

AIOHappyBase

AIOHappyBase is a developer-friendly Python [http://python.org/] library to interact with Apache
HBase [http://hbase.apache.org/]. AIOHappyBase is designed for use in standard HBase setups, and offers
application developers a Pythonic API to interact with HBase. Below the surface,
AIOHappyBase uses the Python ThriftPy2 library [http://pypi.python.org/pypi/thriftpy2] to connect to HBase using
its Thrift [http://thrift.apache.org/] gateway, which is included in the standard HBase 0.9x releases.

Note

From the original HappyBase author, Wouter Bolsterlee:

Do you enjoy HappyBase? Great! You should know that I don’t use HappyBase
myself anymore, but still maintain it because it’s quite popular. Please
consider making a small donation [https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=ZJ9U8DNN6KZ9Q] to let me know you appreciate my work.
Thanks!

Example

The example below illustrates basic usage of the library. The user guide contains many more examples.

from aiohappybase import Connection

async def main():

 async with Connection('hostname') as connection:
 table = connection.table('table-name')

 await table.put(b'row-key', {
 b'family:qual1': b'value1',
 b'family:qual2': b'value2',
 })

 row = await table.row(b'row-key')
 print(row[b'family:qual1']) # prints 'value1'

 for key, data in await table.rows([b'row-key-1', b'row-key-2']):
 print(key, data) # prints row key and data for each row

 async for key, data in table.scan(row_prefix=b'row'):
 print(key, data) # prints 'value1' and 'value2'

 await table.delete(b'row-key')

Core documentation

	Installation guide
	Setting up a virtual environment

	Installing the AIOHappyBase package

	Testing the installation

	User guide
	Establishing a connection

	Working with tables

	Retrieving data

	Manipulating data

	Using the connection pool

	API reference
	Connection

	Table

	Batch

	Connection pool

	Sync API
	Connection

	Table

	Batch

	Connection pool

Additional documentation

	Version history

	Development

	To-do list and possible future work

	Frequently asked questions

	License

External links

	Online Documentation [https://aiohappybase.readthedocs.io/] (Read the Docs)

	Downloads [http://pypi.python.org/pypi/aiohappybase/] (PyPI)

	Source Code [https://github.com/python-happybase/aiohappybase] (Github)

	HappyBase Online Documentation [https://happybase.readthedocs.io/] (Read the Docs)

	HappyBase Downloads [http://pypi.python.org/pypi/happybase/] (PyPI)

	HappyBase Source Code [https://github.com/python-happybase/happybase] (Github)

Indices and tables

	Index

	Module Index

	Search Page

Installation guide

This guide describes how to install HappyBase.

On this page

	Setting up a virtual environment

	Installing the AIOHappyBase package

	Testing the installation

Setting up a virtual environment

The recommended way to install HappyBase and Thrift is to use a virtual
environment created by virtualenv. Setup and activate a new virtual
environment like this:

$ python -m venv venv_name
$ source venv_name/bin/activate

Installing the AIOHappyBase package

The next step is to install AIOHappyBase. The easiest way is to use pip to
fetch the package from the Python Package Index [http://pypi.python.org/]
(PyPI). This will also install the Thrift package for Python.

(venv_name) $ pip install aiohappybase

Note

Generating and installing the HBase Thrift Python modules (using thrift
--gen py on the .thrift file) is not necessary, since AIOHappyBase
bundles pregenerated versions of those modules.

If you are going to be using AIOHappyBase to communicate with an HBase server
that uses Thrift over HTTP, you will need to install the http extra as
well:

(venv_name) $ pip install aiohappybase[http]

Testing the installation

Verify that the packages are installed correctly:

(venv_name) $ python -c 'import aiohappybase'

If you don’t see any errors, the installation was successful. Congratulations!

Next steps

Now that you successfully installed AIOHappyBase on your machine, continue with
the user guide to learn how to use it.

User guide

This user guide explores the AIOHappyBase API and should provide you with
enough information to get you started. Note that this user guide is intended as
an introduction to AIOHappyBase, not to HBase in general. Readers should
already have a basic understanding of HBase and its data model.

While the user guide does cover most features, it is not a complete reference
guide. More information about the AIOHappyBase API is available from the
API documentation.

On this page

	Establishing a connection

	Working with tables

	Using table ‘namespaces’

	Retrieving data

	Retrieving rows

	Making more fine-grained selections

	Scanning over rows in a table

	Manipulating data

	Storing data

	Deleting data

	Performing batch mutations

	Using atomic counters

	Using the connection pool

	Instantiating the pool

	Obtaining connections

	Handling broken connections

Establishing a connection

We’ll get started by connecting to HBase. Just create a new
Connection instance:

from aiohappybase import Connection

connection = Connection('somehost')

Or better, to ensure the connection is closed later

async with Connection('somehost') as connection:
 # Do your thing

In some setups, the Connection class needs some additional
information about the HBase version it will be connecting to, and which Thrift
transport to use. If you’re still using HBase 0.90.x, you need to set the
compat argument to make sure AIOHappyBase speaks the correct wire protocol.
Additionally, if you’re using HBase 0.94 with a non-standard Thrift transport
mode, make sure to supply the right transport argument. See the API
documentation for the Connection class for more information about
these arguments and their supported values.

When a Connection is created, it can automatically open a socket
connection to the HBase Thrift server if autoconnect is set to True
or the Connection is created using a context.

The Connection class provides the main entry point to interact with
HBase. For instance, to list the available tables, use
Connection.tables():

print(await connection.tables())

Most other methods on the Connection class are intended for system
management tasks like creating, dropping, enabling and disabling tables. See the
API documentation for the Connection class contains
more information. This user guide does not cover those since it’s more likely
you are already using the HBase shell for these system management tasks.

Note

AIOHappyBase also features a connection pool, which is covered later in this
guide.

Working with tables

The Table class provides the main API to retrieve and manipulate
data in HBase. In the example above, we already asked for the available tables
using the Connection.tables() method. If there weren’t any tables yet,
you can create a new one using Connection.create_table():

table = await connection.create_table('mytable', {
 'cf1': dict(max_versions=10),
 'cf2': dict(max_versions=1, block_cache_enabled=False),
 'cf3': dict(), # use defaults
})

Note

The HBase shell is often a better alternative for many HBase administration
tasks, since the shell is more powerful compared to the limited Thrift API
that AIOHappyBase uses.

If the table already exists, you can get a Table instance to
work with by simply calling Connection.table(), and passing it the
table name:

table = connection.table('mytable')

Note that this method is not async. Obtaining a Table instance
does not result in a round-trip to the Thrift server, which means application
code may ask the Connection instance for a new Table
whenever it needs one, without negative performance consequences. A side effect
is that no check is done to ensure that the table exists, since that would
involve a round-trip. Expect errors if you try to interact with non-existing
tables later in your code. For this guide, we assume the table exists.

Note

The ‘heavy’ HTable HBase class from the Java HBase API, which performs the
real communication with the region servers, is at the other side of the
Thrift connection. There is no direct mapping between Table
instances on the Python side and HTable instances on the server side.

Using table ‘namespaces’

If a single HBase instance is shared by multiple applications, table names used
by different applications may collide. A simple solution to this problem is to
add a ‘namespace’ prefix to the names of all tables ‘owned’ by a specific
application, e.g. for a project myproject all tables have names like
myproject_XYZ.

Instead of adding this application-specific prefix each time a table name is
passed to AIOHappyBase, the table_prefix argument to Connection
can take care of this. AIOHappyBase will prepend that prefix (and an
underscore) to each table name handled by that Connection instance.
For example:

connection = Connection('somehost', table_prefix='myproject')

At this point, Connection.tables() no longer includes tables in other
‘namespaces’. AIOHappyBase will only return tables with a myproject_ prefix,
and will also remove the prefix transparently when returning results, e.g.:

print(await connection.tables()) # Table "myproject_XYZ" in HBase will be
 # returned as simply "XYZ"

This also applies to other methods that take table names, such as
Connection.table():

table = connection.table('XYZ') # Operates on myproject_XYZ in HBase

The end result is that the table prefix is specified only once in your code,
namely in the call to the Connection constructor, and that only a
single change is necessary in case it needs changing.

Retrieving data

The HBase data model is a multidimensional sparse map. A table in HBase
contains column families with column qualifiers containing a value and a
timestamp. In most of the AIOHappyBase API, column family and qualifier names
are specified as a single string, e.g. cf1:col1, and not as two separate
arguments. While column families and qualifiers are different concepts in the
HBase data model, they are almost always used together when interacting with
data, so treating them as a single string makes the API a lot simpler.

Retrieving rows

The Table class offers various methods to retrieve data from a
table in HBase. The most basic one is Table.row(), which retrieves a
single row from the table, and returns it as a dictionary mapping columns to
values:

row = await table.row(b'row-key')
print(row[b'cf1:col1']) # prints the value of cf1:col1

The Table.rows() method works just like Table.row(), but
takes multiple row keys and returns those as (key, data) tuples:

rows = await table.rows([b'row-key-1', b'row-key-2'])
for key, data in rows:
 print(key, data)

If you want the results that Table.rows() returns as a dictionary,
you will have to do this yourself. This is really easy though, since the return
value can be passed directly to the dictionary constructor. As of Python 3.6
order is not lost when creating a dictionary:

rows_as_dict = dict(await table.rows([b'row-key-1', b'row-key-2']))

Making more fine-grained selections

HBase’s data model allows for more fine-grained selections of the data to
retrieve. If you know beforehand which columns are needed, performance can be
improved by specifying those columns explicitly to Table.row() and
Table.rows(). The columns argument takes a list (or tuple) of column
names:

row = await table.row(b'row-key', columns=[b'cf1:col1', b'cf1:col2'])
print(row[b'cf1:col1'])
print(row[b'cf1:col2'])

Instead of providing both a column family and a column qualifier, items in the
columns argument may also be just a column family, which means that all
columns from that column family will be retrieved. For example, to get all
columns and values in the column family cf1, use this:

row = await table.row(b'row-key', columns=[b'cf1'])

In HBase, each cell has a timestamp attached to it. In case you don’t want to
work with the latest version of data stored in HBase, the methods that retrieve
data from the database, e.g. Table.row(), all accept a timestamp
argument that specifies that the results should be restricted to values with a
timestamp up to the specified timestamp:

row = await table.row(b'row-key', timestamp=123456789)

By default, AIOHappyBase does not include timestamps in the results it returns.
In your application needs access to the timestamps, simply set the
include_timestamp argument to True. Now, each cell in the result will be
returned as a (value, timestamp) tuple instead of just a value:

row = await table.row(b'row-key', columns=[b'cf1:col1'], include_timestamp=True)
value, timestamp = row[b'cf1:col1']

HBase supports storing multiple versions of the same cell. This can be
configured for each column family. To retrieve all versions of a column for a
given row, Table.cells() can be used. This method returns an ordered
list of cells, with the most recent version coming first. The versions
argument specifies the maximum number of versions to return. Just like the
methods that retrieve rows, the include_timestamp argument determines whether
timestamps are included in the result. Example:

values = await table.cells(b'row-key', b'cf1:col1', versions=2)
for value in values:
 print("Cell data: {}".format(value))

cells = await table.cells(b'row-key', b'cf1:col1', versions=3, include_timestamp=True)
for value, timestamp in cells:
 print("Cell data at {}: {}".format(timestamp, value))

Note that the result may contain fewer cells than requested. The cell may just
have fewer versions, or you may have requested more versions than HBase keeps
for the column family.

