
AIRA Documentation

Alexander Krupenkin

Apr 28, 2020





Contents

1 Getting Started 1

2 Basic Usage 5

3 Connecting via SSH 7

4 Frequently Asked Questions 9

5 Contributing 11

6 How It Works 13

7 Contracts Deployment 17

8 Become a Provider 19

9 Market Messages 25

10 Robonomics Liability 27

11 Robonomics Liability Messages 31

12 Ethereum Common 33

13 Ethereum Common Messages 35

14 Connect the Simplest CPS 39

15 Passing Dynamic Parameters 43

16 Connect an Air Pollution Sensor 47

17 Introduction 51

18 How to 53

19 Creating Dapp 57

i



ii



CHAPTER 1

Getting Started

AIRA (Autonomous Intelligent Robot Agent) project implements the standard of economic interaction between
human-robot and robot-robot via liability smart contract. AIRA makes it possible to connect a variety of different
robots to the market of robot liabilities existing on Ethereum for the direct sale of data from robot sensors, ordering of
logistics services, and organization ordering of personalized products at fully automated enterprises.

1.1 Useful links

• AIRA’s official site

• The Team

• Robonomics Network

1.2 Quick Start

The first thing to do is to get the last image of AIRA. You can find it here.

1

https://aira.life/
https://aira.life/team
https://robonomics.network/en/
https://github.com/airalab/aira/releases


AIRA Documentation

Another option is to build the image from the source:

$ git clone https://github.com/airalab/airapkgs
$ cd airapkgs
$ nix build -f nixos/release-aira.nix ova_image

After this the image could be found in the result folder.

AIRA is distributed as virtual machine image. To launch the client you need to import .ova file to VirtualBox. You
can use a convenient Ctrl+I shortcut.

It’s recommended to set:

• RAM to 2Gb at least

• At least 40 Gb SSD

When the image is imported, launch the machine.

2 Chapter 1. Getting Started



AIRA Documentation

To make your work with the machine easier, try to connect via SSH.

There are some helpful commands on FAQ page.

1.2. Quick Start 3

aira_in_depth/Connecting_via_SSh.html
faq.html


AIRA Documentation

4 Chapter 1. Getting Started



CHAPTER 2

Basic Usage

To get familiar with AIRA, let’s see what is under the hood.

Once you launch the client several ros nodes will already be on the run. Here’s a list of robonomics communication
stack nodes:

$ rosnode list
/eth/erc20_token
/eth/eth_node
/graph/aira_graph
/liability/executor
/liability/infochan/eth/signer
/liability/infochan/ipfs_channel
/liability/persistence
/liability/listener
/rosout

• /eth/erc20_token, /eth/eth_node - proved services for Ethereum blockchain and ERC20 tokens

• /graph/aira_graph - service node for exploring other AIRA instances

• /liability/executor - gets rosbag file from IPFS and plays it

• /liability/infochan/ipfs_channel - is responsible for offer, demand and result messages. It
catches messages from the channel and sends signed messages back

• /liability/infochan/eth/signer - offers services for signing offer, demand and result messages

• /liability/listener - watches for a new liability contracts. When the event is received the node calls
executor node

• /liability/persistence - helps to store incoming liabilities and restart them after shutdown

And here’s a list of robonomics stack topics.

$ rostopic list
/eth/event/approval
/eth/event/transfer

(continues on next page)

5



AIRA Documentation

(continued from previous page)

/graph/greetings
/liability/complete
/liability/finalized
/liability/incoming
/liability/infochan/eth/sending/demand
/liability/infochan/eth/sending/offer
/liability/infochan/eth/sending/result
/liability/infochan/eth/signing/demand
/liability/infochan/eth/signing/offer
/liability/infochan/eth/signing/result
/liability/infochan/incoming/demand
/liability/infochan/incoming/offer
/liability/infochan/incoming/result
/liability/persistence/add
/liability/persistence/del
/liability/persistence/update_timestamp
/liability/ready
/liability/result
/rosout
/rosout_agg

The most important topics for us are:

• /liability/incoming - when a new liability is created, this topic publishes Ethereum address of the
contract

• /liability/result - this topic is for publishing results. But don’t publish a result directly to this topic!
Use a service instead

• /liability/infochan/incoming/* - a CPS gets information about offer, demand or result from cor-
responding topics

• /liability/infochan/eth/signing/* - a CPS sends offer, demand or result messages to correspond-
ing topics

For the details check out the API page.

Let’s start with greetings - say hello to AIRA!

You should just launch a pre-installed package hello_aira:

$ rosrun hello_aira hello_aira

We’ve launched our agent. It will wait for a demand message. Now it’s time to send the message. Go to dapp and
press Order. Now go back to the console and see the result!

6 Chapter 2. Basic Usage

api/robonomics_liability.html
https://airalab.github.io/robonomics_tutorials/


CHAPTER 3

Connecting via SSH

It is more convenient to work with virtual machine via ssh connection. In this section we will configure VM.

Attention: It’s required to have your ssh public key on Github.com In case you don’t have one, please follow the
link

First, launch AIRA client and run a command replacing <username> with your own:

$ mkdir .ssh
$ chmod 700 .ssh
$ curl -sSL https://github.com/<username>.keys >> .ssh/authorized_keys

Now go to machine settings, network, open Advanced and then Port Forwarding

7

https://help.github.com/articles/adding-a-new-ssh-key-to-your-github-account/


AIRA Documentation

Add a new rule:

Host IP Host Port Guest IP Guest Port
127.0.1.1 2202 10.0.2.15 22

Reboot the machine and you are able to connect to AIRA client via ssh:

$ ssh -p 2202 root@127.0.1.1

8 Chapter 3. Connecting via SSH



CHAPTER 4

Frequently Asked Questions

4.1 How to see logs from main services?

IPFS in real time:

journalctl -u ipfs -f

and Liability:

journalctl -u liability -f

4.2 How to check the quantity of IPFS peers?

ipfs pubsub peers airalab.lighthouse.5.robonomics.eth

4.3 IPFS can’t connect to the daemon, what should I do?

Try to specify --api option

ipfs swarm peers --api=/ip4/127.0.0.1/tcp/5001/

9



AIRA Documentation

10 Chapter 4. Frequently Asked Questions



CHAPTER 5

Contributing

5.1 Main Airalab repositories

• aira - AIRA client.

