_cores=None,
execu-
tor_cores=None,
execu-
tor_memory=None,
driver_memory=None,
keytab=None,
principal=None,
name=’default-
name’,
num_executors=None,
applica-
tion_args=None,
env_vars=None,
verbose=False)

Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.
LoggingMixin

This hook is a wrapper around the spark-submit binary to kick off a spark-submit job. It requires that the
“spark-submit” binary is in the PATH or the spark_home to be supplied.

Parameters

• conf (dict) – Arbitrary Spark configuration properties

• conn_id (str) – The connection id as configured in Airflow administration. When an
invalid connection_id is supplied, it will default to yarn.

• files (str) – Upload additional files to the executor running the job, separated by a
comma. Files will be placed in the working directory of each executor. For example,
serialized objects.

• py_files (str) – Additional python files used by the job, can be .zip, .egg or .py.

• driver_classpath (str) – Additional, driver-specific, classpath settings.

• jars (str) – Submit additional jars to upload and place them in executor classpath.

• java_class (str) – the main class of the Java application

• packages (str) – Comma-separated list of maven coordinates of jars to include on the
driver and executor classpaths

• exclude_packages (str) – Comma-separated list of maven coordinates of jars to
exclude while resolving the dependencies provided in ‘packages’

• repositories (str) – Comma-separated list of additional remote repositories to
search for the maven coordinates given with ‘packages’

3.20. API Reference 383

Airflow Documentation, Release 2.0.0.dev0+

• total_executor_cores (int) – (Standalone & Mesos only) Total cores for all
executors (Default: all the available cores on the worker)

• executor_cores (int) – (Standalone, YARN and Kubernetes only) Number of cores
per executor (Default: 2)

• executor_memory (str) – Memory per executor (e.g. 1000M, 2G) (Default: 1G)

• driver_memory (str) – Memory allocated to the driver (e.g. 1000M, 2G) (Default:
1G)

• keytab (str) – Full path to the file that contains the keytab

• principal (str) – The name of the kerberos principal used for keytab

• name (str) – Name of the job (default airflow-spark)

• num_executors (int) – Number of executors to launch

• application_args (list) – Arguments for the application being submitted

• env_vars (dict) – Environment variables for spark-submit. It supports yarn and k8s
mode too.

• verbose (bool) – Whether to pass the verbose flag to spark-submit process for debug-
ging

submit(application=”, **kwargs)
Remote Popen to execute the spark-submit job

Parameters

• application (str) – Submitted application, jar or py file

• kwargs – extra arguments to Popen (see subprocess.Popen)

class airflow.contrib.hooks.sqoop_hook.SqoopHook(conn_id=’sqoop_default’, ver-
bose=False, num_mappers=None,
hcatalog_database=None, hcata-
log_table=None, properties=None)

Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.
LoggingMixin

This hook is a wrapper around the sqoop 1 binary. To be able to use the hook it is required that “sqoop” is in the
PATH.

Additional arguments that can be passed via the ‘extra’ JSON field of the sqoop connection:

• job_tracker: Job tracker local|jobtracker:port.

• namenode: Namenode.

• lib_jars: Comma separated jar files to include in the classpath.

• files: Comma separated files to be copied to the map reduce cluster.

• archives: Comma separated archives to be unarchived on the compute machines.

• password_file: Path to file containing the password.

Parameters

• conn_id (str) – Reference to the sqoop connection.

• verbose (bool) – Set sqoop to verbose.

• num_mappers (int) – Number of map tasks to import in parallel.

384 Chapter 3. Content

Airflow Documentation, Release 2.0.0.dev0+

• properties (dict) – Properties to set via the -D argument

Popen(cmd, **kwargs)
Remote Popen

Parameters

• cmd – command to remotely execute

• kwargs – extra arguments to Popen (see subprocess.Popen)

Returns handle to subprocess

export_table(table, export_dir, input_null_string, input_null_non_string, staging_table,
clear_staging_table, enclosed_by, escaped_by, input_fields_terminated_by, in-
put_lines_terminated_by, input_optionally_enclosed_by, batch, relaxed_isolation,
extra_export_options=None)

Exports Hive table to remote location. Arguments are copies of direct sqoop command line Arguments

Parameters

• table – Table remote destination

• export_dir – Hive table to export

• input_null_string – The string to be interpreted as null for string columns

• input_null_non_string – The string to be interpreted as null for non-string
columns

• staging_table – The table in which data will be staged before being inserted into
the destination table

• clear_staging_table – Indicate that any data present in the staging table can
be deleted

• enclosed_by – Sets a required field enclosing character

• escaped_by – Sets the escape character

• input_fields_terminated_by – Sets the field separator character

• input_lines_terminated_by – Sets the end-of-line character

• input_optionally_enclosed_by – Sets a field enclosing character

• batch – Use batch mode for underlying statement execution

• relaxed_isolation – Transaction isolation to read uncommitted for the map-
pers

• extra_export_options – Extra export options to pass as dict. If a key doesn’t
have a value, just pass an empty string to it. Don’t include prefix of – for sqoop
options.

import_query(query, target_dir, append=False, file_type=’text’, split_by=None, direct=None,
driver=None, extra_import_options=None)

Imports a specific query from the rdbms to hdfs

Parameters

• query – Free format query to run

• target_dir – HDFS destination dir

• append – Append data to an existing dataset in HDFS

3.20. API Reference 385

Airflow Documentation, Release 2.0.0.dev0+

• file_type – “avro”, “sequence”, “text” or “parquet” Imports data to hdfs into the
specified format. Defaults to text.

• split_by – Column of the table used to split work units

• direct – Use direct import fast path

• driver – Manually specify JDBC driver class to use

• extra_import_options – Extra import options to pass as dict. If a key doesn’t
have a value, just pass an empty string to it. Don’t include prefix of – for sqoop
options.

import_table(table, target_dir=None, append=False, file_type=’text’, columns=None,
split_by=None, where=None, direct=False, driver=None, ex-
tra_import_options=None)

Imports table from remote location to target dir. Arguments are copies of direct sqoop command line
arguments

Parameters

• table – Table to read

• target_dir – HDFS destination dir

• append – Append data to an existing dataset in HDFS

• file_type – “avro”, “sequence”, “text” or “parquet”. Imports data to into the
specified format. Defaults to text.

• columns – <col,col,col. . . > Columns to import from table

• split_by – Column of the table used to split work units

• where – WHERE clause to use during import

• direct – Use direct connector if exists for the database

• driver – Manually specify JDBC driver class to use

• extra_import_options – Extra import options to pass as dict. If a key doesn’t
have a value, just pass an empty string to it. Don’t include prefix of – for sqoop
options.

class airflow.contrib.hooks.ssh_hook.SSHHook(ssh_conn_id=None, remote_host=None,
username=None, password=None,
key_file=None, port=None, timeout=10,
keepalive_interval=30)

Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.
LoggingMixin

Hook for ssh remote execution using Paramiko. ref: https://github.com/paramiko/paramiko This hook also lets
you create ssh tunnel and serve as basis for SFTP file transfer

Parameters

• ssh_conn_id (str) – connection id from airflow Connections from where all the
required parameters can be fetched like username, password or key_file. Thought the
priority is given to the param passed during init

• remote_host (str) – remote host to connect

• username (str) – username to connect to the remote_host

• password (str) – password of the username to connect to the remote_host

386 Chapter 3. Content

https://github.com/paramiko/paramiko

Airflow Documentation, Release 2.0.0.dev0+

• key_file (str) – key file to use to connect to the remote_host.

• port (int) – port of remote host to connect (Default is paramiko SSH_PORT)

• timeout (int) – timeout for the attempt to connect to the remote_host.

• keepalive_interval (int) – send a keepalive packet to remote host every
keepalive_interval seconds

get_conn()
Opens a ssh connection to the remote host.

:return paramiko.SSHClient object

get_tunnel(remote_port, remote_host=’localhost’, local_port=None)
Creates a tunnel between two hosts. Like ssh -L <LOCAL_PORT>:host:<REMOTE_PORT>.

Parameters

• remote_port (int) – The remote port to create a tunnel to

• remote_host (str) – The remote host to create a tunnel to (default localhost)

• local_port (int) – The local port to attach the tunnel to

Returns sshtunnel.SSHTunnelForwarder object

class airflow.contrib.hooks.vertica_hook.VerticaHook(*args, **kwargs)
Bases: airflow.hooks.dbapi_hook.DbApiHook

Interact with Vertica.

get_conn()
Returns verticaql connection object

3.20.5 Executors

Executors are the mechanism by which task instances get run.

class airflow.executors.local_executor.LocalExecutor(parallelism=32)
Bases: airflow.executors.base_executor.BaseExecutor

LocalExecutor executes tasks locally in parallel. It uses the multiprocessing Python library and queues to paral-
lelize the execution of tasks.

end()
This method is called when the caller is done submitting job and wants to wait synchronously for the job
submitted previously to be all done.

execute_async(key, command, queue=None, executor_config=None)
This method will execute the command asynchronously.

start()
Executors may need to get things started. For example LocalExecutor starts N workers.

sync()
Sync will get called periodically by the heartbeat method. Executors should override this to perform
gather statuses.

class airflow.executors.sequential_executor.SequentialExecutor
Bases: airflow.executors.base_executor.BaseExecutor

This executor will only run one task instance at a time, can be used for debugging. It is also the only executor
that can be used with sqlite since sqlite doesn’t support multiple connections.

3.20. API Reference 387

Airflow Documentation, Release 2.0.0.dev0+

Since we want airflow to work out of the box, it defaults to this SequentialExecutor alongside sqlite as you first
install it.

end()
This method is called when the caller is done submitting job and wants to wait synchronously for the job
submitted previously to be all done.

execute_async(key, command, queue=None, executor_config=None)
This method will execute the command asynchronously.

sync()
Sync will get called periodically by the heartbeat method. Executors should override this to perform
gather statuses.