Scanning over rows in a table

In addition to retrieving data for known row keys, rows in HBase can be
efficiently iterated over using a table scanner, created using
Table.scan(). A basic scanner that iterates over all rows in the table
looks like this:

async for key, data in table.scan():
 print(key, data)

Doing full table scans like in the example above is prohibitively expensive in
practice. Scans can be restricted in several ways to make more selective range
queries. One way is to specify start or stop keys, or both. To iterate over all
rows from row aaa to the end of the table:

async for key, data in table.scan(row_start=b'aaa'):
 print(key, data)

To iterate over all rows from the start of the table up to row xyz, use this:

async for key, data in table.scan(row_stop=b'xyz'):
 print(key, data)

To iterate over all rows between row aaa (included) and xyz (not included),
supply both:

async for key, data in table.scan(row_start=b'aaa', row_stop=b'xyz'):
 print(key, data)

An alternative is to use a key prefix. For example, to iterate over all rows
starting with abc:

async for key, data in table.scan(row_prefix=b'abc'):
 print(key, data)

The scanner examples above only limit the results by row key using the
row_start, row_stop, and row_prefix arguments, but scanners can also
limit results to certain columns, column families, and timestamps, just like
Table.row() and Table.rows(). For advanced users, a filter
string can be passed as the filter argument. Additionally, the optional
limit argument defines how much data is at most retrieved, and the
batch_size argument specifies how big the transferred chunks should be. The
Table.scan() API documentation provides more information on the
supported scanner options.

Manipulating data

HBase does not have any notion of data types; all row keys, column
names and column values are simply treated as raw byte strings.

By design, AIOHappyBase does not do any automatic string conversion.
This means that data must be converted to byte strings in your
application before you pass it to AIOHappyBase, for instance by calling
s.encode('utf-8') on text strings (which use Unicode), or by
employing more advanced string serialisation techniques like
struct.pack(). Look for HBase modelling techniques for more
details about this. Note that the underlying Thrift library used by
AIOHappyBase does some automatic encoding of text strings into bytes, but
relying on this “feature” is strongly discouraged, since returned data
will not be decoded automatically, resulting in asymmetric and hence
confusing behaviour. Having explicit encode and decode steps in your
application code is the correct way.

In HBase, all mutations either store data or mark data for deletion; there is
no such thing as an in-place update or delete. AIOHappyBase provides
methods to do single inserts or deletes, and a batch API to perform multiple
mutations in one go.

Storing data

To store a single cell of data in our table, we can use Table.put(),
which takes the row key, and the data to store. The data should be a dictionary
mapping the column name to a value:

await table.put(b'row-key', {b'cf:col1': b'value1', b'cf:col2': b'value2'})

Use the timestamp argument if you want to provide timestamps explicitly:

await table.put(b'row-key', {b'cf:col1': b'value1'}, timestamp=123456789)

If omitted, HBase defaults to the current system time.

Deleting data

The Table.delete() method deletes data from a table. To delete a
complete row, just specify the row key:

await table.delete(b'row-key')

To delete one or more columns instead of a complete row, also specify the
columns argument:

await table.delete(b'row-key', columns=[b'cf1:col1', b'cf1:col2'])

The optional timestamp argument restricts the delete operation to data up to
the specified timestamp.

Performing batch mutations

The Table.put() and Table.delete() methods both issue a
command to the HBase Thrift server immediately. This means that using these
methods is not very efficient when storing or deleting multiple values. It is
much more efficient to aggregate a bunch of commands and send them to the
server in one go. This is exactly what the Batch class, created
using Table.batch(), does. A Batch instance has put and
delete methods, just like the Table class, but the changes are sent
to the server in a single round-trip using Batch.send():

b = table.batch()
await b.put(b'row-key-1', {b'cf:col1': b'value1', b'cf:col2': b'value2'})
await b.put(b'row-key-2', {b'cf:col2': b'value2', b'cf:col3': b'value3'})
await b.put(b'row-key-3', {b'cf:col3': b'value3', b'cf:col4': b'value4'})
await b.delete(b'row-key-4')
await b.send()

Note

Storing and deleting data for the same row key in a single batch leads to
unpredictable results, so don’t do that.

While the methods on the Batch instance resemble the
put() and delete() methods, they do not take a
timestamp argument for each mutation. Instead, you can specify a single
timestamp argument for the complete batch:

b = table.batch(timestamp=123456789)
await b.put(...)
await b.delete(...)
await b.send()

Batch instances can be used as context managers, which are most
useful in combination with Python’s with construct. The example above can
be simplified to read:

async with table.batch() as b:
 await b.put(b'row-key-1', {b'cf:col1': b'value1', b'cf:col2': b'value2'})
 await b.put(b'row-key-2', {b'cf:col2': b'value2', b'cf:col3': b'value3'})
 await b.put(b'row-key-3', {b'cf:col3': b'value3', b'cf:col4': b'value4'})
 await b.delete(b'row-key-4')

As you can see, there is no call to Batch.send() anymore. The batch is
automatically applied when the with code block terminates, even in case of
errors somewhere in the with block, so it behaves basically the same as a
try/finally clause. However, some applications require transactional
behaviour, sending the batch only if no exception occurred. Without a context
manager this would look something like this:

b = table.batch()
try:
 await b.put(b'row-key-1', {b'cf:col1': b'value1', b'cf:col2': b'value2'})
 await b.put(b'row-key-2', {b'cf:col2': b'value2', b'cf:col3': b'value3'})
 await b.put(b'row-key-3', {b'cf:col3': b'value3', b'cf:col4': b'value4'})
 await b.delete(b'row-key-4')
 raise ValueError("Something went wrong!")
except ValueError as e:
 # error handling goes here; nothing will be sent to HBase
 pass
else:
 # no exceptions; send data
 await b.send()

Obtaining the same behaviour is easier using a with block. The
transaction argument to Table.batch() is all you need:

try:
 async with table.batch(transaction=True) as b:
 await b.put(b'row-key-1', {b'cf:col1': b'value1', b'cf:col2': b'value2'})
 await b.put(b'row-key-2', {b'cf:col2': b'value2', b'cf:col3': b'value3'})
 await b.put(b'row-key-3', {b'cf:col3': b'value3', b'cf:col4': b'value4'})
 await b.delete(b'row-key-4')
 raise ValueError("Something went wrong!")
except ValueError:
 # error handling goes here; nothing is sent to HBase
 pass

when no error occurred, the transaction succeeded

As you may have imagined already, a Batch keeps all mutations in
memory until the batch is sent, either by calling Batch.send()
explicitly, or when the with block ends. This doesn’t work for applications
that need to store huge amounts of data, since it may result in batches that
are too big to send in one round-trip, or in batches that use too much memory.
For these cases, the batch_size argument can be specified. The batch_size
acts as a threshold: a Batch instance automatically sends all
pending mutations when there are more than batch_size pending operations. For
example, this will result in three round-trips to the server (two batches with
1000 cells, and one with the remaining 400):

async with table.batch(batch_size=1000) as b:
 for i in range(1200):
 # this put() will result in two mutations (two cells)
 await b.put(b'row-%04d' % i, {
 b'cf1:col1': b'v1',
 b'cf1:col2': b'v2',
 })

The appropriate batch_size is very application-specific since it depends on
the data size, so just experiment to see how different sizes work for your
specific use case.

Using atomic counters

The Table.counter_inc() and Table.counter_dec() methods allow
for atomic incrementing and decrementing of 8 byte wide values, which are
interpreted as big-endian 64-bit signed integers by HBase. Counters are
automatically initialised to 0 upon first use. When incrementing or
decrementing a counter, the value after modification is returned. Example:

print(await table.counter_inc(b'row-key', b'cf1:counter')) # prints 1
print(await table.counter_inc(b'row-key', b'cf1:counter')) # prints 2
print(await table.counter_inc(b'row-key', b'cf1:counter')) # prints 3

print(await table.counter_dec(b'row-key', b'cf1:counter')) # prints 2

The optional value argument specifies how much to increment or decrement by:

print(await table.counter_inc(b'row-key', b'cf1:counter', value=3)) # prints 5

While counters are typically used with the increment and decrement functions
shown above, the Table.counter_get() and Table.counter_set()
methods can be used to retrieve or set a counter value directly:

print(await table.counter_get(b'row-key', b'cf1:counter')) # prints 5

await table.counter_set(b'row-key', b'cf1:counter', 12)

Note

An application should never counter_get() the current
value, modify it in code and then counter_set() the modified
value; use the atomic counter_inc() and
counter_dec() instead!

Using the connection pool

AIOHappyBase comes with a asyncio task-safe connection pool that allows
multiple tasks to share and reuse open connections. This is most useful in
multi-tasked server applications such as aiohttp servers. When a task asks
the pool for a connection (using ConnectionPool.connection()), it will
be granted a lease, during which the task has exclusive access to the
connection. After the task is done using the connection, it returns the
connection to the pool so that it becomes available for other tasks.

Instantiating the pool

The pool is provided by the ConnectionPool class. The size
argument to the constructor specifies the number of connections in the pool.
Additional arguments are passed on to the Connection constructor:

from aiohappybase import ConnectionPool

pool = ConnectionPool(size=3, host='...', table_prefix='myproject')

Context instantiation is preferred to make sure connections are cleaned up
async with ConnectionPool(size=3, host='...', table_prefix='myproject') as pool:
 # Do your thing

Connections will only be opened as necessary. HappyBase’s ConnectionPool
would open a single connection immediately to detect issues, but that isn’t
so easy to do in async because __init__ is always synchronous.

