

aiogram

[image: MIT License]
 [https://opensource.org/licenses/MIT][image: PyPi status]
 [https://pypi.python.org/pypi/aiogram][image: PyPi Package Version]
 [https://pypi.python.org/pypi/aiogram][image: Downloads]
 [https://pypi.python.org/pypi/aiogram][image: Supported python versions]
 [https://pypi.python.org/pypi/aiogram][image: Telegram Bot API]
 [https://core.telegram.org/bots/api][image: Tests]
 [https://github.com/aiogram/aiogram/actions][image: Codecov]
 [https://app.codecov.io/gh/aiogram/aiogram]aiogram is a modern and fully asynchronous framework for
Telegram Bot API [https://core.telegram.org/bots/api] written in Python 3.8 using
asyncio [https://docs.python.org/3/library/asyncio.html] and
aiohttp [https://github.com/aio-libs/aiohttp].

Make your bots faster and more powerful!

	Documentation:
	
	🇺🇸 English [https://docs.aiogram.dev/en/dev-3.x/]

	🇺🇦 Ukrainian [https://docs.aiogram.dev/uk_UA/dev-3.x/]

Features

	Asynchronous (asyncio docs [https://docs.python.org/3/library/asyncio.html], PEP 492 [https://peps.python.org/pep-0492/])

	Has type hints (PEP 484 [https://peps.python.org/pep-0484/]) and can be used with mypy [http://mypy-lang.org/]

	Supports PyPy [https://www.pypy.org/]

	Supports Telegram Bot API 7.3 [https://core.telegram.org/bots/api] and gets fast updates to the latest versions of the Bot API

	Telegram Bot API integration code was autogenerated [https://github.com/aiogram/tg-codegen] and can be easily re-generated when API gets updated

	Updates router (Blueprints)

	Has Finite State Machine

	Uses powerful magic filters [https://docs.aiogram.dev/en/latest/dispatcher/filters/magic_filters.html#magic-filters]

	Middlewares (incoming updates and API calls)

	Provides Replies into Webhook [https://core.telegram.org/bots/faq#how-can-i-make-requests-in-response-to-updates]

	Integrated I18n/L10n support with GNU Gettext (or Fluent)

Warning

It is strongly advised that you have prior experience working
with asyncio [https://docs.python.org/3/library/asyncio.html]
before beginning to use aiogram.

If you have any questions, you can visit our community chats on Telegram:

	🇺🇸 @aiogram [https://t.me/aiogram]

	🇺🇦 @aiogramua [https://t.me/aiogramua]

	🇺🇿 @aiogram_uz [https://t.me/aiogram_uz]

	🇰🇿 @aiogram_kz [https://t.me/aiogram_kz]

	🇷🇺 @aiogram_ru [https://t.me/aiogram_ru]

	🇮🇷 @aiogram_fa [https://t.me/aiogram_fa]

	🇮🇹 @aiogram_it [https://t.me/aiogram_it]

	🇧🇷 @aiogram_br [https://t.me/aiogram_br]

Simple usage

import asyncio
import logging
import sys
from os import getenv

from aiogram import Bot, Dispatcher, html
from aiogram.client.default import DefaultBotProperties
from aiogram.enums import ParseMode
from aiogram.filters import CommandStart
from aiogram.types import Message

Bot token can be obtained via https://t.me/BotFather
TOKEN = getenv("BOT_TOKEN")

All handlers should be attached to the Router (or Dispatcher)
dp = Dispatcher()

@dp.message(CommandStart())
async def command_start_handler(message: Message) -> None:
 """
 This handler receives messages with `/start` command
 """
 # Most event objects have aliases for API methods that can be called in events' context
 # For example if you want to answer to incoming message you can use `message.answer(...)` alias
 # and the target chat will be passed to :ref:`aiogram.methods.send_message.SendMessage`
 # method automatically or call API method directly via
 # Bot instance: `bot.send_message(chat_id=message.chat.id, ...)`
 await message.answer(f"Hello, {html.bold(message.from_user.full_name)}!")

@dp.message()
async def echo_handler(message: Message) -> None:
 """
 Handler will forward receive a message back to the sender

 By default, message handler will handle all message types (like a text, photo, sticker etc.)
 """
 try:
 # Send a copy of the received message
 await message.send_copy(chat_id=message.chat.id)
 except TypeError:
 # But not all the types is supported to be copied so need to handle it
 await message.answer("Nice try!")

async def main() -> None:
 # Initialize Bot instance with default bot properties which will be passed to all API calls
 bot = Bot(token=TOKEN, default=DefaultBotProperties(parse_mode=ParseMode.HTML))
 # And the run events dispatching
 await dp.start_polling(bot)

if __name__ == "__main__":
 logging.basicConfig(level=logging.INFO, stream=sys.stdout)
 asyncio.run(main())

Usage without dispatcher

Just only interact with Bot API, without handling events

import asyncio
from argparse import ArgumentParser

from aiogram import Bot
from aiogram.client.default import DefaultBotProperties
from aiogram.enums import ParseMode

def create_parser() -> ArgumentParser:
 parser = ArgumentParser()
 parser.add_argument("--token", help="Telegram Bot API Token")
 parser.add_argument("--chat-id", type=int, help="Target chat id")
 parser.add_argument("--message", "-m", help="Message text to sent", default="Hello, World!")

 return parser

async def main():
 parser = create_parser()
 ns = parser.parse_args()

 token = ns.token
 chat_id = ns.chat_id
 message = ns.message

 async with Bot(
 token=token,
 default=DefaultBotProperties(
 parse_mode=ParseMode.HTML,
),
) as bot:
 await bot.send_message(chat_id=chat_id, text=message)

if __name__ == "__main__":
 asyncio.run(main())

Contents

	Installation
	From PyPI

	From Arch Linux Repository
	Development build (3.x)

	From PyPI

	From GitHub

	Migration FAQ (2.x -> 3.0)
	Dispatcher

	Filtering events

	Bot API

	Middlewares

	Keyboard Markup

	Callbacks data

	Finite State machine

	Sending Files

	Webhook

	Telegram API Server

	Telegram objects transformation (to dict, to json, from json)

	Bot API
	Bot

	Client session
	Use Custom API server

	Base

	aiohttp

	Client session middlewares

	Types
	Available types

	Inline mode

	Stickers

	Telegram Passport

	Payments

	Getting updates

	Games

	Methods
	Stickers

	Available methods

	Updating messages

	Inline mode

	Games

	Payments

	Getting updates

	Telegram Passport

	Enums
	BotCommandScopeType

	ChatAction

	ChatBoostSourceType

	ChatMemberStatus

	ChatType

	ContentType

	Currency

	DiceEmoji

	EncryptedPassportElement

	InlineQueryResultType

	InputMediaType

	KeyboardButtonPollTypeType

	MaskPositionPoint

	MenuButtonType

	MessageEntityType

	MessageOriginType

	ParseMode

	PassportElementErrorType

	PollType

	ReactionTypeType

	StickerFormat

	StickerType

	TopicIconColor

	UpdateType

	How to download file?
	Download file manually

	Download file in short way

	How to upload file?
	Upload from file system

	Upload from buffer

	Upload from url

	Handling events
	Router
	Router

	Event observers

	Nested routers

	Dispatcher
	Dispatcher

	Simple usage

	Handling updates

	Dependency injection
	How it works in aiogram

	Injecting own dependencies

	Filtering events
	Builtin filters

	Writing own filters

	Combining Filters

	Long-polling
	Example

	Webhook
	aiohttp integration

	With using other web framework

	Finite State Machine
	Usage example

	Read more

	Middlewares
	Base theory

	Basics

	Arguments specification

	Examples

	Facts

	Errors
	Handling errors

	ErrorEvent

	Error types

	Flags
	Via decorators

	Via handler registration method

	Via filters

	Use in middlewares

	Use in utilities

	Class based handlers
	BaseHandler

	CallbackQueryHandler

	ChosenInlineResultHandler

	ErrorHandler

	InlineQueryHandler

	MessageHandler

	PollHandler

	PreCheckoutQueryHandler

	ShippingQueryHandler

	ChatMemberHandler

	Utils
	Keyboard builder
	Usage example

	Inline Keyboard

	Reply Keyboard

	Translation
	Installation

	Make messages translatable

	Configuring engine

	Deal with Babel

	Chat action sender
	Sender

	Middleware

	WebApp
	Usage

	Functions

	Types

	Callback answer
	Simple usage

	Advanced usage

	Description of objects

	Formatting
	Usage

	Available methods

	Available elements

	Media group builder
	Usage

	References

	Deep Linking
	Examples

	References

	Changelog
	3.7.0 [UNRELEASED DRAFT] (2024-05-10)
	Features

	3.6.0 (2024-05-06)
	Features

	Improved Documentation

	3.5.0 (2024-04-23)
	Features

	Bugfixes

	Improved Documentation

	Misc

	3.4.1 (2024-02-17)
	Bugfixes

	3.4.0 (2024-02-16)
	Features

	Bugfixes

	Improved Documentation

	3.3.0 (2023-12-31)
	Features

	3.2.0 (2023-11-24)
	Features

	Bugfixes

	Improved Documentation

	Misc

	3.1.1 (2023-09-25)
	Bugfixes

	3.1.0 (2023-09-22)
	Features

	Bugfixes

	3.0.0 (2023-09-01)
	Bugfixes

	3.0.0rc2 (2023-08-18)
	Bugfixes

	Improved Documentation

	Misc

	3.0.0rc1 (2023-08-06)
	Features

	Bugfixes

	Improved Documentation

	Misc

	3.0.0b9 (2023-07-30)
	Features

	Bugfixes

	Improved Documentation

	Deprecations and Removals

	3.0.0b8 (2023-07-17)
	Features

	Bugfixes

	Improved Documentation

	Deprecations and Removals

	Misc

	3.0.0b7 (2023-02-18)
	Features

	Bugfixes

	Misc

	3.0.0b6 (2022-11-18)
	Features

	Bugfixes

	Improved Documentation

	Misc

	3.0.0b5 (2022-10-02)
	Features

	Bugfixes

	Improved Documentation

	Deprecations and Removals

	Misc

	3.0.0b4 (2022-08-14)
	Features

	Bugfixes

	Misc

	3.0.0b3 (2022-04-19)
	Features

	Bugfixes

	Misc

	3.0.0b2 (2022-02-19)
	Features

	Bugfixes

	Misc

	3.0.0b1 (2021-12-12)
	Features

	Bugfixes

	Misc

	3.0.0a18 (2021-11-10)
	Features

	Bugfixes

	Misc

	3.0.0a17 (2021-09-24)
	Misc

	3.0.0a16 (2021-09-22)
	Features

	Misc

	3.0.0a15 (2021-09-10)
	Features

	Bugfixes

	Misc

	3.0.0a14 (2021-08-17)
	Features

	Bugfixes

	Improved Documentation

	Misc

	2.14.3 (2021-07-21)

	2.14.2 (2021-07-26)

	2.14 (2021-07-27)

	2.13 (2021-04-28)

	2.12.1 (2021-03-22)

	2.12 (2021-03-14)

	2.11.2 (2021-11-10)

	2.11.1 (2021-11-10)

	2.11 (2021-11-08)

	2.10.1 (2021-09-14)

	2.10 (2021-09-13)

	2.9.2 (2021-06-13)

	2.9 (2021-06-08)

	2.8 (2021-04-26)

	2.7 (2021-04-07)

	2.6.1 (2021-01-25)

	2.6 (2021-01-23)

	2.5.3 (2021-01-05)

	2.5.2 (2021-01-01)

	2.5.1 (2021-01-01)

	2.5 (2021-01-01)

	2.4 (2021-10-29)

	2.3 (2021-08-16)

	2.2 (2021-06-09)

	2.1 (2021-04-18)

	2.0.1 (2021-12-31)

	2.0 (2021-10-28)

	1.4 (2021-08-03)

	1.3.3 (2021-07-16)

	1.3.2 (2021-05-27)

	1.3.1 (2018-05-27)

	1.3 (2021-04-22)

	1.2.3 (2018-04-14)

	1.2.2 (2018-04-08)

	1.2.1 (2018-03-25)

	1.2 (2018-02-23)

	1.1 (2018-01-27)

	1.0.4 (2018-01-10)

	1.0.3 (2018-01-07)

	1.0.2 (2017-11-29)

	1.0.1 (2017-11-21)

	1.0 (2017-11-19)

	0.4.1 (2017-08-03)

	0.4 (2017-08-05)

	0.3.4 (2017-08-04)

	0.3.3 (2017-07-05)

	0.3.2 (2017-07-04)

	0.3.1 (2017-07-04)

	0.2b1 (2017-06-00)

	0.1 (2017-06-03)

	Contributing
	Developing
	Use virtualenv

	Activate the environment

	Setup project

	Making changes in code

	Format the code (code-style)

	Run tests

	Docs

	Docs translations

	Describe changes

	Complete

	Star on GitHub

	Guides

	Take answers

	Funding

Installation

From PyPI

pip install -U aiogram

From Arch Linux Repository

pacman -S python-aiogram

Development build (3.x)

From PyPI

pip install -U aiogram

From GitHub

pip install https://github.com/aiogram/aiogram/archive/refs/heads/dev-3.x.zip

Migration FAQ (2.x -> 3.0)

Danger

This guide is still in progress.

This version introduces numerous breaking changes and architectural improvements.
It helps reduce the count of global variables in your code, provides useful mechanisms
to modularize your code, and enables the creation of shareable modules via packages on PyPI.
It also makes middlewares and filters more controllable, among other improvements.

On this page, you can read about the changes made in relation to the last stable 2.x version.

Note

This page more closely resembles a detailed changelog than a migration guide,
but it will be updated in the future.

Feel free to contribute to this page, if you find something that is not mentioned here.

Dispatcher

	The Dispatcher class no longer accepts a Bot instance in its initializer.
Instead, the Bot instance should be passed to the dispatcher only for starting polling
or handling events from webhooks. This approach also allows for the use of multiple bot
instances simultaneously (“multibot”).

	Dispatcher now can be extended with another Dispatcher-like
thing named Router (Read more »).

	With routes, you can easily modularize your code and potentially share these modules between projects.

	Removed the _handler suffix from all event handler decorators and registering methods.
(Read more »)

	The Executor has been entirely removed; you can now use the Dispatcher directly to start poll the API or handle webhooks from it.

	The throttling method has been completely removed; you can now use middlewares to control
the execution context and implement any throttling mechanism you desire.

	Removed global context variables from the API types, Bot and Dispatcher object,
From now on, if you want to access the current bot instance within handlers or filters,
you should accept the argument bot: Bot and use it instead of Bot.get_current().
In middlewares, it can be accessed via data["bot"].

	To skip pending updates, you should now call the aiogram.methods.delete_webhook.DeleteWebhook method directly, rather than passing skip_updates=True to the start polling method.

Filtering events

	Keyword filters can no longer be used; use filters explicitly. (Read more » [https://github.com/aiogram/aiogram/issues/942])

	Due to the removal of keyword filters, all previously enabled-by-default filters
(such as state and content_type) are now disabled.
You must specify them explicitly if you wish to use them.
For example instead of using @dp.message_handler(content_types=ContentType.PHOTO)
you should use @router.message(F.photo)

	Most common filters have been replaced with the “magic filter.” (Read more »)

	By default, the message handler now receives any content type.
If you want a specific one, simply add the appropriate filters (Magic or any other).

	The state filter is no longer enabled by default. This means that if you used state="*"
in v2, you should not pass any state filter in v3.
Conversely, if the state was not specified in v2, you will now need to specify it in v3.

	Added the possibility to register global filters for each router, which helps to reduce code
repetition and provides an easier way to control the purpose of each router.

Bot API

	All API methods are now classes with validation, implemented via
pydantic <https://docs.pydantic.dev/>.
These API calls are also available as methods in the Bot class.

	More pre-defined Enums have been added and moved to the aiogram.enums sub-package.
For example, the chat type enum is now aiogram.enums.ChatType instead of aiogram.types.chat.ChatType.

	The HTTP client session has been separated into a container that can be reused
across different Bot instances within the application.

	API Exceptions are no longer classified by specific messages,
as Telegram has no documented error codes.
However, all errors are classified by HTTP status codes, and for each method,
only one type of error can be associated with a given code.
Therefore, in most cases, you should check only the error type (by status code)
without inspecting the error message.

Middlewares

	Middlewares can now control an execution context, e.g., using context managers.
(Read more »)

	All contextual data is now shared end-to-end between middlewares, filters, and handlers.
For example now you can easily pass some data into context inside middleware and
get it in the filters layer as the same way as in the handlers via keyword arguments.

	Added a mechanism named flags that helps customize handler behavior
in conjunction with middlewares. (Read more »)

Keyboard Markup

	Now aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup
and aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup no longer have methods for extension,
instead you have to use markup builders aiogram.utils.keyboard.ReplyKeyboardBuilder
and aiogram.utils.keyboard.KeyboardBuilder respectively
(Read more »)

Callbacks data

	The callback data factory is now strictly typed using pydantic [https://docs.pydantic.dev/] models.
(Read more »)

Finite State machine

	State filters will no longer be automatically added to all handlers;
you will need to specify the state if you want to use it.

	Added the possibility to change the FSM strategy. For example,
if you want to control the state for each user based on chat topics rather than
the user in a chat, you can specify this in the Dispatcher.

	Now aiogram.fsm.state.State and aiogram.fsm.state.StateGroup don’t have helper
methods like .set(), .next(), etc.

	Instead, you should set states by passing them directly to
aiogram.fsm.context.FSMContext (Read more »)

	The state proxy is deprecated; you should update the state data by calling
state.set_data(...) and state.get_data() respectively.

Sending Files

	From now on, you should wrap files in an InputFile object before sending them,
instead of passing the IO object directly to the API method. (Read more »)

Webhook

	The aiohttp web app configuration has been simplified.

	By default, the ability to upload files has been added when you make requests in response to updates [https://core.telegram.org/bots/faq#how-can-i-make-requests-in-response-to-updates] (available for webhook only).

Telegram API Server

	The server parameter has been moved from the Bot instance to api in BaseSession.

	The constant aiogram.bot.api.TELEGRAM_PRODUCTION has been moved to aiogram.client.telegram.PRODUCTION.

Telegram objects transformation (to dict, to json, from json)

	Methods TelegramObject.to_object(), TelegramObject.to_json() and TelegramObject.to_python()
have been removed due to the use of pydantic [https://docs.pydantic.dev/] models.

	TelegramObject.to_object() should be replaced by TelegramObject.model_validate()
(Read more [https://docs.pydantic.dev/2.7/api/base_model/#pydantic.BaseModel.model_validate])

	TelegramObject.as_json() should be replaced by TelegramObject.model_dump_json()
(Read more [https://docs.pydantic.dev/latest/api/base_model/#pydantic.BaseModel.model_dump_json])

	TelegramObject.to_python() should be replaced by TelegramObject.model_dump()
(Read more [https://docs.pydantic.dev/latest/api/base_model/#pydantic.BaseModel.model_dump])

Here are some usage examples:

	Creating an object from a dictionary representation of an object

Version 2.x
message_dict = {"id": 42, ...}
message_obj = Message.to_object(message_dict)
print(message_obj)
id=42 name='n' ...
print(type(message_obj))
<class 'aiogram.types.message.Message'>

Version 3.x
message_dict = {"id": 42, ...}
message_obj = Message.model_validate(message_dict)
print(message_obj)
id=42 name='n' ...
print(type(message_obj))
<class 'aiogram.types.message.Message'>

	Creating a json representation of an object

async def handler(message: Message) -> None:
 # Version 2.x
 message_json = message.as_json()
 print(message_json)
 # {"id": 42, ...}
 print(type(message_json))
 # <class 'str'>

 # Version 3.x
 message_json = message.model_dump_json()
 print(message_json)
 # {"id": 42, ...}
 print(type(message_json))
 # <class 'str'>

	Creating a dictionary representation of an object

async def handler(message: Message) -> None:
 # Version 2.x
 message_dict = message.to_python()
 print(message_dict)
 # {"id": 42, ...}
 print(type(message_dict))
 # <class 'dict'>

 # Version 3.x
 message_dict = message.model_dump()
 print(message_dict)
 # {"id": 42, ...}
 print(type(message_dict))
 # <class 'dict'>

Bot API

aiogram now is fully support of Telegram Bot API [https://core.telegram.org/bots/api]

All methods and types is fully autogenerated from Telegram Bot API docs by parser with code-generator.

	Bot

	Client session
	Use Custom API server
	TelegramAPIServer
	TelegramAPIServer.api_url()

	TelegramAPIServer.base

	TelegramAPIServer.file

	TelegramAPIServer.file_url()

	TelegramAPIServer.from_base()

	TelegramAPIServer.is_local

	TelegramAPIServer.wrap_local_file

	Base
	BaseSession
	BaseSession.check_response()

	BaseSession.close()

	BaseSession.make_request()

	BaseSession.prepare_value()

	BaseSession.stream_content()

	aiohttp
	AiohttpSession

	Usage example

	Proxy requests in AiohttpSession
	Authorization

	Proxy chains

	Client session middlewares
	How to register client session middleware?
	Register using register method

	Register using decorator

	Example
	Class based session middleware

	Function based session middleware

	Types
	Available types
	Animation
	Animation
	Animation.file_id

	Animation.file_unique_id

	Animation.width

	Animation.height

	Animation.duration

	Animation.model_computed_fields

	Animation.model_post_init()

	Animation.thumbnail

	Animation.file_name

	Animation.mime_type

	Animation.file_size

	Audio
	Audio
	Audio.file_id

	Audio.file_unique_id

	Audio.duration

	Audio.performer

	Audio.title

	Audio.model_computed_fields

	Audio.model_post_init()

	Audio.file_name

	Audio.mime_type

	Audio.file_size

	Audio.thumbnail

	BackgroundFill
	BackgroundFill
	BackgroundFill.model_computed_fields

	BackgroundFill.model_post_init()

	BackgroundFillFreeformGradient
	BackgroundFillFreeformGradient
	BackgroundFillFreeformGradient.type

	BackgroundFillFreeformGradient.model_computed_fields

	BackgroundFillFreeformGradient.model_post_init()

	BackgroundFillFreeformGradient.colors

	BackgroundFillGradient
	BackgroundFillGradient
	BackgroundFillGradient.type

	BackgroundFillGradient.top_color

	BackgroundFillGradient.model_computed_fields

	BackgroundFillGradient.model_post_init()

	BackgroundFillGradient.bottom_color

	BackgroundFillGradient.rotation_angle

	BackgroundFillSolid
	BackgroundFillSolid
	BackgroundFillSolid.type

	BackgroundFillSolid.model_computed_fields

	BackgroundFillSolid.model_post_init()

	BackgroundFillSolid.color

	BackgroundType
	BackgroundType
	BackgroundType.model_computed_fields

	BackgroundType.model_post_init()

	BackgroundTypeChatTheme
	BackgroundTypeChatTheme
	BackgroundTypeChatTheme.type

	BackgroundTypeChatTheme.model_computed_fields

	BackgroundTypeChatTheme.model_post_init()

	BackgroundTypeChatTheme.theme_name

	BackgroundTypeFill
	BackgroundTypeFill
	BackgroundTypeFill.type

	BackgroundTypeFill.fill

	BackgroundTypeFill.model_computed_fields

	BackgroundTypeFill.model_post_init()

	BackgroundTypeFill.dark_theme_dimming

	BackgroundTypePattern
	BackgroundTypePattern
	BackgroundTypePattern.type

	BackgroundTypePattern.document

	BackgroundTypePattern.fill

	BackgroundTypePattern.model_computed_fields

	BackgroundTypePattern.model_post_init()

	BackgroundTypePattern.intensity

	BackgroundTypePattern.is_inverted

	BackgroundTypePattern.is_moving

	BackgroundTypeWallpaper
	BackgroundTypeWallpaper
	BackgroundTypeWallpaper.type

	BackgroundTypeWallpaper.document

	BackgroundTypeWallpaper.dark_theme_dimming

	BackgroundTypeWallpaper.model_computed_fields

	BackgroundTypeWallpaper.model_post_init()

	BackgroundTypeWallpaper.is_blurred

	BackgroundTypeWallpaper.is_moving

	Birthdate
	Birthdate
	Birthdate.day

	Birthdate.month

	Birthdate.model_computed_fields

	Birthdate.model_post_init()

	Birthdate.year

	BotCommand
	BotCommand
	BotCommand.command

	BotCommand.model_computed_fields

	BotCommand.model_post_init()

	BotCommand.description

	BotCommandScope
	BotCommandScope
	BotCommandScope.model_computed_fields

	BotCommandScope.model_post_init()

	BotCommandScopeAllChatAdministrators
	BotCommandScopeAllChatAdministrators
	BotCommandScopeAllChatAdministrators.type

	BotCommandScopeAllChatAdministrators.model_computed_fields

	BotCommandScopeAllChatAdministrators.model_post_init()

	BotCommandScopeAllGroupChats
	BotCommandScopeAllGroupChats
	BotCommandScopeAllGroupChats.type

	BotCommandScopeAllGroupChats.model_computed_fields

	BotCommandScopeAllGroupChats.model_post_init()

	BotCommandScopeAllPrivateChats
	BotCommandScopeAllPrivateChats
	BotCommandScopeAllPrivateChats.type

	BotCommandScopeAllPrivateChats.model_computed_fields

	BotCommandScopeAllPrivateChats.model_post_init()

	BotCommandScopeChat
	BotCommandScopeChat
	BotCommandScopeChat.type

	BotCommandScopeChat.model_computed_fields

	BotCommandScopeChat.model_post_init()

	BotCommandScopeChat.chat_id

	BotCommandScopeChatAdministrators
	BotCommandScopeChatAdministrators
	BotCommandScopeChatAdministrators.type

	BotCommandScopeChatAdministrators.model_computed_fields

	BotCommandScopeChatAdministrators.model_post_init()

	BotCommandScopeChatAdministrators.chat_id

	BotCommandScopeChatMember
	BotCommandScopeChatMember
	BotCommandScopeChatMember.type

	BotCommandScopeChatMember.chat_id

	BotCommandScopeChatMember.model_computed_fields

	BotCommandScopeChatMember.model_post_init()

	BotCommandScopeChatMember.user_id

	BotCommandScopeDefault
	BotCommandScopeDefault
	BotCommandScopeDefault.type

	BotCommandScopeDefault.model_computed_fields

	BotCommandScopeDefault.model_post_init()

	BotDescription
	BotDescription
	BotDescription.description

	BotDescription.model_computed_fields

	BotDescription.model_post_init()

	BotName
	BotName
	BotName.name

	BotName.model_computed_fields

	BotName.model_post_init()

	BotShortDescription
	BotShortDescription
	BotShortDescription.short_description

	BotShortDescription.model_computed_fields

	BotShortDescription.model_post_init()

	BusinessConnection
	BusinessConnection
	BusinessConnection.id

	BusinessConnection.user

	BusinessConnection.user_chat_id

	BusinessConnection.model_computed_fields

	BusinessConnection.model_post_init()

	BusinessConnection.date

	BusinessConnection.can_reply

	BusinessConnection.is_enabled

	BusinessIntro
	BusinessIntro
	BusinessIntro.title

	BusinessIntro.message

	BusinessIntro.model_computed_fields

	BusinessIntro.model_post_init()

	BusinessIntro.sticker

	BusinessLocation
	BusinessLocation
	BusinessLocation.address

	BusinessLocation.model_computed_fields

	BusinessLocation.model_post_init()

	BusinessLocation.location

	BusinessMessagesDeleted
	BusinessMessagesDeleted
	BusinessMessagesDeleted.business_connection_id

	BusinessMessagesDeleted.chat

	BusinessMessagesDeleted.model_computed_fields

	BusinessMessagesDeleted.model_post_init()

	BusinessMessagesDeleted.message_ids

	BusinessOpeningHours
	BusinessOpeningHours
	BusinessOpeningHours.time_zone_name

	BusinessOpeningHours.model_computed_fields

	BusinessOpeningHours.model_post_init()

	BusinessOpeningHours.opening_hours

	BusinessOpeningHoursInterval
	BusinessOpeningHoursInterval
	BusinessOpeningHoursInterval.opening_minute

	BusinessOpeningHoursInterval.model_computed_fields

	BusinessOpeningHoursInterval.model_post_init()

	BusinessOpeningHoursInterval.closing_minute

	CallbackQuery
	CallbackQuery
	CallbackQuery.id

	CallbackQuery.from_user

	CallbackQuery.chat_instance

	CallbackQuery.message

	CallbackQuery.model_computed_fields

	CallbackQuery.model_post_init()

	CallbackQuery.inline_message_id

	CallbackQuery.data

	CallbackQuery.game_short_name

	CallbackQuery.answer()

	Chat
	Chat
	Chat.id

	Chat.type

	Chat.title

	Chat.username

	Chat.first_name

	Chat.last_name

	Chat.is_forum

	Chat.accent_color_id

	Chat.active_usernames

	Chat.available_reactions

	Chat.background_custom_emoji_id

	Chat.bio

	Chat.birthdate

	Chat.business_intro

	Chat.business_location

	Chat.business_opening_hours

	Chat.can_set_sticker_set

	Chat.custom_emoji_sticker_set_name

	Chat.description

	Chat.emoji_status_custom_emoji_id

	Chat.emoji_status_expiration_date

	Chat.has_aggressive_anti_spam_enabled

	Chat.has_hidden_members

	Chat.has_private_forwards

	Chat.has_protected_content

	Chat.has_restricted_voice_and_video_messages

	Chat.has_visible_history

	Chat.invite_link

	Chat.join_by_request

	Chat.join_to_send_messages

	Chat.linked_chat_id

	Chat.location

	Chat.message_auto_delete_time

	Chat.permissions

	Chat.personal_chat

	Chat.photo

	Chat.model_computed_fields

	Chat.model_post_init()

	Chat.pinned_message

	Chat.profile_accent_color_id

	Chat.profile_background_custom_emoji_id

	Chat.slow_mode_delay

	Chat.sticker_set_name

	Chat.unrestrict_boost_count

	Chat.shifted_id

	Chat.full_name

	Chat.ban_sender_chat()

	Chat.unban_sender_chat()

	Chat.get_administrators()

	Chat.delete_message()

	Chat.revoke_invite_link()

	Chat.edit_invite_link()

	Chat.create_invite_link()

	Chat.export_invite_link()

	Chat.do()

	Chat.delete_sticker_set()

	Chat.set_sticker_set()

	Chat.get_member()

	Chat.get_member_count()

	Chat.leave()

	Chat.unpin_all_messages()

	Chat.unpin_message()

	Chat.pin_message()

	Chat.set_administrator_custom_title()

	Chat.set_permissions()

	Chat.promote()

	Chat.restrict()

	Chat.unban()

	Chat.ban()

	Chat.set_description()

	Chat.set_title()

	Chat.delete_photo()

	Chat.set_photo()

	Chat.unpin_all_general_forum_topic_messages()

	ChatAdministratorRights
	ChatAdministratorRights
	ChatAdministratorRights.is_anonymous

	ChatAdministratorRights.can_manage_chat

	ChatAdministratorRights.can_delete_messages

	ChatAdministratorRights.can_manage_video_chats

	ChatAdministratorRights.can_restrict_members

	ChatAdministratorRights.can_promote_members

	ChatAdministratorRights.can_change_info

	ChatAdministratorRights.can_invite_users

	ChatAdministratorRights.model_computed_fields

	ChatAdministratorRights.model_post_init()

	ChatAdministratorRights.can_post_stories

	ChatAdministratorRights.can_edit_stories

	ChatAdministratorRights.can_delete_stories

	ChatAdministratorRights.can_post_messages

	ChatAdministratorRights.can_edit_messages

	ChatAdministratorRights.can_pin_messages

	ChatAdministratorRights.can_manage_topics

	ChatBackground
	ChatBackground
	ChatBackground.type

	ChatBackground.model_computed_fields

	ChatBackground.model_post_init()

	ChatBoost
	ChatBoost
	ChatBoost.boost_id

	ChatBoost.add_date

	ChatBoost.model_computed_fields

	ChatBoost.model_post_init()

	ChatBoost.expiration_date

	ChatBoost.source

	ChatBoostAdded
	ChatBoostAdded
	ChatBoostAdded.boost_count

	ChatBoostAdded.model_computed_fields

	ChatBoostAdded.model_post_init()

	ChatBoostRemoved
	ChatBoostRemoved
	ChatBoostRemoved.chat

	ChatBoostRemoved.boost_id

	ChatBoostRemoved.model_computed_fields

	ChatBoostRemoved.model_post_init()

	ChatBoostRemoved.remove_date

	ChatBoostRemoved.source

	ChatBoostSource
	ChatBoostSource
	ChatBoostSource.model_computed_fields

	ChatBoostSource.model_post_init()

	ChatBoostSourceGiftCode
	ChatBoostSourceGiftCode
	ChatBoostSourceGiftCode.source

	ChatBoostSourceGiftCode.model_computed_fields

	ChatBoostSourceGiftCode.model_post_init()

	ChatBoostSourceGiftCode.user

	ChatBoostSourceGiveaway
	ChatBoostSourceGiveaway
	ChatBoostSourceGiveaway.source

	ChatBoostSourceGiveaway.giveaway_message_id

	ChatBoostSourceGiveaway.model_computed_fields

	ChatBoostSourceGiveaway.model_post_init()

	ChatBoostSourceGiveaway.user

	ChatBoostSourceGiveaway.is_unclaimed

	ChatBoostSourcePremium
	ChatBoostSourcePremium
	ChatBoostSourcePremium.source

	ChatBoostSourcePremium.model_computed_fields

	ChatBoostSourcePremium.model_post_init()

	ChatBoostSourcePremium.user

	ChatBoostUpdated
	ChatBoostUpdated
	ChatBoostUpdated.chat

	ChatBoostUpdated.model_computed_fields

	ChatBoostUpdated.model_post_init()

	ChatBoostUpdated.boost

	ChatFullInfo
	ChatFullInfo
	ChatFullInfo.id

	ChatFullInfo.type

	ChatFullInfo.accent_color_id

	ChatFullInfo.max_reaction_count

	ChatFullInfo.title

	ChatFullInfo.username

	ChatFullInfo.first_name

	ChatFullInfo.last_name

	ChatFullInfo.is_forum

	ChatFullInfo.photo

	ChatFullInfo.active_usernames

	ChatFullInfo.birthdate

	ChatFullInfo.business_intro

	ChatFullInfo.business_location

	ChatFullInfo.business_opening_hours

	ChatFullInfo.personal_chat

	ChatFullInfo.available_reactions

	ChatFullInfo.background_custom_emoji_id

	ChatFullInfo.profile_accent_color_id

	ChatFullInfo.profile_background_custom_emoji_id

	ChatFullInfo.emoji_status_custom_emoji_id

	ChatFullInfo.emoji_status_expiration_date

	ChatFullInfo.model_computed_fields

	ChatFullInfo.model_post_init()

	ChatFullInfo.bio

	ChatFullInfo.has_private_forwards

	ChatFullInfo.has_restricted_voice_and_video_messages

	ChatFullInfo.join_to_send_messages

	ChatFullInfo.join_by_request

	ChatFullInfo.description

	ChatFullInfo.invite_link

	ChatFullInfo.pinned_message

	ChatFullInfo.permissions

	ChatFullInfo.slow_mode_delay

	ChatFullInfo.unrestrict_boost_count

	ChatFullInfo.message_auto_delete_time

	ChatFullInfo.has_aggressive_anti_spam_enabled

	ChatFullInfo.has_hidden_members

	ChatFullInfo.has_protected_content

	ChatFullInfo.has_visible_history

	ChatFullInfo.sticker_set_name

	ChatFullInfo.can_set_sticker_set

	ChatFullInfo.custom_emoji_sticker_set_name

	ChatFullInfo.linked_chat_id

	ChatFullInfo.location

	ChatInviteLink
	ChatInviteLink
	ChatInviteLink.invite_link

	ChatInviteLink.creator

	ChatInviteLink.creates_join_request

	ChatInviteLink.is_primary

	ChatInviteLink.is_revoked

	ChatInviteLink.model_computed_fields

	ChatInviteLink.model_post_init()

	ChatInviteLink.name

	ChatInviteLink.expire_date

	ChatInviteLink.member_limit

	ChatInviteLink.pending_join_request_count

	ChatJoinRequest
	ChatJoinRequest
	ChatJoinRequest.chat

	ChatJoinRequest.from_user

	ChatJoinRequest.user_chat_id

	ChatJoinRequest.date

	ChatJoinRequest.bio

	ChatJoinRequest.invite_link

	ChatJoinRequest.approve()

	ChatJoinRequest.decline()

	ChatJoinRequest.answer()

	ChatJoinRequest.answer_pm()

	ChatJoinRequest.answer_animation()

	ChatJoinRequest.answer_animation_pm()

	ChatJoinRequest.answer_audio()

	ChatJoinRequest.answer_audio_pm()

	ChatJoinRequest.answer_contact()

	ChatJoinRequest.answer_contact_pm()

	ChatJoinRequest.answer_document()

	ChatJoinRequest.answer_document_pm()

	ChatJoinRequest.answer_game()

	ChatJoinRequest.answer_game_pm()

	ChatJoinRequest.answer_invoice()

	ChatJoinRequest.answer_invoice_pm()

	ChatJoinRequest.answer_location()

	ChatJoinRequest.answer_location_pm()

	ChatJoinRequest.answer_media_group()

	ChatJoinRequest.answer_media_group_pm()

	ChatJoinRequest.answer_photo()

	ChatJoinRequest.answer_photo_pm()

	ChatJoinRequest.answer_poll()

	ChatJoinRequest.answer_poll_pm()

	ChatJoinRequest.answer_dice()

	ChatJoinRequest.answer_dice_pm()

	ChatJoinRequest.answer_sticker()

	ChatJoinRequest.answer_sticker_pm()

	ChatJoinRequest.answer_venue()

	ChatJoinRequest.answer_venue_pm()

	ChatJoinRequest.answer_video()

	ChatJoinRequest.model_computed_fields

	ChatJoinRequest.model_post_init()

	ChatJoinRequest.answer_video_pm()

	ChatJoinRequest.answer_video_note()

	ChatJoinRequest.answer_video_note_pm()

	ChatJoinRequest.answer_voice()

	ChatJoinRequest.answer_voice_pm()

	ChatLocation
	ChatLocation
	ChatLocation.location

	ChatLocation.model_computed_fields

	ChatLocation.model_post_init()

	ChatLocation.address

	ChatMember
	ChatMember
	ChatMember.model_computed_fields

	ChatMember.model_post_init()

	ChatMemberAdministrator
	ChatMemberAdministrator
	ChatMemberAdministrator.status

	ChatMemberAdministrator.user

	ChatMemberAdministrator.can_be_edited

	ChatMemberAdministrator.is_anonymous

	ChatMemberAdministrator.can_manage_chat

	ChatMemberAdministrator.can_delete_messages

	ChatMemberAdministrator.can_manage_video_chats

	ChatMemberAdministrator.can_restrict_members

	ChatMemberAdministrator.can_promote_members

	ChatMemberAdministrator.can_change_info

	ChatMemberAdministrator.model_computed_fields

	ChatMemberAdministrator.model_post_init()

	ChatMemberAdministrator.can_invite_users

	ChatMemberAdministrator.can_post_stories

	ChatMemberAdministrator.can_edit_stories

	ChatMemberAdministrator.can_delete_stories

	ChatMemberAdministrator.can_post_messages

	ChatMemberAdministrator.can_edit_messages

	ChatMemberAdministrator.can_pin_messages

	ChatMemberAdministrator.can_manage_topics

	ChatMemberAdministrator.custom_title

	ChatMemberBanned
	ChatMemberBanned
	ChatMemberBanned.status

	ChatMemberBanned.user

	ChatMemberBanned.model_computed_fields

	ChatMemberBanned.model_post_init()

	ChatMemberBanned.until_date

	ChatMemberLeft
	ChatMemberLeft
	ChatMemberLeft.status

	ChatMemberLeft.model_computed_fields

	ChatMemberLeft.model_post_init()

	ChatMemberLeft.user

	ChatMemberMember
	ChatMemberMember
	ChatMemberMember.status

	ChatMemberMember.model_computed_fields

	ChatMemberMember.model_post_init()

	ChatMemberMember.user

	ChatMemberOwner
	ChatMemberOwner
	ChatMemberOwner.status

	ChatMemberOwner.user

	ChatMemberOwner.model_computed_fields

	ChatMemberOwner.model_post_init()

	ChatMemberOwner.is_anonymous

	ChatMemberOwner.custom_title

	ChatMemberRestricted
	ChatMemberRestricted
	ChatMemberRestricted.status

	ChatMemberRestricted.user

	ChatMemberRestricted.is_member

	ChatMemberRestricted.can_send_messages

	ChatMemberRestricted.can_send_audios

	ChatMemberRestricted.can_send_documents

	ChatMemberRestricted.can_send_photos

	ChatMemberRestricted.can_send_videos

	ChatMemberRestricted.can_send_video_notes

	ChatMemberRestricted.model_computed_fields

	ChatMemberRestricted.model_post_init()

	ChatMemberRestricted.can_send_voice_notes

	ChatMemberRestricted.can_send_polls

	ChatMemberRestricted.can_send_other_messages

	ChatMemberRestricted.can_add_web_page_previews

	ChatMemberRestricted.can_change_info

	ChatMemberRestricted.can_invite_users

	ChatMemberRestricted.can_pin_messages

	ChatMemberRestricted.can_manage_topics

	ChatMemberRestricted.until_date

	ChatMemberUpdated
	ChatMemberUpdated
	ChatMemberUpdated.chat

	ChatMemberUpdated.from_user

	ChatMemberUpdated.date

	ChatMemberUpdated.old_chat_member

	ChatMemberUpdated.new_chat_member

	ChatMemberUpdated.invite_link

	ChatMemberUpdated.via_join_request

	ChatMemberUpdated.via_chat_folder_invite_link

	ChatMemberUpdated.answer()

	ChatMemberUpdated.answer_animation()

	ChatMemberUpdated.answer_audio()

	ChatMemberUpdated.answer_contact()

	ChatMemberUpdated.answer_document()

	ChatMemberUpdated.answer_game()

	ChatMemberUpdated.answer_invoice()

	ChatMemberUpdated.answer_location()

	ChatMemberUpdated.answer_media_group()

	ChatMemberUpdated.answer_photo()

	ChatMemberUpdated.model_computed_fields

	ChatMemberUpdated.model_post_init()

	ChatMemberUpdated.answer_poll()

	ChatMemberUpdated.answer_dice()

	ChatMemberUpdated.answer_sticker()

	ChatMemberUpdated.answer_venue()

	ChatMemberUpdated.answer_video()

	ChatMemberUpdated.answer_video_note()

	ChatMemberUpdated.answer_voice()

	ChatPermissions
	ChatPermissions
	ChatPermissions.can_send_messages

	ChatPermissions.can_send_audios

	ChatPermissions.can_send_documents

	ChatPermissions.can_send_photos

	ChatPermissions.can_send_videos

	ChatPermissions.can_send_video_notes

	ChatPermissions.can_send_voice_notes

	ChatPermissions.model_computed_fields

	ChatPermissions.model_post_init()

	ChatPermissions.can_send_polls

	ChatPermissions.can_send_other_messages

	ChatPermissions.can_add_web_page_previews

	ChatPermissions.can_change_info

	ChatPermissions.can_invite_users

	ChatPermissions.can_pin_messages

	ChatPermissions.can_manage_topics

	ChatPhoto
	ChatPhoto
	ChatPhoto.small_file_id

	ChatPhoto.small_file_unique_id

	ChatPhoto.model_computed_fields

	ChatPhoto.model_post_init()

	ChatPhoto.big_file_id

	ChatPhoto.big_file_unique_id

	ChatShared
	ChatShared
	ChatShared.request_id

	ChatShared.chat_id

	ChatShared.title

	ChatShared.model_computed_fields

	ChatShared.model_post_init()

	ChatShared.username

	ChatShared.photo

	Contact
	Contact
	Contact.phone_number

	Contact.first_name

	Contact.last_name

	Contact.model_computed_fields

	Contact.model_post_init()

	Contact.user_id

	Contact.vcard

	Dice
	Dice
	Dice.emoji

	Dice.value

	Dice.model_computed_fields

	Dice.model_post_init()

	DiceEmoji
	DiceEmoji.DICE

	DiceEmoji.DART

	DiceEmoji.BASKETBALL

	DiceEmoji.FOOTBALL

	DiceEmoji.SLOT_MACHINE

	DiceEmoji.BOWLING

	Document
	Document
	Document.file_id

	Document.file_unique_id

	Document.thumbnail

	Document.model_computed_fields

	Document.model_post_init()

	Document.file_name

	Document.mime_type

	Document.file_size

	ExternalReplyInfo
	ExternalReplyInfo
	ExternalReplyInfo.origin

	ExternalReplyInfo.chat

	ExternalReplyInfo.message_id

	ExternalReplyInfo.link_preview_options

	ExternalReplyInfo.animation

	ExternalReplyInfo.audio

	ExternalReplyInfo.document

	ExternalReplyInfo.photo

	ExternalReplyInfo.sticker

	ExternalReplyInfo.story

	ExternalReplyInfo.video

	ExternalReplyInfo.video_note

	ExternalReplyInfo.model_computed_fields

	ExternalReplyInfo.model_post_init()

	ExternalReplyInfo.voice

	ExternalReplyInfo.has_media_spoiler

	ExternalReplyInfo.contact

	ExternalReplyInfo.dice

	ExternalReplyInfo.game

	ExternalReplyInfo.giveaway

	ExternalReplyInfo.giveaway_winners

	ExternalReplyInfo.invoice

	ExternalReplyInfo.location

	ExternalReplyInfo.poll

	ExternalReplyInfo.venue

	File
	File
	File.file_id

	File.file_unique_id

	File.model_computed_fields

	File.model_post_init()

	File.file_size

	File.file_path

	ForceReply
	ForceReply
	ForceReply.force_reply

	ForceReply.input_field_placeholder

	ForceReply.model_computed_fields

	ForceReply.model_post_init()

	ForceReply.selective

	ForumTopic
	ForumTopic
	ForumTopic.message_thread_id

	ForumTopic.name

	ForumTopic.model_computed_fields

	ForumTopic.model_post_init()

	ForumTopic.icon_color

	ForumTopic.icon_custom_emoji_id

	ForumTopicClosed
	ForumTopicClosed
	ForumTopicClosed.model_computed_fields

	ForumTopicClosed.model_post_init()

	ForumTopicCreated
	ForumTopicCreated
	ForumTopicCreated.name

	ForumTopicCreated.icon_color

	ForumTopicCreated.model_computed_fields

	ForumTopicCreated.model_post_init()

	ForumTopicCreated.icon_custom_emoji_id

	ForumTopicEdited
	ForumTopicEdited
	ForumTopicEdited.name

	ForumTopicEdited.model_computed_fields

	ForumTopicEdited.model_post_init()

	ForumTopicEdited.icon_custom_emoji_id

	ForumTopicReopened
	ForumTopicReopened
	ForumTopicReopened.model_computed_fields

	ForumTopicReopened.model_post_init()

	GeneralForumTopicHidden
	GeneralForumTopicHidden
	GeneralForumTopicHidden.model_computed_fields

	GeneralForumTopicHidden.model_post_init()

	GeneralForumTopicUnhidden
	GeneralForumTopicUnhidden
	GeneralForumTopicUnhidden.model_computed_fields

	GeneralForumTopicUnhidden.model_post_init()

	Giveaway
	Giveaway
	Giveaway.chats

	Giveaway.winners_selection_date

	Giveaway.winner_count

	Giveaway.only_new_members

	Giveaway.model_computed_fields

	Giveaway.model_post_init()

	Giveaway.has_public_winners

	Giveaway.prize_description

	Giveaway.country_codes

	Giveaway.premium_subscription_month_count

	GiveawayCompleted
	GiveawayCompleted
	GiveawayCompleted.winner_count

	GiveawayCompleted.unclaimed_prize_count

	GiveawayCompleted.model_computed_fields

	GiveawayCompleted.model_post_init()

	GiveawayCompleted.giveaway_message

	GiveawayCreated
	GiveawayCreated
	GiveawayCreated.model_computed_fields

	GiveawayCreated.model_post_init()

	GiveawayWinners
	GiveawayWinners
	GiveawayWinners.chat

	GiveawayWinners.giveaway_message_id

	GiveawayWinners.winners_selection_date

	GiveawayWinners.winner_count

	GiveawayWinners.winners

	GiveawayWinners.additional_chat_count

	GiveawayWinners.model_computed_fields

	GiveawayWinners.model_post_init()

	GiveawayWinners.premium_subscription_month_count

	GiveawayWinners.unclaimed_prize_count

	GiveawayWinners.only_new_members

	GiveawayWinners.was_refunded

	GiveawayWinners.prize_description

	InaccessibleMessage
	InaccessibleMessage
	InaccessibleMessage.chat

	InaccessibleMessage.message_id

	InaccessibleMessage.model_computed_fields

	InaccessibleMessage.model_post_init()

	InaccessibleMessage.date

	InlineKeyboardButton
	InlineKeyboardButton
	InlineKeyboardButton.text

	InlineKeyboardButton.url

	InlineKeyboardButton.callback_data

	InlineKeyboardButton.web_app

	InlineKeyboardButton.login_url

	InlineKeyboardButton.model_computed_fields

	InlineKeyboardButton.model_post_init()

	InlineKeyboardButton.switch_inline_query

	InlineKeyboardButton.switch_inline_query_current_chat

	InlineKeyboardButton.switch_inline_query_chosen_chat

	InlineKeyboardButton.callback_game

	InlineKeyboardButton.pay

	InlineKeyboardMarkup
	InlineKeyboardMarkup
	InlineKeyboardMarkup.inline_keyboard

	InlineKeyboardMarkup.model_computed_fields

	InlineKeyboardMarkup.model_post_init()

	InputFile
	InputFile
	InputFile.read()

	BufferedInputFile
	BufferedInputFile.from_file()

	BufferedInputFile.read()

	FSInputFile
	FSInputFile.read()

	URLInputFile
	URLInputFile.read()

	InputMedia
	InputMedia
	InputMedia.model_computed_fields

	InputMedia.model_post_init()

	InputMediaAnimation
	InputMediaAnimation
	InputMediaAnimation.type

	InputMediaAnimation.media

	InputMediaAnimation.thumbnail

	InputMediaAnimation.caption

	InputMediaAnimation.parse_mode

	InputMediaAnimation.model_computed_fields

	InputMediaAnimation.model_post_init()

	InputMediaAnimation.caption_entities

	InputMediaAnimation.width

	InputMediaAnimation.height

	InputMediaAnimation.duration

	InputMediaAnimation.has_spoiler

	InputMediaAudio
	InputMediaAudio
	InputMediaAudio.type

	InputMediaAudio.media

	InputMediaAudio.thumbnail

	InputMediaAudio.caption

	InputMediaAudio.parse_mode

	InputMediaAudio.model_computed_fields

	InputMediaAudio.model_post_init()

	InputMediaAudio.caption_entities

	InputMediaAudio.duration

	InputMediaAudio.performer

	InputMediaAudio.title

	InputMediaDocument
	InputMediaDocument
	InputMediaDocument.type

	InputMediaDocument.media

	InputMediaDocument.thumbnail

	InputMediaDocument.caption

	InputMediaDocument.model_computed_fields

	InputMediaDocument.model_post_init()

	InputMediaDocument.parse_mode

	InputMediaDocument.caption_entities

	InputMediaDocument.disable_content_type_detection

	InputMediaPhoto
	InputMediaPhoto
	InputMediaPhoto.type

	InputMediaPhoto.media

	InputMediaPhoto.caption

	InputMediaPhoto.model_computed_fields

	InputMediaPhoto.model_post_init()

	InputMediaPhoto.parse_mode

	InputMediaPhoto.caption_entities

	InputMediaPhoto.has_spoiler

	InputMediaVideo
	InputMediaVideo
	InputMediaVideo.type

	InputMediaVideo.media

	InputMediaVideo.thumbnail

	InputMediaVideo.caption

	InputMediaVideo.parse_mode

	InputMediaVideo.caption_entities

	InputMediaVideo.model_computed_fields

	InputMediaVideo.model_post_init()

	InputMediaVideo.width

	InputMediaVideo.height

	InputMediaVideo.duration

	InputMediaVideo.supports_streaming

	InputMediaVideo.has_spoiler

	InputPollOption
	InputPollOption
	InputPollOption.text

	InputPollOption.text_parse_mode

	InputPollOption.model_computed_fields

	InputPollOption.model_post_init()

	InputPollOption.text_entities

	KeyboardButton
	KeyboardButton
	KeyboardButton.text

	KeyboardButton.request_users

	KeyboardButton.request_chat

	KeyboardButton.request_contact

	KeyboardButton.model_computed_fields

	KeyboardButton.model_post_init()

	KeyboardButton.request_location

	KeyboardButton.request_poll

	KeyboardButton.web_app

	KeyboardButton.request_user

	KeyboardButtonPollType
	KeyboardButtonPollType
	KeyboardButtonPollType.type

	KeyboardButtonPollType.model_computed_fields

	KeyboardButtonPollType.model_post_init()

	KeyboardButtonRequestChat
	KeyboardButtonRequestChat
	KeyboardButtonRequestChat.request_id

	KeyboardButtonRequestChat.chat_is_channel

	KeyboardButtonRequestChat.chat_is_forum

	KeyboardButtonRequestChat.chat_has_username

	KeyboardButtonRequestChat.chat_is_created

	KeyboardButtonRequestChat.user_administrator_rights

	KeyboardButtonRequestChat.model_computed_fields

	KeyboardButtonRequestChat.model_post_init()

	KeyboardButtonRequestChat.bot_administrator_rights

	KeyboardButtonRequestChat.bot_is_member

	KeyboardButtonRequestChat.request_title

	KeyboardButtonRequestChat.request_username

	KeyboardButtonRequestChat.request_photo

	KeyboardButtonRequestUser
	KeyboardButtonRequestUser
	KeyboardButtonRequestUser.request_id

	KeyboardButtonRequestUser.user_is_bot

	KeyboardButtonRequestUser.model_computed_fields

	KeyboardButtonRequestUser.model_post_init()

	KeyboardButtonRequestUser.user_is_premium

	KeyboardButtonRequestUsers
	KeyboardButtonRequestUsers
	KeyboardButtonRequestUsers.request_id

	KeyboardButtonRequestUsers.user_is_bot

	KeyboardButtonRequestUsers.user_is_premium

	KeyboardButtonRequestUsers.max_quantity

	KeyboardButtonRequestUsers.model_computed_fields

	KeyboardButtonRequestUsers.model_post_init()

	KeyboardButtonRequestUsers.request_name

	KeyboardButtonRequestUsers.request_username

	KeyboardButtonRequestUsers.request_photo

	LinkPreviewOptions
	LinkPreviewOptions
	LinkPreviewOptions.is_disabled

	LinkPreviewOptions.url

	LinkPreviewOptions.prefer_small_media

	LinkPreviewOptions.model_computed_fields

	LinkPreviewOptions.model_post_init()

	LinkPreviewOptions.prefer_large_media

	LinkPreviewOptions.show_above_text

	Location
	Location
	Location.latitude

	Location.longitude

	Location.horizontal_accuracy

	Location.model_computed_fields

	Location.model_post_init()

	Location.live_period

	Location.heading

	Location.proximity_alert_radius

	LoginUrl
	LoginUrl
	LoginUrl.url

	LoginUrl.forward_text

	LoginUrl.model_computed_fields

	LoginUrl.model_post_init()

	LoginUrl.bot_username

	LoginUrl.request_write_access

	MaybeInaccessibleMessage
	MaybeInaccessibleMessage
	MaybeInaccessibleMessage.model_computed_fields

	MaybeInaccessibleMessage.model_post_init()

	MenuButton
	MenuButton
	MenuButton.type

	MenuButton.text

	MenuButton.model_computed_fields

	MenuButton.model_post_init()

	MenuButton.web_app

	MenuButtonCommands
	MenuButtonCommands
	MenuButtonCommands.type

	MenuButtonCommands.model_computed_fields

	MenuButtonCommands.model_post_init()

	MenuButtonDefault
	MenuButtonDefault
	MenuButtonDefault.type

	MenuButtonDefault.model_computed_fields

	MenuButtonDefault.model_post_init()

	MenuButtonWebApp
	MenuButtonWebApp
	MenuButtonWebApp.type

	MenuButtonWebApp.text

	MenuButtonWebApp.model_computed_fields

	MenuButtonWebApp.model_post_init()

	MenuButtonWebApp.web_app

	Message
	Message
	Message.message_id

	Message.date

	Message.chat

	Message.message_thread_id

	Message.from_user

	Message.sender_chat

	Message.sender_boost_count

	Message.sender_business_bot

	Message.business_connection_id

	Message.forward_origin

	Message.is_topic_message

	Message.is_automatic_forward

	Message.reply_to_message

	Message.external_reply

	Message.quote

	Message.reply_to_story

	Message.via_bot

	Message.edit_date

	Message.has_protected_content

	Message.is_from_offline

	Message.media_group_id

	Message.author_signature

	Message.text

	Message.entities

	Message.link_preview_options

	Message.animation

	Message.audio

	Message.document

	Message.photo

	Message.sticker

	Message.story

	Message.video

	Message.video_note

	Message.voice

	Message.caption

	Message.caption_entities

	Message.has_media_spoiler

	Message.contact

	Message.dice

	Message.game

	Message.poll

	Message.venue

	Message.location

	Message.new_chat_members

	Message.left_chat_member

	Message.new_chat_title

	Message.new_chat_photo

	Message.delete_chat_photo

	Message.group_chat_created

	Message.supergroup_chat_created

	Message.channel_chat_created

	Message.message_auto_delete_timer_changed

	Message.migrate_to_chat_id

	Message.migrate_from_chat_id

	Message.pinned_message

	Message.invoice

	Message.successful_payment

	Message.users_shared

	Message.chat_shared

	Message.connected_website

	Message.write_access_allowed

	Message.passport_data

	Message.proximity_alert_triggered

	Message.boost_added

	Message.chat_background_set

	Message.forum_topic_created

	Message.forum_topic_edited

	Message.forum_topic_closed

	Message.forum_topic_reopened

	Message.general_forum_topic_hidden

	Message.general_forum_topic_unhidden

	Message.model_computed_fields

	Message.model_post_init()

	Message.giveaway_created

	Message.giveaway

	Message.giveaway_winners

	Message.giveaway_completed

	Message.video_chat_scheduled

	Message.video_chat_started

	Message.video_chat_ended

	Message.video_chat_participants_invited

	Message.web_app_data

	Message.reply_markup

	Message.forward_date

	Message.forward_from

	Message.forward_from_chat

	Message.forward_from_message_id

	Message.forward_sender_name

	Message.forward_signature

	Message.user_shared

	Message.content_type

	Message.html_text

	Message.md_text

	Message.reply_animation()

	Message.answer_animation()

	Message.reply_audio()

	Message.answer_audio()

	Message.reply_contact()

	Message.answer_contact()

	Message.reply_document()

	Message.answer_document()

	Message.reply_game()

	Message.answer_game()

	Message.reply_invoice()

	Message.answer_invoice()

	Message.reply_location()

	Message.answer_location()

	Message.reply_media_group()

	Message.answer_media_group()

	Message.reply()

	Message.answer()

	Message.reply_photo()

	Message.answer_photo()

	Message.reply_poll()

	Message.answer_poll()

	Message.reply_dice()

	Message.answer_dice()

	Message.reply_sticker()

	Message.answer_sticker()

	Message.reply_venue()

	Message.answer_venue()

	Message.reply_video()

	Message.answer_video()

	Message.reply_video_note()

	Message.answer_video_note()

	Message.reply_voice()

	Message.answer_voice()

	Message.send_copy()

	Message.copy_to()

	Message.edit_text()

	Message.forward()

	Message.edit_media()

	Message.edit_reply_markup()

	Message.delete_reply_markup()

	Message.edit_live_location()

	Message.stop_live_location()

	Message.edit_caption()

	Message.delete()

	Message.pin()

	Message.unpin()

	Message.get_url()

	Message.react()

	MessageAutoDeleteTimerChanged
	MessageAutoDeleteTimerChanged
	MessageAutoDeleteTimerChanged.message_auto_delete_time

	MessageAutoDeleteTimerChanged.model_computed_fields

	MessageAutoDeleteTimerChanged.model_post_init()

	MessageEntity
	MessageEntity
	MessageEntity.type

	MessageEntity.offset

	MessageEntity.length

	MessageEntity.url

	MessageEntity.model_computed_fields

	MessageEntity.model_post_init()

	MessageEntity.user

	MessageEntity.language

	MessageEntity.custom_emoji_id

	MessageEntity.extract_from()

	MessageId
	MessageId
	MessageId.message_id

	MessageId.model_computed_fields

	MessageId.model_post_init()

	MessageOrigin
	MessageOrigin
	MessageOrigin.model_computed_fields

	MessageOrigin.model_post_init()

	MessageOriginChannel
	MessageOriginChannel
	MessageOriginChannel.type

	MessageOriginChannel.date

	MessageOriginChannel.chat

	MessageOriginChannel.model_computed_fields

	MessageOriginChannel.model_post_init()

	MessageOriginChannel.message_id

	MessageOriginChannel.author_signature

	MessageOriginChat
	MessageOriginChat
	MessageOriginChat.type

	MessageOriginChat.date

	MessageOriginChat.model_computed_fields

	MessageOriginChat.model_post_init()

	MessageOriginChat.sender_chat

	MessageOriginChat.author_signature

	MessageOriginHiddenUser
	MessageOriginHiddenUser
	MessageOriginHiddenUser.type

	MessageOriginHiddenUser.date

	MessageOriginHiddenUser.model_computed_fields

	MessageOriginHiddenUser.model_post_init()

	MessageOriginHiddenUser.sender_user_name

	MessageOriginUser
	MessageOriginUser
	MessageOriginUser.type

	MessageOriginUser.date

	MessageOriginUser.model_computed_fields

	MessageOriginUser.model_post_init()

	MessageOriginUser.sender_user

	MessageReactionCountUpdated
	MessageReactionCountUpdated
	MessageReactionCountUpdated.chat

	MessageReactionCountUpdated.message_id

	MessageReactionCountUpdated.model_computed_fields

	MessageReactionCountUpdated.model_post_init()

	MessageReactionCountUpdated.date

	MessageReactionCountUpdated.reactions

	MessageReactionUpdated
	MessageReactionUpdated
	MessageReactionUpdated.chat

	MessageReactionUpdated.message_id

	MessageReactionUpdated.date

	MessageReactionUpdated.old_reaction

	MessageReactionUpdated.model_computed_fields

	MessageReactionUpdated.model_post_init()

	MessageReactionUpdated.new_reaction

	MessageReactionUpdated.user

	MessageReactionUpdated.actor_chat

	PhotoSize
	PhotoSize
	PhotoSize.file_id

	PhotoSize.file_unique_id

	PhotoSize.width

	PhotoSize.model_computed_fields

	PhotoSize.model_post_init()

	PhotoSize.height

	PhotoSize.file_size

	Poll
	Poll
	Poll.id

	Poll.question

	Poll.options

	Poll.total_voter_count

	Poll.is_closed

	Poll.is_anonymous

	Poll.type

	Poll.model_computed_fields

	Poll.model_post_init()

	Poll.allows_multiple_answers

	Poll.question_entities

	Poll.correct_option_id

	Poll.explanation

	Poll.explanation_entities

	Poll.open_period

	Poll.close_date

	PollAnswer
	PollAnswer
	PollAnswer.poll_id

	PollAnswer.option_ids

	PollAnswer.model_computed_fields

	PollAnswer.model_post_init()

	PollAnswer.voter_chat

	PollAnswer.user

	PollOption
	PollOption
	PollOption.text

	PollOption.voter_count

	PollOption.model_computed_fields

	PollOption.model_post_init()

	PollOption.text_entities

	ProximityAlertTriggered
	ProximityAlertTriggered
	ProximityAlertTriggered.traveler

	ProximityAlertTriggered.watcher

	ProximityAlertTriggered.model_computed_fields

	ProximityAlertTriggered.model_post_init()

	ProximityAlertTriggered.distance

	ReactionCount
	ReactionCount
	ReactionCount.type

	ReactionCount.model_computed_fields

	ReactionCount.model_post_init()

	ReactionCount.total_count

	ReactionType
	ReactionType
	ReactionType.model_computed_fields

	ReactionType.model_post_init()

	ReactionTypeCustomEmoji
	ReactionTypeCustomEmoji
	ReactionTypeCustomEmoji.type

	ReactionTypeCustomEmoji.model_computed_fields

	ReactionTypeCustomEmoji.model_post_init()

	ReactionTypeCustomEmoji.custom_emoji_id

	ReactionTypeEmoji
	ReactionTypeEmoji
	ReactionTypeEmoji.type

	ReactionTypeEmoji.model_computed_fields

	ReactionTypeEmoji.model_post_init()

	ReactionTypeEmoji.emoji

	ReplyKeyboardMarkup
	ReplyKeyboardMarkup
	ReplyKeyboardMarkup.keyboard

	ReplyKeyboardMarkup.is_persistent

	ReplyKeyboardMarkup.resize_keyboard

	ReplyKeyboardMarkup.model_computed_fields

	ReplyKeyboardMarkup.model_post_init()

	ReplyKeyboardMarkup.one_time_keyboard

	ReplyKeyboardMarkup.input_field_placeholder

	ReplyKeyboardMarkup.selective

	ReplyKeyboardRemove
	ReplyKeyboardRemove
	ReplyKeyboardRemove.remove_keyboard

	ReplyKeyboardRemove.model_computed_fields

	ReplyKeyboardRemove.model_post_init()

	ReplyKeyboardRemove.selective

	ReplyParameters
	ReplyParameters
	ReplyParameters.message_id

	ReplyParameters.chat_id

	ReplyParameters.allow_sending_without_reply

	ReplyParameters.quote

	ReplyParameters.model_computed_fields

	ReplyParameters.model_post_init()

	ReplyParameters.quote_parse_mode

	ReplyParameters.quote_entities

	ReplyParameters.quote_position

	ResponseParameters
	ResponseParameters
	ResponseParameters.migrate_to_chat_id

	ResponseParameters.model_computed_fields

	ResponseParameters.model_post_init()

	ResponseParameters.retry_after

	SharedUser
	SharedUser
	SharedUser.user_id

	SharedUser.first_name

	SharedUser.last_name

	SharedUser.model_computed_fields

	SharedUser.model_post_init()

	SharedUser.username

	SharedUser.photo

	Story
	Story
	Story.chat

	Story.model_computed_fields

	Story.model_post_init()

	Story.id

	SwitchInlineQueryChosenChat
	SwitchInlineQueryChosenChat
	SwitchInlineQueryChosenChat.query

	SwitchInlineQueryChosenChat.allow_user_chats

	SwitchInlineQueryChosenChat.allow_bot_chats

	SwitchInlineQueryChosenChat.model_computed_fields

	SwitchInlineQueryChosenChat.model_post_init()

	SwitchInlineQueryChosenChat.allow_group_chats

	SwitchInlineQueryChosenChat.allow_channel_chats

	TextQuote
	TextQuote
	TextQuote.text

	TextQuote.position

	TextQuote.model_computed_fields

	TextQuote.model_post_init()

	TextQuote.entities

	TextQuote.is_manual

	User
	User
	User.id

	User.is_bot

	User.first_name

	User.last_name

	User.username

	User.language_code

	User.is_premium

	User.added_to_attachment_menu

	User.can_join_groups

	User.model_computed_fields

	User.model_post_init()

	User.can_read_all_group_messages

	User.supports_inline_queries

	User.can_connect_to_business

	User.full_name

	User.url

	User.mention_markdown()

	User.mention_html()

	User.get_profile_photos()

	UserChatBoosts
	UserChatBoosts
	UserChatBoosts.boosts

	UserChatBoosts.model_computed_fields

	UserChatBoosts.model_post_init()

	UserProfilePhotos
	UserProfilePhotos
	UserProfilePhotos.total_count

	UserProfilePhotos.model_computed_fields

	UserProfilePhotos.model_post_init()

	UserProfilePhotos.photos

	UserShared
	UserShared
	UserShared.request_id

	UserShared.model_computed_fields

	UserShared.model_post_init()

	UserShared.user_id

	UsersShared
	UsersShared
	UsersShared.request_id

	UsersShared.users

	UsersShared.model_computed_fields

	UsersShared.model_post_init()

	UsersShared.user_ids

	Venue
	Venue
	Venue.location

	Venue.title

	Venue.address

	Venue.foursquare_id

	Venue.model_computed_fields

	Venue.model_post_init()

	Venue.foursquare_type

	Venue.google_place_id

	Venue.google_place_type

	Video
	Video
	Video.file_id

	Video.file_unique_id

	Video.width

	Video.height

	Video.duration

	Video.model_computed_fields

	Video.model_post_init()

	Video.thumbnail

	Video.file_name

	Video.mime_type

	Video.file_size

	VideoChatEnded
	VideoChatEnded
	VideoChatEnded.duration

	VideoChatEnded.model_computed_fields

	VideoChatEnded.model_post_init()

	VideoChatParticipantsInvited
	VideoChatParticipantsInvited
	VideoChatParticipantsInvited.users

	VideoChatParticipantsInvited.model_computed_fields

	VideoChatParticipantsInvited.model_post_init()

	VideoChatScheduled
	VideoChatScheduled
	VideoChatScheduled.start_date

	VideoChatScheduled.model_computed_fields

	VideoChatScheduled.model_post_init()

	VideoChatStarted
	VideoChatStarted
	VideoChatStarted.model_computed_fields

	VideoChatStarted.model_post_init()

	VideoNote
	VideoNote
	VideoNote.file_id

	VideoNote.file_unique_id

	VideoNote.length

	VideoNote.model_computed_fields

	VideoNote.model_post_init()

	VideoNote.duration

	VideoNote.thumbnail

	VideoNote.file_size

	Voice
	Voice
	Voice.file_id

	Voice.file_unique_id

	Voice.duration

	Voice.model_computed_fields

	Voice.model_post_init()

	Voice.mime_type

	Voice.file_size

	WebAppData
	WebAppData
	WebAppData.data

	WebAppData.model_computed_fields

	WebAppData.model_post_init()

	WebAppData.button_text

	WebAppInfo
	WebAppInfo
	WebAppInfo.url

	WebAppInfo.model_computed_fields

	WebAppInfo.model_post_init()

	WriteAccessAllowed
	WriteAccessAllowed
	WriteAccessAllowed.from_request

	WriteAccessAllowed.web_app_name

	WriteAccessAllowed.model_computed_fields

	WriteAccessAllowed.model_post_init()

	WriteAccessAllowed.from_attachment_menu

	Inline mode
	ChosenInlineResult
	ChosenInlineResult
	ChosenInlineResult.result_id

	ChosenInlineResult.from_user

	ChosenInlineResult.query

	ChosenInlineResult.model_computed_fields

	ChosenInlineResult.model_post_init()

	ChosenInlineResult.location

	ChosenInlineResult.inline_message_id

	InlineQuery
	InlineQuery
	InlineQuery.id

	InlineQuery.from_user

	InlineQuery.query

	InlineQuery.offset

	InlineQuery.model_computed_fields

	InlineQuery.model_post_init()

	InlineQuery.chat_type

	InlineQuery.location

	InlineQuery.answer()

	InlineQueryResult
	InlineQueryResult
	InlineQueryResult.model_computed_fields

	InlineQueryResult.model_post_init()

	InlineQueryResultArticle
	InlineQueryResultArticle
	InlineQueryResultArticle.type

	InlineQueryResultArticle.id

	InlineQueryResultArticle.title

	InlineQueryResultArticle.input_message_content

	InlineQueryResultArticle.reply_markup

	InlineQueryResultArticle.url

	InlineQueryResultArticle.model_computed_fields

	InlineQueryResultArticle.model_post_init()

	InlineQueryResultArticle.hide_url

	InlineQueryResultArticle.description

	InlineQueryResultArticle.thumbnail_url

	InlineQueryResultArticle.thumbnail_width

	InlineQueryResultArticle.thumbnail_height

	InlineQueryResultAudio
	InlineQueryResultAudio
	InlineQueryResultAudio.type

	InlineQueryResultAudio.id

	InlineQueryResultAudio.audio_url

	InlineQueryResultAudio.title

	InlineQueryResultAudio.caption

	InlineQueryResultAudio.parse_mode

	InlineQueryResultAudio.model_computed_fields

	InlineQueryResultAudio.model_post_init()

	InlineQueryResultAudio.caption_entities

	InlineQueryResultAudio.performer

	InlineQueryResultAudio.audio_duration

	InlineQueryResultAudio.reply_markup

	InlineQueryResultAudio.input_message_content

	InlineQueryResultCachedAudio
	InlineQueryResultCachedAudio
	InlineQueryResultCachedAudio.type

	InlineQueryResultCachedAudio.id

	InlineQueryResultCachedAudio.audio_file_id

	InlineQueryResultCachedAudio.caption

	InlineQueryResultCachedAudio.model_computed_fields

	InlineQueryResultCachedAudio.model_post_init()

	InlineQueryResultCachedAudio.parse_mode

	InlineQueryResultCachedAudio.caption_entities

	InlineQueryResultCachedAudio.reply_markup

	InlineQueryResultCachedAudio.input_message_content

	InlineQueryResultCachedDocument
	InlineQueryResultCachedDocument
	InlineQueryResultCachedDocument.type

	InlineQueryResultCachedDocument.id

	InlineQueryResultCachedDocument.title

	InlineQueryResultCachedDocument.document_file_id

	InlineQueryResultCachedDocument.description

	InlineQueryResultCachedDocument.model_computed_fields

	InlineQueryResultCachedDocument.model_post_init()

	InlineQueryResultCachedDocument.caption

	InlineQueryResultCachedDocument.parse_mode

	InlineQueryResultCachedDocument.caption_entities

	InlineQueryResultCachedDocument.reply_markup

	InlineQueryResultCachedDocument.input_message_content

	InlineQueryResultCachedGif
	InlineQueryResultCachedGif
	InlineQueryResultCachedGif.type

	InlineQueryResultCachedGif.id

	InlineQueryResultCachedGif.gif_file_id

	InlineQueryResultCachedGif.title

	InlineQueryResultCachedGif.caption

	InlineQueryResultCachedGif.model_computed_fields

	InlineQueryResultCachedGif.model_post_init()

	InlineQueryResultCachedGif.parse_mode

	InlineQueryResultCachedGif.caption_entities

	InlineQueryResultCachedGif.reply_markup

	InlineQueryResultCachedGif.input_message_content

	InlineQueryResultCachedMpeg4Gif
	InlineQueryResultCachedMpeg4Gif
	InlineQueryResultCachedMpeg4Gif.type

	InlineQueryResultCachedMpeg4Gif.id

	InlineQueryResultCachedMpeg4Gif.mpeg4_file_id

	InlineQueryResultCachedMpeg4Gif.title

	InlineQueryResultCachedMpeg4Gif.caption

	InlineQueryResultCachedMpeg4Gif.model_computed_fields

	InlineQueryResultCachedMpeg4Gif.model_post_init()

	InlineQueryResultCachedMpeg4Gif.parse_mode

	InlineQueryResultCachedMpeg4Gif.caption_entities

	InlineQueryResultCachedMpeg4Gif.reply_markup

	InlineQueryResultCachedMpeg4Gif.input_message_content

	InlineQueryResultCachedPhoto
	InlineQueryResultCachedPhoto
	InlineQueryResultCachedPhoto.type

	InlineQueryResultCachedPhoto.id

	InlineQueryResultCachedPhoto.photo_file_id

	InlineQueryResultCachedPhoto.title

	InlineQueryResultCachedPhoto.description

	InlineQueryResultCachedPhoto.model_computed_fields

	InlineQueryResultCachedPhoto.model_post_init()

	InlineQueryResultCachedPhoto.caption

	InlineQueryResultCachedPhoto.parse_mode

	InlineQueryResultCachedPhoto.caption_entities

	InlineQueryResultCachedPhoto.reply_markup

	InlineQueryResultCachedPhoto.input_message_content

	InlineQueryResultCachedSticker
	InlineQueryResultCachedSticker
	InlineQueryResultCachedSticker.type

	InlineQueryResultCachedSticker.id

	InlineQueryResultCachedSticker.sticker_file_id

	InlineQueryResultCachedSticker.model_computed_fields

	InlineQueryResultCachedSticker.model_post_init()

	InlineQueryResultCachedSticker.reply_markup

	InlineQueryResultCachedSticker.input_message_content

	InlineQueryResultCachedVideo
	InlineQueryResultCachedVideo
	InlineQueryResultCachedVideo.type

	InlineQueryResultCachedVideo.id

	InlineQueryResultCachedVideo.video_file_id

	InlineQueryResultCachedVideo.title

	InlineQueryResultCachedVideo.description

	InlineQueryResultCachedVideo.model_computed_fields

	InlineQueryResultCachedVideo.model_post_init()

	InlineQueryResultCachedVideo.caption

	InlineQueryResultCachedVideo.parse_mode

	InlineQueryResultCachedVideo.caption_entities

	InlineQueryResultCachedVideo.reply_markup

	InlineQueryResultCachedVideo.input_message_content

	InlineQueryResultCachedVoice
	InlineQueryResultCachedVoice
	InlineQueryResultCachedVoice.type

	InlineQueryResultCachedVoice.id

	InlineQueryResultCachedVoice.voice_file_id

	InlineQueryResultCachedVoice.title

	InlineQueryResultCachedVoice.caption

	InlineQueryResultCachedVoice.model_computed_fields

	InlineQueryResultCachedVoice.model_post_init()

	InlineQueryResultCachedVoice.parse_mode

	InlineQueryResultCachedVoice.caption_entities

	InlineQueryResultCachedVoice.reply_markup

	InlineQueryResultCachedVoice.input_message_content

	InlineQueryResultContact
	InlineQueryResultContact
	InlineQueryResultContact.type

	InlineQueryResultContact.id

	InlineQueryResultContact.phone_number

	InlineQueryResultContact.first_name

	InlineQueryResultContact.last_name

	InlineQueryResultContact.vcard

	InlineQueryResultContact.model_computed_fields

	InlineQueryResultContact.model_post_init()

	InlineQueryResultContact.reply_markup

	InlineQueryResultContact.input_message_content

	InlineQueryResultContact.thumbnail_url

	InlineQueryResultContact.thumbnail_width

	InlineQueryResultContact.thumbnail_height

	InlineQueryResultDocument
	InlineQueryResultDocument
	InlineQueryResultDocument.type

	InlineQueryResultDocument.id

	InlineQueryResultDocument.title

	InlineQueryResultDocument.document_url

	InlineQueryResultDocument.mime_type

	InlineQueryResultDocument.caption

	InlineQueryResultDocument.parse_mode

	InlineQueryResultDocument.model_computed_fields

	InlineQueryResultDocument.model_post_init()

	InlineQueryResultDocument.caption_entities

	InlineQueryResultDocument.description

	InlineQueryResultDocument.reply_markup

	InlineQueryResultDocument.input_message_content

	InlineQueryResultDocument.thumbnail_url

	InlineQueryResultDocument.thumbnail_width

	InlineQueryResultDocument.thumbnail_height

	InlineQueryResultGame
	InlineQueryResultGame
	InlineQueryResultGame.type

	InlineQueryResultGame.id

	InlineQueryResultGame.model_computed_fields

	InlineQueryResultGame.model_post_init()

	InlineQueryResultGame.game_short_name

	InlineQueryResultGame.reply_markup

	InlineQueryResultGif
	InlineQueryResultGif
	InlineQueryResultGif.type

	InlineQueryResultGif.id

	InlineQueryResultGif.gif_url

	InlineQueryResultGif.thumbnail_url

	InlineQueryResultGif.gif_width

	InlineQueryResultGif.gif_height

	InlineQueryResultGif.gif_duration

	InlineQueryResultGif.model_computed_fields

	InlineQueryResultGif.model_post_init()

	InlineQueryResultGif.thumbnail_mime_type

	InlineQueryResultGif.title

	InlineQueryResultGif.caption

	InlineQueryResultGif.parse_mode

	InlineQueryResultGif.caption_entities

	InlineQueryResultGif.reply_markup

	InlineQueryResultGif.input_message_content

	InlineQueryResultLocation
	InlineQueryResultLocation
	InlineQueryResultLocation.type

	InlineQueryResultLocation.id

	InlineQueryResultLocation.latitude

	InlineQueryResultLocation.longitude

	InlineQueryResultLocation.title

	InlineQueryResultLocation.horizontal_accuracy

	InlineQueryResultLocation.live_period

	InlineQueryResultLocation.model_computed_fields

	InlineQueryResultLocation.model_post_init()

	InlineQueryResultLocation.heading

	InlineQueryResultLocation.proximity_alert_radius

	InlineQueryResultLocation.reply_markup

	InlineQueryResultLocation.input_message_content

	InlineQueryResultLocation.thumbnail_url

	InlineQueryResultLocation.thumbnail_width

	InlineQueryResultLocation.thumbnail_height

	InlineQueryResultMpeg4Gif
	InlineQueryResultMpeg4Gif
	InlineQueryResultMpeg4Gif.type