3.20.5.1 Community-contributed executors

388 Chapter 3. Content

HTTP Routing Table

/api
GET /api/experimental/dags/<DAG_ID>/dag_runs,

131
GET /api/experimental/dags/<DAG_ID>/dag_runs/<string:execution_date>/tasks/<TASK_ID>,

132
GET /api/experimental/dags/<DAG_ID>/paused/<string:paused>,

132
GET /api/experimental/dags/<DAG_ID>/tasks/<TASK_ID>,

131
GET /api/experimental/dags/<string:dag_id>/dag_runs/<string:execution_date>,

131
GET /api/experimental/latest_runs, 132
GET /api/experimental/pools, 132
GET /api/experimental/pools/<string:name>,

132
GET /api/experimental/test, 131
POST /api/experimental/dags/<DAG_ID>/dag_runs,

131
POST /api/experimental/pools, 132
DELETE /api/experimental/pools/<string:name>,

132

389

Airflow Documentation, Release 2.0.0.dev0+

390 HTTP Routing Table

Python Module Index

a
airflow.hooks.hive_hooks, 337
airflow.macros, 318
airflow.models, 319

391

Airflow Documentation, Release 2.0.0.dev0+

392 Python Module Index

Index

A
acknowledge() (air-

flow.contrib.hooks.gcp_pubsub_hook.PubSubHook
method), 361

add_task() (airflow.models.DAG method), 324
add_tasks() (airflow.models.DAG method), 324
aggregate() (airflow.contrib.hooks.mongo_hook.MongoHook

method), 368
airflow.hooks.hive_hooks (module), 337
airflow.macros (module), 318
airflow.models (module), 319
allocate_ids() (air-

flow.contrib.hooks.datastore_hook.DatastoreHook
method), 203, 355

are_dependencies_met() (air-
flow.models.TaskInstance method), 331

are_dependents_done() (air-
flow.models.TaskInstance method), 331

AthenaSensor (class in air-
flow.contrib.sensors.aws_athena_sensor),
309

await() (airflow.contrib.hooks.gcp_dataproc_hook.DataProcHook
method), 360

AWSAthenaHook (class in air-
flow.contrib.hooks.aws_athena_hook), 349

AWSAthenaOperator (class in air-
flow.contrib.operators.aws_athena_operator),
256

AWSBatchOperator (class in air-
flow.contrib.operators.awsbatch_operator),
145, 256

AwsDynamoDBHook (class in air-
flow.contrib.hooks.aws_dynamodb_hook),
149, 350

AwsFirehoseHook (class in air-
flow.contrib.hooks.aws_firehose_hook), 150,
350

AwsGlueCatalogHook (class in air-
flow.contrib.hooks.aws_glue_catalog_hook),

350
AwsGlueCatalogPartitionSensor (class in air-

flow.contrib.sensors.aws_glue_catalog_partition_sensor),
309

AwsHook (class in airflow.contrib.hooks.aws_hook), 351
AwsLambdaHook (class in air-

flow.contrib.hooks.aws_lambda_hook), 149,
352

AwsRedshiftClusterSensor (class in air-
flow.contrib.sensors.aws_redshift_cluster_sensor),
146, 310

AwsSnsHook (class in air-
flow.contrib.hooks.aws_sns_hook), 352

B
bag_dag() (airflow.models.DagBag method), 328
BaseOperator (class in airflow.models), 231, 319
BaseSensorOperator (class in air-

flow.sensors.base_sensor_operator), 235
BashOperator (class in air-

flow.operators.bash_operator), 236
BashSensor (class in air-

flow.contrib.sensors.bash_sensor), 310
begin_transaction() (air-

flow.contrib.hooks.datastore_hook.DatastoreHook
method), 203, 355

BigQueryCheckOperator (class in air-
flow.contrib.operators.bigquery_check_operator),
162, 256

BigQueryCreateEmptyDatasetOperator
(class in air-
flow.contrib.operators.bigquery_operator),
166, 261

BigQueryCreateEmptyTableOperator (class in
airflow.contrib.operators.bigquery_operator),
164, 258

BigQueryCreateExternalTableOperator
(class in air-
flow.contrib.operators.bigquery_operator),
165, 260

393

Airflow Documentation, Release 2.0.0.dev0+

BigQueryDeleteDatasetOperator (class in
airflow.contrib.operators.bigquery_operator),
167, 261

BigQueryGetDataOperator (class in air-
flow.contrib.operators.bigquery_get_data),
163, 257

BigQueryHook (class in air-
flow.contrib.hooks.bigquery_hook), 170,
352

BigQueryIntervalCheckOperator (class in air-
flow.contrib.operators.bigquery_check_operator),
162, 257

BigQueryOperator (class in air-
flow.contrib.operators.bigquery_operator),
167, 261

BigQueryTableDeleteOperator (class in air-
flow.contrib.operators.bigquery_table_delete_operator),
167, 262

BigQueryTableSensor (class in air-
flow.contrib.sensors.bigquery_sensor), 310

BigQueryToBigQueryOperator (class in air-
flow.contrib.operators.bigquery_to_bigquery),
169, 263

BigQueryToCloudStorageOperator (class in
airflow.contrib.operators.bigquery_to_gcs),
169, 263

BigQueryValueCheckOperator (class in air-
flow.contrib.operators.bigquery_check_operator),
162, 257

BranchPythonOperator (class in air-
flow.operators.python_operator), 236

bulk_dump() (airflow.hooks.dbapi_hook.DbApiHook
method), 335

bulk_dump() (airflow.hooks.mysql_hook.MySqlHook
method), 343

bulk_dump() (airflow.hooks.postgres_hook.PostgresHook
method), 344

bulk_load() (airflow.hooks.dbapi_hook.DbApiHook
method), 335

bulk_load() (airflow.hooks.mysql_hook.MySqlHook
method), 343

bulk_load() (airflow.hooks.postgres_hook.PostgresHook
method), 344

C
CassandraHook (class in air-

flow.contrib.hooks.cassandra_hook), 353
CassandraRecordSensor (class in air-

flow.contrib.sensors.cassandra_record_sensor),
311

CassandraTableSensor (class in air-
flow.contrib.sensors.cassandra_table_sensor),
311

CassandraToGoogleCloudStorageOperator

(class in air-
flow.contrib.operators.cassandra_to_gcs),
264

Chart (class in airflow.models), 323
check_for_bucket() (air-

flow.hooks.S3_hook.S3Hook method), 137,
345

check_for_key() (airflow.hooks.S3_hook.S3Hook
method), 138, 345

check_for_named_partition() (air-
flow.hooks.hive_hooks.HiveMetastoreHook
method), 338

check_for_partition() (air-
flow.contrib.hooks.aws_glue_catalog_hook.AwsGlueCatalogHook
method), 351

check_for_partition() (air-
flow.hooks.hive_hooks.HiveMetastoreHook
method), 339

check_for_prefix() (air-
flow.hooks.S3_hook.S3Hook method), 138,
345

check_for_wildcard_key() (air-
flow.hooks.S3_hook.S3Hook method), 138,
345

check_query_status() (air-
flow.contrib.hooks.aws_athena_hook.AWSAthenaHook
method), 349

check_response() (air-
flow.hooks.http_hook.HttpHook method),
341

check_s3_url() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 150, 372

check_status() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 150, 372

check_training_config() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 151, 373

check_training_status_with_log() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 151, 373

check_tuning_config() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 151, 373

CheckOperator (class in air-
flow.operators.check_operator), 236

cleanup_database_hook() (air-
flow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook
method), 179

clear() (airflow.models.BaseOperator method), 234,
321

clear() (airflow.models.DAG method), 324
clear_task_instances() (in module air-

394 Index

Airflow Documentation, Release 2.0.0.dev0+

flow.models), 335
clear_xcom_data() (airflow.models.TaskInstance

method), 331
cli() (airflow.models.DAG method), 324
close_conn() (airflow.contrib.hooks.ftp_hook.FTPHook

method), 358
close_conn() (airflow.contrib.hooks.sftp_hook.SFTPHook

method), 378
closest_ds_partition() (in module air-

flow.macros.hive), 318
CloudantHook (class in air-

flow.contrib.hooks.cloudant_hook), 354
CloudSqlDatabaseHook (class in air-

flow.contrib.hooks.gcp_sql_hook), 178
CloudSqlHook (class in air-

flow.contrib.hooks.gcp_sql_hook), 175
CloudSqlInstanceCreateOperator (class in

airflow.contrib.operators.gcp_sql_operator),
174

CloudSqlInstanceDatabaseCreateOperator
(class in air-
flow.contrib.operators.gcp_sql_operator),
172

CloudSqlInstanceDatabaseDeleteOperator
(class in air-
flow.contrib.operators.gcp_sql_operator),
172

CloudSqlInstanceDatabasePatchOperator
(class in air-
flow.contrib.operators.gcp_sql_operator),
172

CloudSqlInstanceDeleteOperator (class in
airflow.contrib.operators.gcp_sql_operator),
173

CloudSqlInstanceExportOperator (class in
airflow.contrib.operators.gcp_sql_operator),
173

CloudSqlInstanceImportOperator (class in
airflow.contrib.operators.gcp_sql_operator),
173

CloudSqlInstancePatchOperator (class in air-
flow.contrib.operators.gcp_sql_operator), 174

CloudSqlProxyRunner (class in air-
flow.contrib.hooks.gcp_sql_hook), 179

CloudSqlQueryOperator (class in air-
flow.contrib.operators.gcp_sql_operator),
175

cluster_status() (air-
flow.contrib.hooks.redshift_hook.RedshiftHook
method), 146, 372

collect_dags() (airflow.models.DagBag method),
328

command() (airflow.models.TaskInstance method), 331
command_as_list() (airflow.models.TaskInstance

method), 331
commit() (airflow.contrib.hooks.datastore_hook.DatastoreHook

method), 203, 355
concurrency_reached (airflow.models.DAG at-

tribute), 324
configure_s3_resources() (air-

flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 151, 373

construct_api_call_params() (air-
flow.operators.slack_operator.SlackAPIOperator
method), 249

construct_api_call_params() (air-
flow.operators.slack_operator.SlackAPIPostOperator
method), 250

construct_ingest_query() (air-
flow.operators.hive_to_druid.HiveToDruidTransfer
method), 240

convert_map_type() (air-
flow.contrib.operators.cassandra_to_gcs.CassandraToGoogleCloudStorageOperator
class method), 264

convert_tuple_type() (air-
flow.contrib.operators.cassandra_to_gcs.CassandraToGoogleCloudStorageOperator
class method), 264

convert_types() (air-
flow.contrib.operators.postgres_to_gcs_operator.PostgresToGoogleCloudStorageOperator
class method), 291

convert_user_type() (air-
flow.contrib.operators.cassandra_to_gcs.CassandraToGoogleCloudStorageOperator
class method), 264

copy() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook
method), 217, 363

copy_expert() (air-
flow.hooks.postgres_hook.PostgresHook
method), 344

copy_object() (airflow.hooks.S3_hook.S3Hook
method), 138, 345

create_bucket() (air-
flow.contrib.hooks.gcs_hook.GoogleCloudStorageHook
method), 217, 363

create_bucket() (airflow.hooks.S3_hook.S3Hook
method), 138, 346

create_cluster_snapshot() (air-
flow.contrib.hooks.redshift_hook.RedshiftHook
method), 146, 372

create_connection() (air-
flow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook
method), 179

create_dagrun() (airflow.models.DAG method),
324

create_dagrun() (airflow.models.DagModel
method), 329

create_database() (air-
flow.contrib.hooks.gcp_sql_hook.CloudSqlHook
method), 175