Obtaining connections

Connections can only be obtained using Python’s context manager protocol, i.e.
using a code block inside a with statement. This ensures that connections
are actually returned to the pool after use. Example:

async with .ConnectionPool(size=3, host='...') as pool:
 async with pool.connection() as connection:
 print(await connection.tables())

Warning

Never use the connection instance after the with block has ended.
Even though the variable is still in scope, the connection may have been
assigned to another task in the mean time.

Connections should be returned to the pool as quickly as possible, so that other
tasks can use them. This means that the amount of code included inside the
with block should be kept to an absolute minimum. In practice, an
application should only load data inside the with block, and process the
data outside the with block:

async with pool.connection() as connection:
 table = connection.table('table-name')
 row = await table.row(b'row-key')

process_data(row)

An application task can only hold one connection at a time. When a task
holds a connection and asks for a connection for a second time (e.g. because a
called function also requests a connection from the pool), the same connection
instance it already holds is returned, so this does not require any coordination
from the application. This means that in the following example, both connection
requests to the pool will return the exact same connection:

pool = ConnectionPool(size=3, host='...')

async def do_something_else():
 async with pool.connection() as connection:
 pass # use the connection here

async with pool.connection() as connection:
 # use the connection here, e.g.
 print(await connection.tables())

 # call another function that uses a connection
 do_something_else()

await pool.close()

Handling broken connections

The pool tries to detect broken connections and will replace those with fresh
ones when the connection is returned to the pool. However, the connection pool
does not capture raised exceptions, nor does it automatically retry failed
operations. This means that the application still has to handle connection
errors.

Next steps

The next step is to try it out for yourself! The API documentation
can be used as a reference.

API reference

This chapter contains detailed API documentation for AIOHappyBase. It is suggested to read the user guide first to get a general idea about how AIOHappyBase works.

The AIOHappyBase API is organised as follows:

	Connection:

	The Connection class is the main entry point for
application developers. It connects to the HBase Thrift server and provides
methods for table management.

	Table:

	The Table class is the main class for interacting with data in
tables. This class offers methods for data retrieval and data manipulation.
Instances of this class can be obtained using the
Connection.table() method.

	Batch:

	The Batch class implements the batch API for data manipulation,
and is available through the Table.batch() method.

	ConnectionPool:

	The ConnectionPool class implements a thread-safe connection
pool that allows an application to (re)use multiple connections.

Connection

	
class aiohappybase.Connection(host: str = 'localhost', port: int = 9090, timeout: int = None, autoconnect: bool = False, table_prefix: AnyStr = None, table_prefix_separator: AnyStr = b'_', compat: str = '0.98', transport: str = 'buffered', protocol: str = 'binary', client: str = 'socket', **client_kwargs)

	Connection to an HBase Thrift server.

The host and port arguments specify the host name and TCP port
of the HBase Thrift server to connect to. If omitted or None,
a connection to the default port on localhost is made. If
specifed, the timeout argument specifies the socket timeout in
milliseconds.

If autoconnect is True the connection is made directly during
initialization. Otherwise a context manager should be used (with
Connection…) or Connection.open() must be called explicitly
before first use. Note that due to limitations in the Python async
framework, a RuntimeError will be raised if it is used inside of a running
asyncio event loop.

The optional table_prefix and table_prefix_separator arguments
specify a prefix and a separator string to be prepended to all table
names, e.g. when Connection.table() is invoked. For
example, if table_prefix is myproject, all tables will
have names like myproject_XYZ.

The optional compat argument sets the compatibility level for
this connection. Older HBase versions have slightly different Thrift
interfaces, and using the wrong protocol can lead to crashes caused
by communication errors, so make sure to use the correct one. This
value can be either the string 0.90, 0.92, 0.94, or
0.96 (the default).

The optional transport argument specifies the Thrift transport
mode to use. Supported values for this argument are buffered
(the default) and framed. Make sure to choose the right one,
since otherwise you might see non-obvious connection errors or
program hangs when making a connection. HBase versions before 0.94
always use the buffered transport. Starting with HBase 0.94, the
Thrift server optionally uses a framed transport, depending on the
argument passed to the hbase-daemon.sh start thrift command.
The default -threadpool mode uses the buffered transport; the
-hsha, -nonblocking, and -threadedselector modes use the
framed transport.

The optional protocol argument specifies the Thrift transport
protocol to use. Supported values for this argument are binary
(the default) and compact. Make sure to choose the right one,
since otherwise you might see non-obvious connection errors or
program hangs when making a connection. TCompactProtocol is
a more compact binary format that is typically more efficient to
process as well. TBinaryProtocol is the default protocol that
AIOHappyBase uses.

The optional client argument specifies the type of Thrift client
to use. Supported values for this argument are socket
(the default) and http. Make sure to choose the right one,
since otherwise you might see non-obvious connection errors or
program hangs when making a connection. To check which client
you should use, refer to the hbase.regionserver.thrift.http
setting. If it is true use http, otherwise use socket.

New in version v1.4.0: client argument

New in version 0.9: protocol argument

New in version 0.5: timeout argument

New in version 0.4: table_prefix_separator argument

New in version 0.4: support for framed Thrift transports

	Parameters

	
	host – The host to connect to

	port – The port to connect to

	timeout – The socket timeout in milliseconds (optional)

	autoconnect – Whether the connection should be opened directly

	table_prefix – Prefix used to construct table names (optional)

	table_prefix_separator – Separator used for table_prefix

	compat – Compatibility mode (optional)

	transport – Thrift transport mode (optional)

	protocol – Thrift protocol mode (optional)

	client – Thrift client mode (optional)

	client_kwargs – Extra keyword arguments for make_client(). See the ThriftPy2
documentation for more information.

	
close() → None

	Close the underlying client to the HBase instance. This method
can be safely called more than once. Note that the client is
destroyed after it is closed which will cause errors to occur
if it is used again before reopening. The Connection
can be reopened by calling open() again.

	
table(name: AnyStr, use_prefix: bool = True) → aiohappybase.table.Table

	Return a table object.

Returns a happybase.Table instance for the table
named name. This does not result in a round-trip to the
server, and the table is not checked for existence.

The optional use_prefix argument specifies whether the table
prefix (if any) is prepended to the specified name. Set this
to False if you want to use a table that resides in another
‘prefix namespace’, e.g. a table from a ‘friendly’ application
co-hosted on the same HBase instance. See the table_prefix
argument to the Connection constructor for more
information.

	Parameters

	
	name – the name of the table

	use_prefix – whether to use the table prefix (if any)

	Returns

	Table instance

	
compact_table(name: AnyStr, major: bool = False) → None

	Compact the specified table.

	Parameters

	
	name (str) – The table name

	major (bool) – Whether to perform a major compaction.

	
create_table(name: AnyStr, families: Dict[str, Dict[str, Any]]) → aiohappybase.table.Table

	Create a table.

	Parameters

	
	name – The table name

	families – The name and options for each column family

	Returns

	The created table instance

The families argument is a dictionary mapping column family
names to a dictionary containing the options for this column
family, e.g.

families = {
 'cf1': dict(max_versions=10),
 'cf2': dict(max_versions=1, block_cache_enabled=False),
 'cf3': dict(), # use defaults
}
connection.create_table('mytable', families)

These options correspond to the ColumnDescriptor structure in
the Thrift API, but note that the names should be provided in
Python style, not in camel case notation, e.g. time_to_live,
not timeToLive. The following options are supported:

	max_versions (int)

	compression (str)

	in_memory (bool)

	bloom_filter_type (str)

	bloom_filter_vector_size (int)

	bloom_filter_nb_hashes (int)

	block_cache_enabled (bool)

	time_to_live (int)

	
delete_table(name: AnyStr, disable: bool = False) → None

	Delete the specified table.

New in version 0.5: disable argument

In HBase, a table always needs to be disabled before it can be
deleted. If the disable argument is True, this method first
disables the table if it wasn’t already and then deletes it.

	Parameters

	
	name – The table name

	disable – Whether to first disable the table if needed

	
disable_table(name: AnyStr) → None

	Disable the specified table.

	Parameters

	name – The table name

	
enable_table(name: AnyStr) → None

	Enable the specified table.

	Parameters

	name – The table name

	
is_table_enabled(name: AnyStr) → None

	Return whether the specified table is enabled.

	Parameters

	name (str) – The table name

	Returns

	whether the table is enabled

	Return type

	bool

	
open() → None

	Create and open the underlying client to the HBase instance. This
method can safely be called more than once.

	
tables() → List[bytes]

	Return a list of table names available in this HBase instance.

If a table_prefix was set for this Connection, only
tables that have the specified prefix will be listed.

	Returns

	The table names

Table

	
class aiohappybase.Table(name: bytes, connection: Connection)

	HBase table abstraction class.

This class cannot be instantiated directly;
use Connection.table() instead.

	
regions() → List[Dict[str, Any]]

	Retrieve the regions for this table.

	Returns

	regions for this table

	
rows(rows: List[bytes], columns: Iterable[bytes] = None, timestamp: int = None, include_timestamp: bool = False) → List[Tuple[bytes, Union[Dict[bytes, bytes], Dict[bytes, Tuple[bytes, int]]]]]

	Retrieve multiple rows of data.

This method retrieves the rows with the row keys specified in the
rows argument, which should be should be a list (or tuple) of row
keys. The return value is a list of (row_key, row_dict) tuples.

The columns, timestamp and include_timestamp arguments behave
exactly the same as for row().

	Parameters

	
	rows – list of row keys

	columns – list of columns (optional)

	timestamp – timestamp (optional)

	include_timestamp – whether timestamps are returned

	Returns

	List of mappings (columns to values)

	
scan(row_start: bytes = None, row_stop: bytes = None, row_prefix: bytes = None, columns: Iterable[bytes] = None, filter: bytes = None, timestamp: int = None, include_timestamp: bool = False, batch_size: int = 1000, scan_batching: int = None, limit: int = None, sorted_columns: bool = False, reverse: bool = False) → AsyncGenerator[Tuple[bytes, Dict[bytes, bytes]], None]

	Create a scanner for data in the table.