	InlineQueryResultMpeg4Gif.id

	InlineQueryResultMpeg4Gif.mpeg4_url

	InlineQueryResultMpeg4Gif.thumbnail_url

	InlineQueryResultMpeg4Gif.mpeg4_width

	InlineQueryResultMpeg4Gif.mpeg4_height

	InlineQueryResultMpeg4Gif.mpeg4_duration

	InlineQueryResultMpeg4Gif.model_computed_fields

	InlineQueryResultMpeg4Gif.model_post_init()

	InlineQueryResultMpeg4Gif.thumbnail_mime_type

	InlineQueryResultMpeg4Gif.title

	InlineQueryResultMpeg4Gif.caption

	InlineQueryResultMpeg4Gif.parse_mode

	InlineQueryResultMpeg4Gif.caption_entities

	InlineQueryResultMpeg4Gif.reply_markup

	InlineQueryResultMpeg4Gif.input_message_content

	InlineQueryResultPhoto
	InlineQueryResultPhoto
	InlineQueryResultPhoto.type

	InlineQueryResultPhoto.id

	InlineQueryResultPhoto.photo_url

	InlineQueryResultPhoto.thumbnail_url

	InlineQueryResultPhoto.photo_width

	InlineQueryResultPhoto.photo_height

	InlineQueryResultPhoto.title

	InlineQueryResultPhoto.model_computed_fields

	InlineQueryResultPhoto.model_post_init()

	InlineQueryResultPhoto.description

	InlineQueryResultPhoto.caption

	InlineQueryResultPhoto.parse_mode

	InlineQueryResultPhoto.caption_entities

	InlineQueryResultPhoto.reply_markup

	InlineQueryResultPhoto.input_message_content

	InlineQueryResultVenue
	InlineQueryResultVenue
	InlineQueryResultVenue.type

	InlineQueryResultVenue.id

	InlineQueryResultVenue.latitude

	InlineQueryResultVenue.longitude

	InlineQueryResultVenue.title

	InlineQueryResultVenue.address

	InlineQueryResultVenue.foursquare_id

	InlineQueryResultVenue.foursquare_type

	InlineQueryResultVenue.model_computed_fields

	InlineQueryResultVenue.model_post_init()

	InlineQueryResultVenue.google_place_id

	InlineQueryResultVenue.google_place_type

	InlineQueryResultVenue.reply_markup

	InlineQueryResultVenue.input_message_content

	InlineQueryResultVenue.thumbnail_url

	InlineQueryResultVenue.thumbnail_width

	InlineQueryResultVenue.thumbnail_height

	InlineQueryResultVideo
	InlineQueryResultVideo
	InlineQueryResultVideo.type

	InlineQueryResultVideo.id

	InlineQueryResultVideo.video_url

	InlineQueryResultVideo.mime_type

	InlineQueryResultVideo.thumbnail_url

	InlineQueryResultVideo.title

	InlineQueryResultVideo.caption

	InlineQueryResultVideo.parse_mode

	InlineQueryResultVideo.model_computed_fields

	InlineQueryResultVideo.model_post_init()

	InlineQueryResultVideo.caption_entities

	InlineQueryResultVideo.video_width

	InlineQueryResultVideo.video_height

	InlineQueryResultVideo.video_duration

	InlineQueryResultVideo.description

	InlineQueryResultVideo.reply_markup

	InlineQueryResultVideo.input_message_content

	InlineQueryResultVoice
	InlineQueryResultVoice
	InlineQueryResultVoice.type

	InlineQueryResultVoice.id

	InlineQueryResultVoice.voice_url

	InlineQueryResultVoice.title

	InlineQueryResultVoice.caption

	InlineQueryResultVoice.model_computed_fields

	InlineQueryResultVoice.model_post_init()

	InlineQueryResultVoice.parse_mode

	InlineQueryResultVoice.caption_entities

	InlineQueryResultVoice.voice_duration

	InlineQueryResultVoice.reply_markup

	InlineQueryResultVoice.input_message_content

	InlineQueryResultsButton
	InlineQueryResultsButton
	InlineQueryResultsButton.text

	InlineQueryResultsButton.web_app

	InlineQueryResultsButton.model_computed_fields

	InlineQueryResultsButton.model_post_init()

	InlineQueryResultsButton.start_parameter

	InputContactMessageContent
	InputContactMessageContent
	InputContactMessageContent.phone_number

	InputContactMessageContent.first_name

	InputContactMessageContent.model_computed_fields

	InputContactMessageContent.model_post_init()

	InputContactMessageContent.last_name

	InputContactMessageContent.vcard

	InputInvoiceMessageContent
	InputInvoiceMessageContent
	InputInvoiceMessageContent.title

	InputInvoiceMessageContent.description

	InputInvoiceMessageContent.payload

	InputInvoiceMessageContent.provider_token

	InputInvoiceMessageContent.currency

	InputInvoiceMessageContent.prices

	InputInvoiceMessageContent.max_tip_amount

	InputInvoiceMessageContent.suggested_tip_amounts

	InputInvoiceMessageContent.provider_data

	InputInvoiceMessageContent.photo_url

	InputInvoiceMessageContent.model_computed_fields

	InputInvoiceMessageContent.model_post_init()

	InputInvoiceMessageContent.photo_size

	InputInvoiceMessageContent.photo_width

	InputInvoiceMessageContent.photo_height

	InputInvoiceMessageContent.need_name

	InputInvoiceMessageContent.need_phone_number

	InputInvoiceMessageContent.need_email

	InputInvoiceMessageContent.need_shipping_address

	InputInvoiceMessageContent.send_phone_number_to_provider

	InputInvoiceMessageContent.send_email_to_provider

	InputInvoiceMessageContent.is_flexible

	InputLocationMessageContent
	InputLocationMessageContent
	InputLocationMessageContent.latitude

	InputLocationMessageContent.longitude

	InputLocationMessageContent.horizontal_accuracy

	InputLocationMessageContent.model_computed_fields

	InputLocationMessageContent.model_post_init()

	InputLocationMessageContent.live_period

	InputLocationMessageContent.heading

	InputLocationMessageContent.proximity_alert_radius

	InputMessageContent
	InputMessageContent
	InputMessageContent.model_computed_fields

	InputMessageContent.model_post_init()

	InputTextMessageContent
	InputTextMessageContent
	InputTextMessageContent.message_text

	InputTextMessageContent.parse_mode

	InputTextMessageContent.entities

	InputTextMessageContent.model_computed_fields

	InputTextMessageContent.model_post_init()

	InputTextMessageContent.link_preview_options

	InputTextMessageContent.disable_web_page_preview

	InputVenueMessageContent
	InputVenueMessageContent
	InputVenueMessageContent.latitude

	InputVenueMessageContent.longitude

	InputVenueMessageContent.title

	InputVenueMessageContent.address

	InputVenueMessageContent.model_computed_fields

	InputVenueMessageContent.model_post_init()

	InputVenueMessageContent.foursquare_id

	InputVenueMessageContent.foursquare_type

	InputVenueMessageContent.google_place_id

	InputVenueMessageContent.google_place_type

	SentWebAppMessage
	SentWebAppMessage
	SentWebAppMessage.inline_message_id

	SentWebAppMessage.model_computed_fields

	SentWebAppMessage.model_post_init()

	Stickers
	InputSticker
	InputSticker
	InputSticker.sticker

	InputSticker.format

	InputSticker.emoji_list

	InputSticker.model_computed_fields

	InputSticker.model_post_init()

	InputSticker.mask_position

	InputSticker.keywords

	MaskPosition
	MaskPosition
	MaskPosition.point

	MaskPosition.x_shift

	MaskPosition.model_computed_fields

	MaskPosition.model_post_init()

	MaskPosition.y_shift

	MaskPosition.scale

	Sticker
	Sticker
	Sticker.file_id

	Sticker.file_unique_id

	Sticker.type

	Sticker.width

	Sticker.height

	Sticker.is_animated

	Sticker.is_video

	Sticker.thumbnail

	Sticker.emoji

	Sticker.model_computed_fields

	Sticker.model_post_init()

	Sticker.set_name

	Sticker.premium_animation

	Sticker.mask_position

	Sticker.custom_emoji_id

	Sticker.needs_repainting

	Sticker.file_size

	Sticker.set_position_in_set()

	Sticker.delete_from_set()

	StickerSet
	StickerSet
	StickerSet.name

	StickerSet.title

	StickerSet.sticker_type

	StickerSet.stickers

	StickerSet.model_computed_fields

	StickerSet.model_post_init()

	StickerSet.thumbnail

	StickerSet.is_animated

	StickerSet.is_video

	Telegram Passport
	EncryptedCredentials
	EncryptedCredentials
	EncryptedCredentials.data

	EncryptedCredentials.hash

	EncryptedCredentials.model_computed_fields

	EncryptedCredentials.model_post_init()

	EncryptedCredentials.secret

	EncryptedPassportElement
	EncryptedPassportElement
	EncryptedPassportElement.type

	EncryptedPassportElement.hash

	EncryptedPassportElement.data

	EncryptedPassportElement.phone_number

	EncryptedPassportElement.email

	EncryptedPassportElement.model_computed_fields

	EncryptedPassportElement.model_post_init()

	EncryptedPassportElement.files

	EncryptedPassportElement.front_side

	EncryptedPassportElement.reverse_side

	EncryptedPassportElement.selfie

	EncryptedPassportElement.translation

	PassportData
	PassportData
	PassportData.data

	PassportData.model_computed_fields

	PassportData.model_post_init()

	PassportData.credentials

	PassportElementError
	PassportElementError
	PassportElementError.model_computed_fields

	PassportElementError.model_post_init()

	PassportElementErrorDataField
	PassportElementErrorDataField
	PassportElementErrorDataField.source

	PassportElementErrorDataField.type

	PassportElementErrorDataField.field_name

	PassportElementErrorDataField.model_computed_fields

	PassportElementErrorDataField.model_post_init()

	PassportElementErrorDataField.data_hash

	PassportElementErrorDataField.message

	PassportElementErrorFile
	PassportElementErrorFile
	PassportElementErrorFile.source

	PassportElementErrorFile.type

	PassportElementErrorFile.model_computed_fields

	PassportElementErrorFile.model_post_init()

	PassportElementErrorFile.file_hash

	PassportElementErrorFile.message

	PassportElementErrorFiles
	PassportElementErrorFiles
	PassportElementErrorFiles.source

	PassportElementErrorFiles.type

	PassportElementErrorFiles.model_computed_fields

	PassportElementErrorFiles.model_post_init()

	PassportElementErrorFiles.file_hashes

	PassportElementErrorFiles.message

	PassportElementErrorFrontSide
	PassportElementErrorFrontSide
	PassportElementErrorFrontSide.source

	PassportElementErrorFrontSide.type

	PassportElementErrorFrontSide.model_computed_fields

	PassportElementErrorFrontSide.model_post_init()

	PassportElementErrorFrontSide.file_hash

	PassportElementErrorFrontSide.message

	PassportElementErrorReverseSide
	PassportElementErrorReverseSide
	PassportElementErrorReverseSide.source

	PassportElementErrorReverseSide.type

	PassportElementErrorReverseSide.model_computed_fields

	PassportElementErrorReverseSide.model_post_init()

	PassportElementErrorReverseSide.file_hash

	PassportElementErrorReverseSide.message

	PassportElementErrorSelfie
	PassportElementErrorSelfie
	PassportElementErrorSelfie.source

	PassportElementErrorSelfie.type

	PassportElementErrorSelfie.model_computed_fields

	PassportElementErrorSelfie.model_post_init()

	PassportElementErrorSelfie.file_hash

	PassportElementErrorSelfie.message

	PassportElementErrorTranslationFile
	PassportElementErrorTranslationFile
	PassportElementErrorTranslationFile.source

	PassportElementErrorTranslationFile.type

	PassportElementErrorTranslationFile.model_computed_fields

	PassportElementErrorTranslationFile.model_post_init()

	PassportElementErrorTranslationFile.file_hash

	PassportElementErrorTranslationFile.message

	PassportElementErrorTranslationFiles
	PassportElementErrorTranslationFiles
	PassportElementErrorTranslationFiles.source

	PassportElementErrorTranslationFiles.type

	PassportElementErrorTranslationFiles.model_computed_fields

	PassportElementErrorTranslationFiles.model_post_init()

	PassportElementErrorTranslationFiles.file_hashes

	PassportElementErrorTranslationFiles.message

	PassportElementErrorUnspecified
	PassportElementErrorUnspecified
	PassportElementErrorUnspecified.source

	PassportElementErrorUnspecified.type

	PassportElementErrorUnspecified.model_computed_fields

	PassportElementErrorUnspecified.model_post_init()

	PassportElementErrorUnspecified.element_hash

	PassportElementErrorUnspecified.message

	PassportFile
	PassportFile
	PassportFile.file_id

	PassportFile.file_unique_id

	PassportFile.model_computed_fields

	PassportFile.model_post_init()

	PassportFile.file_size

	PassportFile.file_date

	Payments
	Invoice
	Invoice
	Invoice.title

	Invoice.description

	Invoice.start_parameter

	Invoice.model_computed_fields

	Invoice.model_post_init()

	Invoice.currency

	Invoice.total_amount

	LabeledPrice
	LabeledPrice
	LabeledPrice.label

	LabeledPrice.model_computed_fields

	LabeledPrice.model_post_init()

	LabeledPrice.amount

	OrderInfo
	OrderInfo
	OrderInfo.name

	OrderInfo.phone_number

	OrderInfo.model_computed_fields

	OrderInfo.model_post_init()

	OrderInfo.email

	OrderInfo.shipping_address

	PreCheckoutQuery
	PreCheckoutQuery
	PreCheckoutQuery.id

	PreCheckoutQuery.from_user

	PreCheckoutQuery.currency

	PreCheckoutQuery.total_amount

	PreCheckoutQuery.model_computed_fields

	PreCheckoutQuery.model_post_init()

	PreCheckoutQuery.invoice_payload

	PreCheckoutQuery.shipping_option_id

	PreCheckoutQuery.order_info

	PreCheckoutQuery.answer()

	ShippingAddress
	ShippingAddress
	ShippingAddress.country_code

	ShippingAddress.state

	ShippingAddress.city

	ShippingAddress.model_computed_fields

	ShippingAddress.model_post_init()

	ShippingAddress.street_line1

	ShippingAddress.street_line2

	ShippingAddress.post_code

	ShippingOption
	ShippingOption
	ShippingOption.id

	ShippingOption.title

	ShippingOption.model_computed_fields

	ShippingOption.model_post_init()

	ShippingOption.prices

	ShippingQuery
	ShippingQuery
	ShippingQuery.id

	ShippingQuery.from_user

	ShippingQuery.invoice_payload

	ShippingQuery.model_computed_fields

	ShippingQuery.model_post_init()

	ShippingQuery.shipping_address

	ShippingQuery.answer()

	SuccessfulPayment
	SuccessfulPayment
	SuccessfulPayment.currency

	SuccessfulPayment.total_amount

	SuccessfulPayment.invoice_payload

	SuccessfulPayment.telegram_payment_charge_id

	SuccessfulPayment.model_computed_fields

	SuccessfulPayment.model_post_init()

	SuccessfulPayment.provider_payment_charge_id

	SuccessfulPayment.shipping_option_id

	SuccessfulPayment.order_info

	Getting updates
	Update
	Update
	Update.update_id

	Update.message

	Update.edited_message

	Update.channel_post

	Update.edited_channel_post

	Update.business_connection

	Update.business_message

	Update.edited_business_message

	Update.deleted_business_messages

	Update.message_reaction

	Update.message_reaction_count

	Update.inline_query

	Update.chosen_inline_result

	Update.callback_query

	Update.model_computed_fields

	Update.model_post_init()

	Update.shipping_query

	Update.pre_checkout_query

	Update.poll

	Update.poll_answer

	Update.my_chat_member

	Update.chat_member

	Update.chat_join_request

	Update.chat_boost

	Update.removed_chat_boost

	Update.event_type

	Update.event

	UpdateTypeLookupError

	WebhookInfo
	WebhookInfo
	WebhookInfo.url

	WebhookInfo.has_custom_certificate

	WebhookInfo.pending_update_count

	WebhookInfo.ip_address

	WebhookInfo.last_error_date

	WebhookInfo.model_computed_fields

	WebhookInfo.model_post_init()

	WebhookInfo.last_error_message

	WebhookInfo.last_synchronization_error_date

	WebhookInfo.max_connections

	WebhookInfo.allowed_updates

	Games
	CallbackGame
	CallbackGame
	CallbackGame.model_computed_fields

	CallbackGame.model_post_init()

	Game
	Game
	Game.title

	Game.description

	Game.photo

	Game.model_computed_fields

	Game.model_post_init()

	Game.text

	Game.text_entities

	Game.animation

	GameHighScore
	GameHighScore
	GameHighScore.position

	GameHighScore.user

	GameHighScore.model_computed_fields

	GameHighScore.model_post_init()

	GameHighScore.score

	Methods
	Stickers
	addStickerToSet
	AddStickerToSet
	AddStickerToSet.user_id

	AddStickerToSet.name

	AddStickerToSet.model_computed_fields

	AddStickerToSet.model_post_init()

	AddStickerToSet.sticker

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	createNewStickerSet
	CreateNewStickerSet
	CreateNewStickerSet.user_id

	CreateNewStickerSet.name

	CreateNewStickerSet.title

	CreateNewStickerSet.stickers

	CreateNewStickerSet.model_computed_fields

	CreateNewStickerSet.model_post_init()

	CreateNewStickerSet.sticker_type

	CreateNewStickerSet.needs_repainting

	CreateNewStickerSet.sticker_format

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	deleteStickerFromSet
	DeleteStickerFromSet
	DeleteStickerFromSet.sticker

	DeleteStickerFromSet.model_computed_fields

	DeleteStickerFromSet.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	deleteStickerSet
	DeleteStickerSet
	DeleteStickerSet.name

	DeleteStickerSet.model_computed_fields

	DeleteStickerSet.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	getCustomEmojiStickers
	GetCustomEmojiStickers
	GetCustomEmojiStickers.custom_emoji_ids

	GetCustomEmojiStickers.model_computed_fields

	GetCustomEmojiStickers.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	getStickerSet
	GetStickerSet
	GetStickerSet.name

	GetStickerSet.model_computed_fields

	GetStickerSet.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	replaceStickerInSet
	ReplaceStickerInSet
	ReplaceStickerInSet.user_id

	ReplaceStickerInSet.name

	ReplaceStickerInSet.model_computed_fields

	ReplaceStickerInSet.model_post_init()

	ReplaceStickerInSet.old_sticker

	ReplaceStickerInSet.sticker

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	sendSticker
	SendSticker
	SendSticker.chat_id

	SendSticker.sticker

	SendSticker.business_connection_id

	SendSticker.message_thread_id

	SendSticker.emoji

	SendSticker.disable_notification

	SendSticker.model_computed_fields

	SendSticker.model_post_init()

	SendSticker.protect_content

	SendSticker.reply_parameters

	SendSticker.reply_markup

	SendSticker.allow_sending_without_reply

	SendSticker.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	setCustomEmojiStickerSetThumbnail
	SetCustomEmojiStickerSetThumbnail
	SetCustomEmojiStickerSetThumbnail.name

	SetCustomEmojiStickerSetThumbnail.model_computed_fields

	SetCustomEmojiStickerSetThumbnail.model_post_init()

	SetCustomEmojiStickerSetThumbnail.custom_emoji_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	setStickerEmojiList
	SetStickerEmojiList
	SetStickerEmojiList.sticker

	SetStickerEmojiList.model_computed_fields

	SetStickerEmojiList.model_post_init()

	SetStickerEmojiList.emoji_list

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	setStickerKeywords
	SetStickerKeywords
	SetStickerKeywords.sticker

	SetStickerKeywords.model_computed_fields

	SetStickerKeywords.model_post_init()

	SetStickerKeywords.keywords

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	setStickerMaskPosition
	SetStickerMaskPosition
	SetStickerMaskPosition.sticker

	SetStickerMaskPosition.model_computed_fields

	SetStickerMaskPosition.model_post_init()

	SetStickerMaskPosition.mask_position

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	setStickerPositionInSet
	SetStickerPositionInSet
	SetStickerPositionInSet.sticker

	SetStickerPositionInSet.model_computed_fields

	SetStickerPositionInSet.model_post_init()

	SetStickerPositionInSet.position

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	setStickerSetThumbnail
	SetStickerSetThumbnail
	SetStickerSetThumbnail.name

	SetStickerSetThumbnail.user_id

	SetStickerSetThumbnail.model_computed_fields

	SetStickerSetThumbnail.model_post_init()

	SetStickerSetThumbnail.format

	SetStickerSetThumbnail.thumbnail

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	setStickerSetTitle
	SetStickerSetTitle
	SetStickerSetTitle.name

	SetStickerSetTitle.model_computed_fields

	SetStickerSetTitle.model_post_init()

	SetStickerSetTitle.title

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	uploadStickerFile
	UploadStickerFile
	UploadStickerFile.user_id

	UploadStickerFile.sticker

	UploadStickerFile.model_computed_fields

	UploadStickerFile.model_post_init()

	UploadStickerFile.sticker_format

	Usage
	As bot method

	Method as object
	With specific bot

	Available methods
	answerCallbackQuery
	AnswerCallbackQuery
	AnswerCallbackQuery.callback_query_id

	AnswerCallbackQuery.text

	AnswerCallbackQuery.show_alert

	AnswerCallbackQuery.model_computed_fields

	AnswerCallbackQuery.model_post_init()

	AnswerCallbackQuery.url

	AnswerCallbackQuery.cache_time

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	approveChatJoinRequest
	ApproveChatJoinRequest
	ApproveChatJoinRequest.chat_id

	ApproveChatJoinRequest.model_computed_fields

	ApproveChatJoinRequest.model_post_init()

	ApproveChatJoinRequest.user_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	banChatMember
	BanChatMember
	BanChatMember.chat_id

	BanChatMember.user_id

	BanChatMember.model_computed_fields

	BanChatMember.model_post_init()

	BanChatMember.until_date

	BanChatMember.revoke_messages

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	banChatSenderChat
	BanChatSenderChat
	BanChatSenderChat.chat_id

	BanChatSenderChat.model_computed_fields

	BanChatSenderChat.model_post_init()

	BanChatSenderChat.sender_chat_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	close
	Close
	Close.model_computed_fields

	Close.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	closeForumTopic
	CloseForumTopic
	CloseForumTopic.chat_id

	CloseForumTopic.model_computed_fields

	CloseForumTopic.model_post_init()

	CloseForumTopic.message_thread_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	closeGeneralForumTopic
	CloseGeneralForumTopic
	CloseGeneralForumTopic.chat_id

	CloseGeneralForumTopic.model_computed_fields

	CloseGeneralForumTopic.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	copyMessage
	CopyMessage
	CopyMessage.chat_id

	CopyMessage.from_chat_id

	CopyMessage.message_id

	CopyMessage.message_thread_id

	CopyMessage.caption

	CopyMessage.parse_mode

	CopyMessage.caption_entities

	CopyMessage.model_computed_fields

	CopyMessage.model_post_init()

	CopyMessage.disable_notification

	CopyMessage.protect_content

	CopyMessage.reply_parameters

	CopyMessage.reply_markup

	CopyMessage.allow_sending_without_reply

	CopyMessage.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	copyMessages
	CopyMessages
	CopyMessages.chat_id

	CopyMessages.from_chat_id

	CopyMessages.message_ids

	CopyMessages.message_thread_id

	CopyMessages.model_computed_fields

	CopyMessages.model_post_init()

	CopyMessages.disable_notification

	CopyMessages.protect_content

	CopyMessages.remove_caption

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	createChatInviteLink
	CreateChatInviteLink
	CreateChatInviteLink.chat_id

	CreateChatInviteLink.name

	CreateChatInviteLink.expire_date

	CreateChatInviteLink.model_computed_fields

	CreateChatInviteLink.model_post_init()

	CreateChatInviteLink.member_limit

	CreateChatInviteLink.creates_join_request

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	createForumTopic
	CreateForumTopic
	CreateForumTopic.chat_id

	CreateForumTopic.name

	CreateForumTopic.model_computed_fields

	CreateForumTopic.model_post_init()

	CreateForumTopic.icon_color

	CreateForumTopic.icon_custom_emoji_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	declineChatJoinRequest
	DeclineChatJoinRequest
	DeclineChatJoinRequest.chat_id

	DeclineChatJoinRequest.model_computed_fields

	DeclineChatJoinRequest.model_post_init()

	DeclineChatJoinRequest.user_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	deleteChatPhoto
	DeleteChatPhoto
	DeleteChatPhoto.chat_id

	DeleteChatPhoto.model_computed_fields

	DeleteChatPhoto.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	deleteChatStickerSet
	DeleteChatStickerSet
	DeleteChatStickerSet.chat_id

	DeleteChatStickerSet.model_computed_fields

	DeleteChatStickerSet.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	deleteForumTopic
	DeleteForumTopic
	DeleteForumTopic.chat_id

	DeleteForumTopic.model_computed_fields

	DeleteForumTopic.model_post_init()

	DeleteForumTopic.message_thread_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	deleteMyCommands
	DeleteMyCommands
	DeleteMyCommands.scope

	DeleteMyCommands.model_computed_fields

	DeleteMyCommands.model_post_init()

	DeleteMyCommands.language_code

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	editChatInviteLink
	EditChatInviteLink
	EditChatInviteLink.chat_id

	EditChatInviteLink.invite_link

	EditChatInviteLink.name

	EditChatInviteLink.model_computed_fields

	EditChatInviteLink.model_post_init()

	EditChatInviteLink.expire_date

	EditChatInviteLink.member_limit

	EditChatInviteLink.creates_join_request

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	editForumTopic
	EditForumTopic
	EditForumTopic.chat_id

	EditForumTopic.message_thread_id

	EditForumTopic.model_computed_fields

	EditForumTopic.model_post_init()

	EditForumTopic.name

	EditForumTopic.icon_custom_emoji_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	editGeneralForumTopic
	EditGeneralForumTopic
	EditGeneralForumTopic.chat_id

	EditGeneralForumTopic.model_computed_fields

	EditGeneralForumTopic.model_post_init()

	EditGeneralForumTopic.name

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	exportChatInviteLink
	ExportChatInviteLink
	ExportChatInviteLink.chat_id

	ExportChatInviteLink.model_computed_fields

	ExportChatInviteLink.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	forwardMessage
	ForwardMessage
	ForwardMessage.chat_id

	ForwardMessage.from_chat_id

	ForwardMessage.message_id

	ForwardMessage.model_computed_fields

	ForwardMessage.model_post_init()

	ForwardMessage.message_thread_id

	ForwardMessage.disable_notification

	ForwardMessage.protect_content

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	forwardMessages
	ForwardMessages
	ForwardMessages.chat_id

	ForwardMessages.from_chat_id

	ForwardMessages.message_ids

	ForwardMessages.model_computed_fields

	ForwardMessages.model_post_init()

	ForwardMessages.message_thread_id

	ForwardMessages.disable_notification

	ForwardMessages.protect_content

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	getBusinessConnection
	GetBusinessConnection
	GetBusinessConnection.business_connection_id

	GetBusinessConnection.model_computed_fields

	GetBusinessConnection.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	getChat
	GetChat
	GetChat.chat_id

	GetChat.model_computed_fields

	GetChat.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	getChatAdministrators
	GetChatAdministrators
	GetChatAdministrators.chat_id

	GetChatAdministrators.model_computed_fields

	GetChatAdministrators.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As shortcut from received object

	getChatMember
	GetChatMember
	GetChatMember.chat_id

	GetChatMember.model_computed_fields

	GetChatMember.model_post_init()

	GetChatMember.user_id

	Usage
	As bot method

	Method as object
	With specific bot

	As shortcut from received object

	getChatMemberCount
	GetChatMemberCount
	GetChatMemberCount.chat_id

	GetChatMemberCount.model_computed_fields

	GetChatMemberCount.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As shortcut from received object

	getChatMenuButton
	GetChatMenuButton
	GetChatMenuButton.chat_id

	GetChatMenuButton.model_computed_fields

	GetChatMenuButton.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	getFile
	GetFile
	GetFile.file_id

	GetFile.model_computed_fields

	GetFile.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	getForumTopicIconStickers
	GetForumTopicIconStickers
	GetForumTopicIconStickers.model_computed_fields

	GetForumTopicIconStickers.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	getMe
	GetMe
	GetMe.model_computed_fields

	GetMe.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	getMyCommands
	GetMyCommands
	GetMyCommands.scope

	GetMyCommands.model_computed_fields

	GetMyCommands.model_post_init()

	GetMyCommands.language_code

	Usage
	As bot method

	Method as object
	With specific bot

	getMyDefaultAdministratorRights
	GetMyDefaultAdministratorRights
	GetMyDefaultAdministratorRights.for_channels

	GetMyDefaultAdministratorRights.model_computed_fields

	GetMyDefaultAdministratorRights.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	getMyDescription
	GetMyDescription
	GetMyDescription.language_code

	GetMyDescription.model_computed_fields

	GetMyDescription.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	getMyName
	GetMyName
	GetMyName.language_code

	GetMyName.model_computed_fields

	GetMyName.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	getMyShortDescription
	GetMyShortDescription
	GetMyShortDescription.language_code

	GetMyShortDescription.model_computed_fields

	GetMyShortDescription.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	getUserChatBoosts
	GetUserChatBoosts
	GetUserChatBoosts.chat_id

	GetUserChatBoosts.model_computed_fields

	GetUserChatBoosts.model_post_init()

	GetUserChatBoosts.user_id

	Usage
	As bot method

	Method as object
	With specific bot

	getUserProfilePhotos
	GetUserProfilePhotos
	GetUserProfilePhotos.user_id

	GetUserProfilePhotos.offset

	GetUserProfilePhotos.model_computed_fields

	GetUserProfilePhotos.model_post_init()

	GetUserProfilePhotos.limit

	Usage
	As bot method

	Method as object
	With specific bot

	As shortcut from received object

	hideGeneralForumTopic
	HideGeneralForumTopic
	HideGeneralForumTopic.chat_id

	HideGeneralForumTopic.model_computed_fields

	HideGeneralForumTopic.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	leaveChat
	LeaveChat
	LeaveChat.chat_id

	LeaveChat.model_computed_fields

	LeaveChat.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	logOut
	LogOut
	LogOut.model_computed_fields

	LogOut.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	pinChatMessage
	PinChatMessage
	PinChatMessage.chat_id

	PinChatMessage.message_id

	PinChatMessage.model_computed_fields

	PinChatMessage.model_post_init()

	PinChatMessage.disable_notification

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	promoteChatMember
	PromoteChatMember
	PromoteChatMember.chat_id

	PromoteChatMember.user_id

	PromoteChatMember.is_anonymous

	PromoteChatMember.can_manage_chat

	PromoteChatMember.can_delete_messages

	PromoteChatMember.can_manage_video_chats

	PromoteChatMember.can_restrict_members

	PromoteChatMember.can_promote_members

	PromoteChatMember.can_change_info

	PromoteChatMember.model_computed_fields

	PromoteChatMember.model_post_init()

	PromoteChatMember.can_invite_users

	PromoteChatMember.can_post_stories

	PromoteChatMember.can_edit_stories

	PromoteChatMember.can_delete_stories

	PromoteChatMember.can_post_messages

	PromoteChatMember.can_edit_messages

	PromoteChatMember.can_pin_messages

	PromoteChatMember.can_manage_topics

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	reopenForumTopic
	ReopenForumTopic
	ReopenForumTopic.chat_id

	ReopenForumTopic.model_computed_fields

	ReopenForumTopic.model_post_init()

	ReopenForumTopic.message_thread_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	reopenGeneralForumTopic
	ReopenGeneralForumTopic
	ReopenGeneralForumTopic.chat_id

	ReopenGeneralForumTopic.model_computed_fields

	ReopenGeneralForumTopic.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	restrictChatMember
	RestrictChatMember
	RestrictChatMember.chat_id

	RestrictChatMember.user_id

	RestrictChatMember.permissions

	RestrictChatMember.model_computed_fields

	RestrictChatMember.model_post_init()

	RestrictChatMember.use_independent_chat_permissions

	RestrictChatMember.until_date

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	revokeChatInviteLink
	RevokeChatInviteLink
	RevokeChatInviteLink.chat_id

	RevokeChatInviteLink.model_computed_fields

	RevokeChatInviteLink.model_post_init()

	RevokeChatInviteLink.invite_link

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	sendAnimation
	SendAnimation
	SendAnimation.chat_id

	SendAnimation.animation

	SendAnimation.business_connection_id

	SendAnimation.message_thread_id

	SendAnimation.duration

	SendAnimation.width

	SendAnimation.height

	SendAnimation.thumbnail

	SendAnimation.caption

	SendAnimation.model_computed_fields

	SendAnimation.model_post_init()

	SendAnimation.parse_mode

	SendAnimation.caption_entities

	SendAnimation.has_spoiler

	SendAnimation.disable_notification

	SendAnimation.protect_content

	SendAnimation.reply_parameters

	SendAnimation.reply_markup

	SendAnimation.allow_sending_without_reply

	SendAnimation.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	sendAudio
	SendAudio
	SendAudio.chat_id

	SendAudio.audio

	SendAudio.business_connection_id

	SendAudio.message_thread_id

	SendAudio.caption

	SendAudio.parse_mode

	SendAudio.caption_entities

	SendAudio.duration

	SendAudio.performer

	SendAudio.model_computed_fields

	SendAudio.model_post_init()

	SendAudio.title

	SendAudio.thumbnail

	SendAudio.disable_notification

	SendAudio.protect_content

	SendAudio.reply_parameters

	SendAudio.reply_markup

	SendAudio.allow_sending_without_reply

	SendAudio.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	sendChatAction
	SendChatAction
	SendChatAction.chat_id

	SendChatAction.action

	SendChatAction.model_computed_fields

	SendChatAction.model_post_init()

	SendChatAction.business_connection_id

	SendChatAction.message_thread_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	sendContact
	SendContact
	SendContact.chat_id

	SendContact.phone_number

	SendContact.first_name

	SendContact.business_connection_id

	SendContact.message_thread_id

	SendContact.last_name

	SendContact.vcard

	SendContact.model_computed_fields

	SendContact.model_post_init()

	SendContact.disable_notification

	SendContact.protect_content

	SendContact.reply_parameters

	SendContact.reply_markup

	SendContact.allow_sending_without_reply

	SendContact.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	sendDice
	SendDice
	SendDice.chat_id

	SendDice.business_connection_id

	SendDice.message_thread_id

	SendDice.emoji

	SendDice.disable_notification

	SendDice.model_computed_fields

	SendDice.model_post_init()

	SendDice.protect_content

	SendDice.reply_parameters

	SendDice.reply_markup

	SendDice.allow_sending_without_reply

	SendDice.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	sendDocument
	SendDocument
	SendDocument.chat_id

	SendDocument.document

	SendDocument.business_connection_id

	SendDocument.message_thread_id

	SendDocument.thumbnail

	SendDocument.caption

	SendDocument.parse_mode

	SendDocument.caption_entities

	SendDocument.model_computed_fields

	SendDocument.model_post_init()

	SendDocument.disable_content_type_detection

	SendDocument.disable_notification

	SendDocument.protect_content

	SendDocument.reply_parameters

	SendDocument.reply_markup

	SendDocument.allow_sending_without_reply

	SendDocument.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	sendLocation
	SendLocation
	SendLocation.chat_id

	SendLocation.latitude

	SendLocation.longitude

	SendLocation.business_connection_id

	SendLocation.message_thread_id

	SendLocation.horizontal_accuracy

	SendLocation.live_period

	SendLocation.heading

	SendLocation.model_computed_fields

	SendLocation.model_post_init()

	SendLocation.proximity_alert_radius

	SendLocation.disable_notification

	SendLocation.protect_content

	SendLocation.reply_parameters

	SendLocation.reply_markup

	SendLocation.allow_sending_without_reply

	SendLocation.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	sendMediaGroup
	SendMediaGroup
	SendMediaGroup.chat_id

	SendMediaGroup.media

	SendMediaGroup.business_connection_id

	SendMediaGroup.message_thread_id

	SendMediaGroup.disable_notification

	SendMediaGroup.model_computed_fields

	SendMediaGroup.model_post_init()

	SendMediaGroup.protect_content

	SendMediaGroup.reply_parameters

	SendMediaGroup.allow_sending_without_reply

	SendMediaGroup.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	sendMessage
	SendMessage
	SendMessage.chat_id

	SendMessage.text

	SendMessage.business_connection_id

	SendMessage.message_thread_id

	SendMessage.parse_mode

	SendMessage.entities

	SendMessage.link_preview_options

	SendMessage.model_computed_fields

	SendMessage.model_post_init()

	SendMessage.disable_notification

	SendMessage.protect_content

	SendMessage.reply_parameters

	SendMessage.reply_markup

	SendMessage.allow_sending_without_reply

	SendMessage.disable_web_page_preview

	SendMessage.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	sendPhoto
	SendPhoto
	SendPhoto.chat_id

	SendPhoto.photo

	SendPhoto.business_connection_id

	SendPhoto.message_thread_id

	SendPhoto.caption

	SendPhoto.parse_mode

	SendPhoto.caption_entities

	SendPhoto.model_computed_fields

	SendPhoto.model_post_init()

	SendPhoto.has_spoiler

	SendPhoto.disable_notification

	SendPhoto.protect_content

	SendPhoto.reply_parameters

	SendPhoto.reply_markup

	SendPhoto.allow_sending_without_reply

	SendPhoto.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	sendPoll
	SendPoll
	SendPoll.chat_id

	SendPoll.question

	SendPoll.options

	SendPoll.business_connection_id

	SendPoll.message_thread_id

	SendPoll.question_parse_mode

	SendPoll.question_entities

	SendPoll.is_anonymous

	SendPoll.type

	SendPoll.allows_multiple_answers

	SendPoll.correct_option_id

	SendPoll.explanation

	SendPoll.model_computed_fields

	SendPoll.model_post_init()

	SendPoll.explanation_parse_mode

	SendPoll.explanation_entities

	SendPoll.open_period

	SendPoll.close_date

	SendPoll.is_closed

	SendPoll.disable_notification

	SendPoll.protect_content

	SendPoll.reply_parameters

	SendPoll.reply_markup

	SendPoll.allow_sending_without_reply

	SendPoll.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	sendVenue
	SendVenue
	SendVenue.chat_id

	SendVenue.latitude

	SendVenue.longitude

	SendVenue.title

	SendVenue.address

	SendVenue.business_connection_id

	SendVenue.message_thread_id

	SendVenue.foursquare_id

	SendVenue.foursquare_type

	SendVenue.model_computed_fields

	SendVenue.model_post_init()

	SendVenue.google_place_id

	SendVenue.google_place_type

	SendVenue.disable_notification

	SendVenue.protect_content

	SendVenue.reply_parameters

	SendVenue.reply_markup

	SendVenue.allow_sending_without_reply

	SendVenue.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	sendVideo
	SendVideo
	SendVideo.chat_id

	SendVideo.video

	SendVideo.business_connection_id

	SendVideo.message_thread_id

	SendVideo.duration

	SendVideo.width

	SendVideo.height

	SendVideo.thumbnail

	SendVideo.caption

	SendVideo.parse_mode

	SendVideo.model_computed_fields

	SendVideo.model_post_init()

	SendVideo.caption_entities

	SendVideo.has_spoiler

	SendVideo.supports_streaming

	SendVideo.disable_notification

	SendVideo.protect_content

	SendVideo.reply_parameters

	SendVideo.reply_markup

	SendVideo.allow_sending_without_reply

	SendVideo.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	sendVideoNote
	SendVideoNote
	SendVideoNote.chat_id

	SendVideoNote.video_note

	SendVideoNote.business_connection_id

	SendVideoNote.message_thread_id

	SendVideoNote.duration

	SendVideoNote.length

	SendVideoNote.thumbnail

	SendVideoNote.model_computed_fields

	SendVideoNote.model_post_init()

	SendVideoNote.disable_notification

	SendVideoNote.protect_content

	SendVideoNote.reply_parameters

	SendVideoNote.reply_markup

	SendVideoNote.allow_sending_without_reply

	SendVideoNote.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	sendVoice
	SendVoice
	SendVoice.chat_id

	SendVoice.voice

	SendVoice.business_connection_id

	SendVoice.message_thread_id

	SendVoice.caption

	SendVoice.parse_mode

	SendVoice.caption_entities

	SendVoice.model_computed_fields

	SendVoice.model_post_init()

	SendVoice.duration

	SendVoice.disable_notification

	SendVoice.protect_content

	SendVoice.reply_parameters

	SendVoice.reply_markup

	SendVoice.allow_sending_without_reply

	SendVoice.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	setChatAdministratorCustomTitle
	SetChatAdministratorCustomTitle
	SetChatAdministratorCustomTitle.chat_id

	SetChatAdministratorCustomTitle.user_id

	SetChatAdministratorCustomTitle.model_computed_fields

	SetChatAdministratorCustomTitle.model_post_init()

	SetChatAdministratorCustomTitle.custom_title

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	setChatDescription
	SetChatDescription
	SetChatDescription.chat_id

	SetChatDescription.model_computed_fields

	SetChatDescription.model_post_init()

	SetChatDescription.description

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	setChatMenuButton
	SetChatMenuButton
	SetChatMenuButton.chat_id

	SetChatMenuButton.model_computed_fields

	SetChatMenuButton.model_post_init()

	SetChatMenuButton.menu_button

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	setChatPermissions
	SetChatPermissions
	SetChatPermissions.chat_id

	SetChatPermissions.permissions

	SetChatPermissions.model_computed_fields

	SetChatPermissions.model_post_init()

	SetChatPermissions.use_independent_chat_permissions

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	setChatPhoto
	SetChatPhoto
	SetChatPhoto.chat_id

	SetChatPhoto.model_computed_fields

	SetChatPhoto.model_post_init()

	SetChatPhoto.photo

	Usage
	As bot method

	Method as object
	With specific bot

	As shortcut from received object

	setChatStickerSet
	SetChatStickerSet
	SetChatStickerSet.chat_id

	SetChatStickerSet.model_computed_fields

	SetChatStickerSet.model_post_init()

	SetChatStickerSet.sticker_set_name

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	setChatTitle
	SetChatTitle
	SetChatTitle.chat_id

	SetChatTitle.model_computed_fields

	SetChatTitle.model_post_init()

	SetChatTitle.title

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	setMessageReaction
	SetMessageReaction
	SetMessageReaction.chat_id

	SetMessageReaction.message_id

	SetMessageReaction.model_computed_fields

	SetMessageReaction.model_post_init()

	SetMessageReaction.reaction

	SetMessageReaction.is_big

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	setMyCommands
	SetMyCommands
	SetMyCommands.commands

	SetMyCommands.scope

	SetMyCommands.model_computed_fields

	SetMyCommands.model_post_init()

	SetMyCommands.language_code

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	setMyDefaultAdministratorRights
	SetMyDefaultAdministratorRights
	SetMyDefaultAdministratorRights.rights

	SetMyDefaultAdministratorRights.model_computed_fields

	SetMyDefaultAdministratorRights.model_post_init()

	SetMyDefaultAdministratorRights.for_channels

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	setMyDescription
	SetMyDescription
	SetMyDescription.description

	SetMyDescription.model_computed_fields

	SetMyDescription.model_post_init()

	SetMyDescription.language_code

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	setMyName
	SetMyName
	SetMyName.name

	SetMyName.model_computed_fields

	SetMyName.model_post_init()

	SetMyName.language_code

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	setMyShortDescription
	SetMyShortDescription
	SetMyShortDescription.short_description

	SetMyShortDescription.model_computed_fields

	SetMyShortDescription.model_post_init()

	SetMyShortDescription.language_code

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	unbanChatMember
	UnbanChatMember
	UnbanChatMember.chat_id

	UnbanChatMember.user_id

	UnbanChatMember.model_computed_fields

	UnbanChatMember.model_post_init()

	UnbanChatMember.only_if_banned

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	unbanChatSenderChat
	UnbanChatSenderChat
	UnbanChatSenderChat.chat_id

	UnbanChatSenderChat.model_computed_fields

	UnbanChatSenderChat.model_post_init()

	UnbanChatSenderChat.sender_chat_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	unhideGeneralForumTopic
	UnhideGeneralForumTopic
	UnhideGeneralForumTopic.chat_id

	UnhideGeneralForumTopic.model_computed_fields

	UnhideGeneralForumTopic.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	unpinAllChatMessages
	UnpinAllChatMessages
	UnpinAllChatMessages.chat_id

	UnpinAllChatMessages.model_computed_fields

	UnpinAllChatMessages.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	unpinAllForumTopicMessages
	UnpinAllForumTopicMessages
	UnpinAllForumTopicMessages.chat_id

	UnpinAllForumTopicMessages.model_computed_fields

	UnpinAllForumTopicMessages.model_post_init()

	UnpinAllForumTopicMessages.message_thread_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	unpinAllGeneralForumTopicMessages
	UnpinAllGeneralForumTopicMessages
	UnpinAllGeneralForumTopicMessages.chat_id

	UnpinAllGeneralForumTopicMessages.model_computed_fields

	UnpinAllGeneralForumTopicMessages.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	unpinChatMessage
	UnpinChatMessage
	UnpinChatMessage.chat_id

	UnpinChatMessage.model_computed_fields

	UnpinChatMessage.model_post_init()

	UnpinChatMessage.message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	Updating messages
	deleteMessage
	DeleteMessage
	DeleteMessage.chat_id

	DeleteMessage.model_computed_fields

	DeleteMessage.model_post_init()

	DeleteMessage.message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	deleteMessages
	DeleteMessages
	DeleteMessages.chat_id

	DeleteMessages.model_computed_fields

	DeleteMessages.model_post_init()

	DeleteMessages.message_ids

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	editMessageCaption
	EditMessageCaption
	EditMessageCaption.chat_id

	EditMessageCaption.message_id

	EditMessageCaption.inline_message_id

	EditMessageCaption.caption

	EditMessageCaption.model_computed_fields

	EditMessageCaption.model_post_init()

	EditMessageCaption.parse_mode

	EditMessageCaption.caption_entities

	EditMessageCaption.reply_markup

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	editMessageLiveLocation
	EditMessageLiveLocation
	EditMessageLiveLocation.latitude

	EditMessageLiveLocation.longitude

	EditMessageLiveLocation.chat_id

	EditMessageLiveLocation.message_id

	EditMessageLiveLocation.inline_message_id

	EditMessageLiveLocation.model_computed_fields

	EditMessageLiveLocation.model_post_init()

	EditMessageLiveLocation.live_period

	EditMessageLiveLocation.horizontal_accuracy

	EditMessageLiveLocation.heading

	EditMessageLiveLocation.proximity_alert_radius

	EditMessageLiveLocation.reply_markup

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	editMessageMedia
	EditMessageMedia
	EditMessageMedia.media

	EditMessageMedia.chat_id

	EditMessageMedia.message_id

	EditMessageMedia.model_computed_fields

	EditMessageMedia.model_post_init()

	EditMessageMedia.inline_message_id

	EditMessageMedia.reply_markup

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	editMessageReplyMarkup
	EditMessageReplyMarkup
	EditMessageReplyMarkup.chat_id

	EditMessageReplyMarkup.message_id

	EditMessageReplyMarkup.model_computed_fields

	EditMessageReplyMarkup.model_post_init()

	EditMessageReplyMarkup.inline_message_id

	EditMessageReplyMarkup.reply_markup

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	editMessageText
	EditMessageText
	EditMessageText.text

	EditMessageText.chat_id

	EditMessageText.message_id

	EditMessageText.inline_message_id

	EditMessageText.parse_mode

	EditMessageText.model_computed_fields

	EditMessageText.model_post_init()

	EditMessageText.entities

	EditMessageText.link_preview_options

	EditMessageText.reply_markup

	EditMessageText.disable_web_page_preview

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	stopMessageLiveLocation
	StopMessageLiveLocation
	StopMessageLiveLocation.chat_id

	StopMessageLiveLocation.message_id

	StopMessageLiveLocation.model_computed_fields

	StopMessageLiveLocation.model_post_init()

	StopMessageLiveLocation.inline_message_id

	StopMessageLiveLocation.reply_markup

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	stopPoll
	StopPoll
	StopPoll.chat_id

	StopPoll.message_id

	StopPoll.model_computed_fields

	StopPoll.model_post_init()

	StopPoll.reply_markup

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	Inline mode
	answerInlineQuery
	AnswerInlineQuery
	AnswerInlineQuery.inline_query_id

	AnswerInlineQuery.results

	AnswerInlineQuery.cache_time

	AnswerInlineQuery.is_personal

	AnswerInlineQuery.model_computed_fields

	AnswerInlineQuery.model_post_init()

	AnswerInlineQuery.next_offset

	AnswerInlineQuery.button

	AnswerInlineQuery.switch_pm_parameter

	AnswerInlineQuery.switch_pm_text

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	answerWebAppQuery
	AnswerWebAppQuery
	AnswerWebAppQuery.web_app_query_id

	AnswerWebAppQuery.model_computed_fields

	AnswerWebAppQuery.model_post_init()

	AnswerWebAppQuery.result

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	Games
	getGameHighScores
	GetGameHighScores
	GetGameHighScores.user_id

	GetGameHighScores.chat_id

	GetGameHighScores.model_computed_fields

	GetGameHighScores.model_post_init()

	GetGameHighScores.message_id

	GetGameHighScores.inline_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	sendGame
	SendGame
	SendGame.chat_id

	SendGame.game_short_name

	SendGame.business_connection_id

	SendGame.message_thread_id

	SendGame.disable_notification

	SendGame.model_computed_fields

	SendGame.model_post_init()

	SendGame.protect_content

	SendGame.reply_parameters

	SendGame.reply_markup

	SendGame.allow_sending_without_reply

	SendGame.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	setGameScore
	SetGameScore
	SetGameScore.user_id

	SetGameScore.score

	SetGameScore.force

	SetGameScore.disable_edit_message

	SetGameScore.model_computed_fields

	SetGameScore.model_post_init()

	SetGameScore.chat_id

	SetGameScore.message_id

	SetGameScore.inline_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	Payments
	answerPreCheckoutQuery
	AnswerPreCheckoutQuery
	AnswerPreCheckoutQuery.pre_checkout_query_id

	AnswerPreCheckoutQuery.ok

	AnswerPreCheckoutQuery.model_computed_fields

	AnswerPreCheckoutQuery.model_post_init()

	AnswerPreCheckoutQuery.error_message

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	answerShippingQuery
	AnswerShippingQuery
	AnswerShippingQuery.shipping_query_id

	AnswerShippingQuery.ok

	AnswerShippingQuery.model_computed_fields

	AnswerShippingQuery.model_post_init()

	AnswerShippingQuery.shipping_options

	AnswerShippingQuery.error_message

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	createInvoiceLink
	CreateInvoiceLink
	CreateInvoiceLink.title

	CreateInvoiceLink.description

	CreateInvoiceLink.payload

	CreateInvoiceLink.provider_token

	CreateInvoiceLink.currency

	CreateInvoiceLink.prices

	CreateInvoiceLink.max_tip_amount

	CreateInvoiceLink.suggested_tip_amounts

	CreateInvoiceLink.provider_data

	CreateInvoiceLink.photo_url

	CreateInvoiceLink.model_computed_fields

	CreateInvoiceLink.model_post_init()

	CreateInvoiceLink.photo_size

	CreateInvoiceLink.photo_width

	CreateInvoiceLink.photo_height

	CreateInvoiceLink.need_name

	CreateInvoiceLink.need_phone_number

	CreateInvoiceLink.need_email

	CreateInvoiceLink.need_shipping_address

	CreateInvoiceLink.send_phone_number_to_provider

	CreateInvoiceLink.send_email_to_provider

	CreateInvoiceLink.is_flexible

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	sendInvoice
	SendInvoice
	SendInvoice.chat_id

	SendInvoice.title

	SendInvoice.description

	SendInvoice.payload

	SendInvoice.provider_token

	SendInvoice.currency

	SendInvoice.prices

	SendInvoice.message_thread_id

	SendInvoice.max_tip_amount

	SendInvoice.suggested_tip_amounts

	SendInvoice.start_parameter

	SendInvoice.provider_data

	SendInvoice.photo_url

	SendInvoice.photo_size

	SendInvoice.photo_width

	SendInvoice.model_computed_fields

	SendInvoice.model_post_init()

	SendInvoice.photo_height

	SendInvoice.need_name

	SendInvoice.need_phone_number

	SendInvoice.need_email

	SendInvoice.need_shipping_address

	SendInvoice.send_phone_number_to_provider

	SendInvoice.send_email_to_provider

	SendInvoice.is_flexible

	SendInvoice.disable_notification

	SendInvoice.protect_content

	SendInvoice.reply_parameters

	SendInvoice.reply_markup

	SendInvoice.allow_sending_without_reply

	SendInvoice.reply_to_message_id

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	As shortcut from received object

	Getting updates
	deleteWebhook
	DeleteWebhook
	DeleteWebhook.drop_pending_updates

	DeleteWebhook.model_computed_fields

	DeleteWebhook.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	getUpdates
	GetUpdates
	GetUpdates.offset

	GetUpdates.limit

	GetUpdates.model_computed_fields

	GetUpdates.model_post_init()

	GetUpdates.timeout

	GetUpdates.allowed_updates

	Usage
	As bot method

	Method as object
	With specific bot

	getWebhookInfo
	GetWebhookInfo
	GetWebhookInfo.model_computed_fields

	GetWebhookInfo.model_post_init()

	Usage
	As bot method

	Method as object
	With specific bot

	setWebhook
	SetWebhook
	SetWebhook.url

	SetWebhook.certificate

	SetWebhook.ip_address

	SetWebhook.max_connections

	SetWebhook.model_computed_fields

	SetWebhook.model_post_init()

	SetWebhook.allowed_updates

	SetWebhook.drop_pending_updates

	SetWebhook.secret_token

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	Telegram Passport
	setPassportDataErrors
	SetPassportDataErrors
	SetPassportDataErrors.user_id

	SetPassportDataErrors.model_computed_fields

	SetPassportDataErrors.model_post_init()

	SetPassportDataErrors.errors

	Usage
	As bot method

	Method as object
	With specific bot

	As reply into Webhook in handler

	Enums
	BotCommandScopeType
	BotCommandScopeType
	BotCommandScopeType.DEFAULT

	BotCommandScopeType.ALL_PRIVATE_CHATS

	BotCommandScopeType.ALL_GROUP_CHATS

	BotCommandScopeType.ALL_CHAT_ADMINISTRATORS

	BotCommandScopeType.CHAT

	BotCommandScopeType.CHAT_ADMINISTRATORS

	BotCommandScopeType.CHAT_MEMBER

	ChatAction
	ChatAction
	ChatAction.TYPING

	ChatAction.UPLOAD_PHOTO

	ChatAction.RECORD_VIDEO

	ChatAction.UPLOAD_VIDEO

	ChatAction.RECORD_VOICE

	ChatAction.UPLOAD_VOICE

	ChatAction.UPLOAD_DOCUMENT

	ChatAction.CHOOSE_STICKER

	ChatAction.FIND_LOCATION

	ChatAction.RECORD_VIDEO_NOTE

	ChatAction.UPLOAD_VIDEO_NOTE

	ChatBoostSourceType
	ChatBoostSourceType
	ChatBoostSourceType.PREMIUM

	ChatBoostSourceType.GIFT_CODE

	ChatBoostSourceType.GIVEAWAY

	ChatMemberStatus
	ChatMemberStatus
	ChatMemberStatus.CREATOR

	ChatMemberStatus.ADMINISTRATOR

	ChatMemberStatus.MEMBER

	ChatMemberStatus.RESTRICTED

	ChatMemberStatus.LEFT

	ChatMemberStatus.KICKED

	ChatType
	ChatType
	ChatType.SENDER

	ChatType.PRIVATE

	ChatType.GROUP

	ChatType.SUPERGROUP

	ChatType.CHANNEL

	ContentType
	ContentType
	ContentType.UNKNOWN

	ContentType.ANY

	ContentType.TEXT

	ContentType.ANIMATION

	ContentType.AUDIO

	ContentType.DOCUMENT

	ContentType.PHOTO

	ContentType.STICKER

	ContentType.STORY

	ContentType.VIDEO

	ContentType.VIDEO_NOTE

	ContentType.VOICE

	ContentType.CONTACT

	ContentType.DICE

	ContentType.GAME

	ContentType.POLL

	ContentType.VENUE

	ContentType.LOCATION

	ContentType.NEW_CHAT_MEMBERS

	ContentType.LEFT_CHAT_MEMBER

	ContentType.NEW_CHAT_TITLE

	ContentType.NEW_CHAT_PHOTO

	ContentType.DELETE_CHAT_PHOTO

	ContentType.GROUP_CHAT_CREATED

	ContentType.SUPERGROUP_CHAT_CREATED

	ContentType.CHANNEL_CHAT_CREATED

	ContentType.MESSAGE_AUTO_DELETE_TIMER_CHANGED

	ContentType.MIGRATE_TO_CHAT_ID

	ContentType.MIGRATE_FROM_CHAT_ID

	ContentType.PINNED_MESSAGE

	ContentType.INVOICE

	ContentType.SUCCESSFUL_PAYMENT

	ContentType.USERS_SHARED

	ContentType.CHAT_SHARED

	ContentType.CONNECTED_WEBSITE

	ContentType.WRITE_ACCESS_ALLOWED

	ContentType.PASSPORT_DATA

	ContentType.PROXIMITY_ALERT_TRIGGERED

	ContentType.BOOST_ADDED

	ContentType.CHAT_BACKGROUND_SET

	ContentType.FORUM_TOPIC_CREATED

	ContentType.FORUM_TOPIC_EDITED

	ContentType.FORUM_TOPIC_CLOSED

	ContentType.FORUM_TOPIC_REOPENED

	ContentType.GENERAL_FORUM_TOPIC_HIDDEN

	ContentType.GENERAL_FORUM_TOPIC_UNHIDDEN

	ContentType.GIVEAWAY_CREATED

	ContentType.GIVEAWAY

	ContentType.GIVEAWAY_WINNERS

	ContentType.GIVEAWAY_COMPLETED

	ContentType.VIDEO_CHAT_SCHEDULED

	ContentType.VIDEO_CHAT_STARTED

	ContentType.VIDEO_CHAT_ENDED

	ContentType.VIDEO_CHAT_PARTICIPANTS_INVITED

	ContentType.WEB_APP_DATA

	ContentType.USER_SHARED

	Currency
	Currency
	Currency.AED

	Currency.AFN

	Currency.ALL

	Currency.AMD

	Currency.ARS

	Currency.AUD

	Currency.AZN

	Currency.BAM

	Currency.BDT

	Currency.BGN

	Currency.BND

	Currency.BOB

	Currency.BRL

	Currency.BYN

	Currency.CAD

	Currency.CHF

	Currency.CLP

	Currency.CNY

	Currency.COP

	Currency.CRC

	Currency.CZK

	Currency.DKK

	Currency.DOP

	Currency.DZD

	Currency.EGP

	Currency.ETB

	Currency.EUR

	Currency.GBP

	Currency.GEL

	Currency.GTQ

	Currency.HKD

	Currency.HNL

	Currency.HRK

	Currency.HUF

	Currency.IDR

	Currency.ILS

	Currency.INR

	Currency.ISK

	Currency.JMD

	Currency.JPY

	Currency.KES

	Currency.KGS

	Currency.KRW

	Currency.KZT

	Currency.LBP

	Currency.LKR

	Currency.MAD

	Currency.MDL

	Currency.MNT

	Currency.MUR

	Currency.MVR

	Currency.MXN

	Currency.MYR

	Currency.MZN

	Currency.NGN

	Currency.NIO

	Currency.NOK

	Currency.NPR

	Currency.NZD

	Currency.PAB

	Currency.PEN

	Currency.PHP

	Currency.PKR

	Currency.PLN

	Currency.PYG

	Currency.QAR

	Currency.RON

	Currency.RSD

	Currency.RUB

	Currency.SAR

	Currency.SEK

	Currency.SGD

	Currency.THB

	Currency.TJS

	Currency.TRY

	Currency.TTD

	Currency.TWD

	Currency.TZS

	Currency.UAH

	Currency.UGX

	Currency.USD

	Currency.UYU

	Currency.UZS

	Currency.VND

	Currency.YER

	Currency.ZAR

	DiceEmoji
	DiceEmoji
	DiceEmoji.DICE

	DiceEmoji.DART

	DiceEmoji.BASKETBALL

	DiceEmoji.FOOTBALL

	DiceEmoji.SLOT_MACHINE

	DiceEmoji.BOWLING

	EncryptedPassportElement
	EncryptedPassportElement
	EncryptedPassportElement.PERSONAL_DETAILS

	EncryptedPassportElement.PASSPORT

	EncryptedPassportElement.DRIVER_LICENSE

	EncryptedPassportElement.IDENTITY_CARD

	EncryptedPassportElement.INTERNAL_PASSPORT

	EncryptedPassportElement.ADDRESS

	EncryptedPassportElement.UTILITY_BILL

	EncryptedPassportElement.BANK_STATEMENT

	EncryptedPassportElement.RENTAL_AGREEMENT

	EncryptedPassportElement.PASSPORT_REGISTRATION

	EncryptedPassportElement.TEMPORARY_REGISTRATION

	EncryptedPassportElement.PHONE_NUMBER

	EncryptedPassportElement.EMAIL

	InlineQueryResultType
	InlineQueryResultType
	InlineQueryResultType.AUDIO

	InlineQueryResultType.DOCUMENT

	InlineQueryResultType.GIF

	InlineQueryResultType.MPEG4_GIF

	InlineQueryResultType.PHOTO

	InlineQueryResultType.STICKER

	InlineQueryResultType.VIDEO

	InlineQueryResultType.VOICE

	InlineQueryResultType.ARTICLE

	InlineQueryResultType.CONTACT

	InlineQueryResultType.GAME

	InlineQueryResultType.LOCATION

	InlineQueryResultType.VENUE

	InputMediaType
	InputMediaType
	InputMediaType.ANIMATION

	InputMediaType.AUDIO

	InputMediaType.DOCUMENT

	InputMediaType.PHOTO

	InputMediaType.VIDEO

	KeyboardButtonPollTypeType
	KeyboardButtonPollTypeType
	KeyboardButtonPollTypeType.QUIZ

	KeyboardButtonPollTypeType.REGULAR

	MaskPositionPoint
	MaskPositionPoint
	MaskPositionPoint.FOREHEAD

	MaskPositionPoint.EYES

	MaskPositionPoint.MOUTH

	MaskPositionPoint.CHIN

	MenuButtonType
	MenuButtonType
	MenuButtonType.DEFAULT

	MenuButtonType.COMMANDS

	MenuButtonType.WEB_APP

	MessageEntityType
	MessageEntityType
	MessageEntityType.MENTION

	MessageEntityType.HASHTAG

	MessageEntityType.CASHTAG

	MessageEntityType.BOT_COMMAND

	MessageEntityType.URL

	MessageEntityType.EMAIL

	MessageEntityType.PHONE_NUMBER

	MessageEntityType.BOLD

	MessageEntityType.ITALIC

	MessageEntityType.UNDERLINE

	MessageEntityType.STRIKETHROUGH

	MessageEntityType.SPOILER

	MessageEntityType.BLOCKQUOTE

	MessageEntityType.CODE

	MessageEntityType.PRE

	MessageEntityType.TEXT_LINK

	MessageEntityType.TEXT_MENTION

	MessageEntityType.CUSTOM_EMOJI

	MessageOriginType
	MessageOriginType
	MessageOriginType.USER

	MessageOriginType.HIDDEN_USER

	MessageOriginType.CHAT

	MessageOriginType.CHANNEL

	ParseMode
	ParseMode
	ParseMode.MARKDOWN_V2

	ParseMode.MARKDOWN

	ParseMode.HTML

	PassportElementErrorType
	PassportElementErrorType
	PassportElementErrorType.DATA

	PassportElementErrorType.FRONT_SIDE

	PassportElementErrorType.REVERSE_SIDE

	PassportElementErrorType.SELFIE

	PassportElementErrorType.FILE

	PassportElementErrorType.FILES

	PassportElementErrorType.TRANSLATION_FILE

	PassportElementErrorType.TRANSLATION_FILES

	PassportElementErrorType.UNSPECIFIED

	PollType
	PollType
	PollType.REGULAR

	PollType.QUIZ

	ReactionTypeType
	ReactionTypeType
	ReactionTypeType.EMOJI

	ReactionTypeType.CUSTOM_EMOJI

	StickerFormat
	StickerFormat
	StickerFormat.STATIC

	StickerFormat.ANIMATED

	StickerFormat.VIDEO

	StickerType
	StickerType
	StickerType.REGULAR

	StickerType.MASK

	StickerType.CUSTOM_EMOJI

	TopicIconColor
	TopicIconColor
	TopicIconColor.BLUE

	TopicIconColor.YELLOW

	TopicIconColor.VIOLET

	TopicIconColor.GREEN

	TopicIconColor.ROSE

	TopicIconColor.RED

	UpdateType
	UpdateType
	UpdateType.MESSAGE

	UpdateType.EDITED_MESSAGE

	UpdateType.CHANNEL_POST

	UpdateType.EDITED_CHANNEL_POST

	UpdateType.BUSINESS_CONNECTION

	UpdateType.BUSINESS_MESSAGE

	UpdateType.EDITED_BUSINESS_MESSAGE

	UpdateType.DELETED_BUSINESS_MESSAGES

	UpdateType.MESSAGE_REACTION

	UpdateType.MESSAGE_REACTION_COUNT

	UpdateType.INLINE_QUERY

	UpdateType.CHOSEN_INLINE_RESULT

	UpdateType.CALLBACK_QUERY

	UpdateType.SHIPPING_QUERY

	UpdateType.PRE_CHECKOUT_QUERY

	UpdateType.POLL

	UpdateType.POLL_ANSWER

	UpdateType.MY_CHAT_MEMBER

	UpdateType.CHAT_MEMBER

	UpdateType.CHAT_JOIN_REQUEST

	UpdateType.CHAT_BOOST

	UpdateType.REMOVED_CHAT_BOOST

	How to download file?
	Download file manually
	download_file(…)
	Bot.download_file()

	Download file to disk

	Download file to binary I/O object

	Download file in short way
	download(…)
	Bot.download()

	How to upload file?
	Upload from file system
	FSInputFile
	FSInputFile.__init__()

	Upload from buffer
	BufferedInputFile
	BufferedInputFile.__init__()

	Upload from url
	URLInputFile

Bot

Bot instance can be created from aiogram.Bot (from aiogram import Bot) and
you can’t use methods without instance of bot with configured token.

This class has aliases for all methods and named in lower_camel_case.

For example sendMessage named send_message and has the same specification with all class-based methods.

Warning

A full list of methods can be found in the appropriate section of the documentation

	
class aiogram.client.bot.Bot(token: str, session: BaseSession | None = None, parse_mode: str | None = None, disable_web_page_preview: bool | None = None, protect_content: bool | None = None, default: DefaultBotProperties | None = None)

	Bases: object

	
__init__(token: str, session: BaseSession | None = None, parse_mode: str | None = None, disable_web_page_preview: bool | None = None, protect_content: bool | None = None, default: DefaultBotProperties | None = None) → None

	Bot class

	Parameters:

	
	token – Telegram Bot token Obtained from @BotFather [https://t.me/BotFather]

	session – HTTP Client session (For example AiohttpSession).
If not specified it will be automatically created.

	parse_mode – Default parse mode.
If specified it will be propagated into the API methods at runtime.

	disable_web_page_preview – Default disable_web_page_preview mode.
If specified it will be propagated into the API methods at runtime.

	protect_content – Default protect_content mode.
If specified it will be propagated into the API methods at runtime.

	default – Default bot properties.
If specified it will be propagated into the API methods at runtime.

	Raises:

	TokenValidationError – When token has invalid format this exception will be raised

	
property token: str

	

	
property id: int

	Get bot ID from token

	Returns:

	

	
context(auto_close: bool = True) → AsyncIterator[Bot]

	Generate bot context

	Parameters:

	auto_close – close session on exit

	Returns:

	

	
async me() → User

	Cached alias for getMe method

	Returns:

	

	
async download_file(file_path: str, destination: BinaryIO | Path | str | None = None, timeout: int = 30, chunk_size: int = 65536, seek: bool = True) → BinaryIO | None

	Download file by file_path to destination.

If you want to automatically create destination (io.BytesIO) use default
value of destination and handle result of this method.

	Parameters:

	
	file_path – File path on Telegram server (You can get it from aiogram.types.File)

	destination – Filename, file path or instance of io.IOBase. For e.g. io.BytesIO, defaults to None

	timeout – Total timeout in seconds, defaults to 30

	chunk_size – File chunks size, defaults to 64 kb

	seek – Go to start of file when downloading is finished. Used only for destination with typing.BinaryIO type, defaults to True

	
async download(file: str | Downloadable, destination: BinaryIO | Path | str | None = None, timeout: int = 30, chunk_size: int = 65536, seek: bool = True) → BinaryIO | None

	Download file by file_id or Downloadable object to destination.

If you want to automatically create destination (io.BytesIO) use default
value of destination and handle result of this method.

	Parameters:

	
	file – file_id or Downloadable object

	destination – Filename, file path or instance of io.IOBase. For e.g. io.BytesIO, defaults to None

	timeout – Total timeout in seconds, defaults to 30

	chunk_size – File chunks size, defaults to 64 kb

	seek – Go to start of file when downloading is finished. Used only for destination with typing.BinaryIO type, defaults to True

Client session

Client sessions is used for interacting with API server.

	Use Custom API server
	TelegramAPIServer
	TelegramAPIServer.api_url()

	TelegramAPIServer.base

	TelegramAPIServer.file

	TelegramAPIServer.file_url()

	TelegramAPIServer.from_base()

	TelegramAPIServer.is_local

	TelegramAPIServer.wrap_local_file

	Base
	BaseSession
	BaseSession.check_response()

	BaseSession.close()

	BaseSession.make_request()

	BaseSession.prepare_value()

	BaseSession.stream_content()

	aiohttp
	AiohttpSession

	Usage example

	Proxy requests in AiohttpSession
	Authorization

	Proxy chains

	Client session middlewares
	How to register client session middleware?
	Register using register method

	Register using decorator

	Example
	Class based session middleware

	Function based session middleware

Use Custom API server

For example, if you want to use self-hosted API server:

session = AiohttpSession(
 api=TelegramAPIServer.from_base('http://localhost:8082')
)
bot = Bot(..., session=session)

	
class aiogram.client.telegram.TelegramAPIServer(base: str, file: str, is_local: bool = False, wrap_local_file: ~aiogram.client.telegram.FilesPathWrapper = <aiogram.client.telegram.BareFilesPathWrapper object>)

	Base config for API Endpoints

	
api_url(token: str, method: str) → str

	Generate URL for API methods

	Parameters:

	
	token – Bot token

	method – API method name (case insensitive)

	Returns:

	URL

	
base: str

	Base URL

	
file: str

	Files URL

	
file_url(token: str, path: str) → str

	Generate URL for downloading files

	Parameters:

	
	token – Bot token

	path – file path

	Returns:

	URL

	
classmethod from_base(base: str, **kwargs: Any) → TelegramAPIServer

	Use this method to auto-generate TelegramAPIServer instance from base URL

	Parameters:

	base – Base URL

	Returns:

	instance of TelegramAPIServer

	
is_local: bool = False

	Mark this server is
in local mode [https://core.telegram.org/bots/api#using-a-local-bot-api-server].

	
wrap_local_file: FilesPathWrapper = <aiogram.client.telegram.BareFilesPathWrapper object>

	Callback to wrap files path in local mode

Base

Abstract session for all client sessions

	
class aiogram.client.session.base.BaseSession(api: ~aiogram.client.telegram.TelegramAPIServer = TelegramAPIServer(base='https://api.telegram.org/bot{token}/{method}', file='https://api.telegram.org/file/bot{token}/{path}', is_local=False, wrap_local_file=<aiogram.client.telegram.BareFilesPathWrapper object>), json_loads: ~typing.Callable[[...], ~typing.Any] = <function loads>, json_dumps: ~typing.Callable[[...], str] = <function dumps>, timeout: float = 60.0)

	This is base class for all HTTP sessions in aiogram.

If you want to create your own session, you must inherit from this class.

	
check_response(bot: Bot, method: TelegramMethod[TelegramType], status_code: int, content: str) → Response[TelegramType]

	Check response status

	
abstract async close() → None

	Close client session

	
abstract async make_request(bot: Bot, method: TelegramMethod[TelegramType], timeout: int | None = None) → TelegramType

	Make request to Telegram Bot API

	Parameters:

	
	bot – Bot instance

	method – Method instance

	timeout – Request timeout

	Returns:

	

	Raises:

	TelegramApiError –

	
prepare_value(value: Any, bot: Bot, files: Dict[str, Any], _dumps_json: bool = True) → Any

	Prepare value before send

	
abstract async stream_content(url: str, headers: Dict[str, Any] | None = None, timeout: int = 30, chunk_size: int = 65536, raise_for_status: bool = True) → AsyncGenerator[bytes, None]

	Stream reader

aiohttp

AiohttpSession represents a wrapper-class around ClientSession from aiohttp [https://pypi.org/project/aiohttp/]

Currently AiohttpSession is a default session used in aiogram.Bot

	
class aiogram.client.session.aiohttp.AiohttpSession(proxy: Iterable[str | Tuple[str, BasicAuth]] | str | Tuple[str, BasicAuth] | None = None, **kwargs: Any)

	

Usage example

from aiogram import Bot
from aiogram.client.session.aiohttp import AiohttpSession

session = AiohttpSession()
bot = Bot('42:token', session=session)

Proxy requests in AiohttpSession

In order to use AiohttpSession with proxy connector you have to install aiohttp-socks [https://pypi.org/project/aiohttp-socks]

Binding session to bot:

from aiogram import Bot
from aiogram.client.session.aiohttp import AiohttpSession

session = AiohttpSession(proxy="protocol://host:port/")
bot = Bot(token="bot token", session=session)

Note

Only following protocols are supported: http(tunneling), socks4(a), socks5
as aiohttp_socks documentation [https://github.com/romis2012/aiohttp-socks/blob/master/README.md] claims.

Authorization

Proxy authorization credentials can be specified in proxy URL or come as an instance of aiohttp.BasicAuth containing
login and password.

Consider examples:

from aiohttp import BasicAuth
from aiogram.client.session.aiohttp import AiohttpSession

auth = BasicAuth(login="user", password="password")
session = AiohttpSession(proxy=("protocol://host:port", auth))

or simply include your basic auth credential in URL

session = AiohttpSession(proxy="protocol://user:password@host:port")

Note

Aiogram prefers BasicAuth over username and password in URL, so
if proxy URL contains login and password and BasicAuth object is passed at the same time
aiogram will use login and password from BasicAuth instance.

Proxy chains

Since aiohttp-socks [https://pypi.org/project/aiohttp-socks/] supports proxy chains, you’re able to use them in aiogram

Example of chain proxies:

from aiohttp import BasicAuth
from aiogram.client.session.aiohttp import AiohttpSession

auth = BasicAuth(login="user", password="password")
session = AiohttpSession(
 proxy={
 "protocol0://host0:port0",
 "protocol1://user:password@host1:port1",
 ("protocol2://host2:port2", auth),
 } # can be any iterable if not set
)

Client session middlewares

In some cases you may want to add some middlewares to the client session to customize the behavior of the client.

Some useful cases that is:

	Log the outgoing requests

	Customize the request parameters

	Handle rate limiting errors and retry the request

	others …

So, you can do it using client session middlewares.
A client session middleware is a function (or callable class) that receives the request and the next middleware to call.
The middleware can modify the request and then call the next middleware to continue the request processing.

How to register client session middleware?

Register using register method

bot.session.middleware(RequestLogging(ignore_methods=[GetUpdates]))

Register using decorator

@bot.session.middleware()
async def my_middleware(
 make_request: NextRequestMiddlewareType[TelegramType],
 bot: "Bot",
 method: TelegramMethod[TelegramType],
) -> Response[TelegramType]:
 # do something with request
 return await make_request(bot, method)

Example

Class based session middleware

 1class RequestLogging(BaseRequestMiddleware):
 2 def __init__(self, ignore_methods: Optional[List[Type[TelegramMethod[Any]]]] = None):
 3 """
 4 Middleware for logging outgoing requests
 5
 6 :param ignore_methods: methods to ignore in logging middleware
 7 """
 8 self.ignore_methods = ignore_methods if ignore_methods else []
 9
10 async def __call__(
11 self,
12 make_request: NextRequestMiddlewareType[TelegramType],
13 bot: "Bot",
14 method: TelegramMethod[TelegramType],
15) -> Response[TelegramType]:
16 if type(method) not in self.ignore_methods:
17 loggers.middlewares.info(
18 "Make request with method=%r by bot id=%d",
19 type(method).__name__,
20 bot.id,
21)
22 return await make_request(bot, method)

Note

this middleware is already implemented inside aiogram, so, if you want to use it you can
just import it from aiogram.client.session.middlewares.request_logging import RequestLogging

Function based session middleware

async def __call__(
 self,
 make_request: NextRequestMiddlewareType[TelegramType],
 bot: "Bot",
 method: TelegramMethod[TelegramType],
) -> Response[TelegramType]:
 try:
 # do something with request
 return await make_request(bot, method)
 finally:
 # do something after request

Types

Here is list of all available API types:

Available types

	Animation

	Audio

	BackgroundFill

	BackgroundFillFreeformGradient

	BackgroundFillGradient

	BackgroundFillSolid

	BackgroundType

	BackgroundTypeChatTheme

	BackgroundTypeFill

	BackgroundTypePattern

	BackgroundTypeWallpaper

	Birthdate

	BotCommand

	BotCommandScope

	BotCommandScopeAllChatAdministrators

	BotCommandScopeAllGroupChats

	BotCommandScopeAllPrivateChats

	BotCommandScopeChat

	BotCommandScopeChatAdministrators

	BotCommandScopeChatMember

	BotCommandScopeDefault

	BotDescription

	BotName

	BotShortDescription

	BusinessConnection

	BusinessIntro

	BusinessLocation

	BusinessMessagesDeleted

	BusinessOpeningHours

	BusinessOpeningHoursInterval

	CallbackQuery

	Chat

	ChatAdministratorRights

	ChatBackground

	ChatBoost

	ChatBoostAdded

	ChatBoostRemoved

	ChatBoostSource

	ChatBoostSourceGiftCode

	ChatBoostSourceGiveaway

	ChatBoostSourcePremium

	ChatBoostUpdated

	ChatFullInfo

	ChatInviteLink

	ChatJoinRequest

	ChatLocation

	ChatMember

	ChatMemberAdministrator

	ChatMemberBanned

	ChatMemberLeft

	ChatMemberMember

	ChatMemberOwner

	ChatMemberRestricted

	ChatMemberUpdated

	ChatPermissions

	ChatPhoto

	ChatShared

	Contact

	Dice

	Document

	ExternalReplyInfo

	File

	ForceReply

	ForumTopic

	ForumTopicClosed

	ForumTopicCreated

	ForumTopicEdited

	ForumTopicReopened

	GeneralForumTopicHidden

	GeneralForumTopicUnhidden

	Giveaway

	GiveawayCompleted

	GiveawayCreated

	GiveawayWinners

	InaccessibleMessage

	InlineKeyboardButton

	InlineKeyboardMarkup

	InputFile

	InputMedia

	InputMediaAnimation

	InputMediaAudio

	InputMediaDocument

	InputMediaPhoto

	InputMediaVideo

	InputPollOption

	KeyboardButton

	KeyboardButtonPollType

	KeyboardButtonRequestChat

	KeyboardButtonRequestUser

	KeyboardButtonRequestUsers

	LinkPreviewOptions

	Location

	LoginUrl

	MaybeInaccessibleMessage

	MenuButton

	MenuButtonCommands

	MenuButtonDefault

	MenuButtonWebApp

	Message

	MessageAutoDeleteTimerChanged

	MessageEntity

	MessageId

	MessageOrigin

	MessageOriginChannel

	MessageOriginChat

	MessageOriginHiddenUser

	MessageOriginUser

	MessageReactionCountUpdated

	MessageReactionUpdated

	PhotoSize

	Poll

	PollAnswer

	PollOption

	ProximityAlertTriggered

	ReactionCount

	ReactionType

	ReactionTypeCustomEmoji

	ReactionTypeEmoji

	ReplyKeyboardMarkup

	ReplyKeyboardRemove

	ReplyParameters

	ResponseParameters

	SharedUser

	Story

	SwitchInlineQueryChosenChat

	TextQuote

	User

	UserChatBoosts

	UserProfilePhotos

	UserShared

	UsersShared

	Venue

	Video

	VideoChatEnded

	VideoChatParticipantsInvited

	VideoChatScheduled

	VideoChatStarted

	VideoNote

	Voice

	WebAppData

	WebAppInfo

	WriteAccessAllowed

Inline mode

	ChosenInlineResult

	InlineQuery

	InlineQueryResult

	InlineQueryResultArticle

	InlineQueryResultAudio

	InlineQueryResultCachedAudio

	InlineQueryResultCachedDocument

	InlineQueryResultCachedGif

	InlineQueryResultCachedMpeg4Gif

	InlineQueryResultCachedPhoto

	InlineQueryResultCachedSticker

	InlineQueryResultCachedVideo

	InlineQueryResultCachedVoice

	InlineQueryResultContact

	InlineQueryResultDocument

	InlineQueryResultGame

	InlineQueryResultGif

	InlineQueryResultLocation

	InlineQueryResultMpeg4Gif

	InlineQueryResultPhoto

	InlineQueryResultVenue

	InlineQueryResultVideo

	InlineQueryResultVoice

	InlineQueryResultsButton

	InputContactMessageContent

	InputInvoiceMessageContent

	InputLocationMessageContent

	InputMessageContent

	InputTextMessageContent

	InputVenueMessageContent

	SentWebAppMessage

Stickers

	InputSticker

	MaskPosition

	Sticker

	StickerSet

Telegram Passport

	EncryptedCredentials

	EncryptedPassportElement

	PassportData

	PassportElementError

	PassportElementErrorDataField

	PassportElementErrorFile

	PassportElementErrorFiles

	PassportElementErrorFrontSide

	PassportElementErrorReverseSide

	PassportElementErrorSelfie

	PassportElementErrorTranslationFile

	PassportElementErrorTranslationFiles

	PassportElementErrorUnspecified

	PassportFile

Payments

	Invoice

	LabeledPrice

	OrderInfo

	PreCheckoutQuery

	ShippingAddress

	ShippingOption

	ShippingQuery

	SuccessfulPayment

Getting updates

	Update

	WebhookInfo

Games

	CallbackGame

	Game

	GameHighScore

Animation

	
class aiogram.types.animation.Animation(*, file_id: str, file_unique_id: str, width: int, height: int, duration: int, thumbnail: PhotoSize | None = None, file_name: str | None = None, mime_type: str | None = None, file_size: int | None = None, **extra_data: Any)

	This object represents an animation file (GIF or H.264/MPEG-4 AVC video without sound).