Index 395

Airflow Documentation, Release 2.0.0.dev0+

create_directory() (air-
flow.contrib.hooks.ftp_hook.FTPHook method),
358

create_directory() (air-
flow.contrib.hooks.sftp_hook.SFTPHook
method), 378

create_endpoint() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 151, 373

create_endpoint_config() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 152, 374

create_instance() (air-
flow.contrib.hooks.gcp_sql_hook.CloudSqlHook
method), 176

create_job() (airflow.contrib.hooks.gcp_mlengine_hook.MLEngineHook
method), 208, 360

create_job_flow() (air-
flow.contrib.hooks.emr_hook.EmrHook
method), 137, 357

create_model() (air-
flow.contrib.hooks.gcp_mlengine_hook.MLEngineHook
method), 208, 361

create_model() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 152, 374

create_new_function() (air-
flow.contrib.hooks.gcp_function_hook.GcfHook
method), 187

create_subscription() (air-
flow.contrib.hooks.gcp_pubsub_hook.PubSubHook
method), 361

create_topic() (air-
flow.contrib.hooks.gcp_pubsub_hook.PubSubHook
method), 362

create_training_job() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 152, 374

create_transform_job() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 152, 374

create_tuning_job() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 152, 375

create_version() (air-
flow.contrib.hooks.gcp_mlengine_hook.MLEngineHook
method), 208, 361

current_state() (airflow.models.TaskInstance
method), 331

D
dag (airflow.models.BaseOperator attribute), 234, 321
DAG (class in airflow.models), 323
DagBag (class in airflow.models), 328

dagbag_report() (airflow.models.DagBag method),
328

DagModel (class in airflow.models), 328
DagRun (class in airflow.models), 329
DatabricksHook (class in air-

flow.contrib.hooks.databricks_hook), 354
DatabricksSubmitRunOperator (class in air-

flow.contrib.operators.databricks_operator),
158, 264

DataFlowHook (class in air-
flow.contrib.hooks.gcp_dataflow_hook), 192,
360

DataFlowJavaOperator (class in air-
flow.contrib.operators.dataflow_operator),
189, 266

DataFlowPythonOperator (class in air-
flow.contrib.operators.dataflow_operator),
191, 268

DataflowTemplateOperator (class in air-
flow.contrib.operators.dataflow_operator),
190, 267

DataprocClusterCreateOperator (class in
airflow.contrib.operators.dataproc_operator),
193, 269

DataprocClusterDeleteOperator (class in
airflow.contrib.operators.dataproc_operator),
195, 271

DataprocClusterScaleOperator (class in
airflow.contrib.operators.dataproc_operator),
194, 271

DataProcHadoopOperator (class in air-
flow.contrib.operators.dataproc_operator),
199, 275

DataProcHiveOperator (class in air-
flow.contrib.operators.dataproc_operator),
197, 273

DataProcHook (class in air-
flow.contrib.hooks.gcp_dataproc_hook),
360

DataProcPigOperator (class in air-
flow.contrib.operators.dataproc_operator),
195, 271

DataProcPySparkOperator (class in air-
flow.contrib.operators.dataproc_operator),
200, 275

DataProcSparkOperator (class in air-
flow.contrib.operators.dataproc_operator),
198, 274

DataProcSparkSqlOperator (class in air-
flow.contrib.operators.dataproc_operator),
197, 273

DataprocWorkflowTemplateBaseOperator
(class in air-
flow.contrib.operators.dataproc_operator),

396 Index

Airflow Documentation, Release 2.0.0.dev0+

276
DataprocWorkflowTemplateInstantiateInlineOperator

(class in air-
flow.contrib.operators.dataproc_operator),
201, 277

DataprocWorkflowTemplateInstantiateOperator
(class in air-
flow.contrib.operators.dataproc_operator),
200, 276

DatastoreExportOperator (class in air-
flow.contrib.operators.datastore_export_operator),
202, 277

DatastoreHook (class in air-
flow.contrib.hooks.datastore_hook), 203,
355

DatastoreImportOperator (class in air-
flow.contrib.operators.datastore_import_operator),
202, 277

DayOfWeekSensor (class in air-
flow.contrib.sensors.weekday_sensor), 316

db() (airflow.contrib.hooks.cloudant_hook.CloudantHook
method), 354

DbApiHook (class in airflow.hooks.dbapi_hook), 335
deactivate_stale_dags() (airflow.models.DAG

static method), 324
deactivate_unknown_dags() (air-

flow.models.DAG static method), 325
delete() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook

method), 218, 364
delete_cluster() (air-

flow.contrib.hooks.redshift_hook.RedshiftHook
method), 146, 372

delete_connection() (air-
flow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook
method), 179

delete_database() (air-
flow.contrib.hooks.gcp_sql_hook.CloudSqlHook
method), 176

delete_directory() (air-
flow.contrib.hooks.ftp_hook.FTPHook method),
358

delete_directory() (air-
flow.contrib.hooks.sftp_hook.SFTPHook
method), 378

delete_file() (air-
flow.contrib.hooks.ftp_hook.FTPHook method),
358

delete_file() (air-
flow.contrib.hooks.sftp_hook.SFTPHook
method), 378

delete_function() (air-
flow.contrib.hooks.gcp_function_hook.GcfHook
method), 188

delete_instance() (air-

flow.contrib.hooks.gcp_sql_hook.CloudSqlHook
method), 176

delete_many() (air-
flow.contrib.hooks.mongo_hook.MongoHook
method), 368

delete_objects() (airflow.hooks.S3_hook.S3Hook
method), 139, 346

delete_one() (airflow.contrib.hooks.mongo_hook.MongoHook
method), 368

delete_operation() (air-
flow.contrib.hooks.datastore_hook.DatastoreHook
method), 203, 356

delete_subscription() (air-
flow.contrib.hooks.gcp_pubsub_hook.PubSubHook
method), 362

delete_topic() (air-
flow.contrib.hooks.gcp_pubsub_hook.PubSubHook
method), 362

delete_version() (air-
flow.contrib.hooks.gcp_mlengine_hook.MLEngineHook
method), 208, 361

deps (airflow.models.BaseOperator attribute), 234, 321
deps (airflow.sensors.base_sensor_operator.BaseSensorOperator

attribute), 235
describe_cluster_snapshots() (air-

flow.contrib.hooks.redshift_hook.RedshiftHook
method), 147, 372

describe_directory() (air-
flow.contrib.hooks.ftp_hook.FTPHook method),
358

describe_directory() (air-
flow.contrib.hooks.sftp_hook.SFTPHook
method), 378

describe_endpoint() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 153, 375

describe_endpoint_config() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 153, 375

describe_model() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 153, 375

describe_object() (air-
flow.contrib.hooks.salesforce_hook.SalesforceHook
method), 377

describe_training_job() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 153, 375

describe_training_job_with_log() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 153, 375

describe_transform_job() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 153, 375

Index 397

Airflow Documentation, Release 2.0.0.dev0+

describe_tuning_job() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 153, 375

DiscordWebhookHook (class in air-
flow.contrib.hooks.discord_webhook_hook),
356

DiscordWebhookOperator (class in air-
flow.contrib.operators.discord_webhook_operator),
278

DockerHook (class in airflow.hooks.docker_hook), 337
DockerOperator (class in air-

flow.operators.docker_operator), 237
download() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook

method), 218, 364
download_mail_attachments() (air-

flow.contrib.hooks.imap_hook.ImapHook
method), 367

downstream_list (airflow.models.BaseOperator at-
tribute), 234, 321

DruidCheckOperator (class in air-
flow.operators.druid_check_operator), 238

DruidDbApiHook (class in airflow.hooks.druid_hook),
342

DruidHook (class in airflow.hooks.druid_hook), 342
DruidOperator (class in air-

flow.contrib.operators.druid_operator), 278
ds_add() (in module airflow.macros), 318
ds_format() (in module airflow.macros), 318
DummyOperator (class in air-

flow.operators.dummy_operator), 238

E
ECSOperator (class in air-

flow.contrib.operators.ecs_operator), 145,
278

EmailOperator (class in air-
flow.operators.email_operator), 239

EmrAddStepsOperator (class in air-
flow.contrib.operators.emr_add_steps_operator),
136, 279

EmrBaseSensor (class in air-
flow.contrib.sensors.emr_base_sensor), 311

EmrCreateJobFlowOperator (class in air-
flow.contrib.operators.emr_create_job_flow_operator),
136, 279

EmrHook (class in airflow.contrib.hooks.emr_hook),
137, 357

EmrJobFlowSensor (class in air-
flow.contrib.sensors.emr_job_flow_sensor),
311

EmrStepSensor (class in air-
flow.contrib.sensors.emr_step_sensor), 311

EmrTerminateJobFlowOperator (class in air-
flow.contrib.operators.emr_terminate_job_flow_operator),

