

 [image: _images/pin_large.png]

Apache Airflow Documentation

Airflow is a platform to programmatically author, schedule and monitor
workflows.

Use airflow to author workflows as directed acyclic graphs (DAGs) of tasks.
The airflow scheduler executes your tasks on an array of workers while
following the specified dependencies. Rich command line utilities make
performing complex surgeries on DAGs a snap. The rich user interface
makes it easy to visualize pipelines running in production,
monitor progress, and troubleshoot issues when needed.

When workflows are defined as code, they become more maintainable,
versionable, testable, and collaborative.

[image: _images/airflow.gif]

Principles

	Dynamic: Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This allows for writing code that instantiates pipelines dynamically.

	Extensible: Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.

	Elegant: Airflow pipelines are lean and explicit. Parameterizing your scripts is built into the core of Airflow using the powerful Jinja templating engine.

	Scalable: Airflow has a modular architecture and uses a message queue to orchestrate an arbitrary number of workers. Airflow is ready to scale to infinity.

Beyond the Horizon

Airflow is not a data streaming solution. Tasks do not move data from
one to the other (though tasks can exchange metadata!). Airflow is not
in the Spark Streaming [http://spark.apache.org/streaming/]
or Storm [https://storm.apache.org/] space, it is more comparable to
Oozie [http://oozie.apache.org/] or
Azkaban [http://data.linkedin.com/opensource/azkaban].

Workflows are expected to be mostly static or slowly changing. You can think
of the structure of the tasks in your workflow as slightly more dynamic
than a database structure would be. Airflow workflows are expected to look
similar from a run to the next, this allows for clarity around
unit of work and continuity.

Content

	Project
	History

	Committers

	Resources & links

	Roadmap

	License

	Quick Start
	What’s Next?

	Installation
	Getting Airflow

	Extra Packages

	Initiating Airflow Database

	Tutorial
	Example Pipeline definition

	It’s a DAG definition file

	Importing Modules

	Default Arguments

	Instantiate a DAG

	Tasks

	Templating with Jinja

	Setting up Dependencies

	Recap

	Testing
	Running the Script

	Command Line Metadata Validation

	Testing

	Backfill

	What’s Next?

	How-to Guides
	Add a new role in RBAC UI

	Setting Configuration Options

	Initializing a Database Backend

	Using Operators
	BashOperator
	Templating

	Troubleshooting

	PythonOperator
	Passing in arguments

	Templating

	Google Cloud Storage Operators
	GoogleCloudStorageToBigQueryOperator

	Google Compute Engine Operators
	GceInstanceStartOperator

	GceInstanceStopOperator

	GceSetMachineTypeOperator

	GceInstanceTemplateCopyOperator

	GceInstanceGroupManagerUpdateTemplateOperator

	Google Cloud Bigtable Operators
	BigtableInstanceCreateOperator

	BigtableInstanceDeleteOperator

	BigtableClusterUpdateOperator

	BigtableTableCreateOperator

	BigtableTableDeleteOperator

	BigtableTableWaitForReplicationSensor

	Google Cloud Functions Operators
	GcfFunctionDeleteOperator

	GcfFunctionDeployOperator

	Google Cloud Spanner Operators
	CloudSpannerInstanceDatabaseDeleteOperator

	CloudSpannerInstanceDatabaseDeployOperator

	CloudSpannerInstanceDatabaseUpdateOperator

	CloudSpannerInstanceDatabaseQueryOperator

	CloudSpannerInstanceDeleteOperator

	Google Cloud Sql Operators
	CloudSqlInstanceDatabaseCreateOperator

	CloudSqlInstanceDatabaseDeleteOperator

	CloudSqlInstanceDatabasePatchOperator

	CloudSqlInstanceDeleteOperator

	CloudSqlInstanceExportOperator

	CloudSqlInstanceImportOperator

	CloudSqlInstanceCreateOperator

	CloudSqlInstancePatchOperator

	CloudSqlQueryOperator

	Google Cloud Storage Operators
	GoogleCloudStorageBucketCreateAclEntryOperator

	GoogleCloudStorageObjectCreateAclEntryOperator

	Managing Connections
	Creating a Connection with the UI

	Editing a Connection with the UI

	Creating a Connection with Environment Variables

	Connection Types
	Google Cloud Platform

	MySQL

	Postgres

	Cloudsql

	SSH

	Securing Connections

	Writing Logs
	Writing Logs Locally

	Writing Logs to Amazon S3
	Before you begin

	Enabling remote logging

	Writing Logs to Azure Blob Storage

	Writing Logs to Google Cloud Storage

	Scaling Out with Celery

	Scaling Out with Dask

	Scaling Out with Mesos (community contributed)
	Tasks executed directly on mesos slaves

	Tasks executed in containers on mesos slaves

	Running Airflow with systemd

	Running Airflow with upstart

	Using the Test Mode Configuration

	Checking Airflow Health Status

	UI / Screenshots
	DAGs View

	Tree View

	Graph View

	Variable View

	Gantt Chart

	Task Duration

	Code View

	Task Instance Context Menu

	Concepts
	Core Ideas
	DAGs
	Scope

	Default Arguments

	Context Manager

	Operators
	DAG Assignment

	Bitshift Composition

	Tasks

	Task Instances

	Workflows

	Additional Functionality
	Hooks

	Pools

	Connections

	Queues

	XComs

	Variables

	Branching

	SubDAGs

	SLAs

	Trigger Rules

	Latest Run Only

	Zombies & Undeads

	Cluster Policy

	Documentation & Notes

	Jinja Templating

	Packaged dags

	.airflowignore

	Data Profiling
	Adhoc Queries

	Charts
	Chart Screenshot

	Chart Form Screenshot

	Command Line Interface
	Positional Arguments

	Sub-commands:
	resetdb
	Named Arguments

	render
	Positional Arguments

	Named Arguments

	variables
	Named Arguments

	connections
	Named Arguments

	users
	Named Arguments

	pause
	Positional Arguments

	Named Arguments

	sync_perm

	task_failed_deps
	Positional Arguments

	Named Arguments

	version

	trigger_dag
	Positional Arguments

	Named Arguments

	initdb

	test
	Positional Arguments

	Named Arguments

	unpause
	Positional Arguments

	Named Arguments

	list_dag_runs
	Positional Arguments

	Named Arguments

	dag_state
	Positional Arguments

	Named Arguments

	run
	Positional Arguments

	Named Arguments

	list_tasks
	Positional Arguments

	Named Arguments

	backfill
	Positional Arguments

	Named Arguments

	list_dags
	Named Arguments

	kerberos
	Positional Arguments

	Named Arguments

	worker
	Named Arguments

	webserver
	Named Arguments

	flower
	Named Arguments

	scheduler
	Named Arguments

	task_state
	Positional Arguments

	Named Arguments

	pool
	Named Arguments

	serve_logs

	clear
	Positional Arguments

	Named Arguments

	next_execution
	Positional Arguments

	Named Arguments

	upgradedb

	delete_dag
	Positional Arguments

	Named Arguments

	Scheduling & Triggers
	DAG Runs

	Backfill and Catchup

	External Triggers

	To Keep in Mind

	Plugins
	What for?

	Why build on top of Airflow?

	Interface

	Example

	Note on role based views

	Plugins as Python packages

	Security
	Reporting Vulnerabilities

	Web Authentication
	Password

	LDAP

	Roll your own

	Multi-tenancy

	Kerberos
	Limitations

	Enabling kerberos
	Airflow

	Hadoop

	Using kerberos authentication

	OAuth Authentication
	GitHub Enterprise (GHE) Authentication
	Setting up GHE Authentication

	Using GHE Authentication with github.com

	Google Authentication
	Setting up Google Authentication

	SSL

	Impersonation
	Default Impersonation

	Flower Authentication

	Time zones
	Concepts
	Naïve and aware datetime objects

	Interpretation of naive datetime objects

	Default time zone

	Time zone aware DAGs
	Templates

	Cron schedules

	Time deltas

	Experimental Rest API
	Endpoints

	CLI

	Authentication

	Integration
	Reverse Proxy

	Azure: Microsoft Azure
	Azure Blob Storage
	WasbBlobSensor

	WasbPrefixSensor

	FileToWasbOperator

	WasbHook

	Azure File Share
	AzureFileShareHook

	Logging

	Azure CosmosDB
	AzureCosmosDBHook

	AzureCosmosInsertDocumentOperator

	AzureCosmosDocumentSensor

	Azure Data Lake
	AzureDataLakeHook

	AzureDataLakeStorageListOperator

	AdlsToGoogleCloudStorageOperator

	Azure Container Instances
	AzureContainerInstancesOperator

	AzureContainerInstanceHook

	AzureContainerRegistryHook

	AzureContainerVolumeHook

	AWS: Amazon Web Services
	AWS EMR
	EmrAddStepsOperator

	EmrCreateJobFlowOperator

	EmrTerminateJobFlowOperator

	EmrHook

	AWS S3
	S3Hook

	S3FileTransformOperator

	S3ListOperator

	S3ToGoogleCloudStorageOperator

	S3ToGoogleCloudStorageTransferOperator

	S3ToHiveTransfer

	AWS EC2 Container Service
	ECSOperator

	AWS Batch Service
	AWSBatchOperator

	AWS RedShift
	AwsRedshiftClusterSensor

	RedshiftHook

	RedshiftToS3Transfer

	S3ToRedshiftTransfer

	AWS DynamoDB
	HiveToDynamoDBTransferOperator

	AwsDynamoDBHook

	AWS Lambda
	AwsLambdaHook

	AWS Kinesis
	AwsFirehoseHook

	Amazon SageMaker
	SageMakerHook

	SageMakerTrainingOperator

	SageMakerTuningOperator

	SageMakerModelOperator

	SageMakerTransformOperator

	SageMakerEndpointConfigOperator

	SageMakerEndpointOperator

	Databricks
	DatabricksSubmitRunOperator

	GCP: Google Cloud Platform
	Logging

	GoogleCloudBaseHook

	BigQuery
	BigQuery Operators

	BigQueryHook

	Cloud Spanner
	Cloud Spanner Operators

	CloudSpannerHook

	Cloud SQL
	Cloud SQL Operators

	Cloud SQL Hooks

	Cloud Bigtable
	Cloud Bigtable Operators

	Cloud Bigtable Hook

	Compute Engine
	Compute Engine Operators

	Compute Engine Hook

	Cloud Functions
	Cloud Functions Operators

	Cloud Functions Hook

	Cloud DataFlow
	DataFlow Operators

	DataFlowHook

	Cloud DataProc
	DataProc Operators

	Cloud Datastore
	Datastore Operators

	DatastoreHook

	Cloud ML Engine
	Cloud ML Engine Operators

	Cloud ML Engine Hook

	Cloud Storage
	Storage Operators

	GoogleCloudStorageHook

	GCPTransferServiceHook

	Google Kubernetes Engine
	Google Kubernetes Engine Cluster Operators

	Google Kubernetes Engine Hook

	Qubole
	QuboleOperator

	QubolePartitionSensor

	QuboleFileSensor

	QuboleCheckOperator

	QuboleValueCheckOperator

	Metrics
	Configuration

	Counters

	Gauges

	Timers

	Lineage
	Apache Atlas

	FAQ
	Why isn’t my task getting scheduled?

	How do I trigger tasks based on another task’s failure?

	Why are connection passwords still not encrypted in the metadata db after I installed airflow[crypto]?

	What’s the deal with start_date?

	How can I create DAGs dynamically?

	What are all the airflow run commands in my process list?

	How can my airflow dag run faster?

	How can we reduce the airflow UI page load time?

	How to fix Exception: Global variable explicit_defaults_for_timestamp needs to be on (1)?

	How to reduce airflow dag scheduling latency in production?

	API Reference
	Operators
	BaseOperator

	BaseSensorOperator

	Core Operators
	Operators

	Sensors

	Community-contributed Operators
	Operators

	Sensors

	Macros
	Default Variables

	Macros

	Models

	Hooks
	Community contributed hooks

	Executors
	Community-contributed executors

Project

History

Airflow was started in October 2014 by Maxime Beauchemin at Airbnb.
It was open source from the very first commit and officially brought under
the Airbnb Github and announced in June 2015.

The project joined the Apache Software Foundation’s incubation program in March 2016.

Committers

	@mistercrunch (Maxime “Max” Beauchemin)

	@r39132 (Siddharth “Sid” Anand)

	@criccomini (Chris Riccomini)

	@bolkedebruin (Bolke de Bruin)

	@artwr (Arthur Wiedmer)

	@jlowin (Jeremiah Lowin)

	@aoen (Dan Davydov)

	@msumit (Sumit Maheshwari)

	@alexvanboxel (Alex Van Boxel)

	@saguziel (Alex Guziel)

	@joygao (Joy Gao)

	@fokko (Fokko Driesprong)

	@ash (Ash Berlin-Taylor)

	@kaxilnaik (Kaxil Naik)

	@feng-tao (Tao Feng)

	@hiteshs (Hitesh Shah)

	@jghoman (Jakob Homan)

For the full list of contributors, take a look at Airflow’s Github
Contributor page: [https://github.com/apache/airflow/graphs/contributors]

Resources & links

	Airflow’s official documentation [http://airflow.apache.org/]

	Mailing list (send emails to
dev-subscribe@airflow.apache.org and/or
commits-subscribe@airflow.apache.org
to subscribe to each)

	Issues on Apache’s Jira [https://issues.apache.org/jira/browse/AIRFLOW]

	Slack (chat) Channel [https://apache-airflow-slack.herokuapp.com/]

	More resources and links to Airflow related content on the Wiki [https://cwiki.apache.org/confluence/display/AIRFLOW/Airflow+Links]

Roadmap

Please refer to the Roadmap on the wiki [https://cwiki.apache.org/confluence/display/AIRFLOW/Airflow+Home]

License

[image: _images/apache.jpg]
 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

Quick Start

The installation is quick and straightforward.

airflow needs a home, ~/airflow is the default,
but you can lay foundation somewhere else if you prefer
(optional)
export AIRFLOW_HOME=~/airflow

install from pypi using pip
pip install apache-airflow

initialize the database
airflow initdb

start the web server, default port is 8080
airflow webserver -p 8080

start the scheduler
airflow scheduler

visit localhost:8080 in the browser and enable the example dag in the home page

Upon running these commands, Airflow will create the $AIRFLOW_HOME folder
and lay an “airflow.cfg” file with defaults that get you going fast. You can
inspect the file either in $AIRFLOW_HOME/airflow.cfg, or through the UI in
the Admin->Configuration menu. The PID file for the webserver will be stored
in $AIRFLOW_HOME/airflow-webserver.pid or in /run/airflow/webserver.pid
if started by systemd.

Out of the box, Airflow uses a sqlite database, which you should outgrow
fairly quickly since no parallelization is possible using this database
backend. It works in conjunction with the SequentialExecutor which will
only run task instances sequentially. While this is very limiting, it allows
you to get up and running quickly and take a tour of the UI and the
command line utilities.

Here are a few commands that will trigger a few task instances. You should
be able to see the status of the jobs change in the example_bash_operator DAG as you
run the commands below.

run your first task instance
airflow run example_bash_operator runme_0 2015-01-01
run a backfill over 2 days
airflow backfill example_bash_operator -s 2015-01-01 -e 2015-01-02

What’s Next?

From this point, you can head to the Tutorial section for further examples or the How-to Guides section if you’re ready to get your hands dirty.

Installation

Getting Airflow

The easiest way to install the latest stable version of Airflow is with pip:

pip install apache-airflow

You can also install Airflow with support for extra features like s3 or postgres:

pip install apache-airflow[postgres,s3]

Extra Packages

The apache-airflow PyPI basic package only installs what’s needed to get started.
Subpackages can be installed depending on what will be useful in your
environment. For instance, if you don’t need connectivity with Postgres,
you won’t have to go through the trouble of installing the postgres-devel
yum package, or whatever equivalent applies on the distribution you are using.

Behind the scenes, Airflow does conditional imports of operators that require
these extra dependencies.

Here’s the list of the subpackages and what they enable:

	subpackage

	install command

	enables

	all

	pip install apache-airflow[all]

	All Airflow features known to man

	all_dbs

	pip install apache-airflow[all_dbs]

	All databases integrations

	async

	pip install apache-airflow[async]

	Async worker classes for Gunicorn

	celery

	pip install apache-airflow[celery]

	CeleryExecutor

	cloudant

	pip install apache-airflow[cloudant]

	Cloudant hook

	crypto

	pip install apache-airflow[crypto]

	Encrypt connection passwords in metadata db

	devel

	pip install apache-airflow[devel]

	Minimum dev tools requirements

	devel_hadoop

	pip install apache-airflow[devel_hadoop]

	Airflow + dependencies on the Hadoop stack

	druid

	pip install apache-airflow[druid]

	Druid related operators & hooks

	gcp_api

	pip install apache-airflow[gcp_api]

	Google Cloud Platform hooks and operators
(using google-api-python-client)

	github_enterprise

	pip install apache-airflow[github_enterprise]

	Github Enterprise auth backend

	google_auth

	pip install apache-airflow[google_auth]

	Google auth backend

	hdfs

	pip install apache-airflow[hdfs]

	HDFS hooks and operators

	hive

	pip install apache-airflow[hive]

	All Hive related operators

	jdbc

	pip install apache-airflow[jdbc]

	JDBC hooks and operators

	kerberos

	pip install apache-airflow[kerberos]

	Kerberos integration for Kerberized Hadoop

	kubernetes

	pip install apache-airflow[kubernetes]

	Kubernetes Executor and operator

	ldap

	pip install apache-airflow[ldap]

	LDAP authentication for users

	mssql

	pip install apache-airflow[mssql]

	Microsoft SQL Server operators and hook,
support as an Airflow backend

	mysql

	pip install apache-airflow[mysql]

	MySQL operators and hook, support as an Airflow
backend. The version of MySQL server has to be
5.6.4+. The exact version upper bound depends
on version of mysqlclient package. For
example, mysqlclient 1.3.12 can only be
used with MySQL server 5.6.4 through 5.7.

	password

	pip install apache-airflow[password]

	Password authentication for users

	postgres

	pip install apache-airflow[postgres]

	PostgreSQL operators and hook, support as an
Airflow backend

	qds

	pip install apache-airflow[qds]

	Enable QDS (Qubole Data Service) support

	rabbitmq

	pip install apache-airflow[rabbitmq]

	RabbitMQ support as a Celery backend

	redis

	pip install apache-airflow[redis]

	Redis hooks and sensors

	s3

	pip install apache-airflow[s3]

	S3KeySensor, S3PrefixSensor

	samba

	pip install apache-airflow[samba]

	Hive2SambaOperator

	slack

	pip install apache-airflow[slack]

	SlackAPIPostOperator

	ssh

	pip install apache-airflow[ssh]

	SSH hooks and Operator

	vertica

	pip install apache-airflow[vertica]

	Vertica hook support as an Airflow backend

Initiating Airflow Database

Airflow requires a database to be initiated before you can run tasks. If
you’re just experimenting and learning Airflow, you can stick with the
default SQLite option. If you don’t want to use SQLite, then take a look at
Initializing a Database Backend to setup a different database.

After configuration, you’ll need to initialize the database before you can
run tasks:

airflow initdb

Tutorial

This tutorial walks you through some of the fundamental Airflow concepts,
objects, and their usage while writing your first pipeline.

Example Pipeline definition

Here is an example of a basic pipeline definition. Do not worry if this looks
complicated, a line by line explanation follows below.

"""
Code that goes along with the Airflow tutorial located at:
https://github.com/apache/airflow/blob/master/airflow/example_dags/tutorial.py
"""
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta

default_args = {
 'owner': 'airflow',
 'depends_on_past': False,
 'start_date': datetime(2015, 6, 1),
 'email': ['airflow@example.com'],
 'email_on_failure': False,
 'email_on_retry': False,
 'retries': 1,
 'retry_delay': timedelta(minutes=5),
 # 'queue': 'bash_queue',
 # 'pool': 'backfill',
 # 'priority_weight': 10,
 # 'end_date': datetime(2016, 1, 1),
}

dag = DAG('tutorial', default_args=default_args, schedule_interval=timedelta(days=1))

t1, t2 and t3 are examples of tasks created by instantiating operators
t1 = BashOperator(
 task_id='print_date',
 bash_command='date',
 dag=dag)

t2 = BashOperator(
 task_id='sleep',
 bash_command='sleep 5',
 retries=3,
 dag=dag)

templated_command = """
 {% for i in range(5) %}
 echo "{{ ds }}"
 echo "{{ macros.ds_add(ds, 7)}}"
 echo "{{ params.my_param }}"
 {% endfor %}
"""

t3 = BashOperator(
 task_id='templated',
 bash_command=templated_command,
 params={'my_param': 'Parameter I passed in'},
 dag=dag)

t2.set_upstream(t1)
t3.set_upstream(t1)

It’s a DAG definition file

One thing to wrap your head around (it may not be very intuitive for everyone
at first) is that this Airflow Python script is really
just a configuration file specifying the DAG’s structure as code.
The actual tasks defined here will run in a different context from
the context of this script. Different tasks run on different workers
at different points in time, which means that this script cannot be used
to cross communicate between tasks. Note that for this
purpose we have a more advanced feature called XCom.

People sometimes think of the DAG definition file as a place where they
can do some actual data processing - that is not the case at all!
The script’s purpose is to define a DAG object. It needs to evaluate
quickly (seconds, not minutes) since the scheduler will execute it
periodically to reflect the changes if any.

Importing Modules

An Airflow pipeline is just a Python script that happens to define an
Airflow DAG object. Let’s start by importing the libraries we will need.

The DAG object; we'll need this to instantiate a DAG
from airflow import DAG

Operators; we need this to operate!
from airflow.operators.bash_operator import BashOperator

Default Arguments

We’re about to create a DAG and some tasks, and we have the choice to
explicitly pass a set of arguments to each task’s constructor
(which would become redundant), or (better!) we can define a dictionary
of default parameters that we can use when creating tasks.

from datetime import datetime, timedelta

default_args = {
 'owner': 'airflow',
 'depends_on_past': False,
 'start_date': datetime(2015, 6, 1),
 'email': ['airflow@example.com'],
 'email_on_failure': False,
 'email_on_retry': False,
 'retries': 1,
 'retry_delay': timedelta(minutes=5),
 # 'queue': 'bash_queue',
 # 'pool': 'backfill',
 # 'priority_weight': 10,
 # 'end_date': datetime(2016, 1, 1),
}

For more information about the BaseOperator’s parameters and what they do,
refer to the airflow.models.BaseOperator documentation.

Also, note that you could easily define different sets of arguments that
would serve different purposes. An example of that would be to have
different settings between a production and development environment.

Instantiate a DAG

We’ll need a DAG object to nest our tasks into. Here we pass a string
that defines the dag_id, which serves as a unique identifier for your DAG.
We also pass the default argument dictionary that we just defined and
define a schedule_interval of 1 day for the DAG.

dag = DAG(
 'tutorial', default_args=default_args, schedule_interval=timedelta(days=1))

Tasks

Tasks are generated when instantiating operator objects. An object
instantiated from an operator is called a constructor. The first argument
task_id acts as a unique identifier for the task.

t1 = BashOperator(
 task_id='print_date',
 bash_command='date',
 dag=dag)

t2 = BashOperator(
 task_id='sleep',
 bash_command='sleep 5',
 retries=3,
 dag=dag)

Notice how we pass a mix of operator specific arguments (bash_command) and
an argument common to all operators (retries) inherited
from BaseOperator to the operator’s constructor. This is simpler than
passing every argument for every constructor call. Also, notice that in
the second task we override the retries parameter with 3.

The precedence rules for a task are as follows:

	Explicitly passed arguments

	Values that exist in the default_args dictionary

	The operator’s default value, if one exists

A task must include or inherit the arguments task_id and owner,
otherwise Airflow will raise an exception.

Templating with Jinja

Airflow leverages the power of
Jinja Templating [http://jinja.pocoo.org/docs/dev/] and provides
the pipeline author
with a set of built-in parameters and macros. Airflow also provides
hooks for the pipeline author to define their own parameters, macros and
templates.

This tutorial barely scratches the surface of what you can do with
templating in Airflow, but the goal of this section is to let you know
this feature exists, get you familiar with double curly brackets, and
point to the most common template variable: {{ ds }} (today’s “date
stamp”).

templated_command = """
 {% for i in range(5) %}
 echo "{{ ds }}"
 echo "{{ macros.ds_add(ds, 7) }}"
 echo "{{ params.my_param }}"
 {% endfor %}
"""

t3 = BashOperator(
 task_id='templated',
 bash_command=templated_command,
 params={'my_param': 'Parameter I passed in'},
 dag=dag)

Notice that the templated_command contains code logic in {% %} blocks,
references parameters like {{ ds }}, calls a function as in
{{ macros.ds_add(ds, 7)}}, and references a user-defined parameter
in {{ params.my_param }}.

The params hook in BaseOperator allows you to pass a dictionary of
parameters and/or objects to your templates. Please take the time
to understand how the parameter my_param makes it through to the template.

Files can also be passed to the bash_command argument, like
bash_command='templated_command.sh', where the file location is relative to
the directory containing the pipeline file (tutorial.py in this case). This
may be desirable for many reasons, like separating your script’s logic and
pipeline code, allowing for proper code highlighting in files composed in
different languages, and general flexibility in structuring pipelines. It is
also possible to define your template_searchpath as pointing to any folder
locations in the DAG constructor call.

Using that same DAG constructor call, it is possible to define
user_defined_macros which allow you to specify your own variables.
For example, passing dict(foo='bar') to this argument allows you
to use {{ foo }} in your templates. Moreover, specifying
user_defined_filters allow you to register you own filters. For example,
passing dict(hello=lambda name: 'Hello %s' % name) to this argument allows
you to use {{ 'world' | hello }} in your templates. For more information
regarding custom filters have a look at the
Jinja Documentation [http://jinja.pocoo.org/docs/dev/api/#writing-filters]

For more information on the variables and macros that can be referenced
in templates, make sure to read through the Macros section

Setting up Dependencies

We have tasks t1, t2 and t3 that do not depend on each other. Here’s a few ways
you can define dependencies between them:

t1.set_downstream(t2)

This means that t2 will depend on t1
running successfully to run.
It is equivalent to:
t2.set_upstream(t1)

The bit shift operator can also be
used to chain operations:
t1 >> t2

And the upstream dependency with the
bit shift operator:
t2 << t1

Chaining multiple dependencies becomes
concise with the bit shift operator:
t1 >> t2 >> t3

A list of tasks can also be set as
dependencies. These operations
all have the same effect:
t1.set_downstream([t2, t3])
t1 >> [t2, t3]
[t2, t3] << t1

Note that when executing your script, Airflow will raise exceptions when
it finds cycles in your DAG or when a dependency is referenced more
than once.

Recap

Alright, so we have a pretty basic DAG. At this point your code should look
something like this:

"""
Code that goes along with the Airflow tutorial located at:
https://github.com/apache/airflow/blob/master/airflow/example_dags/tutorial.py
"""
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta

default_args = {
 'owner': 'airflow',
 'depends_on_past': False,
 'start_date': datetime(2015, 6, 1),
 'email': ['airflow@example.com'],
 'email_on_failure': False,
 'email_on_retry': False,
 'retries': 1,
 'retry_delay': timedelta(minutes=5),
 # 'queue': 'bash_queue',
 # 'pool': 'backfill',
 # 'priority_weight': 10,
 # 'end_date': datetime(2016, 1, 1),
}

dag = DAG(
 'tutorial', default_args=default_args, schedule_interval=timedelta(days=1))

t1, t2 and t3 are examples of tasks created by instantiating operators
t1 = BashOperator(
 task_id='print_date',
 bash_command='date',
 dag=dag)

t2 = BashOperator(
 task_id='sleep',
 bash_command='sleep 5',
 retries=3,
 dag=dag)

templated_command = """
 {% for i in range(5) %}
 echo "{{ ds }}"
 echo "{{ macros.ds_add(ds, 7)}}"
 echo "{{ params.my_param }}"
 {% endfor %}
"""

t3 = BashOperator(
 task_id='templated',
 bash_command=templated_command,
 params={'my_param': 'Parameter I passed in'},
 dag=dag)

t2.set_upstream(t1)
t3.set_upstream(t1)

Testing

Running the Script

Time to run some tests. First let’s make sure that the pipeline
parses. Let’s assume we’re saving the code from the previous step in
tutorial.py in the DAGs folder referenced in your airflow.cfg.
The default location for your DAGs is ~/airflow/dags.

python ~/airflow/dags/tutorial.py

If the script does not raise an exception it means that you haven’t done
anything horribly wrong, and that your Airflow environment is somewhat
sound.

Command Line Metadata Validation

Let’s run a few commands to validate this script further.

print the list of active DAGs
airflow list_dags

prints the list of tasks in the "tutorial" DAG
airflow list_tasks tutorial

prints the hierarchy of tasks in the "tutorial" DAG
airflow list_tasks tutorial --tree

Testing

Let’s test by running the actual task instances on a specific date. The
date specified in this context is an execution_date, which simulates the
scheduler running your task or dag at a specific date + time:

command layout: command subcommand dag_id task_id date

testing print_date
airflow test tutorial print_date 2015-06-01

testing sleep
airflow test tutorial sleep 2015-06-01

Now remember what we did with templating earlier? See how this template
gets rendered and executed by running this command:

testing templated
airflow test tutorial templated 2015-06-01

This should result in displaying a verbose log of events and ultimately
running your bash command and printing the result.

Note that the airflow test command runs task instances locally, outputs
their log to stdout (on screen), doesn’t bother with dependencies, and
doesn’t communicate state (running, success, failed, …) to the database.
It simply allows testing a single task instance.

Backfill

Everything looks like it’s running fine so let’s run a backfill.
backfill will respect your dependencies, emit logs into files and talk to
the database to record status. If you do have a webserver up, you’ll be able
to track the progress. airflow webserver will start a web server if you
are interested in tracking the progress visually as your backfill progresses.

Note that if you use depends_on_past=True, individual task instances
will depend on the success of the preceding task instance, except for the
start_date specified itself, for which this dependency is disregarded.

The date range in this context is a start_date and optionally an end_date,
which are used to populate the run schedule with task instances from this dag.

optional, start a web server in debug mode in the background
airflow webserver --debug &

start your backfill on a date range
airflow backfill tutorial -s 2015-06-01 -e 2015-06-07

What’s Next?

That’s it, you’ve written, tested and backfilled your very first Airflow
pipeline. Merging your code into a code repository that has a master scheduler
running against it should get it to get triggered and run every day.

Here’s a few things you might want to do next:

	Take an in-depth tour of the UI - click all the things!

	Keep reading the docs! Especially the sections on:

	Command line interface

	Operators

	Macros

	Write your first pipeline!

How-to Guides

Setting up the sandbox in the Quick Start section was easy;
building a production-grade environment requires a bit more work!

These how-to guides will step you through common tasks in using and
configuring an Airflow environment.

	Add a new role in RBAC UI

	Setting Configuration Options

	Initializing a Database Backend

	Using Operators
	BashOperator

	PythonOperator

	Google Cloud Storage Operators

	Google Compute Engine Operators

	Google Cloud Bigtable Operators

	Google Cloud Functions Operators

	Google Cloud Spanner Operators

	Google Cloud Sql Operators

	Google Cloud Storage Operators

	Managing Connections
	Creating a Connection with the UI

	Editing a Connection with the UI

	Creating a Connection with Environment Variables

	Connection Types

	Securing Connections

	Writing Logs
	Writing Logs Locally

	Writing Logs to Amazon S3

	Writing Logs to Azure Blob Storage

	Writing Logs to Google Cloud Storage

	Scaling Out with Celery

	Scaling Out with Dask

	Scaling Out with Mesos (community contributed)
	Tasks executed directly on mesos slaves

	Tasks executed in containers on mesos slaves

	Running Airflow with systemd

	Running Airflow with upstart

	Using the Test Mode Configuration

	Checking Airflow Health Status

Add a new role in RBAC UI

There are five roles created for Airflow by default: Admin, User, Op, Viewer, and Public.
The master branch adds beta support for DAG level access for RBAC UI. Each DAG comes with two permissions: read and write.

The Admin could create a specific role which is only allowed to read / write certain DAGs. To configure a new role, go to Security tab
and click List Roles in the new UI.

[image: ../_images/add-role.png]
[image: ../_images/new-role.png]
The image shows a role which could only write to example_python_operator is created.
And we could assign the given role to a new user using airflow users --role cli command.

Setting Configuration Options

The first time you run Airflow, it will create a file called airflow.cfg in
your $AIRFLOW_HOME directory (~/airflow by default). This file contains Airflow’s configuration and you
can edit it to change any of the settings. You can also set options with environment variables by using this format:
$AIRFLOW__{SECTION}__{KEY} (note the double underscores).

For example, the
metadata database connection string can either be set in airflow.cfg like this:

[core]
sql_alchemy_conn = my_conn_string

or by creating a corresponding environment variable:

AIRFLOW__CORE__SQL_ALCHEMY_CONN=my_conn_string

You can also derive the connection string at run time by appending _cmd to
the key like this:

[core]
sql_alchemy_conn_cmd = bash_command_to_run

The following config options support this _cmd version:

	sql_alchemy_conn in [core] section

	fernet_key in [core] section

	broker_url in [celery] section

	result_backend in [celery] section

	password in [atlas] section

	smtp_password in [smtp] section

	bind_password in [ldap] section

	git_password in [kubernetes] section

The idea behind this is to not store passwords on boxes in plain text files.

The order of precedence for all config options is as follows -

	environment variable

	configuration in airflow.cfg

	command in airflow.cfg

	Airflow’s built in defaults

Initializing a Database Backend

If you want to take a real test drive of Airflow, you should consider
setting up a real database backend and switching to the LocalExecutor.

As Airflow was built to interact with its metadata using the great SqlAlchemy
library, you should be able to use any database backend supported as a
SqlAlchemy backend. We recommend using MySQL or Postgres.

Note

We rely on more strict ANSI SQL settings for MySQL in order to have
sane defaults. Make sure to have specified explicit_defaults_for_timestamp=1
in your my.cnf under [mysqld]

Note

If you decide to use Postgres, we recommend using the psycopg2
driver and specifying it in your SqlAlchemy connection string.
Also note that since SqlAlchemy does not expose a way to target a
specific schema in the Postgres connection URI, you may
want to set a default schema for your role with a
command similar to ALTER ROLE username SET search_path = airflow, foobar;

Once you’ve setup your database to host Airflow, you’ll need to alter the
SqlAlchemy connection string located in your configuration file
$AIRFLOW_HOME/airflow.cfg. You should then also change the “executor”
setting to use “LocalExecutor”, an executor that can parallelize task
instances locally.

initialize the database
airflow initdb

Using Operators

An operator represents a single, ideally idempotent, task. Operators
determine what actually executes when your DAG runs.

See the Operators Concepts documentation and the
Operators API Reference for more
information.

	BashOperator

	Templating

	Troubleshooting

	Jinja template not found

	PythonOperator

	Passing in arguments

	Templating

	Google Cloud Storage Operators

	GoogleCloudStorageToBigQueryOperator

	Google Compute Engine Operators

	GceInstanceStartOperator

	Arguments

	Using the operator

	Templating

	More information

	GceInstanceStopOperator

	Arguments

	Using the operator

	Templating

	More information

	GceSetMachineTypeOperator

	Arguments

	Using the operator

	Templating

	More information

	GceInstanceTemplateCopyOperator

	Arguments

	Using the operator

	Templating

	More information

	GceInstanceGroupManagerUpdateTemplateOperator

	Arguments

	Using the operator

	Templating

	Troubleshooting

	More information

	Google Cloud Bigtable Operators

	BigtableInstanceCreateOperator

	Using the operator

	BigtableInstanceDeleteOperator

	Using the operator

	BigtableClusterUpdateOperator

	Using the operator

	BigtableTableCreateOperator

	Using the operator

	Advanced

	BigtableTableDeleteOperator

	Using the operator

	BigtableTableWaitForReplicationSensor

	Using the operator

	Google Cloud Functions Operators

	GcfFunctionDeleteOperator

	Arguments

	Using the operator

	Templating

	More information

	GcfFunctionDeployOperator

	Arguments

	Using the operator

	Templating

	Troubleshooting

	More information

	Google Cloud Spanner Operators

	CloudSpannerInstanceDatabaseDeleteOperator

	Arguments

	Using the operator

	Templating

	More information

	CloudSpannerInstanceDatabaseDeployOperator

	Arguments

	Using the operator

	Templating

	More information

	CloudSpannerInstanceDatabaseUpdateOperator

	Arguments

	Using the operator

	Templating

	More information

	CloudSpannerInstanceDatabaseQueryOperator

	Arguments

	Using the operator

	Templating

	More information

	CloudSpannerInstanceDeleteOperator

	Arguments

	Using the operator

	Templating

	More information

	Google Cloud Sql Operators

	CloudSqlInstanceDatabaseCreateOperator

	Arguments

	Using the operator

	Templating

	More information

	CloudSqlInstanceDatabaseDeleteOperator

	Arguments

	Using the operator

	Templating

	More information

	CloudSqlInstanceDatabasePatchOperator

	Arguments

	Using the operator

	Templating

	More information

	CloudSqlInstanceDeleteOperator

	Arguments

	Using the operator

	Templating

	More information

	CloudSqlInstanceExportOperator

	Arguments

	Using the operator

	Templating

	More information

	Troubleshooting

	CloudSqlInstanceImportOperator

	CSV import:

	SQL import:

	Arguments

	Using the operator

	Templating

	More information

	Troubleshooting

	CloudSqlInstanceCreateOperator

	Arguments

	Using the operator

	Templating

	More information

	CloudSqlInstancePatchOperator

	Arguments

	Using the operator

	Templating

	More information

	CloudSqlQueryOperator

	Arguments

	Using the operator

	Templating

	More information

	Google Cloud Storage Operators

	GoogleCloudStorageBucketCreateAclEntryOperator

	Arguments

	Using the operator

	Templating

	More information

	GoogleCloudStorageObjectCreateAclEntryOperator

	Arguments

	Using the operator

	Templating

	More information

BashOperator

Use the BashOperator to execute
commands in a Bash [https://www.gnu.org/software/bash/] shell.

run_this = BashOperator(
 task_id='run_after_loop',
 bash_command='echo 1',
 dag=dag,
)

Templating

You can use Jinja templates to parameterize the
bash_command argument.

also_run_this = BashOperator(
 task_id='also_run_this',
 bash_command='echo "run_id={{ run_id }} | dag_run={{ dag_run }}"',
 dag=dag,
)

Troubleshooting

Jinja template not found

Add a space after the script name when directly calling a Bash script with
the bash_command argument. This is because Airflow tries to apply a Jinja
template to it, which will fail.

t2 = BashOperator(
 task_id='bash_example',

 # This fails with `Jinja template not found` error
 # bash_command="/home/batcher/test.sh",

 # This works (has a space after)
 bash_command="/home/batcher/test.sh ",
 dag=dag)

PythonOperator

Use the PythonOperator to execute
Python callables.

def print_context(ds, **kwargs):
 pprint(kwargs)
 print(ds)
 return 'Whatever you return gets printed in the logs'

run_this = PythonOperator(
 task_id='print_the_context',
 provide_context=True,
 python_callable=print_context,
 dag=dag,
)

Passing in arguments

Use the op_args and op_kwargs arguments to pass additional arguments
to the Python callable.

def my_sleeping_function(random_base):
 """This is a function that will run within the DAG execution"""
 time.sleep(random_base)

Generate 5 sleeping tasks, sleeping from 0.0 to 0.4 seconds respectively
for i in range(5):
 task = PythonOperator(
 task_id='sleep_for_' + str(i),
 python_callable=my_sleeping_function,
 op_kwargs={'random_base': float(i) / 10},
 dag=dag,
)

 run_this >> task

Templating

When you set the provide_context argument to True, Airflow passes in
an additional set of keyword arguments: one for each of the Jinja
template variables and a templates_dict argument.

The templates_dict argument is templated, so each value in the dictionary
is evaluated as a Jinja template.

Google Cloud Storage Operators

GoogleCloudStorageToBigQueryOperator

Use the
GoogleCloudStorageToBigQueryOperator
to execute a BigQuery load job.

load_csv = gcs_to_bq.GoogleCloudStorageToBigQueryOperator(
 task_id='gcs_to_bq_example',
 bucket='cloud-samples-data',
 source_objects=['bigquery/us-states/us-states.csv'],
 destination_project_dataset_table='airflow_test.gcs_to_bq_table',
 schema_fields=[
 {'name': 'name', 'type': 'STRING', 'mode': 'NULLABLE'},
 {'name': 'post_abbr', 'type': 'STRING', 'mode': 'NULLABLE'},
],
 write_disposition='WRITE_TRUNCATE',
 dag=dag)

Google Compute Engine Operators

GceInstanceStartOperator

Use the
GceInstanceStartOperator
to start an existing Google Compute Engine instance.

Arguments

The following examples of OS environment variables used to pass arguments to the operator:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCE_ZONE = os.environ.get('GCE_ZONE', 'europe-west1-b')
GCE_INSTANCE = os.environ.get('GCE_INSTANCE', 'testinstance')

Using the operator

The code to create the operator:

gce_instance_start = GceInstanceStartOperator(
 project_id=GCP_PROJECT_ID,
 zone=GCE_ZONE,
 resource_id=GCE_INSTANCE,
 task_id='gcp_compute_start_task'
)

You can also create the operator without project id - project id will be retrieved
from the GCP connection id used:

gce_instance_start2 = GceInstanceStartOperator(
 zone=GCE_ZONE,
 resource_id=GCE_INSTANCE,
 task_id='gcp_compute_start_task2'
)

Templating

template_fields = ('project_id', 'zone', 'resource_id', 'gcp_conn_id', 'api_version')

More information

See Google Compute Engine API documentation [https://cloud.google.com/compute/docs/reference/rest/v1/instances/start].

GceInstanceStopOperator

Use the operator to stop Google Compute Engine instance.

For parameter definition, take a look at
GceInstanceStopOperator

Arguments

The following examples of OS environment variables used to pass arguments to the operator:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCE_ZONE = os.environ.get('GCE_ZONE', 'europe-west1-b')
GCE_INSTANCE = os.environ.get('GCE_INSTANCE', 'testinstance')

Using the operator

The code to create the operator:

gce_instance_stop = GceInstanceStopOperator(
 project_id=GCP_PROJECT_ID,
 zone=GCE_ZONE,
 resource_id=GCE_INSTANCE,
 task_id='gcp_compute_stop_task'
)

You can also create the operator without project id - project id will be retrieved
from the GCP connection used:

gce_instance_stop2 = GceInstanceStopOperator(
 zone=GCE_ZONE,
 resource_id=GCE_INSTANCE,
 task_id='gcp_compute_stop_task2'
)

Templating

template_fields = ('project_id', 'zone', 'resource_id', 'gcp_conn_id', 'api_version')

More information

See Google Compute Engine API documentation [https://cloud.google.com/compute/docs/reference/rest/v1/instances/stop].

GceSetMachineTypeOperator

Use the operator to change machine type of a Google Compute Engine instance.

For parameter definition, take a look at
GceSetMachineTypeOperator.

Arguments

The following examples of OS environment variables used to pass arguments to the operator:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCE_ZONE = os.environ.get('GCE_ZONE', 'europe-west1-b')
GCE_INSTANCE = os.environ.get('GCE_INSTANCE', 'testinstance')

GCE_SHORT_MACHINE_TYPE_NAME = os.environ.get('GCE_SHORT_MACHINE_TYPE_NAME', 'n1-standard-1')
SET_MACHINE_TYPE_BODY = {
 'machineType': 'zones/{}/machineTypes/{}'.format(GCE_ZONE, GCE_SHORT_MACHINE_TYPE_NAME)
}

Using the operator

The code to create the operator:

gce_set_machine_type = GceSetMachineTypeOperator(
 project_id=GCP_PROJECT_ID,
 zone=GCE_ZONE,
 resource_id=GCE_INSTANCE,
 body=SET_MACHINE_TYPE_BODY,
 task_id='gcp_compute_set_machine_type'
)

You can also create the operator without project id - project id will be retrieved
from the GCP connection used:

gce_set_machine_type2 = GceSetMachineTypeOperator(
 zone=GCE_ZONE,
 resource_id=GCE_INSTANCE,
 body=SET_MACHINE_TYPE_BODY,
 task_id='gcp_compute_set_machine_type2'
)

Templating

template_fields = ('project_id', 'zone', 'resource_id', 'gcp_conn_id', 'api_version')

More information

See Google Compute Engine API documentation [https://cloud.google.com/compute/docs/reference/rest/v1/instances/setMachineType].

GceInstanceTemplateCopyOperator

Use the operator to copy an existing Google Compute Engine instance template
applying a patch to it.

For parameter definition, take a look at
GceInstanceTemplateCopyOperator.

Arguments

The following examples of OS environment variables used to pass arguments to the operator:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCE_ZONE = os.environ.get('GCE_ZONE', 'europe-west1-b')

GCE_TEMPLATE_NAME = os.environ.get('GCE_TEMPLATE_NAME', 'instance-template-test')
GCE_NEW_TEMPLATE_NAME = os.environ.get('GCE_NEW_TEMPLATE_NAME',
 'instance-template-test-new')
GCE_NEW_DESCRIPTION = os.environ.get('GCE_NEW_DESCRIPTION', 'Test new description')
GCE_INSTANCE_TEMPLATE_BODY_UPDATE = {
 "name": GCE_NEW_TEMPLATE_NAME,
 "description": GCE_NEW_DESCRIPTION,
 "properties": {
 "machineType": "n1-standard-2"
 }
}

Using the operator

The code to create the operator:

gce_instance_template_copy = GceInstanceTemplateCopyOperator(
 project_id=GCP_PROJECT_ID,
 resource_id=GCE_TEMPLATE_NAME,
 body_patch=GCE_INSTANCE_TEMPLATE_BODY_UPDATE,
 task_id='gcp_compute_igm_copy_template_task'
)

You can also create the operator without project id - project id will be retrieved
from the GCP connection used:

gce_instance_template_copy2 = GceInstanceTemplateCopyOperator(
 resource_id=GCE_TEMPLATE_NAME,
 body_patch=GCE_INSTANCE_TEMPLATE_BODY_UPDATE,
 task_id='gcp_compute_igm_copy_template_task_2'
)

Templating

template_fields = ('project_id', 'resource_id', 'request_id',
 'gcp_conn_id', 'api_version')

More information

See Google Compute Engine API documentation [https://cloud.google.com/compute/docs/reference/rest/v1/instanceTemplates].

GceInstanceGroupManagerUpdateTemplateOperator

Use the operator to update template in Google Compute Engine Instance Group Manager.

For parameter definition, take a look at
GceInstanceGroupManagerUpdateTemplateOperator.

Arguments

The following examples of OS environment variables used to pass arguments to the operator:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCE_ZONE = os.environ.get('GCE_ZONE', 'europe-west1-b')

GCE_INSTANCE_GROUP_MANAGER_NAME = os.environ.get('GCE_INSTANCE_GROUP_MANAGER_NAME',
 'instance-group-test')

SOURCE_TEMPLATE_URL = os.environ.get(
 'SOURCE_TEMPLATE_URL',
 "https://www.googleapis.com/compute/beta/projects/" + GCP_PROJECT_ID +
 "/global/instanceTemplates/instance-template-test")

DESTINATION_TEMPLATE_URL = os.environ.get(
 'DESTINATION_TEMPLATE_URL',
 "https://www.googleapis.com/compute/beta/projects/" + GCP_PROJECT_ID +
 "/global/instanceTemplates/" + GCE_NEW_TEMPLATE_NAME)

UPDATE_POLICY = {
 "type": "OPPORTUNISTIC",
 "minimalAction": "RESTART",
 "maxSurge": {
 "fixed": 1
 },
 "minReadySec": 1800
}

Using the operator

The code to create the operator:

gce_instance_group_manager_update_template = \
 GceInstanceGroupManagerUpdateTemplateOperator(
 project_id=GCP_PROJECT_ID,
 resource_id=GCE_INSTANCE_GROUP_MANAGER_NAME,
 zone=GCE_ZONE,
 source_template=SOURCE_TEMPLATE_URL,
 destination_template=DESTINATION_TEMPLATE_URL,
 update_policy=UPDATE_POLICY,
 task_id='gcp_compute_igm_group_manager_update_template'
)

You can also create the operator without project id - project id will be retrieved
from the GCP connection used:

gce_instance_group_manager_update_template2 = \
 GceInstanceGroupManagerUpdateTemplateOperator(
 resource_id=GCE_INSTANCE_GROUP_MANAGER_NAME,
 zone=GCE_ZONE,
 source_template=SOURCE_TEMPLATE_URL,
 destination_template=DESTINATION_TEMPLATE_URL,
 task_id='gcp_compute_igm_group_manager_update_template_2'
)

Templating

template_fields = ('project_id', 'resource_id', 'zone', 'request_id',
 'source_template', 'destination_template',
 'gcp_conn_id', 'api_version')

Troubleshooting

You might find that your GceInstanceGroupManagerUpdateTemplateOperator fails with
missing permissions. To execute the operation, the service account requires
the permissions that theService Account User role provides
(assigned via Google Cloud IAM).

More information

See Google Compute Engine API documentation [https://cloud.google.com/compute/docs/reference/rest/v1/instanceGroupManagers].

Google Cloud Bigtable Operators

All examples below rely on the following variables, which can be passed via environment variables.

GCP_PROJECT_ID = getenv('GCP_PROJECT_ID', 'example-project')
CBT_INSTANCE_ID = getenv('CBT_INSTANCE_ID', 'some-instance-id')
CBT_INSTANCE_DISPLAY_NAME = getenv('CBT_INSTANCE_DISPLAY_NAME', 'Human-readable name')
CBT_INSTANCE_TYPE = getenv('CBT_INSTANCE_TYPE', '2')
CBT_INSTANCE_LABELS = getenv('CBT_INSTANCE_LABELS', '{}')
CBT_CLUSTER_ID = getenv('CBT_CLUSTER_ID', 'some-cluster-id')
CBT_CLUSTER_ZONE = getenv('CBT_CLUSTER_ZONE', 'europe-west1-b')
CBT_CLUSTER_NODES = getenv('CBT_CLUSTER_NODES', '3')
CBT_CLUSTER_NODES_UPDATED = getenv('CBT_CLUSTER_NODES_UPDATED', '5')
CBT_CLUSTER_STORAGE_TYPE = getenv('CBT_CLUSTER_STORAGE_TYPE', '2')
CBT_TABLE_ID = getenv('CBT_TABLE_ID', 'some-table-id')
CBT_POKE_INTERVAL = getenv('CBT_POKE_INTERVAL', '60')

BigtableInstanceCreateOperator

Use the BigtableInstanceCreateOperator
to create a Google Cloud Bigtable instance.

If the Cloud Bigtable instance with the given ID exists, the operator does not compare its configuration
and immediately succeeds. No changes are made to the existing instance.

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

create_instance_task = BigtableInstanceCreateOperator(
 project_id=GCP_PROJECT_ID,
 instance_id=CBT_INSTANCE_ID,
 main_cluster_id=CBT_CLUSTER_ID,
 main_cluster_zone=CBT_CLUSTER_ZONE,
 instance_display_name=CBT_INSTANCE_DISPLAY_NAME,
 instance_type=int(CBT_INSTANCE_TYPE),
 instance_labels=json.loads(CBT_INSTANCE_LABELS),
 cluster_nodes=int(CBT_CLUSTER_NODES),
 cluster_storage_type=int(CBT_CLUSTER_STORAGE_TYPE),
 task_id='create_instance_task',
)
create_instance_task2 = BigtableInstanceCreateOperator(
 instance_id=CBT_INSTANCE_ID,
 main_cluster_id=CBT_CLUSTER_ID,
 main_cluster_zone=CBT_CLUSTER_ZONE,
 instance_display_name=CBT_INSTANCE_DISPLAY_NAME,
 instance_type=int(CBT_INSTANCE_TYPE),
 instance_labels=json.loads(CBT_INSTANCE_LABELS),
 cluster_nodes=int(CBT_CLUSTER_NODES),
 cluster_storage_type=int(CBT_CLUSTER_STORAGE_TYPE),
 task_id='create_instance_task2',
)
create_instance_task >> create_instance_task2

BigtableInstanceDeleteOperator

Use the BigtableInstanceDeleteOperator
to delete a Google Cloud Bigtable instance.

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

delete_instance_task = BigtableInstanceDeleteOperator(
 project_id=GCP_PROJECT_ID,
 instance_id=CBT_INSTANCE_ID,
 task_id='delete_instance_task',
)
delete_instance_task2 = BigtableInstanceDeleteOperator(
 instance_id=CBT_INSTANCE_ID,
 task_id='delete_instance_task2',
)

BigtableClusterUpdateOperator

Use the BigtableClusterUpdateOperator
to modify number of nodes in a Cloud Bigtable cluster.

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

cluster_update_task = BigtableClusterUpdateOperator(
 project_id=GCP_PROJECT_ID,
 instance_id=CBT_INSTANCE_ID,
 cluster_id=CBT_CLUSTER_ID,
 nodes=int(CBT_CLUSTER_NODES_UPDATED),
 task_id='update_cluster_task',
)
cluster_update_task2 = BigtableClusterUpdateOperator(
 instance_id=CBT_INSTANCE_ID,
 cluster_id=CBT_CLUSTER_ID,
 nodes=int(CBT_CLUSTER_NODES_UPDATED),
 task_id='update_cluster_task2',
)
cluster_update_task >> cluster_update_task2

BigtableTableCreateOperator

Creates a table in a Cloud Bigtable instance.

If the table with given ID exists in the Cloud Bigtable instance, the operator compares the Column Families.
If the Column Families are identical operator succeeds. Otherwise, the operator fails with the appropriate
error message.

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

create_table_task = BigtableTableCreateOperator(
 project_id=GCP_PROJECT_ID,
 instance_id=CBT_INSTANCE_ID,
 table_id=CBT_TABLE_ID,
 task_id='create_table',
)
create_table_task2 = BigtableTableCreateOperator(
 instance_id=CBT_INSTANCE_ID,
 table_id=CBT_TABLE_ID,
 task_id='create_table_task2',
)
create_table_task >> create_table_task2

Advanced

When creating a table, you can specify the optional initial_split_keys and column_familes.
Please refer to the Python Client for Google Cloud Bigtable documentation
for Table [https://googleapis.github.io/google-cloud-python/latest/bigtable/table.html] and for Column
Families [https://googleapis.github.io/google-cloud-python/latest/bigtable/column-family.html].

BigtableTableDeleteOperator

Use the BigtableTableDeleteOperator
to delete a table in Google Cloud Bigtable.

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

delete_table_task = BigtableTableDeleteOperator(
 project_id=GCP_PROJECT_ID,
 instance_id=CBT_INSTANCE_ID,
 table_id=CBT_TABLE_ID,
 task_id='delete_table_task',
)
delete_table_task2 = BigtableTableDeleteOperator(
 instance_id=CBT_INSTANCE_ID,
 table_id=CBT_TABLE_ID,
 task_id='delete_table_task2',
)

BigtableTableWaitForReplicationSensor

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

Use the BigtableTableWaitForReplicationSensor
to wait for the table to replicate fully.

The same arguments apply to this sensor as the BigtableTableCreateOperator.

Note: If the table or the Cloud Bigtable instance does not exist, this sensor waits for the table until
timeout hits and does not raise any exception.

Using the operator

wait_for_table_replication_task = BigtableTableWaitForReplicationSensor(
 project_id=GCP_PROJECT_ID,
 instance_id=CBT_INSTANCE_ID,
 table_id=CBT_TABLE_ID,
 poke_interval=int(CBT_POKE_INTERVAL),
 timeout=180,
 task_id='wait_for_table_replication_task',
)
wait_for_table_replication_task2 = BigtableTableWaitForReplicationSensor(
 instance_id=CBT_INSTANCE_ID,
 table_id=CBT_TABLE_ID,
 poke_interval=int(CBT_POKE_INTERVAL),
 timeout=180,
 task_id='wait_for_table_replication_task2',
)

Google Cloud Functions Operators

GcfFunctionDeleteOperator

Use the operator to delete a function from Google Cloud Functions.

For parameter definition, take a look at
GcfFunctionDeleteOperator.

Arguments

The following examples of OS environment variables show how you can build function name
to use in the operator:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_LOCATION = os.environ.get('GCP_LOCATION', 'europe-west1')
GCF_SHORT_FUNCTION_NAME = os.environ.get('GCF_SHORT_FUNCTION_NAME', 'hello').\
 replace("-", "_") # make sure there are no dashes in function name (!)
FUNCTION_NAME = 'projects/{}/locations/{}/functions/{}'.format(GCP_PROJECT_ID,
 GCP_LOCATION,
 GCF_SHORT_FUNCTION_NAME)

Using the operator

delete_task = GcfFunctionDeleteOperator(
 task_id="gcf_delete_task",
 name=FUNCTION_NAME
)

Templating

template_fields = ('name', 'gcp_conn_id', 'api_version')

More information

See Google Cloud Functions API documentation [https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions/delete].

GcfFunctionDeployOperator

Use the operator to deploy a function to Google Cloud Functions.
If a function with this name already exists, it will be updated.

For parameter definition, take a look at
GcfFunctionDeployOperator.

Arguments

In the example DAG the following environment variables are used to parameterize the
operator’s definition:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_LOCATION = os.environ.get('GCP_LOCATION', 'europe-west1')
GCF_SHORT_FUNCTION_NAME = os.environ.get('GCF_SHORT_FUNCTION_NAME', 'hello').\
 replace("-", "_") # make sure there are no dashes in function name (!)
FUNCTION_NAME = 'projects/{}/locations/{}/functions/{}'.format(GCP_PROJECT_ID,
 GCP_LOCATION,
 GCF_SHORT_FUNCTION_NAME)

GCF_SOURCE_ARCHIVE_URL = os.environ.get('GCF_SOURCE_ARCHIVE_URL', '')
GCF_SOURCE_UPLOAD_URL = os.environ.get('GCF_SOURCE_UPLOAD_URL', '')
GCF_SOURCE_REPOSITORY = os.environ.get(
 'GCF_SOURCE_REPOSITORY',
 'https://source.developers.google.com/'
 'projects/{}/repos/hello-world/moveable-aliases/master'.format(GCP_PROJECT_ID))
GCF_ZIP_PATH = os.environ.get('GCF_ZIP_PATH', '')
GCF_ENTRYPOINT = os.environ.get('GCF_ENTRYPOINT', 'helloWorld')
GCF_RUNTIME = 'nodejs6'
GCP_VALIDATE_BODY = os.environ.get('GCP_VALIDATE_BODY', True)

Some of those variables are used to create the request’s body:

body = {
 "name": FUNCTION_NAME,
 "entryPoint": GCF_ENTRYPOINT,
 "runtime": GCF_RUNTIME,
 "httpsTrigger": {}
}

When a DAG is created, the default_args dictionary can be used to pass
arguments common with other tasks:

default_args = {
 'start_date': dates.days_ago(1)
}

Note that the neither the body nor the default args are complete in the above examples.
Depending on the variables set, there might be different variants on how to pass source
code related fields. Currently, you can pass either sourceArchiveUrl,
sourceRepository or sourceUploadUrl as described in the
Cloud Functions API specification [https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions#CloudFunction].

Additionally, default_args or direct operator args might contain zip_path
parameter
to run the extra step of uploading the source code before deploying it.
In this case, you also need to provide an empty sourceUploadUrl
parameter in the body.

Using the operator

Depending on the combination of parameters, the Function’s source code can be obtained
from different sources:

if GCF_SOURCE_ARCHIVE_URL:
 body['sourceArchiveUrl'] = GCF_SOURCE_ARCHIVE_URL
elif GCF_SOURCE_REPOSITORY:
 body['sourceRepository'] = {
 'url': GCF_SOURCE_REPOSITORY
 }
elif GCF_ZIP_PATH:
 body['sourceUploadUrl'] = ''
 default_args['zip_path'] = GCF_ZIP_PATH
elif GCF_SOURCE_UPLOAD_URL:
 body['sourceUploadUrl'] = GCF_SOURCE_UPLOAD_URL
else:
 raise Exception("Please provide one of the source_code parameters")

The code to create the operator:

deploy_task = GcfFunctionDeployOperator(
 task_id="gcf_deploy_task",
 project_id=GCP_PROJECT_ID,
 location=GCP_LOCATION,
 body=body,
 validate_body=GCP_VALIDATE_BODY
)

You can also create the operator without project id - project id will be retrieved
from the GCP connection used:

deploy2_task = GcfFunctionDeployOperator(
 task_id="gcf_deploy2_task",
 location=GCP_LOCATION,
 body=body,
 validate_body=GCP_VALIDATE_BODY
)

Templating

template_fields = ('project_id', 'location', 'gcp_conn_id', 'api_version')

Troubleshooting

If during the deploy you see an error similar to:

“HttpError 403: Missing necessary permission iam.serviceAccounts.actAs for on resource
project-name@appspot.gserviceaccount.com. Please grant the
roles/iam.serviceAccountUser role.”

it means that your service account does not have the correct Cloud IAM permissions.

	Assign your Service Account the Cloud Functions Developer role.

	Grant the user the Cloud IAM Service Account User role on the Cloud Functions runtime
service account.

The typical way of assigning Cloud IAM permissions with gcloud is
shown below. Just replace PROJECT_ID with ID of your Google Cloud Platform project
and SERVICE_ACCOUNT_EMAIL with the email ID of your service account.

gcloud iam service-accounts add-iam-policy-binding \
 PROJECT_ID@appspot.gserviceaccount.com \
 --member="serviceAccount:[SERVICE_ACCOUNT_EMAIL]" \
 --role="roles/iam.serviceAccountUser"

You can also do that via the GCP Web console.

See Adding the IAM service agent user role to the runtime service [https://cloud.google.com/functions/docs/reference/iam/roles#adding_the_iam_service_agent_user_role_to_the_runtime_service_account] for details.

If the source code for your function is in Google Source Repository, make sure that
your service account has the Source Repository Viewer role so that the source code
can be downloaded if necessary.

More information

See Google Cloud Functions API documentation [https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions/create].

Google Cloud Spanner Operators

CloudSpannerInstanceDatabaseDeleteOperator

Deletes a database from the specified Cloud Spanner instance. If the database does not
exist, no action is taken, and the operator succeeds.

For parameter definition, take a look at
CloudSpannerInstanceDatabaseDeleteOperator.

Arguments

Some arguments in the example DAG are taken from environment variables.

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_SPANNER_INSTANCE_ID = os.environ.get('GCP_SPANNER_INSTANCE_ID', 'testinstance')
GCP_SPANNER_DATABASE_ID = os.environ.get('GCP_SPANNER_DATABASE_ID', 'testdatabase')
GCP_SPANNER_CONFIG_NAME = os.environ.get('GCP_SPANNER_CONFIG_NAME',
 'projects/example-project/instanceConfigs/eur3')
GCP_SPANNER_NODE_COUNT = os.environ.get('GCP_SPANNER_NODE_COUNT', '1')
GCP_SPANNER_DISPLAY_NAME = os.environ.get('GCP_SPANNER_DISPLAY_NAME', 'Test Instance')
OPERATION_ID should be unique per operation
OPERATION_ID = 'unique_operation_id'

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

spanner_database_delete_task = CloudSpannerInstanceDatabaseDeleteOperator(
 project_id=GCP_PROJECT_ID,
 instance_id=GCP_SPANNER_INSTANCE_ID,
 database_id=GCP_SPANNER_DATABASE_ID,
 task_id='spanner_database_delete_task'
)
spanner_database_delete_task2 = CloudSpannerInstanceDatabaseDeleteOperator(
 instance_id=GCP_SPANNER_INSTANCE_ID,
 database_id=GCP_SPANNER_DATABASE_ID,
 task_id='spanner_database_delete_task2'
)

Templating

template_fields = ('project_id', 'instance_id', 'gcp_conn_id')

More information

See Google Cloud Spanner API documentation for database drop call [https://cloud.google.com/spanner/docs/reference/rest/v1/projects.instances.databases/dropDatabase].

CloudSpannerInstanceDatabaseDeployOperator

Creates a new Cloud Spanner database in the specified instance, or if the
desired database exists, assumes success with no changes applied to database
configuration. No structure of the database is verified - it’s enough if the database exists
with the same name.

For parameter definition, take a look at
CloudSpannerInstanceDatabaseDeployOperator.

Arguments

Some arguments in the example DAG are taken from environment variables.

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_SPANNER_INSTANCE_ID = os.environ.get('GCP_SPANNER_INSTANCE_ID', 'testinstance')
GCP_SPANNER_DATABASE_ID = os.environ.get('GCP_SPANNER_DATABASE_ID', 'testdatabase')
GCP_SPANNER_CONFIG_NAME = os.environ.get('GCP_SPANNER_CONFIG_NAME',
 'projects/example-project/instanceConfigs/eur3')
GCP_SPANNER_NODE_COUNT = os.environ.get('GCP_SPANNER_NODE_COUNT', '1')
GCP_SPANNER_DISPLAY_NAME = os.environ.get('GCP_SPANNER_DISPLAY_NAME', 'Test Instance')
OPERATION_ID should be unique per operation
OPERATION_ID = 'unique_operation_id'

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

spanner_database_deploy_task = CloudSpannerInstanceDatabaseDeployOperator(
 project_id=GCP_PROJECT_ID,
 instance_id=GCP_SPANNER_INSTANCE_ID,
 database_id=GCP_SPANNER_DATABASE_ID,
 ddl_statements=[
 "CREATE TABLE my_table1 (id INT64, name STRING(MAX)) PRIMARY KEY (id)",
 "CREATE TABLE my_table2 (id INT64, name STRING(MAX)) PRIMARY KEY (id)",
],
 task_id='spanner_database_deploy_task'
)
spanner_database_deploy_task2 = CloudSpannerInstanceDatabaseDeployOperator(
 instance_id=GCP_SPANNER_INSTANCE_ID,
 database_id=GCP_SPANNER_DATABASE_ID,
 ddl_statements=[
 "CREATE TABLE my_table1 (id INT64, name STRING(MAX)) PRIMARY KEY (id)",
 "CREATE TABLE my_table2 (id INT64, name STRING(MAX)) PRIMARY KEY (id)",
],
 task_id='spanner_database_deploy_task2'
)

Templating

template_fields = ('project_id', 'instance_id', 'database_id', 'ddl_statements',
 'gcp_conn_id')
template_ext = ('.sql',)

More information

See Google Cloud Spanner API documentation for database create [https://cloud.google.com/spanner/docs/reference/rest/v1/projects.instances.databases/create]

CloudSpannerInstanceDatabaseUpdateOperator

Runs a DDL query in a Cloud Spanner database and allows you to modify the structure of an
existing database.

You can optionally specify an operation_id parameter which simplifies determining whether
the statements were executed in case the update_database call is replayed
(idempotency check). The operation_id should be unique within the database, and must be
a valid identifier: [a-z][a-z0-9_]*. More information can be found in
the documentation of updateDdl API [https://cloud.google.com/spanner/docs/reference/rest/v1/projects.instances.databases/updateDdl]

For parameter definition take a look at
CloudSpannerInstanceDatabaseUpdateOperator.

Arguments

Some arguments in the example DAG are taken from environment variables.

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_SPANNER_INSTANCE_ID = os.environ.get('GCP_SPANNER_INSTANCE_ID', 'testinstance')
GCP_SPANNER_DATABASE_ID = os.environ.get('GCP_SPANNER_DATABASE_ID', 'testdatabase')
GCP_SPANNER_CONFIG_NAME = os.environ.get('GCP_SPANNER_CONFIG_NAME',
 'projects/example-project/instanceConfigs/eur3')
GCP_SPANNER_NODE_COUNT = os.environ.get('GCP_SPANNER_NODE_COUNT', '1')
GCP_SPANNER_DISPLAY_NAME = os.environ.get('GCP_SPANNER_DISPLAY_NAME', 'Test Instance')
OPERATION_ID should be unique per operation
OPERATION_ID = 'unique_operation_id'

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

spanner_database_update_task = CloudSpannerInstanceDatabaseUpdateOperator(
 project_id=GCP_PROJECT_ID,
 instance_id=GCP_SPANNER_INSTANCE_ID,
 database_id=GCP_SPANNER_DATABASE_ID,
 ddl_statements=[
 "CREATE TABLE my_table3 (id INT64, name STRING(MAX)) PRIMARY KEY (id)",
],
 task_id='spanner_database_update_task'
)

spanner_database_update_idempotent1_task = CloudSpannerInstanceDatabaseUpdateOperator(
 project_id=GCP_PROJECT_ID,
 instance_id=GCP_SPANNER_INSTANCE_ID,
 database_id=GCP_SPANNER_DATABASE_ID,
 operation_id=OPERATION_ID,
 ddl_statements=[
 "CREATE TABLE my_table_unique (id INT64, name STRING(MAX)) PRIMARY KEY (id)",
],
 task_id='spanner_database_update_idempotent1_task'
)
spanner_database_update_idempotent2_task = CloudSpannerInstanceDatabaseUpdateOperator(
 instance_id=GCP_SPANNER_INSTANCE_ID,
 database_id=GCP_SPANNER_DATABASE_ID,
 operation_id=OPERATION_ID,
 ddl_statements=[
 "CREATE TABLE my_table_unique (id INT64, name STRING(MAX)) PRIMARY KEY (id)",
],
 task_id='spanner_database_update_idempotent2_task'
)

Templating

template_fields = ('project_id', 'instance_id', 'database_id', 'ddl_statements',
 'gcp_conn_id')
template_ext = ('.sql',)

More information

See Google Cloud Spanner API documentation for database update_ddl [https://cloud.google.com/spanner/docs/reference/rest/v1/projects.instances.databases/updateDdl].

CloudSpannerInstanceDatabaseQueryOperator

Executes an arbitrary DML query (INSERT, UPDATE, DELETE).

For parameter definition take a look at
CloudSpannerInstanceDatabaseQueryOperator.

Arguments

Some arguments in the example DAG are taken from environment variables.

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_SPANNER_INSTANCE_ID = os.environ.get('GCP_SPANNER_INSTANCE_ID', 'testinstance')
GCP_SPANNER_DATABASE_ID = os.environ.get('GCP_SPANNER_DATABASE_ID', 'testdatabase')
GCP_SPANNER_CONFIG_NAME = os.environ.get('GCP_SPANNER_CONFIG_NAME',
 'projects/example-project/instanceConfigs/eur3')
GCP_SPANNER_NODE_COUNT = os.environ.get('GCP_SPANNER_NODE_COUNT', '1')
GCP_SPANNER_DISPLAY_NAME = os.environ.get('GCP_SPANNER_DISPLAY_NAME', 'Test Instance')
OPERATION_ID should be unique per operation
OPERATION_ID = 'unique_operation_id'

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

spanner_instance_query_task = CloudSpannerInstanceDatabaseQueryOperator(
 project_id=GCP_PROJECT_ID,
 instance_id=GCP_SPANNER_INSTANCE_ID,
 database_id=GCP_SPANNER_DATABASE_ID,
 query=["DELETE FROM my_table2 WHERE true"],
 task_id='spanner_instance_query_task'
)
spanner_instance_query_task2 = CloudSpannerInstanceDatabaseQueryOperator(
 instance_id=GCP_SPANNER_INSTANCE_ID,
 database_id=GCP_SPANNER_DATABASE_ID,
 query=["DELETE FROM my_table2 WHERE true"],
 task_id='spanner_instance_query_task2'
)

Templating

template_fields = ('project_id', 'instance_id', 'database_id', 'query', 'gcp_conn_id')
template_ext = ('.sql',)

More information

See Google Cloud Spanner API documentation for the DML syntax [https://cloud.google.com/spanner/docs/dml-syntax].

CloudSpannerInstanceDeleteOperator

Deletes a Cloud Spanner instance. If an instance does not exist, no action is taken,
and the operator succeeds.

For parameter definition take a look at
CloudSpannerInstanceDeleteOperator.

Arguments

Some arguments in the example DAG are taken from environment variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_SPANNER_INSTANCE_ID = os.environ.get('GCP_SPANNER_INSTANCE_ID', 'testinstance')
GCP_SPANNER_DATABASE_ID = os.environ.get('GCP_SPANNER_DATABASE_ID', 'testdatabase')
GCP_SPANNER_CONFIG_NAME = os.environ.get('GCP_SPANNER_CONFIG_NAME',
 'projects/example-project/instanceConfigs/eur3')
GCP_SPANNER_NODE_COUNT = os.environ.get('GCP_SPANNER_NODE_COUNT', '1')
GCP_SPANNER_DISPLAY_NAME = os.environ.get('GCP_SPANNER_DISPLAY_NAME', 'Test Instance')
OPERATION_ID should be unique per operation
OPERATION_ID = 'unique_operation_id'

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

spanner_instance_delete_task = CloudSpannerInstanceDeleteOperator(
 project_id=GCP_PROJECT_ID,
 instance_id=GCP_SPANNER_INSTANCE_ID,
 task_id='spanner_instance_delete_task'
)
spanner_instance_delete_task2 = CloudSpannerInstanceDeleteOperator(
 instance_id=GCP_SPANNER_INSTANCE_ID,
 task_id='spanner_instance_delete_task2'
)

Templating

template_fields = ('project_id', 'instance_id', 'gcp_conn_id')

More information

See Google Cloud Spanner API documentation for instance delete [https://cloud.google.com/spanner/docs/reference/rest/v1/projects.instances/delete].

Google Cloud Sql Operators

CloudSqlInstanceDatabaseCreateOperator

Creates a new database inside a Cloud SQL instance.

For parameter definition, take a look at
CloudSqlInstanceDatabaseCreateOperator.

Arguments

Some arguments in the example DAG are taken from environment variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
INSTANCE_NAME = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME', 'test-mysql')
INSTANCE_NAME2 = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME2', 'test-mysql2')
DB_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'testdb')

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

sql_db_create_task = CloudSqlInstanceDatabaseCreateOperator(
 project_id=GCP_PROJECT_ID,
 body=db_create_body,
 instance=INSTANCE_NAME,
 task_id='sql_db_create_task'
)
sql_db_create_task2 = CloudSqlInstanceDatabaseCreateOperator(
 body=db_create_body,
 instance=INSTANCE_NAME,
 task_id='sql_db_create_task2'
)

Example request body:

db_create_body = {
 "instance": INSTANCE_NAME,
 "name": DB_NAME,
 "project": GCP_PROJECT_ID
}

Templating

template_fields = ('project_id', 'instance', 'gcp_conn_id', 'api_version')

More information

See Google Cloud SQL API documentation for database insert [https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/insert].

CloudSqlInstanceDatabaseDeleteOperator

Deletes a database from a Cloud SQL instance.

For parameter definition, take a look at
CloudSqlInstanceDatabaseDeleteOperator.

Arguments

Some arguments in the example DAG are taken from environment variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
INSTANCE_NAME = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME', 'test-mysql')
INSTANCE_NAME2 = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME2', 'test-mysql2')
DB_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'testdb')

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

sql_db_delete_task = CloudSqlInstanceDatabaseDeleteOperator(
 project_id=GCP_PROJECT_ID,
 instance=INSTANCE_NAME,
 database=DB_NAME,
 task_id='sql_db_delete_task'
)
sql_db_delete_task2 = CloudSqlInstanceDatabaseDeleteOperator(
 instance=INSTANCE_NAME,
 database=DB_NAME,
 task_id='sql_db_delete_task2'
)

Templating

template_fields = ('project_id', 'instance', 'database', 'gcp_conn_id',
 'api_version')

More information

See Google Cloud SQL API documentation for database delete [https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/delete].

CloudSqlInstanceDatabasePatchOperator

Updates a resource containing information about a database inside a Cloud SQL instance
using patch semantics.
See: https://cloud.google.com/sql/docs/mysql/admin-api/how-tos/performance#patch

For parameter definition, take a look at
CloudSqlInstanceDatabasePatchOperator.

Arguments

Some arguments in the example DAG are taken from environment variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
INSTANCE_NAME = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME', 'test-mysql')
INSTANCE_NAME2 = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME2', 'test-mysql2')
DB_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'testdb')

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

sql_db_patch_task = CloudSqlInstanceDatabasePatchOperator(
 project_id=GCP_PROJECT_ID,
 body=db_patch_body,
 instance=INSTANCE_NAME,
 database=DB_NAME,
 task_id='sql_db_patch_task'
)
sql_db_patch_task2 = CloudSqlInstanceDatabasePatchOperator(
 body=db_patch_body,
 instance=INSTANCE_NAME,
 database=DB_NAME,
 task_id='sql_db_patch_task2'
)

Example request body:

db_patch_body = {
 "charset": "utf16",
 "collation": "utf16_general_ci"
}

Templating

template_fields = ('project_id', 'instance', 'database', 'gcp_conn_id',
 'api_version')

More information

See Google Cloud SQL API documentation for database patch [https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/patch].

CloudSqlInstanceDeleteOperator

Deletes a Cloud SQL instance in Google Cloud Platform.

For parameter definition, take a look at
CloudSqlInstanceDeleteOperator.

Arguments

Some arguments in the example DAG are taken from OS environment variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
INSTANCE_NAME = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME', 'test-mysql')
INSTANCE_NAME2 = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME2', 'test-mysql2')
DB_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'testdb')

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

sql_instance_delete_task = CloudSqlInstanceDeleteOperator(
 project_id=GCP_PROJECT_ID,
 instance=INSTANCE_NAME,
 task_id='sql_instance_delete_task'
)
sql_instance_delete_task2 = CloudSqlInstanceDeleteOperator(
 instance=INSTANCE_NAME2,
 task_id='sql_instance_delete_task2'
)

Templating

template_fields = ('project_id', 'instance', 'gcp_conn_id', 'api_version')

More information

See Google Cloud SQL API documentation for delete [https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/delete].

CloudSqlInstanceExportOperator

Exports data from a Cloud SQL instance to a Cloud Storage bucket as a SQL dump
or CSV file.

Note: This operator is idempotent. If executed multiple times with the same
export file URI, the export file in GCS will simply be overridden.

For parameter definition take a look at
CloudSqlInstanceExportOperator.

Arguments

Some arguments in the example DAG are taken from Airflow variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
INSTANCE_NAME = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME', 'test-mysql')
INSTANCE_NAME2 = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME2', 'test-mysql2')
DB_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'testdb')

EXPORT_URI = os.environ.get('GCSQL_MYSQL_EXPORT_URI', 'gs://bucketName/fileName')
IMPORT_URI = os.environ.get('GCSQL_MYSQL_IMPORT_URI', 'gs://bucketName/fileName')

Example body defining the export operation:

export_body = {
 "exportContext": {
 "fileType": "sql",
 "uri": EXPORT_URI,
 "sqlExportOptions": {
 "schemaOnly": False
 }
 }
}

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

sql_export_task = CloudSqlInstanceExportOperator(
 project_id=GCP_PROJECT_ID,
 body=export_body,
 instance=INSTANCE_NAME,
 task_id='sql_export_task'
)
sql_export_task2 = CloudSqlInstanceExportOperator(
 body=export_body,
 instance=INSTANCE_NAME,
 task_id='sql_export_task2'
)

Templating

template_fields = ('project_id', 'instance', 'gcp_conn_id', 'api_version')

More information

See Google Cloud SQL API documentation for export [https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/export].

Troubleshooting

If you receive an “Unauthorized” error in GCP, make sure that the service account
of the Cloud SQL instance is authorized to write to the selected GCS bucket.

It is not the service account configured in Airflow that communicates with GCS,
but rather the service account of the particular Cloud SQL instance.

To grant the service account with the appropriate WRITE permissions for the GCS bucket
you can use the GoogleCloudStorageBucketCreateAclEntryOperator,
as shown in the example:

sql_gcp_add_bucket_permission_task = GoogleCloudStorageBucketCreateAclEntryOperator(
 entity="user-{{ task_instance.xcom_pull("
 "'sql_instance_create_task', key='service_account_email') "
 "}}",
 role="WRITER",
 bucket=export_url_split[1], # netloc (bucket)
 task_id='sql_gcp_add_bucket_permission_task'
)

CloudSqlInstanceImportOperator

Imports data into a Cloud SQL instance from a SQL dump or CSV file in Cloud Storage.

CSV import:

This operator is NOT idempotent for a CSV import. If the same file is imported
multiple times, the imported data will be duplicated in the database.
Moreover, if there are any unique constraints the duplicate import may result in an
error.

SQL import:

This operator is idempotent for a SQL import if it was also exported by Cloud SQL.
The exported SQL contains ‘DROP TABLE IF EXISTS’ statements for all tables
to be imported.

If the import file was generated in a different way, idempotence is not guaranteed.
It has to be ensured on the SQL file level.

For parameter definition take a look at
CloudSqlInstanceImportOperator.

Arguments

Some arguments in the example DAG are taken from Airflow variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
INSTANCE_NAME = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME', 'test-mysql')
INSTANCE_NAME2 = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME2', 'test-mysql2')
DB_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'testdb')

EXPORT_URI = os.environ.get('GCSQL_MYSQL_EXPORT_URI', 'gs://bucketName/fileName')
IMPORT_URI = os.environ.get('GCSQL_MYSQL_IMPORT_URI', 'gs://bucketName/fileName')

Example body defining the import operation:

import_body = {
 "importContext": {
 "fileType": "sql",
 "uri": IMPORT_URI
 }
}

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

sql_import_task = CloudSqlInstanceImportOperator(
 project_id=GCP_PROJECT_ID,
 body=import_body,
 instance=INSTANCE_NAME2,
 task_id='sql_import_task'
)
sql_import_task2 = CloudSqlInstanceImportOperator(
 body=import_body,
 instance=INSTANCE_NAME2,
 task_id='sql_import_task2'
)

Templating

template_fields = ('project_id', 'instance', 'gcp_conn_id', 'api_version')

More information

See Google Cloud SQL API documentation for import [https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/import].

Troubleshooting

If you receive an “Unauthorized” error in GCP, make sure that the service account
of the Cloud SQL instance is authorized to read from the selected GCS object.

It is not the service account configured in Airflow that communicates with GCS,
but rather the service account of the particular Cloud SQL instance.

To grant the service account with the appropriate READ permissions for the GCS object
you can use the GoogleCloudStorageObjectCreateAclEntryOperator,
as shown in the example:

sql_gcp_add_object_permission_task = GoogleCloudStorageObjectCreateAclEntryOperator(
 entity="user-{{ task_instance.xcom_pull("
 "'sql_instance_create_task2', key='service_account_email')"
 " }}",
 role="READER",
 bucket=import_url_split[1], # netloc (bucket)
 object_name=import_url_split[2][1:], # path (strip first '/')
 task_id='sql_gcp_add_object_permission_task',
)
prev_task = next_dep(sql_gcp_add_object_permission_task, prev_task)

For import to work we also need to add the Cloud SQL instance's Service Account
write access to the whole bucket!.
sql_gcp_add_bucket_permission_2_task = GoogleCloudStorageBucketCreateAclEntryOperator(
 entity="user-{{ task_instance.xcom_pull("
 "'sql_instance_create_task2', key='service_account_email') "
 "}}",
 role="WRITER",
 bucket=import_url_split[1], # netloc
 task_id='sql_gcp_add_bucket_permission_2_task',
)

CloudSqlInstanceCreateOperator

Creates a new Cloud SQL instance in Google Cloud Platform.

For parameter definition, take a look at
CloudSqlInstanceCreateOperator.

If an instance with the same name exists, no action will be taken and the operator
will succeed.

Arguments

Some arguments in the example DAG are taken from OS environment variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
INSTANCE_NAME = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME', 'test-mysql')
INSTANCE_NAME2 = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME2', 'test-mysql2')
DB_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'testdb')

Example body defining the instance:

body = {
 "name": INSTANCE_NAME,
 "settings": {
 "tier": "db-n1-standard-1",
 "backupConfiguration": {
 "binaryLogEnabled": True,
 "enabled": True,
 "startTime": "05:00"
 },
 "activationPolicy": "ALWAYS",
 "dataDiskSizeGb": 30,
 "dataDiskType": "PD_SSD",
 "databaseFlags": [],
 "ipConfiguration": {
 "ipv4Enabled": True,
 "requireSsl": True,
 },
 "locationPreference": {
 "zone": "europe-west4-a"
 },
 "maintenanceWindow": {
 "hour": 5,
 "day": 7,
 "updateTrack": "canary"
 },
 "pricingPlan": "PER_USE",
 "replicationType": "ASYNCHRONOUS",
 "storageAutoResize": False,
 "storageAutoResizeLimit": 0,
 "userLabels": {
 "my-key": "my-value"
 }
 },
 "databaseVersion": "MYSQL_5_7",
 "region": "europe-west4",
}

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

sql_instance_create_task = CloudSqlInstanceCreateOperator(
 project_id=GCP_PROJECT_ID,
 body=body,
 instance=INSTANCE_NAME,
 task_id='sql_instance_create_task'
)

Templating

template_fields = ('project_id', 'instance', 'gcp_conn_id', 'api_version')

More information

See Google Cloud SQL API documentation for insert [https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/insert].

CloudSqlInstancePatchOperator

Updates settings of a Cloud SQL instance in Google Cloud Platform (partial update).

For parameter definition, take a look at
CloudSqlInstancePatchOperator.

This is a partial update, so only values for the settings specified in the body
will be set / updated. The rest of the existing instance’s configuration will remain
unchanged.

Arguments

Some arguments in the example DAG are taken from OS environment variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
INSTANCE_NAME = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME', 'test-mysql')
INSTANCE_NAME2 = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME2', 'test-mysql2')
DB_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'testdb')

Example body defining the instance:

patch_body = {
 "name": INSTANCE_NAME,
 "settings": {
 "dataDiskSizeGb": 35,
 "maintenanceWindow": {
 "hour": 3,
 "day": 6,
 "updateTrack": "canary"
 },
 "userLabels": {
 "my-key-patch": "my-value-patch"
 }
 }
}

Using the operator

You can create the operator with or without project id. If project id is missing
it will be retrieved from the GCP connection used. Both variants are shown:

sql_instance_patch_task = CloudSqlInstancePatchOperator(
 project_id=GCP_PROJECT_ID,
 body=patch_body,
 instance=INSTANCE_NAME,
 task_id='sql_instance_patch_task'
)

sql_instance_patch_task2 = CloudSqlInstancePatchOperator(
 body=patch_body,
 instance=INSTANCE_NAME,
 task_id='sql_instance_patch_task2'
)

Templating

template_fields = ('project_id', 'instance', 'gcp_conn_id', 'api_version')

More information

See Google Cloud SQL API documentation for patch [https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/patch].

CloudSqlQueryOperator

Performs DDL or DML SQL queries in Google Cloud SQL instance. The DQL
(retrieving data from Google Cloud SQL) is not supported. You might run the SELECT
queries, but the results of those queries are discarded.

You can specify various connectivity methods to connect to running instance,
starting from public IP plain connection through public IP with SSL or both TCP and
socket connection via Cloud SQL Proxy. The proxy is downloaded and started/stopped
dynamically as needed by the operator.

There is a gcpcloudsql:// connection type that you should use to define what
kind of connectivity you want the operator to use. The connection is a “meta”
type of connection. It is not used to make an actual connectivity on its own, but it
determines whether Cloud SQL Proxy should be started by CloudSqlDatabaseHook
and what kind of database connection (Postgres or MySQL) should be created
dynamically to connect to Cloud SQL via public IP address or via the proxy.
The ‘CloudSqlDatabaseHook` uses
CloudSqlProxyRunner to manage Cloud SQL
Proxy lifecycle (each task has its own Cloud SQL Proxy)

When you build connection, you should use connection parameters as described in
CloudSqlDatabaseHook. You can see
examples of connections below for all the possible types of connectivity. Such connection
can be reused between different tasks (instances of CloudSqlQueryOperator). Each
task will get their own proxy started if needed with their own TCP or UNIX socket.

For parameter definition, take a look at
CloudSqlQueryOperator.

Since query operator can run arbitrary query, it cannot be guaranteed to be
idempotent. SQL query designer should design the queries to be idempotent. For example,
both Postgres and MySQL support CREATE TABLE IF NOT EXISTS statements that can be
used to create tables in an idempotent way.

Arguments

If you define connection via AIRFLOW_CONN_* URL defined in an environment
variable, make sure the URL components in the URL are URL-encoded.
See examples below for details.

Note that in case of SSL connections you need to have a mechanism to make the
certificate/key files available in predefined locations for all the workers on
which the operator can run. This can be provided for example by mounting
NFS-like volumes in the same path for all the workers.

Some arguments in the example DAG are taken from the OS environment variables:

GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_REGION = os.environ.get('GCP_REGION', 'europe-west-1b')

GCSQL_POSTGRES_INSTANCE_NAME_QUERY = os.environ.get(
 'GCSQL_POSTGRES_INSTANCE_NAME_QUERY',
 'testpostgres')
GCSQL_POSTGRES_DATABASE_NAME = os.environ.get('GCSQL_POSTGRES_DATABASE_NAME',
 'postgresdb')
GCSQL_POSTGRES_USER = os.environ.get('GCSQL_POSTGRES_USER', 'postgres_user')
GCSQL_POSTGRES_PASSWORD = os.environ.get('GCSQL_POSTGRES_PASSWORD', 'password')
GCSQL_POSTGRES_PUBLIC_IP = os.environ.get('GCSQL_POSTGRES_PUBLIC_IP', '0.0.0.0')
GCSQL_POSTGRES_PUBLIC_PORT = os.environ.get('GCSQL_POSTGRES_PUBLIC_PORT', 5432)
GCSQL_POSTGRES_CLIENT_CERT_FILE = os.environ.get('GCSQL_POSTGRES_CLIENT_CERT_FILE',
 ".key/postgres-client-cert.pem")
GCSQL_POSTGRES_CLIENT_KEY_FILE = os.environ.get('GCSQL_POSTGRES_CLIENT_KEY_FILE',
 ".key/postgres-client-key.pem")
GCSQL_POSTGRES_SERVER_CA_FILE = os.environ.get('GCSQL_POSTGRES_SERVER_CA_FILE',
 ".key/postgres-server-ca.pem")

GCSQL_MYSQL_INSTANCE_NAME_QUERY = os.environ.get('GCSQL_MYSQL_INSTANCE_NAME_QUERY',
 'testmysql')
GCSQL_MYSQL_DATABASE_NAME = os.environ.get('GCSQL_MYSQL_DATABASE_NAME', 'mysqldb')
GCSQL_MYSQL_USER = os.environ.get('GCSQL_MYSQL_USER', 'mysql_user')
GCSQL_MYSQL_PASSWORD = os.environ.get('GCSQL_MYSQL_PASSWORD', 'password')
GCSQL_MYSQL_PUBLIC_IP = os.environ.get('GCSQL_MYSQL_PUBLIC_IP', '0.0.0.0')
GCSQL_MYSQL_PUBLIC_PORT = os.environ.get('GCSQL_MYSQL_PUBLIC_PORT', 3306)
GCSQL_MYSQL_CLIENT_CERT_FILE = os.environ.get('GCSQL_MYSQL_CLIENT_CERT_FILE',
 ".key/mysql-client-cert.pem")
GCSQL_MYSQL_CLIENT_KEY_FILE = os.environ.get('GCSQL_MYSQL_CLIENT_KEY_FILE',
 ".key/mysql-client-key.pem")
GCSQL_MYSQL_SERVER_CA_FILE = os.environ.get('GCSQL_MYSQL_SERVER_CA_FILE',
 ".key/mysql-server-ca.pem")

SQL = [
 'CREATE TABLE IF NOT EXISTS TABLE_TEST (I INTEGER)',
 'CREATE TABLE IF NOT EXISTS TABLE_TEST (I INTEGER)', # shows warnings logged
 'INSERT INTO TABLE_TEST VALUES (0)',
 'CREATE TABLE IF NOT EXISTS TABLE_TEST2 (I INTEGER)',
 'DROP TABLE TABLE_TEST',
 'DROP TABLE TABLE_TEST2',
]

Example connection definitions for all connectivity cases. Note that all the components
of the connection URI should be URL-encoded:

HOME_DIR = expanduser("~")

def get_absolute_path(path):
 if path.startswith("/"):
 return path
 else:
 return os.path.join(HOME_DIR, path)

postgres_kwargs = dict(
 user=quote_plus(GCSQL_POSTGRES_USER),
 password=quote_plus(GCSQL_POSTGRES_PASSWORD),
 public_port=GCSQL_POSTGRES_PUBLIC_PORT,
 public_ip=quote_plus(GCSQL_POSTGRES_PUBLIC_IP),
 project_id=quote_plus(GCP_PROJECT_ID),
 location=quote_plus(GCP_REGION),
 instance=quote_plus(GCSQL_POSTGRES_INSTANCE_NAME_QUERY),
 database=quote_plus(GCSQL_POSTGRES_DATABASE_NAME),
 client_cert_file=quote_plus(get_absolute_path(GCSQL_POSTGRES_CLIENT_CERT_FILE)),
 client_key_file=quote_plus(get_absolute_path(GCSQL_POSTGRES_CLIENT_KEY_FILE)),
 server_ca_file=quote_plus(get_absolute_path(GCSQL_POSTGRES_SERVER_CA_FILE))
)

The connections below are created using one of the standard approaches - via environment
variables named AIRFLOW_CONN_* . The connections can also be created in the database
of AIRFLOW (using command line or UI).

Postgres: connect via proxy over TCP
os.environ['AIRFLOW_CONN_PROXY_POSTGRES_TCP'] = \
 "gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
 "database_type=postgres&" \
 "project_id={project_id}&" \
 "location={location}&" \
 "instance={instance}&" \
 "use_proxy=True&" \
 "sql_proxy_use_tcp=True".format(**postgres_kwargs)

Postgres: connect via proxy over UNIX socket (specific proxy version)
os.environ['AIRFLOW_CONN_PROXY_POSTGRES_SOCKET'] = \
 "gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
 "database_type=postgres&" \
 "project_id={project_id}&" \
 "location={location}&" \
 "instance={instance}&" \
 "use_proxy=True&" \
 "sql_proxy_version=v1.13&" \
 "sql_proxy_use_tcp=False".format(**postgres_kwargs)

Postgres: connect directly via TCP (non-SSL)
os.environ['AIRFLOW_CONN_PUBLIC_POSTGRES_TCP'] = \
 "gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
 "database_type=postgres&" \
 "project_id={project_id}&" \
 "location={location}&" \
 "instance={instance}&" \
 "use_proxy=False&" \
 "use_ssl=False".format(**postgres_kwargs)

Postgres: connect directly via TCP (SSL)
os.environ['AIRFLOW_CONN_PUBLIC_POSTGRES_TCP_SSL'] = \
 "gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
 "database_type=postgres&" \
 "project_id={project_id}&" \
 "location={location}&" \
 "instance={instance}&" \
 "use_proxy=False&" \
 "use_ssl=True&" \
 "sslcert={client_cert_file}&" \
 "sslkey={client_key_file}&" \
 "sslrootcert={server_ca_file}"\
 .format(**postgres_kwargs)

mysql_kwargs = dict(
 user=quote_plus(GCSQL_MYSQL_USER),
 password=quote_plus(GCSQL_MYSQL_PASSWORD),
 public_port=GCSQL_MYSQL_PUBLIC_PORT,
 public_ip=quote_plus(GCSQL_MYSQL_PUBLIC_IP),
 project_id=quote_plus(GCP_PROJECT_ID),
 location=quote_plus(GCP_REGION),
 instance=quote_plus(GCSQL_MYSQL_INSTANCE_NAME_QUERY),
 database=quote_plus(GCSQL_MYSQL_DATABASE_NAME),
 client_cert_file=quote_plus(get_absolute_path(GCSQL_MYSQL_CLIENT_CERT_FILE)),
 client_key_file=quote_plus(get_absolute_path(GCSQL_MYSQL_CLIENT_KEY_FILE)),
 server_ca_file=quote_plus(get_absolute_path(GCSQL_MYSQL_SERVER_CA_FILE))
)

MySQL: connect via proxy over TCP (specific proxy version)
os.environ['AIRFLOW_CONN_PROXY_MYSQL_TCP'] = \
 "gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
 "database_type=mysql&" \
 "project_id={project_id}&" \
 "location={location}&" \
 "instance={instance}&" \
 "use_proxy=True&" \
 "sql_proxy_version=v1.13&" \
 "sql_proxy_use_tcp=True".format(**mysql_kwargs)

MySQL: connect via proxy over UNIX socket using pre-downloaded Cloud Sql Proxy binary
try:
 sql_proxy_binary_path = subprocess.check_output(
 ['which', 'cloud_sql_proxy']).decode('utf-8').rstrip()
except subprocess.CalledProcessError:
 sql_proxy_binary_path = "/tmp/anyhow_download_cloud_sql_proxy"

os.environ['AIRFLOW_CONN_PROXY_MYSQL_SOCKET'] = \
 "gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
 "database_type=mysql&" \
 "project_id={project_id}&" \
 "location={location}&" \
 "instance={instance}&" \
 "use_proxy=True&" \
 "sql_proxy_binary_path={sql_proxy_binary_path}&" \
 "sql_proxy_use_tcp=False".format(
 sql_proxy_binary_path=quote_plus(sql_proxy_binary_path), **mysql_kwargs)

MySQL: connect directly via TCP (non-SSL)
os.environ['AIRFLOW_CONN_PUBLIC_MYSQL_TCP'] = \
 "gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
 "database_type=mysql&" \
 "project_id={project_id}&" \
 "location={location}&" \
 "instance={instance}&" \
 "use_proxy=False&" \
 "use_ssl=False".format(**mysql_kwargs)

MySQL: connect directly via TCP (SSL) and with fixed Cloud Sql Proxy binary path
os.environ['AIRFLOW_CONN_PUBLIC_MYSQL_TCP_SSL'] = \
 "gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
 "database_type=mysql&" \
 "project_id={project_id}&" \
 "location={location}&" \
 "instance={instance}&" \
 "use_proxy=False&" \
 "use_ssl=True&" \
 "sslcert={client_cert_file}&" \
 "sslkey={client_key_file}&" \
 "sslrootcert={server_ca_file}".format(**mysql_kwargs)

Special case: MySQL: connect directly via TCP (SSL) and with fixed Cloud Sql
Proxy binary path AND with missing project_id

os.environ['AIRFLOW_CONN_PUBLIC_MYSQL_TCP_SSL_NO_PROJECT_ID'] = \
 "gcpcloudsql://{user}:{password}@{public_ip}:{public_port}/{database}?" \
 "database_type=mysql&" \
 "location={location}&" \
 "instance={instance}&" \
 "use_proxy=False&" \
 "use_ssl=True&" \
 "sslcert={client_cert_file}&" \
 "sslkey={client_key_file}&" \
 "sslrootcert={server_ca_file}".format(**mysql_kwargs)

Using the operator

Example operators below are using all connectivity options. Note connection id
from the operator matches the AIRFLOW_CONN_* postfix uppercase. This is
standard AIRFLOW notation for defining connection via environment variables):

connection_names = [
 "proxy_postgres_tcp",
 "proxy_postgres_socket",
 "public_postgres_tcp",
 "public_postgres_tcp_ssl",
 "proxy_mysql_tcp",
 "proxy_mysql_socket",
 "public_mysql_tcp",
 "public_mysql_tcp_ssl",
 "public_mysql_tcp_ssl_no_project_id"
]

tasks = []

with models.DAG(
 dag_id='example_gcp_sql_query',
 default_args=default_args,
 schedule_interval=None
) as dag:
 prev_task = None

 for connection_name in connection_names:
 task = CloudSqlQueryOperator(
 gcp_cloudsql_conn_id=connection_name,
 task_id="example_gcp_sql_task_" + connection_name,
 sql=SQL
)
 tasks.append(task)
 if prev_task:
 prev_task >> task
 prev_task = task

Templating

template_fields = ('sql', 'gcp_cloudsql_conn_id', 'gcp_conn_id')
template_ext = ('.sql',)

More information

See Google Cloud SQL Proxy documentation [https://cloud.google.com/sql/docs/postgres/sql-proxy].

