
aiomysql Documentation
Release 0.0.8

Nikolay Novik

August 26, 2016

Contents

1 Features 3

2 Basics 5

3 Installation 7

4 Source code 9

5 Dependencies 11

6 Authors and License 13

7 Contents: 15
7.1 aiomysql — API Reference . 15
7.2 Connection . 15
7.3 Cursor . 17
7.4 Pool . 22
7.5 Tutorial . 24
7.6 aiomysql.sa — support for SQLAlchemy functional SQL layer 26
7.7 Examples of aiomysql usage . 34
7.8 Glossary . 37
7.9 Contributing . 37

8 Indices and tables 41

Python Module Index 43

i

ii

aiomysql Documentation, Release 0.0.8

aiomysql is a library for accessing a MySQL database from the asyncio (PEP-3156/tulip) framework. It depends and
reuses most parts of PyMySQL . aiomysql tries to be like awesome aiopg library and preserve same api, look and feel.

Internally aiomysql is copy of PyMySQL, underlying io calls switched to async, basically yield from and
asyncio.coroutine added in proper places. sqlalchemy support ported from aiopg.

Contents 1

http://docs.python.org/3.4/library/asyncio.html
https://github.com/aio-libs/aiopg
https://github.com/aio-libs/aiopg

aiomysql Documentation, Release 0.0.8

2 Contents

CHAPTER 1

Features

• Implements asyncio DBAPI like interface for MySQL. It includes Connection, Cursor and Pool objects.

• Implements optional support for charming sqlalchemy functional sql layer.

3

aiomysql Documentation, Release 0.0.8

4 Chapter 1. Features

CHAPTER 2

Basics

aiomysql based on PyMySQL , and provides same api, you just need to use yield from conn.f() instead of
just call conn.f() for every method.

Properties are unchanged, so conn.prop is correct as well as conn.prop = val.

See example:

import asyncio
import aiomysql

loop = asyncio.get_event_loop()

@asyncio.coroutine
def test_example():

conn = yield from aiomysql.connect(host='127.0.0.1', port=3306,
user='root', password='', db='mysql',
loop=loop)

cur = yield from conn.cursor()
yield from cur.execute("SELECT Host,User FROM user")
print(cur.description)
r = yield from cur.fetchall()
print(r)
yield from cur.close()
conn.close()

loop.run_until_complete(test_example())

5

aiomysql Documentation, Release 0.0.8

6 Chapter 2. Basics

CHAPTER 3

Installation

pip3 install aiomysql

Note: aiomysql requires PyMySQL library.

Also you probably want to use aiomysql.sa. aiomysql.sa module is optional and requires sqlalchemy. You
can install sqlalchemy by running:

pip3 install sqlalchemy

7

aiomysql Documentation, Release 0.0.8

8 Chapter 3. Installation

CHAPTER 4

Source code

The project is hosted on GitHub

Please feel free to file an issue on bug tracker if you have found a bug or have some suggestion for library improvement.

The library uses Travis for Continious Integration and Coveralls for coverage reports.

9

https://github.com/aio-libs/aiomysql
https://github.com/aio-libs/aiomysql/issues
https://travis-ci.org/aio-libs/aiomysql
https://coveralls.io/r/aio-libs/aiomysql?branch=master

aiomysql Documentation, Release 0.0.8

10 Chapter 4. Source code

CHAPTER 5

Dependencies

• Python 3.3 and asyncio or Python 3.4+

• PyMySQL

• aiomysql.sa requires sqlalchemy.

11

http://docs.python.org/3/library/asyncio.html#module-asyncio

aiomysql Documentation, Release 0.0.8

12 Chapter 5. Dependencies

CHAPTER 6

Authors and License

The aiomysql package is written by Nikolay Novik, PyMySQL and aio-libs contributors. It’s MIT licensed (same
as PyMySQL).

Feel free to improve this package and send a pull request to GitHub.

13

https://github.com/aio-libs
https://github.com/aio-libs/aiomysql

aiomysql Documentation, Release 0.0.8

14 Chapter 6. Authors and License

CHAPTER 7

Contents:

7.1 aiomysql — API Reference

7.2 Connection

The library provides a way to connect to MySQL database with simple factory function aiomysql.connnect().
Use this function if you want just one connection to the database, consider connection pool for multiple connections.

Example:

import asyncio
import aiomysql

@asyncio.coroutine
def go():

conn = yield from aiomysql.connect(database='aiomysql',
user='root',
password='secret',
host='127.0.0.1')

cur = yield from conn.cursor()
yield from cur.execute("SELECT * FROM tbl")
ret = yield from cur.fetchall()

connect(host="localhost", user=None, password="",
db=None, port=3306, unix_socket=None,
charset=’’, sql_mode=None,
read_default_file=None, conv=decoders, use_unicode=None,
client_flag=0, cursorclass=Cursor, init_command=None,
connect_timeout=None, read_default_group=None,
no_delay=False, autocommit=False, echo=False, loop=None)

A coroutine that connects to MySQL.

The function accepts all parameters that pymysql.connect() does plus optional keyword-only
loop and timeout parameters.

param str host host where the database server is located, default: localhost.

param str user username to log in as.

param str password password to use.

param str db database to use, None to not use a particular one.

15

http://docs.python.org/3/library/asyncio-task.html#coroutine

aiomysql Documentation, Release 0.0.8

param int port MySQL port to use, default is usually OK.

param str unix_socket optionally, you can use a unix socket rather than TCP/IP.

param str charset charset you want to use, for example ‘utf8’.

param sql_mode default sql-mode to use, like ‘NO_BACKSLASH_ESCAPES’

param read_default_file specifies my.cnf file to read these parameters from under the
[client] section.

param conv decoders dictionary to use instead of the default one. This is used to provide
custom marshalling of types. See pymysql.converters.

param use_unicode whether or not to default to unicode strings.

param client_flag custom flags to send to MySQL. Find potential values in
pymysql.constants.CLIENT.

param cursorclass custom cursor class to use.

param str init_command initial SQL statement to run when connection is established.

param connect_timeout Timeout before throwing an exception when connecting.

param str read_default_group Group to read from in the configuration file.

param bool no_delay disable Nagle’s algorithm on the socket

param autocommit Autocommit mode. None means use server default. (default: False)

param loop asyncio event loop instance or None for default one.

returns Connection instance.

Representation of a socket with a mysql server. The proper way to get an instance of this class is to
call aiomysql.connnect().

Its insterface is almost the same as pymysql.connection except all methods are coroutines.

The most important methods are:

aiomysql.cursor(cursor=None)
A coroutine that creates a new cursor object using the connection.