137, 279
end() (airflow.executors.local_executor.LocalExecutor

method), 387
end() (airflow.executors.sequential_executor.SequentialExecutor

method), 388
error() (airflow.models.TaskInstance method), 331
execute() (airflow.contrib.hooks.discord_webhook_hook.DiscordWebhookHook

method), 357
execute() (airflow.contrib.hooks.slack_webhook_hook.SlackWebhookHook

method), 380
execute() (airflow.contrib.operators.aws_athena_operator.AWSAthenaOperator

method), 256
execute() (airflow.contrib.operators.dataflow_operator.DataFlowPythonOperator

method), 192, 269
execute() (airflow.contrib.operators.discord_webhook_operator.DiscordWebhookOperator

method), 278
execute() (airflow.contrib.operators.file_to_gcs.FileToGoogleCloudStorageOperator

method), 209, 280
execute() (airflow.contrib.operators.mongo_to_s3.MongoToS3Operator

method), 290
execute() (airflow.contrib.operators.slack_webhook_operator.SlackWebhookOperator

method), 305
execute() (airflow.contrib.operators.spark_jdbc_operator.SparkJDBCOperator

method), 306
execute() (airflow.contrib.operators.spark_sql_operator.SparkSqlOperator

method), 307
execute() (airflow.contrib.operators.spark_submit_operator.SparkSubmitOperator

method), 308
execute() (airflow.contrib.operators.sqoop_operator.SqoopOperator

method), 308
execute() (airflow.contrib.sensors.pubsub_sensor.PubSubPullSensor

method), 314
execute() (airflow.models.BaseOperator method),

234, 321
execute() (airflow.operators.bash_operator.BashOperator

method), 236
execute() (airflow.operators.slack_operator.SlackAPIOperator

method), 249
execute_async() (air-

flow.executors.local_executor.LocalExecutor
method), 387

execute_async() (air-
flow.executors.sequential_executor.SequentialExecutor
method), 388

exists() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook
method), 218, 364

expand_role() (air-
flow.contrib.hooks.aws_hook.AwsHook
method), 351

export_instance() (air-
flow.contrib.hooks.gcp_sql_hook.CloudSqlHook
method), 176

export_table() (air-
flow.contrib.hooks.sqoop_hook.SqoopHook

398 Index

Airflow Documentation, Release 2.0.0.dev0+

method), 385
export_to_storage_bucket() (air-

flow.contrib.hooks.datastore_hook.DatastoreHook
method), 203, 356

ExternalTaskSensor (class in air-
flow.sensors.external_task_sensor), 251

F
fallback_to_default_project_id() (air-

flow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook
static method), 161, 360

filepath (airflow.models.DAG attribute), 325
FileSensor (class in air-

flow.contrib.sensors.file_sensor), 312
FileToGoogleCloudStorageOperator (class in

airflow.contrib.operators.file_to_gcs), 209, 280
filter_for_filesize() (air-

flow.sensors.hdfs_sensor.HdfsSensor static
method), 252

filter_for_ignored_ext() (air-
flow.sensors.hdfs_sensor.HdfsSensor static
method), 252

find() (airflow.contrib.hooks.mongo_hook.MongoHook
method), 369

find() (airflow.models.DagRun static method), 329
find_for_task_instance() (air-

flow.models.TaskReschedule static method),
334

folder (airflow.models.DAG attribute), 325
following_schedule() (airflow.models.DAG

method), 325
free_reserved_port() (air-

flow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook
method), 179

FSHook (class in airflow.contrib.hooks.fs_hook), 357
FTPHook (class in airflow.contrib.hooks.ftp_hook), 358
FTPSensor (class in air-

flow.contrib.sensors.ftp_sensor), 312
FTPSHook (class in airflow.contrib.hooks.ftp_hook), 359
FTPSSensor (class in air-

flow.contrib.sensors.ftp_sensor), 312

G
GceBaseOperator (class in air-

flow.contrib.operators.gcp_compute_operator),
181

GceHook (class in air-
flow.contrib.hooks.gcp_compute_hook), 184

GceInstanceGroupManagerUpdateTemplateOperator
(class in air-
flow.contrib.operators.gcp_compute_operator),
183

GceInstanceStartOperator (class in air-
flow.contrib.operators.gcp_compute_operator),

181
GceInstanceStopOperator (class in air-

flow.contrib.operators.gcp_compute_operator),
182

GceInstanceTemplateCopyOperator
(class in air-
flow.contrib.operators.gcp_compute_operator),
183

GceSetMachineTypeOperator (class in air-
flow.contrib.operators.gcp_compute_operator),
182

GcfFunctionDeleteOperator (class in air-
flow.contrib.operators.gcp_function_operator),
187

GcfFunctionDeployOperator (class in air-
flow.contrib.operators.gcp_function_operator),
186

GcfHook (class in air-
flow.contrib.hooks.gcp_function_hook), 187

GCPTransferServiceHook (class in air-
flow.contrib.hooks.gcp_transfer_hook), 220,
367

generate_command() (airflow.models.TaskInstance
static method), 331

GenericTransfer (class in air-
flow.operators.generic_transfer), 239

get_active_runs() (airflow.models.DAG method),
325

get_autocommit() (air-
flow.hooks.dbapi_hook.DbApiHook method),
335

get_autocommit() (air-
flow.hooks.mssql_hook.MsSqlHook method),
343

get_autocommit() (air-
flow.hooks.mysql_hook.MySqlHook method),
343

get_available_fields() (air-
flow.contrib.hooks.salesforce_hook.SalesforceHook
method), 377

get_bucket() (airflow.hooks.S3_hook.S3Hook
method), 139, 346

get_collection() (air-
flow.contrib.hooks.mongo_hook.MongoHook
method), 369

get_conn() (airflow.contrib.hooks.aws_athena_hook.AWSAthenaHook
method), 349

get_conn() (airflow.contrib.hooks.aws_firehose_hook.AwsFirehoseHook
method), 150, 350

get_conn() (airflow.contrib.hooks.aws_glue_catalog_hook.AwsGlueCatalogHook
method), 351

get_conn() (airflow.contrib.hooks.aws_sns_hook.AwsSnsHook
method), 352

get_conn() (airflow.contrib.hooks.bigquery_hook.BigQueryHook

Index 399

Airflow Documentation, Release 2.0.0.dev0+

method), 170, 352
get_conn() (airflow.contrib.hooks.cassandra_hook.CassandraHook

method), 354
get_conn() (airflow.contrib.hooks.datastore_hook.DatastoreHook

method), 203, 356
get_conn() (airflow.contrib.hooks.ftp_hook.FTPHook

method), 358
get_conn() (airflow.contrib.hooks.ftp_hook.FTPSHook

method), 359
get_conn() (airflow.contrib.hooks.gcp_compute_hook.GceHook

method), 184
get_conn() (airflow.contrib.hooks.gcp_dataflow_hook.DataFlowHook

method), 192, 360
get_conn() (airflow.contrib.hooks.gcp_dataproc_hook.DataProcHook

method), 360
get_conn() (airflow.contrib.hooks.gcp_function_hook.GcfHook

method), 188
get_conn() (airflow.contrib.hooks.gcp_mlengine_hook.MLEngineHook

method), 208, 361
get_conn() (airflow.contrib.hooks.gcp_pubsub_hook.PubSubHook

method), 362
get_conn() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlHook

method), 176
get_conn() (airflow.contrib.hooks.gcp_transfer_hook.GCPTransferServiceHook

method), 221, 367
get_conn() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook

method), 218, 365
get_conn() (airflow.contrib.hooks.mongo_hook.MongoHook

method), 369
get_conn() (airflow.contrib.hooks.pinot_hook.PinotDbApiHook

method), 370
get_conn() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook

method), 153, 376
get_conn() (airflow.contrib.hooks.sftp_hook.SFTPHook

method), 379
get_conn() (airflow.contrib.hooks.ssh_hook.SSHHook

method), 387
get_conn() (airflow.contrib.hooks.vertica_hook.VerticaHook

method), 387
get_conn() (airflow.hooks.dbapi_hook.DbApiHook

method), 336
get_conn() (airflow.hooks.druid_hook.DruidDbApiHook

method), 342
get_conn() (airflow.hooks.hdfs_hook.HDFSHook

method), 343
get_conn() (airflow.hooks.http_hook.HttpHook

method), 341
get_conn() (airflow.hooks.mssql_hook.MsSqlHook

method), 343
get_conn() (airflow.hooks.mysql_hook.MySqlHook

method), 344
get_conn() (airflow.hooks.postgres_hook.PostgresHook

method), 344
get_conn() (airflow.hooks.presto_hook.PrestoHook

method), 344
get_conn() (airflow.hooks.sqlite_hook.SqliteHook

method), 349
get_context_from_env_var() (in module air-

flow.hooks.hive_hooks), 341
get_crc32c() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook

method), 218, 365
get_credentials() (air-

flow.contrib.hooks.aws_hook.AwsHook
method), 352

get_cursor() (airflow.hooks.dbapi_hook.DbApiHook
method), 336

get_dag() (airflow.models.DagBag method), 328
get_dag() (airflow.models.DagRun method), 329
get_dagrun() (airflow.models.DAG method), 325
get_dagrun() (airflow.models.TaskInstance method),

332
get_database() (air-

flow.contrib.hooks.gcp_sql_hook.CloudSqlHook
method), 177

get_database_hook() (air-
flow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook
method), 179

get_databases() (air-
flow.hooks.hive_hooks.HiveMetastoreHook
method), 339

get_db_hook() (air-
flow.operators.druid_check_operator.DruidCheckOperator
method), 239

get_default_view() (airflow.models.DAG
method), 325

get_direct_relative_ids() (air-
flow.models.BaseOperator method), 234,
322

get_direct_relatives() (air-
flow.models.BaseOperator method), 234,
322

get_fernet() (in module airflow.models), 335
get_first() (airflow.contrib.hooks.pinot_hook.PinotDbApiHook

method), 370
get_first() (airflow.hooks.dbapi_hook.DbApiHook

method), 336
get_first() (airflow.hooks.presto_hook.PrestoHook

method), 344
get_first() (airflow.operators.druid_check_operator.DruidCheckOperator

method), 239
get_flat_relative_ids() (air-

flow.models.BaseOperator method), 234,
322

get_flat_relatives() (air-
flow.models.BaseOperator method), 234,
322

get_function() (air-
flow.contrib.hooks.gcp_function_hook.GcfHook

400 Index

Airflow Documentation, Release 2.0.0.dev0+

method), 188
get_hook() (airflow.contrib.sensors.aws_glue_catalog_partition_sensor.AwsGlueCatalogPartitionSensor

method), 310
get_instance() (air-

flow.contrib.hooks.gcp_sql_hook.CloudSqlHook
method), 177

get_instance_group_manager() (air-
flow.contrib.hooks.gcp_compute_hook.GceHook
method), 184

get_instance_template() (air-
flow.contrib.hooks.gcp_compute_hook.GceHook
method), 184

get_jobs_id() (air-
flow.contrib.hooks.qubole_hook.QuboleHook
method), 371

get_key() (airflow.hooks.S3_hook.S3Hook method),
139, 346

get_last_dagrun() (in module airflow.models), 335
get_latest_runs() (airflow.models.DagRun class