Source: https://core.telegram.org/bots/api#animation

	
file_id: str

	Identifier for this file, which can be used to download or reuse the file

	
file_unique_id: str

	Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be used to download or reuse the file.

	
width: int

	Video width as defined by sender

	
height: int

	Video height as defined by sender

	
duration: int

	Duration of the video in seconds as defined by sender

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
thumbnail: PhotoSize | None

	Optional. Animation thumbnail as defined by sender

	
file_name: str | None

	Optional. Original animation filename as defined by sender

	
mime_type: str | None

	Optional. MIME type of the file as defined by sender

	
file_size: int | None

	Optional. File size in bytes. It can be bigger than 2^31 and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or double-precision float type are safe for storing this value.

Audio

	
class aiogram.types.audio.Audio(*, file_id: str, file_unique_id: str, duration: int, performer: str | None = None, title: str | None = None, file_name: str | None = None, mime_type: str | None = None, file_size: int | None = None, thumbnail: PhotoSize | None = None, **extra_data: Any)

	This object represents an audio file to be treated as music by the Telegram clients.

Source: https://core.telegram.org/bots/api#audio

	
file_id: str

	Identifier for this file, which can be used to download or reuse the file

	
file_unique_id: str

	Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be used to download or reuse the file.

	
duration: int

	Duration of the audio in seconds as defined by sender

	
performer: str | None

	Optional. Performer of the audio as defined by sender or by audio tags

	
title: str | None

	Optional. Title of the audio as defined by sender or by audio tags

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
file_name: str | None

	Optional. Original filename as defined by sender

	
mime_type: str | None

	Optional. MIME type of the file as defined by sender

	
file_size: int | None

	Optional. File size in bytes. It can be bigger than 2^31 and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or double-precision float type are safe for storing this value.

	
thumbnail: PhotoSize | None

	Optional. Thumbnail of the album cover to which the music file belongs

BackgroundFill

	
class aiogram.types.background_fill.BackgroundFill(**extra_data: Any)

	This object describes the way a background is filled based on the selected colors. Currently, it can be one of

	aiogram.types.background_fill_solid.BackgroundFillSolid

	aiogram.types.background_fill_gradient.BackgroundFillGradient

	aiogram.types.background_fill_freeform_gradient.BackgroundFillFreeformGradient

Source: https://core.telegram.org/bots/api#backgroundfill

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

BackgroundFillFreeformGradient

	
class aiogram.types.background_fill_freeform_gradient.BackgroundFillFreeformGradient(*, type: Literal['freeform_gradient'] = 'freeform_gradient', colors: List[int], **extra_data: Any)

	The background is a freeform gradient that rotates after every message in the chat.

Source: https://core.telegram.org/bots/api#backgroundfillfreeformgradient

	
type: Literal['freeform_gradient']

	Type of the background fill, always ‘freeform_gradient’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
colors: List[int]

	A list of the 3 or 4 base colors that are used to generate the freeform gradient in the RGB24 format

BackgroundFillGradient

	
class aiogram.types.background_fill_gradient.BackgroundFillGradient(*, type: Literal['gradient'] = 'gradient', top_color: int, bottom_color: int, rotation_angle: int, **extra_data: Any)

	The background is a gradient fill.

Source: https://core.telegram.org/bots/api#backgroundfillgradient

	
type: Literal['gradient']

	Type of the background fill, always ‘gradient’

	
top_color: int

	Top color of the gradient in the RGB24 format

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
bottom_color: int

	Bottom color of the gradient in the RGB24 format

	
rotation_angle: int

	Clockwise rotation angle of the background fill in degrees; 0-359

BackgroundFillSolid

	
class aiogram.types.background_fill_solid.BackgroundFillSolid(*, type: Literal['solid'] = 'solid', color: int, **extra_data: Any)

	The background is filled using the selected color.

Source: https://core.telegram.org/bots/api#backgroundfillsolid

	
type: Literal['solid']

	Type of the background fill, always ‘solid’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
color: int

	The color of the background fill in the RGB24 format

BackgroundType

	
class aiogram.types.background_type.BackgroundType(**extra_data: Any)

	This object describes the type of a background. Currently, it can be one of

	aiogram.types.background_type_fill.BackgroundTypeFill

	aiogram.types.background_type_wallpaper.BackgroundTypeWallpaper

	aiogram.types.background_type_pattern.BackgroundTypePattern

	aiogram.types.background_type_chat_theme.BackgroundTypeChatTheme

Source: https://core.telegram.org/bots/api#backgroundtype

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

BackgroundTypeChatTheme

	
class aiogram.types.background_type_chat_theme.BackgroundTypeChatTheme(*, type: Literal['chat_theme'] = 'chat_theme', theme_name: str, **extra_data: Any)

	The background is taken directly from a built-in chat theme.

Source: https://core.telegram.org/bots/api#backgroundtypechattheme

	
type: Literal['chat_theme']

	Type of the background, always ‘chat_theme’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
theme_name: str

	Name of the chat theme, which is usually an emoji

BackgroundTypeFill

	
class aiogram.types.background_type_fill.BackgroundTypeFill(*, type: Literal['fill'] = 'fill', fill: BackgroundFillSolid | BackgroundFillGradient | BackgroundFillFreeformGradient, dark_theme_dimming: int, **extra_data: Any)

	The background is automatically filled based on the selected colors.

Source: https://core.telegram.org/bots/api#backgroundtypefill

	
type: Literal['fill']

	Type of the background, always ‘fill’

	
fill: BackgroundFillSolid | BackgroundFillGradient | BackgroundFillFreeformGradient

	The background fill

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
dark_theme_dimming: int

	Dimming of the background in dark themes, as a percentage; 0-100

BackgroundTypePattern

	
class aiogram.types.background_type_pattern.BackgroundTypePattern(*, type: Literal['pattern'] = 'pattern', document: Document, fill: BackgroundFillSolid | BackgroundFillGradient | BackgroundFillFreeformGradient, intensity: int, is_inverted: bool | None = None, is_moving: bool | None = None, **extra_data: Any)

	The background is a PNG or TGV (gzipped subset of SVG with MIME type ‘application/x-tgwallpattern’) pattern to be combined with the background fill chosen by the user.

Source: https://core.telegram.org/bots/api#backgroundtypepattern

	
type: Literal['pattern']

	Type of the background, always ‘pattern’

	
document: Document

	Document with the pattern

	
fill: BackgroundFillSolid | BackgroundFillGradient | BackgroundFillFreeformGradient

	The background fill that is combined with the pattern

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
intensity: int

	Intensity of the pattern when it is shown above the filled background; 0-100

	
is_inverted: bool | None

	Optional. True, if the background fill must be applied only to the pattern itself. All other pixels are black in this case. For dark themes only

	
is_moving: bool | None

	Optional. True, if the background moves slightly when the device is tilted

BackgroundTypeWallpaper

	
class aiogram.types.background_type_wallpaper.BackgroundTypeWallpaper(*, type: Literal['wallpaper'] = 'wallpaper', document: Document, dark_theme_dimming: int, is_blurred: bool | None = None, is_moving: bool | None = None, **extra_data: Any)

	The background is a wallpaper in the JPEG format.

Source: https://core.telegram.org/bots/api#backgroundtypewallpaper

	
type: Literal['wallpaper']

	Type of the background, always ‘wallpaper’

	
document: Document

	Document with the wallpaper

	
dark_theme_dimming: int

	Dimming of the background in dark themes, as a percentage; 0-100

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
is_blurred: bool | None

	Optional. True, if the wallpaper is downscaled to fit in a 450x450 square and then box-blurred with radius 12

	
is_moving: bool | None

	Optional. True, if the background moves slightly when the device is tilted

Birthdate

	
class aiogram.types.birthdate.Birthdate(*, day: int, month: int, year: int | None = None, **extra_data: Any)

	Describes the birthdate of a user.

Source: https://core.telegram.org/bots/api#birthdate

	
day: int

	Day of the user’s birth; 1-31

	
month: int

	Month of the user’s birth; 1-12

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
year: int | None

	Optional. Year of the user’s birth

BotCommand

	
class aiogram.types.bot_command.BotCommand(*, command: str, description: str, **extra_data: Any)

	This object represents a bot command.

Source: https://core.telegram.org/bots/api#botcommand

	
command: str

	Text of the command; 1-32 characters. Can contain only lowercase English letters, digits and underscores.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
description: str

	Description of the command; 1-256 characters.

BotCommandScope

	
class aiogram.types.bot_command_scope.BotCommandScope(**extra_data: Any)

	This object represents the scope to which bot commands are applied. Currently, the following 7 scopes are supported:

	aiogram.types.bot_command_scope_default.BotCommandScopeDefault

	aiogram.types.bot_command_scope_all_private_chats.BotCommandScopeAllPrivateChats

	aiogram.types.bot_command_scope_all_group_chats.BotCommandScopeAllGroupChats

	aiogram.types.bot_command_scope_all_chat_administrators.BotCommandScopeAllChatAdministrators

	aiogram.types.bot_command_scope_chat.BotCommandScopeChat

	aiogram.types.bot_command_scope_chat_administrators.BotCommandScopeChatAdministrators

	aiogram.types.bot_command_scope_chat_member.BotCommandScopeChatMember

Source: https://core.telegram.org/bots/api#botcommandscope

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

BotCommandScopeAllChatAdministrators

	
class aiogram.types.bot_command_scope_all_chat_administrators.BotCommandScopeAllChatAdministrators(*, type: Literal[BotCommandScopeType.ALL_CHAT_ADMINISTRATORS] = BotCommandScopeType.ALL_CHAT_ADMINISTRATORS, **extra_data: Any)

	Represents the scope [https://core.telegram.org/bots/api#botcommandscope] of bot commands, covering all group and supergroup chat administrators.

Source: https://core.telegram.org/bots/api#botcommandscopeallchatadministrators

	
type: Literal[BotCommandScopeType.ALL_CHAT_ADMINISTRATORS]

	Scope type, must be all_chat_administrators

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

BotCommandScopeAllGroupChats

	
class aiogram.types.bot_command_scope_all_group_chats.BotCommandScopeAllGroupChats(*, type: Literal[BotCommandScopeType.ALL_GROUP_CHATS] = BotCommandScopeType.ALL_GROUP_CHATS, **extra_data: Any)

	Represents the scope [https://core.telegram.org/bots/api#botcommandscope] of bot commands, covering all group and supergroup chats.

Source: https://core.telegram.org/bots/api#botcommandscopeallgroupchats

	
type: Literal[BotCommandScopeType.ALL_GROUP_CHATS]

	Scope type, must be all_group_chats

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

BotCommandScopeAllPrivateChats

	
class aiogram.types.bot_command_scope_all_private_chats.BotCommandScopeAllPrivateChats(*, type: Literal[BotCommandScopeType.ALL_PRIVATE_CHATS] = BotCommandScopeType.ALL_PRIVATE_CHATS, **extra_data: Any)

	Represents the scope [https://core.telegram.org/bots/api#botcommandscope] of bot commands, covering all private chats.

Source: https://core.telegram.org/bots/api#botcommandscopeallprivatechats

	
type: Literal[BotCommandScopeType.ALL_PRIVATE_CHATS]

	Scope type, must be all_private_chats

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

BotCommandScopeChat

	
class aiogram.types.bot_command_scope_chat.BotCommandScopeChat(*, type: Literal[BotCommandScopeType.CHAT] = BotCommandScopeType.CHAT, chat_id: int | str, **extra_data: Any)

	Represents the scope [https://core.telegram.org/bots/api#botcommandscope] of bot commands, covering a specific chat.

Source: https://core.telegram.org/bots/api#botcommandscopechat

	
type: Literal[BotCommandScopeType.CHAT]

	Scope type, must be chat

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

BotCommandScopeChatAdministrators

	
class aiogram.types.bot_command_scope_chat_administrators.BotCommandScopeChatAdministrators(*, type: Literal[BotCommandScopeType.CHAT_ADMINISTRATORS] = BotCommandScopeType.CHAT_ADMINISTRATORS, chat_id: int | str, **extra_data: Any)

	Represents the scope [https://core.telegram.org/bots/api#botcommandscope] of bot commands, covering all administrators of a specific group or supergroup chat.

Source: https://core.telegram.org/bots/api#botcommandscopechatadministrators

	
type: Literal[BotCommandScopeType.CHAT_ADMINISTRATORS]

	Scope type, must be chat_administrators

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

BotCommandScopeChatMember

	
class aiogram.types.bot_command_scope_chat_member.BotCommandScopeChatMember(*, type: Literal[BotCommandScopeType.CHAT_MEMBER] = BotCommandScopeType.CHAT_MEMBER, chat_id: int | str, user_id: int, **extra_data: Any)

	Represents the scope [https://core.telegram.org/bots/api#botcommandscope] of bot commands, covering a specific member of a group or supergroup chat.

Source: https://core.telegram.org/bots/api#botcommandscopechatmember

	
type: Literal[BotCommandScopeType.CHAT_MEMBER]

	Scope type, must be chat_member

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
user_id: int

	Unique identifier of the target user

BotCommandScopeDefault

	
class aiogram.types.bot_command_scope_default.BotCommandScopeDefault(*, type: Literal[BotCommandScopeType.DEFAULT] = BotCommandScopeType.DEFAULT, **extra_data: Any)

	Represents the default scope [https://core.telegram.org/bots/api#botcommandscope] of bot commands. Default commands are used if no commands with a narrower scope [https://core.telegram.org/bots/api#determining-list-of-commands] are specified for the user.

Source: https://core.telegram.org/bots/api#botcommandscopedefault

	
type: Literal[BotCommandScopeType.DEFAULT]

	Scope type, must be default

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

BotDescription

	
class aiogram.types.bot_description.BotDescription(*, description: str, **extra_data: Any)

	This object represents the bot’s description.

Source: https://core.telegram.org/bots/api#botdescription

	
description: str

	The bot’s description

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

BotName

	
class aiogram.types.bot_name.BotName(*, name: str, **extra_data: Any)

	This object represents the bot’s name.

Source: https://core.telegram.org/bots/api#botname

	
name: str

	The bot’s name

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

BotShortDescription

	
class aiogram.types.bot_short_description.BotShortDescription(*, short_description: str, **extra_data: Any)

	This object represents the bot’s short description.

Source: https://core.telegram.org/bots/api#botshortdescription

	
short_description: str

	The bot’s short description

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

BusinessConnection

	
class aiogram.types.business_connection.BusinessConnection(*, id: str, user: User, user_chat_id: int, date: datetime, can_reply: bool, is_enabled: bool, **extra_data: Any)

	Describes the connection of the bot with a business account.

Source: https://core.telegram.org/bots/api#businessconnection

	
id: str

	Unique identifier of the business connection

	
user: User

	Business account user that created the business connection

	
user_chat_id: int

	Identifier of a private chat with the user who created the business connection. This number may have more than 32 significant bits and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a 64-bit integer or double-precision float type are safe for storing this identifier.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
date: DateTime

	Date the connection was established in Unix time

	
can_reply: bool

	True, if the bot can act on behalf of the business account in chats that were active in the last 24 hours

	
is_enabled: bool

	True, if the connection is active

BusinessIntro

	
class aiogram.types.business_intro.BusinessIntro(*, title: str | None = None, message: str | None = None, sticker: Sticker | None = None, **extra_data: Any)

	Contains information about the start page settings of a Telegram Business account.

Source: https://core.telegram.org/bots/api#businessintro

	
title: str | None

	Optional. Title text of the business intro

	
message: str | None

	Optional. Message text of the business intro

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
sticker: Sticker | None

	Optional. Sticker of the business intro

BusinessLocation

	
class aiogram.types.business_location.BusinessLocation(*, address: str, location: Location | None = None, **extra_data: Any)

	Contains information about the location of a Telegram Business account.

Source: https://core.telegram.org/bots/api#businesslocation

	
address: str

	Address of the business

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
location: Location | None

	Optional. Location of the business

BusinessMessagesDeleted

	
class aiogram.types.business_messages_deleted.BusinessMessagesDeleted(*, business_connection_id: str, chat: Chat, message_ids: List[int], **extra_data: Any)

	This object is received when messages are deleted from a connected business account.

Source: https://core.telegram.org/bots/api#businessmessagesdeleted

	
business_connection_id: str

	Unique identifier of the business connection

	
chat: Chat

	Information about a chat in the business account. The bot may not have access to the chat or the corresponding user.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
message_ids: List[int]

	The list of identifiers of deleted messages in the chat of the business account

BusinessOpeningHours

	
class aiogram.types.business_opening_hours.BusinessOpeningHours(*, time_zone_name: str, opening_hours: List[BusinessOpeningHoursInterval], **extra_data: Any)

	Describes the opening hours of a business.

Source: https://core.telegram.org/bots/api#businessopeninghours

	
time_zone_name: str

	Unique name of the time zone for which the opening hours are defined

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
opening_hours: List[BusinessOpeningHoursInterval]

	List of time intervals describing business opening hours

BusinessOpeningHoursInterval

	
class aiogram.types.business_opening_hours_interval.BusinessOpeningHoursInterval(*, opening_minute: int, closing_minute: int, **extra_data: Any)

	Describes an interval of time during which a business is open.

Source: https://core.telegram.org/bots/api#businessopeninghoursinterval

	
opening_minute: int

	The minute’s sequence number in a week, starting on Monday, marking the start of the time interval during which the business is open; 0 - 7 * 24 * 60

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
closing_minute: int

	The minute’s sequence number in a week, starting on Monday, marking the end of the time interval during which the business is open; 0 - 8 * 24 * 60

CallbackQuery

	
class aiogram.types.callback_query.CallbackQuery(*, id: str, from_user: User, chat_instance: str, message: Message | InaccessibleMessage | None = None, inline_message_id: str | None = None, data: str | None = None, game_short_name: str | None = None, **extra_data: Any)

	This object represents an incoming callback query from a callback button in an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards]. If the button that originated the query was attached to a message sent by the bot, the field message will be present. If the button was attached to a message sent via the bot (in inline mode [https://core.telegram.org/bots/api#inline-mode]), the field inline_message_id will be present. Exactly one of the fields data or game_short_name will be present.

NOTE: After the user presses a callback button, Telegram clients will display a progress bar until you call aiogram.methods.answer_callback_query.AnswerCallbackQuery. It is, therefore, necessary to react by calling aiogram.methods.answer_callback_query.AnswerCallbackQuery even if no notification to the user is needed (e.g., without specifying any of the optional parameters).

Source: https://core.telegram.org/bots/api#callbackquery

	
id: str

	Unique identifier for this query

	
from_user: User

	Sender

	
chat_instance: str

	Global identifier, uniquely corresponding to the chat to which the message with the callback button was sent. Useful for high scores in aiogram.methods.games.Games.

	
message: Message | InaccessibleMessage | None

	Optional. Message sent by the bot with the callback button that originated the query

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
inline_message_id: str | None

	Optional. Identifier of the message sent via the bot in inline mode, that originated the query.

	
data: str | None

	Optional. Data associated with the callback button. Be aware that the message originated the query can contain no callback buttons with this data.

	
game_short_name: str | None

	Optional. Short name of a Game [https://core.telegram.org/bots/api#games] to be returned, serves as the unique identifier for the game

	
answer(text: str | None = None, show_alert: bool | None = None, url: str | None = None, cache_time: int | None = None, **kwargs: Any) → AnswerCallbackQuery

	Shortcut for method aiogram.methods.answer_callback_query.AnswerCallbackQuery
will automatically fill method attributes:

	callback_query_id

Use this method to send answers to callback queries sent from inline keyboards [https://core.telegram.org/bots/features#inline-keyboards]. The answer will be displayed to the user as a notification at the top of the chat screen or as an alert. On success, True is returned.

Alternatively, the user can be redirected to the specified Game URL. For this option to work, you must first create a game for your bot via @BotFather [https://t.me/botfather] and accept the terms. Otherwise, you may use links like t.me/your_bot?start=XXXX that open your bot with a parameter.

Source: https://core.telegram.org/bots/api#answercallbackquery

	Parameters:

	
	text – Text of the notification. If not specified, nothing will be shown to the user, 0-200 characters

	show_alert – If True, an alert will be shown by the client instead of a notification at the top of the chat screen. Defaults to false.

	url – URL that will be opened by the user’s client. If you have created a aiogram.types.game.Game and accepted the conditions via @BotFather [https://t.me/botfather], specify the URL that opens your game - note that this will only work if the query comes from a https://core.telegram.org/bots/api#inlinekeyboardbutton callback_game button.

	cache_time – The maximum amount of time in seconds that the result of the callback query may be cached client-side. Telegram apps will support caching starting in version 3.14. Defaults to 0.

	Returns:

	instance of method aiogram.methods.answer_callback_query.AnswerCallbackQuery

Chat

	
class aiogram.types.chat.Chat(*, id: int, type: str, title: str | None = None, username: str | None = None, first_name: str | None = None, last_name: str | None = None, is_forum: bool | None = None, accent_color_id: int | None = None, active_usernames: List[str] | None = None, available_reactions: List[ReactionTypeEmoji | ReactionTypeCustomEmoji] | None = None, background_custom_emoji_id: str | None = None, bio: str | None = None, birthdate: Birthdate | None = None, business_intro: BusinessIntro | None = None, business_location: BusinessLocation | None = None, business_opening_hours: BusinessOpeningHours | None = None, can_set_sticker_set: bool | None = None, custom_emoji_sticker_set_name: str | None = None, description: str | None = None, emoji_status_custom_emoji_id: str | None = None, emoji_status_expiration_date: datetime | None = None, has_aggressive_anti_spam_enabled: bool | None = None, has_hidden_members: bool | None = None, has_private_forwards: bool | None = None, has_protected_content: bool | None = None, has_restricted_voice_and_video_messages: bool | None = None, has_visible_history: bool | None = None, invite_link: str | None = None, join_by_request: bool | None = None, join_to_send_messages: bool | None = None, linked_chat_id: int | None = None, location: ChatLocation | None = None, message_auto_delete_time: int | None = None, permissions: ChatPermissions | None = None, personal_chat: Chat | None = None, photo: ChatPhoto | None = None, pinned_message: Message | None = None, profile_accent_color_id: int | None = None, profile_background_custom_emoji_id: str | None = None, slow_mode_delay: int | None = None, sticker_set_name: str | None = None, unrestrict_boost_count: int | None = None, **extra_data: Any)

	This object represents a chat.

Source: https://core.telegram.org/bots/api#chat

	
id: int

	Unique identifier for this chat. This number may have more than 32 significant bits and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or double-precision float type are safe for storing this identifier.

	
type: str

	Type of the chat, can be either ‘private’, ‘group’, ‘supergroup’ or ‘channel’

	
title: str | None

	Optional. Title, for supergroups, channels and group chats

	
username: str | None

	Optional. Username, for private chats, supergroups and channels if available

	
first_name: str | None

	Optional. First name of the other party in a private chat

	
last_name: str | None

	Optional. Last name of the other party in a private chat

	
is_forum: bool | None

	Optional. True, if the supergroup chat is a forum (has topics [https://telegram.org/blog/topics-in-groups-collectible-usernames#topics-in-groups] enabled)

	
accent_color_id: int | None

	Optional. Identifier of the accent color for the chat name and backgrounds of the chat photo, reply header, and link preview. See accent colors [https://core.telegram.org/bots/api#accent-colors] for more details. Returned only in aiogram.methods.get_chat.GetChat. Always returned in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
active_usernames: List[str] | None

	Optional. If non-empty, the list of all active chat usernames [https://telegram.org/blog/topics-in-groups-collectible-usernames#collectible-usernames]; for private chats, supergroups and channels. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
available_reactions: List[ReactionTypeEmoji | ReactionTypeCustomEmoji] | None

	Optional. List of available reactions allowed in the chat. If omitted, then all emoji reactions [https://core.telegram.org/bots/api#reactiontypeemoji] are allowed. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
background_custom_emoji_id: str | None

	Optional. Custom emoji identifier of emoji chosen by the chat for the reply header and link preview background. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
bio: str | None

	Optional. Bio of the other party in a private chat. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
birthdate: Birthdate | None

	Optional. For private chats, the date of birth of the user. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
business_intro: BusinessIntro | None

	Optional. For private chats with business accounts, the intro of the business. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
business_location: BusinessLocation | None

	Optional. For private chats with business accounts, the location of the business. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
business_opening_hours: BusinessOpeningHours | None

	Optional. For private chats with business accounts, the opening hours of the business. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
can_set_sticker_set: bool | None

	Optional. True, if the bot can change the group sticker set. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
custom_emoji_sticker_set_name: str | None

	Optional. For supergroups, the name of the group’s custom emoji sticker set. Custom emoji from this set can be used by all users and bots in the group. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
description: str | None

	Optional. Description, for groups, supergroups and channel chats. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
emoji_status_custom_emoji_id: str | None

	Optional. Custom emoji identifier of the emoji status of the chat or the other party in a private chat. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
emoji_status_expiration_date: DateTime | None

	Optional. Expiration date of the emoji status of the chat or the other party in a private chat, in Unix time, if any. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
has_aggressive_anti_spam_enabled: bool | None

	Optional. True, if aggressive anti-spam checks are enabled in the supergroup. The field is only available to chat administrators. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
has_hidden_members: bool | None

	Optional. True, if non-administrators can only get the list of bots and administrators in the chat. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
has_private_forwards: bool | None

	Optional. True, if privacy settings of the other party in the private chat allows to use tg://user?id=<user_id> links only in chats with the user. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
has_protected_content: bool | None

	Optional. True, if messages from the chat can’t be forwarded to other chats. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
has_restricted_voice_and_video_messages: bool | None

	Optional. True, if the privacy settings of the other party restrict sending voice and video note messages in the private chat. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
has_visible_history: bool | None

	Optional. True, if new chat members will have access to old messages; available only to chat administrators. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
invite_link: str | None

	Optional. Primary invite link, for groups, supergroups and channel chats. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
join_by_request: bool | None

	Optional. True, if all users directly joining the supergroup need to be approved by supergroup administrators. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
join_to_send_messages: bool | None

	Optional. True, if users need to join the supergroup before they can send messages. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
linked_chat_id: int | None

	Optional. Unique identifier for the linked chat, i.e. the discussion group identifier for a channel and vice versa; for supergroups and channel chats. This identifier may be greater than 32 bits and some programming languages may have difficulty/silent defects in interpreting it. But it is smaller than 52 bits, so a signed 64 bit integer or double-precision float type are safe for storing this identifier. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
location: ChatLocation | None

	Optional. For supergroups, the location to which the supergroup is connected. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
message_auto_delete_time: int | None

	Optional. The time after which all messages sent to the chat will be automatically deleted; in seconds. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
permissions: ChatPermissions | None

	Optional. Default chat member permissions, for groups and supergroups. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
personal_chat: Chat | None

	Optional. For private chats, the personal channel of the user. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
photo: ChatPhoto | None

	Optional. Chat photo. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
pinned_message: Message | None

	Optional. The most recent pinned message (by sending date). Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
profile_accent_color_id: int | None

	Optional. Identifier of the accent color for the chat’s profile background. See profile accent colors [https://core.telegram.org/bots/api#profile-accent-colors] for more details. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
profile_background_custom_emoji_id: str | None

	Optional. Custom emoji identifier of the emoji chosen by the chat for its profile background. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
slow_mode_delay: int | None

	Optional. For supergroups, the minimum allowed delay between consecutive messages sent by each unprivileged user; in seconds. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
sticker_set_name: str | None

	Optional. For supergroups, name of group sticker set. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
unrestrict_boost_count: int | None

	Optional. For supergroups, the minimum number of boosts that a non-administrator user needs to add in order to ignore slow mode and chat permissions. Returned only in aiogram.methods.get_chat.GetChat.

Deprecated since version API:7.3: https://core.telegram.org/bots/api-changelog#may-6-2024

	
property shifted_id: int

	Returns shifted chat ID (positive and without “-100” prefix).
Mostly used for private links like t.me/c/chat_id/message_id

Currently supergroup/channel IDs have 10-digit ID after “-100” prefix removed.
However, these IDs might become 11-digit in future. So, first we remove “-100”
prefix and count remaining number length. Then we multiple
-1 * 10 ^ (number_length + 2)
Finally, self.id is substracted from that number

	
property full_name: str

	Get full name of the Chat.

For private chat it is first_name + last_name.
For other chat types it is title.

	
ban_sender_chat(sender_chat_id: int, **kwargs: Any) → BanChatSenderChat

	Shortcut for method aiogram.methods.ban_chat_sender_chat.BanChatSenderChat
will automatically fill method attributes:

	chat_id

Use this method to ban a channel chat in a supergroup or a channel. Until the chat is unbanned [https://core.telegram.org/bots/api#unbanchatsenderchat], the owner of the banned chat won’t be able to send messages on behalf of any of their channels. The bot must be an administrator in the supergroup or channel for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#banchatsenderchat

	Parameters:

	sender_chat_id – Unique identifier of the target sender chat

	Returns:

	instance of method aiogram.methods.ban_chat_sender_chat.BanChatSenderChat

	
unban_sender_chat(sender_chat_id: int, **kwargs: Any) → UnbanChatSenderChat

	Shortcut for method aiogram.methods.unban_chat_sender_chat.UnbanChatSenderChat
will automatically fill method attributes:

	chat_id

Use this method to unban a previously banned channel chat in a supergroup or channel. The bot must be an administrator for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#unbanchatsenderchat

	Parameters:

	sender_chat_id – Unique identifier of the target sender chat

	Returns:

	instance of method aiogram.methods.unban_chat_sender_chat.UnbanChatSenderChat

	
get_administrators(**kwargs: Any) → GetChatAdministrators

	Shortcut for method aiogram.methods.get_chat_administrators.GetChatAdministrators
will automatically fill method attributes:

	chat_id

Use this method to get a list of administrators in a chat, which aren’t bots. Returns an Array of aiogram.types.chat_member.ChatMember objects.

Source: https://core.telegram.org/bots/api#getchatadministrators

	Returns:

	instance of method aiogram.methods.get_chat_administrators.GetChatAdministrators

	
delete_message(message_id: int, **kwargs: Any) → DeleteMessage

	Shortcut for method aiogram.methods.delete_message.DeleteMessage
will automatically fill method attributes:

	chat_id

Use this method to delete a message, including service messages, with the following limitations:

	A message can only be deleted if it was sent less than 48 hours ago.

	Service messages about a supergroup, channel, or forum topic creation can’t be deleted.

	A dice message in a private chat can only be deleted if it was sent more than 24 hours ago.

	Bots can delete outgoing messages in private chats, groups, and supergroups.

	Bots can delete incoming messages in private chats.

	Bots granted can_post_messages permissions can delete outgoing messages in channels.

	If the bot is an administrator of a group, it can delete any message there.

	If the bot has can_delete_messages permission in a supergroup or a channel, it can delete any message there.

Returns True on success.

Source: https://core.telegram.org/bots/api#deletemessage

	Parameters:

	message_id – Identifier of the message to delete

	Returns:

	instance of method aiogram.methods.delete_message.DeleteMessage

	
revoke_invite_link(invite_link: str, **kwargs: Any) → RevokeChatInviteLink

	Shortcut for method aiogram.methods.revoke_chat_invite_link.RevokeChatInviteLink
will automatically fill method attributes:

	chat_id

Use this method to revoke an invite link created by the bot. If the primary link is revoked, a new link is automatically generated. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns the revoked invite link as aiogram.types.chat_invite_link.ChatInviteLink object.

Source: https://core.telegram.org/bots/api#revokechatinvitelink

	Parameters:

	invite_link – The invite link to revoke

	Returns:

	instance of method aiogram.methods.revoke_chat_invite_link.RevokeChatInviteLink

	
edit_invite_link(invite_link: str, name: str | None = None, expire_date: datetime.datetime | datetime.timedelta | int | None = None, member_limit: int | None = None, creates_join_request: bool | None = None, **kwargs: Any) → EditChatInviteLink

	Shortcut for method aiogram.methods.edit_chat_invite_link.EditChatInviteLink
will automatically fill method attributes:

	chat_id

Use this method to edit a non-primary invite link created by the bot. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns the edited invite link as a aiogram.types.chat_invite_link.ChatInviteLink object.

Source: https://core.telegram.org/bots/api#editchatinvitelink

	Parameters:

	
	invite_link – The invite link to edit

	name – Invite link name; 0-32 characters

	expire_date – Point in time (Unix timestamp) when the link will expire

	member_limit – The maximum number of users that can be members of the chat simultaneously after joining the chat via this invite link; 1-99999

	creates_join_request – True, if users joining the chat via the link need to be approved by chat administrators. If True, member_limit can’t be specified

	Returns:

	instance of method aiogram.methods.edit_chat_invite_link.EditChatInviteLink

	
create_invite_link(name: str | None = None, expire_date: datetime.datetime | datetime.timedelta | int | None = None, member_limit: int | None = None, creates_join_request: bool | None = None, **kwargs: Any) → CreateChatInviteLink

	Shortcut for method aiogram.methods.create_chat_invite_link.CreateChatInviteLink
will automatically fill method attributes:

	chat_id

Use this method to create an additional invite link for a chat. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. The link can be revoked using the method aiogram.methods.revoke_chat_invite_link.RevokeChatInviteLink. Returns the new invite link as aiogram.types.chat_invite_link.ChatInviteLink object.

Source: https://core.telegram.org/bots/api#createchatinvitelink

	Parameters:

	
	name – Invite link name; 0-32 characters

	expire_date – Point in time (Unix timestamp) when the link will expire

	member_limit – The maximum number of users that can be members of the chat simultaneously after joining the chat via this invite link; 1-99999

	creates_join_request – True, if users joining the chat via the link need to be approved by chat administrators. If True, member_limit can’t be specified

	Returns:

	instance of method aiogram.methods.create_chat_invite_link.CreateChatInviteLink

	
export_invite_link(**kwargs: Any) → ExportChatInviteLink

	Shortcut for method aiogram.methods.export_chat_invite_link.ExportChatInviteLink
will automatically fill method attributes:

	chat_id

Use this method to generate a new primary invite link for a chat; any previously generated primary link is revoked. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns the new invite link as String on success.

Note: Each administrator in a chat generates their own invite links. Bots can’t use invite links generated by other administrators. If you want your bot to work with invite links, it will need to generate its own link using aiogram.methods.export_chat_invite_link.ExportChatInviteLink or by calling the aiogram.methods.get_chat.GetChat method. If your bot needs to generate a new primary invite link replacing its previous one, use aiogram.methods.export_chat_invite_link.ExportChatInviteLink again.

Source: https://core.telegram.org/bots/api#exportchatinvitelink

	Returns:

	instance of method aiogram.methods.export_chat_invite_link.ExportChatInviteLink

	
do(action: str, business_connection_id: str | None = None, message_thread_id: int | None = None, **kwargs: Any) → SendChatAction

	Shortcut for method aiogram.methods.send_chat_action.SendChatAction
will automatically fill method attributes:

	chat_id

Use this method when you need to tell the user that something is happening on the bot’s side. The status is set for 5 seconds or less (when a message arrives from your bot, Telegram clients clear its typing status). Returns True on success.

Example: The ImageBot [https://t.me/imagebot] needs some time to process a request and upload the image. Instead of sending a text message along the lines of ‘Retrieving image, please wait…’, the bot may use aiogram.methods.send_chat_action.SendChatAction with action = upload_photo. The user will see a ‘sending photo’ status for the bot.

We only recommend using this method when a response from the bot will take a noticeable amount of time to arrive.

Source: https://core.telegram.org/bots/api#sendchataction

	Parameters:

	
	action – Type of action to broadcast. Choose one, depending on what the user is about to receive: typing for text messages [https://core.telegram.org/bots/api#sendmessage], upload_photo for photos [https://core.telegram.org/bots/api#sendphoto], record_video or upload_video for videos [https://core.telegram.org/bots/api#sendvideo], record_voice or upload_voice for voice notes [https://core.telegram.org/bots/api#sendvoice], upload_document for general files [https://core.telegram.org/bots/api#senddocument], choose_sticker for stickers [https://core.telegram.org/bots/api#sendsticker], find_location for location data [https://core.telegram.org/bots/api#sendlocation], record_video_note or upload_video_note for video notes [https://core.telegram.org/bots/api#sendvideonote].

	business_connection_id – Unique identifier of the business connection on behalf of which the action will be sent

	message_thread_id – Unique identifier for the target message thread; for supergroups only

	Returns:

	instance of method aiogram.methods.send_chat_action.SendChatAction

	
delete_sticker_set(**kwargs: Any) → DeleteChatStickerSet

	Shortcut for method aiogram.methods.delete_chat_sticker_set.DeleteChatStickerSet
will automatically fill method attributes:

	chat_id

Use this method to delete a group sticker set from a supergroup. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Use the field can_set_sticker_set optionally returned in aiogram.methods.get_chat.GetChat requests to check if the bot can use this method. Returns True on success.

Source: https://core.telegram.org/bots/api#deletechatstickerset

	Returns:

	instance of method aiogram.methods.delete_chat_sticker_set.DeleteChatStickerSet

	
set_sticker_set(sticker_set_name: str, **kwargs: Any) → SetChatStickerSet

	Shortcut for method aiogram.methods.set_chat_sticker_set.SetChatStickerSet
will automatically fill method attributes:

	chat_id

Use this method to set a new group sticker set for a supergroup. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Use the field can_set_sticker_set optionally returned in aiogram.methods.get_chat.GetChat requests to check if the bot can use this method. Returns True on success.

Source: https://core.telegram.org/bots/api#setchatstickerset

	Parameters:

	sticker_set_name – Name of the sticker set to be set as the group sticker set

	Returns:

	instance of method aiogram.methods.set_chat_sticker_set.SetChatStickerSet

	
get_member(user_id: int, **kwargs: Any) → GetChatMember

	Shortcut for method aiogram.methods.get_chat_member.GetChatMember
will automatically fill method attributes:

	chat_id

Use this method to get information about a member of a chat. The method is only guaranteed to work for other users if the bot is an administrator in the chat. Returns a aiogram.types.chat_member.ChatMember object on success.

Source: https://core.telegram.org/bots/api#getchatmember

	Parameters:

	user_id – Unique identifier of the target user

	Returns:

	instance of method aiogram.methods.get_chat_member.GetChatMember

	
get_member_count(**kwargs: Any) → GetChatMemberCount

	Shortcut for method aiogram.methods.get_chat_member_count.GetChatMemberCount
will automatically fill method attributes:

	chat_id

Use this method to get the number of members in a chat. Returns Int on success.

Source: https://core.telegram.org/bots/api#getchatmembercount

	Returns:

	instance of method aiogram.methods.get_chat_member_count.GetChatMemberCount

	
leave(**kwargs: Any) → LeaveChat

	Shortcut for method aiogram.methods.leave_chat.LeaveChat
will automatically fill method attributes:

	chat_id

Use this method for your bot to leave a group, supergroup or channel. Returns True on success.

Source: https://core.telegram.org/bots/api#leavechat

	Returns:

	instance of method aiogram.methods.leave_chat.LeaveChat

	
unpin_all_messages(**kwargs: Any) → UnpinAllChatMessages

	Shortcut for method aiogram.methods.unpin_all_chat_messages.UnpinAllChatMessages
will automatically fill method attributes:

	chat_id

Use this method to clear the list of pinned messages in a chat. If the chat is not a private chat, the bot must be an administrator in the chat for this to work and must have the ‘can_pin_messages’ administrator right in a supergroup or ‘can_edit_messages’ administrator right in a channel. Returns True on success.

Source: https://core.telegram.org/bots/api#unpinallchatmessages

	Returns:

	instance of method aiogram.methods.unpin_all_chat_messages.UnpinAllChatMessages

	
unpin_message(message_id: int | None = None, **kwargs: Any) → UnpinChatMessage

	Shortcut for method aiogram.methods.unpin_chat_message.UnpinChatMessage
will automatically fill method attributes:

	chat_id

Use this method to remove a message from the list of pinned messages in a chat. If the chat is not a private chat, the bot must be an administrator in the chat for this to work and must have the ‘can_pin_messages’ administrator right in a supergroup or ‘can_edit_messages’ administrator right in a channel. Returns True on success.

Source: https://core.telegram.org/bots/api#unpinchatmessage

	Parameters:

	message_id – Identifier of a message to unpin. If not specified, the most recent pinned message (by sending date) will be unpinned.

	Returns:

	instance of method aiogram.methods.unpin_chat_message.UnpinChatMessage

	
pin_message(message_id: int, disable_notification: bool | None = None, **kwargs: Any) → PinChatMessage

	Shortcut for method aiogram.methods.pin_chat_message.PinChatMessage
will automatically fill method attributes:

	chat_id

Use this method to add a message to the list of pinned messages in a chat. If the chat is not a private chat, the bot must be an administrator in the chat for this to work and must have the ‘can_pin_messages’ administrator right in a supergroup or ‘can_edit_messages’ administrator right in a channel. Returns True on success.

Source: https://core.telegram.org/bots/api#pinchatmessage

	Parameters:

	
	message_id – Identifier of a message to pin

	disable_notification – Pass True if it is not necessary to send a notification to all chat members about the new pinned message. Notifications are always disabled in channels and private chats.

	Returns:

	instance of method aiogram.methods.pin_chat_message.PinChatMessage

	
set_administrator_custom_title(user_id: int, custom_title: str, **kwargs: Any) → SetChatAdministratorCustomTitle

	Shortcut for method aiogram.methods.set_chat_administrator_custom_title.SetChatAdministratorCustomTitle
will automatically fill method attributes:

	chat_id

Use this method to set a custom title for an administrator in a supergroup promoted by the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#setchatadministratorcustomtitle

	Parameters:

	
	user_id – Unique identifier of the target user

	custom_title – New custom title for the administrator; 0-16 characters, emoji are not allowed

	Returns:

	instance of method aiogram.methods.set_chat_administrator_custom_title.SetChatAdministratorCustomTitle

	
set_permissions(permissions: ChatPermissions, use_independent_chat_permissions: bool | None = None, **kwargs: Any) → SetChatPermissions

	Shortcut for method aiogram.methods.set_chat_permissions.SetChatPermissions
will automatically fill method attributes:

	chat_id

Use this method to set default chat permissions for all members. The bot must be an administrator in the group or a supergroup for this to work and must have the can_restrict_members administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#setchatpermissions

	Parameters:

	
	permissions – A JSON-serialized object for new default chat permissions

	use_independent_chat_permissions – Pass True if chat permissions are set independently. Otherwise, the can_send_other_messages and can_add_web_page_previews permissions will imply the can_send_messages, can_send_audios, can_send_documents, can_send_photos, can_send_videos, can_send_video_notes, and can_send_voice_notes permissions; the can_send_polls permission will imply the can_send_messages permission.

	Returns:

	instance of method aiogram.methods.set_chat_permissions.SetChatPermissions

	
promote(user_id: int, is_anonymous: bool | None = None, can_manage_chat: bool | None = None, can_delete_messages: bool | None = None, can_manage_video_chats: bool | None = None, can_restrict_members: bool | None = None, can_promote_members: bool | None = None, can_change_info: bool | None = None, can_invite_users: bool | None = None, can_post_stories: bool | None = None, can_edit_stories: bool | None = None, can_delete_stories: bool | None = None, can_post_messages: bool | None = None, can_edit_messages: bool | None = None, can_pin_messages: bool | None = None, can_manage_topics: bool | None = None, **kwargs: Any) → PromoteChatMember

	Shortcut for method aiogram.methods.promote_chat_member.PromoteChatMember
will automatically fill method attributes:

	chat_id

Use this method to promote or demote a user in a supergroup or a channel. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Pass False for all boolean parameters to demote a user. Returns True on success.

Source: https://core.telegram.org/bots/api#promotechatmember

	Parameters:

	
	user_id – Unique identifier of the target user

	is_anonymous – Pass True if the administrator’s presence in the chat is hidden

	can_manage_chat – Pass True if the administrator can access the chat event log, get boost list, see hidden supergroup and channel members, report spam messages and ignore slow mode. Implied by any other administrator privilege.

	can_delete_messages – Pass True if the administrator can delete messages of other users

	can_manage_video_chats – Pass True if the administrator can manage video chats

	can_restrict_members – Pass True if the administrator can restrict, ban or unban chat members, or access supergroup statistics

	can_promote_members – Pass True if the administrator can add new administrators with a subset of their own privileges or demote administrators that they have promoted, directly or indirectly (promoted by administrators that were appointed by him)

	can_change_info – Pass True if the administrator can change chat title, photo and other settings

	can_invite_users – Pass True if the administrator can invite new users to the chat

	can_post_stories – Pass True if the administrator can post stories to the chat

	can_edit_stories – Pass True if the administrator can edit stories posted by other users, post stories to the chat page, pin chat stories, and access the chat’s story archive

	can_delete_stories – Pass True if the administrator can delete stories posted by other users

	can_post_messages – Pass True if the administrator can post messages in the channel, or access channel statistics; for channels only

	can_edit_messages – Pass True if the administrator can edit messages of other users and can pin messages; for channels only

	can_pin_messages – Pass True if the administrator can pin messages; for supergroups only

	can_manage_topics – Pass True if the user is allowed to create, rename, close, and reopen forum topics; for supergroups only

	Returns:

	instance of method aiogram.methods.promote_chat_member.PromoteChatMember

	
restrict(user_id: int, permissions: ChatPermissions, use_independent_chat_permissions: bool | None = None, until_date: datetime.datetime | datetime.timedelta | int | None = None, **kwargs: Any) → RestrictChatMember

	Shortcut for method aiogram.methods.restrict_chat_member.RestrictChatMember
will automatically fill method attributes:

	chat_id

Use this method to restrict a user in a supergroup. The bot must be an administrator in the supergroup for this to work and must have the appropriate administrator rights. Pass True for all permissions to lift restrictions from a user. Returns True on success.

Source: https://core.telegram.org/bots/api#restrictchatmember

	Parameters:

	
	user_id – Unique identifier of the target user

	permissions – A JSON-serialized object for new user permissions

	use_independent_chat_permissions – Pass True if chat permissions are set independently. Otherwise, the can_send_other_messages and can_add_web_page_previews permissions will imply the can_send_messages, can_send_audios, can_send_documents, can_send_photos, can_send_videos, can_send_video_notes, and can_send_voice_notes permissions; the can_send_polls permission will imply the can_send_messages permission.

	until_date – Date when restrictions will be lifted for the user; Unix time. If user is restricted for more than 366 days or less than 30 seconds from the current time, they are considered to be restricted forever

	Returns:

	instance of method aiogram.methods.restrict_chat_member.RestrictChatMember

	
unban(user_id: int, only_if_banned: bool | None = None, **kwargs: Any) → UnbanChatMember

	Shortcut for method aiogram.methods.unban_chat_member.UnbanChatMember
will automatically fill method attributes:

	chat_id

Use this method to unban a previously banned user in a supergroup or channel. The user will not return to the group or channel automatically, but will be able to join via link, etc. The bot must be an administrator for this to work. By default, this method guarantees that after the call the user is not a member of the chat, but will be able to join it. So if the user is a member of the chat they will also be removed from the chat. If you don’t want this, use the parameter only_if_banned. Returns True on success.

Source: https://core.telegram.org/bots/api#unbanchatmember

	Parameters:

	
	user_id – Unique identifier of the target user

	only_if_banned – Do nothing if the user is not banned

	Returns:

	instance of method aiogram.methods.unban_chat_member.UnbanChatMember

	
ban(user_id: int, until_date: datetime.datetime | datetime.timedelta | int | None = None, revoke_messages: bool | None = None, **kwargs: Any) → BanChatMember

	Shortcut for method aiogram.methods.ban_chat_member.BanChatMember
will automatically fill method attributes:

	chat_id

Use this method to ban a user in a group, a supergroup or a channel. In the case of supergroups and channels, the user will not be able to return to the chat on their own using invite links, etc., unless unbanned [https://core.telegram.org/bots/api#unbanchatmember] first. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#banchatmember

	Parameters:

	
	user_id – Unique identifier of the target user

	until_date – Date when the user will be unbanned; Unix time. If user is banned for more than 366 days or less than 30 seconds from the current time they are considered to be banned forever. Applied for supergroups and channels only.

	revoke_messages – Pass True to delete all messages from the chat for the user that is being removed. If False, the user will be able to see messages in the group that were sent before the user was removed. Always True for supergroups and channels.

	Returns:

	instance of method aiogram.methods.ban_chat_member.BanChatMember

	
set_description(description: str | None = None, **kwargs: Any) → SetChatDescription

	Shortcut for method aiogram.methods.set_chat_description.SetChatDescription
will automatically fill method attributes:

	chat_id

Use this method to change the description of a group, a supergroup or a channel. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#setchatdescription

	Parameters:

	description – New chat description, 0-255 characters

	Returns:

	instance of method aiogram.methods.set_chat_description.SetChatDescription

	
set_title(title: str, **kwargs: Any) → SetChatTitle

	Shortcut for method aiogram.methods.set_chat_title.SetChatTitle
will automatically fill method attributes:

	chat_id

Use this method to change the title of a chat. Titles can’t be changed for private chats. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#setchattitle

	Parameters:

	title – New chat title, 1-128 characters

	Returns:

	instance of method aiogram.methods.set_chat_title.SetChatTitle

	
delete_photo(**kwargs: Any) → DeleteChatPhoto

	Shortcut for method aiogram.methods.delete_chat_photo.DeleteChatPhoto
will automatically fill method attributes:

	chat_id

Use this method to delete a chat photo. Photos can’t be changed for private chats. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#deletechatphoto

	Returns:

	instance of method aiogram.methods.delete_chat_photo.DeleteChatPhoto

	
set_photo(photo: InputFile, **kwargs: Any) → SetChatPhoto

	Shortcut for method aiogram.methods.set_chat_photo.SetChatPhoto
will automatically fill method attributes:

	chat_id

Use this method to set a new profile photo for the chat. Photos can’t be changed for private chats. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#setchatphoto

	Parameters:

	photo – New chat photo, uploaded using multipart/form-data

	Returns:

	instance of method aiogram.methods.set_chat_photo.SetChatPhoto

	
unpin_all_general_forum_topic_messages(**kwargs: Any) → UnpinAllGeneralForumTopicMessages

	Shortcut for method aiogram.methods.unpin_all_general_forum_topic_messages.UnpinAllGeneralForumTopicMessages
will automatically fill method attributes:

	chat_id

Use this method to clear the list of pinned messages in a General forum topic. The bot must be an administrator in the chat for this to work and must have the can_pin_messages administrator right in the supergroup. Returns True on success.

Source: https://core.telegram.org/bots/api#unpinallgeneralforumtopicmessages

	Returns:

	instance of method aiogram.methods.unpin_all_general_forum_topic_messages.UnpinAllGeneralForumTopicMessages

ChatAdministratorRights

	
class aiogram.types.chat_administrator_rights.ChatAdministratorRights(*, is_anonymous: bool, can_manage_chat: bool, can_delete_messages: bool, can_manage_video_chats: bool, can_restrict_members: bool, can_promote_members: bool, can_change_info: bool, can_invite_users: bool, can_post_stories: bool, can_edit_stories: bool, can_delete_stories: bool, can_post_messages: bool | None = None, can_edit_messages: bool | None = None, can_pin_messages: bool | None = None, can_manage_topics: bool | None = None, **extra_data: Any)

	Represents the rights of an administrator in a chat.

Source: https://core.telegram.org/bots/api#chatadministratorrights

	
is_anonymous: bool

	True, if the user’s presence in the chat is hidden

	
can_manage_chat: bool

	True, if the administrator can access the chat event log, get boost list, see hidden supergroup and channel members, report spam messages and ignore slow mode. Implied by any other administrator privilege.

	
can_delete_messages: bool

	True, if the administrator can delete messages of other users

	
can_manage_video_chats: bool

	True, if the administrator can manage video chats

	
can_restrict_members: bool

	True, if the administrator can restrict, ban or unban chat members, or access supergroup statistics

	
can_promote_members: bool

	True, if the administrator can add new administrators with a subset of their own privileges or demote administrators that they have promoted, directly or indirectly (promoted by administrators that were appointed by the user)

	
can_change_info: bool

	True, if the user is allowed to change the chat title, photo and other settings

	
can_invite_users: bool

	True, if the user is allowed to invite new users to the chat

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
can_post_stories: bool

	True, if the administrator can post stories to the chat

	
can_edit_stories: bool

	True, if the administrator can edit stories posted by other users, post stories to the chat page, pin chat stories, and access the chat’s story archive

	
can_delete_stories: bool

	True, if the administrator can delete stories posted by other users

	
can_post_messages: bool | None

	Optional. True, if the administrator can post messages in the channel, or access channel statistics; for channels only

	
can_edit_messages: bool | None

	Optional. True, if the administrator can edit messages of other users and can pin messages; for channels only

	
can_pin_messages: bool | None

	Optional. True, if the user is allowed to pin messages; for groups and supergroups only

	
can_manage_topics: bool | None

	Optional. True, if the user is allowed to create, rename, close, and reopen forum topics; for supergroups only

ChatBackground

	
class aiogram.types.chat_background.ChatBackground(*, type: BackgroundTypeFill | BackgroundTypeWallpaper | BackgroundTypePattern | BackgroundTypeChatTheme, **extra_data: Any)

	This object represents a chat background.

Source: https://core.telegram.org/bots/api#chatbackground

	
type: BackgroundTypeFill | BackgroundTypeWallpaper | BackgroundTypePattern | BackgroundTypeChatTheme

	Type of the background

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

ChatBoost

	
class aiogram.types.chat_boost.ChatBoost(*, boost_id: str, add_date: datetime, expiration_date: datetime, source: ChatBoostSourcePremium | ChatBoostSourceGiftCode | ChatBoostSourceGiveaway, **extra_data: Any)

	This object contains information about a chat boost.

Source: https://core.telegram.org/bots/api#chatboost

	
boost_id: str

	Unique identifier of the boost

	
add_date: DateTime

	Point in time (Unix timestamp) when the chat was boosted

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
expiration_date: DateTime

	Point in time (Unix timestamp) when the boost will automatically expire, unless the booster’s Telegram Premium subscription is prolonged

	
source: ChatBoostSourcePremium | ChatBoostSourceGiftCode | ChatBoostSourceGiveaway

	Source of the added boost

ChatBoostAdded

	
class aiogram.types.chat_boost_added.ChatBoostAdded(*, boost_count: int, **extra_data: Any)

	This object represents a service message about a user boosting a chat.

Source: https://core.telegram.org/bots/api#chatboostadded

	
boost_count: int

	Number of boosts added by the user

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

ChatBoostRemoved

	
class aiogram.types.chat_boost_removed.ChatBoostRemoved(*, chat: Chat, boost_id: str, remove_date: datetime, source: ChatBoostSourcePremium | ChatBoostSourceGiftCode | ChatBoostSourceGiveaway, **extra_data: Any)

	This object represents a boost removed from a chat.

Source: https://core.telegram.org/bots/api#chatboostremoved

	
chat: Chat

	Chat which was boosted

	
boost_id: str

	Unique identifier of the boost

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
remove_date: DateTime

	Point in time (Unix timestamp) when the boost was removed

	
source: ChatBoostSourcePremium | ChatBoostSourceGiftCode | ChatBoostSourceGiveaway

	Source of the removed boost

ChatBoostSource

	
class aiogram.types.chat_boost_source.ChatBoostSource(**extra_data: Any)

	This object describes the source of a chat boost. It can be one of

	aiogram.types.chat_boost_source_premium.ChatBoostSourcePremium

	aiogram.types.chat_boost_source_gift_code.ChatBoostSourceGiftCode

	aiogram.types.chat_boost_source_giveaway.ChatBoostSourceGiveaway

Source: https://core.telegram.org/bots/api#chatboostsource

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

ChatBoostSourceGiftCode

	
class aiogram.types.chat_boost_source_gift_code.ChatBoostSourceGiftCode(*, source: Literal[ChatBoostSourceType.GIFT_CODE] = ChatBoostSourceType.GIFT_CODE, user: User, **extra_data: Any)

	The boost was obtained by the creation of Telegram Premium gift codes to boost a chat. Each such code boosts the chat 4 times for the duration of the corresponding Telegram Premium subscription.

Source: https://core.telegram.org/bots/api#chatboostsourcegiftcode

	
source: Literal[ChatBoostSourceType.GIFT_CODE]

	Source of the boost, always ‘gift_code’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
user: User

	User for which the gift code was created

ChatBoostSourceGiveaway

	
class aiogram.types.chat_boost_source_giveaway.ChatBoostSourceGiveaway(*, source: Literal[ChatBoostSourceType.GIVEAWAY] = ChatBoostSourceType.GIVEAWAY, giveaway_message_id: int, user: User | None = None, is_unclaimed: bool | None = None, **extra_data: Any)

	The boost was obtained by the creation of a Telegram Premium giveaway. This boosts the chat 4 times for the duration of the corresponding Telegram Premium subscription.

Source: https://core.telegram.org/bots/api#chatboostsourcegiveaway

	
source: Literal[ChatBoostSourceType.GIVEAWAY]

	Source of the boost, always ‘giveaway’

	
giveaway_message_id: int

	Identifier of a message in the chat with the giveaway; the message could have been deleted already. May be 0 if the message isn’t sent yet.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
user: User | None

	Optional. User that won the prize in the giveaway if any

	
is_unclaimed: bool | None

	Optional. True, if the giveaway was completed, but there was no user to win the prize

ChatBoostSourcePremium

	
class aiogram.types.chat_boost_source_premium.ChatBoostSourcePremium(*, source: Literal[ChatBoostSourceType.PREMIUM] = ChatBoostSourceType.PREMIUM, user: User, **extra_data: Any)

	The boost was obtained by subscribing to Telegram Premium or by gifting a Telegram Premium subscription to another user.

Source: https://core.telegram.org/bots/api#chatboostsourcepremium

	
source: Literal[ChatBoostSourceType.PREMIUM]

	Source of the boost, always ‘premium’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
user: User

	User that boosted the chat

ChatBoostUpdated

	
class aiogram.types.chat_boost_updated.ChatBoostUpdated(*, chat: Chat, boost: ChatBoost, **extra_data: Any)

	This object represents a boost added to a chat or changed.

Source: https://core.telegram.org/bots/api#chatboostupdated

	
chat: Chat

	Chat which was boosted

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
boost: ChatBoost

	Information about the chat boost

ChatFullInfo

	
class aiogram.types.chat_full_info.ChatFullInfo(*, id: int, type: str, title: str | None = None, username: str | None = None, first_name: str | None = None, last_name: str | None = None, is_forum: bool | None = None, accent_color_id: int, active_usernames: List[str] | None = None, available_reactions: List[ReactionTypeEmoji | ReactionTypeCustomEmoji] | None = None, background_custom_emoji_id: str | None = None, bio: str | None = None, birthdate: Birthdate | None = None, business_intro: BusinessIntro | None = None, business_location: BusinessLocation | None = None, business_opening_hours: BusinessOpeningHours | None = None, can_set_sticker_set: bool | None = None, custom_emoji_sticker_set_name: str | None = None, description: str | None = None, emoji_status_custom_emoji_id: str | None = None, emoji_status_expiration_date: datetime | None = None, has_aggressive_anti_spam_enabled: bool | None = None, has_hidden_members: bool | None = None, has_private_forwards: bool | None = None, has_protected_content: bool | None = None, has_restricted_voice_and_video_messages: bool | None = None, has_visible_history: bool | None = None, invite_link: str | None = None, join_by_request: bool | None = None, join_to_send_messages: bool | None = None, linked_chat_id: int | None = None, location: ChatLocation | None = None, message_auto_delete_time: int | None = None, permissions: ChatPermissions | None = None, personal_chat: Chat | None = None, photo: ChatPhoto | None = None, pinned_message: Message | None = None, profile_accent_color_id: int | None = None, profile_background_custom_emoji_id: str | None = None, slow_mode_delay: int | None = None, sticker_set_name: str | None = None, unrestrict_boost_count: int | None = None, max_reaction_count: int, **extra_data: Any)

	This object contains full information about a chat.

Source: https://core.telegram.org/bots/api#chatfullinfo

	
id: int

	Unique identifier for this chat. This number may have more than 32 significant bits and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or double-precision float type are safe for storing this identifier.

	
type: str

	Type of the chat, can be either ‘private’, ‘group’, ‘supergroup’ or ‘channel’

	
accent_color_id: int

	Identifier of the accent color for the chat name and backgrounds of the chat photo, reply header, and link preview. See accent colors [https://core.telegram.org/bots/api#accent-colors] for more details.

	
max_reaction_count: int

	The maximum number of reactions that can be set on a message in the chat

	
title: str | None

	Optional. Title, for supergroups, channels and group chats

	
username: str | None

	Optional. Username, for private chats, supergroups and channels if available

	
first_name: str | None

	Optional. First name of the other party in a private chat

	
last_name: str | None

	Optional. Last name of the other party in a private chat

	
is_forum: bool | None

	Optional. True, if the supergroup chat is a forum (has topics [https://telegram.org/blog/topics-in-groups-collectible-usernames#topics-in-groups] enabled)

	
photo: ChatPhoto | None

	Optional. Chat photo

	
active_usernames: List[str] | None

	Optional. If non-empty, the list of all active chat usernames [https://telegram.org/blog/topics-in-groups-collectible-usernames#collectible-usernames]; for private chats, supergroups and channels

	
birthdate: Birthdate | None

	Optional. For private chats, the date of birth of the user

	
business_intro: BusinessIntro | None

	Optional. For private chats with business accounts, the intro of the business

	
business_location: BusinessLocation | None

	Optional. For private chats with business accounts, the location of the business

	
business_opening_hours: BusinessOpeningHours | None

	Optional. For private chats with business accounts, the opening hours of the business

	
personal_chat: Chat | None

	Optional. For private chats, the personal channel of the user

	
available_reactions: List[ReactionTypeEmoji | ReactionTypeCustomEmoji] | None

	Optional. List of available reactions allowed in the chat. If omitted, then all emoji reactions [https://core.telegram.org/bots/api#reactiontypeemoji] are allowed.

	
background_custom_emoji_id: str | None

	Optional. Custom emoji identifier of the emoji chosen by the chat for the reply header and link preview background

	
profile_accent_color_id: int | None

	Optional. Identifier of the accent color for the chat’s profile background. See profile accent colors [https://core.telegram.org/bots/api#profile-accent-colors] for more details.

	
profile_background_custom_emoji_id: str | None

	Optional. Custom emoji identifier of the emoji chosen by the chat for its profile background

	
emoji_status_custom_emoji_id: str | None

	Optional. Custom emoji identifier of the emoji status of the chat or the other party in a private chat

	
emoji_status_expiration_date: DateTime | None

	Optional. Expiration date of the emoji status of the chat or the other party in a private chat, in Unix time, if any

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
bio: str | None

	Optional. Bio of the other party in a private chat

	
has_private_forwards: bool | None

	Optional. True, if privacy settings of the other party in the private chat allows to use tg://user?id=<user_id> links only in chats with the user

	
has_restricted_voice_and_video_messages: bool | None

	Optional. True, if the privacy settings of the other party restrict sending voice and video note messages in the private chat

	
join_to_send_messages: bool | None

	Optional. True, if users need to join the supergroup before they can send messages

	
join_by_request: bool | None

	Optional. True, if all users directly joining the supergroup need to be approved by supergroup administrators

	
description: str | None

	Optional. Description, for groups, supergroups and channel chats

	
invite_link: str | None

	Optional. Primary invite link, for groups, supergroups and channel chats

	
pinned_message: Message | None

	Optional. The most recent pinned message (by sending date)

	
permissions: ChatPermissions | None

	Optional. Default chat member permissions, for groups and supergroups

	
slow_mode_delay: int | None

	Optional. For supergroups, the minimum allowed delay between consecutive messages sent by each unprivileged user; in seconds

	
unrestrict_boost_count: int | None

	Optional. For supergroups, the minimum number of boosts that a non-administrator user needs to add in order to ignore slow mode and chat permissions

	
message_auto_delete_time: int | None

	Optional. The time after which all messages sent to the chat will be automatically deleted; in seconds

	
has_aggressive_anti_spam_enabled: bool | None

	Optional. True, if aggressive anti-spam checks are enabled in the supergroup. The field is only available to chat administrators.

	
has_hidden_members: bool | None

	Optional. True, if non-administrators can only get the list of bots and administrators in the chat

	
has_protected_content: bool | None

	Optional. True, if messages from the chat can’t be forwarded to other chats

	
has_visible_history: bool | None

	Optional. True, if new chat members will have access to old messages; available only to chat administrators

	
sticker_set_name: str | None

	Optional. For supergroups, name of the group sticker set

	
can_set_sticker_set: bool | None

	Optional. True, if the bot can change the group sticker set

	
custom_emoji_sticker_set_name: str | None

	Optional. For supergroups, the name of the group’s custom emoji sticker set. Custom emoji from this set can be used by all users and bots in the group.

	
linked_chat_id: int | None

	Optional. Unique identifier for the linked chat, i.e. the discussion group identifier for a channel and vice versa; for supergroups and channel chats. This identifier may be greater than 32 bits and some programming languages may have difficulty/silent defects in interpreting it. But it is smaller than 52 bits, so a signed 64 bit integer or double-precision float type are safe for storing this identifier.

	
location: ChatLocation | None

	Optional. For supergroups, the location to which the supergroup is connected

ChatInviteLink

	
class aiogram.types.chat_invite_link.ChatInviteLink(*, invite_link: str, creator: User, creates_join_request: bool, is_primary: bool, is_revoked: bool, name: str | None = None, expire_date: datetime | None = None, member_limit: int | None = None, pending_join_request_count: int | None = None, **extra_data: Any)

	Represents an invite link for a chat.

Source: https://core.telegram.org/bots/api#chatinvitelink

	
invite_link: str

	The invite link. If the link was created by another chat administrator, then the second part of the link will be replaced with ‘…’.

	
creator: User

	Creator of the link

	
creates_join_request: bool

	True, if users joining the chat via the link need to be approved by chat administrators

	
is_primary: bool

	True, if the link is primary

	
is_revoked: bool

	True, if the link is revoked

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
name: str | None

	Optional. Invite link name

	
expire_date: DateTime | None

	Optional. Point in time (Unix timestamp) when the link will expire or has been expired

	
member_limit: int | None

	Optional. The maximum number of users that can be members of the chat simultaneously after joining the chat via this invite link; 1-99999

	
pending_join_request_count: int | None

	Optional. Number of pending join requests created using this link

ChatJoinRequest

	
class aiogram.types.chat_join_request.ChatJoinRequest(*, chat: Chat, from_user: User, user_chat_id: int, date: datetime, bio: str | None = None, invite_link: ChatInviteLink | None = None, **extra_data: Any)

	Represents a join request sent to a chat.

Source: https://core.telegram.org/bots/api#chatjoinrequest

	
chat: Chat

	Chat to which the request was sent

	
from_user: User

	User that sent the join request

	
user_chat_id: int

	Identifier of a private chat with the user who sent the join request. This number may have more than 32 significant bits and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a 64-bit integer or double-precision float type are safe for storing this identifier. The bot can use this identifier for 5 minutes to send messages until the join request is processed, assuming no other administrator contacted the user.

	
date: DateTime

	Date the request was sent in Unix time

	
bio: str | None

	Optional. Bio of the user.

	
invite_link: ChatInviteLink | None

	Optional. Chat invite link that was used by the user to send the join request

	
approve(**kwargs: Any) → ApproveChatJoinRequest

	Shortcut for method aiogram.methods.approve_chat_join_request.ApproveChatJoinRequest
will automatically fill method attributes:

	chat_id

	user_id

Use this method to approve a chat join request. The bot must be an administrator in the chat for this to work and must have the can_invite_users administrator right. Returns True on success.

Source: https://core.telegram.org/bots/api#approvechatjoinrequest

	Returns:

	instance of method aiogram.methods.approve_chat_join_request.ApproveChatJoinRequest

	
decline(**kwargs: Any) → DeclineChatJoinRequest

	Shortcut for method aiogram.methods.decline_chat_join_request.DeclineChatJoinRequest
will automatically fill method attributes:

	chat_id

	user_id

Use this method to decline a chat join request. The bot must be an administrator in the chat for this to work and must have the can_invite_users administrator right. Returns True on success.

Source: https://core.telegram.org/bots/api#declinechatjoinrequest

	Returns:

	instance of method aiogram.methods.decline_chat_join_request.DeclineChatJoinRequest

	
answer(text: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, entities: Optional[List[MessageEntity]] = None, link_preview_options: Optional[Union[LinkPreviewOptions, Default]] = <Default('link_preview')>, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, disable_web_page_preview: Optional[Union[bool, Default]] = <Default('link_preview_is_disabled')>, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendMessage

	Shortcut for method aiogram.methods.send_message.SendMessage
will automatically fill method attributes:

	chat_id

Use this method to send text messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendmessage

	Parameters:

	
	text – Text of the message to be sent, 1-4096 characters after entities parsing

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	parse_mode – Mode for parsing entities in the message text. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	entities – A JSON-serialized list of special entities that appear in message text, which can be specified instead of parse_mode

	link_preview_options – Link preview generation options for the message

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	disable_web_page_preview – Disables link previews for links in this message

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_message.SendMessage

	
answer_pm(text: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, entities: Optional[List[MessageEntity]] = None, link_preview_options: Optional[Union[LinkPreviewOptions, Default]] = <Default('link_preview')>, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, disable_web_page_preview: Optional[Union[bool, Default]] = <Default('link_preview_is_disabled')>, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendMessage

	Shortcut for method aiogram.methods.send_message.SendMessage
will automatically fill method attributes:

	chat_id

Use this method to send text messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendmessage

	Parameters:

	
	text – Text of the message to be sent, 1-4096 characters after entities parsing

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	parse_mode – Mode for parsing entities in the message text. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	entities – A JSON-serialized list of special entities that appear in message text, which can be specified instead of parse_mode

	link_preview_options – Link preview generation options for the message

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	disable_web_page_preview – Disables link previews for links in this message

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_message.SendMessage

	
answer_animation(animation: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, duration: Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, has_spoiler: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendAnimation

	Shortcut for method aiogram.methods.send_animation.SendAnimation
will automatically fill method attributes:

	chat_id

Use this method to send animation files (GIF or H.264/MPEG-4 AVC video without sound). On success, the sent aiogram.types.message.Message is returned. Bots can currently send animation files of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendanimation

	Parameters:

	
	animation – Animation to send. Pass a file_id as String to send an animation that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get an animation from the Internet, or upload a new animation using multipart/form-data. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	duration – Duration of sent animation in seconds

	width – Animation width

	height – Animation height

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	caption – Animation caption (may also be used when resending animation by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the animation caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	has_spoiler – Pass True if the animation needs to be covered with a spoiler animation

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_animation.SendAnimation

	
answer_animation_pm(animation: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, duration: Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, has_spoiler: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendAnimation

	Shortcut for method aiogram.methods.send_animation.SendAnimation
will automatically fill method attributes:

	chat_id

Use this method to send animation files (GIF or H.264/MPEG-4 AVC video without sound). On success, the sent aiogram.types.message.Message is returned. Bots can currently send animation files of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendanimation

	Parameters:

	
	animation – Animation to send. Pass a file_id as String to send an animation that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get an animation from the Internet, or upload a new animation using multipart/form-data. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	duration – Duration of sent animation in seconds

	width – Animation width

	height – Animation height

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	caption – Animation caption (may also be used when resending animation by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the animation caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	has_spoiler – Pass True if the animation needs to be covered with a spoiler animation

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_animation.SendAnimation

	
answer_audio(audio: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, duration: Optional[int] = None, performer: Optional[str] = None, title: Optional[str] = None, thumbnail: Optional[InputFile] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendAudio

	Shortcut for method aiogram.methods.send_audio.SendAudio
will automatically fill method attributes:

	chat_id

Use this method to send audio files, if you want Telegram clients to display them in the music player. Your audio must be in the .MP3 or .M4A format. On success, the sent aiogram.types.message.Message is returned. Bots can currently send audio files of up to 50 MB in size, this limit may be changed in the future.
For sending voice messages, use the aiogram.methods.send_voice.SendVoice method instead.

Source: https://core.telegram.org/bots/api#sendaudio

	Parameters:

	
	audio – Audio file to send. Pass a file_id as String to send an audio file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get an audio file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	caption – Audio caption, 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the audio caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	duration – Duration of the audio in seconds

	performer – Performer

	title – Track name

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_audio.SendAudio

	
answer_audio_pm(audio: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, duration: Optional[int] = None, performer: Optional[str] = None, title: Optional[str] = None, thumbnail: Optional[InputFile] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendAudio

	Shortcut for method aiogram.methods.send_audio.SendAudio
will automatically fill method attributes:

	chat_id

Use this method to send audio files, if you want Telegram clients to display them in the music player. Your audio must be in the .MP3 or .M4A format. On success, the sent aiogram.types.message.Message is returned. Bots can currently send audio files of up to 50 MB in size, this limit may be changed in the future.
For sending voice messages, use the aiogram.methods.send_voice.SendVoice method instead.

Source: https://core.telegram.org/bots/api#sendaudio

	Parameters:

	
	audio – Audio file to send. Pass a file_id as String to send an audio file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get an audio file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	caption – Audio caption, 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the audio caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	duration – Duration of the audio in seconds

	performer – Performer

	title – Track name

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_audio.SendAudio

	
answer_contact(phone_number: str, first_name: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, last_name: Optional[str] = None, vcard: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendContact

	Shortcut for method aiogram.methods.send_contact.SendContact
will automatically fill method attributes:

	chat_id

Use this method to send phone contacts. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendcontact

	Parameters:

	
	phone_number – Contact’s phone number

	first_name – Contact’s first name

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	last_name – Contact’s last name

	vcard – Additional data about the contact in the form of a vCard [https://en.wikipedia.org/wiki/VCard], 0-2048 bytes

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_contact.SendContact

	
answer_contact_pm(phone_number: str, first_name: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, last_name: Optional[str] = None, vcard: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendContact

	Shortcut for method aiogram.methods.send_contact.SendContact
will automatically fill method attributes:

	chat_id

Use this method to send phone contacts. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendcontact

	Parameters:

	
	phone_number – Contact’s phone number

	first_name – Contact’s first name

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	last_name – Contact’s last name

	vcard – Additional data about the contact in the form of a vCard [https://en.wikipedia.org/wiki/VCard], 0-2048 bytes

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_contact.SendContact

	
answer_document(document: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, disable_content_type_detection: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendDocument

	Shortcut for method aiogram.methods.send_document.SendDocument
will automatically fill method attributes:

	chat_id

Use this method to send general files. On success, the sent aiogram.types.message.Message is returned. Bots can currently send files of any type of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#senddocument

	Parameters:

	
	document – File to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	caption – Document caption (may also be used when resending documents by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the document caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	disable_content_type_detection – Disables automatic server-side content type detection for files uploaded using multipart/form-data

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_document.SendDocument

	
answer_document_pm(document: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, disable_content_type_detection: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendDocument

	Shortcut for method aiogram.methods.send_document.SendDocument
will automatically fill method attributes:

	chat_id

Use this method to send general files. On success, the sent aiogram.types.message.Message is returned. Bots can currently send files of any type of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#senddocument

	Parameters:

	
	document – File to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	caption – Document caption (may also be used when resending documents by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the document caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	disable_content_type_detection – Disables automatic server-side content type detection for files uploaded using multipart/form-data

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_document.SendDocument

	
answer_game(game_short_name: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendGame

	Shortcut for method aiogram.methods.send_game.SendGame
will automatically fill method attributes:

	chat_id

Use this method to send a game. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendgame

	Parameters:

	
	game_short_name – Short name of the game, serves as the unique identifier for the game. Set up your games via @BotFather [https://t.me/botfather].

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards]. If empty, one ‘Play game_title’ button will be shown. If not empty, the first button must launch the game.

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_game.SendGame

	
answer_game_pm(game_short_name: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendGame

	Shortcut for method aiogram.methods.send_game.SendGame
will automatically fill method attributes:

	chat_id

Use this method to send a game. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendgame

	Parameters:

	
	game_short_name – Short name of the game, serves as the unique identifier for the game. Set up your games via @BotFather [https://t.me/botfather].

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards]. If empty, one ‘Play game_title’ button will be shown. If not empty, the first button must launch the game.

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_game.SendGame

	
answer_invoice(title: str, description: str, payload: str, provider_token: str, currency: str, prices: List[LabeledPrice], message_thread_id: Optional[int] = None, max_tip_amount: Optional[int] = None, suggested_tip_amounts: Optional[List[int]] = None, start_parameter: Optional[str] = None, provider_data: Optional[str] = None, photo_url: Optional[str] = None, photo_size: Optional[int] = None, photo_width: Optional[int] = None, photo_height: Optional[int] = None, need_name: Optional[bool] = None, need_phone_number: Optional[bool] = None, need_email: Optional[bool] = None, need_shipping_address: Optional[bool] = None, send_phone_number_to_provider: Optional[bool] = None, send_email_to_provider: Optional[bool] = None, is_flexible: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendInvoice

	Shortcut for method aiogram.methods.send_invoice.SendInvoice
will automatically fill method attributes:

	chat_id

Use this method to send invoices. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendinvoice

	Parameters:

	
	title – Product name, 1-32 characters

	description – Product description, 1-255 characters

	payload – Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user, use for your internal processes.

	provider_token – Payment provider token, obtained via @BotFather [https://t.me/botfather]

	currency – Three-letter ISO 4217 currency code, see more on currencies [https://core.telegram.org/bots/payments#supported-currencies]

	prices – Price breakdown, a JSON-serialized list of components (e.g. product price, tax, discount, delivery cost, delivery tax, bonus, etc.)

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	max_tip_amount – The maximum accepted amount for tips in the smallest units of the currency (integer, not float/double). For example, for a maximum tip of US$ 1.45 pass max_tip_amount = 145. See the exp parameter in currencies.json [https://core.telegram.org/bots/payments/currencies.json], it shows the number of digits past the decimal point for each currency (2 for the majority of currencies). Defaults to 0

	suggested_tip_amounts – A JSON-serialized array of suggested amounts of tips in the smallest units of the currency (integer, not float/double). At most 4 suggested tip amounts can be specified. The suggested tip amounts must be positive, passed in a strictly increased order and must not exceed max_tip_amount.

	start_parameter – Unique deep-linking parameter. If left empty, forwarded copies of the sent message will have a Pay button, allowing multiple users to pay directly from the forwarded message, using the same invoice. If non-empty, forwarded copies of the sent message will have a URL button with a deep link to the bot (instead of a Pay button), with the value used as the start parameter

	provider_data – JSON-serialized data about the invoice, which will be shared with the payment provider. A detailed description of required fields should be provided by the payment provider.

	photo_url – URL of the product photo for the invoice. Can be a photo of the goods or a marketing image for a service. People like it better when they see what they are paying for.

	photo_size – Photo size in bytes

	photo_width – Photo width

	photo_height – Photo height

	need_name – Pass True if you require the user’s full name to complete the order

	need_phone_number – Pass True if you require the user’s phone number to complete the order

	need_email – Pass True if you require the user’s email address to complete the order

	need_shipping_address – Pass True if you require the user’s shipping address to complete the order

	send_phone_number_to_provider – Pass True if the user’s phone number should be sent to provider

	send_email_to_provider – Pass True if the user’s email address should be sent to provider

	is_flexible – Pass True if the final price depends on the shipping method

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards]. If empty, one ‘Pay total price’ button will be shown. If not empty, the first button must be a Pay button.