Google Cloud Storage Operators

GoogleCloudStorageBucketCreateAclEntryOperator

Creates a new ACL entry on the specified bucket.

For parameter definition, take a look at
GoogleCloudStorageBucketCreateAclEntryOperator

Arguments

Some arguments in the example DAG are taken from the OS environment variables:

GCS_ACL_BUCKET = os.environ.get('GCS_ACL_BUCKET', 'example-bucket')
GCS_ACL_OBJECT = os.environ.get('GCS_ACL_OBJECT', 'example-object')
GCS_ACL_ENTITY = os.environ.get('GCS_ACL_ENTITY', 'example-entity')
GCS_ACL_BUCKET_ROLE = os.environ.get('GCS_ACL_BUCKET_ROLE', 'example-bucket-role')
GCS_ACL_OBJECT_ROLE = os.environ.get('GCS_ACL_OBJECT_ROLE', 'example-object-role')

Using the operator

gcs_bucket_create_acl_entry_task = GoogleCloudStorageBucketCreateAclEntryOperator(
 bucket=GCS_ACL_BUCKET,
 entity=GCS_ACL_ENTITY,
 role=GCS_ACL_BUCKET_ROLE,
 task_id="gcs_bucket_create_acl_entry_task"
)

Templating

template_fields = ('bucket', 'entity', 'role', 'user_project')

More information

See Google Cloud Storage BucketAccessControls insert documentation [https://cloud.google.com/storage/docs/json_api/v1/bucketAccessControls/insert].

GoogleCloudStorageObjectCreateAclEntryOperator

Creates a new ACL entry on the specified object.

For parameter definition, take a look at
GoogleCloudStorageObjectCreateAclEntryOperator

Arguments

Some arguments in the example DAG are taken from the OS environment variables:

GCS_ACL_BUCKET = os.environ.get('GCS_ACL_BUCKET', 'example-bucket')
GCS_ACL_OBJECT = os.environ.get('GCS_ACL_OBJECT', 'example-object')
GCS_ACL_ENTITY = os.environ.get('GCS_ACL_ENTITY', 'example-entity')
GCS_ACL_BUCKET_ROLE = os.environ.get('GCS_ACL_BUCKET_ROLE', 'example-bucket-role')
GCS_ACL_OBJECT_ROLE = os.environ.get('GCS_ACL_OBJECT_ROLE', 'example-object-role')

Using the operator

gcs_object_create_acl_entry_task = GoogleCloudStorageObjectCreateAclEntryOperator(
 bucket=GCS_ACL_BUCKET,
 object_name=GCS_ACL_OBJECT,
 entity=GCS_ACL_ENTITY,
 role=GCS_ACL_OBJECT_ROLE,
 task_id="gcs_object_create_acl_entry_task"
)

Templating

template_fields = ('bucket', 'object_name', 'entity', 'role', 'generation',
 'user_project')

More information

See Google Cloud Storage ObjectAccessControls insert documentation [https://cloud.google.com/storage/docs/json_api/v1/objectAccessControls/insert].

Managing Connections

Airflow needs to know how to connect to your environment. Information
such as hostname, port, login and passwords to other systems and services is
handled in the Admin->Connections section of the UI. The pipeline code you
will author will reference the ‘conn_id’ of the Connection objects.

[image: ../_images/connections.png]
Connections can be created and managed using either the UI or environment
variables.

See the Connenctions Concepts documentation for
more information.

Creating a Connection with the UI

Open the Admin->Connections section of the UI. Click the Create link
to create a new connection.

[image: ../_images/connection_create.png]

	Fill in the Conn Id field with the desired connection ID. It is
recommended that you use lower-case characters and separate words with
underscores.

	Choose the connection type with the Conn Type field.

	Fill in the remaining fields. See
Connection Types for a description of the fields
belonging to the different connection types.

	Click the Save button to create the connection.

Editing a Connection with the UI

Open the Admin->Connections section of the UI. Click the pencil icon next
to the connection you wish to edit in the connection list.

[image: ../_images/connection_edit.png]
Modify the connection properties and click the Save button to save your
changes.

Creating a Connection with Environment Variables

Connections in Airflow pipelines can be created using environment variables.
The environment variable needs to have a prefix of AIRFLOW_CONN_ for
Airflow with the value in a URI format to use the connection properly.

When referencing the connection in the Airflow pipeline, the conn_id
should be the name of the variable without the prefix. For example, if the
conn_id is named postgres_master the environment variable should be
named AIRFLOW_CONN_POSTGRES_MASTER (note that the environment variable
must be all uppercase). Airflow assumes the value returned from the
environment variable to be in a URI format (e.g.
postgres://user:password@localhost:5432/master or
s3://accesskey:secretkey@S3).

Connection Types

Google Cloud Platform

The Google Cloud Platform connection type enables the GCP Integrations.

Authenticating to GCP

There are two ways to connect to GCP using Airflow.

	Use Application Default Credentials [https://google-auth.readthedocs.io/en/latest/reference/google.auth.html#google.auth.default],
such as via the metadata server when running on Google Compute Engine.

	Use a service account [https://cloud.google.com/docs/authentication/#service_accounts] key
file (JSON format) on disk.

Default Connection IDs

The following connection IDs are used by default.

	bigquery_default

	Used by the BigQueryHook
hook.

	google_cloud_datastore_default

	Used by the DatastoreHook
hook.

	google_cloud_default

	Used by those hooks:

	GoogleCloudBaseHook

	DataFlowHook

	DataProcHook

	MLEngineHook

	GoogleCloudStorageHook

	BigtableHook

	GceHook

	GcfHook

	CloudSpannerHook

	CloudSqlHook

Configuring the Connection

	Project Id (optional)

	The Google Cloud project ID to connect to. It is used as default project id by operators using it and
can usually be overridden at the operator level.

	Keyfile Path

	Path to a service account [https://cloud.google.com/docs/authentication/#service_accounts] key
file (JSON format) on disk.

Not required if using application default credentials.

	Keyfile JSON

	Contents of a service account [https://cloud.google.com/docs/authentication/#service_accounts] key
file (JSON format) on disk. It is recommended to Secure your connections if using this method to authenticate.

Not required if using application default credentials.

	Scopes (comma separated)

	A list of comma-separated Google Cloud scopes [https://developers.google.com/identity/protocols/googlescopes] to
authenticate with.

Note

Scopes are ignored when using application default credentials. See
issue AIRFLOW-2522 [https://issues.apache.org/jira/browse/AIRFLOW-2522].

MySQL

The MySQL connection type provides connection to a MySQL database.

Configuring the Connection

	Host (required)

	The host to connect to.

	Schema (optional)

	Specify the schema name to be used in the database.

	Login (required)

	Specify the user name to connect.

	Password (required)

	Specify the password to connect.

	Extra (optional)

	Specify the extra parameters (as json dictionary) that can be used in MySQL
connection. The following parameters are supported:

	charset: specify charset of the connection

	cursor: one of “sscursor”, “dictcursor, “ssdictcursor” . Specifies cursor class to be
used

	local_infile: controls MySQL’s LOCAL capability (permitting local data loading by
clients). See MySQLdb docs [https://mysqlclient.readthedocs.io/user_guide.html]
for details.

	unix_socket: UNIX socket used instead of the default socket.

	ssl: Dictionary of SSL parameters that control connecting using SSL. Those
parameters are server specific and should contain “ca”, “cert”, “key”, “capath”,
“cipher” parameters. See
MySQLdb docs [https://mysqlclient.readthedocs.io/user_guide.html] for details.
Note that to be useful in URL notation, this parameter might also be
a string where the SSL dictionary is a string-encoded JSON dictionary.

Example “extras” field:

{
 "charset": "utf8",
 "cursorclass": "sscursor",
 "local_infile": true,
 "unix_socket": "/var/socket",
 "ssl": {
 "cert": "/tmp/client-cert.pem",
 "ca": "/tmp/server-ca.pem'",
 "key": "/tmp/client-key.pem"
 }
}

or

{
 "charset": "utf8",
 "cursorclass": "sscursor",
 "local_infile": true,
 "unix_socket": "/var/socket",
 "ssl": "{\"cert\": \"/tmp/client-cert.pem\", \"ca\": \"/tmp/server-ca.pem\", \"key\": \"/tmp/client-key.pem\"}"
}

When specifying the connection as URI (in AIRFLOW_CONN_* variable) you should specify it
following the standard syntax of DB connections - where extras are passed as parameters
of the URI. Note that all components of the URI should be URL-encoded.

For example:

mysql://mysql_user:XXXXXXXXXXXX@1.1.1.1:3306/mysqldb?ssl=%7B%22cert%22%3A+%22%2Ftmp%2Fclient-cert.pem%22%2C+%22ca%22%3A+%22%2Ftmp%2Fserver-ca.pem%22%2C+%22key%22%3A+%22%2Ftmp%2Fclient-key.pem%22%7D

Note

If encounter UnicodeDecodeError while working with MySQL connection, check
the charset defined is matched to the database charset.

Postgres

The Postgres connection type provides connection to a Postgres database.

Configuring the Connection

	Host (required)

	The host to connect to.

	Schema (optional)

	Specify the schema name to be used in the database.

	Login (required)

	Specify the user name to connect.

	Password (required)

	Specify the password to connect.

	Extra (optional)

	Specify the extra parameters (as json dictionary) that can be used in postgres
connection. The following parameters out of the standard python parameters
are supported:

	sslmode - This option determines whether or with what priority a secure SSL
TCP/IP connection will be negotiated with the server. There are six modes:
‘disable’, ‘allow’, ‘prefer’, ‘require’, ‘verify-ca’, ‘verify-full’.

	sslcert - This parameter specifies the file name of the client SSL certificate,
replacing the default.

	sslkey - This parameter specifies the file name of the client SSL key,
replacing the default.

	sslrootcert - This parameter specifies the name of a file containing SSL
certificate authority (CA) certificate(s).

	sslcrl - This parameter specifies the file name of the SSL certificate
revocation list (CRL).

	application_name - Specifies a value for the application_name
configuration parameter.

	keepalives_idle - Controls the number of seconds of inactivity after which TCP
should send a keepalive message to the server.

More details on all Postgres parameters supported can be found in
Postgres documentation [https://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNSTRING].

Example “extras” field:

{
 "sslmode": "verify-ca",
 "sslcert": "/tmp/client-cert.pem",
 "sslca": "/tmp/server-ca.pem",
 "sslkey": "/tmp/client-key.pem"
}

When specifying the connection as URI (in AIRFLOW_CONN_* variable) you should specify it
following the standard syntax of DB connections, where extras are passed as parameters
of the URI (note that all components of the URI should be URL-encoded).

For example:

postgresql://postgres_user:XXXXXXXXXXXX@1.1.1.1:5432/postgresdb?sslmode=verify-ca&sslcert=%2Ftmp%2Fclient-cert.pem&sslkey=%2Ftmp%2Fclient-key.pem&sslrootcert=%2Ftmp%2Fserver-ca.pem

Cloudsql

The gcpcloudsql:// connection is used by
airflow.contrib.operators.gcp_sql_operator.CloudSqlQueryOperator to perform query
on a Google Cloud SQL database. Google Cloud SQL database can be either
Postgres or MySQL, so this is a “meta” connection type. It introduces common schema
for both MySQL and Postgres, including what kind of connectivity should be used.
Google Cloud SQL supports connecting via public IP or via Cloud SQL Proxy.
In the latter case the
CloudSqlDatabaseHook uses
CloudSqlProxyRunner to automatically prepare
and use temporary Postgres or MySQL connection that will use the proxy to connect
(either via TCP or UNIX socket.

Configuring the Connection

	Host (required)

	The host to connect to.

	Schema (optional)

	Specify the schema name to be used in the database.

	Login (required)

	Specify the user name to connect.

	Password (required)

	Specify the password to connect.

	Extra (optional)

	Specify the extra parameters (as JSON dictionary) that can be used in Google Cloud SQL
connection.

Details of all the parameters supported in extra field can be found in
CloudSqlDatabaseHook

Example “extras” field:

{
 "database_type": "mysql",
 "project_id": "example-project",
 "location": "europe-west1",
 "instance": "testinstance",
 "use_proxy": true,
 "sql_proxy_use_tcp": false
}

When specifying the connection as URI (in AIRFLOW_CONN_* variable), you should specify
it following the standard syntax of DB connection, where extras are passed as
parameters of the URI. Note that all components of the URI should be URL-encoded.

For example:

gcpcloudsql://user:XXXXXXXXX@1.1.1.1:3306/mydb?database_type=mysql&project_id=example-project&location=europe-west1&instance=testinstance&use_proxy=True&sql_proxy_use_tcp=False

SSH

The SSH connection type provides connection to use SSHHook to run commands on a remote server using SSHOperator or transfer file from/to the remote server using SFTPOperator.

Configuring the Connection

	Host (required)

	The Remote host to connect.

	Username (optional)

	The Username to connect to the remote_host.

	Password (optional)

	Specify the password of the username to connect to the remote_host.

	Port (optional)

	Port of remote host to connect. Default is 22.

	Extra (optional)

	Specify the extra parameters (as json dictionary) that can be used in ssh
connection. The following parameters out of the standard python parameters
are supported:

	timeout - An optional timeout (in seconds) for the TCP connect. Default is 10.

	compress - true to ask the remote client/server to compress traffic; false to refuse compression. Default is true.

	no_host_key_check - Set to false to restrict connecting to hosts with no entries in ~/.ssh/known_hosts (Hosts file). This provides maximum protection against trojan horse attacks, but can be troublesome when the /etc/ssh/ssh_known_hosts file is poorly maintained or connections to new hosts are frequently made. This option forces the user to manually add all new hosts. Default is true, ssh will automatically add new host keys to the user known hosts files.

	allow_host_key_change - Set to true if you want to allow connecting to hosts that has host key changed or when you get ‘REMOTE HOST IDENTIFICATION HAS CHANGED’ error. This wont protect against Man-In-The-Middle attacks. Other possible solution is to remove the host entry from ~/.ssh/known_hosts file. Default is false.

Example “extras” field:

{
 "timeout": "10",
 "compress": "false",
 "no_host_key_check": "false",
 "allow_host_key_change": "false"
}

When specifying the connection as URI (in AIRFLOW_CONN_* variable) you should specify it
following the standard syntax of connections, where extras are passed as parameters
of the URI (note that all components of the URI should be URL-encoded).

For example:

ssh://user:pass@localhost:22?timeout=10&compress=false&no_host_key_check=false&allow_host_key_change=true

Securing Connections

By default, Airflow will save the passwords for the connection in plain text
within the metadata database. The crypto package is highly recommended
during installation. The crypto package does require that your operating
system has libffi-dev installed.

If crypto package was not installed initially, it means that your Fernet key in airflow.cfg is empty.

You can still enable encryption for passwords within connections by following below steps:

	Install crypto package pip install apache-airflow[crypto]

	Generate fernet_key, using this code snippet below. fernet_key must be a base64-encoded 32-byte key.

from cryptography.fernet import Fernet
fernet_key= Fernet.generate_key()
print(fernet_key.decode()) # your fernet_key, keep it in secured place!

3. Replace airflow.cfg fernet_key value with the one from step 2.
Alternatively, you can store your fernet_key in OS environment variable. You
do not need to change airflow.cfg in this case as Airflow will use environment
variable over the value in airflow.cfg:

Note the double underscores
export AIRFLOW__CORE__FERNET_KEY=your_fernet_key

	Restart Airflow webserver.

	For existing connections (the ones that you had defined before installing airflow[crypto] and creating a Fernet key), you need to open each connection in the connection admin UI, re-type the password, and save it.

Writing Logs

Writing Logs Locally

Users can specify a logs folder in airflow.cfg using the
base_log_folder setting. By default, it is in the AIRFLOW_HOME
directory.

In addition, users can supply a remote location for storing logs and log
backups in cloud storage.

In the Airflow Web UI, local logs take precedence over remote logs. If local logs
can not be found or accessed, the remote logs will be displayed. Note that logs
are only sent to remote storage once a task completes (including failure). In other
words, remote logs for running tasks are unavailable. Logs are stored in the log
folder as {dag_id}/{task_id}/{execution_date}/{try_number}.log.

Writing Logs to Amazon S3

Before you begin

Remote logging uses an existing Airflow connection to read/write logs. If you
don’t have a connection properly setup, this will fail.

Enabling remote logging

To enable this feature, airflow.cfg must be configured as in this
example:

[core]
Airflow can store logs remotely in AWS S3. Users must supply a remote
location URL (starting with either 's3://...') and an Airflow connection
id that provides access to the storage location.
remote_logging = True
remote_base_log_folder = s3://my-bucket/path/to/logs
remote_log_conn_id = MyS3Conn
Use server-side encryption for logs stored in S3
encrypt_s3_logs = False

In the above example, Airflow will try to use S3Hook('MyS3Conn').

Writing Logs to Azure Blob Storage

Airflow can be configured to read and write task logs in Azure Blob Storage.
Follow the steps below to enable Azure Blob Storage logging.

	Airflow’s logging system requires a custom .py file to be located in the PYTHONPATH, so that it’s importable from Airflow. Start by creating a directory to store the config file. $AIRFLOW_HOME/config is recommended.

	Create empty files called $AIRFLOW_HOME/config/log_config.py and $AIRFLOW_HOME/config/__init__.py.

	Copy the contents of airflow/config_templates/airflow_local_settings.py into the log_config.py file that was just created in the step above.

	Customize the following portions of the template:

wasb buckets should start with "wasb" just to help Airflow select correct handler
REMOTE_BASE_LOG_FOLDER = 'wasb-<whatever you want here>'

Rename DEFAULT_LOGGING_CONFIG to LOGGING CONFIG
LOGGING_CONFIG = ...

	Make sure a Azure Blob Storage (Wasb) connection hook has been defined in Airflow. The hook should have read and write access to the Azure Blob Storage bucket defined above in REMOTE_BASE_LOG_FOLDER.

	Update $AIRFLOW_HOME/airflow.cfg to contain:

remote_logging = True
logging_config_class = log_config.LOGGING_CONFIG
remote_log_conn_id = <name of the Azure Blob Storage connection>

	Restart the Airflow webserver and scheduler, and trigger (or wait for) a new task execution.

	Verify that logs are showing up for newly executed tasks in the bucket you’ve defined.

Writing Logs to Google Cloud Storage

Follow the steps below to enable Google Cloud Storage logging.

To enable this feature, airflow.cfg must be configured as in this
example:

[core]
Airflow can store logs remotely in AWS S3, Google Cloud Storage or Elastic Search.
Users must supply an Airflow connection id that provides access to the storage
location. If remote_logging is set to true, see UPDATING.md for additional
configuration requirements.
remote_logging = True
remote_base_log_folder = gs://my-bucket/path/to/logs
remote_log_conn_id = MyGCSConn

	Install the gcp_api package first, like so: pip install apache-airflow[gcp_api].

	Make sure a Google Cloud Platform connection hook has been defined in Airflow. The hook should have read and write access to the Google Cloud Storage bucket defined above in remote_base_log_folder.

	Restart the Airflow webserver and scheduler, and trigger (or wait for) a new task execution.

	Verify that logs are showing up for newly executed tasks in the bucket you’ve defined.

	Verify that the Google Cloud Storage viewer is working in the UI. Pull up a newly executed task, and verify that you see something like:

*** Reading remote log from gs://<bucket where logs should be persisted>/example_bash_operator/run_this_last/2017-10-03T00:00:00/16.log.
[2017-10-03 21:57:50,056] {cli.py:377} INFO - Running on host chrisr-00532
[2017-10-03 21:57:50,093] {base_task_runner.py:115} INFO - Running: ['bash', '-c', u'airflow run example_bash_operator run_this_last 2017-10-03T00:00:00 --job_id 47 --raw -sd DAGS_FOLDER/example_dags/example_bash_operator.py']
[2017-10-03 21:57:51,264] {base_task_runner.py:98} INFO - Subtask: [2017-10-03 21:57:51,263] {__init__.py:45} INFO - Using executor SequentialExecutor
[2017-10-03 21:57:51,306] {base_task_runner.py:98} INFO - Subtask: [2017-10-03 21:57:51,306] {models.py:186} INFO - Filling up the DagBag from /airflow/dags/example_dags/example_bash_operator.py

Note the top line that says it’s reading from the remote log file.

Scaling Out with Celery

CeleryExecutor is one of the ways you can scale out the number of workers. For this
to work, you need to setup a Celery backend (RabbitMQ, Redis, …) and
change your airflow.cfg to point the executor parameter to
CeleryExecutor and provide the related Celery settings.

For more information about setting up a Celery broker, refer to the
exhaustive Celery documentation on the topic [http://docs.celeryproject.org/en/latest/getting-started/brokers/index.html].

Here are a few imperative requirements for your workers:

	airflow needs to be installed, and the CLI needs to be in the path

	Airflow configuration settings should be homogeneous across the cluster

	Operators that are executed on the worker need to have their dependencies
met in that context. For example, if you use the HiveOperator,
the hive CLI needs to be installed on that box, or if you use the
MySqlOperator, the required Python library needs to be available in
the PYTHONPATH somehow

	The worker needs to have access to its DAGS_FOLDER, and you need to
synchronize the filesystems by your own means. A common setup would be to
store your DAGS_FOLDER in a Git repository and sync it across machines using
Chef, Puppet, Ansible, or whatever you use to configure machines in your
environment. If all your boxes have a common mount point, having your
pipelines files shared there should work as well

To kick off a worker, you need to setup Airflow and kick off the worker
subcommand

airflow worker

Your worker should start picking up tasks as soon as they get fired in
its direction.

Note that you can also run “Celery Flower”, a web UI built on top of Celery,
to monitor your workers. You can use the shortcut command airflow flower
to start a Flower web server.

Please note that you must have the flower python library already installed on your system. The recommend way is to install the airflow celery bundle.

pip install 'apache-airflow[celery]'

Some caveats:

	Make sure to use a database backed result backend

	Make sure to set a visibility timeout in [celery_broker_transport_options] that exceeds the ETA of your longest running task

	Tasks can consume resources. Make sure your worker has enough resources to run worker_concurrency tasks

Scaling Out with Dask

DaskExecutor allows you to run Airflow tasks in a Dask Distributed cluster.

Dask clusters can be run on a single machine or on remote networks. For complete
details, consult the Distributed documentation [https://distributed.readthedocs.io/].

To create a cluster, first start a Scheduler:

default settings for a local cluster
DASK_HOST=127.0.0.1
DASK_PORT=8786

dask-scheduler --host $DASK_HOST --port $DASK_PORT

Next start at least one Worker on any machine that can connect to the host:

dask-worker $DASK_HOST:$DASK_PORT

Edit your airflow.cfg to set your executor to DaskExecutor and provide
the Dask Scheduler address in the [dask] section.

Please note:

	Each Dask worker must be able to import Airflow and any dependencies you
require.

	Dask does not support queues. If an Airflow task was created with a queue, a
warning will be raised but the task will be submitted to the cluster.

Scaling Out with Mesos (community contributed)

There are two ways you can run airflow as a mesos framework:

	Running airflow tasks directly on mesos slaves, requiring each mesos slave to have airflow installed and configured.

	Running airflow tasks inside a docker container that has airflow installed, which is run on a mesos slave.

Tasks executed directly on mesos slaves

MesosExecutor allows you to schedule airflow tasks on a Mesos cluster.
For this to work, you need a running mesos cluster and you must perform the following
steps -

	Install airflow on a mesos slave where web server and scheduler will run,
let’s refer to this as the “Airflow server”.

	On the Airflow server, install mesos python eggs from mesos downloads [http://open.mesosphere.com/downloads/mesos/].

	On the Airflow server, use a database (such as mysql) which can be accessed from all mesos
slaves and add configuration in airflow.cfg.

	Change your airflow.cfg to point executor parameter to
MesosExecutor and provide related Mesos settings.

	On all mesos slaves, install airflow. Copy the airflow.cfg from
Airflow server (so that it uses same sql alchemy connection).

	On all mesos slaves, run the following for serving logs:

airflow serve_logs

	On Airflow server, to start processing/scheduling DAGs on mesos, run:

airflow scheduler -p

Note: We need -p parameter to pickle the DAGs.

You can now see the airflow framework and corresponding tasks in mesos UI.
The logs for airflow tasks can be seen in airflow UI as usual.

For more information about mesos, refer to mesos documentation [http://mesos.apache.org/documentation/latest/].
For any queries/bugs on MesosExecutor, please contact @kapil-malik [https://github.com/kapil-malik].

Tasks executed in containers on mesos slaves

This gist [https://gist.github.com/sebradloff/f158874e615bda0005c6f4577b20036e] contains all files and configuration changes necessary to achieve the following:

	Create a dockerized version of airflow with mesos python eggs installed.

We recommend taking advantage of docker’s multi stage builds in order to achieve this. We have one Dockerfile that defines building a specific version of mesos from source (Dockerfile-mesos), in order to create the python eggs. In the airflow Dockerfile (Dockerfile-airflow) we copy the python eggs from the mesos image.

	Create a mesos configuration block within the airflow.cfg.

The configuration block remains the same as the default airflow configuration (default_airflow.cfg), but has the addition of an option docker_image_slave. This should be set to the name of the image you would like mesos to use when running airflow tasks. Make sure you have the proper configuration of the DNS record for your mesos master and any sort of authorization if any exists.

	Change your airflow.cfg to point the executor parameter to
MesosExecutor (executor = SequentialExecutor).

	Make sure your mesos slave has access to the docker repository you are using for your docker_image_slave.

Instructions are available in the mesos docs. [https://mesos.readthedocs.io/en/latest/docker-containerizer/#private-docker-repository]

The rest is up to you and how you want to work with a dockerized airflow configuration.

Running Airflow with systemd

Airflow can integrate with systemd based systems. This makes watching your
daemons easy as systemd can take care of restarting a daemon on failure.
In the scripts/systemd directory you can find unit files that
have been tested on Redhat based systems. You can copy those to
/usr/lib/systemd/system. It is assumed that Airflow will run under
airflow:airflow. If not (or if you are running on a non Redhat
based system) you probably need to adjust the unit files.

Environment configuration is picked up from /etc/sysconfig/airflow.
An example file is supplied. You
can also define here, for example, AIRFLOW_HOME or AIRFLOW_CONFIG.

Running Airflow with upstart

Airflow can integrate with upstart based systems. Upstart automatically starts all airflow services for which you
have a corresponding *.conf file in /etc/init upon system boot. On failure, upstart automatically restarts
the process (until it reaches re-spawn limit set in a *.conf file).

You can find sample upstart job files in the scripts/upstart directory. These files have been tested on
Ubuntu 14.04 LTS. You may have to adjust start on and stop on stanzas to make it work on other upstart
systems. Some of the possible options are listed in scripts/upstart/README.

Modify *.conf files as needed and copy to /etc/init directory. It is assumed that airflow will run
under airflow:airflow. Change setuid and setgid in *.conf files if you use other user/group

You can use initctl to manually start, stop, view status of the airflow process that has been
integrated with upstart

initctl airflow-webserver status

Using the Test Mode Configuration

Airflow has a fixed set of “test mode” configuration options. You can load these
at any time by calling airflow.configuration.load_test_config() (note this
operation is not reversible!). However, some options (like the DAG_FOLDER) are
loaded before you have a chance to call load_test_config(). In order to eagerly load
the test configuration, set test_mode in airflow.cfg:

[tests]
unit_test_mode = True

Due to Airflow’s automatic environment variable expansion (see Setting Configuration Options),
you can also set the env var AIRFLOW__CORE__UNIT_TEST_MODE to temporarily overwrite
airflow.cfg.

Checking Airflow Health Status

To check the health status of your Airflow instance, you can simply access the endpoint
"/health". It will return a JSON object in which a high-level glance is provided.

{
 "metadatabase":{
 "status":"healthy"
 },
 "scheduler":{
 "status":"healthy",
 "latest_scheduler_heartbeat":"2018-12-26 17:15:11+00:00"
 }
}

	The status of each component can be either “healthy” or “unhealthy”.

	The status of metadatabase is depending on whether a valid connection can be initiated
with the database backend of Airflow.

	The status of scheduler is depending on when the latest scheduler heartbeat happened. If the latest
scheduler heartbeat happened 30 seconds (default value) earlier than the current time, scheduler component is
considered unhealthy. You can also specify this threshold value by changing
scheduler_health_check_threshold in scheduler section of the airflow.cfg file.

	The response code of "/health" endpoint is not used to label the health status of the
application (it would always be 200). Hence please be reminded not to use the response code here
for health-check purpose.

UI / Screenshots

The Airflow UI makes it easy to monitor and troubleshoot your data pipelines.
Here’s a quick overview of some of the features and visualizations you
can find in the Airflow UI.

DAGs View

List of the DAGs in your environment, and a set of shortcuts to useful pages.
You can see exactly how many tasks succeeded, failed, or are currently
running at a glance.

[image: _images/dags.png]

Tree View

A tree representation of the DAG that spans across time. If a pipeline is
late, you can quickly see where the different steps are and identify
the blocking ones.

[image: _images/tree.png]

Graph View

The graph view is perhaps the most comprehensive. Visualize your DAG’s
dependencies and their current status for a specific run.

[image: _images/graph.png]

Variable View

The variable view allows you to list, create, edit or delete the key-value pair
of a variable used during jobs. Value of a variable will be hidden if the key contains
any words in (‘password’, ‘secret’, ‘passwd’, ‘authorization’, ‘api_key’, ‘apikey’, ‘access_token’)
by default, but can be configured to show in clear-text.

[image: _images/variable_hidden.png]

Gantt Chart

The Gantt chart lets you analyse task duration and overlap. You can quickly
identify bottlenecks and where the bulk of the time is spent for specific
DAG runs.

[image: _images/gantt.png]

Task Duration

The duration of your different tasks over the past N runs. This view lets
you find outliers and quickly understand where the time is spent in your
DAG over many runs.

[image: _images/duration.png]

Code View

Transparency is everything. While the code for your pipeline is in source
control, this is a quick way to get to the code that generates the DAG and
provide yet more context.

[image: _images/code.png]

Task Instance Context Menu

From the pages seen above (tree view, graph view, gantt, …), it is always
possible to click on a task instance, and get to this rich context menu
that can take you to more detailed metadata, and perform some actions.

[image: _images/context.png]

Concepts

The Airflow Platform is a tool for describing, executing, and monitoring
workflows.

Core Ideas

DAGs

In Airflow, a DAG – or a Directed Acyclic Graph – is a collection of all
the tasks you want to run, organized in a way that reflects their relationships
and dependencies.

For example, a simple DAG could consist of three tasks: A, B, and C. It could
say that A has to run successfully before B can run, but C can run anytime. It
could say that task A times out after 5 minutes, and B can be restarted up to 5
times in case it fails. It might also say that the workflow will run every night
at 10pm, but shouldn’t start until a certain date.

In this way, a DAG describes how you want to carry out your workflow; but
notice that we haven’t said anything about what we actually want to do! A, B,
and C could be anything. Maybe A prepares data for B to analyze while C sends an
email. Or perhaps A monitors your location so B can open your garage door while
C turns on your house lights. The important thing is that the DAG isn’t
concerned with what its constituent tasks do; its job is to make sure that
whatever they do happens at the right time, or in the right order, or with the
right handling of any unexpected issues.

DAGs are defined in standard Python files that are placed in Airflow’s
DAG_FOLDER. Airflow will execute the code in each file to dynamically build
the DAG objects. You can have as many DAGs as you want, each describing an
arbitrary number of tasks. In general, each one should correspond to a single
logical workflow.

Note

When searching for DAGs, Airflow will only consider files where the string
“airflow” and “DAG” both appear in the contents of the .py file.

Scope

Airflow will load any DAG object it can import from a DAGfile. Critically,
that means the DAG must appear in globals(). Consider the following two
DAGs. Only dag_1 will be loaded; the other one only appears in a local
scope.

dag_1 = DAG('this_dag_will_be_discovered')

def my_function():
 dag_2 = DAG('but_this_dag_will_not')

my_function()

Sometimes this can be put to good use. For example, a common pattern with
SubDagOperator is to define the subdag inside a function so that Airflow
doesn’t try to load it as a standalone DAG.

Default Arguments

If a dictionary of default_args is passed to a DAG, it will apply them to
any of its operators. This makes it easy to apply a common parameter to many operators without having to type it many times.

default_args = {
 'start_date': datetime(2016, 1, 1),
 'owner': 'Airflow'
}

dag = DAG('my_dag', default_args=default_args)
op = DummyOperator(task_id='dummy', dag=dag)
print(op.owner) # Airflow

Context Manager

Added in Airflow 1.8

DAGs can be used as context managers to automatically assign new operators to that DAG.

with DAG('my_dag', start_date=datetime(2016, 1, 1)) as dag:
 op = DummyOperator('op')

op.dag is dag # True

Operators

While DAGs describe how to run a workflow, Operators determine what
actually gets done.

An operator describes a single task in a workflow. Operators are usually (but
not always) atomic, meaning they can stand on their own and don’t need to share
resources with any other operators. The DAG will make sure that operators run in
the correct certain order; other than those dependencies, operators generally
run independently. In fact, they may run on two completely different machines.

This is a subtle but very important point: in general, if two operators need to
share information, like a filename or small amount of data, you should consider
combining them into a single operator. If it absolutely can’t be avoided,
Airflow does have a feature for operator cross-communication called XCom that is
described elsewhere in this document.

Airflow provides operators for many common tasks, including:

	BashOperator - executes a bash command

	PythonOperator - calls an arbitrary Python function

	EmailOperator - sends an email

	SimpleHttpOperator - sends an HTTP request

	MySqlOperator, SqliteOperator, PostgresOperator, MsSqlOperator, OracleOperator, JdbcOperator, etc. - executes a SQL command

	Sensor - waits for a certain time, file, database row, S3 key, etc…

In addition to these basic building blocks, there are many more specific
operators: DockerOperator, HiveOperator, S3FileTransformOperator,
PrestoToMysqlOperator, SlackOperator… you get the idea!

The airflow/contrib/ directory contains yet more operators built by the
community. These operators aren’t always as complete or well-tested as those in
the main distribution, but allow users to more easily add new functionality to
the platform.

Operators are only loaded by Airflow if they are assigned to a DAG.

See Using Operators for how to use Airflow operators.

DAG Assignment

Added in Airflow 1.8

Operators do not have to be assigned to DAGs immediately (previously dag was
a required argument). However, once an operator is assigned to a DAG, it can not
be transferred or unassigned. DAG assignment can be done explicitly when the
operator is created, through deferred assignment, or even inferred from other
operators.

dag = DAG('my_dag', start_date=datetime(2016, 1, 1))

sets the DAG explicitly
explicit_op = DummyOperator(task_id='op1', dag=dag)

deferred DAG assignment
deferred_op = DummyOperator(task_id='op2')
deferred_op.dag = dag

inferred DAG assignment (linked operators must be in the same DAG)
inferred_op = DummyOperator(task_id='op3')
inferred_op.set_upstream(deferred_op)

Bitshift Composition

Added in Airflow 1.8

Traditionally, operator relationships are set with the set_upstream() and
set_downstream() methods. In Airflow 1.8, this can be done with the Python
bitshift operators >> and <<. The following four statements are all
functionally equivalent:

op1 >> op2
op1.set_downstream(op2)

op2 << op1
op2.set_upstream(op1)

When using the bitshift to compose operators, the relationship is set in the
direction that the bitshift operator points. For example, op1 >> op2 means
that op1 runs first and op2 runs second. Multiple operators can be
composed – keep in mind the chain is executed left-to-right and the rightmost
object is always returned. For example:

op1 >> op2 >> op3 << op4

is equivalent to:

op1.set_downstream(op2)
op2.set_downstream(op3)
op3.set_upstream(op4)

For convenience, the bitshift operators can also be used with DAGs. For example:

dag >> op1 >> op2

is equivalent to:

op1.dag = dag
op1.set_downstream(op2)

We can put this all together to build a simple pipeline:

with DAG('my_dag', start_date=datetime(2016, 1, 1)) as dag:
 (
 DummyOperator(task_id='dummy_1')
 >> BashOperator(
 task_id='bash_1',
 bash_command='echo "HELLO!"')
 >> PythonOperator(
 task_id='python_1',
 python_callable=lambda: print("GOODBYE!"))
)

Bitshift can also be used with lists. For example:

op1 >> [op2, op3]

is equivalent to:

op1 >> op2
op1 >> op3

and equivalent to:

op1.set_downstream([op2, op3])

Tasks

Once an operator is instantiated, it is referred to as a “task”. The
instantiation defines specific values when calling the abstract operator, and
the parameterized task becomes a node in a DAG.

Task Instances

A task instance represents a specific run of a task and is characterized as the
combination of a dag, a task, and a point in time. Task instances also have an
indicative state, which could be “running”, “success”, “failed”, “skipped”, “up
for retry”, etc.

Workflows

You’re now familiar with the core building blocks of Airflow.
Some of the concepts may sound very similar, but the vocabulary can
be conceptualized like this:

	DAG: a description of the order in which work should take place

	Operator: a class that acts as a template for carrying out some work

	Task: a parameterized instance of an operator

	Task Instance: a task that 1) has been assigned to a DAG and 2) has a
state associated with a specific run of the DAG

By combining DAGs and Operators to create TaskInstances, you can
build complex workflows.

Additional Functionality

In addition to the core Airflow objects, there are a number of more complex
features that enable behaviors like limiting simultaneous access to resources,
cross-communication, conditional execution, and more.

Hooks

Hooks are interfaces to external platforms and databases like Hive, S3,
MySQL, Postgres, HDFS, and Pig. Hooks implement a common interface when
possible, and act as a building block for operators. They also use
the airflow.models.connection.Connection model to retrieve hostnames
and authentication information. Hooks keep authentication code and
information out of pipelines, centralized in the metadata database.

Hooks are also very useful on their own to use in Python scripts,
Airflow airflow.operators.PythonOperator, and in interactive environments
like iPython or Jupyter Notebook.

Pools

Some systems can get overwhelmed when too many processes hit them at the same
time. Airflow pools can be used to limit the execution parallelism on
arbitrary sets of tasks. The list of pools is managed in the UI
(Menu -> Admin -> Pools) by giving the pools a name and assigning
it a number of worker slots. Tasks can then be associated with
one of the existing pools by using the pool parameter when
creating tasks (i.e., instantiating operators).

aggregate_db_message_job = BashOperator(
 task_id='aggregate_db_message_job',
 execution_timeout=timedelta(hours=3),
 pool='ep_data_pipeline_db_msg_agg',
 bash_command=aggregate_db_message_job_cmd,
 dag=dag)
aggregate_db_message_job.set_upstream(wait_for_empty_queue)

The pool parameter can
be used in conjunction with priority_weight to define priorities
in the queue, and which tasks get executed first as slots open up in the
pool. The default priority_weight is 1, and can be bumped to any
number. When sorting the queue to evaluate which task should be executed
next, we use the priority_weight, summed up with all of the
priority_weight values from tasks downstream from this task. You can
use this to bump a specific important task and the whole path to that task
gets prioritized accordingly.

Tasks will be scheduled as usual while the slots fill up. Once capacity is
reached, runnable tasks get queued and their state will show as such in the
UI. As slots free up, queued tasks start running based on the
priority_weight (of the task and its descendants).

Note that by default tasks aren’t assigned to any pool and their
execution parallelism is only limited to the executor’s setting.

Connections

The connection information to external systems is stored in the Airflow
metadata database and managed in the UI (Menu -> Admin -> Connections).
A conn_id is defined there and hostname / login / password / schema
information attached to it. Airflow pipelines can simply refer to the
centrally managed conn_id without having to hard code any of this
information anywhere.

Many connections with the same conn_id can be defined and when that
is the case, and when the hooks uses the get_connection method
from BaseHook, Airflow will choose one connection randomly, allowing
for some basic load balancing and fault tolerance when used in conjunction
with retries.

Airflow also has the ability to reference connections via environment
variables from the operating system. But it only supports URI format. If you
need to specify extra for your connection, please use web UI.

If connections with the same conn_id are defined in both Airflow metadata
database and environment variables, only the one in environment variables
will be referenced by Airflow (for example, given conn_id postgres_master,
Airflow will search for AIRFLOW_CONN_POSTGRES_MASTER
in environment variables first and directly reference it if found,
before it starts to search in metadata database).

Many hooks have a default conn_id, where operators using that hook do not
need to supply an explicit connection ID. For example, the default
conn_id for the PostgresHook is
postgres_default.

See Managing Connections for how to create and manage connections.

Queues

When using the CeleryExecutor, the Celery queues that tasks are sent to
can be specified. queue is an attribute of BaseOperator, so any
task can be assigned to any queue. The default queue for the environment
is defined in the airflow.cfg’s celery -> default_queue. This defines
the queue that tasks get assigned to when not specified, as well as which
queue Airflow workers listen to when started.

Workers can listen to one or multiple queues of tasks. When a worker is
started (using the command airflow worker), a set of comma-delimited
queue names can be specified (e.g. airflow worker -q spark). This worker
will then only pick up tasks wired to the specified queue(s).

This can be useful if you need specialized workers, either from a
resource perspective (for say very lightweight tasks where one worker
could take thousands of tasks without a problem), or from an environment
perspective (you want a worker running from within the Spark cluster
itself because it needs a very specific environment and security rights).

XComs

XComs let tasks exchange messages, allowing more nuanced forms of control and
shared state. The name is an abbreviation of “cross-communication”. XComs are
principally defined by a key, value, and timestamp, but also track attributes
like the task/DAG that created the XCom and when it should become visible. Any
object that can be pickled can be used as an XCom value, so users should make
sure to use objects of appropriate size.

XComs can be “pushed” (sent) or “pulled” (received). When a task pushes an
XCom, it makes it generally available to other tasks. Tasks can push XComs at
any time by calling the xcom_push() method. In addition, if a task returns
a value (either from its Operator’s execute() method, or from a
PythonOperator’s python_callable function), then an XCom containing that
value is automatically pushed.

Tasks call xcom_pull() to retrieve XComs, optionally applying filters
based on criteria like key, source task_ids, and source dag_id. By
default, xcom_pull() filters for the keys that are automatically given to
XComs when they are pushed by being returned from execute functions (as
opposed to XComs that are pushed manually).

If xcom_pull is passed a single string for task_ids, then the most
recent XCom value from that task is returned; if a list of task_ids is
passed, then a corresponding list of XCom values is returned.

inside a PythonOperator called 'pushing_task'
def push_function():
 return value

inside another PythonOperator where provide_context=True
def pull_function(**context):
 value = context['task_instance'].xcom_pull(task_ids='pushing_task')

It is also possible to pull XCom directly in a template, here’s an example
of what this may look like:

SELECT * FROM {{ task_instance.xcom_pull(task_ids='foo', key='table_name') }}

Note that XComs are similar to Variables, but are specifically designed
for inter-task communication rather than global settings.

Variables

Variables are a generic way to store and retrieve arbitrary content or
settings as a simple key value store within Airflow. Variables can be
listed, created, updated and deleted from the UI (Admin -> Variables),
code or CLI. In addition, json settings files can be bulk uploaded through
the UI. While your pipeline code definition and most of your constants
and variables should be defined in code and stored in source control,
it can be useful to have some variables or configuration items
accessible and modifiable through the UI.

from airflow.models import Variable
foo = Variable.get("foo")
bar = Variable.get("bar", deserialize_json=True)

The second call assumes json content and will be deserialized into
bar. Note that Variable is a sqlalchemy model and can be used
as such.

You can use a variable from a jinja template with the syntax :

echo {{ var.value.<variable_name> }}

or if you need to deserialize a json object from the variable :

echo {{ var.json.<variable_name> }}

Branching

Sometimes you need a workflow to branch, or only go down a certain path
based on an arbitrary condition which is typically related to something
that happened in an upstream task. One way to do this is by using the
BranchPythonOperator.

The BranchPythonOperator is much like the PythonOperator except that it
expects a python_callable that returns a task_id (or list of task_ids). The
task_id returned is followed, and all of the other paths are skipped.
The task_id returned by the Python function has to be referencing a task
directly downstream from the BranchPythonOperator task.

Note that using tasks with depends_on_past=True downstream from
BranchPythonOperator is logically unsound as skipped status
will invariably lead to block tasks that depend on their past successes.
skipped states propagates where all directly upstream tasks are
skipped.

If you want to skip some tasks, keep in mind that you can’t have an empty
path, if so make a dummy task.

like this, the dummy task “branch_false” is skipped

[image: _images/branch_good.png]
Not like this, where the join task is skipped

[image: _images/branch_bad.png]
The BranchPythonOperator can also be used with XComs allowing branching
context to dynamically decide what branch to follow based on previous tasks.
For example:

def branch_func(**kwargs):
 ti = kwargs['ti']
 xcom_value = int(ti.xcom_pull(task_ids='start_task'))
 if xcom_value >= 5:
 return 'continue_task'
 else:
 return 'stop_task'

start_op = BashOperator(
 task_id='start_task',
 bash_command="echo 5",
 xcom_push=True,
 dag=dag)

branch_op = BranchPythonOperator(
 task_id='branch_task',
 provide_context=True,
 python_callable=branch_func,
 dag=dag)

continue_op = DummyOperator(task_id='continue_task', dag=dag)
stop_op = DummyOperator(task_id='stop_task', dag=dag)

start_op >> branch_op >> [continue_op, stop_op]

SubDAGs

SubDAGs are perfect for repeating patterns. Defining a function that returns a
DAG object is a nice design pattern when using Airflow.

Airbnb uses the stage-check-exchange pattern when loading data. Data is staged
in a temporary table, after which data quality checks are performed against
that table. Once the checks all pass the partition is moved into the production
table.

As another example, consider the following DAG:

[image: _images/subdag_before.png]
We can combine all of the parallel task-* operators into a single SubDAG,
so that the resulting DAG resembles the following:

[image: _images/subdag_after.png]
Note that SubDAG operators should contain a factory method that returns a DAG
object. This will prevent the SubDAG from being treated like a separate DAG in
the main UI. For example:

#dags/subdag.py
from airflow.models import DAG
from airflow.operators.dummy_operator import DummyOperator

Dag is returned by a factory method
def sub_dag(parent_dag_name, child_dag_name, start_date, schedule_interval):
 dag = DAG(
 '%s.%s' % (parent_dag_name, child_dag_name),
 schedule_interval=schedule_interval,
 start_date=start_date,
)

 dummy_operator = DummyOperator(
 task_id='dummy_task',
 dag=dag,
)

 return dag

This SubDAG can then be referenced in your main DAG file:

main_dag.py
from datetime import datetime, timedelta
from airflow.models import DAG
from airflow.operators.subdag_operator import SubDagOperator
from dags.subdag import sub_dag

PARENT_DAG_NAME = 'parent_dag'
CHILD_DAG_NAME = 'child_dag'

main_dag = DAG(
 dag_id=PARENT_DAG_NAME,
 schedule_interval=timedelta(hours=1),
 start_date=datetime(2016, 1, 1)
)

sub_dag = SubDagOperator(
 subdag=sub_dag(PARENT_DAG_NAME, CHILD_DAG_NAME, main_dag.start_date,
 main_dag.schedule_interval),
 task_id=CHILD_DAG_NAME,
 dag=main_dag,
)

You can zoom into a SubDagOperator from the graph view of the main DAG to show
the tasks contained within the SubDAG:

[image: _images/subdag_zoom.png]
Some other tips when using SubDAGs:

	by convention, a SubDAG’s dag_id should be prefixed by its parent and
a dot. As in parent.child

	share arguments between the main DAG and the SubDAG by passing arguments to
the SubDAG operator (as demonstrated above)

	SubDAGs must have a schedule and be enabled. If the SubDAG’s schedule is
set to None or @once, the SubDAG will succeed without having done
anything

	clearing a SubDagOperator also clears the state of the tasks within

	marking success on a SubDagOperator does not affect the state of the tasks
within

	refrain from using depends_on_past=True in tasks within the SubDAG as
this can be confusing

	it is possible to specify an executor for the SubDAG. It is common to use
the SequentialExecutor if you want to run the SubDAG in-process and
effectively limit its parallelism to one. Using LocalExecutor can be
problematic as it may over-subscribe your worker, running multiple tasks in
a single slot

See airflow/example_dags for a demonstration.

SLAs

Service Level Agreements, or time by which a task or DAG should have
succeeded, can be set at a task level as a timedelta. If
one or many instances have not succeeded by that time, an alert email is sent
detailing the list of tasks that missed their SLA. The event is also recorded
in the database and made available in the web UI under Browse->Missed SLAs
where events can be analyzed and documented.

Trigger Rules

Though the normal workflow behavior is to trigger tasks when all their
directly upstream tasks have succeeded, Airflow allows for more complex
dependency settings.

All operators have a trigger_rule argument which defines the rule by which
the generated task get triggered. The default value for trigger_rule is
all_success and can be defined as “trigger this task when all directly
upstream tasks have succeeded”. All other rules described here are based
on direct parent tasks and are values that can be passed to any operator
while creating tasks:

	all_success: (default) all parents have succeeded

	all_failed: all parents are in a failed or upstream_failed state

	all_done: all parents are done with their execution

	one_failed: fires as soon as at least one parent has failed, it does not wait for all parents to be done

	one_success: fires as soon as at least one parent succeeds, it does not wait for all parents to be done

	none_failed: all parents have not failed (failed or upstream_failed) i.e. all parents have succeeded or been skipped

	dummy: dependencies are just for show, trigger at will

Note that these can be used in conjunction with depends_on_past (boolean)
that, when set to True, keeps a task from getting triggered if the
previous schedule for the task hasn’t succeeded.

Latest Run Only

Standard workflow behavior involves running a series of tasks for a
particular date/time range. Some workflows, however, perform tasks that
are independent of run time but need to be run on a schedule, much like a
standard cron job. In these cases, backfills or running jobs missed during
a pause just wastes CPU cycles.

For situations like this, you can use the LatestOnlyOperator to skip
tasks that are not being run during the most recent scheduled run for a
DAG. The LatestOnlyOperator skips all immediate downstream tasks, and
itself, if the time right now is not between its execution_time and the
next scheduled execution_time.

One must be aware of the interaction between skipped tasks and trigger
rules. Skipped tasks will cascade through trigger rules all_success
and all_failed but not all_done, one_failed, one_success,
and dummy. If you would like to use the LatestOnlyOperator with
trigger rules that do not cascade skips, you will need to ensure that the
LatestOnlyOperator is directly upstream of the task you would like
to skip.

It is possible, through use of trigger rules to mix tasks that should run
in the typical date/time dependent mode and those using the
LatestOnlyOperator.

For example, consider the following dag:

#dags/latest_only_with_trigger.py
import datetime as dt

from airflow.models import DAG
from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.latest_only_operator import LatestOnlyOperator
from airflow.utils.trigger_rule import TriggerRule

dag = DAG(
 dag_id='latest_only_with_trigger',
 schedule_interval=dt.timedelta(hours=4),
 start_date=dt.datetime(2016, 9, 20),
)

latest_only = LatestOnlyOperator(task_id='latest_only', dag=dag)

task1 = DummyOperator(task_id='task1', dag=dag)
task1.set_upstream(latest_only)

task2 = DummyOperator(task_id='task2', dag=dag)

task3 = DummyOperator(task_id='task3', dag=dag)
task3.set_upstream([task1, task2])

task4 = DummyOperator(task_id='task4', dag=dag,
 trigger_rule=TriggerRule.ALL_DONE)
task4.set_upstream([task1, task2])

In the case of this dag, the latest_only task will show up as skipped
for all runs except the latest run. task1 is directly downstream of
latest_only and will also skip for all runs except the latest.
task2 is entirely independent of latest_only and will run in all
scheduled periods. task3 is downstream of task1 and task2 and
because of the default trigger_rule being all_success will receive
a cascaded skip from task1. task4 is downstream of task1 and
task2 but since its trigger_rule is set to all_done it will
trigger as soon as task1 has been skipped (a valid completion state)
and task2 has succeeded.

[image: _images/latest_only_with_trigger.png]

Zombies & Undeads

Task instances die all the time, usually as part of their normal life cycle,
but sometimes unexpectedly.

Zombie tasks are characterized by the absence
of an heartbeat (emitted by the job periodically) and a running status
in the database. They can occur when a worker node can’t reach the database,
when Airflow processes are killed externally, or when a node gets rebooted
for instance. Zombie killing is performed periodically by the scheduler’s
process.

Undead processes are characterized by the existence of a process and a matching
heartbeat, but Airflow isn’t aware of this task as running in the database.
This mismatch typically occurs as the state of the database is altered,
most likely by deleting rows in the “Task Instances” view in the UI.
Tasks are instructed to verify their state as part of the heartbeat routine,
and terminate themselves upon figuring out that they are in this “undead”
state.

Cluster Policy

Your local airflow settings file can define a policy function that
has the ability to mutate task attributes based on other task or DAG
attributes. It receives a single argument as a reference to task objects,
and is expected to alter its attributes.

For example, this function could apply a specific queue property when
using a specific operator, or enforce a task timeout policy, making sure
that no tasks run for more than 48 hours. Here’s an example of what this
may look like inside your airflow_settings.py:

def policy(task):
 if task.__class__.__name__ == 'HivePartitionSensor':
 task.queue = "sensor_queue"
 if task.timeout > timedelta(hours=48):
 task.timeout = timedelta(hours=48)

Documentation & Notes

It’s possible to add documentation or notes to your dags & task objects that
become visible in the web interface (“Graph View” for dags, “Task Details” for
tasks). There are a set of special task attributes that get rendered as rich
content if defined:

	attribute

	rendered to

	doc

	monospace

	doc_json

	json

	doc_yaml

	yaml

	doc_md

	markdown

	doc_rst

	reStructuredText

Please note that for dags, doc_md is the only attribute interpreted.

This is especially useful if your tasks are built dynamically from
configuration files, it allows you to expose the configuration that led
to the related tasks in Airflow.

"""
My great DAG
"""

dag = DAG('my_dag', default_args=default_args)
dag.doc_md = __doc__

t = BashOperator("foo", dag=dag)
t.doc_md = """\
#Title"
Here's a [url](www.airbnb.com)
"""

This content will get rendered as markdown respectively in the “Graph View” and
“Task Details” pages.

Jinja Templating

Airflow leverages the power of
Jinja Templating [http://jinja.pocoo.org/docs/dev/] and this can be a
powerful tool to use in combination with macros (see the Macros section).

For example, say you want to pass the execution date as an environment variable
to a Bash script using the BashOperator.

The execution date as YYYY-MM-DD
date = "{{ ds }}"
t = BashOperator(
 task_id='test_env',
 bash_command='/tmp/test.sh ',
 dag=dag,
 env={'EXECUTION_DATE': date})

Here, {{ ds }} is a macro, and because the env parameter of the
BashOperator is templated with Jinja, the execution date will be available
as an environment variable named EXECUTION_DATE in your Bash script.

You can use Jinja templating with every parameter that is marked as “templated”
in the documentation. Template substitution occurs just before the pre_execute
function of your operator is called.

Packaged dags

While often you will specify dags in a single .py file it might sometimes
be required to combine dag and its dependencies. For example, you might want
to combine several dags together to version them together or you might want
to manage them together or you might need an extra module that is not available
by default on the system you are running airflow on. To allow this you can create
a zip file that contains the dag(s) in the root of the zip file and have the extra
modules unpacked in directories.

For instance you can create a zip file that looks like this:

my_dag1.py
my_dag2.py
package1/__init__.py
package1/functions.py

Airflow will scan the zip file and try to load my_dag1.py and my_dag2.py.
It will not go into subdirectories as these are considered to be potential
packages.

In case you would like to add module dependencies to your DAG you basically would
do the same, but then it is more to use a virtualenv and pip.

virtualenv zip_dag
source zip_dag/bin/activate

mkdir zip_dag_contents
cd zip_dag_contents

pip install --install-option="--install-lib=$PWD" my_useful_package
cp ~/my_dag.py .

zip -r zip_dag.zip *

Note

the zip file will be inserted at the beginning of module search list
(sys.path) and as such it will be available to any other code that resides
within the same interpreter.

Note

packaged dags cannot be used with pickling turned on.

Note

packaged dags cannot contain dynamic libraries (eg. libz.so) these need
to be available on the system if a module needs those. In other words only
pure python modules can be packaged.

.airflowignore

A .airflowignore file specifies the directories or files in DAG_FOLDER
that Airflow should intentionally ignore. Each line in .airflowignore
specifies a regular expression pattern, and directories or files whose names
(not DAG id) match any of the patterns would be ignored (under the hood,
re.findall() is used to match the pattern). Overall it works like a
.gitignore file.

.airflowignore file should be put in your DAG_FOLDER.
For example, you can prepare a .airflowignore file with contents

project_a
tenant_[\d]

Then files like “project_a_dag_1.py”, “TESTING_project_a.py”, “tenant_1.py”,
“project_a/dag_1.py”, and “tenant_1/dag_1.py” in your DAG_FOLDER would be ignored
(If a directory’s name matches any of the patterns, this directory and all its subfolders
would not be scanned by Airflow at all. This improves efficiency of DAG finding).

The scope of a .airflowignore file is the directory it is in plus all its subfolders.
You can also prepare .airflowignore file for a subfolder in DAG_FOLDER and it
would only be applicable for that subfolder.

Data Profiling

Note

Adhoc Queries and Charts are no longer supported in the new FAB-based webserver
and UI, due to security concerns.

Part of being productive with data is having the right weapons to
profile the data you are working with. Airflow provides a simple query
interface to write SQL and get results quickly, and a charting application
letting you visualize data.

Adhoc Queries

The adhoc query UI allows for simple SQL interactions with the database
connections registered in Airflow.

[image: _images/adhoc.png]

Charts

A simple UI built on top of flask-admin and highcharts allows building
data visualizations and charts easily. Fill in a form with a label, SQL,
chart type, pick a source database from your environment’s connections,
select a few other options, and save it for later use.

You can even use the same templating and macros available when writing
airflow pipelines, parameterizing your queries and modifying parameters
directly in the URL.

These charts are basic, but they’re easy to create, modify and share.

Chart Screenshot

[image: _images/chart.png]

Chart Form Screenshot

[image: _images/chart_form.png]

Command Line Interface

Airflow has a very rich command line interface that allows for
many types of operation on a DAG, starting services, and supporting
development and testing.

usage: airflow [-h]
 {resetdb,render,variables,connections,users,pause,sync_perm,task_failed_deps,version,trigger_dag,initdb,test,unpause,list_dag_runs,dag_state,run,list_tasks,backfill,list_dags,kerberos,worker,webserver,flower,scheduler,task_state,pool,serve_logs,clear,next_execution,upgradedb,delete_dag}
 ...

Positional Arguments

	subcommand

	Possible choices: resetdb, render, variables, connections, users, pause, sync_perm, task_failed_deps, version, trigger_dag, initdb, test, unpause, list_dag_runs, dag_state, run, list_tasks, backfill, list_dags, kerberos, worker, webserver, flower, scheduler, task_state, pool, serve_logs, clear, next_execution, upgradedb, delete_dag

sub-command help

Sub-commands:

resetdb

Burn down and rebuild the metadata database

airflow resetdb [-h] [-y]

Named Arguments

	-y, --yes

	Do not prompt to confirm reset. Use with care!

Default: False

render

Render a task instance’s template(s)

airflow render [-h] [-sd SUBDIR] dag_id task_id execution_date

Positional Arguments

	dag_id

	The id of the dag

	task_id

	The id of the task

	execution_date

	The execution date of the DAG

Named Arguments

	-sd, --subdir

	File location or directory from which to look for the dag. Defaults to ‘[AIRFLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIRFLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

variables

CRUD operations on variables

airflow variables [-h] [-s KEY VAL] [-g KEY] [-j] [-d VAL] [-i FILEPATH]
 [-e FILEPATH] [-x KEY]

Named Arguments

	-s, --set

	Set a variable

	-g, --get

	Get value of a variable

	-j, --json

	Deserialize JSON variable

Default: False

	-d, --default

	Default value returned if variable does not exist

	-i, --import

	Import variables from JSON file

	-e, --export

	Export variables to JSON file

	-x, --delete

	Delete a variable

connections

List/Add/Delete connections

airflow connections [-h] [-l] [-a] [-d] [--conn_id CONN_ID]
 [--conn_uri CONN_URI] [--conn_extra CONN_EXTRA]
 [--conn_type CONN_TYPE] [--conn_host CONN_HOST]
 [--conn_login CONN_LOGIN] [--conn_password CONN_PASSWORD]
 [--conn_schema CONN_SCHEMA] [--conn_port CONN_PORT]

Named Arguments

	-l, --list

	List all connections

Default: False

	-a, --add

	Add a connection

Default: False

	-d, --delete

	Delete a connection

Default: False

	--conn_id

	Connection id, required to add/delete a connection

	--conn_uri

	Connection URI, required to add a connection without conn_type

	--conn_extra

	Connection Extra field, optional when adding a connection

	--conn_type

	Connection type, required to add a connection without conn_uri

	--conn_host

	Connection host, optional when adding a connection

	--conn_login

	Connection login, optional when adding a connection

	--conn_password

	Connection password, optional when adding a connection

	--conn_schema

	Connection schema, optional when adding a connection

	--conn_port

	Connection port, optional when adding a connection

users

List/Create/Delete users

airflow users [-h] [-l] [-c] [-d] [--username USERNAME] [--email EMAIL]
 [--firstname FIRSTNAME] [--lastname LASTNAME] [--role ROLE]
 [--password PASSWORD] [--use_random_password]

Named Arguments

	-l, --list

	List all users

Default: False

	-c, --create

	Create a user

Default: False

	-d, --delete

	Delete a user

Default: False

	--username

	Username of the user, required to create/delete a user

	--email

	Email of the user, required to create a user

	--firstname

	First name of the user, required to create a user

	--lastname

	Last name of the user, required to create a user

	--role

	Role of the user. Existing roles include Admin, User, Op, Viewer, and Public. Required to create a user

	--password

	Password of the user, required to create a user without –use_random_password

	--use_random_password

	Do not prompt for password. Use random string instead. Required to create a user without –password

Default: False

pause

Pause a DAG

airflow pause [-h] [-sd SUBDIR] dag_id

Positional Arguments

	dag_id

	The id of the dag

Named Arguments

	-sd, --subdir

	File location or directory from which to look for the dag. Defaults to ‘[AIRFLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIRFLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

sync_perm

Update existing role’s permissions.

airflow sync_perm [-h]

task_failed_deps

Returns the unmet dependencies for a task instance from the perspective of the scheduler. In other words, why a task instance doesn’t get scheduled and then queued by the scheduler, and then run by an executor).

airflow task_failed_deps [-h] [-sd SUBDIR] dag_id task_id execution_date

Positional Arguments

	dag_id

	The id of the dag

	task_id

	The id of the task

	execution_date

	The execution date of the DAG

Named Arguments

	-sd, --subdir

	File location or directory from which to look for the dag. Defaults to ‘[AIRFLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIRFLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

version

Show the version

airflow version [-h]

trigger_dag

Trigger a DAG run

airflow trigger_dag [-h] [-sd SUBDIR] [-r RUN_ID] [-c CONF] [-e EXEC_DATE]
 dag_id

Positional Arguments

	dag_id

	The id of the dag

Named Arguments

	-sd, --subdir

	File location or directory from which to look for the dag. Defaults to ‘[AIRFLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIRFLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

	-r, --run_id

	Helps to identify this run

	-c, --conf

	JSON string that gets pickled into the DagRun’s conf attribute

	-e, --exec_date

	The execution date of the DAG

initdb

Initialize the metadata database

airflow initdb [-h]

test

Test a task instance. This will run a task without checking for dependencies or recording its state in the database.

airflow test [-h] [-sd SUBDIR] [-dr] [-tp TASK_PARAMS]
 dag_id task_id execution_date

Positional Arguments

	dag_id

	The id of the dag

	task_id

	The id of the task

	execution_date

	The execution date of the DAG

Named Arguments

	-sd, --subdir

	File location or directory from which to look for the dag. Defaults to ‘[AIRFLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIRFLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

	-dr, --dry_run

	Perform a dry run

Default: False

	-tp, --task_params

	Sends a JSON params dict to the task

unpause

Resume a paused DAG

airflow unpause [-h] [-sd SUBDIR] dag_id

Positional Arguments

	dag_id

	The id of the dag

Named Arguments

	-sd, --subdir

	File location or directory from which to look for the dag. Defaults to ‘[AIRFLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIRFLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

list_dag_runs

List dag runs given a DAG id. If state option is given, it will onlysearch for all the dagruns with the given state. If no_backfill option is given, it will filter outall backfill dagruns for given dag id.

airflow list_dag_runs [-h] [--no_backfill] [--state STATE] dag_id

Positional Arguments

	dag_id

	The id of the dag

Named Arguments

	--no_backfill

	filter all the backfill dagruns given the dag id

Default: False

	--state

	Only list the dag runs corresponding to the state

dag_state

Get the status of a dag run

airflow dag_state [-h] [-sd SUBDIR] dag_id execution_date

Positional Arguments

	dag_id

	The id of the dag

	execution_date

	The execution date of the DAG

Named Arguments

	-sd, --subdir

	File location or directory from which to look for the dag. Defaults to ‘[AIRFLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIRFLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

run

Run a single task instance

airflow run [-h] [-sd SUBDIR] [-m] [-f] [--pool POOL] [--cfg_path CFG_PATH]
 [-l] [-A] [-i] [-I] [--ship_dag] [-p PICKLE] [-int]
 dag_id task_id execution_date

Positional Arguments

	dag_id

	The id of the dag

	task_id

	The id of the task

	execution_date

	The execution date of the DAG

Named Arguments

	-sd, --subdir

	File location or directory from which to look for the dag. Defaults to ‘[AIRFLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIRFLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

	-m, --mark_success

	Mark jobs as succeeded without running them

Default: False

	-f, --force

	Ignore previous task instance state, rerun regardless if task already succeeded/failed

Default: False

	--pool

	Resource pool to use

	--cfg_path

	Path to config file to use instead of airflow.cfg

	-l, --local

	Run the task using the LocalExecutor

Default: False

	-A, --ignore_all_dependencies

	Ignores all non-critical dependencies, including ignore_ti_state and ignore_task_deps

Default: False

	-i, --ignore_dependencies

	Ignore task-specific dependencies, e.g. upstream, depends_on_past, and retry delay dependencies

Default: False

	-I, --ignore_depends_on_past

	Ignore depends_on_past dependencies (but respect upstream dependencies)

Default: False

	--ship_dag

	Pickles (serializes) the DAG and ships it to the worker

Default: False

	-p, --pickle

	Serialized pickle object of the entire dag (used internally)

	-int, --interactive

	Do not capture standard output and error streams (useful for interactive debugging)

Default: False

list_tasks

List the tasks within a DAG

airflow list_tasks [-h] [-t] [-sd SUBDIR] dag_id

Positional Arguments

	dag_id

	The id of the dag

Named Arguments

	-t, --tree

	Tree view

Default: False

	-sd, --subdir

	File location or directory from which to look for the dag. Defaults to ‘[AIRFLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIRFLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

backfill

Run subsections of a DAG for a specified date range. If reset_dag_run option is used, backfill will first prompt users whether airflow should clear all the previous dag_run and task_instances within the backfill date range. If rerun_failed_tasks is used, backfill will auto re-run the previous failed task instances within the backfill date range.

airflow backfill [-h] [-t TASK_REGEX] [-s START_DATE] [-e END_DATE] [-m] [-l]
 [-x] [-i] [-I] [-sd SUBDIR] [--pool POOL]
 [--delay_on_limit DELAY_ON_LIMIT] [-dr] [-v] [-c CONF]
 [--reset_dagruns] [--rerun_failed_tasks]
 dag_id

Positional Arguments

	dag_id

	The id of the dag

Named Arguments

	-t, --task_regex

	The regex to filter specific task_ids to backfill (optional)

	-s, --start_date

	Override start_date YYYY-MM-DD

	-e, --end_date

	Override end_date YYYY-MM-DD

	-m, --mark_success

	Mark jobs as succeeded without running them

Default: False

	-l, --local

	Run the task using the LocalExecutor

Default: False

	-x, --donot_pickle

	Do not attempt to pickle the DAG object to send over to the workers, just tell the workers to run their version of the code.

Default: False

	-i, --ignore_dependencies

	Skip upstream tasks, run only the tasks matching the regexp. Only works in conjunction with task_regex

Default: False

	-I, --ignore_first_depends_on_past

	Ignores depends_on_past dependencies for the first set of tasks only (subsequent executions in the backfill DO respect depends_on_past).

Default: False

	-sd, --subdir

	File location or directory from which to look for the dag. Defaults to ‘[AIRFLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIRFLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

	--pool

	Resource pool to use

	--delay_on_limit

	Amount of time in seconds to wait when the limit on maximum active dag runs (max_active_runs) has been reached before trying to execute a dag run again.

Default: 1.0

	-dr, --dry_run

	Perform a dry run

Default: False

	-v, --verbose

	Make logging output more verbose

Default: False

	-c, --conf

	JSON string that gets pickled into the DagRun’s conf attribute

	--reset_dagruns

	if set, the backfill will delete existing backfill-related DAG runs and start anew with fresh, running DAG runs

Default: False

	--rerun_failed_tasks

	if set, the backfill will auto-rerun all the failed tasks for the backfill date range instead of throwing exceptions

Default: False

list_dags

List all the DAGs

airflow list_dags [-h] [-sd SUBDIR] [-r]

Named Arguments

	-sd, --subdir

	File location or directory from which to look for the dag. Defaults to ‘[AIRFLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIRFLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

	-r, --report

	Show DagBag loading report

Default: False

kerberos

Start a kerberos ticket renewer

airflow kerberos [-h] [-kt [KEYTAB]] [--pid [PID]] [-D] [--stdout STDOUT]
 [--stderr STDERR] [-l LOG_FILE]
 [principal]

Positional Arguments

	principal

	kerberos principal

Named Arguments

	-kt, --keytab

	keytab

Default: airflow.keytab

	--pid

	PID file location

	-D, --daemon

	Daemonize instead of running in the foreground

Default: False

	--stdout

	Redirect stdout to this file

	--stderr

	Redirect stderr to this file

	-l, --log-file

	Location of the log file

worker

Start a Celery worker node

airflow worker [-h] [-p] [-q QUEUES] [-c CONCURRENCY] [-cn CELERY_HOSTNAME]
 [--pid [PID]] [-D] [--stdout STDOUT] [--stderr STDERR]
 [-l LOG_FILE] [-a AUTOSCALE]

Named Arguments

	-p, --do_pickle

	Attempt to pickle the DAG object to send over to the workers, instead of letting workers run their version of the code.

Default: False

	-q, --queues

	Comma delimited list of queues to serve

Default: default

	-c, --concurrency

	The number of worker processes

Default: 16

	-cn, --celery_hostname

	Set the hostname of celery worker if you have multiple workers on a single machine.

	--pid

	PID file location

	-D, --daemon

	Daemonize instead of running in the foreground

Default: False

	--stdout

	Redirect stdout to this file

	--stderr

	Redirect stderr to this file

	-l, --log-file

	Location of the log file

	-a, --autoscale

	Minimum and Maximum number of worker to autoscale

webserver

Start a Airflow webserver instance

airflow webserver [-h] [-p PORT] [-w WORKERS]
 [-k {sync,eventlet,gevent,tornado}] [-t WORKER_TIMEOUT]
 [-hn HOSTNAME] [--pid [PID]] [-D] [--stdout STDOUT]
 [--stderr STDERR] [-A ACCESS_LOGFILE] [-E ERROR_LOGFILE]
 [-l LOG_FILE] [--ssl_cert SSL_CERT] [--ssl_key SSL_KEY] [-d]

Named Arguments

	-p, --port

	The port on which to run the server

Default: 8080

	-w, --workers

	Number of workers to run the webserver on

Default: 4

	-k, --workerclass

	Possible choices: sync, eventlet, gevent, tornado

The worker class to use for Gunicorn

Default: sync

	-t, --worker_timeout

	The timeout for waiting on webserver workers

Default: 120

	-hn, --hostname

	Set the hostname on which to run the web server

Default: 0.0.0.0

	--pid

	PID file location

	-D, --daemon

	Daemonize instead of running in the foreground

Default: False

	--stdout

	Redirect stdout to this file

	--stderr

	Redirect stderr to this file

	-A, --access_logfile

	The logfile to store the webserver access log. Use ‘-‘ to print to stderr.

Default: -

	-E, --error_logfile

	The logfile to store the webserver error log. Use ‘-‘ to print to stderr.

Default: -

	-l, --log-file

	Location of the log file

	--ssl_cert

	Path to the SSL certificate for the webserver

	--ssl_key

	Path to the key to use with the SSL certificate

	-d, --debug

	Use the server that ships with Flask in debug mode

Default: False

flower

Start a Celery Flower

airflow flower [-h] [-hn HOSTNAME] [-p PORT] [-fc FLOWER_CONF] [-u URL_PREFIX]
 [-ba BASIC_AUTH] [-a BROKER_API] [--pid [PID]] [-D]
 [--stdout STDOUT] [--stderr STDERR] [-l LOG_FILE]

Named Arguments

	-hn, --hostname

	Set the hostname on which to run the server

Default: 0.0.0.0

	-p, --port

	The port on which to run the server

Default: 5555

	-fc, --flower_conf

	Configuration file for flower

	-u, --url_prefix

	URL prefix for Flower

	-ba, --basic_auth

	Securing Flower with Basic Authentication. Accepts user:password pairs separated by a comma. Example: flower_basic_auth = user1:password1,user2:password2

	-a, --broker_api

	Broker api

	--pid

	PID file location

	-D, --daemon

	Daemonize instead of running in the foreground

Default: False

	--stdout

	Redirect stdout to this file

	--stderr

	Redirect stderr to this file

	-l, --log-file

	Location of the log file

scheduler

Start a scheduler instance

airflow scheduler [-h] [-d DAG_ID] [-sd SUBDIR] [-n NUM_RUNS] [-p]
 [--pid [PID]] [-D] [--stdout STDOUT] [--stderr STDERR]
 [-l LOG_FILE]

Named Arguments

	-d, --dag_id

	The id of the dag to run

	-sd, --subdir

	File location or directory from which to look for the dag. Defaults to ‘[AIRFLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIRFLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

	-n, --num_runs

	Set the number of runs to execute before exiting

Default: -1

	-p, --do_pickle

	Attempt to pickle the DAG object to send over to the workers, instead of letting workers run their version of the code.

Default: False

	--pid

	PID file location

	-D, --daemon

	Daemonize instead of running in the foreground

Default: False

	--stdout

	Redirect stdout to this file

	--stderr

	Redirect stderr to this file

	-l, --log-file

	Location of the log file

task_state

Get the status of a task instance

airflow task_state [-h] [-sd SUBDIR] dag_id task_id execution_date

Positional Arguments

	dag_id

	The id of the dag

	task_id

	The id of the task

	execution_date

	The execution date of the DAG

Named Arguments

	-sd, --subdir

	File location or directory from which to look for the dag. Defaults to ‘[AIRFLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIRFLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

pool

CRUD operations on pools

airflow pool [-h] [-s NAME SLOT_COUNT POOL_DESCRIPTION] [-g NAME] [-x NAME]
 [-i FILEPATH] [-e FILEPATH]

Named Arguments

	-s, --set

	Set pool slot count and description, respectively

	-g, --get

	Get pool info

	-x, --delete

	Delete a pool

	-i, --import

	Import pool from JSON file

	-e, --export

	Export pool to JSON file

serve_logs

Serve logs generate by worker

airflow serve_logs [-h]

clear

Clear a set of task instance, as if they never ran

airflow clear [-h] [-t TASK_REGEX] [-s START_DATE] [-e END_DATE] [-sd SUBDIR]
 [-u] [-d] [-c] [-f] [-r] [-x] [-xp] [-dx]
 dag_id

Positional Arguments

	dag_id

	The id of the dag

Named Arguments

	-t, --task_regex

	The regex to filter specific task_ids to backfill (optional)

	-s, --start_date

	Override start_date YYYY-MM-DD

	-e, --end_date

	Override end_date YYYY-MM-DD

	-sd, --subdir

	File location or directory from which to look for the dag. Defaults to ‘[AIRFLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIRFLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

	-u, --upstream

	Include upstream tasks

Default: False

	-d, --downstream

	Include downstream tasks

Default: False

	-c, --no_confirm

	Do not request confirmation

Default: False

	-f, --only_failed

	Only failed jobs

Default: False

	-r, --only_running

	Only running jobs

Default: False

	-x, --exclude_subdags

	Exclude subdags

Default: False

	-xp, --exclude_parentdag

	Exclude ParentDAGS if the task cleared is a part of a SubDAG

Default: False

	-dx, --dag_regex

	Search dag_id as regex instead of exact string

Default: False

next_execution

Get the next execution datetime of a DAG.

airflow next_execution [-h] [-sd SUBDIR] dag_id

Positional Arguments

	dag_id

	The id of the dag

Named Arguments

	-sd, --subdir

	File location or directory from which to look for the dag. Defaults to ‘[AIRFLOW_HOME]/dags’ where [AIRFLOW_HOME] is the value you set for ‘AIRFLOW_HOME’ config you set in ‘airflow.cfg’

Default: “[AIRFLOW_HOME]/dags”

upgradedb

Upgrade the metadata database to latest version

airflow upgradedb [-h]

delete_dag

Delete all DB records related to the specified DAG

airflow delete_dag [-h] [-y] dag_id

Positional Arguments

	dag_id

	The id of the dag

Named Arguments

	-y, --yes

	Do not prompt to confirm reset. Use with care!

Default: False

Scheduling & Triggers

The Airflow scheduler monitors all tasks and all DAGs, and triggers the
task instances whose dependencies have been met. Behind the scenes,
it spins up a subprocess, which monitors and stays in sync with a folder
for all DAG objects it may contain, and periodically (every minute or so)
collects DAG parsing results and inspects active tasks to see whether
they can be triggered.

The Airflow scheduler is designed to run as a persistent service in an
Airflow production environment. To kick it off, all you need to do is
execute airflow scheduler. It will use the configuration specified in
airflow.cfg.

Note that if you run a DAG on a schedule_interval of one day,
the run stamped 2016-01-01 will be triggered soon after 2016-01-01T23:59.
In other words, the job instance is started once the period it covers
has ended.

Let’s Repeat That The scheduler runs your job one schedule_interval AFTER the
start date, at the END of the period.

The scheduler starts an instance of the executor specified in the your
airflow.cfg. If it happens to be the LocalExecutor, tasks will be
executed as subprocesses; in the case of CeleryExecutor, DaskExecutor, and
MesosExecutor, tasks are executed remotely.

To start a scheduler, simply run the command:

airflow scheduler

DAG Runs

A DAG Run is an object representing an instantiation of the DAG in time.

Each DAG may or may not have a schedule, which informs how DAG Runs are
created. schedule_interval is defined as a DAG arguments, and receives
preferably a
cron expression [https://en.wikipedia.org/wiki/Cron#CRON_expression] as
a str, or a datetime.timedelta object. Alternatively, you can also
use one of these cron “preset”:

	preset

	meaning

	cron

	None

	Don’t schedule, use for exclusively “externally triggered”
DAGs

	

	@once

	Schedule once and only once

	

	@hourly

	Run once an hour at the beginning of the hour

	0 * * * *

	@daily

	Run once a day at midnight

	0 0 * * *

	@weekly

	Run once a week at midnight on Sunday morning

	0 0 * * 0

	@monthly

	Run once a month at midnight of the first day of the month

	0 0 1 * *

	@yearly

	Run once a year at midnight of January 1

	0 0 1 1 *

Note: Use schedule_interval=None and not schedule_interval='None' when
you don’t want to schedule your DAG.

Your DAG will be instantiated
for each schedule, while creating a DAG Run entry for each schedule.

DAG runs have a state associated to them (running, failed, success) and
informs the scheduler on which set of schedules should be evaluated for
task submissions. Without the metadata at the DAG run level, the Airflow
scheduler would have much more work to do in order to figure out what tasks
should be triggered and come to a crawl. It might also create undesired
processing when changing the shape of your DAG, by say adding in new
tasks.

Backfill and Catchup

An Airflow DAG with a start_date, possibly an end_date, and a schedule_interval defines a
series of intervals which the scheduler turn into individual Dag Runs and execute. A key capability of
Airflow is that these DAG Runs are atomic, idempotent items, and the scheduler, by default, will examine
the lifetime of the DAG (from start to end/now, one interval at a time) and kick off a DAG Run for any
interval that has not been run (or has been cleared). This concept is called Catchup.

If your DAG is written to handle its own catchup (IE not limited to the interval, but instead to “Now”
for instance.), then you will want to turn catchup off (Either on the DAG itself with dag.catchup =
False) or by default at the configuration file level with catchup_by_default = False. What this
will do, is to instruct the scheduler to only create a DAG Run for the most current instance of the DAG
interval series.

"""
Code that goes along with the Airflow tutorial located at:
https://github.com/apache/airflow/blob/master/airflow/example_dags/tutorial.py
"""
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta

default_args = {
 'owner': 'airflow',
 'depends_on_past': False,
 'start_date': datetime(2015, 12, 1),
 'email': ['airflow@example.com'],
 'email_on_failure': False,
 'email_on_retry': False,
 'retries': 1,
 'retry_delay': timedelta(minutes=5)
}

dag = DAG(
 'tutorial',
 default_args=default_args,
 description='A simple tutorial DAG',
 schedule_interval='@daily',
 catchup=False)

In the example above, if the DAG is picked up by the scheduler daemon on 2016-01-02 at 6 AM, (or from the
command line), a single DAG Run will be created, with an execution_date of 2016-01-01, and the next
one will be created just after midnight on the morning of 2016-01-03 with an execution date of 2016-01-02.

If the dag.catchup value had been True instead, the scheduler would have created a DAG Run for each
completed interval between 2015-12-01 and 2016-01-02 (but not yet one for 2016-01-02, as that interval
hasn’t completed) and the scheduler will execute them sequentially. This behavior is great for atomic
datasets that can easily be split into periods. Turning catchup off is great if your DAG Runs perform
backfill internally.

External Triggers

Note that DAG Runs can also be created manually through the CLI while
running an airflow trigger_dag command, where you can define a
specific run_id. The DAG Runs created externally to the
scheduler get associated to the trigger’s timestamp, and will be displayed
in the UI alongside scheduled DAG runs.

In addition, you can also manually trigger a DAG Run using the web UI (tab “DAGs” -> column “Links” -> button “Trigger Dag”).

To Keep in Mind

	The first DAG Run is created based on the minimum start_date for the
tasks in your DAG.

	Subsequent DAG Runs are created by the scheduler process, based on
your DAG’s schedule_interval, sequentially.

	When clearing a set of tasks’ state in hope of getting them to re-run,
it is important to keep in mind the DAG Run’s state too as it defines
whether the scheduler should look into triggering tasks for that run.

Here are some of the ways you can unblock tasks:

	From the UI, you can clear (as in delete the status of) individual task instances
from the task instances dialog, while defining whether you want to includes the past/future
and the upstream/downstream dependencies. Note that a confirmation window comes next and
allows you to see the set you are about to clear. You can also clear all task instances
associated with the dag.

	The CLI command airflow clear -h has lots of options when it comes to clearing task instance
states, including specifying date ranges, targeting task_ids by specifying a regular expression,
flags for including upstream and downstream relatives, and targeting task instances in specific
states (failed, or success)

	Clearing a task instance will no longer delete the task instance record. Instead it updates
max_tries and set the current task instance state to be None.

	Marking task instances as failed can be done through the UI. This can be used to stop running task instances.

	Marking task instances as successful can be done through the UI. This is mostly to fix false negatives,
or for instance when the fix has been applied outside of Airflow.

	The airflow backfill CLI subcommand has a flag to --mark_success and allows selecting
subsections of the DAG as well as specifying date ranges.

Plugins

Airflow has a simple plugin manager built-in that can integrate external
features to its core by simply dropping files in your
$AIRFLOW_HOME/plugins folder.

The python modules in the plugins folder get imported,
and hooks, operators, sensors, macros, executors and web views
get integrated to Airflow’s main collections and become available for use.

What for?

Airflow offers a generic toolbox for working with data. Different
organizations have different stacks and different needs. Using Airflow
plugins can be a way for companies to customize their Airflow installation
to reflect their ecosystem.

Plugins can be used as an easy way to write, share and activate new sets of
features.

There’s also a need for a set of more complex applications to interact with
different flavors of data and metadata.

Examples:

	A set of tools to parse Hive logs and expose Hive metadata (CPU /IO / phases/ skew /…)

	An anomaly detection framework, allowing people to collect metrics, set thresholds and alerts

	An auditing tool, helping understand who accesses what

	A config-driven SLA monitoring tool, allowing you to set monitored tables and at what time
they should land, alert people, and expose visualizations of outages

	…

Why build on top of Airflow?

Airflow has many components that can be reused when building an application:

	A web server you can use to render your views

	A metadata database to store your models

	Access to your databases, and knowledge of how to connect to them

	An array of workers that your application can push workload to

	Airflow is deployed, you can just piggy back on its deployment logistics

	Basic charting capabilities, underlying libraries and abstractions

Interface

To create a plugin you will need to derive the
airflow.plugins_manager.AirflowPlugin class and reference the objects
you want to plug into Airflow. Here’s what the class you need to derive
looks like:

class AirflowPlugin(object):
 # The name of your plugin (str)
 name = None
 # A list of class(es) derived from BaseOperator
 operators = []
 # A list of class(es) derived from BaseSensorOperator
 sensors = []
 # A list of class(es) derived from BaseHook
 hooks = []
 # A list of class(es) derived from BaseExecutor
 executors = []
 # A list of references to inject into the macros namespace
 macros = []
 # A list of objects created from a class derived
 # from flask_admin.BaseView
 admin_views = []
 # A list of Blueprint object created from flask.Blueprint. For use with the flask_admin based GUI
 flask_blueprints = []
 # A list of menu links (flask_admin.base.MenuLink). For use with the flask_admin based GUI
 menu_links = []
 # A list of dictionaries containing FlaskAppBuilder BaseView object and some metadata. See example below
 appbuilder_views = []
 # A list of dictionaries containing FlaskAppBuilder BaseView object and some metadata. See example below
 appbuilder_menu_items = []

You can derive it by inheritance (please refer to the example below).
Please note name inside this class must be specified.

After the plugin is imported into Airflow,
you can invoke it using statement like

from airflow.{type, like "operators", "sensors"}.{name specified inside the plugin class} import *

When you write your own plugins, make sure you understand them well.
There are some essential properties for each type of plugin.
For example,

	For Operator plugin, an execute method is compulsory.

	For Sensor plugin, a poke method returning a Boolean value is compulsory.

Make sure you restart the webserver and scheduler after making changes to plugins so that they take effect.

Example

The code below defines a plugin that injects a set of dummy object
definitions in Airflow.

This is the class you derive to create a plugin
from airflow.plugins_manager import AirflowPlugin

from flask import Blueprint
from flask_admin import BaseView, expose
from flask_admin.base import MenuLink
from flask_appbuilder import BaseView as AppBuilderBaseView

Importing base classes that we need to derive
from airflow.hooks.base_hook import BaseHook
from airflow.models import BaseOperator
from airflow.sensors.base_sensor_operator import BaseSensorOperator
from airflow.executors.base_executor import BaseExecutor

Will show up under airflow.hooks.test_plugin.PluginHook
class PluginHook(BaseHook):
 pass

Will show up under airflow.operators.test_plugin.PluginOperator
class PluginOperator(BaseOperator):
 pass

Will show up under airflow.sensors.test_plugin.PluginSensorOperator
class PluginSensorOperator(BaseSensorOperator):
 pass

Will show up under airflow.executors.test_plugin.PluginExecutor
class PluginExecutor(BaseExecutor):
 pass

Will show up under airflow.macros.test_plugin.plugin_macro
def plugin_macro():
 pass

Creating a flask admin BaseView
class TestView(BaseView):
 @expose('/')
 def test(self):
 # in this example, put your test_plugin/test.html template at airflow/plugins/templates/test_plugin/test.html
 return self.render("test_plugin/test.html", content="Hello galaxy!")
v = TestView(category="Test Plugin", name="Test View")

Creating a flask blueprint to integrate the templates and static folder
bp = Blueprint(
 "test_plugin", __name__,
 template_folder='templates', # registers airflow/plugins/templates as a Jinja template folder
 static_folder='static',
 static_url_path='/static/test_plugin')

ml = MenuLink(
 category='Test Plugin',
 name='Test Menu Link',
 url='https://airflow.apache.org/')

Creating a flask appbuilder BaseView
class TestAppBuilderBaseView(AppBuilderBaseView):
 default_view = "test"

 @expose("/")
 def test(self):
 return self.render("test_plugin/test.html", content="Hello galaxy!")
v_appbuilder_view = TestAppBuilderBaseView()
v_appbuilder_package = {"name": "Test View",
 "category": "Test Plugin",
 "view": v_appbuilder_view}

Creating a flask appbuilder Menu Item
appbuilder_mitem = {"name": "Google",
 "category": "Search",
 "category_icon": "fa-th",
 "href": "https://www.google.com"}

Defining the plugin class
class AirflowTestPlugin(AirflowPlugin):
 name = "test_plugin"
 operators = [PluginOperator]
 sensors = [PluginSensorOperator]
 hooks = [PluginHook]
 executors = [PluginExecutor]
 macros = [plugin_macro]
 admin_views = [v]
 flask_blueprints = [bp]
 menu_links = [ml]
 appbuilder_views = [v_appbuilder_package]
 appbuilder_menu_items = [appbuilder_mitem]

Note on role based views

Airflow 1.10 introduced role based views using FlaskAppBuilder. You can configure which UI is used by setting
rbac = True. To support plugin views and links for both versions of the UI and maintain backwards compatibility,
the fields appbuilder_views and appbuilder_menu_items were added to the AirflowTestPlugin class.

Plugins as Python packages

It is possible to load plugins via `setuptools' entrypoint<https://packaging.python.org/guides/creating-and-discovering-plugins/#using-package-metadata>`_ mechanism. To do this link
your plugin using an entrypoint in your package. If the package is installed, airflow
will automatically load the registered plugins from the entrypoint list.

Note: Neither the entrypoint name (eg, my_plugin) nor the name of the
plugin class will contribute towards the module and class name of the plugin
itself. The structure is determined by
airflow.plugins_manager.AirflowPlugin.name and the class name of the plugin
component with the pattern airflow.{component}.{name}.{component_class_name}.

my_package/my_plugin.py
from airflow.plugins_manager import AirflowPlugin
from airflow.models import BaseOperator
from airflow.hooks.base_hook import BaseHook

class MyOperator(BaseOperator):
 pass

class MyHook(BaseHook):
 pass

class MyAirflowPlugin(AirflowPlugin):
 name = 'my_namespace'
 operators = [MyOperator]
 hooks = [MyHook]

from setuptools import setup

setup(
 name="my-package",
 ...
 entry_points = {
 'airflow.plugins': [
 'my_plugin = my_package.my_plugin:MyAirflowPlugin'
]
 }
)

	This will create a hook, and an operator accessible at:

	
	airflow.hooks.my_namespace.MyHook

	airflow.operators.my_namespace.MyOperator

Security

By default, all gates are opened. An easy way to restrict access
to the web application is to do it at the network level, or by using
SSH tunnels.

It is however possible to switch on authentication by either using one of the supplied
backends or creating your own.

Be sure to checkout Experimental Rest API for securing the API.

Note

Airflow uses the config parser of Python. This config parser interpolates
‘%’-signs. Make sure escape any % signs in your config file (but not
environment variables) as %%, otherwise Airflow might leak these
passwords on a config parser exception to a log.

Reporting Vulnerabilities

The Apache Software Foundation takes security issues very seriously. Apache
Airflow specifically offers security features and is responsive to issues
around its features. If you have any concern around Airflow Security or believe
you have uncovered a vulnerability, we suggest that you get in touch via the
e-mail address security@apache.org. In the message, try to provide a
description of the issue and ideally a way of reproducing it. The security team
will get back to you after assessing the description.

Note that this security address should be used only for undisclosed
vulnerabilities. Dealing with fixed issues or general questions on how to use
the security features should be handled regularly via the user and the dev
lists. Please report any security problems to the project security address
before disclosing it publicly.

The ASF Security team’s page [https://www.apache.org/security/] describes
how vulnerability reports are handled, and includes PGP keys if you wish to use
that.

Web Authentication

Password

Note

This is for flask-admin based web UI only. If you are using FAB-based web UI with RBAC feature,
please use command line interface airflow users --create to create accounts, or do that in the FAB-based UI itself.

One of the simplest mechanisms for authentication is requiring users to specify a password before logging in.
Password authentication requires the used of the password subpackage in your requirements file. Password hashing
uses bcrypt before storing passwords.

[webserver]
authenticate = True
auth_backend = airflow.contrib.auth.backends.password_auth

When password auth is enabled, an initial user credential will need to be created before anyone can login. An initial
user was not created in the migrations for this authentication backend to prevent default Airflow installations from
attack. Creating a new user has to be done via a Python REPL on the same machine Airflow is installed.

navigate to the airflow installation directory
$ cd ~/airflow
$ python
Python 2.7.9 (default, Feb 10 2015, 03:28:08)
Type "help", "copyright", "credits" or "license" for more information.
>>> import airflow
>>> from airflow import models, settings
>>> from airflow.contrib.auth.backends.password_auth import PasswordUser
>>> user = PasswordUser(models.User())
>>> user.username = 'new_user_name'
>>> user.email = 'new_user_email@example.com'
>>> user.password = 'set_the_password'
>>> session = settings.Session()
>>> session.add(user)
>>> session.commit()
>>> session.close()
>>> exit()

LDAP

To turn on LDAP authentication configure your airflow.cfg as follows. Please note that the example uses
an encrypted connection to the ldap server as we do not want passwords be readable on the network level.

Additionally, if you are using Active Directory, and are not explicitly specifying an OU that your users are in,
you will need to change search_scope to “SUBTREE”.