By default, Cursor is returned. It is possible to also give a custom cursor through the cursor parameter,
but it needs to be a subclass of Cursor

Parameters cursor – subclass of Cursor or None for default cursor.

Returns Cursor instance.

aiomysql.close()
Immediately close the connection.

Close the connection now (rather than whenever del is executed). The connection will be unusable from
this point forward.

aiomysql.ensure_closed()
A coroutine ends quit command and then closes socket connection.

aiomysql.autocommit(value)
A coroutine to enable/disable autocommit mode for current MySQL session. :param bool value: toggle
atutocommit mode.

aiomysql.get_autocommit()
Returns autocommit status for current MySQL sesstion. :returns bool: current autocommit status.

16 Chapter 7. Contents:

http://dev.mysql.com/doc/refman/5.0/en/sql-mode.html
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine

aiomysql Documentation, Release 0.0.8

aiomysql.begin()
A coroutine to egin transaction.

aiomysql.commit()
Commit changes to stable storage coroutine.

aiomysql.rollback()
Roll back the current transaction coroutine.

aiomysql.select_db(db)
A coroutine to set current db.

Parameters db (str) – database name

aiomysql.closed
The readonly property that returns True if connections is closed.

aiomysql.host
MySQL server IP address or name.

aiomysql.port
MySQL server TCP/IP port.

aiomysql.unix_socket
ySQL Unix socket file location.

aiomysql.db
Current database name.

aiomysql.user
User used while connecting to MySQL

aiomysql.echo
Return echo mode status.

aiomysql.encoding
Encoding employed for this connection.

aiomysql.charset
Returns the character set for current connection.

7.3 Cursor

class Cursor

A cursor for connection.

Allows Python code to execute MySQL command in a database session. Cursors are created by the
Connection.cursor() coroutine: they are bound to the connection for the entire lifetime and
all the commands are executed in the context of the database session wrapped by the connection.

Cursors that are created from the same connection are not isolated, i.e., any changes done to the
database by a cursor are immediately visible by the other cursors. Cursors created from different
connections can or can not be isolated, depending on the connections’ isolation level.

import asyncio
import aiomysql

loop = asyncio.get_event_loop()

@asyncio.coroutine

7.3. Cursor 17

http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/asyncio-task.html#coroutine

aiomysql Documentation, Release 0.0.8

def test_example():
conn = yield from aiomysql.connect(host='127.0.0.1', port=3306,

user='root', password='',
db='mysql', loop=loop)

create default cursor
cursor = yield from conn.cursor()

execute sql query
yield from cursor.execute("SELECT Host, User FROM user")

fetch all results
r = yield from cursor.fetchall()

detach cursor from connection
yield from cursor.close()

close connection
conn.close()

loop.run_until_complete(test_example())

Use Connection.cursor() for getting cursor for connection.

connection
This read-only attribute return a reference to the Connection object on which the cursor was
created

echo
Return echo mode status.

description
This read-only attribute is a sequence of 7-item sequences.

Each of these sequences is a collections.namedtuple containing information describing one result column:

0.name: the name of the column returned.

1.type_code: the type of the column.

2.display_size: the actual length of the column in bytes.

3.internal_size: the size in bytes of the column associated to this column on the server.

4.precision: total number of significant digits in columns of type NUMERIC. None for other types.

5.scale: count of decimal digits in the fractional part in columns of type NUMERIC. None for other
types.

6.null_ok: always None.

This attribute will be None for operations that do not return rows or if the cursor has not had an operation
invoked via the Cursor.execute() method yet.

rowcount
Returns the number of rows that has been produced of affected.

This read-only attribute specifies the number of rows that the last Cursor.execute() produced (for
Data Query Language statements like SELECT) or affected (for Data Manipulation Language statements
like UPDATE or INSERT).

The attribute is -1 in case no Cursor.execute() has been performed on the cursor or the row count
of the last operation if it can’t be determined by the interface.

18 Chapter 7. Contents:

aiomysql Documentation, Release 0.0.8

rownumber
Row index. This read-only attribute provides the current 0-based index of the cursor in the result set or
None if the index cannot be determined.

arraysize
How many rows will be returned by Cursor.fetchmany() call.

This read/write attribute specifies the number of rows to fetch at a time with Cursor.fetchmany().
It defaults to 1 meaning to fetch a single row at a time.

lastrowid
This read-only property returns the value generated for an AUTO_INCREMENT column by the previous
INSERT or UPDATE statement or None when there is no such value available. For example, if you perform
an INSERT into a table that contains an AUTO_INCREMENT column, Cursor.lastrowid returns the
AUTO_INCREMENT value for the new row.

closed
The readonly property that returns True if connections was detached from current cursor

close()
Coroutine to close the cursor now (rather than whenever del is executed). The cursor will be unusable
from this point forward; closing a cursor just exhausts all remaining data.

execute(query, args=None)
Coroutine, executes the given operation substituting any markers with the given parameters.

For example, getting all rows where id is 5:

yield from cursor.execute("SELECT * FROM t1 WHERE id=%s", (5,))

Parameters

• query (str) – sql statement

• args (list) – tuple or list of arguments for sql query

Returns int number of rows that has been produced of affected

executemany(query, args)
The executemany() coroutine will execute the operation iterating over the list of parameters in seq_params.

Example: Inserting 3 new employees and their phone number:

data = [
('Jane','555-001'),
('Joe', '555-001'),
('John', '555-003')

]
stmt = "INSERT INTO employees (name, phone)

VALUES ('%s','%s')"
yield from cursor.executemany(stmt, data)

INSERT statements are optimized by batching the data, that is using the MySQL multiple rows syntax.

Parameters

• query (str) – sql statement

• args (list) – tuple or list of arguments for sql query

callproc(procname, args)
Execute stored procedure procname with args, this method is coroutine.

7.3. Cursor 19

http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#list
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#list
http://docs.python.org/3/library/asyncio-task.html#coroutine

aiomysql Documentation, Release 0.0.8

Compatibility warning: PEP-249 specifies that any modified parameters must be returned. This is currently
impossible as they are only available by storing them in a server variable and then retrieved by a query.
Since stored procedures return zero or more result sets, there is no reliable way to get at OUT or INOUT
parameters via callproc. The server variables are named @_procname_n, where procname is the parameter
above and n is the position of the parameter (from zero). Once all result sets generated by the procedure
have been fetched, you can issue a SELECT @_procname_0, ... query using Cursor.execute() to
get any OUT or INOUT values. Basic usage example:

conn = yield from aiomysql.connect(host='127.0.0.1', port=3306,
user='root', password='',
db='mysql', loop=self.loop)

cur = yield from conn.cursor()
yield from cur.execute("""CREATE PROCEDURE myinc(p1 INT)

BEGIN
SELECT p1 + 1;

END
""")

yield from cur.callproc('myinc', [1])
(ret,) = yield from cur.fetchone()
assert 2, ret

yield from cur.close()
conn.close()

Compatibility warning: The act of calling a stored procedure itself creates an empty result set. This
appears after any result sets generated by the procedure. This is non-standard behavior with respect to the
DB-API. Be sure to use Cursor.nextset() to advance through all result sets; otherwise you may get
disconnected.