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_invoice.SendInvoice

	
answer_invoice_pm(title: str, description: str, payload: str, provider_token: str, currency: str, prices: List[LabeledPrice], message_thread_id: Optional[int] = None, max_tip_amount: Optional[int] = None, suggested_tip_amounts: Optional[List[int]] = None, start_parameter: Optional[str] = None, provider_data: Optional[str] = None, photo_url: Optional[str] = None, photo_size: Optional[int] = None, photo_width: Optional[int] = None, photo_height: Optional[int] = None, need_name: Optional[bool] = None, need_phone_number: Optional[bool] = None, need_email: Optional[bool] = None, need_shipping_address: Optional[bool] = None, send_phone_number_to_provider: Optional[bool] = None, send_email_to_provider: Optional[bool] = None, is_flexible: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendInvoice

	Shortcut for method aiogram.methods.send_invoice.SendInvoice
will automatically fill method attributes:

	chat_id

Use this method to send invoices. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendinvoice

	Parameters:

	
	title – Product name, 1-32 characters

	description – Product description, 1-255 characters

	payload – Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user, use for your internal processes.

	provider_token – Payment provider token, obtained via @BotFather [https://t.me/botfather]

	currency – Three-letter ISO 4217 currency code, see more on currencies [https://core.telegram.org/bots/payments#supported-currencies]

	prices – Price breakdown, a JSON-serialized list of components (e.g. product price, tax, discount, delivery cost, delivery tax, bonus, etc.)

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	max_tip_amount – The maximum accepted amount for tips in the smallest units of the currency (integer, not float/double). For example, for a maximum tip of US$ 1.45 pass max_tip_amount = 145. See the exp parameter in currencies.json [https://core.telegram.org/bots/payments/currencies.json], it shows the number of digits past the decimal point for each currency (2 for the majority of currencies). Defaults to 0

	suggested_tip_amounts – A JSON-serialized array of suggested amounts of tips in the smallest units of the currency (integer, not float/double). At most 4 suggested tip amounts can be specified. The suggested tip amounts must be positive, passed in a strictly increased order and must not exceed max_tip_amount.

	start_parameter – Unique deep-linking parameter. If left empty, forwarded copies of the sent message will have a Pay button, allowing multiple users to pay directly from the forwarded message, using the same invoice. If non-empty, forwarded copies of the sent message will have a URL button with a deep link to the bot (instead of a Pay button), with the value used as the start parameter

	provider_data – JSON-serialized data about the invoice, which will be shared with the payment provider. A detailed description of required fields should be provided by the payment provider.

	photo_url – URL of the product photo for the invoice. Can be a photo of the goods or a marketing image for a service. People like it better when they see what they are paying for.

	photo_size – Photo size in bytes

	photo_width – Photo width

	photo_height – Photo height

	need_name – Pass True if you require the user’s full name to complete the order

	need_phone_number – Pass True if you require the user’s phone number to complete the order

	need_email – Pass True if you require the user’s email address to complete the order

	need_shipping_address – Pass True if you require the user’s shipping address to complete the order

	send_phone_number_to_provider – Pass True if the user’s phone number should be sent to provider

	send_email_to_provider – Pass True if the user’s email address should be sent to provider

	is_flexible – Pass True if the final price depends on the shipping method

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards]. If empty, one ‘Pay total price’ button will be shown. If not empty, the first button must be a Pay button.

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_invoice.SendInvoice

	
answer_location(latitude: float, longitude: float, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, horizontal_accuracy: Optional[float] = None, live_period: Optional[int] = None, heading: Optional[int] = None, proximity_alert_radius: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendLocation

	Shortcut for method aiogram.methods.send_location.SendLocation
will automatically fill method attributes:

	chat_id

Use this method to send point on the map. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendlocation

	Parameters:

	
	latitude – Latitude of the location

	longitude – Longitude of the location

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	horizontal_accuracy – The radius of uncertainty for the location, measured in meters; 0-1500

	live_period – Period in seconds during which the location will be updated (see Live Locations [https://telegram.org/blog/live-locations], should be between 60 and 86400, or 0x7FFFFFFF for live locations that can be edited indefinitely.

	heading – For live locations, a direction in which the user is moving, in degrees. Must be between 1 and 360 if specified.

	proximity_alert_radius – For live locations, a maximum distance for proximity alerts about approaching another chat member, in meters. Must be between 1 and 100000 if specified.

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_location.SendLocation

	
answer_location_pm(latitude: float, longitude: float, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, horizontal_accuracy: Optional[float] = None, live_period: Optional[int] = None, heading: Optional[int] = None, proximity_alert_radius: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendLocation

	Shortcut for method aiogram.methods.send_location.SendLocation
will automatically fill method attributes:

	chat_id

Use this method to send point on the map. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendlocation

	Parameters:

	
	latitude – Latitude of the location

	longitude – Longitude of the location

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	horizontal_accuracy – The radius of uncertainty for the location, measured in meters; 0-1500

	live_period – Period in seconds during which the location will be updated (see Live Locations [https://telegram.org/blog/live-locations], should be between 60 and 86400, or 0x7FFFFFFF for live locations that can be edited indefinitely.

	heading – For live locations, a direction in which the user is moving, in degrees. Must be between 1 and 360 if specified.

	proximity_alert_radius – For live locations, a maximum distance for proximity alerts about approaching another chat member, in meters. Must be between 1 and 100000 if specified.

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_location.SendLocation

	
answer_media_group(media: List[Union[InputMediaAudio, InputMediaDocument, InputMediaPhoto, InputMediaVideo]], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendMediaGroup

	Shortcut for method aiogram.methods.send_media_group.SendMediaGroup
will automatically fill method attributes:

	chat_id

Use this method to send a group of photos, videos, documents or audios as an album. Documents and audio files can be only grouped in an album with messages of the same type. On success, an array of Messages [https://core.telegram.org/bots/api#message] that were sent is returned.

Source: https://core.telegram.org/bots/api#sendmediagroup

	Parameters:

	
	media – A JSON-serialized array describing messages to be sent, must include 2-10 items

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	disable_notification – Sends messages silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent messages from forwarding and saving

	reply_parameters – Description of the message to reply to

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the messages are a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_media_group.SendMediaGroup

	
answer_media_group_pm(media: List[Union[InputMediaAudio, InputMediaDocument, InputMediaPhoto, InputMediaVideo]], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendMediaGroup

	Shortcut for method aiogram.methods.send_media_group.SendMediaGroup
will automatically fill method attributes:

	chat_id

Use this method to send a group of photos, videos, documents or audios as an album. Documents and audio files can be only grouped in an album with messages of the same type. On success, an array of Messages [https://core.telegram.org/bots/api#message] that were sent is returned.

Source: https://core.telegram.org/bots/api#sendmediagroup

	Parameters:

	
	media – A JSON-serialized array describing messages to be sent, must include 2-10 items

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	disable_notification – Sends messages silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent messages from forwarding and saving

	reply_parameters – Description of the message to reply to

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the messages are a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_media_group.SendMediaGroup

	
answer_photo(photo: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, has_spoiler: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendPhoto

	Shortcut for method aiogram.methods.send_photo.SendPhoto
will automatically fill method attributes:

	chat_id

Use this method to send photos. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendphoto

	Parameters:

	
	photo – Photo to send. Pass a file_id as String to send a photo that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a photo from the Internet, or upload a new photo using multipart/form-data. The photo must be at most 10 MB in size. The photo’s width and height must not exceed 10000 in total. Width and height ratio must be at most 20. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	caption – Photo caption (may also be used when resending photos by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the photo caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	has_spoiler – Pass True if the photo needs to be covered with a spoiler animation

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_photo.SendPhoto

	
answer_photo_pm(photo: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, has_spoiler: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendPhoto

	Shortcut for method aiogram.methods.send_photo.SendPhoto
will automatically fill method attributes:

	chat_id

Use this method to send photos. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendphoto

	Parameters:

	
	photo – Photo to send. Pass a file_id as String to send a photo that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a photo from the Internet, or upload a new photo using multipart/form-data. The photo must be at most 10 MB in size. The photo’s width and height must not exceed 10000 in total. Width and height ratio must be at most 20. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	caption – Photo caption (may also be used when resending photos by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the photo caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	has_spoiler – Pass True if the photo needs to be covered with a spoiler animation

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_photo.SendPhoto

	
answer_poll(question: str, options: List[Union[InputPollOption, str]], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, question_parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, question_entities: Optional[List[MessageEntity]] = None, is_anonymous: Optional[bool] = None, type: Optional[str] = None, allows_multiple_answers: Optional[bool] = None, correct_option_id: Optional[int] = None, explanation: Optional[str] = None, explanation_parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, explanation_entities: Optional[List[MessageEntity]] = None, open_period: Optional[int] = None, close_date: Optional[Union[datetime.datetime, datetime.timedelta, int]] = None, is_closed: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendPoll

	Shortcut for method aiogram.methods.send_poll.SendPoll
will automatically fill method attributes:

	chat_id

Use this method to send a native poll. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendpoll

	Parameters:

	
	question – Poll question, 1-300 characters

	options – A JSON-serialized list of 2-10 answer options

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	question_parse_mode – Mode for parsing entities in the question. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details. Currently, only custom emoji entities are allowed

	question_entities – A JSON-serialized list of special entities that appear in the poll question. It can be specified instead of question_parse_mode

	is_anonymous – True, if the poll needs to be anonymous, defaults to True

	type – Poll type, ‘quiz’ or ‘regular’, defaults to ‘regular’

	allows_multiple_answers – True, if the poll allows multiple answers, ignored for polls in quiz mode, defaults to False

	correct_option_id – 0-based identifier of the correct answer option, required for polls in quiz mode

	explanation – Text that is shown when a user chooses an incorrect answer or taps on the lamp icon in a quiz-style poll, 0-200 characters with at most 2 line feeds after entities parsing

	explanation_parse_mode – Mode for parsing entities in the explanation. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	explanation_entities – A JSON-serialized list of special entities that appear in the poll explanation. It can be specified instead of explanation_parse_mode

	open_period – Amount of time in seconds the poll will be active after creation, 5-600. Can’t be used together with close_date.

	close_date – Point in time (Unix timestamp) when the poll will be automatically closed. Must be at least 5 and no more than 600 seconds in the future. Can’t be used together with open_period.

	is_closed – Pass True if the poll needs to be immediately closed. This can be useful for poll preview.

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_poll.SendPoll

	
answer_poll_pm(question: str, options: List[Union[InputPollOption, str]], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, question_parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, question_entities: Optional[List[MessageEntity]] = None, is_anonymous: Optional[bool] = None, type: Optional[str] = None, allows_multiple_answers: Optional[bool] = None, correct_option_id: Optional[int] = None, explanation: Optional[str] = None, explanation_parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, explanation_entities: Optional[List[MessageEntity]] = None, open_period: Optional[int] = None, close_date: Optional[Union[datetime.datetime, datetime.timedelta, int]] = None, is_closed: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendPoll

	Shortcut for method aiogram.methods.send_poll.SendPoll
will automatically fill method attributes:

	chat_id

Use this method to send a native poll. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendpoll

	Parameters:

	
	question – Poll question, 1-300 characters

	options – A JSON-serialized list of 2-10 answer options

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	question_parse_mode – Mode for parsing entities in the question. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details. Currently, only custom emoji entities are allowed

	question_entities – A JSON-serialized list of special entities that appear in the poll question. It can be specified instead of question_parse_mode

	is_anonymous – True, if the poll needs to be anonymous, defaults to True

	type – Poll type, ‘quiz’ or ‘regular’, defaults to ‘regular’

	allows_multiple_answers – True, if the poll allows multiple answers, ignored for polls in quiz mode, defaults to False

	correct_option_id – 0-based identifier of the correct answer option, required for polls in quiz mode

	explanation – Text that is shown when a user chooses an incorrect answer or taps on the lamp icon in a quiz-style poll, 0-200 characters with at most 2 line feeds after entities parsing

	explanation_parse_mode – Mode for parsing entities in the explanation. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	explanation_entities – A JSON-serialized list of special entities that appear in the poll explanation. It can be specified instead of explanation_parse_mode

	open_period – Amount of time in seconds the poll will be active after creation, 5-600. Can’t be used together with close_date.

	close_date – Point in time (Unix timestamp) when the poll will be automatically closed. Must be at least 5 and no more than 600 seconds in the future. Can’t be used together with open_period.

	is_closed – Pass True if the poll needs to be immediately closed. This can be useful for poll preview.

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_poll.SendPoll

	
answer_dice(business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, emoji: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendDice

	Shortcut for method aiogram.methods.send_dice.SendDice
will automatically fill method attributes:

	chat_id

Use this method to send an animated emoji that will display a random value. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#senddice

	Parameters:

	
	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	emoji – Emoji on which the dice throw animation is based. Currently, must be one of ‘🎲’, ‘🎯’, ‘🏀’, ‘⚽’, ‘🎳’, or ‘🎰’. Dice can have values 1-6 for ‘🎲’, ‘🎯’ and ‘🎳’, values 1-5 for ‘🏀’ and ‘⚽’, and values 1-64 for ‘🎰’. Defaults to ‘🎲’

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_dice.SendDice

	
answer_dice_pm(business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, emoji: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendDice

	Shortcut for method aiogram.methods.send_dice.SendDice
will automatically fill method attributes:

	chat_id

Use this method to send an animated emoji that will display a random value. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#senddice

	Parameters:

	
	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	emoji – Emoji on which the dice throw animation is based. Currently, must be one of ‘🎲’, ‘🎯’, ‘🏀’, ‘⚽’, ‘🎳’, or ‘🎰’. Dice can have values 1-6 for ‘🎲’, ‘🎯’ and ‘🎳’, values 1-5 for ‘🏀’ and ‘⚽’, and values 1-64 for ‘🎰’. Defaults to ‘🎲’

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_dice.SendDice

	
answer_sticker(sticker: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, emoji: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendSticker

	Shortcut for method aiogram.methods.send_sticker.SendSticker
will automatically fill method attributes:

	chat_id

Use this method to send static .WEBP, animated [https://telegram.org/blog/animated-stickers] .TGS, or video [https://telegram.org/blog/video-stickers-better-reactions] .WEBM stickers. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendsticker

	Parameters:

	
	sticker – Sticker to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a .WEBP sticker from the Internet, or upload a new .WEBP, .TGS, or .WEBM sticker using multipart/form-data. More information on Sending Files ». Video and animated stickers can’t be sent via an HTTP URL.

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	emoji – Emoji associated with the sticker; only for just uploaded stickers

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_sticker.SendSticker

	
answer_sticker_pm(sticker: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, emoji: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendSticker

	Shortcut for method aiogram.methods.send_sticker.SendSticker
will automatically fill method attributes:

	chat_id

Use this method to send static .WEBP, animated [https://telegram.org/blog/animated-stickers] .TGS, or video [https://telegram.org/blog/video-stickers-better-reactions] .WEBM stickers. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendsticker

	Parameters:

	
	sticker – Sticker to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a .WEBP sticker from the Internet, or upload a new .WEBP, .TGS, or .WEBM sticker using multipart/form-data. More information on Sending Files ». Video and animated stickers can’t be sent via an HTTP URL.

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	emoji – Emoji associated with the sticker; only for just uploaded stickers

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_sticker.SendSticker

	
answer_venue(latitude: float, longitude: float, title: str, address: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, foursquare_id: Optional[str] = None, foursquare_type: Optional[str] = None, google_place_id: Optional[str] = None, google_place_type: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendVenue

	Shortcut for method aiogram.methods.send_venue.SendVenue
will automatically fill method attributes:

	chat_id

Use this method to send information about a venue. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvenue

	Parameters:

	
	latitude – Latitude of the venue

	longitude – Longitude of the venue

	title – Name of the venue

	address – Address of the venue

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	foursquare_id – Foursquare identifier of the venue

	foursquare_type – Foursquare type of the venue, if known. (For example, ‘arts_entertainment/default’, ‘arts_entertainment/aquarium’ or ‘food/icecream’.)

	google_place_id – Google Places identifier of the venue

	google_place_type – Google Places type of the venue. (See supported types [https://developers.google.com/places/web-service/supported_types].)

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_venue.SendVenue

	
answer_venue_pm(latitude: float, longitude: float, title: str, address: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, foursquare_id: Optional[str] = None, foursquare_type: Optional[str] = None, google_place_id: Optional[str] = None, google_place_type: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendVenue

	Shortcut for method aiogram.methods.send_venue.SendVenue
will automatically fill method attributes:

	chat_id

Use this method to send information about a venue. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvenue

	Parameters:

	
	latitude – Latitude of the venue

	longitude – Longitude of the venue

	title – Name of the venue

	address – Address of the venue

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	foursquare_id – Foursquare identifier of the venue

	foursquare_type – Foursquare type of the venue, if known. (For example, ‘arts_entertainment/default’, ‘arts_entertainment/aquarium’ or ‘food/icecream’.)

	google_place_id – Google Places identifier of the venue

	google_place_type – Google Places type of the venue. (See supported types [https://developers.google.com/places/web-service/supported_types].)

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_venue.SendVenue

	
answer_video(video: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, duration: Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, has_spoiler: Optional[bool] = None, supports_streaming: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendVideo

	Shortcut for method aiogram.methods.send_video.SendVideo
will automatically fill method attributes:

	chat_id

Use this method to send video files, Telegram clients support MPEG4 videos (other formats may be sent as aiogram.types.document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can currently send video files of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvideo

	Parameters:

	
	video – Video to send. Pass a file_id as String to send a video that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a video from the Internet, or upload a new video using multipart/form-data. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	duration – Duration of sent video in seconds

	width – Video width

	height – Video height

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	caption – Video caption (may also be used when resending videos by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the video caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	has_spoiler – Pass True if the video needs to be covered with a spoiler animation

	supports_streaming – Pass True if the uploaded video is suitable for streaming

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_video.SendVideo

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
answer_video_pm(video: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, duration: Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, has_spoiler: Optional[bool] = None, supports_streaming: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendVideo

	Shortcut for method aiogram.methods.send_video.SendVideo
will automatically fill method attributes:

	chat_id

Use this method to send video files, Telegram clients support MPEG4 videos (other formats may be sent as aiogram.types.document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can currently send video files of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvideo

	Parameters:

	
	video – Video to send. Pass a file_id as String to send a video that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a video from the Internet, or upload a new video using multipart/form-data. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	duration – Duration of sent video in seconds

	width – Video width

	height – Video height

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	caption – Video caption (may also be used when resending videos by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the video caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	has_spoiler – Pass True if the video needs to be covered with a spoiler animation

	supports_streaming – Pass True if the uploaded video is suitable for streaming

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_video.SendVideo

	
answer_video_note(video_note: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, duration: Optional[int] = None, length: Optional[int] = None, thumbnail: Optional[InputFile] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendVideoNote

	Shortcut for method aiogram.methods.send_video_note.SendVideoNote
will automatically fill method attributes:

	chat_id

As of v.4.0 [https://telegram.org/blog/video-messages-and-telescope], Telegram clients support rounded square MPEG4 videos of up to 1 minute long. Use this method to send video messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvideonote

	Parameters:

	
	video_note – Video note to send. Pass a file_id as String to send a video note that exists on the Telegram servers (recommended) or upload a new video using multipart/form-data. More information on Sending Files ». Sending video notes by a URL is currently unsupported

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	duration – Duration of sent video in seconds

	length – Video width and height, i.e. diameter of the video message

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_video_note.SendVideoNote

	
answer_video_note_pm(video_note: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, duration: Optional[int] = None, length: Optional[int] = None, thumbnail: Optional[InputFile] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendVideoNote

	Shortcut for method aiogram.methods.send_video_note.SendVideoNote
will automatically fill method attributes:

	chat_id

As of v.4.0 [https://telegram.org/blog/video-messages-and-telescope], Telegram clients support rounded square MPEG4 videos of up to 1 minute long. Use this method to send video messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvideonote

	Parameters:

	
	video_note – Video note to send. Pass a file_id as String to send a video note that exists on the Telegram servers (recommended) or upload a new video using multipart/form-data. More information on Sending Files ». Sending video notes by a URL is currently unsupported

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	duration – Duration of sent video in seconds

	length – Video width and height, i.e. diameter of the video message

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_video_note.SendVideoNote

	
answer_voice(voice: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, duration: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendVoice

	Shortcut for method aiogram.methods.send_voice.SendVoice
will automatically fill method attributes:

	chat_id

Use this method to send audio files, if you want Telegram clients to display the file as a playable voice message. For this to work, your audio must be in an .OGG file encoded with OPUS, or in .MP3 format, or in .M4A format (other formats may be sent as aiogram.types.audio.Audio or aiogram.types.document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can currently send voice messages of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvoice

	Parameters:

	
	voice – Audio file to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	caption – Voice message caption, 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the voice message caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	duration – Duration of the voice message in seconds

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_voice.SendVoice

	
answer_voice_pm(voice: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, duration: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendVoice

	Shortcut for method aiogram.methods.send_voice.SendVoice
will automatically fill method attributes:

	chat_id

Use this method to send audio files, if you want Telegram clients to display the file as a playable voice message. For this to work, your audio must be in an .OGG file encoded with OPUS, or in .MP3 format, or in .M4A format (other formats may be sent as aiogram.types.audio.Audio or aiogram.types.document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can currently send voice messages of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvoice

	Parameters:

	
	voice – Audio file to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	caption – Voice message caption, 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the voice message caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	duration – Duration of the voice message in seconds

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_voice.SendVoice

ChatLocation

	
class aiogram.types.chat_location.ChatLocation(*, location: Location, address: str, **extra_data: Any)

	Represents a location to which a chat is connected.

Source: https://core.telegram.org/bots/api#chatlocation

	
location: Location

	The location to which the supergroup is connected. Can’t be a live location.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
address: str

	Location address; 1-64 characters, as defined by the chat owner

ChatMember

	
class aiogram.types.chat_member.ChatMember(**extra_data: Any)

	This object contains information about one member of a chat. Currently, the following 6 types of chat members are supported:

	aiogram.types.chat_member_owner.ChatMemberOwner

	aiogram.types.chat_member_administrator.ChatMemberAdministrator

	aiogram.types.chat_member_member.ChatMemberMember

	aiogram.types.chat_member_restricted.ChatMemberRestricted

	aiogram.types.chat_member_left.ChatMemberLeft

	aiogram.types.chat_member_banned.ChatMemberBanned

Source: https://core.telegram.org/bots/api#chatmember

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

ChatMemberAdministrator

	
class aiogram.types.chat_member_administrator.ChatMemberAdministrator(*, status: Literal[ChatMemberStatus.ADMINISTRATOR] = ChatMemberStatus.ADMINISTRATOR, user: User, can_be_edited: bool, is_anonymous: bool, can_manage_chat: bool, can_delete_messages: bool, can_manage_video_chats: bool, can_restrict_members: bool, can_promote_members: bool, can_change_info: bool, can_invite_users: bool, can_post_stories: bool, can_edit_stories: bool, can_delete_stories: bool, can_post_messages: bool | None = None, can_edit_messages: bool | None = None, can_pin_messages: bool | None = None, can_manage_topics: bool | None = None, custom_title: str | None = None, **extra_data: Any)

	Represents a chat member [https://core.telegram.org/bots/api#chatmember] that has some additional privileges.

Source: https://core.telegram.org/bots/api#chatmemberadministrator

	
status: Literal[ChatMemberStatus.ADMINISTRATOR]

	The member’s status in the chat, always ‘administrator’

	
user: User

	Information about the user

	
can_be_edited: bool

	True, if the bot is allowed to edit administrator privileges of that user

	
is_anonymous: bool

	True, if the user’s presence in the chat is hidden

	
can_manage_chat: bool

	True, if the administrator can access the chat event log, get boost list, see hidden supergroup and channel members, report spam messages and ignore slow mode. Implied by any other administrator privilege.

	
can_delete_messages: bool

	True, if the administrator can delete messages of other users

	
can_manage_video_chats: bool

	True, if the administrator can manage video chats

	
can_restrict_members: bool

	True, if the administrator can restrict, ban or unban chat members, or access supergroup statistics

	
can_promote_members: bool

	True, if the administrator can add new administrators with a subset of their own privileges or demote administrators that they have promoted, directly or indirectly (promoted by administrators that were appointed by the user)

	
can_change_info: bool

	True, if the user is allowed to change the chat title, photo and other settings

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
can_invite_users: bool

	True, if the user is allowed to invite new users to the chat

	
can_post_stories: bool

	True, if the administrator can post stories to the chat

	
can_edit_stories: bool

	True, if the administrator can edit stories posted by other users, post stories to the chat page, pin chat stories, and access the chat’s story archive

	
can_delete_stories: bool

	True, if the administrator can delete stories posted by other users

	
can_post_messages: bool | None

	Optional. True, if the administrator can post messages in the channel, or access channel statistics; for channels only

	
can_edit_messages: bool | None

	Optional. True, if the administrator can edit messages of other users and can pin messages; for channels only

	
can_pin_messages: bool | None

	Optional. True, if the user is allowed to pin messages; for groups and supergroups only

	
can_manage_topics: bool | None

	Optional. True, if the user is allowed to create, rename, close, and reopen forum topics; for supergroups only

	
custom_title: str | None

	Optional. Custom title for this user

ChatMemberBanned

	
class aiogram.types.chat_member_banned.ChatMemberBanned(*, status: Literal[ChatMemberStatus.KICKED] = ChatMemberStatus.KICKED, user: User, until_date: datetime, **extra_data: Any)

	Represents a chat member [https://core.telegram.org/bots/api#chatmember] that was banned in the chat and can’t return to the chat or view chat messages.

Source: https://core.telegram.org/bots/api#chatmemberbanned

	
status: Literal[ChatMemberStatus.KICKED]

	The member’s status in the chat, always ‘kicked’

	
user: User

	Information about the user

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
until_date: DateTime

	Date when restrictions will be lifted for this user; Unix time. If 0, then the user is banned forever

ChatMemberLeft

	
class aiogram.types.chat_member_left.ChatMemberLeft(*, status: Literal[ChatMemberStatus.LEFT] = ChatMemberStatus.LEFT, user: User, **extra_data: Any)

	Represents a chat member [https://core.telegram.org/bots/api#chatmember] that isn’t currently a member of the chat, but may join it themselves.

Source: https://core.telegram.org/bots/api#chatmemberleft

	
status: Literal[ChatMemberStatus.LEFT]

	The member’s status in the chat, always ‘left’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
user: User

	Information about the user

ChatMemberMember

	
class aiogram.types.chat_member_member.ChatMemberMember(*, status: Literal[ChatMemberStatus.MEMBER] = ChatMemberStatus.MEMBER, user: User, **extra_data: Any)

	Represents a chat member [https://core.telegram.org/bots/api#chatmember] that has no additional privileges or restrictions.

Source: https://core.telegram.org/bots/api#chatmembermember

	
status: Literal[ChatMemberStatus.MEMBER]

	The member’s status in the chat, always ‘member’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
user: User

	Information about the user

ChatMemberOwner

	
class aiogram.types.chat_member_owner.ChatMemberOwner(*, status: Literal[ChatMemberStatus.CREATOR] = ChatMemberStatus.CREATOR, user: User, is_anonymous: bool, custom_title: str | None = None, **extra_data: Any)

	Represents a chat member [https://core.telegram.org/bots/api#chatmember] that owns the chat and has all administrator privileges.

Source: https://core.telegram.org/bots/api#chatmemberowner

	
status: Literal[ChatMemberStatus.CREATOR]

	The member’s status in the chat, always ‘creator’

	
user: User

	Information about the user

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
is_anonymous: bool

	True, if the user’s presence in the chat is hidden

	
custom_title: str | None

	Optional. Custom title for this user

ChatMemberRestricted

	
class aiogram.types.chat_member_restricted.ChatMemberRestricted(*, status: Literal[ChatMemberStatus.RESTRICTED] = ChatMemberStatus.RESTRICTED, user: User, is_member: bool, can_send_messages: bool, can_send_audios: bool, can_send_documents: bool, can_send_photos: bool, can_send_videos: bool, can_send_video_notes: bool, can_send_voice_notes: bool, can_send_polls: bool, can_send_other_messages: bool, can_add_web_page_previews: bool, can_change_info: bool, can_invite_users: bool, can_pin_messages: bool, can_manage_topics: bool, until_date: datetime, **extra_data: Any)

	Represents a chat member [https://core.telegram.org/bots/api#chatmember] that is under certain restrictions in the chat. Supergroups only.

Source: https://core.telegram.org/bots/api#chatmemberrestricted

	
status: Literal[ChatMemberStatus.RESTRICTED]

	The member’s status in the chat, always ‘restricted’

	
user: User

	Information about the user

	
is_member: bool

	True, if the user is a member of the chat at the moment of the request

	
can_send_messages: bool

	True, if the user is allowed to send text messages, contacts, giveaways, giveaway winners, invoices, locations and venues

	
can_send_audios: bool

	True, if the user is allowed to send audios

	
can_send_documents: bool

	True, if the user is allowed to send documents

	
can_send_photos: bool

	True, if the user is allowed to send photos

	
can_send_videos: bool

	True, if the user is allowed to send videos

	
can_send_video_notes: bool

	True, if the user is allowed to send video notes

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
can_send_voice_notes: bool

	True, if the user is allowed to send voice notes

	
can_send_polls: bool

	True, if the user is allowed to send polls

	
can_send_other_messages: bool

	True, if the user is allowed to send animations, games, stickers and use inline bots

	
can_add_web_page_previews: bool

	True, if the user is allowed to add web page previews to their messages

	
can_change_info: bool

	True, if the user is allowed to change the chat title, photo and other settings

	
can_invite_users: bool

	True, if the user is allowed to invite new users to the chat

	
can_pin_messages: bool

	True, if the user is allowed to pin messages

	
can_manage_topics: bool

	True, if the user is allowed to create forum topics

	
until_date: DateTime

	Date when restrictions will be lifted for this user; Unix time. If 0, then the user is restricted forever

ChatMemberUpdated

	
class aiogram.types.chat_member_updated.ChatMemberUpdated(*, chat: Chat, from_user: User, date: datetime, old_chat_member: ChatMemberOwner | ChatMemberAdministrator | ChatMemberMember | ChatMemberRestricted | ChatMemberLeft | ChatMemberBanned, new_chat_member: ChatMemberOwner | ChatMemberAdministrator | ChatMemberMember | ChatMemberRestricted | ChatMemberLeft | ChatMemberBanned, invite_link: ChatInviteLink | None = None, via_join_request: bool | None = None, via_chat_folder_invite_link: bool | None = None, **extra_data: Any)

	This object represents changes in the status of a chat member.

Source: https://core.telegram.org/bots/api#chatmemberupdated

	
chat: Chat

	Chat the user belongs to

	
from_user: User

	Performer of the action, which resulted in the change

	
date: DateTime

	Date the change was done in Unix time

	
old_chat_member: ChatMemberOwner | ChatMemberAdministrator | ChatMemberMember | ChatMemberRestricted | ChatMemberLeft | ChatMemberBanned

	Previous information about the chat member

	
new_chat_member: ChatMemberOwner | ChatMemberAdministrator | ChatMemberMember | ChatMemberRestricted | ChatMemberLeft | ChatMemberBanned

	New information about the chat member

	
invite_link: ChatInviteLink | None

	Optional. Chat invite link, which was used by the user to join the chat; for joining by invite link events only.

	
via_join_request: bool | None

	Optional. True, if the user joined the chat after sending a direct join request and being approved by an administrator

	
via_chat_folder_invite_link: bool | None

	Optional. True, if the user joined the chat via a chat folder invite link

	
answer(text: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, entities: Optional[List[MessageEntity]] = None, link_preview_options: Optional[Union[LinkPreviewOptions, Default]] = <Default('link_preview')>, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, disable_web_page_preview: Optional[Union[bool, Default]] = <Default('link_preview_is_disabled')>, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendMessage

	Shortcut for method aiogram.methods.send_message.SendMessage
will automatically fill method attributes:

	chat_id

Use this method to send text messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendmessage

	Parameters:

	
	text – Text of the message to be sent, 1-4096 characters after entities parsing

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	parse_mode – Mode for parsing entities in the message text. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	entities – A JSON-serialized list of special entities that appear in message text, which can be specified instead of parse_mode

	link_preview_options – Link preview generation options for the message

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	disable_web_page_preview – Disables link previews for links in this message

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_message.SendMessage

	
answer_animation(animation: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, duration: Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, has_spoiler: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendAnimation

	Shortcut for method aiogram.methods.send_animation.SendAnimation
will automatically fill method attributes:

	chat_id

Use this method to send animation files (GIF or H.264/MPEG-4 AVC video without sound). On success, the sent aiogram.types.message.Message is returned. Bots can currently send animation files of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendanimation

	Parameters:

	
	animation – Animation to send. Pass a file_id as String to send an animation that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get an animation from the Internet, or upload a new animation using multipart/form-data. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	duration – Duration of sent animation in seconds

	width – Animation width

	height – Animation height

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	caption – Animation caption (may also be used when resending animation by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the animation caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	has_spoiler – Pass True if the animation needs to be covered with a spoiler animation

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_animation.SendAnimation

	
answer_audio(audio: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, duration: Optional[int] = None, performer: Optional[str] = None, title: Optional[str] = None, thumbnail: Optional[InputFile] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendAudio

	Shortcut for method aiogram.methods.send_audio.SendAudio
will automatically fill method attributes:

	chat_id

Use this method to send audio files, if you want Telegram clients to display them in the music player. Your audio must be in the .MP3 or .M4A format. On success, the sent aiogram.types.message.Message is returned. Bots can currently send audio files of up to 50 MB in size, this limit may be changed in the future.
For sending voice messages, use the aiogram.methods.send_voice.SendVoice method instead.

Source: https://core.telegram.org/bots/api#sendaudio

	Parameters:

	
	audio – Audio file to send. Pass a file_id as String to send an audio file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get an audio file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	caption – Audio caption, 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the audio caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	duration – Duration of the audio in seconds

	performer – Performer

	title – Track name

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_audio.SendAudio

	
answer_contact(phone_number: str, first_name: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, last_name: Optional[str] = None, vcard: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendContact

	Shortcut for method aiogram.methods.send_contact.SendContact
will automatically fill method attributes:

	chat_id

Use this method to send phone contacts. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendcontact

	Parameters:

	
	phone_number – Contact’s phone number

	first_name – Contact’s first name

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	last_name – Contact’s last name

	vcard – Additional data about the contact in the form of a vCard [https://en.wikipedia.org/wiki/VCard], 0-2048 bytes

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_contact.SendContact

	
answer_document(document: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, disable_content_type_detection: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendDocument

	Shortcut for method aiogram.methods.send_document.SendDocument
will automatically fill method attributes:

	chat_id

Use this method to send general files. On success, the sent aiogram.types.message.Message is returned. Bots can currently send files of any type of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#senddocument

	Parameters:

	
	document – File to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	caption – Document caption (may also be used when resending documents by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the document caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	disable_content_type_detection – Disables automatic server-side content type detection for files uploaded using multipart/form-data

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_document.SendDocument

	
answer_game(game_short_name: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendGame

	Shortcut for method aiogram.methods.send_game.SendGame
will automatically fill method attributes:

	chat_id

Use this method to send a game. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendgame

	Parameters:

	
	game_short_name – Short name of the game, serves as the unique identifier for the game. Set up your games via @BotFather [https://t.me/botfather].

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards]. If empty, one ‘Play game_title’ button will be shown. If not empty, the first button must launch the game.

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_game.SendGame

	
answer_invoice(title: str, description: str, payload: str, provider_token: str, currency: str, prices: List[LabeledPrice], message_thread_id: Optional[int] = None, max_tip_amount: Optional[int] = None, suggested_tip_amounts: Optional[List[int]] = None, start_parameter: Optional[str] = None, provider_data: Optional[str] = None, photo_url: Optional[str] = None, photo_size: Optional[int] = None, photo_width: Optional[int] = None, photo_height: Optional[int] = None, need_name: Optional[bool] = None, need_phone_number: Optional[bool] = None, need_email: Optional[bool] = None, need_shipping_address: Optional[bool] = None, send_phone_number_to_provider: Optional[bool] = None, send_email_to_provider: Optional[bool] = None, is_flexible: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendInvoice

	Shortcut for method aiogram.methods.send_invoice.SendInvoice
will automatically fill method attributes:

	chat_id

Use this method to send invoices. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendinvoice

	Parameters:

	
	title – Product name, 1-32 characters

	description – Product description, 1-255 characters

	payload – Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user, use for your internal processes.

	provider_token – Payment provider token, obtained via @BotFather [https://t.me/botfather]

	currency – Three-letter ISO 4217 currency code, see more on currencies [https://core.telegram.org/bots/payments#supported-currencies]

	prices – Price breakdown, a JSON-serialized list of components (e.g. product price, tax, discount, delivery cost, delivery tax, bonus, etc.)

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	max_tip_amount – The maximum accepted amount for tips in the smallest units of the currency (integer, not float/double). For example, for a maximum tip of US$ 1.45 pass max_tip_amount = 145. See the exp parameter in currencies.json [https://core.telegram.org/bots/payments/currencies.json], it shows the number of digits past the decimal point for each currency (2 for the majority of currencies). Defaults to 0

	suggested_tip_amounts – A JSON-serialized array of suggested amounts of tips in the smallest units of the currency (integer, not float/double). At most 4 suggested tip amounts can be specified. The suggested tip amounts must be positive, passed in a strictly increased order and must not exceed max_tip_amount.

	start_parameter – Unique deep-linking parameter. If left empty, forwarded copies of the sent message will have a Pay button, allowing multiple users to pay directly from the forwarded message, using the same invoice. If non-empty, forwarded copies of the sent message will have a URL button with a deep link to the bot (instead of a Pay button), with the value used as the start parameter

	provider_data – JSON-serialized data about the invoice, which will be shared with the payment provider. A detailed description of required fields should be provided by the payment provider.

	photo_url – URL of the product photo for the invoice. Can be a photo of the goods or a marketing image for a service. People like it better when they see what they are paying for.

	photo_size – Photo size in bytes

	photo_width – Photo width

	photo_height – Photo height

	need_name – Pass True if you require the user’s full name to complete the order

	need_phone_number – Pass True if you require the user’s phone number to complete the order

	need_email – Pass True if you require the user’s email address to complete the order

	need_shipping_address – Pass True if you require the user’s shipping address to complete the order

	send_phone_number_to_provider – Pass True if the user’s phone number should be sent to provider

	send_email_to_provider – Pass True if the user’s email address should be sent to provider

	is_flexible – Pass True if the final price depends on the shipping method

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards]. If empty, one ‘Pay total price’ button will be shown. If not empty, the first button must be a Pay button.

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_invoice.SendInvoice

	
answer_location(latitude: float, longitude: float, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, horizontal_accuracy: Optional[float] = None, live_period: Optional[int] = None, heading: Optional[int] = None, proximity_alert_radius: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendLocation

	Shortcut for method aiogram.methods.send_location.SendLocation
will automatically fill method attributes:

	chat_id

Use this method to send point on the map. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendlocation

	Parameters:

	
	latitude – Latitude of the location

	longitude – Longitude of the location

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	horizontal_accuracy – The radius of uncertainty for the location, measured in meters; 0-1500

	live_period – Period in seconds during which the location will be updated (see Live Locations [https://telegram.org/blog/live-locations], should be between 60 and 86400, or 0x7FFFFFFF for live locations that can be edited indefinitely.

	heading – For live locations, a direction in which the user is moving, in degrees. Must be between 1 and 360 if specified.

	proximity_alert_radius – For live locations, a maximum distance for proximity alerts about approaching another chat member, in meters. Must be between 1 and 100000 if specified.

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_location.SendLocation

	
answer_media_group(media: List[Union[InputMediaAudio, InputMediaDocument, InputMediaPhoto, InputMediaVideo]], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendMediaGroup

	Shortcut for method aiogram.methods.send_media_group.SendMediaGroup
will automatically fill method attributes:

	chat_id

Use this method to send a group of photos, videos, documents or audios as an album. Documents and audio files can be only grouped in an album with messages of the same type. On success, an array of Messages [https://core.telegram.org/bots/api#message] that were sent is returned.

Source: https://core.telegram.org/bots/api#sendmediagroup

	Parameters:

	
	media – A JSON-serialized array describing messages to be sent, must include 2-10 items

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	disable_notification – Sends messages silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent messages from forwarding and saving

	reply_parameters – Description of the message to reply to

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the messages are a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_media_group.SendMediaGroup

	
answer_photo(photo: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, has_spoiler: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendPhoto

	Shortcut for method aiogram.methods.send_photo.SendPhoto
will automatically fill method attributes:

	chat_id

Use this method to send photos. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendphoto

	Parameters:

	
	photo – Photo to send. Pass a file_id as String to send a photo that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a photo from the Internet, or upload a new photo using multipart/form-data. The photo must be at most 10 MB in size. The photo’s width and height must not exceed 10000 in total. Width and height ratio must be at most 20. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	caption – Photo caption (may also be used when resending photos by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the photo caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	has_spoiler – Pass True if the photo needs to be covered with a spoiler animation

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_photo.SendPhoto

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
answer_poll(question: str, options: List[Union[InputPollOption, str]], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, question_parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, question_entities: Optional[List[MessageEntity]] = None, is_anonymous: Optional[bool] = None, type: Optional[str] = None, allows_multiple_answers: Optional[bool] = None, correct_option_id: Optional[int] = None, explanation: Optional[str] = None, explanation_parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, explanation_entities: Optional[List[MessageEntity]] = None, open_period: Optional[int] = None, close_date: Optional[Union[datetime.datetime, datetime.timedelta, int]] = None, is_closed: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendPoll

	Shortcut for method aiogram.methods.send_poll.SendPoll
will automatically fill method attributes:

	chat_id

Use this method to send a native poll. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendpoll

	Parameters:

	
	question – Poll question, 1-300 characters

	options – A JSON-serialized list of 2-10 answer options

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	question_parse_mode – Mode for parsing entities in the question. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details. Currently, only custom emoji entities are allowed

	question_entities – A JSON-serialized list of special entities that appear in the poll question. It can be specified instead of question_parse_mode

	is_anonymous – True, if the poll needs to be anonymous, defaults to True

	type – Poll type, ‘quiz’ or ‘regular’, defaults to ‘regular’

	allows_multiple_answers – True, if the poll allows multiple answers, ignored for polls in quiz mode, defaults to False

	correct_option_id – 0-based identifier of the correct answer option, required for polls in quiz mode

	explanation – Text that is shown when a user chooses an incorrect answer or taps on the lamp icon in a quiz-style poll, 0-200 characters with at most 2 line feeds after entities parsing

	explanation_parse_mode – Mode for parsing entities in the explanation. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	explanation_entities – A JSON-serialized list of special entities that appear in the poll explanation. It can be specified instead of explanation_parse_mode

	open_period – Amount of time in seconds the poll will be active after creation, 5-600. Can’t be used together with close_date.

	close_date – Point in time (Unix timestamp) when the poll will be automatically closed. Must be at least 5 and no more than 600 seconds in the future. Can’t be used together with open_period.

	is_closed – Pass True if the poll needs to be immediately closed. This can be useful for poll preview.

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_poll.SendPoll

	
answer_dice(business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, emoji: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendDice

	Shortcut for method aiogram.methods.send_dice.SendDice
will automatically fill method attributes:

	chat_id

Use this method to send an animated emoji that will display a random value. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#senddice

	Parameters:

	
	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	emoji – Emoji on which the dice throw animation is based. Currently, must be one of ‘🎲’, ‘🎯’, ‘🏀’, ‘⚽’, ‘🎳’, or ‘🎰’. Dice can have values 1-6 for ‘🎲’, ‘🎯’ and ‘🎳’, values 1-5 for ‘🏀’ and ‘⚽’, and values 1-64 for ‘🎰’. Defaults to ‘🎲’

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_dice.SendDice

	
answer_sticker(sticker: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, emoji: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendSticker

	Shortcut for method aiogram.methods.send_sticker.SendSticker
will automatically fill method attributes:

	chat_id

Use this method to send static .WEBP, animated [https://telegram.org/blog/animated-stickers] .TGS, or video [https://telegram.org/blog/video-stickers-better-reactions] .WEBM stickers. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendsticker

	Parameters:

	
	sticker – Sticker to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a .WEBP sticker from the Internet, or upload a new .WEBP, .TGS, or .WEBM sticker using multipart/form-data. More information on Sending Files ». Video and animated stickers can’t be sent via an HTTP URL.

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	emoji – Emoji associated with the sticker; only for just uploaded stickers

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_sticker.SendSticker

	
answer_venue(latitude: float, longitude: float, title: str, address: str, business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, foursquare_id: Optional[str] = None, foursquare_type: Optional[str] = None, google_place_id: Optional[str] = None, google_place_type: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendVenue

	Shortcut for method aiogram.methods.send_venue.SendVenue
will automatically fill method attributes:

	chat_id

Use this method to send information about a venue. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvenue

	Parameters:

	
	latitude – Latitude of the venue

	longitude – Longitude of the venue

	title – Name of the venue

	address – Address of the venue

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	foursquare_id – Foursquare identifier of the venue

	foursquare_type – Foursquare type of the venue, if known. (For example, ‘arts_entertainment/default’, ‘arts_entertainment/aquarium’ or ‘food/icecream’.)

	google_place_id – Google Places identifier of the venue

	google_place_type – Google Places type of the venue. (See supported types [https://developers.google.com/places/web-service/supported_types].)

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_venue.SendVenue

	
answer_video(video: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, duration: Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, has_spoiler: Optional[bool] = None, supports_streaming: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendVideo

	Shortcut for method aiogram.methods.send_video.SendVideo
will automatically fill method attributes:

	chat_id

Use this method to send video files, Telegram clients support MPEG4 videos (other formats may be sent as aiogram.types.document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can currently send video files of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvideo

	Parameters:

	
	video – Video to send. Pass a file_id as String to send a video that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a video from the Internet, or upload a new video using multipart/form-data. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	duration – Duration of sent video in seconds

	width – Video width

	height – Video height

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	caption – Video caption (may also be used when resending videos by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the video caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	has_spoiler – Pass True if the video needs to be covered with a spoiler animation

	supports_streaming – Pass True if the uploaded video is suitable for streaming

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_video.SendVideo

	
answer_video_note(video_note: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, duration: Optional[int] = None, length: Optional[int] = None, thumbnail: Optional[InputFile] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendVideoNote

	Shortcut for method aiogram.methods.send_video_note.SendVideoNote
will automatically fill method attributes:

	chat_id

As of v.4.0 [https://telegram.org/blog/video-messages-and-telescope], Telegram clients support rounded square MPEG4 videos of up to 1 minute long. Use this method to send video messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvideonote

	Parameters:

	
	video_note – Video note to send. Pass a file_id as String to send a video note that exists on the Telegram servers (recommended) or upload a new video using multipart/form-data. More information on Sending Files ». Sending video notes by a URL is currently unsupported

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	duration – Duration of sent video in seconds

	length – Video width and height, i.e. diameter of the video message

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_video_note.SendVideoNote

	
answer_voice(voice: Union[InputFile, str], business_connection_id: Optional[str] = None, message_thread_id: Optional[int] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, duration: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendVoice

	Shortcut for method aiogram.methods.send_voice.SendVoice
will automatically fill method attributes:

	chat_id

Use this method to send audio files, if you want Telegram clients to display the file as a playable voice message. For this to work, your audio must be in an .OGG file encoded with OPUS, or in .MP3 format, or in .M4A format (other formats may be sent as aiogram.types.audio.Audio or aiogram.types.document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can currently send voice messages of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvoice

	Parameters:

	
	voice – Audio file to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	business_connection_id – Unique identifier of the business connection on behalf of which the message will be sent

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	caption – Voice message caption, 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the voice message caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	duration – Duration of the voice message in seconds

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_voice.SendVoice

ChatPermissions

	
class aiogram.types.chat_permissions.ChatPermissions(*, can_send_messages: bool | None = None, can_send_audios: bool | None = None, can_send_documents: bool | None = None, can_send_photos: bool | None = None, can_send_videos: bool | None = None, can_send_video_notes: bool | None = None, can_send_voice_notes: bool | None = None, can_send_polls: bool | None = None, can_send_other_messages: bool | None = None, can_add_web_page_previews: bool | None = None, can_change_info: bool | None = None, can_invite_users: bool | None = None, can_pin_messages: bool | None = None, can_manage_topics: bool | None = None, **extra_data: Any)

	Describes actions that a non-administrator user is allowed to take in a chat.

Source: https://core.telegram.org/bots/api#chatpermissions

	
can_send_messages: bool | None

	Optional. True, if the user is allowed to send text messages, contacts, giveaways, giveaway winners, invoices, locations and venues

	
can_send_audios: bool | None

	Optional. True, if the user is allowed to send audios

	
can_send_documents: bool | None

	Optional. True, if the user is allowed to send documents

	
can_send_photos: bool | None

	Optional. True, if the user is allowed to send photos

	
can_send_videos: bool | None

	Optional. True, if the user is allowed to send videos

	
can_send_video_notes: bool | None

	Optional. True, if the user is allowed to send video notes

	
can_send_voice_notes: bool | None

	Optional. True, if the user is allowed to send voice notes

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
can_send_polls: bool | None

	Optional. True, if the user is allowed to send polls

	
can_send_other_messages: bool | None

	Optional. True, if the user is allowed to send animations, games, stickers and use inline bots

	
can_add_web_page_previews: bool | None

	Optional. True, if the user is allowed to add web page previews to their messages

	
can_change_info: bool | None

	Optional. True, if the user is allowed to change the chat title, photo and other settings. Ignored in public supergroups

	
can_invite_users: bool | None

	Optional. True, if the user is allowed to invite new users to the chat

	
can_pin_messages: bool | None

	Optional. True, if the user is allowed to pin messages. Ignored in public supergroups

	
can_manage_topics: bool | None

	Optional. True, if the user is allowed to create forum topics. If omitted defaults to the value of can_pin_messages

ChatPhoto

	
class aiogram.types.chat_photo.ChatPhoto(*, small_file_id: str, small_file_unique_id: str, big_file_id: str, big_file_unique_id: str, **extra_data: Any)

	This object represents a chat photo.

Source: https://core.telegram.org/bots/api#chatphoto

	
small_file_id: str

	File identifier of small (160x160) chat photo. This file_id can be used only for photo download and only for as long as the photo is not changed.

	
small_file_unique_id: str

	Unique file identifier of small (160x160) chat photo, which is supposed to be the same over time and for different bots. Can’t be used to download or reuse the file.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
big_file_id: str

	File identifier of big (640x640) chat photo. This file_id can be used only for photo download and only for as long as the photo is not changed.

	
big_file_unique_id: str

	Unique file identifier of big (640x640) chat photo, which is supposed to be the same over time and for different bots. Can’t be used to download or reuse the file.

ChatShared

	
class aiogram.types.chat_shared.ChatShared(*, request_id: int, chat_id: int, title: str | None = None, username: str | None = None, photo: List[PhotoSize] | None = None, **extra_data: Any)

	This object contains information about a chat that was shared with the bot using a aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat button.

Source: https://core.telegram.org/bots/api#chatshared

	
request_id: int

	Identifier of the request

	
chat_id: int

	Identifier of the shared chat. This number may have more than 32 significant bits and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a 64-bit integer or double-precision float type are safe for storing this identifier. The bot may not have access to the chat and could be unable to use this identifier, unless the chat is already known to the bot by some other means.

	
title: str | None

	Optional. Title of the chat, if the title was requested by the bot.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
username: str | None

	Optional. Username of the chat, if the username was requested by the bot and available.

	
photo: List[PhotoSize] | None

	Optional. Available sizes of the chat photo, if the photo was requested by the bot

Contact

	
class aiogram.types.contact.Contact(*, phone_number: str, first_name: str, last_name: str | None = None, user_id: int | None = None, vcard: str | None = None, **extra_data: Any)

	This object represents a phone contact.

Source: https://core.telegram.org/bots/api#contact

	
phone_number: str

	Contact’s phone number

	
first_name: str

	Contact’s first name

	
last_name: str | None

	Optional. Contact’s last name

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
user_id: int | None

	Optional. Contact’s user identifier in Telegram. This number may have more than 32 significant bits and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a 64-bit integer or double-precision float type are safe for storing this identifier.

	
vcard: str | None

	Optional. Additional data about the contact in the form of a vCard [https://en.wikipedia.org/wiki/VCard]

Dice

	
class aiogram.types.dice.Dice(*, emoji: str, value: int, **extra_data: Any)

	This object represents an animated emoji that displays a random value.

Source: https://core.telegram.org/bots/api#dice

	
emoji: str

	Emoji on which the dice throw animation is based

	
value: int

	Value of the dice, 1-6 for ‘🎲’, ‘🎯’ and ‘🎳’ base emoji, 1-5 for ‘🏀’ and ‘⚽’ base emoji, 1-64 for ‘🎰’ base emoji

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
class aiogram.types.dice.DiceEmoji

	
	
DICE = '🎲'

	

	
DART = '🎯'

	

	
BASKETBALL = '🏀'

	

	
FOOTBALL = '⚽'

	

	
SLOT_MACHINE = '🎰'

	

	
BOWLING = '🎳'

	

Document

	
class aiogram.types.document.Document(*, file_id: str, file_unique_id: str, thumbnail: PhotoSize | None = None, file_name: str | None = None, mime_type: str | None = None, file_size: int | None = None, **extra_data: Any)

	This object represents a general file (as opposed to photos [https://core.telegram.org/bots/api#photosize], voice messages [https://core.telegram.org/bots/api#voice] and audio files [https://core.telegram.org/bots/api#audio]).

Source: https://core.telegram.org/bots/api#document

	
file_id: str

	Identifier for this file, which can be used to download or reuse the file

	
file_unique_id: str

	Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be used to download or reuse the file.

	
thumbnail: PhotoSize | None

	Optional. Document thumbnail as defined by sender

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
file_name: str | None

	Optional. Original filename as defined by sender

	
mime_type: str | None

	Optional. MIME type of the file as defined by sender

	
file_size: int | None

	Optional. File size in bytes. It can be bigger than 2^31 and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or double-precision float type are safe for storing this value.

ExternalReplyInfo

	
class aiogram.types.external_reply_info.ExternalReplyInfo(*, origin: MessageOriginUser | MessageOriginHiddenUser | MessageOriginChat | MessageOriginChannel, chat: Chat | None = None, message_id: int | None = None, link_preview_options: LinkPreviewOptions | None = None, animation: Animation | None = None, audio: Audio | None = None, document: Document | None = None, photo: List[PhotoSize] | None = None, sticker: Sticker | None = None, story: Story | None = None, video: Video | None = None, video_note: VideoNote | None = None, voice: Voice | None = None, has_media_spoiler: bool | None = None, contact: Contact | None = None, dice: Dice | None = None, game: Game | None = None, giveaway: Giveaway | None = None, giveaway_winners: GiveawayWinners | None = None, invoice: Invoice | None = None, location: Location | None = None, poll: Poll | None = None, venue: Venue | None = None, **extra_data: Any)

	This object contains information about a message that is being replied to, which may come from another chat or forum topic.

Source: https://core.telegram.org/bots/api#externalreplyinfo

	
origin: MessageOriginUser | MessageOriginHiddenUser | MessageOriginChat | MessageOriginChannel

	Origin of the message replied to by the given message

	
chat: Chat | None

	Optional. Chat the original message belongs to. Available only if the chat is a supergroup or a channel.

	
message_id: int | None

	Optional. Unique message identifier inside the original chat. Available only if the original chat is a supergroup or a channel.

	
link_preview_options: LinkPreviewOptions | None

	Optional. Options used for link preview generation for the original message, if it is a text message

	
animation: Animation | None

	Optional. Message is an animation, information about the animation

	
audio: Audio | None

	Optional. Message is an audio file, information about the file

	
document: Document | None

	Optional. Message is a general file, information about the file

	
photo: List[PhotoSize] | None

	Optional. Message is a photo, available sizes of the photo

	
sticker: Sticker | None

	Optional. Message is a sticker, information about the sticker

	
story: Story | None

	Optional. Message is a forwarded story

	
video: Video | None

	Optional. Message is a video, information about the video

	
video_note: VideoNote | None

	Optional. Message is a video note [https://telegram.org/blog/video-messages-and-telescope], information about the video message

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
voice: Voice | None

	Optional. Message is a voice message, information about the file

	
has_media_spoiler: bool | None

	Optional. True, if the message media is covered by a spoiler animation

	
contact: Contact | None

	Optional. Message is a shared contact, information about the contact

	
dice: Dice | None

	Optional. Message is a dice with random value

	
game: Game | None

	Optional. Message is a game, information about the game. More about games » [https://core.telegram.org/bots/api#games]

	
giveaway: Giveaway | None

	Optional. Message is a scheduled giveaway, information about the giveaway

	
giveaway_winners: GiveawayWinners | None

	Optional. A giveaway with public winners was completed

	
invoice: Invoice | None

	Optional. Message is an invoice for a payment [https://core.telegram.org/bots/api#payments], information about the invoice. More about payments » [https://core.telegram.org/bots/api#payments]

	
location: Location | None

	Optional. Message is a shared location, information about the location

	
poll: Poll | None

	Optional. Message is a native poll, information about the poll

	
venue: Venue | None

	Optional. Message is a venue, information about the venue

File

	
class aiogram.types.file.File(*, file_id: str, file_unique_id: str, file_size: int | None = None, file_path: str | None = None, **extra_data: Any)

	This object represents a file ready to be downloaded. The file can be downloaded via the link https://api.telegram.org/file/bot<token>/<file_path>. It is guaranteed that the link will be valid for at least 1 hour. When the link expires, a new one can be requested by calling aiogram.methods.get_file.GetFile.

The maximum file size to download is 20 MB

Source: https://core.telegram.org/bots/api#file

	
file_id: str

	Identifier for this file, which can be used to download or reuse the file

	
file_unique_id: str

	Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be used to download or reuse the file.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
file_size: int | None

	Optional. File size in bytes. It can be bigger than 2^31 and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or double-precision float type are safe for storing this value.

	
file_path: str | None

	Optional. File path. Use https://api.telegram.org/file/bot<token>/<file_path> to get the file.

ForceReply

	
class aiogram.types.force_reply.ForceReply(*, force_reply: Literal[True] = True, input_field_placeholder: str | None = None, selective: bool | None = None, **extra_data: Any)

	Upon receiving a message with this object, Telegram clients will display a reply interface to the user (act as if the user has selected the bot’s message and tapped ‘Reply’). This can be extremely useful if you want to create user-friendly step-by-step interfaces without having to sacrifice privacy mode [https://core.telegram.org/bots/features#privacy-mode]. Not supported in channels and for messages sent on behalf of a Telegram Business account.

Example: A poll bot [https://t.me/PollBot] for groups runs in privacy mode (only receives commands, replies to its messages and mentions). There could be two ways to create a new poll:

	Explain the user how to send a command with parameters (e.g. /newpoll question answer1 answer2). May be appealing for hardcore users but lacks modern day polish.

	Guide the user through a step-by-step process. ‘Please send me your question’, ‘Cool, now let’s add the first answer option’, ‘Great. Keep adding answer options, then send /done when you’re ready’.

The last option is definitely more attractive. And if you use aiogram.types.force_reply.ForceReply in your bot’s questions, it will receive the user’s answers even if it only receives replies, commands and mentions - without any extra work for the user.

Source: https://core.telegram.org/bots/api#forcereply

	
force_reply: Literal[True]

	Shows reply interface to the user, as if they manually selected the bot’s message and tapped ‘Reply’

	
input_field_placeholder: str | None

	Optional. The placeholder to be shown in the input field when the reply is active; 1-64 characters

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
selective: bool | None

	Optional. Use this parameter if you want to force reply from specific users only. Targets: 1) users that are @mentioned in the text of the aiogram.types.message.Message object; 2) if the bot’s message is a reply to a message in the same chat and forum topic, sender of the original message.

ForumTopic

	
class aiogram.types.forum_topic.ForumTopic(*, message_thread_id: int, name: str, icon_color: int, icon_custom_emoji_id: str | None = None, **extra_data: Any)

	This object represents a forum topic.

Source: https://core.telegram.org/bots/api#forumtopic

	
message_thread_id: int

	Unique identifier of the forum topic

	
name: str

	Name of the topic

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
icon_color: int

	Color of the topic icon in RGB format

	
icon_custom_emoji_id: str | None

	Optional. Unique identifier of the custom emoji shown as the topic icon

ForumTopicClosed

	
class aiogram.types.forum_topic_closed.ForumTopicClosed(**extra_data: Any)

	This object represents a service message about a forum topic closed in the chat. Currently holds no information.

Source: https://core.telegram.org/bots/api#forumtopicclosed

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

ForumTopicCreated

	
class aiogram.types.forum_topic_created.ForumTopicCreated(*, name: str, icon_color: int, icon_custom_emoji_id: str | None = None, **extra_data: Any)

	This object represents a service message about a new forum topic created in the chat.

Source: https://core.telegram.org/bots/api#forumtopiccreated

	
name: str

	Name of the topic

	
icon_color: int

	Color of the topic icon in RGB format

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
icon_custom_emoji_id: str | None

	Optional. Unique identifier of the custom emoji shown as the topic icon

ForumTopicEdited

	
class aiogram.types.forum_topic_edited.ForumTopicEdited(*, name: str | None = None, icon_custom_emoji_id: str | None = None, **extra_data: Any)

	This object represents a service message about an edited forum topic.

Source: https://core.telegram.org/bots/api#forumtopicedited

	
name: str | None

	Optional. New name of the topic, if it was edited

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
icon_custom_emoji_id: str | None

	Optional. New identifier of the custom emoji shown as the topic icon, if it was edited; an empty string if the icon was removed

ForumTopicReopened

	
class aiogram.types.forum_topic_reopened.ForumTopicReopened(**extra_data: Any)

	This object represents a service message about a forum topic reopened in the chat. Currently holds no information.

Source: https://core.telegram.org/bots/api#forumtopicreopened

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

GeneralForumTopicHidden

	
class aiogram.types.general_forum_topic_hidden.GeneralForumTopicHidden(**extra_data: Any)

	This object represents a service message about General forum topic hidden in the chat. Currently holds no information.

Source: https://core.telegram.org/bots/api#generalforumtopichidden

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

GeneralForumTopicUnhidden

	
class aiogram.types.general_forum_topic_unhidden.GeneralForumTopicUnhidden(**extra_data: Any)

	This object represents a service message about General forum topic unhidden in the chat. Currently holds no information.

Source: https://core.telegram.org/bots/api#generalforumtopicunhidden

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Giveaway

	
class aiogram.types.giveaway.Giveaway(*, chats: List[Chat], winners_selection_date: datetime, winner_count: int, only_new_members: bool | None = None, has_public_winners: bool | None = None, prize_description: str | None = None, country_codes: List[str] | None = None, premium_subscription_month_count: int | None = None, **extra_data: Any)

	This object represents a message about a scheduled giveaway.

Source: https://core.telegram.org/bots/api#giveaway

	
chats: List[Chat]

	The list of chats which the user must join to participate in the giveaway

	
winners_selection_date: DateTime

	Point in time (Unix timestamp) when winners of the giveaway will be selected

	
winner_count: int

	The number of users which are supposed to be selected as winners of the giveaway

	
only_new_members: bool | None

	Optional. True, if only users who join the chats after the giveaway started should be eligible to win

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
has_public_winners: bool | None

	Optional. True, if the list of giveaway winners will be visible to everyone

	
prize_description: str | None

	Optional. Description of additional giveaway prize

	
country_codes: List[str] | None

	Optional. A list of two-letter ISO 3166-1 alpha-2 [https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2] country codes indicating the countries from which eligible users for the giveaway must come. If empty, then all users can participate in the giveaway. Users with a phone number that was bought on Fragment can always participate in giveaways.

	
premium_subscription_month_count: int | None

	Optional. The number of months the Telegram Premium subscription won from the giveaway will be active for

GiveawayCompleted

	
class aiogram.types.giveaway_completed.GiveawayCompleted(*, winner_count: int, unclaimed_prize_count: int | None = None, giveaway_message: Message | None = None, **extra_data: Any)

	This object represents a service message about the completion of a giveaway without public winners.

Source: https://core.telegram.org/bots/api#giveawaycompleted

	
winner_count: int

	Number of winners in the giveaway

	
unclaimed_prize_count: int | None

	Optional. Number of undistributed prizes

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
giveaway_message: Message | None

	Optional. Message with the giveaway that was completed, if it wasn’t deleted

GiveawayCreated

	
class aiogram.types.giveaway_created.GiveawayCreated(**extra_data: Any)

	This object represents a service message about the creation of a scheduled giveaway. Currently holds no information.

Source: https://core.telegram.org/bots/api#giveawaycreated

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

GiveawayWinners

	
class aiogram.types.giveaway_winners.GiveawayWinners(*, chat: Chat, giveaway_message_id: int, winners_selection_date: datetime, winner_count: int, winners: List[User], additional_chat_count: int | None = None, premium_subscription_month_count: int | None = None, unclaimed_prize_count: int | None = None, only_new_members: bool | None = None, was_refunded: bool | None = None, prize_description: str | None = None, **extra_data: Any)

	This object represents a message about the completion of a giveaway with public winners.

Source: https://core.telegram.org/bots/api#giveawaywinners

	
chat: Chat

	The chat that created the giveaway

	
giveaway_message_id: int

	Identifier of the message with the giveaway in the chat

	
winners_selection_date: DateTime

	Point in time (Unix timestamp) when winners of the giveaway were selected

	
winner_count: int

	Total number of winners in the giveaway

	
winners: List[User]

	List of up to 100 winners of the giveaway

	
additional_chat_count: int | None

	Optional. The number of other chats the user had to join in order to be eligible for the giveaway

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
premium_subscription_month_count: int | None

	Optional. The number of months the Telegram Premium subscription won from the giveaway will be active for

	
unclaimed_prize_count: int | None

	Optional. Number of undistributed prizes

	
only_new_members: bool | None

	Optional. True, if only users who had joined the chats after the giveaway started were eligible to win

	
was_refunded: bool | None

	Optional. True, if the giveaway was canceled because the payment for it was refunded

	
prize_description: str | None

	Optional. Description of additional giveaway prize

InaccessibleMessage

	
class aiogram.types.inaccessible_message.InaccessibleMessage(*, chat: Chat, message_id: int, date: Literal[0] = 0, **extra_data: Any)

	This object describes a message that was deleted or is otherwise inaccessible to the bot.

Source: https://core.telegram.org/bots/api#inaccessiblemessage

	
chat: Chat

	Chat the message belonged to

	
message_id: int

	Unique message identifier inside the chat

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
date: Literal[0]

	Always 0. The field can be used to differentiate regular and inaccessible messages.

InlineKeyboardButton

	
class aiogram.types.inline_keyboard_button.InlineKeyboardButton(*, text: str, url: str | None = None, callback_data: str | None = None, web_app: WebAppInfo | None = None, login_url: LoginUrl | None = None, switch_inline_query: str | None = None, switch_inline_query_current_chat: str | None = None, switch_inline_query_chosen_chat: SwitchInlineQueryChosenChat | None = None, callback_game: CallbackGame | None = None, pay: bool | None = None, **extra_data: Any)

	This object represents one button of an inline keyboard. You must use exactly one of the optional fields.

Source: https://core.telegram.org/bots/api#inlinekeyboardbutton

	
text: str

	Label text on the button

	
url: str | None

	Optional. HTTP or tg:// URL to be opened when the button is pressed. Links tg://user?id=<user_id> can be used to mention a user by their identifier without using a username, if this is allowed by their privacy settings.

	
callback_data: str | None

	Optional. Data to be sent in a callback query [https://core.telegram.org/bots/api#callbackquery] to the bot when button is pressed, 1-64 bytes. Not supported for messages sent on behalf of a Telegram Business account.

	
web_app: WebAppInfo | None

	Optional. Description of the Web App [https://core.telegram.org/bots/webapps] that will be launched when the user presses the button. The Web App will be able to send an arbitrary message on behalf of the user using the method aiogram.methods.answer_web_app_query.AnswerWebAppQuery. Available only in private chats between a user and the bot. Not supported for messages sent on behalf of a Telegram Business account.

	
login_url: LoginUrl | None

	Optional. An HTTPS URL used to automatically authorize the user. Can be used as a replacement for the Telegram Login Widget [https://core.telegram.org/widgets/login].

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
switch_inline_query: str | None

	Optional. If set, pressing the button will prompt the user to select one of their chats, open that chat and insert the bot’s username and the specified inline query in the input field. May be empty, in which case just the bot’s username will be inserted. Not supported for messages sent on behalf of a Telegram Business account.

	
switch_inline_query_current_chat: str | None

	Optional. If set, pressing the button will insert the bot’s username and the specified inline query in the current chat’s input field. May be empty, in which case only the bot’s username will be inserted.

	
switch_inline_query_chosen_chat: SwitchInlineQueryChosenChat | None

	Optional. If set, pressing the button will prompt the user to select one of their chats of the specified type, open that chat and insert the bot’s username and the specified inline query in the input field. Not supported for messages sent on behalf of a Telegram Business account.

	
callback_game: CallbackGame | None

	Optional. Description of the game that will be launched when the user presses the button.

	
pay: bool | None

	Optional. Specify True, to send a Pay button [https://core.telegram.org/bots/api#payments].

InlineKeyboardMarkup

	
class aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup(*, inline_keyboard: List[List[InlineKeyboardButton]], **extra_data: Any)

	This object represents an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] that appears right next to the message it belongs to.

Source: https://core.telegram.org/bots/api#inlinekeyboardmarkup

	
inline_keyboard: List[List[InlineKeyboardButton]]

	Array of button rows, each represented by an Array of aiogram.types.inline_keyboard_button.InlineKeyboardButton objects

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

InputFile

	
class aiogram.types.input_file.InputFile(filename: str | None = None, chunk_size: int = 65536)

	This object represents the contents of a file to be uploaded. Must be posted using multipart/form-data in the usual way that files are uploaded via the browser.

Source: https://core.telegram.org/bots/api#inputfile

	
abstract async read(bot: Bot) → AsyncGenerator[bytes, None]

	

	
class aiogram.types.input_file.BufferedInputFile(file: bytes, filename: str, chunk_size: int = 65536)

	
	
classmethod from_file(path: str | Path, filename: str | None = None, chunk_size: int = 65536) → BufferedInputFile

	Create buffer from file

	Parameters:

	
	path – Path to file

	filename – Filename to be propagated to telegram.
By default, will be parsed from path

	chunk_size – Uploading chunk size

	Returns:

	instance of BufferedInputFile

	
async read(bot: Bot) → AsyncGenerator[bytes, None]

	

	
class aiogram.types.input_file.FSInputFile(path: str | Path, filename: str | None = None, chunk_size: int = 65536)

	
	
async read(bot: Bot) → AsyncGenerator[bytes, None]

	

	
class aiogram.types.input_file.URLInputFile(url: str, headers: Dict[str, Any] | None = None, filename: str | None = None, chunk_size: int = 65536, timeout: int = 30, bot: 'Bot' | None = None)

	
	
async read(bot: Bot) → AsyncGenerator[bytes, None]

	

InputMedia

	
class aiogram.types.input_media.InputMedia(**extra_data: Any)

	This object represents the content of a media message to be sent. It should be one of

	aiogram.types.input_media_animation.InputMediaAnimation

	aiogram.types.input_media_document.InputMediaDocument

	aiogram.types.input_media_audio.InputMediaAudio

	aiogram.types.input_media_photo.InputMediaPhoto

	aiogram.types.input_media_video.InputMediaVideo

Source: https://core.telegram.org/bots/api#inputmedia

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

InputMediaAnimation

	
class aiogram.types.input_media_animation.InputMediaAnimation(*, type: ~typing.Literal[InputMediaType.ANIMATION] = InputMediaType.ANIMATION, media: str | ~aiogram.types.input_file.InputFile, thumbnail: ~aiogram.types.input_file.InputFile | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, width: int | None = None, height: int | None = None, duration: int | None = None, has_spoiler: bool | None = None, **extra_data: ~typing.Any)

	Represents an animation file (GIF or H.264/MPEG-4 AVC video without sound) to be sent.

Source: https://core.telegram.org/bots/api#inputmediaanimation

	
type: Literal[InputMediaType.ANIMATION]

	Type of the result, must be animation

	
media: str | InputFile

	File to send. Pass a file_id to send a file that exists on the Telegram servers (recommended), pass an HTTP URL for Telegram to get a file from the Internet, or pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-data under <file_attach_name> name. More information on Sending Files »

	
thumbnail: InputFile | None

	Optional. Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	
caption: str | None

	Optional. Caption of the animation to be sent, 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the animation caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
width: int | None

	Optional. Animation width

	
height: int | None

	Optional. Animation height

	
duration: int | None

	Optional. Animation duration in seconds

	
has_spoiler: bool | None

	Optional. Pass True if the animation needs to be covered with a spoiler animation

InputMediaAudio

	
class aiogram.types.input_media_audio.InputMediaAudio(*, type: ~typing.Literal[InputMediaType.AUDIO] = InputMediaType.AUDIO, media: str | ~aiogram.types.input_file.InputFile, thumbnail: ~aiogram.types.input_file.InputFile | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, duration: int | None = None, performer: str | None = None, title: str | None = None, **extra_data: ~typing.Any)

	Represents an audio file to be treated as music to be sent.

Source: https://core.telegram.org/bots/api#inputmediaaudio

	
type: Literal[InputMediaType.AUDIO]

	Type of the result, must be audio

	
media: str | InputFile

	File to send. Pass a file_id to send a file that exists on the Telegram servers (recommended), pass an HTTP URL for Telegram to get a file from the Internet, or pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-data under <file_attach_name> name. More information on Sending Files »

	
thumbnail: InputFile | None

	Optional. Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	
caption: str | None

	Optional. Caption of the audio to be sent, 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the audio caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
duration: int | None

	Optional. Duration of the audio in seconds

	
performer: str | None

	Optional. Performer of the audio

	
title: str | None

	Optional. Title of the audio

InputMediaDocument

	
class aiogram.types.input_media_document.InputMediaDocument(*, type: ~typing.Literal[InputMediaType.DOCUMENT] = InputMediaType.DOCUMENT, media: str | ~aiogram.types.input_file.InputFile, thumbnail: ~aiogram.types.input_file.InputFile | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, disable_content_type_detection: bool | None = None, **extra_data: ~typing.Any)

	Represents a general file to be sent.

Source: https://core.telegram.org/bots/api#inputmediadocument

	
type: Literal[InputMediaType.DOCUMENT]

	Type of the result, must be document

	
media: str | InputFile

	File to send. Pass a file_id to send a file that exists on the Telegram servers (recommended), pass an HTTP URL for Telegram to get a file from the Internet, or pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-data under <file_attach_name> name. More information on Sending Files »

	
thumbnail: InputFile | None

	Optional. Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	
caption: str | None

	Optional. Caption of the document to be sent, 0-1024 characters after entities parsing

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the document caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
disable_content_type_detection: bool | None

	Optional. Disables automatic server-side content type detection for files uploaded using multipart/form-data. Always True, if the document is sent as part of an album.

InputMediaPhoto

	
class aiogram.types.input_media_photo.InputMediaPhoto(*, type: ~typing.Literal[InputMediaType.PHOTO] = InputMediaType.PHOTO, media: str | ~aiogram.types.input_file.InputFile, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, has_spoiler: bool | None = None, **extra_data: ~typing.Any)

	Represents a photo to be sent.

Source: https://core.telegram.org/bots/api#inputmediaphoto

	
type: Literal[InputMediaType.PHOTO]

	Type of the result, must be photo

	
media: str | InputFile

	File to send. Pass a file_id to send a file that exists on the Telegram servers (recommended), pass an HTTP URL for Telegram to get a file from the Internet, or pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-data under <file_attach_name> name. More information on Sending Files »

	
caption: str | None

	Optional. Caption of the photo to be sent, 0-1024 characters after entities parsing

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the photo caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
has_spoiler: bool | None

	Optional. Pass True if the photo needs to be covered with a spoiler animation

InputMediaVideo

	
class aiogram.types.input_media_video.InputMediaVideo(*, type: ~typing.Literal[InputMediaType.VIDEO] = InputMediaType.VIDEO, media: str | ~aiogram.types.input_file.InputFile, thumbnail: ~aiogram.types.input_file.InputFile | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, width: int | None = None, height: int | None = None, duration: int | None = None, supports_streaming: bool | None = None, has_spoiler: bool | None = None, **extra_data: ~typing.Any)

	Represents a video to be sent.

Source: https://core.telegram.org/bots/api#inputmediavideo

	
type: Literal[InputMediaType.VIDEO]

	Type of the result, must be video

	
media: str | InputFile

	File to send. Pass a file_id to send a file that exists on the Telegram servers (recommended), pass an HTTP URL for Telegram to get a file from the Internet, or pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-data under <file_attach_name> name. More information on Sending Files »

	
thumbnail: InputFile | None

	Optional. Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	
caption: str | None

	Optional. Caption of the video to be sent, 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the video caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
width: int | None

	Optional. Video width

	
height: int | None

	Optional. Video height

	
duration: int | None

	Optional. Video duration in seconds

	
supports_streaming: bool | None

	Optional. Pass True if the uploaded video is suitable for streaming

	
has_spoiler: bool | None

	Optional. Pass True if the video needs to be covered with a spoiler animation

InputPollOption

	
class aiogram.types.input_poll_option.InputPollOption(*, text: str, text_parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, text_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, **extra_data: ~typing.Any)

	This object contains information about one answer option in a poll to send.

Source: https://core.telegram.org/bots/api#inputpolloption

	
text: str

	Option text, 1-100 characters

	
text_parse_mode: str | Default | None

	Optional. Mode for parsing entities in the text. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details. Currently, only custom emoji entities are allowed

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
text_entities: List[MessageEntity] | None

	Optional. A JSON-serialized list of special entities that appear in the poll option text. It can be specified instead of text_parse_mode

KeyboardButton

	
class aiogram.types.keyboard_button.KeyboardButton(*, text: str, request_users: KeyboardButtonRequestUsers | None = None, request_chat: KeyboardButtonRequestChat | None = None, request_contact: bool | None = None, request_location: bool | None = None, request_poll: KeyboardButtonPollType | None = None, web_app: WebAppInfo | None = None, request_user: KeyboardButtonRequestUser | None = None, **extra_data: Any)

	This object represents one button of the reply keyboard. For simple text buttons, String can be used instead of this object to specify the button text. The optional fields web_app, request_users, request_chat, request_contact, request_location, and request_poll are mutually exclusive.
Note: request_users and request_chat options will only work in Telegram versions released after 3 February, 2023. Older clients will display unsupported message.

Source: https://core.telegram.org/bots/api#keyboardbutton

	
text: str

	Text of the button. If none of the optional fields are used, it will be sent as a message when the button is pressed

	
request_users: KeyboardButtonRequestUsers | None

	Optional. If specified, pressing the button will open a list of suitable users. Identifiers of selected users will be sent to the bot in a ‘users_shared’ service message. Available in private chats only.

	
request_chat: KeyboardButtonRequestChat | None

	Optional. If specified, pressing the button will open a list of suitable chats. Tapping on a chat will send its identifier to the bot in a ‘chat_shared’ service message. Available in private chats only.

	
request_contact: bool | None

	Optional. If True, the user’s phone number will be sent as a contact when the button is pressed. Available in private chats only.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
request_location: bool | None

	Optional. If True, the user’s current location will be sent when the button is pressed. Available in private chats only.

	
request_poll: KeyboardButtonPollType | None

	Optional. If specified, the user will be asked to create a poll and send it to the bot when the button is pressed. Available in private chats only.

	
web_app: WebAppInfo | None

	Optional. If specified, the described Web App [https://core.telegram.org/bots/webapps] will be launched when the button is pressed. The Web App will be able to send a ‘web_app_data’ service message. Available in private chats only.

	
request_user: KeyboardButtonRequestUser | None

	Optional. If specified, pressing the button will open a list of suitable users. Tapping on any user will send their identifier to the bot in a ‘user_shared’ service message. Available in private chats only.

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

KeyboardButtonPollType

	
class aiogram.types.keyboard_button_poll_type.KeyboardButtonPollType(*, type: str | None = None, **extra_data: Any)

	This object represents type of a poll, which is allowed to be created and sent when the corresponding button is pressed.