• robonomics_comm - Robonomics communication stack

• robonomics_contracts - smart contracts of Robonomics network

Please choose a corresponding repository for reporting an issue!

5.2 Found a bug?

• Make sure the bug was not already reported - check GitHub Issues.

• If there is no open issue addressing the problem, open a new one. Be sure to include a title and clear descrip-
tion, as much relevant information as possible.

Also, you can open an issue if you have a proposal for improvements.

5.3 Wrote a patch that fixes a bug?

• Open a new GitHub pull request with the patch.

• Make sure the PR description clearly describes the problem and the solution. Include the relevant issue number
if applicable.

Please don’t fix whitespace, format code, or make a purely cosmetic patch

Thanks!

11

https://github.com/airalab/aira
https://github.com/airalab/robonomics_comm
https://github.com/airalab/robonomics_contracts
https://github.com/airalab/aira/issues
https://github.com/airalab/aira/issues/new


AIRA Documentation

12 Chapter 5. Contributing



CHAPTER 6

How It Works

In this section we will discuss the Robonomics Network scenario.

There are few main parts in the Robonomics network:

• IPFS for the messages exchanging

• the Ethereum blockchain for storing new liability contracts

• a provider that is responsible for matching messages

• an agent

Let’s have a look at the following diagram that describes the scenario without any additional details:

There are three types of messages in IPFS: Demand, Offer, Result.

Below there is the specification for a Demand message:

13

../specs/market_messages.html


AIRA Documentation

Field Type Description Example
model ipfs_common/MultihashCPS behavioral model Identifier QmfXHZ2YkNC5vRjp1oAaRoDHD8H3zZznfhBPasTu348eWC
objec-
tive

ipfs_common/MultihashCPS behavioral model parame-
ters in rosbag file

QmUo3vvSXZPQaQWjb3cH3qQo1hc8vAUqNnqbdVABbSLb6r

token ethereum_common/AddressOperational token address 0xbD949595eE52346c225a19724084cE517B2cB735
cost ethereum_common/UInt256CPS behavioral model imple-

mentation cost
1

light-
house

ethereum_common/AddressLighthouse address 0xa1b60ED40E5A68184b3ce4f7bEf31521A57eD2dB1

valida-
tor

ethereum_common/AddressObserving network address 0x0000000000000000000000000000000000000000

valida-
torFee

ethereum_common/UInt256Observing network commission 0

deadline ethereum_common/UInt256Deadline block number 6393332
sender ethereum_common/AddressMessage sender address 0x0000000000000000000000000000000000000000
signa-
ture

std_msgs/UInt8[] Sender’s digital signature 0x23bc. . . c617

An Offer message has the same fields but instead of validatorFee there is a lighthouseFee field. This field
determines the amount of fee for a lighthouse.

Now let’s have a look at the following diagram and walk step by step from the moment of publishing messages to a
liability finalization.

14 Chapter 6. How It Works



AIRA Documentation

A liability contract is created only if the following fields match: model, objective, token, cost. A provider
of Robonomics Network watches every message and finds those ones that have a match. After the match is found
the provider calls createLiability(demand, offer) method from the contract factory where demand and
offer are serialized.

Below is the package diagram for the Robonomics communication stack:

15



AIRA Documentation

The factory deserializes arguments and recovers promisee and promisor addresses from signatures.

Next step is token transfer. The factory transfers cost tokens from the promisee address and validatorFee and light-
houseFee from the promisor address to the new liability address.

Note: You should approve sufficient amount of tokens for the factory.

Note: It’s not required to approve tokens from the promisor address if fees are null.

Now the factory emits a NewLiability event with the liability address. An agent gets the address, reads fields, perform
a task and at the same time writes a log file in rosbag format.

When the work is done the agent sends a Result message with the following fields: hash of the rosbag file, a success
flag, a signature. If the validator field is not null it means that only validator is able to finalize the liability.

After the successful liability finalization the agent gets cost tokens. Otherwise, the promisee gets tokens back.

16 Chapter 6. How It Works



CHAPTER 7

Contracts Deployment

Robonomics network works on top of the existing Ethereum network. The protocol is implemented by smart contracts.
A source code is on Github. Airalab team deploys new version of contracts and supports a current one.

In this lesson we are going to learn more about these contracts. To do this we will deploy our test copy. Also we are
going to use these contracts in the future lessons.

You need a client running Ethereum node. You can use either one of existing network (e.g. Mainnet, Ropsten, Kovan)
or your local one. For testing purpose we suggest to use this docker container

$ docker run --rm -d -p 9545:8545 -p 9546:8546 foamspace/cliquebait:latest

Next step is obtain a copy of robonomics contracts source code:

$ git clone --recursive https://github.com/airalab/robonomics_contracts

A file truffle.js contains available networks for migration. We will work with development network. When you are in
robonomics_contracts directory install dependencies and run a migration:

npm install // to install dependencies
truffle migrate --network development

It’s time to learn how to create a new lighthouse. For more information about Robonomics network and Lighthouse in
particular read white paper. Briefly lighthouse o distributes the running time of providers. Every lighthouse serves its
own broadcast channel. Ask and Bid messages come into this channel. XRT tokens are used as a payment.