Valid search_scope options can be found in the ldap3 Documentation [http://ldap3.readthedocs.org/searches.html?highlight=search_scope]

[webserver]
authenticate = True
auth_backend = airflow.contrib.auth.backends.ldap_auth

[ldap]
set a connection without encryption: uri = ldap://<your.ldap.server>:<port>
uri = ldaps://<your.ldap.server>:<port>
user_filter = objectClass=*
in case of Active Directory you would use: user_name_attr = sAMAccountName
user_name_attr = uid
group_member_attr should be set accordingly with *_filter
eg :
group_member_attr = groupMembership
superuser_filter = groupMembership=CN=airflow-super-users...
group_member_attr = memberOf
superuser_filter = memberOf=CN=airflow-super-users,OU=Groups,OU=RWC,OU=US,OU=NORAM,DC=example,DC=com
data_profiler_filter = memberOf=CN=airflow-data-profilers,OU=Groups,OU=RWC,OU=US,OU=NORAM,DC=example,DC=com
bind_user = cn=Manager,dc=example,dc=com
bind_password = insecure
basedn = dc=example,dc=com
cacert = /etc/ca/ldap_ca.crt
Set search_scope to one of them: BASE, LEVEL , SUBTREE
Set search_scope to SUBTREE if using Active Directory, and not specifying an Organizational Unit
search_scope = LEVEL

The superuser_filter and data_profiler_filter are optional. If defined, these configurations allow you to specify LDAP groups that users must belong to in order to have superuser (admin) and data-profiler permissions. If undefined, all users will be superusers and data profilers.

Roll your own

Airflow uses flask_login and
exposes a set of hooks in the airflow.default_login module. You can
alter the content and make it part of the PYTHONPATH and configure it as a backend in airflow.cfg.

[webserver]
authenticate = True
auth_backend = mypackage.auth

Multi-tenancy

You can filter the list of dags in webserver by owner name when authentication
is turned on by setting webserver:filter_by_owner in your config. With this, a user will see
only the dags which it is owner of, unless it is a superuser.

[webserver]
filter_by_owner = True

Kerberos

Airflow has initial support for Kerberos. This means that airflow can renew kerberos
tickets for itself and store it in the ticket cache. The hooks and dags can make use of ticket
to authenticate against kerberized services.

Limitations

Please note that at this time, not all hooks have been adjusted to make use of this functionality.
Also it does not integrate kerberos into the web interface and you will have to rely on network
level security for now to make sure your service remains secure.

Celery integration has not been tried and tested yet. However, if you generate a key tab for every
host and launch a ticket renewer next to every worker it will most likely work.

Enabling kerberos

Airflow

To enable kerberos you will need to generate a (service) key tab.

in the kadmin.local or kadmin shell, create the airflow principal
kadmin: addprinc -randkey airflow/fully.qualified.domain.name@YOUR-REALM.COM

Create the airflow keytab file that will contain the airflow principal
kadmin: xst -norandkey -k airflow.keytab airflow/fully.qualified.domain.name

Now store this file in a location where the airflow user can read it (chmod 600). And then add the following to
your airflow.cfg

[core]
security = kerberos

[kerberos]
keytab = /etc/airflow/airflow.keytab
reinit_frequency = 3600
principal = airflow

Launch the ticket renewer by

run ticket renewer
airflow kerberos

Hadoop

If want to use impersonation this needs to be enabled in core-site.xml of your hadoop config.

<property>
 <name>hadoop.proxyuser.airflow.groups</name>
 <value>*</value>
</property>

<property>
 <name>hadoop.proxyuser.airflow.users</name>
 <value>*</value>
</property>

<property>
 <name>hadoop.proxyuser.airflow.hosts</name>
 <value>*</value>
</property>

Of course if you need to tighten your security replace the asterisk with something more appropriate.

Using kerberos authentication

The hive hook has been updated to take advantage of kerberos authentication. To allow your DAGs to
use it, simply update the connection details with, for example:

{ "use_beeline": true, "principal": "hive/_HOST@EXAMPLE.COM"}

Adjust the principal to your settings. The _HOST part will be replaced by the fully qualified domain name of
the server.

You can specify if you would like to use the dag owner as the user for the connection or the user specified in the login
section of the connection. For the login user, specify the following as extra:

{ "use_beeline": true, "principal": "hive/_HOST@EXAMPLE.COM", "proxy_user": "login"}

For the DAG owner use:

{ "use_beeline": true, "principal": "hive/_HOST@EXAMPLE.COM", "proxy_user": "owner"}

and in your DAG, when initializing the HiveOperator, specify:

run_as_owner=True

To use kerberos authentication, you must install Airflow with the kerberos extras group:

pip install apache-airflow[kerberos]

OAuth Authentication

GitHub Enterprise (GHE) Authentication

The GitHub Enterprise authentication backend can be used to authenticate users
against an installation of GitHub Enterprise using OAuth2. You can optionally
specify a team whitelist (composed of slug cased team names) to restrict login
to only members of those teams.

[webserver]
authenticate = True
auth_backend = airflow.contrib.auth.backends.github_enterprise_auth

[github_enterprise]
host = github.example.com
client_id = oauth_key_from_github_enterprise
client_secret = oauth_secret_from_github_enterprise
oauth_callback_route = /example/ghe_oauth/callback
allowed_teams = 1, 345, 23

Note

If you do not specify a team whitelist, anyone with a valid account on
your GHE installation will be able to login to Airflow.

To use GHE authentication, you must install Airflow with the github_enterprise extras group:

pip install apache-airflow[github_enterprise]

Setting up GHE Authentication

An application must be setup in GHE before you can use the GHE authentication
backend. In order to setup an application:

	Navigate to your GHE profile

	Select ‘Applications’ from the left hand nav

	Select the ‘Developer Applications’ tab

	Click ‘Register new application’

	Fill in the required information (the ‘Authorization callback URL’ must be fully qualified e.g. http://airflow.example.com/example/ghe_oauth/callback)

	Click ‘Register application’

	Copy ‘Client ID’, ‘Client Secret’, and your callback route to your airflow.cfg according to the above example

Using GHE Authentication with github.com

It is possible to use GHE authentication with github.com:

	Create an Oauth App [https://developer.github.com/apps/building-oauth-apps/creating-an-oauth-app/]

	Copy ‘Client ID’, ‘Client Secret’ to your airflow.cfg according to the above example

	Set host = github.com and oauth_callback_route = /oauth/callback in airflow.cfg

Google Authentication

The Google authentication backend can be used to authenticate users
against Google using OAuth2. You must specify the email domains to restrict
login, separated with a comma, to only members of those domains.

[webserver]
authenticate = True
auth_backend = airflow.contrib.auth.backends.google_auth

[google]
client_id = google_client_id
client_secret = google_client_secret
oauth_callback_route = /oauth2callback
domain = example1.com,example2.com

To use Google authentication, you must install Airflow with the google_auth extras group:

pip install apache-airflow[google_auth]

Setting up Google Authentication

An application must be setup in the Google API Console before you can use the Google authentication
backend. In order to setup an application:

	Navigate to https://console.developers.google.com/apis/

	Select ‘Credentials’ from the left hand nav

	Click ‘Create credentials’ and choose ‘OAuth client ID’

	Choose ‘Web application’

	Fill in the required information (the ‘Authorized redirect URIs’ must be fully qualified e.g. http://airflow.example.com/oauth2callback)

	Click ‘Create’

	Copy ‘Client ID’, ‘Client Secret’, and your redirect URI to your airflow.cfg according to the above example

SSL

SSL can be enabled by providing a certificate and key. Once enabled, be sure to use
“https://” in your browser.

[webserver]
web_server_ssl_cert = <path to cert>
web_server_ssl_key = <path to key>

Enabling SSL will not automatically change the web server port. If you want to use the
standard port 443, you’ll need to configure that too. Be aware that super user privileges
(or cap_net_bind_service on Linux) are required to listen on port 443.

Optionally, set the server to listen on the standard SSL port.
web_server_port = 443
base_url = http://<hostname or IP>:443

Enable CeleryExecutor with SSL. Ensure you properly generate client and server
certs and keys.

[celery]
ssl_active = True
ssl_key = <path to key>
ssl_cert = <path to cert>
ssl_cacert = <path to cacert>

Impersonation

Airflow has the ability to impersonate a unix user while running task
instances based on the task’s run_as_user parameter, which takes a user’s name.

NOTE: For impersonations to work, Airflow must be run with sudo as subtasks are run
with sudo -u and permissions of files are changed. Furthermore, the unix user needs to
exist on the worker. Here is what a simple sudoers file entry could look like to achieve
this, assuming as airflow is running as the airflow user. Note that this means that
the airflow user must be trusted and treated the same way as the root user.

airflow ALL=(ALL) NOPASSWD: ALL

Subtasks with impersonation will still log to the same folder, except that the files they
log to will have permissions changed such that only the unix user can write to it.

Default Impersonation

To prevent tasks that don’t use impersonation to be run with sudo privileges, you can set the
core:default_impersonation config which sets a default user impersonate if run_as_user is
not set.

[core]
default_impersonation = airflow

Flower Authentication

Basic authentication for Celery Flower is supported.

You can specify the details either as an optional argument in the Flower process launching
command, or as a configuration item in your airflow.cfg. For both cases, please provide
user:password pairs separated by a comma.

airflow flower --basic_auth=user1:password1,user2:password2

[celery]
flower_basic_auth = user1:password1,user2:password2

Time zones

Support for time zones is enabled by default. Airflow stores datetime information in UTC internally and in the database.
It allows you to run your DAGs with time zone dependent schedules. At the moment Airflow does not convert them to the
end user’s time zone in the user interface. There it will always be displayed in UTC. Also templates used in Operators
are not converted. Time zone information is exposed and it is up to the writer of DAG what do with it.

This is handy if your users live in more than one time zone and you want to display datetime information according to
each user’s wall clock.

Even if you are running Airflow in only one time zone it is still good practice to store data in UTC in your database
(also before Airflow became time zone aware this was also to recommended or even required setup). The main reason is
Daylight Saving Time (DST). Many countries have a system of DST, where clocks are moved forward in spring and backward
in autumn. If you’re working in local time, you’re likely to encounter errors twice a year, when the transitions
happen. (The pendulum and pytz documentation discusses these issues in greater detail.) This probably doesn’t matter
for a simple DAG, but it’s a problem if you are in, for example, financial services where you have end of day
deadlines to meet.

The time zone is set in airflow.cfg. By default it is set to utc, but you change it to use the system’s settings or
an arbitrary IANA time zone, e.g. Europe/Amsterdam. It is dependent on pendulum, which is more accurate than pytz.
Pendulum is installed when you install Airflow.

Please note that the Web UI currently only runs in UTC.

Concepts

Naïve and aware datetime objects

Python’s datetime.datetime objects have a tzinfo attribute that can be used to store time zone information,
represented as an instance of a subclass of datetime.tzinfo. When this attribute is set and describes an offset,
a datetime object is aware. Otherwise, it’s naive.

You can use timezone.is_aware() and timezone.is_naive() to determine whether datetimes are aware or naive.

Because Airflow uses time-zone-aware datetime objects. If your code creates datetime objects they need to be aware too.

from airflow.utils import timezone

now = timezone.utcnow()
a_date = timezone.datetime(2017,1,1)

Interpretation of naive datetime objects

Although Airflow operates fully time zone aware, it still accepts naive date time objects for start_dates
and end_dates in your DAG definitions. This is mostly in order to preserve backwards compatibility. In
case a naive start_date or end_date is encountered the default time zone is applied. It is applied
in such a way that it is assumed that the naive date time is already in the default time zone. In other
words if you have a default time zone setting of Europe/Amsterdam and create a naive datetime start_date of
datetime(2017,1,1) it is assumed to be a start_date of Jan 1, 2017 Amsterdam time.

default_args=dict(
 start_date=datetime(2016, 1, 1),
 owner='Airflow'
)

dag = DAG('my_dag', default_args=default_args)
op = DummyOperator(task_id='dummy', dag=dag)
print(op.owner) # Airflow

Unfortunately, during DST transitions, some datetimes don’t exist or are ambiguous.
In such situations, pendulum raises an exception. That’s why you should always create aware
datetime objects when time zone support is enabled.

In practice, this is rarely an issue. Airflow gives you aware datetime objects in the models and DAGs, and most often,
new datetime objects are created from existing ones through timedelta arithmetic. The only datetime that’s often
created in application code is the current time, and timezone.utcnow() automatically does the right thing.

Default time zone

The default time zone is the time zone defined by the default_timezone setting under [core]. If
you just installed Airflow it will be set to utc, which is recommended. You can also set it to
system or an IANA time zone (e.g.`Europe/Amsterdam`). DAGs are also evaluated on Airflow workers,
it is therefore important to make sure this setting is equal on all Airflow nodes.

[core]
default_timezone = utc

Time zone aware DAGs

Creating a time zone aware DAG is quite simple. Just make sure to supply a time zone aware start_date. It is
recommended to use pendulum for this, but pytz (to be installed manually) can also be used for this.

import pendulum

local_tz = pendulum.timezone("Europe/Amsterdam")

default_args=dict(
 start_date=datetime(2016, 1, 1, tzinfo=local_tz),
 owner='Airflow'
)

dag = DAG('my_tz_dag', default_args=default_args)
op = DummyOperator(task_id='dummy', dag=dag)
print(dag.timezone) # <Timezone [Europe/Amsterdam]>

Please note that while it is possible to set a start_date and end_date for Tasks always the DAG timezone
or global timezone (in that order) will be used to calculate the next execution date. Upon first encounter
the start date or end date will be converted to UTC using the timezone associated with start_date or end_date,
then for calculations this timezone information will be disregarded.

Templates

Airflow returns time zone aware datetimes in templates, but does not convert them to local time so they remain in UTC.
It is left up to the DAG to handle this.

import pendulum

local_tz = pendulum.timezone("Europe/Amsterdam")
local_tz.convert(execution_date)

Cron schedules

In case you set a cron schedule, Airflow assumes you will always want to run at the exact same time. It will
then ignore day light savings time. Thus, if you have a schedule that says
run at the end of interval every day at 08:00 GMT+1 it will always run at the end of interval 08:00 GMT+1,
regardless if day light savings time is in place.

Time deltas

For schedules with time deltas Airflow assumes you always will want to run with the specified interval. So if you
specify a timedelta(hours=2) you will always want to run two hours later. In this case day light savings time will
be taken into account.

Experimental Rest API

Airflow exposes an experimental Rest API. It is available through the webserver. Endpoints are
available at /api/experimental/. Please note that we expect the endpoint definitions to change.

Endpoints

	
POST /api/experimental/dags/<DAG_ID>/dag_runs

	Creates a dag_run for a given dag id.

Trigger DAG with config, example:

curl -X POST \
 http://localhost:8080/api/experimental/dags/<DAG_ID>/dag_runs \
 -H 'Cache-Control: no-cache' \
 -H 'Content-Type: application/json' \
 -d '{"conf":"{\"key\":\"value\"}"}'

	
GET /api/experimental/dags/<DAG_ID>/dag_runs

	Returns a list of Dag Runs for a specific DAG ID.

	
GET /api/experimental/dags/<string:dag_id>/dag_runs/<string:execution_date>

	Returns a JSON with a dag_run’s public instance variables. The format for the <string:execution_date> is expected to be “YYYY-mm-DDTHH:MM:SS”, for example: “2016-11-16T11:34:15”.

	
GET /api/experimental/test

	To check REST API server correct work. Return status ‘OK’.

	
GET /api/experimental/dags/<DAG_ID>/tasks/<TASK_ID>

	Returns info for a task.

	
GET /api/experimental/dags/<DAG_ID>/dag_runs/<string:execution_date>/tasks/<TASK_ID>

	Returns a JSON with a task instance’s public instance variables. The format for the <string:execution_date> is expected to be “YYYY-mm-DDTHH:MM:SS”, for example: “2016-11-16T11:34:15”.

	
GET /api/experimental/dags/<DAG_ID>/paused/<string:paused>

	‘<string:paused>’ must be a ‘true’ to pause a DAG and ‘false’ to unpause.

	
GET /api/experimental/latest_runs

	Returns the latest DagRun for each DAG formatted for the UI.

	
GET /api/experimental/pools

	Get all pools.

	
GET /api/experimental/pools/<string:name>

	Get pool by a given name.

	
POST /api/experimental/pools

	Create a pool.

	
DELETE /api/experimental/pools/<string:name>

	Delete pool.

CLI

For some functions the cli can use the API. To configure the CLI to use the API when available
configure as follows:

[cli]
api_client = airflow.api.client.json_client
endpoint_url = http://<WEBSERVER>:<PORT>

Authentication

Authentication for the API is handled separately to the Web Authentication. The default is to not
require any authentication on the API – i.e. wide open by default. This is not recommended if your
Airflow webserver is publicly accessible, and you should probably use the deny all backend:

[api]
auth_backend = airflow.api.auth.backend.deny_all

Two “real” methods for authentication are currently supported for the API.

To enabled Password authentication, set the following in the configuration:

[api]
auth_backend = airflow.contrib.auth.backends.password_auth

It’s usage is similar to the Password Authentication used for the Web interface.

To enable Kerberos authentication, set the following in the configuration:

[api]
auth_backend = airflow.api.auth.backend.kerberos_auth

[kerberos]
keytab = <KEYTAB>

The Kerberos service is configured as airflow/fully.qualified.domainname@REALM. Make sure this
principal exists in the keytab file.

Integration

	Reverse Proxy

	Azure: Microsoft Azure

	AWS: Amazon Web Services

	Databricks

	GCP: Google Cloud Platform

	Qubole

Reverse Proxy

Airflow can be set up behind a reverse proxy, with the ability to set its endpoint with great
flexibility.

For example, you can configure your reverse proxy to get:

https://lab.mycompany.com/myorg/airflow/

To do so, you need to set the following setting in your airflow.cfg:

base_url = http://my_host/myorg/airflow

Additionally if you use Celery Executor, you can get Flower in /myorg/flower with:

flower_url_prefix = /myorg/flower

Your reverse proxy (ex: nginx) should be configured as follow:

	pass the url and http header as it for the Airflow webserver, without any rewrite, for example:

server {
 listen 80;
 server_name lab.mycompany.com;

 location /myorg/airflow/ {
 proxy_pass http://localhost:8080;
 proxy_set_header Host $host;
 proxy_redirect off;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 }
}

	rewrite the url for the flower endpoint:

server {
 listen 80;
 server_name lab.mycompany.com;

 location /myorg/flower/ {
 rewrite ^/myorg/flower/(.*)$ /$1 break; # remove prefix from http header
 proxy_pass http://localhost:5555;
 proxy_set_header Host $host;
 proxy_redirect off;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 }
}

To ensure that Airflow generates URLs with the correct scheme when
running behind a TLS-terminating proxy, you should configure the proxy
to set the X-Forwarded-Proto header, and enable the ProxyFix
middleware in your airflow.cfg:

enable_proxy_fix = True

Note: you should only enable the ProxyFix middleware when running
Airflow behind a trusted proxy (AWS ELB, nginx, etc.).

Azure: Microsoft Azure

Airflow has limited support for Microsoft Azure: interfaces exist only for Azure Blob
Storage and Azure Data Lake. Hook, Sensor and Operator for Blob Storage and
Azure Data Lake Hook are in contrib section.

Azure Blob Storage

All classes communicate via the Window Azure Storage Blob protocol. Make sure that a
Airflow connection of type wasb exists. Authorization can be done by supplying a
login (=Storage account name) and password (=KEY), or login and SAS token in the extra
field (see connection wasb_default for an example).

	WasbBlobSensor: Checks if a blob is present on Azure Blob storage.

	WasbPrefixSensor: Checks if blobs matching a prefix are present on Azure Blob storage.

	FileToWasbOperator: Uploads a local file to a container as a blob.

	WasbHook: Interface with Azure Blob Storage.

WasbBlobSensor

WasbPrefixSensor

FileToWasbOperator

WasbHook

Azure File Share

Cloud variant of a SMB file share. Make sure that a Airflow connection of
type wasb exists. Authorization can be done by supplying a login (=Storage account name)
and password (=Storage account key), or login and SAS token in the extra field
(see connection wasb_default for an example).

AzureFileShareHook

Logging

Airflow can be configured to read and write task logs in Azure Blob Storage.
See Writing Logs to Azure Blob Storage.

Azure CosmosDB

AzureCosmosDBHook communicates via the Azure Cosmos library. Make sure that a
Airflow connection of type azure_cosmos exists. Authorization can be done by supplying a
login (=Endpoint uri), password (=secret key) and extra fields database_name and collection_name to specify the
default database and collection to use (see connection azure_cosmos_default for an example).

	AzureCosmosDBHook: Interface with Azure CosmosDB.

	AzureCosmosInsertDocumentOperator: Simple operator to insert document into CosmosDB.

	AzureCosmosDocumentSensor: Simple sensor to detect document existence in CosmosDB.

AzureCosmosDBHook

AzureCosmosInsertDocumentOperator

AzureCosmosDocumentSensor

Azure Data Lake

AzureDataLakeHook communicates via a REST API compatible with WebHDFS. Make sure that a
Airflow connection of type azure_data_lake exists. Authorization can be done by supplying a
login (=Client ID), password (=Client Secret) and extra fields tenant (Tenant) and account_name (Account Name)

(see connection azure_data_lake_default for an example).

	AzureDataLakeHook: Interface with Azure Data Lake.

	AzureDataLakeStorageListOperator: Lists the files located in a specified Azure Data Lake path.

	AdlsToGoogleCloudStorageOperator: Copies files from an Azure Data Lake path to a Google Cloud Storage bucket.

AzureDataLakeHook

AzureDataLakeStorageListOperator

AdlsToGoogleCloudStorageOperator

Azure Container Instances

Azure Container Instances provides a method to run a docker container without having to worry
about managing infrastructure. The AzureContainerInstanceHook requires a service principal. The
credentials for this principal can either be defined in the extra field key_path, as an
environment variable named AZURE_AUTH_LOCATION,
or by providing a login/password and tenantId in extras.

The AzureContainerRegistryHook requires a host/login/password to be defined in the connection.

	AzureContainerInstancesOperator : Start/Monitor a new ACI.

	AzureContainerInstanceHook : Wrapper around a single ACI.

	AzureContainerRegistryHook : Wrapper around a ACR

	AzureContainerVolumeHook : Wrapper around Container Volumes

AzureContainerInstancesOperator

AzureContainerInstanceHook

AzureContainerRegistryHook

AzureContainerVolumeHook

AWS: Amazon Web Services

Airflow has extensive support for Amazon Web Services. But note that the Hooks, Sensors and
Operators are in the contrib section.

AWS EMR

	EmrAddStepsOperator : Adds steps to an existing EMR JobFlow.

	EmrCreateJobFlowOperator : Creates an EMR JobFlow, reading the config from the EMR connection.

	EmrTerminateJobFlowOperator : Terminates an EMR JobFlow.

	EmrHook : Interact with AWS EMR.

EmrAddStepsOperator

	
class airflow.contrib.operators.emr_add_steps_operator.EmrAddStepsOperator(**kwargs)

	Bases: airflow.models.BaseOperator

An operator that adds steps to an existing EMR job_flow.

	Parameters

	
	job_flow_id (str) – id of the JobFlow to add steps to. (templated)

	aws_conn_id (str) – aws connection to uses

	steps (list) – boto3 style steps to be added to the jobflow. (templated)

EmrCreateJobFlowOperator

	
class airflow.contrib.operators.emr_create_job_flow_operator.EmrCreateJobFlowOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Creates an EMR JobFlow, reading the config from the EMR connection.
A dictionary of JobFlow overrides can be passed that override
the config from the connection.

	Parameters

	
	aws_conn_id (str) – aws connection to uses

	emr_conn_id (str) – emr connection to use

	job_flow_overrides (dict) – boto3 style arguments to override
emr_connection extra. (templated)

EmrTerminateJobFlowOperator

	
class airflow.contrib.operators.emr_terminate_job_flow_operator.EmrTerminateJobFlowOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Operator to terminate EMR JobFlows.

	Parameters

	
	job_flow_id (str) – id of the JobFlow to terminate. (templated)

	aws_conn_id (str) – aws connection to uses

EmrHook

	
class airflow.contrib.hooks.emr_hook.EmrHook(emr_conn_id=None, region_name=None, *args, **kwargs)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS EMR. emr_conn_id is only necessary for using the
create_job_flow method.

	
create_job_flow(job_flow_overrides)

	Creates a job flow using the config from the EMR connection.
Keys of the json extra hash may have the arguments of the boto3
run_job_flow method.
Overrides for this config may be passed as the job_flow_overrides.

AWS S3

	S3Hook : Interact with AWS S3.

	S3FileTransformOperator : Copies data from a source S3 location to a temporary location on the local filesystem.

	S3ListOperator : Lists the files matching a key prefix from a S3 location.

	S3ToGoogleCloudStorageOperator : Syncs an S3 location with a Google Cloud Storage bucket.

	S3ToGoogleCloudStorageTransferOperator : Syncs an S3 bucket with a Google Cloud Storage bucket using the GCP Storage Transfer Service.

	S3ToHiveTransfer : Moves data from S3 to Hive. The operator downloads a file from S3, stores the file locally before loading it into a Hive table.

S3Hook

	
class airflow.hooks.S3_hook.S3Hook(aws_conn_id='aws_default', verify=None)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS S3, using the boto3 library.

	
check_for_bucket(bucket_name)

	Check if bucket_name exists.

	Parameters

	bucket_name (str) – the name of the bucket

	
check_for_key(key, bucket_name=None)

	Checks if a key exists in a bucket

	Parameters

	
	key (str) – S3 key that will point to the file

	bucket_name (str) – Name of the bucket in which the file is stored

	
check_for_prefix(bucket_name, prefix, delimiter)

	Checks that a prefix exists in a bucket

	Parameters

	
	bucket_name (str) – the name of the bucket

	prefix (str) – a key prefix

	delimiter (str) – the delimiter marks key hierarchy.

	
check_for_wildcard_key(wildcard_key, bucket_name=None, delimiter='')

	Checks that a key matching a wildcard expression exists in a bucket

	Parameters

	
	wildcard_key (str) – the path to the key

	bucket_name (str) – the name of the bucket

	delimiter (str) – the delimiter marks key hierarchy

	
copy_object(source_bucket_key, dest_bucket_key, source_bucket_name=None, dest_bucket_name=None, source_version_id=None)

	Creates a copy of an object that is already stored in S3.

Note: the S3 connection used here needs to have access to both
source and destination bucket/key.

	Parameters

	
	source_bucket_key (str) – The key of the source object.

It can be either full s3:// style url or relative path from root level.

When it’s specified as a full s3:// url, please omit source_bucket_name.

	dest_bucket_key (str) – The key of the object to copy to.

The convention to specify dest_bucket_key is the same
as source_bucket_key.

	source_bucket_name (str) – Name of the S3 bucket where the source object is in.

It should be omitted when source_bucket_key is provided as a full s3:// url.

	dest_bucket_name (str) – Name of the S3 bucket to where the object is copied.

It should be omitted when dest_bucket_key is provided as a full s3:// url.

	source_version_id (str) – Version ID of the source object (OPTIONAL)

	
create_bucket(bucket_name, region_name=None)

	Creates an Amazon S3 bucket.

	Parameters

	
	bucket_name (str) – The name of the bucket

	region_name (str) – The name of the aws region in which to create the bucket.

	
delete_objects(bucket, keys)

	
	Parameters

	
	bucket (str) – Name of the bucket in which you are going to delete object(s)

	keys (str or list) – The key(s) to delete from S3 bucket.

When keys is a string, it’s supposed to be the key name of
the single object to delete.

When keys is a list, it’s supposed to be the list of the
keys to delete.

	
get_bucket(bucket_name)

	Returns a boto3.S3.Bucket object

	Parameters

	bucket_name (str) – the name of the bucket

	
get_key(key, bucket_name=None)

	Returns a boto3.s3.Object

	Parameters

	
	key (str) – the path to the key

	bucket_name (str) – the name of the bucket

	
get_wildcard_key(wildcard_key, bucket_name=None, delimiter='')

	Returns a boto3.s3.Object object matching the wildcard expression

	Parameters

	
	wildcard_key (str) – the path to the key

	bucket_name (str) – the name of the bucket

	delimiter (str) – the delimiter marks key hierarchy

	
list_keys(bucket_name, prefix='', delimiter='', page_size=None, max_items=None)

	Lists keys in a bucket under prefix and not containing delimiter

	Parameters

	
	bucket_name (str) – the name of the bucket

	prefix (str) – a key prefix

	delimiter (str) – the delimiter marks key hierarchy.

	page_size (int) – pagination size

	max_items (int) – maximum items to return

	
list_prefixes(bucket_name, prefix='', delimiter='', page_size=None, max_items=None)

	Lists prefixes in a bucket under prefix

	Parameters

	
	bucket_name (str) – the name of the bucket

	prefix (str) – a key prefix

	delimiter (str) – the delimiter marks key hierarchy.

	page_size (int) – pagination size

	max_items (int) – maximum items to return

	
load_bytes(bytes_data, key, bucket_name=None, replace=False, encrypt=False)

	Loads bytes to S3

This is provided as a convenience to drop a string in S3. It uses the
boto infrastructure to ship a file to s3.

	Parameters

	
	bytes_data (bytes) – bytes to set as content for the key.

	key (str) – S3 key that will point to the file

	bucket_name (str) – Name of the bucket in which to store the file

	replace (bool) – A flag to decide whether or not to overwrite the key
if it already exists

	encrypt (bool) – If True, the file will be encrypted on the server-side
by S3 and will be stored in an encrypted form while at rest in S3.

	
load_file(filename, key, bucket_name=None, replace=False, encrypt=False)

	Loads a local file to S3

	Parameters

	
	filename (str) – name of the file to load.

	key (str) – S3 key that will point to the file

	bucket_name (str) – Name of the bucket in which to store the file

	replace (bool) – A flag to decide whether or not to overwrite the key
if it already exists. If replace is False and the key exists, an
error will be raised.

	encrypt (bool) – If True, the file will be encrypted on the server-side
by S3 and will be stored in an encrypted form while at rest in S3.

	
load_file_obj(file_obj, key, bucket_name=None, replace=False, encrypt=False)

	Loads a file object to S3

	Parameters

	
	file_obj (file-like object) – The file-like object to set as the content for the S3 key.

	key (str) – S3 key that will point to the file

	bucket_name (str) – Name of the bucket in which to store the file

	replace (bool) – A flag that indicates whether to overwrite the key
if it already exists.

	encrypt (bool) – If True, S3 encrypts the file on the server,
and the file is stored in encrypted form at rest in S3.

	
load_string(string_data, key, bucket_name=None, replace=False, encrypt=False, encoding='utf-8')

	Loads a string to S3

This is provided as a convenience to drop a string in S3. It uses the
boto infrastructure to ship a file to s3.

	Parameters

	
	string_data (str) – str to set as content for the key.

	key (str) – S3 key that will point to the file

	bucket_name (str) – Name of the bucket in which to store the file

	replace (bool) – A flag to decide whether or not to overwrite the key
if it already exists

	encrypt (bool) – If True, the file will be encrypted on the server-side
by S3 and will be stored in an encrypted form while at rest in S3.

	
read_key(key, bucket_name=None)

	Reads a key from S3

	Parameters

	
	key (str) – S3 key that will point to the file

	bucket_name (str) – Name of the bucket in which the file is stored

	
select_key(key, bucket_name=None, expression='SELECT * FROM S3Object', expression_type='SQL', input_serialization=None, output_serialization=None)

	Reads a key with S3 Select.

	Parameters

	
	key (str) – S3 key that will point to the file

	bucket_name (str) – Name of the bucket in which the file is stored

	expression (str) – S3 Select expression

	expression_type (str) – S3 Select expression type

	input_serialization (dict) – S3 Select input data serialization format

	output_serialization (dict) – S3 Select output data serialization format

	Returns

	retrieved subset of original data by S3 Select

	Return type

	str

See also

For more details about S3 Select parameters:
http://boto3.readthedocs.io/en/latest/reference/services/s3.html#S3.Client.select_object_content

S3FileTransformOperator

	
class airflow.operators.s3_file_transform_operator.S3FileTransformOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Copies data from a source S3 location to a temporary location on the
local filesystem. Runs a transformation on this file as specified by
the transformation script and uploads the output to a destination S3
location.

The locations of the source and the destination files in the local
filesystem is provided as an first and second arguments to the
transformation script. The transformation script is expected to read the
data from source, transform it and write the output to the local
destination file. The operator then takes over control and uploads the
local destination file to S3.

S3 Select is also available to filter the source contents. Users can
omit the transformation script if S3 Select expression is specified.

	Parameters

	
	source_s3_key (str) – The key to be retrieved from S3. (templated)

	source_aws_conn_id (str) – source s3 connection

	source_verify (bool or str) – Whether or not to verify SSL certificates for S3 connetion.
By default SSL certificates are verified.
You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used

	(unless use_ssl is False), but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

This is also applicable to dest_verify.

	dest_s3_key (str) – The key to be written from S3. (templated)

	dest_aws_conn_id (str) – destination s3 connection

	replace (bool) – Replace dest S3 key if it already exists

	transform_script (str) – location of the executable transformation script

	select_expression (str) – S3 Select expression

S3ListOperator

	
class airflow.contrib.operators.s3_list_operator.S3ListOperator(**kwargs)

	Bases: airflow.models.BaseOperator

List all objects from the bucket with the given string prefix in name.

This operator returns a python list with the name of objects which can be
used by xcom in the downstream task.

	Parameters

	
	bucket (str) – The S3 bucket where to find the objects. (templated)

	prefix (str) – Prefix string to filters the objects whose name begin with
such prefix. (templated)

	delimiter (str) – the delimiter marks key hierarchy. (templated)

	aws_conn_id (str) – The connection ID to use when connecting to S3 storage.

	verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.
You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used

	(unless use_ssl is False), but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

	Example:

	The following operator would list all the files
(excluding subfolders) from the S3
customers/2018/04/ key in the data bucket.

s3_file = S3ListOperator(
 task_id='list_3s_files',
 bucket='data',
 prefix='customers/2018/04/',
 delimiter='/',
 aws_conn_id='aws_customers_conn'
)

S3ToGoogleCloudStorageOperator

	
class airflow.contrib.operators.s3_to_gcs_operator.S3ToGoogleCloudStorageOperator(**kwargs)

	Bases: airflow.contrib.operators.s3_list_operator.S3ListOperator

Synchronizes an S3 key, possibly a prefix, with a Google Cloud Storage
destination path.

	Parameters

	
	bucket (str) – The S3 bucket where to find the objects. (templated)

	prefix (str) – Prefix string which filters objects whose name begin with
such prefix. (templated)

	delimiter (str) – the delimiter marks key hierarchy. (templated)

	aws_conn_id (str) – The source S3 connection

	verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.
You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used

	(unless use_ssl is False), but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

	dest_gcs_conn_id (str) – The destination connection ID to use
when connecting to Google Cloud Storage.

	dest_gcs (str) – The destination Google Cloud Storage bucket and prefix
where you want to store the files. (templated)

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	replace (bool) – Whether you want to replace existing destination files
or not.

Example:

s3_to_gcs_op = S3ToGoogleCloudStorageOperator(
 task_id='s3_to_gcs_example',
 bucket='my-s3-bucket',
 prefix='data/customers-201804',
 dest_gcs_conn_id='google_cloud_default',
 dest_gcs='gs://my.gcs.bucket/some/customers/',
 replace=False,
 dag=my-dag)

Note that bucket, prefix, delimiter and dest_gcs are
templated, so you can use variables in them if you wish.

S3ToGoogleCloudStorageTransferOperator

S3ToHiveTransfer

	
class airflow.operators.s3_to_hive_operator.S3ToHiveTransfer(**kwargs)

	Bases: airflow.models.BaseOperator

Moves data from S3 to Hive. The operator downloads a file from S3,
stores the file locally before loading it into a Hive table.
If the create or recreate arguments are set to True,
a CREATE TABLE and DROP TABLE statements are generated.
Hive data types are inferred from the cursor’s metadata from.

Note that the table generated in Hive uses STORED AS textfile
which isn’t the most efficient serialization format. If a
large amount of data is loaded and/or if the tables gets
queried considerably, you may want to use this operator only to
stage the data into a temporary table before loading it into its
final destination using a HiveOperator.

	Parameters

	
	s3_key (str) – The key to be retrieved from S3. (templated)

	field_dict (dict) – A dictionary of the fields name in the file
as keys and their Hive types as values

	hive_table (str) – target Hive table, use dot notation to target a
specific database. (templated)

	create (bool) – whether to create the table if it doesn’t exist

	recreate (bool) – whether to drop and recreate the table at every
execution

	partition (dict) – target partition as a dict of partition columns
and values. (templated)

	headers (bool) – whether the file contains column names on the first
line

	check_headers (bool) – whether the column names on the first line should be
checked against the keys of field_dict

	wildcard_match (bool) – whether the s3_key should be interpreted as a Unix
wildcard pattern

	delimiter (str) – field delimiter in the file

	aws_conn_id (str) – source s3 connection

	verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.
You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used

	(unless use_ssl is False), but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

	hive_cli_conn_id (str) – destination hive connection

	input_compressed (bool) – Boolean to determine if file decompression is
required to process headers

	tblproperties (dict) – TBLPROPERTIES of the hive table being created

	select_expression (str) – S3 Select expression

AWS EC2 Container Service

	ECSOperator : Execute a task on AWS EC2 Container Service.

ECSOperator

	
class airflow.contrib.operators.ecs_operator.ECSOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Execute a task on AWS EC2 Container Service

	Parameters

	
	task_definition (str) – the task definition name on EC2 Container Service

	cluster (str) – the cluster name on EC2 Container Service

	overrides (dict) – the same parameter that boto3 will receive (templated):
http://boto3.readthedocs.org/en/latest/reference/services/ecs.html#ECS.Client.run_task

	aws_conn_id (str) – connection id of AWS credentials / region name. If None,
credential boto3 strategy will be used
(http://boto3.readthedocs.io/en/latest/guide/configuration.html).

	region_name (str) – region name to use in AWS Hook.
Override the region_name in connection (if provided)

	launch_type (str) – the launch type on which to run your task (‘EC2’ or ‘FARGATE’)

	group (str) – the name of the task group associated with the task

	placement_constraints (list) – an array of placement constraint objects to use for
the task

	platform_version (str) – the platform version on which your task is running

	network_configuration (dict) – the network configuration for the task

AWS Batch Service

	AWSBatchOperator : Execute a task on AWS Batch Service.

AWSBatchOperator

	
class airflow.contrib.operators.awsbatch_operator.AWSBatchOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Execute a job on AWS Batch Service

	Parameters

	
	job_name (str) – the name for the job that will run on AWS Batch (templated)

	job_definition (str) – the job definition name on AWS Batch

	job_queue (str) – the queue name on AWS Batch

	overrides (dict) – the same parameter that boto3 will receive on
containerOverrides (templated):
http://boto3.readthedocs.io/en/latest/reference/services/batch.html#submit_job

	max_retries (int) – exponential backoff retries while waiter is not
merged, 4200 = 48 hours

	aws_conn_id (str) – connection id of AWS credentials / region name. If None,
credential boto3 strategy will be used
(http://boto3.readthedocs.io/en/latest/guide/configuration.html).

	region_name (str) – region name to use in AWS Hook.
Override the region_name in connection (if provided)

AWS RedShift

	AwsRedshiftClusterSensor : Waits for a Redshift cluster to reach a specific status.

	RedshiftHook : Interact with AWS Redshift, using the boto3 library.

	RedshiftToS3Transfer : Executes an unload command to S3 as CSV with or without headers.

	S3ToRedshiftTransfer : Executes an copy command from S3 as CSV with or without headers.

AwsRedshiftClusterSensor

	
class airflow.contrib.sensors.aws_redshift_cluster_sensor.AwsRedshiftClusterSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a Redshift cluster to reach a specific status.

	Parameters

	
	cluster_identifier (str) – The identifier for the cluster being pinged.

	target_status (str) – The cluster status desired.

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

RedshiftHook

	
class airflow.contrib.hooks.redshift_hook.RedshiftHook(aws_conn_id='aws_default', verify=None)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS Redshift, using the boto3 library

	
cluster_status(cluster_identifier)

	Return status of a cluster

	Parameters

	cluster_identifier (str) – unique identifier of a cluster

	
create_cluster_snapshot(snapshot_identifier, cluster_identifier)

	Creates a snapshot of a cluster

	Parameters

	
	snapshot_identifier (str) – unique identifier for a snapshot of a cluster

	cluster_identifier (str) – unique identifier of a cluster

	
delete_cluster(cluster_identifier, skip_final_cluster_snapshot=True, final_cluster_snapshot_identifier='')

	Delete a cluster and optionally create a snapshot

	Parameters

	
	cluster_identifier (str) – unique identifier of a cluster

	skip_final_cluster_snapshot (bool) – determines cluster snapshot creation

	final_cluster_snapshot_identifier (str) – name of final cluster snapshot

	
describe_cluster_snapshots(cluster_identifier)

	Gets a list of snapshots for a cluster

	Parameters

	cluster_identifier (str) – unique identifier of a cluster

	
restore_from_cluster_snapshot(cluster_identifier, snapshot_identifier)

	Restores a cluster from its snapshot

	Parameters

	
	cluster_identifier (str) – unique identifier of a cluster

	snapshot_identifier (str) – unique identifier for a snapshot of a cluster

RedshiftToS3Transfer

	
class airflow.operators.redshift_to_s3_operator.RedshiftToS3Transfer(**kwargs)

	Bases: airflow.models.BaseOperator

Executes an UNLOAD command to s3 as a CSV with headers

	Parameters

	
	schema (str) – reference to a specific schema in redshift database

	table (str) – reference to a specific table in redshift database

	s3_bucket (str) – reference to a specific S3 bucket

	s3_key (str) – reference to a specific S3 key

	redshift_conn_id (str) – reference to a specific redshift database

	aws_conn_id (str) – reference to a specific S3 connection

	verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.
You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used

	(unless use_ssl is False), but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

	unload_options (list) – reference to a list of UNLOAD options

S3ToRedshiftTransfer

	
class airflow.operators.s3_to_redshift_operator.S3ToRedshiftTransfer(**kwargs)

	Bases: airflow.models.BaseOperator

Executes an COPY command to load files from s3 to Redshift

	Parameters

	
	schema (str) – reference to a specific schema in redshift database

	table (str) – reference to a specific table in redshift database

	s3_bucket (str) – reference to a specific S3 bucket

	s3_key (str) – reference to a specific S3 key

	redshift_conn_id (str) – reference to a specific redshift database

	aws_conn_id (str) – reference to a specific S3 connection

	verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.
You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used

	(unless use_ssl is False), but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

	copy_options (list) – reference to a list of COPY options

AWS DynamoDB

	HiveToDynamoDBTransferOperator : Moves data from Hive to DynamoDB.

	AwsDynamoDBHook : Interact with AWS DynamoDB.

HiveToDynamoDBTransferOperator

	
class airflow.contrib.operators.hive_to_dynamodb.HiveToDynamoDBTransferOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Moves data from Hive to DynamoDB, note that for now the data is loaded
into memory before being pushed to DynamoDB, so this operator should
be used for smallish amount of data.

	Parameters

	
	sql (str) – SQL query to execute against the hive database. (templated)

	table_name (str) – target DynamoDB table

	table_keys (list) – partition key and sort key

	pre_process (function) – implement pre-processing of source data

	pre_process_args (list) – list of pre_process function arguments

	pre_process_kwargs (dict) – dict of pre_process function arguments

	region_name (str) – aws region name (example: us-east-1)

	schema (str) – hive database schema

	hiveserver2_conn_id (str) – source hive connection

	aws_conn_id (str) – aws connection

AwsDynamoDBHook

	
class airflow.contrib.hooks.aws_dynamodb_hook.AwsDynamoDBHook(table_keys=None, table_name=None, region_name=None, *args, **kwargs)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS DynamoDB.

	Parameters

	
	table_keys (list) – partition key and sort key

	table_name (str) – target DynamoDB table

	region_name (str) – aws region name (example: us-east-1)

	
write_batch_data(items)

	Write batch items to dynamodb table with provisioned throughout capacity.

AWS Lambda

	AwsLambdaHook : Interact with AWS Lambda.

AwsLambdaHook

	
class airflow.contrib.hooks.aws_lambda_hook.AwsLambdaHook(function_name, region_name=None, log_type='None', qualifier='$LATEST', invocation_type='RequestResponse', *args, **kwargs)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS Lambda

	Parameters

	
	function_name (str) – AWS Lambda Function Name

	region_name (str) – AWS Region Name (example: us-west-2)

	log_type (str) – Tail Invocation Request

	qualifier (str) – AWS Lambda Function Version or Alias Name

	invocation_type (str) – AWS Lambda Invocation Type (RequestResponse, Event etc)

	
invoke_lambda(payload)

	Invoke Lambda Function

AWS Kinesis

	AwsFirehoseHook : Interact with AWS Kinesis Firehose.

AwsFirehoseHook

	
class airflow.contrib.hooks.aws_firehose_hook.AwsFirehoseHook(delivery_stream, region_name=None, *args, **kwargs)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS Kinesis Firehose.
:param delivery_stream: Name of the delivery stream
:type delivery_stream: str
:param region_name: AWS region name (example: us-east-1)
:type region_name: str

	
get_conn()

	Returns AwsHook connection object.

	
put_records(records)

	Write batch records to Kinesis Firehose

Amazon SageMaker

For more instructions on using Amazon SageMaker in Airflow, please see the SageMaker Python SDK README [https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/workflow/README.rst].

	SageMakerHook : Interact with Amazon SageMaker.

	SageMakerTrainingOperator : Create a SageMaker training job.

	SageMakerTuningOperator : Create a SageMaker tuning job.

	SageMakerModelOperator : Create a SageMaker model.

	SageMakerTransformOperator : Create a SageMaker transform job.

	SageMakerEndpointConfigOperator : Create a SageMaker endpoint config.

	SageMakerEndpointOperator : Create a SageMaker endpoint.

SageMakerHook

	
class airflow.contrib.hooks.sagemaker_hook.SageMakerHook(*args, **kwargs)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with Amazon SageMaker.

	
check_s3_url(s3url)

	Check if an S3 URL exists

	Parameters

	s3url (str) – S3 url

	Return type

	bool

	
check_status(job_name, key, describe_function, check_interval, max_ingestion_time, non_terminal_states=None)

	Check status of a SageMaker job

	Parameters

	
	job_name (str) – name of the job to check status

	key (str) – the key of the response dict
that points to the state

	describe_function (python callable) – the function used to retrieve the status

	args – the arguments for the function

	check_interval (int) – the time interval in seconds which the operator
will check the status of any SageMaker job

	max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to
None implies no timeout for any SageMaker job.

	non_terminal_states (set) – the set of nonterminal states

	Returns

	response of describe call after job is done

	
check_training_config(training_config)

	Check if a training configuration is valid

	Parameters

	training_config (dict) – training_config

	Returns

	None

	
check_training_status_with_log(job_name, non_terminal_states, failed_states, wait_for_completion, check_interval, max_ingestion_time)

	Display the logs for a given training job, optionally tailing them until the
job is complete.

	Parameters

	
	job_name (str) – name of the training job to check status and display logs for

	non_terminal_states (set) – the set of non_terminal states

	failed_states (set) – the set of failed states

	wait_for_completion (bool) – Whether to keep looking for new log entries
until the job completes

	check_interval (int) – The interval in seconds between polling for new log entries and job completion

	max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to
None implies no timeout for any SageMaker job.

	Returns

	None

	
check_tuning_config(tuning_config)

	Check if a tuning configuration is valid

	Parameters

	tuning_config (dict) – tuning_config

	Returns

	None

	
configure_s3_resources(config)

	Extract the S3 operations from the configuration and execute them.

	Parameters

	config (dict) – config of SageMaker operation

	Return type

	dict

	
create_endpoint(config, wait_for_completion=True, check_interval=30, max_ingestion_time=None)

	Create an endpoint

	Parameters

	
	config (dict) – the config for endpoint

	wait_for_completion (bool) – if the program should keep running until job finishes

	check_interval (int) – the time interval in seconds which the operator
will check the status of any SageMaker job

	max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to
None implies no timeout for any SageMaker job.

	Returns

	A response to endpoint creation

	
create_endpoint_config(config)

	Create an endpoint config

	Parameters

	config (dict) – the config for endpoint-config

	Returns

	A response to endpoint config creation

	
create_model(config)

	Create a model job

	Parameters

	config (dict) – the config for model

	Returns

	A response to model creation

	
create_training_job(config, wait_for_completion=True, print_log=True, check_interval=30, max_ingestion_time=None)

	Create a training job

	Parameters

	
	config (dict) – the config for training

	wait_for_completion (bool) – if the program should keep running until job finishes

	check_interval (int) – the time interval in seconds which the operator
will check the status of any SageMaker job

	max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to
None implies no timeout for any SageMaker job.

	Returns

	A response to training job creation

	
create_transform_job(config, wait_for_completion=True, check_interval=30, max_ingestion_time=None)

	Create a transform job

	Parameters

	
	config (dict) – the config for transform job

	wait_for_completion (bool) – if the program should keep running until job finishes

	check_interval (int) – the time interval in seconds which the operator
will check the status of any SageMaker job

	max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to
None implies no timeout for any SageMaker job.

	Returns

	A response to transform job creation

	
create_tuning_job(config, wait_for_completion=True, check_interval=30, max_ingestion_time=None)

	Create a tuning job

	Parameters

	
	config (dict) – the config for tuning

	wait_for_completion – if the program should keep running until job finishes

	wait_for_completion – bool

	check_interval (int) – the time interval in seconds which the operator
will check the status of any SageMaker job

	max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to
None implies no timeout for any SageMaker job.

	Returns

	A response to tuning job creation

	
describe_endpoint(name)

	
	Parameters

	name (string) – the name of the endpoint

	Returns

	A dict contains all the endpoint info

	
describe_endpoint_config(name)

	Return the endpoint config info associated with the name

	Parameters

	name (string) – the name of the endpoint config

	Returns

	A dict contains all the endpoint config info

	
describe_model(name)

	Return the SageMaker model info associated with the name

	Parameters

	name (string) – the name of the SageMaker model

	Returns

	A dict contains all the model info

	
describe_training_job(name)

	Return the training job info associated with the name

	Parameters

	name (str) – the name of the training job

	Returns

	A dict contains all the training job info

	
describe_training_job_with_log(job_name, positions, stream_names, instance_count, state, last_description, last_describe_job_call)

	Return the training job info associated with job_name and print CloudWatch logs

	
describe_transform_job(name)

	Return the transform job info associated with the name

	Parameters

	name (string) – the name of the transform job

	Returns

	A dict contains all the transform job info

	
describe_tuning_job(name)

	Return the tuning job info associated with the name

	Parameters

	name (string) – the name of the tuning job

	Returns

	A dict contains all the tuning job info

	
get_conn()

	Establish an AWS connection for SageMaker

	Return type

	SageMaker.Client [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client]

	
get_log_conn()

	Establish an AWS connection for retrieving logs during training

	Return type

	CloudWatchLog.Client

	
log_stream(log_group, stream_name, start_time=0, skip=0)

	A generator for log items in a single stream. This will yield all the
items that are available at the current moment.

	Parameters

	
	log_group (str) – The name of the log group.

	stream_name (str) – The name of the specific stream.

	start_time (int) – The time stamp value to start reading the logs from (default: 0).

	skip (int) – The number of log entries to skip at the start (default: 0).
This is for when there are multiple entries at the same timestamp.

	Return type

	dict

	Returns

	
A CloudWatch log event with the following key-value pairs:

’timestamp’ (int): The time in milliseconds of the event.

’message’ (str): The log event data.

’ingestionTime’ (int): The time in milliseconds the event was ingested.

	
multi_stream_iter(log_group, streams, positions=None)

	Iterate over the available events coming from a set of log streams in a single log group
interleaving the events from each stream so they’re yielded in timestamp order.

	Parameters

	
	log_group (str) – The name of the log group.

	streams (list) – A list of the log stream names. The position of the stream in this list is
the stream number.

	positions (list) – A list of pairs of (timestamp, skip) which represents the last record
read from each stream.

	Returns

	A tuple of (stream number, cloudwatch log event).

	
tar_and_s3_upload(path, key, bucket)

	Tar the local file or directory and upload to s3

	Parameters

	
	path (str) – local file or directory

	key (str) – s3 key

	bucket (str) – s3 bucket

	Returns

	None

	
update_endpoint(config, wait_for_completion=True, check_interval=30, max_ingestion_time=None)

	Update an endpoint

	Parameters

	
	config (dict) – the config for endpoint

	wait_for_completion (bool) – if the program should keep running until job finishes

	check_interval (int) – the time interval in seconds which the operator
will check the status of any SageMaker job

	max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to
None implies no timeout for any SageMaker job.

	Returns

	A response to endpoint update

SageMakerTrainingOperator

	
class airflow.contrib.operators.sagemaker_training_operator.SageMakerTrainingOperator(**kwargs)

	Bases: airflow.contrib.operators.sagemaker_base_operator.SageMakerBaseOperator

Initiate a SageMaker training job.

This operator returns The ARN of the training job created in Amazon SageMaker.

	Parameters

	
	config (dict) – The configuration necessary to start a training job (templated).

For details of the configuration parameter see SageMaker.Client.create_training_job() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_training_job]

	aws_conn_id (str) – The AWS connection ID to use.

	wait_for_completion (bool) – If wait is set to True, the time interval, in seconds,
that the operation waits to check the status of the training job.

	print_log (bool) – if the operator should print the cloudwatch log during training

	check_interval (int) – if wait is set to be true, this is the time interval
in seconds which the operator will check the status of the training job

	max_ingestion_time (int) – If wait is set to True, the operation fails if the training job
doesn’t finish within max_ingestion_time seconds. If you set this parameter to None,
the operation does not timeout.

SageMakerTuningOperator

	
class airflow.contrib.operators.sagemaker_tuning_operator.SageMakerTuningOperator(**kwargs)

	Bases: airflow.contrib.operators.sagemaker_base_operator.SageMakerBaseOperator

Initiate a SageMaker hyperparameter tuning job.

This operator returns The ARN of the tuning job created in Amazon SageMaker.

	Parameters

	
	config (dict) – The configuration necessary to start a tuning job (templated).

For details of the configuration parameter see
SageMaker.Client.create_hyper_parameter_tuning_job() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_hyper_parameter_tuning_job]

	aws_conn_id (str) – The AWS connection ID to use.

	wait_for_completion (bool) – Set to True to wait until the tuning job finishes.

	check_interval (int) – If wait is set to True, the time interval, in seconds,
that this operation waits to check the status of the tuning job.

	max_ingestion_time (int) – If wait is set to True, the operation fails
if the tuning job doesn’t finish within max_ingestion_time seconds. If you
set this parameter to None, the operation does not timeout.

SageMakerModelOperator

	
class airflow.contrib.operators.sagemaker_model_operator.SageMakerModelOperator(**kwargs)

	Bases: airflow.contrib.operators.sagemaker_base_operator.SageMakerBaseOperator

Create a SageMaker model.

This operator returns The ARN of the model created in Amazon SageMaker

	Parameters

	
	config (dict) – The configuration necessary to create a model.

For details of the configuration parameter see SageMaker.Client.create_model() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model]

	aws_conn_id (str) – The AWS connection ID to use.

SageMakerTransformOperator

	
class airflow.contrib.operators.sagemaker_transform_operator.SageMakerTransformOperator(**kwargs)

	Bases: airflow.contrib.operators.sagemaker_base_operator.SageMakerBaseOperator

Initiate a SageMaker transform job.

This operator returns The ARN of the model created in Amazon SageMaker.

	Parameters

	
	config (dict) – The configuration necessary to start a transform job (templated).

If you need to create a SageMaker transform job based on an existed SageMaker model:

config = transform_config

If you need to create both SageMaker model and SageMaker Transform job:

config = {
 'Model': model_config,
 'Transform': transform_config
}

For details of the configuration parameter of transform_config see
SageMaker.Client.create_transform_job() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_transform_job]

For details of the configuration parameter of model_config, See:
SageMaker.Client.create_model() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model]

	aws_conn_id (string) – The AWS connection ID to use.

	wait_for_completion (bool) – Set to True to wait until the transform job finishes.

	check_interval (int) – If wait is set to True, the time interval, in seconds,
that this operation waits to check the status of the transform job.

	max_ingestion_time (int) – If wait is set to True, the operation fails
if the transform job doesn’t finish within max_ingestion_time seconds. If you
set this parameter to None, the operation does not timeout.

SageMakerEndpointConfigOperator

	
class airflow.contrib.operators.sagemaker_endpoint_config_operator.SageMakerEndpointConfigOperator(**kwargs)

	Bases: airflow.contrib.operators.sagemaker_base_operator.SageMakerBaseOperator

Create a SageMaker endpoint config.

This operator returns The ARN of the endpoint config created in Amazon SageMaker

	Parameters

	
	config (dict) – The configuration necessary to create an endpoint config.

For details of the configuration parameter see SageMaker.Client.create_endpoint_config() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint_config]

	aws_conn_id (str) – The AWS connection ID to use.

SageMakerEndpointOperator

	
class airflow.contrib.operators.sagemaker_endpoint_operator.SageMakerEndpointOperator(**kwargs)

	Bases: airflow.contrib.operators.sagemaker_base_operator.SageMakerBaseOperator

Create a SageMaker endpoint.

This operator returns The ARN of the endpoint created in Amazon SageMaker

	Parameters

	
	config (dict) – The configuration necessary to create an endpoint.

If you need to create a SageMaker endpoint based on an existed
SageMaker model and an existed SageMaker endpoint config:

config = endpoint_configuration;

If you need to create all of SageMaker model, SageMaker endpoint-config and SageMaker endpoint:

config = {
 'Model': model_configuration,
 'EndpointConfig': endpoint_config_configuration,
 'Endpoint': endpoint_configuration
}

For details of the configuration parameter of model_configuration see
SageMaker.Client.create_model() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model]

For details of the configuration parameter of endpoint_config_configuration see
SageMaker.Client.create_endpoint_config() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint_config]

For details of the configuration parameter of endpoint_configuration see
SageMaker.Client.create_endpoint() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint]

	aws_conn_id (str) – The AWS connection ID to use.

	wait_for_completion (bool) – Whether the operator should wait until the endpoint creation finishes.

	check_interval (int) – If wait is set to True, this is the time interval, in seconds, that this operation
waits before polling the status of the endpoint creation.

	max_ingestion_time (int) – If wait is set to True, this operation fails if the endpoint creation doesn’t
finish within max_ingestion_time seconds. If you set this parameter to None it never times out.

	operation (str) – Whether to create an endpoint or update an endpoint. Must be either ‘create or ‘update’.

Databricks

Databricks [https://databricks.com/] has contributed an Airflow operator which enables
submitting runs to the Databricks platform. Internally the operator talks to the
api/2.0/jobs/runs/submit endpoint [https://docs.databricks.com/api/latest/jobs.html#runs-submit].

DatabricksSubmitRunOperator

	
class airflow.contrib.operators.databricks_operator.DatabricksSubmitRunOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Submits a Spark job run to Databricks using the
api/2.0/jobs/runs/submit [https://docs.databricks.com/api/latest/jobs.html#runs-submit]
API endpoint.

There are two ways to instantiate this operator.

In the first way, you can take the JSON payload that you typically use
to call the api/2.0/jobs/runs/submit endpoint and pass it directly
to our DatabricksSubmitRunOperator through the json parameter.
For example

json = {
 'new_cluster': {
 'spark_version': '2.1.0-db3-scala2.11',
 'num_workers': 2
 },
 'notebook_task': {
 'notebook_path': '/Users/airflow@example.com/PrepareData',
 },
}
notebook_run = DatabricksSubmitRunOperator(task_id='notebook_run', json=json)

Another way to accomplish the same thing is to use the named parameters
of the DatabricksSubmitRunOperator directly. Note that there is exactly
one named parameter for each top level parameter in the runs/submit
endpoint. In this method, your code would look like this:

new_cluster = {
 'spark_version': '2.1.0-db3-scala2.11',
 'num_workers': 2
}
notebook_task = {
 'notebook_path': '/Users/airflow@example.com/PrepareData',
}
notebook_run = DatabricksSubmitRunOperator(
 task_id='notebook_run',
 new_cluster=new_cluster,
 notebook_task=notebook_task)

In the case where both the json parameter AND the named parameters
are provided, they will be merged together. If there are conflicts during the merge,
the named parameters will take precedence and override the top level json keys.

	Currently the named parameters that DatabricksSubmitRunOperator supports are

	
	spark_jar_task

	notebook_task

	new_cluster

	existing_cluster_id

	libraries

	run_name

	timeout_seconds

	Parameters

	
	json (dict) – A JSON object containing API parameters which will be passed
directly to the api/2.0/jobs/runs/submit endpoint. The other named parameters
(i.e. spark_jar_task, notebook_task..) to this operator will
be merged with this json dictionary if they are provided.
If there are conflicts during the merge, the named parameters will
take precedence and override the top level json keys. (templated)

See also

For more information about templating see Jinja Templating.
https://docs.databricks.com/api/latest/jobs.html#runs-submit

	spark_jar_task (dict) – The main class and parameters for the JAR task. Note that
the actual JAR is specified in the libraries.
EITHER spark_jar_task OR notebook_task should be specified.
This field will be templated.

See also

https://docs.databricks.com/api/latest/jobs.html#jobssparkjartask

	notebook_task (dict) – The notebook path and parameters for the notebook task.
EITHER spark_jar_task OR notebook_task should be specified.
This field will be templated.

See also

https://docs.databricks.com/api/latest/jobs.html#jobsnotebooktask

	new_cluster (dict) – Specs for a new cluster on which this task will be run.
EITHER new_cluster OR existing_cluster_id should be specified.
This field will be templated.

See also

https://docs.databricks.com/api/latest/jobs.html#jobsclusterspecnewcluster

	existing_cluster_id (str) – ID for existing cluster on which to run this task.
EITHER new_cluster OR existing_cluster_id should be specified.
This field will be templated.

	libraries (list of dicts) – Libraries which this run will use.
This field will be templated.

See also

https://docs.databricks.com/api/latest/libraries.html#managedlibrarieslibrary

	run_name (str) – The run name used for this task.
By default this will be set to the Airflow task_id. This task_id is a
required parameter of the superclass BaseOperator.
This field will be templated.

	timeout_seconds (int32) – The timeout for this run. By default a value of 0 is used
which means to have no timeout.
This field will be templated.

	databricks_conn_id (str) – The name of the Airflow connection to use.
By default and in the common case this will be databricks_default. To use
token based authentication, provide the key token in the extra field for the
connection.

	polling_period_seconds (int) – Controls the rate which we poll for the result of
this run. By default the operator will poll every 30 seconds.

	databricks_retry_limit (int) – Amount of times retry if the Databricks backend is
unreachable. Its value must be greater than or equal to 1.

	databricks_retry_delay (float) – Number of seconds to wait between retries (it
might be a floating point number).

	do_xcom_push (bool) – Whether we should push run_id and run_page_url to xcom.

GCP: Google Cloud Platform

Airflow has extensive support for the Google Cloud Platform. But note that most Hooks and
Operators are in the contrib section. Meaning that they have a beta status, meaning that
they can have breaking changes between minor releases.

See the GCP connection type documentation to
configure connections to GCP.

Logging

Airflow can be configured to read and write task logs in Google Cloud Storage.
See Writing Logs to Google Cloud Storage.

GoogleCloudBaseHook

	
class airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook(gcp_conn_id='google_cloud_default', delegate_to=None)

	Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.LoggingMixin

A base hook for Google cloud-related hooks. Google cloud has a shared REST
API client that is built in the same way no matter which service you use.
This class helps construct and authorize the credentials needed to then
call googleapiclient.discovery.build() to actually discover and build a client
for a Google cloud service.

The class also contains some miscellaneous helper functions.

All hook derived from this base hook use the ‘Google Cloud Platform’ connection
type. Three ways of authentication are supported:

Default credentials: Only the ‘Project Id’ is required. You’ll need to
have set up default credentials, such as by the
GOOGLE_APPLICATION_DEFAULT environment variable or from the metadata
server on Google Compute Engine.

JSON key file: Specify ‘Project Id’, ‘Keyfile Path’ and ‘Scope’.

Legacy P12 key files are not supported.

JSON data provided in the UI: Specify ‘Keyfile JSON’.

	
static fallback_to_default_project_id(func)

	Decorator that provides fallback for Google Cloud Platform project id. If
the project is None it will be replaced with the project_id from the
service account the Hook is authenticated with. Project id can be specified
either via project_id kwarg or via first parameter in positional args.

	Parameters

	func – function to wrap

	Returns

	result of the function call

BigQuery

BigQuery Operators

	BigQueryCheckOperator : Performs checks against a SQL query that will return a single row with different values.

	BigQueryValueCheckOperator : Performs a simple value check using SQL code.

	BigQueryIntervalCheckOperator : Checks that the values of metrics given as SQL expressions are within a certain tolerance of the ones from days_back before.

	BigQueryGetDataOperator : Fetches the data from a BigQuery table and returns data in a python list

	BigQueryCreateEmptyDatasetOperator : Creates an empty BigQuery dataset.

	BigQueryCreateEmptyTableOperator : Creates a new, empty table in the specified BigQuery dataset optionally with schema.

	BigQueryCreateExternalTableOperator : Creates a new, external table in the dataset with the data in Google Cloud Storage.

	BigQueryDeleteDatasetOperator : Deletes an existing BigQuery dataset.

	BigQueryTableDeleteOperator : Deletes an existing BigQuery table.

	BigQueryOperator : Executes BigQuery SQL queries in a specific BigQuery database.

	BigQueryToBigQueryOperator : Copy a BigQuery table to another BigQuery table.

	BigQueryToCloudStorageOperator : Transfers a BigQuery table to a Google Cloud Storage bucket

BigQueryCheckOperator

	
class airflow.contrib.operators.bigquery_check_operator.BigQueryCheckOperator(**kwargs)

	Bases: airflow.operators.check_operator.CheckOperator

Performs checks against BigQuery. The BigQueryCheckOperator expects
a sql query that will return a single row. Each value on that
first row is evaluated using python bool casting. If any of the
values return False the check is failed and errors out.

Note that Python bool casting evals the following as False:

	False

	0

	Empty string ("")

	Empty list ([])

	Empty dictionary or set ({})

Given a query like SELECT COUNT(*) FROM foo, it will fail only if
the count == 0. You can craft much more complex query that could,
for instance, check that the table has the same number of rows as
the source table upstream, or that the count of today’s partition is
greater than yesterday’s partition, or that a set of metrics are less
than 3 standard deviation for the 7 day average.

This operator can be used as a data quality check in your pipeline, and
depending on where you put it in your DAG, you have the choice to
stop the critical path, preventing from
publishing dubious data, or on the side and receive email alterts
without stopping the progress of the DAG.

	Parameters

	
	sql (str) – the sql to be executed

	bigquery_conn_id (str) – reference to the BigQuery database

	use_legacy_sql (bool) – Whether to use legacy SQL (true)
or standard SQL (false).

BigQueryValueCheckOperator

	
class airflow.contrib.operators.bigquery_check_operator.BigQueryValueCheckOperator(**kwargs)

	Bases: airflow.operators.check_operator.ValueCheckOperator

Performs a simple value check using sql code.

	Parameters

	
	sql (str) – the sql to be executed

	use_legacy_sql (bool) – Whether to use legacy SQL (true)
or standard SQL (false).

BigQueryIntervalCheckOperator

	
class airflow.contrib.operators.bigquery_check_operator.BigQueryIntervalCheckOperator(**kwargs)

	Bases: airflow.operators.check_operator.IntervalCheckOperator

Checks that the values of metrics given as SQL expressions are within
a certain tolerance of the ones from days_back before.

This method constructs a query like so

SELECT {metrics_threshold_dict_key} FROM {table}
WHERE {date_filter_column}=<date>

	Parameters

	
	table (str) – the table name

	days_back (int) – number of days between ds and the ds we want to check
against. Defaults to 7 days

	metrics_threshold (dict) – a dictionary of ratios indexed by metrics, for
example ‘COUNT(*)’: 1.5 would require a 50 percent or less difference
between the current day, and the prior days_back.

	use_legacy_sql (bool) – Whether to use legacy SQL (true)
or standard SQL (false).

BigQueryGetDataOperator

	
class airflow.contrib.operators.bigquery_get_data.BigQueryGetDataOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Fetches the data from a BigQuery table (alternatively fetch data for selected columns)
and returns data in a python list. The number of elements in the returned list will
be equal to the number of rows fetched. Each element in the list will again be a list
where element would represent the columns values for that row.

Example Result: [['Tony', '10'], ['Mike', '20'], ['Steve', '15']]

Note

If you pass fields to selected_fields which are in different order than the
order of columns already in
BQ table, the data will still be in the order of BQ table.
For example if the BQ table has 3 columns as
[A,B,C] and you pass ‘B,A’ in the selected_fields
the data would still be of the form 'A,B'.

Example:

get_data = BigQueryGetDataOperator(
 task_id='get_data_from_bq',
 dataset_id='test_dataset',
 table_id='Transaction_partitions',
 max_results='100',
 selected_fields='DATE',
 bigquery_conn_id='airflow-service-account'
)

	Parameters

	
	dataset_id (str) – The dataset ID of the requested table. (templated)

	table_id (str) – The table ID of the requested table. (templated)

	max_results (str) – The maximum number of records (rows) to be fetched
from the table. (templated)

	selected_fields (str) – List of fields to return (comma-separated). If
unspecified, all fields are returned.

	bigquery_conn_id (str) – reference to a specific BigQuery hook.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

BigQueryCreateEmptyTableOperator

	
class airflow.contrib.operators.bigquery_operator.BigQueryCreateEmptyTableOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Creates a new, empty table in the specified BigQuery dataset,
optionally with schema.

The schema to be used for the BigQuery table may be specified in one of
two ways. You may either directly pass the schema fields in, or you may
point the operator to a Google cloud storage object name. The object in
Google cloud storage must be a JSON file with the schema fields in it.
You can also create a table without schema.

	Parameters

	
	project_id (str) – The project to create the table into. (templated)

	dataset_id (str) – The dataset to create the table into. (templated)

	table_id (str) – The Name of the table to be created. (templated)

	schema_fields (list) – If set, the schema field list as defined here:
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema

Example:

schema_fields=[{"name": "emp_name", "type": "STRING", "mode": "REQUIRED"},
 {"name": "salary", "type": "INTEGER", "mode": "NULLABLE"}]

	gcs_schema_object (str) – Full path to the JSON file containing
schema (templated). For
example: gs://test-bucket/dir1/dir2/employee_schema.json

	time_partitioning (dict) – configure optional time partitioning fields i.e.
partition by field, type and expiration as per API specifications.

See also

https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#timePartitioning

	bigquery_conn_id (str) – Reference to a specific BigQuery hook.

	google_cloud_storage_conn_id (str) – Reference to a specific Google
cloud storage hook.

	delegate_to (str) – The account to impersonate, if any. For this to
work, the service account making the request must have domain-wide
delegation enabled.

	labels (dict) – a dictionary containing labels for the table, passed to BigQuery

Example (with schema JSON in GCS):

CreateTable = BigQueryCreateEmptyTableOperator(
 task_id='BigQueryCreateEmptyTableOperator_task',
 dataset_id='ODS',
 table_id='Employees',
 project_id='internal-gcp-project',
 gcs_schema_object='gs://schema-bucket/employee_schema.json',
 bigquery_conn_id='airflow-service-account',
 google_cloud_storage_conn_id='airflow-service-account'
)

Corresponding Schema file (employee_schema.json):

[
 {
 "mode": "NULLABLE",
 "name": "emp_name",
 "type": "STRING"
 },
 {
 "mode": "REQUIRED",
 "name": "salary",
 "type": "INTEGER"
 }
]

Example (with schema in the DAG):

CreateTable = BigQueryCreateEmptyTableOperator(
 task_id='BigQueryCreateEmptyTableOperator_task',
 dataset_id='ODS',
 table_id='Employees',
 project_id='internal-gcp-project',
 schema_fields=[{"name": "emp_name", "type": "STRING", "mode": "REQUIRED"},
 {"name": "salary", "type": "INTEGER", "mode": "NULLABLE"}],
 bigquery_conn_id='airflow-service-account',
 google_cloud_storage_conn_id='airflow-service-account'
)

BigQueryCreateExternalTableOperator

	
class airflow.contrib.operators.bigquery_operator.BigQueryCreateExternalTableOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Creates a new external table in the dataset with the data in Google Cloud
Storage.

The schema to be used for the BigQuery table may be specified in one of
two ways. You may either directly pass the schema fields in, or you may
point the operator to a Google cloud storage object name. The object in
Google cloud storage must be a JSON file with the schema fields in it.

	Parameters

	
	bucket (str) – The bucket to point the external table to. (templated)

	source_objects (list) – List of Google cloud storage URIs to point
table to. (templated)
If source_format is ‘DATASTORE_BACKUP’, the list must only contain a single URI.

	destination_project_dataset_table (str) – The dotted (<project>.)<dataset>.<table>
BigQuery table to load data into (templated). If <project> is not included,
project will be the project defined in the connection json.

	schema_fields (list) – If set, the schema field list as defined here:
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema

Example:

schema_fields=[{"name": "emp_name", "type": "STRING", "mode": "REQUIRED"},
 {"name": "salary", "type": "INTEGER", "mode": "NULLABLE"}]

Should not be set when source_format is ‘DATASTORE_BACKUP’.

	schema_object (str) – If set, a GCS object path pointing to a .json file that
contains the schema for the table. (templated)

	source_format (str) – File format of the data.

	compression (str) – [Optional] The compression type of the data source.
Possible values include GZIP and NONE.
The default value is NONE.
This setting is ignored for Google Cloud Bigtable,
Google Cloud Datastore backups and Avro formats.

	skip_leading_rows (int) – Number of rows to skip when loading from a CSV.

	field_delimiter (str) – The delimiter to use for the CSV.

	max_bad_records (int) – The maximum number of bad records that BigQuery can
ignore when running the job.

	quote_character (str) – The value that is used to quote data sections in a CSV file.

	allow_quoted_newlines (bool) – Whether to allow quoted newlines (true) or not (false).

	allow_jagged_rows (bool) – Accept rows that are missing trailing optional columns.
The missing values are treated as nulls. If false, records with missing trailing
columns are treated as bad records, and if there are too many bad records, an
invalid error is returned in the job result. Only applicable to CSV, ignored
for other formats.

	bigquery_conn_id (str) – Reference to a specific BigQuery hook.

	google_cloud_storage_conn_id (str) – Reference to a specific Google
cloud storage hook.

	delegate_to (str) – The account to impersonate, if any. For this to
work, the service account making the request must have domain-wide
delegation enabled.

	src_fmt_configs (dict) – configure optional fields specific to the source format

	labels (dict) – a dictionary containing labels for the table, passed to BigQuery

BigQueryCreateEmptyDatasetOperator

	
class airflow.contrib.operators.bigquery_operator.BigQueryCreateEmptyDatasetOperator(**kwargs)

	Bases: airflow.models.BaseOperator

This operator is used to create new dataset for your Project in Big query.
https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource

	Parameters

	
	project_id (str) – The name of the project where we want to create the dataset.
Don’t need to provide, if projectId in dataset_reference.

	dataset_id (str) – The id of dataset. Don’t need to provide,
if datasetId in dataset_reference.

	dataset_reference – Dataset reference that could be provided with request body.
More info:
https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource

BigQueryDeleteDatasetOperator

	
class airflow.contrib.operators.bigquery_operator.BigQueryDeleteDatasetOperator(**kwargs)

	Bases: airflow.models.BaseOperator

This operator deletes an existing dataset from your Project in Big query.
https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/delete

	Parameters

	
	project_id (str) – The project id of the dataset.

	dataset_id (str) – The dataset to be deleted.

Example:

delete_temp_data = BigQueryDeleteDatasetOperator(dataset_id = 'temp-dataset',
 project_id = 'temp-project',
 bigquery_conn_id='_my_gcp_conn_',
 task_id='Deletetemp',
 dag=dag)

BigQueryTableDeleteOperator

	
class airflow.contrib.operators.bigquery_table_delete_operator.BigQueryTableDeleteOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Deletes BigQuery tables

	Parameters

	
	deletion_dataset_table (str) – A dotted
(<project>.|<project>:)<dataset>.<table> that indicates which table
will be deleted. (templated)

	bigquery_conn_id (str) – reference to a specific BigQuery hook.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	ignore_if_missing (bool) – if True, then return success even if the
requested table does not exist.

BigQueryOperator

	
class airflow.contrib.operators.bigquery_operator.BigQueryOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Executes BigQuery SQL queries in a specific BigQuery database

	Parameters

	
	sql (Can receive a str representing a sql statement,
a list of str (sql statements), or reference to a template file.
Template reference are recognized by str ending in '.sql'.) – the sql code to be executed (templated)

	destination_dataset_table (str) – A dotted
(<project>.|<project>:)<dataset>.<table> that, if set, will store the results
of the query. (templated)

	write_disposition (str) – Specifies the action that occurs if the destination table
already exists. (default: ‘WRITE_EMPTY’)

	create_disposition (str) – Specifies whether the job is allowed to create new tables.
(default: ‘CREATE_IF_NEEDED’)

	allow_large_results (bool) – Whether to allow large results.

	flatten_results (bool) – If true and query uses legacy SQL dialect, flattens
all nested and repeated fields in the query results. allow_large_results
must be true if this is set to false. For standard SQL queries, this
flag is ignored and results are never flattened.

	bigquery_conn_id (str) – reference to a specific BigQuery hook.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	udf_config (list) – The User Defined Function configuration for the query.
See https://cloud.google.com/bigquery/user-defined-functions for details.

	use_legacy_sql (bool) – Whether to use legacy SQL (true) or standard SQL (false).

	maximum_billing_tier (int) – Positive integer that serves as a multiplier
of the basic price.
Defaults to None, in which case it uses the value set in the project.

	maximum_bytes_billed (float) – Limits the bytes billed for this job.
Queries that will have bytes billed beyond this limit will fail
(without incurring a charge). If unspecified, this will be
set to your project default.

	api_resource_configs (dict) – a dictionary that contain params
‘configuration’ applied for Google BigQuery Jobs API:
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs
for example, {‘query’: {‘useQueryCache’: False}}. You could use it
if you need to provide some params that are not supported by BigQueryOperator
like args.

	schema_update_options (tuple) – Allows the schema of the destination
table to be updated as a side effect of the load job.

	query_params (dict) – a dictionary containing query parameter types and
values, passed to BigQuery.

	labels (dict) – a dictionary containing labels for the job/query,
passed to BigQuery

	priority (str) – Specifies a priority for the query.
Possible values include INTERACTIVE and BATCH.
The default value is INTERACTIVE.

	time_partitioning (dict) – configure optional time partitioning fields i.e.
partition by field, type and expiration as per API specifications.

	cluster_fields (list of str) – Request that the result of this query be stored sorted
by one or more columns. This is only available in conjunction with
time_partitioning. The order of columns given determines the sort order.

	location (str) – The geographic location of the job. Required except for
US and EU. See details at
https://cloud.google.com/bigquery/docs/locations#specifying_your_location

BigQueryToBigQueryOperator

	
class airflow.contrib.operators.bigquery_to_bigquery.BigQueryToBigQueryOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Copies data from one BigQuery table to another.

See also

For more details about these parameters:
https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.copy

	Parameters

	
	source_project_dataset_tables (list|string) – One or more
dotted (project:|project.)<dataset>.<table> BigQuery tables to use as the
source data. If <project> is not included, project will be the
project defined in the connection json. Use a list if there are multiple
source tables. (templated)

	destination_project_dataset_table (str) – The destination BigQuery
table. Format is: (project:|project.)<dataset>.<table> (templated)

	write_disposition (str) – The write disposition if the table already exists.

	create_disposition (str) – The create disposition if the table doesn’t exist.

	bigquery_conn_id (str) – reference to a specific BigQuery hook.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	labels (dict) – a dictionary containing labels for the job/query,
passed to BigQuery

BigQueryToCloudStorageOperator

	
class airflow.contrib.operators.bigquery_to_gcs.BigQueryToCloudStorageOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Transfers a BigQuery table to a Google Cloud Storage bucket.

See also

For more details about these parameters:
https://cloud.google.com/bigquery/docs/reference/v2/jobs

	Parameters

	
	source_project_dataset_table (str) – The dotted
(<project>.|<project>:)<dataset>.<table> BigQuery table to use as the
source data. If <project> is not included, project will be the project
defined in the connection json. (templated)

	destination_cloud_storage_uris (list) – The destination Google Cloud
Storage URI (e.g. gs://some-bucket/some-file.txt). (templated) Follows
convention defined here:
https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple

	compression (str) – Type of compression to use.

	export_format (str) – File format to export.

	field_delimiter (str) – The delimiter to use when extracting to a CSV.

	print_header (bool) – Whether to print a header for a CSV file extract.

	bigquery_conn_id (str) – reference to a specific BigQuery hook.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	labels (dict) – a dictionary containing labels for the job/query,
passed to BigQuery

BigQueryHook

	
class airflow.contrib.hooks.bigquery_hook.BigQueryHook(bigquery_conn_id='bigquery_default', delegate_to=None, use_legacy_sql=True, location=None)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook, airflow.hooks.dbapi_hook.DbApiHook, airflow.utils.log.logging_mixin.LoggingMixin

Interact with BigQuery. This hook uses the Google Cloud Platform
connection.

	
get_conn()

	Returns a BigQuery PEP 249 connection object.

	
get_pandas_df(sql, parameters=None, dialect=None)

	Returns a Pandas DataFrame for the results produced by a BigQuery
query. The DbApiHook method must be overridden because Pandas
doesn’t support PEP 249 connections, except for SQLite. See:

https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447
https://github.com/pydata/pandas/issues/6900

	Parameters

	
	sql (str) – The BigQuery SQL to execute.

	parameters (mapping or iterable) – The parameters to render the SQL query with (not
used, leave to override superclass method)

	dialect (str in {'legacy', 'standard'}) – Dialect of BigQuery SQL – legacy SQL or standard SQL
defaults to use self.use_legacy_sql if not specified

	
get_service()

	Returns a BigQuery service object.

	
insert_rows(table, rows, target_fields=None, commit_every=1000)

	Insertion is currently unsupported. Theoretically, you could use
BigQuery’s streaming API to insert rows into a table, but this hasn’t
been implemented.

	
table_exists(project_id, dataset_id, table_id)

	Checks for the existence of a table in Google BigQuery.

	Parameters

	
	project_id (str) – The Google cloud project in which to look for the
table. The connection supplied to the hook must provide access to
the specified project.

	dataset_id (str) – The name of the dataset in which to look for the
table.

	table_id (str) – The name of the table to check the existence of.

Cloud Spanner

Cloud Spanner Operators

	CloudSpannerInstanceDatabaseDeleteOperator : deletes an existing database from
a Google Cloud Spanner instance or returns success if the database is missing.

	CloudSpannerInstanceDatabaseDeployOperator : creates a new database in a Google
Cloud instance or returns success if the database already exists.

	CloudSpannerInstanceDatabaseUpdateOperator : updates the structure of a
Google Cloud Spanner database.

	CloudSpannerInstanceDatabaseQueryOperator : executes an arbitrary DML query
(INSERT, UPDATE, DELETE).

	CloudSpannerInstanceDeployOperator : creates a new Google Cloud Spanner instance,
or if an instance with the same name exists, updates the instance.

	CloudSpannerInstanceDeleteOperator : deletes a Google Cloud Spanner instance.

CloudSpannerInstanceDatabaseDeleteOperator

CloudSpannerInstanceDatabaseDeployOperator

CloudSpannerInstanceDatabaseUpdateOperator

CloudSpannerInstanceDatabaseQueryOperator

CloudSpannerInstanceDeployOperator

CloudSpannerInstanceDeleteOperator

CloudSpannerHook

Cloud SQL

Cloud SQL Operators

	CloudSqlInstanceDatabaseDeleteOperator : deletes a database from a Cloud SQL
instance.

	CloudSqlInstanceDatabaseCreateOperator : creates a new database inside a Cloud
SQL instance.

	CloudSqlInstanceDatabasePatchOperator : updates a database inside a Cloud
SQL instance.

	CloudSqlInstanceDeleteOperator : delete a Cloud SQL instance.

	CloudSqlInstanceExportOperator : exports data from a Cloud SQL instance.

	CloudSqlInstanceImportOperator : imports data into a Cloud SQL instance.

	CloudSqlInstanceCreateOperator : create a new Cloud SQL instance.

	CloudSqlInstancePatchOperator : patch a Cloud SQL instance.

	CloudSqlQueryOperator : run query in a Cloud SQL instance.

CloudSqlInstanceDatabaseDeleteOperator

	
class airflow.contrib.operators.gcp_sql_operator.CloudSqlInstanceDatabaseDeleteOperator(**kwargs)

	Bases: airflow.contrib.operators.gcp_sql_operator.CloudSqlBaseOperator

Deletes a database from a Cloud SQL instance.

	Parameters

	
	instance (str) – Database instance ID. This does not include the project ID.

	database (str) – Name of the database to be deleted in the instance.

	project_id (str) – Optional, Google Cloud Platform Project ID. If set to None or missing,
the default project_id from the GCP connection is used.

	gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform.

	api_version (str) – API version used (e.g. v1beta4).

CloudSqlInstanceDatabaseCreateOperator

	
class airflow.contrib.operators.gcp_sql_operator.CloudSqlInstanceDatabaseCreateOperator(**kwargs)

	Bases: airflow.contrib.operators.gcp_sql_operator.CloudSqlBaseOperator

Creates a new database inside a Cloud SQL instance.

	Parameters

	
	instance (str) – Database instance ID. This does not include the project ID.

	body (dict) – The request body, as described in
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/insert#request-body

	project_id (str) – Optional, Google Cloud Platform Project ID. If set to None or missing,
the default project_id from the GCP connection is used.

	gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform.

	api_version (str) – API version used (e.g. v1beta4).

	validate_body (bool) – Whether the body should be validated. Defaults to True.

CloudSqlInstanceDatabasePatchOperator

	
class airflow.contrib.operators.gcp_sql_operator.CloudSqlInstanceDatabasePatchOperator(**kwargs)

	Bases: airflow.contrib.operators.gcp_sql_operator.CloudSqlBaseOperator

Updates a resource containing information about a database inside a Cloud SQL
instance using patch semantics.
See: https://cloud.google.com/sql/docs/mysql/admin-api/how-tos/performance#patch

	Parameters

	
	instance (str) – Database instance ID. This does not include the project ID.

	database (str) – Name of the database to be updated in the instance.

	body (dict) – The request body, as described in
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/patch#request-body

	project_id (str) – Optional, Google Cloud Platform Project ID.

	gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform.

	api_version (str) – API version used (e.g. v1beta4).

	validate_body (bool) – Whether the body should be validated. Defaults to True.

CloudSqlInstanceDeleteOperator

	
class airflow.contrib.operators.gcp_sql_operator.CloudSqlInstanceDeleteOperator(**kwargs)

	Bases: airflow.contrib.operators.gcp_sql_operator.CloudSqlBaseOperator

Deletes a Cloud SQL instance.

	Parameters

	
	instance (str) – Cloud SQL instance ID. This does not include the project ID.

	project_id (str) – Optional, Google Cloud Platform Project ID. If set to None or missing,
the default project_id from the GCP connection is used.

	gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform.

	api_version (str) – API version used (e.g. v1beta4).

CloudSqlInstanceExportOperator

	
class airflow.contrib.operators.gcp_sql_operator.CloudSqlInstanceExportOperator(**kwargs)

	Bases: airflow.contrib.operators.gcp_sql_operator.CloudSqlBaseOperator

Exports data from a Cloud SQL instance to a Cloud Storage bucket as a SQL dump
or CSV file.

Note: This operator is idempotent. If executed multiple times with the same
export file URI, the export file in GCS will simply be overridden.

	Parameters

	
	instance (str) – Cloud SQL instance ID. This does not include the project ID.

	body (dict) – The request body, as described in
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/export#request-body

	project_id (str) – Optional, Google Cloud Platform Project ID. If set to None or missing,
the default project_id from the GCP connection is used.

	gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform.

	api_version (str) – API version used (e.g. v1beta4).

	validate_body (bool) – Whether the body should be validated. Defaults to True.

CloudSqlInstanceImportOperator

	
class airflow.contrib.operators.gcp_sql_operator.CloudSqlInstanceImportOperator(**kwargs)

	Bases: airflow.contrib.operators.gcp_sql_operator.CloudSqlBaseOperator

Imports data into a Cloud SQL instance from a SQL dump or CSV file in Cloud Storage.

CSV IMPORT:

This operator is NOT idempotent for a CSV import. If the same file is imported
multiple times, the imported data will be duplicated in the database.
Moreover, if there are any unique constraints the duplicate import may result in an
error.

SQL IMPORT:

This operator is idempotent for a SQL import if it was also exported by Cloud SQL.
The exported SQL contains ‘DROP TABLE IF EXISTS’ statements for all tables
to be imported.

If the import file was generated in a different way, idempotence is not guaranteed.
It has to be ensured on the SQL file level.

	Parameters

	
	instance (str) – Cloud SQL instance ID. This does not include the project ID.

	body (dict) – The request body, as described in
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/export#request-body

	project_id (str) – Optional, Google Cloud Platform Project ID. If set to None or missing,
the default project_id from the GCP connection is used.

	gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform.

	api_version (str) – API version used (e.g. v1beta4).

	validate_body (bool) – Whether the body should be validated. Defaults to True.

CloudSqlInstanceCreateOperator

	
class airflow.contrib.operators.gcp_sql_operator.CloudSqlInstanceCreateOperator(**kwargs)

	Bases: airflow.contrib.operators.gcp_sql_operator.CloudSqlBaseOperator

Creates a new Cloud SQL instance.
If an instance with the same name exists, no action will be taken and
the operator will succeed.

	Parameters

	
	body (dict) – Body required by the Cloud SQL insert API, as described in
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/insert
#request-body

	instance (str) – Cloud SQL instance ID. This does not include the project ID.

	project_id (str) – Optional, Google Cloud Platform Project ID. If set to None or missing,
the default project_id from the GCP connection is used.

	gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform.

	api_version (str) – API version used (e.g. v1beta4).

	validate_body (bool) – True if body should be validated, False otherwise.

CloudSqlInstancePatchOperator

	
class airflow.contrib.operators.gcp_sql_operator.CloudSqlInstancePatchOperator(**kwargs)

	Bases: airflow.contrib.operators.gcp_sql_operator.CloudSqlBaseOperator

Updates settings of a Cloud SQL instance.

Caution: This is a partial update, so only included values for the settings will be
updated.

In the request body, supply the relevant portions of an instance resource, according
to the rules of patch semantics.
https://cloud.google.com/sql/docs/mysql/admin-api/how-tos/performance#patch

	Parameters

	
	body (dict) – Body required by the Cloud SQL patch API, as described in
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/patch#request-body

	instance (str) – Cloud SQL instance ID. This does not include the project ID.

	project_id (str) – Optional, Google Cloud Platform Project ID. If set to None or missing,
the default project_id from the GCP connection is used.

	gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform.

	api_version (str) – API version used (e.g. v1beta4).

CloudSqlQueryOperator

	
class airflow.contrib.operators.gcp_sql_operator.CloudSqlQueryOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Performs DML or DDL query on an existing Cloud Sql instance. It optionally uses
cloud-sql-proxy to establish secure connection with the database.

	Parameters

	
	sql (str or [str]) – SQL query or list of queries to run (should be DML or DDL query -
this operator does not return any data from the database,
so it is useless to pass it DQL queries. Note that it is responsibility of the
author of the queries to make sure that the queries are idempotent. For example
you can use CREATE TABLE IF NOT EXISTS to create a table.

	parameters (mapping or iterable) – (optional) the parameters to render the SQL query with.

	autocommit (bool) – if True, each command is automatically committed.
(default value: False)

	gcp_conn_id (str) – The connection ID used to connect to Google Cloud Platform for
cloud-sql-proxy authentication.

	gcp_cloudsql_conn_id (str) – The connection ID used to connect to Google Cloud SQL
its schema should be gcpcloudsql://.
See CloudSqlDatabaseHook for
details on how to define gcpcloudsql:// connection.

Cloud SQL Hooks

	
class airflow.contrib.hooks.gcp_sql_hook.CloudSqlHook(api_version, gcp_conn_id='google_cloud_default', delegate_to=None)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Hook for Google Cloud SQL APIs.

All the methods in the hook where project_id is used must be called with
keyword arguments rather than positional.

	
create_database(*args, **kwargs)

	Creates a new database inside a Cloud SQL instance.

	Parameters

	
	instance (str) – Database instance ID. This does not include the project ID.

	body (dict) – The request body, as described in
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/insert#request-body.

	project_id (str) – Project ID of the project that contains the instance. If set
to None or missing, the default project_id from the GCP connection is used.

	Returns

	None

	
create_instance(*args, **kwargs)

	Creates a new Cloud SQL instance.

	Parameters

	
	body (dict) – Body required by the Cloud SQL insert API, as described in
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/insert#request-body.

	project_id (str) – Project ID of the project that contains the instance. If set
to None or missing, the default project_id from the GCP connection is used.

	Returns

	None

	
delete_database(*args, **kwargs)

	Deletes a database from a Cloud SQL instance.

	Parameters

	
	instance (str) – Database instance ID. This does not include the project ID.

	database (str) – Name of the database to be deleted in the instance.

	project_id (str) – Project ID of the project that contains the instance. If set
to None or missing, the default project_id from the GCP connection is used.

	Returns

	None

	
delete_instance(*args, **kwargs)

	Deletes a Cloud SQL instance.

	Parameters

	
	project_id (str) – Project ID of the project that contains the instance. If set
to None or missing, the default project_id from the GCP connection is used.

	instance (str) – Cloud SQL instance ID. This does not include the project ID.

	Returns

	None

	
export_instance(*args, **kwargs)

	Exports data from a Cloud SQL instance to a Cloud Storage bucket as a SQL dump
or CSV file.

	Parameters

	
	instance (str) – Database instance ID of the Cloud SQL instance. This does not include the
project ID.

	body (dict) – The request body, as described in
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/export#request-body

	project_id (str) – Project ID of the project that contains the instance. If set
to None or missing, the default project_id from the GCP connection is used.

	Returns

	None

	
get_conn()

	Retrieves connection to Cloud SQL.

	Returns

	Google Cloud SQL services object.

	Return type

	dict

	
get_database(*args, **kwargs)

	Retrieves a database resource from a Cloud SQL instance.

	Parameters

	
	instance (str) – Database instance ID. This does not include the project ID.

	database (str) – Name of the database in the instance.

	project_id (str) – Project ID of the project that contains the instance. If set
to None or missing, the default project_id from the GCP connection is used.

	Returns

	A Cloud SQL database resource, as described in
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases#resource.

	Return type

	dict

	
get_instance(*args, **kwargs)

	Retrieves a resource containing information about a Cloud SQL instance.

	Parameters

	
	instance (str) – Database instance ID. This does not include the project ID.

	project_id (str) – Project ID of the project that contains the instance. If set
to None or missing, the default project_id from the GCP connection is used.

	Returns

	A Cloud SQL instance resource.

	Return type

	dict

	
import_instance(*args, **kwargs)

	Imports data into a Cloud SQL instance from a SQL dump or CSV file in
Cloud Storage.

	Parameters

	
	instance (str) – Database instance ID. This does not include the
project ID.

	body (dict) – The request body, as described in
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/export#request-body

	project_id (str) – Project ID of the project that contains the instance. If set
to None or missing, the default project_id from the GCP connection is used.

	Returns

	None

	
patch_database(*args, **kwargs)

	Updates a database resource inside a Cloud SQL instance.

This method supports patch semantics.
See https://cloud.google.com/sql/docs/mysql/admin-api/how-tos/performance#patch.

	Parameters

	
	instance (str) – Database instance ID. This does not include the project ID.

	database (str) – Name of the database to be updated in the instance.

	body (dict) – The request body, as described in
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/databases/insert#request-body.

	project_id (str) – Project ID of the project that contains the instance. If set
to None or missing, the default project_id from the GCP connection is used.

	Returns

	None

	
patch_instance(*args, **kwargs)

	Updates settings of a Cloud SQL instance.

Caution: This is not a partial update, so you must include values for
all the settings that you want to retain.

	Parameters

	
	body (dict) – Body required by the Cloud SQL patch API, as described in
https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/instances/patch#request-body.

	instance (str) – Cloud SQL instance ID. This does not include the project ID.

	project_id (str) – Project ID of the project that contains the instance. If set
to None or missing, the default project_id from the GCP connection is used.

	Returns

	None

	
class airflow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook(gcp_cloudsql_conn_id='google_cloud_sql_default', default_gcp_project_id=None)

	Bases: airflow.hooks.base_hook.BaseHook

Serves DB connection configuration for Google Cloud SQL (Connections
of gcpcloudsql:// type).

The hook is a “meta” one. It does not perform an actual connection.
It is there to retrieve all the parameters configured in gcpcloudsql:// connection,
start/stop Cloud SQL Proxy if needed, dynamically generate Postgres or MySQL
connection in the database and return an actual Postgres or MySQL hook.
The returned Postgres/MySQL hooks are using direct connection or Cloud SQL
Proxy socket/TCP as configured.

Main parameters of the hook are retrieved from the standard URI components:

	user - User name to authenticate to the database (from login of the URI).

	password - Password to authenticate to the database (from password of the URI).

	public_ip - IP to connect to for public connection (from host of the URI).

	public_port - Port to connect to for public connection (from port of the URI).

	database - Database to connect to (from schema of the URI).