Source: https://core.telegram.org/bots/api#keyboardbuttonpolltype

	
type: str | None

	Optional. If quiz is passed, the user will be allowed to create only polls in the quiz mode. If regular is passed, only regular polls will be allowed. Otherwise, the user will be allowed to create a poll of any type.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

KeyboardButtonRequestChat

	
class aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat(*, request_id: int, chat_is_channel: bool, chat_is_forum: bool | None = None, chat_has_username: bool | None = None, chat_is_created: bool | None = None, user_administrator_rights: ChatAdministratorRights | None = None, bot_administrator_rights: ChatAdministratorRights | None = None, bot_is_member: bool | None = None, request_title: bool | None = None, request_username: bool | None = None, request_photo: bool | None = None, **extra_data: Any)

	This object defines the criteria used to request a suitable chat. Information about the selected chat will be shared with the bot when the corresponding button is pressed. The bot will be granted requested rights in the chat if appropriate. More about requesting chats » [https://core.telegram.org/bots/features#chat-and-user-selection].

Source: https://core.telegram.org/bots/api#keyboardbuttonrequestchat

	
request_id: int

	Signed 32-bit identifier of the request, which will be received back in the aiogram.types.chat_shared.ChatShared object. Must be unique within the message

	
chat_is_channel: bool

	Pass True to request a channel chat, pass False to request a group or a supergroup chat.

	
chat_is_forum: bool | None

	Optional. Pass True to request a forum supergroup, pass False to request a non-forum chat. If not specified, no additional restrictions are applied.

	
chat_has_username: bool | None

	Optional. Pass True to request a supergroup or a channel with a username, pass False to request a chat without a username. If not specified, no additional restrictions are applied.

	
chat_is_created: bool | None

	Optional. Pass True to request a chat owned by the user. Otherwise, no additional restrictions are applied.

	
user_administrator_rights: ChatAdministratorRights | None

	Optional. A JSON-serialized object listing the required administrator rights of the user in the chat. The rights must be a superset of bot_administrator_rights. If not specified, no additional restrictions are applied.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
bot_administrator_rights: ChatAdministratorRights | None

	Optional. A JSON-serialized object listing the required administrator rights of the bot in the chat. The rights must be a subset of user_administrator_rights. If not specified, no additional restrictions are applied.

	
bot_is_member: bool | None

	Optional. Pass True to request a chat with the bot as a member. Otherwise, no additional restrictions are applied.

	
request_title: bool | None

	Optional. Pass True to request the chat’s title

	
request_username: bool | None

	Optional. Pass True to request the chat’s username

	
request_photo: bool | None

	Optional. Pass True to request the chat’s photo

KeyboardButtonRequestUser

	
class aiogram.types.keyboard_button_request_user.KeyboardButtonRequestUser(*, request_id: int, user_is_bot: bool | None = None, user_is_premium: bool | None = None, **extra_data: Any)

	This object defines the criteria used to request a suitable user. The identifier of the selected user will be shared with the bot when the corresponding button is pressed. More about requesting users » [https://core.telegram.org/bots/features#chat-and-user-selection]

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Source: https://core.telegram.org/bots/api#keyboardbuttonrequestuser

	
request_id: int

	Signed 32-bit identifier of the request, which will be received back in the aiogram.types.user_shared.UserShared object. Must be unique within the message

	
user_is_bot: bool | None

	Optional. Pass True to request a bot, pass False to request a regular user. If not specified, no additional restrictions are applied.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
user_is_premium: bool | None

	Optional. Pass True to request a premium user, pass False to request a non-premium user. If not specified, no additional restrictions are applied.

KeyboardButtonRequestUsers

	
class aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers(*, request_id: int, user_is_bot: bool | None = None, user_is_premium: bool | None = None, max_quantity: int | None = None, request_name: bool | None = None, request_username: bool | None = None, request_photo: bool | None = None, **extra_data: Any)

	This object defines the criteria used to request suitable users. Information about the selected users will be shared with the bot when the corresponding button is pressed. More about requesting users » [https://core.telegram.org/bots/features#chat-and-user-selection]

Source: https://core.telegram.org/bots/api#keyboardbuttonrequestusers

	
request_id: int

	Signed 32-bit identifier of the request that will be received back in the aiogram.types.users_shared.UsersShared object. Must be unique within the message

	
user_is_bot: bool | None

	Optional. Pass True to request bots, pass False to request regular users. If not specified, no additional restrictions are applied.

	
user_is_premium: bool | None

	Optional. Pass True to request premium users, pass False to request non-premium users. If not specified, no additional restrictions are applied.

	
max_quantity: int | None

	Optional. The maximum number of users to be selected; 1-10. Defaults to 1.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
request_name: bool | None

	Optional. Pass True to request the users’ first and last names

	
request_username: bool | None

	Optional. Pass True to request the users’ usernames

	
request_photo: bool | None

	Optional. Pass True to request the users’ photos

LinkPreviewOptions

	
class aiogram.types.link_preview_options.LinkPreviewOptions(*, is_disabled: bool | ~aiogram.client.default.Default | None = <Default('link_preview_is_disabled')>, url: str | None = None, prefer_small_media: bool | ~aiogram.client.default.Default | None = <Default('link_preview_prefer_small_media')>, prefer_large_media: bool | ~aiogram.client.default.Default | None = <Default('link_preview_prefer_large_media')>, show_above_text: bool | ~aiogram.client.default.Default | None = <Default('link_preview_show_above_text')>, **extra_data: ~typing.Any)

	Describes the options used for link preview generation.

Source: https://core.telegram.org/bots/api#linkpreviewoptions

	
is_disabled: bool | Default | None

	Optional. True, if the link preview is disabled

	
url: str | None

	Optional. URL to use for the link preview. If empty, then the first URL found in the message text will be used

	
prefer_small_media: bool | Default | None

	Optional. True, if the media in the link preview is supposed to be shrunk; ignored if the URL isn’t explicitly specified or media size change isn’t supported for the preview

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
prefer_large_media: bool | Default | None

	Optional. True, if the media in the link preview is supposed to be enlarged; ignored if the URL isn’t explicitly specified or media size change isn’t supported for the preview

	
show_above_text: bool | Default | None

	Optional. True, if the link preview must be shown above the message text; otherwise, the link preview will be shown below the message text

Location

	
class aiogram.types.location.Location(*, latitude: float, longitude: float, horizontal_accuracy: float | None = None, live_period: int | None = None, heading: int | None = None, proximity_alert_radius: int | None = None, **extra_data: Any)

	This object represents a point on the map.

Source: https://core.telegram.org/bots/api#location

	
latitude: float

	Latitude as defined by sender

	
longitude: float

	Longitude as defined by sender

	
horizontal_accuracy: float | None

	Optional. The radius of uncertainty for the location, measured in meters; 0-1500

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
live_period: int | None

	Optional. Time relative to the message sending date, during which the location can be updated; in seconds. For active live locations only.

	
heading: int | None

	Optional. The direction in which user is moving, in degrees; 1-360. For active live locations only.

	
proximity_alert_radius: int | None

	Optional. The maximum distance for proximity alerts about approaching another chat member, in meters. For sent live locations only.

LoginUrl

	
class aiogram.types.login_url.LoginUrl(*, url: str, forward_text: str | None = None, bot_username: str | None = None, request_write_access: bool | None = None, **extra_data: Any)

	This object represents a parameter of the inline keyboard button used to automatically authorize a user. Serves as a great replacement for the Telegram Login Widget [https://core.telegram.org/widgets/login] when the user is coming from Telegram. All the user needs to do is tap/click a button and confirm that they want to log in:
Telegram apps support these buttons as of version 5.7 [https://telegram.org/blog/privacy-discussions-web-bots#meet-seamless-web-bots].

Sample bot: @discussbot [https://t.me/discussbot]

Source: https://core.telegram.org/bots/api#loginurl

	
url: str

	An HTTPS URL to be opened with user authorization data added to the query string when the button is pressed. If the user refuses to provide authorization data, the original URL without information about the user will be opened. The data added is the same as described in Receiving authorization data [https://core.telegram.org/widgets/login#receiving-authorization-data].

	
forward_text: str | None

	Optional. New text of the button in forwarded messages.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
bot_username: str | None

	Optional. Username of a bot, which will be used for user authorization. See Setting up a bot [https://core.telegram.org/widgets/login#setting-up-a-bot] for more details. If not specified, the current bot’s username will be assumed. The url’s domain must be the same as the domain linked with the bot. See Linking your domain to the bot [https://core.telegram.org/widgets/login#linking-your-domain-to-the-bot] for more details.

	
request_write_access: bool | None

	Optional. Pass True to request the permission for your bot to send messages to the user.

MaybeInaccessibleMessage

	
class aiogram.types.maybe_inaccessible_message.MaybeInaccessibleMessage(**extra_data: Any)

	This object describes a message that can be inaccessible to the bot. It can be one of

	aiogram.types.message.Message

	aiogram.types.inaccessible_message.InaccessibleMessage

Source: https://core.telegram.org/bots/api#maybeinaccessiblemessage

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

MenuButton

	
class aiogram.types.menu_button.MenuButton(*, type: str, text: str | None = None, web_app: WebAppInfo | None = None, **extra_data: Any)

	This object describes the bot’s menu button in a private chat. It should be one of

	aiogram.types.menu_button_commands.MenuButtonCommands

	aiogram.types.menu_button_web_app.MenuButtonWebApp

	aiogram.types.menu_button_default.MenuButtonDefault

If a menu button other than aiogram.types.menu_button_default.MenuButtonDefault is set for a private chat, then it is applied in the chat. Otherwise the default menu button is applied. By default, the menu button opens the list of bot commands.

Source: https://core.telegram.org/bots/api#menubutton

	
type: str

	Type of the button

	
text: str | None

	Optional. Text on the button

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
web_app: WebAppInfo | None

	Optional. Description of the Web App that will be launched when the user presses the button. The Web App will be able to send an arbitrary message on behalf of the user using the method aiogram.methods.answer_web_app_query.AnswerWebAppQuery.

MenuButtonCommands

	
class aiogram.types.menu_button_commands.MenuButtonCommands(*, type: Literal[MenuButtonType.COMMANDS] = MenuButtonType.COMMANDS, text: str | None = None, web_app: WebAppInfo | None = None, **extra_data: Any)

	Represents a menu button, which opens the bot’s list of commands.

Source: https://core.telegram.org/bots/api#menubuttoncommands

	
type: Literal[MenuButtonType.COMMANDS]

	Type of the button, must be commands

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

MenuButtonDefault

	
class aiogram.types.menu_button_default.MenuButtonDefault(*, type: Literal[MenuButtonType.DEFAULT] = MenuButtonType.DEFAULT, text: str | None = None, web_app: WebAppInfo | None = None, **extra_data: Any)

	Describes that no specific value for the menu button was set.

Source: https://core.telegram.org/bots/api#menubuttondefault

	
type: Literal[MenuButtonType.DEFAULT]

	Type of the button, must be default

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

MenuButtonWebApp

	
class aiogram.types.menu_button_web_app.MenuButtonWebApp(*, type: Literal[MenuButtonType.WEB_APP] = MenuButtonType.WEB_APP, text: str, web_app: WebAppInfo, **extra_data: Any)

	Represents a menu button, which launches a Web App [https://core.telegram.org/bots/webapps].

Source: https://core.telegram.org/bots/api#menubuttonwebapp

	
type: Literal[MenuButtonType.WEB_APP]

	Type of the button, must be web_app

	
text: str

	Text on the button

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
web_app: WebAppInfo

	Description of the Web App that will be launched when the user presses the button. The Web App will be able to send an arbitrary message on behalf of the user using the method aiogram.methods.answer_web_app_query.AnswerWebAppQuery.

Message

	
class aiogram.types.message.Message(*, message_id: int, date: datetime, chat: Chat, message_thread_id: int | None = None, from_user: User | None = None, sender_chat: Chat | None = None, sender_boost_count: int | None = None, sender_business_bot: User | None = None, business_connection_id: str | None = None, forward_origin: MessageOriginUser | MessageOriginHiddenUser | MessageOriginChat | MessageOriginChannel | None = None, is_topic_message: bool | None = None, is_automatic_forward: bool | None = None, reply_to_message: Message | None = None, external_reply: ExternalReplyInfo | None = None, quote: TextQuote | None = None, reply_to_story: Story | None = None, via_bot: User | None = None, edit_date: int | None = None, has_protected_content: bool | None = None, is_from_offline: bool | None = None, media_group_id: str | None = None, author_signature: str | None = None, text: str | None = None, entities: List[MessageEntity] | None = None, link_preview_options: LinkPreviewOptions | None = None, animation: Animation | None = None, audio: Audio | None = None, document: Document | None = None, photo: List[PhotoSize] | None = None, sticker: Sticker | None = None, story: Story | None = None, video: Video | None = None, video_note: VideoNote | None = None, voice: Voice | None = None, caption: str | None = None, caption_entities: List[MessageEntity] | None = None, has_media_spoiler: bool | None = None, contact: Contact | None = None, dice: Dice | None = None, game: Game | None = None, poll: Poll | None = None, venue: Venue | None = None, location: Location | None = None, new_chat_members: List[User] | None = None, left_chat_member: User | None = None, new_chat_title: str | None = None, new_chat_photo: List[PhotoSize] | None = None, delete_chat_photo: bool | None = None, group_chat_created: bool | None = None, supergroup_chat_created: bool | None = None, channel_chat_created: bool | None = None, message_auto_delete_timer_changed: MessageAutoDeleteTimerChanged | None = None, migrate_to_chat_id: int | None = None, migrate_from_chat_id: int | None = None, pinned_message: Message | InaccessibleMessage | None = None, invoice: Invoice | None = None, successful_payment: SuccessfulPayment | None = None, users_shared: UsersShared | None = None, chat_shared: ChatShared | None = None, connected_website: str | None = None, write_access_allowed: WriteAccessAllowed | None = None, passport_data: PassportData | None = None, proximity_alert_triggered: ProximityAlertTriggered | None = None, boost_added: ChatBoostAdded | None = None, chat_background_set: ChatBackground | None = None, forum_topic_created: ForumTopicCreated | None = None, forum_topic_edited: ForumTopicEdited | None = None, forum_topic_closed: ForumTopicClosed | None = None, forum_topic_reopened: ForumTopicReopened | None = None, general_forum_topic_hidden: GeneralForumTopicHidden | None = None, general_forum_topic_unhidden: GeneralForumTopicUnhidden | None = None, giveaway_created: GiveawayCreated | None = None, giveaway: Giveaway | None = None, giveaway_winners: GiveawayWinners | None = None, giveaway_completed: GiveawayCompleted | None = None, video_chat_scheduled: VideoChatScheduled | None = None, video_chat_started: VideoChatStarted | None = None, video_chat_ended: VideoChatEnded | None = None, video_chat_participants_invited: VideoChatParticipantsInvited | None = None, web_app_data: WebAppData | None = None, reply_markup: InlineKeyboardMarkup | None = None, forward_date: datetime | None = None, forward_from: User | None = None, forward_from_chat: Chat | None = None, forward_from_message_id: int | None = None, forward_sender_name: str | None = None, forward_signature: str | None = None, user_shared: UserShared | None = None, **extra_data: Any)

	This object represents a message.

Source: https://core.telegram.org/bots/api#message

	
message_id: int

	Unique message identifier inside this chat

	
date: DateTime

	Date the message was sent in Unix time. It is always a positive number, representing a valid date.

	
chat: Chat

	Chat the message belongs to

	
message_thread_id: int | None

	Optional. Unique identifier of a message thread to which the message belongs; for supergroups only

	
from_user: User | None

	Optional. Sender of the message; empty for messages sent to channels. For backward compatibility, the field contains a fake sender user in non-channel chats, if the message was sent on behalf of a chat.

	
sender_chat: Chat | None

	Optional. Sender of the message, sent on behalf of a chat. For example, the channel itself for channel posts, the supergroup itself for messages from anonymous group administrators, the linked channel for messages automatically forwarded to the discussion group. For backward compatibility, the field from contains a fake sender user in non-channel chats, if the message was sent on behalf of a chat.

	
sender_boost_count: int | None

	Optional. If the sender of the message boosted the chat, the number of boosts added by the user

	
sender_business_bot: User | None

	Optional. The bot that actually sent the message on behalf of the business account. Available only for outgoing messages sent on behalf of the connected business account.

	
business_connection_id: str | None

	Optional. Unique identifier of the business connection from which the message was received. If non-empty, the message belongs to a chat of the corresponding business account that is independent from any potential bot chat which might share the same identifier.

	
forward_origin: MessageOriginUser | MessageOriginHiddenUser | MessageOriginChat | MessageOriginChannel | None

	Optional. Information about the original message for forwarded messages

	
is_topic_message: bool | None

	Optional. True, if the message is sent to a forum topic

	
is_automatic_forward: bool | None

	Optional. True, if the message is a channel post that was automatically forwarded to the connected discussion group

	
reply_to_message: Message | None

	Optional. For replies in the same chat and message thread, the original message. Note that the Message object in this field will not contain further reply_to_message fields even if it itself is a reply.

	
external_reply: ExternalReplyInfo | None

	Optional. Information about the message that is being replied to, which may come from another chat or forum topic

	
quote: TextQuote | None

	Optional. For replies that quote part of the original message, the quoted part of the message

	
reply_to_story: Story | None

	Optional. For replies to a story, the original story

	
via_bot: User | None

	Optional. Bot through which the message was sent

	
edit_date: int | None

	Optional. Date the message was last edited in Unix time

	
has_protected_content: bool | None

	Optional. True, if the message can’t be forwarded

	
is_from_offline: bool | None

	Optional. True, if the message was sent by an implicit action, for example, as an away or a greeting business message, or as a scheduled message

	
media_group_id: str | None

	Optional. The unique identifier of a media message group this message belongs to

	
author_signature: str | None

	Optional. Signature of the post author for messages in channels, or the custom title of an anonymous group administrator

	
text: str | None

	Optional. For text messages, the actual UTF-8 text of the message

	
entities: List[MessageEntity] | None

	Optional. For text messages, special entities like usernames, URLs, bot commands, etc. that appear in the text

	
link_preview_options: LinkPreviewOptions | None

	Optional. Options used for link preview generation for the message, if it is a text message and link preview options were changed

	
animation: Animation | None

	Optional. Message is an animation, information about the animation. For backward compatibility, when this field is set, the document field will also be set

	
audio: Audio | None

	Optional. Message is an audio file, information about the file

	
document: Document | None

	Optional. Message is a general file, information about the file

	
photo: List[PhotoSize] | None

	Optional. Message is a photo, available sizes of the photo

	
sticker: Sticker | None

	Optional. Message is a sticker, information about the sticker

	
story: Story | None

	Optional. Message is a forwarded story

	
video: Video | None

	Optional. Message is a video, information about the video

	
video_note: VideoNote | None

	Optional. Message is a video note [https://telegram.org/blog/video-messages-and-telescope], information about the video message

	
voice: Voice | None

	Optional. Message is a voice message, information about the file

	
caption: str | None

	Optional. Caption for the animation, audio, document, photo, video or voice

	
caption_entities: List[MessageEntity] | None

	Optional. For messages with a caption, special entities like usernames, URLs, bot commands, etc. that appear in the caption

	
has_media_spoiler: bool | None

	Optional. True, if the message media is covered by a spoiler animation

	
contact: Contact | None

	Optional. Message is a shared contact, information about the contact

	
dice: Dice | None

	Optional. Message is a dice with random value

	
game: Game | None

	Optional. Message is a game, information about the game. More about games » [https://core.telegram.org/bots/api#games]

	
poll: Poll | None

	Optional. Message is a native poll, information about the poll

	
venue: Venue | None

	Optional. Message is a venue, information about the venue. For backward compatibility, when this field is set, the location field will also be set

	
location: Location | None

	Optional. Message is a shared location, information about the location

	
new_chat_members: List[User] | None

	Optional. New members that were added to the group or supergroup and information about them (the bot itself may be one of these members)

	
left_chat_member: User | None

	Optional. A member was removed from the group, information about them (this member may be the bot itself)

	
new_chat_title: str | None

	Optional. A chat title was changed to this value

	
new_chat_photo: List[PhotoSize] | None

	Optional. A chat photo was change to this value

	
delete_chat_photo: bool | None

	Optional. Service message: the chat photo was deleted

	
group_chat_created: bool | None

	Optional. Service message: the group has been created

	
supergroup_chat_created: bool | None

	Optional. Service message: the supergroup has been created. This field can’t be received in a message coming through updates, because bot can’t be a member of a supergroup when it is created. It can only be found in reply_to_message if someone replies to a very first message in a directly created supergroup.

	
channel_chat_created: bool | None

	Optional. Service message: the channel has been created. This field can’t be received in a message coming through updates, because bot can’t be a member of a channel when it is created. It can only be found in reply_to_message if someone replies to a very first message in a channel.

	
message_auto_delete_timer_changed: MessageAutoDeleteTimerChanged | None

	Optional. Service message: auto-delete timer settings changed in the chat

	
migrate_to_chat_id: int | None

	Optional. The group has been migrated to a supergroup with the specified identifier. This number may have more than 32 significant bits and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or double-precision float type are safe for storing this identifier.

	
migrate_from_chat_id: int | None

	Optional. The supergroup has been migrated from a group with the specified identifier. This number may have more than 32 significant bits and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or double-precision float type are safe for storing this identifier.

	
pinned_message: Message | InaccessibleMessage | None

	Optional. Specified message was pinned. Note that the Message object in this field will not contain further reply_to_message fields even if it itself is a reply.

	
invoice: Invoice | None

	Optional. Message is an invoice for a payment [https://core.telegram.org/bots/api#payments], information about the invoice. More about payments » [https://core.telegram.org/bots/api#payments]

	
successful_payment: SuccessfulPayment | None

	Optional. Message is a service message about a successful payment, information about the payment. More about payments » [https://core.telegram.org/bots/api#payments]

	
users_shared: UsersShared | None

	Optional. Service message: users were shared with the bot

	
chat_shared: ChatShared | None

	Optional. Service message: a chat was shared with the bot

	
connected_website: str | None

	Optional. The domain name of the website on which the user has logged in. More about Telegram Login » [https://core.telegram.org/widgets/login]

	
write_access_allowed: WriteAccessAllowed | None

	Optional. Service message: the user allowed the bot to write messages after adding it to the attachment or side menu, launching a Web App from a link, or accepting an explicit request from a Web App sent by the method requestWriteAccess [https://core.telegram.org/bots/webapps#initializing-mini-apps]

	
passport_data: PassportData | None

	Optional. Telegram Passport data

	
proximity_alert_triggered: ProximityAlertTriggered | None

	Optional. Service message. A user in the chat triggered another user’s proximity alert while sharing Live Location.

	
boost_added: ChatBoostAdded | None

	Optional. Service message: user boosted the chat

	
chat_background_set: ChatBackground | None

	Optional. Service message: chat background set

	
forum_topic_created: ForumTopicCreated | None

	Optional. Service message: forum topic created

	
forum_topic_edited: ForumTopicEdited | None

	Optional. Service message: forum topic edited

	
forum_topic_closed: ForumTopicClosed | None

	Optional. Service message: forum topic closed

	
forum_topic_reopened: ForumTopicReopened | None

	Optional. Service message: forum topic reopened

	
general_forum_topic_hidden: GeneralForumTopicHidden | None

	Optional. Service message: the ‘General’ forum topic hidden

	
general_forum_topic_unhidden: GeneralForumTopicUnhidden | None

	Optional. Service message: the ‘General’ forum topic unhidden

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
giveaway_created: GiveawayCreated | None

	Optional. Service message: a scheduled giveaway was created

	
giveaway: Giveaway | None

	Optional. The message is a scheduled giveaway message

	
giveaway_winners: GiveawayWinners | None

	Optional. A giveaway with public winners was completed

	
giveaway_completed: GiveawayCompleted | None

	Optional. Service message: a giveaway without public winners was completed

	
video_chat_scheduled: VideoChatScheduled | None

	Optional. Service message: video chat scheduled

	
video_chat_started: VideoChatStarted | None

	Optional. Service message: video chat started

	
video_chat_ended: VideoChatEnded | None

	Optional. Service message: video chat ended

	
video_chat_participants_invited: VideoChatParticipantsInvited | None

	Optional. Service message: new participants invited to a video chat

	
web_app_data: WebAppData | None

	Optional. Service message: data sent by a Web App

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard attached to the message. login_url buttons are represented as ordinary url buttons.

	
forward_date: DateTime | None

	Optional. For forwarded messages, date the original message was sent in Unix time

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
forward_from: User | None

	Optional. For forwarded messages, sender of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
forward_from_chat: Chat | None

	Optional. For messages forwarded from channels or from anonymous administrators, information about the original sender chat

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
forward_from_message_id: int | None

	Optional. For messages forwarded from channels, identifier of the original message in the channel

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
forward_sender_name: str | None

	Optional. Sender’s name for messages forwarded from users who disallow adding a link to their account in forwarded messages

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
forward_signature: str | None

	Optional. For forwarded messages that were originally sent in channels or by an anonymous chat administrator, signature of the message sender if present

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
user_shared: UserShared | None

	Optional. Service message: a user was shared with the bot

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
property content_type: str

	

	
property html_text: str

	

	
property md_text: str

	

	
reply_animation(animation: Union[InputFile, str], duration: Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, has_spoiler: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any) → SendAnimation

	Shortcut for method aiogram.methods.send_animation.SendAnimation
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

Use this method to send animation files (GIF or H.264/MPEG-4 AVC video without sound). On success, the sent aiogram.types.message.Message is returned. Bots can currently send animation files of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendanimation

	Parameters:

	
	animation – Animation to send. Pass a file_id as String to send an animation that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get an animation from the Internet, or upload a new animation using multipart/form-data. More information on Sending Files »

	duration – Duration of sent animation in seconds

	width – Animation width

	height – Animation height

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	caption – Animation caption (may also be used when resending animation by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the animation caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	has_spoiler – Pass True if the animation needs to be covered with a spoiler animation

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	Returns:

	instance of method aiogram.methods.send_animation.SendAnimation

	
answer_animation(animation: Union[InputFile, str], duration: Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, has_spoiler: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendAnimation

	Shortcut for method aiogram.methods.send_animation.SendAnimation
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

Use this method to send animation files (GIF or H.264/MPEG-4 AVC video without sound). On success, the sent aiogram.types.message.Message is returned. Bots can currently send animation files of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendanimation

	Parameters:

	
	animation – Animation to send. Pass a file_id as String to send an animation that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get an animation from the Internet, or upload a new animation using multipart/form-data. More information on Sending Files »

	duration – Duration of sent animation in seconds

	width – Animation width

	height – Animation height

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	caption – Animation caption (may also be used when resending animation by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the animation caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	has_spoiler – Pass True if the animation needs to be covered with a spoiler animation

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_animation.SendAnimation

	
reply_audio(audio: Union[InputFile, str], caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, duration: Optional[int] = None, performer: Optional[str] = None, title: Optional[str] = None, thumbnail: Optional[InputFile] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any) → SendAudio

	Shortcut for method aiogram.methods.send_audio.SendAudio
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

Use this method to send audio files, if you want Telegram clients to display them in the music player. Your audio must be in the .MP3 or .M4A format. On success, the sent aiogram.types.message.Message is returned. Bots can currently send audio files of up to 50 MB in size, this limit may be changed in the future.
For sending voice messages, use the aiogram.methods.send_voice.SendVoice method instead.

Source: https://core.telegram.org/bots/api#sendaudio

	Parameters:

	
	audio – Audio file to send. Pass a file_id as String to send an audio file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get an audio file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	caption – Audio caption, 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the audio caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	duration – Duration of the audio in seconds

	performer – Performer

	title – Track name

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	Returns:

	instance of method aiogram.methods.send_audio.SendAudio

	
answer_audio(audio: Union[InputFile, str], caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, duration: Optional[int] = None, performer: Optional[str] = None, title: Optional[str] = None, thumbnail: Optional[InputFile] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendAudio

	Shortcut for method aiogram.methods.send_audio.SendAudio
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

Use this method to send audio files, if you want Telegram clients to display them in the music player. Your audio must be in the .MP3 or .M4A format. On success, the sent aiogram.types.message.Message is returned. Bots can currently send audio files of up to 50 MB in size, this limit may be changed in the future.
For sending voice messages, use the aiogram.methods.send_voice.SendVoice method instead.

Source: https://core.telegram.org/bots/api#sendaudio

	Parameters:

	
	audio – Audio file to send. Pass a file_id as String to send an audio file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get an audio file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	caption – Audio caption, 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the audio caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	duration – Duration of the audio in seconds

	performer – Performer

	title – Track name

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_audio.SendAudio

	
reply_contact(phone_number: str, first_name: str, last_name: Optional[str] = None, vcard: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any) → SendContact

	Shortcut for method aiogram.methods.send_contact.SendContact
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

Use this method to send phone contacts. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendcontact

	Parameters:

	
	phone_number – Contact’s phone number

	first_name – Contact’s first name

	last_name – Contact’s last name

	vcard – Additional data about the contact in the form of a vCard [https://en.wikipedia.org/wiki/VCard], 0-2048 bytes

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	Returns:

	instance of method aiogram.methods.send_contact.SendContact

	
answer_contact(phone_number: str, first_name: str, last_name: Optional[str] = None, vcard: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendContact

	Shortcut for method aiogram.methods.send_contact.SendContact
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

Use this method to send phone contacts. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendcontact

	Parameters:

	
	phone_number – Contact’s phone number

	first_name – Contact’s first name

	last_name – Contact’s last name

	vcard – Additional data about the contact in the form of a vCard [https://en.wikipedia.org/wiki/VCard], 0-2048 bytes

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_contact.SendContact

	
reply_document(document: Union[InputFile, str], thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, disable_content_type_detection: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any) → SendDocument

	Shortcut for method aiogram.methods.send_document.SendDocument
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

Use this method to send general files. On success, the sent aiogram.types.message.Message is returned. Bots can currently send files of any type of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#senddocument

	Parameters:

	
	document – File to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	caption – Document caption (may also be used when resending documents by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the document caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	disable_content_type_detection – Disables automatic server-side content type detection for files uploaded using multipart/form-data

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	Returns:

	instance of method aiogram.methods.send_document.SendDocument

	
answer_document(document: Union[InputFile, str], thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, disable_content_type_detection: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendDocument

	Shortcut for method aiogram.methods.send_document.SendDocument
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

Use this method to send general files. On success, the sent aiogram.types.message.Message is returned. Bots can currently send files of any type of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#senddocument

	Parameters:

	
	document – File to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	caption – Document caption (may also be used when resending documents by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the document caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	disable_content_type_detection – Disables automatic server-side content type detection for files uploaded using multipart/form-data

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_document.SendDocument

	
reply_game(game_short_name: str, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] = None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any) → SendGame

	Shortcut for method aiogram.methods.send_game.SendGame
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

Use this method to send a game. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendgame

	Parameters:

	
	game_short_name – Short name of the game, serves as the unique identifier for the game. Set up your games via @BotFather [https://t.me/botfather].

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards]. If empty, one ‘Play game_title’ button will be shown. If not empty, the first button must launch the game.

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	Returns:

	instance of method aiogram.methods.send_game.SendGame

	
answer_game(game_short_name: str, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendGame

	Shortcut for method aiogram.methods.send_game.SendGame
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

Use this method to send a game. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendgame

	Parameters:

	
	game_short_name – Short name of the game, serves as the unique identifier for the game. Set up your games via @BotFather [https://t.me/botfather].

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards]. If empty, one ‘Play game_title’ button will be shown. If not empty, the first button must launch the game.

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_game.SendGame

	
reply_invoice(title: str, description: str, payload: str, provider_token: str, currency: str, prices: List[LabeledPrice], max_tip_amount: Optional[int] = None, suggested_tip_amounts: Optional[List[int]] = None, start_parameter: Optional[str] = None, provider_data: Optional[str] = None, photo_url: Optional[str] = None, photo_size: Optional[int] = None, photo_width: Optional[int] = None, photo_height: Optional[int] = None, need_name: Optional[bool] = None, need_phone_number: Optional[bool] = None, need_email: Optional[bool] = None, need_shipping_address: Optional[bool] = None, send_phone_number_to_provider: Optional[bool] = None, send_email_to_provider: Optional[bool] = None, is_flexible: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] = None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any) → SendInvoice

	Shortcut for method aiogram.methods.send_invoice.SendInvoice
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

Use this method to send invoices. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendinvoice

	Parameters:

	
	title – Product name, 1-32 characters

	description – Product description, 1-255 characters

	payload – Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user, use for your internal processes.

	provider_token – Payment provider token, obtained via @BotFather [https://t.me/botfather]

	currency – Three-letter ISO 4217 currency code, see more on currencies [https://core.telegram.org/bots/payments#supported-currencies]

	prices – Price breakdown, a JSON-serialized list of components (e.g. product price, tax, discount, delivery cost, delivery tax, bonus, etc.)

	max_tip_amount – The maximum accepted amount for tips in the smallest units of the currency (integer, not float/double). For example, for a maximum tip of US$ 1.45 pass max_tip_amount = 145. See the exp parameter in currencies.json [https://core.telegram.org/bots/payments/currencies.json], it shows the number of digits past the decimal point for each currency (2 for the majority of currencies). Defaults to 0

	suggested_tip_amounts – A JSON-serialized array of suggested amounts of tips in the smallest units of the currency (integer, not float/double). At most 4 suggested tip amounts can be specified. The suggested tip amounts must be positive, passed in a strictly increased order and must not exceed max_tip_amount.

	start_parameter – Unique deep-linking parameter. If left empty, forwarded copies of the sent message will have a Pay button, allowing multiple users to pay directly from the forwarded message, using the same invoice. If non-empty, forwarded copies of the sent message will have a URL button with a deep link to the bot (instead of a Pay button), with the value used as the start parameter

	provider_data – JSON-serialized data about the invoice, which will be shared with the payment provider. A detailed description of required fields should be provided by the payment provider.

	photo_url – URL of the product photo for the invoice. Can be a photo of the goods or a marketing image for a service. People like it better when they see what they are paying for.

	photo_size – Photo size in bytes

	photo_width – Photo width

	photo_height – Photo height

	need_name – Pass True if you require the user’s full name to complete the order

	need_phone_number – Pass True if you require the user’s phone number to complete the order

	need_email – Pass True if you require the user’s email address to complete the order

	need_shipping_address – Pass True if you require the user’s shipping address to complete the order

	send_phone_number_to_provider – Pass True if the user’s phone number should be sent to provider

	send_email_to_provider – Pass True if the user’s email address should be sent to provider

	is_flexible – Pass True if the final price depends on the shipping method

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards]. If empty, one ‘Pay total price’ button will be shown. If not empty, the first button must be a Pay button.

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	Returns:

	instance of method aiogram.methods.send_invoice.SendInvoice

	
answer_invoice(title: str, description: str, payload: str, provider_token: str, currency: str, prices: List[LabeledPrice], max_tip_amount: Optional[int] = None, suggested_tip_amounts: Optional[List[int]] = None, start_parameter: Optional[str] = None, provider_data: Optional[str] = None, photo_url: Optional[str] = None, photo_size: Optional[int] = None, photo_width: Optional[int] = None, photo_height: Optional[int] = None, need_name: Optional[bool] = None, need_phone_number: Optional[bool] = None, need_email: Optional[bool] = None, need_shipping_address: Optional[bool] = None, send_phone_number_to_provider: Optional[bool] = None, send_email_to_provider: Optional[bool] = None, is_flexible: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[InlineKeyboardMarkup] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendInvoice

	Shortcut for method aiogram.methods.send_invoice.SendInvoice
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

Use this method to send invoices. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendinvoice

	Parameters:

	
	title – Product name, 1-32 characters

	description – Product description, 1-255 characters

	payload – Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user, use for your internal processes.

	provider_token – Payment provider token, obtained via @BotFather [https://t.me/botfather]

	currency – Three-letter ISO 4217 currency code, see more on currencies [https://core.telegram.org/bots/payments#supported-currencies]

	prices – Price breakdown, a JSON-serialized list of components (e.g. product price, tax, discount, delivery cost, delivery tax, bonus, etc.)

	max_tip_amount – The maximum accepted amount for tips in the smallest units of the currency (integer, not float/double). For example, for a maximum tip of US$ 1.45 pass max_tip_amount = 145. See the exp parameter in currencies.json [https://core.telegram.org/bots/payments/currencies.json], it shows the number of digits past the decimal point for each currency (2 for the majority of currencies). Defaults to 0

	suggested_tip_amounts – A JSON-serialized array of suggested amounts of tips in the smallest units of the currency (integer, not float/double). At most 4 suggested tip amounts can be specified. The suggested tip amounts must be positive, passed in a strictly increased order and must not exceed max_tip_amount.

	start_parameter – Unique deep-linking parameter. If left empty, forwarded copies of the sent message will have a Pay button, allowing multiple users to pay directly from the forwarded message, using the same invoice. If non-empty, forwarded copies of the sent message will have a URL button with a deep link to the bot (instead of a Pay button), with the value used as the start parameter

	provider_data – JSON-serialized data about the invoice, which will be shared with the payment provider. A detailed description of required fields should be provided by the payment provider.

	photo_url – URL of the product photo for the invoice. Can be a photo of the goods or a marketing image for a service. People like it better when they see what they are paying for.

	photo_size – Photo size in bytes

	photo_width – Photo width

	photo_height – Photo height

	need_name – Pass True if you require the user’s full name to complete the order

	need_phone_number – Pass True if you require the user’s phone number to complete the order

	need_email – Pass True if you require the user’s email address to complete the order

	need_shipping_address – Pass True if you require the user’s shipping address to complete the order

	send_phone_number_to_provider – Pass True if the user’s phone number should be sent to provider

	send_email_to_provider – Pass True if the user’s email address should be sent to provider

	is_flexible – Pass True if the final price depends on the shipping method

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards]. If empty, one ‘Pay total price’ button will be shown. If not empty, the first button must be a Pay button.

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_invoice.SendInvoice

	
reply_location(latitude: float, longitude: float, horizontal_accuracy: Optional[float] = None, live_period: Optional[int] = None, heading: Optional[int] = None, proximity_alert_radius: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any) → SendLocation

	Shortcut for method aiogram.methods.send_location.SendLocation
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

Use this method to send point on the map. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendlocation

	Parameters:

	
	latitude – Latitude of the location

	longitude – Longitude of the location

	horizontal_accuracy – The radius of uncertainty for the location, measured in meters; 0-1500

	live_period – Period in seconds during which the location will be updated (see Live Locations [https://telegram.org/blog/live-locations], should be between 60 and 86400, or 0x7FFFFFFF for live locations that can be edited indefinitely.

	heading – For live locations, a direction in which the user is moving, in degrees. Must be between 1 and 360 if specified.

	proximity_alert_radius – For live locations, a maximum distance for proximity alerts about approaching another chat member, in meters. Must be between 1 and 100000 if specified.

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	Returns:

	instance of method aiogram.methods.send_location.SendLocation

	
answer_location(latitude: float, longitude: float, horizontal_accuracy: Optional[float] = None, live_period: Optional[int] = None, heading: Optional[int] = None, proximity_alert_radius: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendLocation

	Shortcut for method aiogram.methods.send_location.SendLocation
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

Use this method to send point on the map. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendlocation

	Parameters:

	
	latitude – Latitude of the location

	longitude – Longitude of the location

	horizontal_accuracy – The radius of uncertainty for the location, measured in meters; 0-1500

	live_period – Period in seconds during which the location will be updated (see Live Locations [https://telegram.org/blog/live-locations], should be between 60 and 86400, or 0x7FFFFFFF for live locations that can be edited indefinitely.

	heading – For live locations, a direction in which the user is moving, in degrees. Must be between 1 and 360 if specified.

	proximity_alert_radius – For live locations, a maximum distance for proximity alerts about approaching another chat member, in meters. Must be between 1 and 100000 if specified.

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_location.SendLocation

	
reply_media_group(media: List[Union[InputMediaAudio, InputMediaDocument, InputMediaPhoto, InputMediaVideo]], disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any) → SendMediaGroup

	Shortcut for method aiogram.methods.send_media_group.SendMediaGroup
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

Use this method to send a group of photos, videos, documents or audios as an album. Documents and audio files can be only grouped in an album with messages of the same type. On success, an array of Messages [https://core.telegram.org/bots/api#message] that were sent is returned.

Source: https://core.telegram.org/bots/api#sendmediagroup

	Parameters:

	
	media – A JSON-serialized array describing messages to be sent, must include 2-10 items

	disable_notification – Sends messages silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent messages from forwarding and saving

	reply_parameters – Description of the message to reply to

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	Returns:

	instance of method aiogram.methods.send_media_group.SendMediaGroup

	
answer_media_group(media: List[Union[InputMediaAudio, InputMediaDocument, InputMediaPhoto, InputMediaVideo]], disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendMediaGroup

	Shortcut for method aiogram.methods.send_media_group.SendMediaGroup
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

Use this method to send a group of photos, videos, documents or audios as an album. Documents and audio files can be only grouped in an album with messages of the same type. On success, an array of Messages [https://core.telegram.org/bots/api#message] that were sent is returned.

Source: https://core.telegram.org/bots/api#sendmediagroup

	Parameters:

	
	media – A JSON-serialized array describing messages to be sent, must include 2-10 items

	disable_notification – Sends messages silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent messages from forwarding and saving

	reply_parameters – Description of the message to reply to

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the messages are a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_media_group.SendMediaGroup

	
reply(text: str, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, entities: Optional[List[MessageEntity]] = None, link_preview_options: Optional[Union[LinkPreviewOptions, Default]] = <Default('link_preview')>, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, disable_web_page_preview: Optional[Union[bool, Default]] = <Default('link_preview_is_disabled')>, **kwargs: Any) → SendMessage

	Shortcut for method aiogram.methods.send_message.SendMessage
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

Use this method to send text messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendmessage

	Parameters:

	
	text – Text of the message to be sent, 1-4096 characters after entities parsing

	parse_mode – Mode for parsing entities in the message text. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	entities – A JSON-serialized list of special entities that appear in message text, which can be specified instead of parse_mode

	link_preview_options – Link preview generation options for the message

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	disable_web_page_preview – Disables link previews for links in this message

	Returns:

	instance of method aiogram.methods.send_message.SendMessage

	
answer(text: str, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, entities: Optional[List[MessageEntity]] = None, link_preview_options: Optional[Union[LinkPreviewOptions, Default]] = <Default('link_preview')>, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, disable_web_page_preview: Optional[Union[bool, Default]] = <Default('link_preview_is_disabled')>, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendMessage

	Shortcut for method aiogram.methods.send_message.SendMessage
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

Use this method to send text messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendmessage

	Parameters:

	
	text – Text of the message to be sent, 1-4096 characters after entities parsing

	parse_mode – Mode for parsing entities in the message text. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	entities – A JSON-serialized list of special entities that appear in message text, which can be specified instead of parse_mode

	link_preview_options – Link preview generation options for the message

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	disable_web_page_preview – Disables link previews for links in this message

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_message.SendMessage

	
reply_photo(photo: Union[InputFile, str], caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, has_spoiler: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any) → SendPhoto

	Shortcut for method aiogram.methods.send_photo.SendPhoto
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

Use this method to send photos. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendphoto

	Parameters:

	
	photo – Photo to send. Pass a file_id as String to send a photo that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a photo from the Internet, or upload a new photo using multipart/form-data. The photo must be at most 10 MB in size. The photo’s width and height must not exceed 10000 in total. Width and height ratio must be at most 20. More information on Sending Files »

	caption – Photo caption (may also be used when resending photos by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the photo caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	has_spoiler – Pass True if the photo needs to be covered with a spoiler animation

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	Returns:

	instance of method aiogram.methods.send_photo.SendPhoto

	
answer_photo(photo: Union[InputFile, str], caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, has_spoiler: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendPhoto

	Shortcut for method aiogram.methods.send_photo.SendPhoto
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

Use this method to send photos. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendphoto

	Parameters:

	
	photo – Photo to send. Pass a file_id as String to send a photo that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a photo from the Internet, or upload a new photo using multipart/form-data. The photo must be at most 10 MB in size. The photo’s width and height must not exceed 10000 in total. Width and height ratio must be at most 20. More information on Sending Files »

	caption – Photo caption (may also be used when resending photos by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the photo caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	has_spoiler – Pass True if the photo needs to be covered with a spoiler animation

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_photo.SendPhoto

	
reply_poll(question: str, options: List[Union[InputPollOption, str]], question_parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, question_entities: Optional[List[MessageEntity]] = None, is_anonymous: Optional[bool] = None, type: Optional[str] = None, allows_multiple_answers: Optional[bool] = None, correct_option_id: Optional[int] = None, explanation: Optional[str] = None, explanation_parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, explanation_entities: Optional[List[MessageEntity]] = None, open_period: Optional[int] = None, close_date: Optional[Union[datetime.datetime, datetime.timedelta, int]] = None, is_closed: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any) → SendPoll

	Shortcut for method aiogram.methods.send_poll.SendPoll
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

Use this method to send a native poll. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendpoll

	Parameters:

	
	question – Poll question, 1-300 characters

	options – A JSON-serialized list of 2-10 answer options

	question_parse_mode – Mode for parsing entities in the question. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details. Currently, only custom emoji entities are allowed

	question_entities – A JSON-serialized list of special entities that appear in the poll question. It can be specified instead of question_parse_mode

	is_anonymous – True, if the poll needs to be anonymous, defaults to True

	type – Poll type, ‘quiz’ or ‘regular’, defaults to ‘regular’

	allows_multiple_answers – True, if the poll allows multiple answers, ignored for polls in quiz mode, defaults to False

	correct_option_id – 0-based identifier of the correct answer option, required for polls in quiz mode

	explanation – Text that is shown when a user chooses an incorrect answer or taps on the lamp icon in a quiz-style poll, 0-200 characters with at most 2 line feeds after entities parsing

	explanation_parse_mode – Mode for parsing entities in the explanation. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	explanation_entities – A JSON-serialized list of special entities that appear in the poll explanation. It can be specified instead of explanation_parse_mode

	open_period – Amount of time in seconds the poll will be active after creation, 5-600. Can’t be used together with close_date.

	close_date – Point in time (Unix timestamp) when the poll will be automatically closed. Must be at least 5 and no more than 600 seconds in the future. Can’t be used together with open_period.

	is_closed – Pass True if the poll needs to be immediately closed. This can be useful for poll preview.

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	Returns:

	instance of method aiogram.methods.send_poll.SendPoll

	
answer_poll(question: str, options: List[Union[InputPollOption, str]], question_parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, question_entities: Optional[List[MessageEntity]] = None, is_anonymous: Optional[bool] = None, type: Optional[str] = None, allows_multiple_answers: Optional[bool] = None, correct_option_id: Optional[int] = None, explanation: Optional[str] = None, explanation_parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, explanation_entities: Optional[List[MessageEntity]] = None, open_period: Optional[int] = None, close_date: Optional[Union[datetime.datetime, datetime.timedelta, int]] = None, is_closed: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendPoll

	Shortcut for method aiogram.methods.send_poll.SendPoll
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

Use this method to send a native poll. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendpoll

	Parameters:

	
	question – Poll question, 1-300 characters

	options – A JSON-serialized list of 2-10 answer options

	question_parse_mode – Mode for parsing entities in the question. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details. Currently, only custom emoji entities are allowed

	question_entities – A JSON-serialized list of special entities that appear in the poll question. It can be specified instead of question_parse_mode

	is_anonymous – True, if the poll needs to be anonymous, defaults to True

	type – Poll type, ‘quiz’ or ‘regular’, defaults to ‘regular’

	allows_multiple_answers – True, if the poll allows multiple answers, ignored for polls in quiz mode, defaults to False

	correct_option_id – 0-based identifier of the correct answer option, required for polls in quiz mode

	explanation – Text that is shown when a user chooses an incorrect answer or taps on the lamp icon in a quiz-style poll, 0-200 characters with at most 2 line feeds after entities parsing

	explanation_parse_mode – Mode for parsing entities in the explanation. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	explanation_entities – A JSON-serialized list of special entities that appear in the poll explanation. It can be specified instead of explanation_parse_mode

	open_period – Amount of time in seconds the poll will be active after creation, 5-600. Can’t be used together with close_date.

	close_date – Point in time (Unix timestamp) when the poll will be automatically closed. Must be at least 5 and no more than 600 seconds in the future. Can’t be used together with open_period.

	is_closed – Pass True if the poll needs to be immediately closed. This can be useful for poll preview.

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_poll.SendPoll

	
reply_dice(emoji: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any) → SendDice

	Shortcut for method aiogram.methods.send_dice.SendDice
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

Use this method to send an animated emoji that will display a random value. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#senddice

	Parameters:

	
	emoji – Emoji on which the dice throw animation is based. Currently, must be one of ‘🎲’, ‘🎯’, ‘🏀’, ‘⚽’, ‘🎳’, or ‘🎰’. Dice can have values 1-6 for ‘🎲’, ‘🎯’ and ‘🎳’, values 1-5 for ‘🏀’ and ‘⚽’, and values 1-64 for ‘🎰’. Defaults to ‘🎲’

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	Returns:

	instance of method aiogram.methods.send_dice.SendDice

	
answer_dice(emoji: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendDice

	Shortcut for method aiogram.methods.send_dice.SendDice
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

Use this method to send an animated emoji that will display a random value. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#senddice

	Parameters:

	
	emoji – Emoji on which the dice throw animation is based. Currently, must be one of ‘🎲’, ‘🎯’, ‘🏀’, ‘⚽’, ‘🎳’, or ‘🎰’. Dice can have values 1-6 for ‘🎲’, ‘🎯’ and ‘🎳’, values 1-5 for ‘🏀’ and ‘⚽’, and values 1-64 for ‘🎰’. Defaults to ‘🎲’

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_dice.SendDice

	
reply_sticker(sticker: Union[InputFile, str], emoji: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any) → SendSticker

	Shortcut for method aiogram.methods.send_sticker.SendSticker
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

Use this method to send static .WEBP, animated [https://telegram.org/blog/animated-stickers] .TGS, or video [https://telegram.org/blog/video-stickers-better-reactions] .WEBM stickers. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendsticker

	Parameters:

	
	sticker – Sticker to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a .WEBP sticker from the Internet, or upload a new .WEBP, .TGS, or .WEBM sticker using multipart/form-data. More information on Sending Files ». Video and animated stickers can’t be sent via an HTTP URL.

	emoji – Emoji associated with the sticker; only for just uploaded stickers

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	Returns:

	instance of method aiogram.methods.send_sticker.SendSticker

	
answer_sticker(sticker: Union[InputFile, str], emoji: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendSticker

	Shortcut for method aiogram.methods.send_sticker.SendSticker
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

Use this method to send static .WEBP, animated [https://telegram.org/blog/animated-stickers] .TGS, or video [https://telegram.org/blog/video-stickers-better-reactions] .WEBM stickers. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendsticker

	Parameters:

	
	sticker – Sticker to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a .WEBP sticker from the Internet, or upload a new .WEBP, .TGS, or .WEBM sticker using multipart/form-data. More information on Sending Files ». Video and animated stickers can’t be sent via an HTTP URL.

	emoji – Emoji associated with the sticker; only for just uploaded stickers

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_sticker.SendSticker

	
reply_venue(latitude: float, longitude: float, title: str, address: str, foursquare_id: Optional[str] = None, foursquare_type: Optional[str] = None, google_place_id: Optional[str] = None, google_place_type: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any) → SendVenue

	Shortcut for method aiogram.methods.send_venue.SendVenue
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

Use this method to send information about a venue. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvenue

	Parameters:

	
	latitude – Latitude of the venue

	longitude – Longitude of the venue

	title – Name of the venue

	address – Address of the venue

	foursquare_id – Foursquare identifier of the venue

	foursquare_type – Foursquare type of the venue, if known. (For example, ‘arts_entertainment/default’, ‘arts_entertainment/aquarium’ or ‘food/icecream’.)

	google_place_id – Google Places identifier of the venue

	google_place_type – Google Places type of the venue. (See supported types [https://developers.google.com/places/web-service/supported_types].)

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	Returns:

	instance of method aiogram.methods.send_venue.SendVenue

	
answer_venue(latitude: float, longitude: float, title: str, address: str, foursquare_id: Optional[str] = None, foursquare_type: Optional[str] = None, google_place_id: Optional[str] = None, google_place_type: Optional[str] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendVenue

	Shortcut for method aiogram.methods.send_venue.SendVenue
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

Use this method to send information about a venue. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvenue

	Parameters:

	
	latitude – Latitude of the venue

	longitude – Longitude of the venue

	title – Name of the venue

	address – Address of the venue

	foursquare_id – Foursquare identifier of the venue

	foursquare_type – Foursquare type of the venue, if known. (For example, ‘arts_entertainment/default’, ‘arts_entertainment/aquarium’ or ‘food/icecream’.)

	google_place_id – Google Places identifier of the venue

	google_place_type – Google Places type of the venue. (See supported types [https://developers.google.com/places/web-service/supported_types].)

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_venue.SendVenue

	
reply_video(video: Union[InputFile, str], duration: Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, has_spoiler: Optional[bool] = None, supports_streaming: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any) → SendVideo

	Shortcut for method aiogram.methods.send_video.SendVideo
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

Use this method to send video files, Telegram clients support MPEG4 videos (other formats may be sent as aiogram.types.document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can currently send video files of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvideo

	Parameters:

	
	video – Video to send. Pass a file_id as String to send a video that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a video from the Internet, or upload a new video using multipart/form-data. More information on Sending Files »

	duration – Duration of sent video in seconds

	width – Video width

	height – Video height

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	caption – Video caption (may also be used when resending videos by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the video caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	has_spoiler – Pass True if the video needs to be covered with a spoiler animation

	supports_streaming – Pass True if the uploaded video is suitable for streaming

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	Returns:

	instance of method aiogram.methods.send_video.SendVideo

	
answer_video(video: Union[InputFile, str], duration: Optional[int] = None, width: Optional[int] = None, height: Optional[int] = None, thumbnail: Optional[InputFile] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, has_spoiler: Optional[bool] = None, supports_streaming: Optional[bool] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendVideo

	Shortcut for method aiogram.methods.send_video.SendVideo
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

Use this method to send video files, Telegram clients support MPEG4 videos (other formats may be sent as aiogram.types.document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can currently send video files of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvideo

	Parameters:

	
	video – Video to send. Pass a file_id as String to send a video that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a video from the Internet, or upload a new video using multipart/form-data. More information on Sending Files »

	duration – Duration of sent video in seconds

	width – Video width

	height – Video height

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	caption – Video caption (may also be used when resending videos by file_id), 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the video caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	has_spoiler – Pass True if the video needs to be covered with a spoiler animation

	supports_streaming – Pass True if the uploaded video is suitable for streaming

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_video.SendVideo

	
reply_video_note(video_note: Union[InputFile, str], duration: Optional[int] = None, length: Optional[int] = None, thumbnail: Optional[InputFile] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any) → SendVideoNote

	Shortcut for method aiogram.methods.send_video_note.SendVideoNote
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

As of v.4.0 [https://telegram.org/blog/video-messages-and-telescope], Telegram clients support rounded square MPEG4 videos of up to 1 minute long. Use this method to send video messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvideonote

	Parameters:

	
	video_note – Video note to send. Pass a file_id as String to send a video note that exists on the Telegram servers (recommended) or upload a new video using multipart/form-data. More information on Sending Files ». Sending video notes by a URL is currently unsupported

	duration – Duration of sent video in seconds

	length – Video width and height, i.e. diameter of the video message

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	Returns:

	instance of method aiogram.methods.send_video_note.SendVideoNote

	
answer_video_note(video_note: Union[InputFile, str], duration: Optional[int] = None, length: Optional[int] = None, thumbnail: Optional[InputFile] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendVideoNote

	Shortcut for method aiogram.methods.send_video_note.SendVideoNote
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

As of v.4.0 [https://telegram.org/blog/video-messages-and-telescope], Telegram clients support rounded square MPEG4 videos of up to 1 minute long. Use this method to send video messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvideonote

	Parameters:

	
	video_note – Video note to send. Pass a file_id as String to send a video note that exists on the Telegram servers (recommended) or upload a new video using multipart/form-data. More information on Sending Files ». Sending video notes by a URL is currently unsupported

	duration – Duration of sent video in seconds

	length – Video width and height, i.e. diameter of the video message

	thumbnail – Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_video_note.SendVideoNote

	
reply_voice(voice: Union[InputFile, str], caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, duration: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, **kwargs: Any) → SendVoice

	Shortcut for method aiogram.methods.send_voice.SendVoice
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

	reply_to_message_id

Use this method to send audio files, if you want Telegram clients to display the file as a playable voice message. For this to work, your audio must be in an .OGG file encoded with OPUS, or in .MP3 format, or in .M4A format (other formats may be sent as aiogram.types.audio.Audio or aiogram.types.document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can currently send voice messages of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvoice

	Parameters:

	
	voice – Audio file to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	caption – Voice message caption, 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the voice message caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	duration – Duration of the voice message in seconds

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	Returns:

	instance of method aiogram.methods.send_voice.SendVoice

	
answer_voice(voice: Union[InputFile, str], caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, duration: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → SendVoice

	Shortcut for method aiogram.methods.send_voice.SendVoice
will automatically fill method attributes:

	chat_id

	message_thread_id

	business_connection_id

Use this method to send audio files, if you want Telegram clients to display the file as a playable voice message. For this to work, your audio must be in an .OGG file encoded with OPUS, or in .MP3 format, or in .M4A format (other formats may be sent as aiogram.types.audio.Audio or aiogram.types.document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can currently send voice messages of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvoice

	Parameters:

	
	voice – Audio file to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	caption – Voice message caption, 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the voice message caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	duration – Duration of the voice message in seconds

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.send_voice.SendVoice

	
send_copy(chat_id: str | int, disable_notification: bool | None = None, reply_to_message_id: int | None = None, reply_parameters: ReplyParameters | None = None, reply_markup: InlineKeyboardMarkup | ReplyKeyboardMarkup | None = None, allow_sending_without_reply: bool | None = None, message_thread_id: int | None = None, business_connection_id: str | None = None, parse_mode: str | None = None) → ForwardMessage | SendAnimation | SendAudio | SendContact | SendDocument | SendLocation | SendMessage | SendPhoto | SendPoll | SendDice | SendSticker | SendVenue | SendVideo | SendVideoNote | SendVoice

	Send copy of a message.

Is similar to aiogram.client.bot.Bot.copy_message()
but returning the sent message instead of aiogram.types.message_id.MessageId

Note

This method doesn’t use the API method named copyMessage and
historically implemented before the similar method is added to API

	Parameters:

	
	chat_id –

	disable_notification –

	reply_to_message_id –

	reply_parameters –

	reply_markup –

	allow_sending_without_reply –

	message_thread_id –

	parse_mode –

	Returns:

	

	
copy_to(chat_id: Union[int, str], message_thread_id: Optional[int] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, reply_parameters: Optional[ReplyParameters] = None, reply_markup: Optional[Union[InlineKeyboardMarkup, ReplyKeyboardMarkup, ReplyKeyboardRemove, ForceReply]] = None, allow_sending_without_reply: Optional[bool] = None, reply_to_message_id: Optional[int] = None, **kwargs: Any) → CopyMessage

	Shortcut for method aiogram.methods.copy_message.CopyMessage
will automatically fill method attributes:

	from_chat_id

	message_id

Use this method to copy messages of any kind. Service messages, giveaway messages, giveaway winners messages, and invoice messages can’t be copied. A quiz aiogram.methods.poll.Poll can be copied only if the value of the field correct_option_id is known to the bot. The method is analogous to the method aiogram.methods.forward_message.ForwardMessage, but the copied message doesn’t have a link to the original message. Returns the aiogram.types.message_id.MessageId of the sent message on success.

Source: https://core.telegram.org/bots/api#copymessage

	Parameters:

	
	chat_id – Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	caption – New caption for media, 0-1024 characters after entities parsing. If not specified, the original caption is kept

	parse_mode – Mode for parsing entities in the new caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the new caption, which can be specified instead of parse_mode

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the sent message from forwarding and saving

	reply_parameters – Description of the message to reply to

	reply_markup – Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	allow_sending_without_reply – Pass True if the message should be sent even if the specified replied-to message is not found

	reply_to_message_id – If the message is a reply, ID of the original message

	Returns:

	instance of method aiogram.methods.copy_message.CopyMessage

	
edit_text(text: str, inline_message_id: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, entities: Optional[List[MessageEntity]] = None, link_preview_options: Optional[LinkPreviewOptions] = None, reply_markup: Optional[InlineKeyboardMarkup] = None, disable_web_page_preview: Optional[Union[bool, Default]] = <Default('link_preview_is_disabled')>, **kwargs: Any) → EditMessageText

	Shortcut for method aiogram.methods.edit_message_text.EditMessageText
will automatically fill method attributes:

	chat_id

	message_id

Use this method to edit text and game [https://core.telegram.org/bots/api#games] messages. On success, if the edited message is not an inline message, the edited aiogram.types.message.Message is returned, otherwise True is returned.

Source: https://core.telegram.org/bots/api#editmessagetext

	Parameters:

	
	text – New text of the message, 1-4096 characters after entities parsing

	inline_message_id – Required if chat_id and message_id are not specified. Identifier of the inline message

	parse_mode – Mode for parsing entities in the message text. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	entities – A JSON-serialized list of special entities that appear in message text, which can be specified instead of parse_mode

	link_preview_options – Link preview generation options for the message

	reply_markup – A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards].

	disable_web_page_preview – Disables link previews for links in this message

	Returns:

	instance of method aiogram.methods.edit_message_text.EditMessageText

	
forward(chat_id: Union[int, str], message_thread_id: Optional[int] = None, disable_notification: Optional[bool] = None, protect_content: Optional[Union[bool, Default]] = <Default('protect_content')>, **kwargs: Any) → ForwardMessage

	Shortcut for method aiogram.methods.forward_message.ForwardMessage
will automatically fill method attributes:

	from_chat_id

	message_id

Use this method to forward messages of any kind. Service messages and messages with protected content can’t be forwarded. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#forwardmessage

	Parameters:

	
	chat_id – Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	message_thread_id – Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	disable_notification – Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	protect_content – Protects the contents of the forwarded message from forwarding and saving

	Returns:

	instance of method aiogram.methods.forward_message.ForwardMessage

	
edit_media(media: InputMediaAnimation | InputMediaDocument | InputMediaAudio | InputMediaPhoto | InputMediaVideo, inline_message_id: str | None = None, reply_markup: InlineKeyboardMarkup | None = None, **kwargs: Any) → EditMessageMedia

	Shortcut for method aiogram.methods.edit_message_media.EditMessageMedia
will automatically fill method attributes:

	chat_id

	message_id

Use this method to edit animation, audio, document, photo, or video messages. If a message is part of a message album, then it can be edited only to an audio for audio albums, only to a document for document albums and to a photo or a video otherwise. When an inline message is edited, a new file can’t be uploaded; use a previously uploaded file via its file_id or specify a URL. On success, if the edited message is not an inline message, the edited aiogram.types.message.Message is returned, otherwise True is returned.

Source: https://core.telegram.org/bots/api#editmessagemedia

	Parameters:

	
	media – A JSON-serialized object for a new media content of the message

	inline_message_id – Required if chat_id and message_id are not specified. Identifier of the inline message

	reply_markup – A JSON-serialized object for a new inline keyboard [https://core.telegram.org/bots/features#inline-keyboards].

	Returns:

	instance of method aiogram.methods.edit_message_media.EditMessageMedia

	
edit_reply_markup(inline_message_id: str | None = None, reply_markup: InlineKeyboardMarkup | None = None, **kwargs: Any) → EditMessageReplyMarkup

	Shortcut for method aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup
will automatically fill method attributes:

	chat_id

	message_id

Use this method to edit only the reply markup of messages. On success, if the edited message is not an inline message, the edited aiogram.types.message.Message is returned, otherwise True is returned.

Source: https://core.telegram.org/bots/api#editmessagereplymarkup

	Parameters:

	
	inline_message_id – Required if chat_id and message_id are not specified. Identifier of the inline message

	reply_markup – A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards].

	Returns:

	instance of method aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup

	
delete_reply_markup(inline_message_id: str | None = None, **kwargs: Any) → EditMessageReplyMarkup

	Shortcut for method aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup
will automatically fill method attributes:

	chat_id

	message_id

	reply_markup

Use this method to edit only the reply markup of messages. On success, if the edited message is not an inline message, the edited aiogram.types.message.Message is returned, otherwise True is returned.

Source: https://core.telegram.org/bots/api#editmessagereplymarkup

	Parameters:

	inline_message_id – Required if chat_id and message_id are not specified. Identifier of the inline message

	Returns:

	instance of method aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup

	
edit_live_location(latitude: float, longitude: float, inline_message_id: str | None = None, live_period: int | None = None, horizontal_accuracy: float | None = None, heading: int | None = None, proximity_alert_radius: int | None = None, reply_markup: InlineKeyboardMarkup | None = None, **kwargs: Any) → EditMessageLiveLocation

	Shortcut for method aiogram.methods.edit_message_live_location.EditMessageLiveLocation
will automatically fill method attributes:

	chat_id

	message_id

Use this method to edit live location messages. A location can be edited until its live_period expires or editing is explicitly disabled by a call to aiogram.methods.stop_message_live_location.StopMessageLiveLocation. On success, if the edited message is not an inline message, the edited aiogram.types.message.Message is returned, otherwise True is returned.

Source: https://core.telegram.org/bots/api#editmessagelivelocation

	Parameters:

	
	latitude – Latitude of new location

	longitude – Longitude of new location

	inline_message_id – Required if chat_id and message_id are not specified. Identifier of the inline message

	live_period – New period in seconds during which the location can be updated, starting from the message send date. If 0x7FFFFFFF is specified, then the location can be updated forever. Otherwise, the new value must not exceed the current live_period by more than a day, and the live location expiration date must remain within the next 90 days. If not specified, then live_period remains unchanged

	horizontal_accuracy – The radius of uncertainty for the location, measured in meters; 0-1500

	heading – Direction in which the user is moving, in degrees. Must be between 1 and 360 if specified.

	proximity_alert_radius – The maximum distance for proximity alerts about approaching another chat member, in meters. Must be between 1 and 100000 if specified.

	reply_markup – A JSON-serialized object for a new inline keyboard [https://core.telegram.org/bots/features#inline-keyboards].

	Returns:

	instance of method aiogram.methods.edit_message_live_location.EditMessageLiveLocation

	
stop_live_location(inline_message_id: str | None = None, reply_markup: InlineKeyboardMarkup | None = None, **kwargs: Any) → StopMessageLiveLocation

	Shortcut for method aiogram.methods.stop_message_live_location.StopMessageLiveLocation
will automatically fill method attributes:

	chat_id

	message_id

Use this method to stop updating a live location message before live_period expires. On success, if the message is not an inline message, the edited aiogram.types.message.Message is returned, otherwise True is returned.

Source: https://core.telegram.org/bots/api#stopmessagelivelocation

	Parameters:

	
	inline_message_id – Required if chat_id and message_id are not specified. Identifier of the inline message

	reply_markup – A JSON-serialized object for a new inline keyboard [https://core.telegram.org/bots/features#inline-keyboards].

	Returns:

	instance of method aiogram.methods.stop_message_live_location.StopMessageLiveLocation

	
edit_caption(inline_message_id: Optional[str] = None, caption: Optional[str] = None, parse_mode: Optional[Union[str, Default]] = <Default('parse_mode')>, caption_entities: Optional[List[MessageEntity]] = None, reply_markup: Optional[InlineKeyboardMarkup] = None, **kwargs: Any) → EditMessageCaption

	Shortcut for method aiogram.methods.edit_message_caption.EditMessageCaption
will automatically fill method attributes:

	chat_id

	message_id

Use this method to edit captions of messages. On success, if the edited message is not an inline message, the edited aiogram.types.message.Message is returned, otherwise True is returned.

Source: https://core.telegram.org/bots/api#editmessagecaption

	Parameters:

	
	inline_message_id – Required if chat_id and message_id are not specified. Identifier of the inline message

	caption – New caption of the message, 0-1024 characters after entities parsing

	parse_mode – Mode for parsing entities in the message caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	caption_entities – A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	reply_markup – A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards].

	Returns:

	instance of method aiogram.methods.edit_message_caption.EditMessageCaption

	
delete(**kwargs: Any) → DeleteMessage

	Shortcut for method aiogram.methods.delete_message.DeleteMessage
will automatically fill method attributes:

	chat_id

	message_id

Use this method to delete a message, including service messages, with the following limitations:

	A message can only be deleted if it was sent less than 48 hours ago.

	Service messages about a supergroup, channel, or forum topic creation can’t be deleted.

	A dice message in a private chat can only be deleted if it was sent more than 24 hours ago.

	Bots can delete outgoing messages in private chats, groups, and supergroups.

	Bots can delete incoming messages in private chats.

	Bots granted can_post_messages permissions can delete outgoing messages in channels.

	If the bot is an administrator of a group, it can delete any message there.

	If the bot has can_delete_messages permission in a supergroup or a channel, it can delete any message there.

Returns True on success.

Source: https://core.telegram.org/bots/api#deletemessage

	Returns:

	instance of method aiogram.methods.delete_message.DeleteMessage

	
pin(disable_notification: bool | None = None, **kwargs: Any) → PinChatMessage

	Shortcut for method aiogram.methods.pin_chat_message.PinChatMessage
will automatically fill method attributes:

	chat_id

	message_id

Use this method to add a message to the list of pinned messages in a chat. If the chat is not a private chat, the bot must be an administrator in the chat for this to work and must have the ‘can_pin_messages’ administrator right in a supergroup or ‘can_edit_messages’ administrator right in a channel. Returns True on success.

Source: https://core.telegram.org/bots/api#pinchatmessage

	Parameters:

	disable_notification – Pass True if it is not necessary to send a notification to all chat members about the new pinned message. Notifications are always disabled in channels and private chats.

	Returns:

	instance of method aiogram.methods.pin_chat_message.PinChatMessage

	
unpin(**kwargs: Any) → UnpinChatMessage

	Shortcut for method aiogram.methods.unpin_chat_message.UnpinChatMessage
will automatically fill method attributes:

	chat_id

	message_id

Use this method to remove a message from the list of pinned messages in a chat. If the chat is not a private chat, the bot must be an administrator in the chat for this to work and must have the ‘can_pin_messages’ administrator right in a supergroup or ‘can_edit_messages’ administrator right in a channel. Returns True on success.

Source: https://core.telegram.org/bots/api#unpinchatmessage

	Returns:

	instance of method aiogram.methods.unpin_chat_message.UnpinChatMessage

	
get_url(force_private: bool = False) → str | None

	Returns message URL. Cannot be used in private (one-to-one) chats.
If chat has a username, returns URL like https://t.me/username/message_id
Otherwise (or if {force_private} flag is set), returns https://t.me/c/shifted_chat_id/message_id

	Parameters:

	force_private – if set, a private URL is returned even for a public chat

	Returns:

	string with full message URL

	
react(reaction: List[ReactionTypeEmoji | ReactionTypeCustomEmoji] | None = None, is_big: bool | None = None, **kwargs: Any) → SetMessageReaction

	Shortcut for method aiogram.methods.set_message_reaction.SetMessageReaction
will automatically fill method attributes:

	chat_id

	message_id

Use this method to change the chosen reactions on a message. Service messages can’t be reacted to. Automatically forwarded messages from a channel to its discussion group have the same available reactions as messages in the channel. Returns True on success.

Source: https://core.telegram.org/bots/api#setmessagereaction

	Parameters:

	
	reaction – A JSON-serialized list of reaction types to set on the message. Currently, as non-premium users, bots can set up to one reaction per message. A custom emoji reaction can be used if it is either already present on the message or explicitly allowed by chat administrators.

	is_big – Pass True to set the reaction with a big animation

	Returns:

	instance of method aiogram.methods.set_message_reaction.SetMessageReaction

MessageAutoDeleteTimerChanged

	
class aiogram.types.message_auto_delete_timer_changed.MessageAutoDeleteTimerChanged(*, message_auto_delete_time: int, **extra_data: Any)

	This object represents a service message about a change in auto-delete timer settings.

Source: https://core.telegram.org/bots/api#messageautodeletetimerchanged

	
message_auto_delete_time: int

	New auto-delete time for messages in the chat; in seconds

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

MessageEntity

	
class aiogram.types.message_entity.MessageEntity(*, type: str, offset: int, length: int, url: str | None = None, user: User | None = None, language: str | None = None, custom_emoji_id: str | None = None, **extra_data: Any)

	This object represents one special entity in a text message. For example, hashtags, usernames, URLs, etc.

Source: https://core.telegram.org/bots/api#messageentity

	
type: str

	Type of the entity. Currently, can be ‘mention’ (@username), ‘hashtag’ (#hashtag), ‘cashtag’ ($USD), ‘bot_command’ (/start@jobs_bot), ‘url’ (https://telegram.org), ‘email’ (do-not-reply@telegram.org), ‘phone_number’ (+1-212-555-0123), ‘bold’ (bold text), ‘italic’ (italic text), ‘underline’ (underlined text), ‘strikethrough’ (strikethrough text), ‘spoiler’ (spoiler message), ‘blockquote’ (block quotation), ‘code’ (monowidth string), ‘pre’ (monowidth block), ‘text_link’ (for clickable text URLs), ‘text_mention’ (for users without usernames [https://telegram.org/blog/edit#new-mentions]), ‘custom_emoji’ (for inline custom emoji stickers)

	
offset: int

	Offset in UTF-16 code units [https://core.telegram.org/api/entities#entity-length] to the start of the entity

	
length: int

	Length of the entity in UTF-16 code units [https://core.telegram.org/api/entities#entity-length]

	
url: str | None

	Optional. For ‘text_link’ only, URL that will be opened after user taps on the text

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
user: User | None

	Optional. For ‘text_mention’ only, the mentioned user

	
language: str | None

	Optional. For ‘pre’ only, the programming language of the entity text

	
custom_emoji_id: str | None

	Optional. For ‘custom_emoji’ only, unique identifier of the custom emoji. Use aiogram.methods.get_custom_emoji_stickers.GetCustomEmojiStickers to get full information about the sticker

	
extract_from(text: str) → str

	

MessageId

	
class aiogram.types.message_id.MessageId(*, message_id: int, **extra_data: Any)

	This object represents a unique message identifier.

Source: https://core.telegram.org/bots/api#messageid

	
message_id: int

	Unique message identifier

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

MessageOrigin

	
class aiogram.types.message_origin.MessageOrigin(**extra_data: Any)

	This object describes the origin of a message. It can be one of

	aiogram.types.message_origin_user.MessageOriginUser

	aiogram.types.message_origin_hidden_user.MessageOriginHiddenUser

	aiogram.types.message_origin_chat.MessageOriginChat

	aiogram.types.message_origin_channel.MessageOriginChannel

Source: https://core.telegram.org/bots/api#messageorigin

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

MessageOriginChannel

	
class aiogram.types.message_origin_channel.MessageOriginChannel(*, type: Literal[MessageOriginType.CHANNEL] = MessageOriginType.CHANNEL, date: datetime, chat: Chat, message_id: int, author_signature: str | None = None, **extra_data: Any)

	The message was originally sent to a channel chat.

Source: https://core.telegram.org/bots/api#messageoriginchannel

	
type: Literal[MessageOriginType.CHANNEL]

	Type of the message origin, always ‘channel’

	
date: DateTime

	Date the message was sent originally in Unix time

	
chat: Chat

	Channel chat to which the message was originally sent

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
message_id: int

	Unique message identifier inside the chat

	
author_signature: str | None

	Optional. Signature of the original post author

MessageOriginChat

	
class aiogram.types.message_origin_chat.MessageOriginChat(*, type: Literal[MessageOriginType.CHAT] = MessageOriginType.CHAT, date: datetime, sender_chat: Chat, author_signature: str | None = None, **extra_data: Any)

	The message was originally sent on behalf of a chat to a group chat.

Source: https://core.telegram.org/bots/api#messageoriginchat

	
type: Literal[MessageOriginType.CHAT]

	Type of the message origin, always ‘chat’

	
date: DateTime

	Date the message was sent originally in Unix time

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
sender_chat: Chat

	Chat that sent the message originally

	
author_signature: str | None

	Optional. For messages originally sent by an anonymous chat administrator, original message author signature

MessageOriginHiddenUser

	
class aiogram.types.message_origin_hidden_user.MessageOriginHiddenUser(*, type: Literal[MessageOriginType.HIDDEN_USER] = MessageOriginType.HIDDEN_USER, date: datetime, sender_user_name: str, **extra_data: Any)

	The message was originally sent by an unknown user.

Source: https://core.telegram.org/bots/api#messageoriginhiddenuser

	
type: Literal[MessageOriginType.HIDDEN_USER]

	Type of the message origin, always ‘hidden_user’

	
date: datetime

	Date the message was sent originally in Unix time

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
sender_user_name: str

	Name of the user that sent the message originally

MessageOriginUser

	
class aiogram.types.message_origin_user.MessageOriginUser(*, type: Literal[MessageOriginType.USER] = MessageOriginType.USER, date: datetime, sender_user: User, **extra_data: Any)

	The message was originally sent by a known user.

Source: https://core.telegram.org/bots/api#messageoriginuser

	
type: Literal[MessageOriginType.USER]

	Type of the message origin, always ‘user’

	
date: DateTime

	Date the message was sent originally in Unix time

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
sender_user: User

	User that sent the message originally

MessageReactionCountUpdated

	
class aiogram.types.message_reaction_count_updated.MessageReactionCountUpdated(*, chat: Chat, message_id: int, date: datetime, reactions: List[ReactionCount], **extra_data: Any)

	This object represents reaction changes on a message with anonymous reactions.

Source: https://core.telegram.org/bots/api#messagereactioncountupdated

	
chat: Chat

	The chat containing the message

	
message_id: int

	Unique message identifier inside the chat

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
date: DateTime

	Date of the change in Unix time

	
reactions: List[ReactionCount]

	List of reactions that are present on the message

MessageReactionUpdated

	
class aiogram.types.message_reaction_updated.MessageReactionUpdated(*, chat: Chat, message_id: int, date: datetime, old_reaction: List[ReactionTypeEmoji | ReactionTypeCustomEmoji], new_reaction: List[ReactionTypeEmoji | ReactionTypeCustomEmoji], user: User | None = None, actor_chat: Chat | None = None, **extra_data: Any)

	This object represents a change of a reaction on a message performed by a user.

Source: https://core.telegram.org/bots/api#messagereactionupdated

	
chat: Chat

	The chat containing the message the user reacted to

	
message_id: int

	Unique identifier of the message inside the chat

	
date: DateTime

	Date of the change in Unix time

	
old_reaction: List[ReactionTypeEmoji | ReactionTypeCustomEmoji]

	Previous list of reaction types that were set by the user

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
new_reaction: List[ReactionTypeEmoji | ReactionTypeCustomEmoji]

	New list of reaction types that have been set by the user

	
user: User | None

	Optional. The user that changed the reaction, if the user isn’t anonymous

	
actor_chat: Chat | None

	Optional. The chat on behalf of which the reaction was changed, if the user is anonymous

PhotoSize

	
class aiogram.types.photo_size.PhotoSize(*, file_id: str, file_unique_id: str, width: int, height: int, file_size: int | None = None, **extra_data: Any)

	This object represents one size of a photo or a file [https://core.telegram.org/bots/api#document] / aiogram.methods.sticker.Sticker thumbnail.

Source: https://core.telegram.org/bots/api#photosize

	
file_id: str

	Identifier for this file, which can be used to download or reuse the file

	
file_unique_id: str

	Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be used to download or reuse the file.

	
width: int

	Photo width

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
height: int

	Photo height

	
file_size: int | None

	Optional. File size in bytes

Poll

	
class aiogram.types.poll.Poll(*, id: str, question: str, options: List[PollOption], total_voter_count: int, is_closed: bool, is_anonymous: bool, type: str, allows_multiple_answers: bool, question_entities: List[MessageEntity] | None = None, correct_option_id: int | None = None, explanation: str | None = None, explanation_entities: List[MessageEntity] | None = None, open_period: int | None = None, close_date: datetime | None = None, **extra_data: Any)

	This object contains information about a poll.

Source: https://core.telegram.org/bots/api#poll

	
id: str

	Unique poll identifier

	
question: str

	Poll question, 1-300 characters

	
options: List[PollOption]

	List of poll options

	
total_voter_count: int

	Total number of users that voted in the poll

	
is_closed: bool

	True, if the poll is closed

	
is_anonymous: bool

	True, if the poll is anonymous

	
type: str

	Poll type, currently can be ‘regular’ or ‘quiz’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
allows_multiple_answers: bool

	True, if the poll allows multiple answers

	
question_entities: List[MessageEntity] | None

	Optional. Special entities that appear in the question. Currently, only custom emoji entities are allowed in poll questions

	
correct_option_id: int | None

	Optional. 0-based identifier of the correct answer option. Available only for polls in the quiz mode, which are closed, or was sent (not forwarded) by the bot or to the private chat with the bot.

	
explanation: str | None

	Optional. Text that is shown when a user chooses an incorrect answer or taps on the lamp icon in a quiz-style poll, 0-200 characters

	
explanation_entities: List[MessageEntity] | None

	Optional. Special entities like usernames, URLs, bot commands, etc. that appear in the explanation

	
open_period: int | None

	Optional. Amount of time in seconds the poll will be active after creation

	
close_date: DateTime | None

	Optional. Point in time (Unix timestamp) when the poll will be automatically closed

PollAnswer

	
class aiogram.types.poll_answer.PollAnswer(*, poll_id: str, option_ids: List[int], voter_chat: Chat | None = None, user: User | None = None, **extra_data: Any)

	This object represents an answer of a user in a non-anonymous poll.

