

aiounittest’s documentation!

In the Python 3.8 (release note [https://docs.python.org/3/whatsnew/3.8.html#unittest]) and newer consider to use the unittest.IsolatedAsyncioTestCase [https://docs.python.org/3/library/unittest.html#unittest.IsolatedAsyncioTestCase]. Builtin unittest module is now asyncio-featured.

	What? Why? Next?
	Why Not?

	What?

	Why?

	Next?

	Usage
	AsyncTestCase

	AsyncMockIterator

	async_test

	futurized

	License

What? Why? Next?

Why Not?

In the Python 3.8 (release note [https://docs.python.org/3/whatsnew/3.8.html#unittest]) and newer consider to use the unittest.IsolatedAsyncioTestCase [https://docs.python.org/3/library/unittest.html#unittest.IsolatedAsyncioTestCase]. Builtin unittest module is now asyncio-featured.

What?

This module is a set of helpers to write simple and clean test for asyncio-based code.

Why?

Actually this is not nothing new, it just wraps current test approach in the handy utils.
There are couple libraries that try to solve this problem. This one:

	integrates nicely with standard unittest library,

	is as simple as possible, without a bunch of stuff that is straithforward with unittest (eg re-inveting assertRaises with assertAsyncRaises),

	supports both Python 3.5+ syntax and Python 3.4,

	it’s well-documented (I think)

Among the others similar modules the best known is an extension pytest-asyncio [https://pypi.python.org/pypi/pytest-asyncio]. It provides
couple extra features, but it cannot be used with unittest.TestCase (it does not support fixture injection).

Further reading:

	https://stackoverflow.com/questions/23033939/how-to-test-python-3-4-asyncio-code

	http://jacobbridges.github.io/post/unit-testing-with-asyncio/

Next?

	introduce AsyncMock, … Probably not, the unitest.mock.Mock with futurized is pretty simple.

	it would be great if unittest could support async test > python-ideas

Usage

To enable support for async tests just use aiounittest.AsyncTestCase instead
of unittest.TestCase (or decorate async test coroutines with async_test). The futurized
will help you to mock coroutines.

	AsyncTestCase

	AsyncMockIterator

	async_test

	futurized

AsyncTestCase

Extends unittest.TestCase to support asynchronous tests. Currently the most common solution is to explicitly run asyncio.run_until_complete with test case. Aiounittest AsyncTestCase wraps it, to keep the test as clean and simple as possible.

	
class aiounittest.AsyncTestCase(methodName='runTest')

	AsyncTestCase allows to test asynchoronus function.

The usage is the same as unittest.TestCase. It works with other test frameworks
and runners (eg. pytest, nose) as well.

	AsyncTestCase can run:

	
	test of synchronous code (unittest.TestCase)

	test of asynchronous code, supports syntax with
async/await (Python 3.5+) and
asyncio.coroutine/yield from (Python 3.4)

Code to test:

import asyncio

async def async_add(x, y, delay=0.1):
 await asyncio.sleep(delay)
 return x + y

async def async_one():
 await async_nested_exc()

async def async_nested_exc():
 await asyncio.sleep(0.1)
 raise Exception('Test')

Tests:

import aiounittest

class MyTest(aiounittest.AsyncTestCase):

 async def test_await_async_add(self):
 ret = await async_add(1, 5)
 self.assertEqual(ret, 6)

 async def test_await_async_fail(self):
 with self.assertRaises(Exception) as e:
 await async_one()

	
get_event_loop()

	Method provides an event loop for the test

It is called before each test, by default aiounittest.AsyncTestCase creates the brand new event
loop everytime. After completion, the loop is closed and then recreated, set as default,
leaving asyncio clean.

Note

In the most common cases you don’t have to bother about this method, the default implementation is a receommended one.
But if, for some reasons, you want to provide your own event loop just override it. Note that AsyncTestCase won’t close such a loop.

class MyTest(aiounittest.AsyncTestCase):

 def get_event_loop(self):
 self.my_loop = asyncio.get_event_loop()
 return self.my_loop

AsyncMockIterator

	
class aiounittest.mock.AsyncMockIterator(seq)

	Allows to mock asynchronous for-loops.