Parameters

• procname (str) – name of procedure to execute on server

• args – sequence of parameters to use with procedure

Returns the original args.

fetchone()
Fetch the next row coroutine.

fetchmany(size=None)
Coroutine the next set of rows of a query result, returning a list of tuples. When no more rows are available,
it returns an empty list.

The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor’s
Cursor.arraysize determines the number of rows to be fetched. The method should try to fetch
as many rows as indicated by the size parameter. If this is not possible due to the specified number of rows
not being available, fewer rows may be returned

cursor = yield from connection.cursor()
yield from cursor.execute("SELECT * FROM test;")
r = cursor.fetchmany(2)
print(r)
[(1, 100, "abc'def"), (2, None, 'dada')]
r = yield from cursor.fetchmany(2)
print(r)
[(3, 42, 'bar')]
r = yield from cursor.fetchmany(2)

20 Chapter 7. Contents:

http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine

aiomysql Documentation, Release 0.0.8

print(r)
[]

Parameters size (int) – number of rows to return

Returns list of fetched rows

fetchall()
Coroutine returns all rows of a query result set:

yield from cursor.execute("SELECT * FROM test;")
r = yield from cursor.fetchall()
print(r)
[(1, 100, "abc'def"), (2, None, 'dada'), (3, 42, 'bar')]

Returns list list of fetched rows

scroll(value, mode=’relative’)
Scroll the cursor in the result set to a new position according to mode. This method is coroutine.

If mode is relative (default), value is taken as offset to the current position in the result set, if set
to absolute, value states an absolute target position. An IndexError should be raised in case a scroll
operation would leave the result set. In this case, the cursor position is left undefined (ideal would be to
not move the cursor at all).

Note: According to the DBAPI, the exception raised for a cursor out of bound should have been
IndexError. The best option is probably to catch both exceptions in your code:

try:
yield from cur.scroll(1000 * 1000)

except (ProgrammingError, IndexError), exc:
deal_with_it(exc)

Parameters

• value (int) – move cursor to next position according to mode.

• mode (str) – scroll mode, possible modes: relative and absolute

class DictCursor
A cursor which returns results as a dictionary. All methods and arguments same as Cursor, see example:

import asyncio
import aiomysql

loop = asyncio.get_event_loop()

@asyncio.coroutine
def test_example():

conn = yield from aiomysql.connect(host='127.0.0.1', port=3306,
user='root', password='',
db='mysql', loop=loop)

create dict cursor
cursor = yield from conn.cursor(aiomysql.DictCursor)

7.3. Cursor 21

http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/exceptions.html#IndexError
http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/stdtypes.html#str

aiomysql Documentation, Release 0.0.8

execute sql query
yield from cursor.execute(

"SELECT * from people where name='bob'")

fetch all results
r = yield from cursor.fetchone()
print(r)
{'age': 20, 'DOB': datetime.datetime(1990, 2, 6, 23, 4, 56),
'name': 'bob'}

loop.run_until_complete(test_example())

class SSCursor

Unbuffered Cursor, mainly useful for queries that return a lot of data, or for connections to remote
servers over a slow network.

Instead of copying every row of data into a buffer, this will fetch rows as needed. The upside of this,
is the client uses much less memory, and rows are returned much faster when traveling over a slow
network, or if the result set is very big.

There are limitations, though. The MySQL protocol doesn’t support returning the total number of
rows, so the only way to tell how many rows there are is to iterate over every row returned. Also, it
currently isn’t possible to scroll backwards, as only the current row is held in memory. All methods
are the same as in Cursor but with different behaviour.

fetchall()
Same as :meth:‘Cursor.fetchall‘ :ref:‘coroutine <coroutine>‘,
useless for large queries, as all rows fetched one by one.

fetchmany(size=None, mode=’relative’)
Same as :meth:‘Cursor.fetchall‘, but each row fetched one by one.

scroll(size=None)
Same as :meth:‘Cursor.scroll‘, but move cursor on server side one by
one. If you want to move 20 rows forward scroll will make 20 queries
to move cursor. Currently only forward scrolling is supported.

class SSDictCursor
An unbuffered cursor, which returns results as a dictionary.

7.4 Pool

The library provides connection pool as well as plain Connection objects.

The basic usage is:

import asyncio
import aiomysql

loop = asyncio.get_event_loop()

@asyncio.coroutine
def go()

pool = yield from aiomysql.create_pool(host='127.0.0.1', port=3306,
user='root', password='',
db='mysql', loop=loop)

22 Chapter 7. Contents:

aiomysql Documentation, Release 0.0.8

with (yield from pool) as conn:
cur = yield from conn.cursor()
yield from cur.execute("SELECT 10")
print(cur.description)
(r,) = yield from cur.fetchone()

assert r == 10
pool.close()
yield from pool.wait_closed()

loop.run_until_complete(go())

create_pool(minsize=1, maxsize=10, loop=None, **kwargs)
A coroutine that creates a pool of connections to MySQL database.

Parameters

• minsize (int) – minimum sizes of the pool.

• maxsize (int) – maximum sizes of the pool.

• loop – is an optional event loop instance, asyncio.get_event_loop() is used if
loop is not specified.

• echo (bool) – – executed log SQL queryes (False by default).

• kwargs – The function accepts all parameters that aiomysql.connect() does plus
optional keyword-only parameters loop, minsize, maxsize.

Returns Pool instance.

class Pool

A connection pool.

After creation pool has minsize free connections and can grow up to maxsize ones.

If minsize is 0 the pool doesn’t creates any connection on startup.

If maxsize is 0 than size of pool is unlimited (but it recycles used connections of course).

The most important way to use it is getting connection in with statement:

with (yield from pool) as conn:
cur = yield from conn.cursor()

See also Pool.acquire() and Pool.release() for acquring Connection without with
statement.

echo
Return echo mode status. Log all executed queries to logger named aiomysql if True

minsize
A minimal size of the pool (read-only), 1 by default.

maxsize
A maximal size of the pool (read-only), 10 by default.

size
A current size of the pool (readonly). Includes used and free connections.

freesize
A count of free connections in the pool (readonly).

7.4. Pool 23

http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/asyncio-eventloops.html#asyncio.get_event_loop
http://docs.python.org/3/library/functions.html#bool

aiomysql Documentation, Release 0.0.8

clear()
A coroutine that closes all free connections in the pool. At next connection acquiring at least
minsize of them will be recreated.

close()
Close pool.