method), 329
get_log() (airflow.contrib.hooks.qubole_hook.QuboleHook

method), 371
get_log_conn() (air-

flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 153, 376

get_many() (airflow.models.XCom class method), 334
get_md5hash() (air-

flow.contrib.hooks.gcs_hook.GoogleCloudStorageHook
method), 218, 365

get_metastore_client() (air-
flow.hooks.hive_hooks.HiveMetastoreHook
method), 339

get_mod_time() (air-
flow.contrib.hooks.ftp_hook.FTPHook method),
358

get_model() (airflow.contrib.hooks.gcp_mlengine_hook.MLEngineHook
method), 208, 361

get_num_active_runs() (airflow.models.DAG
method), 325

get_num_task_instances() (air-
flow.models.DAG static method), 325

get_object_from_salesforce() (air-
flow.contrib.hooks.salesforce_hook.SalesforceHook
method), 377

get_one() (airflow.models.XCom class method), 334
get_operation() (air-

flow.contrib.hooks.datastore_hook.DatastoreHook
method), 203, 356

get_pandas_df() (air-
flow.contrib.hooks.bigquery_hook.BigQueryHook
method), 170, 353

get_pandas_df() (air-
flow.contrib.hooks.pinot_hook.PinotDbApiHook
method), 371

get_pandas_df() (air-
flow.hooks.dbapi_hook.DbApiHook method),
336

get_pandas_df() (air-
flow.hooks.druid_hook.DruidDbApiHook
method), 342

get_pandas_df() (air-
flow.hooks.hive_hooks.HiveServer2Hook
method), 340

get_pandas_df() (air-
flow.hooks.presto_hook.PrestoHook method),
345

get_partitions() (air-
flow.contrib.hooks.aws_glue_catalog_hook.AwsGlueCatalogHook
method), 351

get_partitions() (air-
flow.hooks.hive_hooks.HiveMetastoreHook
method), 339

get_previous_dagrun() (airflow.models.DagRun
method), 329

get_previous_scheduled_dagrun() (air-
flow.models.DagRun method), 329

get_proxy_version() (air-
flow.contrib.hooks.gcp_sql_hook.CloudSqlProxyRunner
method), 180

get_query_results() (air-
flow.contrib.hooks.aws_athena_hook.AWSAthenaHook
method), 349

get_records() (air-
flow.contrib.hooks.pinot_hook.PinotDbApiHook
method), 371

get_records() (air-
flow.hooks.dbapi_hook.DbApiHook method),
336

get_records() (air-
flow.hooks.hive_hooks.HiveServer2Hook
method), 340

get_records() (air-
flow.hooks.presto_hook.PrestoHook method),
345

get_results() (air-
flow.contrib.hooks.qubole_hook.QuboleHook
method), 371

get_results() (air-
flow.hooks.hive_hooks.HiveServer2Hook
method), 340

get_run() (airflow.models.DagRun static method),
329

get_run_dates() (airflow.models.DAG method),
326

get_service() (air-
flow.contrib.hooks.bigquery_hook.BigQueryHook
method), 170, 353

get_session() (air-

Index 401

Airflow Documentation, Release 2.0.0.dev0+

flow.contrib.hooks.aws_hook.AwsHook
method), 352

get_size() (airflow.contrib.hooks.ftp_hook.FTPHook
method), 358

get_size() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook
method), 218, 365

get_socket_path() (air-
flow.contrib.hooks.gcp_sql_hook.CloudSqlProxyRunner
method), 180

get_sqlproxy_runner() (air-
flow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook
method), 179

get_table() (airflow.hooks.hive_hooks.HiveMetastoreHook
method), 339

get_tables() (airflow.hooks.hive_hooks.HiveMetastoreHook
method), 339

get_task_instance() (airflow.models.DagRun
method), 330

get_task_instances() (air-
flow.models.BaseOperator method), 234,
322

get_task_instances() (airflow.models.DagRun
method), 330

get_template_env() (airflow.models.DAG
method), 326

get_tunnel() (airflow.contrib.hooks.ssh_hook.SSHHook
method), 387

get_uri() (airflow.contrib.hooks.pinot_hook.PinotDbApiHook
method), 371

get_uri() (airflow.hooks.druid_hook.DruidDbApiHook
method), 342

get_wildcard_key() (air-
flow.hooks.S3_hook.S3Hook method), 139,
346

GoogleCloudBaseHook (class in air-
flow.contrib.hooks.gcp_api_base_hook),
161, 359

GoogleCloudStorageBucketCreateAclEntryOperator
(class in air-
flow.contrib.operators.gcs_acl_operator),
209

GoogleCloudStorageCreateBucketOperator
(class in air-
flow.contrib.operators.gcs_operator), 210,
281

GoogleCloudStorageDownloadOperator
(class in air-
flow.contrib.operators.gcs_download_operator),
211, 280

GoogleCloudStorageHook (class in air-
flow.contrib.hooks.gcs_hook), 217, 363

GoogleCloudStorageListOperator (class in
airflow.contrib.operators.gcs_list_operator),
211, 280

GoogleCloudStorageObjectCreateAclEntryOperator
(class in air-
flow.contrib.operators.gcs_acl_operator),
212

GoogleCloudStorageObjectSensor (class in
airflow.contrib.sensors.gcs_sensor), 312

GoogleCloudStorageObjectUpdatedSensor
(class in airflow.contrib.sensors.gcs_sensor),
312

GoogleCloudStoragePrefixSensor (class in
airflow.contrib.sensors.gcs_sensor), 313

GoogleCloudStorageToBigQueryOperator
(class in airflow.contrib.operators.gcs_to_bq),
212, 282

GoogleCloudStorageToGoogleCloudStorageOperator
(class in airflow.contrib.operators.gcs_to_gcs),
214, 283

GoogleCloudStorageToGoogleCloudStorageTransferOperator
(class in air-
flow.contrib.operators.gcs_to_gcs_transfer_operator),
215, 285

GoogleCloudStorageToS3Operator (class in
airflow.contrib.operators.gcs_to_s3), 285

H
handle_callback() (airflow.models.DAG method),

326
has_dag() (airflow.models.BaseOperator method),

234, 322
has_mail_attachment() (air-

flow.contrib.hooks.imap_hook.ImapHook
method), 367

HDFSHook (class in airflow.hooks.hdfs_hook), 343
HdfsSensor (class in airflow.sensors.hdfs_sensor),

252
HdfsSensorFolder (class in air-

flow.contrib.sensors.hdfs_sensor), 313
HdfsSensorRegex (class in air-

flow.contrib.sensors.hdfs_sensor), 313
HipChatAPIOperator (class in air-

flow.contrib.operators.hipchat_operator),
286

HipChatAPISendRoomNotificationOperator
(class in air-
flow.contrib.operators.hipchat_operator),
286

HiveCliHook (class in airflow.hooks.hive_hooks), 337
HiveMetastoreHook (class in air-

flow.hooks.hive_hooks), 338
HiveOperator (class in air-

flow.operators.hive_operator), 241
HivePartitionSensor (class in air-

flow.sensors.hive_partition_sensor), 252

402 Index

Airflow Documentation, Release 2.0.0.dev0+

HiveServer2Hook (class in air-
flow.hooks.hive_hooks), 340

HiveStatsCollectionOperator (class in air-
flow.operators.hive_stats_operator), 241

HiveToDruidTransfer (class in air-
flow.operators.hive_to_druid), 239

HiveToDynamoDBTransferOperator (class in
airflow.contrib.operators.hive_to_dynamodb),
148, 287

HiveToMySqlTransfer (class in air-
flow.operators.hive_to_mysql), 240

HttpHook (class in airflow.hooks.http_hook), 341
HttpSensor (class in airflow.sensors.http_sensor), 253

I
ImapAttachmentSensor (class in air-

flow.contrib.sensors.imap_attachment_sensor),
313

ImapHook (class in airflow.contrib.hooks.imap_hook),
367

import_from_storage_bucket() (air-
flow.contrib.hooks.datastore_hook.DatastoreHook
method), 203, 356

import_instance() (air-
flow.contrib.hooks.gcp_sql_hook.CloudSqlHook
method), 177

import_query() (air-
flow.contrib.hooks.sqoop_hook.SqoopHook
method), 385

import_table() (air-
flow.contrib.hooks.sqoop_hook.SqoopHook
method), 386

init_on_load() (airflow.models.TaskInstance
method), 332

init_run_context() (airflow.models.TaskInstance
method), 332

insert_bucket_acl() (air-
flow.contrib.hooks.gcs_hook.GoogleCloudStorageHook
method), 219, 365

insert_instance_template() (air-
flow.contrib.hooks.gcp_compute_hook.GceHook
method), 185

insert_many() (air-
flow.contrib.hooks.mongo_hook.MongoHook
method), 369

insert_object_acl() (air-
flow.contrib.hooks.gcs_hook.GoogleCloudStorageHook
method), 219, 365

insert_one() (airflow.contrib.hooks.mongo_hook.MongoHook
method), 369

insert_rows() (air-
flow.contrib.hooks.bigquery_hook.BigQueryHook
method), 170, 353

insert_rows() (air-
flow.contrib.hooks.pinot_hook.PinotDbApiHook
method), 371

insert_rows() (air-
flow.hooks.dbapi_hook.DbApiHook method),
336

insert_rows() (air-
flow.hooks.druid_hook.DruidDbApiHook
method), 342

insert_rows() (air-
flow.hooks.presto_hook.PrestoHook method),
345

IntervalCheckOperator (class in air-
flow.operators.check_operator), 242

InvalidFernetToken, 330
invoke_lambda() (air-

flow.contrib.hooks.aws_lambda_hook.AwsLambdaHook
method), 149, 352

is_eligible_to_retry() (air-
flow.models.TaskInstance method), 332

is_fixed_time_schedule() (air-
flow.models.DAG method), 326

is_paused (airflow.models.DAG attribute), 326
is_premature (airflow.models.TaskInstance at-

tribute), 332
is_updated_after() (air-

flow.contrib.hooks.gcs_hook.GoogleCloudStorageHook
method), 219, 366

K
key (airflow.models.TaskInstance attribute), 332
kill() (airflow.contrib.hooks.qubole_hook.QuboleHook

method), 371
kill_zombies() (airflow.models.DagBag method),

328
KubeResourceVersion (class in airflow.models),

330
KubeWorkerIdentifier (class in airflow.models),

330

L
latest_execution_date (airflow.models.DAG at-

tribute), 326
LatestOnlyOperator (class in air-

flow.operators.latest_only_operator), 242
list() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook

method), 219, 366
list_directory() (air-

flow.contrib.hooks.ftp_hook.FTPHook method),
358

list_directory() (air-
flow.contrib.hooks.sftp_hook.SFTPHook
method), 379

Index 403

Airflow Documentation, Release 2.0.0.dev0+

list_keys() (airflow.hooks.S3_hook.S3Hook
method), 139, 347

list_prefixes() (airflow.hooks.S3_hook.S3Hook
method), 139, 347

list_versions() (air-
flow.contrib.hooks.gcp_mlengine_hook.MLEngineHook
method), 208, 361

load_bytes() (airflow.hooks.S3_hook.S3Hook
method), 139, 347

load_df() (airflow.hooks.hive_hooks.HiveCliHook
method), 337

load_file() (airflow.hooks.hive_hooks.HiveCliHook
method), 338

load_file() (airflow.hooks.S3_hook.S3Hook
method), 140, 347

load_file_obj() (airflow.hooks.S3_hook.S3Hook
method), 140, 347

load_string() (airflow.hooks.S3_hook.S3Hook
method), 140, 348

LocalExecutor (class in air-
flow.executors.local_executor), 387

Log (class in airflow.models), 330
log_stream() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook

method), 154, 376
lookup() (airflow.contrib.hooks.datastore_hook.DatastoreHook

method), 203, 356

M
make_query() (airflow.contrib.hooks.salesforce_hook.SalesforceHook

method), 377
max_partition() (air-

flow.hooks.hive_hooks.HiveMetastoreHook
method), 339

max_partition() (in module airflow.macros.hive),
318

MetastorePartitionSensor (class in air-
flow.sensors.metastore_partition_sensor),
253

MLEngineBatchPredictionOperator (class in
airflow.contrib.operators.mlengine_operator),
204, 287

MLEngineHook (class in air-
flow.contrib.hooks.gcp_mlengine_hook),
208, 360

MLEngineModelOperator (class in air-
flow.contrib.operators.mlengine_operator),
206, 288

MLEngineTrainingOperator (class in air-
flow.contrib.operators.mlengine_operator),
206, 289

MLEngineVersionOperator (class in air-
flow.contrib.operators.mlengine_operator),
207, 288

MongoHook (class in air-
flow.contrib.hooks.mongo_hook), 368

MongoToS3Operator (class in air-
flow.contrib.operators.mongo_to_s3), 290

MsSqlHook (class in airflow.hooks.mssql_hook), 343
MsSqlOperator (class in air-

flow.operators.mssql_operator), 242
MsSqlToHiveTransfer (class in air-

flow.operators.mssql_to_hive), 242
multi_stream_iter() (air-

flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 154, 376

MySqlHook (class in airflow.hooks.mysql_hook), 343
MySqlOperator (class in air-

flow.operators.mysql_operator), 243
MySqlToGoogleCloudStorageOperator (class

in airflow.contrib.operators.mysql_to_gcs),
216, 290

MySqlToHiveTransfer (class in air-
flow.operators.mysql_to_hive), 243

N
NamedHivePartitionSensor (class in air-

flow.sensors.named_hive_partition_sensor),
254

next_retry_datetime() (air-
flow.models.TaskInstance method), 332

normalize_schedule() (airflow.models.DAG
method), 326

NullFernet (class in airflow.models), 330

O
on_kill() (airflow.contrib.operators.aws_athena_operator.AWSAthenaOperator

method), 256
on_kill() (airflow.models.BaseOperator method),

234, 322
open_slots() (airflow.models.Pool method), 330
OpenFaasHook (class in air-

flow.contrib.hooks.openfaas_hook), 370

P
patch_database() (air-

flow.contrib.hooks.gcp_sql_hook.CloudSqlHook
method), 177

patch_instance() (air-
flow.contrib.hooks.gcp_sql_hook.CloudSqlHook
method), 177

patch_instance_group_manager() (air-
flow.contrib.hooks.gcp_compute_hook.GceHook
method), 185

PigCliHook (class in airflow.hooks.pig_hook), 344
PigOperator (class in air-

flow.operators.pig_operator), 243

404 Index

Airflow Documentation, Release 2.0.0.dev0+

PinotDbApiHook (class in air-
flow.contrib.hooks.pinot_hook), 370

poke() (airflow.contrib.sensors.aws_athena_sensor.AthenaSensor
method), 309

poke() (airflow.contrib.sensors.aws_glue_catalog_partition_sensor.AwsGlueCatalogPartitionSensor
method), 310

poke() (airflow.contrib.sensors.aws_redshift_cluster_sensor.AwsRedshiftClusterSensor
method), 146, 310

poke() (airflow.contrib.sensors.bash_sensor.BashSensor
method), 310

poke() (airflow.contrib.sensors.bigquery_sensor.BigQueryTableSensor
method), 311

poke() (airflow.contrib.sensors.cassandra_record_sensor.CassandraRecordSensor
method), 311

poke() (airflow.contrib.sensors.cassandra_table_sensor.CassandraTableSensor
method), 311

poke() (airflow.contrib.sensors.emr_base_sensor.EmrBaseSensor
method), 311

poke() (airflow.contrib.sensors.file_sensor.FileSensor
method), 312

poke() (airflow.contrib.sensors.ftp_sensor.FTPSensor
method), 312

poke() (airflow.contrib.sensors.gcs_sensor.GoogleCloudStorageObjectSensor
method), 312

poke() (airflow.contrib.sensors.gcs_sensor.GoogleCloudStorageObjectUpdatedSensor
method), 313

poke() (airflow.contrib.sensors.gcs_sensor.GoogleCloudStoragePrefixSensor
method), 313

poke() (airflow.contrib.sensors.hdfs_sensor.HdfsSensorFolder
method), 313

poke() (airflow.contrib.sensors.hdfs_sensor.HdfsSensorRegex
method), 313

poke() (airflow.contrib.sensors.imap_attachment_sensor.ImapAttachmentSensor
method), 314

poke() (airflow.contrib.sensors.pubsub_sensor.PubSubPullSensor
method), 314

poke() (airflow.contrib.sensors.python_sensor.PythonSensor
method), 314

poke() (airflow.contrib.sensors.qubole_sensor.QuboleSensor
method), 315

poke() (airflow.contrib.sensors.sagemaker_base_sensor.SageMakerBaseSensor
method), 315

poke() (airflow.contrib.sensors.sftp_sensor.SFTPSensor
method), 315

poke() (airflow.contrib.sensors.weekday_sensor.DayOfWeekSensor
method), 316

poke() (airflow.sensors.base_sensor_operator.BaseSensorOperator
method), 235

poke() (airflow.sensors.external_task_sensor.ExternalTaskSensor
method), 252

poke() (airflow.sensors.hdfs_sensor.HdfsSensor
method), 252

poke() (airflow.sensors.hive_partition_sensor.HivePartitionSensor
method), 253

poke() (airflow.sensors.http_sensor.HttpSensor
method), 253

poke() (airflow.sensors.metastore_partition_sensor.MetastorePartitionSensor
method), 253

poke() (airflow.sensors.named_hive_partition_sensor.NamedHivePartitionSensor
method), 254

poke() (airflow.sensors.s3_key_sensor.S3KeySensor
method), 254

poke() (airflow.sensors.s3_prefix_sensor.S3PrefixSensor
method), 255

poke() (airflow.sensors.sql_sensor.SqlSensor method),
255

poke() (airflow.sensors.time_delta_sensor.TimeDeltaSensor
method), 255

poke() (airflow.sensors.time_sensor.TimeSensor
method), 255

poke() (airflow.sensors.web_hdfs_sensor.WebHdfsSensor
method), 255

poll_operation_until_done() (air-
flow.contrib.hooks.datastore_hook.DatastoreHook
method), 204, 356

poll_query_status() (air-
flow.contrib.hooks.aws_athena_hook.AWSAthenaHook
method), 349

Pool (class in airflow.models), 330
pool_full() (airflow.models.TaskInstance method),

333
Popen() (airflow.contrib.hooks.sqoop_hook.SqoopHook

method), 385
post_execute() (airflow.models.BaseOperator

method), 234, 322
PostgresHook (class in airflow.hooks.postgres_hook),

344
PostgresOperator (class in air-

flow.operators.postgres_operator), 244
PostgresToGoogleCloudStorageOperator

(class in air-
flow.contrib.operators.postgres_to_gcs_operator),
291

pre_execute() (airflow.models.BaseOperator
method), 234, 322

prepare_request() (air-
flow.contrib.operators.hipchat_operator.HipChatAPIOperator
method), 286

prepare_request() (air-
flow.contrib.operators.hipchat_operator.HipChatAPISendRoomNotificationOperator
method), 286

prepare_template() (air-
flow.models.BaseOperator method), 234,
322

PrestoCheckOperator (class in air-
flow.operators.presto_check_operator), 244

PrestoHook (class in airflow.hooks.presto_hook), 344
PrestoIntervalCheckOperator (class in air-

Index 405

Airflow Documentation, Release 2.0.0.dev0+

flow.operators.presto_check_operator), 245
PrestoToMySqlTransfer (class in air-

flow.operators.presto_to_mysql), 245
PrestoValueCheckOperator (class in air-

flow.operators.presto_check_operator), 245
previous_schedule() (airflow.models.DAG

method), 326
previous_ti (airflow.models.TaskInstance attribute),

333
process_file() (airflow.models.DagBag method),

328
publish() (airflow.contrib.hooks.gcp_pubsub_hook.PubSubHook

method), 363
publish_to_target() (air-

flow.contrib.hooks.aws_sns_hook.AwsSnsHook
method), 352

PubSubHook (class in air-
flow.contrib.hooks.gcp_pubsub_hook), 361

PubSubPublishOperator (class in air-
flow.contrib.operators.pubsub_operator),
293

PubSubPullSensor (class in air-
flow.contrib.sensors.pubsub_sensor), 314

PubSubSubscriptionCreateOperator (class
in airflow.contrib.operators.pubsub_operator),
292

PubSubSubscriptionDeleteOperator (class
in airflow.contrib.operators.pubsub_operator),
293

PubSubTopicCreateOperator (class in air-
flow.contrib.operators.pubsub_operator),
291