Source: https://core.telegram.org/bots/api#pollanswer

	
poll_id: str

	Unique poll identifier

	
option_ids: List[int]

	0-based identifiers of chosen answer options. May be empty if the vote was retracted.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
voter_chat: Chat | None

	Optional. The chat that changed the answer to the poll, if the voter is anonymous

	
user: User | None

	Optional. The user that changed the answer to the poll, if the voter isn’t anonymous

PollOption

	
class aiogram.types.poll_option.PollOption(*, text: str, voter_count: int, text_entities: List[MessageEntity] | None = None, **extra_data: Any)

	This object contains information about one answer option in a poll.

Source: https://core.telegram.org/bots/api#polloption

	
text: str

	Option text, 1-100 characters

	
voter_count: int

	Number of users that voted for this option

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
text_entities: List[MessageEntity] | None

	Optional. Special entities that appear in the option text. Currently, only custom emoji entities are allowed in poll option texts

ProximityAlertTriggered

	
class aiogram.types.proximity_alert_triggered.ProximityAlertTriggered(*, traveler: User, watcher: User, distance: int, **extra_data: Any)

	This object represents the content of a service message, sent whenever a user in the chat triggers a proximity alert set by another user.

Source: https://core.telegram.org/bots/api#proximityalerttriggered

	
traveler: User

	User that triggered the alert

	
watcher: User

	User that set the alert

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
distance: int

	The distance between the users

ReactionCount

	
class aiogram.types.reaction_count.ReactionCount(*, type: ReactionTypeEmoji | ReactionTypeCustomEmoji, total_count: int, **extra_data: Any)

	Represents a reaction added to a message along with the number of times it was added.

Source: https://core.telegram.org/bots/api#reactioncount

	
type: ReactionTypeEmoji | ReactionTypeCustomEmoji

	Type of the reaction

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
total_count: int

	Number of times the reaction was added

ReactionType

	
class aiogram.types.reaction_type.ReactionType(**extra_data: Any)

	This object describes the type of a reaction. Currently, it can be one of

	aiogram.types.reaction_type_emoji.ReactionTypeEmoji

	aiogram.types.reaction_type_custom_emoji.ReactionTypeCustomEmoji

Source: https://core.telegram.org/bots/api#reactiontype

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

ReactionTypeCustomEmoji

	
class aiogram.types.reaction_type_custom_emoji.ReactionTypeCustomEmoji(*, type: Literal[ReactionTypeType.CUSTOM_EMOJI] = ReactionTypeType.CUSTOM_EMOJI, custom_emoji_id: str, **extra_data: Any)

	The reaction is based on a custom emoji.

Source: https://core.telegram.org/bots/api#reactiontypecustomemoji

	
type: Literal[ReactionTypeType.CUSTOM_EMOJI]

	Type of the reaction, always ‘custom_emoji’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
custom_emoji_id: str

	Custom emoji identifier

ReactionTypeEmoji

	
class aiogram.types.reaction_type_emoji.ReactionTypeEmoji(*, type: Literal[ReactionTypeType.EMOJI] = ReactionTypeType.EMOJI, emoji: str, **extra_data: Any)

	The reaction is based on an emoji.

Source: https://core.telegram.org/bots/api#reactiontypeemoji

	
type: Literal[ReactionTypeType.EMOJI]

	Type of the reaction, always ‘emoji’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
emoji: str

	Reaction emoji. Currently, it can be one of “👍”, “👎”, “❤”, “🔥”, “🥰”, “👏”, “😁”, “🤔”, “🤯”, “😱”, “🤬”, “😢”, “🎉”, “🤩”, “🤮”, “💩”, “🙏”, “👌”, “🕊”, “🤡”, “🥱”, “🥴”, “😍”, “🐳”, “❤‍🔥”, “🌚”, “🌭”, “💯”, “🤣”, “⚡”, “🍌”, “🏆”, “💔”, “🤨”, “😐”, “🍓”, “🍾”, “💋”, “🖕”, “😈”, “😴”, “😭”, “🤓”, “👻”, “👨‍💻”, “👀”, “🎃”, “🙈”, “😇”, “😨”, “🤝”, “✍”, “🤗”, “🫡”, “🎅”, “🎄”, “☃”, “💅”, “🤪”, “🗿”, “🆒”, “💘”, “🙉”, “🦄”, “😘”, “💊”, “🙊”, “😎”, “👾”, “🤷‍♂”, “🤷”, “🤷‍♀”, “😡”

ReplyKeyboardMarkup

	
class aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup(*, keyboard: List[List[KeyboardButton]], is_persistent: bool | None = None, resize_keyboard: bool | None = None, one_time_keyboard: bool | None = None, input_field_placeholder: str | None = None, selective: bool | None = None, **extra_data: Any)

	This object represents a custom keyboard [https://core.telegram.org/bots/features#keyboards] with reply options (see Introduction to bots [https://core.telegram.org/bots/features#keyboards] for details and examples). Not supported in channels and for messages sent on behalf of a Telegram Business account.

Source: https://core.telegram.org/bots/api#replykeyboardmarkup

	
keyboard: List[List[KeyboardButton]]

	Array of button rows, each represented by an Array of aiogram.types.keyboard_button.KeyboardButton objects

	
is_persistent: bool | None

	Optional. Requests clients to always show the keyboard when the regular keyboard is hidden. Defaults to false, in which case the custom keyboard can be hidden and opened with a keyboard icon.

	
resize_keyboard: bool | None

	Optional. Requests clients to resize the keyboard vertically for optimal fit (e.g., make the keyboard smaller if there are just two rows of buttons). Defaults to false, in which case the custom keyboard is always of the same height as the app’s standard keyboard.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
one_time_keyboard: bool | None

	Optional. Requests clients to hide the keyboard as soon as it’s been used. The keyboard will still be available, but clients will automatically display the usual letter-keyboard in the chat - the user can press a special button in the input field to see the custom keyboard again. Defaults to false.

	
input_field_placeholder: str | None

	Optional. The placeholder to be shown in the input field when the keyboard is active; 1-64 characters

	
selective: bool | None

	Optional. Use this parameter if you want to show the keyboard to specific users only. Targets: 1) users that are @mentioned in the text of the aiogram.types.message.Message object; 2) if the bot’s message is a reply to a message in the same chat and forum topic, sender of the original message.

ReplyKeyboardRemove

	
class aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove(*, remove_keyboard: Literal[True] = True, selective: bool | None = None, **extra_data: Any)

	Upon receiving a message with this object, Telegram clients will remove the current custom keyboard and display the default letter-keyboard. By default, custom keyboards are displayed until a new keyboard is sent by a bot. An exception is made for one-time keyboards that are hidden immediately after the user presses a button (see aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup). Not supported in channels and for messages sent on behalf of a Telegram Business account.

Source: https://core.telegram.org/bots/api#replykeyboardremove

	
remove_keyboard: Literal[True]

	Requests clients to remove the custom keyboard (user will not be able to summon this keyboard; if you want to hide the keyboard from sight but keep it accessible, use one_time_keyboard in aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
selective: bool | None

	Optional. Use this parameter if you want to remove the keyboard for specific users only. Targets: 1) users that are @mentioned in the text of the aiogram.types.message.Message object; 2) if the bot’s message is a reply to a message in the same chat and forum topic, sender of the original message.

ReplyParameters

	
class aiogram.types.reply_parameters.ReplyParameters(*, message_id: int, chat_id: int | str | None = None, allow_sending_without_reply: bool | ~aiogram.client.default.Default | None = <Default('allow_sending_without_reply')>, quote: str | None = None, quote_parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, quote_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, quote_position: int | None = None, **extra_data: ~typing.Any)

	Describes reply parameters for the message that is being sent.

Source: https://core.telegram.org/bots/api#replyparameters

	
message_id: int

	Identifier of the message that will be replied to in the current chat, or in the chat chat_id if it is specified

	
chat_id: int | str | None

	Optional. If the message to be replied to is from a different chat, unique identifier for the chat or username of the channel (in the format @channelusername). Not supported for messages sent on behalf of a business account.

	
allow_sending_without_reply: bool | Default | None

	Optional. Pass True if the message should be sent even if the specified message to be replied to is not found. Always False for replies in another chat or forum topic. Always True for messages sent on behalf of a business account.

	
quote: str | None

	Optional. Quoted part of the message to be replied to; 0-1024 characters after entities parsing. The quote must be an exact substring of the message to be replied to, including bold, italic, underline, strikethrough, spoiler, and custom_emoji entities. The message will fail to send if the quote isn’t found in the original message.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
quote_parse_mode: str | Default | None

	Optional. Mode for parsing entities in the quote. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
quote_entities: List[MessageEntity] | None

	Optional. A JSON-serialized list of special entities that appear in the quote. It can be specified instead of quote_parse_mode.

	
quote_position: int | None

	Optional. Position of the quote in the original message in UTF-16 code units

ResponseParameters

	
class aiogram.types.response_parameters.ResponseParameters(*, migrate_to_chat_id: int | None = None, retry_after: int | None = None, **extra_data: Any)

	Describes why a request was unsuccessful.

Source: https://core.telegram.org/bots/api#responseparameters

	
migrate_to_chat_id: int | None

	Optional. The group has been migrated to a supergroup with the specified identifier. This number may have more than 32 significant bits and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or double-precision float type are safe for storing this identifier.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
retry_after: int | None

	Optional. In case of exceeding flood control, the number of seconds left to wait before the request can be repeated

SharedUser

	
class aiogram.types.shared_user.SharedUser(*, user_id: int, first_name: str | None = None, last_name: str | None = None, username: str | None = None, photo: List[PhotoSize] | None = None, **extra_data: Any)

	This object contains information about a user that was shared with the bot using a aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers button.

Source: https://core.telegram.org/bots/api#shareduser

	
user_id: int

	Identifier of the shared user. This number may have more than 32 significant bits and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so 64-bit integers or double-precision float types are safe for storing these identifiers. The bot may not have access to the user and could be unable to use this identifier, unless the user is already known to the bot by some other means.

	
first_name: str | None

	Optional. First name of the user, if the name was requested by the bot

	
last_name: str | None

	Optional. Last name of the user, if the name was requested by the bot

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
username: str | None

	Optional. Username of the user, if the username was requested by the bot

	
photo: List[PhotoSize] | None

	Optional. Available sizes of the chat photo, if the photo was requested by the bot

Story

	
class aiogram.types.story.Story(*, chat: Chat, id: int, **extra_data: Any)

	This object represents a story.

Source: https://core.telegram.org/bots/api#story

	
chat: Chat

	Chat that posted the story

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
id: int

	Unique identifier for the story in the chat

SwitchInlineQueryChosenChat

	
class aiogram.types.switch_inline_query_chosen_chat.SwitchInlineQueryChosenChat(*, query: str | None = None, allow_user_chats: bool | None = None, allow_bot_chats: bool | None = None, allow_group_chats: bool | None = None, allow_channel_chats: bool | None = None, **extra_data: Any)

	This object represents an inline button that switches the current user to inline mode in a chosen chat, with an optional default inline query.

Source: https://core.telegram.org/bots/api#switchinlinequerychosenchat

	
query: str | None

	Optional. The default inline query to be inserted in the input field. If left empty, only the bot’s username will be inserted

	
allow_user_chats: bool | None

	Optional. True, if private chats with users can be chosen

	
allow_bot_chats: bool | None

	Optional. True, if private chats with bots can be chosen

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
allow_group_chats: bool | None

	Optional. True, if group and supergroup chats can be chosen

	
allow_channel_chats: bool | None

	Optional. True, if channel chats can be chosen

TextQuote

	
class aiogram.types.text_quote.TextQuote(*, text: str, position: int, entities: List[MessageEntity] | None = None, is_manual: bool | None = None, **extra_data: Any)

	This object contains information about the quoted part of a message that is replied to by the given message.

Source: https://core.telegram.org/bots/api#textquote

	
text: str

	Text of the quoted part of a message that is replied to by the given message

	
position: int

	Approximate quote position in the original message in UTF-16 code units as specified by the sender

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
entities: List[MessageEntity] | None

	Optional. Special entities that appear in the quote. Currently, only bold, italic, underline, strikethrough, spoiler, and custom_emoji entities are kept in quotes.

	
is_manual: bool | None

	Optional. True, if the quote was chosen manually by the message sender. Otherwise, the quote was added automatically by the server.

User

	
class aiogram.types.user.User(*, id: int, is_bot: bool, first_name: str, last_name: str | None = None, username: str | None = None, language_code: str | None = None, is_premium: bool | None = None, added_to_attachment_menu: bool | None = None, can_join_groups: bool | None = None, can_read_all_group_messages: bool | None = None, supports_inline_queries: bool | None = None, can_connect_to_business: bool | None = None, **extra_data: Any)

	This object represents a Telegram user or bot.

Source: https://core.telegram.org/bots/api#user

	
id: int

	Unique identifier for this user or bot. This number may have more than 32 significant bits and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a 64-bit integer or double-precision float type are safe for storing this identifier.

	
is_bot: bool

	True, if this user is a bot

	
first_name: str

	User’s or bot’s first name

	
last_name: str | None

	Optional. User’s or bot’s last name

	
username: str | None

	Optional. User’s or bot’s username

	
language_code: str | None

	Optional. IETF language tag [https://en.wikipedia.org/wiki/IETF_language_tag] of the user’s language

	
is_premium: bool | None

	Optional. True, if this user is a Telegram Premium user

	
added_to_attachment_menu: bool | None

	Optional. True, if this user added the bot to the attachment menu

	
can_join_groups: bool | None

	Optional. True, if the bot can be invited to groups. Returned only in aiogram.methods.get_me.GetMe.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
can_read_all_group_messages: bool | None

	Optional. True, if privacy mode [https://core.telegram.org/bots/features#privacy-mode] is disabled for the bot. Returned only in aiogram.methods.get_me.GetMe.

	
supports_inline_queries: bool | None

	Optional. True, if the bot supports inline queries. Returned only in aiogram.methods.get_me.GetMe.

	
can_connect_to_business: bool | None

	Optional. True, if the bot can be connected to a Telegram Business account to receive its messages. Returned only in aiogram.methods.get_me.GetMe.

	
property full_name: str

	

	
property url: str

	

	
mention_markdown(name: str | None = None) → str

	

	
mention_html(name: str | None = None) → str

	

	
get_profile_photos(offset: int | None = None, limit: int | None = None, **kwargs: Any) → GetUserProfilePhotos

	Shortcut for method aiogram.methods.get_user_profile_photos.GetUserProfilePhotos
will automatically fill method attributes:

	user_id

Use this method to get a list of profile pictures for a user. Returns a aiogram.types.user_profile_photos.UserProfilePhotos object.

Source: https://core.telegram.org/bots/api#getuserprofilephotos

	Parameters:

	
	offset – Sequential number of the first photo to be returned. By default, all photos are returned.

	limit – Limits the number of photos to be retrieved. Values between 1-100 are accepted. Defaults to 100.

	Returns:

	instance of method aiogram.methods.get_user_profile_photos.GetUserProfilePhotos

UserChatBoosts

	
class aiogram.types.user_chat_boosts.UserChatBoosts(*, boosts: List[ChatBoost], **extra_data: Any)

	This object represents a list of boosts added to a chat by a user.

Source: https://core.telegram.org/bots/api#userchatboosts

	
boosts: List[ChatBoost]

	The list of boosts added to the chat by the user

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

UserProfilePhotos

	
class aiogram.types.user_profile_photos.UserProfilePhotos(*, total_count: int, photos: List[List[PhotoSize]], **extra_data: Any)

	This object represent a user’s profile pictures.

Source: https://core.telegram.org/bots/api#userprofilephotos

	
total_count: int

	Total number of profile pictures the target user has

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
photos: List[List[PhotoSize]]

	Requested profile pictures (in up to 4 sizes each)

UserShared

	
class aiogram.types.user_shared.UserShared(*, request_id: int, user_id: int, **extra_data: Any)

	This object contains information about the user whose identifier was shared with the bot using a aiogram.types.keyboard_button_request_user.KeyboardButtonRequestUser button.

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Source: https://core.telegram.org/bots/api#usershared

	
request_id: int

	Identifier of the request

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
user_id: int

	Identifier of the shared user. This number may have more than 32 significant bits and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a 64-bit integer or double-precision float type are safe for storing this identifier. The bot may not have access to the user and could be unable to use this identifier, unless the user is already known to the bot by some other means.

UsersShared

	
class aiogram.types.users_shared.UsersShared(*, request_id: int, users: List[SharedUser], user_ids: List[int] | None = None, **extra_data: Any)

	This object contains information about the users whose identifiers were shared with the bot using a aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers button.

Source: https://core.telegram.org/bots/api#usersshared

	
request_id: int

	Identifier of the request

	
users: List[SharedUser]

	Information about users shared with the bot.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
user_ids: List[int] | None

	Identifiers of the shared users. These numbers may have more than 32 significant bits and some programming languages may have difficulty/silent defects in interpreting them. But they have at most 52 significant bits, so 64-bit integers or double-precision float types are safe for storing these identifiers. The bot may not have access to the users and could be unable to use these identifiers, unless the users are already known to the bot by some other means.

Deprecated since version API:7.2: https://core.telegram.org/bots/api-changelog#march-31-2024

Venue

	
class aiogram.types.venue.Venue(*, location: Location, title: str, address: str, foursquare_id: str | None = None, foursquare_type: str | None = None, google_place_id: str | None = None, google_place_type: str | None = None, **extra_data: Any)

	This object represents a venue.

Source: https://core.telegram.org/bots/api#venue

	
location: Location

	Venue location. Can’t be a live location

	
title: str

	Name of the venue

	
address: str

	Address of the venue

	
foursquare_id: str | None

	Optional. Foursquare identifier of the venue

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
foursquare_type: str | None

	Optional. Foursquare type of the venue. (For example, ‘arts_entertainment/default’, ‘arts_entertainment/aquarium’ or ‘food/icecream’.)

	
google_place_id: str | None

	Optional. Google Places identifier of the venue

	
google_place_type: str | None

	Optional. Google Places type of the venue. (See supported types [https://developers.google.com/places/web-service/supported_types].)

Video

	
class aiogram.types.video.Video(*, file_id: str, file_unique_id: str, width: int, height: int, duration: int, thumbnail: PhotoSize | None = None, file_name: str | None = None, mime_type: str | None = None, file_size: int | None = None, **extra_data: Any)

	This object represents a video file.

Source: https://core.telegram.org/bots/api#video

	
file_id: str

	Identifier for this file, which can be used to download or reuse the file

	
file_unique_id: str

	Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be used to download or reuse the file.

	
width: int

	Video width as defined by sender

	
height: int

	Video height as defined by sender

	
duration: int

	Duration of the video in seconds as defined by sender

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
thumbnail: PhotoSize | None

	Optional. Video thumbnail

	
file_name: str | None

	Optional. Original filename as defined by sender

	
mime_type: str | None

	Optional. MIME type of the file as defined by sender

	
file_size: int | None

	Optional. File size in bytes. It can be bigger than 2^31 and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or double-precision float type are safe for storing this value.

VideoChatEnded

	
class aiogram.types.video_chat_ended.VideoChatEnded(*, duration: int, **extra_data: Any)

	This object represents a service message about a video chat ended in the chat.

Source: https://core.telegram.org/bots/api#videochatended

	
duration: int

	Video chat duration in seconds

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

VideoChatParticipantsInvited

	
class aiogram.types.video_chat_participants_invited.VideoChatParticipantsInvited(*, users: List[User], **extra_data: Any)

	This object represents a service message about new members invited to a video chat.

Source: https://core.telegram.org/bots/api#videochatparticipantsinvited

	
users: List[User]

	New members that were invited to the video chat

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

VideoChatScheduled

	
class aiogram.types.video_chat_scheduled.VideoChatScheduled(*, start_date: datetime, **extra_data: Any)

	This object represents a service message about a video chat scheduled in the chat.

Source: https://core.telegram.org/bots/api#videochatscheduled

	
start_date: DateTime

	Point in time (Unix timestamp) when the video chat is supposed to be started by a chat administrator

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

VideoChatStarted

	
class aiogram.types.video_chat_started.VideoChatStarted(**extra_data: Any)

	This object represents a service message about a video chat started in the chat. Currently holds no information.

Source: https://core.telegram.org/bots/api#videochatstarted

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

VideoNote

	
class aiogram.types.video_note.VideoNote(*, file_id: str, file_unique_id: str, length: int, duration: int, thumbnail: PhotoSize | None = None, file_size: int | None = None, **extra_data: Any)

	This object represents a video message [https://telegram.org/blog/video-messages-and-telescope] (available in Telegram apps as of v.4.0 [https://telegram.org/blog/video-messages-and-telescope]).

Source: https://core.telegram.org/bots/api#videonote

	
file_id: str

	Identifier for this file, which can be used to download or reuse the file

	
file_unique_id: str

	Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be used to download or reuse the file.

	
length: int

	Video width and height (diameter of the video message) as defined by sender

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
duration: int

	Duration of the video in seconds as defined by sender

	
thumbnail: PhotoSize | None

	Optional. Video thumbnail

	
file_size: int | None

	Optional. File size in bytes

Voice

	
class aiogram.types.voice.Voice(*, file_id: str, file_unique_id: str, duration: int, mime_type: str | None = None, file_size: int | None = None, **extra_data: Any)

	This object represents a voice note.

Source: https://core.telegram.org/bots/api#voice

	
file_id: str

	Identifier for this file, which can be used to download or reuse the file

	
file_unique_id: str

	Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be used to download or reuse the file.

	
duration: int

	Duration of the audio in seconds as defined by sender

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
mime_type: str | None

	Optional. MIME type of the file as defined by sender

	
file_size: int | None

	Optional. File size in bytes. It can be bigger than 2^31 and some programming languages may have difficulty/silent defects in interpreting it. But it has at most 52 significant bits, so a signed 64-bit integer or double-precision float type are safe for storing this value.

WebAppData

	
class aiogram.types.web_app_data.WebAppData(*, data: str, button_text: str, **extra_data: Any)

	Describes data sent from a Web App [https://core.telegram.org/bots/webapps] to the bot.

Source: https://core.telegram.org/bots/api#webappdata

	
data: str

	The data. Be aware that a bad client can send arbitrary data in this field.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
button_text: str

	Text of the web_app keyboard button from which the Web App was opened. Be aware that a bad client can send arbitrary data in this field.

WebAppInfo

	
class aiogram.types.web_app_info.WebAppInfo(*, url: str, **extra_data: Any)

	Describes a Web App [https://core.telegram.org/bots/webapps].

Source: https://core.telegram.org/bots/api#webappinfo

	
url: str

	An HTTPS URL of a Web App to be opened with additional data as specified in Initializing Web Apps [https://core.telegram.org/bots/webapps#initializing-mini-apps]

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

WriteAccessAllowed

	
class aiogram.types.write_access_allowed.WriteAccessAllowed(*, from_request: bool | None = None, web_app_name: str | None = None, from_attachment_menu: bool | None = None, **extra_data: Any)

	This object represents a service message about a user allowing a bot to write messages after adding it to the attachment menu, launching a Web App from a link, or accepting an explicit request from a Web App sent by the method requestWriteAccess [https://core.telegram.org/bots/webapps#initializing-mini-apps].

Source: https://core.telegram.org/bots/api#writeaccessallowed

	
from_request: bool | None

	Optional. True, if the access was granted after the user accepted an explicit request from a Web App sent by the method requestWriteAccess [https://core.telegram.org/bots/webapps#initializing-mini-apps]

	
web_app_name: str | None

	Optional. Name of the Web App, if the access was granted when the Web App was launched from a link

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
from_attachment_menu: bool | None

	Optional. True, if the access was granted when the bot was added to the attachment or side menu

ChosenInlineResult

	
class aiogram.types.chosen_inline_result.ChosenInlineResult(*, result_id: str, from_user: User, query: str, location: Location | None = None, inline_message_id: str | None = None, **extra_data: Any)

	Represents a result [https://core.telegram.org/bots/api#inlinequeryresult] of an inline query that was chosen by the user and sent to their chat partner.
Note: It is necessary to enable inline feedback [https://core.telegram.org/bots/inline#collecting-feedback] via @BotFather [https://t.me/botfather] in order to receive these objects in updates.

Source: https://core.telegram.org/bots/api#choseninlineresult

	
result_id: str

	The unique identifier for the result that was chosen

	
from_user: User

	The user that chose the result

	
query: str

	The query that was used to obtain the result

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
location: Location | None

	Optional. Sender location, only for bots that require user location

	
inline_message_id: str | None

	Optional. Identifier of the sent inline message. Available only if there is an inline keyboard [https://core.telegram.org/bots/api#inlinekeyboardmarkup] attached to the message. Will be also received in callback queries [https://core.telegram.org/bots/api#callbackquery] and can be used to edit [https://core.telegram.org/bots/api#updating-messages] the message.

InlineQuery

	
class aiogram.types.inline_query.InlineQuery(*, id: str, from_user: User, query: str, offset: str, chat_type: str | None = None, location: Location | None = None, **extra_data: Any)

	This object represents an incoming inline query. When the user sends an empty query, your bot could return some default or trending results.

Source: https://core.telegram.org/bots/api#inlinequery

	
id: str

	Unique identifier for this query

	
from_user: User

	Sender

	
query: str

	Text of the query (up to 256 characters)

	
offset: str

	Offset of the results to be returned, can be controlled by the bot

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
chat_type: str | None

	Optional. Type of the chat from which the inline query was sent. Can be either ‘sender’ for a private chat with the inline query sender, ‘private’, ‘group’, ‘supergroup’, or ‘channel’. The chat type should be always known for requests sent from official clients and most third-party clients, unless the request was sent from a secret chat

	
location: Location | None

	Optional. Sender location, only for bots that request user location

	
answer(results: List[InlineQueryResultCachedAudio | InlineQueryResultCachedDocument | InlineQueryResultCachedGif | InlineQueryResultCachedMpeg4Gif | InlineQueryResultCachedPhoto | InlineQueryResultCachedSticker | InlineQueryResultCachedVideo | InlineQueryResultCachedVoice | InlineQueryResultArticle | InlineQueryResultAudio | InlineQueryResultContact | InlineQueryResultGame | InlineQueryResultDocument | InlineQueryResultGif | InlineQueryResultLocation | InlineQueryResultMpeg4Gif | InlineQueryResultPhoto | InlineQueryResultVenue | InlineQueryResultVideo | InlineQueryResultVoice], cache_time: int | None = None, is_personal: bool | None = None, next_offset: str | None = None, button: InlineQueryResultsButton | None = None, switch_pm_parameter: str | None = None, switch_pm_text: str | None = None, **kwargs: Any) → AnswerInlineQuery

	Shortcut for method aiogram.methods.answer_inline_query.AnswerInlineQuery
will automatically fill method attributes:

	inline_query_id

Use this method to send answers to an inline query. On success, True is returned.

No more than 50 results per query are allowed.

Source: https://core.telegram.org/bots/api#answerinlinequery

	Parameters:

	
	results – A JSON-serialized array of results for the inline query

	cache_time – The maximum amount of time in seconds that the result of the inline query may be cached on the server. Defaults to 300.

	is_personal – Pass True if results may be cached on the server side only for the user that sent the query. By default, results may be returned to any user who sends the same query.

	next_offset – Pass the offset that a client should send in the next query with the same text to receive more results. Pass an empty string if there are no more results or if you don’t support pagination. Offset length can’t exceed 64 bytes.

	button – A JSON-serialized object describing a button to be shown above inline query results

	switch_pm_parameter – Deep-linking [https://core.telegram.org/bots/features#deep-linking] parameter for the /start message sent to the bot when user presses the switch button. 1-64 characters, only A-Z, a-z, 0-9, _ and - are allowed.

	switch_pm_text – If passed, clients will display a button with specified text that switches the user to a private chat with the bot and sends the bot a start message with the parameter switch_pm_parameter

	Returns:

	instance of method aiogram.methods.answer_inline_query.AnswerInlineQuery

InlineQueryResult

	
class aiogram.types.inline_query_result.InlineQueryResult(**extra_data: Any)

	This object represents one result of an inline query. Telegram clients currently support results of the following 20 types:

	aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio

	aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument

	aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif

	aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif

	aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto

	aiogram.types.inline_query_result_cached_sticker.InlineQueryResultCachedSticker

	aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo

	aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice

	aiogram.types.inline_query_result_article.InlineQueryResultArticle

	aiogram.types.inline_query_result_audio.InlineQueryResultAudio

	aiogram.types.inline_query_result_contact.InlineQueryResultContact

	aiogram.types.inline_query_result_game.InlineQueryResultGame

	aiogram.types.inline_query_result_document.InlineQueryResultDocument

	aiogram.types.inline_query_result_gif.InlineQueryResultGif

	aiogram.types.inline_query_result_location.InlineQueryResultLocation

	aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif

	aiogram.types.inline_query_result_photo.InlineQueryResultPhoto

	aiogram.types.inline_query_result_venue.InlineQueryResultVenue

	aiogram.types.inline_query_result_video.InlineQueryResultVideo

	aiogram.types.inline_query_result_voice.InlineQueryResultVoice

Note: All URLs passed in inline query results will be available to end users and therefore must be assumed to be public.

Source: https://core.telegram.org/bots/api#inlinequeryresult

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

InlineQueryResultArticle

	
class aiogram.types.inline_query_result_article.InlineQueryResultArticle(*, type: Literal[InlineQueryResultType.ARTICLE] = InlineQueryResultType.ARTICLE, id: str, title: str, input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent, reply_markup: InlineKeyboardMarkup | None = None, url: str | None = None, hide_url: bool | None = None, description: str | None = None, thumbnail_url: str | None = None, thumbnail_width: int | None = None, thumbnail_height: int | None = None, **extra_data: Any)

	Represents a link to an article or web page.

Source: https://core.telegram.org/bots/api#inlinequeryresultarticle

	
type: Literal[InlineQueryResultType.ARTICLE]

	Type of the result, must be article

	
id: str

	Unique identifier for this result, 1-64 Bytes

	
title: str

	Title of the result

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent

	Content of the message to be sent

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
url: str | None

	Optional. URL of the result

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
hide_url: bool | None

	Optional. Pass True if you don’t want the URL to be shown in the message

	
description: str | None

	Optional. Short description of the result

	
thumbnail_url: str | None

	Optional. Url of the thumbnail for the result

	
thumbnail_width: int | None

	Optional. Thumbnail width

	
thumbnail_height: int | None

	Optional. Thumbnail height

InlineQueryResultAudio

	
class aiogram.types.inline_query_result_audio.InlineQueryResultAudio(*, type: ~typing.Literal[InlineQueryResultType.AUDIO] = InlineQueryResultType.AUDIO, id: str, audio_url: str, title: str, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, performer: str | None = None, audio_duration: int | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, input_message_content: ~aiogram.types.input_text_message_content.InputTextMessageContent | ~aiogram.types.input_location_message_content.InputLocationMessageContent | ~aiogram.types.input_venue_message_content.InputVenueMessageContent | ~aiogram.types.input_contact_message_content.InputContactMessageContent | ~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent | None = None, **extra_data: ~typing.Any)

	Represents a link to an MP3 audio file. By default, this audio file will be sent by the user. Alternatively, you can use input_message_content to send a message with the specified content instead of the audio.

Source: https://core.telegram.org/bots/api#inlinequeryresultaudio

	
type: Literal[InlineQueryResultType.AUDIO]

	Type of the result, must be audio

	
id: str

	Unique identifier for this result, 1-64 bytes

	
audio_url: str

	A valid URL for the audio file

	
title: str

	Title

	
caption: str | None

	Optional. Caption, 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the audio caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
performer: str | None

	Optional. Performer

	
audio_duration: int | None

	Optional. Audio duration in seconds

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the audio

InlineQueryResultCachedAudio

	
class aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio(*, type: ~typing.Literal[InlineQueryResultType.AUDIO] = InlineQueryResultType.AUDIO, id: str, audio_file_id: str, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, input_message_content: ~aiogram.types.input_text_message_content.InputTextMessageContent | ~aiogram.types.input_location_message_content.InputLocationMessageContent | ~aiogram.types.input_venue_message_content.InputVenueMessageContent | ~aiogram.types.input_contact_message_content.InputContactMessageContent | ~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent | None = None, **extra_data: ~typing.Any)

	Represents a link to an MP3 audio file stored on the Telegram servers. By default, this audio file will be sent by the user. Alternatively, you can use input_message_content to send a message with the specified content instead of the audio.

Source: https://core.telegram.org/bots/api#inlinequeryresultcachedaudio

	
type: Literal[InlineQueryResultType.AUDIO]

	Type of the result, must be audio

	
id: str

	Unique identifier for this result, 1-64 bytes

	
audio_file_id: str

	A valid file identifier for the audio file

	
caption: str | None

	Optional. Caption, 0-1024 characters after entities parsing

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the audio caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the audio

InlineQueryResultCachedDocument

	
class aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument(*, type: ~typing.Literal[InlineQueryResultType.DOCUMENT] = InlineQueryResultType.DOCUMENT, id: str, title: str, document_file_id: str, description: str | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, input_message_content: ~aiogram.types.input_text_message_content.InputTextMessageContent | ~aiogram.types.input_location_message_content.InputLocationMessageContent | ~aiogram.types.input_venue_message_content.InputVenueMessageContent | ~aiogram.types.input_contact_message_content.InputContactMessageContent | ~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent | None = None, **extra_data: ~typing.Any)

	Represents a link to a file stored on the Telegram servers. By default, this file will be sent by the user with an optional caption. Alternatively, you can use input_message_content to send a message with the specified content instead of the file.

Source: https://core.telegram.org/bots/api#inlinequeryresultcacheddocument

	
type: Literal[InlineQueryResultType.DOCUMENT]

	Type of the result, must be document

	
id: str

	Unique identifier for this result, 1-64 bytes

	
title: str

	Title for the result

	
document_file_id: str

	A valid file identifier for the file

	
description: str | None

	Optional. Short description of the result

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
caption: str | None

	Optional. Caption of the document to be sent, 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the document caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the file

InlineQueryResultCachedGif

	
class aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif(*, type: ~typing.Literal[InlineQueryResultType.GIF] = InlineQueryResultType.GIF, id: str, gif_file_id: str, title: str | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, input_message_content: ~aiogram.types.input_text_message_content.InputTextMessageContent | ~aiogram.types.input_location_message_content.InputLocationMessageContent | ~aiogram.types.input_venue_message_content.InputVenueMessageContent | ~aiogram.types.input_contact_message_content.InputContactMessageContent | ~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent | None = None, **extra_data: ~typing.Any)

	Represents a link to an animated GIF file stored on the Telegram servers. By default, this animated GIF file will be sent by the user with an optional caption. Alternatively, you can use input_message_content to send a message with specified content instead of the animation.

Source: https://core.telegram.org/bots/api#inlinequeryresultcachedgif

	
type: Literal[InlineQueryResultType.GIF]

	Type of the result, must be gif

	
id: str

	Unique identifier for this result, 1-64 bytes

	
gif_file_id: str

	A valid file identifier for the GIF file

	
title: str | None

	Optional. Title for the result

	
caption: str | None

	Optional. Caption of the GIF file to be sent, 0-1024 characters after entities parsing

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the GIF animation

InlineQueryResultCachedMpeg4Gif

	
class aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif(*, type: ~typing.Literal[InlineQueryResultType.MPEG4_GIF] = InlineQueryResultType.MPEG4_GIF, id: str, mpeg4_file_id: str, title: str | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, input_message_content: ~aiogram.types.input_text_message_content.InputTextMessageContent | ~aiogram.types.input_location_message_content.InputLocationMessageContent | ~aiogram.types.input_venue_message_content.InputVenueMessageContent | ~aiogram.types.input_contact_message_content.InputContactMessageContent | ~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent | None = None, **extra_data: ~typing.Any)

	Represents a link to a video animation (H.264/MPEG-4 AVC video without sound) stored on the Telegram servers. By default, this animated MPEG-4 file will be sent by the user with an optional caption. Alternatively, you can use input_message_content to send a message with the specified content instead of the animation.

Source: https://core.telegram.org/bots/api#inlinequeryresultcachedmpeg4gif

	
type: Literal[InlineQueryResultType.MPEG4_GIF]

	Type of the result, must be mpeg4_gif

	
id: str

	Unique identifier for this result, 1-64 bytes

	
mpeg4_file_id: str

	A valid file identifier for the MPEG4 file

	
title: str | None

	Optional. Title for the result

	
caption: str | None

	Optional. Caption of the MPEG-4 file to be sent, 0-1024 characters after entities parsing

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the video animation

InlineQueryResultCachedPhoto

	
class aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto(*, type: ~typing.Literal[InlineQueryResultType.PHOTO] = InlineQueryResultType.PHOTO, id: str, photo_file_id: str, title: str | None = None, description: str | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, input_message_content: ~aiogram.types.input_text_message_content.InputTextMessageContent | ~aiogram.types.input_location_message_content.InputLocationMessageContent | ~aiogram.types.input_venue_message_content.InputVenueMessageContent | ~aiogram.types.input_contact_message_content.InputContactMessageContent | ~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent | None = None, **extra_data: ~typing.Any)

	Represents a link to a photo stored on the Telegram servers. By default, this photo will be sent by the user with an optional caption. Alternatively, you can use input_message_content to send a message with the specified content instead of the photo.

Source: https://core.telegram.org/bots/api#inlinequeryresultcachedphoto

	
type: Literal[InlineQueryResultType.PHOTO]

	Type of the result, must be photo

	
id: str

	Unique identifier for this result, 1-64 bytes

	
photo_file_id: str

	A valid file identifier of the photo

	
title: str | None

	Optional. Title for the result

	
description: str | None

	Optional. Short description of the result

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
caption: str | None

	Optional. Caption of the photo to be sent, 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the photo caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the photo

InlineQueryResultCachedSticker

	
class aiogram.types.inline_query_result_cached_sticker.InlineQueryResultCachedSticker(*, type: Literal[InlineQueryResultType.STICKER] = InlineQueryResultType.STICKER, id: str, sticker_file_id: str, reply_markup: InlineKeyboardMarkup | None = None, input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None = None, **extra_data: Any)

	Represents a link to a sticker stored on the Telegram servers. By default, this sticker will be sent by the user. Alternatively, you can use input_message_content to send a message with the specified content instead of the sticker.

Source: https://core.telegram.org/bots/api#inlinequeryresultcachedsticker

	
type: Literal[InlineQueryResultType.STICKER]

	Type of the result, must be sticker

	
id: str

	Unique identifier for this result, 1-64 bytes

	
sticker_file_id: str

	A valid file identifier of the sticker

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the sticker

InlineQueryResultCachedVideo

	
class aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo(*, type: ~typing.Literal[InlineQueryResultType.VIDEO] = InlineQueryResultType.VIDEO, id: str, video_file_id: str, title: str, description: str | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, input_message_content: ~aiogram.types.input_text_message_content.InputTextMessageContent | ~aiogram.types.input_location_message_content.InputLocationMessageContent | ~aiogram.types.input_venue_message_content.InputVenueMessageContent | ~aiogram.types.input_contact_message_content.InputContactMessageContent | ~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent | None = None, **extra_data: ~typing.Any)

	Represents a link to a video file stored on the Telegram servers. By default, this video file will be sent by the user with an optional caption. Alternatively, you can use input_message_content to send a message with the specified content instead of the video.

Source: https://core.telegram.org/bots/api#inlinequeryresultcachedvideo

	
type: Literal[InlineQueryResultType.VIDEO]

	Type of the result, must be video

	
id: str

	Unique identifier for this result, 1-64 bytes

	
video_file_id: str

	A valid file identifier for the video file

	
title: str

	Title for the result

	
description: str | None

	Optional. Short description of the result

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
caption: str | None

	Optional. Caption of the video to be sent, 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the video caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the video

InlineQueryResultCachedVoice

	
class aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice(*, type: ~typing.Literal[InlineQueryResultType.VOICE] = InlineQueryResultType.VOICE, id: str, voice_file_id: str, title: str, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, input_message_content: ~aiogram.types.input_text_message_content.InputTextMessageContent | ~aiogram.types.input_location_message_content.InputLocationMessageContent | ~aiogram.types.input_venue_message_content.InputVenueMessageContent | ~aiogram.types.input_contact_message_content.InputContactMessageContent | ~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent | None = None, **extra_data: ~typing.Any)

	Represents a link to a voice message stored on the Telegram servers. By default, this voice message will be sent by the user. Alternatively, you can use input_message_content to send a message with the specified content instead of the voice message.

Source: https://core.telegram.org/bots/api#inlinequeryresultcachedvoice

	
type: Literal[InlineQueryResultType.VOICE]

	Type of the result, must be voice

	
id: str

	Unique identifier for this result, 1-64 bytes

	
voice_file_id: str

	A valid file identifier for the voice message

	
title: str

	Voice message title

	
caption: str | None

	Optional. Caption, 0-1024 characters after entities parsing

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the voice message caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the voice message

InlineQueryResultContact

	
class aiogram.types.inline_query_result_contact.InlineQueryResultContact(*, type: Literal[InlineQueryResultType.CONTACT] = InlineQueryResultType.CONTACT, id: str, phone_number: str, first_name: str, last_name: str | None = None, vcard: str | None = None, reply_markup: InlineKeyboardMarkup | None = None, input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None = None, thumbnail_url: str | None = None, thumbnail_width: int | None = None, thumbnail_height: int | None = None, **extra_data: Any)

	Represents a contact with a phone number. By default, this contact will be sent by the user. Alternatively, you can use input_message_content to send a message with the specified content instead of the contact.

Source: https://core.telegram.org/bots/api#inlinequeryresultcontact

	
type: Literal[InlineQueryResultType.CONTACT]

	Type of the result, must be contact

	
id: str

	Unique identifier for this result, 1-64 Bytes

	
phone_number: str

	Contact’s phone number

	
first_name: str

	Contact’s first name

	
last_name: str | None

	Optional. Contact’s last name

	
vcard: str | None

	Optional. Additional data about the contact in the form of a vCard [https://en.wikipedia.org/wiki/VCard], 0-2048 bytes

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the contact

	
thumbnail_url: str | None

	Optional. Url of the thumbnail for the result

	
thumbnail_width: int | None

	Optional. Thumbnail width

	
thumbnail_height: int | None

	Optional. Thumbnail height

InlineQueryResultDocument

	
class aiogram.types.inline_query_result_document.InlineQueryResultDocument(*, type: ~typing.Literal[InlineQueryResultType.DOCUMENT] = InlineQueryResultType.DOCUMENT, id: str, title: str, document_url: str, mime_type: str, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, description: str | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, input_message_content: ~aiogram.types.input_text_message_content.InputTextMessageContent | ~aiogram.types.input_location_message_content.InputLocationMessageContent | ~aiogram.types.input_venue_message_content.InputVenueMessageContent | ~aiogram.types.input_contact_message_content.InputContactMessageContent | ~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent | None = None, thumbnail_url: str | None = None, thumbnail_width: int | None = None, thumbnail_height: int | None = None, **extra_data: ~typing.Any)

	Represents a link to a file. By default, this file will be sent by the user with an optional caption. Alternatively, you can use input_message_content to send a message with the specified content instead of the file. Currently, only .PDF and .ZIP files can be sent using this method.

Source: https://core.telegram.org/bots/api#inlinequeryresultdocument

	
type: Literal[InlineQueryResultType.DOCUMENT]

	Type of the result, must be document

	
id: str

	Unique identifier for this result, 1-64 bytes

	
title: str

	Title for the result

	
document_url: str

	A valid URL for the file

	
mime_type: str

	MIME type of the content of the file, either ‘application/pdf’ or ‘application/zip’

	
caption: str | None

	Optional. Caption of the document to be sent, 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the document caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
description: str | None

	Optional. Short description of the result

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the file

	
thumbnail_url: str | None

	Optional. URL of the thumbnail (JPEG only) for the file

	
thumbnail_width: int | None

	Optional. Thumbnail width

	
thumbnail_height: int | None

	Optional. Thumbnail height

InlineQueryResultGame

	
class aiogram.types.inline_query_result_game.InlineQueryResultGame(*, type: Literal[InlineQueryResultType.GAME] = InlineQueryResultType.GAME, id: str, game_short_name: str, reply_markup: InlineKeyboardMarkup | None = None, **extra_data: Any)

	Represents a Game [https://core.telegram.org/bots/api#games].

Source: https://core.telegram.org/bots/api#inlinequeryresultgame

	
type: Literal[InlineQueryResultType.GAME]

	Type of the result, must be game

	
id: str

	Unique identifier for this result, 1-64 bytes

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
game_short_name: str

	Short name of the game

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

InlineQueryResultGif

	
class aiogram.types.inline_query_result_gif.InlineQueryResultGif(*, type: ~typing.Literal[InlineQueryResultType.GIF] = InlineQueryResultType.GIF, id: str, gif_url: str, thumbnail_url: str, gif_width: int | None = None, gif_height: int | None = None, gif_duration: int | None = None, thumbnail_mime_type: str | None = None, title: str | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, input_message_content: ~aiogram.types.input_text_message_content.InputTextMessageContent | ~aiogram.types.input_location_message_content.InputLocationMessageContent | ~aiogram.types.input_venue_message_content.InputVenueMessageContent | ~aiogram.types.input_contact_message_content.InputContactMessageContent | ~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent | None = None, **extra_data: ~typing.Any)

	Represents a link to an animated GIF file. By default, this animated GIF file will be sent by the user with optional caption. Alternatively, you can use input_message_content to send a message with the specified content instead of the animation.

Source: https://core.telegram.org/bots/api#inlinequeryresultgif

	
type: Literal[InlineQueryResultType.GIF]

	Type of the result, must be gif

	
id: str

	Unique identifier for this result, 1-64 bytes

	
gif_url: str

	A valid URL for the GIF file. File size must not exceed 1MB

	
thumbnail_url: str

	URL of the static (JPEG or GIF) or animated (MPEG4) thumbnail for the result

	
gif_width: int | None

	Optional. Width of the GIF

	
gif_height: int | None

	Optional. Height of the GIF

	
gif_duration: int | None

	Optional. Duration of the GIF in seconds

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
thumbnail_mime_type: str | None

	Optional. MIME type of the thumbnail, must be one of ‘image/jpeg’, ‘image/gif’, or ‘video/mp4’. Defaults to ‘image/jpeg’

	
title: str | None

	Optional. Title for the result

	
caption: str | None

	Optional. Caption of the GIF file to be sent, 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the GIF animation

InlineQueryResultLocation

	
class aiogram.types.inline_query_result_location.InlineQueryResultLocation(*, type: Literal[InlineQueryResultType.LOCATION] = InlineQueryResultType.LOCATION, id: str, latitude: float, longitude: float, title: str, horizontal_accuracy: float | None = None, live_period: int | None = None, heading: int | None = None, proximity_alert_radius: int | None = None, reply_markup: InlineKeyboardMarkup | None = None, input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None = None, thumbnail_url: str | None = None, thumbnail_width: int | None = None, thumbnail_height: int | None = None, **extra_data: Any)

	Represents a location on a map. By default, the location will be sent by the user. Alternatively, you can use input_message_content to send a message with the specified content instead of the location.

Source: https://core.telegram.org/bots/api#inlinequeryresultlocation

	
type: Literal[InlineQueryResultType.LOCATION]

	Type of the result, must be location

	
id: str

	Unique identifier for this result, 1-64 Bytes

	
latitude: float

	Location latitude in degrees

	
longitude: float

	Location longitude in degrees

	
title: str

	Location title

	
horizontal_accuracy: float | None

	Optional. The radius of uncertainty for the location, measured in meters; 0-1500

	
live_period: int | None

	Optional. Period in seconds during which the location can be updated, should be between 60 and 86400, or 0x7FFFFFFF for live locations that can be edited indefinitely.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
heading: int | None

	Optional. For live locations, a direction in which the user is moving, in degrees. Must be between 1 and 360 if specified.

	
proximity_alert_radius: int | None

	Optional. For live locations, a maximum distance for proximity alerts about approaching another chat member, in meters. Must be between 1 and 100000 if specified.

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the location

	
thumbnail_url: str | None

	Optional. Url of the thumbnail for the result

	
thumbnail_width: int | None

	Optional. Thumbnail width

	
thumbnail_height: int | None

	Optional. Thumbnail height

InlineQueryResultMpeg4Gif

	
class aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif(*, type: ~typing.Literal[InlineQueryResultType.MPEG4_GIF] = InlineQueryResultType.MPEG4_GIF, id: str, mpeg4_url: str, thumbnail_url: str, mpeg4_width: int | None = None, mpeg4_height: int | None = None, mpeg4_duration: int | None = None, thumbnail_mime_type: str | None = None, title: str | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, input_message_content: ~aiogram.types.input_text_message_content.InputTextMessageContent | ~aiogram.types.input_location_message_content.InputLocationMessageContent | ~aiogram.types.input_venue_message_content.InputVenueMessageContent | ~aiogram.types.input_contact_message_content.InputContactMessageContent | ~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent | None = None, **extra_data: ~typing.Any)

	Represents a link to a video animation (H.264/MPEG-4 AVC video without sound). By default, this animated MPEG-4 file will be sent by the user with optional caption. Alternatively, you can use input_message_content to send a message with the specified content instead of the animation.

Source: https://core.telegram.org/bots/api#inlinequeryresultmpeg4gif

	
type: Literal[InlineQueryResultType.MPEG4_GIF]

	Type of the result, must be mpeg4_gif

	
id: str

	Unique identifier for this result, 1-64 bytes

	
mpeg4_url: str

	A valid URL for the MPEG4 file. File size must not exceed 1MB

	
thumbnail_url: str

	URL of the static (JPEG or GIF) or animated (MPEG4) thumbnail for the result

	
mpeg4_width: int | None

	Optional. Video width

	
mpeg4_height: int | None

	Optional. Video height

	
mpeg4_duration: int | None

	Optional. Video duration in seconds

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
thumbnail_mime_type: str | None

	Optional. MIME type of the thumbnail, must be one of ‘image/jpeg’, ‘image/gif’, or ‘video/mp4’. Defaults to ‘image/jpeg’

	
title: str | None

	Optional. Title for the result

	
caption: str | None

	Optional. Caption of the MPEG-4 file to be sent, 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the video animation

InlineQueryResultPhoto

	
class aiogram.types.inline_query_result_photo.InlineQueryResultPhoto(*, type: ~typing.Literal[InlineQueryResultType.PHOTO] = InlineQueryResultType.PHOTO, id: str, photo_url: str, thumbnail_url: str, photo_width: int | None = None, photo_height: int | None = None, title: str | None = None, description: str | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, input_message_content: ~aiogram.types.input_text_message_content.InputTextMessageContent | ~aiogram.types.input_location_message_content.InputLocationMessageContent | ~aiogram.types.input_venue_message_content.InputVenueMessageContent | ~aiogram.types.input_contact_message_content.InputContactMessageContent | ~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent | None = None, **extra_data: ~typing.Any)

	Represents a link to a photo. By default, this photo will be sent by the user with optional caption. Alternatively, you can use input_message_content to send a message with the specified content instead of the photo.

Source: https://core.telegram.org/bots/api#inlinequeryresultphoto

	
type: Literal[InlineQueryResultType.PHOTO]

	Type of the result, must be photo

	
id: str

	Unique identifier for this result, 1-64 bytes

	
photo_url: str

	A valid URL of the photo. Photo must be in JPEG format. Photo size must not exceed 5MB

	
thumbnail_url: str

	URL of the thumbnail for the photo

	
photo_width: int | None

	Optional. Width of the photo

	
photo_height: int | None

	Optional. Height of the photo

	
title: str | None

	Optional. Title for the result

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
description: str | None

	Optional. Short description of the result

	
caption: str | None

	Optional. Caption of the photo to be sent, 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the photo caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the photo

InlineQueryResultVenue

	
class aiogram.types.inline_query_result_venue.InlineQueryResultVenue(*, type: Literal[InlineQueryResultType.VENUE] = InlineQueryResultType.VENUE, id: str, latitude: float, longitude: float, title: str, address: str, foursquare_id: str | None = None, foursquare_type: str | None = None, google_place_id: str | None = None, google_place_type: str | None = None, reply_markup: InlineKeyboardMarkup | None = None, input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None = None, thumbnail_url: str | None = None, thumbnail_width: int | None = None, thumbnail_height: int | None = None, **extra_data: Any)

	Represents a venue. By default, the venue will be sent by the user. Alternatively, you can use input_message_content to send a message with the specified content instead of the venue.

Source: https://core.telegram.org/bots/api#inlinequeryresultvenue

	
type: Literal[InlineQueryResultType.VENUE]

	Type of the result, must be venue

	
id: str

	Unique identifier for this result, 1-64 Bytes

	
latitude: float

	Latitude of the venue location in degrees

	
longitude: float

	Longitude of the venue location in degrees

	
title: str

	Title of the venue

	
address: str

	Address of the venue

	
foursquare_id: str | None

	Optional. Foursquare identifier of the venue if known

	
foursquare_type: str | None

	Optional. Foursquare type of the venue, if known. (For example, ‘arts_entertainment/default’, ‘arts_entertainment/aquarium’ or ‘food/icecream’.)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
google_place_id: str | None

	Optional. Google Places identifier of the venue

	
google_place_type: str | None

	Optional. Google Places type of the venue. (See supported types [https://developers.google.com/places/web-service/supported_types].)

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the venue

	
thumbnail_url: str | None

	Optional. Url of the thumbnail for the result

	
thumbnail_width: int | None

	Optional. Thumbnail width

	
thumbnail_height: int | None

	Optional. Thumbnail height

InlineQueryResultVideo

	
class aiogram.types.inline_query_result_video.InlineQueryResultVideo(*, type: ~typing.Literal[InlineQueryResultType.VIDEO] = InlineQueryResultType.VIDEO, id: str, video_url: str, mime_type: str, thumbnail_url: str, title: str, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, video_width: int | None = None, video_height: int | None = None, video_duration: int | None = None, description: str | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, input_message_content: ~aiogram.types.input_text_message_content.InputTextMessageContent | ~aiogram.types.input_location_message_content.InputLocationMessageContent | ~aiogram.types.input_venue_message_content.InputVenueMessageContent | ~aiogram.types.input_contact_message_content.InputContactMessageContent | ~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent | None = None, **extra_data: ~typing.Any)

	Represents a link to a page containing an embedded video player or a video file. By default, this video file will be sent by the user with an optional caption. Alternatively, you can use input_message_content to send a message with the specified content instead of the video.

If an InlineQueryResultVideo message contains an embedded video (e.g., YouTube), you must replace its content using input_message_content.

Source: https://core.telegram.org/bots/api#inlinequeryresultvideo

	
type: Literal[InlineQueryResultType.VIDEO]

	Type of the result, must be video

	
id: str

	Unique identifier for this result, 1-64 bytes

	
video_url: str

	A valid URL for the embedded video player or video file

	
mime_type: str

	MIME type of the content of the video URL, ‘text/html’ or ‘video/mp4’

	
thumbnail_url: str

	URL of the thumbnail (JPEG only) for the video

	
title: str

	Title for the result

	
caption: str | None

	Optional. Caption of the video to be sent, 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the video caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
video_width: int | None

	Optional. Video width

	
video_height: int | None

	Optional. Video height

	
video_duration: int | None

	Optional. Video duration in seconds

	
description: str | None

	Optional. Short description of the result

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the video. This field is required if InlineQueryResultVideo is used to send an HTML-page as a result (e.g., a YouTube video).

InlineQueryResultVoice

	
class aiogram.types.inline_query_result_voice.InlineQueryResultVoice(*, type: ~typing.Literal[InlineQueryResultType.VOICE] = InlineQueryResultType.VOICE, id: str, voice_url: str, title: str, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, voice_duration: int | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, input_message_content: ~aiogram.types.input_text_message_content.InputTextMessageContent | ~aiogram.types.input_location_message_content.InputLocationMessageContent | ~aiogram.types.input_venue_message_content.InputVenueMessageContent | ~aiogram.types.input_contact_message_content.InputContactMessageContent | ~aiogram.types.input_invoice_message_content.InputInvoiceMessageContent | None = None, **extra_data: ~typing.Any)

	Represents a link to a voice recording in an .OGG container encoded with OPUS. By default, this voice recording will be sent by the user. Alternatively, you can use input_message_content to send a message with the specified content instead of the the voice message.

Source: https://core.telegram.org/bots/api#inlinequeryresultvoice

	
type: Literal[InlineQueryResultType.VOICE]

	Type of the result, must be voice

	
id: str

	Unique identifier for this result, 1-64 bytes

	
voice_url: str

	A valid URL for the voice recording

	
title: str

	Recording title

	
caption: str | None

	Optional. Caption, 0-1024 characters after entities parsing

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the voice message caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	Optional. List of special entities that appear in the caption, which can be specified instead of parse_mode

	
voice_duration: int | None

	Optional. Recording duration in seconds

	
reply_markup: InlineKeyboardMarkup | None

	Optional. Inline keyboard [https://core.telegram.org/bots/features#inline-keyboards] attached to the message

	
input_message_content: InputTextMessageContent | InputLocationMessageContent | InputVenueMessageContent | InputContactMessageContent | InputInvoiceMessageContent | None

	Optional. Content of the message to be sent instead of the voice recording

InlineQueryResultsButton

	
class aiogram.types.inline_query_results_button.InlineQueryResultsButton(*, text: str, web_app: WebAppInfo | None = None, start_parameter: str | None = None, **extra_data: Any)

	This object represents a button to be shown above inline query results. You must use exactly one of the optional fields.

Source: https://core.telegram.org/bots/api#inlinequeryresultsbutton

	
text: str

	Label text on the button

	
web_app: WebAppInfo | None

	Optional. Description of the Web App [https://core.telegram.org/bots/webapps] that will be launched when the user presses the button. The Web App will be able to switch back to the inline mode using the method switchInlineQuery [https://core.telegram.org/bots/webapps#initializing-mini-apps] inside the Web App.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
start_parameter: str | None

	Optional. Deep-linking [https://core.telegram.org/bots/features#deep-linking] parameter for the /start message sent to the bot when a user presses the button. 1-64 characters, only A-Z, a-z, 0-9, _ and - are allowed.

InputContactMessageContent

	
class aiogram.types.input_contact_message_content.InputContactMessageContent(*, phone_number: str, first_name: str, last_name: str | None = None, vcard: str | None = None, **extra_data: Any)

	Represents the content [https://core.telegram.org/bots/api#inputmessagecontent] of a contact message to be sent as the result of an inline query.

Source: https://core.telegram.org/bots/api#inputcontactmessagecontent

	
phone_number: str

	Contact’s phone number

	
first_name: str

	Contact’s first name

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
last_name: str | None

	Optional. Contact’s last name

	
vcard: str | None

	Optional. Additional data about the contact in the form of a vCard [https://en.wikipedia.org/wiki/VCard], 0-2048 bytes

InputInvoiceMessageContent

	
class aiogram.types.input_invoice_message_content.InputInvoiceMessageContent(*, title: str, description: str, payload: str, provider_token: str, currency: str, prices: List[LabeledPrice], max_tip_amount: int | None = None, suggested_tip_amounts: List[int] | None = None, provider_data: str | None = None, photo_url: str | None = None, photo_size: int | None = None, photo_width: int | None = None, photo_height: int | None = None, need_name: bool | None = None, need_phone_number: bool | None = None, need_email: bool | None = None, need_shipping_address: bool | None = None, send_phone_number_to_provider: bool | None = None, send_email_to_provider: bool | None = None, is_flexible: bool | None = None, **extra_data: Any)

	Represents the content [https://core.telegram.org/bots/api#inputmessagecontent] of an invoice message to be sent as the result of an inline query.

Source: https://core.telegram.org/bots/api#inputinvoicemessagecontent

	
title: str

	Product name, 1-32 characters

	
description: str

	Product description, 1-255 characters

	
payload: str

	Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user, use for your internal processes.

	
provider_token: str

	Payment provider token, obtained via @BotFather [https://t.me/botfather]

	
currency: str

	Three-letter ISO 4217 currency code, see more on currencies [https://core.telegram.org/bots/payments#supported-currencies]

	
prices: List[LabeledPrice]

	Price breakdown, a JSON-serialized list of components (e.g. product price, tax, discount, delivery cost, delivery tax, bonus, etc.)

	
max_tip_amount: int | None

	Optional. The maximum accepted amount for tips in the smallest units of the currency (integer, not float/double). For example, for a maximum tip of US$ 1.45 pass max_tip_amount = 145. See the exp parameter in currencies.json [https://core.telegram.org/bots/payments/currencies.json], it shows the number of digits past the decimal point for each currency (2 for the majority of currencies). Defaults to 0

	
suggested_tip_amounts: List[int] | None

	Optional. A JSON-serialized array of suggested amounts of tip in the smallest units of the currency (integer, not float/double). At most 4 suggested tip amounts can be specified. The suggested tip amounts must be positive, passed in a strictly increased order and must not exceed max_tip_amount.

	
provider_data: str | None

	Optional. A JSON-serialized object for data about the invoice, which will be shared with the payment provider. A detailed description of the required fields should be provided by the payment provider.

	
photo_url: str | None

	Optional. URL of the product photo for the invoice. Can be a photo of the goods or a marketing image for a service.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
photo_size: int | None

	Optional. Photo size in bytes

	
photo_width: int | None

	Optional. Photo width

	
photo_height: int | None

	Optional. Photo height

	
need_name: bool | None

	Optional. Pass True if you require the user’s full name to complete the order

	
need_phone_number: bool | None

	Optional. Pass True if you require the user’s phone number to complete the order

	
need_email: bool | None

	Optional. Pass True if you require the user’s email address to complete the order

	
need_shipping_address: bool | None

	Optional. Pass True if you require the user’s shipping address to complete the order

	
send_phone_number_to_provider: bool | None

	Optional. Pass True if the user’s phone number should be sent to provider

	
send_email_to_provider: bool | None

	Optional. Pass True if the user’s email address should be sent to provider

	
is_flexible: bool | None

	Optional. Pass True if the final price depends on the shipping method

InputLocationMessageContent

	
class aiogram.types.input_location_message_content.InputLocationMessageContent(*, latitude: float, longitude: float, horizontal_accuracy: float | None = None, live_period: int | None = None, heading: int | None = None, proximity_alert_radius: int | None = None, **extra_data: Any)

	Represents the content [https://core.telegram.org/bots/api#inputmessagecontent] of a location message to be sent as the result of an inline query.

Source: https://core.telegram.org/bots/api#inputlocationmessagecontent

	
latitude: float

	Latitude of the location in degrees

	
longitude: float

	Longitude of the location in degrees

	
horizontal_accuracy: float | None

	Optional. The radius of uncertainty for the location, measured in meters; 0-1500

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
live_period: int | None

	Optional. Period in seconds during which the location can be updated, should be between 60 and 86400, or 0x7FFFFFFF for live locations that can be edited indefinitely.

	
heading: int | None

	Optional. For live locations, a direction in which the user is moving, in degrees. Must be between 1 and 360 if specified.

	
proximity_alert_radius: int | None

	Optional. For live locations, a maximum distance for proximity alerts about approaching another chat member, in meters. Must be between 1 and 100000 if specified.

InputMessageContent

	
class aiogram.types.input_message_content.InputMessageContent(**extra_data: Any)

	This object represents the content of a message to be sent as a result of an inline query. Telegram clients currently support the following 5 types:

	aiogram.types.input_text_message_content.InputTextMessageContent

	aiogram.types.input_location_message_content.InputLocationMessageContent

	aiogram.types.input_venue_message_content.InputVenueMessageContent

	aiogram.types.input_contact_message_content.InputContactMessageContent

	aiogram.types.input_invoice_message_content.InputInvoiceMessageContent

Source: https://core.telegram.org/bots/api#inputmessagecontent

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

InputTextMessageContent

	
class aiogram.types.input_text_message_content.InputTextMessageContent(*, message_text: str, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, link_preview_options: ~aiogram.types.link_preview_options.LinkPreviewOptions | None = None, disable_web_page_preview: bool | ~aiogram.client.default.Default | None = <Default('disable_web_page_preview')>, **extra_data: ~typing.Any)

	Represents the content [https://core.telegram.org/bots/api#inputmessagecontent] of a text message to be sent as the result of an inline query.

Source: https://core.telegram.org/bots/api#inputtextmessagecontent

	
message_text: str

	Text of the message to be sent, 1-4096 characters

	
parse_mode: str | Default | None

	Optional. Mode for parsing entities in the message text. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
entities: List[MessageEntity] | None

	Optional. List of special entities that appear in message text, which can be specified instead of parse_mode

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
link_preview_options: LinkPreviewOptions | None

	Optional. Link preview generation options for the message

	
disable_web_page_preview: bool | Default | None

	Optional. Disables link previews for links in the sent message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

InputVenueMessageContent

	
class aiogram.types.input_venue_message_content.InputVenueMessageContent(*, latitude: float, longitude: float, title: str, address: str, foursquare_id: str | None = None, foursquare_type: str | None = None, google_place_id: str | None = None, google_place_type: str | None = None, **extra_data: Any)

	Represents the content [https://core.telegram.org/bots/api#inputmessagecontent] of a venue message to be sent as the result of an inline query.

Source: https://core.telegram.org/bots/api#inputvenuemessagecontent

	
latitude: float

	Latitude of the venue in degrees

	
longitude: float

	Longitude of the venue in degrees

	
title: str

	Name of the venue

	
address: str

	Address of the venue

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
foursquare_id: str | None

	Optional. Foursquare identifier of the venue, if known

	
foursquare_type: str | None

	Optional. Foursquare type of the venue, if known. (For example, ‘arts_entertainment/default’, ‘arts_entertainment/aquarium’ or ‘food/icecream’.)

	
google_place_id: str | None

	Optional. Google Places identifier of the venue

	
google_place_type: str | None

	Optional. Google Places type of the venue. (See supported types [https://developers.google.com/places/web-service/supported_types].)

SentWebAppMessage

	
class aiogram.types.sent_web_app_message.SentWebAppMessage(*, inline_message_id: str | None = None, **extra_data: Any)

	Describes an inline message sent by a Web App [https://core.telegram.org/bots/webapps] on behalf of a user.

Source: https://core.telegram.org/bots/api#sentwebappmessage

	
inline_message_id: str | None

	Optional. Identifier of the sent inline message. Available only if there is an inline keyboard [https://core.telegram.org/bots/api#inlinekeyboardmarkup] attached to the message.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

InputSticker

	
class aiogram.types.input_sticker.InputSticker(*, sticker: InputFile | str, format: str, emoji_list: List[str], mask_position: MaskPosition | None = None, keywords: List[str] | None = None, **extra_data: Any)

	This object describes a sticker to be added to a sticker set.

Source: https://core.telegram.org/bots/api#inputsticker

	
sticker: InputFile | str

	The added sticker. Pass a file_id as a String to send a file that already exists on the Telegram servers, pass an HTTP URL as a String for Telegram to get a file from the Internet, upload a new one using multipart/form-data, or pass ‘attach://<file_attach_name>’ to upload a new one using multipart/form-data under <file_attach_name> name. Animated and video stickers can’t be uploaded via HTTP URL. More information on Sending Files »

	
format: str

	Format of the added sticker, must be one of ‘static’ for a .WEBP or .PNG image, ‘animated’ for a .TGS animation, ‘video’ for a WEBM video

	
emoji_list: List[str]

	List of 1-20 emoji associated with the sticker

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
mask_position: MaskPosition | None

	Optional. Position where the mask should be placed on faces. For ‘mask’ stickers only.

	
keywords: List[str] | None

	Optional. List of 0-20 search keywords for the sticker with total length of up to 64 characters. For ‘regular’ and ‘custom_emoji’ stickers only.

MaskPosition

	
class aiogram.types.mask_position.MaskPosition(*, point: str, x_shift: float, y_shift: float, scale: float, **extra_data: Any)

	This object describes the position on faces where a mask should be placed by default.

Source: https://core.telegram.org/bots/api#maskposition

	
point: str

	The part of the face relative to which the mask should be placed. One of ‘forehead’, ‘eyes’, ‘mouth’, or ‘chin’.

	
x_shift: float

	Shift by X-axis measured in widths of the mask scaled to the face size, from left to right. For example, choosing -1.0 will place mask just to the left of the default mask position.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
y_shift: float

	Shift by Y-axis measured in heights of the mask scaled to the face size, from top to bottom. For example, 1.0 will place the mask just below the default mask position.

	
scale: float

	Mask scaling coefficient. For example, 2.0 means double size.

Sticker

	
class aiogram.types.sticker.Sticker(*, file_id: str, file_unique_id: str, type: str, width: int, height: int, is_animated: bool, is_video: bool, thumbnail: PhotoSize | None = None, emoji: str | None = None, set_name: str | None = None, premium_animation: File | None = None, mask_position: MaskPosition | None = None, custom_emoji_id: str | None = None, needs_repainting: bool | None = None, file_size: int | None = None, **extra_data: Any)

	This object represents a sticker.

Source: https://core.telegram.org/bots/api#sticker

	
file_id: str

	Identifier for this file, which can be used to download or reuse the file

	
file_unique_id: str

	Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be used to download or reuse the file.

	
type: str

	Type of the sticker, currently one of ‘regular’, ‘mask’, ‘custom_emoji’. The type of the sticker is independent from its format, which is determined by the fields is_animated and is_video.

	
width: int

	Sticker width

	
height: int

	Sticker height

	
is_animated: bool

	True, if the sticker is animated [https://telegram.org/blog/animated-stickers]

	
is_video: bool

	True, if the sticker is a video sticker [https://telegram.org/blog/video-stickers-better-reactions]

	
thumbnail: PhotoSize | None

	Optional. Sticker thumbnail in the .WEBP or .JPG format

	
emoji: str | None

	Optional. Emoji associated with the sticker

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
set_name: str | None

	Optional. Name of the sticker set to which the sticker belongs

	
premium_animation: File | None

	Optional. For premium regular stickers, premium animation for the sticker

	
mask_position: MaskPosition | None

	Optional. For mask stickers, the position where the mask should be placed

	
custom_emoji_id: str | None

	Optional. For custom emoji stickers, unique identifier of the custom emoji

	
needs_repainting: bool | None

	Optional. True, if the sticker must be repainted to a text color in messages, the color of the Telegram Premium badge in emoji status, white color on chat photos, or another appropriate color in other places

	
file_size: int | None

	Optional. File size in bytes

	
set_position_in_set(position: int, **kwargs: Any) → SetStickerPositionInSet

	Shortcut for method aiogram.methods.set_sticker_position_in_set.SetStickerPositionInSet
will automatically fill method attributes:

	sticker

Use this method to move a sticker in a set created by the bot to a specific position. Returns True on success.

Source: https://core.telegram.org/bots/api#setstickerpositioninset

	Parameters:

	position – New sticker position in the set, zero-based

	Returns:

	instance of method aiogram.methods.set_sticker_position_in_set.SetStickerPositionInSet

	
delete_from_set(**kwargs: Any) → DeleteStickerFromSet

	Shortcut for method aiogram.methods.delete_sticker_from_set.DeleteStickerFromSet
will automatically fill method attributes:

	sticker

Use this method to delete a sticker from a set created by the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#deletestickerfromset

	Returns:

	instance of method aiogram.methods.delete_sticker_from_set.DeleteStickerFromSet

StickerSet

	
class aiogram.types.sticker_set.StickerSet(*, name: str, title: str, sticker_type: str, stickers: List[Sticker], thumbnail: PhotoSize | None = None, is_animated: bool | None = None, is_video: bool | None = None, **extra_data: Any)

	This object represents a sticker set.

Source: https://core.telegram.org/bots/api#stickerset

	
name: str

	Sticker set name

	
title: str

	Sticker set title

	
sticker_type: str

	Type of stickers in the set, currently one of ‘regular’, ‘mask’, ‘custom_emoji’

	
stickers: List[Sticker]

	List of all set stickers

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
thumbnail: PhotoSize | None

	Optional. Sticker set thumbnail in the .WEBP, .TGS, or .WEBM format

	
is_animated: bool | None

	True, if the sticker set contains animated stickers [https://telegram.org/blog/animated-stickers]

Deprecated since version API:7.2: https://core.telegram.org/bots/api-changelog#march-31-2024

	
is_video: bool | None

	True, if the sticker set contains video stickers [https://telegram.org/blog/video-stickers-better-reactions]

Deprecated since version API:7.2: https://core.telegram.org/bots/api-changelog#march-31-2024

EncryptedCredentials

	
class aiogram.types.encrypted_credentials.EncryptedCredentials(*, data: str, hash: str, secret: str, **extra_data: Any)

	Describes data required for decrypting and authenticating aiogram.types.encrypted_passport_element.EncryptedPassportElement. See the Telegram Passport Documentation [https://core.telegram.org/passport#receiving-information] for a complete description of the data decryption and authentication processes.

Source: https://core.telegram.org/bots/api#encryptedcredentials

	
data: str

	Base64-encoded encrypted JSON-serialized data with unique user’s payload, data hashes and secrets required for aiogram.types.encrypted_passport_element.EncryptedPassportElement decryption and authentication

	
hash: str

	Base64-encoded data hash for data authentication

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
secret: str

	Base64-encoded secret, encrypted with the bot’s public RSA key, required for data decryption

EncryptedPassportElement

	
class aiogram.types.encrypted_passport_element.EncryptedPassportElement(*, type: str, hash: str, data: str | None = None, phone_number: str | None = None, email: str | None = None, files: List[PassportFile] | None = None, front_side: PassportFile | None = None, reverse_side: PassportFile | None = None, selfie: PassportFile | None = None, translation: List[PassportFile] | None = None, **extra_data: Any)

	Describes documents or other Telegram Passport elements shared with the bot by the user.

Source: https://core.telegram.org/bots/api#encryptedpassportelement

	
type: str

	Element type. One of ‘personal_details’, ‘passport’, ‘driver_license’, ‘identity_card’, ‘internal_passport’, ‘address’, ‘utility_bill’, ‘bank_statement’, ‘rental_agreement’, ‘passport_registration’, ‘temporary_registration’, ‘phone_number’, ‘email’.

	
hash: str

	Base64-encoded element hash for using in aiogram.types.passport_element_error_unspecified.PassportElementErrorUnspecified

	
data: str | None

	Optional. Base64-encoded encrypted Telegram Passport element data provided by the user; available only for ‘personal_details’, ‘passport’, ‘driver_license’, ‘identity_card’, ‘internal_passport’ and ‘address’ types. Can be decrypted and verified using the accompanying aiogram.types.encrypted_credentials.EncryptedCredentials.

	
phone_number: str | None

	Optional. User’s verified phone number; available only for ‘phone_number’ type

	
email: str | None

	Optional. User’s verified email address; available only for ‘email’ type

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
files: List[PassportFile] | None

	Optional. Array of encrypted files with documents provided by the user; available only for ‘utility_bill’, ‘bank_statement’, ‘rental_agreement’, ‘passport_registration’ and ‘temporary_registration’ types. Files can be decrypted and verified using the accompanying aiogram.types.encrypted_credentials.EncryptedCredentials.

	
front_side: PassportFile | None

	Optional. Encrypted file with the front side of the document, provided by the user; available only for ‘passport’, ‘driver_license’, ‘identity_card’ and ‘internal_passport’. The file can be decrypted and verified using the accompanying aiogram.types.encrypted_credentials.EncryptedCredentials.

	
reverse_side: PassportFile | None

	Optional. Encrypted file with the reverse side of the document, provided by the user; available only for ‘driver_license’ and ‘identity_card’. The file can be decrypted and verified using the accompanying aiogram.types.encrypted_credentials.EncryptedCredentials.

	
selfie: PassportFile | None

	Optional. Encrypted file with the selfie of the user holding a document, provided by the user; available if requested for ‘passport’, ‘driver_license’, ‘identity_card’ and ‘internal_passport’. The file can be decrypted and verified using the accompanying aiogram.types.encrypted_credentials.EncryptedCredentials.

	
translation: List[PassportFile] | None

	Optional. Array of encrypted files with translated versions of documents provided by the user; available if requested for ‘passport’, ‘driver_license’, ‘identity_card’, ‘internal_passport’, ‘utility_bill’, ‘bank_statement’, ‘rental_agreement’, ‘passport_registration’ and ‘temporary_registration’ types. Files can be decrypted and verified using the accompanying aiogram.types.encrypted_credentials.EncryptedCredentials.

PassportData

	
class aiogram.types.passport_data.PassportData(*, data: List[EncryptedPassportElement], credentials: EncryptedCredentials, **extra_data: Any)

	Describes Telegram Passport data shared with the bot by the user.

Source: https://core.telegram.org/bots/api#passportdata

	
data: List[EncryptedPassportElement]

	Array with information about documents and other Telegram Passport elements that was shared with the bot

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
credentials: EncryptedCredentials

	Encrypted credentials required to decrypt the data

PassportElementError

	
class aiogram.types.passport_element_error.PassportElementError(**extra_data: Any)

	This object represents an error in the Telegram Passport element which was submitted that should be resolved by the user. It should be one of:

	aiogram.types.passport_element_error_data_field.PassportElementErrorDataField

	aiogram.types.passport_element_error_front_side.PassportElementErrorFrontSide

	aiogram.types.passport_element_error_reverse_side.PassportElementErrorReverseSide

	aiogram.types.passport_element_error_selfie.PassportElementErrorSelfie

	aiogram.types.passport_element_error_file.PassportElementErrorFile

	aiogram.types.passport_element_error_files.PassportElementErrorFiles

	aiogram.types.passport_element_error_translation_file.PassportElementErrorTranslationFile

	aiogram.types.passport_element_error_translation_files.PassportElementErrorTranslationFiles

	aiogram.types.passport_element_error_unspecified.PassportElementErrorUnspecified

Source: https://core.telegram.org/bots/api#passportelementerror

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

PassportElementErrorDataField

	
class aiogram.types.passport_element_error_data_field.PassportElementErrorDataField(*, source: Literal[PassportElementErrorType.DATA] = PassportElementErrorType.DATA, type: str, field_name: str, data_hash: str, message: str, **extra_data: Any)

	Represents an issue in one of the data fields that was provided by the user. The error is considered resolved when the field’s value changes.

Source: https://core.telegram.org/bots/api#passportelementerrordatafield

	
source: Literal[PassportElementErrorType.DATA]

	Error source, must be data

	
type: str

	The section of the user’s Telegram Passport which has the error, one of ‘personal_details’, ‘passport’, ‘driver_license’, ‘identity_card’, ‘internal_passport’, ‘address’

	
field_name: str

	Name of the data field which has the error

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
data_hash: str

	Base64-encoded data hash

	
message: str

	Error message

PassportElementErrorFile

	
class aiogram.types.passport_element_error_file.PassportElementErrorFile(*, source: Literal[PassportElementErrorType.FILE] = PassportElementErrorType.FILE, type: str, file_hash: str, message: str, **extra_data: Any)

	Represents an issue with a document scan. The error is considered resolved when the file with the document scan changes.

Source: https://core.telegram.org/bots/api#passportelementerrorfile

	
source: Literal[PassportElementErrorType.FILE]

	Error source, must be file

	
type: str

	The section of the user’s Telegram Passport which has the issue, one of ‘utility_bill’, ‘bank_statement’, ‘rental_agreement’, ‘passport_registration’, ‘temporary_registration’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
file_hash: str

	Base64-encoded file hash

	
message: str

	Error message

PassportElementErrorFiles

	
class aiogram.types.passport_element_error_files.PassportElementErrorFiles(*, source: Literal[PassportElementErrorType.FILES] = PassportElementErrorType.FILES, type: str, file_hashes: List[str], message: str, **extra_data: Any)

	Represents an issue with a list of scans. The error is considered resolved when the list of files containing the scans changes.

Source: https://core.telegram.org/bots/api#passportelementerrorfiles

	
source: Literal[PassportElementErrorType.FILES]

	Error source, must be files

	
type: str

	The section of the user’s Telegram Passport which has the issue, one of ‘utility_bill’, ‘bank_statement’, ‘rental_agreement’, ‘passport_registration’, ‘temporary_registration’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
file_hashes: List[str]

	List of base64-encoded file hashes

	
message: str

	Error message

PassportElementErrorFrontSide

	
class aiogram.types.passport_element_error_front_side.PassportElementErrorFrontSide(*, source: Literal[PassportElementErrorType.FRONT_SIDE] = PassportElementErrorType.FRONT_SIDE, type: str, file_hash: str, message: str, **extra_data: Any)

	Represents an issue with the front side of a document. The error is considered resolved when the file with the front side of the document changes.