When XRT contracts was deployed some tokens were issued on our account. Let’s check the balance:

$ truffle --network development console
> xrt = XRT.at(XRT.address)
> xrt.balanceOf(web3.eth.accounts[0])

And that’s how we create a lighthouse:

17

https://github.com/airalab/robonomics_contracts
https://github.com/f-o-a-m/cliquebait
https://robonomics.network/robonomics_white_paper_en.pdf


AIRA Documentation

> factory = LiabilityFactory.at(LiabilityFactory.address)
> tx = factory.createLighthouse(1000, 10, "test")
> tx.then(x => {laddress = x.logs[0].args.lighthouse})
> l = LighthouseLib.at(laddress)

Instead of deploying a lighthouse contract every time we need a new one, we ask a factory to do this job. A l variable
contains lighthouse instance. The lighthouse should be able to spend our tokens. Let’s make an approve and check
everything went well:

> xrt.approve(l.address,1000)
> xrt.allowance(web3.eth.accounts[0],l.address)

And a very important step is become a worker:

> l.refill(1000)

Each worker has to put a stake. In this case it’s 1000 Wn.

Below is a table of our addresses:

Contract Address ENS name
ENSRegistry 0x80c77a7de64a15450bb8cf45ece4fbb7bae6fb49
XRT 0x673583a369eb3a830a5571208cf6eb7ce83987f8 xrt.3.robonomics.eth
LiabilityFactory 0x1b3190e00c1903266862af1f31714d4b81ef59b2 factory.3.robonomics.eth
Lighthouse 0xd2b78c032b6c8851a8b6cbf950caa02a77618d8e test.lighthouse.3.robonomics.eth

18 Chapter 7. Contracts Deployment



CHAPTER 8

Become a Provider

This page describes how to create a lighthouse and become a provider in the Robonomics network.

8.1 Prepare an address

First of all, an Ethereum address is required. You must have access to a private key of the address. In case you don’t
have one, below are steps to create an address via Parity.

$ sudo snap install parity
$ parity.ethkey generate random
secret: 15abe71557c07b69537bbe4352ed10a057be89037c69d4b35556112519911539
public:
→˓38b800bfd90d486c78c646da79bb94b9d038aca8aad221062ce1b148df7764bfef02f6b3cf931786b6997540b798ea226ae60bd201c222d8f702e408a1a5cbff
address: c531fa8f141493df3da264a864bdcbec19695b4c

The secret field is a private key, you’ll need it to run the provider client. Save it to a file:

$ echo '0x15abe71557c07b69537bbe4352ed10a057be89037c69d4b35556112519911539' > private.
→˓key

The next step is to deposit some ethers and XRT tokens to the address which is held in the address field.

8.2 Create a lighthouse

Go to the lighthouse dapp and fill in a name in the right side:

19

https://www.parity.io/ethereum/
https://robonomics.network/lighthouse/#/


AIRA Documentation

Click on the Create lighthouse and connect to the network button and sign a transaction. After a while you should see:

Now it’s time to put a stake. Select the new lighthouse and click Connect to the network:

20 Chapter 8. Become a Provider



AIRA Documentation

On this page in the Provider section click the Approve button, sign a transaction. When it’s mined click the Refill
button and do the same.

8.3 Install the client

You must install robonomics-tools at least 0.4.2. version. You can build from the source or do the following steps:

Note: Make sure you have Nix and Stack installed:

$ curl -sSL https://get.haskellstack.org/ | sh
$ curl https://nixos.org/nix/install | sh

• Setup Airalab binary cache at https://aira.cachix.org/

• Import Airalab channel:

$ nix-channel --add http://aira.life/channels/aira-unstable/ aira
$ nix-channel --update

8.3. Install the client 21

https://github.com/airalab/robonomics-tools
https://aira.cachix.org/


AIRA Documentation

• Install from the binary cache:

$ nix-env -iA aira.robonomics-tools

• Run the client:

$ xrtd --lighthouse mobilerobotics.lighthouse.5.robonomics.eth --private
→˓$(cat private.key)

Hint: Get familiar with the xrtd options via xrtd --help

8.4 Test the provider

To test your provider go again to the lighthouse dapp and connect to the just created lighthouse.

At the bottom you should see the TEST LIGHTHOUSE section.

Click on the Demand button and then on the Offer one. You should see something similar to:

Don’t forget to sign every message with the MetaMask extension.

Finally you should see a new liability contract created:

22 Chapter 8. Become a Provider

https://dapp.robonomics.network/#/lighthouse/


AIRA Documentation

8.4. Test the provider 23



AIRA Documentation

24 Chapter 8. Become a Provider



CHAPTER 9

Market Messages

Market messages is used for exchange Demand and Offer information. It also used for delivery Result messages with
liability execution reports.

Note: This is spec for Robonomics Generation 5.

• Currently for message delivery is used IPFS PubSub broadcaster.

• IPFS PubSub topic is set according to Lighthouse ENS name.

9.1 Messages content

Robonomics market message use JSON data format.

