

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	aioshell 1.0a1 documentation

Welcome to aioshell’s documentation!

Run shell and SSH commands concurrently inside Python code with few keystrokes
and the new powerful Python’s asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] module (since version 3.4).
Quick example:

from aioshell import Executor, Shell
exe = Executor()
exe.add(Shell('date >/tmp/aioshell; sleep 1'))
exe.add(Shell('sleep 1; date >>/tmp/aioshell'))
exe.finish()
Check /tmp/aioshell file to see that only 1 sec has passed.

Contents:

	aioshell module
	Executor

	Shell

	SSH

	Runnable

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Carlos Eduardo Moreira dos Santos.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	aioshell 1.0a1 documentation

aioshell module

Run single-threaded concurrent shell and ssh commands with few keystrokes.

A simpler way to use Python’s new asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] module, making
it easier and faster to run shell and ssh commands.

Executor

	
class aioshell.Executor[source]

	Less boilerplate to run asynchronous tasks.

Basic usage: call add() once for every Runnable object
(Shell, SSH) and, in the end, call finish()
to wait for them to finish and clean resources. Example:

from aioshell import Executor, Shell
exe = Executor()
exe.add(Shell('date >/tmp/aioshell; sleep 1'))
exe.add(Shell('sleep 1; date >>/tmp/aioshell'))
exe.finish()

In the /tmp/test file, you’ll notice that it took only 1 second
instead of 2.

	
add(runnable_coro_future)[source]

	Run a Runnable (basic usage), coroutine or Future.

Note for advanced users: each call will append a correspondent
Task [https://docs.python.org/3/library/asyncio-task.html#asyncio.Task] or Future [https://docs.python.org/3/library/asyncio-task.html#asyncio.Future] to
futures in case you want more information about the execution
than provided by this class.

	Parameters:	runnable_coro_future (Runnable (e.g. Shell,
SSH), coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine] or
Future [https://docs.python.org/3/library/asyncio-task.html#asyncio.Future] objects) – action to be performed asynchronously.

	
finish()[source]

	Wait for all tasks, close the event loop and clean resources.

You should call this method in the end of your program.
It performs 3 actions:

	Wait for all added tasks (by add()) to be finished
(like wait() does);

	Clear futures list;

	Close the main event loop:

	Allow clean exit, without warnings;

	If you need to run anything else, use a new object of this class.

	
futures = None

	(Advanced usage) accumulated results of add().

Useful for further information about executions.
If add() is called with a Runnable or
coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine] object, a correpondent Task will be
appended to this list. If a Future [https://docs.python.org/3/library/asyncio-task.html#asyncio.Future] is added,
the Future itself will be appended.

	Type:	list of Task [https://docs.python.org/3/library/asyncio-task.html#asyncio.Task] or
Future [https://docs.python.org/3/library/asyncio-task.html#asyncio.Future]

	
loop = None

	(Advanced usage) event loop.

This event loop is shared between all objects until it is closed.
If the loop is closed, automatically create a new one (it will also be
shared between new objects).

	Type:	BaseEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop]

	
run_wait(runnable_coro_future)[source]

	Block until runnable_coro_future is finished.

It will wait for only this runnable_coro_future.
Useful if you want the traditional behaviour of sequential programming
for some reason.
Otherwise, use the concurrent and faster version add().

	Parameters:	runnable_coro_future (Runnable (e.g. Shell,
SSH), coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine] or
Future [https://docs.python.org/3/library/asyncio-task.html#asyncio.Future] objects) – action to be performed synchronously.

	
wait()[source]

	Block until all added tasks by add() are done.

You can add more tasks later.
When you are finished, call finish().

Shell

	
class aioshell.Shell(cmd, title=None, stdout=None, stderr=None)[source]

	Run shell commands asynchronously with few keystrokes.