Source: https://core.telegram.org/bots/api#passportelementerrorfrontside

	
source: Literal[PassportElementErrorType.FRONT_SIDE]

	Error source, must be front_side

	
type: str

	The section of the user’s Telegram Passport which has the issue, one of ‘passport’, ‘driver_license’, ‘identity_card’, ‘internal_passport’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
file_hash: str

	Base64-encoded hash of the file with the front side of the document

	
message: str

	Error message

PassportElementErrorReverseSide

	
class aiogram.types.passport_element_error_reverse_side.PassportElementErrorReverseSide(*, source: Literal[PassportElementErrorType.REVERSE_SIDE] = PassportElementErrorType.REVERSE_SIDE, type: str, file_hash: str, message: str, **extra_data: Any)

	Represents an issue with the reverse side of a document. The error is considered resolved when the file with reverse side of the document changes.

Source: https://core.telegram.org/bots/api#passportelementerrorreverseside

	
source: Literal[PassportElementErrorType.REVERSE_SIDE]

	Error source, must be reverse_side

	
type: str

	The section of the user’s Telegram Passport which has the issue, one of ‘driver_license’, ‘identity_card’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
file_hash: str

	Base64-encoded hash of the file with the reverse side of the document

	
message: str

	Error message

PassportElementErrorSelfie

	
class aiogram.types.passport_element_error_selfie.PassportElementErrorSelfie(*, source: Literal[PassportElementErrorType.SELFIE] = PassportElementErrorType.SELFIE, type: str, file_hash: str, message: str, **extra_data: Any)

	Represents an issue with the selfie with a document. The error is considered resolved when the file with the selfie changes.

Source: https://core.telegram.org/bots/api#passportelementerrorselfie

	
source: Literal[PassportElementErrorType.SELFIE]

	Error source, must be selfie

	
type: str

	The section of the user’s Telegram Passport which has the issue, one of ‘passport’, ‘driver_license’, ‘identity_card’, ‘internal_passport’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
file_hash: str

	Base64-encoded hash of the file with the selfie

	
message: str

	Error message

PassportElementErrorTranslationFile

	
class aiogram.types.passport_element_error_translation_file.PassportElementErrorTranslationFile(*, source: Literal[PassportElementErrorType.TRANSLATION_FILE] = PassportElementErrorType.TRANSLATION_FILE, type: str, file_hash: str, message: str, **extra_data: Any)

	Represents an issue with one of the files that constitute the translation of a document. The error is considered resolved when the file changes.

Source: https://core.telegram.org/bots/api#passportelementerrortranslationfile

	
source: Literal[PassportElementErrorType.TRANSLATION_FILE]

	Error source, must be translation_file

	
type: str

	Type of element of the user’s Telegram Passport which has the issue, one of ‘passport’, ‘driver_license’, ‘identity_card’, ‘internal_passport’, ‘utility_bill’, ‘bank_statement’, ‘rental_agreement’, ‘passport_registration’, ‘temporary_registration’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
file_hash: str

	Base64-encoded file hash

	
message: str

	Error message

PassportElementErrorTranslationFiles

	
class aiogram.types.passport_element_error_translation_files.PassportElementErrorTranslationFiles(*, source: Literal[PassportElementErrorType.TRANSLATION_FILES] = PassportElementErrorType.TRANSLATION_FILES, type: str, file_hashes: List[str], message: str, **extra_data: Any)

	Represents an issue with the translated version of a document. The error is considered resolved when a file with the document translation change.

Source: https://core.telegram.org/bots/api#passportelementerrortranslationfiles

	
source: Literal[PassportElementErrorType.TRANSLATION_FILES]

	Error source, must be translation_files

	
type: str

	Type of element of the user’s Telegram Passport which has the issue, one of ‘passport’, ‘driver_license’, ‘identity_card’, ‘internal_passport’, ‘utility_bill’, ‘bank_statement’, ‘rental_agreement’, ‘passport_registration’, ‘temporary_registration’

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
file_hashes: List[str]

	List of base64-encoded file hashes

	
message: str

	Error message

PassportElementErrorUnspecified

	
class aiogram.types.passport_element_error_unspecified.PassportElementErrorUnspecified(*, source: Literal[PassportElementErrorType.UNSPECIFIED] = PassportElementErrorType.UNSPECIFIED, type: str, element_hash: str, message: str, **extra_data: Any)

	Represents an issue in an unspecified place. The error is considered resolved when new data is added.

Source: https://core.telegram.org/bots/api#passportelementerrorunspecified

	
source: Literal[PassportElementErrorType.UNSPECIFIED]

	Error source, must be unspecified

	
type: str

	Type of element of the user’s Telegram Passport which has the issue

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
element_hash: str

	Base64-encoded element hash

	
message: str

	Error message

PassportFile

	
class aiogram.types.passport_file.PassportFile(*, file_id: str, file_unique_id: str, file_size: int, file_date: datetime, **extra_data: Any)

	This object represents a file uploaded to Telegram Passport. Currently all Telegram Passport files are in JPEG format when decrypted and don’t exceed 10MB.

Source: https://core.telegram.org/bots/api#passportfile

	
file_id: str

	Identifier for this file, which can be used to download or reuse the file

	
file_unique_id: str

	Unique identifier for this file, which is supposed to be the same over time and for different bots. Can’t be used to download or reuse the file.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
file_size: int

	File size in bytes

	
file_date: DateTime

	Unix time when the file was uploaded

Invoice

	
class aiogram.types.invoice.Invoice(*, title: str, description: str, start_parameter: str, currency: str, total_amount: int, **extra_data: Any)

	This object contains basic information about an invoice.

Source: https://core.telegram.org/bots/api#invoice

	
title: str

	Product name

	
description: str

	Product description

	
start_parameter: str

	Unique bot deep-linking parameter that can be used to generate this invoice

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
currency: str

	Three-letter ISO 4217 currency [https://core.telegram.org/bots/payments#supported-currencies] code

	
total_amount: int

	Total price in the smallest units of the currency (integer, not float/double). For example, for a price of US$ 1.45 pass amount = 145. See the exp parameter in currencies.json [https://core.telegram.org/bots/payments/currencies.json], it shows the number of digits past the decimal point for each currency (2 for the majority of currencies).

LabeledPrice

	
class aiogram.types.labeled_price.LabeledPrice(*, label: str, amount: int, **extra_data: Any)

	This object represents a portion of the price for goods or services.

Source: https://core.telegram.org/bots/api#labeledprice

	
label: str

	Portion label

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
amount: int

	Price of the product in the smallest units of the currency [https://core.telegram.org/bots/payments#supported-currencies] (integer, not float/double). For example, for a price of US$ 1.45 pass amount = 145. See the exp parameter in currencies.json [https://core.telegram.org/bots/payments/currencies.json], it shows the number of digits past the decimal point for each currency (2 for the majority of currencies).

OrderInfo

	
class aiogram.types.order_info.OrderInfo(*, name: str | None = None, phone_number: str | None = None, email: str | None = None, shipping_address: ShippingAddress | None = None, **extra_data: Any)

	This object represents information about an order.

Source: https://core.telegram.org/bots/api#orderinfo

	
name: str | None

	Optional. User name

	
phone_number: str | None

	Optional. User’s phone number

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
email: str | None

	Optional. User email

	
shipping_address: ShippingAddress | None

	Optional. User shipping address

PreCheckoutQuery

	
class aiogram.types.pre_checkout_query.PreCheckoutQuery(*, id: str, from_user: User, currency: str, total_amount: int, invoice_payload: str, shipping_option_id: str | None = None, order_info: OrderInfo | None = None, **extra_data: Any)

	This object contains information about an incoming pre-checkout query.

Source: https://core.telegram.org/bots/api#precheckoutquery

	
id: str

	Unique query identifier

	
from_user: User

	User who sent the query

	
currency: str

	Three-letter ISO 4217 currency [https://core.telegram.org/bots/payments#supported-currencies] code

	
total_amount: int

	Total price in the smallest units of the currency (integer, not float/double). For example, for a price of US$ 1.45 pass amount = 145. See the exp parameter in currencies.json [https://core.telegram.org/bots/payments/currencies.json], it shows the number of digits past the decimal point for each currency (2 for the majority of currencies).

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
invoice_payload: str

	Bot specified invoice payload

	
shipping_option_id: str | None

	Optional. Identifier of the shipping option chosen by the user

	
order_info: OrderInfo | None

	Optional. Order information provided by the user

	
answer(ok: bool, error_message: str | None = None, **kwargs: Any) → AnswerPreCheckoutQuery

	Shortcut for method aiogram.methods.answer_pre_checkout_query.AnswerPreCheckoutQuery
will automatically fill method attributes:

	pre_checkout_query_id

Once the user has confirmed their payment and shipping details, the Bot API sends the final confirmation in the form of an aiogram.types.update.Update with the field pre_checkout_query. Use this method to respond to such pre-checkout queries. On success, True is returned. Note: The Bot API must receive an answer within 10 seconds after the pre-checkout query was sent.

Source: https://core.telegram.org/bots/api#answerprecheckoutquery

	Parameters:

	
	ok – Specify True if everything is alright (goods are available, etc.) and the bot is ready to proceed with the order. Use False if there are any problems.

	error_message – Required if ok is False. Error message in human readable form that explains the reason for failure to proceed with the checkout (e.g. “Sorry, somebody just bought the last of our amazing black T-shirts while you were busy filling out your payment details. Please choose a different color or garment!”). Telegram will display this message to the user.

	Returns:

	instance of method aiogram.methods.answer_pre_checkout_query.AnswerPreCheckoutQuery

ShippingAddress

	
class aiogram.types.shipping_address.ShippingAddress(*, country_code: str, state: str, city: str, street_line1: str, street_line2: str, post_code: str, **extra_data: Any)

	This object represents a shipping address.

Source: https://core.telegram.org/bots/api#shippingaddress

	
country_code: str

	Two-letter ISO 3166-1 alpha-2 [https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2] country code

	
state: str

	State, if applicable

	
city: str

	City

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
street_line1: str

	First line for the address

	
street_line2: str

	Second line for the address

	
post_code: str

	Address post code

ShippingOption

	
class aiogram.types.shipping_option.ShippingOption(*, id: str, title: str, prices: List[LabeledPrice], **extra_data: Any)

	This object represents one shipping option.

Source: https://core.telegram.org/bots/api#shippingoption

	
id: str

	Shipping option identifier

	
title: str

	Option title

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
prices: List[LabeledPrice]

	List of price portions

ShippingQuery

	
class aiogram.types.shipping_query.ShippingQuery(*, id: str, from_user: User, invoice_payload: str, shipping_address: ShippingAddress, **extra_data: Any)

	This object contains information about an incoming shipping query.

Source: https://core.telegram.org/bots/api#shippingquery

	
id: str

	Unique query identifier

	
from_user: User

	User who sent the query

	
invoice_payload: str

	Bot specified invoice payload

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
shipping_address: ShippingAddress

	User specified shipping address

	
answer(ok: bool, shipping_options: List[ShippingOption] | None = None, error_message: str | None = None, **kwargs: Any) → AnswerShippingQuery

	Shortcut for method aiogram.methods.answer_shipping_query.AnswerShippingQuery
will automatically fill method attributes:

	shipping_query_id

If you sent an invoice requesting a shipping address and the parameter is_flexible was specified, the Bot API will send an aiogram.types.update.Update with a shipping_query field to the bot. Use this method to reply to shipping queries. On success, True is returned.

Source: https://core.telegram.org/bots/api#answershippingquery

	Parameters:

	
	ok – Pass True if delivery to the specified address is possible and False if there are any problems (for example, if delivery to the specified address is not possible)

	shipping_options – Required if ok is True. A JSON-serialized array of available shipping options.

	error_message – Required if ok is False. Error message in human readable form that explains why it is impossible to complete the order (e.g. “Sorry, delivery to your desired address is unavailable’). Telegram will display this message to the user.

	Returns:

	instance of method aiogram.methods.answer_shipping_query.AnswerShippingQuery

SuccessfulPayment

	
class aiogram.types.successful_payment.SuccessfulPayment(*, currency: str, total_amount: int, invoice_payload: str, telegram_payment_charge_id: str, provider_payment_charge_id: str, shipping_option_id: str | None = None, order_info: OrderInfo | None = None, **extra_data: Any)

	This object contains basic information about a successful payment.

Source: https://core.telegram.org/bots/api#successfulpayment

	
currency: str

	Three-letter ISO 4217 currency [https://core.telegram.org/bots/payments#supported-currencies] code

	
total_amount: int

	Total price in the smallest units of the currency (integer, not float/double). For example, for a price of US$ 1.45 pass amount = 145. See the exp parameter in currencies.json [https://core.telegram.org/bots/payments/currencies.json], it shows the number of digits past the decimal point for each currency (2 for the majority of currencies).

	
invoice_payload: str

	Bot specified invoice payload

	
telegram_payment_charge_id: str

	Telegram payment identifier

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
provider_payment_charge_id: str

	Provider payment identifier

	
shipping_option_id: str | None

	Optional. Identifier of the shipping option chosen by the user

	
order_info: OrderInfo | None

	Optional. Order information provided by the user

Update

	
class aiogram.types.update.Update(*, update_id: int, message: Message | None = None, edited_message: Message | None = None, channel_post: Message | None = None, edited_channel_post: Message | None = None, business_connection: BusinessConnection | None = None, business_message: Message | None = None, edited_business_message: Message | None = None, deleted_business_messages: BusinessMessagesDeleted | None = None, message_reaction: MessageReactionUpdated | None = None, message_reaction_count: MessageReactionCountUpdated | None = None, inline_query: InlineQuery | None = None, chosen_inline_result: ChosenInlineResult | None = None, callback_query: CallbackQuery | None = None, shipping_query: ShippingQuery | None = None, pre_checkout_query: PreCheckoutQuery | None = None, poll: Poll | None = None, poll_answer: PollAnswer | None = None, my_chat_member: ChatMemberUpdated | None = None, chat_member: ChatMemberUpdated | None = None, chat_join_request: ChatJoinRequest | None = None, chat_boost: ChatBoostUpdated | None = None, removed_chat_boost: ChatBoostRemoved | None = None, **extra_data: Any)

	This object [https://core.telegram.org/bots/api#available-types] represents an incoming update.

At most one of the optional parameters can be present in any given update.

Source: https://core.telegram.org/bots/api#update

	
update_id: int

	The update’s unique identifier. Update identifiers start from a certain positive number and increase sequentially. This identifier becomes especially handy if you’re using webhooks [https://core.telegram.org/bots/api#setwebhook], since it allows you to ignore repeated updates or to restore the correct update sequence, should they get out of order. If there are no new updates for at least a week, then identifier of the next update will be chosen randomly instead of sequentially.

	
message: Message | None

	Optional. New incoming message of any kind - text, photo, sticker, etc.

	
edited_message: Message | None

	Optional. New version of a message that is known to the bot and was edited. This update may at times be triggered by changes to message fields that are either unavailable or not actively used by your bot.

	
channel_post: Message | None

	Optional. New incoming channel post of any kind - text, photo, sticker, etc.

	
edited_channel_post: Message | None

	Optional. New version of a channel post that is known to the bot and was edited. This update may at times be triggered by changes to message fields that are either unavailable or not actively used by your bot.

	
business_connection: BusinessConnection | None

	Optional. The bot was connected to or disconnected from a business account, or a user edited an existing connection with the bot

	
business_message: Message | None

	Optional. New non-service message from a connected business account

	
edited_business_message: Message | None

	Optional. New version of a message from a connected business account

	
deleted_business_messages: BusinessMessagesDeleted | None

	Optional. Messages were deleted from a connected business account

	
message_reaction: MessageReactionUpdated | None

	Optional. A reaction to a message was changed by a user. The bot must be an administrator in the chat and must explicitly specify "message_reaction" in the list of allowed_updates to receive these updates. The update isn’t received for reactions set by bots.

	
message_reaction_count: MessageReactionCountUpdated | None

	Optional. Reactions to a message with anonymous reactions were changed. The bot must be an administrator in the chat and must explicitly specify "message_reaction_count" in the list of allowed_updates to receive these updates. The updates are grouped and can be sent with delay up to a few minutes.

	
inline_query: InlineQuery | None

	Optional. New incoming inline [https://core.telegram.org/bots/api#inline-mode] query

	
chosen_inline_result: ChosenInlineResult | None

	Optional. The result of an inline [https://core.telegram.org/bots/api#inline-mode] query that was chosen by a user and sent to their chat partner. Please see our documentation on the feedback collecting [https://core.telegram.org/bots/inline#collecting-feedback] for details on how to enable these updates for your bot.

	
callback_query: CallbackQuery | None

	Optional. New incoming callback query

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
shipping_query: ShippingQuery | None

	Optional. New incoming shipping query. Only for invoices with flexible price

	
pre_checkout_query: PreCheckoutQuery | None

	Optional. New incoming pre-checkout query. Contains full information about checkout

	
poll: Poll | None

	Optional. New poll state. Bots receive only updates about manually stopped polls and polls, which are sent by the bot

	
poll_answer: PollAnswer | None

	Optional. A user changed their answer in a non-anonymous poll. Bots receive new votes only in polls that were sent by the bot itself.

	
my_chat_member: ChatMemberUpdated | None

	Optional. The bot’s chat member status was updated in a chat. For private chats, this update is received only when the bot is blocked or unblocked by the user.

	
chat_member: ChatMemberUpdated | None

	Optional. A chat member’s status was updated in a chat. The bot must be an administrator in the chat and must explicitly specify "chat_member" in the list of allowed_updates to receive these updates.

	
chat_join_request: ChatJoinRequest | None

	Optional. A request to join the chat has been sent. The bot must have the can_invite_users administrator right in the chat to receive these updates.

	
chat_boost: ChatBoostUpdated | None

	Optional. A chat boost was added or changed. The bot must be an administrator in the chat to receive these updates.

	
removed_chat_boost: ChatBoostRemoved | None

	Optional. A boost was removed from a chat. The bot must be an administrator in the chat to receive these updates.

	
property event_type: str

	Detect update type
If update type is unknown, raise UpdateTypeLookupError

	Returns:

	

	
property event: TelegramObject

	

	
exception aiogram.types.update.UpdateTypeLookupError

	Update does not contain any known event type.

WebhookInfo

	
class aiogram.types.webhook_info.WebhookInfo(*, url: str, has_custom_certificate: bool, pending_update_count: int, ip_address: str | None = None, last_error_date: datetime | None = None, last_error_message: str | None = None, last_synchronization_error_date: datetime | None = None, max_connections: int | None = None, allowed_updates: List[str] | None = None, **extra_data: Any)

	Describes the current status of a webhook.

Source: https://core.telegram.org/bots/api#webhookinfo

	
url: str

	Webhook URL, may be empty if webhook is not set up

	
has_custom_certificate: bool

	True, if a custom certificate was provided for webhook certificate checks

	
pending_update_count: int

	Number of updates awaiting delivery

	
ip_address: str | None

	Optional. Currently used webhook IP address

	
last_error_date: DateTime | None

	Optional. Unix time for the most recent error that happened when trying to deliver an update via webhook

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
last_error_message: str | None

	Optional. Error message in human-readable format for the most recent error that happened when trying to deliver an update via webhook

	
last_synchronization_error_date: DateTime | None

	Optional. Unix time of the most recent error that happened when trying to synchronize available updates with Telegram datacenters

	
max_connections: int | None

	Optional. The maximum allowed number of simultaneous HTTPS connections to the webhook for update delivery

	
allowed_updates: List[str] | None

	Optional. A list of update types the bot is subscribed to. Defaults to all update types except chat_member

CallbackGame

	
class aiogram.types.callback_game.CallbackGame(**extra_data: Any)

	A placeholder, currently holds no information. Use BotFather [https://t.me/botfather] to set up your game.

Source: https://core.telegram.org/bots/api#callbackgame

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Game

	
class aiogram.types.game.Game(*, title: str, description: str, photo: List[PhotoSize], text: str | None = None, text_entities: List[MessageEntity] | None = None, animation: Animation | None = None, **extra_data: Any)

	This object represents a game. Use BotFather to create and edit games, their short names will act as unique identifiers.

Source: https://core.telegram.org/bots/api#game

	
title: str

	Title of the game

	
description: str

	Description of the game

	
photo: List[PhotoSize]

	Photo that will be displayed in the game message in chats.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
text: str | None

	Optional. Brief description of the game or high scores included in the game message. Can be automatically edited to include current high scores for the game when the bot calls aiogram.methods.set_game_score.SetGameScore, or manually edited using aiogram.methods.edit_message_text.EditMessageText. 0-4096 characters.

	
text_entities: List[MessageEntity] | None

	Optional. Special entities that appear in text, such as usernames, URLs, bot commands, etc.

	
animation: Animation | None

	Optional. Animation that will be displayed in the game message in chats. Upload via BotFather [https://t.me/botfather]

GameHighScore

	
class aiogram.types.game_high_score.GameHighScore(*, position: int, user: User, score: int, **extra_data: Any)

	This object represents one row of the high scores table for a game.
And that’s about all we’ve got for now.

If you’ve got any questions, please check out our https://core.telegram.org/bots/faq Bot FAQ »

Source: https://core.telegram.org/bots/api#gamehighscore

	
position: int

	Position in high score table for the game

	
user: User

	User

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
score: int

	Score

Methods

Here is list of all available API methods:

Stickers

	addStickerToSet

	createNewStickerSet

	deleteStickerFromSet

	deleteStickerSet

	getCustomEmojiStickers

	getStickerSet

	replaceStickerInSet

	sendSticker

	setCustomEmojiStickerSetThumbnail

	setStickerEmojiList

	setStickerKeywords

	setStickerMaskPosition

	setStickerPositionInSet

	setStickerSetThumbnail

	setStickerSetTitle

	uploadStickerFile

Available methods

	answerCallbackQuery

	approveChatJoinRequest

	banChatMember

	banChatSenderChat

	close

	closeForumTopic

	closeGeneralForumTopic

	copyMessage

	copyMessages

	createChatInviteLink

	createForumTopic

	declineChatJoinRequest

	deleteChatPhoto

	deleteChatStickerSet

	deleteForumTopic

	deleteMyCommands

	editChatInviteLink

	editForumTopic

	editGeneralForumTopic

	exportChatInviteLink

	forwardMessage

	forwardMessages

	getBusinessConnection

	getChat

	getChatAdministrators

	getChatMember

	getChatMemberCount

	getChatMenuButton

	getFile

	getForumTopicIconStickers

	getMe

	getMyCommands

	getMyDefaultAdministratorRights

	getMyDescription

	getMyName

	getMyShortDescription

	getUserChatBoosts

	getUserProfilePhotos

	hideGeneralForumTopic

	leaveChat

	logOut

	pinChatMessage

	promoteChatMember

	reopenForumTopic

	reopenGeneralForumTopic

	restrictChatMember

	revokeChatInviteLink

	sendAnimation

	sendAudio

	sendChatAction

	sendContact

	sendDice

	sendDocument

	sendLocation

	sendMediaGroup

	sendMessage

	sendPhoto

	sendPoll

	sendVenue

	sendVideo

	sendVideoNote

	sendVoice

	setChatAdministratorCustomTitle

	setChatDescription

	setChatMenuButton

	setChatPermissions

	setChatPhoto

	setChatStickerSet

	setChatTitle

	setMessageReaction

	setMyCommands

	setMyDefaultAdministratorRights

	setMyDescription

	setMyName

	setMyShortDescription

	unbanChatMember

	unbanChatSenderChat

	unhideGeneralForumTopic

	unpinAllChatMessages

	unpinAllForumTopicMessages

	unpinAllGeneralForumTopicMessages

	unpinChatMessage

Updating messages

	deleteMessage

	deleteMessages

	editMessageCaption

	editMessageLiveLocation

	editMessageMedia

	editMessageReplyMarkup

	editMessageText

	stopMessageLiveLocation

	stopPoll

Inline mode

	answerInlineQuery

	answerWebAppQuery

Games

	getGameHighScores

	sendGame

	setGameScore

Payments

	answerPreCheckoutQuery

	answerShippingQuery

	createInvoiceLink

	sendInvoice

Getting updates

	deleteWebhook

	getUpdates

	getWebhookInfo

	setWebhook

Telegram Passport

	setPassportDataErrors

addStickerToSet

Returns: bool

	
class aiogram.methods.add_sticker_to_set.AddStickerToSet(*, user_id: int, name: str, sticker: InputSticker, **extra_data: Any)

	Use this method to add a new sticker to a set created by the bot. Emoji sticker sets can have up to 200 stickers. Other sticker sets can have up to 120 stickers. Returns True on success.

Source: https://core.telegram.org/bots/api#addstickertoset

	
user_id: int

	User identifier of sticker set owner

	
name: str

	Sticker set name

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
sticker: InputSticker

	A JSON-serialized object with information about the added sticker. If exactly the same sticker had already been added to the set, then the set isn’t changed.

Usage

As bot method

result: bool = await bot.add_sticker_to_set(...)

Method as object

Imports:

	from aiogram.methods.add_sticker_to_set import AddStickerToSet

	alias: from aiogram.methods import AddStickerToSet

With specific bot

result: bool = await bot(AddStickerToSet(...))

As reply into Webhook in handler

return AddStickerToSet(...)

createNewStickerSet

Returns: bool

	
class aiogram.methods.create_new_sticker_set.CreateNewStickerSet(*, user_id: int, name: str, title: str, stickers: List[InputSticker], sticker_type: str | None = None, needs_repainting: bool | None = None, sticker_format: str | None = None, **extra_data: Any)

	Use this method to create a new sticker set owned by a user. The bot will be able to edit the sticker set thus created. Returns True on success.

Source: https://core.telegram.org/bots/api#createnewstickerset

	
user_id: int

	User identifier of created sticker set owner

	
name: str

	Short name of sticker set, to be used in t.me/addstickers/ URLs (e.g., animals). Can contain only English letters, digits and underscores. Must begin with a letter, can’t contain consecutive underscores and must end in "_by_<bot_username>". <bot_username> is case insensitive. 1-64 characters.

	
title: str

	Sticker set title, 1-64 characters

	
stickers: List[InputSticker]

	A JSON-serialized list of 1-50 initial stickers to be added to the sticker set

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
sticker_type: str | None

	Type of stickers in the set, pass ‘regular’, ‘mask’, or ‘custom_emoji’. By default, a regular sticker set is created.

	
needs_repainting: bool | None

	Pass True if stickers in the sticker set must be repainted to the color of text when used in messages, the accent color if used as emoji status, white on chat photos, or another appropriate color based on context; for custom emoji sticker sets only

	
sticker_format: str | None

	Format of stickers in the set, must be one of ‘static’, ‘animated’, ‘video’

Deprecated since version API:7.2: https://core.telegram.org/bots/api-changelog#march-31-2024

Usage

As bot method

result: bool = await bot.create_new_sticker_set(...)

Method as object

Imports:

	from aiogram.methods.create_new_sticker_set import CreateNewStickerSet

	alias: from aiogram.methods import CreateNewStickerSet

With specific bot

result: bool = await bot(CreateNewStickerSet(...))

As reply into Webhook in handler

return CreateNewStickerSet(...)

deleteStickerFromSet

Returns: bool

	
class aiogram.methods.delete_sticker_from_set.DeleteStickerFromSet(*, sticker: str, **extra_data: Any)

	Use this method to delete a sticker from a set created by the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#deletestickerfromset

	
sticker: str

	File identifier of the sticker

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: bool = await bot.delete_sticker_from_set(...)

Method as object

Imports:

	from aiogram.methods.delete_sticker_from_set import DeleteStickerFromSet

	alias: from aiogram.methods import DeleteStickerFromSet

With specific bot

result: bool = await bot(DeleteStickerFromSet(...))

As reply into Webhook in handler

return DeleteStickerFromSet(...)

As shortcut from received object

	aiogram.types.sticker.Sticker.delete_from_set()

deleteStickerSet

Returns: bool

	
class aiogram.methods.delete_sticker_set.DeleteStickerSet(*, name: str, **extra_data: Any)

	Use this method to delete a sticker set that was created by the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#deletestickerset

	
name: str

	Sticker set name

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: bool = await bot.delete_sticker_set(...)

Method as object

Imports:

	from aiogram.methods.delete_sticker_set import DeleteStickerSet

	alias: from aiogram.methods import DeleteStickerSet

With specific bot

result: bool = await bot(DeleteStickerSet(...))

As reply into Webhook in handler

return DeleteStickerSet(...)

getCustomEmojiStickers

Returns: List[Sticker]

	
class aiogram.methods.get_custom_emoji_stickers.GetCustomEmojiStickers(*, custom_emoji_ids: List[str], **extra_data: Any)

	Use this method to get information about custom emoji stickers by their identifiers. Returns an Array of aiogram.types.sticker.Sticker objects.

Source: https://core.telegram.org/bots/api#getcustomemojistickers

	
custom_emoji_ids: List[str]

	A JSON-serialized list of custom emoji identifiers. At most 200 custom emoji identifiers can be specified.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: List[Sticker] = await bot.get_custom_emoji_stickers(...)

Method as object

Imports:

	from aiogram.methods.get_custom_emoji_stickers import GetCustomEmojiStickers

	alias: from aiogram.methods import GetCustomEmojiStickers

With specific bot

result: List[Sticker] = await bot(GetCustomEmojiStickers(...))

getStickerSet

Returns: StickerSet

	
class aiogram.methods.get_sticker_set.GetStickerSet(*, name: str, **extra_data: Any)

	Use this method to get a sticker set. On success, a aiogram.types.sticker_set.StickerSet object is returned.

Source: https://core.telegram.org/bots/api#getstickerset

	
name: str

	Name of the sticker set

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: StickerSet = await bot.get_sticker_set(...)

Method as object

Imports:

	from aiogram.methods.get_sticker_set import GetStickerSet

	alias: from aiogram.methods import GetStickerSet

With specific bot

result: StickerSet = await bot(GetStickerSet(...))

replaceStickerInSet

Returns: bool

	
class aiogram.methods.replace_sticker_in_set.ReplaceStickerInSet(*, user_id: int, name: str, old_sticker: str, sticker: InputSticker, **extra_data: Any)

	Use this method to replace an existing sticker in a sticker set with a new one. The method is equivalent to calling aiogram.methods.delete_sticker_from_set.DeleteStickerFromSet, then aiogram.methods.add_sticker_to_set.AddStickerToSet, then aiogram.methods.set_sticker_position_in_set.SetStickerPositionInSet. Returns True on success.

Source: https://core.telegram.org/bots/api#replacestickerinset

	
user_id: int

	User identifier of the sticker set owner

	
name: str

	Sticker set name

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
old_sticker: str

	File identifier of the replaced sticker

	
sticker: InputSticker

	A JSON-serialized object with information about the added sticker. If exactly the same sticker had already been added to the set, then the set remains unchanged.

Usage

As bot method

result: bool = await bot.replace_sticker_in_set(...)

Method as object

Imports:

	from aiogram.methods.replace_sticker_in_set import ReplaceStickerInSet

	alias: from aiogram.methods import ReplaceStickerInSet

With specific bot

result: bool = await bot(ReplaceStickerInSet(...))

As reply into Webhook in handler

return ReplaceStickerInSet(...)

sendSticker

Returns: Message

	
class aiogram.methods.send_sticker.SendSticker(*, chat_id: int | str, sticker: ~aiogram.types.input_file.InputFile | str, business_connection_id: str | None = None, message_thread_id: int | None = None, emoji: str | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | ~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup | ~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove | ~aiogram.types.force_reply.ForceReply | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to send static .WEBP, animated [https://telegram.org/blog/animated-stickers] .TGS, or video [https://telegram.org/blog/video-stickers-better-reactions] .WEBM stickers. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendsticker

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
sticker: InputFile | str

	Sticker to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a .WEBP sticker from the Internet, or upload a new .WEBP, .TGS, or .WEBM sticker using multipart/form-data. More information on Sending Files ». Video and animated stickers can’t be sent via an HTTP URL.

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the message will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
emoji: str | None

	Emoji associated with the sticker; only for just uploaded stickers

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | ReplyKeyboardMarkup | ReplyKeyboardRemove | ForceReply | None

	Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_sticker(...)

Method as object

Imports:

	from aiogram.methods.send_sticker import SendSticker

	alias: from aiogram.methods import SendSticker

With specific bot

result: Message = await bot(SendSticker(...))

As reply into Webhook in handler

return SendSticker(...)

As shortcut from received object

	aiogram.types.message.Message.answer_sticker()

	aiogram.types.message.Message.reply_sticker()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_sticker()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_sticker_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer_sticker()

setCustomEmojiStickerSetThumbnail

Returns: bool

	
class aiogram.methods.set_custom_emoji_sticker_set_thumbnail.SetCustomEmojiStickerSetThumbnail(*, name: str, custom_emoji_id: str | None = None, **extra_data: Any)

	Use this method to set the thumbnail of a custom emoji sticker set. Returns True on success.

Source: https://core.telegram.org/bots/api#setcustomemojistickersetthumbnail

	
name: str

	Sticker set name

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
custom_emoji_id: str | None

	Custom emoji identifier of a sticker from the sticker set; pass an empty string to drop the thumbnail and use the first sticker as the thumbnail.

Usage

As bot method

result: bool = await bot.set_custom_emoji_sticker_set_thumbnail(...)

Method as object

Imports:

	from aiogram.methods.set_custom_emoji_sticker_set_thumbnail import SetCustomEmojiStickerSetThumbnail

	alias: from aiogram.methods import SetCustomEmojiStickerSetThumbnail

With specific bot

result: bool = await bot(SetCustomEmojiStickerSetThumbnail(...))

As reply into Webhook in handler

return SetCustomEmojiStickerSetThumbnail(...)

setStickerEmojiList

Returns: bool

	
class aiogram.methods.set_sticker_emoji_list.SetStickerEmojiList(*, sticker: str, emoji_list: List[str], **extra_data: Any)

	Use this method to change the list of emoji assigned to a regular or custom emoji sticker. The sticker must belong to a sticker set created by the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#setstickeremojilist

	
sticker: str

	File identifier of the sticker

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
emoji_list: List[str]

	A JSON-serialized list of 1-20 emoji associated with the sticker

Usage

As bot method

result: bool = await bot.set_sticker_emoji_list(...)

Method as object

Imports:

	from aiogram.methods.set_sticker_emoji_list import SetStickerEmojiList

	alias: from aiogram.methods import SetStickerEmojiList

With specific bot

result: bool = await bot(SetStickerEmojiList(...))

As reply into Webhook in handler

return SetStickerEmojiList(...)

setStickerKeywords

Returns: bool

	
class aiogram.methods.set_sticker_keywords.SetStickerKeywords(*, sticker: str, keywords: List[str] | None = None, **extra_data: Any)

	Use this method to change search keywords assigned to a regular or custom emoji sticker. The sticker must belong to a sticker set created by the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#setstickerkeywords

	
sticker: str

	File identifier of the sticker

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
keywords: List[str] | None

	A JSON-serialized list of 0-20 search keywords for the sticker with total length of up to 64 characters

Usage

As bot method

result: bool = await bot.set_sticker_keywords(...)

Method as object

Imports:

	from aiogram.methods.set_sticker_keywords import SetStickerKeywords

	alias: from aiogram.methods import SetStickerKeywords

With specific bot

result: bool = await bot(SetStickerKeywords(...))

As reply into Webhook in handler

return SetStickerKeywords(...)

setStickerMaskPosition

Returns: bool

	
class aiogram.methods.set_sticker_mask_position.SetStickerMaskPosition(*, sticker: str, mask_position: MaskPosition | None = None, **extra_data: Any)

	Use this method to change the mask position [https://core.telegram.org/bots/api#maskposition] of a mask sticker. The sticker must belong to a sticker set that was created by the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#setstickermaskposition

	
sticker: str

	File identifier of the sticker

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
mask_position: MaskPosition | None

	A JSON-serialized object with the position where the mask should be placed on faces. Omit the parameter to remove the mask position.

Usage

As bot method

result: bool = await bot.set_sticker_mask_position(...)

Method as object

Imports:

	from aiogram.methods.set_sticker_mask_position import SetStickerMaskPosition

	alias: from aiogram.methods import SetStickerMaskPosition

With specific bot

result: bool = await bot(SetStickerMaskPosition(...))

As reply into Webhook in handler

return SetStickerMaskPosition(...)

setStickerPositionInSet

Returns: bool

	
class aiogram.methods.set_sticker_position_in_set.SetStickerPositionInSet(*, sticker: str, position: int, **extra_data: Any)

	Use this method to move a sticker in a set created by the bot to a specific position. Returns True on success.

Source: https://core.telegram.org/bots/api#setstickerpositioninset

	
sticker: str

	File identifier of the sticker

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
position: int

	New sticker position in the set, zero-based

Usage

As bot method

result: bool = await bot.set_sticker_position_in_set(...)

Method as object

Imports:

	from aiogram.methods.set_sticker_position_in_set import SetStickerPositionInSet

	alias: from aiogram.methods import SetStickerPositionInSet

With specific bot

result: bool = await bot(SetStickerPositionInSet(...))

As reply into Webhook in handler

return SetStickerPositionInSet(...)

As shortcut from received object

	aiogram.types.sticker.Sticker.set_position_in_set()

setStickerSetThumbnail

Returns: bool

	
class aiogram.methods.set_sticker_set_thumbnail.SetStickerSetThumbnail(*, name: str, user_id: int, format: str, thumbnail: InputFile | str | None = None, **extra_data: Any)

	Use this method to set the thumbnail of a regular or mask sticker set. The format of the thumbnail file must match the format of the stickers in the set. Returns True on success.

Source: https://core.telegram.org/bots/api#setstickersetthumbnail

	
name: str

	Sticker set name

	
user_id: int

	User identifier of the sticker set owner

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
format: str

	Format of the thumbnail, must be one of ‘static’ for a .WEBP or .PNG image, ‘animated’ for a .TGS animation, or ‘video’ for a WEBM video

	
thumbnail: InputFile | str | None

	A .WEBP or .PNG image with the thumbnail, must be up to 128 kilobytes in size and have a width and height of exactly 100px, or a .TGS animation with a thumbnail up to 32 kilobytes in size (see https://core.telegram.org/stickers#animated-sticker-requirements <https://core.telegram.org/stickers#animated-sticker-requirements>`_`https://core.telegram.org/stickers#animated-sticker-requirements for animated sticker technical requirements), or a WEBM video with the thumbnail up to 32 kilobytes in size; see https://core.telegram.org/stickers#video-sticker-requirements <https://core.telegram.org/stickers#video-sticker-requirements>`_`https://core.telegram.org/stickers#video-sticker-requirements for video sticker technical requirements. Pass a file_id as a String to send a file that already exists on the Telegram servers, pass an HTTP URL as a String for Telegram to get a file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files ». Animated and video sticker set thumbnails can’t be uploaded via HTTP URL. If omitted, then the thumbnail is dropped and the first sticker is used as the thumbnail.

Usage

As bot method

result: bool = await bot.set_sticker_set_thumbnail(...)

Method as object

Imports:

	from aiogram.methods.set_sticker_set_thumbnail import SetStickerSetThumbnail

	alias: from aiogram.methods import SetStickerSetThumbnail

With specific bot

result: bool = await bot(SetStickerSetThumbnail(...))

As reply into Webhook in handler

return SetStickerSetThumbnail(...)

setStickerSetTitle

Returns: bool

	
class aiogram.methods.set_sticker_set_title.SetStickerSetTitle(*, name: str, title: str, **extra_data: Any)

	Use this method to set the title of a created sticker set. Returns True on success.

Source: https://core.telegram.org/bots/api#setstickersettitle

	
name: str

	Sticker set name

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
title: str

	Sticker set title, 1-64 characters

Usage

As bot method

result: bool = await bot.set_sticker_set_title(...)

Method as object

Imports:

	from aiogram.methods.set_sticker_set_title import SetStickerSetTitle

	alias: from aiogram.methods import SetStickerSetTitle

With specific bot

result: bool = await bot(SetStickerSetTitle(...))

As reply into Webhook in handler

return SetStickerSetTitle(...)

uploadStickerFile

Returns: File

	
class aiogram.methods.upload_sticker_file.UploadStickerFile(*, user_id: int, sticker: InputFile, sticker_format: str, **extra_data: Any)

	Use this method to upload a file with a sticker for later use in the aiogram.methods.create_new_sticker_set.CreateNewStickerSet, aiogram.methods.add_sticker_to_set.AddStickerToSet, or aiogram.methods.replace_sticker_in_set.ReplaceStickerInSet methods (the file can be used multiple times). Returns the uploaded aiogram.types.file.File on success.

Source: https://core.telegram.org/bots/api#uploadstickerfile

	
user_id: int

	User identifier of sticker file owner

	
sticker: InputFile

	A file with the sticker in .WEBP, .PNG, .TGS, or .WEBM format. See https://core.telegram.org/stickers <https://core.telegram.org/stickers>`_`https://core.telegram.org/stickers for technical requirements. More information on Sending Files »

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
sticker_format: str

	Format of the sticker, must be one of ‘static’, ‘animated’, ‘video’

Usage

As bot method

result: File = await bot.upload_sticker_file(...)

Method as object

Imports:

	from aiogram.methods.upload_sticker_file import UploadStickerFile

	alias: from aiogram.methods import UploadStickerFile

With specific bot

result: File = await bot(UploadStickerFile(...))

answerCallbackQuery

Returns: bool

	
class aiogram.methods.answer_callback_query.AnswerCallbackQuery(*, callback_query_id: str, text: str | None = None, show_alert: bool | None = None, url: str | None = None, cache_time: int | None = None, **extra_data: Any)

	Use this method to send answers to callback queries sent from inline keyboards [https://core.telegram.org/bots/features#inline-keyboards]. The answer will be displayed to the user as a notification at the top of the chat screen or as an alert. On success, True is returned.

Alternatively, the user can be redirected to the specified Game URL. For this option to work, you must first create a game for your bot via @BotFather [https://t.me/botfather] and accept the terms. Otherwise, you may use links like t.me/your_bot?start=XXXX that open your bot with a parameter.

Source: https://core.telegram.org/bots/api#answercallbackquery

	
callback_query_id: str

	Unique identifier for the query to be answered

	
text: str | None

	Text of the notification. If not specified, nothing will be shown to the user, 0-200 characters

	
show_alert: bool | None

	If True, an alert will be shown by the client instead of a notification at the top of the chat screen. Defaults to false.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
url: str | None

	URL that will be opened by the user’s client. If you have created a aiogram.types.game.Game and accepted the conditions via @BotFather [https://t.me/botfather], specify the URL that opens your game - note that this will only work if the query comes from a https://core.telegram.org/bots/api#inlinekeyboardbutton callback_game button.

	
cache_time: int | None

	The maximum amount of time in seconds that the result of the callback query may be cached client-side. Telegram apps will support caching starting in version 3.14. Defaults to 0.

Usage

As bot method

result: bool = await bot.answer_callback_query(...)

Method as object

Imports:

	from aiogram.methods.answer_callback_query import AnswerCallbackQuery

	alias: from aiogram.methods import AnswerCallbackQuery

With specific bot

result: bool = await bot(AnswerCallbackQuery(...))

As reply into Webhook in handler

return AnswerCallbackQuery(...)

As shortcut from received object

	aiogram.types.callback_query.CallbackQuery.answer()

approveChatJoinRequest

Returns: bool

	
class aiogram.methods.approve_chat_join_request.ApproveChatJoinRequest(*, chat_id: int | str, user_id: int, **extra_data: Any)

	Use this method to approve a chat join request. The bot must be an administrator in the chat for this to work and must have the can_invite_users administrator right. Returns True on success.

Source: https://core.telegram.org/bots/api#approvechatjoinrequest

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
user_id: int

	Unique identifier of the target user

Usage

As bot method

result: bool = await bot.approve_chat_join_request(...)

Method as object

Imports:

	from aiogram.methods.approve_chat_join_request import ApproveChatJoinRequest

	alias: from aiogram.methods import ApproveChatJoinRequest

With specific bot

result: bool = await bot(ApproveChatJoinRequest(...))

As reply into Webhook in handler

return ApproveChatJoinRequest(...)

As shortcut from received object

	aiogram.types.chat_join_request.ChatJoinRequest.approve()

banChatMember

Returns: bool

	
class aiogram.methods.ban_chat_member.BanChatMember(*, chat_id: int | str, user_id: int, until_date: datetime | timedelta | int | None = None, revoke_messages: bool | None = None, **extra_data: Any)

	Use this method to ban a user in a group, a supergroup or a channel. In the case of supergroups and channels, the user will not be able to return to the chat on their own using invite links, etc., unless unbanned [https://core.telegram.org/bots/api#unbanchatmember] first. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#banchatmember

	
chat_id: int | str

	Unique identifier for the target group or username of the target supergroup or channel (in the format @channelusername)

	
user_id: int

	Unique identifier of the target user

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
until_date: datetime.datetime | datetime.timedelta | int | None

	Date when the user will be unbanned; Unix time. If user is banned for more than 366 days or less than 30 seconds from the current time they are considered to be banned forever. Applied for supergroups and channels only.

	
revoke_messages: bool | None

	Pass True to delete all messages from the chat for the user that is being removed. If False, the user will be able to see messages in the group that were sent before the user was removed. Always True for supergroups and channels.

Usage

As bot method

result: bool = await bot.ban_chat_member(...)

Method as object

Imports:

	from aiogram.methods.ban_chat_member import BanChatMember

	alias: from aiogram.methods import BanChatMember

With specific bot

result: bool = await bot(BanChatMember(...))

As reply into Webhook in handler

return BanChatMember(...)

As shortcut from received object

	aiogram.types.chat.Chat.ban()

banChatSenderChat

Returns: bool

	
class aiogram.methods.ban_chat_sender_chat.BanChatSenderChat(*, chat_id: int | str, sender_chat_id: int, **extra_data: Any)

	Use this method to ban a channel chat in a supergroup or a channel. Until the chat is unbanned [https://core.telegram.org/bots/api#unbanchatsenderchat], the owner of the banned chat won’t be able to send messages on behalf of any of their channels. The bot must be an administrator in the supergroup or channel for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#banchatsenderchat

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
sender_chat_id: int

	Unique identifier of the target sender chat

Usage

As bot method

result: bool = await bot.ban_chat_sender_chat(...)

Method as object

Imports:

	from aiogram.methods.ban_chat_sender_chat import BanChatSenderChat

	alias: from aiogram.methods import BanChatSenderChat

With specific bot

result: bool = await bot(BanChatSenderChat(...))

As reply into Webhook in handler

return BanChatSenderChat(...)

As shortcut from received object

	aiogram.types.chat.Chat.ban_sender_chat()

close

Returns: bool

	
class aiogram.methods.close.Close(**extra_data: Any)

	Use this method to close the bot instance before moving it from one local server to another. You need to delete the webhook before calling this method to ensure that the bot isn’t launched again after server restart. The method will return error 429 in the first 10 minutes after the bot is launched. Returns True on success. Requires no parameters.

Source: https://core.telegram.org/bots/api#close

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: bool = await bot.close(...)

Method as object

Imports:

	from aiogram.methods.close import Close

	alias: from aiogram.methods import Close

With specific bot

result: bool = await bot(Close(...))

As reply into Webhook in handler

return Close(...)

closeForumTopic

Returns: bool

	
class aiogram.methods.close_forum_topic.CloseForumTopic(*, chat_id: int | str, message_thread_id: int, **extra_data: Any)

	Use this method to close an open topic in a forum supergroup chat. The bot must be an administrator in the chat for this to work and must have the can_manage_topics administrator rights, unless it is the creator of the topic. Returns True on success.

Source: https://core.telegram.org/bots/api#closeforumtopic

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
message_thread_id: int

	Unique identifier for the target message thread of the forum topic

Usage

As bot method

result: bool = await bot.close_forum_topic(...)

Method as object

Imports:

	from aiogram.methods.close_forum_topic import CloseForumTopic

	alias: from aiogram.methods import CloseForumTopic

With specific bot

result: bool = await bot(CloseForumTopic(...))

As reply into Webhook in handler

return CloseForumTopic(...)

closeGeneralForumTopic

Returns: bool

	
class aiogram.methods.close_general_forum_topic.CloseGeneralForumTopic(*, chat_id: int | str, **extra_data: Any)

	Use this method to close an open ‘General’ topic in a forum supergroup chat. The bot must be an administrator in the chat for this to work and must have the can_manage_topics administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#closegeneralforumtopic

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: bool = await bot.close_general_forum_topic(...)

Method as object

Imports:

	from aiogram.methods.close_general_forum_topic import CloseGeneralForumTopic

	alias: from aiogram.methods import CloseGeneralForumTopic

With specific bot

result: bool = await bot(CloseGeneralForumTopic(...))

As reply into Webhook in handler

return CloseGeneralForumTopic(...)

copyMessage

Returns: MessageId

	
class aiogram.methods.copy_message.CopyMessage(*, chat_id: int | str, from_chat_id: int | str, message_id: int, message_thread_id: int | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | ~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup | ~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove | ~aiogram.types.force_reply.ForceReply | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to copy messages of any kind. Service messages, giveaway messages, giveaway winners messages, and invoice messages can’t be copied. A quiz aiogram.methods.poll.Poll can be copied only if the value of the field correct_option_id is known to the bot. The method is analogous to the method aiogram.methods.forward_message.ForwardMessage, but the copied message doesn’t have a link to the original message. Returns the aiogram.types.message_id.MessageId of the sent message on success.

Source: https://core.telegram.org/bots/api#copymessage

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
from_chat_id: int | str

	Unique identifier for the chat where the original message was sent (or channel username in the format @channelusername)

	
message_id: int

	Message identifier in the chat specified in from_chat_id

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
caption: str | None

	New caption for media, 0-1024 characters after entities parsing. If not specified, the original caption is kept

	
parse_mode: str | Default | None

	Mode for parsing entities in the new caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	A JSON-serialized list of special entities that appear in the new caption, which can be specified instead of parse_mode

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | ReplyKeyboardMarkup | ReplyKeyboardRemove | ForceReply | None

	Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: MessageId = await bot.copy_message(...)

Method as object

Imports:

	from aiogram.methods.copy_message import CopyMessage

	alias: from aiogram.methods import CopyMessage

With specific bot

result: MessageId = await bot(CopyMessage(...))

As reply into Webhook in handler

return CopyMessage(...)

As shortcut from received object

	aiogram.types.message.Message.copy_to()

copyMessages

Returns: List[MessageId]

	
class aiogram.methods.copy_messages.CopyMessages(*, chat_id: int | str, from_chat_id: int | str, message_ids: List[int], message_thread_id: int | None = None, disable_notification: bool | None = None, protect_content: bool | None = None, remove_caption: bool | None = None, **extra_data: Any)

	Use this method to copy messages of any kind. If some of the specified messages can’t be found or copied, they are skipped. Service messages, giveaway messages, giveaway winners messages, and invoice messages can’t be copied. A quiz aiogram.methods.poll.Poll can be copied only if the value of the field correct_option_id is known to the bot. The method is analogous to the method aiogram.methods.forward_messages.ForwardMessages, but the copied messages don’t have a link to the original message. Album grouping is kept for copied messages. On success, an array of aiogram.types.message_id.MessageId of the sent messages is returned.

Source: https://core.telegram.org/bots/api#copymessages

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
from_chat_id: int | str

	Unique identifier for the chat where the original messages were sent (or channel username in the format @channelusername)

	
message_ids: List[int]

	A JSON-serialized list of 1-100 identifiers of messages in the chat from_chat_id to copy. The identifiers must be specified in a strictly increasing order.

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
disable_notification: bool | None

	Sends the messages silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | None

	Protects the contents of the sent messages from forwarding and saving

	
remove_caption: bool | None

	Pass True to copy the messages without their captions

Usage

As bot method

result: List[MessageId] = await bot.copy_messages(...)

Method as object

Imports:

	from aiogram.methods.copy_messages import CopyMessages

	alias: from aiogram.methods import CopyMessages

With specific bot

result: List[MessageId] = await bot(CopyMessages(...))

As reply into Webhook in handler

return CopyMessages(...)

createChatInviteLink

Returns: ChatInviteLink

	
class aiogram.methods.create_chat_invite_link.CreateChatInviteLink(*, chat_id: int | str, name: str | None = None, expire_date: datetime | timedelta | int | None = None, member_limit: int | None = None, creates_join_request: bool | None = None, **extra_data: Any)

	Use this method to create an additional invite link for a chat. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. The link can be revoked using the method aiogram.methods.revoke_chat_invite_link.RevokeChatInviteLink. Returns the new invite link as aiogram.types.chat_invite_link.ChatInviteLink object.

Source: https://core.telegram.org/bots/api#createchatinvitelink

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
name: str | None

	Invite link name; 0-32 characters

	
expire_date: datetime.datetime | datetime.timedelta | int | None

	Point in time (Unix timestamp) when the link will expire

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
member_limit: int | None

	The maximum number of users that can be members of the chat simultaneously after joining the chat via this invite link; 1-99999

	
creates_join_request: bool | None

	True, if users joining the chat via the link need to be approved by chat administrators. If True, member_limit can’t be specified

Usage

As bot method

result: ChatInviteLink = await bot.create_chat_invite_link(...)

Method as object

Imports:

	from aiogram.methods.create_chat_invite_link import CreateChatInviteLink

	alias: from aiogram.methods import CreateChatInviteLink

With specific bot

result: ChatInviteLink = await bot(CreateChatInviteLink(...))

As reply into Webhook in handler

return CreateChatInviteLink(...)

As shortcut from received object

	aiogram.types.chat.Chat.create_invite_link()

createForumTopic

Returns: ForumTopic

	
class aiogram.methods.create_forum_topic.CreateForumTopic(*, chat_id: int | str, name: str, icon_color: int | None = None, icon_custom_emoji_id: str | None = None, **extra_data: Any)

	Use this method to create a topic in a forum supergroup chat. The bot must be an administrator in the chat for this to work and must have the can_manage_topics administrator rights. Returns information about the created topic as a aiogram.types.forum_topic.ForumTopic object.

Source: https://core.telegram.org/bots/api#createforumtopic

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
name: str

	Topic name, 1-128 characters

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
icon_color: int | None

	Color of the topic icon in RGB format. Currently, must be one of 7322096 (0x6FB9F0), 16766590 (0xFFD67E), 13338331 (0xCB86DB), 9367192 (0x8EEE98), 16749490 (0xFF93B2), or 16478047 (0xFB6F5F)

	
icon_custom_emoji_id: str | None

	Unique identifier of the custom emoji shown as the topic icon. Use aiogram.methods.get_forum_topic_icon_stickers.GetForumTopicIconStickers to get all allowed custom emoji identifiers.

Usage

As bot method

result: ForumTopic = await bot.create_forum_topic(...)

Method as object

Imports:

	from aiogram.methods.create_forum_topic import CreateForumTopic

	alias: from aiogram.methods import CreateForumTopic

With specific bot

result: ForumTopic = await bot(CreateForumTopic(...))

As reply into Webhook in handler

return CreateForumTopic(...)

declineChatJoinRequest

Returns: bool

	
class aiogram.methods.decline_chat_join_request.DeclineChatJoinRequest(*, chat_id: int | str, user_id: int, **extra_data: Any)

	Use this method to decline a chat join request. The bot must be an administrator in the chat for this to work and must have the can_invite_users administrator right. Returns True on success.

Source: https://core.telegram.org/bots/api#declinechatjoinrequest

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
user_id: int

	Unique identifier of the target user

Usage

As bot method

result: bool = await bot.decline_chat_join_request(...)

Method as object

Imports:

	from aiogram.methods.decline_chat_join_request import DeclineChatJoinRequest

	alias: from aiogram.methods import DeclineChatJoinRequest

With specific bot

result: bool = await bot(DeclineChatJoinRequest(...))

As reply into Webhook in handler

return DeclineChatJoinRequest(...)

As shortcut from received object

	aiogram.types.chat_join_request.ChatJoinRequest.decline()

deleteChatPhoto

Returns: bool

	
class aiogram.methods.delete_chat_photo.DeleteChatPhoto(*, chat_id: int | str, **extra_data: Any)

	Use this method to delete a chat photo. Photos can’t be changed for private chats. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#deletechatphoto

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: bool = await bot.delete_chat_photo(...)

Method as object

Imports:

	from aiogram.methods.delete_chat_photo import DeleteChatPhoto

	alias: from aiogram.methods import DeleteChatPhoto

With specific bot

result: bool = await bot(DeleteChatPhoto(...))

As reply into Webhook in handler

return DeleteChatPhoto(...)

As shortcut from received object

	aiogram.types.chat.Chat.delete_photo()

deleteChatStickerSet

Returns: bool

	
class aiogram.methods.delete_chat_sticker_set.DeleteChatStickerSet(*, chat_id: int | str, **extra_data: Any)

	Use this method to delete a group sticker set from a supergroup. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Use the field can_set_sticker_set optionally returned in aiogram.methods.get_chat.GetChat requests to check if the bot can use this method. Returns True on success.

Source: https://core.telegram.org/bots/api#deletechatstickerset

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: bool = await bot.delete_chat_sticker_set(...)

Method as object

Imports:

	from aiogram.methods.delete_chat_sticker_set import DeleteChatStickerSet

	alias: from aiogram.methods import DeleteChatStickerSet

With specific bot

result: bool = await bot(DeleteChatStickerSet(...))

As reply into Webhook in handler

return DeleteChatStickerSet(...)

As shortcut from received object

	aiogram.types.chat.Chat.delete_sticker_set()

deleteForumTopic

Returns: bool

	
class aiogram.methods.delete_forum_topic.DeleteForumTopic(*, chat_id: int | str, message_thread_id: int, **extra_data: Any)

	Use this method to delete a forum topic along with all its messages in a forum supergroup chat. The bot must be an administrator in the chat for this to work and must have the can_delete_messages administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#deleteforumtopic

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
message_thread_id: int

	Unique identifier for the target message thread of the forum topic

Usage

As bot method

result: bool = await bot.delete_forum_topic(...)

Method as object

Imports:

	from aiogram.methods.delete_forum_topic import DeleteForumTopic

	alias: from aiogram.methods import DeleteForumTopic

With specific bot

result: bool = await bot(DeleteForumTopic(...))

As reply into Webhook in handler

return DeleteForumTopic(...)

deleteMyCommands

Returns: bool

	
class aiogram.methods.delete_my_commands.DeleteMyCommands(*, scope: BotCommandScopeDefault | BotCommandScopeAllPrivateChats | BotCommandScopeAllGroupChats | BotCommandScopeAllChatAdministrators | BotCommandScopeChat | BotCommandScopeChatAdministrators | BotCommandScopeChatMember | None = None, language_code: str | None = None, **extra_data: Any)

	Use this method to delete the list of the bot’s commands for the given scope and user language. After deletion, higher level commands [https://core.telegram.org/bots/api#determining-list-of-commands] will be shown to affected users. Returns True on success.

Source: https://core.telegram.org/bots/api#deletemycommands

	
scope: BotCommandScopeDefault | BotCommandScopeAllPrivateChats | BotCommandScopeAllGroupChats | BotCommandScopeAllChatAdministrators | BotCommandScopeChat | BotCommandScopeChatAdministrators | BotCommandScopeChatMember | None

	A JSON-serialized object, describing scope of users for which the commands are relevant. Defaults to aiogram.types.bot_command_scope_default.BotCommandScopeDefault.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
language_code: str | None

	A two-letter ISO 639-1 language code. If empty, commands will be applied to all users from the given scope, for whose language there are no dedicated commands

Usage

As bot method

result: bool = await bot.delete_my_commands(...)

Method as object

Imports:

	from aiogram.methods.delete_my_commands import DeleteMyCommands

	alias: from aiogram.methods import DeleteMyCommands

With specific bot

result: bool = await bot(DeleteMyCommands(...))

As reply into Webhook in handler

return DeleteMyCommands(...)

editChatInviteLink

Returns: ChatInviteLink

	
class aiogram.methods.edit_chat_invite_link.EditChatInviteLink(*, chat_id: int | str, invite_link: str, name: str | None = None, expire_date: datetime | timedelta | int | None = None, member_limit: int | None = None, creates_join_request: bool | None = None, **extra_data: Any)

	Use this method to edit a non-primary invite link created by the bot. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns the edited invite link as a aiogram.types.chat_invite_link.ChatInviteLink object.

Source: https://core.telegram.org/bots/api#editchatinvitelink

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
invite_link: str

	The invite link to edit

	
name: str | None

	Invite link name; 0-32 characters

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
expire_date: datetime.datetime | datetime.timedelta | int | None

	Point in time (Unix timestamp) when the link will expire

	
member_limit: int | None

	The maximum number of users that can be members of the chat simultaneously after joining the chat via this invite link; 1-99999

	
creates_join_request: bool | None

	True, if users joining the chat via the link need to be approved by chat administrators. If True, member_limit can’t be specified

Usage

As bot method

result: ChatInviteLink = await bot.edit_chat_invite_link(...)

Method as object

Imports:

	from aiogram.methods.edit_chat_invite_link import EditChatInviteLink

	alias: from aiogram.methods import EditChatInviteLink

With specific bot

result: ChatInviteLink = await bot(EditChatInviteLink(...))

As reply into Webhook in handler

return EditChatInviteLink(...)

As shortcut from received object

	aiogram.types.chat.Chat.edit_invite_link()

editForumTopic

Returns: bool

	
class aiogram.methods.edit_forum_topic.EditForumTopic(*, chat_id: int | str, message_thread_id: int, name: str | None = None, icon_custom_emoji_id: str | None = None, **extra_data: Any)

	Use this method to edit name and icon of a topic in a forum supergroup chat. The bot must be an administrator in the chat for this to work and must have can_manage_topics administrator rights, unless it is the creator of the topic. Returns True on success.

Source: https://core.telegram.org/bots/api#editforumtopic

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
message_thread_id: int

	Unique identifier for the target message thread of the forum topic

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
name: str | None

	New topic name, 0-128 characters. If not specified or empty, the current name of the topic will be kept

	
icon_custom_emoji_id: str | None

	New unique identifier of the custom emoji shown as the topic icon. Use aiogram.methods.get_forum_topic_icon_stickers.GetForumTopicIconStickers to get all allowed custom emoji identifiers. Pass an empty string to remove the icon. If not specified, the current icon will be kept

Usage

As bot method

result: bool = await bot.edit_forum_topic(...)

Method as object

Imports:

	from aiogram.methods.edit_forum_topic import EditForumTopic

	alias: from aiogram.methods import EditForumTopic

With specific bot

result: bool = await bot(EditForumTopic(...))

As reply into Webhook in handler

return EditForumTopic(...)

editGeneralForumTopic

Returns: bool

	
class aiogram.methods.edit_general_forum_topic.EditGeneralForumTopic(*, chat_id: int | str, name: str, **extra_data: Any)

	Use this method to edit the name of the ‘General’ topic in a forum supergroup chat. The bot must be an administrator in the chat for this to work and must have can_manage_topics administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#editgeneralforumtopic

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
name: str

	New topic name, 1-128 characters

Usage

As bot method

result: bool = await bot.edit_general_forum_topic(...)

Method as object

Imports:

	from aiogram.methods.edit_general_forum_topic import EditGeneralForumTopic

	alias: from aiogram.methods import EditGeneralForumTopic

With specific bot

result: bool = await bot(EditGeneralForumTopic(...))

As reply into Webhook in handler

return EditGeneralForumTopic(...)

exportChatInviteLink

Returns: str

	
class aiogram.methods.export_chat_invite_link.ExportChatInviteLink(*, chat_id: int | str, **extra_data: Any)

	Use this method to generate a new primary invite link for a chat; any previously generated primary link is revoked. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns the new invite link as String on success.

Note: Each administrator in a chat generates their own invite links. Bots can’t use invite links generated by other administrators. If you want your bot to work with invite links, it will need to generate its own link using aiogram.methods.export_chat_invite_link.ExportChatInviteLink or by calling the aiogram.methods.get_chat.GetChat method. If your bot needs to generate a new primary invite link replacing its previous one, use aiogram.methods.export_chat_invite_link.ExportChatInviteLink again.

Source: https://core.telegram.org/bots/api#exportchatinvitelink

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: str = await bot.export_chat_invite_link(...)

Method as object

Imports:

	from aiogram.methods.export_chat_invite_link import ExportChatInviteLink

	alias: from aiogram.methods import ExportChatInviteLink

With specific bot

result: str = await bot(ExportChatInviteLink(...))

As reply into Webhook in handler

return ExportChatInviteLink(...)

As shortcut from received object

	aiogram.types.chat.Chat.export_invite_link()

forwardMessage

Returns: Message

	
class aiogram.methods.forward_message.ForwardMessage(*, chat_id: int | str, from_chat_id: int | str, message_id: int, message_thread_id: int | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, **extra_data: ~typing.Any)

	Use this method to forward messages of any kind. Service messages and messages with protected content can’t be forwarded. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#forwardmessage

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
from_chat_id: int | str

	Unique identifier for the chat where the original message was sent (or channel username in the format @channelusername)

	
message_id: int

	Message identifier in the chat specified in from_chat_id

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | Default | None

	Protects the contents of the forwarded message from forwarding and saving

Usage

As bot method

result: Message = await bot.forward_message(...)

Method as object

Imports:

	from aiogram.methods.forward_message import ForwardMessage

	alias: from aiogram.methods import ForwardMessage

With specific bot

result: Message = await bot(ForwardMessage(...))

As reply into Webhook in handler

return ForwardMessage(...)

As shortcut from received object

	aiogram.types.message.Message.forward()

forwardMessages

Returns: List[MessageId]

	
class aiogram.methods.forward_messages.ForwardMessages(*, chat_id: int | str, from_chat_id: int | str, message_ids: List[int], message_thread_id: int | None = None, disable_notification: bool | None = None, protect_content: bool | None = None, **extra_data: Any)

	Use this method to forward multiple messages of any kind. If some of the specified messages can’t be found or forwarded, they are skipped. Service messages and messages with protected content can’t be forwarded. Album grouping is kept for forwarded messages. On success, an array of aiogram.types.message_id.MessageId of the sent messages is returned.

Source: https://core.telegram.org/bots/api#forwardmessages

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
from_chat_id: int | str

	Unique identifier for the chat where the original messages were sent (or channel username in the format @channelusername)

	
message_ids: List[int]

	A JSON-serialized list of 1-100 identifiers of messages in the chat from_chat_id to forward. The identifiers must be specified in a strictly increasing order.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
disable_notification: bool | None

	Sends the messages silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | None

	Protects the contents of the forwarded messages from forwarding and saving

Usage

As bot method

result: List[MessageId] = await bot.forward_messages(...)

Method as object

Imports:

	from aiogram.methods.forward_messages import ForwardMessages

	alias: from aiogram.methods import ForwardMessages

With specific bot

result: List[MessageId] = await bot(ForwardMessages(...))

As reply into Webhook in handler

return ForwardMessages(...)

getBusinessConnection

Returns: BusinessConnection

	
class aiogram.methods.get_business_connection.GetBusinessConnection(*, business_connection_id: str, **extra_data: Any)

	Use this method to get information about the connection of the bot with a business account. Returns a aiogram.types.business_connection.BusinessConnection object on success.

Source: https://core.telegram.org/bots/api#getbusinessconnection

	
business_connection_id: str

	Unique identifier of the business connection

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: BusinessConnection = await bot.get_business_connection(...)

Method as object

Imports:

	from aiogram.methods.get_business_connection import GetBusinessConnection

	alias: from aiogram.methods import GetBusinessConnection

With specific bot

result: BusinessConnection = await bot(GetBusinessConnection(...))

getChat

Returns: ChatFullInfo

	
class aiogram.methods.get_chat.GetChat(*, chat_id: int | str, **extra_data: Any)

	Use this method to get up-to-date information about the chat. Returns a aiogram.types.chat_full_info.ChatFullInfo object on success.

Source: https://core.telegram.org/bots/api#getchat

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup or channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: ChatFullInfo = await bot.get_chat(...)

Method as object

Imports:

	from aiogram.methods.get_chat import GetChat

	alias: from aiogram.methods import GetChat

With specific bot

result: ChatFullInfo = await bot(GetChat(...))

getChatAdministrators

Returns: List[Union[ChatMemberOwner, ChatMemberAdministrator, ChatMemberMember, ChatMemberRestricted, ChatMemberLeft, ChatMemberBanned]]

	
class aiogram.methods.get_chat_administrators.GetChatAdministrators(*, chat_id: int | str, **extra_data: Any)

	Use this method to get a list of administrators in a chat, which aren’t bots. Returns an Array of aiogram.types.chat_member.ChatMember objects.

Source: https://core.telegram.org/bots/api#getchatadministrators

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup or channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: List[Union[ChatMemberOwner, ChatMemberAdministrator, ChatMemberMember, ChatMemberRestricted, ChatMemberLeft, ChatMemberBanned]] = await bot.get_chat_administrators(...)

Method as object

Imports:

	from aiogram.methods.get_chat_administrators import GetChatAdministrators

	alias: from aiogram.methods import GetChatAdministrators

With specific bot

result: List[Union[ChatMemberOwner, ChatMemberAdministrator, ChatMemberMember, ChatMemberRestricted, ChatMemberLeft, ChatMemberBanned]] = await bot(GetChatAdministrators(...))

As shortcut from received object

	aiogram.types.chat.Chat.get_administrators()

getChatMember

Returns: Union[ChatMemberOwner, ChatMemberAdministrator, ChatMemberMember, ChatMemberRestricted, ChatMemberLeft, ChatMemberBanned]

	
class aiogram.methods.get_chat_member.GetChatMember(*, chat_id: int | str, user_id: int, **extra_data: Any)

	Use this method to get information about a member of a chat. The method is only guaranteed to work for other users if the bot is an administrator in the chat. Returns a aiogram.types.chat_member.ChatMember object on success.

Source: https://core.telegram.org/bots/api#getchatmember

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup or channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
user_id: int

	Unique identifier of the target user

Usage

As bot method

result: Union[ChatMemberOwner, ChatMemberAdministrator, ChatMemberMember, ChatMemberRestricted, ChatMemberLeft, ChatMemberBanned] = await bot.get_chat_member(...)

Method as object

Imports:

	from aiogram.methods.get_chat_member import GetChatMember

	alias: from aiogram.methods import GetChatMember

With specific bot

result: Union[ChatMemberOwner, ChatMemberAdministrator, ChatMemberMember, ChatMemberRestricted, ChatMemberLeft, ChatMemberBanned] = await bot(GetChatMember(...))

As shortcut from received object

	aiogram.types.chat.Chat.get_member()

getChatMemberCount

Returns: int

	
class aiogram.methods.get_chat_member_count.GetChatMemberCount(*, chat_id: int | str, **extra_data: Any)

	Use this method to get the number of members in a chat. Returns Int on success.

Source: https://core.telegram.org/bots/api#getchatmembercount

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup or channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: int = await bot.get_chat_member_count(...)

Method as object

Imports:

	from aiogram.methods.get_chat_member_count import GetChatMemberCount

	alias: from aiogram.methods import GetChatMemberCount

With specific bot

result: int = await bot(GetChatMemberCount(...))

As shortcut from received object

	aiogram.types.chat.Chat.get_member_count()

getChatMenuButton

Returns: Union[MenuButtonDefault, MenuButtonWebApp, MenuButtonCommands]

	
class aiogram.methods.get_chat_menu_button.GetChatMenuButton(*, chat_id: int | None = None, **extra_data: Any)

	Use this method to get the current value of the bot’s menu button in a private chat, or the default menu button. Returns aiogram.types.menu_button.MenuButton on success.

Source: https://core.telegram.org/bots/api#getchatmenubutton

	
chat_id: int | None

	Unique identifier for the target private chat. If not specified, default bot’s menu button will be returned

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: Union[MenuButtonDefault, MenuButtonWebApp, MenuButtonCommands] = await bot.get_chat_menu_button(...)

Method as object

Imports:

	from aiogram.methods.get_chat_menu_button import GetChatMenuButton

	alias: from aiogram.methods import GetChatMenuButton

With specific bot

result: Union[MenuButtonDefault, MenuButtonWebApp, MenuButtonCommands] = await bot(GetChatMenuButton(...))

getFile

Returns: File

	
class aiogram.methods.get_file.GetFile(*, file_id: str, **extra_data: Any)

	Use this method to get basic information about a file and prepare it for downloading. For the moment, bots can download files of up to 20MB in size. On success, a aiogram.types.file.File object is returned. The file can then be downloaded via the link https://api.telegram.org/file/bot<token>/<file_path>, where <file_path> is taken from the response. It is guaranteed that the link will be valid for at least 1 hour. When the link expires, a new one can be requested by calling aiogram.methods.get_file.GetFile again.
Note: This function may not preserve the original file name and MIME type. You should save the file’s MIME type and name (if available) when the File object is received.

Source: https://core.telegram.org/bots/api#getfile

	
file_id: str

	File identifier to get information about

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: File = await bot.get_file(...)

Method as object

Imports:

	from aiogram.methods.get_file import GetFile

	alias: from aiogram.methods import GetFile

With specific bot

result: File = await bot(GetFile(...))

getForumTopicIconStickers

Returns: List[Sticker]

	
class aiogram.methods.get_forum_topic_icon_stickers.GetForumTopicIconStickers(**extra_data: Any)

	Use this method to get custom emoji stickers, which can be used as a forum topic icon by any user. Requires no parameters. Returns an Array of aiogram.types.sticker.Sticker objects.

Source: https://core.telegram.org/bots/api#getforumtopiciconstickers

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: List[Sticker] = await bot.get_forum_topic_icon_stickers(...)

Method as object

Imports:

	from aiogram.methods.get_forum_topic_icon_stickers import GetForumTopicIconStickers

	alias: from aiogram.methods import GetForumTopicIconStickers

With specific bot

result: List[Sticker] = await bot(GetForumTopicIconStickers(...))

getMe

Returns: User

	
class aiogram.methods.get_me.GetMe(**extra_data: Any)

	A simple method for testing your bot’s authentication token. Requires no parameters. Returns basic information about the bot in form of a aiogram.types.user.User object.

Source: https://core.telegram.org/bots/api#getme

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: User = await bot.get_me(...)

Method as object

Imports:

	from aiogram.methods.get_me import GetMe

	alias: from aiogram.methods import GetMe

With specific bot

result: User = await bot(GetMe(...))

getMyCommands

Returns: List[BotCommand]

	
class aiogram.methods.get_my_commands.GetMyCommands(*, scope: BotCommandScopeDefault | BotCommandScopeAllPrivateChats | BotCommandScopeAllGroupChats | BotCommandScopeAllChatAdministrators | BotCommandScopeChat | BotCommandScopeChatAdministrators | BotCommandScopeChatMember | None = None, language_code: str | None = None, **extra_data: Any)

	Use this method to get the current list of the bot’s commands for the given scope and user language. Returns an Array of aiogram.types.bot_command.BotCommand objects. If commands aren’t set, an empty list is returned.

Source: https://core.telegram.org/bots/api#getmycommands

	
scope: BotCommandScopeDefault | BotCommandScopeAllPrivateChats | BotCommandScopeAllGroupChats | BotCommandScopeAllChatAdministrators | BotCommandScopeChat | BotCommandScopeChatAdministrators | BotCommandScopeChatMember | None

	A JSON-serialized object, describing scope of users. Defaults to aiogram.types.bot_command_scope_default.BotCommandScopeDefault.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
language_code: str | None

	A two-letter ISO 639-1 language code or an empty string

Usage

As bot method

result: List[BotCommand] = await bot.get_my_commands(...)

Method as object

Imports:

	from aiogram.methods.get_my_commands import GetMyCommands

	alias: from aiogram.methods import GetMyCommands

With specific bot

result: List[BotCommand] = await bot(GetMyCommands(...))

getMyDefaultAdministratorRights

Returns: ChatAdministratorRights

	
class aiogram.methods.get_my_default_administrator_rights.GetMyDefaultAdministratorRights(*, for_channels: bool | None = None, **extra_data: Any)

	Use this method to get the current default administrator rights of the bot. Returns aiogram.types.chat_administrator_rights.ChatAdministratorRights on success.

Source: https://core.telegram.org/bots/api#getmydefaultadministratorrights

	
for_channels: bool | None

	Pass True to get default administrator rights of the bot in channels. Otherwise, default administrator rights of the bot for groups and supergroups will be returned.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: ChatAdministratorRights = await bot.get_my_default_administrator_rights(...)

Method as object

Imports:

	from aiogram.methods.get_my_default_administrator_rights import GetMyDefaultAdministratorRights

	alias: from aiogram.methods import GetMyDefaultAdministratorRights

With specific bot

result: ChatAdministratorRights = await bot(GetMyDefaultAdministratorRights(...))

getMyDescription

Returns: BotDescription

	
class aiogram.methods.get_my_description.GetMyDescription(*, language_code: str | None = None, **extra_data: Any)

	Use this method to get the current bot description for the given user language. Returns aiogram.types.bot_description.BotDescription on success.

Source: https://core.telegram.org/bots/api#getmydescription

	
language_code: str | None

	A two-letter ISO 639-1 language code or an empty string

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: BotDescription = await bot.get_my_description(...)

Method as object

Imports:

	from aiogram.methods.get_my_description import GetMyDescription

	alias: from aiogram.methods import GetMyDescription

With specific bot

result: BotDescription = await bot(GetMyDescription(...))

getMyName

Returns: BotName

	
class aiogram.methods.get_my_name.GetMyName(*, language_code: str | None = None, **extra_data: Any)

	Use this method to get the current bot name for the given user language. Returns aiogram.types.bot_name.BotName on success.

Source: https://core.telegram.org/bots/api#getmyname

	
language_code: str | None

	A two-letter ISO 639-1 language code or an empty string

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: BotName = await bot.get_my_name(...)

Method as object

Imports:

	from aiogram.methods.get_my_name import GetMyName

	alias: from aiogram.methods import GetMyName

With specific bot

result: BotName = await bot(GetMyName(...))

getMyShortDescription

Returns: BotShortDescription

	
class aiogram.methods.get_my_short_description.GetMyShortDescription(*, language_code: str | None = None, **extra_data: Any)

	Use this method to get the current bot short description for the given user language. Returns aiogram.types.bot_short_description.BotShortDescription on success.

Source: https://core.telegram.org/bots/api#getmyshortdescription

	
language_code: str | None

	A two-letter ISO 639-1 language code or an empty string

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: BotShortDescription = await bot.get_my_short_description(...)

Method as object

Imports:

	from aiogram.methods.get_my_short_description import GetMyShortDescription

	alias: from aiogram.methods import GetMyShortDescription

With specific bot

result: BotShortDescription = await bot(GetMyShortDescription(...))

getUserChatBoosts

Returns: UserChatBoosts

	
class aiogram.methods.get_user_chat_boosts.GetUserChatBoosts(*, chat_id: int | str, user_id: int, **extra_data: Any)

	Use this method to get the list of boosts added to a chat by a user. Requires administrator rights in the chat. Returns a aiogram.types.user_chat_boosts.UserChatBoosts object.

Source: https://core.telegram.org/bots/api#getuserchatboosts

	
chat_id: int | str

	Unique identifier for the chat or username of the channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
user_id: int

	Unique identifier of the target user

Usage

As bot method

result: UserChatBoosts = await bot.get_user_chat_boosts(...)

Method as object

Imports:

	from aiogram.methods.get_user_chat_boosts import GetUserChatBoosts

	alias: from aiogram.methods import GetUserChatBoosts

With specific bot

result: UserChatBoosts = await bot(GetUserChatBoosts(...))

getUserProfilePhotos

Returns: UserProfilePhotos

	
class aiogram.methods.get_user_profile_photos.GetUserProfilePhotos(*, user_id: int, offset: int | None = None, limit: int | None = None, **extra_data: Any)

	Use this method to get a list of profile pictures for a user. Returns a aiogram.types.user_profile_photos.UserProfilePhotos object.

Source: https://core.telegram.org/bots/api#getuserprofilephotos

	
user_id: int

	Unique identifier of the target user

	
offset: int | None

	Sequential number of the first photo to be returned. By default, all photos are returned.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
limit: int | None

	Limits the number of photos to be retrieved. Values between 1-100 are accepted. Defaults to 100.

Usage

As bot method

result: UserProfilePhotos = await bot.get_user_profile_photos(...)

Method as object

Imports:

	from aiogram.methods.get_user_profile_photos import GetUserProfilePhotos

	alias: from aiogram.methods import GetUserProfilePhotos

With specific bot

result: UserProfilePhotos = await bot(GetUserProfilePhotos(...))

As shortcut from received object

	aiogram.types.user.User.get_profile_photos()

hideGeneralForumTopic

Returns: bool

	
class aiogram.methods.hide_general_forum_topic.HideGeneralForumTopic(*, chat_id: int | str, **extra_data: Any)

	Use this method to hide the ‘General’ topic in a forum supergroup chat. The bot must be an administrator in the chat for this to work and must have the can_manage_topics administrator rights. The topic will be automatically closed if it was open. Returns True on success.

Source: https://core.telegram.org/bots/api#hidegeneralforumtopic

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: bool = await bot.hide_general_forum_topic(...)

Method as object

Imports:

	from aiogram.methods.hide_general_forum_topic import HideGeneralForumTopic

	alias: from aiogram.methods import HideGeneralForumTopic

With specific bot

result: bool = await bot(HideGeneralForumTopic(...))