PubSubTopicDeleteOperator (class in air-
flow.contrib.operators.pubsub_operator),
291

pull() (airflow.contrib.hooks.gcp_pubsub_hook.PubSubHook
method), 363

put_records() (air-
flow.contrib.hooks.aws_firehose_hook.AwsFirehoseHook
method), 150, 350

PythonOperator (class in air-
flow.operators.python_operator), 245

PythonSensor (class in air-
flow.contrib.sensors.python_sensor), 314

PythonVirtualenvOperator (class in air-
flow.operators.python_operator), 246

Q
QuboleCheckOperator (class in air-

flow.contrib.operators.qubole_check_operator),
225, 293

QuboleFileSensor (class in air-
flow.contrib.sensors.qubole_sensor), 224

QuboleHook (class in air-
flow.contrib.hooks.qubole_hook), 371

QuboleOperator (class in air-
flow.contrib.operators.qubole_operator),
221, 295

QubolePartitionSensor (class in air-
flow.contrib.sensors.qubole_sensor), 224

QuboleSensor (class in air-
flow.contrib.sensors.qubole_sensor), 315

QuboleValueCheckOperator (class in air-
flow.contrib.operators.qubole_check_operator),
225, 294

queued_slots() (airflow.models.Pool method), 330

R
random() (in module airflow.macros), 318
read_key() (airflow.hooks.S3_hook.S3Hook method),

141, 348
ready_for_retry() (airflow.models.TaskInstance

method), 333
record_exists() (air-

flow.contrib.hooks.cassandra_hook.CassandraHook
method), 354

RedshiftHook (class in air-
flow.contrib.hooks.redshift_hook), 146, 372

RedshiftToS3Transfer (class in air-
flow.operators.redshift_to_s3_operator),
147, 251

refresh_from_db() (airflow.models.DagRun
method), 330

refresh_from_db() (airflow.models.TaskInstance
method), 333

rename() (airflow.contrib.hooks.ftp_hook.FTPHook
method), 358

render_template() (airflow.models.BaseOperator
method), 234, 322

render_template_from_field() (air-
flow.models.BaseOperator method), 235,
322

replace_many() (air-
flow.contrib.hooks.mongo_hook.MongoHook
method), 369

replace_one() (air-
flow.contrib.hooks.mongo_hook.MongoHook
method), 369

reserve_free_tcp_port() (air-
flow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook
method), 179

restore_from_cluster_snapshot() (air-
flow.contrib.hooks.redshift_hook.RedshiftHook
method), 147, 372

retrieve_connection() (air-
flow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook
method), 179

406 Index

Airflow Documentation, Release 2.0.0.dev0+

retrieve_file() (air-
flow.contrib.hooks.ftp_hook.FTPHook method),
358

retrieve_file() (air-
flow.contrib.hooks.sftp_hook.SFTPHook
method), 379

retrieve_mail_attachments() (air-
flow.contrib.hooks.imap_hook.ImapHook
method), 368

rewrite() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook
method), 220, 366

rollback() (airflow.contrib.hooks.datastore_hook.DatastoreHook
method), 204, 356

run() (airflow.hooks.dbapi_hook.DbApiHook method),
336

run() (airflow.hooks.http_hook.HttpHook method), 341
run() (airflow.hooks.presto_hook.PrestoHook method),

345
run() (airflow.models.BaseOperator method), 235, 322
run() (airflow.models.DAG method), 326
run_and_check() (air-

flow.hooks.http_hook.HttpHook method),
341

run_cli() (airflow.hooks.hive_hooks.HiveCliHook
method), 338

run_cli() (airflow.hooks.pig_hook.PigCliHook
method), 344

run_now() (airflow.contrib.hooks.databricks_hook.DatabricksHook
method), 355

run_query() (airflow.contrib.hooks.aws_athena_hook.AWSAthenaHook
method), 349

run_query() (airflow.contrib.hooks.datastore_hook.DatastoreHook
method), 204, 356

run_query() (airflow.contrib.hooks.spark_sql_hook.SparkSqlHook
method), 382

run_with_advanced_retry() (air-
flow.hooks.http_hook.HttpHook method),
341

S
S3CopyObjectOperator (class in air-

flow.contrib.operators.s3_copy_object_operator),
297

S3DeleteObjectsOperator (class in air-
flow.contrib.operators.s3_delete_objects_operator),
298

S3FileTransformOperator (class in air-
flow.operators.s3_file_transform_operator),
141, 246

S3Hook (class in airflow.hooks.S3_hook), 137, 345
S3KeySensor (class in airflow.sensors.s3_key_sensor),

254
S3ListOperator (class in air-

flow.contrib.operators.s3_list_operator),

142, 298
S3PrefixSensor (class in air-

flow.sensors.s3_prefix_sensor), 254
S3ToGoogleCloudStorageOperator (class in

airflow.contrib.operators.s3_to_gcs_operator),
143, 299

S3ToGoogleCloudStorageTransferOperator
(class in air-
flow.contrib.operators.s3_to_gcs_transfer_operator),
300

S3ToHiveTransfer (class in air-
flow.operators.s3_to_hive_operator), 143,
247

S3ToRedshiftTransfer (class in air-
flow.operators.s3_to_redshift_operator),
147, 248

SageMakerBaseOperator (class in air-
flow.contrib.operators.sagemaker_base_operator),
301

SageMakerBaseSensor (class in air-
flow.contrib.sensors.sagemaker_base_sensor),
315

SageMakerEndpointConfigOperator
(class in air-
flow.contrib.operators.sagemaker_endpoint_config_operator),
157, 302

SageMakerEndpointOperator (class in air-
flow.contrib.operators.sagemaker_endpoint_operator),
157, 301

SageMakerEndpointSensor (class in air-
flow.contrib.sensors.sagemaker_endpoint_sensor),
315

SageMakerHook (class in air-
flow.contrib.hooks.sagemaker_hook), 150,
372

SageMakerModelOperator (class in air-
flow.contrib.operators.sagemaker_model_operator),
156, 302

SageMakerTrainingOperator (class in air-
flow.contrib.operators.sagemaker_training_operator),
155, 302

SageMakerTrainingSensor (class in air-
flow.contrib.sensors.sagemaker_training_sensor),
315

SageMakerTransformOperator (class in air-
flow.contrib.operators.sagemaker_transform_operator),
156, 303

SageMakerTransformSensor (class in air-
flow.contrib.sensors.sagemaker_transform_sensor),
315

SageMakerTuningOperator (class in air-
flow.contrib.operators.sagemaker_tuning_operator),
155, 303

SageMakerTuningSensor (class in air-

Index 407

Airflow Documentation, Release 2.0.0.dev0+

flow.contrib.sensors.sagemaker_tuning_sensor),
315

SalesforceHook (class in air-
flow.contrib.hooks.salesforce_hook), 377

schedule_interval (airflow.models.BaseOperator
attribute), 235, 322

select_key() (airflow.hooks.S3_hook.S3Hook
method), 141, 348

SequentialExecutor (class in air-
flow.executors.sequential_executor), 387

set() (airflow.models.XCom class method), 334
set_autocommit() (air-

flow.contrib.hooks.pinot_hook.PinotDbApiHook
method), 371

set_autocommit() (air-
flow.hooks.dbapi_hook.DbApiHook method),
337

set_autocommit() (air-
flow.hooks.druid_hook.DruidDbApiHook
method), 342

set_autocommit() (air-
flow.hooks.mssql_hook.MsSqlHook method),
343

set_autocommit() (air-
flow.hooks.mysql_hook.MySqlHook method),
344

set_default_version() (air-
flow.contrib.hooks.gcp_mlengine_hook.MLEngineHook
method), 208, 361

set_dependency() (airflow.models.DAG method),
327

set_downstream() (airflow.models.BaseOperator
method), 235, 322

set_machine_type() (air-
flow.contrib.hooks.gcp_compute_hook.GceHook
method), 185

set_upstream() (airflow.models.BaseOperator
method), 235, 322

setdefault() (airflow.models.Variable class
method), 334

SFTPHook (class in airflow.contrib.hooks.sftp_hook),
378

SFTPOperator (class in air-
flow.contrib.operators.sftp_operator), 304

SFTPSensor (class in air-
flow.contrib.sensors.sftp_sensor), 315

ShortCircuitOperator (class in air-
flow.operators.python_operator), 248

shutdown_cluster() (air-
flow.contrib.hooks.cassandra_hook.CassandraHook
method), 354

sign_in() (airflow.contrib.hooks.salesforce_hook.SalesforceHook
method), 377

SimpleHttpOperator (class in air-

flow.operators.http_operator), 249
size() (airflow.models.DagBag method), 328
SlackAPIOperator (class in air-

flow.operators.slack_operator), 249
SlackAPIPostOperator (class in air-

flow.operators.slack_operator), 250
SlackHook (class in airflow.hooks.slack_hook), 349
SlackWebhookHook (class in air-

flow.contrib.hooks.slack_webhook_hook),
379

SlackWebhookOperator (class in air-
flow.contrib.operators.slack_webhook_operator),
304

SlaMiss (class in airflow.models), 330
SnsPublishOperator (class in air-

flow.contrib.operators.sns_publish_operator),
305

SparkJDBCHook (class in air-
flow.contrib.hooks.spark_jdbc_hook), 380

SparkJDBCOperator (class in air-
flow.contrib.operators.spark_jdbc_operator),
305

SparkSqlHook (class in air-
flow.contrib.hooks.spark_sql_hook), 382

SparkSqlOperator (class in air-
flow.contrib.operators.spark_sql_operator),
306

SparkSubmitHook (class in air-
flow.contrib.hooks.spark_submit_hook), 382

SparkSubmitOperator (class in air-
flow.contrib.operators.spark_submit_operator),
307