This method returns an iterable that can be used for looping over the
matching rows. Scanners can be created in two ways:

	The row_start and row_stop arguments specify the row keys where
the scanner should start and stop. It does not matter whether the
table contains any rows with the specified keys: the first row after
row_start will be the first result, and the last row before
row_stop will be the last result. Note that the start of the range
is inclusive, while the end is exclusive.

Both row_start and row_stop can be None to specify the start
and the end of the table respectively. If both are omitted, a full
table scan is done. Note that this usually results in severe
performance problems.

	Alternatively, if row_prefix is specified, only rows with row keys
matching the prefix will be returned. If given, row_start and
row_stop cannot be used.

The columns, timestamp and include_timestamp arguments behave
exactly the same as for row().

The filter argument may be a filter string that will be applied at
the server by the region servers.

If limit is given, at most limit results will be returned.

The batch_size argument specifies how many results should be
retrieved per batch when retrieving results from the scanner. Only set
this to a low value (or even 1) if your data is large, since a low
batch size results in added round-trips to the server.

The optional scan_batching is for advanced usage only; it
translates to Scan.setBatching() at the Java side (inside the
Thrift server). By setting this value rows may be split into
partial rows, so result rows may be incomplete, and the number
of results returned by the scanner may no longer correspond to
the number of rows matched by the scan.

If sorted_columns is True, the columns in the rows returned
by this scanner will be retrieved in sorted order, and the data
will be stored in OrderedDict instances.

If reverse is True, the scanner will perform the scan in reverse.
This means that row_start must be lexicographically after row_stop.
Note that the start of the range is inclusive, while the end is
exclusive just as in the forward scan.

Compatibility notes:

	The filter argument is only available when using HBase 0.92
(or up). In HBase 0.90 compatibility mode, specifying
a filter raises an exception.

	The sorted_columns argument is only available when using
HBase 0.96 (or up).

	The reverse argument is only available when using HBase 0.98
(or up).

New in version 1.1.0: reverse argument

New in version 0.8: sorted_columns argument

New in version 0.8: scan_batching argument

	Parameters

	
	row_start – the row key to start at (inclusive)

	row_stop – the row key to stop at (exclusive)

	row_prefix – a prefix of the row key that must match

	columns – list of columns (optional)

	filter – a filter string (optional)

	timestamp – timestamp (optional)

	include_timestamp – whether timestamps are returned

	batch_size – batch size for retrieving results

	scan_batching – server-side scan batching (optional)

	limit – max number of rows to return

	sorted_columns – whether to return sorted columns

	reverse – whether to perform scan in reverse

	Returns

	generator yielding the rows matching the scan

	Return type

	iterable of (row_key, row_data) tuples

	
append(row: bytes, data: Dict[bytes, bytes], include_timestamp: bool = False) → Union[Dict[bytes, bytes], Dict[bytes, Tuple[bytes, int]]]

	Append data to an existing row.

	This function is only available when using HBase 0.98 (or up).

The data argument behaves just like it does in put()
except that instead of replacing the current values, they are
appended to the end. If a specified cell doesn’t exist, then the
result is the same as calling put() for that cell.

	Parameters

	
	row – the row key

	data – data to append

	include_timestamp – include timestamps with the values?

	Returns

	Updated cell values like the output of row()

	
column_family_names() → List[bytes]

	Retrieve the column family names for this table

	
counter_dec(row: bytes, column: bytes, value: int = 1) → int

	Atomically decrement (or increments) a counter column.

This method is a shortcut for calling Table.counter_inc() with
the value negated.

	Returns

	counter value after decrementing

	
counter_get(row: bytes, column: bytes) → int

	Retrieve the current value of a counter column.

This method retrieves the current value of a counter column. If the
counter column does not exist, this function initialises it to 0.

Note that application code should never store a incremented or
decremented counter value directly; use the atomic
Table.counter_inc() and Table.counter_dec() methods
for that.

	Parameters

	
	row – the row key

	column – the column name

	Returns

	counter value

	
counter_inc(row: bytes, column: bytes, value: int = 1) → int

	Atomically increment (or decrements) a counter column.

This method atomically increments or decrements a counter column in the
row specified by row. The value argument specifies how much the
counter should be incremented (for positive values) or decremented (for
negative values). If the counter column did not exist, it is
automatically initialised to 0 before incrementing it.

	Parameters

	
	row – the row key

	column – the column name

	value – the amount to increment or decrement by (optional)

	Returns

	counter value after incrementing

	
counter_set(row: bytes, column: bytes, value: int = 0) → None

	Set a counter column to a specific value.

This method stores a 64-bit signed integer value in the specified
column.

Note that application code should never store a incremented or
decremented counter value directly; use the atomic
Table.counter_inc() and Table.counter_dec() methods
for that.

	Parameters

	
	row – the row key

	column – the column name

	value – the counter value to set

	
delete(row: bytes, columns: Iterable[bytes] = None, timestamp: int = None, wal: bool = True) → None

	Delete data from the table.

This method deletes all columns for the row specified by row, or only
some columns if the columns argument is specified.

Note that, in many situations, batch() is a more appropriate
method to manipulate data.

New in version 0.7: wal argument

	Parameters

	
	row – the row key

	columns – list of columns (optional)

	timestamp – timestamp (optional)

	wal – whether to write to the WAL (optional)

	
families() → Dict[bytes, Dict[str, Any]]

	Retrieve the column families for this table.

	Returns

	Mapping from column family name to settings dict

	
put(row: bytes, data: Dict[bytes, bytes], timestamp: int = None, wal: bool = True) → None

	Store data in the table.

This method stores the data in the data argument for the row
specified by row. The data argument is dictionary that maps columns
to values. Column names must include a family and qualifier part, e.g.
b'cf:col', though the qualifier part may be the empty string, e.g.
b'cf:'.

Note that, in many situations, batch() is a more appropriate
method to manipulate data.

New in version 0.7: wal argument

	Parameters

	
	row – the row key

	data – the data to store

	timestamp – timestamp (optional)

	wal – whether to write to the WAL (optional)

	
row(row: bytes, columns: Iterable[bytes] = None, timestamp: int = None, include_timestamp: bool = False) → Union[Dict[bytes, bytes], Dict[bytes, Tuple[bytes, int]]]

	Retrieve a single row of data.

This method retrieves the row with the row key specified in the row
argument and returns the columns and values for this row as
a dictionary.

The row argument is the row key of the row. If the columns
argument is specified, only the values for these columns will be
returned instead of all available columns. The columns
argument should be a list or tuple containing byte strings. Each
name can be a column family, such as b'cf1' or b'cf1:'
(the trailing colon is not required), or a column family with a
qualifier, such as b'cf1:col1'.

If specified, the timestamp argument specifies the maximum version
that results may have. The include_timestamp argument specifies
whether cells are returned as single values or as (value, timestamp)
tuples.

	Parameters

	
	row – the row key

	columns – list of columns (optional)

	timestamp – timestamp (optional)

	include_timestamp – whether timestamps are returned

	Returns

	Mapping of columns (both qualifier and family) to values

	
cells(row: bytes, column: bytes, versions: int = None, timestamp: int = None, include_timestamp: bool = False) → Union[List[bytes], List[Tuple[bytes, int]]]

	Retrieve multiple versions of a single cell from the table.

This method retrieves multiple versions of a cell (if any).

The versions argument defines how many cell versions to
retrieve at most.

The timestamp and include_timestamp arguments behave exactly the
same as for row().

	Parameters

	
	row – the row key

	column – the column name

	versions – the maximum number of versions to retrieve

	timestamp – timestamp (optional)

	include_timestamp – whether timestamps are returned

	Returns

	cell values

	
batch(timestamp: int = None, batch_size: int = None, transaction: bool = False, wal: bool = True) → aiohappybase.batch.Batch

	Create a new batch operation for this table.

This method returns a new Batch instance that can be used
for mass data manipulation. The timestamp argument applies to all
puts and deletes on the batch.

If given, the batch_size argument specifies the maximum batch size
after which the batch should send the mutations to the server. By
default this is unbounded.

The transaction argument specifies whether the returned
Batch instance should act in a transaction-like manner when
used as context manager in a with block of code. The transaction
flag cannot be used in combination with batch_size.

The wal argument determines whether mutations should be
written to the HBase Write Ahead Log (WAL). This flag can only
be used with recent HBase versions. If specified, it provides
a default for all the put and delete operations on this batch.
This default value can be overridden for individual operations
using the wal argument to Batch.put() and
Batch.delete().

New in version 0.7: wal argument

	Parameters

	
	transaction – whether this batch should behave like a transaction
(only useful when used as a context manager)

	batch_size – batch size (optional)

	timestamp – timestamp (optional)

	wal – whether to write to the WAL (optional)

	Returns

	Batch instance

Batch

	
class aiohappybase.Batch(table: Table, timestamp: int = None, batch_size: int = None, transaction: bool = False, wal: bool = True)

	Batch mutation class.

This class cannot be instantiated directly;
use Table.batch() instead.

Initialise a new Batch instance.

	
put(row: bytes, data: Dict[bytes, bytes], wal: bool = None) → None

	Store data in the table.

See Table.put() for a description of the row, data,
and wal arguments. The wal argument should normally not be
used; its only use is to override the batch-wide value passed to
Table.batch().

	
delete(row: bytes, columns: Iterable[bytes] = None, wal: bool = None) → None

	Delete data from the table.

See Table.put() for a description of the row, data,
and wal arguments. The wal argument should normally not be
used; its only use is to override the batch-wide value passed to
Table.batch().

	
close() → None

	Finalize the batch and make sure all tasks are completed.

	
counter_inc(row: bytes, column: bytes, value: int = 1) → None

	Atomically increment (or decrements) a counter column.

See Table.counter_inc() for parameter details. Note that
this method cannot return the current value because the change
is buffered until send to the server.

	
send() → None

	Send the batch to the server.

	
counter_dec(row: bytes, column: bytes, value: int = 1) → None

	Atomically decrement (or increments) a counter column.

See Table.counter_dec() for parameter details. Note that
this method cannot return the current value because the change
is buffered until send to the server.

Connection pool

	
class aiohappybase.ConnectionPool(size: int, **kwargs)

	Asyncio-safe connection pool.

New in version 0.5.