Demand

Field ROS Type Description
model ipfs_common/Multihash CPS behavioral model identifier
objective ipfs_common/Multihash CPS behavioral model parameters in rosbag file
token ethereum_common/Address Operational token address
cost ethereum_common/UInt256 CPS behavioral model execution cost
lighthouse ethereum_common/Address Lighthouse contract address
validator ethereum_common/Address Observing network address
validatorFee ethereum_common/UInt256 Observing network fee
deadline ethereum_common/UInt256 Deadline block number
nonce ethereum_common/UInt256 Robonomics message counter
sender ethereum_common/Address Message sender address
signature std_msgs/UInt8[] Sender’s Ethereum signature

Offer

25

https://ipfs.io/blog/25-pubsub/
https://ens.domains/
https://www.json.org/


AIRA Documentation

Field ROS Type Description
model ipfs_common/Multihash CPS behavioral model identifier
objective ipfs_common/Multihash CPS behavioral model parameters in rosbag file
token ethereum_common/Address Operational token address
cost ethereum_common/UInt256 CPS behavioral model execution cost
validator ethereum_common/Address Observing network address
lighthouse ethereum_common/Address Lighthouse contract address
lighthouseFee ethereum_common/UInt256 Liability creation fee
deadline ethereum_common/UInt256 Deadline block number
nonce ethereum_common/UInt256 Robonomics message counter
sender ethereum_common/Address Message sender address
signature std_msgs/UInt8[] Sender’s Ethereum signature

Result

Field ROS Type Description
liability ethereum_common/Address Liability contract address
result ipfs_common/Multihash Liability result multihash
success std_msgs/Bool Is liability executed successful
signature std_msgs/UInt8[] Sender’s Ethereum signature

9.2 Messages signing

Before signing the messages is packed using abi.encodePacked solidity finction and hashed by Keccak_256.

demandHash = keccak256(abi.encodePacked(
_model

, _objective
, _token
, _cost
, _lighthouse
, _validator
, _validator_fee
, _deadline
, IFactory(factory).nonceOf(_sender)
, _sender
));

Note: nonce parameter is counted by factory smart contract and incremented for each created liability smart contract.

Message hash are signed using Ethereum secp256k1 signature.

26 Chapter 9. Market Messages

https://solidity.readthedocs.io/en/latest/abi-spec.html#non-standard-packed-mode
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign


CHAPTER 10

Robonomics Liability

The package is responsible for receiving New Liability events (listener node) and playing topics from objective
field (executor node). The launch file also include ipfs_channel node and signer node.

10.1 ROS Parameters

~web3_http_provider
Web3 HTTP provider address. The type is string, defaults to http://127.0.0.1:8545

~web3_ws_provider
Web3 WebSocket provider address. The type is string, defaults to ws://127.0.0.1:8546

~ipfs_http_provider
IPFS HTTP provider address. The type is string, defaults to http://127.0.0.1:5001

~factory_contract
The name of the liability factory. The type is string, defaults to factory.3.robonomics.eth

~lighthouse_contract
The name of a lighthouse you are working on. The type is string, defaults to airalab.lighthouse.3.
robonomics.eth

~enable_executor
Enable or disable executor node. If it’s false, no topics from objective would be published. The type is
boolean, defaults to true

~master_check_interval
Period (in seconds) to check master for new topic publications. It’s necessary for the Recorder, which records
all the topics a CPS publishes. The type is double, defaults to 0.1

~recording_topics
List of topics name separated by comma. It allows you to specify which topics would be recorded. The type is
string, defaults to ""

~ens_contract
The checksumed address of ENS registry. The type is string, defaults to ""

27



AIRA Documentation

~keyfile
Path to keyfile. The type is string, defaults to "". Required parameter

~keyfile_password_file
Path to a file with password for the keyfile. The type is string, defaults to "". Required parameter

10.2 Subscribed topics

/liability/infochan/eth/signing/demand (robonomics_msgs/Demand)
robonomics_msgs/Demand message to sign and send further to IPFS channel

/liability/infochan/eth/signing/offer (robonomics_msgs/Offer)
robonomics_msgs/Offer message to sign and send further to IPFS channel

/liability/infochan/eth/signing/result (robonomics_msgs/Result)
robonomics_msgs/Result message to sign and send further to IPFS channel

10.3 Published topics

/liability/infochan/incoming/demand (robonomics_msgs/Demand)
Contains a robonomics_msgs/Demand message which was read from IPFS channel

/liability/infochan/incoming/offer (robonomics_msgs/Offer)
Contains a robonomics_msgs/Offer message which was read from IPFS channel

/liability/infochan/incoming/result (robonomics_msgs/Result)
Contains a robonomics_msgs/Result message which was read from IPFS channel

/liability/incoming (robonomics_liability/Liability)
Contains all the information about the last created robonomics_liability/Liability

/liability/ready (robonomics_liability/Liability)
Signals when a robonomics_liability/Liability is ready for execution

/liability/complete (robonomics_liability/Liability)
Signals when a robonomics_liability/Liability has done its job

/liability/finalized (std_msgs/String)
Signals when a liability has been finalized

10.4 Services

/liability/start (robonomics_liability/StartLiability)
The service tells executor to play topics from the objective. It’s required to pass a liability address (robo-
nomics_liability/StartLiability), which you can get from /liability/ready topic

/liability/finish (robonomics_liability/FinishLiability)
a CPS should call the service after performing the task. The input is robonomics_liability/FinishLiability

/liability/restart (robonomics_liability/StartLiability)
The service allows to restart a liability after the system shutdown. The input is robo-
nomics_liability/StartLiability

28 Chapter 10. Robonomics Liability

../aira_in_depth/Message_spec.html
../aira_in_depth/Message_spec.html
../aira_in_depth/Message_spec.html
../aira_in_depth/Message_spec.html
../aira_in_depth/Message_spec.html
../aira_in_depth/Message_spec.html
robonomics_liability_msgs.html
robonomics_liability_msgs.html
robonomics_liability_msgs.html
robonomics_liability_msgs.html
robonomics_liability_msgs.html
robonomics_liability_msgs.html
robonomics_liability_msgs.html
robonomics_liability_msgs.html


AIRA Documentation

/liability/resume (robonomics_liability/StartLiability)
The service allows to resume a liability from the last timestamp available in the persistence store. The input is
robonomics_liability/StartLiability