Mark all pool connections to be closed on getting back to pool. Closed pool doesn’t allow to acquire new
connections.

If you want to wait for actual closing of acquired connection please call wait_closed() after
close().

Warning: The method is not a coroutine.

terminate()
Terminate pool.

Close pool with instantly closing all acquired connections also.

wait_closed() should be called after terminate() for waiting for actual finishing.

Warning: The method is not a coroutine.

wait_closed()
A coroutine that waits for releasing and closing all acquired connections.

Should be called after close() for waiting for actual pool closing.

acquire()
A coroutine that acquires a connection from free pool. Creates new connection if needed and size of
pool is less than maxsize.

Returns a Connection instance.

release(conn)
Reverts connection conn to free pool for future recycling.

Warning: The method is not a coroutine.

7.5 Tutorial

Python database access modules all have similar interfaces, described by the DBAPI. Most relational databases use
the same synchronous interface, aiomysql tries to provide same api you just need to use yield from conn.f()
instead of just call conn.f() for every method.

7.5.1 Installation

pip3 install aiomysql

Note: aiomysql requires PyMySQL library.

24 Chapter 7. Contents:

http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine

aiomysql Documentation, Release 0.0.8

7.5.2 Getting Started

Lets start from basic example:

import asyncio
import aiomysql

loop = asyncio.get_event_loop()

@asyncio.coroutine
def test_example():

conn = yield from aiomysql.connect(host='127.0.0.1', port=3306,
user='root', password='', db='mysql',
loop=loop)

cur = yield from conn.cursor()
yield from cur.execute("SELECT Host,User FROM user")
print(cur.description)
r = yield from cur.fetchall()
print(r)
yield from cur.close()
conn.close()

loop.run_until_complete(test_example())

Connection is established by invoking the connect() coroutine, arguments list are keyword arguments, almost same
as in PyMySQL corresponding method. Example makes connection to MySQL server on local host to access mysql
database with user name root‘ and empty password.

If connect() coroutine succeeds, it returns a Connection instance as the basis for further interaction with
MySQL.

After the connection object has been obtained, code in example invokes Connection.cursor() coroutine method
to create a cursor object for processing statements. Example uses cursor to issue a SELECT Host,User FROM
user; statement, which returns a list of host and user from MySQL system table user:

cur = yield from conn.cursor()
yield from cur.execute("SELECT Host,User FROM user")
print(cur.description)
r = yield from cur.fetchall()

The cursor object’s Cursor.execute() method sends the query the server and Cursor.fetchall() retrieves
rows.

Finally, the script invokes Cursor.close() coroutine and connection object’s Connection.close() method
to disconnect from the server:

yield from cur.close()
conn.close()

After that, conn becomes invalid and should not be used to access the server.

7.5. Tutorial 25

aiomysql Documentation, Release 0.0.8

7.5.3 Inserting Data

7.6 aiomysql.sa — support for SQLAlchemy functional SQL layer

7.6.1 Intro

Note: sqlalchemy support ported from aiopg, so api should be very familiar for aiopg user.

While core API provides a core support for access to MySQL database, manipulations with raw SQL strings too
annoying.

Fortunately we can use excellent SQLAlchemy Core as SQL query builder.

Example:

import asyncio
import sqlalchemy as sa

from aiomysql.sa import create_engine

metadata = sa.MetaData()

tbl = sa.Table('tbl', metadata,
sa.Column('id', sa.Integer, primary_key=True),
sa.Column('val', sa.String(255)))

@asyncio.coroutine
def go():

engine = yield from create_engine(user='root',
db='test_pymysql',
host='127.0.0.1',
password='')

with (yield from engine) as conn:
yield from conn.execute(tbl.insert().values(val='abc'))

res = yield from conn.execute(tbl.select())
for row in res:

print(row.id, row.val)

asyncio.get_event_loop().run_until_complete(go())

So you can execute SQL query built by tbl.insert().values(val=’abc’) or tbl.select() expressions.

sqlalchemy has rich and very powerful set of SQL construction functions, please read tutorial for full list of available
operations.

Also we provide SQL transactions support. Please take a look on SAConnection.begin() method and family.

7.6.2 Engine

aiomysql.sa.create_engine(*, minsize=1, maxsize=10, loop=None, dialect=dialect, **kwargs)
A coroutine for Engine creation.

26 Chapter 7. Contents:

https://github.com/aio-libs/aiopg
https://github.com/aio-libs/aiopg
http://docs.sqlalchemy.org/en/rel_0_9/core/index.html#core-toplevel
http://docs.sqlalchemy.org/en/rel_0_9/core/index.html#core-toplevel
http://docs.python.org/3/library/asyncio-task.html#coroutine

aiomysql Documentation, Release 0.0.8

Returns Engine instance with embedded connection pool.

The pool has minsize opened connections to MySQL server.

At kwargs function accepts all parameters that aiomysql.connect() does.

aiomysql.sa.dialect
An instance of SQLAlchemy dialect set up for pymysql usage.

An sqlalchemy.engine.interfaces.Dialect instance.

See also:

sqlalchemy.dialects.mysql.pymysql PyMySQL dialect.

class aiomysql.sa.Engine
Connects a aiomysql.Pool and sqlalchemy.engine.interfaces.Dialect together to provide a
source of database connectivity and behavior.

An Engine object is instantiated publicly using the create_engine() coroutine.

dialect
A sqlalchemy.engine.interfaces.Dialect for the engine, readonly property.

name
A name of the dialect, readonly property.

driver
A driver of the dialect, readonly property.

minsize
A minimal size of the pool (read-only), 1 by default.

maxsize
A maximal size of the pool (read-only), 10 by default.

size
A current size of the pool (readonly). Includes used and free connections.

freesize
A count of free connections in the pool (readonly).

close()

Close engine.

Mark all engine connections to be closed on getting back to engine. Closed engine doesn’t allow
to acquire new connections.

If you want to wait for actual closing of acquired connection please call wait_closed() after
close().

Warning: The method is not a coroutine.

terminate()

Terminate engine.

Close engine’s pool with instantly closing all acquired connections also.

wait_closed() should be called after terminate() for waiting for actual finishing.

Warning: The method is not a coroutine.

7.6. aiomysql.sa — support for SQLAlchemy functional SQL layer 27

http://docs.sqlalchemy.org/en/rel_0_9/core/internals.html#sqlalchemy.engine.interfaces.Dialect
http://docs.sqlalchemy.org/en/rel_0_9/dialects/mysql.html#module-sqlalchemy.dialects.mysql.pymysql
http://docs.sqlalchemy.org/en/rel_0_9/core/internals.html#sqlalchemy.engine.interfaces.Dialect
http://docs.sqlalchemy.org/en/rel_0_9/core/internals.html#sqlalchemy.engine.interfaces.Dialect
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine

aiomysql Documentation, Release 0.0.8

wait_closed()
A coroutine that waits for releasing and closing all acquired connections.