Connection pools in sync code (like happybase.ConnectionPool)
work by creating multiple connections and providing one whenever a thread
asks. When a thread is done with it, it returns it to the pool to be
made available to other threads. In async code, instead of threads,
tasks make the request to the pool for a connection.

If a task nests calls to connection(), it will get the
same connection back, just like in HappyBase.

The size argument specifies how many connections this pool
manages. Additional keyword arguments are passed unmodified to the
happybase.Connection constructor, with the exception of
the autoconnect argument, since maintaining connections is the
task of the pool.

	Parameters

	
	size (int) – the maximum number of concurrently open connections

	kwargs – keyword arguments for Connection

	
QUEUE_TYPE

	alias of asyncio.queues.LifoQueue

	
close()

	Clean up all pool connections and delete the queue.

	
connection(timeout: numbers.Real = None) → aiohappybase.connection.Connection

	Obtain a connection from the pool.

This method must be used as a context manager, i.e. with
Python’s with block. Example:

async with pool.connection() as connection:
 pass # do something with the connection

If timeout is specified, this is the number of seconds to wait
for a connection to become available before
NoConnectionsAvailable is raised. If omitted, this
method waits forever for a connection to become available.

	Parameters

	timeout – number of seconds to wait (optional)

	Returns

	active connection from the pool

	
class aiohappybase.NoConnectionsAvailable

	Exception raised when no connections are available.

This happens if a timeout was specified when obtaining a connection,
and no connection became available within the specified timeout.

New in version 0.5.

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

Sync API

To maintain complete backwards compatibility with the original HappyBase
and to ease upgrading, this library comes with a synchronous version of the
API that is autogenerated from the async API at import time to ensure
it doesn’t diverge.

The library can be accessed one of two ways:

	Via the aiohappybase.sync subpackage

	The happybase.py module (which simply imports everything from 1)

Note

If you have both HappyBase and AIOHappyBase installed in the same
environment, HappyBase should be picked when you import happybase
(packages always seem to be loaded before modules when they have the same
name) but it isn’t advised to have both installed.

To ensure you always get the sync version of AIOHappyBase, it is best to
use import aiohappybase.sync as happybase if you wish to use the
happybase name. The happybase.py module is really only to smooth
the transition.

In the sync version, all async methods have been converted to synchronous
equivalents. Here are some examples from the user guide, which are basically
just removals of the async/await keywords:

from aiohappybase.sync import Connection

with Connection('somehost') as connection:
 table = connection.create_table('mytable', {
 'cf1': dict(max_versions=10),
 'cf2': dict(max_versions=1, block_cache_enabled=False),
 'cf3': dict(), # use defaults
 })

 table.put(b'row-key-1', {b'cf:col1': b'value1', b'cf:col2': b'value2'})
 table.put(b'row-key-2', {b'cf:col1': b'value1', b'cf:col2': b'value2'})

 rows = table.rows([b'row-key-1', b'row-key-2'])
 for key, data in rows:
 print(key, data)

Connection

	
class aiohappybase.sync.Connection(host: str = 'localhost', port: int = 9090, timeout: int = None, autoconnect: bool = True, table_prefix: AnyStr = None, table_prefix_separator: AnyStr = b'_', compat: str = '0.98', transport: str = 'buffered', protocol: str = 'binary', client: str = 'socket', **client_kwargs)

	Connection to an HBase Thrift server.

The host and port arguments specify the host name and TCP port
of the HBase Thrift server to connect to. If omitted or None,
a connection to the default port on localhost is made. If
specifed, the timeout argument specifies the socket timeout in
milliseconds.

If autoconnect is True the connection is made directly during
initialization. Otherwise a context manager should be used (with
Connection…) or Connection.open() must be called explicitly
before first use. Note that due to limitations in the Python async
framework, a RuntimeError will be raised if it is used inside of a running
asyncio event loop.

The optional table_prefix and table_prefix_separator arguments
specify a prefix and a separator string to be prepended to all table
names, e.g. when Connection.table() is invoked. For
example, if table_prefix is myproject, all tables will
have names like myproject_XYZ.

The optional compat argument sets the compatibility level for
this connection. Older HBase versions have slightly different Thrift
interfaces, and using the wrong protocol can lead to crashes caused
by communication errors, so make sure to use the correct one. This
value can be either the string 0.90, 0.92, 0.94, or
0.96 (the default).

The optional transport argument specifies the Thrift transport
mode to use. Supported values for this argument are buffered
(the default) and framed. Make sure to choose the right one,
since otherwise you might see non-obvious connection errors or
program hangs when making a connection. HBase versions before 0.94
always use the buffered transport. Starting with HBase 0.94, the
Thrift server optionally uses a framed transport, depending on the
argument passed to the hbase-daemon.sh start thrift command.
The default -threadpool mode uses the buffered transport; the
-hsha, -nonblocking, and -threadedselector modes use the
framed transport.

The optional protocol argument specifies the Thrift transport
protocol to use. Supported values for this argument are binary
(the default) and compact. Make sure to choose the right one,
since otherwise you might see non-obvious connection errors or
program hangs when making a connection. TCompactProtocol is
a more compact binary format that is typically more efficient to
process as well. TBinaryProtocol is the default protocol that
AIOHappyBase uses.

The optional client argument specifies the type of Thrift client
to use. Supported values for this argument are socket
(the default) and http. Make sure to choose the right one,
since otherwise you might see non-obvious connection errors or
program hangs when making a connection. To check which client
you should use, refer to the hbase.regionserver.thrift.http
setting. If it is true use http, otherwise use socket.

New in version v1.4.0: client argument

New in version 0.9: protocol argument

New in version 0.5: timeout argument

New in version 0.4: table_prefix_separator argument

New in version 0.4: support for framed Thrift transports

	Parameters

	
	host – The host to connect to

	port – The port to connect to

	timeout – The socket timeout in milliseconds (optional)

	autoconnect – Whether the connection should be opened directly

	table_prefix – Prefix used to construct table names (optional)

	table_prefix_separator – Separator used for table_prefix

	compat – Compatibility mode (optional)

	transport – Thrift transport mode (optional)

	protocol – Thrift protocol mode (optional)

	client – Thrift client mode (optional)

	client_kwargs – Extra keyword arguments for make_client(). See the ThriftPy2
documentation for more information.

	
close() → None

	Close the underlying client to the HBase instance. This method
can be safely called more than once. Note that the client is
destroyed after it is closed which will cause errors to occur
if it is used again before reopening. The Connection
can be reopened by calling open() again.

	
compact_table(name: AnyStr, major: bool = False) → None

	Compact the specified table.

	Parameters

	
	name (str) – The table name

	major (bool) – Whether to perform a major compaction.

	
create_table(name: AnyStr, families: Dict[str, Dict[str, Any]]) → aiohappybase.sync.table.Table

	Create a table.

	Parameters

	
	name – The table name

	families – The name and options for each column family

	Returns

	The created table instance

The families argument is a dictionary mapping column family
names to a dictionary containing the options for this column
family, e.g.

families = {
 'cf1': dict(max_versions=10),
 'cf2': dict(max_versions=1, block_cache_enabled=False),
 'cf3': dict(), # use defaults
}
connection.create_table('mytable', families)

These options correspond to the ColumnDescriptor structure in
the Thrift API, but note that the names should be provided in
Python style, not in camel case notation, e.g. time_to_live,
not timeToLive. The following options are supported:

	max_versions (int)

	compression (str)

	in_memory (bool)

	bloom_filter_type (str)

	bloom_filter_vector_size (int)

	bloom_filter_nb_hashes (int)

	block_cache_enabled (bool)

	time_to_live (int)

	
delete_table(name: AnyStr, disable: bool = False) → None

	Delete the specified table.

New in version 0.5: disable argument

In HBase, a table always needs to be disabled before it can be
deleted. If the disable argument is True, this method first
disables the table if it wasn’t already and then deletes it.

	Parameters

	
	name – The table name

	disable – Whether to first disable the table if needed

	
disable_table(name: AnyStr) → None

	Disable the specified table.

	Parameters

	name – The table name

	
enable_table(name: AnyStr) → None

	Enable the specified table.

	Parameters

	name – The table name

	
is_table_enabled(name: AnyStr) → None

	Return whether the specified table is enabled.

	Parameters

	name (str) – The table name

	Returns

	whether the table is enabled

	Return type

	bool

	
open() → None

	Create and open the underlying client to the HBase instance. This
method can safely be called more than once.

	
table(name: AnyStr, use_prefix: bool = True) → aiohappybase.sync.table.Table

	Return a table object.

Returns a happybase.Table instance for the table
named name. This does not result in a round-trip to the
server, and the table is not checked for existence.

The optional use_prefix argument specifies whether the table
prefix (if any) is prepended to the specified name. Set this
to False if you want to use a table that resides in another
‘prefix namespace’, e.g. a table from a ‘friendly’ application
co-hosted on the same HBase instance. See the table_prefix
argument to the Connection constructor for more
information.

	Parameters

	
	name – the name of the table

	use_prefix – whether to use the table prefix (if any)

	Returns

	Table instance

	
tables() → List[bytes]

	Return a list of table names available in this HBase instance.

If a table_prefix was set for this Connection, only
tables that have the specified prefix will be listed.

	Returns

	The table names

Table

	
class aiohappybase.sync.Table(name: bytes, connection: Connection)

	HBase table abstraction class.

This class cannot be instantiated directly;
use Connection.table() instead.

	
append(row: bytes, data: Dict[bytes, bytes], include_timestamp: bool = False) → Union[Dict[bytes, bytes], Dict[bytes, Tuple[bytes, int]]]

	Append data to an existing row.

	This function is only available when using HBase 0.98 (or up).

The data argument behaves just like it does in put()
except that instead of replacing the current values, they are
appended to the end. If a specified cell doesn’t exist, then the
result is the same as calling put() for that cell.

	Parameters

	
	row – the row key

	data – data to append

	include_timestamp – include timestamps with the values?

	Returns

	Updated cell values like the output of row()

	
batch(timestamp: int = None, batch_size: int = None, transaction: bool = False, wal: bool = True) → aiohappybase.sync.batch.Batch

	Create a new batch operation for this table.

This method returns a new Batch instance that can be used
for mass data manipulation. The timestamp argument applies to all
puts and deletes on the batch.

If given, the batch_size argument specifies the maximum batch size
after which the batch should send the mutations to the server. By
default this is unbounded.