10.4. Services 29

robonomics_liability_msgs.html


AIRA Documentation

30 Chapter 10. Robonomics Liability



CHAPTER 11

Robonomics Liability Messages

11.1 robonomics_liability/Liability.msg

Field Type Description
address ethereum_common/Address The Liability’s address
model ipfs_common/Multihash CPS behavioral model Identifier
objective ipfs_common/Multihash CPS behavioral model parameters in rosbag file
result ipfs_common/Multihash Liability result hash
promisee ethereum_common/Address The promisee address
promisor ethereum_common/Address The promisor address (usually CPS)
lighthouse ethereum_common/Address The address of lighthouse your CPS works on
token ethereum_common/Address Operational token address
cost ethereum_common/UInt256 CPS behavioral model implementation cost
validator ethereum_common/Address Observing network address
validatorFee ethereum_common/UInt256 Observing network commission

11.2 ipfs_common/Multihash.msg

Field Type Description
multihash std_msgs/String A wrapper for model and objective fields

11.3 robonomics_liability/StartLiability.srv

Request

Field Type Description
address std_msgs/String The address of Liability you are willing to execute

31



AIRA Documentation

Response

Field Type Description
success std_msgs/Bool Weather or not the Liability was started
msg std_msgs/String Status of launch

11.4 robonomics_liability/FinishLiability.srv

Request

Field Type Description
address std_msgs/String The address of Liability to finish
success std_msgs/Bool The status of execution

Response

The response is empty

32 Chapter 11. Robonomics Liability Messages



CHAPTER 12

Ethereum Common

The packages contains two launch files: erc20.launch and signer.launch. The last one is included in Robo-
nomics Liability.

Below is the description for erc20 node which contains utils for convenient work with Ethereum accounts and XRT
token.

12.1 ROS Parameters

~web3_http_provider
Web3 HTTP provider address. The type is string, defaults to http://127.0.0.1:8545

~erc20_token
ERC20 token to work with. Type is string, defaults to xrt.3.robonomics.eth

~factory_contract
The name of the liability factory. The type is string, defaults to factory.3.robonomics.eth

~ens_contract
The checksumed address of ENS registry. The type is string, defaults to ""

~keyfile
Path to keyfile. The type is string, defaults to "". Required parameter

~keyfile_password_file
Path to a file with password for the keyfile. The type is string, defaults to "". Required parameter

12.2 Published topics

/eth/event/transfer (ethereum_common/TransferEvent)
The event ethereum_common/TransferEvent is emitted after the transfer of tokens was made

33



AIRA Documentation

/eth/event/approval (ethereum_common/ApprovalEvent)
The event ethereum_common/ApprovalEvent is emitted after the approval of tokens was made

12.3 Services

/eth/accounts (ethereum_common/Accounts)
List of available Ethereum accounts. See ethereum_common/Accounts.srv

/eth/account_eth_balance (ethereum_common/AccountBalance)
Returns the balance of the given address in Wei. See ethereum_common/AccountBalance.srv

/eth/eth_balance (ethereum_common/Balance)
Returns the balance of the default address. See ethereum_common/Balance.srv

/eth/current_block (ethereum_common/BlockNumber)
Returns current block number. See ethereum_common/BlockNumber.srv

/eth/transfer (ethereum_common/Transfer)
Transfers tokens from the default account to a given one. See ethereum_common/Transfer.srv

/eth/transfer_from (ethereum_common/TransferFrom)
Transfers tokens from a given account to another one. See ethereum_common/TransferFrom.srv

/eth/approve (ethereum_common/Approve)
Approves tokens from the default account to a given one. See ethereum_common/Approve.srv

/eth/account_xrt_balance (ethereum_common/AccountBalance)
Returns the XRT balance of a given account. See ethereum_common/AccountBalance.srv

/eth/xrt_balance (ethereum_common/Balance)
Return the XRT balance of the default account. See ethereum_common/Balance.srv

/eth/account_xrt_allowance (ethereum_common/AccountToAddressAllowance)
Returns how much one account is allowed to spend from another account. See
ethereum_common/AccountToAddressAllowance.srv

/eth/xrt_allowance (ethereum_common/Allowance)
Returns how much the Factory is allowed to spend from the default account. See
ethereum_common/Allowance.srv

34 Chapter 12. Ethereum Common



CHAPTER 13

Ethereum Common Messages

13.1 ethereum_common/Address.msg

Field Type Description
address std_msgs/String Address in Ethereum blockchain

13.2 ethereum_common/UInt256.msg

Field Type Description
uint256 std_msgs/String A wrapper for big integers

13.3 ethereum_common/TransferEvent.msg

Field Type Description
args_from ethereum_common/Address Sender address
args_to ethereum_common/Address Receiver address
args_value ethereum_common/UInt256 Amount of tokens

13.4 ethereum_common/ApprovalEvent.msg

Field Type Description
args_owner ethereum_common/Address Owner address
args_spender ethereum_common/Address Spender address
args_value ethereum_common/UInt256 Amount of tokens

35



AIRA Documentation

13.5 ethereum_common/AccountBalance.srv

Request

Field Type Description
account ethereum_common/Address Ethereum address

Response

Field Type Description
balance ethereum_common/UInt256 Balance in Wei

13.6 ethereum_common/AccountToAddressAllowance.srv

Request

Field Type Description
account ethereum_common/Address Ethereum address
to ethereum_common/Address Ethereum address

Response

Field Type Description
amount ethereum_common/UInt256 Balance in Wn

13.7 ethereum_common/Accounts.srv

Request

Request is empty

Response

Field Type Description
accounts ethereum_common/Address[] List of available accounts

13.8 ethereum_common/Allowance.srv

Request

Request is empty

Response

Field Type Description
amount ethereum_common/UInt256 Amount of XRT the Factory is allowed to spend