Remaining parameters are retrieved from the extras (URI query parameters):

	
	project_id - Optional, Google Cloud Platform project where the Cloud SQL

	instance exists. If missing, default project id passed is used.

	instance - Name of the instance of the Cloud SQL database instance.

	location - The location of the Cloud SQL instance (for example europe-west1).

	database_type - The type of the database instance (MySQL or Postgres).

	use_proxy - (default False) Whether SQL proxy should be used to connect to Cloud
SQL DB.

	use_ssl - (default False) Whether SSL should be used to connect to Cloud SQL DB.
You cannot use proxy and SSL together.

	sql_proxy_use_tcp - (default False) If set to true, TCP is used to connect via
proxy, otherwise UNIX sockets are used.

	sql_proxy_binary_path - Optional path to Cloud SQL Proxy binary. If the binary
is not specified or the binary is not present, it is automatically downloaded.

	sql_proxy_version - Specific version of the proxy to download (for example
v1.13). If not specified, the latest version is downloaded.

	sslcert - Path to client certificate to authenticate when SSL is used.

	sslkey - Path to client private key to authenticate when SSL is used.

	sslrootcert - Path to server’s certificate to authenticate when SSL is used.

	Parameters

	
	gcp_cloudsql_conn_id (str) – URL of the connection

	default_gcp_project_id (str) – Default project id used if project_id not specified
in the connection URL

	
cleanup_database_hook()

	Clean up database hook after it was used.

	
create_connection(**kwargs)

	Create connection in the Connection table, according to whether it uses
proxy, TCP, UNIX sockets, SSL. Connection ID will be randomly generated.

	Parameters

	session – Session of the SQL Alchemy ORM (automatically generated with
decorator).

	
delete_connection(**kwargs)

	Delete the dynamically created connection from the Connection table.

	Parameters

	session – Session of the SQL Alchemy ORM (automatically generated with
decorator).

	
free_reserved_port()

	Free TCP port. Makes it immediately ready to be used by Cloud SQL Proxy.

	
get_database_hook()

	Retrieve database hook. This is the actual Postgres or MySQL database hook
that uses proxy or connects directly to the Google Cloud SQL database.

	
get_sqlproxy_runner()

	Retrieve Cloud SQL Proxy runner. It is used to manage the proxy
lifecycle per task.

	Returns

	The Cloud SQL Proxy runner.

	Return type

	CloudSqlProxyRunner

	
reserve_free_tcp_port()

	Reserve free TCP port to be used by Cloud SQL Proxy

	
retrieve_connection(**kwargs)

	Retrieves the dynamically created connection from the Connection table.

	Parameters

	session – Session of the SQL Alchemy ORM (automatically generated with
decorator).

	
class airflow.contrib.hooks.gcp_sql_hook.CloudSqlProxyRunner(path_prefix, instance_specification, gcp_conn_id='google_cloud_default', project_id=None, sql_proxy_version=None, sql_proxy_binary_path=None)

	Bases: airflow.utils.log.logging_mixin.LoggingMixin

Downloads and runs cloud-sql-proxy as subprocess of the Python process.

The cloud-sql-proxy needs to be downloaded and started before we can connect
to the Google Cloud SQL instance via database connection. It establishes
secure tunnel connection to the database. It authorizes using the
GCP credentials that are passed by the configuration.

More details about the proxy can be found here:
https://cloud.google.com/sql/docs/mysql/sql-proxy

	
get_proxy_version()

	Returns version of the Cloud SQL Proxy.

	
get_socket_path()

	Retrieves UNIX socket path used by Cloud SQL Proxy.

	Returns

	The dynamically generated path for the socket created by the proxy.

	Return type

	str

	
start_proxy()

	Starts Cloud SQL Proxy.

You have to remember to stop the proxy if you started it!

	
stop_proxy()

	Stops running proxy.

You should stop the proxy after you stop using it.

Cloud Bigtable

Cloud Bigtable Operators

	BigtableInstanceCreateOperator : creates a Cloud Bigtable instance.

	BigtableInstanceDeleteOperator : deletes a Google Cloud Bigtable instance.

	BigtableClusterUpdateOperator : updates the number of nodes in a Google Cloud Bigtable cluster.

	BigtableTableCreateOperator : creates a table in a Google Cloud Bigtable instance.

	BigtableTableDeleteOperator : deletes a table in a Google Cloud Bigtable instance.

	BigtableTableWaitForReplicationSensor : (sensor) waits for a table to be fully replicated.

BigtableInstanceCreateOperator

BigtableInstanceDeleteOperator

BigtableClusterUpdateOperator

BigtableTableCreateOperator

BigtableTableDeleteOperator

BigtableTableWaitForReplicationSensor

Cloud Bigtable Hook

Compute Engine

Compute Engine Operators

	GceInstanceStartOperator : start an existing Google Compute Engine instance.

	GceInstanceStopOperator : stop an existing Google Compute Engine instance.

	GceSetMachineTypeOperator : change the machine type for a stopped instance.

	GceInstanceTemplateCopyOperator : copy the Instance Template, applying
specified changes.

	GceInstanceGroupManagerUpdateTemplateOperator : patch the Instance Group Manager,
replacing source Instance Template URL with the destination one.

The operators have the common base operator:

	
class airflow.contrib.operators.gcp_compute_operator.GceBaseOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Abstract base operator for Google Compute Engine operators to inherit from.

They also use Compute Engine Hook to communicate with Google Cloud Platform.

GceInstanceStartOperator

	
class airflow.contrib.operators.gcp_compute_operator.GceInstanceStartOperator(**kwargs)

	Bases: airflow.contrib.operators.gcp_compute_operator.GceBaseOperator

Starts an instance in Google Compute Engine.

	Parameters

	
	zone (str) – Google Cloud Platform zone where the instance exists.

	resource_id (str) – Name of the Compute Engine instance resource.

	project_id (str) – Optional, Google Cloud Platform Project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP connection is
used.

	gcp_conn_id (str) – Optional, The connection ID used to connect to Google Cloud
Platform. Defaults to ‘google_cloud_default’.

	api_version (str) – Optional, API version used (for example v1 - or beta). Defaults
to v1.

	validate_body – Optional, If set to False, body validation is not performed.
Defaults to False.

GceInstanceStopOperator

	
class airflow.contrib.operators.gcp_compute_operator.GceInstanceStopOperator(**kwargs)

	Bases: airflow.contrib.operators.gcp_compute_operator.GceBaseOperator

Stops an instance in Google Compute Engine.

	Parameters

	
	zone (str) – Google Cloud Platform zone where the instance exists.

	resource_id (str) – Name of the Compute Engine instance resource.

	project_id (str) – Optional, Google Cloud Platform Project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP connection is
used.

	gcp_conn_id (str) – Optional, The connection ID used to connect to Google Cloud
Platform. Defaults to ‘google_cloud_default’.

	api_version (str) – Optional, API version used (for example v1 - or beta). Defaults
to v1.

	validate_body – Optional, If set to False, body validation is not performed.
Defaults to False.

GceSetMachineTypeOperator

	
class airflow.contrib.operators.gcp_compute_operator.GceSetMachineTypeOperator(**kwargs)

	Bases: airflow.contrib.operators.gcp_compute_operator.GceBaseOperator

	Changes the machine type for a stopped instance to the machine type specified in

	the request.

	Parameters

	
	zone (str) – Google Cloud Platform zone where the instance exists.

	resource_id (str) – Name of the Compute Engine instance resource.

	body (dict) – Body required by the Compute Engine setMachineType API, as described in
https://cloud.google.com/compute/docs/reference/rest/v1/instances/setMachineType#request-body

	project_id (str) – Optional, Google Cloud Platform Project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP connection
is used.

	gcp_conn_id (str) – Optional, The connection ID used to connect to Google Cloud
Platform. Defaults to ‘google_cloud_default’.

	api_version (str) – Optional, API version used (for example v1 - or beta). Defaults
to v1.

	validate_body (bool) – Optional, If set to False, body validation is not performed.
Defaults to False.

GceInstanceTemplateCopyOperator

	
class airflow.contrib.operators.gcp_compute_operator.GceInstanceTemplateCopyOperator(**kwargs)

	Bases: airflow.contrib.operators.gcp_compute_operator.GceBaseOperator

Copies the instance template, applying specified changes.

	Parameters

	
	resource_id (str) – Name of the Instance Template

	body_patch (dict) – Patch to the body of instanceTemplates object following rfc7386
PATCH semantics. The body_patch content follows
https://cloud.google.com/compute/docs/reference/rest/v1/instanceTemplates
Name field is required as we need to rename the template,
all the other fields are optional. It is important to follow PATCH semantics
- arrays are replaced fully, so if you need to update an array you should
provide the whole target array as patch element.

	project_id (str) – Optional, Google Cloud Platform Project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP connection
is used.

	request_id (str) – Optional, unique request_id that you might add to achieve
full idempotence (for example when client call times out repeating the request
with the same request id will not create a new instance template again).
It should be in UUID format as defined in RFC 4122.

	gcp_conn_id (str) – Optional, The connection ID used to connect to Google Cloud
Platform. Defaults to ‘google_cloud_default’.

	api_version (str) – Optional, API version used (for example v1 - or beta). Defaults
to v1.

	validate_body (bool) – Optional, If set to False, body validation is not performed.
Defaults to False.

GceInstanceGroupManagerUpdateTemplateOperator

	
class airflow.contrib.operators.gcp_compute_operator.GceInstanceGroupManagerUpdateTemplateOperator(**kwargs)

	Bases: airflow.contrib.operators.gcp_compute_operator.GceBaseOperator

Patches the Instance Group Manager, replacing source template URL with the
destination one. API V1 does not have update/patch operations for Instance
Group Manager, so you must use beta or newer API version. Beta is the default.

	Parameters

	
	resource_id (str) – Name of the Instance Group Manager

	zone (str) – Google Cloud Platform zone where the Instance Group Manager exists.

	source_template (str) – URL of the template to replace.

	destination_template (str) – URL of the target template.

	project_id (str) – Optional, Google Cloud Platform Project ID where the Compute
Engine Instance exists. If set to None or missing, the default project_id from the GCP connection is
used.

	request_id (str) – Optional, unique request_id that you might add to achieve
full idempotence (for example when client call times out repeating the request
with the same request id will not create a new instance template again).
It should be in UUID format as defined in RFC 4122.

	gcp_conn_id (str) – Optional, The connection ID used to connect to Google Cloud
Platform. Defaults to ‘google_cloud_default’.

	api_version (str) – Optional, API version used (for example v1 - or beta). Defaults
to v1.

	validate_body (bool) – Optional, If set to False, body validation is not performed.
Defaults to False.

Compute Engine Hook

	
class airflow.contrib.hooks.gcp_compute_hook.GceHook(api_version='v1', gcp_conn_id='google_cloud_default', delegate_to=None)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Hook for Google Compute Engine APIs.

All the methods in the hook where project_id is used must be called with
keyword arguments rather than positional.

	
get_conn()

	Retrieves connection to Google Compute Engine.

	Returns

	Google Compute Engine services object

	Return type

	dict

	
get_instance_group_manager(*args, **kwargs)

	Retrieves Instance Group Manager by project_id, zone and resource_id.
Must be called with keyword arguments rather than positional.

	Parameters

	
	zone (str) – Google Cloud Platform zone where the Instance Group Manager exists

	resource_id (str) – Name of the Instance Group Manager

	project_id (str) – Optional, Google Cloud Platform project ID where the
Compute Engine Instance exists. If set to None or missing,
the default project_id from the GCP connection is used.

	Returns

	Instance group manager representation as object according to
https://cloud.google.com/compute/docs/reference/rest/beta/instanceGroupManagers

	Return type

	dict

	
get_instance_template(*args, **kwargs)

	Retrieves instance template by project_id and resource_id.
Must be called with keyword arguments rather than positional.

	Parameters

	
	resource_id (str) – Name of the instance template

	project_id (str) – Optional, Google Cloud Platform project ID where the
Compute Engine Instance exists. If set to None or missing,
the default project_id from the GCP connection is used.

	Returns

	Instance template representation as object according to
https://cloud.google.com/compute/docs/reference/rest/v1/instanceTemplates

	Return type

	dict

	
insert_instance_template(*args, **kwargs)

	Inserts instance template using body specified
Must be called with keyword arguments rather than positional.

	Parameters

	
	body (dict) – Instance template representation as object according to
https://cloud.google.com/compute/docs/reference/rest/v1/instanceTemplates

	request_id (str) – Optional, unique request_id that you might add to achieve
full idempotence (for example when client call times out repeating the request
with the same request id will not create a new instance template again)
It should be in UUID format as defined in RFC 4122

	project_id (str) – Optional, Google Cloud Platform project ID where the
Compute Engine Instance exists. If set to None or missing,
the default project_id from the GCP connection is used.

	Returns

	None

	
patch_instance_group_manager(*args, **kwargs)

	Patches Instance Group Manager with the specified body.
Must be called with keyword arguments rather than positional.

	Parameters

	
	zone (str) – Google Cloud Platform zone where the Instance Group Manager exists

	resource_id (str) – Name of the Instance Group Manager

	body (dict) – Instance Group Manager representation as json-merge-patch object
according to
https://cloud.google.com/compute/docs/reference/rest/beta/instanceTemplates/patch

	request_id (str) – Optional, unique request_id that you might add to achieve
full idempotence (for example when client call times out repeating the request
with the same request id will not create a new instance template again).
It should be in UUID format as defined in RFC 4122

	project_id (str) – Optional, Google Cloud Platform project ID where the
Compute Engine Instance exists. If set to None or missing,
the default project_id from the GCP connection is used.

:return None

	
set_machine_type(*args, **kwargs)

	Sets machine type of an instance defined by project_id, zone and resource_id.
Must be called with keyword arguments rather than positional.

	Parameters

	
	zone (str) – Google Cloud Platform zone where the instance exists.

	resource_id (str) – Name of the Compute Engine instance resource

	body (dict) – Body required by the Compute Engine setMachineType API,
as described in
https://cloud.google.com/compute/docs/reference/rest/v1/instances/setMachineType

	project_id (str) – Optional, Google Cloud Platform project ID where the
Compute Engine Instance exists. If set to None or missing,
the default project_id from the GCP connection is used.

	Returns

	None

	
start_instance(*args, **kwargs)

	Starts an existing instance defined by project_id, zone and resource_id.
Must be called with keyword arguments rather than positional.

	Parameters

	
	zone (str) – Google Cloud Platform zone where the instance exists

	resource_id (str) – Name of the Compute Engine instance resource

	project_id (str) – Optional, Google Cloud Platform project ID where the
Compute Engine Instance exists. If set to None or missing,
the default project_id from the GCP connection is used.

	Returns

	None

	
stop_instance(*args, **kwargs)

	Stops an instance defined by project_id, zone and resource_id
Must be called with keyword arguments rather than positional.

	Parameters

	
	zone (str) – Google Cloud Platform zone where the instance exists

	resource_id (str) – Name of the Compute Engine instance resource

	project_id (str) – Optional, Google Cloud Platform project ID where the
Compute Engine Instance exists. If set to None or missing,
the default project_id from the GCP connection is used.

	Returns

	None

	members

	

Cloud Functions

Cloud Functions Operators

	GcfFunctionDeployOperator : deploy Google Cloud Function to Google Cloud Platform

	GcfFunctionDeleteOperator : delete Google Cloud Function in Google Cloud Platform

They also use Cloud Functions Hook to communicate with Google Cloud Platform.

GcfFunctionDeployOperator

	
class airflow.contrib.operators.gcp_function_operator.GcfFunctionDeployOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Creates a function in Google Cloud Functions.
If a function with this name already exists, it will be updated.

	Parameters

	
	location (str) – Google Cloud Platform region where the function should be created.

	body (dict or google.cloud.functions.v1.CloudFunction) – Body of the Cloud Functions definition. The body must be a
Cloud Functions dictionary as described in:
https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions
. Different API versions require different variants of the Cloud Functions
dictionary.

	project_id (str) – (Optional) Google Cloud Platform project ID where the function
should be created.

	gcp_conn_id (str) – (Optional) The connection ID used to connect to Google Cloud
Platform - default ‘google_cloud_default’.

	api_version (str) – (Optional) API version used (for example v1 - default - or
v1beta1).

	zip_path (str) – Path to zip file containing source code of the function. If the path
is set, the sourceUploadUrl should not be specified in the body or it should
be empty. Then the zip file will be uploaded using the upload URL generated
via generateUploadUrl from the Cloud Functions API.

	validate_body (bool) – If set to False, body validation is not performed.

GcfFunctionDeleteOperator

	
class airflow.contrib.operators.gcp_function_operator.GcfFunctionDeleteOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Deletes the specified function from Google Cloud Functions.

	Parameters

	
	name (str) – A fully-qualified function name, matching
the pattern: ^projects/[^/]+/locations/[^/]+/functions/[^/]+$

	gcp_conn_id (str) – The connection ID to use to connect to Google Cloud Platform.

	api_version (str) – API version used (for example v1 or v1beta1).

Cloud Functions Hook

	
class airflow.contrib.hooks.gcp_function_hook.GcfHook(api_version, gcp_conn_id='google_cloud_default', delegate_to=None)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Hook for the Google Cloud Functions APIs.

All the methods in the hook where project_id is used must be called with
keyword arguments rather than positional.

	
create_new_function(*args, **kwargs)

	Creates a new function in Cloud Function in the location specified in the body.

	Parameters

	
	location (str) – The location of the function.

	body (dict) – The body required by the Cloud Functions insert API.

	project_id (str) – Optional, Google Cloud Project project_id where the function belongs.
If set to None or missing, the default project_id from the GCP connection is used.

	Returns

	None

	
delete_function(name)

	Deletes the specified Cloud Function.

	Parameters

	name (str) – The name of the function.

	Returns

	None

	
get_conn()

	Retrieves the connection to Cloud Functions.

	Returns

	Google Cloud Function services object.

	Return type

	dict

	
get_function(name)

	Returns the Cloud Function with the given name.

	Parameters

	name (str) – Name of the function.

	Returns

	A Cloud Functions object representing the function.

	Return type

	dict

	
update_function(name, body, update_mask)

	Updates Cloud Functions according to the specified update mask.

	Parameters

	
	name (str) – The name of the function.

	body (dict) – The body required by the cloud function patch API.

	update_mask ([str]) – The update mask - array of fields that should be patched.

	Returns

	None

	
upload_function_zip(*args, **kwargs)

	Uploads zip file with sources.

	Parameters

	
	location (str) – The location where the function is created.

	zip_path (str) – The path of the valid .zip file to upload.

	project_id (str) – Optional, Google Cloud Project project_id where the function belongs.
If set to None or missing, the default project_id from the GCP connection is used.

	Returns

	The upload URL that was returned by generateUploadUrl method.

Cloud DataFlow

DataFlow Operators

	DataFlowJavaOperator : launching Cloud Dataflow jobs written in Java.

	DataflowTemplateOperator : launching a templated Cloud DataFlow batch job.

	DataFlowPythonOperator : launching Cloud Dataflow jobs written in python.

DataFlowJavaOperator

	
class airflow.contrib.operators.dataflow_operator.DataFlowJavaOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a Java Cloud DataFlow batch job. The parameters of the operation
will be passed to the job.

See also

For more detail on job submission have a look at the reference:
https://cloud.google.com/dataflow/pipelines/specifying-exec-params

	Parameters

	
	jar (str) – The reference to a self executing DataFlow jar (templated).

	job_name (str) – The ‘jobName’ to use when executing the DataFlow job
(templated). This ends up being set in the pipeline options, so any entry
with key 'jobName' in options will be overwritten.

	dataflow_default_options (dict) – Map of default job options.

	options (dict) – Map of job specific options.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud
Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	poll_sleep (int) – The time in seconds to sleep between polling Google
Cloud Platform for the dataflow job status while the job is in the
JOB_STATE_RUNNING state.

	job_class (str) – The name of the dataflow job class to be executued, it
is often not the main class configured in the dataflow jar file.

jar, options, and job_name are templated so you can use variables in them.

Note that both
dataflow_default_options and options will be merged to specify pipeline
execution parameter, and dataflow_default_options is expected to save
high-level options, for instances, project and zone information, which
apply to all dataflow operators in the DAG.

It’s a good practice to define dataflow_* parameters in the default_args of the dag
like the project, zone and staging location.

default_args = {
 'dataflow_default_options': {
 'project': 'my-gcp-project',
 'zone': 'europe-west1-d',
 'stagingLocation': 'gs://my-staging-bucket/staging/'
 }
}

You need to pass the path to your dataflow as a file reference with the jar
parameter, the jar needs to be a self executing jar (see documentation here:
https://beam.apache.org/documentation/runners/dataflow/#self-executing-jar).
Use options to pass on options to your job.

t1 = DataFlowJavaOperator(
 task_id='datapflow_example',
 jar='{{var.value.gcp_dataflow_base}}pipeline/build/libs/pipeline-example-1.0.jar',
 options={
 'autoscalingAlgorithm': 'BASIC',
 'maxNumWorkers': '50',
 'start': '{{ds}}',
 'partitionType': 'DAY',
 'labels': {'foo' : 'bar'}
 },
 gcp_conn_id='gcp-airflow-service-account',
 dag=my-dag)

default_args = {
 'owner': 'airflow',
 'depends_on_past': False,
 'start_date':
 (2016, 8, 1),
 'email': ['alex@vanboxel.be'],
 'email_on_failure': False,
 'email_on_retry': False,
 'retries': 1,
 'retry_delay': timedelta(minutes=30),
 'dataflow_default_options': {
 'project': 'my-gcp-project',
 'zone': 'us-central1-f',
 'stagingLocation': 'gs://bucket/tmp/dataflow/staging/',
 }
}

dag = DAG('test-dag', default_args=default_args)

task = DataFlowJavaOperator(
 gcp_conn_id='gcp_default',
 task_id='normalize-cal',
 jar='{{var.value.gcp_dataflow_base}}pipeline-ingress-cal-normalize-1.0.jar',
 options={
 'autoscalingAlgorithm': 'BASIC',
 'maxNumWorkers': '50',
 'start': '{{ds}}',
 'partitionType': 'DAY'

 },
 dag=dag)

DataflowTemplateOperator

	
class airflow.contrib.operators.dataflow_operator.DataflowTemplateOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a Templated Cloud DataFlow batch job. The parameters of the operation
will be passed to the job.

	Parameters

	
	template (str) – The reference to the DataFlow template.

	job_name – The ‘jobName’ to use when executing the DataFlow template
(templated).

	dataflow_default_options (dict) – Map of default job environment options.

	parameters (dict) – Map of job specific parameters for the template.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud
Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	poll_sleep (int) – The time in seconds to sleep between polling Google
Cloud Platform for the dataflow job status while the job is in the
JOB_STATE_RUNNING state.

It’s a good practice to define dataflow_* parameters in the default_args of the dag
like the project, zone and staging location.

See also

https://cloud.google.com/dataflow/docs/reference/rest/v1b3/LaunchTemplateParameters
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment

default_args = {
 'dataflow_default_options': {
 'project': 'my-gcp-project',
 'region': 'europe-west1',
 'zone': 'europe-west1-d',
 'tempLocation': 'gs://my-staging-bucket/staging/',
 }
 }
}

You need to pass the path to your dataflow template as a file reference with the
template parameter. Use parameters to pass on parameters to your job.
Use environment to pass on runtime environment variables to your job.

t1 = DataflowTemplateOperator(
 task_id='datapflow_example',
 template='{{var.value.gcp_dataflow_base}}',
 parameters={
 'inputFile': "gs://bucket/input/my_input.txt",
 'outputFile': "gs://bucket/output/my_output.txt"
 },
 gcp_conn_id='gcp-airflow-service-account',
 dag=my-dag)

template, dataflow_default_options, parameters, and job_name are
templated so you can use variables in them.

Note that dataflow_default_options is expected to save high-level options
for project information, which apply to all dataflow operators in the DAG.

See also

https://cloud.google.com/dataflow/docs/reference/rest/v1b3
/LaunchTemplateParameters
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment
For more detail on job template execution have a look at the reference:
https://cloud.google.com/dataflow/docs/templates/executing-templates

DataFlowPythonOperator

	
class airflow.contrib.operators.dataflow_operator.DataFlowPythonOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Launching Cloud Dataflow jobs written in python. Note that both
dataflow_default_options and options will be merged to specify pipeline
execution parameter, and dataflow_default_options is expected to save
high-level options, for instances, project and zone information, which
apply to all dataflow operators in the DAG.

See also

For more detail on job submission have a look at the reference:
https://cloud.google.com/dataflow/pipelines/specifying-exec-params

	Parameters

	
	py_file (str) – Reference to the python dataflow pipleline file.py, e.g.,
/some/local/file/path/to/your/python/pipeline/file.

	job_name (str) – The ‘job_name’ to use when executing the DataFlow job
(templated). This ends up being set in the pipeline options, so any entry
with key 'jobName' or 'job_name' in options will be overwritten.

	py_options – Additional python options.

	dataflow_default_options (dict) – Map of default job options.

	options (dict) – Map of job specific options.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud
Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	poll_sleep (int) – The time in seconds to sleep between polling Google
Cloud Platform for the dataflow job status while the job is in the
JOB_STATE_RUNNING state.

	
execute(context)

	Execute the python dataflow job.

DataFlowHook

	
class airflow.contrib.hooks.gcp_dataflow_hook.DataFlowHook(gcp_conn_id='google_cloud_default', delegate_to=None, poll_sleep=10)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

	
get_conn()

	Returns a Google Cloud Dataflow service object.

Cloud DataProc

DataProc Operators

	DataprocClusterCreateOperator : Create a new cluster on Google Cloud Dataproc.

	DataprocClusterDeleteOperator : Delete a cluster on Google Cloud Dataproc.

	DataprocClusterScaleOperator : Scale up or down a cluster on Google Cloud Dataproc.

	DataProcPigOperator : Start a Pig query Job on a Cloud DataProc cluster.

	DataProcHiveOperator : Start a Hive query Job on a Cloud DataProc cluster.

	DataProcSparkSqlOperator : Start a Spark SQL query Job on a Cloud DataProc cluster.

	DataProcSparkOperator : Start a Spark Job on a Cloud DataProc cluster.

	DataProcHadoopOperator : Start a Hadoop Job on a Cloud DataProc cluster.

	DataProcPySparkOperator : Start a PySpark Job on a Cloud DataProc cluster.

	DataprocWorkflowTemplateInstantiateOperator : Instantiate a WorkflowTemplate on Google Cloud Dataproc.

	DataprocWorkflowTemplateInstantiateInlineOperator : Instantiate a WorkflowTemplate Inline on Google Cloud Dataproc.

DataprocClusterCreateOperator

	
class airflow.contrib.operators.dataproc_operator.DataprocClusterCreateOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Create a new cluster on Google Cloud Dataproc. The operator will wait until the
creation is successful or an error occurs in the creation process.

The parameters allow to configure the cluster. Please refer to

https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters

for a detailed explanation on the different parameters. Most of the configuration
parameters detailed in the link are available as a parameter to this operator.

	Parameters

	
	cluster_name (str) – The name of the DataProc cluster to create. (templated)

	project_id (str) – The ID of the google cloud project in which
to create the cluster. (templated)

	num_workers (int) – The # of workers to spin up. If set to zero will
spin up cluster in a single node mode

	storage_bucket (str) – The storage bucket to use, setting to None lets dataproc
generate a custom one for you

	init_actions_uris (list[string]) – List of GCS uri’s containing
dataproc initialization scripts

	init_action_timeout (str) – Amount of time executable scripts in
init_actions_uris has to complete

	metadata (dict) – dict of key-value google compute engine metadata entries
to add to all instances

	image_version (str) – the version of software inside the Dataproc cluster

	custom_image (str) – custom Dataproc image for more info see
https://cloud.google.com/dataproc/docs/guides/dataproc-images

	properties (dict) – dict of properties to set on
config files (e.g. spark-defaults.conf), see
https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters#SoftwareConfig

	master_machine_type (str) – Compute engine machine type to use for the master node

	master_disk_type (str) – Type of the boot disk for the master node
(default is pd-standard).
Valid values: pd-ssd (Persistent Disk Solid State Drive) or
pd-standard (Persistent Disk Hard Disk Drive).

	master_disk_size (int) – Disk size for the master node

	worker_machine_type (str) – Compute engine machine type to use for the worker nodes

	worker_disk_type (str) – Type of the boot disk for the worker node
(default is pd-standard).
Valid values: pd-ssd (Persistent Disk Solid State Drive) or
pd-standard (Persistent Disk Hard Disk Drive).

	worker_disk_size (int) – Disk size for the worker nodes

	num_preemptible_workers (int) – The # of preemptible worker nodes to spin up

	labels (dict) – dict of labels to add to the cluster

	zone (str) – The zone where the cluster will be located. (templated)

	network_uri (str) – The network uri to be used for machine communication, cannot be
specified with subnetwork_uri

	subnetwork_uri (str) – The subnetwork uri to be used for machine communication,
cannot be specified with network_uri

	internal_ip_only (bool) – If true, all instances in the cluster will only
have internal IP addresses. This can only be enabled for subnetwork
enabled networks

	tags (list[string]) – The GCE tags to add to all instances

	region (str) – leave as ‘global’, might become relevant in the future. (templated)

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	service_account (str) – The service account of the dataproc instances.

	service_account_scopes (list[string]) – The URIs of service account scopes to be included.

	idle_delete_ttl (int) – The longest duration that cluster would keep alive while
staying idle. Passing this threshold will cause cluster to be auto-deleted.
A duration in seconds.

	auto_delete_time (datetime.datetime) – The time when cluster will be auto-deleted.

	auto_delete_ttl (int) – The life duration of cluster, the cluster will be
auto-deleted at the end of this duration.
A duration in seconds. (If auto_delete_time is set this parameter will be ignored)

	customer_managed_key (str) – The customer-managed key used for disk encryption
(projects/[PROJECT_STORING_KEYS]/locations/[LOCATION]/keyRings/[KEY_RING_NAME]/cryptoKeys/[KEY_NAME])

DataprocClusterScaleOperator

	
class airflow.contrib.operators.dataproc_operator.DataprocClusterScaleOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Scale, up or down, a cluster on Google Cloud Dataproc.
The operator will wait until the cluster is re-scaled.

Example:

t1 = DataprocClusterScaleOperator(
 task_id='dataproc_scale',
 project_id='my-project',
 cluster_name='cluster-1',
 num_workers=10,
 num_preemptible_workers=10,
 graceful_decommission_timeout='1h',
 dag=dag)

See also

For more detail on about scaling clusters have a look at the reference:
https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/scaling-clusters

	Parameters

	
	cluster_name (str) – The name of the cluster to scale. (templated)

	project_id (str) – The ID of the google cloud project in which
the cluster runs. (templated)

	region (str) – The region for the dataproc cluster. (templated)

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	num_workers (int) – The new number of workers

	num_preemptible_workers (int) – The new number of preemptible workers

	graceful_decommission_timeout (str) – Timeout for graceful YARN decomissioning.
Maximum value is 1d

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

DataprocClusterDeleteOperator

	
class airflow.contrib.operators.dataproc_operator.DataprocClusterDeleteOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Delete a cluster on Google Cloud Dataproc. The operator will wait until the
cluster is destroyed.

	Parameters

	
	cluster_name (str) – The name of the cluster to create. (templated)

	project_id (str) – The ID of the google cloud project in which
the cluster runs. (templated)

	region (str) – leave as ‘global’, might become relevant in the future. (templated)

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

DataProcPigOperator

	
class airflow.contrib.operators.dataproc_operator.DataProcPigOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a Pig query Job on a Cloud DataProc cluster. The parameters of the operation
will be passed to the cluster.

It’s a good practice to define dataproc_* parameters in the default_args of the dag
like the cluster name and UDFs.

default_args = {
 'cluster_name': 'cluster-1',
 'dataproc_pig_jars': [
 'gs://example/udf/jar/datafu/1.2.0/datafu.jar',
 'gs://example/udf/jar/gpig/1.2/gpig.jar'
]
}

You can pass a pig script as string or file reference. Use variables to pass on
variables for the pig script to be resolved on the cluster or use the parameters to
be resolved in the script as template parameters.

Example:

t1 = DataProcPigOperator(
 task_id='dataproc_pig',
 query='a_pig_script.pig',
 variables={'out': 'gs://example/output/{{ds}}'},
 dag=dag)

See also

For more detail on about job submission have a look at the reference:
https://cloud.google.com/dataproc/reference/rest/v1/projects.regions.jobs

	Parameters

	
	query (str) – The query or reference to the query
file (pg or pig extension). (templated)

	query_uri (str) – The uri of a pig script on Cloud Storage.

	variables (dict) – Map of named parameters for the query. (templated)

	job_name (str) – The job name used in the DataProc cluster. This
name by default is the task_id appended with the execution data, but can
be templated. The name will always be appended with a random number to
avoid name clashes. (templated)

	cluster_name (str) – The name of the DataProc cluster. (templated)

	dataproc_pig_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

	dataproc_pig_jars (list) – URIs to jars provisioned in Cloud Storage (example: for
UDFs and libs) and are ideal to put in default arguments.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	region (str) – The specified region where the dataproc cluster is created.

	job_error_states (list) – Job states that should be considered error states.
Any states in this list will result in an error being raised and failure of the
task. Eg, if the CANCELLED state should also be considered a task failure,
pass in ['ERROR', 'CANCELLED']. Possible values are currently only
'ERROR' and 'CANCELLED', but could change in the future. Defaults to
['ERROR'].

	Variables

	dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API.
This is useful for identifying or linking to the job in the Google Cloud Console
Dataproc UI, as the actual “jobId” submitted to the Dataproc API is appended with
an 8 character random string.

DataProcHiveOperator

	
class airflow.contrib.operators.dataproc_operator.DataProcHiveOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a Hive query Job on a Cloud DataProc cluster.

	Parameters

	
	query (str) – The query or reference to the query file (q extension).

	query_uri (str) – The uri of a hive script on Cloud Storage.

	variables (dict) – Map of named parameters for the query.

	job_name (str) – The job name used in the DataProc cluster. This name by default
is the task_id appended with the execution data, but can be templated. The
name will always be appended with a random number to avoid name clashes.

	cluster_name (str) – The name of the DataProc cluster.

	dataproc_hive_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

	dataproc_hive_jars (list) – URIs to jars provisioned in Cloud Storage (example: for
UDFs and libs) and are ideal to put in default arguments.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	region (str) – The specified region where the dataproc cluster is created.

	job_error_states (list) – Job states that should be considered error states.
Any states in this list will result in an error being raised and failure of the
task. Eg, if the CANCELLED state should also be considered a task failure,
pass in ['ERROR', 'CANCELLED']. Possible values are currently only
'ERROR' and 'CANCELLED', but could change in the future. Defaults to
['ERROR'].

	Variables

	dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API.
This is useful for identifying or linking to the job in the Google Cloud Console
Dataproc UI, as the actual “jobId” submitted to the Dataproc API is appended with
an 8 character random string.

DataProcSparkSqlOperator

	
class airflow.contrib.operators.dataproc_operator.DataProcSparkSqlOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a Spark SQL query Job on a Cloud DataProc cluster.

	Parameters

	
	query (str) – The query or reference to the query file (q extension). (templated)

	query_uri (str) – The uri of a spark sql script on Cloud Storage.

	variables (dict) – Map of named parameters for the query. (templated)

	job_name (str) – The job name used in the DataProc cluster. This
name by default is the task_id appended with the execution data, but can
be templated. The name will always be appended with a random number to
avoid name clashes. (templated)

	cluster_name (str) – The name of the DataProc cluster. (templated)

	dataproc_spark_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

	dataproc_spark_jars (list) – URIs to jars provisioned in Cloud Storage (example:
for UDFs and libs) and are ideal to put in default arguments.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	region (str) – The specified region where the dataproc cluster is created.

	job_error_states (list) – Job states that should be considered error states.
Any states in this list will result in an error being raised and failure of the
task. Eg, if the CANCELLED state should also be considered a task failure,
pass in ['ERROR', 'CANCELLED']. Possible values are currently only
'ERROR' and 'CANCELLED', but could change in the future. Defaults to
['ERROR'].

	Variables

	dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API.
This is useful for identifying or linking to the job in the Google Cloud Console
Dataproc UI, as the actual “jobId” submitted to the Dataproc API is appended with
an 8 character random string.

DataProcSparkOperator

	
class airflow.contrib.operators.dataproc_operator.DataProcSparkOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a Spark Job on a Cloud DataProc cluster.

	Parameters

	
	main_jar (str) – URI of the job jar provisioned on Cloud Storage. (use this or
the main_class, not both together).

	main_class (str) – Name of the job class. (use this or the main_jar, not both
together).

	arguments (list) – Arguments for the job. (templated)

	archives (list) – List of archived files that will be unpacked in the work
directory. Should be stored in Cloud Storage.

	files (list) – List of files to be copied to the working directory

	job_name (str) – The job name used in the DataProc cluster. This
name by default is the task_id appended with the execution data, but can
be templated. The name will always be appended with a random number to
avoid name clashes. (templated)

	cluster_name (str) – The name of the DataProc cluster. (templated)

	dataproc_spark_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

	dataproc_spark_jars (list) – URIs to jars provisioned in Cloud Storage (example:
for UDFs and libs) and are ideal to put in default arguments.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	region (str) – The specified region where the dataproc cluster is created.

	job_error_states (list) – Job states that should be considered error states.
Any states in this list will result in an error being raised and failure of the
task. Eg, if the CANCELLED state should also be considered a task failure,
pass in ['ERROR', 'CANCELLED']. Possible values are currently only
'ERROR' and 'CANCELLED', but could change in the future. Defaults to
['ERROR'].

	Variables

	dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API.
This is useful for identifying or linking to the job in the Google Cloud Console
Dataproc UI, as the actual “jobId” submitted to the Dataproc API is appended with
an 8 character random string.

DataProcHadoopOperator

	
class airflow.contrib.operators.dataproc_operator.DataProcHadoopOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a Hadoop Job on a Cloud DataProc cluster.

	Parameters

	
	main_jar (str) – URI of the job jar provisioned on Cloud Storage. (use this or
the main_class, not both together).

	main_class (str) – Name of the job class. (use this or the main_jar, not both
together).

	arguments (list) – Arguments for the job. (templated)

	archives (list) – List of archived files that will be unpacked in the work
directory. Should be stored in Cloud Storage.

	files (list) – List of files to be copied to the working directory

	job_name (str) – The job name used in the DataProc cluster. This
name by default is the task_id appended with the execution data, but can
be templated. The name will always be appended with a random number to
avoid name clashes. (templated)

	cluster_name (str) – The name of the DataProc cluster. (templated)

	dataproc_hadoop_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

	dataproc_hadoop_jars (list) – URIs to jars provisioned in Cloud Storage (example:
for UDFs and libs) and are ideal to put in default arguments.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	region (str) – The specified region where the dataproc cluster is created.

	job_error_states (list) – Job states that should be considered error states.
Any states in this list will result in an error being raised and failure of the
task. Eg, if the CANCELLED state should also be considered a task failure,
pass in ['ERROR', 'CANCELLED']. Possible values are currently only
'ERROR' and 'CANCELLED', but could change in the future. Defaults to
['ERROR'].

	Variables

	dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API.
This is useful for identifying or linking to the job in the Google Cloud Console
Dataproc UI, as the actual “jobId” submitted to the Dataproc API is appended with
an 8 character random string.

DataProcPySparkOperator

	
class airflow.contrib.operators.dataproc_operator.DataProcPySparkOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a PySpark Job on a Cloud DataProc cluster.

	Parameters

	
	main (str) – [Required] The Hadoop Compatible Filesystem (HCFS) URI of the main
Python file to use as the driver. Must be a .py file.

	arguments (list) – Arguments for the job. (templated)

	archives (list) – List of archived files that will be unpacked in the work
directory. Should be stored in Cloud Storage.

	files (list) – List of files to be copied to the working directory

	pyfiles (list) – List of Python files to pass to the PySpark framework.
Supported file types: .py, .egg, and .zip

	job_name (str) – The job name used in the DataProc cluster. This
name by default is the task_id appended with the execution data, but can
be templated. The name will always be appended with a random number to
avoid name clashes. (templated)

	cluster_name (str) – The name of the DataProc cluster.

	dataproc_pyspark_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

	dataproc_pyspark_jars (list) – URIs to jars provisioned in Cloud Storage (example:
for UDFs and libs) and are ideal to put in default arguments.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	region (str) – The specified region where the dataproc cluster is created.

	job_error_states (list) – Job states that should be considered error states.
Any states in this list will result in an error being raised and failure of the
task. Eg, if the CANCELLED state should also be considered a task failure,
pass in ['ERROR', 'CANCELLED']. Possible values are currently only
'ERROR' and 'CANCELLED', but could change in the future. Defaults to
['ERROR'].

	Variables

	dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API.
This is useful for identifying or linking to the job in the Google Cloud Console
Dataproc UI, as the actual “jobId” submitted to the Dataproc API is appended with
an 8 character random string.

DataprocWorkflowTemplateInstantiateOperator

	
class airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateInstantiateOperator(**kwargs)

	Bases: airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateBaseOperator

Instantiate a WorkflowTemplate on Google Cloud Dataproc. The operator will wait
until the WorkflowTemplate is finished executing.

See also

Please refer to:
https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.workflowTemplates/instantiate

	Parameters

	
	template_id (str) – The id of the template. (templated)

	project_id (str) – The ID of the google cloud project in which
the template runs

	region (str) – leave as ‘global’, might become relevant in the future

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

DataprocWorkflowTemplateInstantiateInlineOperator

	
class airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateInstantiateInlineOperator(**kwargs)

	Bases: airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateBaseOperator

Instantiate a WorkflowTemplate Inline on Google Cloud Dataproc. The operator will
wait until the WorkflowTemplate is finished executing.

See also

Please refer to:
https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.workflowTemplates/instantiateInline

	Parameters

	
	template (map) – The template contents. (templated)

	project_id (str) – The ID of the google cloud project in which
the template runs

	region (str) – leave as ‘global’, might become relevant in the future

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

Cloud Datastore

Datastore Operators

	DatastoreExportOperator : Export entities from Google Cloud Datastore to Cloud Storage.

	DatastoreImportOperator : Import entities from Cloud Storage to Google Cloud Datastore.

DatastoreExportOperator

	
class airflow.contrib.operators.datastore_export_operator.DatastoreExportOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Export entities from Google Cloud Datastore to Cloud Storage

	Parameters

	
	bucket (str) – name of the cloud storage bucket to backup data

	namespace (str) – optional namespace path in the specified Cloud Storage bucket
to backup data. If this namespace does not exist in GCS, it will be created.

	datastore_conn_id (str) – the name of the Datastore connection id to use

	cloud_storage_conn_id (str) – the name of the cloud storage connection id to
force-write backup

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	entity_filter (dict) – description of what data from the project is included in the
export, refer to
https://cloud.google.com/datastore/docs/reference/rest/Shared.Types/EntityFilter

	labels (dict) – client-assigned labels for cloud storage

	polling_interval_in_seconds (int) – number of seconds to wait before polling for
execution status again

	overwrite_existing (bool) – if the storage bucket + namespace is not empty, it will be
emptied prior to exports. This enables overwriting existing backups.

	xcom_push (bool) – push operation name to xcom for reference

DatastoreImportOperator

	
class airflow.contrib.operators.datastore_import_operator.DatastoreImportOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Import entities from Cloud Storage to Google Cloud Datastore

	Parameters

	
	bucket (str) – container in Cloud Storage to store data

	file (str) – path of the backup metadata file in the specified Cloud Storage bucket.
It should have the extension .overall_export_metadata

	namespace (str) – optional namespace of the backup metadata file in
the specified Cloud Storage bucket.

	entity_filter (dict) – description of what data from the project is included in
the export, refer to
https://cloud.google.com/datastore/docs/reference/rest/Shared.Types/EntityFilter

	labels (dict) – client-assigned labels for cloud storage

	datastore_conn_id (str) – the name of the connection id to use

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	polling_interval_in_seconds (int) – number of seconds to wait before polling for
execution status again

	xcom_push (bool) – push operation name to xcom for reference

DatastoreHook

	
class airflow.contrib.hooks.datastore_hook.DatastoreHook(datastore_conn_id='google_cloud_datastore_default', delegate_to=None)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Interact with Google Cloud Datastore. This hook uses the Google Cloud Platform
connection.

This object is not threads safe. If you want to make multiple requests
simultaneously, you will need to create a hook per thread.

	
allocate_ids(partialKeys)

	Allocate IDs for incomplete keys.
see https://cloud.google.com/datastore/docs/reference/rest/v1/projects/allocateIds

	Parameters

	partialKeys – a list of partial keys

	Returns

	a list of full keys.

	
begin_transaction()

	Get a new transaction handle

See also

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/beginTransaction

	Returns

	a transaction handle

	
commit(body)

	Commit a transaction, optionally creating, deleting or modifying some entities.

See also

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/commit

	Parameters

	body – the body of the commit request

	Returns

	the response body of the commit request

	
delete_operation(name)

	Deletes the long-running operation

	Parameters

	name – the name of the operation resource

	
export_to_storage_bucket(bucket, namespace=None, entity_filter=None, labels=None)

	Export entities from Cloud Datastore to Cloud Storage for backup

	
get_conn(version='v1')

	Returns a Google Cloud Datastore service object.

	
get_operation(name)

	Gets the latest state of a long-running operation

	Parameters

	name – the name of the operation resource

	
import_from_storage_bucket(bucket, file, namespace=None, entity_filter=None, labels=None)

	Import a backup from Cloud Storage to Cloud Datastore

	
lookup(keys, read_consistency=None, transaction=None)

	Lookup some entities by key

See also

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/lookup

	Parameters

	
	keys – the keys to lookup

	read_consistency – the read consistency to use. default, strong or eventual.
Cannot be used with a transaction.

	transaction – the transaction to use, if any.

	Returns

	the response body of the lookup request.

	
poll_operation_until_done(name, polling_interval_in_seconds)

	Poll backup operation state until it’s completed

	
rollback(transaction)

	Roll back a transaction

See also

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/rollback

	Parameters

	transaction – the transaction to roll back

	
run_query(body)

	Run a query for entities.

See also

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/runQuery

	Parameters

	body – the body of the query request

	Returns

	the batch of query results.

Cloud ML Engine

Cloud ML Engine Operators

	MLEngineBatchPredictionOperator : Start a Cloud ML Engine batch prediction job.

	MLEngineModelOperator : Manages a Cloud ML Engine model.

	MLEngineTrainingOperator : Start a Cloud ML Engine training job.

	MLEngineVersionOperator : Manages a Cloud ML Engine model version.

MLEngineBatchPredictionOperator

	
class airflow.contrib.operators.mlengine_operator.MLEngineBatchPredictionOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a Google Cloud ML Engine prediction job.

NOTE: For model origin, users should consider exactly one from the
three options below:
1. Populate ‘uri’ field only, which should be a GCS location that
points to a tensorflow savedModel directory.
2. Populate ‘model_name’ field only, which refers to an existing
model, and the default version of the model will be used.
3. Populate both ‘model_name’ and ‘version_name’ fields, which
refers to a specific version of a specific model.

In options 2 and 3, both model and version name should contain the
minimal identifier. For instance, call

MLEngineBatchPredictionOperator(
 ...,
 model_name='my_model',
 version_name='my_version',
 ...)

if the desired model version is
“projects/my_project/models/my_model/versions/my_version”.

See https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs
for further documentation on the parameters.

	Parameters

	
	project_id (str) – The Google Cloud project name where the
prediction job is submitted. (templated)

	job_id (str) – A unique id for the prediction job on Google Cloud
ML Engine. (templated)

	data_format (str) – The format of the input data.
It will default to ‘DATA_FORMAT_UNSPECIFIED’ if is not provided
or is not one of [“TEXT”, “TF_RECORD”, “TF_RECORD_GZIP”].

	input_paths (list of string) – A list of GCS paths of input data for batch
prediction. Accepting wildcard operator *, but only at the end. (templated)

	output_path (str) – The GCS path where the prediction results are
written to. (templated)

	region (str) – The Google Compute Engine region to run the
prediction job in. (templated)

	model_name (str) – The Google Cloud ML Engine model to use for prediction.
If version_name is not provided, the default version of this
model will be used.
Should not be None if version_name is provided.
Should be None if uri is provided. (templated)

	version_name (str) – The Google Cloud ML Engine model version to use for
prediction.
Should be None if uri is provided. (templated)

	uri (str) – The GCS path of the saved model to use for prediction.
Should be None if model_name is provided.
It should be a GCS path pointing to a tensorflow SavedModel. (templated)

	max_worker_count (int) – The maximum number of workers to be used
for parallel processing. Defaults to 10 if not specified.

	runtime_version (str) – The Google Cloud ML Engine runtime version to use
for batch prediction.

	gcp_conn_id (str) – The connection ID used for connection to Google
Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must
have doamin-wide delegation enabled.

	Raises:

	ValueError: if a unique model/version origin cannot be determined.

MLEngineModelOperator

	
class airflow.contrib.operators.mlengine_operator.MLEngineModelOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Operator for managing a Google Cloud ML Engine model.

	Parameters

	
	project_id (str) – The Google Cloud project name to which MLEngine
model belongs. (templated)

	model (dict) – A dictionary containing the information about the model.
If the operation is create, then the model parameter should
contain all the information about this model such as name.

If the operation is get, the model parameter
should contain the name of the model.

	operation (str) – The operation to perform. Available operations are:

	create: Creates a new model as provided by the model parameter.

	get: Gets a particular model where the name is specified in model.

	gcp_conn_id (str) – The connection ID to use when fetching connection info.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

MLEngineTrainingOperator

	
class airflow.contrib.operators.mlengine_operator.MLEngineTrainingOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Operator for launching a MLEngine training job.

	Parameters

	
	project_id (str) – The Google Cloud project name within which MLEngine
training job should run (templated).

	job_id (str) – A unique templated id for the submitted Google MLEngine
training job. (templated)

	package_uris (str) – A list of package locations for MLEngine training job,
which should include the main training program + any additional
dependencies. (templated)

	training_python_module (str) – The Python module name to run within MLEngine
training job after installing ‘package_uris’ packages. (templated)

	training_args (str) – A list of templated command line arguments to pass to
the MLEngine training program. (templated)

	region (str) – The Google Compute Engine region to run the MLEngine training
job in (templated).

	scale_tier (str) – Resource tier for MLEngine training job. (templated)

	master_type (str) – Cloud ML Engine machine name.
Must be set when scale_tier is CUSTOM. (templated)

	runtime_version (str) – The Google Cloud ML runtime version to use for
training. (templated)

	python_version (str) – The version of Python used in training. (templated)

	job_dir (str) – A Google Cloud Storage path in which to store training
outputs and other data needed for training. (templated)

	gcp_conn_id (str) – The connection ID to use when fetching connection info.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	mode (str) – Can be one of ‘DRY_RUN’/’CLOUD’. In ‘DRY_RUN’ mode, no real
training job will be launched, but the MLEngine training job request
will be printed out. In ‘CLOUD’ mode, a real MLEngine training job
creation request will be issued.

MLEngineVersionOperator

	
class airflow.contrib.operators.mlengine_operator.MLEngineVersionOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Operator for managing a Google Cloud ML Engine version.

	Parameters

	
	project_id (str) – The Google Cloud project name to which MLEngine
model belongs.

	model_name (str) – The name of the Google Cloud ML Engine model that the version
belongs to. (templated)

	version_name (str) – A name to use for the version being operated upon.
If not None and the version argument is None or does not have a value for
the name key, then this will be populated in the payload for the
name key. (templated)

	version (dict) – A dictionary containing the information about the version.
If the operation is create, version should contain all the
information about this version such as name, and deploymentUrl.
If the operation is get or delete, the version parameter
should contain the name of the version.
If it is None, the only operation possible would be list. (templated)

	operation (str) – The operation to perform. Available operations are:

	create: Creates a new version in the model specified by model_name,
in which case the version parameter should contain all the
information to create that version
(e.g. name, deploymentUrl).

	get: Gets full information of a particular version in the model
specified by model_name.
The name of the version should be specified in the version
parameter.

	list: Lists all available versions of the model specified
by model_name.

	delete: Deletes the version specified in version parameter from the
model specified by model_name).
The name of the version should be specified in the version
parameter.

	gcp_conn_id (str) – The connection ID to use when fetching connection info.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

Cloud ML Engine Hook

MLEngineHook

	
class airflow.contrib.hooks.gcp_mlengine_hook.MLEngineHook(gcp_conn_id='google_cloud_default', delegate_to=None)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

	
create_job(project_id, job, use_existing_job_fn=None)

	Launches a MLEngine job and wait for it to reach a terminal state.

	Parameters

	
	project_id (str) – The Google Cloud project id within which MLEngine
job will be launched.

	job (dict) – MLEngine Job object that should be provided to the MLEngine
API, such as:

{
 'jobId': 'my_job_id',
 'trainingInput': {
 'scaleTier': 'STANDARD_1',
 ...
 }
}

	use_existing_job_fn (function) – In case that a MLEngine job with the same
job_id already exist, this method (if provided) will decide whether
we should use this existing job, continue waiting for it to finish
and returning the job object. It should accepts a MLEngine job
object, and returns a boolean value indicating whether it is OK to
reuse the existing job. If ‘use_existing_job_fn’ is not provided,
we by default reuse the existing MLEngine job.

	Returns

	The MLEngine job object if the job successfully reach a
terminal state (which might be FAILED or CANCELLED state).

	Return type

	dict

	
create_model(project_id, model)

	Create a Model. Blocks until finished.

	
create_version(project_id, model_name, version_spec)

	Creates the Version on Google Cloud ML Engine.

Returns the operation if the version was created successfully and
raises an error otherwise.

	
delete_version(project_id, model_name, version_name)

	Deletes the given version of a model. Blocks until finished.

	
get_conn()

	Returns a Google MLEngine service object.

	
get_model(project_id, model_name)

	Gets a Model. Blocks until finished.

	
list_versions(project_id, model_name)

	Lists all available versions of a model. Blocks until finished.

	
set_default_version(project_id, model_name, version_name)

	Sets a version to be the default. Blocks until finished.

Cloud Storage

Storage Operators

	FileToGoogleCloudStorageOperator : Uploads a file to Google Cloud Storage.

	GoogleCloudStorageCreateBucketOperator : Creates a new ACL entry on the specified bucket.

	GoogleCloudStorageBucketCreateAclEntryOperator : Creates a new cloud storage bucket.

	GoogleCloudStorageDownloadOperator : Downloads a file from Google Cloud Storage.

	GoogleCloudStorageListOperator : List all objects from the bucket with the give string prefix and delimiter in name.

	GoogleCloudStorageToBigQueryOperator : Creates a new ACL entry on the specified object.

	GoogleCloudStorageObjectCreateAclEntryOperator : Loads files from Google cloud storage into BigQuery.

	GoogleCloudStorageToGoogleCloudStorageOperator : Copies objects from a bucket to another, with renaming if requested.

	GoogleCloudStorageToGoogleCloudStorageTransferOperator : Copies objects from a bucket to another using Google Transfer service.

	MySqlToGoogleCloudStorageOperator: Copy data from any MySQL Database to Google cloud storage in JSON format.

FileToGoogleCloudStorageOperator

	
class airflow.contrib.operators.file_to_gcs.FileToGoogleCloudStorageOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Uploads a file to Google Cloud Storage.
Optionally can compress the file for upload.

	Parameters

	
	src (str) – Path to the local file. (templated)

	dst (str) – Destination path within the specified bucket. (templated)

	bucket (str) – The bucket to upload to. (templated)

	google_cloud_storage_conn_id (str) – The Airflow connection ID to upload with

	mime_type (str) – The mime-type string

	delegate_to (str) – The account to impersonate, if any

	gzip (bool) – Allows for file to be compressed and uploaded as gzip

	
execute(context)

	Uploads the file to Google cloud storage

GoogleCloudStorageBucketCreateAclEntryOperator

	
class airflow.contrib.operators.gcs_acl_operator.GoogleCloudStorageBucketCreateAclEntryOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Creates a new ACL entry on the specified bucket.

	Parameters

	
	bucket (str) – Name of a bucket.

	entity (str) – The entity holding the permission, in one of the following forms:
user-userId, user-email, group-groupId, group-email, domain-domain,
project-team-projectId, allUsers, allAuthenticatedUsers

	role (str) – The access permission for the entity.
Acceptable values are: “OWNER”, “READER”, “WRITER”.

	user_project (str) – (Optional) The project to be billed for this request.
Required for Requester Pays buckets.

	google_cloud_storage_conn_id (str) – The connection ID to use when
connecting to Google Cloud Storage.

GoogleCloudStorageCreateBucketOperator

	
class airflow.contrib.operators.gcs_operator.GoogleCloudStorageCreateBucketOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Creates a new bucket. Google Cloud Storage uses a flat namespace,
so you can’t create a bucket with a name that is already in use.

See also

For more information, see Bucket Naming Guidelines:
https://cloud.google.com/storage/docs/bucketnaming.html#requirements

	Parameters

	
	bucket_name (str) – The name of the bucket. (templated)

	storage_class (str) – This defines how objects in the bucket are stored
and determines the SLA and the cost of storage (templated). Values include

	MULTI_REGIONAL

	REGIONAL

	STANDARD

	NEARLINE

	COLDLINE.

If this value is not specified when the bucket is
created, it will default to STANDARD.

	location (str) – The location of the bucket. (templated)
Object data for objects in the bucket resides in physical storage
within this region. Defaults to US.

See also

https://developers.google.com/storage/docs/bucket-locations

	project_id (str) – The ID of the GCP Project. (templated)

	labels (dict) – User-provided labels, in key/value pairs.

	google_cloud_storage_conn_id (str) – The connection ID to use when
connecting to Google cloud storage.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must
have domain-wide delegation enabled.

	Example:

	The following Operator would create a new bucket test-bucket
with MULTI_REGIONAL storage class in EU region

CreateBucket = GoogleCloudStorageCreateBucketOperator(
 task_id='CreateNewBucket',
 bucket_name='test-bucket',
 storage_class='MULTI_REGIONAL',
 location='EU',
 labels={'env': 'dev', 'team': 'airflow'},
 google_cloud_storage_conn_id='airflow-service-account'
)

GoogleCloudStorageDownloadOperator

	
class airflow.contrib.operators.gcs_download_operator.GoogleCloudStorageDownloadOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Downloads a file from Google Cloud Storage.

	Parameters

	
	bucket (str) – The Google cloud storage bucket where the object is. (templated)

	object (str) – The name of the object to download in the Google cloud
storage bucket. (templated)

	filename (str) – The file path on the local file system (where the
operator is being executed) that the file should be downloaded to. (templated)
If no filename passed, the downloaded data will not be stored on the local file
system.

	store_to_xcom_key (str) – If this param is set, the operator will push
the contents of the downloaded file to XCom with the key set in this
parameter. If not set, the downloaded data will not be pushed to XCom. (templated)

	google_cloud_storage_conn_id (str) – The connection ID to use when
connecting to Google cloud storage.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

GoogleCloudStorageListOperator

	
class airflow.contrib.operators.gcs_list_operator.GoogleCloudStorageListOperator(**kwargs)

	Bases: airflow.models.BaseOperator

List all objects from the bucket with the give string prefix and delimiter in name.

	This operator returns a python list with the name of objects which can be used by

	xcom in the downstream task.

	Parameters

	
	bucket (str) – The Google cloud storage bucket to find the objects. (templated)

	prefix (str) – Prefix string which filters objects whose name begin with
this prefix. (templated)

	delimiter (str) – The delimiter by which you want to filter the objects. (templated)
For e.g to lists the CSV files from in a directory in GCS you would use
delimiter=’.csv’.

	google_cloud_storage_conn_id (str) – The connection ID to use when
connecting to Google cloud storage.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	Example:

	The following Operator would list all the Avro files from sales/sales-2017
folder in data bucket.

GCS_Files = GoogleCloudStorageListOperator(
 task_id='GCS_Files',
 bucket='data',
 prefix='sales/sales-2017/',
 delimiter='.avro',
 google_cloud_storage_conn_id=google_cloud_conn_id
)

GoogleCloudStorageObjectCreateAclEntryOperator

	
class airflow.contrib.operators.gcs_acl_operator.GoogleCloudStorageObjectCreateAclEntryOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Creates a new ACL entry on the specified object.

	Parameters

	
	bucket (str) – Name of a bucket.

	object_name (str) – Name of the object. For information about how to URL encode object
names to be path safe, see:
https://cloud.google.com/storage/docs/json_api/#encoding

	entity (str) – The entity holding the permission, in one of the following forms:
user-userId, user-email, group-groupId, group-email, domain-domain,
project-team-projectId, allUsers, allAuthenticatedUsers

	role (str) – The access permission for the entity.
Acceptable values are: “OWNER”, “READER”.

	generation (str) – (Optional) If present, selects a specific revision of this object
(as opposed to the latest version, the default).

	user_project (str) – (Optional) The project to be billed for this request.
Required for Requester Pays buckets.

	google_cloud_storage_conn_id (str) – The connection ID to use when
connecting to Google Cloud Storage.

GoogleCloudStorageToBigQueryOperator

	
class airflow.contrib.operators.gcs_to_bq.GoogleCloudStorageToBigQueryOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Loads files from Google cloud storage into BigQuery.

The schema to be used for the BigQuery table may be specified in one of
two ways. You may either directly pass the schema fields in, or you may
point the operator to a Google cloud storage object name. The object in
Google cloud storage must be a JSON file with the schema fields in it.

	Parameters

	
	bucket (str) – The bucket to load from. (templated)

	source_objects (list of str) – List of Google cloud storage URIs to load from. (templated)
If source_format is ‘DATASTORE_BACKUP’, the list must only contain a single URI.

	destination_project_dataset_table (str) – The dotted (<project>.)<dataset>.<table>
BigQuery table to load data into. If <project> is not included,
project will be the project defined in the connection json. (templated)

	schema_fields (list) – If set, the schema field list as defined here:
https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load
Should not be set when source_format is ‘DATASTORE_BACKUP’.

	schema_object (str) – If set, a GCS object path pointing to a .json file that
contains the schema for the table. (templated)

	source_format (str) – File format to export.

	compression (str) – [Optional] The compression type of the data source.
Possible values include GZIP and NONE.
The default value is NONE.
This setting is ignored for Google Cloud Bigtable,
Google Cloud Datastore backups and Avro formats.

	create_disposition (str) – The create disposition if the table doesn’t exist.

	skip_leading_rows (int) – Number of rows to skip when loading from a CSV.

	write_disposition (str) – The write disposition if the table already exists.

	field_delimiter (str) – The delimiter to use when loading from a CSV.

	max_bad_records (int) – The maximum number of bad records that BigQuery can
ignore when running the job.

	quote_character (str) – The value that is used to quote data sections in a CSV file.

	ignore_unknown_values (bool) – [Optional] Indicates if BigQuery should allow
extra values that are not represented in the table schema.
If true, the extra values are ignored. If false, records with extra columns
are treated as bad records, and if there are too many bad records, an
invalid error is returned in the job result.

	allow_quoted_newlines (bool) – Whether to allow quoted newlines (true) or not (false).

	allow_jagged_rows (bool) – Accept rows that are missing trailing optional columns.
The missing values are treated as nulls. If false, records with missing trailing
columns are treated as bad records, and if there are too many bad records, an
invalid error is returned in the job result. Only applicable to CSV, ignored
for other formats.

	max_id_key (str) – If set, the name of a column in the BigQuery table
that’s to be loaded. This will be used to select the MAX value from
BigQuery after the load occurs. The results will be returned by the
execute() command, which in turn gets stored in XCom for future
operators to use. This can be helpful with incremental loads–during
future executions, you can pick up from the max ID.

	bigquery_conn_id (str) – Reference to a specific BigQuery hook.

	google_cloud_storage_conn_id (str) – Reference to a specific Google
cloud storage hook.

	delegate_to (str) – The account to impersonate, if any. For this to
work, the service account making the request must have domain-wide
delegation enabled.

	schema_update_options (list) – Allows the schema of the destination
table to be updated as a side effect of the load job.

	src_fmt_configs (dict) – configure optional fields specific to the source format

	external_table (bool) – Flag to specify if the destination table should be
a BigQuery external table. Default Value is False.

	time_partitioning (dict) – configure optional time partitioning fields i.e.
partition by field, type and expiration as per API specifications.
Note that ‘field’ is not available in concurrency with
dataset.table$partition.

	cluster_fields (list of str) – Request that the result of this load be stored sorted
by one or more columns. This is only available in conjunction with
time_partitioning. The order of columns given determines the sort order.
Not applicable for external tables.

GoogleCloudStorageToGoogleCloudStorageOperator

	
class airflow.contrib.operators.gcs_to_gcs.GoogleCloudStorageToGoogleCloudStorageOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Copies objects from a bucket to another, with renaming if requested.

	Parameters

	
	source_bucket (str) – The source Google cloud storage bucket where the
object is. (templated)

	source_object (str) – The source name of the object to copy in the Google cloud
storage bucket. (templated)
You can use only one wildcard for objects (filenames) within your
bucket. The wildcard can appear inside the object name or at the
end of the object name. Appending a wildcard to the bucket name is
unsupported.

	destination_bucket (str) – The destination Google cloud storage bucket
where the object should be. (templated)

	destination_object (str) – The destination name of the object in the
destination Google cloud storage bucket. (templated)
If a wildcard is supplied in the source_object argument, this is the
prefix that will be prepended to the final destination objects’ paths.
Note that the source path’s part before the wildcard will be removed;
if it needs to be retained it should be appended to destination_object.
For example, with prefix foo/* and destination_object blah/, the
file foo/baz will be copied to blah/baz; to retain the prefix write
the destination_object as e.g. blah/foo, in which case the copied file
will be named blah/foo/baz.

	move_object (bool) – When move object is True, the object is moved instead
of copied to the new location. This is the equivalent of a mv command
as opposed to a cp command.

	google_cloud_storage_conn_id (str) – The connection ID to use when
connecting to Google cloud storage.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	last_modified_time (datetime) – When specified, if the object(s) were
modified after last_modified_time, they will be copied/moved.
If tzinfo has not been set, UTC will be assumed.

	Examples:

	The following Operator would copy a single file named
sales/sales-2017/january.avro in the data bucket to the file named
copied_sales/2017/january-backup.avro in the data_backup bucket

copy_single_file = GoogleCloudStorageToGoogleCloudStorageOperator(
 task_id='copy_single_file',
 source_bucket='data',
 source_object='sales/sales-2017/january.avro',
 destination_bucket='data_backup',
 destination_object='copied_sales/2017/january-backup.avro',
 google_cloud_storage_conn_id=google_cloud_conn_id
)

The following Operator would copy all the Avro files from sales/sales-2017
folder (i.e. with names starting with that prefix) in data bucket to the
copied_sales/2017 folder in the data_backup bucket.

copy_files = GoogleCloudStorageToGoogleCloudStorageOperator(
 task_id='copy_files',
 source_bucket='data',
 source_object='sales/sales-2017/*.avro',
 destination_bucket='data_backup',
 destination_object='copied_sales/2017/',
 google_cloud_storage_conn_id=google_cloud_conn_id
)

The following Operator would move all the Avro files from sales/sales-2017
folder (i.e. with names starting with that prefix) in data bucket to the
same folder in the data_backup bucket, deleting the original files in the
process.

move_files = GoogleCloudStorageToGoogleCloudStorageOperator(
 task_id='move_files',
 source_bucket='data',
 source_object='sales/sales-2017/*.avro',
 destination_bucket='data_backup',
 move_object=True,
 google_cloud_storage_conn_id=google_cloud_conn_id
)

GoogleCloudStorageToGoogleCloudStorageTransferOperator

	
class airflow.contrib.operators.gcs_to_gcs_transfer_operator.GoogleCloudStorageToGoogleCloudStorageTransferOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Copies objects from a bucket to another using the GCP Storage Transfer
Service.

	Parameters

	
	source_bucket (str) – The source Google cloud storage bucket where the
object is. (templated)

	destination_bucket (str) – The destination Google cloud storage bucket
where the object should be. (templated)

	project_id (str) – The ID of the Google Cloud Platform Console project that
owns the job

	gcp_conn_id (str) – Optional connection ID to use when connecting to Google Cloud
Storage.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	description (str) – Optional transfer service job description

	schedule (dict) – Optional transfer service schedule; see
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/transferJobs.
If not set, run transfer job once as soon as the operator runs

	object_conditions (dict) – Optional transfer service object conditions; see
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec#ObjectConditions

	transfer_options (dict) – Optional transfer service transfer options; see
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec#TransferOptions

	wait (bool) – Wait for transfer to finish; defaults to True

Example:

gcs_to_gcs_transfer_op = GoogleCloudStorageToGoogleCloudStorageTransferOperator(
 task_id='gcs_to_gcs_transfer_example',
 source_bucket='my-source-bucket',
 destination_bucket='my-destination-bucket',
 project_id='my-gcp-project',
 dag=my_dag)

MySqlToGoogleCloudStorageOperator

	
class airflow.contrib.operators.mysql_to_gcs.MySqlToGoogleCloudStorageOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Copy data from MySQL to Google cloud storage in JSON format.

	Parameters

	
	sql (str) – The SQL to execute on the MySQL table.

	bucket (str) – The bucket to upload to.

	filename (str) – The filename to use as the object name when uploading
to Google cloud storage. A {} should be specified in the filename
to allow the operator to inject file numbers in cases where the
file is split due to size.

	schema_filename (str) – If set, the filename to use as the object name
when uploading a .json file containing the BigQuery schema fields
for the table that was dumped from MySQL.

	approx_max_file_size_bytes (long) – This operator supports the ability
to split large table dumps into multiple files (see notes in the
filenamed param docs above). Google cloud storage allows for files
to be a maximum of 4GB. This param allows developers to specify the
file size of the splits.

	mysql_conn_id (str) – Reference to a specific MySQL hook.

	google_cloud_storage_conn_id (str) – Reference to a specific Google
cloud storage hook.

	schema (str or list) – The schema to use, if any. Should be a list of dict or
a str. Pass a string if using Jinja template, otherwise, pass a list of
dict. Examples could be seen: https://cloud.google.com/bigquery/docs
/schemas#specifying_a_json_schema_file

	delegate_to (str) – The account to impersonate, if any. For this to
work, the service account making the request must have domain-wide
delegation enabled.

	
classmethod type_map(mysql_type)

	Helper function that maps from MySQL fields to BigQuery fields. Used
when a schema_filename is set.

GoogleCloudStorageHook

	
class airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook(google_cloud_storage_conn_id='google_cloud_default', delegate_to=None)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Interact with Google Cloud Storage. This hook uses the Google Cloud Platform
connection.

	
copy(source_bucket, source_object, destination_bucket=None, destination_object=None)

	Copies an object from a bucket to another, with renaming if requested.

destination_bucket or destination_object can be omitted, in which case
source bucket/object is used, but not both.

	Parameters

	
	source_bucket (str) – The bucket of the object to copy from.

	source_object (str) – The object to copy.

	destination_bucket (str) – The destination of the object to copied to.
Can be omitted; then the same bucket is used.

	destination_object (str) – The (renamed) path of the object if given.
Can be omitted; then the same name is used.

	
create_bucket(bucket_name, storage_class='MULTI_REGIONAL', location='US', project_id=None, labels=None)

	Creates a new bucket. Google Cloud Storage uses a flat namespace, so
you can’t create a bucket with a name that is already in use.

See also

For more information, see Bucket Naming Guidelines:
https://cloud.google.com/storage/docs/bucketnaming.html#requirements

	Parameters

	
	bucket_name (str) – The name of the bucket.

	storage_class (str) – This defines how objects in the bucket are stored
and determines the SLA and the cost of storage. Values include

	MULTI_REGIONAL

	REGIONAL

	STANDARD

	NEARLINE

	COLDLINE.

If this value is not specified when the bucket is
created, it will default to STANDARD.

	location (str) – The location of the bucket.
Object data for objects in the bucket resides in physical storage
within this region. Defaults to US.

See also

https://developers.google.com/storage/docs/bucket-locations

	project_id (str) – The ID of the GCP Project.

	labels (dict) – User-provided labels, in key/value pairs.

	Returns

	If successful, it returns the id of the bucket.

	
delete(bucket, object, generation=None)

	Delete an object if versioning is not enabled for the bucket, or if generation
parameter is used.

	Parameters

	
	bucket (str) – name of the bucket, where the object resides

	object (str) – name of the object to delete

	generation (str) – if present, permanently delete the object of this generation

	Returns

	True if succeeded

	
download(bucket, object, filename=None)

	Get a file from Google Cloud Storage.

	Parameters

	
	bucket (str) – The bucket to fetch from.

	object (str) – The object to fetch.

	filename (str) – If set, a local file path where the file should be written to.

	
exists(bucket, object)

	Checks for the existence of a file in Google Cloud Storage.

	Parameters

	
	bucket (str) – The Google cloud storage bucket where the object is.

	object (str) – The name of the object to check in the Google cloud
storage bucket.

	
get_conn()

	Returns a Google Cloud Storage service object.

	
get_crc32c(bucket, object)

	Gets the CRC32c checksum of an object in Google Cloud Storage.

	Parameters

	
	bucket (str) – The Google cloud storage bucket where the object is.

	object (str) – The name of the object to check in the Google cloud
storage bucket.

	
get_md5hash(bucket, object)

	Gets the MD5 hash of an object in Google Cloud Storage.

	Parameters

	
	bucket (str) – The Google cloud storage bucket where the object is.

	object (str) – The name of the object to check in the Google cloud
storage bucket.

	
get_size(bucket, object)

	Gets the size of a file in Google Cloud Storage.

	Parameters

	
	bucket (str) – The Google cloud storage bucket where the object is.

	object (str) – The name of the object to check in the Google cloud storage bucket.

	
insert_bucket_acl(bucket, entity, role, user_project)

	Creates a new ACL entry on the specified bucket.
See: https://cloud.google.com/storage/docs/json_api/v1/bucketAccessControls/insert

	Parameters

	
	bucket (str) – Name of a bucket.

	entity (str) – The entity holding the permission, in one of the following forms:
user-userId, user-email, group-groupId, group-email, domain-domain,
project-team-projectId, allUsers, allAuthenticatedUsers.
See: https://cloud.google.com/storage/docs/access-control/lists#scopes

	role (str) – The access permission for the entity.
Acceptable values are: “OWNER”, “READER”, “WRITER”.

	user_project (str) – (Optional) The project to be billed for this request.
Required for Requester Pays buckets.

	
insert_object_acl(bucket, object_name, entity, role, generation, user_project)

	Creates a new ACL entry on the specified object.
See: https://cloud.google.com/storage/docs/json_api/v1/objectAccessControls/insert

	Parameters

	
	bucket (str) – Name of a bucket.

	object_name (str) – Name of the object. For information about how to URL encode
object names to be path safe, see:
https://cloud.google.com/storage/docs/json_api/#encoding

	entity (str) – The entity holding the permission, in one of the following forms:
user-userId, user-email, group-groupId, group-email, domain-domain,
project-team-projectId, allUsers, allAuthenticatedUsers
See: https://cloud.google.com/storage/docs/access-control/lists#scopes

	role (str) – The access permission for the entity.
Acceptable values are: “OWNER”, “READER”.

	generation (str) – (Optional) If present, selects a specific revision of this
object (as opposed to the latest version, the default).

	user_project (str) – (Optional) The project to be billed for this request.
Required for Requester Pays buckets.

	
is_updated_after(bucket, object, ts)

	Checks if an object is updated in Google Cloud Storage.

	Parameters

	
	bucket (str) – The Google cloud storage bucket where the object is.

	object (str) – The name of the object to check in the Google cloud
storage bucket.

	ts (datetime) – The timestamp to check against.

	
list(bucket, versions=None, maxResults=None, prefix=None, delimiter=None)

	List all objects from the bucket with the give string prefix in name

	Parameters

	
	bucket (str) – bucket name

	versions (bool) – if true, list all versions of the objects

	maxResults (int) – max count of items to return in a single page of responses

	prefix (str) – prefix string which filters objects whose name begin with
this prefix

	delimiter (str) – filters objects based on the delimiter (for e.g ‘.csv’)

	Returns

	a stream of object names matching the filtering criteria

	
rewrite(source_bucket, source_object, destination_bucket, destination_object=None)

	Has the same functionality as copy, except that will work on files
over 5 TB, as well as when copying between locations and/or storage
classes.

destination_object can be omitted, in which case source_object is used.

	Parameters

	
	source_bucket (str) – The bucket of the object to copy from.

	source_object (str) – The object to copy.

	destination_bucket (str) – The destination of the object to copied to.

	destination_object (str) – The (renamed) path of the object if given.
Can be omitted; then the same name is used.

	
upload(bucket, object, filename, mime_type='application/octet-stream', gzip=False, multipart=False, num_retries=0)

	Uploads a local file to Google Cloud Storage.

	Parameters

	
	bucket (str) – The bucket to upload to.

	object (str) – The object name to set when uploading the local file.

	filename (str) – The local file path to the file to be uploaded.

	mime_type (str) – The MIME type to set when uploading the file.

	gzip (bool) – Option to compress file for upload

	multipart (bool or int) – If True, the upload will be split into multiple HTTP requests. The
default size is 256MiB per request. Pass a number instead of True to
specify the request size, which must be a multiple of 262144 (256KiB).

	num_retries (int) – The number of times to attempt to re-upload the file (or individual
chunks, in the case of multipart uploads). Retries are attempted
with exponential backoff.

GCPTransferServiceHook

	
class airflow.contrib.hooks.gcp_transfer_hook.GCPTransferServiceHook(api_version='v1', gcp_conn_id='google_cloud_default', delegate_to=None)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Hook for GCP Storage Transfer Service.

	
get_conn()

	Retrieves connection to Google Storage Transfer service.

	Returns

	Google Storage Transfer service object

	Return type

	dict

Google Kubernetes Engine

Google Kubernetes Engine Cluster Operators

	GKEClusterDeleteOperator : Creates a Kubernetes Cluster in Google Cloud Platform

	GKEPodOperator : Deletes a Kubernetes Cluster in Google Cloud Platform

GKEClusterCreateOperator

GKEClusterDeleteOperator

GKEPodOperator

Google Kubernetes Engine Hook

Qubole

Apache Airflow has a native operator and hooks to talk to Qubole [https://qubole.com/],
which lets you submit your big data jobs directly to Qubole from Apache Airflow.

QuboleOperator

	
class airflow.contrib.operators.qubole_operator.QuboleOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Execute tasks (commands) on QDS (https://qubole.com).

	Parameters

	qubole_conn_id (str) – Connection id which consists of qds auth_token

	kwargs:

	
	command_type

	type of command to be executed, e.g. hivecmd, shellcmd, hadoopcmd

	tags

	array of tags to be assigned with the command

	cluster_label

	cluster label on which the command will be executed

	name

	name to be given to command

	notify

	whether to send email on command completion or not (default is False)

Arguments specific to command types

	hivecmd:

	
	query

	inline query statement

	script_location

	s3 location containing query statement

	sample_size

	size of sample in bytes on which to run query

	macros

	macro values which were used in query

	sample_size

	size of sample in bytes on which to run query

	hive-version

	Specifies the hive version to be used. eg: 0.13,1.2,etc.

	prestocmd:

	
	query

	inline query statement

	script_location

	s3 location containing query statement

	macros

	macro values which were used in query

	hadoopcmd:

	
	sub_commnad

	must be one these [“jar”, “s3distcp”, “streaming”] followed by
1 or more args

	shellcmd:

	
	script

	inline command with args

	script_location

	s3 location containing query statement

	files

	list of files in s3 bucket as file1,file2 format. These files will be
copied into the working directory where the qubole command is being
executed.

	archives

	list of archives in s3 bucket as archive1,archive2 format. These
will be unarchived intothe working directory where the qubole command is
being executed

	parameters

	any extra args which need to be passed to script (only when
script_location is supplied)

	pigcmd:

	
	script

	inline query statement (latin_statements)

	script_location

	s3 location containing pig query

	parameters

	any extra args which need to be passed to script (only when
script_location is supplied

	sparkcmd:

	
	program

	the complete Spark Program in Scala, SQL, Command, R, or Python

	cmdline

	spark-submit command line, all required information must be specify
in cmdline itself.

	sql

	inline sql query

	script_location

	s3 location containing query statement

	language

	language of the program, Scala, SQL, Command, R, or Python

	app_id

	ID of an Spark job server app

	arguments

	spark-submit command line arguments

	user_program_arguments

	arguments that the user program takes in

	macros

	macro values which were used in query

	note_id

	Id of the Notebook to run

	dbtapquerycmd:

	
	db_tap_id

	data store ID of the target database, in Qubole.

	query

	inline query statement

	macros

	macro values which were used in query

	dbexportcmd:

	
	mode

	Can be 1 for Hive export or 2 for HDFS/S3 export

	schema

	Db schema name assumed accordingly by database if not specified

	hive_table

	Name of the hive table

	partition_spec

	partition specification for Hive table.

	dbtap_id

	data store ID of the target database, in Qubole.

	db_table

	name of the db table

	db_update_mode

	allowinsert or updateonly

	db_update_keys

	columns used to determine the uniqueness of rows

	export_dir

	HDFS/S3 location from which data will be exported.

	fields_terminated_by

	hex of the char used as column separator in the dataset

	use_customer_cluster

	To use cluster to run command

	customer_cluster_label

	the label of the cluster to run the command on

	additional_options

	Additional Sqoop options which are needed enclose options in
double or single quotes e.g. ‘–map-column-hive id=int,data=string’

	dbimportcmd:

	
	mode

	1 (simple), 2 (advance)

	hive_table

	Name of the hive table

	schema

	Db schema name assumed accordingly by database if not specified

	hive_serde

	Output format of the Hive Table

	dbtap_id

	data store ID of the target database, in Qubole.

	db_table

	name of the db table

	where_clause

	where clause, if any

	parallelism

	number of parallel db connections to use for extracting data

	extract_query

	SQL query to extract data from db. $CONDITIONS must be part
of the where clause.

	boundary_query

	Query to be used get range of row IDs to be extracted

	split_column

	Column used as row ID to split data into ranges (mode 2)

	use_customer_cluster

	To use cluster to run command

	customer_cluster_label

	the label of the cluster to run the command on

	additional_options

	Additional Sqoop options which are needed enclose options in
double or single quotes

Note

Following fields are template-supported : query, script_location,
sub_command, script, files, archives, program, cmdline,
sql, where_clause, extract_query, boundary_query, macros,
tags, name, parameters, dbtap_id, hive_table, db_table,
split_column, note_id, db_update_keys, export_dir,
partition_spec, qubole_conn_id, arguments, user_program_arguments.

You can also use .txt files for template driven use cases.

Note

In QuboleOperator there is a default handler for task failures and retries,
which generally kills the command running at QDS for the corresponding task
instance. You can override this behavior by providing your own failure and retry
handler in task definition.

QubolePartitionSensor

	
class airflow.contrib.sensors.qubole_sensor.QubolePartitionSensor(**kwargs)

	Bases: airflow.contrib.sensors.qubole_sensor.QuboleSensor

Wait for a Hive partition to show up in QHS (Qubole Hive Service)
and check for its presence via QDS APIs

	Parameters

	
	qubole_conn_id (str) – Connection id which consists of qds auth_token

	data (a JSON object) – a JSON object containing payload, whose presence needs to be checked.
Check this example [https://github.com/apache/airflow/blob/master/airflow/contrib/example_dags/example_qubole_sensor.py] for sample payload
structure.

Note

Both data and qubole_conn_id fields support templating. You can
also use .txt files for template-driven use cases.

QuboleFileSensor

	
class airflow.contrib.sensors.qubole_sensor.QuboleFileSensor(**kwargs)

	Bases: airflow.contrib.sensors.qubole_sensor.QuboleSensor

Wait for a file or folder to be present in cloud storage
and check for its presence via QDS APIs

	Parameters

	
	qubole_conn_id (str) – Connection id which consists of qds auth_token

	data (a JSON object) – a JSON object containing payload, whose presence needs to be checked
Check this example [https://github.com/apache/airflow/blob/master/airflow/contrib/example_dags/example_qubole_sensor.py] for sample payload
structure.

Note

Both data and qubole_conn_id fields support templating. You can
also use .txt files for template-driven use cases.

QuboleCheckOperator

	
class airflow.contrib.operators.qubole_check_operator.QuboleCheckOperator(**kwargs)

	Bases: airflow.operators.check_operator.CheckOperator, airflow.contrib.operators.qubole_operator.QuboleOperator

Performs checks against Qubole Commands. QuboleCheckOperator expects
a command that will be executed on QDS.
By default, each value on first row of the result of this Qubole Command
is evaluated using python bool casting. If any of the
values return False, the check is failed and errors out.

Note that Python bool casting evals the following as False:

	False

	0

	Empty string ("")

	Empty list ([])

	Empty dictionary or set ({})

Given a query like SELECT COUNT(*) FROM foo, it will fail only if
the count == 0. You can craft much more complex query that could,
for instance, check that the table has the same number of rows as
the source table upstream, or that the count of today’s partition is
greater than yesterday’s partition, or that a set of metrics are less
than 3 standard deviation for the 7 day average.

This operator can be used as a data quality check in your pipeline, and
depending on where you put it in your DAG, you have the choice to
stop the critical path, preventing from
publishing dubious data, or on the side and receive email alerts
without stopping the progress of the DAG.

	Parameters

	qubole_conn_id (str) – Connection id which consists of qds auth_token

kwargs:

Arguments specific to Qubole command can be referred from QuboleOperator docs.

	results_parser_callable

	This is an optional parameter to
extend the flexibility of parsing the results of Qubole
command to the users. This is a python callable which
can hold the logic to parse list of rows returned by Qubole command.
By default, only the values on first row are used for performing checks.
This callable should return a list of records on
which the checks have to be performed.

Note

All fields in common with template fields of
QuboleOperator and CheckOperator are template-supported.

QuboleValueCheckOperator

	
class airflow.contrib.operators.qubole_check_operator.QuboleValueCheckOperator(**kwargs)

	Bases: airflow.operators.check_operator.ValueCheckOperator, airflow.contrib.operators.qubole_operator.QuboleOperator

Performs a simple value check using Qubole command.
By default, each value on the first row of this
Qubole command is compared with a pre-defined value.
The check fails and errors out if the output of the command
is not within the permissible limit of expected value.

	Parameters

	
	qubole_conn_id (str) – Connection id which consists of qds auth_token

	pass_value (str/int/float) – Expected value of the query results.

	tolerance (int/float) – Defines the permissible pass_value range, for example if
tolerance is 2, the Qubole command output can be anything between
-2*pass_value and 2*pass_value, without the operator erring out.

kwargs:

Arguments specific to Qubole command can be referred from QuboleOperator docs.

	results_parser_callable

	This is an optional parameter to
extend the flexibility of parsing the results of Qubole
command to the users. This is a python callable which
can hold the logic to parse list of rows returned by Qubole command.
By default, only the values on first row are used for performing checks.
This callable should return a list of records on
which the checks have to be performed.

Note

All fields in common with template fields of
QuboleOperator and ValueCheckOperator are template-supported.

Metrics

Configuration

Airflow can be set up to send metrics to StatsD [https://github.com/etsy/statsd]:

[scheduler]
statsd_on = True
statsd_host = localhost
statsd_port = 8125
statsd_prefix = airflow

Counters

	Name

	Description

	<job_name>_start

	Number of started <job_name> job, ex. SchedulerJob, LocalTaskJob

	<job_name>_end

	Number of ended <job_name> job, ex. SchedulerJob, LocalTaskJob

	operator_failures_<operator_name>

	Operator <operator_name> failures

	operator_successes_<operator_name>

	Operator <operator_name> successes

	ti_failures

	Overall task instances failures

	ti_successes

	Overall task instances successes

	zombies_killed

	Zombie tasks killed

	scheduler_heartbeat

	Scheduler heartbeats

Gauges

	Name

	Description

	collect_dags

	Seconds taken to scan and import DAGs

	dagbag_import_errors

	DAG import errors

	dagbag_size

	DAG bag size

Timers

	Name

	Description

	dagrun.dependency-check.<dag_id>

	Seconds taken to check DAG dependencies

Lineage

Note

Lineage support is very experimental and subject to change.

Airflow can help track origins of data, what happens to it and where it moves over time. This can aid having
audit trails and data governance, but also debugging of data flows.

Airflow tracks data by means of inlets and outlets of the tasks. Let’s work from an example and see how it
works.

from airflow.operators.bash_operator import BashOperator
from airflow.operators.dummy_operator import DummyOperator
from airflow.lineage.datasets import File
from airflow.models import DAG
from datetime import timedelta

FILE_CATEGORIES = ["CAT1", "CAT2", "CAT3"]

args = {
 'owner': 'airflow',
 'start_date': airflow.utils.dates.days_ago(2)
}

dag = DAG(
 dag_id='example_lineage', default_args=args,
 schedule_interval='0 0 * * *',
 dagrun_timeout=timedelta(minutes=60))

f_final = File("/tmp/final")
run_this_last = DummyOperator(task_id='run_this_last', dag=dag,
 inlets={"auto": True},
 outlets={"datasets": [f_final,]})

f_in = File("/tmp/whole_directory/")
outlets = []
for file in FILE_CATEGORIES:
 f_out = File("/tmp/{}/{{{{ execution_date }}}}".format(file))
 outlets.append(f_out)
run_this = BashOperator(
 task_id='run_me_first', bash_command='echo 1', dag=dag,
 inlets={"datasets": [f_in,]},
 outlets={"datasets": outlets}
)
run_this.set_downstream(run_this_last)

Tasks take the parameters inlets and outlets. Inlets can be manually defined by a list of dataset {“datasets”:
[dataset1, dataset2]} or can be configured to look for outlets from upstream tasks {“task_ids”: [“task_id1”, “task_id2”]}
or can be configured to pick up outlets from direct upstream tasks {“auto”: True} or a combination of them. Outlets
are defined as list of dataset {“datasets”: [dataset1, dataset2]}. Any fields for the dataset are templated with
the context when the task is being executed.

Note

Operators can add inlets and outlets automatically if the operator supports it.

In the example DAG task run_me_first is a BashOperator that takes 3 inlets: CAT1, CAT2, CAT3, that are
generated from a list. Note that execution_date is a templated field and will be rendered when the task is running.

Note

Behind the scenes Airflow prepares the lineage metadata as part of the pre_execute method of a task. When the task
has finished execution post_execute is called and lineage metadata is pushed into XCOM. Thus if you are creating
your own operators that override this method make sure to decorate your method with prepare_lineage and apply_lineage
respectively.

Apache Atlas

Airflow can send its lineage metadata to Apache Atlas. You need to enable the atlas backend and configure it
properly, e.g. in your airflow.cfg:

[lineage]
backend = airflow.lineage.backend.atlas

[atlas]
username = my_username
password = my_password
host = host
port = 21000

Please make sure to have the atlasclient package installed.

FAQ

Why isn’t my task getting scheduled?

There are very many reasons why your task might not be getting scheduled.
Here are some of the common causes:

	Does your script “compile”, can the Airflow engine parse it and find your
DAG object. To test this, you can run airflow list_dags and
confirm that your DAG shows up in the list. You can also run
airflow list_tasks foo_dag_id --tree and confirm that your task
shows up in the list as expected. If you use the CeleryExecutor, you
may want to confirm that this works both where the scheduler runs as well
as where the worker runs.

	Does the file containing your DAG contain the string “airflow” and “DAG” somewhere
in the contents? When searching the DAG directory, Airflow ignores files not containing
“airflow” and “DAG” in order to prevent the DagBag parsing from importing all python
files collocated with user’s DAGs.

	Is your start_date set properly? The Airflow scheduler triggers the
task soon after the start_date + scheduler_interval is passed.

	Is your schedule_interval set properly? The default schedule_interval
is one day (datetime.timedelta(1)). You must specify a different schedule_interval
directly to the DAG object you instantiate, not as a default_param, as task instances
do not override their parent DAG’s schedule_interval.

	Is your start_date beyond where you can see it in the UI? If you
set your start_date to some time say 3 months ago, you won’t be able to see
it in the main view in the UI, but you should be able to see it in the
Menu -> Browse ->Task Instances.

	Are the dependencies for the task met. The task instances directly
upstream from the task need to be in a success state. Also,
if you have set depends_on_past=True, the previous task instance
needs to have succeeded (except if it is the first run for that task).
Also, if wait_for_downstream=True, make sure you understand
what it means.
You can view how these properties are set from the Task Instance Details
page for your task.

	Are the DagRuns you need created and active? A DagRun represents a specific
execution of an entire DAG and has a state (running, success, failed, …).
The scheduler creates new DagRun as it moves forward, but never goes back
in time to create new ones. The scheduler only evaluates running DagRuns
to see what task instances it can trigger. Note that clearing tasks
instances (from the UI or CLI) does set the state of a DagRun back to
running. You can bulk view the list of DagRuns and alter states by clicking
on the schedule tag for a DAG.

	Is the concurrency parameter of your DAG reached? concurrency defines
how many running task instances a DAG is allowed to have, beyond which
point things get queued.

	Is the max_active_runs parameter of your DAG reached? max_active_runs defines
how many running concurrent instances of a DAG there are allowed to be.

You may also want to read the Scheduler section of the docs and make
sure you fully understand how it proceeds.

How do I trigger tasks based on another task’s failure?

Check out the Trigger Rule section in the Concepts section of the
documentation.

Why are connection passwords still not encrypted in the metadata db after I installed airflow[crypto]?

Check out the Securing Connections section in the How-to Guides section of the
documentation.

What’s the deal with start_date?

start_date is partly legacy from the pre-DagRun era, but it is still
relevant in many ways. When creating a new DAG, you probably want to set
a global start_date for your tasks using default_args. The first
DagRun to be created will be based on the min(start_date) for all your
task. From that point on, the scheduler creates new DagRuns based on
your schedule_interval and the corresponding task instances run as your
dependencies are met. When introducing new tasks to your DAG, you need to
pay special attention to start_date, and may want to reactivate
inactive DagRuns to get the new task onboarded properly.

We recommend against using dynamic values as start_date, especially
datetime.now() as it can be quite confusing. The task is triggered
once the period closes, and in theory an @hourly DAG would never get to
an hour after now as now() moves along.

Previously we also recommended using rounded start_date in relation to your
schedule_interval. This meant an @hourly would be at 00:00
minutes:seconds, a @daily job at midnight, a @monthly job on the
first of the month. This is no longer required. Airflow will now auto align
the start_date and the schedule_interval, by using the start_date
as the moment to start looking.

You can use any sensor or a TimeDeltaSensor to delay
the execution of tasks within the schedule interval.
While schedule_interval does allow specifying a datetime.timedelta
object, we recommend using the macros or cron expressions instead, as
it enforces this idea of rounded schedules.

When using depends_on_past=True it’s important to pay special attention
to start_date as the past dependency is not enforced only on the specific
schedule of the start_date specified for the task. It’s also
important to watch DagRun activity status in time when introducing
new depends_on_past=True, unless you are planning on running a backfill
for the new task(s).

Also important to note is that the tasks start_date, in the context of a
backfill CLI command, get overridden by the backfill’s command start_date.
This allows for a backfill on tasks that have depends_on_past=True to
actually start, if that wasn’t the case, the backfill just wouldn’t start.

How can I create DAGs dynamically?

Airflow looks in your DAGS_FOLDER for modules that contain DAG objects
in their global namespace, and adds the objects it finds in the
DagBag. Knowing this all we need is a way to dynamically assign
variable in the global namespace, which is easily done in python using the
globals() function for the standard library which behaves like a
simple dictionary.

for i in range(10):
 dag_id = 'foo_{}'.format(i)
 globals()[dag_id] = DAG(dag_id)
 # or better, call a function that returns a DAG object!

What are all the airflow run commands in my process list?

There are many layers of airflow run commands, meaning it can call itself.

	Basic airflow run: fires up an executor, and tell it to run an
airflow run --local command. If using Celery, this means it puts a
command in the queue for it to run remotely on the worker. If using
LocalExecutor, that translates into running it in a subprocess pool.

	Local airflow run --local: starts an airflow run --raw
command (described below) as a subprocess and is in charge of
emitting heartbeats, listening for external kill signals
and ensures some cleanup takes place if the subprocess fails.

	Raw airflow run --raw runs the actual operator’s execute method and
performs the actual work.

How can my airflow dag run faster?

There are three variables we could control to improve airflow dag performance:

	parallelism: This variable controls the number of task instances that the airflow worker can run simultaneously. User could increase the parallelism variable in the airflow.cfg.

	concurrency: The Airflow scheduler will run no more than $concurrency task instances for your DAG at any given time. Concurrency is defined in your Airflow DAG. If you do not set the concurrency on your DAG, the scheduler will use the default value from the dag_concurrency entry in your airflow.cfg.

	max_active_runs: the Airflow scheduler will run no more than max_active_runs DagRuns of your DAG at a given time. If you do not set the max_active_runs in your DAG, the scheduler will use the default value from the max_active_runs_per_dag entry in your airflow.cfg.

How can we reduce the airflow UI page load time?

If your dag takes long time to load, you could reduce the value of default_dag_run_display_number configuration in airflow.cfg to a smaller value. This configurable controls the number of dag run to show in UI with default value 25.

How to fix Exception: Global variable explicit_defaults_for_timestamp needs to be on (1)?

This means explicit_defaults_for_timestamp is disabled in your mysql server and you need to enable it by:

	Set explicit_defaults_for_timestamp = 1 under the mysqld section in your my.cnf file.

	Restart the Mysql server.