The transaction argument specifies whether the returned
Batch instance should act in a transaction-like manner when
used as context manager in a with block of code. The transaction
flag cannot be used in combination with batch_size.

The wal argument determines whether mutations should be
written to the HBase Write Ahead Log (WAL). This flag can only
be used with recent HBase versions. If specified, it provides
a default for all the put and delete operations on this batch.
This default value can be overridden for individual operations
using the wal argument to Batch.put() and
Batch.delete().

New in version 0.7: wal argument

	Parameters

	
	transaction – whether this batch should behave like a transaction
(only useful when used as a context manager)

	batch_size – batch size (optional)

	timestamp – timestamp (optional)

	wal – whether to write to the WAL (optional)

	Returns

	Batch instance

	
cells(row: bytes, column: bytes, versions: int = None, timestamp: int = None, include_timestamp: bool = False) → Union[List[bytes], List[Tuple[bytes, int]]]

	Retrieve multiple versions of a single cell from the table.

This method retrieves multiple versions of a cell (if any).

The versions argument defines how many cell versions to
retrieve at most.

The timestamp and include_timestamp arguments behave exactly the
same as for row().

	Parameters

	
	row – the row key

	column – the column name

	versions – the maximum number of versions to retrieve

	timestamp – timestamp (optional)

	include_timestamp – whether timestamps are returned

	Returns

	cell values

	
column_family_names() → List[bytes]

	Retrieve the column family names for this table

	
counter_dec(row: bytes, column: bytes, value: int = 1) → int

	Atomically decrement (or increments) a counter column.

This method is a shortcut for calling Table.counter_inc() with
the value negated.

	Returns

	counter value after decrementing

	
counter_get(row: bytes, column: bytes) → int

	Retrieve the current value of a counter column.

This method retrieves the current value of a counter column. If the
counter column does not exist, this function initialises it to 0.

Note that application code should never store a incremented or
decremented counter value directly; use the atomic
Table.counter_inc() and Table.counter_dec() methods
for that.

	Parameters

	
	row – the row key

	column – the column name

	Returns

	counter value

	
counter_inc(row: bytes, column: bytes, value: int = 1) → int

	Atomically increment (or decrements) a counter column.

This method atomically increments or decrements a counter column in the
row specified by row. The value argument specifies how much the
counter should be incremented (for positive values) or decremented (for
negative values). If the counter column did not exist, it is
automatically initialised to 0 before incrementing it.

	Parameters

	
	row – the row key

	column – the column name

	value – the amount to increment or decrement by (optional)

	Returns

	counter value after incrementing

	
counter_set(row: bytes, column: bytes, value: int = 0) → None

	Set a counter column to a specific value.

This method stores a 64-bit signed integer value in the specified
column.

Note that application code should never store a incremented or
decremented counter value directly; use the atomic
Table.counter_inc() and Table.counter_dec() methods
for that.

	Parameters

	
	row – the row key

	column – the column name

	value – the counter value to set

	
delete(row: bytes, columns: Iterable[bytes] = None, timestamp: int = None, wal: bool = True) → None

	Delete data from the table.

This method deletes all columns for the row specified by row, or only
some columns if the columns argument is specified.

Note that, in many situations, batch() is a more appropriate
method to manipulate data.

New in version 0.7: wal argument

	Parameters

	
	row – the row key

	columns – list of columns (optional)

	timestamp – timestamp (optional)

	wal – whether to write to the WAL (optional)

	
families() → Dict[bytes, Dict[str, Any]]

	Retrieve the column families for this table.

	Returns

	Mapping from column family name to settings dict

	
put(row: bytes, data: Dict[bytes, bytes], timestamp: int = None, wal: bool = True) → None

	Store data in the table.

This method stores the data in the data argument for the row
specified by row. The data argument is dictionary that maps columns
to values. Column names must include a family and qualifier part, e.g.
b'cf:col', though the qualifier part may be the empty string, e.g.
b'cf:'.

Note that, in many situations, batch() is a more appropriate
method to manipulate data.

New in version 0.7: wal argument

	Parameters

	
	row – the row key

	data – the data to store

	timestamp – timestamp (optional)

	wal – whether to write to the WAL (optional)

	
regions() → List[Dict[str, Any]]

	Retrieve the regions for this table.

	Returns

	regions for this table

	
row(row: bytes, columns: Iterable[bytes] = None, timestamp: int = None, include_timestamp: bool = False) → Union[Dict[bytes, bytes], Dict[bytes, Tuple[bytes, int]]]

	Retrieve a single row of data.

This method retrieves the row with the row key specified in the row
argument and returns the columns and values for this row as
a dictionary.

The row argument is the row key of the row. If the columns
argument is specified, only the values for these columns will be
returned instead of all available columns. The columns
argument should be a list or tuple containing byte strings. Each
name can be a column family, such as b'cf1' or b'cf1:'
(the trailing colon is not required), or a column family with a
qualifier, such as b'cf1:col1'.

If specified, the timestamp argument specifies the maximum version
that results may have. The include_timestamp argument specifies
whether cells are returned as single values or as (value, timestamp)
tuples.

	Parameters

	
	row – the row key

	columns – list of columns (optional)

	timestamp – timestamp (optional)

	include_timestamp – whether timestamps are returned

	Returns

	Mapping of columns (both qualifier and family) to values

	
rows(rows: List[bytes], columns: Iterable[bytes] = None, timestamp: int = None, include_timestamp: bool = False) → List[Tuple[bytes, Union[Dict[bytes, bytes], Dict[bytes, Tuple[bytes, int]]]]]

	Retrieve multiple rows of data.

This method retrieves the rows with the row keys specified in the
rows argument, which should be should be a list (or tuple) of row
keys. The return value is a list of (row_key, row_dict) tuples.

The columns, timestamp and include_timestamp arguments behave
exactly the same as for row().

	Parameters

	
	rows – list of row keys

	columns – list of columns (optional)

	timestamp – timestamp (optional)

	include_timestamp – whether timestamps are returned

	Returns

	List of mappings (columns to values)

	
scan(row_start: bytes = None, row_stop: bytes = None, row_prefix: bytes = None, columns: Iterable[bytes] = None, filter: bytes = None, timestamp: int = None, include_timestamp: bool = False, batch_size: int = 1000, scan_batching: int = None, limit: int = None, sorted_columns: bool = False, reverse: bool = False) → AsyncGenerator[Tuple[bytes, Dict[bytes, bytes]], None]

	Create a scanner for data in the table.

This method returns an iterable that can be used for looping over the
matching rows. Scanners can be created in two ways:

	The row_start and row_stop arguments specify the row keys where
the scanner should start and stop. It does not matter whether the
table contains any rows with the specified keys: the first row after
row_start will be the first result, and the last row before
row_stop will be the last result. Note that the start of the range
is inclusive, while the end is exclusive.

Both row_start and row_stop can be None to specify the start
and the end of the table respectively. If both are omitted, a full
table scan is done. Note that this usually results in severe
performance problems.

	Alternatively, if row_prefix is specified, only rows with row keys
matching the prefix will be returned. If given, row_start and
row_stop cannot be used.

The columns, timestamp and include_timestamp arguments behave
exactly the same as for row().

The filter argument may be a filter string that will be applied at
the server by the region servers.

If limit is given, at most limit results will be returned.

The batch_size argument specifies how many results should be
retrieved per batch when retrieving results from the scanner. Only set
this to a low value (or even 1) if your data is large, since a low
batch size results in added round-trips to the server.

The optional scan_batching is for advanced usage only; it
translates to Scan.setBatching() at the Java side (inside the
Thrift server). By setting this value rows may be split into
partial rows, so result rows may be incomplete, and the number
of results returned by the scanner may no longer correspond to
the number of rows matched by the scan.

If sorted_columns is True, the columns in the rows returned
by this scanner will be retrieved in sorted order, and the data
will be stored in OrderedDict instances.

If reverse is True, the scanner will perform the scan in reverse.
This means that row_start must be lexicographically after row_stop.
Note that the start of the range is inclusive, while the end is
exclusive just as in the forward scan.

Compatibility notes:

	The filter argument is only available when using HBase 0.92
(or up). In HBase 0.90 compatibility mode, specifying
a filter raises an exception.

	The sorted_columns argument is only available when using
HBase 0.96 (or up).

	The reverse argument is only available when using HBase 0.98
(or up).

New in version 1.1.0: reverse argument

New in version 0.8: sorted_columns argument

New in version 0.8: scan_batching argument

	Parameters

	
	row_start – the row key to start at (inclusive)

	row_stop – the row key to stop at (exclusive)

	row_prefix – a prefix of the row key that must match

	columns – list of columns (optional)

	filter – a filter string (optional)

	timestamp – timestamp (optional)

	include_timestamp – whether timestamps are returned

	batch_size – batch size for retrieving results

	scan_batching – server-side scan batching (optional)

	limit – max number of rows to return

	sorted_columns – whether to return sorted columns

	reverse – whether to perform scan in reverse

	Returns

	generator yielding the rows matching the scan

	Return type

	iterable of (row_key, row_data) tuples

Batch

	
class aiohappybase.sync.Batch(table: Table, timestamp: int = None, batch_size: int = None, transaction: bool = False, wal: bool = True)

	Batch mutation class.

This class cannot be instantiated directly;
use Table.batch() instead.

Initialise a new Batch instance.

	
close() → None

	Finalize the batch and make sure all tasks are completed.

	
counter_dec(row: bytes, column: bytes, value: int = 1) → None

	Atomically decrement (or increments) a counter column.

See Table.counter_dec() for parameter details. Note that
this method cannot return the current value because the change
is buffered until send to the server.

	
counter_inc(row: bytes, column: bytes, value: int = 1) → None

	Atomically increment (or decrements) a counter column.

See Table.counter_inc() for parameter details. Note that
this method cannot return the current value because the change
is buffered until send to the server.

	
delete(row: bytes, columns: Iterable[bytes] = None, wal: bool = None) → None

	Delete data from the table.

See Table.put() for a description of the row, data,
and wal arguments. The wal argument should normally not be
used; its only use is to override the batch-wide value passed to
Table.batch().

	
put(row: bytes, data: Dict[bytes, bytes], wal: bool = None) → None

	Store data in the table.

See Table.put() for a description of the row, data,
and wal arguments. The wal argument should normally not be
used; its only use is to override the batch-wide value passed to
Table.batch().

	
send() → None

	Send the batch to the server.