36 Chapter 13. Ethereum Common Messages



AIRA Documentation

13.9 ethereum_common/Approve.srv

Request

Field Type Description
spender ethereum_common/Address Who is allowed to spend
value ethereum_common/UInt256 How much tokens are allowed

Response

Field Type Description
txhash std_msgs/Uint8[32] Transaction hash

13.10 ethereum_common/Balance.srv

Request

Request is empty

Response

Field Type Description
balance ethereum_common/UInt256 The balance of default account

13.11 ethereum_common/BlockNumber.srv

Request

Request is empty

Response

Field Type Description
number std_msgs/Uint64 Current block number

13.12 ethereum_common/Transfer.srv

Request

Field Type Description
to ethereum_common/Address Ethereum address
value ethereum_common/UInt256 The amount of tokens

Response

Field Type Description
txhash std_msgs/Uint8[32] Transaction hash

13.9. ethereum_common/Approve.srv 37



AIRA Documentation

13.13 ethereum_common/TransferFrom.srv

Request

Field Type Description
owner ethereum_common/Address Owner’s address
to ethereum_common/Address Another account
value ethereum_common/UInt256 The amount of tokens

Response

Field Type Description
txhash std_msgs/Uint8[32] Transaction hash

38 Chapter 13. Ethereum Common Messages



CHAPTER 14

Connect the Simplest CPS

In this section we will build the simplest real cyber-physical system!

We will buy a “wink” from Arduino, e.g. make Arduino blink with its onboard led. The lesson is tested on Arduino
Uno, but any other board with a led will do the job.

Note: The source code of this lesson is here.

14.1 Arduino

The firmware for the board is located in arduino_blink/misc/arduino/arduino.ino. Use Arduino IDE to load the code
to your Arduino board.

In the code we subscribe for the /blink_led topic and set a callback. The type of the topic is Empty, so the board
waits until someone publishes to the topic and performs the LED blinking.

#include <ros.h>
#include <std_msgs/Empty.h>

ros::NodeHandle nh;

void blink(int led, int mil) {

digitalWrite(led, HIGH);
delay(mil);
digitalWrite(led, LOW);
delay(mil);

}

void messageCb( const std_msgs::Empty& toggle_msg){
blink(LED_BUILTIN, 500);

(continues on next page)

39

https://github.com/airalab/robonomics_tutorials/tree/master/arduino_blink
https://github.com/airalab/robonomics_tutorials/blob/master/arduino_blink/misc/arduino/arduino.ino
https://www.arduino.cc/en/Main/Software


AIRA Documentation

(continued from previous page)

blink(LED_BUILTIN, 500);
blink(LED_BUILTIN, 500);

}

ros::Subscriber<std_msgs::Empty> sub("blink_led", &messageCb );

void setup()
{

pinMode(LED_BUILTIN, OUTPUT);
nh.initNode();
nh.subscribe(sub);

}

void loop()
{

nh.spinOnce();
delay(1);

}

14.2 AIRA client

Note: You can download the latest release from here

Set up the COM port forwarding as described in this lesson. You should forward your /dev/ttyUSB0 or /dev/
ttyACM0 port (depending on the system) to COM1. In the client /dev/ttyS0 will represent the board. After this
launch the virtual machine.

14.3 ROS

When new liability is created it goes to /liability/ready topic. We have to remember the address and call
/liability/start service to get the data from objective.

def newliability(l):
self.liability = l.address
rospy.loginfo("Got new liability {}".format(self.liability))

prefix = "/liability/eth_" + self.liability
rospy.Subscriber(prefix + '/blink', Empty, self.blink)

rospy.wait_for_service("/liability/start")
rospy.ServiceProxy('/liability/start',

→˓StartLiability)(StartLiabilityRequest(address=self.liability))
rospy.Subscriber("/liability/ready", Liability, newliability)

A message in the /blink topic come from the objective field. Have a look at Basic usage page.

40 Chapter 14. Connect the Simplest CPS

https://github.com/airalab/aira/releases
connect_sensor.html
../basic_usage.html


AIRA Documentation

14.4 AIRA

Connect to AIRA client via SSH as described here. All tutorials are pre-installed. To launch the ros package run the
following command:

$ rosrun arduino_blink blink.py

Also we need to add a rosbag file to IPFS:

$ ipfs add rosbag/blink.bag

Note: Before the next step you should approve XRT tokens on the Factory.

On your host system build and launch an Dapp for the lesson:

$ git clone https://github.com/airalab/robonomics_tutorials/
$ cd robonomics_tutorials/arduino_blink_dapp
$ npm i && npm run dev

Open the link and press Demand then Offer buttons. Wait until a new liability is created and you should see the board
blinking. Congratulations on the first agent!

14.4. AIRA 41

Connecting_via_SSH.html
http://localhost:8000/


AIRA Documentation

42 Chapter 14. Connect the Simplest CPS



CHAPTER 15

Passing Dynamic Parameters

In previous example we discussed how to create a simple CPS with Arduino. Our first CPS is able to do only one task:
to blink a led. We suggest you to get through the first lesson. Now let’s expand the example and teach our board to
blink blue or red led depending on objective parameter.

Note: The source code of this lesson is here.