Examples:

from aioshell import Executor, Shell
exe = Executor()

If you don't care about shell's output
exe.add(Shell('date >/tmp/aioshell'))

Output can be read later from Shell object
shell = Shell('date', stdout=Shell.TRUE)
exe.add(shell)

We won't add any other task, so let's finish:
exe.finish()

All the tasks are done after finish(), so stdout is now available:
print(shell.stdout)

The constructor has all the information to run a shell command.
It will be run after being passed as an argument to
Executor.add().
The default behavior is to capture only stderr output (for error
debugging).

	Parameters:	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – shell command to be executed.

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – a meaninful name for your task for debugging purposes.

	stdout (Shell.DEVNULL or Shell.TRUE) – whether or not to capture stdout. Default: don’t capture.

	stderr (Shell.TRUE, Shell.DEVNULL or
Shell.ERR2OUT) – whether or not to capture stderr. Default: capture.

	Variables:	
	cmd [https://docs.python.org/3/library/cmd.html#module-cmd] (str [https://docs.python.org/3/library/stdtypes.html#str]) – shell command (constructor’s argument).

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – title as in the constructor.

	returncode (int [https://docs.python.org/3/library/functions.html#int]) – shell exit code.

	stdout (str [https://docs.python.org/3/library/stdtypes.html#str]) – shell standard output. None if not requested or not
executed.

	stderr (str [https://docs.python.org/3/library/stdtypes.html#str]) – shell standard error. None if not requested or not
executed.

	
DEVNULL = -3

	Ignore stdout or stderr output.

	
ERR2OUT = -2

	Mix stderr and stdout outputs in stdout.

	
TRUE = -1

	Capture stdout or stderr output.

	
run()[source]

	(coroutine) Execute shell command asynchronously.

You should not call this method directly. Instead, pass this object as
an argument to Executor.add().

	Returns:	coroutine for the shell stdout (also found as an attribute).

	Return type:	coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine], str

	Raises:	CalledProcessError [https://docs.python.org/3/library/subprocess.html#subprocess.CalledProcessError]

SSH

	
class aioshell.SSH(params, cmd, title=None, stdout=None, stderr=None)[source]

	Run SSH asynchronously.

The difference between using this class and Shell is that the
remote stdout and stderr are also managed.
For example, if a remote command prints long and useless output, it would
be transfered throught the network and then discarded locally by
Shell. To solve this problem, SSH class manages also the remote
stdout and stderr, so no bandwidth is wasted.

SSH behaves like Shell (subclass). The only difference is:

	Parameters:	params (string [https://docs.python.org/3/library/string.html#module-string]) – all ssh options. Requires hostname or IP address.

Runnable

	
class aioshell.Runnable[source]

	Interface used by Executor.

Implement this interface to easily run asynchronous code with
Executor.add().

Current implementations: Shell, SSH.

	
run()[source]

	Coroutine called by Executor.add(), without arguments.

If you need arguments, keep them as attributes instead.

 Copyright 2015, Carlos Eduardo Moreira dos Santos.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	aioshell 1.0a1 documentation

 Python Module Index

 a

 			

 		
 a	

 	
 	
 aioshell	

 Copyright 2015, Carlos Eduardo Moreira dos Santos.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	aioshell 1.0a1 documentation

Index

 A
 | D
 | E
 | F
 | L
 | R
 | S
 | T
 | W

A

 	

 	add() (aioshell.Executor method)

 	

 	aioshell (module)

D

 	

 	DEVNULL (aioshell.Shell attribute)

E

 	

 	ERR2OUT (aioshell.Shell attribute)

 	

 	Executor (class in aioshell)

F

 	

 	finish() (aioshell.Executor method)

 	

 	futures (aioshell.Executor attribute)

L

 	

 	loop (aioshell.Executor attribute)

R

 	

 	run() (aioshell.Runnable method)

 	

 	(aioshell.Shell method)

 	run_wait() (aioshell.Executor method)

 	

 	Runnable (class in aioshell)

S

 	

 	Shell (class in aioshell)

 	

 	SSH (class in aioshell)

T

 	

 	TRUE (aioshell.Shell attribute)

W

 	

 	wait() (aioshell.Executor method)

 Copyright 2015, Carlos Eduardo Moreira dos Santos.
 Created using Sphinx 1.3.1.