How to reduce airflow dag scheduling latency in production?

	max_threads: Scheduler will spawn multiple threads in parallel to schedule dags. This is controlled by max_threads with default value of 2. User should increase this value to a larger value(e.g numbers of cpus where scheduler runs - 1) in production.

	scheduler_heartbeat_sec: User should consider to increase scheduler_heartbeat_sec config to a higher value(e.g 60 secs) which controls how frequent the airflow scheduler gets the heartbeat and updates the job’s entry in database.

API Reference

Operators

Operators allow for generation of certain types of tasks that become nodes in
the DAG when instantiated. All operators derive from BaseOperator and
inherit many attributes and methods that way. Refer to the BaseOperator
documentation for more details.

There are 3 main types of operators:

	Operators that performs an action, or tell another system to
perform an action

	Transfer operators move data from one system to another

	Sensors are a certain type of operator that will keep running until a
certain criterion is met. Examples include a specific file landing in HDFS or
S3, a partition appearing in Hive, or a specific time of the day. Sensors
are derived from BaseSensorOperator and run a poke
method at a specified poke_interval until it returns True.

BaseOperator

All operators are derived from BaseOperator and acquire much
functionality through inheritance. Since this is the core of the engine,
it’s worth taking the time to understand the parameters of BaseOperator
to understand the primitive features that can be leveraged in your
DAGs.

	
class airflow.models.BaseOperator(**kwargs)

	Bases: airflow.utils.log.logging_mixin.LoggingMixin

Abstract base class for all operators. Since operators create objects that
become nodes in the dag, BaseOperator contains many recursive methods for
dag crawling behavior. To derive this class, you are expected to override
the constructor as well as the ‘execute’ method.

Operators derived from this class should perform or trigger certain tasks
synchronously (wait for completion). Example of operators could be an
operator that runs a Pig job (PigOperator), a sensor operator that
waits for a partition to land in Hive (HiveSensorOperator), or one that
moves data from Hive to MySQL (Hive2MySqlOperator). Instances of these
operators (tasks) target specific operations, running specific scripts,
functions or data transfers.

This class is abstract and shouldn’t be instantiated. Instantiating a
class derived from this one results in the creation of a task object,
which ultimately becomes a node in DAG objects. Task dependencies should
be set by using the set_upstream and/or set_downstream methods.

	Parameters

	
	task_id (str) – a unique, meaningful id for the task

	owner (str) – the owner of the task, using the unix username is recommended

	retries (int) – the number of retries that should be performed before
failing the task

	retry_delay (timedelta) – delay between retries

	retry_exponential_backoff (bool) – allow progressive longer waits between
retries by using exponential backoff algorithm on retry delay (delay
will be converted into seconds)

	max_retry_delay (timedelta) – maximum delay interval between retries

	start_date (datetime) – The start_date for the task, determines
the execution_date for the first task instance. The best practice
is to have the start_date rounded
to your DAG’s schedule_interval. Daily jobs have their start_date
some day at 00:00:00, hourly jobs have their start_date at 00:00
of a specific hour. Note that Airflow simply looks at the latest
execution_date and adds the schedule_interval to determine
the next execution_date. It is also very important
to note that different tasks’ dependencies
need to line up in time. If task A depends on task B and their
start_date are offset in a way that their execution_date don’t line
up, A’s dependencies will never be met. If you are looking to delay
a task, for example running a daily task at 2AM, look into the
TimeSensor and TimeDeltaSensor. We advise against using
dynamic start_date and recommend using fixed ones. Read the
FAQ entry about start_date for more information.

	end_date (datetime) – if specified, the scheduler won’t go beyond this date

	depends_on_past (bool) – when set to true, task instances will run
sequentially while relying on the previous task’s schedule to
succeed. The task instance for the start_date is allowed to run.

	wait_for_downstream (bool) – when set to true, an instance of task
X will wait for tasks immediately downstream of the previous instance
of task X to finish successfully before it runs. This is useful if the
different instances of a task X alter the same asset, and this asset
is used by tasks downstream of task X. Note that depends_on_past
is forced to True wherever wait_for_downstream is used.

	queue (str) – which queue to target when running this job. Not
all executors implement queue management, the CeleryExecutor
does support targeting specific queues.

	dag (DAG) – a reference to the dag the task is attached to (if any)

	priority_weight (int) – priority weight of this task against other task.
This allows the executor to trigger higher priority tasks before
others when things get backed up. Set priority_weight as a higher
number for more important tasks.

	weight_rule (str) – weighting method used for the effective total
priority weight of the task. Options are:
{ downstream | upstream | absolute } default is downstream
When set to downstream the effective weight of the task is the
aggregate sum of all downstream descendants. As a result, upstream
tasks will have higher weight and will be scheduled more aggressively
when using positive weight values. This is useful when you have
multiple dag run instances and desire to have all upstream tasks to
complete for all runs before each dag can continue processing
downstream tasks. When set to upstream the effective weight is the
aggregate sum of all upstream ancestors. This is the opposite where
downtream tasks have higher weight and will be scheduled more
aggressively when using positive weight values. This is useful when you
have multiple dag run instances and prefer to have each dag complete
before starting upstream tasks of other dags. When set to
absolute, the effective weight is the exact priority_weight
specified without additional weighting. You may want to do this when
you know exactly what priority weight each task should have.
Additionally, when set to absolute, there is bonus effect of
significantly speeding up the task creation process as for very large
DAGS. Options can be set as string or using the constants defined in
the static class airflow.utils.WeightRule

	pool (str) – the slot pool this task should run in, slot pools are a
way to limit concurrency for certain tasks

	sla (datetime.timedelta) – time by which the job is expected to succeed. Note that
this represents the timedelta after the period is closed. For
example if you set an SLA of 1 hour, the scheduler would send an email
soon after 1:00AM on the 2016-01-02 if the 2016-01-01 instance
has not succeeded yet.
The scheduler pays special attention for jobs with an SLA and
sends alert
emails for sla misses. SLA misses are also recorded in the database
for future reference. All tasks that share the same SLA time
get bundled in a single email, sent soon after that time. SLA
notification are sent once and only once for each task instance.

	execution_timeout (datetime.timedelta) – max time allowed for the execution of
this task instance, if it goes beyond it will raise and fail.

	on_failure_callback (callable) – a function to be called when a task instance
of this task fails. a context dictionary is passed as a single
parameter to this function. Context contains references to related
objects to the task instance and is documented under the macros
section of the API.

	on_retry_callback (callable) – much like the on_failure_callback except
that it is executed when retries occur.

	on_success_callback (callable) – much like the on_failure_callback except
that it is executed when the task succeeds.

	trigger_rule (str) – defines the rule by which dependencies are applied
for the task to get triggered. Options are:
{ all_success | all_failed | all_done | one_success |
one_failed | none_failed | dummy}
default is all_success. Options can be set as string or
using the constants defined in the static class
airflow.utils.TriggerRule

	resources (dict) – A map of resource parameter names (the argument names of the
Resources constructor) to their values.

	run_as_user (str) – unix username to impersonate while running the task

	task_concurrency (int) – When set, a task will be able to limit the concurrent
runs across execution_dates

	executor_config (dict) – Additional task-level configuration parameters that are
interpreted by a specific executor. Parameters are namespaced by the name of
executor.

Example: to run this task in a specific docker container through
the KubernetesExecutor

MyOperator(...,
 executor_config={
 "KubernetesExecutor":
 {"image": "myCustomDockerImage"}
 }
)

	do_xcom_push (bool) – if True, an XCom is pushed containing the Operator’s
result

	
clear(**kwargs)

	Clears the state of task instances associated with the task, following
the parameters specified.

	
dag

	Returns the Operator’s DAG if set, otherwise raises an error

	
deps

	Returns the list of dependencies for the operator. These differ from execution
context dependencies in that they are specific to tasks and can be
extended/overridden by subclasses.

	
downstream_list

	@property: list of tasks directly downstream

	
execute(context)

	This is the main method to derive when creating an operator.
Context is the same dictionary used as when rendering jinja templates.

Refer to get_template_context for more context.

	
get_direct_relative_ids(upstream=False)

	Get the direct relative ids to the current task, upstream or
downstream.

	
get_direct_relatives(upstream=False)

	Get the direct relatives to the current task, upstream or
downstream.

	
get_flat_relative_ids(upstream=False, found_descendants=None)

	Get a flat list of relatives’ ids, either upstream or downstream.

	
get_flat_relatives(upstream=False)

	Get a flat list of relatives, either upstream or downstream.

	
get_task_instances(session, start_date=None, end_date=None)

	Get a set of task instance related to this task for a specific date
range.

	
has_dag()

	Returns True if the Operator has been assigned to a DAG.

	
on_kill()

	Override this method to cleanup subprocesses when a task instance
gets killed. Any use of the threading, subprocess or multiprocessing
module within an operator needs to be cleaned up or it will leave
ghost processes behind.

	
post_execute(context, *args, **kwargs)

	This hook is triggered right after self.execute() is called.
It is passed the execution context and any results returned by the
operator.

	
pre_execute(context, *args, **kwargs)

	This hook is triggered right before self.execute() is called.

	
prepare_template()

	Hook that is triggered after the templated fields get replaced
by their content. If you need your operator to alter the
content of the file before the template is rendered,
it should override this method to do so.

	
render_template(attr, content, context)

	Renders a template either from a file or directly in a field, and returns
the rendered result.

	
render_template_from_field(attr, content, context, jinja_env)

	Renders a template from a field. If the field is a string, it will
simply render the string and return the result. If it is a collection or
nested set of collections, it will traverse the structure and render
all strings in it.

	
run(start_date=None, end_date=None, ignore_first_depends_on_past=False, ignore_ti_state=False, mark_success=False)

	Run a set of task instances for a date range.

	
schedule_interval

	The schedule interval of the DAG always wins over individual tasks so
that tasks within a DAG always line up. The task still needs a
schedule_interval as it may not be attached to a DAG.

	
set_downstream(task_or_task_list)

	Set a task or a task list to be directly downstream from the current
task.

	
set_upstream(task_or_task_list)

	Set a task or a task list to be directly upstream from the current
task.

	
upstream_list

	@property: list of tasks directly upstream

	
xcom_pull(context, task_ids=None, dag_id=None, key=u'return_value', include_prior_dates=None)

	See TaskInstance.xcom_pull()

	
xcom_push(context, key, value, execution_date=None)

	See TaskInstance.xcom_push()

BaseSensorOperator

All sensors are derived from BaseSensorOperator. All sensors inherit
the timeout and poke_interval on top of the BaseOperator
attributes.

	
class airflow.sensors.base_sensor_operator.BaseSensorOperator(**kwargs)

	Bases: airflow.models.BaseOperator, airflow.models.SkipMixin

Sensor operators are derived from this class and inherit these attributes.

Sensor operators keep executing at a time interval and succeed when
a criteria is met and fail if and when they time out.

	Parameters

	
	soft_fail (bool) – Set to true to mark the task as SKIPPED on failure

	poke_interval (int) – Time in seconds that the job should wait in
between each tries

	timeout (int) – Time, in seconds before the task times out and fails.

	mode (str) – How the sensor operates.
Options are: { poke | reschedule }, default is poke.
When set to poke the sensor is taking up a worker slot for its
whole execution time and sleeps between pokes. Use this mode if the
expected runtime of the sensor is short or if a short poke interval
is required.
When set to reschedule the sensor task frees the worker slot when
the criteria is not yet met and it’s rescheduled at a later time. Use
this mode if the expected time until the criteria is met is. The poke
inteval should be more than one minute to prevent too much load on
the scheduler.

	
deps

	Adds one additional dependency for all sensor operators that
checks if a sensor task instance can be rescheduled.

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

Core Operators

Operators

	
class airflow.operators.bash_operator.BashOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Execute a Bash script, command or set of commands.

	Parameters

	
	bash_command (str) – The command, set of commands or reference to a
bash script (must be ‘.sh’) to be executed. (templated)

	xcom_push (bool) – If xcom_push is True, the last line written to stdout
will also be pushed to an XCom when the bash command completes.

	env (dict) – If env is not None, it must be a mapping that defines the
environment variables for the new process; these are used instead
of inheriting the current process environment, which is the default
behavior. (templated)

	output_encoding (str) – Output encoding of bash command

On execution of this operator the task will be up for retry
when exception is raised. However, if a sub-command exits with non-zero
value Airflow will not recognize it as failure unless the whole shell exits
with a failure. The easiest way of achieving this is to prefix the command
with set -e;
Example:

bash_command = "set -e; python3 script.py '{{ next_execution_date }}'"

	
execute(context)

	Execute the bash command in a temporary directory
which will be cleaned afterwards

	
class airflow.operators.python_operator.BranchPythonOperator(**kwargs)

	Bases: airflow.operators.python_operator.PythonOperator, airflow.models.SkipMixin

Allows a workflow to “branch” or follow a path following the execution
of this task.

It derives the PythonOperator and expects a Python function that returns
a single task_id or list of task_ids to follow. The task_id(s) returned
should point to a task directly downstream from {self}. All other “branches”
or directly downstream tasks are marked with a state of skipped so that
these paths can’t move forward. The skipped states are propagated
downstream to allow for the DAG state to fill up and the DAG run’s state
to be inferred.

Note that using tasks with depends_on_past=True downstream from
BranchPythonOperator is logically unsound as skipped status
will invariably lead to block tasks that depend on their past successes.
skipped states propagates where all directly upstream tasks are
skipped.

	
class airflow.operators.check_operator.CheckOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Performs checks against a db. The CheckOperator expects
a sql query that will return a single row. Each value on that
first row is evaluated using python bool casting. If any of the
values return False the check is failed and errors out.

Note that Python bool casting evals the following as False:

	False

	0

	Empty string ("")

	Empty list ([])

	Empty dictionary or set ({})

Given a query like SELECT COUNT(*) FROM foo, it will fail only if
the count == 0. You can craft much more complex query that could,
for instance, check that the table has the same number of rows as
the source table upstream, or that the count of today’s partition is
greater than yesterday’s partition, or that a set of metrics are less
than 3 standard deviation for the 7 day average.

This operator can be used as a data quality check in your pipeline, and
depending on where you put it in your DAG, you have the choice to
stop the critical path, preventing from
publishing dubious data, or on the side and receive email alerts
without stopping the progress of the DAG.

Note that this is an abstract class and get_db_hook
needs to be defined. Whereas a get_db_hook is hook that gets a
single record from an external source.

	Parameters

	sql (str) – the sql to be executed. (templated)

	
class airflow.operators.docker_operator.DockerOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Execute a command inside a docker container.

A temporary directory is created on the host and
mounted into a container to allow storing files
that together exceed the default disk size of 10GB in a container.
The path to the mounted directory can be accessed
via the environment variable AIRFLOW_TMP_DIR.

If a login to a private registry is required prior to pulling the image, a
Docker connection needs to be configured in Airflow and the connection ID
be provided with the parameter docker_conn_id.

	Parameters

	
	image (str) – Docker image from which to create the container.
If image tag is omitted, “latest” will be used.

	api_version (str) – Remote API version. Set to auto to automatically
detect the server’s version.

	auto_remove (bool) – Auto-removal of the container on daemon side when the
container’s process exits.
The default is False.

	command (str or list) – Command to be run in the container. (templated)

	cpus (float) – Number of CPUs to assign to the container.
This value gets multiplied with 1024. See
https://docs.docker.com/engine/reference/run/#cpu-share-constraint

	dns (list of strings) – Docker custom DNS servers

	dns_search (list of strings) – Docker custom DNS search domain

	docker_url (str) – URL of the host running the docker daemon.
Default is unix://var/run/docker.sock

	environment (dict) – Environment variables to set in the container. (templated)

	force_pull (bool) – Pull the docker image on every run. Default is False.

	mem_limit (float or str) – Maximum amount of memory the container can use.
Either a float value, which represents the limit in bytes,
or a string like 128m or 1g.

	network_mode (str) – Network mode for the container.

	tls_ca_cert (str) – Path to a PEM-encoded certificate authority
to secure the docker connection.

	tls_client_cert (str) – Path to the PEM-encoded certificate
used to authenticate docker client.

	tls_client_key (str) – Path to the PEM-encoded key used to authenticate docker client.

	tls_hostname (str or bool) – Hostname to match against
the docker server certificate or False to disable the check.

	tls_ssl_version (str) – Version of SSL to use when communicating with docker daemon.

	tmp_dir (str) – Mount point inside the container to
a temporary directory created on the host by the operator.
The path is also made available via the environment variable
AIRFLOW_TMP_DIR inside the container.

	user (int or str) – Default user inside the docker container.

	volumes – List of volumes to mount into the container, e.g.
['/host/path:/container/path', '/host/path2:/container/path2:ro'].

	working_dir (str) – Working directory to
set on the container (equivalent to the -w switch the docker client)

	xcom_push (bool) – Does the stdout will be pushed to the next step using XCom.
The default is False.

	xcom_all (bool) – Push all the stdout or just the last line.
The default is False (last line).

	docker_conn_id (str) – ID of the Airflow connection to use

	shm_size (int) – Size of /dev/shm in bytes. The size must be
greater than 0. If omitted uses system default.

	
class airflow.operators.dummy_operator.DummyOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Operator that does literally nothing. It can be used to group tasks in a
DAG.

	
class airflow.operators.druid_check_operator.DruidCheckOperator(**kwargs)

	Bases: airflow.operators.check_operator.CheckOperator

Performs checks against Druid. The DruidCheckOperator expects
a sql query that will return a single row. Each value on that
first row is evaluated using python bool casting. If any of the
values return False the check is failed and errors out.

Note that Python bool casting evals the following as False:

	False

	0

	Empty string ("")

	Empty list ([])

	Empty dictionary or set ({})

Given a query like SELECT COUNT(*) FROM foo, it will fail only if
the count == 0. You can craft much more complex query that could,
for instance, check that the table has the same number of rows as
the source table upstream, or that the count of today’s partition is
greater than yesterday’s partition, or that a set of metrics are less
than 3 standard deviation for the 7 day average.
This operator can be used as a data quality check in your pipeline, and
depending on where you put it in your DAG, you have the choice to
stop the critical path, preventing from
publishing dubious data, or on the side and receive email alterts
without stopping the progress of the DAG.

	Parameters

	
	sql (str) – the sql to be executed

	druid_broker_conn_id (str) – reference to the druid broker

	
get_db_hook()

	Return the druid db api hook.

	
get_first(sql)

	Executes the druid sql to druid broker and returns the first resulting row.

	Parameters

	sql (str) – the sql statement to be executed (str)

	
class airflow.operators.email_operator.EmailOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Sends an email.

	Parameters

	
	to (list or string (comma or semicolon delimited)) – list of emails to send the email to. (templated)

	subject (str) – subject line for the email. (templated)

	html_content (str) – content of the email, html markup
is allowed. (templated)

	files (list) – file names to attach in email

	cc (list or string (comma or semicolon delimited)) – list of recipients to be added in CC field

	bcc (list or string (comma or semicolon delimited)) – list of recipients to be added in BCC field

	mime_subtype (str) – MIME sub content type

	mime_charset (str) – character set parameter added to the Content-Type
header.

	
class airflow.operators.generic_transfer.GenericTransfer(**kwargs)

	Bases: airflow.models.BaseOperator

Moves data from a connection to another, assuming that they both
provide the required methods in their respective hooks. The source hook
needs to expose a get_records method, and the destination a
insert_rows method.

This is meant to be used on small-ish datasets that fit in memory.

	Parameters

	
	sql (str) – SQL query to execute against the source database. (templated)

	destination_table (str) – target table. (templated)

	source_conn_id (str) – source connection

	destination_conn_id (str) – source connection

	preoperator (str or list of str) – sql statement or list of statements to be
executed prior to loading the data. (templated)

	
class airflow.operators.hive_to_druid.HiveToDruidTransfer(**kwargs)

	Bases: airflow.models.BaseOperator

Moves data from Hive to Druid, [del]note that for now the data is loaded
into memory before being pushed to Druid, so this operator should
be used for smallish amount of data.[/del]

	Parameters

	
	sql (str) – SQL query to execute against the Druid database. (templated)

	druid_datasource (str) – the datasource you want to ingest into in druid

	ts_dim (str) – the timestamp dimension

	metric_spec (list) – the metrics you want to define for your data

	hive_cli_conn_id (str) – the hive connection id

	druid_ingest_conn_id (str) – the druid ingest connection id

	metastore_conn_id (str) – the metastore connection id

	hadoop_dependency_coordinates (list of str) – list of coordinates to squeeze
int the ingest json

	intervals (list) – list of time intervals that defines segments,
this is passed as is to the json object. (templated)

	hive_tblproperties (dict) – additional properties for tblproperties in
hive for the staging table

	job_properties (dict) – additional properties for job

	
construct_ingest_query(static_path, columns)

	Builds an ingest query for an HDFS TSV load.

	Parameters

	
	static_path (str) – The path on hdfs where the data is

	columns (list) – List of all the columns that are available

	
class airflow.operators.hive_to_mysql.HiveToMySqlTransfer(**kwargs)

	Bases: airflow.models.BaseOperator

Moves data from Hive to MySQL, note that for now the data is loaded
into memory before being pushed to MySQL, so this operator should
be used for smallish amount of data.

	Parameters

	
	sql (str) – SQL query to execute against Hive server. (templated)

	mysql_table (str) – target MySQL table, use dot notation to target a
specific database. (templated)

	mysql_conn_id (str) – source mysql connection

	hiveserver2_conn_id (str) – destination hive connection

	mysql_preoperator (str) – sql statement to run against mysql prior to
import, typically use to truncate of delete in place
of the data coming in, allowing the task to be idempotent (running
the task twice won’t double load data). (templated)

	mysql_postoperator (str) – sql statement to run against mysql after the
import, typically used to move data from staging to
production and issue cleanup commands. (templated)

	bulk_load (bool) – flag to use bulk_load option. This loads mysql directly
from a tab-delimited text file using the LOAD DATA LOCAL INFILE command.
This option requires an extra connection parameter for the
destination MySQL connection: {‘local_infile’: true}.

	
class airflow.operators.hive_operator.HiveOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Executes hql code or hive script in a specific Hive database.

	Parameters

	
	hql (str) – the hql to be executed. Note that you may also use
a relative path from the dag file of a (template) hive
script. (templated)

	hive_cli_conn_id (str) – reference to the Hive database. (templated)

	hiveconfs (dict) – if defined, these key value pairs will be passed
to hive as -hiveconf "key"="value"

	hiveconf_jinja_translate (bool) – when True, hiveconf-type templating
${var} gets translated into jinja-type templating {{ var }} and
${hiveconf:var} gets translated into jinja-type templating {{ var }}.
Note that you may want to use this along with the
DAG(user_defined_macros=myargs) parameter. View the DAG
object documentation for more details.

	script_begin_tag (str) – If defined, the operator will get rid of the
part of the script before the first occurrence of script_begin_tag

	mapred_queue (str) – queue used by the Hadoop CapacityScheduler. (templated)

	mapred_queue_priority (str) – priority within CapacityScheduler queue.
Possible settings include: VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW

	mapred_job_name (str) – This name will appear in the jobtracker.
This can make monitoring easier.

	
class airflow.operators.hive_stats_operator.HiveStatsCollectionOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Gathers partition statistics using a dynamically generated Presto
query, inserts the stats into a MySql table with this format. Stats
overwrite themselves if you rerun the same date/partition.

CREATE TABLE hive_stats (
 ds VARCHAR(16),
 table_name VARCHAR(500),
 metric VARCHAR(200),
 value BIGINT
);

	Parameters

	
	table (str) – the source table, in the format database.table_name. (templated)

	partition (dict of {col:value}) – the source partition. (templated)

	extra_exprs (dict) – dict of expression to run against the table where
keys are metric names and values are Presto compatible expressions

	col_blacklist (list) – list of columns to blacklist, consider
blacklisting blobs, large json columns, …

	assignment_func (function) – a function that receives a column name and
a type, and returns a dict of metric names and an Presto expressions.
If None is returned, the global defaults are applied. If an
empty dictionary is returned, no stats are computed for that
column.

	
class airflow.operators.check_operator.IntervalCheckOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Checks that the values of metrics given as SQL expressions are within
a certain tolerance of the ones from days_back before.

Note that this is an abstract class and get_db_hook
needs to be defined. Whereas a get_db_hook is hook that gets a
single record from an external source.

	Parameters

	
	table (str) – the table name

	days_back (int) – number of days between ds and the ds we want to check
against. Defaults to 7 days

	metrics_threshold (dict) – a dictionary of ratios indexed by metrics

	
class airflow.operators.latest_only_operator.LatestOnlyOperator(**kwargs)

	Bases: airflow.models.BaseOperator, airflow.models.SkipMixin

Allows a workflow to skip tasks that are not running during the most
recent schedule interval.

If the task is run outside of the latest schedule interval, all
directly downstream tasks will be skipped.

	
class airflow.operators.mssql_operator.MsSqlOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Executes sql code in a specific Microsoft SQL database

	Parameters

	
	sql (str or string pointing to a template file with .sql
extension. (templated)) – the sql code to be executed

	mssql_conn_id (str) – reference to a specific mssql database

	parameters (mapping or iterable) – (optional) the parameters to render the SQL query with.

	autocommit (bool) – if True, each command is automatically committed.
(default value: False)

	database (str) – name of database which overwrite defined one in connection

	
class airflow.operators.mssql_to_hive.MsSqlToHiveTransfer(**kwargs)

	Bases: airflow.models.BaseOperator

Moves data from Microsoft SQL Server to Hive. The operator runs
your query against Microsoft SQL Server, stores the file locally
before loading it into a Hive table. If the create or
recreate arguments are set to True,
a CREATE TABLE and DROP TABLE statements are generated.
Hive data types are inferred from the cursor’s metadata.
Note that the table generated in Hive uses STORED AS textfile
which isn’t the most efficient serialization format. If a
large amount of data is loaded and/or if the table gets
queried considerably, you may want to use this operator only to
stage the data into a temporary table before loading it into its
final destination using a HiveOperator.

	Parameters

	
	sql (str) – SQL query to execute against the Microsoft SQL Server
database. (templated)

	hive_table (str) – target Hive table, use dot notation to target a specific
database. (templated)

	create (bool) – whether to create the table if it doesn’t exist

	recreate (bool) – whether to drop and recreate the table at every execution

	partition (dict) – target partition as a dict of partition columns and
values. (templated)

	delimiter (str) – field delimiter in the file

	mssql_conn_id (str) – source Microsoft SQL Server connection

	hive_conn_id (str) – destination hive connection

	tblproperties (dict) – TBLPROPERTIES of the hive table being created

	
class airflow.operators.mysql_operator.MySqlOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Executes sql code in a specific MySQL database

	Parameters

	
	sql (Can receive a str representing a sql statement,
a list of str (sql statements), or reference to a template file.
Template reference are recognized by str ending in '.sql') – the sql code to be executed. (templated)

	mysql_conn_id (str) – reference to a specific mysql database

	parameters (mapping or iterable) – (optional) the parameters to render the SQL query with.

	autocommit (bool) – if True, each command is automatically committed.
(default value: False)

	database (str) – name of database which overwrite defined one in connection

	
class airflow.operators.mysql_to_hive.MySqlToHiveTransfer(**kwargs)

	Bases: airflow.models.BaseOperator

Moves data from MySql to Hive. The operator runs your query against
MySQL, stores the file locally before loading it into a Hive table.
If the create or recreate arguments are set to True,
a CREATE TABLE and DROP TABLE statements are generated.
Hive data types are inferred from the cursor’s metadata. Note that the
table generated in Hive uses STORED AS textfile
which isn’t the most efficient serialization format. If a
large amount of data is loaded and/or if the table gets
queried considerably, you may want to use this operator only to
stage the data into a temporary table before loading it into its
final destination using a HiveOperator.

	Parameters

	
	sql (str) – SQL query to execute against the MySQL database. (templated)

	hive_table (str) – target Hive table, use dot notation to target a
specific database. (templated)

	create (bool) – whether to create the table if it doesn’t exist

	recreate (bool) – whether to drop and recreate the table at every
execution

	partition (dict) – target partition as a dict of partition columns
and values. (templated)

	delimiter (str) – field delimiter in the file

	mysql_conn_id (str) – source mysql connection

	hive_conn_id (str) – destination hive connection

	tblproperties (dict) – TBLPROPERTIES of the hive table being created

	
class airflow.operators.pig_operator.PigOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Executes pig script.

	Parameters

	
	pig (str) – the pig latin script to be executed. (templated)

	pig_cli_conn_id (str) – reference to the Hive database

	pigparams_jinja_translate (bool) – when True, pig params-type templating
${var} gets translated into jinja-type templating {{ var }}. Note that
you may want to use this along with the
DAG(user_defined_macros=myargs) parameter. View the DAG
object documentation for more details.

	
class airflow.operators.postgres_operator.PostgresOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Executes sql code in a specific Postgres database

	Parameters

	
	sql (Can receive a str representing a sql statement,
a list of str (sql statements), or reference to a template file.
Template reference are recognized by str ending in '.sql') – the sql code to be executed. (templated)

	postgres_conn_id (str) – reference to a specific postgres database

	autocommit (bool) – if True, each command is automatically committed.
(default value: False)

	parameters (mapping or iterable) – (optional) the parameters to render the SQL query with.

	database (str) – name of database which overwrite defined one in connection

	
class airflow.operators.presto_check_operator.PrestoCheckOperator(**kwargs)

	Bases: airflow.operators.check_operator.CheckOperator

Performs checks against Presto. The PrestoCheckOperator expects
a sql query that will return a single row. Each value on that
first row is evaluated using python bool casting. If any of the
values return False the check is failed and errors out.

Note that Python bool casting evals the following as False:

	False

	0

	Empty string ("")

	Empty list ([])

	Empty dictionary or set ({})

Given a query like SELECT COUNT(*) FROM foo, it will fail only if
the count == 0. You can craft much more complex query that could,
for instance, check that the table has the same number of rows as
the source table upstream, or that the count of today’s partition is
greater than yesterday’s partition, or that a set of metrics are less
than 3 standard deviation for the 7 day average.

This operator can be used as a data quality check in your pipeline, and
depending on where you put it in your DAG, you have the choice to
stop the critical path, preventing from
publishing dubious data, or on the side and receive email alterts
without stopping the progress of the DAG.

	Parameters

	
	sql (str) – the sql to be executed

	presto_conn_id (str) – reference to the Presto database

	
class airflow.operators.presto_check_operator.PrestoIntervalCheckOperator(**kwargs)

	Bases: airflow.operators.check_operator.IntervalCheckOperator

Checks that the values of metrics given as SQL expressions are within
a certain tolerance of the ones from days_back before.

	Parameters

	
	table (str) – the table name

	days_back (int) – number of days between ds and the ds we want to check
against. Defaults to 7 days

	metrics_threshold (dict) – a dictionary of ratios indexed by metrics

	presto_conn_id (str) – reference to the Presto database

	
class airflow.operators.presto_to_mysql.PrestoToMySqlTransfer(**kwargs)

	Bases: airflow.models.BaseOperator

Moves data from Presto to MySQL, note that for now the data is loaded
into memory before being pushed to MySQL, so this operator should
be used for smallish amount of data.

	Parameters

	
	sql (str) – SQL query to execute against Presto. (templated)

	mysql_table (str) – target MySQL table, use dot notation to target a
specific database. (templated)

	mysql_conn_id (str) – source mysql connection

	presto_conn_id (str) – source presto connection

	mysql_preoperator (str) – sql statement to run against mysql prior to
import, typically use to truncate of delete in place
of the data coming in, allowing the task to be idempotent (running
the task twice won’t double load data). (templated)

	
class airflow.operators.presto_check_operator.PrestoValueCheckOperator(**kwargs)

	Bases: airflow.operators.check_operator.ValueCheckOperator

Performs a simple value check using sql code.

	Parameters

	
	sql (str) – the sql to be executed

	presto_conn_id (str) – reference to the Presto database

	
class airflow.operators.python_operator.PythonOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Executes a Python callable

	Parameters

	
	python_callable (python callable) – A reference to an object that is callable

	op_kwargs (dict) – a dictionary of keyword arguments that will get unpacked
in your function

	op_args (list) – a list of positional arguments that will get unpacked when
calling your callable

	provide_context (bool) – if set to true, Airflow will pass a set of
keyword arguments that can be used in your function. This set of
kwargs correspond exactly to what you can use in your jinja
templates. For this to work, you need to define **kwargs in your
function header.

	templates_dict (dict of str) – a dictionary where the values are templates that
will get templated by the Airflow engine sometime between
__init__ and execute takes place and are made available
in your callable’s context after the template has been applied. (templated)

	templates_exts (list(str)) – a list of file extensions to resolve while
processing templated fields, for examples ['.sql', '.hql']

	
class airflow.operators.python_operator.PythonVirtualenvOperator(**kwargs)

	Bases: airflow.operators.python_operator.PythonOperator

Allows one to run a function in a virtualenv that is created and destroyed
automatically (with certain caveats).

The function must be defined using def, and not be
part of a class. All imports must happen inside the function
and no variables outside of the scope may be referenced. A global scope
variable named virtualenv_string_args will be available (populated by
string_args). In addition, one can pass stuff through op_args and op_kwargs, and one
can use a return value.
Note that if your virtualenv runs in a different Python major version than Airflow,
you cannot use return values, op_args, or op_kwargs. You can use string_args though.

	Parameters

	
	python_callable (function) – A python function with no references to outside variables,
defined with def, which will be run in a virtualenv

	requirements (list(str)) – A list of requirements as specified in a pip install command

	python_version (str) – The Python version to run the virtualenv with. Note that
both 2 and 2.7 are acceptable forms.

	use_dill (bool) – Whether to use dill to serialize
the args and result (pickle is default). This allow more complex types
but requires you to include dill in your requirements.

	system_site_packages (bool) – Whether to include
system_site_packages in your virtualenv.
See virtualenv documentation for more information.

	op_args – A list of positional arguments to pass to python_callable.

	op_kwargs (dict) – A dict of keyword arguments to pass to python_callable.

	string_args (list(str)) – Strings that are present in the global var virtualenv_string_args,
available to python_callable at runtime as a list(str). Note that args are split
by newline.

	templates_dict (dict of str) – a dictionary where the values are templates that
will get templated by the Airflow engine sometime between
__init__ and execute takes place and are made available
in your callable’s context after the template has been applied

	templates_exts (list(str)) – a list of file extensions to resolve while
processing templated fields, for examples ['.sql', '.hql']

	
class airflow.operators.s3_file_transform_operator.S3FileTransformOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Copies data from a source S3 location to a temporary location on the
local filesystem. Runs a transformation on this file as specified by
the transformation script and uploads the output to a destination S3
location.

The locations of the source and the destination files in the local
filesystem is provided as an first and second arguments to the
transformation script. The transformation script is expected to read the
data from source, transform it and write the output to the local
destination file. The operator then takes over control and uploads the
local destination file to S3.

S3 Select is also available to filter the source contents. Users can
omit the transformation script if S3 Select expression is specified.

	Parameters

	
	source_s3_key (str) – The key to be retrieved from S3. (templated)

	source_aws_conn_id (str) – source s3 connection

	source_verify (bool or str) – Whether or not to verify SSL certificates for S3 connetion.
By default SSL certificates are verified.
You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used

	(unless use_ssl is False), but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

This is also applicable to dest_verify.

	dest_s3_key (str) – The key to be written from S3. (templated)

	dest_aws_conn_id (str) – destination s3 connection

	replace (bool) – Replace dest S3 key if it already exists

	transform_script (str) – location of the executable transformation script

	select_expression (str) – S3 Select expression

	
class airflow.operators.s3_to_hive_operator.S3ToHiveTransfer(**kwargs)

	Bases: airflow.models.BaseOperator

Moves data from S3 to Hive. The operator downloads a file from S3,
stores the file locally before loading it into a Hive table.
If the create or recreate arguments are set to True,
a CREATE TABLE and DROP TABLE statements are generated.
Hive data types are inferred from the cursor’s metadata from.

Note that the table generated in Hive uses STORED AS textfile
which isn’t the most efficient serialization format. If a
large amount of data is loaded and/or if the tables gets
queried considerably, you may want to use this operator only to
stage the data into a temporary table before loading it into its
final destination using a HiveOperator.

	Parameters

	
	s3_key (str) – The key to be retrieved from S3. (templated)

	field_dict (dict) – A dictionary of the fields name in the file
as keys and their Hive types as values

	hive_table (str) – target Hive table, use dot notation to target a
specific database. (templated)

	create (bool) – whether to create the table if it doesn’t exist

	recreate (bool) – whether to drop and recreate the table at every
execution

	partition (dict) – target partition as a dict of partition columns
and values. (templated)

	headers (bool) – whether the file contains column names on the first
line

	check_headers (bool) – whether the column names on the first line should be
checked against the keys of field_dict

	wildcard_match (bool) – whether the s3_key should be interpreted as a Unix
wildcard pattern

	delimiter (str) – field delimiter in the file

	aws_conn_id (str) – source s3 connection

	verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.
You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used

	(unless use_ssl is False), but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

	hive_cli_conn_id (str) – destination hive connection

	input_compressed (bool) – Boolean to determine if file decompression is
required to process headers

	tblproperties (dict) – TBLPROPERTIES of the hive table being created

	select_expression (str) – S3 Select expression

	
class airflow.operators.s3_to_redshift_operator.S3ToRedshiftTransfer(**kwargs)

	Bases: airflow.models.BaseOperator

Executes an COPY command to load files from s3 to Redshift

	Parameters

	
	schema (str) – reference to a specific schema in redshift database

	table (str) – reference to a specific table in redshift database

	s3_bucket (str) – reference to a specific S3 bucket

	s3_key (str) – reference to a specific S3 key

	redshift_conn_id (str) – reference to a specific redshift database

	aws_conn_id (str) – reference to a specific S3 connection

	verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.
You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used

	(unless use_ssl is False), but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

	copy_options (list) – reference to a list of COPY options

	
class airflow.operators.python_operator.ShortCircuitOperator(**kwargs)

	Bases: airflow.operators.python_operator.PythonOperator, airflow.models.SkipMixin

Allows a workflow to continue only if a condition is met. Otherwise, the
workflow “short-circuits” and downstream tasks are skipped.

The ShortCircuitOperator is derived from the PythonOperator. It evaluates a
condition and short-circuits the workflow if the condition is False. Any
downstream tasks are marked with a state of “skipped”. If the condition is
True, downstream tasks proceed as normal.

The condition is determined by the result of python_callable.

	
class airflow.operators.http_operator.SimpleHttpOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Calls an endpoint on an HTTP system to execute an action

	Parameters

	
	http_conn_id (str) – The connection to run the operator against

	endpoint (str) – The relative part of the full url. (templated)

	method (str) – The HTTP method to use, default = “POST”

	data (For POST/PUT, depends on the content-type parameter,
for GET a dictionary of key/value string pairs) – The data to pass. POST-data in POST/PUT and params
in the URL for a GET request. (templated)

	headers (a dictionary of string key/value pairs) – The HTTP headers to be added to the GET request

	response_check (A lambda or defined function.) – A check against the ‘requests’ response object.
Returns True for ‘pass’ and False otherwise.

	extra_options (A dictionary of options, where key is string and value
depends on the option that's being modified.) – Extra options for the ‘requests’ library, see the
‘requests’ documentation (options to modify timeout, ssl, etc.)

	xcom_push (bool) – Push the response to Xcom (default: False).
If xcom_push is True, response of an HTTP request will also
be pushed to an XCom.

	log_response (bool) – Log the response (default: False)

	
class airflow.operators.slack_operator.SlackAPIOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Base Slack Operator
The SlackAPIPostOperator is derived from this operator.
In the future additional Slack API Operators will be derived from this class as well

	Parameters

	
	slack_conn_id (str) – Slack connection ID which its password is Slack API token

	token (str) – Slack API token (https://api.slack.com/web)

	method (str) – The Slack API Method to Call (https://api.slack.com/methods)

	api_params (dict) – API Method call parameters (https://api.slack.com/methods)

	
construct_api_call_params()

	Used by the execute function. Allows templating on the source fields
of the api_call_params dict before construction

Override in child classes.
Each SlackAPIOperator child class is responsible for
having a construct_api_call_params function
which sets self.api_call_params with a dict of
API call parameters (https://api.slack.com/methods)

	
execute(**kwargs)

	SlackAPIOperator calls will not fail even if the call is not unsuccessful.
It should not prevent a DAG from completing in success

	
class airflow.operators.slack_operator.SlackAPIPostOperator(**kwargs)

	Bases: airflow.operators.slack_operator.SlackAPIOperator

Posts messages to a slack channel

	Parameters

	
	channel (str) – channel in which to post message on slack name (#general) or
ID (C12318391). (templated)

	username (str) – Username that airflow will be posting to Slack as. (templated)

	text (str) – message to send to slack. (templated)

	icon_url (str) – url to icon used for this message

	attachments (array of hashes) – extra formatting details. (templated)
- see https://api.slack.com/docs/attachments.

	
construct_api_call_params()

	Used by the execute function. Allows templating on the source fields
of the api_call_params dict before construction

Override in child classes.
Each SlackAPIOperator child class is responsible for
having a construct_api_call_params function
which sets self.api_call_params with a dict of
API call parameters (https://api.slack.com/methods)

	
class airflow.operators.sqlite_operator.SqliteOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Executes sql code in a specific Sqlite database

	Parameters

	
	sql (str or string pointing to a template file. File must have
a '.sql' extensions.) – the sql code to be executed. (templated)

	sqlite_conn_id (str) – reference to a specific sqlite database

	parameters (mapping or iterable) – (optional) the parameters to render the SQL query with.

	
class airflow.operators.subdag_operator.SubDagOperator(**kwargs)

	Bases: airflow.models.BaseOperator

This runs a sub dag. By convention, a sub dag’s dag_id
should be prefixed by its parent and a dot. As in parent.child.

	Parameters

	
	subdag (airflow.DAG.) – the DAG object to run as a subdag of the current DAG.

	dag (airflow.DAG.) – the parent DAG for the subdag.

	executor (airflow.executors.) – the executor for this subdag. Default to use SequentialExecutor.
Please find AIRFLOW-74 for more details.

	
class airflow.operators.dagrun_operator.TriggerDagRunOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Triggers a DAG run for a specified dag_id

	Parameters

	
	trigger_dag_id (str) – the dag_id to trigger (templated)

	python_callable (python callable) – a reference to a python function that will be
called while passing it the context object and a placeholder
object obj for your callable to fill and return if you want
a DagRun created. This obj object contains a run_id and
payload attribute that you can modify in your function.
The run_id should be a unique identifier for that DAG run, and
the payload has to be a picklable object that will be made available
to your tasks while executing that DAG run. Your function header
should look like def foo(context, dag_run_obj):

	execution_date (str or datetime.datetime) – Execution date for the dag (templated)

	
class airflow.operators.check_operator.ValueCheckOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Performs a simple value check using sql code.

Note that this is an abstract class and get_db_hook
needs to be defined. Whereas a get_db_hook is hook that gets a
single record from an external source.

	Parameters

	sql (str) – the sql to be executed. (templated)

	
class airflow.operators.redshift_to_s3_operator.RedshiftToS3Transfer(**kwargs)

	Bases: airflow.models.BaseOperator

Executes an UNLOAD command to s3 as a CSV with headers

	Parameters

	
	schema (str) – reference to a specific schema in redshift database

	table (str) – reference to a specific table in redshift database

	s3_bucket (str) – reference to a specific S3 bucket

	s3_key (str) – reference to a specific S3 key

	redshift_conn_id (str) – reference to a specific redshift database

	aws_conn_id (str) – reference to a specific S3 connection

	verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.
You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used

	(unless use_ssl is False), but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

	unload_options (list) – reference to a list of UNLOAD options

Sensors

	
class airflow.sensors.external_task_sensor.ExternalTaskSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a different DAG or a task in a different DAG to complete for a
specific execution_date

	Parameters

	
	external_dag_id (str) – The dag_id that contains the task you want to
wait for

	external_task_id (str) – The task_id that contains the task you want to
wait for. If None the sensor waits for the DAG

	allowed_states (list) – list of allowed states, default is ['success']

	execution_delta (datetime.timedelta) – time difference with the previous execution to
look at, the default is the same execution_date as the current task or DAG.
For yesterday, use [positive!] datetime.timedelta(days=1). Either
execution_delta or execution_date_fn can be passed to
ExternalTaskSensor, but not both.

	execution_date_fn (callable) – function that receives the current execution date
and returns the desired execution dates to query. Either execution_delta
or execution_date_fn can be passed to ExternalTaskSensor, but not both.

	check_existence (bool) – Set to True to check if the external task exists (when
external_task_id is not None) or check if the DAG to wait for exists (when
external_task_id is None), and immediately cease waiting if the external task
or DAG does not exist (default value: False).

	
poke(**kwargs)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.sensors.hdfs_sensor.HdfsSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a file or folder to land in HDFS

	
static filter_for_filesize(result, size=None)

	Will test the filepath result and test if its size is at least self.filesize

	Parameters

	
	result – a list of dicts returned by Snakebite ls

	size – the file size in MB a file should be at least to trigger True

	Returns

	(bool) depending on the matching criteria

	
static filter_for_ignored_ext(result, ignored_ext, ignore_copying)

	Will filter if instructed to do so the result to remove matching criteria

	Parameters

	
	result – (list) of dicts returned by Snakebite ls

	ignored_ext – (list) of ignored extensions

	ignore_copying – (bool) shall we ignore ?

	Returns

	(list) of dicts which were not removed

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.sensors.hive_partition_sensor.HivePartitionSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a partition to show up in Hive.

Note: Because partition supports general logical operators, it
can be inefficient. Consider using NamedHivePartitionSensor instead if
you don’t need the full flexibility of HivePartitionSensor.

	Parameters

	
	table (str) – The name of the table to wait for, supports the dot
notation (my_database.my_table)

	partition (str) – The partition clause to wait for. This is passed as
is to the metastore Thrift client get_partitions_by_filter method,
and apparently supports SQL like notation as in ds='2015-01-01'
AND type='value' and comparison operators as in "ds>=2015-01-01"

	metastore_conn_id (str) – reference to the metastore thrift service
connection id

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.sensors.http_sensor.HttpSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Executes a HTTP GET statement and returns False on failure caused by
404 Not Found or response_check returning False.

HTTP Error codes other than 404 (like 403) or Connection Refused Error
would fail the sensor itself directly (no more poking).

	Parameters

	
	http_conn_id (str) – The connection to run the sensor against

	method (str) – The HTTP request method to use

	endpoint (str) – The relative part of the full url

	request_params (a dictionary of string key/value pairs) – The parameters to be added to the GET url

	headers (a dictionary of string key/value pairs) – The HTTP headers to be added to the GET request

	response_check (A lambda or defined function.) – A check against the ‘requests’ response object.
Returns True for ‘pass’ and False otherwise.

	extra_options (A dictionary of options, where key is string and value
depends on the option that's being modified.) – Extra options for the ‘requests’ library, see the
‘requests’ documentation (options to modify timeout, ssl, etc.)

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.sensors.metastore_partition_sensor.MetastorePartitionSensor(**kwargs)

	Bases: airflow.sensors.sql_sensor.SqlSensor

An alternative to the HivePartitionSensor that talk directly to the
MySQL db. This was created as a result of observing sub optimal
queries generated by the Metastore thrift service when hitting
subpartitioned tables. The Thrift service’s queries were written in a
way that wouldn’t leverage the indexes.

	Parameters

	
	schema (str) – the schema

	table (str) – the table

	partition_name (str) – the partition name, as defined in the PARTITIONS
table of the Metastore. Order of the fields does matter.
Examples: ds=2016-01-01 or
ds=2016-01-01/sub=foo for a sub partitioned table

	mysql_conn_id (str) – a reference to the MySQL conn_id for the metastore

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.sensors.named_hive_partition_sensor.NamedHivePartitionSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a set of partitions to show up in Hive.

	Parameters

	
	partition_names (list of strings) – List of fully qualified names of the
partitions to wait for. A fully qualified name is of the
form schema.table/pk1=pv1/pk2=pv2, for example,
default.users/ds=2016-01-01. This is passed as is to the metastore
Thrift client get_partitions_by_name method. Note that
you cannot use logical or comparison operators as in
HivePartitionSensor.

	metastore_conn_id (str) – reference to the metastore thrift service
connection id

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.sensors.s3_key_sensor.S3KeySensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a key (a file-like instance on S3) to be present in a S3 bucket.
S3 being a key/value it does not support folders. The path is just a key
a resource.

	Parameters

	
	bucket_key (str) – The key being waited on. Supports full s3:// style url
or relative path from root level. When it’s specified as a full s3://
url, please leave bucket_name as None.

	bucket_name (str) – Name of the S3 bucket. Only needed when bucket_key
is not provided as a full s3:// url.

	wildcard_match (bool) – whether the bucket_key should be interpreted as a
Unix wildcard pattern

	aws_conn_id (str) – a reference to the s3 connection

	verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.
You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used

	(unless use_ssl is False), but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.sensors.s3_prefix_sensor.S3PrefixSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a prefix to exist. A prefix is the first part of a key,
thus enabling checking of constructs similar to glob airfl* or
SQL LIKE ‘airfl%’. There is the possibility to precise a delimiter to
indicate the hierarchy or keys, meaning that the match will stop at that
delimiter. Current code accepts sane delimiters, i.e. characters that
are NOT special characters in the Python regex engine.

	Parameters

	
	bucket_name (str) – Name of the S3 bucket

	prefix (str) – The prefix being waited on. Relative path from bucket root level.

	delimiter (str) – The delimiter intended to show hierarchy.
Defaults to ‘/’.

	aws_conn_id (str) – a reference to the s3 connection

	verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.
You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used

	(unless use_ssl is False), but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.sensors.sql_sensor.SqlSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Runs a sql statement until a criteria is met. It will keep trying while
sql returns no row, or if the first cell in (0, ‘0’, ‘’).

	Parameters

	
	conn_id (str) – The connection to run the sensor against

	sql (str) – The sql to run. To pass, it needs to return at least one cell
that contains a non-zero / empty string value.

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.sensors.time_sensor.TimeSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits until the specified time of the day.

	Parameters

	target_time (datetime.time) – time after which the job succeeds

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.sensors.time_delta_sensor.TimeDeltaSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a timedelta after the task’s execution_date + schedule_interval.
In Airflow, the daily task stamped with execution_date
2016-01-01 can only start running on 2016-01-02. The timedelta here
represents the time after the execution period has closed.

	Parameters

	delta (datetime.timedelta) – time length to wait after execution_date before succeeding

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.sensors.web_hdfs_sensor.WebHdfsSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a file or folder to land in HDFS

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

Community-contributed Operators

Operators

	
class airflow.contrib.operators.aws_athena_operator.AWSAthenaOperator(**kwargs)

	Bases: airflow.models.BaseOperator

An operator that submit presto query to athena.

	Parameters

	
	query (str) – Presto to be run on athena. (templated)

	database (str) – Database to select. (templated)

	output_location (str) – s3 path to write the query results into. (templated)

	aws_conn_id (str) – aws connection to use

	sleep_time (int) – Time to wait between two consecutive call to check query status on athena

	
execute(context)

	Run Presto Query on Athena

	
on_kill()

	Cancel the submitted athena query

	
class airflow.contrib.operators.awsbatch_operator.AWSBatchOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Execute a job on AWS Batch Service

	Parameters

	
	job_name (str) – the name for the job that will run on AWS Batch (templated)

	job_definition (str) – the job definition name on AWS Batch

	job_queue (str) – the queue name on AWS Batch

	overrides (dict) – the same parameter that boto3 will receive on
containerOverrides (templated):
http://boto3.readthedocs.io/en/latest/reference/services/batch.html#submit_job

	max_retries (int) – exponential backoff retries while waiter is not
merged, 4200 = 48 hours

	aws_conn_id (str) – connection id of AWS credentials / region name. If None,
credential boto3 strategy will be used
(http://boto3.readthedocs.io/en/latest/guide/configuration.html).

	region_name (str) – region name to use in AWS Hook.
Override the region_name in connection (if provided)

	
class airflow.contrib.operators.bigquery_check_operator.BigQueryCheckOperator(**kwargs)

	Bases: airflow.operators.check_operator.CheckOperator

Performs checks against BigQuery. The BigQueryCheckOperator expects
a sql query that will return a single row. Each value on that
first row is evaluated using python bool casting. If any of the
values return False the check is failed and errors out.

Note that Python bool casting evals the following as False:

	False

	0

	Empty string ("")

	Empty list ([])

	Empty dictionary or set ({})

Given a query like SELECT COUNT(*) FROM foo, it will fail only if
the count == 0. You can craft much more complex query that could,
for instance, check that the table has the same number of rows as
the source table upstream, or that the count of today’s partition is
greater than yesterday’s partition, or that a set of metrics are less
than 3 standard deviation for the 7 day average.

This operator can be used as a data quality check in your pipeline, and
depending on where you put it in your DAG, you have the choice to
stop the critical path, preventing from
publishing dubious data, or on the side and receive email alterts
without stopping the progress of the DAG.

	Parameters

	
	sql (str) – the sql to be executed

	bigquery_conn_id (str) – reference to the BigQuery database

	use_legacy_sql (bool) – Whether to use legacy SQL (true)
or standard SQL (false).

	
class airflow.contrib.operators.bigquery_check_operator.BigQueryValueCheckOperator(**kwargs)

	Bases: airflow.operators.check_operator.ValueCheckOperator

Performs a simple value check using sql code.

	Parameters

	
	sql (str) – the sql to be executed

	use_legacy_sql (bool) – Whether to use legacy SQL (true)
or standard SQL (false).

	
class airflow.contrib.operators.bigquery_check_operator.BigQueryIntervalCheckOperator(**kwargs)

	Bases: airflow.operators.check_operator.IntervalCheckOperator

Checks that the values of metrics given as SQL expressions are within
a certain tolerance of the ones from days_back before.

This method constructs a query like so

SELECT {metrics_threshold_dict_key} FROM {table}
WHERE {date_filter_column}=<date>

	Parameters

	
	table (str) – the table name

	days_back (int) – number of days between ds and the ds we want to check
against. Defaults to 7 days

	metrics_threshold (dict) – a dictionary of ratios indexed by metrics, for
example ‘COUNT(*)’: 1.5 would require a 50 percent or less difference
between the current day, and the prior days_back.

	use_legacy_sql (bool) – Whether to use legacy SQL (true)
or standard SQL (false).

	
class airflow.contrib.operators.bigquery_get_data.BigQueryGetDataOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Fetches the data from a BigQuery table (alternatively fetch data for selected columns)
and returns data in a python list. The number of elements in the returned list will
be equal to the number of rows fetched. Each element in the list will again be a list
where element would represent the columns values for that row.

Example Result: [['Tony', '10'], ['Mike', '20'], ['Steve', '15']]

Note

If you pass fields to selected_fields which are in different order than the
order of columns already in
BQ table, the data will still be in the order of BQ table.
For example if the BQ table has 3 columns as
[A,B,C] and you pass ‘B,A’ in the selected_fields
the data would still be of the form 'A,B'.

Example:

get_data = BigQueryGetDataOperator(
 task_id='get_data_from_bq',
 dataset_id='test_dataset',
 table_id='Transaction_partitions',
 max_results='100',
 selected_fields='DATE',
 bigquery_conn_id='airflow-service-account'
)

	Parameters

	
	dataset_id (str) – The dataset ID of the requested table. (templated)

	table_id (str) – The table ID of the requested table. (templated)

	max_results (str) – The maximum number of records (rows) to be fetched
from the table. (templated)

	selected_fields (str) – List of fields to return (comma-separated). If
unspecified, all fields are returned.

	bigquery_conn_id (str) – reference to a specific BigQuery hook.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	
class airflow.contrib.operators.bigquery_operator.BigQueryCreateEmptyTableOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Creates a new, empty table in the specified BigQuery dataset,
optionally with schema.

The schema to be used for the BigQuery table may be specified in one of
two ways. You may either directly pass the schema fields in, or you may
point the operator to a Google cloud storage object name. The object in
Google cloud storage must be a JSON file with the schema fields in it.
You can also create a table without schema.

	Parameters

	
	project_id (str) – The project to create the table into. (templated)

	dataset_id (str) – The dataset to create the table into. (templated)

	table_id (str) – The Name of the table to be created. (templated)

	schema_fields (list) – If set, the schema field list as defined here:
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema

Example:

schema_fields=[{"name": "emp_name", "type": "STRING", "mode": "REQUIRED"},
 {"name": "salary", "type": "INTEGER", "mode": "NULLABLE"}]

	gcs_schema_object (str) – Full path to the JSON file containing
schema (templated). For
example: gs://test-bucket/dir1/dir2/employee_schema.json

	time_partitioning (dict) – configure optional time partitioning fields i.e.
partition by field, type and expiration as per API specifications.

See also

https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#timePartitioning

	bigquery_conn_id (str) – Reference to a specific BigQuery hook.

	google_cloud_storage_conn_id (str) – Reference to a specific Google
cloud storage hook.

	delegate_to (str) – The account to impersonate, if any. For this to
work, the service account making the request must have domain-wide
delegation enabled.

	labels (dict) – a dictionary containing labels for the table, passed to BigQuery

Example (with schema JSON in GCS):

CreateTable = BigQueryCreateEmptyTableOperator(
 task_id='BigQueryCreateEmptyTableOperator_task',
 dataset_id='ODS',
 table_id='Employees',
 project_id='internal-gcp-project',
 gcs_schema_object='gs://schema-bucket/employee_schema.json',
 bigquery_conn_id='airflow-service-account',
 google_cloud_storage_conn_id='airflow-service-account'
)

Corresponding Schema file (employee_schema.json):

[
 {
 "mode": "NULLABLE",
 "name": "emp_name",
 "type": "STRING"
 },
 {
 "mode": "REQUIRED",
 "name": "salary",
 "type": "INTEGER"
 }
]

Example (with schema in the DAG):

CreateTable = BigQueryCreateEmptyTableOperator(
 task_id='BigQueryCreateEmptyTableOperator_task',
 dataset_id='ODS',
 table_id='Employees',
 project_id='internal-gcp-project',
 schema_fields=[{"name": "emp_name", "type": "STRING", "mode": "REQUIRED"},
 {"name": "salary", "type": "INTEGER", "mode": "NULLABLE"}],
 bigquery_conn_id='airflow-service-account',
 google_cloud_storage_conn_id='airflow-service-account'
)

	
class airflow.contrib.operators.bigquery_operator.BigQueryCreateExternalTableOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Creates a new external table in the dataset with the data in Google Cloud
Storage.

The schema to be used for the BigQuery table may be specified in one of
two ways. You may either directly pass the schema fields in, or you may
point the operator to a Google cloud storage object name. The object in
Google cloud storage must be a JSON file with the schema fields in it.

	Parameters

	
	bucket (str) – The bucket to point the external table to. (templated)

	source_objects (list) – List of Google cloud storage URIs to point
table to. (templated)
If source_format is ‘DATASTORE_BACKUP’, the list must only contain a single URI.

	destination_project_dataset_table (str) – The dotted (<project>.)<dataset>.<table>
BigQuery table to load data into (templated). If <project> is not included,
project will be the project defined in the connection json.

	schema_fields (list) – If set, the schema field list as defined here:
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema

Example:

schema_fields=[{"name": "emp_name", "type": "STRING", "mode": "REQUIRED"},
 {"name": "salary", "type": "INTEGER", "mode": "NULLABLE"}]

Should not be set when source_format is ‘DATASTORE_BACKUP’.

	schema_object (str) – If set, a GCS object path pointing to a .json file that
contains the schema for the table. (templated)

	source_format (str) – File format of the data.

	compression (str) – [Optional] The compression type of the data source.
Possible values include GZIP and NONE.
The default value is NONE.
This setting is ignored for Google Cloud Bigtable,
Google Cloud Datastore backups and Avro formats.

	skip_leading_rows (int) – Number of rows to skip when loading from a CSV.

	field_delimiter (str) – The delimiter to use for the CSV.

	max_bad_records (int) – The maximum number of bad records that BigQuery can
ignore when running the job.

	quote_character (str) – The value that is used to quote data sections in a CSV file.

	allow_quoted_newlines (bool) – Whether to allow quoted newlines (true) or not (false).

	allow_jagged_rows (bool) – Accept rows that are missing trailing optional columns.
The missing values are treated as nulls. If false, records with missing trailing
columns are treated as bad records, and if there are too many bad records, an
invalid error is returned in the job result. Only applicable to CSV, ignored
for other formats.

	bigquery_conn_id (str) – Reference to a specific BigQuery hook.

	google_cloud_storage_conn_id (str) – Reference to a specific Google
cloud storage hook.

	delegate_to (str) – The account to impersonate, if any. For this to
work, the service account making the request must have domain-wide
delegation enabled.

	src_fmt_configs (dict) – configure optional fields specific to the source format

	labels (dict) – a dictionary containing labels for the table, passed to BigQuery

	
class airflow.contrib.operators.bigquery_operator.BigQueryDeleteDatasetOperator(**kwargs)

	Bases: airflow.models.BaseOperator

This operator deletes an existing dataset from your Project in Big query.
https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/delete

	Parameters

	
	project_id (str) – The project id of the dataset.

	dataset_id (str) – The dataset to be deleted.

Example:

delete_temp_data = BigQueryDeleteDatasetOperator(dataset_id = 'temp-dataset',
 project_id = 'temp-project',
 bigquery_conn_id='_my_gcp_conn_',
 task_id='Deletetemp',
 dag=dag)

	
class airflow.contrib.operators.bigquery_operator.BigQueryCreateEmptyDatasetOperator(**kwargs)

	Bases: airflow.models.BaseOperator

This operator is used to create new dataset for your Project in Big query.
https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource

	Parameters

	
	project_id (str) – The name of the project where we want to create the dataset.
Don’t need to provide, if projectId in dataset_reference.

	dataset_id (str) – The id of dataset. Don’t need to provide,
if datasetId in dataset_reference.

	dataset_reference – Dataset reference that could be provided with request body.
More info:
https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource

	
class airflow.contrib.operators.bigquery_operator.BigQueryOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Executes BigQuery SQL queries in a specific BigQuery database

	Parameters

	
	sql (Can receive a str representing a sql statement,
a list of str (sql statements), or reference to a template file.
Template reference are recognized by str ending in '.sql'.) – the sql code to be executed (templated)

	destination_dataset_table (str) – A dotted
(<project>.|<project>:)<dataset>.<table> that, if set, will store the results
of the query. (templated)

	write_disposition (str) – Specifies the action that occurs if the destination table
already exists. (default: ‘WRITE_EMPTY’)

	create_disposition (str) – Specifies whether the job is allowed to create new tables.
(default: ‘CREATE_IF_NEEDED’)

	allow_large_results (bool) – Whether to allow large results.

	flatten_results (bool) – If true and query uses legacy SQL dialect, flattens
all nested and repeated fields in the query results. allow_large_results
must be true if this is set to false. For standard SQL queries, this
flag is ignored and results are never flattened.

	bigquery_conn_id (str) – reference to a specific BigQuery hook.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	udf_config (list) – The User Defined Function configuration for the query.
See https://cloud.google.com/bigquery/user-defined-functions for details.

	use_legacy_sql (bool) – Whether to use legacy SQL (true) or standard SQL (false).

	maximum_billing_tier (int) – Positive integer that serves as a multiplier
of the basic price.
Defaults to None, in which case it uses the value set in the project.

	maximum_bytes_billed (float) – Limits the bytes billed for this job.
Queries that will have bytes billed beyond this limit will fail
(without incurring a charge). If unspecified, this will be
set to your project default.

	api_resource_configs (dict) – a dictionary that contain params
‘configuration’ applied for Google BigQuery Jobs API:
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs
for example, {‘query’: {‘useQueryCache’: False}}. You could use it
if you need to provide some params that are not supported by BigQueryOperator
like args.

	schema_update_options (tuple) – Allows the schema of the destination
table to be updated as a side effect of the load job.

	query_params (dict) – a dictionary containing query parameter types and
values, passed to BigQuery.

	labels (dict) – a dictionary containing labels for the job/query,
passed to BigQuery

	priority (str) – Specifies a priority for the query.
Possible values include INTERACTIVE and BATCH.
The default value is INTERACTIVE.

	time_partitioning (dict) – configure optional time partitioning fields i.e.
partition by field, type and expiration as per API specifications.

	cluster_fields (list of str) – Request that the result of this query be stored sorted
by one or more columns. This is only available in conjunction with
time_partitioning. The order of columns given determines the sort order.

	location (str) – The geographic location of the job. Required except for
US and EU. See details at
https://cloud.google.com/bigquery/docs/locations#specifying_your_location

	
class airflow.contrib.operators.bigquery_table_delete_operator.BigQueryTableDeleteOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Deletes BigQuery tables

	Parameters

	
	deletion_dataset_table (str) – A dotted
(<project>.|<project>:)<dataset>.<table> that indicates which table
will be deleted. (templated)

	bigquery_conn_id (str) – reference to a specific BigQuery hook.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	ignore_if_missing (bool) – if True, then return success even if the
requested table does not exist.

	
class airflow.contrib.operators.bigquery_to_bigquery.BigQueryToBigQueryOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Copies data from one BigQuery table to another.

See also

For more details about these parameters:
https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.copy

	Parameters

	
	source_project_dataset_tables (list|string) – One or more
dotted (project:|project.)<dataset>.<table> BigQuery tables to use as the
source data. If <project> is not included, project will be the
project defined in the connection json. Use a list if there are multiple
source tables. (templated)

	destination_project_dataset_table (str) – The destination BigQuery
table. Format is: (project:|project.)<dataset>.<table> (templated)

	write_disposition (str) – The write disposition if the table already exists.

	create_disposition (str) – The create disposition if the table doesn’t exist.

	bigquery_conn_id (str) – reference to a specific BigQuery hook.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	labels (dict) – a dictionary containing labels for the job/query,
passed to BigQuery

	
class airflow.contrib.operators.bigquery_to_gcs.BigQueryToCloudStorageOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Transfers a BigQuery table to a Google Cloud Storage bucket.

See also

For more details about these parameters:
https://cloud.google.com/bigquery/docs/reference/v2/jobs

	Parameters

	
	source_project_dataset_table (str) – The dotted
(<project>.|<project>:)<dataset>.<table> BigQuery table to use as the
source data. If <project> is not included, project will be the project
defined in the connection json. (templated)

	destination_cloud_storage_uris (list) – The destination Google Cloud
Storage URI (e.g. gs://some-bucket/some-file.txt). (templated) Follows
convention defined here:
https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple

	compression (str) – Type of compression to use.

	export_format (str) – File format to export.

	field_delimiter (str) – The delimiter to use when extracting to a CSV.

	print_header (bool) – Whether to print a header for a CSV file extract.

	bigquery_conn_id (str) – reference to a specific BigQuery hook.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	labels (dict) – a dictionary containing labels for the job/query,
passed to BigQuery

	
class airflow.contrib.operators.cassandra_to_gcs.CassandraToGoogleCloudStorageOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Copy data from Cassandra to Google cloud storage in JSON format

Note: Arrays of arrays are not supported.

	
classmethod convert_map_type(name, value)

	Converts a map to a repeated RECORD that contains two fields: ‘key’ and ‘value’,
each will be converted to its corresopnding data type in BQ.

	
classmethod convert_tuple_type(name, value)

	Converts a tuple to RECORD that contains n fields, each will be converted
to its corresponding data type in bq and will be named ‘field_<index>’, where
index is determined by the order of the tuple elments defined in cassandra.

	
classmethod convert_user_type(name, value)

	Converts a user type to RECORD that contains n fields, where n is the
number of attributes. Each element in the user type class will be converted to its
corresponding data type in BQ.

	
class airflow.contrib.operators.databricks_operator.DatabricksSubmitRunOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Submits a Spark job run to Databricks using the
api/2.0/jobs/runs/submit [https://docs.databricks.com/api/latest/jobs.html#runs-submit]
API endpoint.

There are two ways to instantiate this operator.

In the first way, you can take the JSON payload that you typically use
to call the api/2.0/jobs/runs/submit endpoint and pass it directly
to our DatabricksSubmitRunOperator through the json parameter.
For example

json = {
 'new_cluster': {
 'spark_version': '2.1.0-db3-scala2.11',
 'num_workers': 2
 },
 'notebook_task': {
 'notebook_path': '/Users/airflow@example.com/PrepareData',
 },
}
notebook_run = DatabricksSubmitRunOperator(task_id='notebook_run', json=json)

Another way to accomplish the same thing is to use the named parameters
of the DatabricksSubmitRunOperator directly. Note that there is exactly
one named parameter for each top level parameter in the runs/submit
endpoint. In this method, your code would look like this:

new_cluster = {
 'spark_version': '2.1.0-db3-scala2.11',
 'num_workers': 2
}
notebook_task = {
 'notebook_path': '/Users/airflow@example.com/PrepareData',
}
notebook_run = DatabricksSubmitRunOperator(
 task_id='notebook_run',
 new_cluster=new_cluster,
 notebook_task=notebook_task)

In the case where both the json parameter AND the named parameters
are provided, they will be merged together. If there are conflicts during the merge,
the named parameters will take precedence and override the top level json keys.

	Currently the named parameters that DatabricksSubmitRunOperator supports are

	
	spark_jar_task

	notebook_task

	new_cluster

	existing_cluster_id

	libraries

	run_name

	timeout_seconds

	Parameters

	
	json (dict) – A JSON object containing API parameters which will be passed
directly to the api/2.0/jobs/runs/submit endpoint. The other named parameters
(i.e. spark_jar_task, notebook_task..) to this operator will
be merged with this json dictionary if they are provided.
If there are conflicts during the merge, the named parameters will
take precedence and override the top level json keys. (templated)

See also

For more information about templating see Jinja Templating.
https://docs.databricks.com/api/latest/jobs.html#runs-submit

	spark_jar_task (dict) – The main class and parameters for the JAR task. Note that
the actual JAR is specified in the libraries.
EITHER spark_jar_task OR notebook_task should be specified.
This field will be templated.

See also

https://docs.databricks.com/api/latest/jobs.html#jobssparkjartask

	notebook_task (dict) – The notebook path and parameters for the notebook task.
EITHER spark_jar_task OR notebook_task should be specified.
This field will be templated.

See also

https://docs.databricks.com/api/latest/jobs.html#jobsnotebooktask

	new_cluster (dict) – Specs for a new cluster on which this task will be run.
EITHER new_cluster OR existing_cluster_id should be specified.
This field will be templated.

See also

https://docs.databricks.com/api/latest/jobs.html#jobsclusterspecnewcluster

	existing_cluster_id (str) – ID for existing cluster on which to run this task.
EITHER new_cluster OR existing_cluster_id should be specified.
This field will be templated.

	libraries (list of dicts) – Libraries which this run will use.
This field will be templated.

See also

https://docs.databricks.com/api/latest/libraries.html#managedlibrarieslibrary

	run_name (str) – The run name used for this task.
By default this will be set to the Airflow task_id. This task_id is a
required parameter of the superclass BaseOperator.
This field will be templated.

	timeout_seconds (int32) – The timeout for this run. By default a value of 0 is used
which means to have no timeout.
This field will be templated.

	databricks_conn_id (str) – The name of the Airflow connection to use.
By default and in the common case this will be databricks_default. To use
token based authentication, provide the key token in the extra field for the
connection.

	polling_period_seconds (int) – Controls the rate which we poll for the result of
this run. By default the operator will poll every 30 seconds.

	databricks_retry_limit (int) – Amount of times retry if the Databricks backend is
unreachable. Its value must be greater than or equal to 1.

	databricks_retry_delay (float) – Number of seconds to wait between retries (it
might be a floating point number).

	do_xcom_push (bool) – Whether we should push run_id and run_page_url to xcom.

	
class airflow.contrib.operators.dataflow_operator.DataFlowJavaOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a Java Cloud DataFlow batch job. The parameters of the operation
will be passed to the job.

See also

For more detail on job submission have a look at the reference:
https://cloud.google.com/dataflow/pipelines/specifying-exec-params

	Parameters

	
	jar (str) – The reference to a self executing DataFlow jar (templated).

	job_name (str) – The ‘jobName’ to use when executing the DataFlow job
(templated). This ends up being set in the pipeline options, so any entry
with key 'jobName' in options will be overwritten.

	dataflow_default_options (dict) – Map of default job options.

	options (dict) – Map of job specific options.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud
Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	poll_sleep (int) – The time in seconds to sleep between polling Google
Cloud Platform for the dataflow job status while the job is in the
JOB_STATE_RUNNING state.

	job_class (str) – The name of the dataflow job class to be executued, it
is often not the main class configured in the dataflow jar file.

jar, options, and job_name are templated so you can use variables in them.

Note that both
dataflow_default_options and options will be merged to specify pipeline
execution parameter, and dataflow_default_options is expected to save
high-level options, for instances, project and zone information, which
apply to all dataflow operators in the DAG.

It’s a good practice to define dataflow_* parameters in the default_args of the dag
like the project, zone and staging location.

default_args = {
 'dataflow_default_options': {
 'project': 'my-gcp-project',
 'zone': 'europe-west1-d',
 'stagingLocation': 'gs://my-staging-bucket/staging/'
 }
}

You need to pass the path to your dataflow as a file reference with the jar
parameter, the jar needs to be a self executing jar (see documentation here:
https://beam.apache.org/documentation/runners/dataflow/#self-executing-jar).
Use options to pass on options to your job.

t1 = DataFlowJavaOperator(
 task_id='datapflow_example',
 jar='{{var.value.gcp_dataflow_base}}pipeline/build/libs/pipeline-example-1.0.jar',
 options={
 'autoscalingAlgorithm': 'BASIC',
 'maxNumWorkers': '50',
 'start': '{{ds}}',
 'partitionType': 'DAY',
 'labels': {'foo' : 'bar'}
 },
 gcp_conn_id='gcp-airflow-service-account',
 dag=my-dag)

	
class airflow.contrib.operators.dataflow_operator.DataflowTemplateOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a Templated Cloud DataFlow batch job. The parameters of the operation
will be passed to the job.

	Parameters

	
	template (str) – The reference to the DataFlow template.

	job_name – The ‘jobName’ to use when executing the DataFlow template
(templated).

	dataflow_default_options (dict) – Map of default job environment options.

	parameters (dict) – Map of job specific parameters for the template.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud
Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	poll_sleep (int) – The time in seconds to sleep between polling Google
Cloud Platform for the dataflow job status while the job is in the
JOB_STATE_RUNNING state.

It’s a good practice to define dataflow_* parameters in the default_args of the dag
like the project, zone and staging location.

See also

https://cloud.google.com/dataflow/docs/reference/rest/v1b3/LaunchTemplateParameters
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment

default_args = {
 'dataflow_default_options': {
 'project': 'my-gcp-project',
 'region': 'europe-west1',
 'zone': 'europe-west1-d',
 'tempLocation': 'gs://my-staging-bucket/staging/',
 }
 }
}

You need to pass the path to your dataflow template as a file reference with the
template parameter. Use parameters to pass on parameters to your job.
Use environment to pass on runtime environment variables to your job.

t1 = DataflowTemplateOperator(
 task_id='datapflow_example',
 template='{{var.value.gcp_dataflow_base}}',
 parameters={
 'inputFile': "gs://bucket/input/my_input.txt",
 'outputFile': "gs://bucket/output/my_output.txt"
 },
 gcp_conn_id='gcp-airflow-service-account',
 dag=my-dag)

template, dataflow_default_options, parameters, and job_name are
templated so you can use variables in them.

Note that dataflow_default_options is expected to save high-level options
for project information, which apply to all dataflow operators in the DAG.

See also

https://cloud.google.com/dataflow/docs/reference/rest/v1b3
/LaunchTemplateParameters
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment
For more detail on job template execution have a look at the reference:
https://cloud.google.com/dataflow/docs/templates/executing-templates

	
class airflow.contrib.operators.dataflow_operator.DataFlowPythonOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Launching Cloud Dataflow jobs written in python. Note that both
dataflow_default_options and options will be merged to specify pipeline
execution parameter, and dataflow_default_options is expected to save
high-level options, for instances, project and zone information, which
apply to all dataflow operators in the DAG.

See also

For more detail on job submission have a look at the reference:
https://cloud.google.com/dataflow/pipelines/specifying-exec-params

	Parameters

	
	py_file (str) – Reference to the python dataflow pipleline file.py, e.g.,
/some/local/file/path/to/your/python/pipeline/file.

	job_name (str) – The ‘job_name’ to use when executing the DataFlow job
(templated). This ends up being set in the pipeline options, so any entry
with key 'jobName' or 'job_name' in options will be overwritten.

	py_options – Additional python options.

	dataflow_default_options (dict) – Map of default job options.

	options (dict) – Map of job specific options.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud
Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	poll_sleep (int) – The time in seconds to sleep between polling Google
Cloud Platform for the dataflow job status while the job is in the
JOB_STATE_RUNNING state.

	
execute(context)

	Execute the python dataflow job.

	
class airflow.contrib.operators.dataproc_operator.DataprocClusterCreateOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Create a new cluster on Google Cloud Dataproc. The operator will wait until the
creation is successful or an error occurs in the creation process.

The parameters allow to configure the cluster. Please refer to

https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters

for a detailed explanation on the different parameters. Most of the configuration
parameters detailed in the link are available as a parameter to this operator.

	Parameters

	
	cluster_name (str) – The name of the DataProc cluster to create. (templated)

	project_id (str) – The ID of the google cloud project in which
to create the cluster. (templated)

	num_workers (int) – The # of workers to spin up. If set to zero will
spin up cluster in a single node mode

	storage_bucket (str) – The storage bucket to use, setting to None lets dataproc
generate a custom one for you

	init_actions_uris (list[string]) – List of GCS uri’s containing
dataproc initialization scripts

	init_action_timeout (str) – Amount of time executable scripts in
init_actions_uris has to complete

	metadata (dict) – dict of key-value google compute engine metadata entries
to add to all instances

	image_version (str) – the version of software inside the Dataproc cluster

	custom_image (str) – custom Dataproc image for more info see
https://cloud.google.com/dataproc/docs/guides/dataproc-images

	properties (dict) – dict of properties to set on
config files (e.g. spark-defaults.conf), see
https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters#SoftwareConfig

	master_machine_type (str) – Compute engine machine type to use for the master node

	master_disk_type (str) – Type of the boot disk for the master node
(default is pd-standard).
Valid values: pd-ssd (Persistent Disk Solid State Drive) or
pd-standard (Persistent Disk Hard Disk Drive).

	master_disk_size (int) – Disk size for the master node

	worker_machine_type (str) – Compute engine machine type to use for the worker nodes

	worker_disk_type (str) – Type of the boot disk for the worker node
(default is pd-standard).
Valid values: pd-ssd (Persistent Disk Solid State Drive) or
pd-standard (Persistent Disk Hard Disk Drive).

	worker_disk_size (int) – Disk size for the worker nodes

	num_preemptible_workers (int) – The # of preemptible worker nodes to spin up

	labels (dict) – dict of labels to add to the cluster

	zone (str) – The zone where the cluster will be located. (templated)

	network_uri (str) – The network uri to be used for machine communication, cannot be
specified with subnetwork_uri

	subnetwork_uri (str) – The subnetwork uri to be used for machine communication,
cannot be specified with network_uri

	internal_ip_only (bool) – If true, all instances in the cluster will only
have internal IP addresses. This can only be enabled for subnetwork
enabled networks

	tags (list[string]) – The GCE tags to add to all instances

	region (str) – leave as ‘global’, might become relevant in the future. (templated)

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	service_account (str) – The service account of the dataproc instances.

	service_account_scopes (list[string]) – The URIs of service account scopes to be included.

	idle_delete_ttl (int) – The longest duration that cluster would keep alive while
staying idle. Passing this threshold will cause cluster to be auto-deleted.
A duration in seconds.

	auto_delete_time (datetime.datetime) – The time when cluster will be auto-deleted.

	auto_delete_ttl (int) – The life duration of cluster, the cluster will be
auto-deleted at the end of this duration.
A duration in seconds. (If auto_delete_time is set this parameter will be ignored)

	customer_managed_key (str) – The customer-managed key used for disk encryption
(projects/[PROJECT_STORING_KEYS]/locations/[LOCATION]/keyRings/[KEY_RING_NAME]/cryptoKeys/[KEY_NAME])

	
class airflow.contrib.operators.dataproc_operator.DataprocClusterScaleOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Scale, up or down, a cluster on Google Cloud Dataproc.
The operator will wait until the cluster is re-scaled.

Example:

t1 = DataprocClusterScaleOperator(
 task_id='dataproc_scale',
 project_id='my-project',
 cluster_name='cluster-1',
 num_workers=10,
 num_preemptible_workers=10,
 graceful_decommission_timeout='1h',
 dag=dag)

See also

For more detail on about scaling clusters have a look at the reference:
https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/scaling-clusters

	Parameters

	
	cluster_name (str) – The name of the cluster to scale. (templated)

	project_id (str) – The ID of the google cloud project in which
the cluster runs. (templated)

	region (str) – The region for the dataproc cluster. (templated)

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	num_workers (int) – The new number of workers

	num_preemptible_workers (int) – The new number of preemptible workers

	graceful_decommission_timeout (str) – Timeout for graceful YARN decomissioning.
Maximum value is 1d

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	
class airflow.contrib.operators.dataproc_operator.DataprocClusterDeleteOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Delete a cluster on Google Cloud Dataproc. The operator will wait until the
cluster is destroyed.

	Parameters

	
	cluster_name (str) – The name of the cluster to create. (templated)

	project_id (str) – The ID of the google cloud project in which
the cluster runs. (templated)

	region (str) – leave as ‘global’, might become relevant in the future. (templated)

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	
class airflow.contrib.operators.dataproc_operator.DataProcPigOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a Pig query Job on a Cloud DataProc cluster. The parameters of the operation
will be passed to the cluster.

It’s a good practice to define dataproc_* parameters in the default_args of the dag
like the cluster name and UDFs.

default_args = {
 'cluster_name': 'cluster-1',
 'dataproc_pig_jars': [
 'gs://example/udf/jar/datafu/1.2.0/datafu.jar',
 'gs://example/udf/jar/gpig/1.2/gpig.jar'
]
}

You can pass a pig script as string or file reference. Use variables to pass on
variables for the pig script to be resolved on the cluster or use the parameters to
be resolved in the script as template parameters.

Example:

t1 = DataProcPigOperator(
 task_id='dataproc_pig',
 query='a_pig_script.pig',
 variables={'out': 'gs://example/output/{{ds}}'},
 dag=dag)

See also

For more detail on about job submission have a look at the reference:
https://cloud.google.com/dataproc/reference/rest/v1/projects.regions.jobs

	Parameters

	
	query (str) – The query or reference to the query
file (pg or pig extension). (templated)

	query_uri (str) – The uri of a pig script on Cloud Storage.

	variables (dict) – Map of named parameters for the query. (templated)

	job_name (str) – The job name used in the DataProc cluster. This
name by default is the task_id appended with the execution data, but can
be templated. The name will always be appended with a random number to
avoid name clashes. (templated)

	cluster_name (str) – The name of the DataProc cluster. (templated)

	dataproc_pig_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

	dataproc_pig_jars (list) – URIs to jars provisioned in Cloud Storage (example: for
UDFs and libs) and are ideal to put in default arguments.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	region (str) – The specified region where the dataproc cluster is created.

	job_error_states (list) – Job states that should be considered error states.
Any states in this list will result in an error being raised and failure of the
task. Eg, if the CANCELLED state should also be considered a task failure,
pass in ['ERROR', 'CANCELLED']. Possible values are currently only
'ERROR' and 'CANCELLED', but could change in the future. Defaults to
['ERROR'].

	Variables

	dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API.
This is useful for identifying or linking to the job in the Google Cloud Console
Dataproc UI, as the actual “jobId” submitted to the Dataproc API is appended with
an 8 character random string.

	
class airflow.contrib.operators.dataproc_operator.DataProcHiveOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a Hive query Job on a Cloud DataProc cluster.

	Parameters

	
	query (str) – The query or reference to the query file (q extension).

	query_uri (str) – The uri of a hive script on Cloud Storage.

	variables (dict) – Map of named parameters for the query.

	job_name (str) – The job name used in the DataProc cluster. This name by default
is the task_id appended with the execution data, but can be templated. The
name will always be appended with a random number to avoid name clashes.

	cluster_name (str) – The name of the DataProc cluster.

	dataproc_hive_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

	dataproc_hive_jars (list) – URIs to jars provisioned in Cloud Storage (example: for
UDFs and libs) and are ideal to put in default arguments.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	region (str) – The specified region where the dataproc cluster is created.

	job_error_states (list) – Job states that should be considered error states.
Any states in this list will result in an error being raised and failure of the
task. Eg, if the CANCELLED state should also be considered a task failure,
pass in ['ERROR', 'CANCELLED']. Possible values are currently only
'ERROR' and 'CANCELLED', but could change in the future. Defaults to
['ERROR'].

	Variables

	dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API.
This is useful for identifying or linking to the job in the Google Cloud Console
Dataproc UI, as the actual “jobId” submitted to the Dataproc API is appended with
an 8 character random string.

	
class airflow.contrib.operators.dataproc_operator.DataProcSparkSqlOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a Spark SQL query Job on a Cloud DataProc cluster.

	Parameters

	
	query (str) – The query or reference to the query file (q extension). (templated)

	query_uri (str) – The uri of a spark sql script on Cloud Storage.

	variables (dict) – Map of named parameters for the query. (templated)

	job_name (str) – The job name used in the DataProc cluster. This
name by default is the task_id appended with the execution data, but can
be templated. The name will always be appended with a random number to
avoid name clashes. (templated)

	cluster_name (str) – The name of the DataProc cluster. (templated)

	dataproc_spark_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

	dataproc_spark_jars (list) – URIs to jars provisioned in Cloud Storage (example:
for UDFs and libs) and are ideal to put in default arguments.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	region (str) – The specified region where the dataproc cluster is created.

	job_error_states (list) – Job states that should be considered error states.
Any states in this list will result in an error being raised and failure of the
task. Eg, if the CANCELLED state should also be considered a task failure,
pass in ['ERROR', 'CANCELLED']. Possible values are currently only
'ERROR' and 'CANCELLED', but could change in the future. Defaults to
['ERROR'].

	Variables

	dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API.
This is useful for identifying or linking to the job in the Google Cloud Console
Dataproc UI, as the actual “jobId” submitted to the Dataproc API is appended with
an 8 character random string.

	
class airflow.contrib.operators.dataproc_operator.DataProcSparkOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a Spark Job on a Cloud DataProc cluster.

	Parameters

	
	main_jar (str) – URI of the job jar provisioned on Cloud Storage. (use this or
the main_class, not both together).

	main_class (str) – Name of the job class. (use this or the main_jar, not both
together).

	arguments (list) – Arguments for the job. (templated)

	archives (list) – List of archived files that will be unpacked in the work
directory. Should be stored in Cloud Storage.

	files (list) – List of files to be copied to the working directory

	job_name (str) – The job name used in the DataProc cluster. This
name by default is the task_id appended with the execution data, but can
be templated. The name will always be appended with a random number to
avoid name clashes. (templated)

	cluster_name (str) – The name of the DataProc cluster. (templated)

	dataproc_spark_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

	dataproc_spark_jars (list) – URIs to jars provisioned in Cloud Storage (example:
for UDFs and libs) and are ideal to put in default arguments.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	region (str) – The specified region where the dataproc cluster is created.

	job_error_states (list) – Job states that should be considered error states.
Any states in this list will result in an error being raised and failure of the
task. Eg, if the CANCELLED state should also be considered a task failure,
pass in ['ERROR', 'CANCELLED']. Possible values are currently only
'ERROR' and 'CANCELLED', but could change in the future. Defaults to
['ERROR'].

	Variables

	dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API.
This is useful for identifying or linking to the job in the Google Cloud Console
Dataproc UI, as the actual “jobId” submitted to the Dataproc API is appended with
an 8 character random string.

	
class airflow.contrib.operators.dataproc_operator.DataProcHadoopOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a Hadoop Job on a Cloud DataProc cluster.

	Parameters

	
	main_jar (str) – URI of the job jar provisioned on Cloud Storage. (use this or
the main_class, not both together).

	main_class (str) – Name of the job class. (use this or the main_jar, not both
together).

	arguments (list) – Arguments for the job. (templated)

	archives (list) – List of archived files that will be unpacked in the work
directory. Should be stored in Cloud Storage.

	files (list) – List of files to be copied to the working directory

	job_name (str) – The job name used in the DataProc cluster. This
name by default is the task_id appended with the execution data, but can
be templated. The name will always be appended with a random number to
avoid name clashes. (templated)

	cluster_name (str) – The name of the DataProc cluster. (templated)

	dataproc_hadoop_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

	dataproc_hadoop_jars (list) – URIs to jars provisioned in Cloud Storage (example:
for UDFs and libs) and are ideal to put in default arguments.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	region (str) – The specified region where the dataproc cluster is created.

	job_error_states (list) – Job states that should be considered error states.
Any states in this list will result in an error being raised and failure of the
task. Eg, if the CANCELLED state should also be considered a task failure,
pass in ['ERROR', 'CANCELLED']. Possible values are currently only
'ERROR' and 'CANCELLED', but could change in the future. Defaults to
['ERROR'].

	Variables

	dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API.
This is useful for identifying or linking to the job in the Google Cloud Console
Dataproc UI, as the actual “jobId” submitted to the Dataproc API is appended with
an 8 character random string.

	
class airflow.contrib.operators.dataproc_operator.DataProcPySparkOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a PySpark Job on a Cloud DataProc cluster.

	Parameters

	
	main (str) – [Required] The Hadoop Compatible Filesystem (HCFS) URI of the main
Python file to use as the driver. Must be a .py file.

	arguments (list) – Arguments for the job. (templated)

	archives (list) – List of archived files that will be unpacked in the work
directory. Should be stored in Cloud Storage.

	files (list) – List of files to be copied to the working directory

	pyfiles (list) – List of Python files to pass to the PySpark framework.
Supported file types: .py, .egg, and .zip

	job_name (str) – The job name used in the DataProc cluster. This
name by default is the task_id appended with the execution data, but can
be templated. The name will always be appended with a random number to
avoid name clashes. (templated)

	cluster_name (str) – The name of the DataProc cluster.

	dataproc_pyspark_properties (dict) – Map for the Pig properties. Ideal to put in
default arguments

	dataproc_pyspark_jars (list) – URIs to jars provisioned in Cloud Storage (example:
for UDFs and libs) and are ideal to put in default arguments.

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	region (str) – The specified region where the dataproc cluster is created.

	job_error_states (list) – Job states that should be considered error states.
Any states in this list will result in an error being raised and failure of the
task. Eg, if the CANCELLED state should also be considered a task failure,
pass in ['ERROR', 'CANCELLED']. Possible values are currently only
'ERROR' and 'CANCELLED', but could change in the future. Defaults to
['ERROR'].

	Variables

	dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API.
This is useful for identifying or linking to the job in the Google Cloud Console
Dataproc UI, as the actual “jobId” submitted to the Dataproc API is appended with
an 8 character random string.

	
class airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateBaseOperator(**kwargs)

	Bases: airflow.models.BaseOperator

	
class airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateInstantiateOperator(**kwargs)

	Bases: airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateBaseOperator

Instantiate a WorkflowTemplate on Google Cloud Dataproc. The operator will wait
until the WorkflowTemplate is finished executing.

See also

Please refer to:
https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.workflowTemplates/instantiate

	Parameters

	
	template_id (str) – The id of the template. (templated)

	project_id (str) – The ID of the google cloud project in which
the template runs

	region (str) – leave as ‘global’, might become relevant in the future

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	
class airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateInstantiateInlineOperator(**kwargs)

	Bases: airflow.contrib.operators.dataproc_operator.DataprocWorkflowTemplateBaseOperator

Instantiate a WorkflowTemplate Inline on Google Cloud Dataproc. The operator will
wait until the WorkflowTemplate is finished executing.

See also

Please refer to:
https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.workflowTemplates/instantiateInline

	Parameters

	
	template (map) – The template contents. (templated)

	project_id (str) – The ID of the google cloud project in which
the template runs

	region (str) – leave as ‘global’, might become relevant in the future

	gcp_conn_id (str) – The connection ID to use connecting to Google Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	
class airflow.contrib.operators.datastore_export_operator.DatastoreExportOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Export entities from Google Cloud Datastore to Cloud Storage

	Parameters

	
	bucket (str) – name of the cloud storage bucket to backup data

	namespace (str) – optional namespace path in the specified Cloud Storage bucket
to backup data. If this namespace does not exist in GCS, it will be created.

	datastore_conn_id (str) – the name of the Datastore connection id to use

	cloud_storage_conn_id (str) – the name of the cloud storage connection id to
force-write backup

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	entity_filter (dict) – description of what data from the project is included in the
export, refer to
https://cloud.google.com/datastore/docs/reference/rest/Shared.Types/EntityFilter

	labels (dict) – client-assigned labels for cloud storage

	polling_interval_in_seconds (int) – number of seconds to wait before polling for
execution status again

	overwrite_existing (bool) – if the storage bucket + namespace is not empty, it will be
emptied prior to exports. This enables overwriting existing backups.

	xcom_push (bool) – push operation name to xcom for reference

	
class airflow.contrib.operators.datastore_import_operator.DatastoreImportOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Import entities from Cloud Storage to Google Cloud Datastore

	Parameters

	
	bucket (str) – container in Cloud Storage to store data

	file (str) – path of the backup metadata file in the specified Cloud Storage bucket.
It should have the extension .overall_export_metadata

	namespace (str) – optional namespace of the backup metadata file in
the specified Cloud Storage bucket.

	entity_filter (dict) – description of what data from the project is included in
the export, refer to
https://cloud.google.com/datastore/docs/reference/rest/Shared.Types/EntityFilter

	labels (dict) – client-assigned labels for cloud storage

	datastore_conn_id (str) – the name of the connection id to use

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	polling_interval_in_seconds (int) – number of seconds to wait before polling for
execution status again

	xcom_push (bool) – push operation name to xcom for reference

	
class airflow.contrib.operators.discord_webhook_operator.DiscordWebhookOperator(**kwargs)

	Bases: airflow.operators.http_operator.SimpleHttpOperator

This operator allows you to post messages to Discord using incoming webhooks.
Takes a Discord connection ID with a default relative webhook endpoint. The
default endpoint can be overridden using the webhook_endpoint parameter
(https://discordapp.com/developers/docs/resources/webhook).

Each Discord webhook can be pre-configured to use a specific username and
avatar_url. You can override these defaults in this operator.

	Parameters

	
	http_conn_id (str) – Http connection ID with host as “https://discord.com/api/” and
default webhook endpoint in the extra field in the form of
{“webhook_endpoint”: “webhooks/{webhook.id}/{webhook.token}”}

	webhook_endpoint (str) – Discord webhook endpoint in the form of
“webhooks/{webhook.id}/{webhook.token}”

	message (str) – The message you want to send to your Discord channel
(max 2000 characters). (templated)

	username (str) – Override the default username of the webhook. (templated)

	avatar_url (str) – Override the default avatar of the webhook

	tts (bool) – Is a text-to-speech message

	proxy (str) – Proxy to use to make the Discord webhook call

	
execute(context)

	Call the DiscordWebhookHook to post message

	
class airflow.contrib.operators.druid_operator.DruidOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Allows to submit a task directly to druid

	Parameters

	
	json_index_file (str) – The filepath to the druid index specification

	druid_ingest_conn_id (str) – The connection id of the Druid overlord which
accepts index jobs

	
class airflow.contrib.operators.ecs_operator.ECSOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Execute a task on AWS EC2 Container Service

	Parameters

	
	task_definition (str) – the task definition name on EC2 Container Service

	cluster (str) – the cluster name on EC2 Container Service

	overrides (dict) – the same parameter that boto3 will receive (templated):
http://boto3.readthedocs.org/en/latest/reference/services/ecs.html#ECS.Client.run_task

	aws_conn_id (str) – connection id of AWS credentials / region name. If None,
credential boto3 strategy will be used
(http://boto3.readthedocs.io/en/latest/guide/configuration.html).

	region_name (str) – region name to use in AWS Hook.
Override the region_name in connection (if provided)

	launch_type (str) – the launch type on which to run your task (‘EC2’ or ‘FARGATE’)

	group (str) – the name of the task group associated with the task

	placement_constraints (list) – an array of placement constraint objects to use for
the task

	platform_version (str) – the platform version on which your task is running

	network_configuration (dict) – the network configuration for the task

	
class airflow.contrib.operators.emr_add_steps_operator.EmrAddStepsOperator(**kwargs)

	Bases: airflow.models.BaseOperator

An operator that adds steps to an existing EMR job_flow.

	Parameters

	
	job_flow_id (str) – id of the JobFlow to add steps to. (templated)

	aws_conn_id (str) – aws connection to uses

	steps (list) – boto3 style steps to be added to the jobflow. (templated)

	
class airflow.contrib.operators.emr_create_job_flow_operator.EmrCreateJobFlowOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Creates an EMR JobFlow, reading the config from the EMR connection.
A dictionary of JobFlow overrides can be passed that override
the config from the connection.

	Parameters

	
	aws_conn_id (str) – aws connection to uses

	emr_conn_id (str) – emr connection to use

	job_flow_overrides (dict) – boto3 style arguments to override
emr_connection extra. (templated)

	
class airflow.contrib.operators.emr_terminate_job_flow_operator.EmrTerminateJobFlowOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Operator to terminate EMR JobFlows.