15.1 Arduino

The only difference in Arduino source code is instead of subscribing to one topic now we subscribe to /blink_red
and /blink_blue topics

#include <ros.h>
#include <std_msgs/Empty.h>

ros::NodeHandle nh;

void blink(int led, int mil) {

digitalWrite(led, HIGH);
delay(mil);
digitalWrite(led, LOW);
delay(mil);

}

void blinkRedCb(const std_msgs::Empty& msg) {
blink(13, 500);
blink(13, 500);
blink(13, 500);

}

(continues on next page)

43

connect_simple_cps.html
https://github.com/airalab/robonomics_tutorials/tree/master/arduino_with_args


AIRA Documentation

(continued from previous page)

void blinkBlueCb(const std_msgs::Empty& msg) {
blink(12, 500);
blink(12, 500);
blink(12, 500);

}

ros::Subscriber<std_msgs::Empty> subRed("blink_red", &blinkRedCb);
ros::Subscriber<std_msgs::Empty> subBlue("blink_blue", &blinkBlueCb);

void setup()
{

pinMode(13, OUTPUT);
pinMode(12, OUTPUT);

nh.initNode();
nh.subscribe(subRed);
nh.subscribe(subBlue);

}

void loop()
{

nh.spinOnce();
delay(1);

}

Here is the diagram of all connections:

15.2 ROS

We can pass arguments via objective which points to rosbag file. Have a look at blink.py script. The main
difference is blink() method:

...

(continues on next page)

44 Chapter 15. Passing Dynamic Parameters



AIRA Documentation

(continued from previous page)

def blink(self, data):
if data.data == "blue":

rospy.loginfo("Blinking blue...")
self.blink_blue.publish(Empty())

if data.data == "red":
rospy.loginfo("Blinking red...")
self.blink_red.publish(Empty())

rospy.wait_for_service('/liability/finish')
fin = rospy.ServiceProxy('/liability/finish', FinishLiability)
fin(FinishLiabilityRequest(address=self.liability, success=True))
rospy.loginfo("Finished")

...

Now /blink topic has a String type. You can find prepared rosbags in rosbag folder.

15.3 AIRA

Connect to AIRA client via SSH as described here. Do not forget to add COM1 port in settings. Run the following
command:

$ rosrun arduino_with_args blink.py

Also we need to add rosbag files to IPFS:

$ ipfs add rosbag/blink_blue.bag
$ ipfs add rosbag/blink_red.bag

Note: Before the next step you should approve XRT tokens on the Factory.

The last step is to build Dapp and launch. Take a look at the previous lesson. To make Arduino blink the blue led send
blue demand and blue offer messages. For the red one send corresponding messages.

That’s it! Now you are able to pass dynamic parameters to your cyber-physical system agent!

15.3. AIRA 45

Connecting_via_SSH.md
connect_simple_cps.html


AIRA Documentation

46 Chapter 15. Passing Dynamic Parameters



CHAPTER 16

Connect an Air Pollution Sensor

In this lesson you are going to learn how to connect your sensor to the network and make it publish data. You will see
how it is easy to become a member of a global sensor network!

Note: Source code is located here

In this section we are not going to create a liability contract. Instead we will teach Arduino with sensors to publish the
data by a request. All measurements will be published as a Result message

16.1 Arduino

Let’s begin with an Arduino circuit. You need the following components:

• Arduino Uno

• Optical Dust Sensor Sharp GP2Y1010AU0F

• Gas Sensor MQ-2

• Gas Sensor MQ-7

• Resistor 150 Ohm

• Capacitor 220 uF

• Wires

Connect all parts as described below:

47

https://github.com/airalab/robonomics_tutorials/tree/master/sensor_city


AIRA Documentation

A firmware for Arduino Uno is in sensor_city/scetches folder. In order to upload it to the board use Arduino
IDE.

48 Chapter 16. Connect an Air Pollution Sensor

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software


AIRA Documentation

16.2 Aira

16.2. Aira 49



AIRA Documentation

Note: The following steps are performed in Aira client. You can download the latest image from this page. It’s
convenient to connect via SSH

After you have imported the image to VirtualBox, connect Arduino via USB to your PC and enable serial port forward-
ing. You should check Enable Serial Port and assign /dev/ttyACM0 in Path/Address. Inside the virtual machine
/dev/ttyS0 refers to your external Arduino.

Finally launch the image and run these command:

$ roslaunch sensor_city publish_data.launch

Hint: Check out the source code to learn how it works under the hood!

Now Aira patiently waits for a signal to publish the measurements. Go to Dapp and click on Broadcast signal. You
should see the data!

50 Chapter 16. Connect an Air Pollution Sensor

https://github.com/airalab/aira/releases
../aira_in_depth/Connecting_via_SSH.html
https://dev.aira.life/smart-city/#/


CHAPTER 17

Introduction

Robonomics-js is a simple Javascript library for working with Robonomics network

17.1 Installation

npm install robonomics-js --save

or

yarn add robonomics-js

CDN

<script src="https://cdn.jsdelivr.net/npm/robonomics-js/dist/robonomics.min.js"></
→˓script>

17.1.1 Dependencies

• Web3

• Ipfs

17.2 Initialization

import Robonomics, { MessageProviderIpfsApi } from 'robonomics-js'
import IPFS from 'ipfs-api'

const robonomics = new Robonomics({
provider: new MessageProviderIpfsApi(new IPFS('http://localhost:5001'))

(continues on next page)

51

https://github.com/airalab/robonomics-js
https://github.com/ethereum/web3.js/
https://github.com/ipfs/js-ipfs


AIRA Documentation

(continued from previous page)

})

robonomics.ready().then(() => {
console.log('robonomics js ready')
console.log('xrt', robonomics.xrt.address)
console.log('factory', robonomics.factory.address)
console.log('lighthouse default', robonomics.lighthouse.address)

})

17.2.1 Available arguments

• web3 - isn’t necessary if Metamask is available

• account - isn’t necessary if Metamask is available

• privateKey - optional

• provider - IPFS HTTP API

• version - the latest by default

• ens - ENS address, 0x314159265dD8dbb310642f98f50C066173C1259b by default

• lighthouse - a lighthouse name in ENS, airalab.lighthouse.1.robonomics.eth by default