 _modules/index.html

 Navigation

 		
 index

 		
 modules |

 		aioshell 1.0a1 documentation »

 All modules for which code is available

		aioshell.executor

		aioshell.runnable

		aioshell.shell

		aioshell.ssh

 © Copyright 2015, Carlos Eduardo Moreira dos Santos.
 Created using Sphinx 1.3.1.

_modules/aioshell/shell.html

 Navigation

 		
 index

 		
 modules |

 		aioshell 1.0a1 documentation »

 		Module code »

 Source code for aioshell.shell

"""Run shell commands asynchronously with :class:`Executor`."""
from subprocess import CalledProcessError
import asyncio
from .runnable import Runnable

[docs]class Shell(Runnable):

 """Run shell commands asynchronously with few keystrokes.

 Examples::

 from aioshell import Executor, Shell
 exe = Executor()

 # If you don't care about shell's output
 exe.add(Shell('date >/tmp/aioshell'))

 # Output can be read later from Shell object
 shell = Shell('date', stdout=Shell.TRUE)
 exe.add(shell)

 # We won't add any other task, so let's finish:
 exe.finish()

 # All the tasks are done after finish(), so stdout is now available:
 print(shell.stdout)

 The constructor has all the information to run a shell command.
 It will be run after being passed as an argument to
 :func:`Executor.add`.
 The default behavior is to capture only stderr output (for error
 debugging).

 :param str cmd: shell command to be executed.
 :param str title: a meaninful name for your task for debugging purposes.
 :param stdout: whether or not to capture stdout. Default: don't capture.
 :type stdout: :const:`Shell.DEVNULL` or :const:`Shell.TRUE`
 :param stderr: whether or not to capture stderr. Default: capture.
 :type stderr: :const:`Shell.TRUE`, :const:`Shell.DEVNULL` or
 :const:`Shell.ERR2OUT`

 :var str cmd: shell command (constructor's argument).
 :var str title: title as in the constructor.
 :var int returncode: shell exit code.
 :var str stdout: shell standard output. None if not requested or not
 executed.
 :var str stderr: shell standard error. None if not requested or not
 executed.
 """

 TRUE = asyncio.subprocess.PIPE
 """Capture stdout or stderr output."""
 DEVNULL = asyncio.subprocess.DEVNULL
 """Ignore stdout or stderr output."""
 ERR2OUT = asyncio.subprocess.STDOUT
 """Mix stderr and stdout outputs in stdout."""

 def __init__(self, cmd, title=None, stdout=None, stderr=None):
 """Create the object without running *cmd* yet."""
 if title is None:
 title = cmd
 if stdout is None:
 stdout = Shell.DEVNULL
 if stderr is None:
 stderr = Shell.TRUE

 self.cmd, self.title = cmd, title
 self._stdout, self._stderr = stdout, stderr
 self.returncode = self.stdout = self.stderr = None

 @asyncio.coroutine
[docs] def run(self):
 """*(coroutine)* Execute shell command asynchronously.

 You should not call this method directly. Instead, pass this object as
 an argument to :func:`Executor.add`.

 :return: coroutine for the shell stdout (also found as an attribute).
 :rtype: :ref:`coroutine <coroutine>`, str
 :raises: :class:`CalledProcessError <subprocess.CalledProcessError>`
 """
 # Create the subprocess, redirect the standard output into a pipe
 shell = yield from asyncio.create_subprocess_shell(self.cmd,
 stdout=self._stdout,
 stderr=self._stderr)
 rcode, stdout, stderr = yield from self._get_process_info(shell)
 self.returncode, self.stdout, self.stderr = rcode, stdout, stderr

 if rcode != 0:
 raise CalledProcessError(rcode, self.cmd, stdout, stderr)
 else:
 return self.stdout

 @asyncio.coroutine
 def _get_process_info(self, shell):
 stds_bytes = yield from shell.communicate()
 stdout = _get_output(self._stdout, stds_bytes[0])
 stderr = _get_output(self._stderr, stds_bytes[1])

 return shell.returncode, stdout, stderr

def _get_output(requested, actual):
 if requested == Shell.DEVNULL:
 output = None
 else:
 output = actual.decode().rstrip()
 return output

 © Copyright 2015, Carlos Eduardo Moreira dos Santos.
 Created using Sphinx 1.3.1.