SqliteHook (class in airflow.hooks.sqlite_hook), 349
SqliteOperator (class in air-

flow.operators.sqlite_operator), 250
SqlSensor (class in airflow.sensors.sql_sensor), 255
SqoopHook (class in air-

flow.contrib.hooks.sqoop_hook), 384
SqoopOperator (class in air-

flow.contrib.operators.sqoop_operator),
308

SSHHook (class in airflow.contrib.hooks.ssh_hook), 386
SSHOperator (class in air-

flow.contrib.operators.ssh_operator), 308
start() (airflow.executors.local_executor.LocalExecutor

method), 387
start_instance() (air-

flow.contrib.hooks.gcp_compute_hook.GceHook
method), 186

start_proxy() (air-
flow.contrib.hooks.gcp_sql_hook.CloudSqlProxyRunner
method), 180

stop_instance() (air-
flow.contrib.hooks.gcp_compute_hook.GceHook

408 Index

Airflow Documentation, Release 2.0.0.dev0+

method), 186
stop_proxy() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlProxyRunner

method), 180
stop_query() (airflow.contrib.hooks.aws_athena_hook.AWSAthenaHook

method), 350
store_file() (airflow.contrib.hooks.ftp_hook.FTPHook

method), 359
store_file() (airflow.contrib.hooks.sftp_hook.SFTPHook

method), 379
sub_dag() (airflow.models.DAG method), 327
SubDagOperator (class in air-

flow.operators.subdag_operator), 250
subdags (airflow.models.DAG attribute), 327
submit() (airflow.contrib.hooks.spark_submit_hook.SparkSubmitHook

method), 384
submit_run() (airflow.contrib.hooks.databricks_hook.DatabricksHook

method), 355
sync() (airflow.executors.local_executor.LocalExecutor

method), 387
sync() (airflow.executors.sequential_executor.SequentialExecutor

method), 388
sync_to_db() (airflow.models.DAG method), 327

T
table_exists() (air-

flow.contrib.hooks.bigquery_hook.BigQueryHook
method), 170, 353

table_exists() (air-
flow.contrib.hooks.cassandra_hook.CassandraHook
method), 354

table_exists() (air-
flow.hooks.hive_hooks.HiveMetastoreHook
method), 340

tar_and_s3_upload() (air-
flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 154, 376

TaskFail (class in airflow.models), 330
TaskInstance (class in airflow.models), 331
TaskReschedule (class in airflow.models), 334
template_fields (air-

flow.contrib.sensors.ftp_sensor.FTPSensor
attribute), 312

test_cycle() (airflow.models.DAG method), 327
test_hql() (airflow.hooks.hive_hooks.HiveCliHook

method), 338
TimeDeltaSensor (class in air-

flow.sensors.time_delta_sensor), 255
TimeSensor (class in airflow.sensors.time_sensor),

255
to_csv() (airflow.hooks.hive_hooks.HiveServer2Hook

method), 340
topological_sort() (airflow.models.DAG

method), 327

transform() (airflow.contrib.operators.mongo_to_s3.MongoToS3Operator
static method), 290

tree_view() (airflow.models.DAG method), 327
TriggerDagRunOperator (class in air-

flow.operators.dagrun_operator), 250
try_number (airflow.models.TaskInstance attribute),

333
type_map() (airflow.contrib.operators.mysql_to_gcs.MySqlToGoogleCloudStorageOperator

class method), 217, 291
type_map() (airflow.contrib.operators.postgres_to_gcs_operator.PostgresToGoogleCloudStorageOperator

class method), 291

U
update_endpoint() (air-

flow.contrib.hooks.sagemaker_hook.SageMakerHook
method), 154, 377

update_function() (air-
flow.contrib.hooks.gcp_function_hook.GcfHook
method), 188

update_many() (air-
flow.contrib.hooks.mongo_hook.MongoHook
method), 370

update_one() (airflow.contrib.hooks.mongo_hook.MongoHook
method), 370

update_state() (airflow.models.DagRun method),
330

upload() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook
method), 220, 366

upload_function_zip() (air-
flow.contrib.hooks.gcp_function_hook.GcfHook
method), 188

upstream_list (airflow.models.BaseOperator
attribute), 235, 322

used_slots() (airflow.models.Pool method), 330
User (class in airflow.models), 334

V
ValueCheckOperator (class in air-

flow.operators.check_operator), 251
Variable (class in airflow.models), 334
verify_integrity() (airflow.models.DagRun

method), 330
VerticaHook (class in air-

flow.contrib.hooks.vertica_hook), 387
VerticaOperator (class in air-

flow.contrib.operators.vertica_operator),
308

VerticaToHiveTransfer (class in air-
flow.contrib.operators.vertica_to_hive), 308

W
wait() (airflow.contrib.hooks.gcp_dataproc_hook.DataProcHook

method), 360

Index 409

Airflow Documentation, Release 2.0.0.dev0+

WebHdfsSensor (class in air-
flow.sensors.web_hdfs_sensor), 255

write_batch_data() (air-
flow.contrib.hooks.aws_dynamodb_hook.AwsDynamoDBHook
method), 149, 350

write_object_to_file() (air-
flow.contrib.hooks.salesforce_hook.SalesforceHook
method), 377

X
XCom (class in airflow.models), 334
xcom_pull() (airflow.models.BaseOperator method),

235, 322
xcom_pull() (airflow.models.TaskInstance method),

333
xcom_push() (airflow.models.BaseOperator method),

235, 323
xcom_push() (airflow.models.TaskInstance method),

333

410 Index

	Principles
	Beyond the Horizon
	Content
	Project
	History
	Committers
	Resources & links
	Roadmap

	License
	Quick Start
	What’s Next?

	Installation
	Getting Airflow
	Extra Packages
	Initiating Airflow Database

	Tutorial
	Example Pipeline definition
	It’s a DAG definition file
	Importing Modules
	Default Arguments
	Instantiate a DAG
	Tasks
	Templating with Jinja
	Setting up Dependencies
	Recap
	Testing
	Running the Script
	Command Line Metadata Validation
	Testing
	Backfill

	What’s Next?

	How-to Guides
	Add a new role in RBAC UI
	Setting Configuration Options
	Initializing a Database Backend
	Using Operators
	BashOperator
	PythonOperator
	Google Cloud Storage Operators
	Google Compute Engine Operators
	Google Cloud Bigtable Operators
	Google Cloud Functions Operators
	Google Cloud Spanner Operators
	Google Cloud Sql Operators
	Google Cloud Storage Operators

	Managing Connections
	Creating a Connection with the UI
	Editing a Connection with the UI
	Creating a Connection with Environment Variables
	Connection Types

	Securing Connections
	Writing Logs
	Writing Logs Locally
	Writing Logs to Amazon S3
	Writing Logs to Azure Blob Storage
	Writing Logs to Google Cloud Storage

	Scaling Out with Celery
	Scaling Out with Dask
	Scaling Out with Mesos (community contributed)
	Tasks executed directly on mesos slaves
	Tasks executed in containers on mesos slaves

	Running Airflow with systemd
	Running Airflow with upstart
	Using the Test Mode Configuration
	Checking Airflow Health Status

	UI / Screenshots
	DAGs View
	Tree View
	Graph View
	Variable View
	Gantt Chart
	Task Duration
	Code View
	Task Instance Context Menu

	Concepts
	Core Ideas
	DAGs
	Operators
	Tasks
	Task Instances
	Workflows

	Additional Functionality
	Hooks
	Pools
	Connections
	Queues
	XComs
	Variables
	Branching
	SubDAGs
	SLAs
	Trigger Rules
	Latest Run Only
	Zombies & Undeads
	Cluster Policy
	Documentation & Notes
	Jinja Templating

	Packaged dags
	.airflowignore

	Data Profiling
	Adhoc Queries
	Charts
	Chart Screenshot
	Chart Form Screenshot

	Command Line Interface
	Positional Arguments
	Sub-commands:
	resetdb
	render
	variables
	connections
	users
	pause
	sync_perm
	task_failed_deps
	version
	trigger_dag
	initdb
	test
	unpause
	list_dag_runs
	dag_state
	run
	list_tasks
	backfill
	list_dags
	kerberos
	worker
	webserver
	flower
	scheduler
	task_state
	pool
	serve_logs
	clear
	next_execution
	upgradedb
	delete_dag

	Scheduling & Triggers
	DAG Runs
	Backfill and Catchup
	External Triggers
	To Keep in Mind

	Plugins
	What for?
	Why build on top of Airflow?
	Interface
	Example
	Note on role based views
	Plugins as Python packages

	Security
	Reporting Vulnerabilities
	Web Authentication
	Password
	LDAP
	Roll your own

	Multi-tenancy
	Kerberos
	Limitations
	Enabling kerberos
	Using kerberos authentication

	OAuth Authentication
	GitHub Enterprise (GHE) Authentication
	Google Authentication

	SSL
	Impersonation
	Default Impersonation

	Flower Authentication

	Time zones
	Concepts
	Naïve and aware datetime objects
	Interpretation of naive datetime objects
	Default time zone

	Time zone aware DAGs
	Templates
	Cron schedules
	Time deltas

	Experimental Rest API
	Endpoints
	CLI
	Authentication

	Integration
	Reverse Proxy
	Azure: Microsoft Azure
	Azure Blob Storage
	Azure File Share
	Logging
	Azure CosmosDB
	Azure Data Lake
	Azure Container Instances

	AWS: Amazon Web Services
	AWS EMR
	AWS S3
	AWS EC2 Container Service
	AWS Batch Service
	AWS RedShift
	AWS DynamoDB
	AWS Lambda
	AWS Kinesis
	Amazon SageMaker

	Databricks
	DatabricksSubmitRunOperator

	GCP: Google Cloud Platform
	Logging
	GoogleCloudBaseHook
	BigQuery
	Cloud Spanner
	Cloud SQL
	Cloud Bigtable
	Compute Engine
	Cloud Functions
	Cloud DataFlow
	Cloud DataProc
	Cloud Datastore
	Cloud ML Engine
	Cloud Storage
	Google Kubernetes Engine

	Qubole
	QuboleOperator
	QubolePartitionSensor
	QuboleFileSensor
	QuboleCheckOperator
	QuboleValueCheckOperator

	Metrics
	Configuration
	Counters
	Gauges
	Timers

	Lineage
	Apache Atlas

	FAQ
	Why isn’t my task getting scheduled?
	How do I trigger tasks based on another task’s failure?
	Why are connection passwords still not encrypted in the metadata db after I installed airflow[crypto]?
	What’s the deal with start_date?
	How can I create DAGs dynamically?
	What are all the airflow run commands in my process list?
	How can my airflow dag run faster?
	How can we reduce the airflow UI page load time?
	How to fix Exception: Global variable explicit_defaults_for_timestamp needs to be on (1)?
	How to reduce airflow dag scheduling latency in production?

	API Reference
	Operators
	BaseOperator
	BaseSensorOperator
	Core Operators
	Community-contributed Operators

	Macros
	Default Variables
	Macros

	Models
	Hooks
	Community contributed hooks

	Executors
	Community-contributed executors

	HTTP Routing Table
	Python Module Index