Should be called after close() for waiting for actual engine closing.

acquire()
Get a connection from pool.

This method is a coroutine.

Returns a SAConnection instance.

release()

Revert back connection conn to pool.

Warning: The method is not a coroutine.

7.6.3 Connection

class aiomysql.sa.SAConnection
A wrapper for aiomysql.Connection instance.

The class provides methods for executing SQL queries and working with SQL transactions.

execute(query, *multiparams, **params)
Executes a SQL query with optional parameters.

This method is a coroutine.

Parameters

• query – a SQL query string or any sqlalchemy expression (see SQLAlchemy Core)

• *multiparams/**params – represent bound parameter values to be used in the exe-
cution. Typically, the format is either a dictionary passed to *multiparams:

yield from conn.execute(
table.insert(),
{"id":1, "value":"v1"}

)

...or individual key/values interpreted by **params:

yield from conn.execute(
table.insert(), id=1, value="v1"

)

In the case that a plain SQL string is passed, a tuple or individual values in *multiparams
may be passed:

yield from conn.execute(
"INSERT INTO table (id, value) VALUES (%d, %s)",
(1, "v1")

)

yield from conn.execute(
"INSERT INTO table (id, value) VALUES (%s, %s)",

28 Chapter 7. Contents:

http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.sqlalchemy.org/en/rel_0_9/core/index.html#core-toplevel

aiomysql Documentation, Release 0.0.8

1, "v1"
)

Returns ResultProxy instance with results of SQL query execution.

scalar(query, *multiparams, **params)
Executes a SQL query and returns a scalar value.

This method is a coroutine.

See also:

SAConnection.execute() and ResultProxy.scalar().

closed
The readonly property that returns True if connections is closed.

begin()
Begin a transaction and return a transaction handle.

This method is a coroutine.

The returned object is an instance of Transaction. This object represents the “scope” of the transac-
tion, which completes when either the Transaction.rollback() or Transaction.commit()
method is called.

Nested calls to begin() on the same SAConnection will return new Transaction objects that
represent an emulated transaction within the scope of the enclosing transaction, that is:

trans = yield from conn.begin() # outermost transaction
trans2 = yield from conn.begin() # "inner"
yield from trans2.commit() # does nothing
yield from trans.commit() # actually commits

Calls to Transaction.commit() only have an effect when invoked via the outermost
Transaction object, though the Transaction.rollback() method of any of the
Transaction objects will roll back the transaction.

See also:

SAConnection.begin_nested() - use a SAVEPOINT

SAConnection.begin_twophase() - use a two phase (XA) transaction

begin_nested()
Begin a nested transaction and return a transaction handle.

This method is a coroutine.

The returned object is an instance of NestedTransaction.

Any transaction in the hierarchy may commit and rollback, however the outermost transaction still
controls the overall commit or rollback of the transaction of a whole. It utilizes SAVEPOINT facility
of MySQL server.

See also:

SAConnection.begin(), SAConnection.begin_twophase().

begin_twophase(xid=None)
Begin a two-phase or XA transaction and return a transaction handle.

This method is a coroutine.

7.6. aiomysql.sa — support for SQLAlchemy functional SQL layer 29

http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine

aiomysql Documentation, Release 0.0.8

The returned object is an instance of TwoPhaseTransaction, which in addition to the methods pro-
vided by Transaction, also provides a prepare() method.

Parameters xid – the two phase transaction id. If not supplied, a random id will be generated.

See also:

SAConnection.begin(), SAConnection.begin_twophase().

recover_twophase()
Return a list of prepared twophase transaction ids.

This method is a coroutine.

rollback_prepared(xid)
Rollback prepared twophase transaction xid.

This method is a coroutine.

commit_prepared(xid)
Commit prepared twophase transaction xid.

This method is a coroutine.

in_transaction
The readonly property that returns True if a transaction is in progress.

close()
Close this SAConnection.

This method is a coroutine.

This results in a release of the underlying database resources, that is, the aiomysql.Connection
referenced internally. The aiomysql.Connection is typically restored back to the connection-
holding aiomysql.Pool referenced by the Engine that produced this SAConnection. Any trans-
actional state present on the aiomysql.Connection is also unconditionally released via calling
Transaction.rollback() method.

After close() is called, the SAConnection is permanently in a closed state, and will allow no further
operations.

7.6.4 ResultProxy

class aiomysql.sa.ResultProxy
Wraps a DB-API like Cursor object to provide easier access to row columns.

Individual columns may be accessed by their integer position, case-sensitive column name, or by
sqlalchemy.schema.Column‘ object. e.g.:

for row in (yield from conn.execute(...)):
col1 = row[0] # access via integer position
col2 = row['col2'] # access via name
col3 = row[mytable.c.mycol] # access via Column object.

ResultProxy also handles post-processing of result column data using
sqlalchemy.types.TypeEngine objects, which are referenced from the originating SQL statement that
produced this result set.

dialect
The readonly property that returns sqlalchemy.engine.interfaces.Dialect dialect for the
ResultProxy instance.

30 Chapter 7. Contents:

http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.sqlalchemy.org/en/rel_0_9/core/type_api.html#sqlalchemy.types.TypeEngine
http://docs.sqlalchemy.org/en/rel_0_9/core/internals.html#sqlalchemy.engine.interfaces.Dialect

aiomysql Documentation, Release 0.0.8

See also:

dialect global data.

keys()
Return the current set of string keys for rows.

rowcount
The readonly property that returns the ‘rowcount’ for this result.

The ‘rowcount’ reports the number of rows matched by the WHERE criterion of an UPDATE or DELETE
statement.

Note: Notes regarding ResultProxy.rowcount:

•This attribute returns the number of rows matched, which is not necessarily the same as the number of
rows that were actually modified - an UPDATE statement, for example, may have no net change on a
given row if the SET values given are the same as those present in the row already. Such a row would
be matched but not modified.

•ResultProxy.rowcount is only useful in conjunction with an UPDATE or DELETE statement.
Contrary to what the Python DBAPI says, it does not return the number of rows available from the
results of a SELECT statement as DBAPIs cannot support this functionality when rows are unbuffered.

•Statements that use RETURNING does not return a correct rowcount.

lastrowid
Returns the ‘lastrowid’ accessor on the DBAPI cursor.

value generated for an AUTO_INCREMENT column by the previous INSERT or UPDATE statement or
None when there is no such value available. For example, if you perform an INSERT into a table that
contains an AUTO_INCREMENT column, lastrowid returns the AUTO_INCREMENT value for the new
row.

returns_rows
A readonly property that returns True if this ResultProxy returns rows.