_static/up.png

_static/up-pressed.png

_static/file.png

_static/down-pressed.png

_static/plus.png

_static/comment-bright.png

_static/down.png

_static/minus.png

_static/comment-close.png

_modules/aioshell/runnable.html

 Navigation

 		
 index

 		
 modules |

 		aioshell 1.0a1 documentation »

 		Module code »

 Source code for aioshell.runnable

"""Interface for running async code through :class:`Executor`."""
from abc import ABCMeta, abstractmethod
import asyncio

[docs]class Runnable(metaclass=ABCMeta):

 """Interface used by :class:`Executor`.

 Implement this interface to easily run asynchronous code with
 :func:`Executor.add()`.

 Current implementations: :class:`Shell`, :class:`SSH`.
 """

 @asyncio.coroutine
 @abstractmethod
[docs] def run(self):
 """Coroutine called by :func:`Executor.add()`, without arguments.

 If you need arguments, keep them as attributes instead.
 """
 pass

 © Copyright 2015, Carlos Eduardo Moreira dos Santos.
 Created using Sphinx 1.3.1.

_static/comment.png

_modules/aioshell/executor.html

 Navigation

 		
 index

 		
 modules |

 		aioshell 1.0a1 documentation »

 		Module code »

 Source code for aioshell.executor

"""This module provides only the Executor class."""
import asyncio
from .runnable import Runnable

[docs]class Executor:

 """Less boilerplate to run asynchronous tasks.

 Basic usage: call :func:`add` once for every :class:`Runnable` object
 (:class:`Shell`, :class:`SSH`) and, in the end, call :func:`finish`
 to wait for them to finish and clean resources. Example::

 from aioshell import Executor, Shell
 exe = Executor()
 exe.add(Shell('date >/tmp/aioshell; sleep 1'))
 exe.add(Shell('sleep 1; date >>/tmp/aioshell'))
 exe.finish()

 In the */tmp/test* file, you'll notice that it took only 1 second
 instead of 2.
 """

 _loop = None

 def __init__(self):
 """Get the main event loop."""
 self.futures = []
 """(*Advanced usage*) accumulated results of :func:`add`.

 Useful for further information about executions.
 If :func:`add` is called with a :class:`Runnable` or
 :ref:`coroutine <coroutine>` object, a correpondent Task will be
 appended to this list. If a :class:`Future <asyncio.Future>` is added,
 the Future itself will be appended.

 :type: list of :class:`Task <asyncio.Task>` or
 :class:`Future <asyncio.Future>`
 """
 self.loop = Executor._get_event_loop()
 """(*Advanced usage*) event loop.

 This event loop is shared between all objects until it is closed.
 If the loop is closed, automatically create a new one (it will also be
 shared between new objects).

 :type: :class:`BaseEventLoop <asyncio.BaseEventLoop>`
 """

 @classmethod
 def _get_event_loop(cls):
 """If the asyncio loop is closed, create a new one and set it."""
 if cls._loop is None:
 cls._loop = asyncio.get_event_loop()
 if cls._loop.is_closed():
 cls._loop = asyncio.new_event_loop()
 asyncio.set_event_loop(cls._loop)
 return cls._loop

[docs] def add(self, runnable_coro_future):
 """Run a Runnable (basic usage), coroutine or Future.

 Note for advanced users: each call will append a correspondent
 :class:`Task <asyncio.Task>` or :class:`Future <asyncio.Future>` to
 :attr:`futures` in case you want more information about the execution
 than provided by this class.