52 Chapter 17. Introduction

http://metamask.io/
http://metamask.io/
https://etherscan.io/address/0x314159265dD8dbb310642f98f50C066173C1259b


CHAPTER 18

How to

18.1 How to create a demand?

Listen to a demand with a specific model:

const model = 'QmWXk8D1Fh5XFJvBodcWbwgyw9htjc6FJg8qi1YYEoPnrg'
robonomics.getAsk(model, (msg) => {

console.log(msg)
})
const ask = {

objective: 'QmSt69qQqGka1qwRRHbdmAWk4nCbsV1mqJwd8cWbEyhf1M',
token: robonomics.xrt.address,
cost: 1,
deadline: 9999999

}

Fields:

• objective - IPFS hash to a rosbag file with a task

• token - token address

• cost - cost

• validator - validator address

• validatorFee - validator fee

• deadline - block number

It’s necessary to make an approve:

robonomics.xrt.send('approve', [robonomics.factory.address, ask.cost], { from:
→˓robonomics.account }).then((tx) => console.log(tx))

In case of other token:

53



AIRA Documentation

import { Token } from 'robonomics-js'
const token = new Token(robonomics.web3, '0x1231321321321321321321321')
token.send('approve', [robonomics.factory.address, ask.cost], { from: robonomics.
→˓account })
.then((tx) => console.log(tx))

And send a demand message:

robonomics.postAsk(market, ask)
.then((liability) => {

console.log('liability', liability.address)
liability.watchResult((result) => {

console.log('liability result', result)
})
return liability.getInfo()

})
.then((info) => {

console.log('liability info', info)
})

18.2 How to get an offer?

Obtain all the messages by a given model:

const model = 'QmWXk8D1Fh5XFJvBodcWbwgyw9htjc6FJg8qi1YYEoPnrg'
robonomics.getBid(model, (msg) => {

console.log(msg)
})

Fields:

• objective - IPFS hash to a rosbag file with a task

• token - token address

• cost - cost

• lighthouseFee - lighthouse fee

• deadline - block number

18.3 How to listen to a result?

Obtain all the messages by a given model:

robonomics.getResult((msg) => {
console.log(msg)

})

Note: It’s not a verified result. A verified result could be obtained from a liability contract.

54 Chapter 18. How to



AIRA Documentation

18.4 How to create a lighthouse?

const minimalFreeze = 1000 // Wn
const timeout = 25 // blocks
const name = 'mylighthouse' //
robonomics.factory.send('createLighthouse', [minimalFreeze, timeout, name], { from:
→˓robonomics.account })

.then((tx) => console.log(tx))

robonomics.factory.watchLighthouse((lighthouse) => {
console.log(lighthouse.name)

})

18.5 How to become a provider?

const name = 'mylighthouse' //
const stake = 1000 // Wn

robonomics.setLighthouse(name)

robonomics.xrt.send('approve', [robonomics.lighthouse.address, stake], { from:
→˓robonomics.account })

.then((tx) => console.log(tx))

robonomics.lighthouse.send('refill', [stake], { from: robonomics.account })
.then((tx) => console.log(tx))

18.6 How to change a lighthouse?

robonomics.setLighthouse(name)

18.7 How to check the balance?

robonomics.xrt.call('balanceOf', [robonomics.account])
.then((balance) => console.log('balance', balance))

18.8 How to check the allowance?

robonomics.xrt.call('allowance', [robonomics.account, robonomics.factory.address])
.then((allowance) => console.log('allowance', allowance))

18.4. How to create a lighthouse? 55



AIRA Documentation

56 Chapter 18. How to



CHAPTER 19

Creating Dapp

Almost every project needs a user interface to interact with. A user should not type in a Demand message. In Airalab
repository there’s a convenient template for a Dapp. In this section you are going to learn how to get a new Dapp for
your CPS.

Note: The source code is here

To get a template you don’t even have to clone the repo. Instead do these steps:

$ npm install -g vue-cli
$ vue init airalab/vue-dapp-robonomics-template my-project
$ cd my-project
$ npm install
$ npm run dev

After the last step a webserver has started on http://localhost:8000/. But before you open this link in a browser you
should configure the Dapp.

Note: MetaMask is required for the Dapp

Here is a configuration file below. You have to specify a LIGHTHOUSE you work on, your CPS MODEL and
OBJECTIVE. Also the Dapp uses IPFS message broker. You can either set up your own broker or use existing
one, for example https://wss.pool.aira.life.

export const NETWORK = 1
export const LIGHTHOUSE = 'airalab.lighthouse.3.robonomics.eth'
export const MODEL = 'QmdFh1HPVe7H4LrDio899mxA7NindgxqiNUM9BNnBD7ryS'
export const OBJECTIVE = 'QmbSW1E73DKUvGDrgx8GirEVfHJLvj8RBijtH9iEZ7UecU'
export const IPFS_PUBSUB = 'http://127.0.0.1:9999'
export const ENS = ''
export const VERSION = 1

After editing the file, launch the Dapp

57

https://github.com/airalab/vue-dapp-robonomics-template/
http://localhost:8000/
https://metamask.io
https://github.com/vol4tim/ipfs-api-pubsub-ws


AIRA Documentation

$ npm run dev

Check the source code out to get familiar with the structure of the template.

Good luck!

58 Chapter 19. Creating Dapp


	Getting Started
	Basic Usage
	Connecting via SSH
	Frequently Asked Questions
	Contributing
	How It Works
	Contracts Deployment
	Become a Provider
	Market Messages
	Robonomics Liability
	Robonomics Liability Messages
	Ethereum Common
	Ethereum Common Messages
	Connect the Simplest CPS
	Passing Dynamic Parameters
	Connect an Air Pollution Sensor
	Introduction
	How to
	Creating Dapp