I.e. if it is legal to call the methods ResultProxy.fetchone(), ResultProxy.fetchmany(),
ResultProxy.fetchall().

closed
Return True if this ResultProxy is closed (no pending rows in underlying cursor).

close()
Close this ResultProxy .

Closes the underlying aiomysql.Cursor corresponding to the execution.

Note that any data cached within this ResultProxy is still available. For some types of results, this may
include buffered rows.

This method is called automatically when:

•all result rows are exhausted using the fetchXXX() methods.

•cursor.description is None.

fetchall()
Fetch all rows, just like aiomysql.Cursor.fetchall().

This method is a coroutine.

The connection is closed after the call.

7.6. aiomysql.sa — support for SQLAlchemy functional SQL layer 31

http://docs.python.org/3/library/asyncio-task.html#coroutine

aiomysql Documentation, Release 0.0.8

Returns a list of RowProxy .

fetchone()
Fetch one row, just like aiomysql.Cursor.fetchone().

This method is a coroutine.

If a row is present, the cursor remains open after this is called.

Else the cursor is automatically closed and None is returned.

Returns an RowProxy instance or None.

fetchmany(size=None)
Fetch many rows, just like aiomysql.Cursor.fetchmany().

This method is a coroutine.

If rows are present, the cursor remains open after this is called.

Else the cursor is automatically closed and an empty list is returned.

Returns a list of RowProxy .

first()
Fetch the first row and then close the result set unconditionally.

This method is a coroutine.

Returns None if no row is present or an RowProxy instance.

scalar()
Fetch the first column of the first row, and close the result set.

Returns None if no row is present or an RowProxy instance.

class aiomysql.sa.RowProxy
A collections.abc.Mapping for representing a row in query result.

Keys are column names, values are result values.

Individual columns may be accessed by their integer position, case-sensitive column name, or by
sqlalchemy.schema.Column‘ object.

Has overloaded operators __eq__ and __ne__ for comparing two rows.

The RowProxy is not hashable.

..method:: as_tuple()

Return a tuple with values from RowProxy.values().

7.6.5 Transaction objects

class aiomysql.sa.Transaction
Represent a database transaction in progress.

The Transaction object is procured by calling the SAConnection.begin() method of
SAConnection:

with (yield from engine) as conn:
trans = yield from conn.begin()
try:

yield from conn.execute("insert into x (a, b) values (1, 2)")
except Exception:

32 Chapter 7. Contents:

http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping

aiomysql Documentation, Release 0.0.8

yield from trans.rollback()
else:

yield from trans.commit()

The object provides rollback() and commit() methods in order to control transaction boundaries.

See also:

SAConnection.begin(), SAConnection.begin_twophase(), SAConnection.begin_nested().

is_active
A readonly property that returns True if a transaction is active.

connection
A readonly property that returns SAConnection for transaction.

close()
Close this Transaction.

This method is a coroutine.

If this transaction is the base transaction in a begin/commit nesting, the transaction will
Transaction.rollback(). Otherwise, the method returns.

This is used to cancel a Transaction without affecting the scope of an enclosing transaction.

rollback()
Roll back this Transaction.

This method is a coroutine.

commit()
Commit this Transaction.

This method is a coroutine.

class aiomysql.sa.NestedTransaction
Represent a ‘nested’, or SAVEPOINT transaction.

A new NestedTransaction object may be procured using the SAConnection.begin_nested()
method.

The interface is the same as that of Transaction.

See also:

SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT on MySQL:

class aiomysql.sa.TwoPhaseTransaction
Represent a two-phase transaction.

A new TwoPhaseTransaction object may be procured using the
SAConnection.begin_twophase() method.

The interface is the same as that of Transaction with the addition of the
TwoPhaseTransaction.prepare() method.

xid
A readonly property that returns twophase transaction id.

prepare()
Prepare this TwoPhaseTransaction.

This method is a coroutine.

After a PREPARE, the transaction can be committed.

7.6. aiomysql.sa — support for SQLAlchemy functional SQL layer 33

http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://dev.mysql.com/doc/refman/5.7/en/savepoint.html
http://docs.python.org/3/library/asyncio-task.html#coroutine

aiomysql Documentation, Release 0.0.8

See also:

MySQL commands for two phase transactions:

http://dev.mysql.com/doc/refman/5.7/en/xa-statements.html

7.7 Examples of aiomysql usage

Below is a list of examples from aiomysql/examples

Every example is a correct tiny python program.

7.7.1 Low-level API

Basic example, fetch host and user information from internal table: user.

import asyncio
import aiomysql

async def test_example(loop):
conn = await aiomysql.connect(host='127.0.0.1', port=3306,

user='root', password='', db='mysql',
loop=loop)

async with conn.cursor() as cur:
await cur.execute("SELECT Host,User FROM user")
print(cur.description)
r = await cur.fetchall()
print(r)

conn.close()

loop = asyncio.get_event_loop()
loop.run_until_complete(test_example(loop))

Example of stored procedure, which just increments input value.

import asyncio
import aiomysql

async def test_example(loop):
conn = await aiomysql.connect(host='127.0.0.1', port=3306,

user='root', password='',
db='test_pymysql', loop=loop)

async with conn.cursor() as cur:
await cur.execute('DROP PROCEDURE IF EXISTS myinc;')
await cur.execute("""CREATE PROCEDURE myinc(p1 INT)

BEGIN
SELECT p1 + 1;

END""")

await cur.callproc('myinc', [1])
(ret,) = await cur.fetchone()
assert 2, ret

34 Chapter 7. Contents:

http://dev.mysql.com/doc/refman/5.7/en/xa-statements.html
https://github.com/aio-libs/aiomysql/tree/master/examples

aiomysql Documentation, Release 0.0.8

print(ret)

conn.close()

loop = asyncio.get_event_loop()
loop.run_until_complete(test_example(loop))

Example of using executemany method:

import asyncio
import aiomysql

async def test_example_executemany(loop):
conn = await aiomysql.connect(host='127.0.0.1', port=3306,

user='root', password='',
db='test_pymysql', loop=loop)

cur = await conn.cursor()
async with conn.cursor() as cur:

await cur.execute("DROP TABLE IF EXISTS music_style;")
await cur.execute("""CREATE TABLE music_style