 :param runnable_coro_future: action to be performed asynchronously.
 :type runnable_coro_future: :class:`Runnable` (e.g. :class:`Shell`,
 :class:`SSH`), :ref:`coroutine <coroutine>` or
 :class:`Future <asyncio.Future>` objects
 """
 coro_future = _get_coro_future(runnable_coro_future)
 task = asyncio.ensure_future(coro_future)
 self.futures.append(task)
 return task

[docs] def run_wait(self, runnable_coro_future):
 """Block until *runnable_coro_future* is finished.

 It will wait for only this `runnable_coro_future`.
 Useful if you want the traditional behaviour of sequential programming
 for some reason.
 Otherwise, use the concurrent and faster version :func:`add`.

 :param runnable_coro_future: action to be performed synchronously.
 :type runnable_coro_future: :class:`Runnable` (e.g. :class:`Shell`,
 :class:`SSH`), :ref:`coroutine <coroutine>` or
 :class:`Future <asyncio.Future>` objects
 """
 coro_future = _get_coro_future(runnable_coro_future)
 return self.loop.run_until_complete(coro_future)

[docs] def wait(self):
 """Block until all added tasks by :func:`add` are done.

 You can add more tasks later.
 When you are finished, call :func:`finish`.
 """
 if self.futures:
 self.loop.run_until_complete(asyncio.wait(self.futures))

[docs] def finish(self):
 """Wait for all tasks, close the event loop and clean resources.

 You should call this method in the end of your program.
 It performs 3 actions:

 #. Wait for all added tasks (by :func:`add`) to be finished
 (like :func:`wait` does);
 #. Clear :attr:`futures` list;
 #. Close the main event loop:

 * Allow clean exit, without warnings;
 * If you need to run anything else, use a new object of this class.
 """
 self.wait()
 self.loop.close()
 self.futures.clear()

def _get_coro_future(runnable_coro_future):
 """If it is a Runnable object, call run() to get the coroutine."""
 if isinstance(runnable_coro_future, Runnable):
 coro_future = runnable_coro_future.run()
 else:
 coro_future = runnable_coro_future
 return coro_future

 © Copyright 2015, Carlos Eduardo Moreira dos Santos.
 Created using Sphinx 1.3.1.

_modules/aioshell/ssh.html

 Navigation

 		
 index

 		
 modules |

 		aioshell 1.0a1 documentation »

 		Module code »

 Source code for aioshell.ssh

"""Run SSH asynchronously with :class:`Executor`."""
import asyncio
from shlex import quote
from .shell import Shell

[docs]class SSH(Shell):

 """Run SSH asynchronously.

 The difference between using this class and :class:`Shell` is that the
 remote stdout and stderr are also managed.
 For example, if a remote command prints long and useless output, it would
 be transfered throught the network and then discarded locally by
 :class:`Shell`. To solve this problem, SSH class manages also the remote
 stdout and stderr, so no bandwidth is wasted.

 SSH behaves like :class:`Shell` (subclass). The only difference is:

 :param string params: all ssh options. Requires hostname or IP address.
 """

 def __init__(self, params, cmd, title=None, stdout=None, stderr=None):
 """TODO constructor docstring."""
 if stdout is None:
 stdout = Shell.DEVNULL
 if stderr is None:
 stderr = Shell.TRUE

 remote_cmd = _redirect_outputs(cmd, stdout, stderr)
 local_cmd = 'ssh {} {}'.format(params, quote(remote_cmd))
 super().__init__(local_cmd, title=title, stdout=stdout, stderr=stderr)

 @asyncio.coroutine
 def run(self):
 return super().run()

def _redirect_outputs(cmd, stdout, stderr):
 """Can reduce the bandwidth and log size.

 :type stdout: Shell.TRUE, Shell.DEVNULL
 :type stderr: Shell.TRUE, Shell.DEVNULL, Shell.ERR2OUT
 """
 suffix = ''
 if stdout == Shell.DEVNULL:
 suffix += ' 1>/dev/null'
 if stderr == Shell.DEVNULL:
 suffix += ' 2>/dev/null'
 elif stderr == Shell.ERR2OUT:
 suffix += '2>&1'

 return cmd + suffix

 © Copyright 2015, Carlos Eduardo Moreira dos Santos.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