Note

Supported only in Python 3.6 and newer, uses async/await syntax.

from aiounittest import AsyncTestCase
from aiounittest.mock import AsyncMockIterator
from unittest.mock import Mock

async def fetch_some_text(source):
 res = ''
 async for txt in source.paginate():
 res += txt
 return res

class MyAsyncMockIteratorTest(AsyncTestCase):

 async def test_add(self):
 source = Mock()
 mock_iter = AsyncMockIterator([
 'asdf', 'qwer', 'zxcv'
])
 source.paginate.return_value = mock_iter

 res = await fetch_some_text(source)

 self.assertEqual(res, 'asdfqwerzxcv')
 mock_iter.assertFullyConsumed()
 mock_iter.assertIterCount(3)

	
assertFullyConsumed()

	Whenever async for reached the end of the given sequence.

	
assertIterCount(expected)

	Checks whenever a number of a mock iteration matches expected.

	Parameters

	int (expected) – Expected number of iterations

async_test

	
aiounittest.async_test(func=None, loop=None)

	Runs synchonously given function (coroutine)

	Parameters

	
	func (callable) – function to run (mostly coroutine)

	loop (event loop of None) – event loop to use to run func

By default the brand new event loop will be created (old closed). After completion, the loop will be closed and then recreated, set as default,
leaving asyncio clean.

Note: aiounittest.async_test is an alias of aiounittest.helpers.run_sync

Function can be used like a pytest.mark.asyncio (implementation differs),
but it’s compatible with unittest.TestCase class.

import asyncio
import unittest
from aiounittest import async_test

async def add(x, y):
 await asyncio.sleep(0.1)
 return x + y

class MyAsyncTestDecorator(unittest.TestCase):

 @async_test
 async def test_async_add(self):
 ret = await add(5, 6)
 self.assertEqual(ret, 11)

Note

If the loop is provided, it won’t be closed. It’s up to you.

This function is also used internally by aiounittest.AsyncTestCase to run coroutines.

futurized

	
aiounittest.futurized(o)

	Makes the given object to be awaitable.

	Parameters

	o (any) – Object to wrap

	Returns

	awaitable that resolves to provided object

	Return type

	asyncio.Future

Anything passed to futurized is wrapped in asyncio.Future.
This makes it awaitable (can be run with await or yield from) as
a result of await it returns the original object.

If provided object is a Exception (or its sublcass) then the Future will raise it on await.

fut = aiounittest.futurized('SOME TEXT')
ret = await fut
print(ret) # prints SOME TEXT

fut = aiounittest.futurized(Exception('Dummy error'))
ret = await fut # will raise the exception "dummy error"

The main goal is to use it with unittest.mock.Mock (or MagicMock) to
be able to mock awaitable functions (coroutines).

Consider the below code

from asyncio import sleep

async def add(x, y):
 await sleep(666)
 return x + y

You rather don’t want to wait 666 seconds, you’ve gotta mock that.

from aiounittest import futurized, AsyncTestCase
from unittest.mock import Mock, patch

import dummy_math

class MyAddTest(AsyncTestCase):

 async def test_add(self):
 mock_sleep = Mock(return_value=futurized('whatever'))
 patch('dummy_math.sleep', mock_sleep).start()
 ret = await dummy_math.add(5, 6)
 self.assertEqual(ret, 11)
 mock_sleep.assert_called_once_with(666)

 async def test_fail(self):
 mock_sleep = Mock(return_value=futurized(Exception('whatever')))
 patch('dummy_math.sleep', mock_sleep).start()
 with self.assertRaises(Exception) as e:
 await dummy_math.add(5, 6)
 mock_sleep.assert_called_once_with(666)

License

MIT License

Copyright (c) 2017-2019 Krzysztof Warunek

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Index

 A
 | F
 | G

A

 	
 	assertFullyConsumed() (aiounittest.mock.AsyncMockIterator method)

 	assertIterCount() (aiounittest.mock.AsyncMockIterator method)

 	
 	async_test() (in module aiounittest)

 	AsyncMockIterator (class in aiounittest.mock)

 	AsyncTestCase (class in aiounittest)

F

 	
 	futurized() (in module aiounittest)

G

 	
 	get_event_loop() (aiounittest.AsyncTestCase method)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 aiounittest’s documentation!

 		
 What? Why? Next?

 		
 Why Not?

 		
 What?

 		
 Why?

 		
 Next?

 		
 Usage

 		
 AsyncTestCase

 		
 AsyncMockIterator

 		
 async_test

 		
 futurized

 		
 License

_static/up-pressed.png

_static/up.png