(id INT,
name VARCHAR(255),
PRIMARY KEY (id));""")

await conn.commit()

insert 3 rows one by one
await cur.execute("INSERT INTO music_style VALUES(1,'heavy metal')")
await cur.execute("INSERT INTO music_style VALUES(2,'death metal');")
await cur.execute("INSERT INTO music_style VALUES(3,'power metal');")
await conn.commit()

insert 3 row by one long query using *executemane* method
data = [(4, 'gothic metal'), (5, 'doom metal'), (6, 'post metal')]
await cur.executemany(

"INSERT INTO music_style (id, name)"
"values (%s,%s)", data)

await conn.commit()

fetch all insert row from table music_style
await cur.execute("SELECT * FROM music_style;")
result = await cur.fetchall()
print(result)

conn.close()

loop = asyncio.get_event_loop()
loop.run_until_complete(test_example_executemany(loop))

Example of using transactions rollback and commit methods:

import asyncio
import aiomysql

async def test_example_transaction(loop):

7.7. Examples of aiomysql usage 35

aiomysql Documentation, Release 0.0.8

conn = await aiomysql.connect(host='127.0.0.1', port=3306,
user='root', password='',
db='test_pymysql', autocommit=False,
loop=loop)

async with conn.cursor() as cursor:
stmt_drop = "DROP TABLE IF EXISTS names"
await cursor.execute(stmt_drop)
await cursor.execute("""

CREATE TABLE names (
id TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
name VARCHAR(30) DEFAULT '' NOT NULL,
cnt TINYINT UNSIGNED DEFAULT 0,
PRIMARY KEY (id))""")

await conn.commit()

Insert 3 records
names = (('Geert',), ('Jan',), ('Michel',))
stmt_insert = "INSERT INTO names (name) VALUES (%s)"
await cursor.executemany(stmt_insert, names)

Roll back!!!!
await conn.rollback()

There should be no data!
stmt_select = "SELECT id, name FROM names ORDER BY id"
await cursor.execute(stmt_select)
resp = await cursor.fetchall()
Check there is no data
assert not resp

Do the insert again.
await cursor.executemany(stmt_insert, names)

Data should be already there
await cursor.execute(stmt_select)
resp = await cursor.fetchall()
print(resp)
Do a commit
await conn.commit()

await cursor.execute(stmt_select)
print(resp)

Cleaning up, dropping the table again
await cursor.execute(stmt_drop)
await cursor.close()
conn.close()

loop = asyncio.get_event_loop()
loop.run_until_complete(test_example_transaction(loop))

36 Chapter 7. Contents:

aiomysql Documentation, Release 0.0.8

7.7.2 sqlalchemy usage

7.8 Glossary

DBAPI PEP 249 – Python Database API Specification v2.0

ipdb ipdb exports functions to access the IPython debugger, which features tab completion, syntax highlighting,
better tracebacks, better introspection with the same interface as the pdb module.

MySQL A popular database server.

http://www.mysql.com/

pep8 Python style guide checker

pep8 is a tool to check your Python code against some of the style conventions in PEP 8 – Style Guide for
Python Code.

pyflakes passive checker of Python programs

A simple program which checks Python source files for errors.

Pyflakes analyzes programs and detects various errors. It works by parsing the source file, not importing it, so it
is safe to use on modules with side effects. It’s also much faster.

https://pypi.python.org/pypi/pyflakes

PyMySQL Pure-Python MySQL client library. The goal of PyMySQL is to be a drop-in replacement for MySQLdb
and work on CPython, PyPy, IronPython and Jython.

https://github.com/PyMySQL/PyMySQL

sqlalchemy The Python SQL Toolkit and Object Relational Mapper.

http://www.sqlalchemy.org/

7.9 Contributing

Thanks for your interest in contributing to aiomysql, there are multiple ways and places you can contribute.

7.9.1 Reporting an Issue

If you have found issue with aiomysql please do not hesitate to file an issue on the GitHub project. When filing your
issue please make sure you can express the issue with a reproducible test case.

When reporting an issue we also need as much information about your environment that you can include. We never
know what information will be pertinent when trying narrow down the issue. Please include at least the following
information:

• Version of aiomysql and python.

• Version of MySQL/MariaDB.

• Platform you’re running on (OS X, Linux, Windows).

7.8. Glossary 37

https://www.python.org/dev/peps/pep-0249
http://www.mysql.com/
https://www.python.org/dev/peps/pep-0008
https://pypi.python.org/pypi/pyflakes
https://github.com/PyMySQL/PyMySQL
http://www.sqlalchemy.org/
https://github.com/aio-libs/aiomysql

aiomysql Documentation, Release 0.0.8

7.9.2 Instructions for contributors

In order to make a clone of the GitHub repo: open the link and press the “Fork” button on the upper-right menu of the
web page.

I hope everybody knows how to work with git and github nowadays :)

Workflow is pretty straightforward:

1. Clone the GitHub repo

2. Make a change

3. Make sure all tests passed

4. Commit changes to own aiomysql clone

5. Make pull request from github page for your clone

7.9.3 Preconditions for running aiomysql test suite

We expect you to use a python virtual environment to run our tests.

There are several ways to make a virtual environment.

If you like to use virtualenv please run:

$ cd aiomysql
$ virtualenv --python=`which python3` venv

For standard python venv:

$ cd aiomysql
$ python3 -m venv venv

For virtualenvwrapper:

$ cd aiomysql
$ mkvirtualenv --python=`which python3` aiomysql

There are other tools like pyvenv but you know the rule of thumb now: create a python3 virtual environment and
activate it.

After that please install libraries required for development:

$ pip install -r requirements-dev.txt

We also recommend to install ipdb but it’s on your own:

$ pip install ipdb

Congratulations, you are ready to run the test suite

7.9.4 Install database

Fresh local installation of mysql has user root with empty password, tests use this values by default. But you always
can override host/port, user and password in aiomysql/tests/base.py file or install corresponding environment variables.
Tests require two databases to be created before running suit:

38 Chapter 7. Contents:

https://github.com/aio-libs/aiomysql
https://github.com/aio-libs/aiomysql

aiomysql Documentation, Release 0.0.8

$ mysql -u root
mysql> CREATE DATABASE test_pymysql DEFAULT CHARACTER SET utf8 DEFAULT COLLATE utf8_general_ci;
mysql> CREATE DATABASE test_pymysql2 DEFAULT CHARACTER SET utf8 DEFAULT COLLATE utf8_general_ci;

7.9.5 Run aiomysql test suite

After all the preconditions are met you can run tests typing the next command:

$ make test

The command at first will run the flake8 tool (sorry, we don’t accept pull requests with pep8 or pyflakes errors).

On flake8 success the tests will be run.

Please take a look on the produced output.

Any extra texts (print statements and so on) should be removed.

7.9.6 Tests coverage

We are trying hard to have good test coverage; please don’t make it worse.