	Parameters

	
	job_flow_id (str) – id of the JobFlow to terminate. (templated)

	aws_conn_id (str) – aws connection to uses

	
class airflow.contrib.operators.file_to_gcs.FileToGoogleCloudStorageOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Uploads a file to Google Cloud Storage.
Optionally can compress the file for upload.

	Parameters

	
	src (str) – Path to the local file. (templated)

	dst (str) – Destination path within the specified bucket. (templated)

	bucket (str) – The bucket to upload to. (templated)

	google_cloud_storage_conn_id (str) – The Airflow connection ID to upload with

	mime_type (str) – The mime-type string

	delegate_to (str) – The account to impersonate, if any

	gzip (bool) – Allows for file to be compressed and uploaded as gzip

	
execute(context)

	Uploads the file to Google cloud storage

	
class airflow.contrib.operators.gcs_download_operator.GoogleCloudStorageDownloadOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Downloads a file from Google Cloud Storage.

	Parameters

	
	bucket (str) – The Google cloud storage bucket where the object is. (templated)

	object (str) – The name of the object to download in the Google cloud
storage bucket. (templated)

	filename (str) – The file path on the local file system (where the
operator is being executed) that the file should be downloaded to. (templated)
If no filename passed, the downloaded data will not be stored on the local file
system.

	store_to_xcom_key (str) – If this param is set, the operator will push
the contents of the downloaded file to XCom with the key set in this
parameter. If not set, the downloaded data will not be pushed to XCom. (templated)

	google_cloud_storage_conn_id (str) – The connection ID to use when
connecting to Google cloud storage.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	
class airflow.contrib.operators.gcs_list_operator.GoogleCloudStorageListOperator(**kwargs)

	Bases: airflow.models.BaseOperator

List all objects from the bucket with the give string prefix and delimiter in name.

	This operator returns a python list with the name of objects which can be used by

	xcom in the downstream task.

	Parameters

	
	bucket (str) – The Google cloud storage bucket to find the objects. (templated)

	prefix (str) – Prefix string which filters objects whose name begin with
this prefix. (templated)

	delimiter (str) – The delimiter by which you want to filter the objects. (templated)
For e.g to lists the CSV files from in a directory in GCS you would use
delimiter=’.csv’.

	google_cloud_storage_conn_id (str) – The connection ID to use when
connecting to Google cloud storage.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	Example:

	The following Operator would list all the Avro files from sales/sales-2017
folder in data bucket.

GCS_Files = GoogleCloudStorageListOperator(
 task_id='GCS_Files',
 bucket='data',
 prefix='sales/sales-2017/',
 delimiter='.avro',
 google_cloud_storage_conn_id=google_cloud_conn_id
)

	
class airflow.contrib.operators.gcs_operator.GoogleCloudStorageCreateBucketOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Creates a new bucket. Google Cloud Storage uses a flat namespace,
so you can’t create a bucket with a name that is already in use.

See also

For more information, see Bucket Naming Guidelines:
https://cloud.google.com/storage/docs/bucketnaming.html#requirements

	Parameters

	
	bucket_name (str) – The name of the bucket. (templated)

	storage_class (str) – This defines how objects in the bucket are stored
and determines the SLA and the cost of storage (templated). Values include

	MULTI_REGIONAL

	REGIONAL

	STANDARD

	NEARLINE

	COLDLINE.

If this value is not specified when the bucket is
created, it will default to STANDARD.

	location (str) – The location of the bucket. (templated)
Object data for objects in the bucket resides in physical storage
within this region. Defaults to US.

See also

https://developers.google.com/storage/docs/bucket-locations

	project_id (str) – The ID of the GCP Project. (templated)

	labels (dict) – User-provided labels, in key/value pairs.

	google_cloud_storage_conn_id (str) – The connection ID to use when
connecting to Google cloud storage.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must
have domain-wide delegation enabled.

	Example:

	The following Operator would create a new bucket test-bucket
with MULTI_REGIONAL storage class in EU region

CreateBucket = GoogleCloudStorageCreateBucketOperator(
 task_id='CreateNewBucket',
 bucket_name='test-bucket',
 storage_class='MULTI_REGIONAL',
 location='EU',
 labels={'env': 'dev', 'team': 'airflow'},
 google_cloud_storage_conn_id='airflow-service-account'
)

	
class airflow.contrib.operators.gcs_to_bq.GoogleCloudStorageToBigQueryOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Loads files from Google cloud storage into BigQuery.

The schema to be used for the BigQuery table may be specified in one of
two ways. You may either directly pass the schema fields in, or you may
point the operator to a Google cloud storage object name. The object in
Google cloud storage must be a JSON file with the schema fields in it.

	Parameters

	
	bucket (str) – The bucket to load from. (templated)

	source_objects (list of str) – List of Google cloud storage URIs to load from. (templated)
If source_format is ‘DATASTORE_BACKUP’, the list must only contain a single URI.

	destination_project_dataset_table (str) – The dotted (<project>.)<dataset>.<table>
BigQuery table to load data into. If <project> is not included,
project will be the project defined in the connection json. (templated)

	schema_fields (list) – If set, the schema field list as defined here:
https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load
Should not be set when source_format is ‘DATASTORE_BACKUP’.

	schema_object (str) – If set, a GCS object path pointing to a .json file that
contains the schema for the table. (templated)

	source_format (str) – File format to export.

	compression (str) – [Optional] The compression type of the data source.
Possible values include GZIP and NONE.
The default value is NONE.
This setting is ignored for Google Cloud Bigtable,
Google Cloud Datastore backups and Avro formats.

	create_disposition (str) – The create disposition if the table doesn’t exist.

	skip_leading_rows (int) – Number of rows to skip when loading from a CSV.

	write_disposition (str) – The write disposition if the table already exists.

	field_delimiter (str) – The delimiter to use when loading from a CSV.

	max_bad_records (int) – The maximum number of bad records that BigQuery can
ignore when running the job.

	quote_character (str) – The value that is used to quote data sections in a CSV file.

	ignore_unknown_values (bool) – [Optional] Indicates if BigQuery should allow
extra values that are not represented in the table schema.
If true, the extra values are ignored. If false, records with extra columns
are treated as bad records, and if there are too many bad records, an
invalid error is returned in the job result.

	allow_quoted_newlines (bool) – Whether to allow quoted newlines (true) or not (false).

	allow_jagged_rows (bool) – Accept rows that are missing trailing optional columns.
The missing values are treated as nulls. If false, records with missing trailing
columns are treated as bad records, and if there are too many bad records, an
invalid error is returned in the job result. Only applicable to CSV, ignored
for other formats.

	max_id_key (str) – If set, the name of a column in the BigQuery table
that’s to be loaded. This will be used to select the MAX value from
BigQuery after the load occurs. The results will be returned by the
execute() command, which in turn gets stored in XCom for future
operators to use. This can be helpful with incremental loads–during
future executions, you can pick up from the max ID.

	bigquery_conn_id (str) – Reference to a specific BigQuery hook.

	google_cloud_storage_conn_id (str) – Reference to a specific Google
cloud storage hook.

	delegate_to (str) – The account to impersonate, if any. For this to
work, the service account making the request must have domain-wide
delegation enabled.

	schema_update_options (list) – Allows the schema of the destination
table to be updated as a side effect of the load job.

	src_fmt_configs (dict) – configure optional fields specific to the source format

	external_table (bool) – Flag to specify if the destination table should be
a BigQuery external table. Default Value is False.

	time_partitioning (dict) – configure optional time partitioning fields i.e.
partition by field, type and expiration as per API specifications.
Note that ‘field’ is not available in concurrency with
dataset.table$partition.

	cluster_fields (list of str) – Request that the result of this load be stored sorted
by one or more columns. This is only available in conjunction with
time_partitioning. The order of columns given determines the sort order.
Not applicable for external tables.

	
class airflow.contrib.operators.gcs_to_gcs.GoogleCloudStorageToGoogleCloudStorageOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Copies objects from a bucket to another, with renaming if requested.

	Parameters

	
	source_bucket (str) – The source Google cloud storage bucket where the
object is. (templated)

	source_object (str) – The source name of the object to copy in the Google cloud
storage bucket. (templated)
You can use only one wildcard for objects (filenames) within your
bucket. The wildcard can appear inside the object name or at the
end of the object name. Appending a wildcard to the bucket name is
unsupported.

	destination_bucket (str) – The destination Google cloud storage bucket
where the object should be. (templated)

	destination_object (str) – The destination name of the object in the
destination Google cloud storage bucket. (templated)
If a wildcard is supplied in the source_object argument, this is the
prefix that will be prepended to the final destination objects’ paths.
Note that the source path’s part before the wildcard will be removed;
if it needs to be retained it should be appended to destination_object.
For example, with prefix foo/* and destination_object blah/, the
file foo/baz will be copied to blah/baz; to retain the prefix write
the destination_object as e.g. blah/foo, in which case the copied file
will be named blah/foo/baz.

	move_object (bool) – When move object is True, the object is moved instead
of copied to the new location. This is the equivalent of a mv command
as opposed to a cp command.

	google_cloud_storage_conn_id (str) – The connection ID to use when
connecting to Google cloud storage.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	last_modified_time (datetime) – When specified, if the object(s) were
modified after last_modified_time, they will be copied/moved.
If tzinfo has not been set, UTC will be assumed.

	Examples:

	The following Operator would copy a single file named
sales/sales-2017/january.avro in the data bucket to the file named
copied_sales/2017/january-backup.avro in the data_backup bucket

copy_single_file = GoogleCloudStorageToGoogleCloudStorageOperator(
 task_id='copy_single_file',
 source_bucket='data',
 source_object='sales/sales-2017/january.avro',
 destination_bucket='data_backup',
 destination_object='copied_sales/2017/january-backup.avro',
 google_cloud_storage_conn_id=google_cloud_conn_id
)

The following Operator would copy all the Avro files from sales/sales-2017
folder (i.e. with names starting with that prefix) in data bucket to the
copied_sales/2017 folder in the data_backup bucket.

copy_files = GoogleCloudStorageToGoogleCloudStorageOperator(
 task_id='copy_files',
 source_bucket='data',
 source_object='sales/sales-2017/*.avro',
 destination_bucket='data_backup',
 destination_object='copied_sales/2017/',
 google_cloud_storage_conn_id=google_cloud_conn_id
)

The following Operator would move all the Avro files from sales/sales-2017
folder (i.e. with names starting with that prefix) in data bucket to the
same folder in the data_backup bucket, deleting the original files in the
process.

move_files = GoogleCloudStorageToGoogleCloudStorageOperator(
 task_id='move_files',
 source_bucket='data',
 source_object='sales/sales-2017/*.avro',
 destination_bucket='data_backup',
 move_object=True,
 google_cloud_storage_conn_id=google_cloud_conn_id
)

	
class airflow.contrib.operators.gcs_to_gcs_transfer_operator.GoogleCloudStorageToGoogleCloudStorageTransferOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Copies objects from a bucket to another using the GCP Storage Transfer
Service.

	Parameters

	
	source_bucket (str) – The source Google cloud storage bucket where the
object is. (templated)

	destination_bucket (str) – The destination Google cloud storage bucket
where the object should be. (templated)

	project_id (str) – The ID of the Google Cloud Platform Console project that
owns the job

	gcp_conn_id (str) – Optional connection ID to use when connecting to Google Cloud
Storage.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	description (str) – Optional transfer service job description

	schedule (dict) – Optional transfer service schedule; see
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/transferJobs.
If not set, run transfer job once as soon as the operator runs

	object_conditions (dict) – Optional transfer service object conditions; see
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec#ObjectConditions

	transfer_options (dict) – Optional transfer service transfer options; see
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec#TransferOptions

	wait (bool) – Wait for transfer to finish; defaults to True

Example:

gcs_to_gcs_transfer_op = GoogleCloudStorageToGoogleCloudStorageTransferOperator(
 task_id='gcs_to_gcs_transfer_example',
 source_bucket='my-source-bucket',
 destination_bucket='my-destination-bucket',
 project_id='my-gcp-project',
 dag=my_dag)

	
class airflow.contrib.operators.gcs_to_s3.GoogleCloudStorageToS3Operator(**kwargs)

	Bases: airflow.contrib.operators.gcs_list_operator.GoogleCloudStorageListOperator

Synchronizes a Google Cloud Storage bucket with an S3 bucket.

	Parameters

	
	bucket (str) – The Google Cloud Storage bucket to find the objects. (templated)

	prefix (str) – Prefix string which filters objects whose name begin with
this prefix. (templated)

	delimiter (str) – The delimiter by which you want to filter the objects. (templated)
For e.g to lists the CSV files from in a directory in GCS you would use
delimiter=’.csv’.

	google_cloud_storage_conn_id (str) – The connection ID to use when
connecting to Google Cloud Storage.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	dest_aws_conn_id (str) – The destination S3 connection

	dest_s3_key (str) – The base S3 key to be used to store the files. (templated)

	dest_verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.
You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used

	(unless use_ssl is False), but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

	
class airflow.contrib.operators.hipchat_operator.HipChatAPIOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Base HipChat Operator.
All derived HipChat operators reference from HipChat’s official REST API documentation
at https://www.hipchat.com/docs/apiv2. Before using any HipChat API operators you need
to get an authentication token at https://www.hipchat.com/docs/apiv2/auth.
In the future additional HipChat operators will be derived from this class as well.

	Parameters

	
	token (str) – HipChat REST API authentication token

	base_url (str) – HipChat REST API base url.

	
prepare_request()

	Used by the execute function. Set the request method, url, and body of HipChat’s
REST API call.
Override in child class. Each HipChatAPI child operator is responsible for having
a prepare_request method call which sets self.method, self.url, and self.body.

	
class airflow.contrib.operators.hipchat_operator.HipChatAPISendRoomNotificationOperator(**kwargs)

	Bases: airflow.contrib.operators.hipchat_operator.HipChatAPIOperator

Send notification to a specific HipChat room.
More info: https://www.hipchat.com/docs/apiv2/method/send_room_notification

	Parameters

	
	room_id (str) – Room in which to send notification on HipChat. (templated)

	message (str) – The message body. (templated)

	frm (str) – Label to be shown in addition to sender’s name

	message_format (str) – How the notification is rendered: html or text

	color (str) – Background color of the msg: yellow, green, red, purple, gray, or random

	attach_to (str) – The message id to attach this notification to

	notify (bool) – Whether this message should trigger a user notification

	card (dict) – HipChat-defined card object

	
prepare_request()

	Used by the execute function. Set the request method, url, and body of HipChat’s
REST API call.
Override in child class. Each HipChatAPI child operator is responsible for having
a prepare_request method call which sets self.method, self.url, and self.body.

	
class airflow.contrib.operators.hive_to_dynamodb.HiveToDynamoDBTransferOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Moves data from Hive to DynamoDB, note that for now the data is loaded
into memory before being pushed to DynamoDB, so this operator should
be used for smallish amount of data.

	Parameters

	
	sql (str) – SQL query to execute against the hive database. (templated)

	table_name (str) – target DynamoDB table

	table_keys (list) – partition key and sort key

	pre_process (function) – implement pre-processing of source data

	pre_process_args (list) – list of pre_process function arguments

	pre_process_kwargs (dict) – dict of pre_process function arguments

	region_name (str) – aws region name (example: us-east-1)

	schema (str) – hive database schema

	hiveserver2_conn_id (str) – source hive connection

	aws_conn_id (str) – aws connection

	
class airflow.contrib.operators.mlengine_operator.MLEngineBatchPredictionOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Start a Google Cloud ML Engine prediction job.

NOTE: For model origin, users should consider exactly one from the
three options below:
1. Populate ‘uri’ field only, which should be a GCS location that
points to a tensorflow savedModel directory.
2. Populate ‘model_name’ field only, which refers to an existing
model, and the default version of the model will be used.
3. Populate both ‘model_name’ and ‘version_name’ fields, which
refers to a specific version of a specific model.

In options 2 and 3, both model and version name should contain the
minimal identifier. For instance, call

MLEngineBatchPredictionOperator(
 ...,
 model_name='my_model',
 version_name='my_version',
 ...)

if the desired model version is
“projects/my_project/models/my_model/versions/my_version”.

See https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs
for further documentation on the parameters.

	Parameters

	
	project_id (str) – The Google Cloud project name where the
prediction job is submitted. (templated)

	job_id (str) – A unique id for the prediction job on Google Cloud
ML Engine. (templated)

	data_format (str) – The format of the input data.
It will default to ‘DATA_FORMAT_UNSPECIFIED’ if is not provided
or is not one of [“TEXT”, “TF_RECORD”, “TF_RECORD_GZIP”].

	input_paths (list of string) – A list of GCS paths of input data for batch
prediction. Accepting wildcard operator *, but only at the end. (templated)

	output_path (str) – The GCS path where the prediction results are
written to. (templated)

	region (str) – The Google Compute Engine region to run the
prediction job in. (templated)

	model_name (str) – The Google Cloud ML Engine model to use for prediction.
If version_name is not provided, the default version of this
model will be used.
Should not be None if version_name is provided.
Should be None if uri is provided. (templated)

	version_name (str) – The Google Cloud ML Engine model version to use for
prediction.
Should be None if uri is provided. (templated)

	uri (str) – The GCS path of the saved model to use for prediction.
Should be None if model_name is provided.
It should be a GCS path pointing to a tensorflow SavedModel. (templated)

	max_worker_count (int) – The maximum number of workers to be used
for parallel processing. Defaults to 10 if not specified.

	runtime_version (str) – The Google Cloud ML Engine runtime version to use
for batch prediction.

	gcp_conn_id (str) – The connection ID used for connection to Google
Cloud Platform.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must
have doamin-wide delegation enabled.

	Raises:

	ValueError: if a unique model/version origin cannot be determined.

	
class airflow.contrib.operators.mlengine_operator.MLEngineModelOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Operator for managing a Google Cloud ML Engine model.

	Parameters

	
	project_id (str) – The Google Cloud project name to which MLEngine
model belongs. (templated)

	model (dict) – A dictionary containing the information about the model.
If the operation is create, then the model parameter should
contain all the information about this model such as name.

If the operation is get, the model parameter
should contain the name of the model.

	operation (str) – The operation to perform. Available operations are:

	create: Creates a new model as provided by the model parameter.

	get: Gets a particular model where the name is specified in model.

	gcp_conn_id (str) – The connection ID to use when fetching connection info.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	
class airflow.contrib.operators.mlengine_operator.MLEngineVersionOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Operator for managing a Google Cloud ML Engine version.

	Parameters

	
	project_id (str) – The Google Cloud project name to which MLEngine
model belongs.

	model_name (str) – The name of the Google Cloud ML Engine model that the version
belongs to. (templated)

	version_name (str) – A name to use for the version being operated upon.
If not None and the version argument is None or does not have a value for
the name key, then this will be populated in the payload for the
name key. (templated)

	version (dict) – A dictionary containing the information about the version.
If the operation is create, version should contain all the
information about this version such as name, and deploymentUrl.
If the operation is get or delete, the version parameter
should contain the name of the version.
If it is None, the only operation possible would be list. (templated)

	operation (str) – The operation to perform. Available operations are:

	create: Creates a new version in the model specified by model_name,
in which case the version parameter should contain all the
information to create that version
(e.g. name, deploymentUrl).

	get: Gets full information of a particular version in the model
specified by model_name.
The name of the version should be specified in the version
parameter.

	list: Lists all available versions of the model specified
by model_name.

	delete: Deletes the version specified in version parameter from the
model specified by model_name).
The name of the version should be specified in the version
parameter.

	gcp_conn_id (str) – The connection ID to use when fetching connection info.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	
class airflow.contrib.operators.mlengine_operator.MLEngineTrainingOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Operator for launching a MLEngine training job.

	Parameters

	
	project_id (str) – The Google Cloud project name within which MLEngine
training job should run (templated).

	job_id (str) – A unique templated id for the submitted Google MLEngine
training job. (templated)

	package_uris (str) – A list of package locations for MLEngine training job,
which should include the main training program + any additional
dependencies. (templated)

	training_python_module (str) – The Python module name to run within MLEngine
training job after installing ‘package_uris’ packages. (templated)

	training_args (str) – A list of templated command line arguments to pass to
the MLEngine training program. (templated)

	region (str) – The Google Compute Engine region to run the MLEngine training
job in (templated).

	scale_tier (str) – Resource tier for MLEngine training job. (templated)

	master_type (str) – Cloud ML Engine machine name.
Must be set when scale_tier is CUSTOM. (templated)

	runtime_version (str) – The Google Cloud ML runtime version to use for
training. (templated)

	python_version (str) – The version of Python used in training. (templated)

	job_dir (str) – A Google Cloud Storage path in which to store training
outputs and other data needed for training. (templated)

	gcp_conn_id (str) – The connection ID to use when fetching connection info.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	mode (str) – Can be one of ‘DRY_RUN’/’CLOUD’. In ‘DRY_RUN’ mode, no real
training job will be launched, but the MLEngine training job request
will be printed out. In ‘CLOUD’ mode, a real MLEngine training job
creation request will be issued.

	
class airflow.contrib.operators.mongo_to_s3.MongoToS3Operator(**kwargs)

	Bases: airflow.models.BaseOperator

	Mongo -> S3

	A more specific baseOperator meant to move data
from mongo via pymongo to s3 via boto

	things to note

	.execute() is written to depend on .transform()
.transform() is meant to be extended by child classes
to perform transformations unique to those operators needs

	
execute(context)

	Executed by task_instance at runtime

	
static transform(docs)

	
	Processes pyMongo cursor and returns an iterable with each element being

	a JSON serializable dictionary

Base transform() assumes no processing is needed
ie. docs is a pyMongo cursor of documents and cursor just
needs to be passed through

Override this method for custom transformations

	
class airflow.contrib.operators.mysql_to_gcs.MySqlToGoogleCloudStorageOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Copy data from MySQL to Google cloud storage in JSON format.

	Parameters

	
	sql (str) – The SQL to execute on the MySQL table.

	bucket (str) – The bucket to upload to.

	filename (str) – The filename to use as the object name when uploading
to Google cloud storage. A {} should be specified in the filename
to allow the operator to inject file numbers in cases where the
file is split due to size.

	schema_filename (str) – If set, the filename to use as the object name
when uploading a .json file containing the BigQuery schema fields
for the table that was dumped from MySQL.

	approx_max_file_size_bytes (long) – This operator supports the ability
to split large table dumps into multiple files (see notes in the
filenamed param docs above). Google cloud storage allows for files
to be a maximum of 4GB. This param allows developers to specify the
file size of the splits.

	mysql_conn_id (str) – Reference to a specific MySQL hook.

	google_cloud_storage_conn_id (str) – Reference to a specific Google
cloud storage hook.

	schema (str or list) – The schema to use, if any. Should be a list of dict or
a str. Pass a string if using Jinja template, otherwise, pass a list of
dict. Examples could be seen: https://cloud.google.com/bigquery/docs
/schemas#specifying_a_json_schema_file

	delegate_to (str) – The account to impersonate, if any. For this to
work, the service account making the request must have domain-wide
delegation enabled.

	
classmethod type_map(mysql_type)

	Helper function that maps from MySQL fields to BigQuery fields. Used
when a schema_filename is set.

	
class airflow.contrib.operators.postgres_to_gcs_operator.PostgresToGoogleCloudStorageOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Copy data from Postgres to Google Cloud Storage in JSON format.

	
classmethod convert_types(value)

	Takes a value from Postgres, and converts it to a value that’s safe for
JSON/Google Cloud Storage/BigQuery. Dates are converted to UTC seconds.
Decimals are converted to floats. Times are converted to seconds.

	
classmethod type_map(postgres_type)

	Helper function that maps from Postgres fields to BigQuery fields. Used
when a schema_filename is set.

	
class airflow.contrib.operators.pubsub_operator.PubSubTopicCreateOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Create a PubSub topic.

By default, if the topic already exists, this operator will
not cause the DAG to fail.

with DAG('successful DAG') as dag:
 (
 dag
 >> PubSubTopicCreateOperator(project='my-project',
 topic='my_new_topic')
 >> PubSubTopicCreateOperator(project='my-project',
 topic='my_new_topic')
)

The operator can be configured to fail if the topic already exists.

with DAG('failing DAG') as dag:
 (
 dag
 >> PubSubTopicCreateOperator(project='my-project',
 topic='my_new_topic')
 >> PubSubTopicCreateOperator(project='my-project',
 topic='my_new_topic',
 fail_if_exists=True)
)

Both project and topic are templated so you can use
variables in them.

	
class airflow.contrib.operators.pubsub_operator.PubSubTopicDeleteOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Delete a PubSub topic.

By default, if the topic does not exist, this operator will
not cause the DAG to fail.

with DAG('successful DAG') as dag:
 (
 dag
 >> PubSubTopicDeleteOperator(project='my-project',
 topic='non_existing_topic')
)

The operator can be configured to fail if the topic does not exist.

with DAG('failing DAG') as dag:
 (
 dag
 >> PubSubTopicCreateOperator(project='my-project',
 topic='non_existing_topic',
 fail_if_not_exists=True)
)

Both project and topic are templated so you can use
variables in them.

	
class airflow.contrib.operators.pubsub_operator.PubSubSubscriptionCreateOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Create a PubSub subscription.

By default, the subscription will be created in topic_project. If
subscription_project is specified and the GCP credentials allow, the
Subscription can be created in a different project from its topic.

By default, if the subscription already exists, this operator will
not cause the DAG to fail. However, the topic must exist in the project.

with DAG('successful DAG') as dag:
 (
 dag
 >> PubSubSubscriptionCreateOperator(
 topic_project='my-project', topic='my-topic',
 subscription='my-subscription')
 >> PubSubSubscriptionCreateOperator(
 topic_project='my-project', topic='my-topic',
 subscription='my-subscription')
)

The operator can be configured to fail if the subscription already exists.

with DAG('failing DAG') as dag:
 (
 dag
 >> PubSubSubscriptionCreateOperator(
 topic_project='my-project', topic='my-topic',
 subscription='my-subscription')
 >> PubSubSubscriptionCreateOperator(
 topic_project='my-project', topic='my-topic',
 subscription='my-subscription', fail_if_exists=True)
)

Finally, subscription is not required. If not passed, the operator will
generated a universally unique identifier for the subscription’s name.

with DAG('DAG') as dag:
 (
 dag >> PubSubSubscriptionCreateOperator(
 topic_project='my-project', topic='my-topic')
)

topic_project, topic, subscription, and
subscription are templated so you can use variables in them.

	
class airflow.contrib.operators.pubsub_operator.PubSubSubscriptionDeleteOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Delete a PubSub subscription.

By default, if the subscription does not exist, this operator will
not cause the DAG to fail.

with DAG('successful DAG') as dag:
 (
 dag
 >> PubSubSubscriptionDeleteOperator(project='my-project',
 subscription='non-existing')
)

The operator can be configured to fail if the subscription already exists.

with DAG('failing DAG') as dag:
 (
 dag
 >> PubSubSubscriptionDeleteOperator(
 project='my-project', subscription='non-existing',
 fail_if_not_exists=True)
)

project, and subscription are templated so you can use
variables in them.

	
class airflow.contrib.operators.pubsub_operator.PubSubPublishOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Publish messages to a PubSub topic.

Each Task publishes all provided messages to the same topic
in a single GCP project. If the topic does not exist, this
task will fail.

from base64 import b64encode as b64e

m1 = {'data': b64e('Hello, World!'),
 'attributes': {'type': 'greeting'}
 }
m2 = {'data': b64e('Knock, knock')}
m3 = {'attributes': {'foo': ''}}

t1 = PubSubPublishOperator(
 project='my-project',topic='my_topic',
 messages=[m1, m2, m3],
 create_topic=True,
 dag=dag)

project , topic, and messages are templated so you can use
variables in them.

	
class airflow.contrib.operators.qubole_check_operator.QuboleCheckOperator(**kwargs)

	Bases: airflow.operators.check_operator.CheckOperator, airflow.contrib.operators.qubole_operator.QuboleOperator

Performs checks against Qubole Commands. QuboleCheckOperator expects
a command that will be executed on QDS.
By default, each value on first row of the result of this Qubole Command
is evaluated using python bool casting. If any of the
values return False, the check is failed and errors out.

Note that Python bool casting evals the following as False:

	False

	0

	Empty string ("")

	Empty list ([])

	Empty dictionary or set ({})

Given a query like SELECT COUNT(*) FROM foo, it will fail only if
the count == 0. You can craft much more complex query that could,
for instance, check that the table has the same number of rows as
the source table upstream, or that the count of today’s partition is
greater than yesterday’s partition, or that a set of metrics are less
than 3 standard deviation for the 7 day average.

This operator can be used as a data quality check in your pipeline, and
depending on where you put it in your DAG, you have the choice to
stop the critical path, preventing from
publishing dubious data, or on the side and receive email alerts
without stopping the progress of the DAG.

	Parameters

	qubole_conn_id (str) – Connection id which consists of qds auth_token

kwargs:

Arguments specific to Qubole command can be referred from QuboleOperator docs.

	results_parser_callable

	This is an optional parameter to
extend the flexibility of parsing the results of Qubole
command to the users. This is a python callable which
can hold the logic to parse list of rows returned by Qubole command.
By default, only the values on first row are used for performing checks.
This callable should return a list of records on
which the checks have to be performed.

Note

All fields in common with template fields of
QuboleOperator and CheckOperator are template-supported.

	
class airflow.contrib.operators.qubole_check_operator.QuboleValueCheckOperator(**kwargs)

	Bases: airflow.operators.check_operator.ValueCheckOperator, airflow.contrib.operators.qubole_operator.QuboleOperator

Performs a simple value check using Qubole command.
By default, each value on the first row of this
Qubole command is compared with a pre-defined value.
The check fails and errors out if the output of the command
is not within the permissible limit of expected value.

	Parameters

	
	qubole_conn_id (str) – Connection id which consists of qds auth_token

	pass_value (str/int/float) – Expected value of the query results.

	tolerance (int/float) – Defines the permissible pass_value range, for example if
tolerance is 2, the Qubole command output can be anything between
-2*pass_value and 2*pass_value, without the operator erring out.

kwargs:

Arguments specific to Qubole command can be referred from QuboleOperator docs.

	results_parser_callable

	This is an optional parameter to
extend the flexibility of parsing the results of Qubole
command to the users. This is a python callable which
can hold the logic to parse list of rows returned by Qubole command.
By default, only the values on first row are used for performing checks.
This callable should return a list of records on
which the checks have to be performed.

Note

All fields in common with template fields of
QuboleOperator and ValueCheckOperator are template-supported.

	
class airflow.contrib.operators.qubole_operator.QuboleOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Execute tasks (commands) on QDS (https://qubole.com).

	Parameters

	qubole_conn_id (str) – Connection id which consists of qds auth_token

	kwargs:

	
	command_type

	type of command to be executed, e.g. hivecmd, shellcmd, hadoopcmd

	tags

	array of tags to be assigned with the command

	cluster_label

	cluster label on which the command will be executed

	name

	name to be given to command

	notify

	whether to send email on command completion or not (default is False)

Arguments specific to command types

	hivecmd:

	
	query

	inline query statement

	script_location

	s3 location containing query statement

	sample_size

	size of sample in bytes on which to run query

	macros

	macro values which were used in query

	sample_size

	size of sample in bytes on which to run query

	hive-version

	Specifies the hive version to be used. eg: 0.13,1.2,etc.

	prestocmd:

	
	query

	inline query statement

	script_location

	s3 location containing query statement

	macros

	macro values which were used in query

	hadoopcmd:

	
	sub_commnad

	must be one these [“jar”, “s3distcp”, “streaming”] followed by
1 or more args

	shellcmd:

	
	script

	inline command with args

	script_location

	s3 location containing query statement

	files

	list of files in s3 bucket as file1,file2 format. These files will be
copied into the working directory where the qubole command is being
executed.

	archives

	list of archives in s3 bucket as archive1,archive2 format. These
will be unarchived intothe working directory where the qubole command is
being executed

	parameters

	any extra args which need to be passed to script (only when
script_location is supplied)

	pigcmd:

	
	script

	inline query statement (latin_statements)

	script_location

	s3 location containing pig query

	parameters

	any extra args which need to be passed to script (only when
script_location is supplied

	sparkcmd:

	
	program

	the complete Spark Program in Scala, SQL, Command, R, or Python

	cmdline

	spark-submit command line, all required information must be specify
in cmdline itself.

	sql

	inline sql query

	script_location

	s3 location containing query statement

	language

	language of the program, Scala, SQL, Command, R, or Python

	app_id

	ID of an Spark job server app

	arguments

	spark-submit command line arguments

	user_program_arguments

	arguments that the user program takes in

	macros

	macro values which were used in query

	note_id

	Id of the Notebook to run

	dbtapquerycmd:

	
	db_tap_id

	data store ID of the target database, in Qubole.

	query

	inline query statement

	macros

	macro values which were used in query

	dbexportcmd:

	
	mode

	Can be 1 for Hive export or 2 for HDFS/S3 export

	schema

	Db schema name assumed accordingly by database if not specified

	hive_table

	Name of the hive table

	partition_spec

	partition specification for Hive table.

	dbtap_id

	data store ID of the target database, in Qubole.

	db_table

	name of the db table

	db_update_mode

	allowinsert or updateonly

	db_update_keys

	columns used to determine the uniqueness of rows

	export_dir

	HDFS/S3 location from which data will be exported.

	fields_terminated_by

	hex of the char used as column separator in the dataset

	use_customer_cluster

	To use cluster to run command

	customer_cluster_label

	the label of the cluster to run the command on

	additional_options

	Additional Sqoop options which are needed enclose options in
double or single quotes e.g. ‘–map-column-hive id=int,data=string’

	dbimportcmd:

	
	mode

	1 (simple), 2 (advance)

	hive_table

	Name of the hive table

	schema

	Db schema name assumed accordingly by database if not specified

	hive_serde

	Output format of the Hive Table

	dbtap_id

	data store ID of the target database, in Qubole.

	db_table

	name of the db table

	where_clause

	where clause, if any

	parallelism

	number of parallel db connections to use for extracting data

	extract_query

	SQL query to extract data from db. $CONDITIONS must be part
of the where clause.

	boundary_query

	Query to be used get range of row IDs to be extracted

	split_column

	Column used as row ID to split data into ranges (mode 2)

	use_customer_cluster

	To use cluster to run command

	customer_cluster_label

	the label of the cluster to run the command on

	additional_options

	Additional Sqoop options which are needed enclose options in
double or single quotes

Note

Following fields are template-supported : query, script_location,
sub_command, script, files, archives, program, cmdline,
sql, where_clause, extract_query, boundary_query, macros,
tags, name, parameters, dbtap_id, hive_table, db_table,
split_column, note_id, db_update_keys, export_dir,
partition_spec, qubole_conn_id, arguments, user_program_arguments.

You can also use .txt files for template driven use cases.

Note

In QuboleOperator there is a default handler for task failures and retries,
which generally kills the command running at QDS for the corresponding task
instance. You can override this behavior by providing your own failure and retry
handler in task definition.

	
class airflow.contrib.operators.s3_copy_object_operator.S3CopyObjectOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Creates a copy of an object that is already stored in S3.

Note: the S3 connection used here needs to have access to both
source and destination bucket/key.

	Parameters

	
	source_bucket_key (str) – The key of the source object.

It can be either full s3:// style url or relative path from root level.

When it’s specified as a full s3:// url, please omit source_bucket_name.

	dest_bucket_key (str) – The key of the object to copy to.

The convention to specify dest_bucket_key is the same as source_bucket_key.

	source_bucket_name (str) – Name of the S3 bucket where the source object is in.

It should be omitted when source_bucket_key is provided as a full s3:// url.

	dest_bucket_name (str) – Name of the S3 bucket to where the object is copied.

It should be omitted when dest_bucket_key is provided as a full s3:// url.

	source_version_id (str) – Version ID of the source object (OPTIONAL)

	aws_conn_id (str) – Connection id of the S3 connection to use

	verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.

You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used,

	but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

	
class airflow.contrib.operators.s3_delete_objects_operator.S3DeleteObjectsOperator(**kwargs)

	Bases: airflow.models.BaseOperator

To enable users to delete single object or multiple objects from
a bucket using a single HTTP request.

Users may specify up to 1000 keys to delete.

	Parameters

	
	bucket (str) – Name of the bucket in which you are going to delete object(s)

	keys (str or list) – The key(s) to delete from S3 bucket.

When keys is a string, it’s supposed to be the key name of
the single object to delete.

When keys is a list, it’s supposed to be the list of the
keys to delete.

You may specify up to 1000 keys.

	aws_conn_id (str) – Connection id of the S3 connection to use

	verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.

You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used,

	but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

	
class airflow.contrib.operators.s3_list_operator.S3ListOperator(**kwargs)

	Bases: airflow.models.BaseOperator

List all objects from the bucket with the given string prefix in name.

This operator returns a python list with the name of objects which can be
used by xcom in the downstream task.

	Parameters

	
	bucket (str) – The S3 bucket where to find the objects. (templated)

	prefix (str) – Prefix string to filters the objects whose name begin with
such prefix. (templated)

	delimiter (str) – the delimiter marks key hierarchy. (templated)

	aws_conn_id (str) – The connection ID to use when connecting to S3 storage.

	verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.
You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used

	(unless use_ssl is False), but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

	Example:

	The following operator would list all the files
(excluding subfolders) from the S3
customers/2018/04/ key in the data bucket.

s3_file = S3ListOperator(
 task_id='list_3s_files',
 bucket='data',
 prefix='customers/2018/04/',
 delimiter='/',
 aws_conn_id='aws_customers_conn'
)

	
class airflow.contrib.operators.s3_to_gcs_operator.S3ToGoogleCloudStorageOperator(**kwargs)

	Bases: airflow.contrib.operators.s3_list_operator.S3ListOperator

Synchronizes an S3 key, possibly a prefix, with a Google Cloud Storage
destination path.

	Parameters

	
	bucket (str) – The S3 bucket where to find the objects. (templated)

	prefix (str) – Prefix string which filters objects whose name begin with
such prefix. (templated)

	delimiter (str) – the delimiter marks key hierarchy. (templated)

	aws_conn_id (str) – The source S3 connection

	verify (bool or str) – Whether or not to verify SSL certificates for S3 connection.
By default SSL certificates are verified.
You can provide the following values:

	
	False: do not validate SSL certificates. SSL will still be used

	(unless use_ssl is False), but SSL certificates will not be
verified.

	
	path/to/cert/bundle.pem: A filename of the CA cert bundle to uses.

	You can specify this argument if you want to use a different
CA cert bundle than the one used by botocore.

	dest_gcs_conn_id (str) – The destination connection ID to use
when connecting to Google Cloud Storage.

	dest_gcs (str) – The destination Google Cloud Storage bucket and prefix
where you want to store the files. (templated)

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	replace (bool) – Whether you want to replace existing destination files
or not.

Example:

s3_to_gcs_op = S3ToGoogleCloudStorageOperator(
 task_id='s3_to_gcs_example',
 bucket='my-s3-bucket',
 prefix='data/customers-201804',
 dest_gcs_conn_id='google_cloud_default',
 dest_gcs='gs://my.gcs.bucket/some/customers/',
 replace=False,
 dag=my-dag)

Note that bucket, prefix, delimiter and dest_gcs are
templated, so you can use variables in them if you wish.

	
class airflow.contrib.operators.s3_to_gcs_transfer_operator.S3ToGoogleCloudStorageTransferOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Synchronizes an S3 bucket with a Google Cloud Storage bucket using the
GCP Storage Transfer Service.

	Parameters

	
	s3_bucket (str) – The S3 bucket where to find the objects. (templated)

	gcs_bucket (str) – The destination Google Cloud Storage bucket
where you want to store the files. (templated)

	project_id (str) – Optional ID of the Google Cloud Platform Console project that
owns the job

	aws_conn_id (str) – The source S3 connection

	gcp_conn_id (str) – The destination connection ID to use
when connecting to Google Cloud Storage.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	description (str) – Optional transfer service job description

	schedule (dict) – Optional transfer service schedule; see
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/transferJobs.
If not set, run transfer job once as soon as the operator runs

	object_conditions (dict) – Optional transfer service object conditions; see
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec

	transfer_options (dict) – Optional transfer service transfer options; see
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/TransferSpec

	wait (bool) – Wait for transfer to finish

Example:

s3_to_gcs_transfer_op = S3ToGoogleCloudStorageTransferOperator(
 task_id='s3_to_gcs_transfer_example',
 s3_bucket='my-s3-bucket',
 project_id='my-gcp-project',
 gcs_bucket='my-gcs-bucket',
 dag=my_dag)

	
class airflow.contrib.operators.sagemaker_base_operator.SageMakerBaseOperator(**kwargs)

	Bases: airflow.models.BaseOperator

This is the base operator for all SageMaker operators.

	Parameters

	
	config (dict) – The configuration necessary to start a training job (templated)

	aws_conn_id (str) – The AWS connection ID to use.

	
class airflow.contrib.operators.sagemaker_endpoint_operator.SageMakerEndpointOperator(**kwargs)

	Bases: airflow.contrib.operators.sagemaker_base_operator.SageMakerBaseOperator

Create a SageMaker endpoint.

This operator returns The ARN of the endpoint created in Amazon SageMaker

	Parameters

	
	config (dict) – The configuration necessary to create an endpoint.

If you need to create a SageMaker endpoint based on an existed
SageMaker model and an existed SageMaker endpoint config:

config = endpoint_configuration;

If you need to create all of SageMaker model, SageMaker endpoint-config and SageMaker endpoint:

config = {
 'Model': model_configuration,
 'EndpointConfig': endpoint_config_configuration,
 'Endpoint': endpoint_configuration
}

For details of the configuration parameter of model_configuration see
SageMaker.Client.create_model() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model]

For details of the configuration parameter of endpoint_config_configuration see
SageMaker.Client.create_endpoint_config() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint_config]

For details of the configuration parameter of endpoint_configuration see
SageMaker.Client.create_endpoint() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint]

	aws_conn_id (str) – The AWS connection ID to use.

	wait_for_completion (bool) – Whether the operator should wait until the endpoint creation finishes.

	check_interval (int) – If wait is set to True, this is the time interval, in seconds, that this operation
waits before polling the status of the endpoint creation.

	max_ingestion_time (int) – If wait is set to True, this operation fails if the endpoint creation doesn’t
finish within max_ingestion_time seconds. If you set this parameter to None it never times out.

	operation (str) – Whether to create an endpoint or update an endpoint. Must be either ‘create or ‘update’.

	
class airflow.contrib.operators.sagemaker_endpoint_config_operator.SageMakerEndpointConfigOperator(**kwargs)

	Bases: airflow.contrib.operators.sagemaker_base_operator.SageMakerBaseOperator

Create a SageMaker endpoint config.

This operator returns The ARN of the endpoint config created in Amazon SageMaker

	Parameters

	
	config (dict) – The configuration necessary to create an endpoint config.

For details of the configuration parameter see SageMaker.Client.create_endpoint_config() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint_config]

	aws_conn_id (str) – The AWS connection ID to use.

	
class airflow.contrib.operators.sagemaker_model_operator.SageMakerModelOperator(**kwargs)

	Bases: airflow.contrib.operators.sagemaker_base_operator.SageMakerBaseOperator

Create a SageMaker model.

This operator returns The ARN of the model created in Amazon SageMaker

	Parameters

	
	config (dict) – The configuration necessary to create a model.

For details of the configuration parameter see SageMaker.Client.create_model() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model]

	aws_conn_id (str) – The AWS connection ID to use.

	
class airflow.contrib.operators.sagemaker_training_operator.SageMakerTrainingOperator(**kwargs)

	Bases: airflow.contrib.operators.sagemaker_base_operator.SageMakerBaseOperator

Initiate a SageMaker training job.

This operator returns The ARN of the training job created in Amazon SageMaker.

	Parameters

	
	config (dict) – The configuration necessary to start a training job (templated).

For details of the configuration parameter see SageMaker.Client.create_training_job() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_training_job]

	aws_conn_id (str) – The AWS connection ID to use.

	wait_for_completion (bool) – If wait is set to True, the time interval, in seconds,
that the operation waits to check the status of the training job.

	print_log (bool) – if the operator should print the cloudwatch log during training

	check_interval (int) – if wait is set to be true, this is the time interval
in seconds which the operator will check the status of the training job

	max_ingestion_time (int) – If wait is set to True, the operation fails if the training job
doesn’t finish within max_ingestion_time seconds. If you set this parameter to None,
the operation does not timeout.

	
class airflow.contrib.operators.sagemaker_transform_operator.SageMakerTransformOperator(**kwargs)

	Bases: airflow.contrib.operators.sagemaker_base_operator.SageMakerBaseOperator

Initiate a SageMaker transform job.

This operator returns The ARN of the model created in Amazon SageMaker.

	Parameters

	
	config (dict) – The configuration necessary to start a transform job (templated).

If you need to create a SageMaker transform job based on an existed SageMaker model:

config = transform_config

If you need to create both SageMaker model and SageMaker Transform job:

config = {
 'Model': model_config,
 'Transform': transform_config
}

For details of the configuration parameter of transform_config see
SageMaker.Client.create_transform_job() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_transform_job]

For details of the configuration parameter of model_config, See:
SageMaker.Client.create_model() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model]

	aws_conn_id (string) – The AWS connection ID to use.

	wait_for_completion (bool) – Set to True to wait until the transform job finishes.

	check_interval (int) – If wait is set to True, the time interval, in seconds,
that this operation waits to check the status of the transform job.

	max_ingestion_time (int) – If wait is set to True, the operation fails
if the transform job doesn’t finish within max_ingestion_time seconds. If you
set this parameter to None, the operation does not timeout.

	
class airflow.contrib.operators.sagemaker_tuning_operator.SageMakerTuningOperator(**kwargs)

	Bases: airflow.contrib.operators.sagemaker_base_operator.SageMakerBaseOperator

Initiate a SageMaker hyperparameter tuning job.

This operator returns The ARN of the tuning job created in Amazon SageMaker.

	Parameters

	
	config (dict) – The configuration necessary to start a tuning job (templated).

For details of the configuration parameter see
SageMaker.Client.create_hyper_parameter_tuning_job() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_hyper_parameter_tuning_job]

	aws_conn_id (str) – The AWS connection ID to use.

	wait_for_completion (bool) – Set to True to wait until the tuning job finishes.

	check_interval (int) – If wait is set to True, the time interval, in seconds,
that this operation waits to check the status of the tuning job.

	max_ingestion_time (int) – If wait is set to True, the operation fails
if the tuning job doesn’t finish within max_ingestion_time seconds. If you
set this parameter to None, the operation does not timeout.

	
class airflow.contrib.operators.sftp_operator.SFTPOperator(**kwargs)

	Bases: airflow.models.BaseOperator

SFTPOperator for transferring files from remote host to local or vice a versa.
This operator uses ssh_hook to open sftp transport channel that serve as basis
for file transfer.

	Parameters

	
	ssh_hook (SSHHook) – predefined ssh_hook to use for remote execution.
Either ssh_hook or ssh_conn_id needs to be provided.

	ssh_conn_id (str) – connection id from airflow Connections.
ssh_conn_id will be ingored if ssh_hook is provided.

	remote_host (str) – remote host to connect (templated)
Nullable. If provided, it will replace the remote_host which was
defined in ssh_hook or predefined in the connection of ssh_conn_id.

	local_filepath (str) – local file path to get or put. (templated)

	remote_filepath (str) – remote file path to get or put. (templated)

	operation (str) – specify operation ‘get’ or ‘put’, defaults to put

	confirm (bool) – specify if the SFTP operation should be confirmed, defaults to True

	create_intermediate_dirs (bool) – create missing intermediate directories when
copying from remote to local and vice-versa. Default is False.

Example: The following task would copy file.txt to the remote host
at /tmp/tmp1/tmp2/ while creating tmp,``tmp1`` and tmp2 if they
don’t exist. If the parameter is not passed it would error as the directory
does not exist.

put_file = SFTPOperator(
 task_id="test_sftp",
 ssh_conn_id="ssh_default",
 local_filepath="/tmp/file.txt",
 remote_filepath="/tmp/tmp1/tmp2/file.txt",
 operation="put",
 create_intermediate_dirs=True,
 dag=dag
)

	
class airflow.contrib.operators.slack_webhook_operator.SlackWebhookOperator(**kwargs)

	Bases: airflow.operators.http_operator.SimpleHttpOperator

This operator allows you to post messages to Slack using incoming webhooks.
Takes both Slack webhook token directly and connection that has Slack webhook token.
If both supplied, Slack webhook token will be used.

Each Slack webhook token can be pre-configured to use a specific channel, username and
icon. You can override these defaults in this hook.

	Parameters

	
	http_conn_id (str) – connection that has Slack webhook token in the extra field

	webhook_token (str) – Slack webhook token

	message (str) – The message you want to send on Slack

	attachments (list) – The attachments to send on Slack. Should be a list of
dictionaries representing Slack attachments.

	channel (str) – The channel the message should be posted to

	username (str) – The username to post to slack with

	icon_emoji (str) – The emoji to use as icon for the user posting to Slack

	link_names (bool) – Whether or not to find and link channel and usernames in your
message

	proxy (str) – Proxy to use to make the Slack webhook call

	
execute(context)

	Call the SlackWebhookHook to post the provided Slack message

	
class airflow.contrib.operators.sns_publish_operator.SnsPublishOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Publish a message to Amazon SNS.

	Parameters

	
	aws_conn_id (str) – aws connection to use

	target_arn (str) – either a TopicArn or an EndpointArn

	message (str) – the default message you want to send (templated)

	
class airflow.contrib.operators.spark_jdbc_operator.SparkJDBCOperator(**kwargs)

	Bases: airflow.contrib.operators.spark_submit_operator.SparkSubmitOperator

This operator extends the SparkSubmitOperator specifically for performing data
transfers to/from JDBC-based databases with Apache Spark. As with the
SparkSubmitOperator, it assumes that the “spark-submit” binary is available on the
PATH.

	Parameters

	
	spark_app_name (str) – Name of the job (default airflow-spark-jdbc)

	spark_conn_id (str) – Connection id as configured in Airflow administration

	spark_conf (dict) – Any additional Spark configuration properties

	spark_py_files (str) – Additional python files used (.zip, .egg, or .py)

	spark_files (str) – Additional files to upload to the container running the job

	spark_jars (str) – Additional jars to upload and add to the driver and
executor classpath

	num_executors (int) – number of executor to run. This should be set so as to manage
the number of connections made with the JDBC database

	executor_cores (int) – Number of cores per executor

	executor_memory (str) – Memory per executor (e.g. 1000M, 2G)

	driver_memory (str) – Memory allocated to the driver (e.g. 1000M, 2G)

	verbose (bool) – Whether to pass the verbose flag to spark-submit for debugging

	keytab (str) – Full path to the file that contains the keytab

	principal (str) – The name of the kerberos principal used for keytab

	cmd_type (str) – Which way the data should flow. 2 possible values:
spark_to_jdbc: data written by spark from metastore to jdbc
jdbc_to_spark: data written by spark from jdbc to metastore

	jdbc_table (str) – The name of the JDBC table

	jdbc_conn_id (str) – Connection id used for connection to JDBC database

	jdbc_driver (str) – Name of the JDBC driver to use for the JDBC connection. This
driver (usually a jar) should be passed in the ‘jars’ parameter

	metastore_table (str) – The name of the metastore table,

	jdbc_truncate (bool) – (spark_to_jdbc only) Whether or not Spark should truncate or
drop and recreate the JDBC table. This only takes effect if
‘save_mode’ is set to Overwrite. Also, if the schema is
different, Spark cannot truncate, and will drop and recreate

	save_mode (str) – The Spark save-mode to use (e.g. overwrite, append, etc.)

	save_format (str) – (jdbc_to_spark-only) The Spark save-format to use (e.g. parquet)

	batch_size (int) – (spark_to_jdbc only) The size of the batch to insert per round
trip to the JDBC database. Defaults to 1000

	fetch_size (int) – (jdbc_to_spark only) The size of the batch to fetch per round trip
from the JDBC database. Default depends on the JDBC driver

	num_partitions (int) – The maximum number of partitions that can be used by Spark
simultaneously, both for spark_to_jdbc and jdbc_to_spark
operations. This will also cap the number of JDBC connections
that can be opened

	partition_column (str) – (jdbc_to_spark-only) A numeric column to be used to
partition the metastore table by. If specified, you must
also specify:
num_partitions, lower_bound, upper_bound

	lower_bound (int) – (jdbc_to_spark-only) Lower bound of the range of the numeric
partition column to fetch. If specified, you must also specify:
num_partitions, partition_column, upper_bound

	upper_bound (int) – (jdbc_to_spark-only) Upper bound of the range of the numeric
partition column to fetch. If specified, you must also specify:
num_partitions, partition_column, lower_bound

	create_table_column_types – (spark_to_jdbc-only) The database column data types
to use instead of the defaults, when creating the
table. Data type information should be specified in
the same format as CREATE TABLE columns syntax
(e.g: “name CHAR(64), comments VARCHAR(1024)”).
The specified types should be valid spark sql data
types.

	
execute(context)

	Call the SparkSubmitHook to run the provided spark job

	
class airflow.contrib.operators.spark_sql_operator.SparkSqlOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Execute Spark SQL query

	Parameters

	
	sql (str) – The SQL query to execute. (templated)

	conf (str (format: PROP=VALUE)) – arbitrary Spark configuration property

	conn_id (str) – connection_id string

	total_executor_cores (int) – (Standalone & Mesos only) Total cores for all
executors (Default: all the available cores on the worker)

	executor_cores (int) – (Standalone & YARN only) Number of cores per
executor (Default: 2)

	executor_memory (str) – Memory per executor (e.g. 1000M, 2G) (Default: 1G)

	keytab (str) – Full path to the file that contains the keytab

	master (str) – spark://host:port, mesos://host:port, yarn, or local

	name (str) – Name of the job

	num_executors (int) – Number of executors to launch

	verbose (bool) – Whether to pass the verbose flag to spark-sql

	yarn_queue (str) – The YARN queue to submit to (Default: “default”)

	
execute(context)

	Call the SparkSqlHook to run the provided sql query

	
class airflow.contrib.operators.spark_submit_operator.SparkSubmitOperator(**kwargs)

	Bases: airflow.models.BaseOperator

This hook is a wrapper around the spark-submit binary to kick off a spark-submit job.
It requires that the “spark-submit” binary is in the PATH or the spark-home is set
in the extra on the connection.

	Parameters

	
	application (str) – The application that submitted as a job, either jar or
py file. (templated)

	conf (dict) – Arbitrary Spark configuration properties

	conn_id (str) – The connection id as configured in Airflow administration. When an
invalid connection_id is supplied, it will default to yarn.

	files (str) – Upload additional files to the executor running the job, separated by a
comma. Files will be placed in the working directory of each executor.
For example, serialized objects.

	py_files (str) – Additional python files used by the job, can be .zip, .egg or .py.

	jars (str) – Submit additional jars to upload and place them in executor classpath.

	driver_classpath (str) – Additional, driver-specific, classpath settings.

	java_class (str) – the main class of the Java application

	packages (str) – Comma-separated list of maven coordinates of jars to include on the
driver and executor classpaths. (templated)

	exclude_packages (str) – Comma-separated list of maven coordinates of jars to exclude
while resolving the dependencies provided in ‘packages’

	repositories (str) – Comma-separated list of additional remote repositories to search
for the maven coordinates given with ‘packages’

	total_executor_cores (int) – (Standalone & Mesos only) Total cores for all executors
(Default: all the available cores on the worker)

	executor_cores (int) – (Standalone & YARN only) Number of cores per executor
(Default: 2)

	executor_memory (str) – Memory per executor (e.g. 1000M, 2G) (Default: 1G)

	driver_memory (str) – Memory allocated to the driver (e.g. 1000M, 2G) (Default: 1G)

	keytab (str) – Full path to the file that contains the keytab

	principal (str) – The name of the kerberos principal used for keytab

	name (str) – Name of the job (default airflow-spark). (templated)

	num_executors (int) – Number of executors to launch

	application_args (list) – Arguments for the application being submitted

	env_vars (dict) – Environment variables for spark-submit. It
supports yarn and k8s mode too.

	verbose (bool) – Whether to pass the verbose flag to spark-submit process for debugging

	
execute(context)

	Call the SparkSubmitHook to run the provided spark job

	
class airflow.contrib.operators.sqoop_operator.SqoopOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Execute a Sqoop job.
Documentation for Apache Sqoop can be found here:

https://sqoop.apache.org/docs/1.4.2/SqoopUserGuide.html.

	
execute(context)

	Execute sqoop job

	
class airflow.contrib.operators.ssh_operator.SSHOperator(**kwargs)

	Bases: airflow.models.BaseOperator

SSHOperator to execute commands on given remote host using the ssh_hook.

	Parameters

	
	ssh_hook (SSHHook) – predefined ssh_hook to use for remote execution.
Either ssh_hook or ssh_conn_id needs to be provided.

	ssh_conn_id (str) – connection id from airflow Connections.
ssh_conn_id will be ingored if ssh_hook is provided.

	remote_host (str) – remote host to connect (templated)
Nullable. If provided, it will replace the remote_host which was
defined in ssh_hook or predefined in the connection of ssh_conn_id.

	command (str) – command to execute on remote host. (templated)

	timeout (int) – timeout (in seconds) for executing the command.

	do_xcom_push (bool) – return the stdout which also get set in xcom by airflow platform

	
class airflow.contrib.operators.vertica_operator.VerticaOperator(**kwargs)

	Bases: airflow.models.BaseOperator

Executes sql code in a specific Vertica database

	Parameters

	
	vertica_conn_id (str) – reference to a specific Vertica database

	sql (Can receive a str representing a sql statement,
a list of str (sql statements), or reference to a template file.
Template reference are recognized by str ending in '.sql') – the sql code to be executed. (templated)

	
class airflow.contrib.operators.vertica_to_hive.VerticaToHiveTransfer(**kwargs)

	Bases: airflow.models.BaseOperator

Moves data from Vertica to Hive. The operator runs
your query against Vertica, stores the file locally
before loading it into a Hive table. If the create or
recreate arguments are set to True,
a CREATE TABLE and DROP TABLE statements are generated.
Hive data types are inferred from the cursor’s metadata.
Note that the table generated in Hive uses STORED AS textfile
which isn’t the most efficient serialization format. If a
large amount of data is loaded and/or if the table gets
queried considerably, you may want to use this operator only to
stage the data into a temporary table before loading it into its
final destination using a HiveOperator.

	Parameters

	
	sql (str) – SQL query to execute against the Vertica database. (templated)

	hive_table (str) – target Hive table, use dot notation to target a
specific database. (templated)

	create (bool) – whether to create the table if it doesn’t exist

	recreate (bool) – whether to drop and recreate the table at every execution

	partition (dict) – target partition as a dict of partition columns
and values. (templated)

	delimiter (str) – field delimiter in the file

	vertica_conn_id (str) – source Vertica connection

	hive_conn_id (str) – destination hive connection

Sensors

	
class airflow.contrib.sensors.aws_athena_sensor.AthenaSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Asks for the state of the Query until it reaches a failure state or success state.
If it fails, failing the task.

	Parameters

	
	query_execution_id (str) – query_execution_id to check the state of

	max_retires (int) – Number of times to poll for query state before
returning the current state, defaults to None

	aws_conn_id (str) – aws connection to use, defaults to ‘aws_default’

	sleep_time (int) – Time to wait between two consecutive call to
check query status on athena, defaults to 10

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.contrib.sensors.aws_glue_catalog_partition_sensor.AwsGlueCatalogPartitionSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a partition to show up in AWS Glue Catalog.

	Parameters

	
	table_name (str) – The name of the table to wait for, supports the dot
notation (my_database.my_table)

	expression (str) – The partition clause to wait for. This is passed as
is to the AWS Glue Catalog API’s get_partitions function,
and supports SQL like notation as in ds='2015-01-01'
AND type='value' and comparison operators as in "ds>=2015-01-01".
See https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html
#aws-glue-api-catalog-partitions-GetPartitions

	aws_conn_id (str) – ID of the Airflow connection where
credentials and extra configuration are stored

	region_name (str) – Optional aws region name (example: us-east-1). Uses region from connection
if not specified.

	database_name (str) – The name of the catalog database where the partitions reside.

	poke_interval (int) – Time in seconds that the job should wait in
between each tries

	
get_hook()

	Gets the AwsGlueCatalogHook

	
poke(context)

	Checks for existence of the partition in the AWS Glue Catalog table

	
class airflow.contrib.sensors.aws_redshift_cluster_sensor.AwsRedshiftClusterSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a Redshift cluster to reach a specific status.

	Parameters

	
	cluster_identifier (str) – The identifier for the cluster being pinged.

	target_status (str) – The cluster status desired.

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.contrib.sensors.bash_sensor.BashSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Executes a bash command/script and returns True if and only if the
return code is 0.

	Parameters

	
	bash_command (str) – The command, set of commands or reference to a
bash script (must be ‘.sh’) to be executed.

	env (dict) – If env is not None, it must be a mapping that defines the
environment variables for the new process; these are used instead
of inheriting the current process environment, which is the default
behavior. (templated)

	output_encoding (str) – output encoding of bash command.

	
poke(context)

	Execute the bash command in a temporary directory
which will be cleaned afterwards

	
class airflow.contrib.sensors.bigquery_sensor.BigQueryTableSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Checks for the existence of a table in Google Bigquery.

	Parameters

	
	project_id (str) – The Google cloud project in which to look for the table.
The connection supplied to the hook must provide
access to the specified project.

	dataset_id (str) – The name of the dataset in which to look for the table.
storage bucket.

	table_id (str) – The name of the table to check the existence of.

	bigquery_conn_id (str) – The connection ID to use when connecting to
Google BigQuery.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must
have domain-wide delegation enabled.

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.contrib.sensors.cassandra_record_sensor.CassandraRecordSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Checks for the existence of a record in a Cassandra cluster.

For example, if you want to wait for a record that has values ‘v1’ and ‘v2’ for each
primary keys ‘p1’ and ‘p2’ to be populated in keyspace ‘k’ and table ‘t’,
instantiate it as follows:

>>> cassandra_sensor = CassandraRecordSensor(table="k.t",
... keys={"p1": "v1", "p2": "v2"},
... cassandra_conn_id="cassandra_default",
... task_id="cassandra_sensor")

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.contrib.sensors.cassandra_table_sensor.CassandraTableSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Checks for the existence of a table in a Cassandra cluster.

For example, if you want to wait for a table called ‘t’ to be created
in a keyspace ‘k’, instantiate it as follows:

>>> cassandra_sensor = CassandraTableSensor(table="k.t",
... cassandra_conn_id="cassandra_default",
... task_id="cassandra_sensor")

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.contrib.sensors.emr_base_sensor.EmrBaseSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Contains general sensor behavior for EMR.
Subclasses should implement get_emr_response() and state_from_response() methods.
Subclasses should also implement NON_TERMINAL_STATES and FAILED_STATE constants.

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.contrib.sensors.emr_job_flow_sensor.EmrJobFlowSensor(**kwargs)

	Bases: airflow.contrib.sensors.emr_base_sensor.EmrBaseSensor

Asks for the state of the JobFlow until it reaches a terminal state.
If it fails the sensor errors, failing the task.

	Parameters

	job_flow_id (str) – job_flow_id to check the state of

	
class airflow.contrib.sensors.emr_step_sensor.EmrStepSensor(**kwargs)

	Bases: airflow.contrib.sensors.emr_base_sensor.EmrBaseSensor

Asks for the state of the step until it reaches a terminal state.
If it fails the sensor errors, failing the task.

	Parameters

	
	job_flow_id (str) – job_flow_id which contains the step check the state of

	step_id (str) – step to check the state of

	
class airflow.contrib.sensors.file_sensor.FileSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a file or folder to land in a filesystem.

If the path given is a directory then this sensor will only return true if
any files exist inside it (either directly, or within a subdirectory)

	Parameters

	
	fs_conn_id (str) – reference to the File (path)
connection id

	filepath – File or folder name (relative to
the base path set within the connection)

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.contrib.sensors.ftp_sensor.FTPSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a file or directory to be present on FTP.

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
template_fields = ('path',)

	Errors that are transient in nature, and where action can be retried

	
class airflow.contrib.sensors.ftp_sensor.FTPSSensor(**kwargs)

	Bases: airflow.contrib.sensors.ftp_sensor.FTPSensor

Waits for a file or directory to be present on FTP over SSL.

	
class airflow.contrib.sensors.gcs_sensor.GoogleCloudStorageObjectSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Checks for the existence of a file in Google Cloud Storage.

	Parameters

	
	bucket (str) – The Google cloud storage bucket where the object is.

	object (str) – The name of the object to check in the Google cloud
storage bucket.

	google_cloud_conn_id (str) – The connection ID to use when
connecting to Google cloud storage.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.contrib.sensors.gcs_sensor.GoogleCloudStorageObjectUpdatedSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Checks if an object is updated in Google Cloud Storage.

	Parameters

	
	bucket (str) – The Google cloud storage bucket where the object is.

	object (str) – The name of the object to download in the Google cloud
storage bucket.

	ts_func (function) – Callback for defining the update condition. The default callback
returns execution_date + schedule_interval. The callback takes the context
as parameter.

	google_cloud_conn_id (str) – The connection ID to use when
connecting to Google cloud storage.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.contrib.sensors.gcs_sensor.GoogleCloudStoragePrefixSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Checks for the existence of a files at prefix in Google Cloud Storage bucket.

	Parameters

	
	bucket (str) – The Google cloud storage bucket where the object is.

	prefix (str) – The name of the prefix to check in the Google cloud
storage bucket.

	google_cloud_conn_id (str) – The connection ID to use when
connecting to Google cloud storage.

	delegate_to (str) – The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.contrib.sensors.hdfs_sensor.HdfsSensorFolder(be_empty=False, *args, **kwargs)

	Bases: airflow.sensors.hdfs_sensor.HdfsSensor

	
poke(context)

	poke for a non empty directory

	Returns

	Bool depending on the search criteria

	
class airflow.contrib.sensors.hdfs_sensor.HdfsSensorRegex(regex, *args, **kwargs)

	Bases: airflow.sensors.hdfs_sensor.HdfsSensor

	
poke(context)

	poke matching files in a directory with self.regex

	Returns

	Bool depending on the search criteria

	
class airflow.contrib.sensors.imap_attachment_sensor.ImapAttachmentSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a specific attachment on a mail server.

	Parameters

	
	attachment_name (str) – The name of the attachment that will be checked.

	check_regex (bool) – If set to True the attachment’s name will be parsed as regular expression.
Through this you can get a broader set of attachments
that it will look for than just only the equality of the attachment name.
The default value is False.

	mail_folder (str) – The mail folder in where to search for the attachment.
The default value is ‘INBOX’.

	conn_id (str) – The connection to run the sensor against.
The default value is ‘imap_default’.

	
poke(context)

	Pokes for a mail attachment on the mail server.

	Parameters

	context (dict) – The context that is being provided when poking.

	Returns

	True if attachment with the given name is present and False if not.

	Return type

	bool

	
class airflow.contrib.sensors.pubsub_sensor.PubSubPullSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Pulls messages from a PubSub subscription and passes them through XCom.

This sensor operator will pull up to max_messages messages from the
specified PubSub subscription. When the subscription returns messages,
the poke method’s criteria will be fulfilled and the messages will be
returned from the operator and passed through XCom for downstream tasks.

If ack_messages is set to True, messages will be immediately
acknowledged before being returned, otherwise, downstream tasks will be
responsible for acknowledging them.

project and subscription are templated so you can use
variables in them.

	
execute(context)

	Overridden to allow messages to be passed

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.contrib.sensors.python_sensor.PythonSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a Python callable to return True.

	User could put input argument in templates_dict

	e.g templates_dict = {‘start_ds’: 1970}

and access the argument by calling kwargs[‘templates_dict’][‘start_ds’]
in the the callable

	Parameters

	
	python_callable (python callable) – A reference to an object that is callable

	op_kwargs (dict) – a dictionary of keyword arguments that will get unpacked
in your function

	op_args (list) – a list of positional arguments that will get unpacked when
calling your callable

	provide_context (bool) – if set to true, Airflow will pass a set of
keyword arguments that can be used in your function. This set of
kwargs correspond exactly to what you can use in your jinja
templates. For this to work, you need to define **kwargs in your
function header.

	templates_dict (dict of str) – a dictionary where the values are templates that
will get templated by the Airflow engine sometime between
__init__ and execute takes place and are made available
in your callable’s context after the template has been applied.

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.contrib.sensors.qubole_sensor.QuboleSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Base class for all Qubole Sensors

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.contrib.sensors.sagemaker_base_sensor.SageMakerBaseSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Contains general sensor behavior for SageMaker.
Subclasses should implement get_sagemaker_response()
and state_from_response() methods.
Subclasses should also implement NON_TERMINAL_STATES and FAILED_STATE methods.

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.contrib.sensors.sagemaker_endpoint_sensor.SageMakerEndpointSensor(**kwargs)

	Bases: airflow.contrib.sensors.sagemaker_base_sensor.SageMakerBaseSensor

Asks for the state of the endpoint state until it reaches a terminal state.
If it fails the sensor errors, the task fails.

	Parameters

	job_name (str) – job_name of the endpoint instance to check the state of

	
class airflow.contrib.sensors.sagemaker_training_sensor.SageMakerTrainingSensor(**kwargs)

	Bases: airflow.contrib.sensors.sagemaker_base_sensor.SageMakerBaseSensor

Asks for the state of the training state until it reaches a terminal state.
If it fails the sensor errors, failing the task.

	Parameters

	
	job_name (str) – name of the SageMaker training job to check the state of

	print_log (bool) – if the operator should print the cloudwatch log

	
class airflow.contrib.sensors.sagemaker_transform_sensor.SageMakerTransformSensor(**kwargs)

	Bases: airflow.contrib.sensors.sagemaker_base_sensor.SageMakerBaseSensor

Asks for the state of the transform state until it reaches a terminal state.
The sensor will error if the job errors, throwing a AirflowException
containing the failure reason.

	Parameters

	job_name (string) – job_name of the transform job instance to check the state of

	
class airflow.contrib.sensors.sagemaker_tuning_sensor.SageMakerTuningSensor(**kwargs)

	Bases: airflow.contrib.sensors.sagemaker_base_sensor.SageMakerBaseSensor

Asks for the state of the tuning state until it reaches a terminal state.
The sensor will error if the job errors, throwing a AirflowException
containing the failure reason.

	Parameters

	job_name (str) – job_name of the tuning instance to check the state of

	
class airflow.contrib.sensors.sftp_sensor.SFTPSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits for a file or directory to be present on SFTP.

	Parameters

	
	path (str) – Remote file or directory path

	sftp_conn_id (str) – The connection to run the sensor against

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

	
class airflow.contrib.sensors.weekday_sensor.DayOfWeekSensor(**kwargs)

	Bases: airflow.sensors.base_sensor_operator.BaseSensorOperator

Waits until the first specified day of the week. For example, if the execution
day of the task is ‘2018-12-22’ (Saturday) and you pass ‘FRIDAY’, the task will wait
until next Friday.

Example (with single day):

weekend_check = DayOfWeekSensor(
 task_id='weekend_check',
 week_day='Saturday',
 use_task_execution_day=True,
 dag=dag)

Example (with multiple day using set):

weekend_check = DayOfWeekSensor(
 task_id='weekend_check',
 week_day={'Saturday', 'Sunday'},
 use_task_execution_day=True,
 dag=dag)

Example (with WeekDay enum):

import WeekDay Enum
from airflow.contrib.utils.weekday import WeekDay

weekend_check = DayOfWeekSensor(
 task_id='weekend_check',
 week_day={WeekDay.SATURDAY, WeekDay.SUNDAY},
 use_task_execution_day=True,
 dag=dag)

	Parameters

	
	week_day (set or str or WeekDay) – Day of the week to check (full name). Optionally, a set
of days can also be provided using a set.
Example values:

	"MONDAY",

	{"Saturday", "Sunday"}

	{WeekDay.TUESDAY}

	{WeekDay.SATURDAY, WeekDay.SUNDAY}

	use_task_execution_day (bool) – If True, uses task’s execution day to compare
with week_day. Execution Date is Useful for backfilling.
If False, uses system’s day of the week. Useful when you
don’t want to run anything on weekdays on the system.

	
poke(context)

	Function that the sensors defined while deriving this class should
override.

Macros

Here’s a list of variables and macros that can be used in templates

Default Variables

The Airflow engine passes a few variables by default that are accessible
in all templates

	Variable

	Description

	{{ ds }}

	the execution date as YYYY-MM-DD

	{{ ds_nodash }}

	the execution date as YYYYMMDD

	{{ prev_ds }}

	the previous execution date as YYYY-MM-DD
if {{ ds }} is 2018-01-08 and schedule_interval is @weekly,
{{ prev_ds }} will be 2016-01-01

	{{ prev_ds_nodash }}

	the previous execution date as YYYYMMDD if exists, else ``None`

	{{ next_ds }}

	the next execution date as YYYY-MM-DD
if {{ ds }} is 2018-01-01 and schedule_interval is @weekly,
{{ next_ds }} will be 2018-01-08

	{{ next_ds_nodash }}

	the next execution date as YYYYMMDD if exists, else ``None`

	{{ yesterday_ds }}

	the day before the execution date as YYYY-MM-DD

	{{ yesterday_ds_nodash }}

	the day before the execution date as YYYYMMDD

	{{ tomorrow_ds }}

	the day after the execution date as YYYY-MM-DD

	{{ tomorrow_ds_nodash }}

	the day after the execution date as YYYYMMDD

	{{ ts }}

	same as execution_date.isoformat(). Example: 2018-01-01T00:00:00+00:00

	{{ ts_nodash }}

	same as ts without -, : and TimeZone info. Example: 20180101T000000

	{{ ts_nodash_with_tz }}

	same as ts without - and :. Example: 20180101T000000+0000

	{{ execution_date }}

	the execution_date, (datetime.datetime)

	{{ prev_execution_date }}

	the previous execution date (if available) (datetime.datetime)

	{{ next_execution_date }}

	the next execution date (datetime.datetime)

	{{ dag }}

	the DAG object

	{{ task }}

	the Task object

	{{ macros }}

	a reference to the macros package, described below

	{{ task_instance }}

	the task_instance object

	{{ end_date }}

	same as {{ ds }}

	{{ latest_date }}

	same as {{ ds }}

	{{ ti }}

	same as {{ task_instance }}

	{{ params }}

	a reference to the user-defined params dictionary which can be overridden by
the dictionary passed through trigger_dag -c if you enabled
dag_run_conf_overrides_params` in ``airflow.cfg

	{{ var.value.my_var }}

	global defined variables represented as a dictionary

	{{ var.json.my_var.path }}

	global defined variables represented as a dictionary
with deserialized JSON object, append the path to the
key within the JSON object

	{{ task_instance_key_str }}

	a unique, human-readable key to the task instance
formatted {dag_id}_{task_id}_{ds}

	{{ conf }}

	the full configuration object located at
airflow.configuration.conf which
represents the content of your
airflow.cfg

	{{ run_id }}

	the run_id of the current DAG run

	{{ dag_run }}

	a reference to the DagRun object

	{{ test_mode }}

	whether the task instance was called using
the CLI’s test subcommand

Note that you can access the object’s attributes and methods with simple
dot notation. Here are some examples of what is possible:
{{ task.owner }}, {{ task.task_id }}, {{ ti.hostname }}, …
Refer to the models documentation for more information on the objects’
attributes and methods.

The var template variable allows you to access variables defined in Airflow’s
UI. You can access them as either plain-text or JSON. If you use JSON, you are
also able to walk nested structures, such as dictionaries like:
{{ var.json.my_dict_var.key1 }}

Macros

Macros are a way to expose objects to your templates and live under the
macros namespace in your templates.

A few commonly used libraries and methods are made available.

	Variable

	Description

	macros.datetime

	The standard lib’s datetime.datetime

	macros.timedelta

	The standard lib’s datetime.timedelta

	macros.dateutil

	A reference to the dateutil package

	macros.time

	The standard lib’s time

	macros.uuid

	The standard lib’s uuid

	macros.random

	The standard lib’s random

Some airflow specific macros are also defined:

	
airflow.macros.ds_add(ds, days)

	Add or subtract days from a YYYY-MM-DD

	Parameters

	
	ds (str) – anchor date in YYYY-MM-DD format to add to

	days (int) – number of days to add to the ds, you can use negative values

>>> ds_add('2015-01-01', 5)
'2015-01-06'
>>> ds_add('2015-01-06', -5)
'2015-01-01'

	
airflow.macros.ds_format(ds, input_format, output_format)

	Takes an input string and outputs another string
as specified in the output format

	Parameters

	
	ds (str) – input string which contains a date

	input_format (str) – input string format. E.g. %Y-%m-%d

	output_format (str) – output string format E.g. %Y-%m-%d

>>> ds_format('2015-01-01', "%Y-%m-%d", "%m-%d-%y")
'01-01-15'
>>> ds_format('1/5/2015', "%m/%d/%Y", "%Y-%m-%d")
'2015-01-05'

	
airflow.macros.random() → x in the interval [0, 1).

	

	
airflow.macros.hive.closest_ds_partition(table, ds, before=True, schema='default', metastore_conn_id='metastore_default')

	This function finds the date in a list closest to the target date.
An optional parameter can be given to get the closest before or after.

	Parameters

	
	table (str) – A hive table name

	ds (datetime.date list) – A datestamp %Y-%m-%d e.g. yyyy-mm-dd

	before (bool or None) – closest before (True), after (False) or either side of ds

	Returns

	The closest date

	Return type

	str or None

>>> tbl = 'airflow.static_babynames_partitioned'
>>> closest_ds_partition(tbl, '2015-01-02')
'2015-01-01'

	
airflow.macros.hive.max_partition(table, schema='default', field=None, filter_map=None, metastore_conn_id='metastore_default')

	Gets the max partition for a table.

	Parameters

	
	schema (str) – The hive schema the table lives in

	table (str) – The hive table you are interested in, supports the dot
notation as in “my_database.my_table”, if a dot is found,
the schema param is disregarded

	metastore_conn_id (str) – The hive connection you are interested in.
If your default is set you don’t need to use this parameter.

	filter_map (map) – partition_key:partition_value map used for partition filtering,
e.g. {‘key1’: ‘value1’, ‘key2’: ‘value2’}.
Only partitions matching all partition_key:partition_value
pairs will be considered as candidates of max partition.

	field (str) – the field to get the max value from. If there’s only
one partition field, this will be inferred

>>> max_partition('airflow.static_babynames_partitioned')
'2015-01-01'

Models

Models are built on top of the SQLAlchemy ORM Base class, and instances are
persisted in the database.

	
class airflow.models.BaseOperator(**kwargs)

	Bases: airflow.utils.log.logging_mixin.LoggingMixin

Abstract base class for all operators. Since operators create objects that
become nodes in the dag, BaseOperator contains many recursive methods for
dag crawling behavior. To derive this class, you are expected to override
the constructor as well as the ‘execute’ method.

Operators derived from this class should perform or trigger certain tasks
synchronously (wait for completion). Example of operators could be an
operator that runs a Pig job (PigOperator), a sensor operator that
waits for a partition to land in Hive (HiveSensorOperator), or one that
moves data from Hive to MySQL (Hive2MySqlOperator). Instances of these
operators (tasks) target specific operations, running specific scripts,
functions or data transfers.

This class is abstract and shouldn’t be instantiated. Instantiating a
class derived from this one results in the creation of a task object,
which ultimately becomes a node in DAG objects. Task dependencies should
be set by using the set_upstream and/or set_downstream methods.

	Parameters

	
	task_id (str) – a unique, meaningful id for the task

	owner (str) – the owner of the task, using the unix username is recommended

	retries (int) – the number of retries that should be performed before
failing the task

	retry_delay (timedelta) – delay between retries

	retry_exponential_backoff (bool) – allow progressive longer waits between
retries by using exponential backoff algorithm on retry delay (delay
will be converted into seconds)

	max_retry_delay (timedelta) – maximum delay interval between retries

	start_date (datetime) – The start_date for the task, determines
the execution_date for the first task instance. The best practice
is to have the start_date rounded
to your DAG’s schedule_interval. Daily jobs have their start_date
some day at 00:00:00, hourly jobs have their start_date at 00:00
of a specific hour. Note that Airflow simply looks at the latest
execution_date and adds the schedule_interval to determine
the next execution_date. It is also very important
to note that different tasks’ dependencies
need to line up in time. If task A depends on task B and their
start_date are offset in a way that their execution_date don’t line
up, A’s dependencies will never be met. If you are looking to delay
a task, for example running a daily task at 2AM, look into the
TimeSensor and TimeDeltaSensor. We advise against using
dynamic start_date and recommend using fixed ones. Read the
FAQ entry about start_date for more information.

	end_date (datetime) – if specified, the scheduler won’t go beyond this date

	depends_on_past (bool) – when set to true, task instances will run
sequentially while relying on the previous task’s schedule to
succeed. The task instance for the start_date is allowed to run.

	wait_for_downstream (bool) – when set to true, an instance of task
X will wait for tasks immediately downstream of the previous instance
of task X to finish successfully before it runs. This is useful if the
different instances of a task X alter the same asset, and this asset
is used by tasks downstream of task X. Note that depends_on_past
is forced to True wherever wait_for_downstream is used.

	queue (str) – which queue to target when running this job. Not
all executors implement queue management, the CeleryExecutor
does support targeting specific queues.

	dag (DAG) – a reference to the dag the task is attached to (if any)

	priority_weight (int) – priority weight of this task against other task.
This allows the executor to trigger higher priority tasks before
others when things get backed up. Set priority_weight as a higher
number for more important tasks.

	weight_rule (str) – weighting method used for the effective total
priority weight of the task. Options are:
{ downstream | upstream | absolute } default is downstream
When set to downstream the effective weight of the task is the
aggregate sum of all downstream descendants. As a result, upstream
tasks will have higher weight and will be scheduled more aggressively
when using positive weight values. This is useful when you have
multiple dag run instances and desire to have all upstream tasks to
complete for all runs before each dag can continue processing
downstream tasks. When set to upstream the effective weight is the
aggregate sum of all upstream ancestors. This is the opposite where
downtream tasks have higher weight and will be scheduled more
aggressively when using positive weight values. This is useful when you
have multiple dag run instances and prefer to have each dag complete
before starting upstream tasks of other dags. When set to
absolute, the effective weight is the exact priority_weight
specified without additional weighting. You may want to do this when
you know exactly what priority weight each task should have.
Additionally, when set to absolute, there is bonus effect of
significantly speeding up the task creation process as for very large
DAGS. Options can be set as string or using the constants defined in
the static class airflow.utils.WeightRule

	pool (str) – the slot pool this task should run in, slot pools are a
way to limit concurrency for certain tasks

	sla (datetime.timedelta) – time by which the job is expected to succeed. Note that
this represents the timedelta after the period is closed. For
example if you set an SLA of 1 hour, the scheduler would send an email
soon after 1:00AM on the 2016-01-02 if the 2016-01-01 instance
has not succeeded yet.
The scheduler pays special attention for jobs with an SLA and
sends alert
emails for sla misses. SLA misses are also recorded in the database
for future reference. All tasks that share the same SLA time
get bundled in a single email, sent soon after that time. SLA
notification are sent once and only once for each task instance.

	execution_timeout (datetime.timedelta) – max time allowed for the execution of
this task instance, if it goes beyond it will raise and fail.

	on_failure_callback (callable) – a function to be called when a task instance
of this task fails. a context dictionary is passed as a single
parameter to this function. Context contains references to related
objects to the task instance and is documented under the macros
section of the API.

	on_retry_callback (callable) – much like the on_failure_callback except
that it is executed when retries occur.

	on_success_callback (callable) – much like the on_failure_callback except
that it is executed when the task succeeds.

	trigger_rule (str) – defines the rule by which dependencies are applied
for the task to get triggered. Options are:
{ all_success | all_failed | all_done | one_success |
one_failed | none_failed | dummy}
default is all_success. Options can be set as string or
using the constants defined in the static class
airflow.utils.TriggerRule

	resources (dict) – A map of resource parameter names (the argument names of the
Resources constructor) to their values.

	run_as_user (str) – unix username to impersonate while running the task

	task_concurrency (int) – When set, a task will be able to limit the concurrent
runs across execution_dates

	executor_config (dict) – Additional task-level configuration parameters that are
interpreted by a specific executor. Parameters are namespaced by the name of
executor.

Example: to run this task in a specific docker container through
the KubernetesExecutor

MyOperator(...,
 executor_config={
 "KubernetesExecutor":
 {"image": "myCustomDockerImage"}
 }
)

	do_xcom_push (bool) – if True, an XCom is pushed containing the Operator’s
result

	
clear(**kwargs)

	Clears the state of task instances associated with the task, following
the parameters specified.

	
dag

	Returns the Operator’s DAG if set, otherwise raises an error

	
deps

	Returns the list of dependencies for the operator. These differ from execution
context dependencies in that they are specific to tasks and can be
extended/overridden by subclasses.

	
downstream_list

	@property: list of tasks directly downstream

	
execute(context)

	This is the main method to derive when creating an operator.
Context is the same dictionary used as when rendering jinja templates.

Refer to get_template_context for more context.

	
get_direct_relative_ids(upstream=False)

	Get the direct relative ids to the current task, upstream or
downstream.

	
get_direct_relatives(upstream=False)

	Get the direct relatives to the current task, upstream or
downstream.

	
get_flat_relative_ids(upstream=False, found_descendants=None)

	Get a flat list of relatives’ ids, either upstream or downstream.

	
get_flat_relatives(upstream=False)

	Get a flat list of relatives, either upstream or downstream.

	
get_task_instances(session, start_date=None, end_date=None)

	Get a set of task instance related to this task for a specific date
range.

	
has_dag()

	Returns True if the Operator has been assigned to a DAG.

	
on_kill()

	Override this method to cleanup subprocesses when a task instance
gets killed. Any use of the threading, subprocess or multiprocessing
module within an operator needs to be cleaned up or it will leave
ghost processes behind.

	
post_execute(context, *args, **kwargs)

	This hook is triggered right after self.execute() is called.
It is passed the execution context and any results returned by the
operator.

	
pre_execute(context, *args, **kwargs)

	This hook is triggered right before self.execute() is called.

	
prepare_template()

	Hook that is triggered after the templated fields get replaced
by their content. If you need your operator to alter the
content of the file before the template is rendered,
it should override this method to do so.

	
render_template(attr, content, context)

	Renders a template either from a file or directly in a field, and returns
the rendered result.

	
render_template_from_field(attr, content, context, jinja_env)

	Renders a template from a field. If the field is a string, it will
simply render the string and return the result. If it is a collection or
nested set of collections, it will traverse the structure and render
all strings in it.

	
run(start_date=None, end_date=None, ignore_first_depends_on_past=False, ignore_ti_state=False, mark_success=False)

	Run a set of task instances for a date range.

	
schedule_interval

	The schedule interval of the DAG always wins over individual tasks so
that tasks within a DAG always line up. The task still needs a
schedule_interval as it may not be attached to a DAG.

	
set_downstream(task_or_task_list)

	Set a task or a task list to be directly downstream from the current
task.

	
set_upstream(task_or_task_list)

	Set a task or a task list to be directly upstream from the current
task.

	
upstream_list

	@property: list of tasks directly upstream

	
xcom_pull(context, task_ids=None, dag_id=None, key=u'return_value', include_prior_dates=None)

	See TaskInstance.xcom_pull()

	
xcom_push(context, key, value, execution_date=None)

	See TaskInstance.xcom_push()

	
class airflow.models.Chart(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	
class airflow.models.DAG(dag_id, description=u'', schedule_interval=datetime.timedelta(1), start_date=None, end_date=None, full_filepath=None, template_searchpath=None, user_defined_macros=None, user_defined_filters=None, default_args=None, concurrency=16, max_active_runs=16, dagrun_timeout=None, sla_miss_callback=None, default_view=None, orientation='LR', catchup=True, on_success_callback=None, on_failure_callback=None, params=None)

	Bases: airflow.dag.base_dag.BaseDag, airflow.utils.log.logging_mixin.LoggingMixin

A dag (directed acyclic graph) is a collection of tasks with directional
dependencies. A dag also has a schedule, a start date and an end date
(optional). For each schedule, (say daily or hourly), the DAG needs to run
each individual tasks as their dependencies are met. Certain tasks have
the property of depending on their own past, meaning that they can’t run
until their previous schedule (and upstream tasks) are completed.

DAGs essentially act as namespaces for tasks. A task_id can only be
added once to a DAG.

	Parameters

	
	dag_id (str) – The id of the DAG

	description (str) – The description for the DAG to e.g. be shown on the webserver

	schedule_interval (datetime.timedelta or
dateutil.relativedelta.relativedelta or str that acts as a cron
expression) – Defines how often that DAG runs, this
timedelta object gets added to your latest task instance’s
execution_date to figure out the next schedule

	start_date (datetime.datetime) – The timestamp from which the scheduler will
attempt to backfill

	end_date (datetime.datetime) – A date beyond which your DAG won’t run, leave to None
for open ended scheduling

	template_searchpath (str or list of stings) – This list of folders (non relative)
defines where jinja will look for your templates. Order matters.
Note that jinja/airflow includes the path of your DAG file by
default

	user_defined_macros (dict) – a dictionary of macros that will be exposed
in your jinja templates. For example, passing dict(foo='bar')
to this argument allows you to {{ foo }} in all jinja
templates related to this DAG. Note that you can pass any
type of object here.

	user_defined_filters (dict) – a dictionary of filters that will be exposed
in your jinja templates. For example, passing
dict(hello=lambda name: 'Hello %s' % name) to this argument allows
you to {{ 'world' | hello }} in all jinja templates related to
this DAG.

	default_args (dict) – A dictionary of default parameters to be used
as constructor keyword parameters when initialising operators.
Note that operators have the same hook, and precede those defined
here, meaning that if your dict contains ‘depends_on_past’: True
here and ‘depends_on_past’: False in the operator’s call
default_args, the actual value will be False.

	params (dict) – a dictionary of DAG level parameters that are made
accessible in templates, namespaced under params. These
params can be overridden at the task level.

	concurrency (int) – the number of task instances allowed to run
concurrently

	max_active_runs (int) – maximum number of active DAG runs, beyond this
number of DAG runs in a running state, the scheduler won’t create
new active DAG runs

	dagrun_timeout (datetime.timedelta) – specify how long a DagRun should be up before
timing out / failing, so that new DagRuns can be created

	sla_miss_callback (types.FunctionType) – specify a function to call when reporting SLA
timeouts.

	default_view (str) – Specify DAG default view (tree, graph, duration,
gantt, landing_times)

	orientation (str) – Specify DAG orientation in graph view (LR, TB, RL, BT)

	catchup (bool) – Perform scheduler catchup (or only run latest)? Defaults to True

	on_failure_callback (callable) – A function to be called when a DagRun of this dag fails.
A context dictionary is passed as a single parameter to this function.

	on_success_callback (callable) – Much like the on_failure_callback except
that it is executed when the dag succeeds.

	
add_task(task)

	Add a task to the DAG

	Parameters

	task (task) – the task you want to add

	
add_tasks(tasks)

	Add a list of tasks to the DAG

	Parameters

	tasks (list of tasks) – a lit of tasks you want to add

	
clear(**kwargs)

	Clears a set of task instances associated with the current dag for
a specified date range.

	
cli()

	Exposes a CLI specific to this DAG

	
concurrency_reached

	Returns a boolean indicating whether the concurrency limit for this DAG
has been reached

	
create_dagrun(**kwargs)

	Creates a dag run from this dag including the tasks associated with this dag.
Returns the dag run.

	Parameters

	
	run_id (str) – defines the the run id for this dag run

	execution_date (datetime) – the execution date of this dag run

	state (State) – the state of the dag run

	start_date (datetime) – the date this dag run should be evaluated

	external_trigger (bool) – whether this dag run is externally triggered

	session (Session) – database session

	
static deactivate_stale_dags(*args, **kwargs)

	Deactivate any DAGs that were last touched by the scheduler before
the expiration date. These DAGs were likely deleted.

	Parameters

	expiration_date (datetime) – set inactive DAGs that were touched before this
time

	Returns

	None

	
static deactivate_unknown_dags(*args, **kwargs)

	Given a list of known DAGs, deactivate any other DAGs that are
marked as active in the ORM

	Parameters

	active_dag_ids (list[unicode]) – list of DAG IDs that are active

	Returns

	None

	
filepath

	File location of where the dag object is instantiated

	
folder

	Folder location of where the dag object is instantiated

	
following_schedule(dttm)

	Calculates the following schedule for this dag in UTC.

	Parameters

	dttm – utc datetime

	Returns

	utc datetime

	
get_active_runs(**kwargs)

	Returns a list of dag run execution dates currently running

	Parameters

	session –

	Returns

	List of execution dates

	
get_dagrun(**kwargs)

	Returns the dag run for a given execution date if it exists, otherwise
none.

	Parameters

	
	execution_date – The execution date of the DagRun to find.

	session –

	Returns

	The DagRun if found, otherwise None.

	
get_default_view()

	This is only there for backward compatible jinja2 templates

	
get_num_active_runs(**kwargs)

	Returns the number of active “running” dag runs

	Parameters

	
	external_trigger (bool) – True for externally triggered active dag runs

	session –

	Returns

	number greater than 0 for active dag runs

	
static get_num_task_instances(*args, **kwargs)

	Returns the number of task instances in the given DAG.

	Parameters

	
	session – ORM session

	dag_id (unicode) – ID of the DAG to get the task concurrency of

	task_ids (list[unicode]) – A list of valid task IDs for the given DAG

	states (list[state]) – A list of states to filter by if supplied

	Returns

	The number of running tasks

	Return type

	int

	
get_run_dates(start_date, end_date=None)

	Returns a list of dates between the interval received as parameter using this
dag’s schedule interval. Returned dates can be used for execution dates.

	Parameters

	
	start_date (datetime) – the start date of the interval

	end_date (datetime) – the end date of the interval, defaults to timezone.utcnow()

	Returns

	a list of dates within the interval following the dag’s schedule

	Return type

	list

	
get_template_env()

	Returns a jinja2 Environment while taking into account the DAGs
template_searchpath, user_defined_macros and user_defined_filters

	
handle_callback(**kwargs)

	Triggers the appropriate callback depending on the value of success, namely the
on_failure_callback or on_success_callback. This method gets the context of a
single TaskInstance part of this DagRun and passes that to the callable along
with a ‘reason’, primarily to differentiate DagRun failures.
.. note:

The logs end up in $AIRFLOW_HOME/logs/scheduler/latest/PROJECT/DAG_FILE.py.log

	Parameters

	
	dagrun – DagRun object

	success – Flag to specify if failure or success callback should be called

	reason – Completion reason

	session – Database session

	
is_fixed_time_schedule()

	Figures out if the DAG schedule has a fixed time (e.g. 3 AM).

	Returns

	True if the schedule has a fixed time, False if not.

	
is_paused

	Returns a boolean indicating whether this DAG is paused

	
latest_execution_date

	Returns the latest date for which at least one dag run exists

	
normalize_schedule(dttm)

	Returns dttm + interval unless dttm is first interval then it returns dttm

	
previous_schedule(dttm)

	Calculates the previous schedule for this dag in UTC

	Parameters

	dttm – utc datetime

	Returns

	utc datetime

	
run(start_date=None, end_date=None, mark_success=False, local=False, executor=None, donot_pickle=False, ignore_task_deps=False, ignore_first_depends_on_past=False, pool=None, delay_on_limit_secs=1.0, verbose=False, conf=None, rerun_failed_tasks=False)

	Runs the DAG.

	Parameters

	
	start_date (datetime) – the start date of the range to run

	end_date (datetime) – the end date of the range to run

	mark_success (bool) – True to mark jobs as succeeded without running them

	local (bool) – True to run the tasks using the LocalExecutor

	executor (BaseExecutor) – The executor instance to run the tasks

	donot_pickle (bool) – True to avoid pickling DAG object and send to workers

	ignore_task_deps (bool) – True to skip upstream tasks

	ignore_first_depends_on_past (bool) – True to ignore depends_on_past
dependencies for the first set of tasks only

	pool (str) – Resource pool to use

	delay_on_limit_secs (float) – Time in seconds to wait before next attempt to run
dag run when max_active_runs limit has been reached

	verbose (bool) – Make logging output more verbose

	conf (dict) – user defined dictionary passed from CLI

	
set_dependency(upstream_task_id, downstream_task_id)

	Simple utility method to set dependency between two tasks that
already have been added to the DAG using add_task()

	
sub_dag(task_regex, include_downstream=False, include_upstream=True)

	Returns a subset of the current dag as a deep copy of the current dag
based on a regex that should match one or many tasks, and includes
upstream and downstream neighbours based on the flag passed.

	
subdags

	Returns a list of the subdag objects associated to this DAG

	
sync_to_db(**kwargs)

	Save attributes about this DAG to the DB. Note that this method
can be called for both DAGs and SubDAGs. A SubDag is actually a
SubDagOperator.

	Parameters

	
	dag (DAG) – the DAG object to save to the DB

	sync_time (datetime) – The time that the DAG should be marked as sync’ed

	Returns

	None

	
test_cycle()

	Check to see if there are any cycles in the DAG. Returns False if no cycle found,
otherwise raises exception.

	
topological_sort()

	Sorts tasks in topographical order, such that a task comes after any of its
upstream dependencies.