Connection pool

	
class aiohappybase.sync.ConnectionPool(size: int, **kwargs)

	Thread-safe connection pool.

New in version 0.5.

Connection pools work by creating multiple connections and providing
one whenever a thread asks. When a thread is done with it, it returns
it to the pool to be made available to other threads.

If a thread nests calls to connection(), it will get the
same connection back.

The size argument specifies how many connections this pool
manages. Additional keyword arguments are passed unmodified to the
Connection constructor, with the exception of
the autoconnect argument, since maintaining connections is the
task of the pool.

	Parameters

	
	size (int) – the maximum number of concurrently open connections

	kwargs – keyword arguments for Connection

	
QUEUE_TYPE

	alias of queue.LifoQueue

	
close()

	Clean up all pool connections and delete the queue.

	
connection(timeout: numbers.Real = None) → aiohappybase.sync.connection.Connection

	Obtain a connection from the pool.

This method must be used as a context manager, i.e. with
Python’s with block. Example:

with pool.connection() as connection:
 pass # do something with the connection

If timeout is specified, this is the number of seconds to wait
for a connection to become available before
NoConnectionsAvailable is raised. If omitted, this
method waits forever for a connection to become available.

	Parameters

	timeout – number of seconds to wait (optional)

	Returns

	active connection from the pool

	
class aiohappybase.sync.NoConnectionsAvailable

	Exception raised when no connections are available.

This happens if a timeout was specified when obtaining a connection,
and no connection became available within the specified timeout.

New in version 0.5.

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

Version history

AIOHappyBase 1.3.0

Release date: 2020-03-10

	Added support for the async framed transport and compact protocol that were
added in ThriftPy2 4.10 (which is now the new minimum version).

	Implemented counter batching with Batch.counter_inc()
and Batch.counter_dec().

	Added Table.append() to utilize the append Thrift endpoint.

	Connection now internally utilizes make_aio_client() to create the
internal Thrift client.

	All additional keyword arguments provided to Connection instances will
be passed to the client.

	This enables support for SSL sockets and any additional features future
versions of thriftpy2 add.

	Implemented a sync subpackage to enable backwards compatibility with
the original HappyBase synchronized API and ease the transition process.

	It is mostly autogenerated at runtime from the async code to simplify
maintenance and ensure all features are available.

	A simple happybase.py module is included to complete the backwards
compatibility. If HappyBase is already installed, that should
take precedence.

AIOHappyBase 1.2.0

Release date: 2019-11-28

First release of the async version of HappyBase!

The version number is the same because the API is almost identical
(albeit async) except for a few updates:

	Only Python 3.6+ will be supported (I like f-strings and ordered dictionaries,
sue me:P)

	Connection and ConnectionPool objects can be used as context managers
(async and regular).

	Explicitly closing non-context managed Connection and ConnectionPool
objects is now required due the asyncio event loop being mostly unavailable
during __del__.

	Connection.create_table() now returns the Table instance.

	Support for the framed transport and compact protocol have been dropped until
thriftpy2.contrib.aio supports them as well.

HappyBase 1.2.0

Release date: 2019-05-14

	Switch from thriftpy to its successor thriftpy2,
which supports Python 3.7.
(issue #221 [https://github.com/wbolster/happybase/issues/221],
pr 222 [https://github.com/wbolster/happybase/pull/222],

HappyBase 1.1.0

Release date: 2017-04-03

	Set socket timeout unconditionally on TSocket
(#146 [https://github.com/wbolster/happybase/issues/146])

	Add new ‘0.98’ compatibility mode
(#155 [https://github.com/wbolster/happybase/issues/155])

	Add support for reversed scanners
(#67 [https://github.com/wbolster/happybase/issues/67],
#155 [https://github.com/wbolster/happybase/issues/155])

HappyBase 1.0.0

Release date: 2016-08-13

	First 1.x.y release!

From now on this library uses a semantic versioning scheme.
HappyBase is a mature library, but always used 0.x version numbers
for no good reason. This has now changed.

	Finally, Python 3 support. Thanks to all the people who contributed!
(issue #40 [https://github.com/wbolster/happybase/issues/40],
pr 116 [https://github.com/wbolster/happybase/pull/116],
pr 108 [https://github.com/wbolster/happybase/pull/108],
pr 111 [https://github.com/wbolster/happybase/pull/111])

	Switch to thriftpy as the underlying Thrift library, which is a much
nicer and better maintained library.

	Enable building universal wheels
(issue 78 [https://github.com/wbolster/happybase/pull/78])

HappyBase 0.9

Release date: 2014-11-24

	Fix an issue where scanners would return fewer results than expected due to
HBase not always behaving as its documentation suggests (issue #72 [https://github.com/wbolster/happybase/issues/72]).

	Add support for the Thrift compact protocol (TCompactProtocol) in
Connection (issue #70 [https://github.com/wbolster/happybase/issues/70]).

HappyBase 0.8

Release date: 2014-02-25

	Add (and default to) ‘0.96’ compatibility mode in Connection.

	Add support for retrieving sorted columns, which is possible with the HBase
0.96 Thrift API. This feature uses a new sorted_columns argument to
Table.scan(). An OrderedDict implementation is required for this
feature; with Python 2.7 this is available from the standard library, but for
Python 2.6 a separate ordereddict package has to be installed from PyPI.
(issue #39 [https://github.com/wbolster/happybase/issues/39])

	The batch_size argument to Table.scan() is no longer propagated to
Scan.setBatching() at the Java side (inside the Thrift server). To influence
the Scan.setBatching() (which may split rows into partial rows) a new
scan_batching argument to Table.scan() has been added. See issue
#54 [https://github.com/wbolster/happybase/issues/54], issue #56 [https://github.com/wbolster/happybase/issues/56], and the HBase docs for
Scan.setBatching() for more details.

HappyBase 0.7

Release date: 2013-11-06

	Added a wal argument to various data manipulation methods on the
Table and Batch classes to determine whether to write
the mutation to the Write-Ahead Log (WAL). (issue #36 [https://github.com/wbolster/happybase/issues/36])

	Pass batch_size to underlying Thrift Scan instance (issue #38 [https://github.com/wbolster/happybase/issues/38]).

	Expose server name and port in Table.regions() (recent HBase versions
only) (issue #37 [https://github.com/wbolster/happybase/issues/37]).

	Regenerated bundled Thrift API modules using a recent upstream Thrift API
definition. This is required to expose newly added API.

HappyBase 0.6

Release date: 2013-06-12

	Rewrote exception handling in connection pool. Exception handling is now a lot
cleaner and does not introduce cyclic references anymore. (issue #25 [https://github.com/wbolster/happybase/issues/25]).

	Regenerated bundled Thrift code using Thrift 0.9.0 with the new-style classes
flag (issue #27 [https://github.com/wbolster/happybase/issues/27]).

HappyBase 0.5

Release date: 2013-05-24

	Added a thread-safe connection pool (ConnectionPool) to keep
connections open and share them between threads (issue #21 [https://github.com/wbolster/happybase/issues/21]).

	The Connection.delete_table() method now features an optional
disable parameter to make deleting enabled tables easier.

	The debug log message emitted by Table.scan() when closing a scanner
now includes both the number of rows returned to the calling code, and also
the number of rows actually fetched from the server. If scanners are not
completely iterated over (e.g. because of a ‘break’ statement in the for loop
for the scanner), these numbers may differ. If this happens often, and the
differences are big, this may be a hint that the batch_size parameter to
Table.scan() is not optimal for your application.

	Increased Thrift dependency to at least 0.8. Older versions are no longer
available from PyPI. HappyBase should not be used with obsoleted Thrift
versions.

	The Connection constructor now features an optional timeout
parameter to to specify the timeout to use for the Thrift socket (issue #15 [https://github.com/wbolster/happybase/issues/15])

	The timestamp argument to various methods now also accepts long values in
addition to int values. This fixes problems with large timestamp values on
32-bit systems. (issue #23 [https://github.com/wbolster/happybase/issues/23]).

	In some corner cases exceptions were raised during interpreter shutdown while
closing any remaining open connections. (issue #18 [https://github.com/wbolster/happybase/issues/18])

HappyBase 0.4

Release date: 2012-07-11

	Add an optional table_prefix_separator argument to the
Connection constructor, to specify the prefix used for the
table_prefix argument (issue #3 [https://github.com/wbolster/happybase/issues/3])

	Add support for framed Thrift transports using a new optional transport
argument to Connection (issue #6 [https://github.com/wbolster/happybase/issues/6])

	Add the Apache license conditions in the license statement
(for the included HBase parts)

	Documentation improvements

HappyBase 0.3

Release date: 2012-05-25

New features:

	Improved compatibility with HBase 0.90.x

	In earlier versions, using Table.scan() in combination with HBase
0.90.x often resulted in crashes, caused by incompatibilities in the
underlying Thrift protocol.

	A new compat flag to the Connection constructor has been
added to enable compatibility with HBase 0.90.x.

	Note that the Table.scan() API has a few limitations when used
with HBase 0.90.x.

	The row_prefix argument to Table.scan() can now be used together
with filter and timestamp arguments.

Other changes:

	Lower Thrift dependency to 0.6

	The setup.py script no longer installs the tests

	Documentation improvements

HappyBase 0.2

Release date: 2012-05-22

	Fix package installation, so that pip install happybase works as expected
(issue #1 [https://github.com/wbolster/happybase/issues/1])

	Various small documentation improvements

HappyBase 0.1

Release date: 2012-05-20

	Initial release

Development

Getting the source

The AIOHappyBase source code repository is hosted on GitHub:

https://github.com/python-happybase/aiohappybase

To grab a copy, use this:

$ git clone https://github.com/python-happybase/aiohappybase.git

Setting up a development environment

Setting up a development environment from a Git branch is easy:

$ cd /path/to/aiohappybase/
$ python -m venv venv
$ source venv/bin/activate
(venv) $ pip install -r test-requirements.txt
(venv) $ pip install -e .

Running the tests

The tests use the asynctest test suite. To execute the tests, run:

(venv) $ make test

Test outputs are shown on the console. A test code coverage report is saved in
coverage/index.html.

If the Thrift server is not running on localhost, you can specify these
environment variables (both are optional) before running the tests:

(venv) $ export AIOHAPPYBASE_HOST=host.example.org
(venv) $ export AIOHAPPYBASE_PORT=9091

To test the HBase 0.90 compatibility mode, use this:

(venv) $ export AIOHAPPYBASE_COMPAT=0.90

To test the framed Thrift transport mode, use this:

(venv) $ export AIOHAPPYBASE_TRANSPORT=framed

Contributing

Feel free to report any issues on GitHub. Patches and merge requests are also
most welcome.