Use:

$ make cov

to run test suite and collect coverage information. Once the command has finished check your coverage at the file that
appears in the last line of the output: open file:///.../aiomysql/coverage/index.html

Please go to the link and make sure that your code change is covered.

7.9.7 Documentation

We encourage documentation improvements.

Please before making a Pull Request about documentation changes run:

$ make doc

Once it finishes it will output the index html page open file:///.../aiomysql/docs/_build/html/index.html.

Go to the link and make sure your doc changes looks good.

7.9.8 The End

After finishing all steps make a GitHub Pull Request, thanks.

7.9. Contributing 39

https://github.com/aio-libs/aiomysql

aiomysql Documentation, Release 0.0.8

40 Chapter 7. Contents:

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

41

aiomysql Documentation, Release 0.0.8

42 Chapter 8. Indices and tables

Python Module Index

a
aiomysql, 15
aiomysql.sa, 26

43

aiomysql Documentation, Release 0.0.8

44 Python Module Index

Index

A
acquire() (aiomysql.sa.Engine method), 28
acquire() (Pool method), 24
aiomysql (module), 15
aiomysql.sa (module), 26
arraysize (Cursor attribute), 19
autocommit() (in module aiomysql), 16

B
begin() (aiomysql.sa.SAConnection method), 29
begin() (in module aiomysql), 16
begin_nested() (aiomysql.sa.SAConnection method), 29
begin_twophase() (aiomysql.sa.SAConnection method),

29

C
callproc() (Cursor method), 19
charset (in module aiomysql), 17
clear() (Pool method), 23
close() (aiomysql.sa.Engine method), 27
close() (aiomysql.sa.ResultProxy method), 31
close() (aiomysql.sa.SAConnection method), 30
close() (aiomysql.sa.Transaction method), 33
close() (Cursor method), 19
close() (in module aiomysql), 16
close() (Pool method), 24
closed (aiomysql.sa.ResultProxy attribute), 31
closed (aiomysql.sa.SAConnection attribute), 29
closed (Cursor attribute), 19
closed (in module aiomysql), 17
commit() (aiomysql.sa.Transaction method), 33
commit() (in module aiomysql), 17
commit_prepared() (aiomysql.sa.SAConnection method),

30
connection (aiomysql.sa.Transaction attribute), 33
connection (Cursor attribute), 18
create_engine() (in module aiomysql.sa), 26
create_pool() (built-in function), 23
Cursor (built-in class), 17
cursor() (in module aiomysql), 16

D
db (in module aiomysql), 17
DBAPI, 37
description (Cursor attribute), 18
dialect (aiomysql.sa.Engine attribute), 27
dialect (aiomysql.sa.ResultProxy attribute), 30
dialect (in module aiomysql.sa), 27
DictCursor (built-in class), 21
driver (aiomysql.sa.Engine attribute), 27

E
echo (Cursor attribute), 18
echo (in module aiomysql), 17
echo (Pool attribute), 23
encoding (in module aiomysql), 17
Engine (class in aiomysql.sa), 27
ensure_closed() (in module aiomysql), 16
execute() (aiomysql.sa.SAConnection method), 28
execute() (Cursor method), 19
executemany() (Cursor method), 19

F
fetchall() (aiomysql.sa.ResultProxy method), 31
fetchall() (Cursor method), 21
fetchall() (SSCursor method), 22
fetchmany() (aiomysql.sa.ResultProxy method), 32
fetchmany() (Cursor method), 20
fetchmany() (SSCursor method), 22
fetchone() (aiomysql.sa.ResultProxy method), 32
fetchone() (Cursor method), 20
first() (aiomysql.sa.ResultProxy method), 32
freesize (aiomysql.sa.Engine attribute), 27
freesize (Pool attribute), 23

G
get_autocommit() (in module aiomysql), 16

H
host (in module aiomysql), 17

45

aiomysql Documentation, Release 0.0.8

I
in_transaction (aiomysql.sa.SAConnection attribute), 30
ipdb, 37
is_active (aiomysql.sa.Transaction attribute), 33

K
keys() (aiomysql.sa.ResultProxy method), 31

L
lastrowid (aiomysql.sa.ResultProxy attribute), 31
lastrowid (Cursor attribute), 19

M
maxsize (aiomysql.sa.Engine attribute), 27
maxsize (Pool attribute), 23
minsize (aiomysql.sa.Engine attribute), 27
minsize (Pool attribute), 23
MySQL, 37

N
name (aiomysql.sa.Engine attribute), 27
NestedTransaction (class in aiomysql.sa), 33

P
pep8, 37
Pool (built-in class), 23
port (in module aiomysql), 17
prepare() (aiomysql.sa.TwoPhaseTransaction method), 33
pyflakes, 37
PyMySQL, 37
Python Enhancement Proposals

PEP 249, 37
PEP 8, 37

R
recover_twophase() (aiomysql.sa.SAConnection

method), 30
release() (aiomysql.sa.Engine method), 28
release() (Pool method), 24
ResultProxy (class in aiomysql.sa), 30
returns_rows (aiomysql.sa.ResultProxy attribute), 31
rollback() (aiomysql.sa.Transaction method), 33
rollback() (in module aiomysql), 17
rollback_prepared() (aiomysql.sa.SAConnection

method), 30
rowcount (aiomysql.sa.ResultProxy attribute), 31
rowcount (Cursor attribute), 18
rownumber (Cursor attribute), 18
RowProxy (class in aiomysql.sa), 32

S
SAConnection (class in aiomysql.sa), 28
scalar() (aiomysql.sa.ResultProxy method), 32

scalar() (aiomysql.sa.SAConnection method), 29
scroll() (Cursor method), 21
scroll() (SSCursor method), 22
select_db() (in module aiomysql), 17
size (aiomysql.sa.Engine attribute), 27
size (Pool attribute), 23
sqlalchemy, 37
SSCursor (built-in class), 22
SSDictCursor (built-in class), 22

T
terminate() (aiomysql.sa.Engine method), 27
terminate() (Pool method), 24
Transaction (class in aiomysql.sa), 32
TwoPhaseTransaction (class in aiomysql.sa), 33

U
unix_socket (in module aiomysql), 17
user (in module aiomysql), 17

W
wait_closed() (aiomysql.sa.Engine method), 27
wait_closed() (Pool method), 24

X
xid (aiomysql.sa.TwoPhaseTransaction attribute), 33

46 Index

	Features
	Basics
	Installation
	Source code
	Dependencies
	Authors and License
	Contents:
	aiomysql — API Reference
	Connection
	Cursor
	Pool
	Tutorial
	aiomysql.sa — support for SQLAlchemy functional SQL layer
	Examples of aiomysql usage
	Glossary
	Contributing

	Indices and tables
	Python Module Index