Heavily inspired by:
http://blog.jupo.org/2012/04/06/topological-sorting-acyclic-directed-graphs/

	Returns

	list of tasks in topological order

	
tree_view()

	Shows an ascii tree representation of the DAG

	
class airflow.models.DagBag(dag_folder=None, executor=None, include_examples=True)

	Bases: airflow.dag.base_dag.BaseDagBag, airflow.utils.log.logging_mixin.LoggingMixin

A dagbag is a collection of dags, parsed out of a folder tree and has high
level configuration settings, like what database to use as a backend and
what executor to use to fire off tasks. This makes it easier to run
distinct environments for say production and development, tests, or for
different teams or security profiles. What would have been system level
settings are now dagbag level so that one system can run multiple,
independent settings sets.

	Parameters

	
	dag_folder (unicode) – the folder to scan to find DAGs

	executor – the executor to use when executing task instances
in this DagBag

	include_examples (bool) – whether to include the examples that ship
with airflow or not

	has_logged – an instance boolean that gets flipped from False to True after a
file has been skipped. This is to prevent overloading the user with logging
messages about skipped files. Therefore only once per DagBag is a file logged
being skipped.

	
bag_dag(dag, parent_dag, root_dag)

	Adds the DAG into the bag, recurses into sub dags.
Throws AirflowDagCycleException if a cycle is detected in this dag or its subdags

	
collect_dags(dag_folder=None, only_if_updated=True, include_examples=True)

	Given a file path or a folder, this method looks for python modules,
imports them and adds them to the dagbag collection.

Note that if a .airflowignore file is found while processing
the directory, it will behave much like a .gitignore,
ignoring files that match any of the regex patterns specified
in the file.

Note: The patterns in .airflowignore are treated as
un-anchored regexes, not shell-like glob patterns.

	
dagbag_report()

	Prints a report around DagBag loading stats

	
get_dag(dag_id)

	Gets the DAG out of the dictionary, and refreshes it if expired

	
kill_zombies(**kwargs)

	Fail given zombie tasks, which are tasks that haven’t
had a heartbeat for too long, in the current DagBag.

	Parameters

	
	zombies (SimpleTaskInstance) – zombie task instances to kill.

	session – DB session.

:type Session.

	
process_file(filepath, only_if_updated=True, safe_mode=True)

	Given a path to a python module or zip file, this method imports
the module and look for dag objects within it.

	
size()

	
	Returns

	the amount of dags contained in this dagbag

	
class airflow.models.DagModel(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	
create_dagrun(**kwargs)

	Creates a dag run from this dag including the tasks associated with this dag.
Returns the dag run.

	Parameters

	
	run_id (str) – defines the the run id for this dag run

	execution_date (datetime) – the execution date of this dag run

	state (State) – the state of the dag run

	start_date (datetime) – the date this dag run should be evaluated

	external_trigger (bool) – whether this dag run is externally triggered

	session (Session) – database session

	
class airflow.models.DagRun(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base, airflow.utils.log.logging_mixin.LoggingMixin

DagRun describes an instance of a Dag. It can be created
by the scheduler (for regular runs) or by an external trigger

	
static find(*args, **kwargs)

	Returns a set of dag runs for the given search criteria.

	Parameters

	
	dag_id (int, list) – the dag_id to find dag runs for

	run_id (str) – defines the the run id for this dag run

	execution_date (datetime) – the execution date

	state (State) – the state of the dag run

	external_trigger (bool) – whether this dag run is externally triggered

	no_backfills – return no backfills (True), return all (False).

Defaults to False
:type no_backfills: bool
:param session: database session
:type session: Session

	
get_dag()

	Returns the Dag associated with this DagRun.

	Returns

	DAG

	
classmethod get_latest_runs(**kwargs)

	Returns the latest DagRun for each DAG.

	
get_previous_dagrun(**kwargs)

	The previous DagRun, if there is one

	
get_previous_scheduled_dagrun(**kwargs)

	The previous, SCHEDULED DagRun, if there is one

	
static get_run(session, dag_id, execution_date)

	
	Parameters

	
	dag_id (unicode) – DAG ID

	execution_date (datetime) – execution date

	Returns

	DagRun corresponding to the given dag_id and execution date

if one exists. None otherwise.
:rtype: DagRun

	
get_task_instance(**kwargs)

	Returns the task instance specified by task_id for this dag run

	Parameters

	task_id – the task id

	
get_task_instances(**kwargs)

	Returns the task instances for this dag run

	
refresh_from_db(**kwargs)

	Reloads the current dagrun from the database
:param session: database session

	
update_state(**kwargs)

	Determines the overall state of the DagRun based on the state
of its TaskInstances.

	Returns

	State

	
verify_integrity(**kwargs)

	Verifies the DagRun by checking for removed tasks or tasks that are not in the
database yet. It will set state to removed or add the task if required.

	
exception airflow.models.InvalidFernetToken

	Bases: exceptions.Exception

	
class airflow.models.KubeResourceVersion(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	
class airflow.models.KubeWorkerIdentifier(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	
class airflow.models.Log(event, task_instance, owner=None, extra=None, **kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

Used to actively log events to the database

	
class airflow.models.NullFernet

	Bases: future.types.newobject.newobject

A “Null” encryptor class that doesn’t encrypt or decrypt but that presents
a similar interface to Fernet.

The purpose of this is to make the rest of the code not have to know the
difference, and to only display the message once, not 20 times when
airflow initdb is ran.

	
class airflow.models.Pool(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	
open_slots(**kwargs)

	Returns the number of slots open at the moment

	
queued_slots(**kwargs)

	Returns the number of slots used at the moment

	
used_slots(**kwargs)

	Returns the number of slots used at the moment

	
class airflow.models.SlaMiss(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

Model that stores a history of the SLA that have been missed.
It is used to keep track of SLA failures over time and to avoid double
triggering alert emails.

	
class airflow.models.TaskFail(task, execution_date, start_date, end_date)

	Bases: sqlalchemy.ext.declarative.api.Base

TaskFail tracks the failed run durations of each task instance.

	
class airflow.models.TaskInstance(task, execution_date, state=None)

	Bases: sqlalchemy.ext.declarative.api.Base, airflow.utils.log.logging_mixin.LoggingMixin

Task instances store the state of a task instance. This table is the
authority and single source of truth around what tasks have run and the
state they are in.

The SqlAlchemy model doesn’t have a SqlAlchemy foreign key to the task or
dag model deliberately to have more control over transactions.

Database transactions on this table should insure double triggers and
any confusion around what task instances are or aren’t ready to run
even while multiple schedulers may be firing task instances.

	
are_dependencies_met(**kwargs)

	Returns whether or not all the conditions are met for this task instance to be run
given the context for the dependencies (e.g. a task instance being force run from
the UI will ignore some dependencies).

	Parameters

	
	dep_context (DepContext) – The execution context that determines the dependencies that
should be evaluated.

	session (Session) – database session

	verbose (bool) – whether log details on failed dependencies on
info or debug log level

	
are_dependents_done(**kwargs)

	Checks whether the dependents of this task instance have all succeeded.
This is meant to be used by wait_for_downstream.

This is useful when you do not want to start processing the next
schedule of a task until the dependents are done. For instance,
if the task DROPs and recreates a table.

	
clear_xcom_data(**kwargs)

	Clears all XCom data from the database for the task instance

	
command(mark_success=False, ignore_all_deps=False, ignore_depends_on_past=False, ignore_task_deps=False, ignore_ti_state=False, local=False, pickle_id=None, raw=False, job_id=None, pool=None, cfg_path=None)

	Returns a command that can be executed anywhere where airflow is
installed. This command is part of the message sent to executors by
the orchestrator.

	
command_as_list(mark_success=False, ignore_all_deps=False, ignore_task_deps=False, ignore_depends_on_past=False, ignore_ti_state=False, local=False, pickle_id=None, raw=False, job_id=None, pool=None, cfg_path=None)

	Returns a command that can be executed anywhere where airflow is
installed. This command is part of the message sent to executors by
the orchestrator.

	
current_state(**kwargs)

	Get the very latest state from the database, if a session is passed,
we use and looking up the state becomes part of the session, otherwise
a new session is used.

	
error(**kwargs)

	Forces the task instance’s state to FAILED in the database.

	
static generate_command(dag_id, task_id, execution_date, mark_success=False, ignore_all_deps=False, ignore_depends_on_past=False, ignore_task_deps=False, ignore_ti_state=False, local=False, pickle_id=None, file_path=None, raw=False, job_id=None, pool=None, cfg_path=None)

	Generates the shell command required to execute this task instance.

	Parameters

	
	dag_id (unicode) – DAG ID

	task_id (unicode) – Task ID

	execution_date (datetime) – Execution date for the task

	mark_success (bool) – Whether to mark the task as successful

	ignore_all_deps (bool) – Ignore all ignorable dependencies.
Overrides the other ignore_* parameters.

	ignore_depends_on_past (bool) – Ignore depends_on_past parameter of DAGs
(e.g. for Backfills)

	ignore_task_deps (bool) – Ignore task-specific dependencies such as depends_on_past
and trigger rule

	ignore_ti_state (bool) – Ignore the task instance’s previous failure/success

	local (bool) – Whether to run the task locally

	pickle_id (unicode) – If the DAG was serialized to the DB, the ID
associated with the pickled DAG

	file_path – path to the file containing the DAG definition

	raw – raw mode (needs more details)

	job_id – job ID (needs more details)

	pool (unicode) – the Airflow pool that the task should run in

	cfg_path (basestring) – the Path to the configuration file

	Returns

	shell command that can be used to run the task instance

	
get_dagrun(**kwargs)

	Returns the DagRun for this TaskInstance

	Parameters

	session –

	Returns

	DagRun

	
init_on_load()

	Initialize the attributes that aren’t stored in the DB.

	
init_run_context(raw=False)

	Sets the log context.

	
is_eligible_to_retry()

	Is task instance is eligible for retry

	
is_premature

	Returns whether a task is in UP_FOR_RETRY state and its retry interval
has elapsed.

	
key

	Returns a tuple that identifies the task instance uniquely

	
next_retry_datetime()

	Get datetime of the next retry if the task instance fails. For exponential
backoff, retry_delay is used as base and will be converted to seconds.

	
pool_full(**kwargs)

	Returns a boolean as to whether the slot pool has room for this
task to run

	
previous_ti

	The task instance for the task that ran before this task instance

	
ready_for_retry()

	Checks on whether the task instance is in the right state and timeframe
to be retried.

	
refresh_from_db(**kwargs)

	Refreshes the task instance from the database based on the primary key

	Parameters

	lock_for_update – if True, indicates that the database should
lock the TaskInstance (issuing a FOR UPDATE clause) until the
session is committed.

	
try_number

	Return the try number that this task number will be when it is actually
run.

If the TI is currently running, this will match the column in the
databse, in all othercases this will be incremenetd

	
xcom_pull(task_ids=None, dag_id=None, key=u'return_value', include_prior_dates=False)

	Pull XComs that optionally meet certain criteria.

The default value for key limits the search to XComs
that were returned by other tasks (as opposed to those that were pushed
manually). To remove this filter, pass key=None (or any desired value).

If a single task_id string is provided, the result is the value of the
most recent matching XCom from that task_id. If multiple task_ids are
provided, a tuple of matching values is returned. None is returned
whenever no matches are found.

	Parameters

	
	key (str) – A key for the XCom. If provided, only XComs with matching
keys will be returned. The default key is ‘return_value’, also
available as a constant XCOM_RETURN_KEY. This key is automatically
given to XComs returned by tasks (as opposed to being pushed
manually). To remove the filter, pass key=None.

	task_ids (str or iterable of strings (representing task_ids)) – Only XComs from tasks with matching ids will be
pulled. Can pass None to remove the filter.

	dag_id (str) – If provided, only pulls XComs from this DAG.
If None (default), the DAG of the calling task is used.

	include_prior_dates (bool) – If False, only XComs from the current
execution_date are returned. If True, XComs from previous dates
are returned as well.

	
xcom_push(key, value, execution_date=None)

	Make an XCom available for tasks to pull.

	Parameters

	
	key (str) – A key for the XCom

	value (any pickleable object) – A value for the XCom. The value is pickled and stored
in the database.

	execution_date (datetime) – if provided, the XCom will not be visible until
this date. This can be used, for example, to send a message to a
task on a future date without it being immediately visible.

	
class airflow.models.TaskReschedule(task, execution_date, try_number, start_date, end_date, reschedule_date)

	Bases: sqlalchemy.ext.declarative.api.Base

TaskReschedule tracks rescheduled task instances.

	
static find_for_task_instance(*args, **kwargs)

	Returns all task reschedules for the task instance and try number,
in ascending order.

	Parameters

	task_instance (TaskInstance) – the task instance to find task reschedules for

	
class airflow.models.User(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	
class airflow.models.Variable(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base, airflow.utils.log.logging_mixin.LoggingMixin

	
classmethod setdefault(key, default, deserialize_json=False)

	Like a Python builtin dict object, setdefault returns the current value
for a key, and if it isn’t there, stores the default value and returns it.

	Parameters

	
	key (String) – Dict key for this Variable

	default – Default value to set and return if the variable

isn’t already in the DB
:type default: Mixed
:param deserialize_json: Store this as a JSON encoded value in the DB

and un-encode it when retrieving a value

	Returns

	Mixed

	
class airflow.models.XCom(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base, airflow.utils.log.logging_mixin.LoggingMixin

Base class for XCom objects.

	
classmethod get_many(**kwargs)

	Retrieve an XCom value, optionally meeting certain criteria
TODO: “pickling” has been deprecated and JSON is preferred.

“pickling” will be removed in Airflow 2.0.

	
classmethod get_one(**kwargs)

	Retrieve an XCom value, optionally meeting certain criteria.
TODO: “pickling” has been deprecated and JSON is preferred.

“pickling” will be removed in Airflow 2.0.

	Returns

	XCom value

	
classmethod set(**kwargs)

	Store an XCom value.
TODO: “pickling” has been deprecated and JSON is preferred.

“pickling” will be removed in Airflow 2.0.

	Returns

	None

	
airflow.models.clear_task_instances(tis, session, activate_dag_runs=True, dag=None)

	Clears a set of task instances, but makes sure the running ones
get killed.

	Parameters

	
	tis – a list of task instances

	session – current session

	activate_dag_runs – flag to check for active dag run

	dag – DAG object

	
airflow.models.get_fernet()

	Deferred load of Fernet key.

This function could fail either because Cryptography is not installed
or because the Fernet key is invalid.

	Returns

	Fernet object

	Raises

	AirflowException if there’s a problem trying to load Fernet

	
airflow.models.get_last_dagrun(dag_id, session, include_externally_triggered=False)

	Returns the last dag run for a dag, None if there was none.
Last dag run can be any type of run eg. scheduled or backfilled.
Overridden DagRuns are ignored.

Hooks

Hooks are interfaces to external platforms and databases, implementing a common
interface when possible and acting as building blocks for operators.

	
class airflow.hooks.dbapi_hook.DbApiHook(*args, **kwargs)

	Bases: airflow.hooks.base_hook.BaseHook

Abstract base class for sql hooks.

	
bulk_dump(table, tmp_file)

	Dumps a database table into a tab-delimited file

	Parameters

	
	table (str) – The name of the source table

	tmp_file (str) – The path of the target file

	
bulk_load(table, tmp_file)

	Loads a tab-delimited file into a database table

	Parameters

	
	table (str) – The name of the target table

	tmp_file (str) – The path of the file to load into the table

	
get_autocommit(conn)

	Get autocommit setting for the provided connection.
Return True if conn.autocommit is set to True.
Return False if conn.autocommit is not set or set to False or conn
does not support autocommit.

	Parameters

	conn (connection object.) – Connection to get autocommit setting from.

	Returns

	connection autocommit setting.

:rtype bool.

	
get_conn()

	Returns a connection object

	
get_cursor()

	Returns a cursor

	
get_first(sql, parameters=None)

	Executes the sql and returns the first resulting row.

	Parameters

	
	sql (str or list) – the sql statement to be executed (str) or a list of
sql statements to execute

	parameters (mapping or iterable) – The parameters to render the SQL query with.

	
get_pandas_df(sql, parameters=None)

	Executes the sql and returns a pandas dataframe

	Parameters

	
	sql (str or list) – the sql statement to be executed (str) or a list of
sql statements to execute

	parameters (mapping or iterable) – The parameters to render the SQL query with.

	
get_records(sql, parameters=None)

	Executes the sql and returns a set of records.

	Parameters

	
	sql (str or list) – the sql statement to be executed (str) or a list of
sql statements to execute

	parameters (mapping or iterable) – The parameters to render the SQL query with.

	
insert_rows(table, rows, target_fields=None, commit_every=1000, replace=False)

	A generic way to insert a set of tuples into a table,
a new transaction is created every commit_every rows

	Parameters

	
	table (str) – Name of the target table

	rows (iterable of tuples) – The rows to insert into the table

	target_fields (iterable of strings) – The names of the columns to fill in the table

	commit_every (int) – The maximum number of rows to insert in one
transaction. Set to 0 to insert all rows in one transaction.

	replace (bool) – Whether to replace instead of insert

	
run(sql, autocommit=False, parameters=None)

	Runs a command or a list of commands. Pass a list of sql
statements to the sql parameter to get them to execute
sequentially

	Parameters

	
	sql (str or list) – the sql statement to be executed (str) or a list of
sql statements to execute

	autocommit (bool) – What to set the connection’s autocommit setting to
before executing the query.

	parameters (mapping or iterable) – The parameters to render the SQL query with.

	
set_autocommit(conn, autocommit)

	Sets the autocommit flag on the connection

	
class airflow.hooks.docker_hook.DockerHook(docker_conn_id='docker_default', base_url=None, version=None, tls=None)

	Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.LoggingMixin

Interact with a private Docker registry.

	Parameters

	docker_conn_id (str) – ID of the Airflow connection where
credentials and extra configuration are stored

	
class airflow.hooks.hive_hooks.HiveCliHook(hive_cli_conn_id=u'hive_cli_default', run_as=None, mapred_queue=None, mapred_queue_priority=None, mapred_job_name=None)

	Bases: airflow.hooks.base_hook.BaseHook

Simple wrapper around the hive CLI.

It also supports the beeline
a lighter CLI that runs JDBC and is replacing the heavier
traditional CLI. To enable beeline, set the use_beeline param in the
extra field of your connection as in { "use_beeline": true }

Note that you can also set default hive CLI parameters using the
hive_cli_params to be used in your connection as in
{"hive_cli_params": "-hiveconf mapred.job.tracker=some.jobtracker:444"}
Parameters passed here can be overridden by run_cli’s hive_conf param

The extra connection parameter auth gets passed as in the jdbc
connection string as is.

	Parameters

	
	mapred_queue (str) – queue used by the Hadoop Scheduler (Capacity or Fair)

	mapred_queue_priority (str) – priority within the job queue.
Possible settings include: VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW

	mapred_job_name (str) – This name will appear in the jobtracker.
This can make monitoring easier.

	
load_df(df, table, field_dict=None, delimiter=u', ', encoding=u'utf8', pandas_kwargs=None, **kwargs)

	Loads a pandas DataFrame into hive.

Hive data types will be inferred if not passed but column names will
not be sanitized.

	Parameters

	
	df (DataFrame) – DataFrame to load into a Hive table

	table (str) – target Hive table, use dot notation to target a
specific database

	field_dict (OrderedDict) – mapping from column name to hive data type.
Note that it must be OrderedDict so as to keep columns’ order.

	delimiter (str) – field delimiter in the file

	encoding (str) – str encoding to use when writing DataFrame to file

	pandas_kwargs (dict) – passed to DataFrame.to_csv

	kwargs – passed to self.load_file

	
load_file(filepath, table, delimiter=u', ', field_dict=None, create=True, overwrite=True, partition=None, recreate=False, tblproperties=None)

	Loads a local file into Hive

Note that the table generated in Hive uses STORED AS textfile
which isn’t the most efficient serialization format. If a
large amount of data is loaded and/or if the tables gets
queried considerably, you may want to use this operator only to
stage the data into a temporary table before loading it into its
final destination using a HiveOperator.

	Parameters

	
	filepath (str) – local filepath of the file to load

	table (str) – target Hive table, use dot notation to target a
specific database

	delimiter (str) – field delimiter in the file

	field_dict (OrderedDict) – A dictionary of the fields name in the file
as keys and their Hive types as values.
Note that it must be OrderedDict so as to keep columns’ order.

	create (bool) – whether to create the table if it doesn’t exist

	overwrite (bool) – whether to overwrite the data in table or partition

	partition (dict) – target partition as a dict of partition columns
and values

	recreate (bool) – whether to drop and recreate the table at every
execution

	tblproperties (dict) – TBLPROPERTIES of the hive table being created

	
run_cli(hql, schema=None, verbose=True, hive_conf=None)

	Run an hql statement using the hive cli. If hive_conf is specified
it should be a dict and the entries will be set as key/value pairs
in HiveConf

	Parameters

	hive_conf (dict) – if specified these key value pairs will be passed
to hive as -hiveconf "key"="value". Note that they will be
passed after the hive_cli_params and thus will override
whatever values are specified in the database.

>>> hh = HiveCliHook()
>>> result = hh.run_cli("USE airflow;")
>>> ("OK" in result)
True

	
test_hql(hql)

	Test an hql statement using the hive cli and EXPLAIN

	
class airflow.hooks.hive_hooks.HiveMetastoreHook(metastore_conn_id=u'metastore_default')

	Bases: airflow.hooks.base_hook.BaseHook

Wrapper to interact with the Hive Metastore

	
check_for_named_partition(schema, table, partition_name)

	Checks whether a partition with a given name exists

	Parameters

	
	schema (str) – Name of hive schema (database) @table belongs to

	table – Name of hive table @partition belongs to

	Partition

	Name of the partitions to check for (eg a=b/c=d)

	Return type

	bool

>>> hh = HiveMetastoreHook()
>>> t = 'static_babynames_partitioned'
>>> hh.check_for_named_partition('airflow', t, "ds=2015-01-01")
True
>>> hh.check_for_named_partition('airflow', t, "ds=xxx")
False

	
check_for_partition(schema, table, partition)

	Checks whether a partition exists

	Parameters

	
	schema (str) – Name of hive schema (database) @table belongs to

	table – Name of hive table @partition belongs to

	Partition

	Expression that matches the partitions to check for
(eg a = ‘b’ AND c = ‘d’)

	Return type

	bool

>>> hh = HiveMetastoreHook()
>>> t = 'static_babynames_partitioned'
>>> hh.check_for_partition('airflow', t, "ds='2015-01-01'")
True

	
get_databases(pattern=u'*')

	Get a metastore table object

	
get_metastore_client()

	Returns a Hive thrift client.

	
get_partitions(schema, table_name, filter=None)

	Returns a list of all partitions in a table. Works only
for tables with less than 32767 (java short max val).
For subpartitioned table, the number might easily exceed this.

>>> hh = HiveMetastoreHook()
>>> t = 'static_babynames_partitioned'
>>> parts = hh.get_partitions(schema='airflow', table_name=t)
>>> len(parts)
1
>>> parts
[{'ds': '2015-01-01'}]

	
get_table(table_name, db=u'default')

	Get a metastore table object

>>> hh = HiveMetastoreHook()
>>> t = hh.get_table(db='airflow', table_name='static_babynames')
>>> t.tableName
'static_babynames'
>>> [col.name for col in t.sd.cols]
['state', 'year', 'name', 'gender', 'num']

	
get_tables(db, pattern=u'*')

	Get a metastore table object

	
max_partition(schema, table_name, field=None, filter_map=None)

	Returns the maximum value for all partitions with given field in a table.
If only one partition key exist in the table, the key will be used as field.
filter_map should be a partition_key:partition_value map and will be used to
filter out partitions.

	Parameters

	
	schema (str) – schema name.

	table_name (str) – table name.

	field (str) – partition key to get max partition from.

	filter_map (map) – partition_key:partition_value map used for partition filtering.

>>> hh = HiveMetastoreHook()
>>> filter_map = {'ds': '2015-01-01', 'ds': '2014-01-01'}
>>> t = 'static_babynames_partitioned'
>>> hh.max_partition(schema='airflow', ... table_name=t, field='ds', filter_map=filter_map)
'2015-01-01'

	
table_exists(table_name, db=u'default')

	Check if table exists

>>> hh = HiveMetastoreHook()
>>> hh.table_exists(db='airflow', table_name='static_babynames')
True
>>> hh.table_exists(db='airflow', table_name='does_not_exist')
False

	
class airflow.hooks.hive_hooks.HiveServer2Hook(hiveserver2_conn_id=u'hiveserver2_default')

	Bases: airflow.hooks.base_hook.BaseHook

Wrapper around the pyhive library

Note that the default authMechanism is PLAIN, to override it you
can specify it in the extra of your connection in the UI as in

	
get_pandas_df(hql, schema=u'default')

	Get a pandas dataframe from a Hive query

>>> hh = HiveServer2Hook()
>>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100"
>>> df = hh.get_pandas_df(sql)
>>> len(df.index)
100

	
get_records(hql, schema=u'default', hive_conf=None)

	Get a set of records from a Hive query.

>>> hh = HiveServer2Hook()
>>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100"
>>> len(hh.get_records(sql))
100

	
get_results(hql, schema=u'default', fetch_size=None, hive_conf=None)

	Get results of the provided hql in target schema.
:param hql: hql to be executed.
:param schema: target schema, default to ‘default’.
:param fetch_size max size of result to fetch.
:param hive_conf: hive_conf to execute alone with the hql.
:return: results of hql execution.

	
to_csv(hql, csv_filepath, schema=u'default', delimiter=u', ', lineterminator=u'\r\n', output_header=True, fetch_size=1000, hive_conf=None)

	Execute hql in target schema and write results to a csv file.
:param hql: hql to be executed.
:param csv_filepath: filepath of csv to write results into.
:param schema: target schema, default to ‘default’.
:param delimiter: delimiter of the csv file.
:param lineterminator: lineterminator of the csv file.
:param output_header: header of the csv file.
:param fetch_size: number of result rows to write into the csv file.
:param hive_conf: hive_conf to execute alone with the hql.
:return:

	
airflow.hooks.hive_hooks.get_context_from_env_var()

	Extract context from env variable, e.g. dag_id, task_id and execution_date,
so that they can be used inside BashOperator and PythonOperator.
:return: The context of interest.

	
class airflow.hooks.http_hook.HttpHook(method='POST', http_conn_id='http_default')

	Bases: airflow.hooks.base_hook.BaseHook

Interact with HTTP servers.
:param http_conn_id: connection that has the base API url i.e https://www.google.com/

and optional authentication credentials. Default headers can also be specified in
the Extra field in json format.

	Parameters

	method (str) – the API method to be called

	
check_response(response)

	Checks the status code and raise an AirflowException exception on non 2XX or 3XX
status codes
:param response: A requests response object
:type response: requests.response

	
get_conn(headers=None)

	Returns http session for use with requests
:param headers: additional headers to be passed through as a dictionary
:type headers: dict

	
run(endpoint, data=None, headers=None, extra_options=None)

	Performs the request
:param endpoint: the endpoint to be called i.e. resource/v1/query?
:type endpoint: str
:param data: payload to be uploaded or request parameters
:type data: dict
:param headers: additional headers to be passed through as a dictionary
:type headers: dict
:param extra_options: additional options to be used when executing the request

i.e. {‘check_response’: False} to avoid checking raising exceptions on non
2XX or 3XX status codes

	
run_and_check(session, prepped_request, extra_options)

	Grabs extra options like timeout and actually runs the request,
checking for the result
:param session: the session to be used to execute the request
:type session: requests.Session
:param prepped_request: the prepared request generated in run()
:type prepped_request: session.prepare_request
:param extra_options: additional options to be used when executing the request

i.e. {‘check_response’: False} to avoid checking raising exceptions on non 2XX
or 3XX status codes

	
run_with_advanced_retry(_retry_args, *args, **kwargs)

	Runs Hook.run() with a Tenacity decorator attached to it. This is useful for
connectors which might be disturbed by intermittent issues and should not
instantly fail.
:param _retry_args: Arguments which define the retry behaviour.

See Tenacity documentation at https://github.com/jd/tenacity

	Example: ::

	hook = HttpHook(http_conn_id=’my_conn’,method=’GET’)
retry_args = dict(

wait=tenacity.wait_exponential(),
stop=tenacity.stop_after_attempt(10),
retry=requests.exceptions.ConnectionError

)
hook.run_with_advanced_retry(

endpoint=’v1/test’,
_retry_args=retry_args

)

	
class airflow.hooks.druid_hook.DruidDbApiHook(*args, **kwargs)

	Bases: airflow.hooks.dbapi_hook.DbApiHook

Interact with Druid broker

This hook is purely for users to query druid broker.
For ingestion, please use druidHook.

	
get_conn()

	Establish a connection to druid broker.

	
get_pandas_df(sql, parameters=None)

	Executes the sql and returns a pandas dataframe

	Parameters

	
	sql (str or list) – the sql statement to be executed (str) or a list of
sql statements to execute

	parameters (mapping or iterable) – The parameters to render the SQL query with.

	
get_uri()

	Get the connection uri for druid broker.

e.g: druid://localhost:8082/druid/v2/sql/

	
insert_rows(table, rows, target_fields=None, commit_every=1000)

	A generic way to insert a set of tuples into a table,
a new transaction is created every commit_every rows

	Parameters

	
	table (str) – Name of the target table

	rows (iterable of tuples) – The rows to insert into the table

	target_fields (iterable of strings) – The names of the columns to fill in the table

	commit_every (int) – The maximum number of rows to insert in one
transaction. Set to 0 to insert all rows in one transaction.

	replace (bool) – Whether to replace instead of insert

	
set_autocommit(conn, autocommit)

	Sets the autocommit flag on the connection

	
class airflow.hooks.druid_hook.DruidHook(druid_ingest_conn_id='druid_ingest_default', timeout=1, max_ingestion_time=None)

	Bases: airflow.hooks.base_hook.BaseHook

Connection to Druid overlord for ingestion

	Parameters

	
	druid_ingest_conn_id (str) – The connection id to the Druid overlord machine
which accepts index jobs

	timeout (int) – The interval between polling
the Druid job for the status of the ingestion job.
Must be greater than or equal to 1

	max_ingestion_time (int) – The maximum ingestion time before assuming the job failed

	
class airflow.hooks.hdfs_hook.HDFSHook(hdfs_conn_id='hdfs_default', proxy_user=None, autoconfig=False)

	Bases: airflow.hooks.base_hook.BaseHook

Interact with HDFS. This class is a wrapper around the snakebite library.

	Parameters

	
	hdfs_conn_id – Connection id to fetch connection info

	proxy_user (str) – effective user for HDFS operations

	autoconfig (bool) – use snakebite’s automatically configured client

	
get_conn()

	Returns a snakebite HDFSClient object.

	
class airflow.hooks.mssql_hook.MsSqlHook(*args, **kwargs)

	Bases: airflow.hooks.dbapi_hook.DbApiHook

Interact with Microsoft SQL Server.

	
get_autocommit(conn)

	Get autocommit setting for the provided connection.
Return True if conn.autocommit is set to True.
Return False if conn.autocommit is not set or set to False or conn
does not support autocommit.

	Parameters

	conn (connection object.) – Connection to get autocommit setting from.

	Returns

	connection autocommit setting.

:rtype bool.

	
get_conn()

	Returns a mssql connection object

	
set_autocommit(conn, autocommit)

	Sets the autocommit flag on the connection

	
class airflow.hooks.mysql_hook.MySqlHook(*args, **kwargs)

	Bases: airflow.hooks.dbapi_hook.DbApiHook

Interact with MySQL.

You can specify charset in the extra field of your connection
as {"charset": "utf8"}. Also you can choose cursor as
{"cursor": "SSCursor"}. Refer to the MySQLdb.cursors for more details.

	
bulk_dump(table, tmp_file)

	Dumps a database table into a tab-delimited file

	
bulk_load(table, tmp_file)

	Loads a tab-delimited file into a database table

	
get_autocommit(conn)

	MySql connection gets autocommit in a different way.

	Parameters

	conn (connection object.) – connection to get autocommit setting from.

	Returns

	connection autocommit setting

:rtype bool

	
get_conn()

	Returns a mysql connection object

	
set_autocommit(conn, autocommit)

	MySql connection sets autocommit in a different way.

	
class airflow.hooks.pig_hook.PigCliHook(pig_cli_conn_id='pig_cli_default')

	Bases: airflow.hooks.base_hook.BaseHook

Simple wrapper around the pig CLI.

Note that you can also set default pig CLI properties using the
pig_properties to be used in your connection as in
{"pig_properties": "-Dpig.tmpfilecompression=true"}

	
run_cli(pig, verbose=True)

	Run an pig script using the pig cli

>>> ph = PigCliHook()
>>> result = ph.run_cli("ls /;")
>>> ("hdfs://" in result)
True

	
class airflow.hooks.postgres_hook.PostgresHook(*args, **kwargs)

	Bases: airflow.hooks.dbapi_hook.DbApiHook

Interact with Postgres.
You can specify ssl parameters in the extra field of your connection
as {"sslmode": "require", "sslcert": "/path/to/cert.pem", etc}.

Note: For Redshift, use keepalives_idle in the extra connection parameters
and set it to less than 300 seconds.

	
bulk_dump(table, tmp_file)

	Dumps a database table into a tab-delimited file

	
bulk_load(table, tmp_file)

	Loads a tab-delimited file into a database table

	
copy_expert(sql, filename, open=<built-in function open>)

	Executes SQL using psycopg2 copy_expert method.
Necessary to execute COPY command without access to a superuser.

Note: if this method is called with a “COPY FROM” statement and
the specified input file does not exist, it creates an empty
file and no data is loaded, but the operation succeeds.
So if users want to be aware when the input file does not exist,
they have to check its existence by themselves.

	
get_conn()

	Returns a connection object

	
class airflow.hooks.presto_hook.PrestoHook(*args, **kwargs)

	Bases: airflow.hooks.dbapi_hook.DbApiHook

Interact with Presto through PyHive!

>>> ph = PrestoHook()
>>> sql = "SELECT count(1) AS num FROM airflow.static_babynames"
>>> ph.get_records(sql)
[[340698]]

	
get_conn()

	Returns a connection object

	
get_first(hql, parameters=None)

	Returns only the first row, regardless of how many rows the query
returns.

	
get_pandas_df(hql, parameters=None)

	Get a pandas dataframe from a sql query.

	
get_records(hql, parameters=None)

	Get a set of records from Presto

	
insert_rows(table, rows, target_fields=None)

	A generic way to insert a set of tuples into a table.

	Parameters

	
	table (str) – Name of the target table

	rows (iterable of tuples) – The rows to insert into the table

	target_fields (iterable of strings) – The names of the columns to fill in the table

	
run(hql, parameters=None)

	Execute the statement against Presto. Can be used to create views.

	
class airflow.hooks.S3_hook.S3Hook(aws_conn_id='aws_default', verify=None)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS S3, using the boto3 library.

	
check_for_bucket(bucket_name)

	Check if bucket_name exists.

	Parameters

	bucket_name (str) – the name of the bucket

	
check_for_key(key, bucket_name=None)

	Checks if a key exists in a bucket

	Parameters

	
	key (str) – S3 key that will point to the file

	bucket_name (str) – Name of the bucket in which the file is stored

	
check_for_prefix(bucket_name, prefix, delimiter)

	Checks that a prefix exists in a bucket

	Parameters

	
	bucket_name (str) – the name of the bucket

	prefix (str) – a key prefix

	delimiter (str) – the delimiter marks key hierarchy.

	
check_for_wildcard_key(wildcard_key, bucket_name=None, delimiter='')

	Checks that a key matching a wildcard expression exists in a bucket

	Parameters

	
	wildcard_key (str) – the path to the key

	bucket_name (str) – the name of the bucket

	delimiter (str) – the delimiter marks key hierarchy

	
copy_object(source_bucket_key, dest_bucket_key, source_bucket_name=None, dest_bucket_name=None, source_version_id=None)

	Creates a copy of an object that is already stored in S3.

Note: the S3 connection used here needs to have access to both
source and destination bucket/key.

	Parameters

	
	source_bucket_key (str) – The key of the source object.

It can be either full s3:// style url or relative path from root level.

When it’s specified as a full s3:// url, please omit source_bucket_name.

	dest_bucket_key (str) – The key of the object to copy to.

The convention to specify dest_bucket_key is the same
as source_bucket_key.

	source_bucket_name (str) – Name of the S3 bucket where the source object is in.

It should be omitted when source_bucket_key is provided as a full s3:// url.

	dest_bucket_name (str) – Name of the S3 bucket to where the object is copied.

It should be omitted when dest_bucket_key is provided as a full s3:// url.

	source_version_id (str) – Version ID of the source object (OPTIONAL)

	
create_bucket(bucket_name, region_name=None)

	Creates an Amazon S3 bucket.

	Parameters

	
	bucket_name (str) – The name of the bucket

	region_name (str) – The name of the aws region in which to create the bucket.

	
delete_objects(bucket, keys)

	
	Parameters

	
	bucket (str) – Name of the bucket in which you are going to delete object(s)

	keys (str or list) – The key(s) to delete from S3 bucket.

When keys is a string, it’s supposed to be the key name of
the single object to delete.

When keys is a list, it’s supposed to be the list of the
keys to delete.

	
get_bucket(bucket_name)

	Returns a boto3.S3.Bucket object

	Parameters

	bucket_name (str) – the name of the bucket

	
get_key(key, bucket_name=None)

	Returns a boto3.s3.Object

	Parameters

	
	key (str) – the path to the key

	bucket_name (str) – the name of the bucket

	
get_wildcard_key(wildcard_key, bucket_name=None, delimiter='')

	Returns a boto3.s3.Object object matching the wildcard expression

	Parameters

	
	wildcard_key (str) – the path to the key

	bucket_name (str) – the name of the bucket

	delimiter (str) – the delimiter marks key hierarchy

	
list_keys(bucket_name, prefix='', delimiter='', page_size=None, max_items=None)

	Lists keys in a bucket under prefix and not containing delimiter

	Parameters

	
	bucket_name (str) – the name of the bucket

	prefix (str) – a key prefix

	delimiter (str) – the delimiter marks key hierarchy.

	page_size (int) – pagination size

	max_items (int) – maximum items to return

	
list_prefixes(bucket_name, prefix='', delimiter='', page_size=None, max_items=None)

	Lists prefixes in a bucket under prefix

	Parameters

	
	bucket_name (str) – the name of the bucket

	prefix (str) – a key prefix

	delimiter (str) – the delimiter marks key hierarchy.

	page_size (int) – pagination size

	max_items (int) – maximum items to return

	
load_bytes(bytes_data, key, bucket_name=None, replace=False, encrypt=False)

	Loads bytes to S3

This is provided as a convenience to drop a string in S3. It uses the
boto infrastructure to ship a file to s3.

	Parameters

	
	bytes_data (bytes) – bytes to set as content for the key.

	key (str) – S3 key that will point to the file

	bucket_name (str) – Name of the bucket in which to store the file

	replace (bool) – A flag to decide whether or not to overwrite the key
if it already exists

	encrypt (bool) – If True, the file will be encrypted on the server-side
by S3 and will be stored in an encrypted form while at rest in S3.

	
load_file(filename, key, bucket_name=None, replace=False, encrypt=False)

	Loads a local file to S3

	Parameters

	
	filename (str) – name of the file to load.

	key (str) – S3 key that will point to the file

	bucket_name (str) – Name of the bucket in which to store the file

	replace (bool) – A flag to decide whether or not to overwrite the key
if it already exists. If replace is False and the key exists, an
error will be raised.

	encrypt (bool) – If True, the file will be encrypted on the server-side
by S3 and will be stored in an encrypted form while at rest in S3.

	
load_file_obj(file_obj, key, bucket_name=None, replace=False, encrypt=False)

	Loads a file object to S3

	Parameters

	
	file_obj (file-like object) – The file-like object to set as the content for the S3 key.

	key (str) – S3 key that will point to the file

	bucket_name (str) – Name of the bucket in which to store the file

	replace (bool) – A flag that indicates whether to overwrite the key
if it already exists.

	encrypt (bool) – If True, S3 encrypts the file on the server,
and the file is stored in encrypted form at rest in S3.

	
load_string(string_data, key, bucket_name=None, replace=False, encrypt=False, encoding='utf-8')

	Loads a string to S3

This is provided as a convenience to drop a string in S3. It uses the
boto infrastructure to ship a file to s3.

	Parameters

	
	string_data (str) – str to set as content for the key.

	key (str) – S3 key that will point to the file

	bucket_name (str) – Name of the bucket in which to store the file

	replace (bool) – A flag to decide whether or not to overwrite the key
if it already exists

	encrypt (bool) – If True, the file will be encrypted on the server-side
by S3 and will be stored in an encrypted form while at rest in S3.

	
read_key(key, bucket_name=None)

	Reads a key from S3

	Parameters

	
	key (str) – S3 key that will point to the file

	bucket_name (str) – Name of the bucket in which the file is stored

	
select_key(key, bucket_name=None, expression='SELECT * FROM S3Object', expression_type='SQL', input_serialization=None, output_serialization=None)

	Reads a key with S3 Select.

	Parameters

	
	key (str) – S3 key that will point to the file

	bucket_name (str) – Name of the bucket in which the file is stored

	expression (str) – S3 Select expression

	expression_type (str) – S3 Select expression type

	input_serialization (dict) – S3 Select input data serialization format

	output_serialization (dict) – S3 Select output data serialization format

	Returns

	retrieved subset of original data by S3 Select

	Return type

	str

See also

For more details about S3 Select parameters:
http://boto3.readthedocs.io/en/latest/reference/services/s3.html#S3.Client.select_object_content

	
class airflow.hooks.slack_hook.SlackHook(token=None, slack_conn_id=None)

	Bases: airflow.hooks.base_hook.BaseHook

Interact with Slack, using slackclient library.

	
class airflow.hooks.sqlite_hook.SqliteHook(*args, **kwargs)

	Bases: airflow.hooks.dbapi_hook.DbApiHook

Interact with SQLite.

	
get_conn()

	Returns a sqlite connection object

Community contributed hooks

	
class airflow.contrib.hooks.aws_athena_hook.AWSAthenaHook(aws_conn_id='aws_default', sleep_time=30, *args, **kwargs)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS Athena to run, poll queries and return query results

	Parameters

	
	aws_conn_id (str) – aws connection to use.

	sleep_time (int) – Time to wait between two consecutive call to check query status on athena

	
check_query_status(query_execution_id)

	Fetch the status of submitted athena query. Returns None or one of valid query states.

	Parameters

	query_execution_id (str) – Id of submitted athena query

	Returns

	str

	
get_conn()

	check if aws conn exists already or create one and return it

	Returns

	boto3 session

	
get_query_results(query_execution_id)

	Fetch submitted athena query results. returns none if query is in intermediate state or
failed/cancelled state else dict of query output

	Parameters

	query_execution_id (str) – Id of submitted athena query

	Returns

	dict

	
poll_query_status(query_execution_id, max_tries=None)

	Poll the status of submitted athena query until query state reaches final state.
Returns one of the final states

	Parameters

	
	query_execution_id (str) – Id of submitted athena query

	max_tries (int) – Number of times to poll for query state before function exits

	Returns

	str

	
run_query(query, query_context, result_configuration, client_request_token=None)

	Run Presto query on athena with provided config and return submitted query_execution_id

	Parameters

	
	query (str) – Presto query to run

	query_context (dict) – Context in which query need to be run

	result_configuration (dict) – Dict with path to store results in and config related to encryption

	client_request_token (str) – Unique token created by user to avoid multiple executions of same query

	Returns

	str

	
stop_query(query_execution_id)

	Cancel the submitted athena query

	Parameters

	query_execution_id (str) – Id of submitted athena query

	Returns

	dict

	
class airflow.contrib.hooks.aws_dynamodb_hook.AwsDynamoDBHook(table_keys=None, table_name=None, region_name=None, *args, **kwargs)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS DynamoDB.

	Parameters

	
	table_keys (list) – partition key and sort key

	table_name (str) – target DynamoDB table

	region_name (str) – aws region name (example: us-east-1)

	
write_batch_data(items)

	Write batch items to dynamodb table with provisioned throughout capacity.

	
class airflow.contrib.hooks.aws_firehose_hook.AwsFirehoseHook(delivery_stream, region_name=None, *args, **kwargs)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS Kinesis Firehose.
:param delivery_stream: Name of the delivery stream
:type delivery_stream: str
:param region_name: AWS region name (example: us-east-1)
:type region_name: str

	
get_conn()

	Returns AwsHook connection object.

	
put_records(records)

	Write batch records to Kinesis Firehose

	
class airflow.contrib.hooks.aws_glue_catalog_hook.AwsGlueCatalogHook(aws_conn_id='aws_default', region_name=None, *args, **kwargs)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS Glue Catalog

	Parameters

	
	aws_conn_id (str) – ID of the Airflow connection where
credentials and extra configuration are stored

	region_name (str) – aws region name (example: us-east-1)

	
check_for_partition(database_name, table_name, expression)

	Checks whether a partition exists

	Parameters

	
	database_name (str) – Name of hive database (schema) @table belongs to

	table_name (str) – Name of hive table @partition belongs to

	Expression

	Expression that matches the partitions to check for
(eg a = ‘b’ AND c = ‘d’)

	Return type

	bool

>>> hook = AwsGlueCatalogHook()
>>> t = 'static_babynames_partitioned'
>>> hook.check_for_partition('airflow', t, "ds='2015-01-01'")
True

	
get_conn()

	Returns glue connection object.

	
get_partitions(database_name, table_name, expression='', page_size=None, max_items=None)

	Retrieves the partition values for a table.

	Parameters

	
	database_name (str) – The name of the catalog database where the partitions reside.

	table_name (str) – The name of the partitions’ table.

	expression (str) – An expression filtering the partitions to be returned.
Please see official AWS documentation for further information.
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-api-catalog-partitions-GetPartitions

	page_size (int) – pagination size

	max_items (int) – maximum items to return

	Returns

	set of partition values where each value is a tuple since
a partition may be composed of multiple columns. For example:

{(‘2018-01-01’,‘1’), (‘2018-01-01’,‘2’)}

	
class airflow.contrib.hooks.aws_hook.AwsHook(aws_conn_id='aws_default', verify=None)

	Bases: airflow.hooks.base_hook.BaseHook

Interact with AWS.
This class is a thin wrapper around the boto3 python library.

	
expand_role(role)

	If the IAM role is a role name, get the Amazon Resource Name (ARN) for the role.
If IAM role is already an IAM role ARN, no change is made.

	Parameters

	role – IAM role name or ARN

	Returns

	IAM role ARN

	
get_credentials(region_name=None)

	Get the underlying botocore.Credentials object.

This contains the following authentication attributes: access_key, secret_key and token.

	
get_session(region_name=None)

	Get the underlying boto3.session.

	
class airflow.contrib.hooks.aws_lambda_hook.AwsLambdaHook(function_name, region_name=None, log_type='None', qualifier='$LATEST', invocation_type='RequestResponse', *args, **kwargs)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS Lambda

	Parameters

	
	function_name (str) – AWS Lambda Function Name

	region_name (str) – AWS Region Name (example: us-west-2)

	log_type (str) – Tail Invocation Request

	qualifier (str) – AWS Lambda Function Version or Alias Name

	invocation_type (str) – AWS Lambda Invocation Type (RequestResponse, Event etc)

	
invoke_lambda(payload)

	Invoke Lambda Function

	
class airflow.contrib.hooks.aws_sns_hook.AwsSnsHook(*args, **kwargs)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with Amazon Simple Notification Service.

	
get_conn()

	Get an SNS connection

	
publish_to_target(target_arn, message)

	Publish a message to a topic or an endpoint.

	Parameters

	
	target_arn (str) – either a TopicArn or an EndpointArn

	message – the default message you want to send

	message – str

	
class airflow.contrib.hooks.bigquery_hook.BigQueryHook(bigquery_conn_id='bigquery_default', delegate_to=None, use_legacy_sql=True, location=None)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook, airflow.hooks.dbapi_hook.DbApiHook, airflow.utils.log.logging_mixin.LoggingMixin

Interact with BigQuery. This hook uses the Google Cloud Platform
connection.

	
get_conn()

	Returns a BigQuery PEP 249 connection object.

	
get_pandas_df(sql, parameters=None, dialect=None)

	Returns a Pandas DataFrame for the results produced by a BigQuery
query. The DbApiHook method must be overridden because Pandas
doesn’t support PEP 249 connections, except for SQLite. See:

https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447
https://github.com/pydata/pandas/issues/6900

	Parameters

	
	sql (str) – The BigQuery SQL to execute.

	parameters (mapping or iterable) – The parameters to render the SQL query with (not
used, leave to override superclass method)

	dialect (str in {'legacy', 'standard'}) – Dialect of BigQuery SQL – legacy SQL or standard SQL
defaults to use self.use_legacy_sql if not specified

	
get_service()

	Returns a BigQuery service object.

	
insert_rows(table, rows, target_fields=None, commit_every=1000)

	Insertion is currently unsupported. Theoretically, you could use
BigQuery’s streaming API to insert rows into a table, but this hasn’t
been implemented.

	
table_exists(project_id, dataset_id, table_id)

	Checks for the existence of a table in Google BigQuery.

	Parameters

	
	project_id (str) – The Google cloud project in which to look for the
table. The connection supplied to the hook must provide access to
the specified project.

	dataset_id (str) – The name of the dataset in which to look for the
table.

	table_id (str) – The name of the table to check the existence of.

	
class airflow.contrib.hooks.cassandra_hook.CassandraHook(cassandra_conn_id='cassandra_default')

	Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.LoggingMixin

Hook used to interact with Cassandra

Contact points can be specified as a comma-separated string in the ‘hosts’
field of the connection.

Port can be specified in the port field of the connection.

If SSL is enabled in Cassandra, pass in a dict in the extra field as kwargs for
ssl.wrap_socket(). For example:

	{

	
	‘ssl_options’{

	‘ca_certs’ : PATH_TO_CA_CERTS

}

}

	Default load balancing policy is RoundRobinPolicy. To specify a different LB policy:

	
	
	DCAwareRoundRobinPolicy

	
	{

	
‘load_balancing_policy’: ‘DCAwareRoundRobinPolicy’,
‘load_balancing_policy_args’: {

‘local_dc’: LOCAL_DC_NAME, // optional
‘used_hosts_per_remote_dc’: SOME_INT_VALUE, // optional

}

}

	
	WhiteListRoundRobinPolicy

	
	{

	‘load_balancing_policy’: ‘WhiteListRoundRobinPolicy’,
‘load_balancing_policy_args’: {

‘hosts’: [‘HOST1’, ‘HOST2’, ‘HOST3’]

}

}

	
	TokenAwarePolicy

	
	{

	‘load_balancing_policy’: ‘TokenAwarePolicy’,
‘load_balancing_policy_args’: {

‘child_load_balancing_policy’: CHILD_POLICY_NAME, // optional
‘child_load_balancing_policy_args’: { … } // optional

}

}

For details of the Cluster config, see cassandra.cluster.

	
get_conn()

	Returns a cassandra Session object

	
record_exists(table, keys)

	Checks if a record exists in Cassandra

	Parameters

	
	table (str) – Target Cassandra table.
Use dot notation to target a specific keyspace.

	keys (dict) – The keys and their values to check the existence.

	
shutdown_cluster()

	Closes all sessions and connections associated with this Cluster.

	
table_exists(table)

	Checks if a table exists in Cassandra

	Parameters

	table (str) – Target Cassandra table.
Use dot notation to target a specific keyspace.

	
class airflow.contrib.hooks.cloudant_hook.CloudantHook(cloudant_conn_id='cloudant_default')

	Bases: airflow.hooks.base_hook.BaseHook

Interact with Cloudant.

This class is a thin wrapper around the cloudant python library. See the
documentation here [https://github.com/cloudant-labs/cloudant-python].

	
db()

	Returns the Database object for this hook.

See the documentation for cloudant-python here
https://github.com/cloudant-labs/cloudant-python.

	
class airflow.contrib.hooks.databricks_hook.DatabricksHook(databricks_conn_id='databricks_default', timeout_seconds=180, retry_limit=3, retry_delay=1.0)

	Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.LoggingMixin

Interact with Databricks.

	
run_now(json)

	Utility function to call the api/2.0/jobs/run-now endpoint.

	Parameters

	json (dict) – The data used in the body of the request to the run-now endpoint.

	Returns

	the run_id as a string

	Return type

	str

	
submit_run(json)

	Utility function to call the api/2.0/jobs/runs/submit endpoint.

	Parameters

	json (dict) – The data used in the body of the request to the submit endpoint.

	Returns

	the run_id as a string

	Return type

	str

	
class airflow.contrib.hooks.datastore_hook.DatastoreHook(datastore_conn_id='google_cloud_datastore_default', delegate_to=None)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Interact with Google Cloud Datastore. This hook uses the Google Cloud Platform
connection.

This object is not threads safe. If you want to make multiple requests
simultaneously, you will need to create a hook per thread.

	
allocate_ids(partialKeys)

	Allocate IDs for incomplete keys.
see https://cloud.google.com/datastore/docs/reference/rest/v1/projects/allocateIds

	Parameters

	partialKeys – a list of partial keys

	Returns

	a list of full keys.

	
begin_transaction()

	Get a new transaction handle

See also

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/beginTransaction

	Returns

	a transaction handle

	
commit(body)

	Commit a transaction, optionally creating, deleting or modifying some entities.

See also

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/commit

	Parameters

	body – the body of the commit request

	Returns

	the response body of the commit request

	
delete_operation(name)

	Deletes the long-running operation

	Parameters

	name – the name of the operation resource

	
export_to_storage_bucket(bucket, namespace=None, entity_filter=None, labels=None)

	Export entities from Cloud Datastore to Cloud Storage for backup

	
get_conn(version='v1')

	Returns a Google Cloud Datastore service object.

	
get_operation(name)

	Gets the latest state of a long-running operation

	Parameters

	name – the name of the operation resource

	
import_from_storage_bucket(bucket, file, namespace=None, entity_filter=None, labels=None)

	Import a backup from Cloud Storage to Cloud Datastore

	
lookup(keys, read_consistency=None, transaction=None)

	Lookup some entities by key

See also

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/lookup

	Parameters

	
	keys – the keys to lookup

	read_consistency – the read consistency to use. default, strong or eventual.
Cannot be used with a transaction.

	transaction – the transaction to use, if any.

	Returns

	the response body of the lookup request.

	
poll_operation_until_done(name, polling_interval_in_seconds)

	Poll backup operation state until it’s completed

	
rollback(transaction)

	Roll back a transaction

See also

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/rollback

	Parameters

	transaction – the transaction to roll back

	
run_query(body)

	Run a query for entities.

See also

https://cloud.google.com/datastore/docs/reference/rest/v1/projects/runQuery

	Parameters

	body – the body of the query request

	Returns

	the batch of query results.

	
class airflow.contrib.hooks.discord_webhook_hook.DiscordWebhookHook(http_conn_id=None, webhook_endpoint=None, message='', username=None, avatar_url=None, tts=False, proxy=None, *args, **kwargs)

	Bases: airflow.hooks.http_hook.HttpHook

This hook allows you to post messages to Discord using incoming webhooks.
Takes a Discord connection ID with a default relative webhook endpoint. The
default endpoint can be overridden using the webhook_endpoint parameter
(https://discordapp.com/developers/docs/resources/webhook).

Each Discord webhook can be pre-configured to use a specific username and
avatar_url. You can override these defaults in this hook.

	Parameters

	
	http_conn_id (str) – Http connection ID with host as “https://discord.com/api/” and
default webhook endpoint in the extra field in the form of
{“webhook_endpoint”: “webhooks/{webhook.id}/{webhook.token}”}

	webhook_endpoint (str) – Discord webhook endpoint in the form of
“webhooks/{webhook.id}/{webhook.token}”

	message (str) – The message you want to send to your Discord channel
(max 2000 characters)

	username (str) – Override the default username of the webhook

	avatar_url (str) – Override the default avatar of the webhook

	tts (bool) – Is a text-to-speech message

	proxy (str) – Proxy to use to make the Discord webhook call

	
execute()

	Execute the Discord webhook call

	
class airflow.contrib.hooks.emr_hook.EmrHook(emr_conn_id=None, region_name=None, *args, **kwargs)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS EMR. emr_conn_id is only necessary for using the
create_job_flow method.

	
create_job_flow(job_flow_overrides)

	Creates a job flow using the config from the EMR connection.
Keys of the json extra hash may have the arguments of the boto3
run_job_flow method.
Overrides for this config may be passed as the job_flow_overrides.

	
class airflow.contrib.hooks.fs_hook.FSHook(conn_id='fs_default')

	Bases: airflow.hooks.base_hook.BaseHook

Allows for interaction with an file server.

Connection should have a name and a path specified under extra:

example:
Conn Id: fs_test
Conn Type: File (path)
Host, Shchema, Login, Password, Port: empty
Extra: {“path”: “/tmp”}

	
class airflow.contrib.hooks.ftp_hook.FTPHook(ftp_conn_id='ftp_default')

	Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.LoggingMixin

Interact with FTP.

Errors that may occur throughout but should be handled
downstream.

	
close_conn()

	Closes the connection. An error will occur if the
connection wasn’t ever opened.

	
create_directory(path)

	Creates a directory on the remote system.

	Parameters

	path (str) – full path to the remote directory to create

	
delete_directory(path)

	Deletes a directory on the remote system.

	Parameters

	path (str) – full path to the remote directory to delete

	
delete_file(path)

	Removes a file on the FTP Server.

	Parameters

	path (str) – full path to the remote file

	
describe_directory(path)

	Returns a dictionary of {filename: {attributes}} for all files
on the remote system (where the MLSD command is supported).

	Parameters

	path (str) – full path to the remote directory

	
get_conn()

	Returns a FTP connection object

	
get_mod_time(path)

	Returns a datetime object representing the last time the file was modified

	Parameters

	path (string) – remote file path

	
get_size(path)

	Returns the size of a file (in bytes)

	Parameters

	path (string) – remote file path

	
list_directory(path, nlst=False)

	Returns a list of files on the remote system.

	Parameters

	path (str) – full path to the remote directory to list

	
rename(from_name, to_name)

	Rename a file.

	Parameters

	
	from_name – rename file from name

	to_name – rename file to name

	
retrieve_file(remote_full_path, local_full_path_or_buffer, callback=None)

	Transfers the remote file to a local location.

If local_full_path_or_buffer is a string path, the file will be put
at that location; if it is a file-like buffer, the file will
be written to the buffer but not closed.

	Parameters

	
	remote_full_path (str) – full path to the remote file

	local_full_path_or_buffer (str or file-like buffer) – full path to the local file or a
file-like buffer

	callback (callable) – callback which is called each time a block of data
is read. if you do not use a callback, these blocks will be written
to the file or buffer passed in. if you do pass in a callback, note
that writing to a file or buffer will need to be handled inside the
callback.
[default: output_handle.write()]

	Example::

	hook = FTPHook(ftp_conn_id=’my_conn’)

remote_path = ‘/path/to/remote/file’
local_path = ‘/path/to/local/file’

with a custom callback (in this case displaying progress on each read)
def print_progress(percent_progress):

self.log.info(‘Percent Downloaded: %s%%’ % percent_progress)

total_downloaded = 0
total_file_size = hook.get_size(remote_path)
output_handle = open(local_path, ‘wb’)
def write_to_file_with_progress(data):

total_downloaded += len(data)
output_handle.write(data)
percent_progress = (total_downloaded / total_file_size) * 100
print_progress(percent_progress)

hook.retrieve_file(remote_path, None, callback=write_to_file_with_progress)

without a custom callback data is written to the local_path
hook.retrieve_file(remote_path, local_path)

	
store_file(remote_full_path, local_full_path_or_buffer)

	Transfers a local file to the remote location.

If local_full_path_or_buffer is a string path, the file will be read
from that location; if it is a file-like buffer, the file will
be read from the buffer but not closed.

	Parameters

	
	remote_full_path (str) – full path to the remote file

	local_full_path_or_buffer (str or file-like buffer) – full path to the local file or a
file-like buffer

	
class airflow.contrib.hooks.ftp_hook.FTPSHook(ftp_conn_id='ftp_default')

	Bases: airflow.contrib.hooks.ftp_hook.FTPHook

	
get_conn()

	Returns a FTPS connection object.

	
class airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook(gcp_conn_id='google_cloud_default', delegate_to=None)

	Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.LoggingMixin

A base hook for Google cloud-related hooks. Google cloud has a shared REST
API client that is built in the same way no matter which service you use.
This class helps construct and authorize the credentials needed to then
call googleapiclient.discovery.build() to actually discover and build a client
for a Google cloud service.

The class also contains some miscellaneous helper functions.

All hook derived from this base hook use the ‘Google Cloud Platform’ connection
type. Three ways of authentication are supported:

Default credentials: Only the ‘Project Id’ is required. You’ll need to
have set up default credentials, such as by the
GOOGLE_APPLICATION_DEFAULT environment variable or from the metadata
server on Google Compute Engine.

JSON key file: Specify ‘Project Id’, ‘Keyfile Path’ and ‘Scope’.

Legacy P12 key files are not supported.

JSON data provided in the UI: Specify ‘Keyfile JSON’.

	
static fallback_to_default_project_id(func)

	Decorator that provides fallback for Google Cloud Platform project id. If
the project is None it will be replaced with the project_id from the
service account the Hook is authenticated with. Project id can be specified
either via project_id kwarg or via first parameter in positional args.

	Parameters

	func – function to wrap

	Returns

	result of the function call

	
class airflow.contrib.hooks.gcp_dataflow_hook.DataFlowHook(gcp_conn_id='google_cloud_default', delegate_to=None, poll_sleep=10)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

	
get_conn()

	Returns a Google Cloud Dataflow service object.

	
class airflow.contrib.hooks.gcp_dataproc_hook.DataProcHook(gcp_conn_id='google_cloud_default', delegate_to=None, api_version='v1beta2')

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Hook for Google Cloud Dataproc APIs.

	
await(operation)

	Awaits for Google Cloud Dataproc Operation to complete.

	
get_conn()

	Returns a Google Cloud Dataproc service object.

	
wait(operation)

	Awaits for Google Cloud Dataproc Operation to complete.

	
class airflow.contrib.hooks.gcp_mlengine_hook.MLEngineHook(gcp_conn_id='google_cloud_default', delegate_to=None)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

	
create_job(project_id, job, use_existing_job_fn=None)

	Launches a MLEngine job and wait for it to reach a terminal state.

	Parameters

	
	project_id (str) – The Google Cloud project id within which MLEngine
job will be launched.

	job (dict) – MLEngine Job object that should be provided to the MLEngine
API, such as:

{
 'jobId': 'my_job_id',
 'trainingInput': {
 'scaleTier': 'STANDARD_1',
 ...
 }
}

	use_existing_job_fn (function) – In case that a MLEngine job with the same
job_id already exist, this method (if provided) will decide whether
we should use this existing job, continue waiting for it to finish
and returning the job object. It should accepts a MLEngine job
object, and returns a boolean value indicating whether it is OK to
reuse the existing job. If ‘use_existing_job_fn’ is not provided,
we by default reuse the existing MLEngine job.

	Returns

	The MLEngine job object if the job successfully reach a
terminal state (which might be FAILED or CANCELLED state).

	Return type

	dict

	
create_model(project_id, model)

	Create a Model. Blocks until finished.

	
create_version(project_id, model_name, version_spec)

	Creates the Version on Google Cloud ML Engine.

Returns the operation if the version was created successfully and
raises an error otherwise.

	
delete_version(project_id, model_name, version_name)

	Deletes the given version of a model. Blocks until finished.

	
get_conn()

	Returns a Google MLEngine service object.

	
get_model(project_id, model_name)

	Gets a Model. Blocks until finished.

	
list_versions(project_id, model_name)

	Lists all available versions of a model. Blocks until finished.

	
set_default_version(project_id, model_name, version_name)

	Sets a version to be the default. Blocks until finished.

	
class airflow.contrib.hooks.gcp_pubsub_hook.PubSubHook(gcp_conn_id='google_cloud_default', delegate_to=None)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Hook for accessing Google Pub/Sub.

The GCP project against which actions are applied is determined by
the project embedded in the Connection referenced by gcp_conn_id.

	
acknowledge(project, subscription, ack_ids)

	Pulls up to max_messages messages from Pub/Sub subscription.

	Parameters

	
	project (str) – the GCP project name or ID in which to create
the topic

	subscription (str) – the Pub/Sub subscription name to delete; do not
include the ‘projects/{project}/topics/’ prefix.

	ack_ids (list) – List of ReceivedMessage ackIds from a previous pull
response

	
create_subscription(topic_project, topic, subscription=None, subscription_project=None, ack_deadline_secs=10, fail_if_exists=False)

	Creates a Pub/Sub subscription, if it does not already exist.

	Parameters

	
	topic_project (str) – the GCP project ID of the topic that the
subscription will be bound to.

	topic (str) – the Pub/Sub topic name that the subscription will be bound
to create; do not include the projects/{project}/subscriptions/
prefix.

	subscription (str) – the Pub/Sub subscription name. If empty, a random
name will be generated using the uuid module

	subscription_project (str) – the GCP project ID where the subscription
will be created. If unspecified, topic_project will be used.

	ack_deadline_secs (int) – Number of seconds that a subscriber has to
acknowledge each message pulled from the subscription

	fail_if_exists (bool) – if set, raise an exception if the topic
already exists

	Returns

	subscription name which will be the system-generated value if
the subscription parameter is not supplied

	Return type

	str

	
create_topic(project, topic, fail_if_exists=False)

	Creates a Pub/Sub topic, if it does not already exist.

	Parameters

	
	project (str) – the GCP project ID in which to create
the topic

	topic (str) – the Pub/Sub topic name to create; do not
include the projects/{project}/topics/ prefix.

	fail_if_exists (bool) – if set, raise an exception if the topic
already exists

	
delete_subscription(project, subscription, fail_if_not_exists=False)

	Deletes a Pub/Sub subscription, if it exists.

	Parameters

	
	project (str) – the GCP project ID where the subscription exists

	subscription (str) – the Pub/Sub subscription name to delete; do not
include the projects/{project}/subscriptions/ prefix.

	fail_if_not_exists (bool) – if set, raise an exception if the topic
does not exist

	
delete_topic(project, topic, fail_if_not_exists=False)

	Deletes a Pub/Sub topic if it exists.

	Parameters

	
	project (str) – the GCP project ID in which to delete the topic

	topic (str) – the Pub/Sub topic name to delete; do not
include the projects/{project}/topics/ prefix.

	fail_if_not_exists (bool) – if set, raise an exception if the topic
does not exist

	
get_conn()

	Returns a Pub/Sub service object.

	Return type

	googleapiclient.discovery.Resource

	
publish(project, topic, messages)

	Publishes messages to a Pub/Sub topic.

	Parameters

	
	project (str) – the GCP project ID in which to publish

	topic (str) – the Pub/Sub topic to which to publish; do not
include the projects/{project}/topics/ prefix.

	messages (list of PubSub messages; see
http://cloud.google.com/pubsub/docs/reference/rest/v1/PubsubMessage) – messages to publish; if the data field in a
message is set, it should already be base64 encoded.

	
pull(project, subscription, max_messages, return_immediately=False)

	Pulls up to max_messages messages from Pub/Sub subscription.

	Parameters

	
	project (str) – the GCP project ID where the subscription exists

	subscription (str) – the Pub/Sub subscription name to pull from; do not
include the ‘projects/{project}/topics/’ prefix.

	max_messages (int) – The maximum number of messages to return from
the Pub/Sub API.

	return_immediately (bool) – If set, the Pub/Sub API will immediately
return if no messages are available. Otherwise, the request will
block for an undisclosed, but bounded period of time

	:return A list of Pub/Sub ReceivedMessage objects each containing

	an ackId property and a message property, which includes
the base64-encoded message content. See
https://cloud.google.com/pubsub/docs/reference/rest/v1/ projects.subscriptions/pull#ReceivedMessage

	
class airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook(google_cloud_storage_conn_id='google_cloud_default', delegate_to=None)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Interact with Google Cloud Storage. This hook uses the Google Cloud Platform
connection.

	
copy(source_bucket, source_object, destination_bucket=None, destination_object=None)

	Copies an object from a bucket to another, with renaming if requested.

destination_bucket or destination_object can be omitted, in which case
source bucket/object is used, but not both.

	Parameters

	
	source_bucket (str) – The bucket of the object to copy from.

	source_object (str) – The object to copy.

	destination_bucket (str) – The destination of the object to copied to.
Can be omitted; then the same bucket is used.

	destination_object (str) – The (renamed) path of the object if given.
Can be omitted; then the same name is used.

	
create_bucket(bucket_name, storage_class='MULTI_REGIONAL', location='US', project_id=None, labels=None)

	Creates a new bucket. Google Cloud Storage uses a flat namespace, so
you can’t create a bucket with a name that is already in use.

See also

For more information, see Bucket Naming Guidelines:
https://cloud.google.com/storage/docs/bucketnaming.html#requirements

	Parameters

	
	bucket_name (str) – The name of the bucket.

	storage_class (str) – This defines how objects in the bucket are stored
and determines the SLA and the cost of storage. Values include

	MULTI_REGIONAL

	REGIONAL

	STANDARD

	NEARLINE

	COLDLINE.

If this value is not specified when the bucket is
created, it will default to STANDARD.

	location (str) – The location of the bucket.
Object data for objects in the bucket resides in physical storage
within this region. Defaults to US.

See also

https://developers.google.com/storage/docs/bucket-locations

	project_id (str) – The ID of the GCP Project.

	labels (dict) – User-provided labels, in key/value pairs.

	Returns

	If successful, it returns the id of the bucket.

	
delete(bucket, object, generation=None)

	Delete an object if versioning is not enabled for the bucket, or if generation
parameter is used.

	Parameters

	
	bucket (str) – name of the bucket, where the object resides

	object (str) – name of the object to delete

	generation (str) – if present, permanently delete the object of this generation

	Returns

	True if succeeded

	
download(bucket, object, filename=None)

	Get a file from Google Cloud Storage.

	Parameters

	
	bucket (str) – The bucket to fetch from.

	object (str) – The object to fetch.

	filename (str) – If set, a local file path where the file should be written to.

	
exists(bucket, object)

	Checks for the existence of a file in Google Cloud Storage.

	Parameters

	
	bucket (str) – The Google cloud storage bucket where the object is.

	object (str) – The name of the object to check in the Google cloud
storage bucket.

	
get_conn()

	Returns a Google Cloud Storage service object.

	
get_crc32c(bucket, object)

	Gets the CRC32c checksum of an object in Google Cloud Storage.

	Parameters

	
	bucket (str) – The Google cloud storage bucket where the object is.

	object (str) – The name of the object to check in the Google cloud
storage bucket.

	
get_md5hash(bucket, object)

	Gets the MD5 hash of an object in Google Cloud Storage.

	Parameters

	
	bucket (str) – The Google cloud storage bucket where the object is.

	object (str) – The name of the object to check in the Google cloud
storage bucket.

	
get_size(bucket, object)

	Gets the size of a file in Google Cloud Storage.

	Parameters

	
	bucket (str) – The Google cloud storage bucket where the object is.

	object (str) – The name of the object to check in the Google cloud storage bucket.

	
insert_bucket_acl(bucket, entity, role, user_project)

	Creates a new ACL entry on the specified bucket.
See: https://cloud.google.com/storage/docs/json_api/v1/bucketAccessControls/insert

	Parameters

	
	bucket (str) – Name of a bucket.

	entity (str) – The entity holding the permission, in one of the following forms:
user-userId, user-email, group-groupId, group-email, domain-domain,
project-team-projectId, allUsers, allAuthenticatedUsers.
See: https://cloud.google.com/storage/docs/access-control/lists#scopes

	role (str) – The access permission for the entity.
Acceptable values are: “OWNER”, “READER”, “WRITER”.

	user_project (str) – (Optional) The project to be billed for this request.
Required for Requester Pays buckets.

	
insert_object_acl(bucket, object_name, entity, role, generation, user_project)

	Creates a new ACL entry on the specified object.
See: https://cloud.google.com/storage/docs/json_api/v1/objectAccessControls/insert

	Parameters

	
	bucket (str) – Name of a bucket.

	object_name (str) – Name of the object. For information about how to URL encode
object names to be path safe, see:
https://cloud.google.com/storage/docs/json_api/#encoding

	entity (str) – The entity holding the permission, in one of the following forms:
user-userId, user-email, group-groupId, group-email, domain-domain,
project-team-projectId, allUsers, allAuthenticatedUsers
See: https://cloud.google.com/storage/docs/access-control/lists#scopes

	role (str) – The access permission for the entity.
Acceptable values are: “OWNER”, “READER”.

	generation (str) – (Optional) If present, selects a specific revision of this
object (as opposed to the latest version, the default).

	user_project (str) – (Optional) The project to be billed for this request.
Required for Requester Pays buckets.

	
is_updated_after(bucket, object, ts)

	Checks if an object is updated in Google Cloud Storage.

	Parameters

	
	bucket (str) – The Google cloud storage bucket where the object is.

	object (str) – The name of the object to check in the Google cloud
storage bucket.

	ts (datetime) – The timestamp to check against.

	
list(bucket, versions=None, maxResults=None, prefix=None, delimiter=None)

	List all objects from the bucket with the give string prefix in name

	Parameters

	
	bucket (str) – bucket name

	versions (bool) – if true, list all versions of the objects

	maxResults (int) – max count of items to return in a single page of responses

	prefix (str) – prefix string which filters objects whose name begin with
this prefix

	delimiter (str) – filters objects based on the delimiter (for e.g ‘.csv’)

	Returns

	a stream of object names matching the filtering criteria

	
rewrite(source_bucket, source_object, destination_bucket, destination_object=None)

	Has the same functionality as copy, except that will work on files
over 5 TB, as well as when copying between locations and/or storage
classes.

destination_object can be omitted, in which case source_object is used.

	Parameters

	
	source_bucket (str) – The bucket of the object to copy from.

	source_object (str) – The object to copy.

	destination_bucket (str) – The destination of the object to copied to.

	destination_object (str) – The (renamed) path of the object if given.
Can be omitted; then the same name is used.

	
upload(bucket, object, filename, mime_type='application/octet-stream', gzip=False, multipart=False, num_retries=0)

	Uploads a local file to Google Cloud Storage.

	Parameters

	
	bucket (str) – The bucket to upload to.

	object (str) – The object name to set when uploading the local file.

	filename (str) – The local file path to the file to be uploaded.

	mime_type (str) – The MIME type to set when uploading the file.

	gzip (bool) – Option to compress file for upload

	multipart (bool or int) – If True, the upload will be split into multiple HTTP requests. The
default size is 256MiB per request. Pass a number instead of True to
specify the request size, which must be a multiple of 262144 (256KiB).

	num_retries (int) – The number of times to attempt to re-upload the file (or individual
chunks, in the case of multipart uploads). Retries are attempted
with exponential backoff.

	
class airflow.contrib.hooks.gcp_transfer_hook.GCPTransferServiceHook(api_version='v1', gcp_conn_id='google_cloud_default', delegate_to=None)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Hook for GCP Storage Transfer Service.

	
get_conn()

	Retrieves connection to Google Storage Transfer service.

	Returns

	Google Storage Transfer service object

	Return type

	dict

	
class airflow.contrib.hooks.imap_hook.ImapHook(imap_conn_id='imap_default')

	Bases: airflow.hooks.base_hook.BaseHook

This hook connects to a mail server by using the imap protocol.

	Parameters

	imap_conn_id (str) – The connection id that contains the information
used to authenticate the client.
The default value is ‘imap_default’.

	
download_mail_attachments(name, local_output_directory, mail_folder='INBOX', check_regex=False, latest_only=False)

	Downloads mail’s attachments in the mail folder by its name
to the local directory.

	Parameters

	
	name (str) – The name of the attachment that will be downloaded.

	local_output_directory (str) – The output directory on the local machine
where the files will be downloaded to.

	mail_folder (str) – The mail folder where to look at.
The default value is ‘INBOX’.

	check_regex (bool) – Checks the name for a regular expression.
The default value is False.

	latest_only (bool) – If set to True it will only download
the first matched attachment.
The default value is False.

	
has_mail_attachment(name, mail_folder='INBOX', check_regex=False)

	Checks the mail folder for mails containing attachments with the given name.

	Parameters

	
	name (str) – The name of the attachment that will be searched for.

	mail_folder (str) – The mail folder where to look at.
The default value is ‘INBOX’.

	check_regex (bool) – Checks the name for a regular expression.
The default value is False.

	Returns

	True if there is an attachment with the given name and False if not.

	Return type

	bool

	
retrieve_mail_attachments(name, mail_folder='INBOX', check_regex=False, latest_only=False)

	Retrieves mail’s attachments in the mail folder by its name.

	Parameters

	
	name (str) – The name of the attachment that will be downloaded.

	mail_folder (str) – The mail folder where to look at.
The default value is ‘INBOX’.

	check_regex (bool) – Checks the name for a regular expression.
The default value is False.

	latest_only (bool) – If set to True it will only retrieve
the first matched attachment.
The default value is False.

	Returns

	a list of tuple each containing the attachment filename and its payload.

	Return type

	a list of tuple

	
class airflow.contrib.hooks.mongo_hook.MongoHook(conn_id='mongo_default', *args, **kwargs)

	Bases: airflow.hooks.base_hook.BaseHook

PyMongo Wrapper to Interact With Mongo Database
Mongo Connection Documentation
https://docs.mongodb.com/manual/reference/connection-string/index.html
You can specify connection string options in extra field of your connection
https://docs.mongodb.com/manual/reference/connection-string/index.html#connection-string-options
ex.

{replicaSet: test, ssl: True, connectTimeoutMS: 30000}

	
aggregate(mongo_collection, aggregate_query, mongo_db=None, **kwargs)

	Runs an aggregation pipeline and returns the results
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.aggregate
https://api.mongodb.com/python/current/examples/aggregation.html

	
delete_many(mongo_collection, filter_doc, mongo_db=None, **kwargs)

	Deletes one or more documents in a mongo collection.
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.delete_many

	Parameters

	
	mongo_collection (str) – The name of the collection to delete from.

	filter_doc (dict) – A query that matches the documents to delete.

	mongo_db (str) – The name of the database to use.
Can be omitted; then the database from the connection string is used.

	
delete_one(mongo_collection, filter_doc, mongo_db=None, **kwargs)

	Deletes a single document in a mongo collection.
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.delete_one

	Parameters

	
	mongo_collection (str) – The name of the collection to delete from.

	filter_doc (dict) – A query that matches the document to delete.

	mongo_db (str) – The name of the database to use.
Can be omitted; then the database from the connection string is used.

	
find(mongo_collection, query, find_one=False, mongo_db=None, **kwargs)

	Runs a mongo find query and returns the results
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.find

	
get_collection(mongo_collection, mongo_db=None)

	Fetches a mongo collection object for querying.

Uses connection schema as DB unless specified.

	
get_conn()

	Fetches PyMongo Client

	
insert_many(mongo_collection, docs, mongo_db=None, **kwargs)

	Inserts many docs into a mongo collection.
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.insert_many

	
insert_one(mongo_collection, doc, mongo_db=None, **kwargs)

	Inserts a single document into a mongo collection
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.insert_one

	
replace_many(mongo_collection, docs, filter_docs=None, mongo_db=None, upsert=False, collation=None, **kwargs)

	Replaces many documents in a mongo collection.

Uses bulk_write with multiple ReplaceOne operations
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.bulk_write

Note

If no filter_docs``are given, it is assumed that all
replacement documents contain the ``_id field which are then
used as filters.

	Parameters

	
	mongo_collection (str) – The name of the collection to update.

	docs (list(dict)) – The new documents.

	filter_docs (list(dict)) – A list of queries that match the documents to replace.
Can be omitted; then the _id fields from docs will be used.

	mongo_db (str) – The name of the database to use.
Can be omitted; then the database from the connection string is used.

	upsert (bool) – If True, perform an insert if no documents
match the filters for the replace operation.

	collation (Collation) – An instance of
Collation. This option is only
supported on MongoDB 3.4 and above.

	
replace_one(mongo_collection, doc, filter_doc=None, mongo_db=None, **kwargs)

	Replaces a single document in a mongo collection.
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.replace_one

Note

If no filter_doc is given, it is assumed that the replacement
document contain the _id field which is then used as filters.

	Parameters

	
	mongo_collection (str) – The name of the collection to update.

	doc (dict) – The new document.

	filter_doc (dict) – A query that matches the documents to replace.
Can be omitted; then the _id field from doc will be used.

	mongo_db (str) – The name of the database to use.
Can be omitted; then the database from the connection string is used.

	
update_many(mongo_collection, filter_doc, update_doc, mongo_db=None, **kwargs)

	Updates one or more documents in a mongo collection.
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.update_many

	Parameters

	
	mongo_collection (str) – The name of the collection to update.

	filter_doc (dict) – A query that matches the documents to update.

	update_doc (dict) – The modifications to apply.

	mongo_db (str) – The name of the database to use.
Can be omitted; then the database from the connection string is used.

	
update_one(mongo_collection, filter_doc, update_doc, mongo_db=None, **kwargs)

	Updates a single document in a mongo collection.
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.update_one

	Parameters

	
	mongo_collection (str) – The name of the collection to update.

	filter_doc (dict) – A query that matches the documents to update.

	update_doc (dict) – The modifications to apply.

	mongo_db (str) – The name of the database to use.
Can be omitted; then the database from the connection string is used.

	
class airflow.contrib.hooks.openfaas_hook.OpenFaasHook(function_name=None, conn_id='open_faas_default', *args, **kwargs)

	Bases: airflow.hooks.base_hook.BaseHook

Interact with Openfaas to query, deploy, invoke and update function

	Parameters

	
	function_name – Name of the function, Defaults to None

	conn_id (str) – openfass connection to use, Defaults to open_faas_default
for example host : http://openfaas.faas.com, Conn Type : Http

	
class airflow.contrib.hooks.pinot_hook.PinotDbApiHook(*args, **kwargs)

	Bases: airflow.hooks.dbapi_hook.DbApiHook

Connect to pinot db(https://github.com/linkedin/pinot) to issue pql

	
get_conn()

	Establish a connection to pinot broker through pinot dbqpi.

	
get_first(sql)

	Executes the sql and returns the first resulting row.

	Parameters

	sql (str or list) – the sql statement to be executed (str) or a list of
sql statements to execute

	
get_pandas_df(sql, parameters=None)

	Executes the sql and returns a pandas dataframe

	Parameters

	
	sql (str or list) – the sql statement to be executed (str) or a list of
sql statements to execute

	parameters (mapping or iterable) – The parameters to render the SQL query with.

	
get_records(sql)

	Executes the sql and returns a set of records.

	Parameters

	sql (str) – the sql statement to be executed (str) or a list of
sql statements to execute

	
get_uri()

	Get the connection uri for pinot broker.

e.g: http://localhost:9000/pql

	
insert_rows(table, rows, target_fields=None, commit_every=1000)

	A generic way to insert a set of tuples into a table,
a new transaction is created every commit_every rows

	Parameters

	
	table (str) – Name of the target table

	rows (iterable of tuples) – The rows to insert into the table

	target_fields (iterable of strings) – The names of the columns to fill in the table

	commit_every (int) – The maximum number of rows to insert in one
transaction. Set to 0 to insert all rows in one transaction.

	replace (bool) – Whether to replace instead of insert

	
set_autocommit(conn, autocommit)

	Sets the autocommit flag on the connection

	
class airflow.contrib.hooks.qubole_hook.QuboleHook(*args, **kwargs)

	Bases: airflow.hooks.base_hook.BaseHook

	
get_jobs_id(ti)

	Get jobs associated with a Qubole commands
:param ti: Task Instance of the dag, used to determine the Quboles command id
:return: Job informations assoiciated with command

	
get_log(ti)

	Get Logs of a command from Qubole
:param ti: Task Instance of the dag, used to determine the Quboles command id
:return: command log as text

	
get_results(ti=None, fp=None, inline=True, delim=None, fetch=True)

	Get results (or just s3 locations) of a command from Qubole and save into a file
:param ti: Task Instance of the dag, used to determine the Quboles command id
:param fp: Optional file pointer, will create one and return if None passed
:param inline: True to download actual results, False to get s3 locations only
:param delim: Replaces the CTL-A chars with the given delim, defaults to ‘,’
:param fetch: when inline is True, get results directly from s3 (if large)
:return: file location containing actual results or s3 locations of results

	
kill(ti)

	Kill (cancel) a Qubole command
:param ti: Task Instance of the dag, used to determine the Quboles command id
:return: response from Qubole

	
class airflow.contrib.hooks.redshift_hook.RedshiftHook(aws_conn_id='aws_default', verify=None)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with AWS Redshift, using the boto3 library

	
cluster_status(cluster_identifier)

	Return status of a cluster

	Parameters

	cluster_identifier (str) – unique identifier of a cluster

	
create_cluster_snapshot(snapshot_identifier, cluster_identifier)

	Creates a snapshot of a cluster

	Parameters

	
	snapshot_identifier (str) – unique identifier for a snapshot of a cluster

	cluster_identifier (str) – unique identifier of a cluster

	
delete_cluster(cluster_identifier, skip_final_cluster_snapshot=True, final_cluster_snapshot_identifier='')

	Delete a cluster and optionally create a snapshot

	Parameters

	
	cluster_identifier (str) – unique identifier of a cluster

	skip_final_cluster_snapshot (bool) – determines cluster snapshot creation

	final_cluster_snapshot_identifier (str) – name of final cluster snapshot

	
describe_cluster_snapshots(cluster_identifier)

	Gets a list of snapshots for a cluster

	Parameters

	cluster_identifier (str) – unique identifier of a cluster

	
restore_from_cluster_snapshot(cluster_identifier, snapshot_identifier)

	Restores a cluster from its snapshot

	Parameters

	
	cluster_identifier (str) – unique identifier of a cluster

	snapshot_identifier (str) – unique identifier for a snapshot of a cluster

	
class airflow.contrib.hooks.sagemaker_hook.SageMakerHook(*args, **kwargs)

	Bases: airflow.contrib.hooks.aws_hook.AwsHook

Interact with Amazon SageMaker.

	
check_s3_url(s3url)

	Check if an S3 URL exists

	Parameters

	s3url (str) – S3 url

	Return type

	bool

	
check_status(job_name, key, describe_function, check_interval, max_ingestion_time, non_terminal_states=None)

	Check status of a SageMaker job

	Parameters

	
	job_name (str) – name of the job to check status

	key (str) – the key of the response dict
that points to the state

	describe_function (python callable) – the function used to retrieve the status

	args – the arguments for the function

	check_interval (int) – the time interval in seconds which the operator
will check the status of any SageMaker job

	max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to
None implies no timeout for any SageMaker job.

	non_terminal_states (set) – the set of nonterminal states

	Returns

	response of describe call after job is done

	
check_training_config(training_config)

	Check if a training configuration is valid

	Parameters

	training_config (dict) – training_config

	Returns

	None

	
check_training_status_with_log(job_name, non_terminal_states, failed_states, wait_for_completion, check_interval, max_ingestion_time)

	Display the logs for a given training job, optionally tailing them until the
job is complete.

	Parameters

	
	job_name (str) – name of the training job to check status and display logs for

	non_terminal_states (set) – the set of non_terminal states

	failed_states (set) – the set of failed states

	wait_for_completion (bool) – Whether to keep looking for new log entries
until the job completes

	check_interval (int) – The interval in seconds between polling for new log entries and job completion

	max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to
None implies no timeout for any SageMaker job.

	Returns

	None

	
check_tuning_config(tuning_config)

	Check if a tuning configuration is valid

	Parameters

	tuning_config (dict) – tuning_config

	Returns

	None

	
configure_s3_resources(config)

	Extract the S3 operations from the configuration and execute them.

	Parameters

	config (dict) – config of SageMaker operation

	Return type

	dict

	
create_endpoint(config, wait_for_completion=True, check_interval=30, max_ingestion_time=None)

	Create an endpoint

	Parameters

	
	config (dict) – the config for endpoint

	wait_for_completion (bool) – if the program should keep running until job finishes

	check_interval (int) – the time interval in seconds which the operator
will check the status of any SageMaker job

	max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to
None implies no timeout for any SageMaker job.

	Returns

	A response to endpoint creation

	
create_endpoint_config(config)

	Create an endpoint config

	Parameters

	config (dict) – the config for endpoint-config

	Returns

	A response to endpoint config creation

	
create_model(config)

	Create a model job

	Parameters

	config (dict) – the config for model

	Returns

	A response to model creation

	
create_training_job(config, wait_for_completion=True, print_log=True, check_interval=30, max_ingestion_time=None)

	Create a training job

	Parameters

	
	config (dict) – the config for training

	wait_for_completion (bool) – if the program should keep running until job finishes

	check_interval (int) – the time interval in seconds which the operator
will check the status of any SageMaker job

	max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to
None implies no timeout for any SageMaker job.

	Returns

	A response to training job creation

	
create_transform_job(config, wait_for_completion=True, check_interval=30, max_ingestion_time=None)

	Create a transform job

	Parameters

	
	config (dict) – the config for transform job

	wait_for_completion (bool) – if the program should keep running until job finishes

	check_interval (int) – the time interval in seconds which the operator
will check the status of any SageMaker job

	max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to
None implies no timeout for any SageMaker job.

	Returns

	A response to transform job creation

	
create_tuning_job(config, wait_for_completion=True, check_interval=30, max_ingestion_time=None)

	Create a tuning job

	Parameters

	
	config (dict) – the config for tuning

	wait_for_completion – if the program should keep running until job finishes

	wait_for_completion – bool

	check_interval (int) – the time interval in seconds which the operator
will check the status of any SageMaker job

	max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to
None implies no timeout for any SageMaker job.

	Returns

	A response to tuning job creation

	
describe_endpoint(name)

	
	Parameters

	name (string) – the name of the endpoint

	Returns

	A dict contains all the endpoint info

	
describe_endpoint_config(name)

	Return the endpoint config info associated with the name

	Parameters

	name (string) – the name of the endpoint config

	Returns

	A dict contains all the endpoint config info

	
describe_model(name)

	Return the SageMaker model info associated with the name

	Parameters

	name (string) – the name of the SageMaker model

	Returns

	A dict contains all the model info

	
describe_training_job(name)

	Return the training job info associated with the name

	Parameters

	name (str) – the name of the training job

	Returns

	A dict contains all the training job info

	
describe_training_job_with_log(job_name, positions, stream_names, instance_count, state, last_description, last_describe_job_call)

	Return the training job info associated with job_name and print CloudWatch logs

	
describe_transform_job(name)

	Return the transform job info associated with the name

	Parameters

	name (string) – the name of the transform job

	Returns

	A dict contains all the transform job info

	
describe_tuning_job(name)

	Return the tuning job info associated with the name

	Parameters

	name (string) – the name of the tuning job

	Returns

	A dict contains all the tuning job info

	
get_conn()

	Establish an AWS connection for SageMaker

	Return type

	SageMaker.Client [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client]

	
get_log_conn()

	Establish an AWS connection for retrieving logs during training

	Return type

	CloudWatchLog.Client

	
log_stream(log_group, stream_name, start_time=0, skip=0)

	A generator for log items in a single stream. This will yield all the
items that are available at the current moment.

	Parameters

	
	log_group (str) – The name of the log group.

	stream_name (str) – The name of the specific stream.

	start_time (int) – The time stamp value to start reading the logs from (default: 0).

	skip (int) – The number of log entries to skip at the start (default: 0).
This is for when there are multiple entries at the same timestamp.

	Return type

	dict

	Returns

	
A CloudWatch log event with the following key-value pairs:

’timestamp’ (int): The time in milliseconds of the event.

’message’ (str): The log event data.

’ingestionTime’ (int): The time in milliseconds the event was ingested.

	
multi_stream_iter(log_group, streams, positions=None)

	Iterate over the available events coming from a set of log streams in a single log group
interleaving the events from each stream so they’re yielded in timestamp order.

	Parameters

	
	log_group (str) – The name of the log group.

	streams (list) – A list of the log stream names. The position of the stream in this list is
the stream number.

	positions (list) – A list of pairs of (timestamp, skip) which represents the last record
read from each stream.

	Returns

	A tuple of (stream number, cloudwatch log event).

	
tar_and_s3_upload(path, key, bucket)

	Tar the local file or directory and upload to s3

	Parameters

	
	path (str) – local file or directory

	key (str) – s3 key

	bucket (str) – s3 bucket

	Returns

	None

	
update_endpoint(config, wait_for_completion=True, check_interval=30, max_ingestion_time=None)

	Update an endpoint

	Parameters

	
	config (dict) – the config for endpoint

	wait_for_completion (bool) – if the program should keep running until job finishes

	check_interval (int) – the time interval in seconds which the operator
will check the status of any SageMaker job

	max_ingestion_time (int) – the maximum ingestion time in seconds. Any
SageMaker jobs that run longer than this will fail. Setting this to
None implies no timeout for any SageMaker job.

	Returns

	A response to endpoint update

	
class airflow.contrib.hooks.salesforce_hook.SalesforceHook(conn_id, *args, **kwargs)

	Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.LoggingMixin

	
describe_object(obj)

	Get the description of an object from Salesforce.

This description is the object’s schema
and some extra metadata that Salesforce stores for each object

	Parameters

	obj – Name of the Salesforce object
that we are getting a description of.

	
get_available_fields(obj)

	Get a list of all available fields for an object.

This only returns the names of the fields.

	
get_object_from_salesforce(obj, fields)

	Get all instances of the object from Salesforce.
For each model, only get the fields specified in fields.

	All we really do underneath the hood is run:

	SELECT <fields> FROM <obj>;

	
make_query(query)

	Make a query to Salesforce. Returns result in dictionary

	Parameters

	query – The query to make to Salesforce

	
sign_in()

	Sign into Salesforce.

If we have already signed it, this will just return the original object

	
write_object_to_file(query_results, filename, fmt='csv', coerce_to_timestamp=False, record_time_added=False)

	Write query results to file.

	Acceptable formats are:

	
	
	csv:

	comma-separated-values file. This is the default format.

	
	json:

	JSON array. Each element in the array is a different row.

	
	ndjson:

	JSON array but each element is new-line delimited
instead of comma delimited like in json

This requires a significant amount of cleanup.
Pandas doesn’t handle output to CSV and json in a uniform way.
This is especially painful for datetime types.
Pandas wants to write them as strings in CSV,
but as millisecond Unix timestamps.

By default, this function will try and leave all values as
they are represented in Salesforce.
You use the coerce_to_timestamp flag to force all datetimes
to become Unix timestamps (UTC).
This is can be greatly beneficial as it will make all of your
datetime fields look the same,
and makes it easier to work with in other database environments

	Parameters

	
	query_results – the results from a SQL query

	filename – the name of the file where the data
should be dumped to

	fmt – the format you want the output in.
Default: csv.

	coerce_to_timestamp – True if you want all datetime fields to be
converted into Unix timestamps.
False if you want them to be left in the
same format as they were in Salesforce.
Leaving the value as False will result
in datetimes being strings.
Defaults to False

	record_time_added – (optional) True if you want to add a
Unix timestamp field to the resulting data
that marks when the data
was fetched from Salesforce.
Default: False.

	
class airflow.contrib.hooks.sftp_hook.SFTPHook(ftp_conn_id='sftp_default', *args, **kwargs)

	Bases: airflow.contrib.hooks.ssh_hook.SSHHook

This hook is inherited from SSH hook. Please refer to SSH hook for the input
arguments.

Interact with SFTP. Aims to be interchangeable with FTPHook.

	Pitfalls: - In contrast with FTPHook describe_directory only returns size, type and

	
modify. It doesn’t return unix.owner, unix.mode, perm, unix.group and
unique.

	retrieve_file and store_file only take a local full path and not a
buffer.

	If no mode is passed to create_directory it will be created with 777
permissions.

Errors that may occur throughout but should be handled downstream.

	
close_conn()

	Closes the connection. An error will occur if the
connection wasnt ever opened.

	
create_directory(path, mode=777)

	Creates a directory on the remote system.
:param path: full path to the remote directory to create
:type path: str
:param mode: int representation of octal mode for directory

	
delete_directory(path)

	Deletes a directory on the remote system.
:param path: full path to the remote directory to delete
:type path: str

	
delete_file(path)

	Removes a file on the FTP Server
:param path: full path to the remote file
:type path: str

	
describe_directory(path)

	Returns a dictionary of {filename: {attributes}} for all files
on the remote system (where the MLSD command is supported).
:param path: full path to the remote directory
:type path: str

	
get_conn()

	Returns an SFTP connection object

	
list_directory(path)

	Returns a list of files on the remote system.
:param path: full path to the remote directory to list
:type path: str

	
retrieve_file(remote_full_path, local_full_path)

	Transfers the remote file to a local location.
If local_full_path is a string path, the file will be put
at that location
:param remote_full_path: full path to the remote file
:type remote_full_path: str
:param local_full_path: full path to the local file
:type local_full_path: str

	
store_file(remote_full_path, local_full_path)

	Transfers a local file to the remote location.
If local_full_path_or_buffer is a string path, the file will be read
from that location
:param remote_full_path: full path to the remote file
:type remote_full_path: str
:param local_full_path: full path to the local file
:type local_full_path: str

	
class airflow.contrib.hooks.slack_webhook_hook.SlackWebhookHook(http_conn_id=None, webhook_token=None, message='', attachments=None, channel=None, username=None, icon_emoji=None, link_names=False, proxy=None, *args, **kwargs)

	Bases: airflow.hooks.http_hook.HttpHook

This hook allows you to post messages to Slack using incoming webhooks.
Takes both Slack webhook token directly and connection that has Slack webhook token.
If both supplied, Slack webhook token will be used.