To-do list and possible future work

This document lists some ideas that the developers thought of, but have not yet
implemented. The topics described below may be implemented (or not) in the
future, depending on time, demand, and technical possibilities.

	Improved error handling instead of just propagating the errors from the
Thrift layer. Maybe wrap the errors in a HappyBase.Error?

	Automatic retries for failed operations (but only those that can be retried)

	Port HappyBase over to the (still experimental) HBase Thrift2 API when it
becomes mainstream, and expose more of the underlying features nicely in the
HappyBase API.

Frequently asked questions

I love AIOHappyBase! Can I donate?

While I am not accepting donations at this time, the original author is:

From the original HappyBase author, Wouter Bolsterlee:

Thanks, I’m glad to hear that you appreciate my work! If you feel like, please
make a small donation [https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=ZJ9U8DNN6KZ9Q] to sponsor my (spare time!) work on HappyBase. Small
gestures are really motivating for me and help me keep this project going!

Why not use the Thrift API directly?

While the HBase Thrift API can be used directly from Python using (automatically
generated) HBase Thrift service classes, application code doing so is very
verbose, cumbersome to write, and hence error-prone. The reason for this is that
the HBase Thrift API is a flat, language-agnostic interface API closely tied to
the RPC going over the wire-level protocol. In practice, this means that
applications using Thrift directly need to deal with many imports, sockets,
transports, protocols, clients, Thrift types and mutation objects. For instance,
look at the code required to connect to HBase and store two values:

import asyncio as aio

from thriftpy2.contrib.aio.client import TAsyncClient
from thriftpy2.contrib.aio.socket import TAsyncSocket
from thriftpy2.contrib.aio.transport.buffered import TAsyncBufferedTransport
from thriftpy2.contrib.aio.protocol.binary import TAsyncBinaryProtocol

from hbase import Hbase, Mutation

async def main():

 sock = TAsyncSocket('hostname', 9090)
 transport = TAsyncBufferedTransport(sock)
 protocol = TAsyncBinaryProtocol(transport)
 client = TAsyncClient(Hbase, protocol)
 transport.open()

 mutations = [
 Mutation(column=b'family:qual1', value=b'value1'),
 Mutation(column=b'family:qual2', value=b'value2'),
]
 await client.mutateRow(b'table-name', b'row-key', mutations)

aio.run(main())

PEP 20 [https://www.python.org/dev/peps/pep-0020] taught us that simple is better than complex, and as you can see,
Thrift is certainly complex. AIOHappyBase hides all the Thrift cruft below a
friendly API. The resulting application code will be cleaner, more productive
to write, and more maintainable. With AIOHappyBase, the example above can be
simplified to this:

import asyncio as aio

from aiohappybase import Connection

async def main():
 async with Connection('hostname') as conn:
 table = conn.table(b'table-name')
 await table.put(b'row-key', {
 b'family:qual1': b'value1',
 b'family:qual2': b'value2',
 })

aio.run(main())

If you’re not convinced and still think the Thrift API is not that bad, please
try to accomplish some other common tasks, e.g. retrieving rows and scanning
over a part of a table, and compare that to the AIOHappyBase equivalents. If
you’re still not convinced by then, we’re sorry to inform you that AIOHappyBase
is not the project for you, and we wish you all of luck maintaining your code
‒ or is it just Thrift boilerplate?

License

AIOHappyBase itself is licensed under a MIT License [http://www.opensource.org/licenses/MIT]. AIOHappyBase contains code originating from HBase sources, licensed under the Apache License [http://www.apache.org/licenses/] (version 2.0). Both license texts are
included below.

AIOHappyBase License

(This is the MIT License [http://www.opensource.org/licenses/MIT].)

Copyright © 2012 Wouter Bolsterlee // Original HappyBase author
Copyright © 2019 Roger Aiudi

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

HBase License

(This is the Apache License [http://www.apache.org/licenses/], version 2.0,
January 2004.)

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

	Definitions.

“License” shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity
exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

“Object” form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

	You must give any other recipients of the Work or
Derivative Works a copy of this License; and

	You must cause any modified files to carry prominent notices
stating that You changed the files; and

	You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

	If the Work includes a “NOTICE” text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Index

 A
 | B
 | C
 | D
 | E
 | F
 | I
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | W

A

 	
 	append() (aiohappybase.sync.Table method)

 	(aiohappybase.Table method)

B

 	
 	Batch (class in aiohappybase)

 	(class in aiohappybase.sync)

 	
 	batch() (aiohappybase.sync.Table method)

 	(aiohappybase.Table method)

C

 	
 	cells() (aiohappybase.sync.Table method)

 	(aiohappybase.Table method)

 	close() (aiohappybase.Batch method)

 	(aiohappybase.Connection method)

 	(aiohappybase.ConnectionPool method)

 	(aiohappybase.sync.Batch method)

 	(aiohappybase.sync.Connection method)

 	(aiohappybase.sync.ConnectionPool method)

 	column_family_names() (aiohappybase.sync.Table method)

 	(aiohappybase.Table method)

 	compact_table() (aiohappybase.Connection method)

 	(aiohappybase.sync.Connection method)

 	Connection (class in aiohappybase)

 	(class in aiohappybase.sync)

 	connection() (aiohappybase.ConnectionPool method)

 	(aiohappybase.sync.ConnectionPool method)

 	
 	ConnectionPool (class in aiohappybase)

 	(class in aiohappybase.sync)

 	counter_dec() (aiohappybase.Batch method)

 	(aiohappybase.Table method)

 	(aiohappybase.sync.Batch method)

 	(aiohappybase.sync.Table method)

 	counter_get() (aiohappybase.sync.Table method)

 	(aiohappybase.Table method)

 	counter_inc() (aiohappybase.Batch method)

 	(aiohappybase.Table method)

 	(aiohappybase.sync.Batch method)

 	(aiohappybase.sync.Table method)

 	counter_set() (aiohappybase.sync.Table method)

 	(aiohappybase.Table method)

 	create_table() (aiohappybase.Connection method)

 	(aiohappybase.sync.Connection method)

D

 	
 	delete() (aiohappybase.Batch method)

 	(aiohappybase.Table method)

 	(aiohappybase.sync.Batch method)

 	(aiohappybase.sync.Table method)

 	
 	delete_table() (aiohappybase.Connection method)

 	(aiohappybase.sync.Connection method)

 	disable_table() (aiohappybase.Connection method)

 	(aiohappybase.sync.Connection method)

E

 	
 	enable_table() (aiohappybase.Connection method)

 	(aiohappybase.sync.Connection method)

F

 	
 	families() (aiohappybase.sync.Table method)

 	(aiohappybase.Table method)

I

 	
 	is_table_enabled() (aiohappybase.Connection method)

 	(aiohappybase.sync.Connection method)

N

 	
 	NoConnectionsAvailable (class in aiohappybase)

 	(class in aiohappybase.sync)

O

 	
 	open() (aiohappybase.Connection method)

 	(aiohappybase.sync.Connection method)

P

 	
 	put() (aiohappybase.Batch method)

 	(aiohappybase.Table method)

 	(aiohappybase.sync.Batch method)

 	(aiohappybase.sync.Table method)

 	
 	
 Python Enhancement Proposals

 	PEP 20

Q

 	
 	QUEUE_TYPE (aiohappybase.ConnectionPool attribute)

 	(aiohappybase.sync.ConnectionPool attribute)

R

 	
 	regions() (aiohappybase.sync.Table method)

 	(aiohappybase.Table method)

 	row() (aiohappybase.sync.Table method)

 	(aiohappybase.Table method)

 	
 	rows() (aiohappybase.sync.Table method)

 	(aiohappybase.Table method)

S

 	
 	scan() (aiohappybase.sync.Table method)

 	(aiohappybase.Table method)

 	
 	send() (aiohappybase.Batch method)

 	(aiohappybase.sync.Batch method)

T

 	
 	Table (class in aiohappybase)

 	(class in aiohappybase.sync)

 	table() (aiohappybase.Connection method)

 	(aiohappybase.sync.Connection method)

 	
 	tables() (aiohappybase.Connection method)

 	(aiohappybase.sync.Connection method)

W

 	
 	with_traceback() (aiohappybase.NoConnectionsAvailable method)

 	(aiohappybase.sync.NoConnectionsAvailable method)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 AIOHappyBase

 		
 Installation guide

 		
 Setting up a virtual environment

 		
 Installing the AIOHappyBase package

 		
 Testing the installation

 		
 User guide

 		
 Establishing a connection

 		
 Working with tables

 		
 Using table ‘namespaces’

 		
 Retrieving data

 		
 Retrieving rows

 		
 Making more fine-grained selections

 		
 Scanning over rows in a table

 		
 Manipulating data

 		
 Storing data

 		
 Deleting data

 		
 Performing batch mutations

 		
 Using atomic counters

 		
 Using the connection pool

 		
 Instantiating the pool

 		
 Obtaining connections

 		
 Handling broken connections

 		
 API reference

 		
 Connection

 		
 Table

 		
 Batch

 		
 Connection pool

 		
 Sync API

 		
 Connection

 		
 Table

 		
 Batch

 		
 Connection pool

 		
 Version history

 		
 AIOHappyBase 1.3.0

 		
 AIOHappyBase 1.2.0

 		
 HappyBase 1.2.0

 		
 HappyBase 1.1.0

 		
 HappyBase 1.0.0

 		
 HappyBase 0.9

 		
 HappyBase 0.8

 		
 HappyBase 0.7

 		
 HappyBase 0.6

 		
 HappyBase 0.5

 		
 HappyBase 0.4

 		
 HappyBase 0.3

 		
 HappyBase 0.2

 		
 HappyBase 0.1

 		
 Development

 		
 Getting the source

 		
 Setting up a development environment

 		
 Running the tests

 		
 Contributing

 		
 To-do list and possible future work

 		
 Frequently asked questions

 		
 I love AIOHappyBase! Can I donate?

 		
 Why not use the Thrift API directly?

 		
 License

 		
 AIOHappyBase License

 		
 HBase License

_static/up-pressed.png

_static/up.png

_static/plus.png