Each Slack webhook token can be pre-configured to use a specific channel, username and
icon. You can override these defaults in this hook.

	Parameters

	
	http_conn_id (str) – connection that has Slack webhook token in the extra field

	webhook_token (str) – Slack webhook token

	message (str) – The message you want to send on Slack

	attachments (list) – The attachments to send on Slack. Should be a list of
dictionaries representing Slack attachments.

	channel (str) – The channel the message should be posted to

	username (str) – The username to post to slack with

	icon_emoji (str) – The emoji to use as icon for the user posting to Slack

	link_names (bool) – Whether or not to find and link channel and usernames in your
message

	proxy (str) – Proxy to use to make the Slack webhook call

	
execute()

	Remote Popen (actually execute the slack webhook call)

	Parameters

	
	cmd – command to remotely execute

	kwargs – extra arguments to Popen (see subprocess.Popen)

	
class airflow.contrib.hooks.spark_jdbc_hook.SparkJDBCHook(spark_app_name='airflow-spark-jdbc', spark_conn_id='spark-default', spark_conf=None, spark_py_files=None, spark_files=None, spark_jars=None, num_executors=None, executor_cores=None, executor_memory=None, driver_memory=None, verbose=False, principal=None, keytab=None, cmd_type='spark_to_jdbc', jdbc_table=None, jdbc_conn_id='jdbc-default', jdbc_driver=None, metastore_table=None, jdbc_truncate=False, save_mode=None, save_format=None, batch_size=None, fetch_size=None, num_partitions=None, partition_column=None, lower_bound=None, upper_bound=None, create_table_column_types=None, *args, **kwargs)

	Bases: airflow.contrib.hooks.spark_submit_hook.SparkSubmitHook

This hook extends the SparkSubmitHook specifically for performing data
transfers to/from JDBC-based databases with Apache Spark.

	Parameters

	
	spark_app_name (str) – Name of the job (default airflow-spark-jdbc)

	spark_conn_id (str) – Connection id as configured in Airflow administration

	spark_conf (dict) – Any additional Spark configuration properties

	spark_py_files (str) – Additional python files used (.zip, .egg, or .py)

	spark_files (str) – Additional files to upload to the container running the job

	spark_jars (str) – Additional jars to upload and add to the driver and
executor classpath

	num_executors (int) – number of executor to run. This should be set so as to manage
the number of connections made with the JDBC database

	executor_cores (int) – Number of cores per executor

	executor_memory (str) – Memory per executor (e.g. 1000M, 2G)

	driver_memory (str) – Memory allocated to the driver (e.g. 1000M, 2G)

	verbose (bool) – Whether to pass the verbose flag to spark-submit for debugging

	keytab (str) – Full path to the file that contains the keytab

	principal (str) – The name of the kerberos principal used for keytab

	cmd_type (str) – Which way the data should flow. 2 possible values:
spark_to_jdbc: data written by spark from metastore to jdbc
jdbc_to_spark: data written by spark from jdbc to metastore

	jdbc_table (str) – The name of the JDBC table

	jdbc_conn_id – Connection id used for connection to JDBC database

	jdbc_driver (str) – Name of the JDBC driver to use for the JDBC connection. This
driver (usually a jar) should be passed in the ‘jars’ parameter

	metastore_table (str) – The name of the metastore table,

	jdbc_truncate (bool) – (spark_to_jdbc only) Whether or not Spark should truncate or
drop and recreate the JDBC table. This only takes effect if
‘save_mode’ is set to Overwrite. Also, if the schema is
different, Spark cannot truncate, and will drop and recreate

	save_mode (str) – The Spark save-mode to use (e.g. overwrite, append, etc.)

	save_format (str) – (jdbc_to_spark-only) The Spark save-format to use (e.g. parquet)

	batch_size (int) – (spark_to_jdbc only) The size of the batch to insert per round
trip to the JDBC database. Defaults to 1000

	fetch_size (int) – (jdbc_to_spark only) The size of the batch to fetch per round trip
from the JDBC database. Default depends on the JDBC driver

	num_partitions (int) – The maximum number of partitions that can be used by Spark
simultaneously, both for spark_to_jdbc and jdbc_to_spark
operations. This will also cap the number of JDBC connections
that can be opened

	partition_column (str) – (jdbc_to_spark-only) A numeric column to be used to
partition the metastore table by. If specified, you must
also specify:
num_partitions, lower_bound, upper_bound

	lower_bound (int) – (jdbc_to_spark-only) Lower bound of the range of the numeric
partition column to fetch. If specified, you must also specify:
num_partitions, partition_column, upper_bound

	upper_bound (int) – (jdbc_to_spark-only) Upper bound of the range of the numeric
partition column to fetch. If specified, you must also specify:
num_partitions, partition_column, lower_bound

	create_table_column_types – (spark_to_jdbc-only) The database column data types
to use instead of the defaults, when creating the
table. Data type information should be specified in
the same format as CREATE TABLE columns syntax
(e.g: “name CHAR(64), comments VARCHAR(1024)”).
The specified types should be valid spark sql data
types.

	Type

	jdbc_conn_id: str

	
class airflow.contrib.hooks.spark_sql_hook.SparkSqlHook(sql, conf=None, conn_id='spark_sql_default', total_executor_cores=None, executor_cores=None, executor_memory=None, keytab=None, principal=None, master='yarn', name='default-name', num_executors=None, verbose=True, yarn_queue='default')

	Bases: airflow.hooks.base_hook.BaseHook

This hook is a wrapper around the spark-sql binary. It requires that the
“spark-sql” binary is in the PATH.
:param sql: The SQL query to execute
:type sql: str
:param conf: arbitrary Spark configuration property
:type conf: str (format: PROP=VALUE)
:param conn_id: connection_id string
:type conn_id: str
:param total_executor_cores: (Standalone & Mesos only) Total cores for all executors

(Default: all the available cores on the worker)

	Parameters

	
	executor_cores (int) – (Standalone & YARN only) Number of cores per
executor (Default: 2)

	executor_memory (str) – Memory per executor (e.g. 1000M, 2G) (Default: 1G)

	keytab (str) – Full path to the file that contains the keytab

	master (str) – spark://host:port, mesos://host:port, yarn, or local

	name (str) – Name of the job.

	num_executors (int) – Number of executors to launch

	verbose (bool) – Whether to pass the verbose flag to spark-sql

	yarn_queue (str) – The YARN queue to submit to (Default: “default”)

	
run_query(cmd='', **kwargs)

	Remote Popen (actually execute the Spark-sql query)

	Parameters

	
	cmd – command to remotely execute

	kwargs – extra arguments to Popen (see subprocess.Popen)

	
class airflow.contrib.hooks.spark_submit_hook.SparkSubmitHook(conf=None, conn_id='spark_default', files=None, py_files=None, driver_classpath=None, jars=None, java_class=None, packages=None, exclude_packages=None, repositories=None, total_executor_cores=None, executor_cores=None, executor_memory=None, driver_memory=None, keytab=None, principal=None, name='default-name', num_executors=None, application_args=None, env_vars=None, verbose=False)

	Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.LoggingMixin

This hook is a wrapper around the spark-submit binary to kick off a spark-submit job.
It requires that the “spark-submit” binary is in the PATH or the spark_home to be
supplied.

	Parameters

	
	conf (dict) – Arbitrary Spark configuration properties

	conn_id (str) – The connection id as configured in Airflow administration. When an
invalid connection_id is supplied, it will default to yarn.

	files (str) – Upload additional files to the executor running the job, separated by a
comma. Files will be placed in the working directory of each executor.
For example, serialized objects.

	py_files (str) – Additional python files used by the job, can be .zip, .egg or .py.

	driver_classpath (str) – Additional, driver-specific, classpath settings.

	jars (str) – Submit additional jars to upload and place them in executor classpath.

	java_class (str) – the main class of the Java application

	packages (str) – Comma-separated list of maven coordinates of jars to include on the
driver and executor classpaths

	exclude_packages (str) – Comma-separated list of maven coordinates of jars to exclude
while resolving the dependencies provided in ‘packages’

	repositories (str) – Comma-separated list of additional remote repositories to search
for the maven coordinates given with ‘packages’

	total_executor_cores (int) – (Standalone & Mesos only) Total cores for all executors
(Default: all the available cores on the worker)

	executor_cores (int) – (Standalone, YARN and Kubernetes only) Number of cores per
executor (Default: 2)

	executor_memory (str) – Memory per executor (e.g. 1000M, 2G) (Default: 1G)

	driver_memory (str) – Memory allocated to the driver (e.g. 1000M, 2G) (Default: 1G)

	keytab (str) – Full path to the file that contains the keytab

	principal (str) – The name of the kerberos principal used for keytab

	name (str) – Name of the job (default airflow-spark)

	num_executors (int) – Number of executors to launch

	application_args (list) – Arguments for the application being submitted

	env_vars (dict) – Environment variables for spark-submit. It
supports yarn and k8s mode too.

	verbose (bool) – Whether to pass the verbose flag to spark-submit process for debugging

	
submit(application='', **kwargs)

	Remote Popen to execute the spark-submit job

	Parameters

	
	application (str) – Submitted application, jar or py file

	kwargs – extra arguments to Popen (see subprocess.Popen)

	
class airflow.contrib.hooks.sqoop_hook.SqoopHook(conn_id='sqoop_default', verbose=False, num_mappers=None, hcatalog_database=None, hcatalog_table=None, properties=None)

	Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.LoggingMixin

This hook is a wrapper around the sqoop 1 binary. To be able to use the hook
it is required that “sqoop” is in the PATH.

Additional arguments that can be passed via the ‘extra’ JSON field of the
sqoop connection:

	job_tracker: Job tracker local|jobtracker:port.

	namenode: Namenode.

	lib_jars: Comma separated jar files to include in the classpath.

	files: Comma separated files to be copied to the map reduce cluster.

	
	archives: Comma separated archives to be unarchived on the compute

	machines.

	password_file: Path to file containing the password.

	Parameters

	
	conn_id (str) – Reference to the sqoop connection.

	verbose (bool) – Set sqoop to verbose.

	num_mappers (int) – Number of map tasks to import in parallel.

	properties (dict) – Properties to set via the -D argument

	
Popen(cmd, **kwargs)

	Remote Popen

	Parameters

	
	cmd – command to remotely execute

	kwargs – extra arguments to Popen (see subprocess.Popen)

	Returns

	handle to subprocess

	
export_table(table, export_dir, input_null_string, input_null_non_string, staging_table, clear_staging_table, enclosed_by, escaped_by, input_fields_terminated_by, input_lines_terminated_by, input_optionally_enclosed_by, batch, relaxed_isolation, extra_export_options=None)

	Exports Hive table to remote location. Arguments are copies of direct
sqoop command line Arguments

	Parameters

	
	table – Table remote destination

	export_dir – Hive table to export

	input_null_string – The string to be interpreted as null for
string columns

	input_null_non_string – The string to be interpreted as null
for non-string columns

	staging_table – The table in which data will be staged before
being inserted into the destination table

	clear_staging_table – Indicate that any data present in the
staging table can be deleted

	enclosed_by – Sets a required field enclosing character

	escaped_by – Sets the escape character

	input_fields_terminated_by – Sets the field separator character

	input_lines_terminated_by – Sets the end-of-line character

	input_optionally_enclosed_by – Sets a field enclosing character

	batch – Use batch mode for underlying statement execution

	relaxed_isolation – Transaction isolation to read uncommitted
for the mappers

	extra_export_options – Extra export options to pass as dict.
If a key doesn’t have a value, just pass an empty string to it.
Don’t include prefix of – for sqoop options.

	
import_query(query, target_dir, append=False, file_type='text', split_by=None, direct=None, driver=None, extra_import_options=None)

	Imports a specific query from the rdbms to hdfs

	Parameters

	
	query – Free format query to run

	target_dir – HDFS destination dir

	append – Append data to an existing dataset in HDFS

	file_type – “avro”, “sequence”, “text” or “parquet”
Imports data to hdfs into the specified format. Defaults to text.

	split_by – Column of the table used to split work units

	direct – Use direct import fast path

	driver – Manually specify JDBC driver class to use

	extra_import_options – Extra import options to pass as dict.
If a key doesn’t have a value, just pass an empty string to it.
Don’t include prefix of – for sqoop options.

	
import_table(table, target_dir=None, append=False, file_type='text', columns=None, split_by=None, where=None, direct=False, driver=None, extra_import_options=None)

	Imports table from remote location to target dir. Arguments are
copies of direct sqoop command line arguments

	Parameters

	
	table – Table to read

	target_dir – HDFS destination dir

	append – Append data to an existing dataset in HDFS

	file_type – “avro”, “sequence”, “text” or “parquet”.
Imports data to into the specified format. Defaults to text.

	columns – <col,col,col…> Columns to import from table

	split_by – Column of the table used to split work units

	where – WHERE clause to use during import

	direct – Use direct connector if exists for the database

	driver – Manually specify JDBC driver class to use

	extra_import_options – Extra import options to pass as dict.
If a key doesn’t have a value, just pass an empty string to it.
Don’t include prefix of – for sqoop options.

	
class airflow.contrib.hooks.ssh_hook.SSHHook(ssh_conn_id=None, remote_host=None, username=None, password=None, key_file=None, port=None, timeout=10, keepalive_interval=30)

	Bases: airflow.hooks.base_hook.BaseHook, airflow.utils.log.logging_mixin.LoggingMixin

Hook for ssh remote execution using Paramiko.
ref: https://github.com/paramiko/paramiko
This hook also lets you create ssh tunnel and serve as basis for SFTP file transfer

	Parameters

	
	ssh_conn_id (str) – connection id from airflow Connections from where all the required
parameters can be fetched like username, password or key_file.
Thought the priority is given to the param passed during init

	remote_host (str) – remote host to connect

	username (str) – username to connect to the remote_host

	password (str) – password of the username to connect to the remote_host

	key_file (str) – key file to use to connect to the remote_host.

	port (int) – port of remote host to connect (Default is paramiko SSH_PORT)

	timeout (int) – timeout for the attempt to connect to the remote_host.

	keepalive_interval (int) – send a keepalive packet to remote host every
keepalive_interval seconds

	
get_conn()

	Opens a ssh connection to the remote host.

:return paramiko.SSHClient object

	
get_tunnel(remote_port, remote_host='localhost', local_port=None)

	Creates a tunnel between two hosts. Like ssh -L <LOCAL_PORT>:host:<REMOTE_PORT>.

	Parameters

	
	remote_port (int) – The remote port to create a tunnel to

	remote_host (str) – The remote host to create a tunnel to (default localhost)

	local_port (int) – The local port to attach the tunnel to

	Returns

	sshtunnel.SSHTunnelForwarder object

	
class airflow.contrib.hooks.vertica_hook.VerticaHook(*args, **kwargs)

	Bases: airflow.hooks.dbapi_hook.DbApiHook

Interact with Vertica.

	
get_conn()

	Returns verticaql connection object

Executors

Executors are the mechanism by which task instances get run.

	
class airflow.executors.local_executor.LocalExecutor(parallelism=32)

	Bases: airflow.executors.base_executor.BaseExecutor

LocalExecutor executes tasks locally in parallel. It uses the
multiprocessing Python library and queues to parallelize the execution
of tasks.

	
end()

	This method is called when the caller is done submitting job and
wants to wait synchronously for the job submitted previously to be
all done.

	
execute_async(key, command, queue=None, executor_config=None)

	This method will execute the command asynchronously.

	
start()

	Executors may need to get things started. For example LocalExecutor
starts N workers.

	
sync()

	Sync will get called periodically by the heartbeat method.
Executors should override this to perform gather statuses.

	
class airflow.executors.sequential_executor.SequentialExecutor

	Bases: airflow.executors.base_executor.BaseExecutor

This executor will only run one task instance at a time, can be used
for debugging. It is also the only executor that can be used with sqlite
since sqlite doesn’t support multiple connections.

Since we want airflow to work out of the box, it defaults to this
SequentialExecutor alongside sqlite as you first install it.

	
end()

	This method is called when the caller is done submitting job and
wants to wait synchronously for the job submitted previously to be
all done.

	
execute_async(key, command, queue=None, executor_config=None)

	This method will execute the command asynchronously.

	
sync()

	Sync will get called periodically by the heartbeat method.
Executors should override this to perform gather statuses.

Community-contributed executors

 HTTP Routing Table

 /api

 		 	

 		
 /api	

 	
 	
 GET /api/experimental/dags/<DAG_ID>/dag_runs	

 	
 	
 GET /api/experimental/dags/<DAG_ID>/dag_runs/<string:execution_date>/tasks/<TASK_ID>	

 	
 	
 GET /api/experimental/dags/<DAG_ID>/paused/<string:paused>	

 	
 	
 GET /api/experimental/dags/<DAG_ID>/tasks/<TASK_ID>	

 	
 	
 GET /api/experimental/dags/<string:dag_id>/dag_runs/<string:execution_date>	

 	
 	
 GET /api/experimental/latest_runs	

 	
 	
 GET /api/experimental/pools	

 	
 	
 GET /api/experimental/pools/<string:name>	

 	
 	
 GET /api/experimental/test	

 	
 	
 POST /api/experimental/dags/<DAG_ID>/dag_runs	

 	
 	
 POST /api/experimental/pools	

 	
 	
 DELETE /api/experimental/pools/<string:name>	

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 airflow	

 	
 	
 airflow.hooks.hive_hooks	

 	
 	
 airflow.macros	

 	
 	
 airflow.models	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	acknowledge() (airflow.contrib.hooks.gcp_pubsub_hook.PubSubHook method)

 	add_task() (airflow.models.DAG method)

 	add_tasks() (airflow.models.DAG method)

 	aggregate() (airflow.contrib.hooks.mongo_hook.MongoHook method)

 	airflow.hooks.hive_hooks (module)

 	airflow.macros (module)

 	airflow.models (module)

 	allocate_ids() (airflow.contrib.hooks.datastore_hook.DatastoreHook method), [1]

 	are_dependencies_met() (airflow.models.TaskInstance method)

 	are_dependents_done() (airflow.models.TaskInstance method)

 	AthenaSensor (class in airflow.contrib.sensors.aws_athena_sensor)

 	
 	await() (airflow.contrib.hooks.gcp_dataproc_hook.DataProcHook method)

 	AWSAthenaHook (class in airflow.contrib.hooks.aws_athena_hook)

 	AWSAthenaOperator (class in airflow.contrib.operators.aws_athena_operator)

 	AWSBatchOperator (class in airflow.contrib.operators.awsbatch_operator), [1]

 	AwsDynamoDBHook (class in airflow.contrib.hooks.aws_dynamodb_hook), [1]

 	AwsFirehoseHook (class in airflow.contrib.hooks.aws_firehose_hook), [1]

 	AwsGlueCatalogHook (class in airflow.contrib.hooks.aws_glue_catalog_hook)

 	AwsGlueCatalogPartitionSensor (class in airflow.contrib.sensors.aws_glue_catalog_partition_sensor)

 	AwsHook (class in airflow.contrib.hooks.aws_hook)

 	AwsLambdaHook (class in airflow.contrib.hooks.aws_lambda_hook), [1]

 	AwsRedshiftClusterSensor (class in airflow.contrib.sensors.aws_redshift_cluster_sensor), [1]

 	AwsSnsHook (class in airflow.contrib.hooks.aws_sns_hook)

B

 	
 	bag_dag() (airflow.models.DagBag method)

 	BaseOperator (class in airflow.models), [1]

 	BaseSensorOperator (class in airflow.sensors.base_sensor_operator)

 	BashOperator (class in airflow.operators.bash_operator)

 	BashSensor (class in airflow.contrib.sensors.bash_sensor)

 	begin_transaction() (airflow.contrib.hooks.datastore_hook.DatastoreHook method), [1]

 	BigQueryCheckOperator (class in airflow.contrib.operators.bigquery_check_operator), [1]

 	BigQueryCreateEmptyDatasetOperator (class in airflow.contrib.operators.bigquery_operator), [1]

 	BigQueryCreateEmptyTableOperator (class in airflow.contrib.operators.bigquery_operator), [1]

 	BigQueryCreateExternalTableOperator (class in airflow.contrib.operators.bigquery_operator), [1]

 	BigQueryDeleteDatasetOperator (class in airflow.contrib.operators.bigquery_operator), [1]

 	BigQueryGetDataOperator (class in airflow.contrib.operators.bigquery_get_data), [1]

 	BigQueryHook (class in airflow.contrib.hooks.bigquery_hook), [1]

 	
 	BigQueryIntervalCheckOperator (class in airflow.contrib.operators.bigquery_check_operator), [1]

 	BigQueryOperator (class in airflow.contrib.operators.bigquery_operator), [1]

 	BigQueryTableDeleteOperator (class in airflow.contrib.operators.bigquery_table_delete_operator), [1]

 	BigQueryTableSensor (class in airflow.contrib.sensors.bigquery_sensor)

 	BigQueryToBigQueryOperator (class in airflow.contrib.operators.bigquery_to_bigquery), [1]

 	BigQueryToCloudStorageOperator (class in airflow.contrib.operators.bigquery_to_gcs), [1]

 	BigQueryValueCheckOperator (class in airflow.contrib.operators.bigquery_check_operator), [1]

 	BranchPythonOperator (class in airflow.operators.python_operator)

 	bulk_dump() (airflow.hooks.dbapi_hook.DbApiHook method)

 	(airflow.hooks.mysql_hook.MySqlHook method)

 	(airflow.hooks.postgres_hook.PostgresHook method)

 	bulk_load() (airflow.hooks.dbapi_hook.DbApiHook method)

 	(airflow.hooks.mysql_hook.MySqlHook method)

 	(airflow.hooks.postgres_hook.PostgresHook method)

C

 	
 	CassandraHook (class in airflow.contrib.hooks.cassandra_hook)

 	CassandraRecordSensor (class in airflow.contrib.sensors.cassandra_record_sensor)

 	CassandraTableSensor (class in airflow.contrib.sensors.cassandra_table_sensor)

 	CassandraToGoogleCloudStorageOperator (class in airflow.contrib.operators.cassandra_to_gcs)

 	Chart (class in airflow.models)

 	check_for_bucket() (airflow.hooks.S3_hook.S3Hook method), [1]

 	check_for_key() (airflow.hooks.S3_hook.S3Hook method), [1]

 	check_for_named_partition() (airflow.hooks.hive_hooks.HiveMetastoreHook method)

 	check_for_partition() (airflow.contrib.hooks.aws_glue_catalog_hook.AwsGlueCatalogHook method)

 	(airflow.hooks.hive_hooks.HiveMetastoreHook method)

 	check_for_prefix() (airflow.hooks.S3_hook.S3Hook method), [1]

 	check_for_wildcard_key() (airflow.hooks.S3_hook.S3Hook method), [1]

 	check_query_status() (airflow.contrib.hooks.aws_athena_hook.AWSAthenaHook method)

 	check_response() (airflow.hooks.http_hook.HttpHook method)

 	check_s3_url() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	check_status() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	check_training_config() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	check_training_status_with_log() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	check_tuning_config() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	CheckOperator (class in airflow.operators.check_operator)

 	cleanup_database_hook() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook method)

 	clear() (airflow.models.BaseOperator method), [1]

 	(airflow.models.DAG method)

 	clear_task_instances() (in module airflow.models)

 	clear_xcom_data() (airflow.models.TaskInstance method)

 	cli() (airflow.models.DAG method)

 	close_conn() (airflow.contrib.hooks.ftp_hook.FTPHook method)

 	(airflow.contrib.hooks.sftp_hook.SFTPHook method)

 	closest_ds_partition() (in module airflow.macros.hive)

 	CloudantHook (class in airflow.contrib.hooks.cloudant_hook)

 	CloudSqlDatabaseHook (class in airflow.contrib.hooks.gcp_sql_hook)

 	CloudSqlHook (class in airflow.contrib.hooks.gcp_sql_hook)

 	CloudSqlInstanceCreateOperator (class in airflow.contrib.operators.gcp_sql_operator)

 	CloudSqlInstanceDatabaseCreateOperator (class in airflow.contrib.operators.gcp_sql_operator)

 	CloudSqlInstanceDatabaseDeleteOperator (class in airflow.contrib.operators.gcp_sql_operator)

 	CloudSqlInstanceDatabasePatchOperator (class in airflow.contrib.operators.gcp_sql_operator)

 	CloudSqlInstanceDeleteOperator (class in airflow.contrib.operators.gcp_sql_operator)

 	CloudSqlInstanceExportOperator (class in airflow.contrib.operators.gcp_sql_operator)

 	CloudSqlInstanceImportOperator (class in airflow.contrib.operators.gcp_sql_operator)

 	CloudSqlInstancePatchOperator (class in airflow.contrib.operators.gcp_sql_operator)

 	CloudSqlProxyRunner (class in airflow.contrib.hooks.gcp_sql_hook)

 	
 	CloudSqlQueryOperator (class in airflow.contrib.operators.gcp_sql_operator)

 	cluster_status() (airflow.contrib.hooks.redshift_hook.RedshiftHook method), [1]

 	collect_dags() (airflow.models.DagBag method)

 	command() (airflow.models.TaskInstance method)

 	command_as_list() (airflow.models.TaskInstance method)

 	commit() (airflow.contrib.hooks.datastore_hook.DatastoreHook method), [1]

 	concurrency_reached (airflow.models.DAG attribute)

 	configure_s3_resources() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	construct_api_call_params() (airflow.operators.slack_operator.SlackAPIOperator method)

 	(airflow.operators.slack_operator.SlackAPIPostOperator method)

 	construct_ingest_query() (airflow.operators.hive_to_druid.HiveToDruidTransfer method)

 	convert_map_type() (airflow.contrib.operators.cassandra_to_gcs.CassandraToGoogleCloudStorageOperator class method)

 	convert_tuple_type() (airflow.contrib.operators.cassandra_to_gcs.CassandraToGoogleCloudStorageOperator class method)

 	convert_types() (airflow.contrib.operators.postgres_to_gcs_operator.PostgresToGoogleCloudStorageOperator class method)

 	convert_user_type() (airflow.contrib.operators.cassandra_to_gcs.CassandraToGoogleCloudStorageOperator class method)

 	copy() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook method), [1]

 	copy_expert() (airflow.hooks.postgres_hook.PostgresHook method)

 	copy_object() (airflow.hooks.S3_hook.S3Hook method), [1]

 	create_bucket() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook method), [1]

 	(airflow.hooks.S3_hook.S3Hook method), [1]

 	create_cluster_snapshot() (airflow.contrib.hooks.redshift_hook.RedshiftHook method), [1]

 	create_connection() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook method)

 	create_dagrun() (airflow.models.DAG method)

 	(airflow.models.DagModel method)

 	create_database() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlHook method)

 	create_directory() (airflow.contrib.hooks.ftp_hook.FTPHook method)

 	(airflow.contrib.hooks.sftp_hook.SFTPHook method)

 	create_endpoint() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	create_endpoint_config() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	create_instance() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlHook method)

 	create_job() (airflow.contrib.hooks.gcp_mlengine_hook.MLEngineHook method), [1]

 	create_job_flow() (airflow.contrib.hooks.emr_hook.EmrHook method), [1]

 	create_model() (airflow.contrib.hooks.gcp_mlengine_hook.MLEngineHook method), [1]

 	(airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	create_new_function() (airflow.contrib.hooks.gcp_function_hook.GcfHook method)

 	create_subscription() (airflow.contrib.hooks.gcp_pubsub_hook.PubSubHook method)

 	create_topic() (airflow.contrib.hooks.gcp_pubsub_hook.PubSubHook method)

 	create_training_job() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	create_transform_job() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	create_tuning_job() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	create_version() (airflow.contrib.hooks.gcp_mlengine_hook.MLEngineHook method), [1]

 	current_state() (airflow.models.TaskInstance method)

D

 	
 	dag (airflow.models.BaseOperator attribute), [1]

 	DAG (class in airflow.models)

 	DagBag (class in airflow.models)

 	dagbag_report() (airflow.models.DagBag method)

 	DagModel (class in airflow.models)

 	DagRun (class in airflow.models)

 	DatabricksHook (class in airflow.contrib.hooks.databricks_hook)

 	DatabricksSubmitRunOperator (class in airflow.contrib.operators.databricks_operator), [1]

 	DataFlowHook (class in airflow.contrib.hooks.gcp_dataflow_hook), [1]

 	DataFlowJavaOperator (class in airflow.contrib.operators.dataflow_operator), [1]

 	DataFlowPythonOperator (class in airflow.contrib.operators.dataflow_operator), [1]

 	DataflowTemplateOperator (class in airflow.contrib.operators.dataflow_operator), [1]

 	DataprocClusterCreateOperator (class in airflow.contrib.operators.dataproc_operator), [1]

 	DataprocClusterDeleteOperator (class in airflow.contrib.operators.dataproc_operator), [1]

 	DataprocClusterScaleOperator (class in airflow.contrib.operators.dataproc_operator), [1]

 	DataProcHadoopOperator (class in airflow.contrib.operators.dataproc_operator), [1]

 	DataProcHiveOperator (class in airflow.contrib.operators.dataproc_operator), [1]

 	DataProcHook (class in airflow.contrib.hooks.gcp_dataproc_hook)

 	DataProcPigOperator (class in airflow.contrib.operators.dataproc_operator), [1]

 	DataProcPySparkOperator (class in airflow.contrib.operators.dataproc_operator), [1]

 	DataProcSparkOperator (class in airflow.contrib.operators.dataproc_operator), [1]

 	DataProcSparkSqlOperator (class in airflow.contrib.operators.dataproc_operator), [1]

 	DataprocWorkflowTemplateBaseOperator (class in airflow.contrib.operators.dataproc_operator)

 	DataprocWorkflowTemplateInstantiateInlineOperator (class in airflow.contrib.operators.dataproc_operator), [1]

 	DataprocWorkflowTemplateInstantiateOperator (class in airflow.contrib.operators.dataproc_operator), [1]

 	DatastoreExportOperator (class in airflow.contrib.operators.datastore_export_operator), [1]

 	DatastoreHook (class in airflow.contrib.hooks.datastore_hook), [1]

 	DatastoreImportOperator (class in airflow.contrib.operators.datastore_import_operator), [1]

 	DayOfWeekSensor (class in airflow.contrib.sensors.weekday_sensor)

 	db() (airflow.contrib.hooks.cloudant_hook.CloudantHook method)

 	DbApiHook (class in airflow.hooks.dbapi_hook)

 	deactivate_stale_dags() (airflow.models.DAG static method)

 	deactivate_unknown_dags() (airflow.models.DAG static method)

 	delete() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook method), [1]

 	delete_cluster() (airflow.contrib.hooks.redshift_hook.RedshiftHook method), [1]

 	delete_connection() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook method)

 	delete_database() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlHook method)

 	delete_directory() (airflow.contrib.hooks.ftp_hook.FTPHook method)

 	(airflow.contrib.hooks.sftp_hook.SFTPHook method)

 	
 	delete_file() (airflow.contrib.hooks.ftp_hook.FTPHook method)

 	(airflow.contrib.hooks.sftp_hook.SFTPHook method)

 	delete_function() (airflow.contrib.hooks.gcp_function_hook.GcfHook method)

 	delete_instance() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlHook method)

 	delete_many() (airflow.contrib.hooks.mongo_hook.MongoHook method)

 	delete_objects() (airflow.hooks.S3_hook.S3Hook method), [1]

 	delete_one() (airflow.contrib.hooks.mongo_hook.MongoHook method)

 	delete_operation() (airflow.contrib.hooks.datastore_hook.DatastoreHook method), [1]

 	delete_subscription() (airflow.contrib.hooks.gcp_pubsub_hook.PubSubHook method)

 	delete_topic() (airflow.contrib.hooks.gcp_pubsub_hook.PubSubHook method)

 	delete_version() (airflow.contrib.hooks.gcp_mlengine_hook.MLEngineHook method), [1]

 	deps (airflow.models.BaseOperator attribute), [1]

 	(airflow.sensors.base_sensor_operator.BaseSensorOperator attribute)

 	describe_cluster_snapshots() (airflow.contrib.hooks.redshift_hook.RedshiftHook method), [1]

 	describe_directory() (airflow.contrib.hooks.ftp_hook.FTPHook method)

 	(airflow.contrib.hooks.sftp_hook.SFTPHook method)

 	describe_endpoint() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	describe_endpoint_config() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	describe_model() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	describe_object() (airflow.contrib.hooks.salesforce_hook.SalesforceHook method)

 	describe_training_job() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	describe_training_job_with_log() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	describe_transform_job() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	describe_tuning_job() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	DiscordWebhookHook (class in airflow.contrib.hooks.discord_webhook_hook)

 	DiscordWebhookOperator (class in airflow.contrib.operators.discord_webhook_operator)

 	DockerHook (class in airflow.hooks.docker_hook)

 	DockerOperator (class in airflow.operators.docker_operator)

 	download() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook method), [1]

 	download_mail_attachments() (airflow.contrib.hooks.imap_hook.ImapHook method)

 	downstream_list (airflow.models.BaseOperator attribute), [1]

 	DruidCheckOperator (class in airflow.operators.druid_check_operator)

 	DruidDbApiHook (class in airflow.hooks.druid_hook)

 	DruidHook (class in airflow.hooks.druid_hook)

 	DruidOperator (class in airflow.contrib.operators.druid_operator)

 	ds_add() (in module airflow.macros)

 	ds_format() (in module airflow.macros)

 	DummyOperator (class in airflow.operators.dummy_operator)

E

 	
 	ECSOperator (class in airflow.contrib.operators.ecs_operator), [1]

 	EmailOperator (class in airflow.operators.email_operator)

 	EmrAddStepsOperator (class in airflow.contrib.operators.emr_add_steps_operator), [1]

 	EmrBaseSensor (class in airflow.contrib.sensors.emr_base_sensor)

 	EmrCreateJobFlowOperator (class in airflow.contrib.operators.emr_create_job_flow_operator), [1]

 	EmrHook (class in airflow.contrib.hooks.emr_hook), [1]

 	EmrJobFlowSensor (class in airflow.contrib.sensors.emr_job_flow_sensor)

 	EmrStepSensor (class in airflow.contrib.sensors.emr_step_sensor)

 	EmrTerminateJobFlowOperator (class in airflow.contrib.operators.emr_terminate_job_flow_operator), [1]

 	end() (airflow.executors.local_executor.LocalExecutor method)

 	(airflow.executors.sequential_executor.SequentialExecutor method)

 	error() (airflow.models.TaskInstance method)

 	execute() (airflow.contrib.hooks.discord_webhook_hook.DiscordWebhookHook method)

 	(airflow.contrib.hooks.slack_webhook_hook.SlackWebhookHook method)

 	(airflow.contrib.operators.aws_athena_operator.AWSAthenaOperator method)

 	(airflow.contrib.operators.dataflow_operator.DataFlowPythonOperator method), [1]

 	(airflow.contrib.operators.discord_webhook_operator.DiscordWebhookOperator method)

 	(airflow.contrib.operators.file_to_gcs.FileToGoogleCloudStorageOperator method), [1]

 	(airflow.contrib.operators.mongo_to_s3.MongoToS3Operator method)

 	(airflow.contrib.operators.slack_webhook_operator.SlackWebhookOperator method)

 	(airflow.contrib.operators.spark_jdbc_operator.SparkJDBCOperator method)

 	(airflow.contrib.operators.spark_sql_operator.SparkSqlOperator method)

 	(airflow.contrib.operators.spark_submit_operator.SparkSubmitOperator method)

 	(airflow.contrib.operators.sqoop_operator.SqoopOperator method)

 	(airflow.contrib.sensors.pubsub_sensor.PubSubPullSensor method)

 	(airflow.models.BaseOperator method), [1]

 	(airflow.operators.bash_operator.BashOperator method)

 	(airflow.operators.slack_operator.SlackAPIOperator method)

 	
 	execute_async() (airflow.executors.local_executor.LocalExecutor method)

 	(airflow.executors.sequential_executor.SequentialExecutor method)

 	exists() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook method), [1]

 	expand_role() (airflow.contrib.hooks.aws_hook.AwsHook method)

 	export_instance() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlHook method)

 	export_table() (airflow.contrib.hooks.sqoop_hook.SqoopHook method)

 	export_to_storage_bucket() (airflow.contrib.hooks.datastore_hook.DatastoreHook method), [1]

 	ExternalTaskSensor (class in airflow.sensors.external_task_sensor)

F

 	
 	fallback_to_default_project_id() (airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook static method), [1]

 	filepath (airflow.models.DAG attribute)

 	FileSensor (class in airflow.contrib.sensors.file_sensor)

 	FileToGoogleCloudStorageOperator (class in airflow.contrib.operators.file_to_gcs), [1]

 	filter_for_filesize() (airflow.sensors.hdfs_sensor.HdfsSensor static method)

 	filter_for_ignored_ext() (airflow.sensors.hdfs_sensor.HdfsSensor static method)

 	find() (airflow.contrib.hooks.mongo_hook.MongoHook method)

 	(airflow.models.DagRun static method)

 	
 	find_for_task_instance() (airflow.models.TaskReschedule static method)

 	folder (airflow.models.DAG attribute)

 	following_schedule() (airflow.models.DAG method)

 	free_reserved_port() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook method)

 	FSHook (class in airflow.contrib.hooks.fs_hook)

 	FTPHook (class in airflow.contrib.hooks.ftp_hook)

 	FTPSensor (class in airflow.contrib.sensors.ftp_sensor)

 	FTPSHook (class in airflow.contrib.hooks.ftp_hook)

 	FTPSSensor (class in airflow.contrib.sensors.ftp_sensor)

G

 	
 	GceBaseOperator (class in airflow.contrib.operators.gcp_compute_operator)

 	GceHook (class in airflow.contrib.hooks.gcp_compute_hook)

 	GceInstanceGroupManagerUpdateTemplateOperator (class in airflow.contrib.operators.gcp_compute_operator)

 	GceInstanceStartOperator (class in airflow.contrib.operators.gcp_compute_operator)

 	GceInstanceStopOperator (class in airflow.contrib.operators.gcp_compute_operator)

 	GceInstanceTemplateCopyOperator (class in airflow.contrib.operators.gcp_compute_operator)

 	GceSetMachineTypeOperator (class in airflow.contrib.operators.gcp_compute_operator)

 	GcfFunctionDeleteOperator (class in airflow.contrib.operators.gcp_function_operator)

 	GcfFunctionDeployOperator (class in airflow.contrib.operators.gcp_function_operator)

 	GcfHook (class in airflow.contrib.hooks.gcp_function_hook)

 	GCPTransferServiceHook (class in airflow.contrib.hooks.gcp_transfer_hook), [1]

 	generate_command() (airflow.models.TaskInstance static method)

 	GenericTransfer (class in airflow.operators.generic_transfer)

 	get_active_runs() (airflow.models.DAG method)

 	get_autocommit() (airflow.hooks.dbapi_hook.DbApiHook method)

 	(airflow.hooks.mssql_hook.MsSqlHook method)

 	(airflow.hooks.mysql_hook.MySqlHook method)

 	get_available_fields() (airflow.contrib.hooks.salesforce_hook.SalesforceHook method)

 	get_bucket() (airflow.hooks.S3_hook.S3Hook method), [1]

 	get_collection() (airflow.contrib.hooks.mongo_hook.MongoHook method)

 	get_conn() (airflow.contrib.hooks.aws_athena_hook.AWSAthenaHook method)

 	(airflow.contrib.hooks.aws_firehose_hook.AwsFirehoseHook method), [1]

 	(airflow.contrib.hooks.aws_glue_catalog_hook.AwsGlueCatalogHook method)

 	(airflow.contrib.hooks.aws_sns_hook.AwsSnsHook method)

 	(airflow.contrib.hooks.bigquery_hook.BigQueryHook method), [1]

 	(airflow.contrib.hooks.cassandra_hook.CassandraHook method)

 	(airflow.contrib.hooks.datastore_hook.DatastoreHook method), [1]

 	(airflow.contrib.hooks.ftp_hook.FTPHook method)

 	(airflow.contrib.hooks.ftp_hook.FTPSHook method)

 	(airflow.contrib.hooks.gcp_compute_hook.GceHook method)

 	(airflow.contrib.hooks.gcp_dataflow_hook.DataFlowHook method), [1]

 	(airflow.contrib.hooks.gcp_dataproc_hook.DataProcHook method)

 	(airflow.contrib.hooks.gcp_function_hook.GcfHook method)

 	(airflow.contrib.hooks.gcp_mlengine_hook.MLEngineHook method), [1]

 	(airflow.contrib.hooks.gcp_pubsub_hook.PubSubHook method)

 	(airflow.contrib.hooks.gcp_sql_hook.CloudSqlHook method)

 	(airflow.contrib.hooks.gcp_transfer_hook.GCPTransferServiceHook method), [1]

 	(airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook method), [1]

 	(airflow.contrib.hooks.mongo_hook.MongoHook method)

 	(airflow.contrib.hooks.pinot_hook.PinotDbApiHook method)

 	(airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	(airflow.contrib.hooks.sftp_hook.SFTPHook method)

 	(airflow.contrib.hooks.ssh_hook.SSHHook method)

 	(airflow.contrib.hooks.vertica_hook.VerticaHook method)

 	(airflow.hooks.dbapi_hook.DbApiHook method)

 	(airflow.hooks.druid_hook.DruidDbApiHook method)

 	(airflow.hooks.hdfs_hook.HDFSHook method)

 	(airflow.hooks.http_hook.HttpHook method)

 	(airflow.hooks.mssql_hook.MsSqlHook method)

 	(airflow.hooks.mysql_hook.MySqlHook method)

 	(airflow.hooks.postgres_hook.PostgresHook method)

 	(airflow.hooks.presto_hook.PrestoHook method)

 	(airflow.hooks.sqlite_hook.SqliteHook method)

 	get_context_from_env_var() (in module airflow.hooks.hive_hooks)

 	get_crc32c() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook method), [1]

 	get_credentials() (airflow.contrib.hooks.aws_hook.AwsHook method)

 	get_cursor() (airflow.hooks.dbapi_hook.DbApiHook method)

 	get_dag() (airflow.models.DagBag method)

 	(airflow.models.DagRun method)

 	get_dagrun() (airflow.models.DAG method)

 	(airflow.models.TaskInstance method)

 	get_database() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlHook method)

 	get_database_hook() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook method)

 	get_databases() (airflow.hooks.hive_hooks.HiveMetastoreHook method)

 	get_db_hook() (airflow.operators.druid_check_operator.DruidCheckOperator method)

 	get_default_view() (airflow.models.DAG method)

 	get_direct_relative_ids() (airflow.models.BaseOperator method), [1]

 	get_direct_relatives() (airflow.models.BaseOperator method), [1]

 	get_fernet() (in module airflow.models)

 	get_first() (airflow.contrib.hooks.pinot_hook.PinotDbApiHook method)

 	(airflow.hooks.dbapi_hook.DbApiHook method)

 	(airflow.hooks.presto_hook.PrestoHook method)

 	(airflow.operators.druid_check_operator.DruidCheckOperator method)

 	
 	get_flat_relative_ids() (airflow.models.BaseOperator method), [1]

 	get_flat_relatives() (airflow.models.BaseOperator method), [1]

 	get_function() (airflow.contrib.hooks.gcp_function_hook.GcfHook method)

 	get_hook() (airflow.contrib.sensors.aws_glue_catalog_partition_sensor.AwsGlueCatalogPartitionSensor method)

 	get_instance() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlHook method)

 	get_instance_group_manager() (airflow.contrib.hooks.gcp_compute_hook.GceHook method)

 	get_instance_template() (airflow.contrib.hooks.gcp_compute_hook.GceHook method)

 	get_jobs_id() (airflow.contrib.hooks.qubole_hook.QuboleHook method)

 	get_key() (airflow.hooks.S3_hook.S3Hook method), [1]

 	get_last_dagrun() (in module airflow.models)

 	get_latest_runs() (airflow.models.DagRun class method)

 	get_log() (airflow.contrib.hooks.qubole_hook.QuboleHook method)

 	get_log_conn() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	get_many() (airflow.models.XCom class method)

 	get_md5hash() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook method), [1]

 	get_metastore_client() (airflow.hooks.hive_hooks.HiveMetastoreHook method)

 	get_mod_time() (airflow.contrib.hooks.ftp_hook.FTPHook method)

 	get_model() (airflow.contrib.hooks.gcp_mlengine_hook.MLEngineHook method), [1]

 	get_num_active_runs() (airflow.models.DAG method)

 	get_num_task_instances() (airflow.models.DAG static method)

 	get_object_from_salesforce() (airflow.contrib.hooks.salesforce_hook.SalesforceHook method)

 	get_one() (airflow.models.XCom class method)

 	get_operation() (airflow.contrib.hooks.datastore_hook.DatastoreHook method), [1]

 	get_pandas_df() (airflow.contrib.hooks.bigquery_hook.BigQueryHook method), [1]

 	(airflow.contrib.hooks.pinot_hook.PinotDbApiHook method)

 	(airflow.hooks.dbapi_hook.DbApiHook method)

 	(airflow.hooks.druid_hook.DruidDbApiHook method)

 	(airflow.hooks.hive_hooks.HiveServer2Hook method)

 	(airflow.hooks.presto_hook.PrestoHook method)

 	get_partitions() (airflow.contrib.hooks.aws_glue_catalog_hook.AwsGlueCatalogHook method)

 	(airflow.hooks.hive_hooks.HiveMetastoreHook method)

 	get_previous_dagrun() (airflow.models.DagRun method)

 	get_previous_scheduled_dagrun() (airflow.models.DagRun method)

 	get_proxy_version() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlProxyRunner method)

 	get_query_results() (airflow.contrib.hooks.aws_athena_hook.AWSAthenaHook method)

 	get_records() (airflow.contrib.hooks.pinot_hook.PinotDbApiHook method)

 	(airflow.hooks.dbapi_hook.DbApiHook method)

 	(airflow.hooks.hive_hooks.HiveServer2Hook method)

 	(airflow.hooks.presto_hook.PrestoHook method)

 	get_results() (airflow.contrib.hooks.qubole_hook.QuboleHook method)

 	(airflow.hooks.hive_hooks.HiveServer2Hook method)

 	get_run() (airflow.models.DagRun static method)

 	get_run_dates() (airflow.models.DAG method)

 	get_service() (airflow.contrib.hooks.bigquery_hook.BigQueryHook method), [1]

 	get_session() (airflow.contrib.hooks.aws_hook.AwsHook method)

 	get_size() (airflow.contrib.hooks.ftp_hook.FTPHook method)

 	(airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook method), [1]

 	get_socket_path() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlProxyRunner method)

 	get_sqlproxy_runner() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook method)

 	get_table() (airflow.hooks.hive_hooks.HiveMetastoreHook method)

 	get_tables() (airflow.hooks.hive_hooks.HiveMetastoreHook method)

 	get_task_instance() (airflow.models.DagRun method)

 	get_task_instances() (airflow.models.BaseOperator method), [1]

 	(airflow.models.DagRun method)

 	get_template_env() (airflow.models.DAG method)

 	get_tunnel() (airflow.contrib.hooks.ssh_hook.SSHHook method)

 	get_uri() (airflow.contrib.hooks.pinot_hook.PinotDbApiHook method)

 	(airflow.hooks.druid_hook.DruidDbApiHook method)

 	get_wildcard_key() (airflow.hooks.S3_hook.S3Hook method), [1]

 	GoogleCloudBaseHook (class in airflow.contrib.hooks.gcp_api_base_hook), [1]

 	GoogleCloudStorageBucketCreateAclEntryOperator (class in airflow.contrib.operators.gcs_acl_operator)

 	GoogleCloudStorageCreateBucketOperator (class in airflow.contrib.operators.gcs_operator), [1]

 	GoogleCloudStorageDownloadOperator (class in airflow.contrib.operators.gcs_download_operator), [1]

 	GoogleCloudStorageHook (class in airflow.contrib.hooks.gcs_hook), [1]

 	GoogleCloudStorageListOperator (class in airflow.contrib.operators.gcs_list_operator), [1]

 	GoogleCloudStorageObjectCreateAclEntryOperator (class in airflow.contrib.operators.gcs_acl_operator)

 	GoogleCloudStorageObjectSensor (class in airflow.contrib.sensors.gcs_sensor)

 	GoogleCloudStorageObjectUpdatedSensor (class in airflow.contrib.sensors.gcs_sensor)

 	GoogleCloudStoragePrefixSensor (class in airflow.contrib.sensors.gcs_sensor)

 	GoogleCloudStorageToBigQueryOperator (class in airflow.contrib.operators.gcs_to_bq), [1]

 	GoogleCloudStorageToGoogleCloudStorageOperator (class in airflow.contrib.operators.gcs_to_gcs), [1]

 	GoogleCloudStorageToGoogleCloudStorageTransferOperator (class in airflow.contrib.operators.gcs_to_gcs_transfer_operator), [1]

 	GoogleCloudStorageToS3Operator (class in airflow.contrib.operators.gcs_to_s3)

H

 	
 	handle_callback() (airflow.models.DAG method)

 	has_dag() (airflow.models.BaseOperator method), [1]

 	has_mail_attachment() (airflow.contrib.hooks.imap_hook.ImapHook method)

 	HDFSHook (class in airflow.hooks.hdfs_hook)

 	HdfsSensor (class in airflow.sensors.hdfs_sensor)

 	HdfsSensorFolder (class in airflow.contrib.sensors.hdfs_sensor)

 	HdfsSensorRegex (class in airflow.contrib.sensors.hdfs_sensor)

 	HipChatAPIOperator (class in airflow.contrib.operators.hipchat_operator)

 	HipChatAPISendRoomNotificationOperator (class in airflow.contrib.operators.hipchat_operator)

 	HiveCliHook (class in airflow.hooks.hive_hooks)

 	
 	HiveMetastoreHook (class in airflow.hooks.hive_hooks)

 	HiveOperator (class in airflow.operators.hive_operator)

 	HivePartitionSensor (class in airflow.sensors.hive_partition_sensor)

 	HiveServer2Hook (class in airflow.hooks.hive_hooks)

 	HiveStatsCollectionOperator (class in airflow.operators.hive_stats_operator)

 	HiveToDruidTransfer (class in airflow.operators.hive_to_druid)

 	HiveToDynamoDBTransferOperator (class in airflow.contrib.operators.hive_to_dynamodb), [1]

 	HiveToMySqlTransfer (class in airflow.operators.hive_to_mysql)

 	HttpHook (class in airflow.hooks.http_hook)

 	HttpSensor (class in airflow.sensors.http_sensor)

I

 	
 	ImapAttachmentSensor (class in airflow.contrib.sensors.imap_attachment_sensor)

 	ImapHook (class in airflow.contrib.hooks.imap_hook)

 	import_from_storage_bucket() (airflow.contrib.hooks.datastore_hook.DatastoreHook method), [1]

 	import_instance() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlHook method)

 	import_query() (airflow.contrib.hooks.sqoop_hook.SqoopHook method)

 	import_table() (airflow.contrib.hooks.sqoop_hook.SqoopHook method)

 	init_on_load() (airflow.models.TaskInstance method)

 	init_run_context() (airflow.models.TaskInstance method)

 	insert_bucket_acl() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook method), [1]

 	insert_instance_template() (airflow.contrib.hooks.gcp_compute_hook.GceHook method)

 	insert_many() (airflow.contrib.hooks.mongo_hook.MongoHook method)

 	insert_object_acl() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook method), [1]

 	insert_one() (airflow.contrib.hooks.mongo_hook.MongoHook method)

 	
 	insert_rows() (airflow.contrib.hooks.bigquery_hook.BigQueryHook method), [1]

 	(airflow.contrib.hooks.pinot_hook.PinotDbApiHook method)

 	(airflow.hooks.dbapi_hook.DbApiHook method)

 	(airflow.hooks.druid_hook.DruidDbApiHook method)

 	(airflow.hooks.presto_hook.PrestoHook method)

 	IntervalCheckOperator (class in airflow.operators.check_operator)

 	InvalidFernetToken

 	invoke_lambda() (airflow.contrib.hooks.aws_lambda_hook.AwsLambdaHook method), [1]

 	is_eligible_to_retry() (airflow.models.TaskInstance method)

 	is_fixed_time_schedule() (airflow.models.DAG method)

 	is_paused (airflow.models.DAG attribute)

 	is_premature (airflow.models.TaskInstance attribute)

 	is_updated_after() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook method), [1]

K

 	
 	key (airflow.models.TaskInstance attribute)

 	kill() (airflow.contrib.hooks.qubole_hook.QuboleHook method)

 	
 	kill_zombies() (airflow.models.DagBag method)

 	KubeResourceVersion (class in airflow.models)

 	KubeWorkerIdentifier (class in airflow.models)

L

 	
 	latest_execution_date (airflow.models.DAG attribute)

 	LatestOnlyOperator (class in airflow.operators.latest_only_operator)

 	list() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook method), [1]

 	list_directory() (airflow.contrib.hooks.ftp_hook.FTPHook method)

 	(airflow.contrib.hooks.sftp_hook.SFTPHook method)

 	list_keys() (airflow.hooks.S3_hook.S3Hook method), [1]

 	list_prefixes() (airflow.hooks.S3_hook.S3Hook method), [1]

 	list_versions() (airflow.contrib.hooks.gcp_mlengine_hook.MLEngineHook method), [1]

 	load_bytes() (airflow.hooks.S3_hook.S3Hook method), [1]

 	
 	load_df() (airflow.hooks.hive_hooks.HiveCliHook method)

 	load_file() (airflow.hooks.hive_hooks.HiveCliHook method)

 	(airflow.hooks.S3_hook.S3Hook method), [1]

 	load_file_obj() (airflow.hooks.S3_hook.S3Hook method), [1]

 	load_string() (airflow.hooks.S3_hook.S3Hook method), [1]

 	LocalExecutor (class in airflow.executors.local_executor)

 	Log (class in airflow.models)

 	log_stream() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	lookup() (airflow.contrib.hooks.datastore_hook.DatastoreHook method), [1]

M

 	
 	make_query() (airflow.contrib.hooks.salesforce_hook.SalesforceHook method)

 	max_partition() (airflow.hooks.hive_hooks.HiveMetastoreHook method)

 	(in module airflow.macros.hive)

 	MetastorePartitionSensor (class in airflow.sensors.metastore_partition_sensor)

 	MLEngineBatchPredictionOperator (class in airflow.contrib.operators.mlengine_operator), [1]

 	MLEngineHook (class in airflow.contrib.hooks.gcp_mlengine_hook), [1]

 	MLEngineModelOperator (class in airflow.contrib.operators.mlengine_operator), [1]

 	MLEngineTrainingOperator (class in airflow.contrib.operators.mlengine_operator), [1]

 	MLEngineVersionOperator (class in airflow.contrib.operators.mlengine_operator), [1]

 	
 	MongoHook (class in airflow.contrib.hooks.mongo_hook)

 	MongoToS3Operator (class in airflow.contrib.operators.mongo_to_s3)

 	MsSqlHook (class in airflow.hooks.mssql_hook)

 	MsSqlOperator (class in airflow.operators.mssql_operator)

 	MsSqlToHiveTransfer (class in airflow.operators.mssql_to_hive)

 	multi_stream_iter() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	MySqlHook (class in airflow.hooks.mysql_hook)

 	MySqlOperator (class in airflow.operators.mysql_operator)

 	MySqlToGoogleCloudStorageOperator (class in airflow.contrib.operators.mysql_to_gcs), [1]

 	MySqlToHiveTransfer (class in airflow.operators.mysql_to_hive)

N

 	
 	NamedHivePartitionSensor (class in airflow.sensors.named_hive_partition_sensor)

 	next_retry_datetime() (airflow.models.TaskInstance method)

 	
 	normalize_schedule() (airflow.models.DAG method)

 	NullFernet (class in airflow.models)

O

 	
 	on_kill() (airflow.contrib.operators.aws_athena_operator.AWSAthenaOperator method)

 	(airflow.models.BaseOperator method), [1]

 	
 	open_slots() (airflow.models.Pool method)

 	OpenFaasHook (class in airflow.contrib.hooks.openfaas_hook)

P

 	
 	patch_database() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlHook method)

 	patch_instance() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlHook method)

 	patch_instance_group_manager() (airflow.contrib.hooks.gcp_compute_hook.GceHook method)

 	PigCliHook (class in airflow.hooks.pig_hook)

 	PigOperator (class in airflow.operators.pig_operator)

 	PinotDbApiHook (class in airflow.contrib.hooks.pinot_hook)

 	poke() (airflow.contrib.sensors.aws_athena_sensor.AthenaSensor method)

 	(airflow.contrib.sensors.aws_glue_catalog_partition_sensor.AwsGlueCatalogPartitionSensor method)

 	(airflow.contrib.sensors.aws_redshift_cluster_sensor.AwsRedshiftClusterSensor method), [1]

 	(airflow.contrib.sensors.bash_sensor.BashSensor method)

 	(airflow.contrib.sensors.bigquery_sensor.BigQueryTableSensor method)

 	(airflow.contrib.sensors.cassandra_record_sensor.CassandraRecordSensor method)

 	(airflow.contrib.sensors.cassandra_table_sensor.CassandraTableSensor method)

 	(airflow.contrib.sensors.emr_base_sensor.EmrBaseSensor method)

 	(airflow.contrib.sensors.file_sensor.FileSensor method)

 	(airflow.contrib.sensors.ftp_sensor.FTPSensor method)

 	(airflow.contrib.sensors.gcs_sensor.GoogleCloudStorageObjectSensor method)

 	(airflow.contrib.sensors.gcs_sensor.GoogleCloudStorageObjectUpdatedSensor method)

 	(airflow.contrib.sensors.gcs_sensor.GoogleCloudStoragePrefixSensor method)

 	(airflow.contrib.sensors.hdfs_sensor.HdfsSensorFolder method)

 	(airflow.contrib.sensors.hdfs_sensor.HdfsSensorRegex method)

 	(airflow.contrib.sensors.imap_attachment_sensor.ImapAttachmentSensor method)

 	(airflow.contrib.sensors.pubsub_sensor.PubSubPullSensor method)

 	(airflow.contrib.sensors.python_sensor.PythonSensor method)

 	(airflow.contrib.sensors.qubole_sensor.QuboleSensor method)

 	(airflow.contrib.sensors.sagemaker_base_sensor.SageMakerBaseSensor method)

 	(airflow.contrib.sensors.sftp_sensor.SFTPSensor method)

 	(airflow.contrib.sensors.weekday_sensor.DayOfWeekSensor method)

 	(airflow.sensors.base_sensor_operator.BaseSensorOperator method)

 	(airflow.sensors.external_task_sensor.ExternalTaskSensor method)

 	(airflow.sensors.hdfs_sensor.HdfsSensor method)

 	(airflow.sensors.hive_partition_sensor.HivePartitionSensor method)

 	(airflow.sensors.http_sensor.HttpSensor method)

 	(airflow.sensors.metastore_partition_sensor.MetastorePartitionSensor method)

 	(airflow.sensors.named_hive_partition_sensor.NamedHivePartitionSensor method)

 	(airflow.sensors.s3_key_sensor.S3KeySensor method)

 	(airflow.sensors.s3_prefix_sensor.S3PrefixSensor method)

 	(airflow.sensors.sql_sensor.SqlSensor method)

 	(airflow.sensors.time_delta_sensor.TimeDeltaSensor method)

 	(airflow.sensors.time_sensor.TimeSensor method)

 	(airflow.sensors.web_hdfs_sensor.WebHdfsSensor method)

 	
 	poll_operation_until_done() (airflow.contrib.hooks.datastore_hook.DatastoreHook method), [1]

 	poll_query_status() (airflow.contrib.hooks.aws_athena_hook.AWSAthenaHook method)

 	Pool (class in airflow.models)

 	pool_full() (airflow.models.TaskInstance method)

 	Popen() (airflow.contrib.hooks.sqoop_hook.SqoopHook method)

 	post_execute() (airflow.models.BaseOperator method), [1]

 	PostgresHook (class in airflow.hooks.postgres_hook)

 	PostgresOperator (class in airflow.operators.postgres_operator)

 	PostgresToGoogleCloudStorageOperator (class in airflow.contrib.operators.postgres_to_gcs_operator)

 	pre_execute() (airflow.models.BaseOperator method), [1]

 	prepare_request() (airflow.contrib.operators.hipchat_operator.HipChatAPIOperator method)

 	(airflow.contrib.operators.hipchat_operator.HipChatAPISendRoomNotificationOperator method)

 	prepare_template() (airflow.models.BaseOperator method), [1]

 	PrestoCheckOperator (class in airflow.operators.presto_check_operator)

 	PrestoHook (class in airflow.hooks.presto_hook)

 	PrestoIntervalCheckOperator (class in airflow.operators.presto_check_operator)

 	PrestoToMySqlTransfer (class in airflow.operators.presto_to_mysql)

 	PrestoValueCheckOperator (class in airflow.operators.presto_check_operator)

 	previous_schedule() (airflow.models.DAG method)

 	previous_ti (airflow.models.TaskInstance attribute)

 	process_file() (airflow.models.DagBag method)

 	publish() (airflow.contrib.hooks.gcp_pubsub_hook.PubSubHook method)

 	publish_to_target() (airflow.contrib.hooks.aws_sns_hook.AwsSnsHook method)

 	PubSubHook (class in airflow.contrib.hooks.gcp_pubsub_hook)

 	PubSubPublishOperator (class in airflow.contrib.operators.pubsub_operator)

 	PubSubPullSensor (class in airflow.contrib.sensors.pubsub_sensor)

 	PubSubSubscriptionCreateOperator (class in airflow.contrib.operators.pubsub_operator)

 	PubSubSubscriptionDeleteOperator (class in airflow.contrib.operators.pubsub_operator)

 	PubSubTopicCreateOperator (class in airflow.contrib.operators.pubsub_operator)

 	PubSubTopicDeleteOperator (class in airflow.contrib.operators.pubsub_operator)

 	pull() (airflow.contrib.hooks.gcp_pubsub_hook.PubSubHook method)

 	put_records() (airflow.contrib.hooks.aws_firehose_hook.AwsFirehoseHook method), [1]

 	PythonOperator (class in airflow.operators.python_operator)

 	PythonSensor (class in airflow.contrib.sensors.python_sensor)

 	PythonVirtualenvOperator (class in airflow.operators.python_operator)

Q

 	
 	QuboleCheckOperator (class in airflow.contrib.operators.qubole_check_operator), [1]

 	QuboleFileSensor (class in airflow.contrib.sensors.qubole_sensor)

 	QuboleHook (class in airflow.contrib.hooks.qubole_hook)

 	QuboleOperator (class in airflow.contrib.operators.qubole_operator), [1]

 	
 	QubolePartitionSensor (class in airflow.contrib.sensors.qubole_sensor)

 	QuboleSensor (class in airflow.contrib.sensors.qubole_sensor)

 	QuboleValueCheckOperator (class in airflow.contrib.operators.qubole_check_operator), [1]

 	queued_slots() (airflow.models.Pool method)

R

 	
 	random() (in module airflow.macros)

 	read_key() (airflow.hooks.S3_hook.S3Hook method), [1]

 	ready_for_retry() (airflow.models.TaskInstance method)

 	record_exists() (airflow.contrib.hooks.cassandra_hook.CassandraHook method)

 	RedshiftHook (class in airflow.contrib.hooks.redshift_hook), [1]

 	RedshiftToS3Transfer (class in airflow.operators.redshift_to_s3_operator), [1]

 	refresh_from_db() (airflow.models.DagRun method)

 	(airflow.models.TaskInstance method)

 	rename() (airflow.contrib.hooks.ftp_hook.FTPHook method)

 	render_template() (airflow.models.BaseOperator method), [1]

 	render_template_from_field() (airflow.models.BaseOperator method), [1]

 	replace_many() (airflow.contrib.hooks.mongo_hook.MongoHook method)

 	replace_one() (airflow.contrib.hooks.mongo_hook.MongoHook method)

 	reserve_free_tcp_port() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook method)

 	restore_from_cluster_snapshot() (airflow.contrib.hooks.redshift_hook.RedshiftHook method), [1]

 	retrieve_connection() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlDatabaseHook method)

 	retrieve_file() (airflow.contrib.hooks.ftp_hook.FTPHook method)

 	(airflow.contrib.hooks.sftp_hook.SFTPHook method)

 	
 	retrieve_mail_attachments() (airflow.contrib.hooks.imap_hook.ImapHook method)

 	rewrite() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook method), [1]

 	rollback() (airflow.contrib.hooks.datastore_hook.DatastoreHook method), [1]

 	run() (airflow.hooks.dbapi_hook.DbApiHook method)

 	(airflow.hooks.http_hook.HttpHook method)

 	(airflow.hooks.presto_hook.PrestoHook method)

 	(airflow.models.BaseOperator method), [1]

 	(airflow.models.DAG method)

 	run_and_check() (airflow.hooks.http_hook.HttpHook method)

 	run_cli() (airflow.hooks.hive_hooks.HiveCliHook method)

 	(airflow.hooks.pig_hook.PigCliHook method)

 	run_now() (airflow.contrib.hooks.databricks_hook.DatabricksHook method)

 	run_query() (airflow.contrib.hooks.aws_athena_hook.AWSAthenaHook method)

 	(airflow.contrib.hooks.datastore_hook.DatastoreHook method), [1]

 	(airflow.contrib.hooks.spark_sql_hook.SparkSqlHook method)

 	run_with_advanced_retry() (airflow.hooks.http_hook.HttpHook method)

S

 	
 	S3CopyObjectOperator (class in airflow.contrib.operators.s3_copy_object_operator)

 	S3DeleteObjectsOperator (class in airflow.contrib.operators.s3_delete_objects_operator)

 	S3FileTransformOperator (class in airflow.operators.s3_file_transform_operator), [1]

 	S3Hook (class in airflow.hooks.S3_hook), [1]

 	S3KeySensor (class in airflow.sensors.s3_key_sensor)

 	S3ListOperator (class in airflow.contrib.operators.s3_list_operator), [1]

 	S3PrefixSensor (class in airflow.sensors.s3_prefix_sensor)

 	S3ToGoogleCloudStorageOperator (class in airflow.contrib.operators.s3_to_gcs_operator), [1]

 	S3ToGoogleCloudStorageTransferOperator (class in airflow.contrib.operators.s3_to_gcs_transfer_operator)

 	S3ToHiveTransfer (class in airflow.operators.s3_to_hive_operator), [1]

 	S3ToRedshiftTransfer (class in airflow.operators.s3_to_redshift_operator), [1]

 	SageMakerBaseOperator (class in airflow.contrib.operators.sagemaker_base_operator)

 	SageMakerBaseSensor (class in airflow.contrib.sensors.sagemaker_base_sensor)

 	SageMakerEndpointConfigOperator (class in airflow.contrib.operators.sagemaker_endpoint_config_operator), [1]

 	SageMakerEndpointOperator (class in airflow.contrib.operators.sagemaker_endpoint_operator), [1]

 	SageMakerEndpointSensor (class in airflow.contrib.sensors.sagemaker_endpoint_sensor)

 	SageMakerHook (class in airflow.contrib.hooks.sagemaker_hook), [1]

 	SageMakerModelOperator (class in airflow.contrib.operators.sagemaker_model_operator), [1]

 	SageMakerTrainingOperator (class in airflow.contrib.operators.sagemaker_training_operator), [1]

 	SageMakerTrainingSensor (class in airflow.contrib.sensors.sagemaker_training_sensor)

 	SageMakerTransformOperator (class in airflow.contrib.operators.sagemaker_transform_operator), [1]

 	SageMakerTransformSensor (class in airflow.contrib.sensors.sagemaker_transform_sensor)

 	SageMakerTuningOperator (class in airflow.contrib.operators.sagemaker_tuning_operator), [1]

 	SageMakerTuningSensor (class in airflow.contrib.sensors.sagemaker_tuning_sensor)

 	SalesforceHook (class in airflow.contrib.hooks.salesforce_hook)

 	schedule_interval (airflow.models.BaseOperator attribute), [1]

 	Secret (class in airflow.contrib.kubernetes.secret)

 	select_key() (airflow.hooks.S3_hook.S3Hook method), [1]

 	SequentialExecutor (class in airflow.executors.sequential_executor)

 	set() (airflow.models.XCom class method)

 	set_autocommit() (airflow.contrib.hooks.pinot_hook.PinotDbApiHook method)

 	(airflow.hooks.dbapi_hook.DbApiHook method)

 	(airflow.hooks.druid_hook.DruidDbApiHook method)

 	(airflow.hooks.mssql_hook.MsSqlHook method)

 	(airflow.hooks.mysql_hook.MySqlHook method)

 	set_default_version() (airflow.contrib.hooks.gcp_mlengine_hook.MLEngineHook method), [1]

 	set_dependency() (airflow.models.DAG method)

 	set_downstream() (airflow.models.BaseOperator method), [1]

 	set_machine_type() (airflow.contrib.hooks.gcp_compute_hook.GceHook method)

 	set_upstream() (airflow.models.BaseOperator method), [1]

 	setdefault() (airflow.models.Variable class method)

 	SFTPHook (class in airflow.contrib.hooks.sftp_hook)

 	
 	SFTPOperator (class in airflow.contrib.operators.sftp_operator)

 	SFTPSensor (class in airflow.contrib.sensors.sftp_sensor)

 	ShortCircuitOperator (class in airflow.operators.python_operator)

 	shutdown_cluster() (airflow.contrib.hooks.cassandra_hook.CassandraHook method)

 	sign_in() (airflow.contrib.hooks.salesforce_hook.SalesforceHook method)

 	SimpleHttpOperator (class in airflow.operators.http_operator)

 	size() (airflow.models.DagBag method)

 	SlackAPIOperator (class in airflow.operators.slack_operator)

 	SlackAPIPostOperator (class in airflow.operators.slack_operator)

 	SlackHook (class in airflow.hooks.slack_hook)

 	SlackWebhookHook (class in airflow.contrib.hooks.slack_webhook_hook)

 	SlackWebhookOperator (class in airflow.contrib.operators.slack_webhook_operator)

 	SlaMiss (class in airflow.models)

 	SnsPublishOperator (class in airflow.contrib.operators.sns_publish_operator)

 	SparkJDBCHook (class in airflow.contrib.hooks.spark_jdbc_hook)

 	SparkJDBCOperator (class in airflow.contrib.operators.spark_jdbc_operator)

 	SparkSqlHook (class in airflow.contrib.hooks.spark_sql_hook)

 	SparkSqlOperator (class in airflow.contrib.operators.spark_sql_operator)

 	SparkSubmitHook (class in airflow.contrib.hooks.spark_submit_hook)

 	SparkSubmitOperator (class in airflow.contrib.operators.spark_submit_operator)

 	SqliteHook (class in airflow.hooks.sqlite_hook)

 	SqliteOperator (class in airflow.operators.sqlite_operator)

 	SqlSensor (class in airflow.sensors.sql_sensor)

 	SqoopHook (class in airflow.contrib.hooks.sqoop_hook)

 	SqoopOperator (class in airflow.contrib.operators.sqoop_operator)

 	SSHHook (class in airflow.contrib.hooks.ssh_hook)

 	SSHOperator (class in airflow.contrib.operators.ssh_operator)

 	start() (airflow.executors.local_executor.LocalExecutor method)

 	start_instance() (airflow.contrib.hooks.gcp_compute_hook.GceHook method)

 	start_proxy() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlProxyRunner method)

 	stop_instance() (airflow.contrib.hooks.gcp_compute_hook.GceHook method)

 	stop_proxy() (airflow.contrib.hooks.gcp_sql_hook.CloudSqlProxyRunner method)

 	stop_query() (airflow.contrib.hooks.aws_athena_hook.AWSAthenaHook method)

 	store_file() (airflow.contrib.hooks.ftp_hook.FTPHook method)

 	(airflow.contrib.hooks.sftp_hook.SFTPHook method)

 	sub_dag() (airflow.models.DAG method)

 	SubDagOperator (class in airflow.operators.subdag_operator)

 	subdags (airflow.models.DAG attribute)

 	submit() (airflow.contrib.hooks.spark_submit_hook.SparkSubmitHook method)

 	submit_run() (airflow.contrib.hooks.databricks_hook.DatabricksHook method)

 	sync() (airflow.executors.local_executor.LocalExecutor method)

 	(airflow.executors.sequential_executor.SequentialExecutor method)

 	sync_to_db() (airflow.models.DAG method)

T

 	
 	table_exists() (airflow.contrib.hooks.bigquery_hook.BigQueryHook method), [1]

 	(airflow.contrib.hooks.cassandra_hook.CassandraHook method)

 	(airflow.hooks.hive_hooks.HiveMetastoreHook method)

 	tar_and_s3_upload() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	TaskFail (class in airflow.models)

 	TaskInstance (class in airflow.models)

 	TaskReschedule (class in airflow.models)

 	template_fields (airflow.contrib.sensors.ftp_sensor.FTPSensor attribute)

 	test_cycle() (airflow.models.DAG method)

 	test_hql() (airflow.hooks.hive_hooks.HiveCliHook method)

 	
 	TimeDeltaSensor (class in airflow.sensors.time_delta_sensor)

 	TimeSensor (class in airflow.sensors.time_sensor)

 	to_csv() (airflow.hooks.hive_hooks.HiveServer2Hook method)

 	topological_sort() (airflow.models.DAG method)

 	transform() (airflow.contrib.operators.mongo_to_s3.MongoToS3Operator static method)

 	tree_view() (airflow.models.DAG method)

 	TriggerDagRunOperator (class in airflow.operators.dagrun_operator)

 	try_number (airflow.models.TaskInstance attribute)

 	type_map() (airflow.contrib.operators.mysql_to_gcs.MySqlToGoogleCloudStorageOperator class method), [1]

 	(airflow.contrib.operators.postgres_to_gcs_operator.PostgresToGoogleCloudStorageOperator class method)

U

 	
 	update_endpoint() (airflow.contrib.hooks.sagemaker_hook.SageMakerHook method), [1]

 	update_function() (airflow.contrib.hooks.gcp_function_hook.GcfHook method)

 	update_many() (airflow.contrib.hooks.mongo_hook.MongoHook method)

 	update_one() (airflow.contrib.hooks.mongo_hook.MongoHook method)

 	update_state() (airflow.models.DagRun method)

 	
 	upload() (airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook method), [1]

 	upload_function_zip() (airflow.contrib.hooks.gcp_function_hook.GcfHook method)

 	upstream_list (airflow.models.BaseOperator attribute), [1]

 	used_slots() (airflow.models.Pool method)

 	User (class in airflow.models)

V

 	
 	ValueCheckOperator (class in airflow.operators.check_operator)

 	Variable (class in airflow.models)

 	verify_integrity() (airflow.models.DagRun method)

 	
 	VerticaHook (class in airflow.contrib.hooks.vertica_hook)

 	VerticaOperator (class in airflow.contrib.operators.vertica_operator)

 	VerticaToHiveTransfer (class in airflow.contrib.operators.vertica_to_hive)

W

 	
 	wait() (airflow.contrib.hooks.gcp_dataproc_hook.DataProcHook method)

 	WebHdfsSensor (class in airflow.sensors.web_hdfs_sensor)

 	
 	write_batch_data() (airflow.contrib.hooks.aws_dynamodb_hook.AwsDynamoDBHook method), [1]

 	write_object_to_file() (airflow.contrib.hooks.salesforce_hook.SalesforceHook method)

X

 	
 	XCom (class in airflow.models)

 	xcom_pull() (airflow.models.BaseOperator method), [1]

 	(airflow.models.TaskInstance method)

 	
 	xcom_push() (airflow.models.BaseOperator method), [1]

 	(airflow.models.TaskInstance method)

Kubernetes Executor

The kubernetes executor is introduced in Apache Airflow 1.10.0. The Kubernetes executor will create a new pod for every task instance.

Example helm charts are available at scripts/ci/kubernetes/kube/{airflow,volumes,postgres}.yaml in the source distribution. The volumes are optional and depend on your configuration. There are two volumes available:

	Dags: by storing all the dags onto the persistent disks, all the workers can read the dags from there. Another option is using git-sync, before starting the container, a git pull of the dags repository will be performed and used throughout the lifecycle of the pod.

	Logs: by storing the logs onto a persistent disk, all the logs will be available for all the workers and the webserver itself. If you don’t configure this, the logs will be lost after the worker pods shuts down. Another option is to use S3/GCS/etc to store the logs.

Kubernetes Operator

from airflow.contrib.operators import KubernetesOperator
from airflow.contrib.operators.kubernetes_pod_operator import KubernetesPodOperator
from airflow.contrib.kubernetes.secret import Secret
from airflow.contrib.kubernetes.volume import Volume
from airflow.contrib.kubernetes.volume_mount import VolumeMount

secret_file = Secret('volume', '/etc/sql_conn', 'airflow-secrets', 'sql_alchemy_conn')
secret_env = Secret('env', 'SQL_CONN', 'airflow-secrets', 'sql_alchemy_conn')
volume_mount = VolumeMount('test-volume',
 mount_path='/root/mount_file',
 sub_path=None,
 read_only=True)

volume_config= {
 'persistentVolumeClaim':
 {
 'claimName': 'test-volume'
 }
 }
volume = Volume(name='test-volume', configs=volume_config)

affinity = {
 'nodeAffinity': {
 'preferredDuringSchedulingIgnoredDuringExecution': [
 {
 "weight": 1,
 "preference": {
 "matchExpressions": {
 "key": "disktype",
 "operator": "In",
 "values": ["ssd"]
 }
 }
 }
]
 },
 "podAffinity": {
 "requiredDuringSchedulingIgnoredDuringExecution": [
 {
 "labelSelector": {
 "matchExpressions": [
 {
 "key": "security",
 "operator": "In",
 "values": ["S1"]
 }
]
 },
 "topologyKey": "failure-domain.beta.kubernetes.io/zone"
 }
]
 },
 "podAntiAffinity": {
 "requiredDuringSchedulingIgnoredDuringExecution": [
 {
 "labelSelector": {
 "matchExpressions": [
 {
 "key": "security",
 "operator": "In",
 "values": ["S2"]
 }
]
 },
 "topologyKey": "kubernetes.io/hostname"
 }
]
 }
}

tolerations = [
 {
 'key': "key",
 'operator': 'Equal',
 'value': 'value'
 }
]

k = KubernetesPodOperator(namespace='default',
 image="ubuntu:16.04",
 cmds=["bash", "-cx"],
 arguments=["echo", "10"],
 labels={"foo": "bar"},
 secrets=[secret_file,secret_env]
 volumes=[volume],
 volume_mounts=[volume_mount]
 name="test",
 task_id="task",
 affinity=affinity,
 is_delete_operator_pod=True,
 hostnetwork=False,
 tolerations=tolerations
)

	
class airflow.contrib.kubernetes.secret.Secret(deploy_type, deploy_target, secret, key)

	Defines Kubernetes Secret Volume

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Apache Airflow Documentation

 		
 Project

 		
 History

 		
 Committers

 		
 Resources & links

 		
 Roadmap

 		
 License

 		
 Quick Start

 		
 What’s Next?

 		
 Installation

 		
 Getting Airflow

 		
 Extra Packages

 		
 Initiating Airflow Database

 		
 Tutorial

 		
 Example Pipeline definition

 		
 It’s a DAG definition file

 		
 Importing Modules

 		
 Default Arguments

 		
 Instantiate a DAG

 		
 Tasks

 		
 Templating with Jinja

 		
 Setting up Dependencies

 		
 Recap

 		
 Testing

 		
 Running the Script

 		
 Command Line Metadata Validation

 		
 Testing

 		
 Backfill

 		
 What’s Next?

 		
 How-to Guides

 		
 Add a new role in RBAC UI

 		
 Setting Configuration Options

 		
 Initializing a Database Backend

 		
 Using Operators

 		
 BashOperator

 		
 PythonOperator

 		
 Google Cloud Storage Operators

 		
 Google Compute Engine Operators

 		
 Google Cloud Bigtable Operators

 		
 Google Cloud Functions Operators

 		
 Google Cloud Spanner Operators

 		
 Google Cloud Sql Operators

 		
 Google Cloud Storage Operators

 		
 Managing Connections

 		
 Creating a Connection with the UI

 		
 Editing a Connection with the UI

 		
 Creating a Connection with Environment Variables

 		
 Connection Types

 		
 Securing Connections

 		
 Writing Logs

 		
 Writing Logs Locally

 		
 Writing Logs to Amazon S3

 		
 Writing Logs to Azure Blob Storage

 		
 Writing Logs to Google Cloud Storage

 		
 Scaling Out with Celery

 		
 Scaling Out with Dask

 		
 Scaling Out with Mesos (community contributed)

 		
 Tasks executed directly on mesos slaves

 		
 Tasks executed in containers on mesos slaves

 		
 Running Airflow with systemd

 		
 Running Airflow with upstart

 		
 Using the Test Mode Configuration

 		
 Checking Airflow Health Status

 		
 UI / Screenshots

 		
 DAGs View

 		
 Tree View

 		
 Graph View

 		
 Variable View

 		
 Gantt Chart

 		
 Task Duration

 		
 Code View

 		
 Task Instance Context Menu

 		
 Concepts

 		
 Core Ideas

 		
 DAGs

 		
 Operators

 		
 Tasks

 		
 Task Instances

 		
 Workflows

 		
 Additional Functionality

 		
 Hooks

 		
 Pools

 		
 Connections

 		
 Queues

 		
 XComs

 		
 Variables

 		
 Branching

 		
 SubDAGs

 		
 SLAs

 		
 Trigger Rules

 		
 Latest Run Only

 		
 Zombies & Undeads

 		
 Cluster Policy

 		
 Documentation & Notes

 		
 Jinja Templating

 		
 Packaged dags

 		
 .airflowignore

 		
 Data Profiling

 		
 Adhoc Queries

 		
 Charts

 		
 Chart Screenshot

 		
 Chart Form Screenshot

 		
 Command Line Interface

 		
 Positional Arguments

 		
 Sub-commands:

 		
 resetdb

 		
 render

 		
 variables

 		
 connections

 		
 users

 		
 pause

 		
 sync_perm

 		
 task_failed_deps

 		
 version

 		
 trigger_dag

 		
 initdb

 		
 test

 		
 unpause

 		
 list_dag_runs

 		
 dag_state

 		
 run

 		
 list_tasks

 		
 backfill

 		
 list_dags

 		
 kerberos

 		
 worker

 		
 webserver

 		
 flower

 		
 scheduler

 		
 task_state

 		
 pool

 		
 serve_logs

 		
 clear

 		
 next_execution

 		
 upgradedb

 		
 delete_dag

 		
 Scheduling & Triggers

 		
 DAG Runs

 		
 Backfill and Catchup

 		
 External Triggers

 		
 To Keep in Mind

 		
 Plugins

 		
 What for?

 		
 Why build on top of Airflow?

 		
 Interface

 		
 Example

 		
 Note on role based views

 		
 Plugins as Python packages

 		
 Security

 		
 Reporting Vulnerabilities

 		
 Web Authentication

 		
 Password

 		
 LDAP

 		
 Roll your own

 		
 Multi-tenancy

 		
 Kerberos

 		
 Limitations

 		
 Enabling kerberos

 		
 Using kerberos authentication

 		
 OAuth Authentication

 		
 GitHub Enterprise (GHE) Authentication

 		
 Google Authentication

 		
 SSL

 		
 Impersonation

 		
 Default Impersonation

 		
 Flower Authentication

 		
 Time zones

 		
 Concepts

 		
 Naïve and aware datetime objects

 		
 Interpretation of naive datetime objects

 		
 Default time zone

 		
 Time zone aware DAGs

 		
 Templates

 		
 Cron schedules

 		
 Time deltas

 		
 Experimental Rest API

 		
 Endpoints

 		
 CLI

 		
 Authentication

 		
 Integration

 		
 Reverse Proxy

 		
 Azure: Microsoft Azure

 		
 Azure Blob Storage

 		
 Azure File Share

 		
 Logging

 		
 Azure CosmosDB

 		
 Azure Data Lake

 		
 Azure Container Instances

 		
 AWS: Amazon Web Services

 		
 AWS EMR

 		
 AWS S3

 		
 AWS EC2 Container Service

 		
 AWS Batch Service

 		
 AWS RedShift

 		
 AWS DynamoDB

 		
 AWS Lambda

 		
 AWS Kinesis

 		
 Amazon SageMaker

 		
 Databricks

 		
 DatabricksSubmitRunOperator

 		
 GCP: Google Cloud Platform

 		
 Logging

 		
 GoogleCloudBaseHook

 		
 BigQuery

 		
 Cloud Spanner

 		
 Cloud SQL

 		
 Cloud Bigtable

 		
 Compute Engine

 		
 Cloud Functions

 		
 Cloud DataFlow

 		
 Cloud DataProc

 		
 Cloud Datastore

 		
 Cloud ML Engine

 		
 Cloud Storage

 		
 Google Kubernetes Engine

 		
 Qubole

 		
 QuboleOperator

 		
 QubolePartitionSensor

 		
 QuboleFileSensor

 		
 QuboleCheckOperator

 		
 QuboleValueCheckOperator

 		
 Metrics

 		
 Configuration

 		
 Counters

 		
 Gauges

 		
 Timers

 		
 Lineage

 		
 Apache Atlas

 		
 FAQ

 		
 Why isn’t my task getting scheduled?

 		
 How do I trigger tasks based on another task’s failure?

 		
 Why are connection passwords still not encrypted in the metadata db after I installed airflow[crypto]?

 		
 What’s the deal with start_date?

 		
 How can I create DAGs dynamically?

 		
 What are all the airflow run commands in my process list?

 		
 How can my airflow dag run faster?

 		
 How can we reduce the airflow UI page load time?

 		
 How to fix Exception: Global variable explicit_defaults_for_timestamp needs to be on (1)?

 		
 How to reduce airflow dag scheduling latency in production?

 		
 API Reference

 		
 Operators

 		
 BaseOperator

 		
 BaseSensorOperator

 		
 Core Operators

 		
 Community-contributed Operators

 		
 Macros

 		
 Default Variables

 		
 Macros

 		
 Models

 		
 Hooks

 		
 Community contributed hooks

 		
 Executors

 		
 Community-contributed executors

_static/up-pressed.png

_static/up.png

_images/add-role.png
A Airflow DAGs % Secu @ Browse~

Add Role

Permissions oython
can dag edit on

Name * example. operator
can dag read on
‘example_python_operator

User [TSeecrvawe |

_images/apache.jpg

_images/branch_bad.png
branch_a — follow_branch_a ~
run_this_first [~ branching join

_images/adhoc.png
xAirFlow DAGs Tools~ Browse~ Admin~ Docs ~

Ad Hoc Query

airflow_db ¥ Run!

1 PELECT * FROM task_instance LIMIT 1000

Show 25 4 entries

task_id A

agent_performance_for_lantern
agent_performance_for_lantern
agent_performance_for_lantern
agent_performance_for_lantern
agent_performance_for_lantern
agent_performance_for_lantern
agent_performance_for_lantern

agent_performance_for_lantern

dag_id

core_cx
core_cx
core_cx
core_cx
core_cx
core_cx
core_cx

core_cx

execution_date

2014-11-22 00:00:00
2014-11-23 00:00:00
2014-11-24 00:00:00
2014-11-25 00:00:00
2014-11-26 00:00:00
2014-11-27 00:00:00
2014-11-28 00:00:00
2014-11-29 00:00:00

Search:

start_date end_date duration

2014-11-23 22:50:51 2014-11-23 22:54:54 243
2014-11-24 23:04:53 2014-11-24 23:08:58 245
2014-11-26 00:25:46 2014-11-26 00:29:27 220
2014-11-29 00:05:02 2014-11-29 00:09:07 244
2014-11-29 01:46:23 2014-11-29 02:05:50 1167
2014-11-29 18:06:04 2014-11-29 18:10:04 239
2014-11-29 18:20:12 2014-11-29 18:23:45 212
2014-12-01 05:46:37 2014-12-01 05:50:32 234

state

succes
succes
succes
succes
succes
succes
succes

succes

_images/airflow.gif
xAirFIow DAGs Tools~ Browsev = Admin~ Docs~

List (4)

OO0 0|0 |©

& & b

b

Configuration

Create With selected~

Users
Conn Id

Reload DAGs
local_mysql mysql
mysql_default mysq|l
presto_default presto
hive_default hive

_images/branch_good.png
branch_false

_images/chart.png
Tasks &
SQL

SELECT dag_id, execution_date, count(x) as ccount
FROM task_instance
GROUP BY dag_id, execution_date

Chart

35

30

25

20 Thursday, Jan 8, 2015
e examplel: 10

&

ccount

15

10

2.Jan 4. Jan 6. Jan 8. Jan 10. Jan 12. Jan 14. Jan 16. Jan 18. Jan 20. Jan 22. Jan 24. Jan 26. Jan 28. Jan 30. Jan
execution_date

-)

_images/chart_form.png
Label

Can include {{ templated_fields }} and {{ macros }}

Owner

The chart's owner, mostly used for reference and filtering in the list view.

Source Database

Chart Type Line Chart
The type of chart to be displayed

Show Datatable O
Whether to display an interactive data table under the chart.

X Is Date ¢
Whether the X axis should be casted as a date field. Expect most intelligible date formats to get casted pror

Y Log Scale g
Whether to use a log scale for the Y axis.

Display the SQL J . . -
Statement Vhether to display the SQL statement as a collapsible section in the chart page.

Chart Height 600
Height of the chart, in pixels.

SQL Layout SELECT series, x, y FROM ...

Defines the layout of the SQL that the application should expect. Depending on the tables you are sourcing from, it may make more sense 1

saL 1 PELECT series, x, y FROM table

_images/connection_edit.png
DAGs DataProfiing> Browse~ Admin~

. gé/
=] =]

Y
=

)

fs_default fs
google_cloud default google_cloud_platform
hive_cli_default hive_cli

hiveserver2_default hiveserver2

localh

_images/connections.png
Airflow DAGs DataProfing~ Browse~ Adminv Docsv About~

Pools
. Configuration
Connections
Users
List (30) Create ‘With selected~ Variables

XComs

o Conn Id Conn 1, Host

0 £ airflow_ci mysql localhost

0 £ airflow_db mysql localhost

_images/code.png
AV Aiflow DAGs DataProfilng- Browse~ Admin> Docs~ About~ 2018-09-07 22:32:44 UTC G

B DAG: example_bash_operator

Graph View ® Tree View «li Task Duration) Task Tries A Landing Tmes ~ E Gantt

EELSI CRefresh @ Delete

‘example_bash_operator

1| # - coding: utf-8 —s—
2| #

3| # Licensed to the Apache Software Foundation (ASF) under one
4| # or more contributor license agreements. See the NOTICE file
5| # distributed with this work for additional information

6| # regarding copyright ownership. The ASF licenses this file
7| # to you under the Apache License, Version 2.0 (the

8| # “License"); you may not use this file except in compliance
9| # with the License. You may obtain a copy of the License at
10| #

11 # http://www.apache.org/licenses/LICENSE=2.0

12| #

13| # Unless required by applicable law or agreed to in writing,
14| # software distributed under the License is distributed on an
15 # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

16| # KIND, either express or implied. See the License for the
17| # specific language governing permissions and limitations

18| # under the License.

19

20 import airflow

21 from builtins import range
22 from airflow.operators.bash_operator import BashOperator
23 from airflow.operators.dunmy_operator import DunmyOperator
24 from airflow.nodels import DAG

25 from datetime import timedelta

26
27

28 args = {

29 ‘owner': ‘airflow’,

30 ‘start_date': airflow.utils.dates.days_ago(2)

31| ¥

32

33 dag = DAG(

34 dag_id="exanple_bash_operator', default_args=args,
35 schedule_interval='0 0 x x x',

36 dagrun_tineout=tinedelta(minutes=60))

37

38 cnd = 'ls -1
39 run_this_last = DunmyOperator(task_id="'run_this_last', dag=dag)
40

41| # [START howto_operator_bash]

42| run_this = BashOperator(

a3 task_id="run_after_loop', bash_command='echo 1', dag=dag)
44| # [END howto_operator_bash]

45 run_this.set_downstrean(run_this_last)

a6

_images/connection_create.png
Airflow DAGs Data Profiling Admin
Connections
List (30) With selected~
o Conn id Conn Type Host
0 L@ aiflowci mysql localhost

0 A aiflow_db mysql localhost

_images/duration.png
low

B DAG: example_bash_operator

Graph View # Tree View N Task Tries A Landing Times

Cumulative Duration ||

Gantt

Details 4 Code T Refresh ® Delete

Base date: 2018-09-06 00:00:00 Number of runs: 25 J Go

@run_this_last ' run_after_loop @runme 0 runme_1 @runme_2 @ also_run_this
372

3.60
3.40
3.20
3.00

2.80

2.60

Duration (seconds)

240

220

2.00

1.80

1.60

— |
1.45
02Sep2018 02 Sep 2018 02 Sep 2018 03 Sep 2018 04 Sep 2018 04 Sep 2018 05 Sep 2018 06 Sep 2018

_images/gantt.png
A Airflow

DAGs Data Profi

B DAG: example_bash_operator

Graph View # Tree View ol Task Duration Kl Task Tries A Landing Times antt % Code T Refresh @ Delete
Base date: 2018-09-06 00:00:01 Number of runs: 25 j Run: scheduled__2018-09-06T00:00:00+00:00 j Go
runme_0
runme_1 []
runme_2 []
also_run_this]
run_after_loop .
run_this_last | |
T T T T T T T T T T =1
21:55:45 21:56:00 2156115 21:56:30 21:56:45 21:57:00 2157:15 21:57:30 21:57:45 21:58:00

_images/context.png
2018-09-09 04:

Doce

run_after_loop E] on 2018-09-08T00:00:00+00:00

[—— e
m Ignore All Deps || Ignore Task State || Ignore Task Deps
[oo [E21

About—

‘«‘ Airflow DAGs DataProfiing- Browse~ Admin~

o
-

_images/dags.png
rflow DAGs Data Prof

Search:
e DAG Schedule Owner Recent Tasks @ Last Run ©@ DAG Runs @ Links
@ Y] example_bash_operator [00+++] airflow @ 2018-09-06 00:00 @ @ OLXINA=4=CO
o ﬂ] example_branch_dop_operator_v3 airflow @@ @ s 2018-09-05 00:56 © @@ O*HINAZF=CE®
@ Y] example_branch_operator @dally airflow @ 2018-09-06 00:00 @ @ O INA=+=CO
G EY] example xcom Gonce airflow @ 2018-09-05 00:00 © @ O*RINAEF=ECO
G Y] ‘tatestonly Airflow @ 2018-09-07 16:00 @ OLXINA=4=CO

Showing 1 to 5 of 5 entries

Show Paused DAGs

_images/latest_only_with_trigger.png

_images/new-role.png
Qe s python_tester [can dag edit on example_python_operator]

_images/graph.png
A Airflow

DAGs Data Prof

B DAG: example_bash_operator

LJCEIA A @ Tree View JliTask Duration KiTask Tries A Landing Times & Gantt

Details 4 Code < Refresh @ Delete

[EE==) Base date: 2018-09-06 00:00:01 Number of runs: 25 jRun: scheduled_2018-09-06T00:00:00+00:00 jLayout: Left->Right J Go

Do

Search for...

(success) (running (failed) ' skipped

(queued) no status

runme_0

runme_1

run_after_loop

runme_2

run_this_last

also_run_this }/

_images/subdag_before.png
section-1-task-1 section-2-task-1

/ section-1-task-2 \ /- section-2-task-2 \

start — section-1-task-3 — some-other-task — section-2-task-3 — end

\ section-1-task-4 .7 \ Soction-2-task-4 /]

section-1-task-5 section-2-task-5

_images/subdag_zoom.png
A2 Airflow DAGs Data Profiling = Browse~__Admin~

Docs~

section-1 on 2016-02-25

Zoom into Sub DAG

[

[oo YRS

Upstream | Downstream

[oe [E2

Upstream

Downstream l

_images/pin_large.png

_images/subdag_after.png

_static/ajax-loader.gif

_images/tree.png
A2 Airfflow DAGs DataProfiing~ Browse~ Admin~ Docs~

2018-09-07 22:15:40 UTC &

B DAG: example_branch_dop_operator_v3

Graph View ol Task Duration Kl Task Tries A Landing Times & Gantt

Base date: 2018-09-05 01:04:00 Number of runs: 25

Details 4 Code < Refresh @ Delete

Go

() BranchPythonOperator (_) DummyOperator M success [l running Ml failed [skipped [retry [l queued []no status

QIpAG]
Q.oper_1
O condition
Quoper_2

O condition

_images/variable_hidden.png
Ao Airflow DAGs DataProfilingv Browsev Adminv Docs~v

Variables

List (9) Create Add Filter~ With selected~ Search

s Koy Val

o L secret_password smknk
O Lm not_so_hidden test value
@) i secret FrkERIR
O Lm password Jr—

-~ i passwd Jr—
o L api_key ——
o L apikey ——
O Lm authorization Jr—

Fokkkkkk

N,
=]

access_token