As reply into Webhook in handler

return HideGeneralForumTopic(...)

leaveChat

Returns: bool

	
class aiogram.methods.leave_chat.LeaveChat(*, chat_id: int | str, **extra_data: Any)

	Use this method for your bot to leave a group, supergroup or channel. Returns True on success.

Source: https://core.telegram.org/bots/api#leavechat

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup or channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: bool = await bot.leave_chat(...)

Method as object

Imports:

	from aiogram.methods.leave_chat import LeaveChat

	alias: from aiogram.methods import LeaveChat

With specific bot

result: bool = await bot(LeaveChat(...))

As reply into Webhook in handler

return LeaveChat(...)

As shortcut from received object

	aiogram.types.chat.Chat.leave()

logOut

Returns: bool

	
class aiogram.methods.log_out.LogOut(**extra_data: Any)

	Use this method to log out from the cloud Bot API server before launching the bot locally. You must log out the bot before running it locally, otherwise there is no guarantee that the bot will receive updates. After a successful call, you can immediately log in on a local server, but will not be able to log in back to the cloud Bot API server for 10 minutes. Returns True on success. Requires no parameters.

Source: https://core.telegram.org/bots/api#logout

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: bool = await bot.log_out(...)

Method as object

Imports:

	from aiogram.methods.log_out import LogOut

	alias: from aiogram.methods import LogOut

With specific bot

result: bool = await bot(LogOut(...))

As reply into Webhook in handler

return LogOut(...)

pinChatMessage

Returns: bool

	
class aiogram.methods.pin_chat_message.PinChatMessage(*, chat_id: int | str, message_id: int, disable_notification: bool | None = None, **extra_data: Any)

	Use this method to add a message to the list of pinned messages in a chat. If the chat is not a private chat, the bot must be an administrator in the chat for this to work and must have the ‘can_pin_messages’ administrator right in a supergroup or ‘can_edit_messages’ administrator right in a channel. Returns True on success.

Source: https://core.telegram.org/bots/api#pinchatmessage

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
message_id: int

	Identifier of a message to pin

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
disable_notification: bool | None

	Pass True if it is not necessary to send a notification to all chat members about the new pinned message. Notifications are always disabled in channels and private chats.

Usage

As bot method

result: bool = await bot.pin_chat_message(...)

Method as object

Imports:

	from aiogram.methods.pin_chat_message import PinChatMessage

	alias: from aiogram.methods import PinChatMessage

With specific bot

result: bool = await bot(PinChatMessage(...))

As reply into Webhook in handler

return PinChatMessage(...)

As shortcut from received object

	aiogram.types.chat.Chat.pin_message()

	aiogram.types.message.Message.pin()

promoteChatMember

Returns: bool

	
class aiogram.methods.promote_chat_member.PromoteChatMember(*, chat_id: int | str, user_id: int, is_anonymous: bool | None = None, can_manage_chat: bool | None = None, can_delete_messages: bool | None = None, can_manage_video_chats: bool | None = None, can_restrict_members: bool | None = None, can_promote_members: bool | None = None, can_change_info: bool | None = None, can_invite_users: bool | None = None, can_post_stories: bool | None = None, can_edit_stories: bool | None = None, can_delete_stories: bool | None = None, can_post_messages: bool | None = None, can_edit_messages: bool | None = None, can_pin_messages: bool | None = None, can_manage_topics: bool | None = None, **extra_data: Any)

	Use this method to promote or demote a user in a supergroup or a channel. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Pass False for all boolean parameters to demote a user. Returns True on success.

Source: https://core.telegram.org/bots/api#promotechatmember

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
user_id: int

	Unique identifier of the target user

	
is_anonymous: bool | None

	Pass True if the administrator’s presence in the chat is hidden

	
can_manage_chat: bool | None

	Pass True if the administrator can access the chat event log, get boost list, see hidden supergroup and channel members, report spam messages and ignore slow mode. Implied by any other administrator privilege.

	
can_delete_messages: bool | None

	Pass True if the administrator can delete messages of other users

	
can_manage_video_chats: bool | None

	Pass True if the administrator can manage video chats

	
can_restrict_members: bool | None

	Pass True if the administrator can restrict, ban or unban chat members, or access supergroup statistics

	
can_promote_members: bool | None

	Pass True if the administrator can add new administrators with a subset of their own privileges or demote administrators that they have promoted, directly or indirectly (promoted by administrators that were appointed by him)

	
can_change_info: bool | None

	Pass True if the administrator can change chat title, photo and other settings

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
can_invite_users: bool | None

	Pass True if the administrator can invite new users to the chat

	
can_post_stories: bool | None

	Pass True if the administrator can post stories to the chat

	
can_edit_stories: bool | None

	Pass True if the administrator can edit stories posted by other users, post stories to the chat page, pin chat stories, and access the chat’s story archive

	
can_delete_stories: bool | None

	Pass True if the administrator can delete stories posted by other users

	
can_post_messages: bool | None

	Pass True if the administrator can post messages in the channel, or access channel statistics; for channels only

	
can_edit_messages: bool | None

	Pass True if the administrator can edit messages of other users and can pin messages; for channels only

	
can_pin_messages: bool | None

	Pass True if the administrator can pin messages; for supergroups only

	
can_manage_topics: bool | None

	Pass True if the user is allowed to create, rename, close, and reopen forum topics; for supergroups only

Usage

As bot method

result: bool = await bot.promote_chat_member(...)

Method as object

Imports:

	from aiogram.methods.promote_chat_member import PromoteChatMember

	alias: from aiogram.methods import PromoteChatMember

With specific bot

result: bool = await bot(PromoteChatMember(...))

As reply into Webhook in handler

return PromoteChatMember(...)

As shortcut from received object

	aiogram.types.chat.Chat.promote()

reopenForumTopic

Returns: bool

	
class aiogram.methods.reopen_forum_topic.ReopenForumTopic(*, chat_id: int | str, message_thread_id: int, **extra_data: Any)

	Use this method to reopen a closed topic in a forum supergroup chat. The bot must be an administrator in the chat for this to work and must have the can_manage_topics administrator rights, unless it is the creator of the topic. Returns True on success.

Source: https://core.telegram.org/bots/api#reopenforumtopic

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
message_thread_id: int

	Unique identifier for the target message thread of the forum topic

Usage

As bot method

result: bool = await bot.reopen_forum_topic(...)

Method as object

Imports:

	from aiogram.methods.reopen_forum_topic import ReopenForumTopic

	alias: from aiogram.methods import ReopenForumTopic

With specific bot

result: bool = await bot(ReopenForumTopic(...))

As reply into Webhook in handler

return ReopenForumTopic(...)

reopenGeneralForumTopic

Returns: bool

	
class aiogram.methods.reopen_general_forum_topic.ReopenGeneralForumTopic(*, chat_id: int | str, **extra_data: Any)

	Use this method to reopen a closed ‘General’ topic in a forum supergroup chat. The bot must be an administrator in the chat for this to work and must have the can_manage_topics administrator rights. The topic will be automatically unhidden if it was hidden. Returns True on success.

Source: https://core.telegram.org/bots/api#reopengeneralforumtopic

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: bool = await bot.reopen_general_forum_topic(...)

Method as object

Imports:

	from aiogram.methods.reopen_general_forum_topic import ReopenGeneralForumTopic

	alias: from aiogram.methods import ReopenGeneralForumTopic

With specific bot

result: bool = await bot(ReopenGeneralForumTopic(...))

As reply into Webhook in handler

return ReopenGeneralForumTopic(...)

restrictChatMember

Returns: bool

	
class aiogram.methods.restrict_chat_member.RestrictChatMember(*, chat_id: int | str, user_id: int, permissions: ChatPermissions, use_independent_chat_permissions: bool | None = None, until_date: datetime | timedelta | int | None = None, **extra_data: Any)

	Use this method to restrict a user in a supergroup. The bot must be an administrator in the supergroup for this to work and must have the appropriate administrator rights. Pass True for all permissions to lift restrictions from a user. Returns True on success.

Source: https://core.telegram.org/bots/api#restrictchatmember

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
user_id: int

	Unique identifier of the target user

	
permissions: ChatPermissions

	A JSON-serialized object for new user permissions

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
use_independent_chat_permissions: bool | None

	Pass True if chat permissions are set independently. Otherwise, the can_send_other_messages and can_add_web_page_previews permissions will imply the can_send_messages, can_send_audios, can_send_documents, can_send_photos, can_send_videos, can_send_video_notes, and can_send_voice_notes permissions; the can_send_polls permission will imply the can_send_messages permission.

	
until_date: datetime.datetime | datetime.timedelta | int | None

	Date when restrictions will be lifted for the user; Unix time. If user is restricted for more than 366 days or less than 30 seconds from the current time, they are considered to be restricted forever

Usage

As bot method

result: bool = await bot.restrict_chat_member(...)

Method as object

Imports:

	from aiogram.methods.restrict_chat_member import RestrictChatMember

	alias: from aiogram.methods import RestrictChatMember

With specific bot

result: bool = await bot(RestrictChatMember(...))

As reply into Webhook in handler

return RestrictChatMember(...)

As shortcut from received object

	aiogram.types.chat.Chat.restrict()

revokeChatInviteLink

Returns: ChatInviteLink

	
class aiogram.methods.revoke_chat_invite_link.RevokeChatInviteLink(*, chat_id: int | str, invite_link: str, **extra_data: Any)

	Use this method to revoke an invite link created by the bot. If the primary link is revoked, a new link is automatically generated. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns the revoked invite link as aiogram.types.chat_invite_link.ChatInviteLink object.

Source: https://core.telegram.org/bots/api#revokechatinvitelink

	
chat_id: int | str

	Unique identifier of the target chat or username of the target channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
invite_link: str

	The invite link to revoke

Usage

As bot method

result: ChatInviteLink = await bot.revoke_chat_invite_link(...)

Method as object

Imports:

	from aiogram.methods.revoke_chat_invite_link import RevokeChatInviteLink

	alias: from aiogram.methods import RevokeChatInviteLink

With specific bot

result: ChatInviteLink = await bot(RevokeChatInviteLink(...))

As reply into Webhook in handler

return RevokeChatInviteLink(...)

As shortcut from received object

	aiogram.types.chat.Chat.revoke_invite_link()

sendAnimation

Returns: Message

	
class aiogram.methods.send_animation.SendAnimation(*, chat_id: int | str, animation: ~aiogram.types.input_file.InputFile | str, business_connection_id: str | None = None, message_thread_id: int | None = None, duration: int | None = None, width: int | None = None, height: int | None = None, thumbnail: ~aiogram.types.input_file.InputFile | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, has_spoiler: bool | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | ~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup | ~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove | ~aiogram.types.force_reply.ForceReply | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to send animation files (GIF or H.264/MPEG-4 AVC video without sound). On success, the sent aiogram.types.message.Message is returned. Bots can currently send animation files of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendanimation

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
animation: InputFile | str

	Animation to send. Pass a file_id as String to send an animation that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get an animation from the Internet, or upload a new animation using multipart/form-data. More information on Sending Files »

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the message will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
duration: int | None

	Duration of sent animation in seconds

	
width: int | None

	Animation width

	
height: int | None

	Animation height

	
thumbnail: InputFile | None

	Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	
caption: str | None

	Animation caption (may also be used when resending animation by file_id), 0-1024 characters after entities parsing

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
parse_mode: str | Default | None

	Mode for parsing entities in the animation caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	
has_spoiler: bool | None

	Pass True if the animation needs to be covered with a spoiler animation

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | ReplyKeyboardMarkup | ReplyKeyboardRemove | ForceReply | None

	Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_animation(...)

Method as object

Imports:

	from aiogram.methods.send_animation import SendAnimation

	alias: from aiogram.methods import SendAnimation

With specific bot

result: Message = await bot(SendAnimation(...))

As reply into Webhook in handler

return SendAnimation(...)

As shortcut from received object

	aiogram.types.message.Message.answer_animation()

	aiogram.types.message.Message.reply_animation()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_animation()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_animation_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer_animation()

sendAudio

Returns: Message

	
class aiogram.methods.send_audio.SendAudio(*, chat_id: int | str, audio: ~aiogram.types.input_file.InputFile | str, business_connection_id: str | None = None, message_thread_id: int | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, duration: int | None = None, performer: str | None = None, title: str | None = None, thumbnail: ~aiogram.types.input_file.InputFile | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | ~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup | ~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove | ~aiogram.types.force_reply.ForceReply | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to send audio files, if you want Telegram clients to display them in the music player. Your audio must be in the .MP3 or .M4A format. On success, the sent aiogram.types.message.Message is returned. Bots can currently send audio files of up to 50 MB in size, this limit may be changed in the future.
For sending voice messages, use the aiogram.methods.send_voice.SendVoice method instead.

Source: https://core.telegram.org/bots/api#sendaudio

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
audio: InputFile | str

	Audio file to send. Pass a file_id as String to send an audio file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get an audio file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the message will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
caption: str | None

	Audio caption, 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Mode for parsing entities in the audio caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	
duration: int | None

	Duration of the audio in seconds

	
performer: str | None

	Performer

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
title: str | None

	Track name

	
thumbnail: InputFile | None

	Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | ReplyKeyboardMarkup | ReplyKeyboardRemove | ForceReply | None

	Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_audio(...)

Method as object

Imports:

	from aiogram.methods.send_audio import SendAudio

	alias: from aiogram.methods import SendAudio

With specific bot

result: Message = await bot(SendAudio(...))

As reply into Webhook in handler

return SendAudio(...)

As shortcut from received object

	aiogram.types.message.Message.answer_audio()

	aiogram.types.message.Message.reply_audio()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_audio()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_audio_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer_audio()

sendChatAction

Returns: bool

	
class aiogram.methods.send_chat_action.SendChatAction(*, chat_id: int | str, action: str, business_connection_id: str | None = None, message_thread_id: int | None = None, **extra_data: Any)

	Use this method when you need to tell the user that something is happening on the bot’s side. The status is set for 5 seconds or less (when a message arrives from your bot, Telegram clients clear its typing status). Returns True on success.

Example: The ImageBot [https://t.me/imagebot] needs some time to process a request and upload the image. Instead of sending a text message along the lines of ‘Retrieving image, please wait…’, the bot may use aiogram.methods.send_chat_action.SendChatAction with action = upload_photo. The user will see a ‘sending photo’ status for the bot.

We only recommend using this method when a response from the bot will take a noticeable amount of time to arrive.

Source: https://core.telegram.org/bots/api#sendchataction

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
action: str

	Type of action to broadcast. Choose one, depending on what the user is about to receive: typing for text messages [https://core.telegram.org/bots/api#sendmessage], upload_photo for photos [https://core.telegram.org/bots/api#sendphoto], record_video or upload_video for videos [https://core.telegram.org/bots/api#sendvideo], record_voice or upload_voice for voice notes [https://core.telegram.org/bots/api#sendvoice], upload_document for general files [https://core.telegram.org/bots/api#senddocument], choose_sticker for stickers [https://core.telegram.org/bots/api#sendsticker], find_location for location data [https://core.telegram.org/bots/api#sendlocation], record_video_note or upload_video_note for video notes [https://core.telegram.org/bots/api#sendvideonote].

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the action will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread; for supergroups only

Usage

As bot method

result: bool = await bot.send_chat_action(...)

Method as object

Imports:

	from aiogram.methods.send_chat_action import SendChatAction

	alias: from aiogram.methods import SendChatAction

With specific bot

result: bool = await bot(SendChatAction(...))

As reply into Webhook in handler

return SendChatAction(...)

As shortcut from received object

	aiogram.types.chat.Chat.do()

sendContact

Returns: Message

	
class aiogram.methods.send_contact.SendContact(*, chat_id: int | str, phone_number: str, first_name: str, business_connection_id: str | None = None, message_thread_id: int | None = None, last_name: str | None = None, vcard: str | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | ~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup | ~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove | ~aiogram.types.force_reply.ForceReply | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to send phone contacts. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendcontact

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
phone_number: str

	Contact’s phone number

	
first_name: str

	Contact’s first name

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the message will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
last_name: str | None

	Contact’s last name

	
vcard: str | None

	Additional data about the contact in the form of a vCard [https://en.wikipedia.org/wiki/VCard], 0-2048 bytes

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | ReplyKeyboardMarkup | ReplyKeyboardRemove | ForceReply | None

	Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_contact(...)

Method as object

Imports:

	from aiogram.methods.send_contact import SendContact

	alias: from aiogram.methods import SendContact

With specific bot

result: Message = await bot(SendContact(...))

As reply into Webhook in handler

return SendContact(...)

As shortcut from received object

	aiogram.types.message.Message.answer_contact()

	aiogram.types.message.Message.reply_contact()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_contact()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_contact_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer_contact()

sendDice

Returns: Message

	
class aiogram.methods.send_dice.SendDice(*, chat_id: int | str, business_connection_id: str | None = None, message_thread_id: int | None = None, emoji: str | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | ~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup | ~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove | ~aiogram.types.force_reply.ForceReply | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to send an animated emoji that will display a random value. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#senddice

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the message will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
emoji: str | None

	Emoji on which the dice throw animation is based. Currently, must be one of ‘🎲’, ‘🎯’, ‘🏀’, ‘⚽’, ‘🎳’, or ‘🎰’. Dice can have values 1-6 for ‘🎲’, ‘🎯’ and ‘🎳’, values 1-5 for ‘🏀’ and ‘⚽’, and values 1-64 for ‘🎰’. Defaults to ‘🎲’

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | ReplyKeyboardMarkup | ReplyKeyboardRemove | ForceReply | None

	Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_dice(...)

Method as object

Imports:

	from aiogram.methods.send_dice import SendDice

	alias: from aiogram.methods import SendDice

With specific bot

result: Message = await bot(SendDice(...))

As reply into Webhook in handler

return SendDice(...)

As shortcut from received object

	aiogram.types.message.Message.answer_dice()

	aiogram.types.message.Message.reply_dice()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_dice()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_dice_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer_dice()

sendDocument

Returns: Message

	
class aiogram.methods.send_document.SendDocument(*, chat_id: int | str, document: ~aiogram.types.input_file.InputFile | str, business_connection_id: str | None = None, message_thread_id: int | None = None, thumbnail: ~aiogram.types.input_file.InputFile | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, disable_content_type_detection: bool | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | ~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup | ~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove | ~aiogram.types.force_reply.ForceReply | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to send general files. On success, the sent aiogram.types.message.Message is returned. Bots can currently send files of any type of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#senddocument

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
document: InputFile | str

	File to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the message will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
thumbnail: InputFile | None

	Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	
caption: str | None

	Document caption (may also be used when resending documents by file_id), 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Mode for parsing entities in the document caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
disable_content_type_detection: bool | None

	Disables automatic server-side content type detection for files uploaded using multipart/form-data

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | ReplyKeyboardMarkup | ReplyKeyboardRemove | ForceReply | None

	Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_document(...)

Method as object

Imports:

	from aiogram.methods.send_document import SendDocument

	alias: from aiogram.methods import SendDocument

With specific bot

result: Message = await bot(SendDocument(...))

As reply into Webhook in handler

return SendDocument(...)

As shortcut from received object

	aiogram.types.message.Message.answer_document()

	aiogram.types.message.Message.reply_document()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_document()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_document_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer_document()

sendLocation

Returns: Message

	
class aiogram.methods.send_location.SendLocation(*, chat_id: int | str, latitude: float, longitude: float, business_connection_id: str | None = None, message_thread_id: int | None = None, horizontal_accuracy: float | None = None, live_period: int | None = None, heading: int | None = None, proximity_alert_radius: int | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | ~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup | ~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove | ~aiogram.types.force_reply.ForceReply | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to send point on the map. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendlocation

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
latitude: float

	Latitude of the location

	
longitude: float

	Longitude of the location

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the message will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
horizontal_accuracy: float | None

	The radius of uncertainty for the location, measured in meters; 0-1500

	
live_period: int | None

	Period in seconds during which the location will be updated (see Live Locations [https://telegram.org/blog/live-locations], should be between 60 and 86400, or 0x7FFFFFFF for live locations that can be edited indefinitely.

	
heading: int | None

	For live locations, a direction in which the user is moving, in degrees. Must be between 1 and 360 if specified.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
proximity_alert_radius: int | None

	For live locations, a maximum distance for proximity alerts about approaching another chat member, in meters. Must be between 1 and 100000 if specified.

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | ReplyKeyboardMarkup | ReplyKeyboardRemove | ForceReply | None

	Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_location(...)

Method as object

Imports:

	from aiogram.methods.send_location import SendLocation

	alias: from aiogram.methods import SendLocation

With specific bot

result: Message = await bot(SendLocation(...))

As reply into Webhook in handler

return SendLocation(...)

As shortcut from received object

	aiogram.types.message.Message.answer_location()

	aiogram.types.message.Message.reply_location()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_location()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_location_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer_location()

sendMediaGroup

Returns: List[Message]

	
class aiogram.methods.send_media_group.SendMediaGroup(*, chat_id: int | str, media: ~typing.List[~aiogram.types.input_media_audio.InputMediaAudio | ~aiogram.types.input_media_document.InputMediaDocument | ~aiogram.types.input_media_photo.InputMediaPhoto | ~aiogram.types.input_media_video.InputMediaVideo], business_connection_id: str | None = None, message_thread_id: int | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to send a group of photos, videos, documents or audios as an album. Documents and audio files can be only grouped in an album with messages of the same type. On success, an array of Messages [https://core.telegram.org/bots/api#message] that were sent is returned.

Source: https://core.telegram.org/bots/api#sendmediagroup

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
media: List[InputMediaAudio | InputMediaDocument | InputMediaPhoto | InputMediaVideo]

	A JSON-serialized array describing messages to be sent, must include 2-10 items

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the message will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
disable_notification: bool | None

	Sends messages silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
protect_content: bool | Default | None

	Protects the contents of the sent messages from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the messages are a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: List[Message] = await bot.send_media_group(...)

Method as object

Imports:

	from aiogram.methods.send_media_group import SendMediaGroup

	alias: from aiogram.methods import SendMediaGroup

With specific bot

result: List[Message] = await bot(SendMediaGroup(...))

As reply into Webhook in handler

return SendMediaGroup(...)

As shortcut from received object

	aiogram.types.message.Message.answer_media_group()

	aiogram.types.message.Message.reply_media_group()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_media_group()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_media_group_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer_media_group()

sendMessage

Returns: Message

	
class aiogram.methods.send_message.SendMessage(*, chat_id: int | str, text: str, business_connection_id: str | None = None, message_thread_id: int | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, link_preview_options: ~aiogram.types.link_preview_options.LinkPreviewOptions | ~aiogram.client.default.Default | None = <Default('link_preview')>, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | ~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup | ~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove | ~aiogram.types.force_reply.ForceReply | None = None, allow_sending_without_reply: bool | None = None, disable_web_page_preview: bool | ~aiogram.client.default.Default | None = <Default('link_preview_is_disabled')>, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to send text messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendmessage

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
text: str

	Text of the message to be sent, 1-4096 characters after entities parsing

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the message will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
parse_mode: str | Default | None

	Mode for parsing entities in the message text. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
entities: List[MessageEntity] | None

	A JSON-serialized list of special entities that appear in message text, which can be specified instead of parse_mode

	
link_preview_options: LinkPreviewOptions | Default | None

	Link preview generation options for the message

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | ReplyKeyboardMarkup | ReplyKeyboardRemove | ForceReply | None

	Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
disable_web_page_preview: bool | Default | None

	Disables link previews for links in this message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_message(...)

Method as object

Imports:

	from aiogram.methods.send_message import SendMessage

	alias: from aiogram.methods import SendMessage

With specific bot

result: Message = await bot(SendMessage(...))

As reply into Webhook in handler

return SendMessage(...)

As shortcut from received object

	aiogram.types.message.Message.answer()

	aiogram.types.message.Message.reply()

	aiogram.types.chat_join_request.ChatJoinRequest.answer()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer()

sendPhoto

Returns: Message

	
class aiogram.methods.send_photo.SendPhoto(*, chat_id: int | str, photo: ~aiogram.types.input_file.InputFile | str, business_connection_id: str | None = None, message_thread_id: int | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, has_spoiler: bool | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | ~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup | ~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove | ~aiogram.types.force_reply.ForceReply | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to send photos. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendphoto

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
photo: InputFile | str

	Photo to send. Pass a file_id as String to send a photo that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a photo from the Internet, or upload a new photo using multipart/form-data. The photo must be at most 10 MB in size. The photo’s width and height must not exceed 10000 in total. Width and height ratio must be at most 20. More information on Sending Files »

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the message will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
caption: str | None

	Photo caption (may also be used when resending photos by file_id), 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Mode for parsing entities in the photo caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
has_spoiler: bool | None

	Pass True if the photo needs to be covered with a spoiler animation

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | ReplyKeyboardMarkup | ReplyKeyboardRemove | ForceReply | None

	Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_photo(...)

Method as object

Imports:

	from aiogram.methods.send_photo import SendPhoto

	alias: from aiogram.methods import SendPhoto

With specific bot

result: Message = await bot(SendPhoto(...))

As reply into Webhook in handler

return SendPhoto(...)

As shortcut from received object

	aiogram.types.message.Message.answer_photo()

	aiogram.types.message.Message.reply_photo()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_photo()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_photo_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer_photo()

sendPoll

Returns: Message

	
class aiogram.methods.send_poll.SendPoll(*, chat_id: int | str, question: str, options: ~typing.List[~aiogram.types.input_poll_option.InputPollOption | str], business_connection_id: str | None = None, message_thread_id: int | None = None, question_parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, question_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, is_anonymous: bool | None = None, type: str | None = None, allows_multiple_answers: bool | None = None, correct_option_id: int | None = None, explanation: str | None = None, explanation_parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, explanation_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, open_period: int | None = None, close_date: ~datetime.datetime | ~datetime.timedelta | int | None = None, is_closed: bool | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | ~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup | ~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove | ~aiogram.types.force_reply.ForceReply | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to send a native poll. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendpoll

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
question: str

	Poll question, 1-300 characters

	
options: List[InputPollOption | str]

	A JSON-serialized list of 2-10 answer options

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the message will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
question_parse_mode: str | Default | None

	Mode for parsing entities in the question. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details. Currently, only custom emoji entities are allowed

	
question_entities: List[MessageEntity] | None

	A JSON-serialized list of special entities that appear in the poll question. It can be specified instead of question_parse_mode

	
is_anonymous: bool | None

	True, if the poll needs to be anonymous, defaults to True

	
type: str | None

	Poll type, ‘quiz’ or ‘regular’, defaults to ‘regular’

	
allows_multiple_answers: bool | None

	True, if the poll allows multiple answers, ignored for polls in quiz mode, defaults to False

	
correct_option_id: int | None

	0-based identifier of the correct answer option, required for polls in quiz mode

	
explanation: str | None

	Text that is shown when a user chooses an incorrect answer or taps on the lamp icon in a quiz-style poll, 0-200 characters with at most 2 line feeds after entities parsing

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
explanation_parse_mode: str | Default | None

	Mode for parsing entities in the explanation. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
explanation_entities: List[MessageEntity] | None

	A JSON-serialized list of special entities that appear in the poll explanation. It can be specified instead of explanation_parse_mode

	
open_period: int | None

	Amount of time in seconds the poll will be active after creation, 5-600. Can’t be used together with close_date.

	
close_date: datetime.datetime | datetime.timedelta | int | None

	Point in time (Unix timestamp) when the poll will be automatically closed. Must be at least 5 and no more than 600 seconds in the future. Can’t be used together with open_period.

	
is_closed: bool | None

	Pass True if the poll needs to be immediately closed. This can be useful for poll preview.

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | ReplyKeyboardMarkup | ReplyKeyboardRemove | ForceReply | None

	Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_poll(...)

Method as object

Imports:

	from aiogram.methods.send_poll import SendPoll

	alias: from aiogram.methods import SendPoll

With specific bot

result: Message = await bot(SendPoll(...))

As reply into Webhook in handler

return SendPoll(...)

As shortcut from received object

	aiogram.types.message.Message.answer_poll()

	aiogram.types.message.Message.reply_poll()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_poll()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_poll_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer_poll()

sendVenue

Returns: Message

	
class aiogram.methods.send_venue.SendVenue(*, chat_id: int | str, latitude: float, longitude: float, title: str, address: str, business_connection_id: str | None = None, message_thread_id: int | None = None, foursquare_id: str | None = None, foursquare_type: str | None = None, google_place_id: str | None = None, google_place_type: str | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | ~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup | ~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove | ~aiogram.types.force_reply.ForceReply | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to send information about a venue. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvenue

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
latitude: float

	Latitude of the venue

	
longitude: float

	Longitude of the venue

	
title: str

	Name of the venue

	
address: str

	Address of the venue

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the message will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
foursquare_id: str | None

	Foursquare identifier of the venue

	
foursquare_type: str | None

	Foursquare type of the venue, if known. (For example, ‘arts_entertainment/default’, ‘arts_entertainment/aquarium’ or ‘food/icecream’.)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
google_place_id: str | None

	Google Places identifier of the venue

	
google_place_type: str | None

	Google Places type of the venue. (See supported types [https://developers.google.com/places/web-service/supported_types].)

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | ReplyKeyboardMarkup | ReplyKeyboardRemove | ForceReply | None

	Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_venue(...)

Method as object

Imports:

	from aiogram.methods.send_venue import SendVenue

	alias: from aiogram.methods import SendVenue

With specific bot

result: Message = await bot(SendVenue(...))

As reply into Webhook in handler

return SendVenue(...)

As shortcut from received object

	aiogram.types.message.Message.answer_venue()

	aiogram.types.message.Message.reply_venue()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_venue()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_venue_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer_venue()

sendVideo

Returns: Message

	
class aiogram.methods.send_video.SendVideo(*, chat_id: int | str, video: ~aiogram.types.input_file.InputFile | str, business_connection_id: str | None = None, message_thread_id: int | None = None, duration: int | None = None, width: int | None = None, height: int | None = None, thumbnail: ~aiogram.types.input_file.InputFile | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, has_spoiler: bool | None = None, supports_streaming: bool | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | ~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup | ~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove | ~aiogram.types.force_reply.ForceReply | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to send video files, Telegram clients support MPEG4 videos (other formats may be sent as aiogram.types.document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can currently send video files of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvideo

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
video: InputFile | str

	Video to send. Pass a file_id as String to send a video that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a video from the Internet, or upload a new video using multipart/form-data. More information on Sending Files »

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the message will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
duration: int | None

	Duration of sent video in seconds

	
width: int | None

	Video width

	
height: int | None

	Video height

	
thumbnail: InputFile | None

	Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	
caption: str | None

	Video caption (may also be used when resending videos by file_id), 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Mode for parsing entities in the video caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
caption_entities: List[MessageEntity] | None

	A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	
has_spoiler: bool | None

	Pass True if the video needs to be covered with a spoiler animation

	
supports_streaming: bool | None

	Pass True if the uploaded video is suitable for streaming

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | ReplyKeyboardMarkup | ReplyKeyboardRemove | ForceReply | None

	Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_video(...)

Method as object

Imports:

	from aiogram.methods.send_video import SendVideo

	alias: from aiogram.methods import SendVideo

With specific bot

result: Message = await bot(SendVideo(...))

As reply into Webhook in handler

return SendVideo(...)

As shortcut from received object

	aiogram.types.message.Message.answer_video()

	aiogram.types.message.Message.reply_video()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_video()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_video_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer_video()

sendVideoNote

Returns: Message

	
class aiogram.methods.send_video_note.SendVideoNote(*, chat_id: int | str, video_note: ~aiogram.types.input_file.InputFile | str, business_connection_id: str | None = None, message_thread_id: int | None = None, duration: int | None = None, length: int | None = None, thumbnail: ~aiogram.types.input_file.InputFile | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | ~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup | ~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove | ~aiogram.types.force_reply.ForceReply | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	As of v.4.0 [https://telegram.org/blog/video-messages-and-telescope], Telegram clients support rounded square MPEG4 videos of up to 1 minute long. Use this method to send video messages. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendvideonote

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
video_note: InputFile | str

	Video note to send. Pass a file_id as String to send a video note that exists on the Telegram servers (recommended) or upload a new video using multipart/form-data. More information on Sending Files ». Sending video notes by a URL is currently unsupported

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the message will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
duration: int | None

	Duration of sent video in seconds

	
length: int | None

	Video width and height, i.e. diameter of the video message

	
thumbnail: InputFile | None

	Thumbnail of the file sent; can be ignored if thumbnail generation for the file is supported server-side. The thumbnail should be in JPEG format and less than 200 kB in size. A thumbnail’s width and height should not exceed 320. Ignored if the file is not uploaded using multipart/form-data. Thumbnails can’t be reused and can be only uploaded as a new file, so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using multipart/form-data under <file_attach_name>. More information on Sending Files »

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | ReplyKeyboardMarkup | ReplyKeyboardRemove | ForceReply | None

	Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_video_note(...)

Method as object

Imports:

	from aiogram.methods.send_video_note import SendVideoNote

	alias: from aiogram.methods import SendVideoNote

With specific bot

result: Message = await bot(SendVideoNote(...))

As reply into Webhook in handler

return SendVideoNote(...)

As shortcut from received object

	aiogram.types.message.Message.answer_video_note()

	aiogram.types.message.Message.reply_video_note()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_video_note()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_video_note_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer_video_note()

sendVoice

Returns: Message

	
class aiogram.methods.send_voice.SendVoice(*, chat_id: int | str, voice: ~aiogram.types.input_file.InputFile | str, business_connection_id: str | None = None, message_thread_id: int | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, duration: int | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | ~aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup | ~aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove | ~aiogram.types.force_reply.ForceReply | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to send audio files, if you want Telegram clients to display the file as a playable voice message. For this to work, your audio must be in an .OGG file encoded with OPUS, or in .MP3 format, or in .M4A format (other formats may be sent as aiogram.types.audio.Audio or aiogram.types.document.Document). On success, the sent aiogram.types.message.Message is returned. Bots can currently send voice messages of up to 50 MB in size, this limit may be changed in the future.

Source: https://core.telegram.org/bots/api#sendvoice

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
voice: InputFile | str

	Audio file to send. Pass a file_id as String to send a file that exists on the Telegram servers (recommended), pass an HTTP URL as a String for Telegram to get a file from the Internet, or upload a new one using multipart/form-data. More information on Sending Files »

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the message will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
caption: str | None

	Voice message caption, 0-1024 characters after entities parsing

	
parse_mode: str | Default | None

	Mode for parsing entities in the voice message caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
duration: int | None

	Duration of the voice message in seconds

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | ReplyKeyboardMarkup | ReplyKeyboardRemove | ForceReply | None

	Additional interface options. A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards], custom reply keyboard [https://core.telegram.org/bots/features#keyboards], instructions to remove a reply keyboard or to force a reply from the user

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_voice(...)

Method as object

Imports:

	from aiogram.methods.send_voice import SendVoice

	alias: from aiogram.methods import SendVoice

With specific bot

result: Message = await bot(SendVoice(...))

As reply into Webhook in handler

return SendVoice(...)

As shortcut from received object

	aiogram.types.message.Message.answer_voice()

	aiogram.types.message.Message.reply_voice()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_voice()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_voice_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer_voice()

setChatAdministratorCustomTitle

Returns: bool

	
class aiogram.methods.set_chat_administrator_custom_title.SetChatAdministratorCustomTitle(*, chat_id: int | str, user_id: int, custom_title: str, **extra_data: Any)

	Use this method to set a custom title for an administrator in a supergroup promoted by the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#setchatadministratorcustomtitle

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
user_id: int

	Unique identifier of the target user

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
custom_title: str

	New custom title for the administrator; 0-16 characters, emoji are not allowed

Usage

As bot method

result: bool = await bot.set_chat_administrator_custom_title(...)

Method as object

Imports:

	from aiogram.methods.set_chat_administrator_custom_title import SetChatAdministratorCustomTitle

	alias: from aiogram.methods import SetChatAdministratorCustomTitle

With specific bot

result: bool = await bot(SetChatAdministratorCustomTitle(...))

As reply into Webhook in handler

return SetChatAdministratorCustomTitle(...)

As shortcut from received object

	aiogram.types.chat.Chat.set_administrator_custom_title()

setChatDescription

Returns: bool

	
class aiogram.methods.set_chat_description.SetChatDescription(*, chat_id: int | str, description: str | None = None, **extra_data: Any)

	Use this method to change the description of a group, a supergroup or a channel. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#setchatdescription

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
description: str | None

	New chat description, 0-255 characters

Usage

As bot method

result: bool = await bot.set_chat_description(...)

Method as object

Imports:

	from aiogram.methods.set_chat_description import SetChatDescription

	alias: from aiogram.methods import SetChatDescription

With specific bot

result: bool = await bot(SetChatDescription(...))

As reply into Webhook in handler

return SetChatDescription(...)

As shortcut from received object

	aiogram.types.chat.Chat.set_description()

setChatMenuButton

Returns: bool

	
class aiogram.methods.set_chat_menu_button.SetChatMenuButton(*, chat_id: int | None = None, menu_button: MenuButtonCommands | MenuButtonWebApp | MenuButtonDefault | None = None, **extra_data: Any)

	Use this method to change the bot’s menu button in a private chat, or the default menu button. Returns True on success.

Source: https://core.telegram.org/bots/api#setchatmenubutton

	
chat_id: int | None

	Unique identifier for the target private chat. If not specified, default bot’s menu button will be changed

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
menu_button: MenuButtonCommands | MenuButtonWebApp | MenuButtonDefault | None

	A JSON-serialized object for the bot’s new menu button. Defaults to aiogram.types.menu_button_default.MenuButtonDefault

Usage

As bot method

result: bool = await bot.set_chat_menu_button(...)

Method as object

Imports:

	from aiogram.methods.set_chat_menu_button import SetChatMenuButton

	alias: from aiogram.methods import SetChatMenuButton

With specific bot

result: bool = await bot(SetChatMenuButton(...))

As reply into Webhook in handler

return SetChatMenuButton(...)

setChatPermissions

Returns: bool

	
class aiogram.methods.set_chat_permissions.SetChatPermissions(*, chat_id: int | str, permissions: ChatPermissions, use_independent_chat_permissions: bool | None = None, **extra_data: Any)

	Use this method to set default chat permissions for all members. The bot must be an administrator in the group or a supergroup for this to work and must have the can_restrict_members administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#setchatpermissions

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
permissions: ChatPermissions

	A JSON-serialized object for new default chat permissions

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
use_independent_chat_permissions: bool | None

	Pass True if chat permissions are set independently. Otherwise, the can_send_other_messages and can_add_web_page_previews permissions will imply the can_send_messages, can_send_audios, can_send_documents, can_send_photos, can_send_videos, can_send_video_notes, and can_send_voice_notes permissions; the can_send_polls permission will imply the can_send_messages permission.

Usage

As bot method

result: bool = await bot.set_chat_permissions(...)

Method as object

Imports:

	from aiogram.methods.set_chat_permissions import SetChatPermissions

	alias: from aiogram.methods import SetChatPermissions

With specific bot

result: bool = await bot(SetChatPermissions(...))

As reply into Webhook in handler

return SetChatPermissions(...)

As shortcut from received object

	aiogram.types.chat.Chat.set_permissions()

setChatPhoto

Returns: bool

	
class aiogram.methods.set_chat_photo.SetChatPhoto(*, chat_id: int | str, photo: InputFile, **extra_data: Any)

	Use this method to set a new profile photo for the chat. Photos can’t be changed for private chats. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#setchatphoto

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
photo: InputFile

	New chat photo, uploaded using multipart/form-data

Usage

As bot method

result: bool = await bot.set_chat_photo(...)

Method as object

Imports:

	from aiogram.methods.set_chat_photo import SetChatPhoto

	alias: from aiogram.methods import SetChatPhoto

With specific bot

result: bool = await bot(SetChatPhoto(...))

As shortcut from received object

	aiogram.types.chat.Chat.set_photo()

setChatStickerSet

Returns: bool

	
class aiogram.methods.set_chat_sticker_set.SetChatStickerSet(*, chat_id: int | str, sticker_set_name: str, **extra_data: Any)

	Use this method to set a new group sticker set for a supergroup. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Use the field can_set_sticker_set optionally returned in aiogram.methods.get_chat.GetChat requests to check if the bot can use this method. Returns True on success.

Source: https://core.telegram.org/bots/api#setchatstickerset

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
sticker_set_name: str

	Name of the sticker set to be set as the group sticker set

Usage

As bot method

result: bool = await bot.set_chat_sticker_set(...)

Method as object

Imports:

	from aiogram.methods.set_chat_sticker_set import SetChatStickerSet

	alias: from aiogram.methods import SetChatStickerSet

With specific bot

result: bool = await bot(SetChatStickerSet(...))

As reply into Webhook in handler

return SetChatStickerSet(...)

As shortcut from received object

	aiogram.types.chat.Chat.set_sticker_set()

setChatTitle

Returns: bool

	
class aiogram.methods.set_chat_title.SetChatTitle(*, chat_id: int | str, title: str, **extra_data: Any)

	Use this method to change the title of a chat. Titles can’t be changed for private chats. The bot must be an administrator in the chat for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#setchattitle

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
title: str

	New chat title, 1-128 characters

Usage

As bot method

result: bool = await bot.set_chat_title(...)

Method as object

Imports:

	from aiogram.methods.set_chat_title import SetChatTitle

	alias: from aiogram.methods import SetChatTitle

With specific bot

result: bool = await bot(SetChatTitle(...))

As reply into Webhook in handler

return SetChatTitle(...)

As shortcut from received object

	aiogram.types.chat.Chat.set_title()

setMessageReaction

Returns: bool

	
class aiogram.methods.set_message_reaction.SetMessageReaction(*, chat_id: int | str, message_id: int, reaction: List[ReactionTypeEmoji | ReactionTypeCustomEmoji] | None = None, is_big: bool | None = None, **extra_data: Any)

	Use this method to change the chosen reactions on a message. Service messages can’t be reacted to. Automatically forwarded messages from a channel to its discussion group have the same available reactions as messages in the channel. Returns True on success.

Source: https://core.telegram.org/bots/api#setmessagereaction

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
message_id: int

	Identifier of the target message. If the message belongs to a media group, the reaction is set to the first non-deleted message in the group instead.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
reaction: List[ReactionTypeEmoji | ReactionTypeCustomEmoji] | None

	A JSON-serialized list of reaction types to set on the message. Currently, as non-premium users, bots can set up to one reaction per message. A custom emoji reaction can be used if it is either already present on the message or explicitly allowed by chat administrators.

	
is_big: bool | None

	Pass True to set the reaction with a big animation

Usage

As bot method

result: bool = await bot.set_message_reaction(...)

Method as object

Imports:

	from aiogram.methods.set_message_reaction import SetMessageReaction

	alias: from aiogram.methods import SetMessageReaction

With specific bot

result: bool = await bot(SetMessageReaction(...))

As reply into Webhook in handler

return SetMessageReaction(...)

As shortcut from received object

	aiogram.types.message.Message.react()

setMyCommands

Returns: bool

	
class aiogram.methods.set_my_commands.SetMyCommands(*, commands: List[BotCommand], scope: BotCommandScopeDefault | BotCommandScopeAllPrivateChats | BotCommandScopeAllGroupChats | BotCommandScopeAllChatAdministrators | BotCommandScopeChat | BotCommandScopeChatAdministrators | BotCommandScopeChatMember | None = None, language_code: str | None = None, **extra_data: Any)

	Use this method to change the list of the bot’s commands. See this manual [https://core.telegram.org/bots/features#commands] for more details about bot commands. Returns True on success.

Source: https://core.telegram.org/bots/api#setmycommands

	
commands: List[BotCommand]

	A JSON-serialized list of bot commands to be set as the list of the bot’s commands. At most 100 commands can be specified.

	
scope: BotCommandScopeDefault | BotCommandScopeAllPrivateChats | BotCommandScopeAllGroupChats | BotCommandScopeAllChatAdministrators | BotCommandScopeChat | BotCommandScopeChatAdministrators | BotCommandScopeChatMember | None

	A JSON-serialized object, describing scope of users for which the commands are relevant. Defaults to aiogram.types.bot_command_scope_default.BotCommandScopeDefault.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
language_code: str | None

	A two-letter ISO 639-1 language code. If empty, commands will be applied to all users from the given scope, for whose language there are no dedicated commands

Usage

As bot method

result: bool = await bot.set_my_commands(...)

Method as object

Imports:

	from aiogram.methods.set_my_commands import SetMyCommands

	alias: from aiogram.methods import SetMyCommands

With specific bot

result: bool = await bot(SetMyCommands(...))

As reply into Webhook in handler

return SetMyCommands(...)

setMyDefaultAdministratorRights

Returns: bool

	
class aiogram.methods.set_my_default_administrator_rights.SetMyDefaultAdministratorRights(*, rights: ChatAdministratorRights | None = None, for_channels: bool | None = None, **extra_data: Any)

	Use this method to change the default administrator rights requested by the bot when it’s added as an administrator to groups or channels. These rights will be suggested to users, but they are free to modify the list before adding the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#setmydefaultadministratorrights

	
rights: ChatAdministratorRights | None

	A JSON-serialized object describing new default administrator rights. If not specified, the default administrator rights will be cleared.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
for_channels: bool | None

	Pass True to change the default administrator rights of the bot in channels. Otherwise, the default administrator rights of the bot for groups and supergroups will be changed.

Usage

As bot method

result: bool = await bot.set_my_default_administrator_rights(...)

Method as object

Imports:

	from aiogram.methods.set_my_default_administrator_rights import SetMyDefaultAdministratorRights

	alias: from aiogram.methods import SetMyDefaultAdministratorRights

With specific bot

result: bool = await bot(SetMyDefaultAdministratorRights(...))

As reply into Webhook in handler

return SetMyDefaultAdministratorRights(...)

setMyDescription

Returns: bool

	
class aiogram.methods.set_my_description.SetMyDescription(*, description: str | None = None, language_code: str | None = None, **extra_data: Any)

	Use this method to change the bot’s description, which is shown in the chat with the bot if the chat is empty. Returns True on success.

Source: https://core.telegram.org/bots/api#setmydescription

	
description: str | None

	New bot description; 0-512 characters. Pass an empty string to remove the dedicated description for the given language.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
language_code: str | None

	A two-letter ISO 639-1 language code. If empty, the description will be applied to all users for whose language there is no dedicated description.

Usage

As bot method

result: bool = await bot.set_my_description(...)

Method as object

Imports:

	from aiogram.methods.set_my_description import SetMyDescription

	alias: from aiogram.methods import SetMyDescription

With specific bot

result: bool = await bot(SetMyDescription(...))

As reply into Webhook in handler

return SetMyDescription(...)

setMyName

Returns: bool

	
class aiogram.methods.set_my_name.SetMyName(*, name: str | None = None, language_code: str | None = None, **extra_data: Any)

	Use this method to change the bot’s name. Returns True on success.

Source: https://core.telegram.org/bots/api#setmyname

	
name: str | None

	New bot name; 0-64 characters. Pass an empty string to remove the dedicated name for the given language.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
language_code: str | None

	A two-letter ISO 639-1 language code. If empty, the name will be shown to all users for whose language there is no dedicated name.

Usage

As bot method

result: bool = await bot.set_my_name(...)

Method as object

Imports:

	from aiogram.methods.set_my_name import SetMyName

	alias: from aiogram.methods import SetMyName

With specific bot

result: bool = await bot(SetMyName(...))

As reply into Webhook in handler

return SetMyName(...)

setMyShortDescription

Returns: bool

	
class aiogram.methods.set_my_short_description.SetMyShortDescription(*, short_description: str | None = None, language_code: str | None = None, **extra_data: Any)

	Use this method to change the bot’s short description, which is shown on the bot’s profile page and is sent together with the link when users share the bot. Returns True on success.

Source: https://core.telegram.org/bots/api#setmyshortdescription

	
short_description: str | None

	New short description for the bot; 0-120 characters. Pass an empty string to remove the dedicated short description for the given language.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
language_code: str | None

	A two-letter ISO 639-1 language code. If empty, the short description will be applied to all users for whose language there is no dedicated short description.

Usage

As bot method

result: bool = await bot.set_my_short_description(...)

Method as object

Imports:

	from aiogram.methods.set_my_short_description import SetMyShortDescription

	alias: from aiogram.methods import SetMyShortDescription

With specific bot

result: bool = await bot(SetMyShortDescription(...))

As reply into Webhook in handler

return SetMyShortDescription(...)

unbanChatMember

Returns: bool

	
class aiogram.methods.unban_chat_member.UnbanChatMember(*, chat_id: int | str, user_id: int, only_if_banned: bool | None = None, **extra_data: Any)

	Use this method to unban a previously banned user in a supergroup or channel. The user will not return to the group or channel automatically, but will be able to join via link, etc. The bot must be an administrator for this to work. By default, this method guarantees that after the call the user is not a member of the chat, but will be able to join it. So if the user is a member of the chat they will also be removed from the chat. If you don’t want this, use the parameter only_if_banned. Returns True on success.

Source: https://core.telegram.org/bots/api#unbanchatmember

	
chat_id: int | str

	Unique identifier for the target group or username of the target supergroup or channel (in the format @channelusername)

	
user_id: int

	Unique identifier of the target user

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
only_if_banned: bool | None

	Do nothing if the user is not banned

Usage

As bot method

result: bool = await bot.unban_chat_member(...)

Method as object

Imports:

	from aiogram.methods.unban_chat_member import UnbanChatMember

	alias: from aiogram.methods import UnbanChatMember

With specific bot

result: bool = await bot(UnbanChatMember(...))

As reply into Webhook in handler

return UnbanChatMember(...)

As shortcut from received object

	aiogram.types.chat.Chat.unban()

unbanChatSenderChat

Returns: bool

	
class aiogram.methods.unban_chat_sender_chat.UnbanChatSenderChat(*, chat_id: int | str, sender_chat_id: int, **extra_data: Any)

	Use this method to unban a previously banned channel chat in a supergroup or channel. The bot must be an administrator for this to work and must have the appropriate administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#unbanchatsenderchat

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
sender_chat_id: int

	Unique identifier of the target sender chat

Usage

As bot method

result: bool = await bot.unban_chat_sender_chat(...)

Method as object

Imports:

	from aiogram.methods.unban_chat_sender_chat import UnbanChatSenderChat

	alias: from aiogram.methods import UnbanChatSenderChat

With specific bot

result: bool = await bot(UnbanChatSenderChat(...))

As reply into Webhook in handler

return UnbanChatSenderChat(...)

As shortcut from received object

	aiogram.types.chat.Chat.unban_sender_chat()

unhideGeneralForumTopic

Returns: bool

	
class aiogram.methods.unhide_general_forum_topic.UnhideGeneralForumTopic(*, chat_id: int | str, **extra_data: Any)

	Use this method to unhide the ‘General’ topic in a forum supergroup chat. The bot must be an administrator in the chat for this to work and must have the can_manage_topics administrator rights. Returns True on success.

Source: https://core.telegram.org/bots/api#unhidegeneralforumtopic

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: bool = await bot.unhide_general_forum_topic(...)

Method as object

Imports:

	from aiogram.methods.unhide_general_forum_topic import UnhideGeneralForumTopic

	alias: from aiogram.methods import UnhideGeneralForumTopic

With specific bot

result: bool = await bot(UnhideGeneralForumTopic(...))

As reply into Webhook in handler

return UnhideGeneralForumTopic(...)

unpinAllChatMessages

Returns: bool

	
class aiogram.methods.unpin_all_chat_messages.UnpinAllChatMessages(*, chat_id: int | str, **extra_data: Any)

	Use this method to clear the list of pinned messages in a chat. If the chat is not a private chat, the bot must be an administrator in the chat for this to work and must have the ‘can_pin_messages’ administrator right in a supergroup or ‘can_edit_messages’ administrator right in a channel. Returns True on success.

Source: https://core.telegram.org/bots/api#unpinallchatmessages

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: bool = await bot.unpin_all_chat_messages(...)

Method as object

Imports:

	from aiogram.methods.unpin_all_chat_messages import UnpinAllChatMessages

	alias: from aiogram.methods import UnpinAllChatMessages

With specific bot

result: bool = await bot(UnpinAllChatMessages(...))

As reply into Webhook in handler

return UnpinAllChatMessages(...)

As shortcut from received object

	aiogram.types.chat.Chat.unpin_all_messages()

unpinAllForumTopicMessages

Returns: bool

	
class aiogram.methods.unpin_all_forum_topic_messages.UnpinAllForumTopicMessages(*, chat_id: int | str, message_thread_id: int, **extra_data: Any)

	Use this method to clear the list of pinned messages in a forum topic. The bot must be an administrator in the chat for this to work and must have the can_pin_messages administrator right in the supergroup. Returns True on success.

Source: https://core.telegram.org/bots/api#unpinallforumtopicmessages

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
message_thread_id: int

	Unique identifier for the target message thread of the forum topic

Usage

As bot method

result: bool = await bot.unpin_all_forum_topic_messages(...)

Method as object

Imports:

	from aiogram.methods.unpin_all_forum_topic_messages import UnpinAllForumTopicMessages

	alias: from aiogram.methods import UnpinAllForumTopicMessages

With specific bot

result: bool = await bot(UnpinAllForumTopicMessages(...))

As reply into Webhook in handler

return UnpinAllForumTopicMessages(...)

unpinAllGeneralForumTopicMessages

Returns: bool

	
class aiogram.methods.unpin_all_general_forum_topic_messages.UnpinAllGeneralForumTopicMessages(*, chat_id: int | str, **extra_data: Any)

	Use this method to clear the list of pinned messages in a General forum topic. The bot must be an administrator in the chat for this to work and must have the can_pin_messages administrator right in the supergroup. Returns True on success.

Source: https://core.telegram.org/bots/api#unpinallgeneralforumtopicmessages

	
chat_id: int | str

	Unique identifier for the target chat or username of the target supergroup (in the format @supergroupusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: bool = await bot.unpin_all_general_forum_topic_messages(...)

Method as object

Imports:

	from aiogram.methods.unpin_all_general_forum_topic_messages import UnpinAllGeneralForumTopicMessages

	alias: from aiogram.methods import UnpinAllGeneralForumTopicMessages

With specific bot

result: bool = await bot(UnpinAllGeneralForumTopicMessages(...))

As reply into Webhook in handler

return UnpinAllGeneralForumTopicMessages(...)

As shortcut from received object

	aiogram.types.chat.Chat.unpin_all_general_forum_topic_messages()

unpinChatMessage

Returns: bool

	
class aiogram.methods.unpin_chat_message.UnpinChatMessage(*, chat_id: int | str, message_id: int | None = None, **extra_data: Any)

	Use this method to remove a message from the list of pinned messages in a chat. If the chat is not a private chat, the bot must be an administrator in the chat for this to work and must have the ‘can_pin_messages’ administrator right in a supergroup or ‘can_edit_messages’ administrator right in a channel. Returns True on success.

Source: https://core.telegram.org/bots/api#unpinchatmessage

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
message_id: int | None

	Identifier of a message to unpin. If not specified, the most recent pinned message (by sending date) will be unpinned.

Usage

As bot method

result: bool = await bot.unpin_chat_message(...)

Method as object

Imports:

	from aiogram.methods.unpin_chat_message import UnpinChatMessage

	alias: from aiogram.methods import UnpinChatMessage

With specific bot

result: bool = await bot(UnpinChatMessage(...))

As reply into Webhook in handler

return UnpinChatMessage(...)

As shortcut from received object

	aiogram.types.chat.Chat.unpin_message()

	aiogram.types.message.Message.unpin()

deleteMessage

Returns: bool

	
class aiogram.methods.delete_message.DeleteMessage(*, chat_id: int | str, message_id: int, **extra_data: Any)

	Use this method to delete a message, including service messages, with the following limitations:

	A message can only be deleted if it was sent less than 48 hours ago.

	Service messages about a supergroup, channel, or forum topic creation can’t be deleted.

	A dice message in a private chat can only be deleted if it was sent more than 24 hours ago.

	Bots can delete outgoing messages in private chats, groups, and supergroups.

	Bots can delete incoming messages in private chats.

	Bots granted can_post_messages permissions can delete outgoing messages in channels.

	If the bot is an administrator of a group, it can delete any message there.

	If the bot has can_delete_messages permission in a supergroup or a channel, it can delete any message there.

Returns True on success.

Source: https://core.telegram.org/bots/api#deletemessage

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
message_id: int

	Identifier of the message to delete

Usage

As bot method

result: bool = await bot.delete_message(...)

Method as object

Imports:

	from aiogram.methods.delete_message import DeleteMessage

	alias: from aiogram.methods import DeleteMessage

With specific bot

result: bool = await bot(DeleteMessage(...))

As reply into Webhook in handler

return DeleteMessage(...)

As shortcut from received object

	aiogram.types.chat.Chat.delete_message()

	aiogram.types.message.Message.delete()

deleteMessages

Returns: bool

	
class aiogram.methods.delete_messages.DeleteMessages(*, chat_id: int | str, message_ids: List[int], **extra_data: Any)

	Use this method to delete multiple messages simultaneously. If some of the specified messages can’t be found, they are skipped. Returns True on success.

Source: https://core.telegram.org/bots/api#deletemessages

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
message_ids: List[int]

	A JSON-serialized list of 1-100 identifiers of messages to delete. See aiogram.methods.delete_message.DeleteMessage for limitations on which messages can be deleted

Usage

As bot method

result: bool = await bot.delete_messages(...)

Method as object

Imports:

	from aiogram.methods.delete_messages import DeleteMessages

	alias: from aiogram.methods import DeleteMessages

With specific bot

result: bool = await bot(DeleteMessages(...))

As reply into Webhook in handler

return DeleteMessages(...)

editMessageCaption

Returns: Union[Message, bool]

	
class aiogram.methods.edit_message_caption.EditMessageCaption(*, chat_id: int | str | None = None, message_id: int | None = None, inline_message_id: str | None = None, caption: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, **extra_data: ~typing.Any)

	Use this method to edit captions of messages. On success, if the edited message is not an inline message, the edited aiogram.types.message.Message is returned, otherwise True is returned.

Source: https://core.telegram.org/bots/api#editmessagecaption

	
chat_id: int | str | None

	Required if inline_message_id is not specified. Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
message_id: int | None

	Required if inline_message_id is not specified. Identifier of the message to edit

	
inline_message_id: str | None

	Required if chat_id and message_id are not specified. Identifier of the inline message

	
caption: str | None

	New caption of the message, 0-1024 characters after entities parsing

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
parse_mode: str | Default | None

	Mode for parsing entities in the message caption. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
caption_entities: List[MessageEntity] | None

	A JSON-serialized list of special entities that appear in the caption, which can be specified instead of parse_mode

	
reply_markup: InlineKeyboardMarkup | None

	A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards].

Usage

As bot method

result: Union[Message, bool] = await bot.edit_message_caption(...)

Method as object

Imports:

	from aiogram.methods.edit_message_caption import EditMessageCaption

	alias: from aiogram.methods import EditMessageCaption

With specific bot

result: Union[Message, bool] = await bot(EditMessageCaption(...))

As reply into Webhook in handler

return EditMessageCaption(...)

As shortcut from received object

	aiogram.types.message.Message.edit_caption()

editMessageLiveLocation

Returns: Union[Message, bool]

	
class aiogram.methods.edit_message_live_location.EditMessageLiveLocation(*, latitude: float, longitude: float, chat_id: int | str | None = None, message_id: int | None = None, inline_message_id: str | None = None, live_period: int | None = None, horizontal_accuracy: float | None = None, heading: int | None = None, proximity_alert_radius: int | None = None, reply_markup: InlineKeyboardMarkup | None = None, **extra_data: Any)

	Use this method to edit live location messages. A location can be edited until its live_period expires or editing is explicitly disabled by a call to aiogram.methods.stop_message_live_location.StopMessageLiveLocation. On success, if the edited message is not an inline message, the edited aiogram.types.message.Message is returned, otherwise True is returned.

Source: https://core.telegram.org/bots/api#editmessagelivelocation

	
latitude: float

	Latitude of new location

	
longitude: float

	Longitude of new location

	
chat_id: int | str | None

	Required if inline_message_id is not specified. Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
message_id: int | None

	Required if inline_message_id is not specified. Identifier of the message to edit

	
inline_message_id: str | None

	Required if chat_id and message_id are not specified. Identifier of the inline message

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
live_period: int | None

	New period in seconds during which the location can be updated, starting from the message send date. If 0x7FFFFFFF is specified, then the location can be updated forever. Otherwise, the new value must not exceed the current live_period by more than a day, and the live location expiration date must remain within the next 90 days. If not specified, then live_period remains unchanged

	
horizontal_accuracy: float | None

	The radius of uncertainty for the location, measured in meters; 0-1500

	
heading: int | None

	Direction in which the user is moving, in degrees. Must be between 1 and 360 if specified.

	
proximity_alert_radius: int | None

	The maximum distance for proximity alerts about approaching another chat member, in meters. Must be between 1 and 100000 if specified.

	
reply_markup: InlineKeyboardMarkup | None

	A JSON-serialized object for a new inline keyboard [https://core.telegram.org/bots/features#inline-keyboards].

Usage

As bot method

result: Union[Message, bool] = await bot.edit_message_live_location(...)

Method as object

Imports:

	from aiogram.methods.edit_message_live_location import EditMessageLiveLocation

	alias: from aiogram.methods import EditMessageLiveLocation

With specific bot

result: Union[Message, bool] = await bot(EditMessageLiveLocation(...))

As reply into Webhook in handler

return EditMessageLiveLocation(...)

As shortcut from received object

	aiogram.types.message.Message.edit_live_location()

editMessageMedia

Returns: Union[Message, bool]

	
class aiogram.methods.edit_message_media.EditMessageMedia(*, media: InputMediaAnimation | InputMediaDocument | InputMediaAudio | InputMediaPhoto | InputMediaVideo, chat_id: int | str | None = None, message_id: int | None = None, inline_message_id: str | None = None, reply_markup: InlineKeyboardMarkup | None = None, **extra_data: Any)

	Use this method to edit animation, audio, document, photo, or video messages. If a message is part of a message album, then it can be edited only to an audio for audio albums, only to a document for document albums and to a photo or a video otherwise. When an inline message is edited, a new file can’t be uploaded; use a previously uploaded file via its file_id or specify a URL. On success, if the edited message is not an inline message, the edited aiogram.types.message.Message is returned, otherwise True is returned.

Source: https://core.telegram.org/bots/api#editmessagemedia

	
media: InputMediaAnimation | InputMediaDocument | InputMediaAudio | InputMediaPhoto | InputMediaVideo

	A JSON-serialized object for a new media content of the message

	
chat_id: int | str | None

	Required if inline_message_id is not specified. Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
message_id: int | None

	Required if inline_message_id is not specified. Identifier of the message to edit

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
inline_message_id: str | None

	Required if chat_id and message_id are not specified. Identifier of the inline message

	
reply_markup: InlineKeyboardMarkup | None

	A JSON-serialized object for a new inline keyboard [https://core.telegram.org/bots/features#inline-keyboards].

Usage

As bot method

result: Union[Message, bool] = await bot.edit_message_media(...)

Method as object

Imports:

	from aiogram.methods.edit_message_media import EditMessageMedia

	alias: from aiogram.methods import EditMessageMedia

With specific bot

result: Union[Message, bool] = await bot(EditMessageMedia(...))

As reply into Webhook in handler

return EditMessageMedia(...)

As shortcut from received object

	aiogram.types.message.Message.edit_media()

editMessageReplyMarkup

Returns: Union[Message, bool]

	
class aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup(*, chat_id: int | str | None = None, message_id: int | None = None, inline_message_id: str | None = None, reply_markup: InlineKeyboardMarkup | None = None, **extra_data: Any)

	Use this method to edit only the reply markup of messages. On success, if the edited message is not an inline message, the edited aiogram.types.message.Message is returned, otherwise True is returned.

Source: https://core.telegram.org/bots/api#editmessagereplymarkup

	
chat_id: int | str | None

	Required if inline_message_id is not specified. Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
message_id: int | None

	Required if inline_message_id is not specified. Identifier of the message to edit

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
inline_message_id: str | None

	Required if chat_id and message_id are not specified. Identifier of the inline message

	
reply_markup: InlineKeyboardMarkup | None

	A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards].

Usage

As bot method

result: Union[Message, bool] = await bot.edit_message_reply_markup(...)

Method as object

Imports:

	from aiogram.methods.edit_message_reply_markup import EditMessageReplyMarkup

	alias: from aiogram.methods import EditMessageReplyMarkup

With specific bot

result: Union[Message, bool] = await bot(EditMessageReplyMarkup(...))

As reply into Webhook in handler

return EditMessageReplyMarkup(...)

As shortcut from received object

	aiogram.types.message.Message.edit_reply_markup()

	aiogram.types.message.Message.delete_reply_markup()

editMessageText

Returns: Union[Message, bool]

	
class aiogram.methods.edit_message_text.EditMessageText(*, text: str, chat_id: int | str | None = None, message_id: int | None = None, inline_message_id: str | None = None, parse_mode: str | ~aiogram.client.default.Default | None = <Default('parse_mode')>, entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, link_preview_options: ~aiogram.types.link_preview_options.LinkPreviewOptions | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, disable_web_page_preview: bool | ~aiogram.client.default.Default | None = <Default('link_preview_is_disabled')>, **extra_data: ~typing.Any)

	Use this method to edit text and game [https://core.telegram.org/bots/api#games] messages. On success, if the edited message is not an inline message, the edited aiogram.types.message.Message is returned, otherwise True is returned.

Source: https://core.telegram.org/bots/api#editmessagetext

	
text: str

	New text of the message, 1-4096 characters after entities parsing

	
chat_id: int | str | None

	Required if inline_message_id is not specified. Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
message_id: int | None

	Required if inline_message_id is not specified. Identifier of the message to edit

	
inline_message_id: str | None

	Required if chat_id and message_id are not specified. Identifier of the inline message

	
parse_mode: str | Default | None

	Mode for parsing entities in the message text. See formatting options [https://core.telegram.org/bots/api#formatting-options] for more details.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
entities: List[MessageEntity] | None

	A JSON-serialized list of special entities that appear in message text, which can be specified instead of parse_mode

	
link_preview_options: LinkPreviewOptions | None

	Link preview generation options for the message

	
reply_markup: InlineKeyboardMarkup | None

	A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards].

	
disable_web_page_preview: bool | Default | None

	Disables link previews for links in this message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Union[Message, bool] = await bot.edit_message_text(...)

Method as object

Imports:

	from aiogram.methods.edit_message_text import EditMessageText

	alias: from aiogram.methods import EditMessageText

With specific bot

result: Union[Message, bool] = await bot(EditMessageText(...))

As reply into Webhook in handler

return EditMessageText(...)

As shortcut from received object

	aiogram.types.message.Message.edit_text()

stopMessageLiveLocation

Returns: Union[Message, bool]

	
class aiogram.methods.stop_message_live_location.StopMessageLiveLocation(*, chat_id: int | str | None = None, message_id: int | None = None, inline_message_id: str | None = None, reply_markup: InlineKeyboardMarkup | None = None, **extra_data: Any)

	Use this method to stop updating a live location message before live_period expires. On success, if the message is not an inline message, the edited aiogram.types.message.Message is returned, otherwise True is returned.

Source: https://core.telegram.org/bots/api#stopmessagelivelocation

	
chat_id: int | str | None

	Required if inline_message_id is not specified. Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
message_id: int | None

	Required if inline_message_id is not specified. Identifier of the message with live location to stop

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
inline_message_id: str | None

	Required if chat_id and message_id are not specified. Identifier of the inline message

	
reply_markup: InlineKeyboardMarkup | None

	A JSON-serialized object for a new inline keyboard [https://core.telegram.org/bots/features#inline-keyboards].

Usage

As bot method

result: Union[Message, bool] = await bot.stop_message_live_location(...)

Method as object

Imports:

	from aiogram.methods.stop_message_live_location import StopMessageLiveLocation

	alias: from aiogram.methods import StopMessageLiveLocation

With specific bot

result: Union[Message, bool] = await bot(StopMessageLiveLocation(...))

As reply into Webhook in handler

return StopMessageLiveLocation(...)

As shortcut from received object

	aiogram.types.message.Message.stop_live_location()

stopPoll

Returns: Poll

	
class aiogram.methods.stop_poll.StopPoll(*, chat_id: int | str, message_id: int, reply_markup: InlineKeyboardMarkup | None = None, **extra_data: Any)

	Use this method to stop a poll which was sent by the bot. On success, the stopped aiogram.types.poll.Poll is returned.

Source: https://core.telegram.org/bots/api#stoppoll

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
message_id: int

	Identifier of the original message with the poll

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
reply_markup: InlineKeyboardMarkup | None

	A JSON-serialized object for a new message inline keyboard [https://core.telegram.org/bots/features#inline-keyboards].

Usage

As bot method

result: Poll = await bot.stop_poll(...)

Method as object

Imports:

	from aiogram.methods.stop_poll import StopPoll

	alias: from aiogram.methods import StopPoll

With specific bot

result: Poll = await bot(StopPoll(...))

As reply into Webhook in handler

return StopPoll(...)

answerInlineQuery

Returns: bool

	
class aiogram.methods.answer_inline_query.AnswerInlineQuery(*, inline_query_id: str, results: List[InlineQueryResultCachedAudio | InlineQueryResultCachedDocument | InlineQueryResultCachedGif | InlineQueryResultCachedMpeg4Gif | InlineQueryResultCachedPhoto | InlineQueryResultCachedSticker | InlineQueryResultCachedVideo | InlineQueryResultCachedVoice | InlineQueryResultArticle | InlineQueryResultAudio | InlineQueryResultContact | InlineQueryResultGame | InlineQueryResultDocument | InlineQueryResultGif | InlineQueryResultLocation | InlineQueryResultMpeg4Gif | InlineQueryResultPhoto | InlineQueryResultVenue | InlineQueryResultVideo | InlineQueryResultVoice], cache_time: int | None = None, is_personal: bool | None = None, next_offset: str | None = None, button: InlineQueryResultsButton | None = None, switch_pm_parameter: str | None = None, switch_pm_text: str | None = None, **extra_data: Any)

	Use this method to send answers to an inline query. On success, True is returned.

No more than 50 results per query are allowed.

Source: https://core.telegram.org/bots/api#answerinlinequery

	
inline_query_id: str

	Unique identifier for the answered query

	
results: List[InlineQueryResultCachedAudio | InlineQueryResultCachedDocument | InlineQueryResultCachedGif | InlineQueryResultCachedMpeg4Gif | InlineQueryResultCachedPhoto | InlineQueryResultCachedSticker | InlineQueryResultCachedVideo | InlineQueryResultCachedVoice | InlineQueryResultArticle | InlineQueryResultAudio | InlineQueryResultContact | InlineQueryResultGame | InlineQueryResultDocument | InlineQueryResultGif | InlineQueryResultLocation | InlineQueryResultMpeg4Gif | InlineQueryResultPhoto | InlineQueryResultVenue | InlineQueryResultVideo | InlineQueryResultVoice]

	A JSON-serialized array of results for the inline query

	
cache_time: int | None

	The maximum amount of time in seconds that the result of the inline query may be cached on the server. Defaults to 300.

	
is_personal: bool | None

	Pass True if results may be cached on the server side only for the user that sent the query. By default, results may be returned to any user who sends the same query.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
next_offset: str | None

	Pass the offset that a client should send in the next query with the same text to receive more results. Pass an empty string if there are no more results or if you don’t support pagination. Offset length can’t exceed 64 bytes.

	
button: InlineQueryResultsButton | None

	A JSON-serialized object describing a button to be shown above inline query results

	
switch_pm_parameter: str | None

	Deep-linking [https://core.telegram.org/bots/features#deep-linking] parameter for the /start message sent to the bot when user presses the switch button. 1-64 characters, only A-Z, a-z, 0-9, _ and - are allowed.

Deprecated since version API:6.7: https://core.telegram.org/bots/api-changelog#april-21-2023

	
switch_pm_text: str | None

	If passed, clients will display a button with specified text that switches the user to a private chat with the bot and sends the bot a start message with the parameter switch_pm_parameter

Deprecated since version API:6.7: https://core.telegram.org/bots/api-changelog#april-21-2023

Usage

As bot method

result: bool = await bot.answer_inline_query(...)

Method as object

Imports:

	from aiogram.methods.answer_inline_query import AnswerInlineQuery

	alias: from aiogram.methods import AnswerInlineQuery

With specific bot

result: bool = await bot(AnswerInlineQuery(...))

As reply into Webhook in handler

return AnswerInlineQuery(...)

As shortcut from received object

	aiogram.types.inline_query.InlineQuery.answer()

answerWebAppQuery

Returns: SentWebAppMessage

	
class aiogram.methods.answer_web_app_query.AnswerWebAppQuery(*, web_app_query_id: str, result: InlineQueryResultCachedAudio | InlineQueryResultCachedDocument | InlineQueryResultCachedGif | InlineQueryResultCachedMpeg4Gif | InlineQueryResultCachedPhoto | InlineQueryResultCachedSticker | InlineQueryResultCachedVideo | InlineQueryResultCachedVoice | InlineQueryResultArticle | InlineQueryResultAudio | InlineQueryResultContact | InlineQueryResultGame | InlineQueryResultDocument | InlineQueryResultGif | InlineQueryResultLocation | InlineQueryResultMpeg4Gif | InlineQueryResultPhoto | InlineQueryResultVenue | InlineQueryResultVideo | InlineQueryResultVoice, **extra_data: Any)

	Use this method to set the result of an interaction with a Web App [https://core.telegram.org/bots/webapps] and send a corresponding message on behalf of the user to the chat from which the query originated. On success, a aiogram.types.sent_web_app_message.SentWebAppMessage object is returned.

Source: https://core.telegram.org/bots/api#answerwebappquery

	
web_app_query_id: str

	Unique identifier for the query to be answered

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
result: InlineQueryResultCachedAudio | InlineQueryResultCachedDocument | InlineQueryResultCachedGif | InlineQueryResultCachedMpeg4Gif | InlineQueryResultCachedPhoto | InlineQueryResultCachedSticker | InlineQueryResultCachedVideo | InlineQueryResultCachedVoice | InlineQueryResultArticle | InlineQueryResultAudio | InlineQueryResultContact | InlineQueryResultGame | InlineQueryResultDocument | InlineQueryResultGif | InlineQueryResultLocation | InlineQueryResultMpeg4Gif | InlineQueryResultPhoto | InlineQueryResultVenue | InlineQueryResultVideo | InlineQueryResultVoice

	A JSON-serialized object describing the message to be sent

Usage

As bot method

result: SentWebAppMessage = await bot.answer_web_app_query(...)

Method as object

Imports:

	from aiogram.methods.answer_web_app_query import AnswerWebAppQuery

	alias: from aiogram.methods import AnswerWebAppQuery

With specific bot

result: SentWebAppMessage = await bot(AnswerWebAppQuery(...))

As reply into Webhook in handler

return AnswerWebAppQuery(...)

getGameHighScores

Returns: List[GameHighScore]

	
class aiogram.methods.get_game_high_scores.GetGameHighScores(*, user_id: int, chat_id: int | None = None, message_id: int | None = None, inline_message_id: str | None = None, **extra_data: Any)

	Use this method to get data for high score tables. Will return the score of the specified user and several of their neighbors in a game. Returns an Array of aiogram.types.game_high_score.GameHighScore objects.

This method will currently return scores for the target user, plus two of their closest neighbors on each side. Will also return the top three users if the user and their neighbors are not among them. Please note that this behavior is subject to change.

Source: https://core.telegram.org/bots/api#getgamehighscores

	
user_id: int

	Target user id

	
chat_id: int | None

	Required if inline_message_id is not specified. Unique identifier for the target chat

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
message_id: int | None

	Required if inline_message_id is not specified. Identifier of the sent message

	
inline_message_id: str | None

	Required if chat_id and message_id are not specified. Identifier of the inline message

Usage

As bot method

result: List[GameHighScore] = await bot.get_game_high_scores(...)

Method as object

Imports:

	from aiogram.methods.get_game_high_scores import GetGameHighScores

	alias: from aiogram.methods import GetGameHighScores

With specific bot

result: List[GameHighScore] = await bot(GetGameHighScores(...))

sendGame

Returns: Message

	
class aiogram.methods.send_game.SendGame(*, chat_id: int, game_short_name: str, business_connection_id: str | None = None, message_thread_id: int | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to send a game. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendgame

	
chat_id: int

	Unique identifier for the target chat

	
game_short_name: str

	Short name of the game, serves as the unique identifier for the game. Set up your games via @BotFather [https://t.me/botfather].

	
business_connection_id: str | None

	Unique identifier of the business connection on behalf of which the message will be sent

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | None

	A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards]. If empty, one ‘Play game_title’ button will be shown. If not empty, the first button must launch the game.

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_game(...)

Method as object

Imports:

	from aiogram.methods.send_game import SendGame

	alias: from aiogram.methods import SendGame

With specific bot

result: Message = await bot(SendGame(...))

As reply into Webhook in handler

return SendGame(...)

As shortcut from received object

	aiogram.types.message.Message.answer_game()

	aiogram.types.message.Message.reply_game()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_game()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_game_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer_game()

setGameScore

Returns: Union[Message, bool]

	
class aiogram.methods.set_game_score.SetGameScore(*, user_id: int, score: int, force: bool | None = None, disable_edit_message: bool | None = None, chat_id: int | None = None, message_id: int | None = None, inline_message_id: str | None = None, **extra_data: Any)

	Use this method to set the score of the specified user in a game message. On success, if the message is not an inline message, the aiogram.types.message.Message is returned, otherwise True is returned. Returns an error, if the new score is not greater than the user’s current score in the chat and force is False.

Source: https://core.telegram.org/bots/api#setgamescore

	
user_id: int

	User identifier

	
score: int

	New score, must be non-negative

	
force: bool | None

	Pass True if the high score is allowed to decrease. This can be useful when fixing mistakes or banning cheaters

	
disable_edit_message: bool | None

	Pass True if the game message should not be automatically edited to include the current scoreboard

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
chat_id: int | None

	Required if inline_message_id is not specified. Unique identifier for the target chat

	
message_id: int | None

	Required if inline_message_id is not specified. Identifier of the sent message

	
inline_message_id: str | None

	Required if chat_id and message_id are not specified. Identifier of the inline message

Usage

As bot method

result: Union[Message, bool] = await bot.set_game_score(...)

Method as object

Imports:

	from aiogram.methods.set_game_score import SetGameScore

	alias: from aiogram.methods import SetGameScore

With specific bot

result: Union[Message, bool] = await bot(SetGameScore(...))

As reply into Webhook in handler

return SetGameScore(...)

answerPreCheckoutQuery

Returns: bool

	
class aiogram.methods.answer_pre_checkout_query.AnswerPreCheckoutQuery(*, pre_checkout_query_id: str, ok: bool, error_message: str | None = None, **extra_data: Any)

	Once the user has confirmed their payment and shipping details, the Bot API sends the final confirmation in the form of an aiogram.types.update.Update with the field pre_checkout_query. Use this method to respond to such pre-checkout queries. On success, True is returned. Note: The Bot API must receive an answer within 10 seconds after the pre-checkout query was sent.

Source: https://core.telegram.org/bots/api#answerprecheckoutquery

	
pre_checkout_query_id: str

	Unique identifier for the query to be answered

	
ok: bool

	Specify True if everything is alright (goods are available, etc.) and the bot is ready to proceed with the order. Use False if there are any problems.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
error_message: str | None

	Required if ok is False. Error message in human readable form that explains the reason for failure to proceed with the checkout (e.g. “Sorry, somebody just bought the last of our amazing black T-shirts while you were busy filling out your payment details. Please choose a different color or garment!”). Telegram will display this message to the user.

Usage

As bot method

result: bool = await bot.answer_pre_checkout_query(...)

Method as object

Imports:

	from aiogram.methods.answer_pre_checkout_query import AnswerPreCheckoutQuery

	alias: from aiogram.methods import AnswerPreCheckoutQuery

With specific bot

result: bool = await bot(AnswerPreCheckoutQuery(...))

As reply into Webhook in handler

return AnswerPreCheckoutQuery(...)

As shortcut from received object

	aiogram.types.pre_checkout_query.PreCheckoutQuery.answer()

answerShippingQuery

Returns: bool

	
class aiogram.methods.answer_shipping_query.AnswerShippingQuery(*, shipping_query_id: str, ok: bool, shipping_options: List[ShippingOption] | None = None, error_message: str | None = None, **extra_data: Any)

	If you sent an invoice requesting a shipping address and the parameter is_flexible was specified, the Bot API will send an aiogram.types.update.Update with a shipping_query field to the bot. Use this method to reply to shipping queries. On success, True is returned.

Source: https://core.telegram.org/bots/api#answershippingquery

	
shipping_query_id: str

	Unique identifier for the query to be answered

	
ok: bool

	Pass True if delivery to the specified address is possible and False if there are any problems (for example, if delivery to the specified address is not possible)

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
shipping_options: List[ShippingOption] | None

	Required if ok is True. A JSON-serialized array of available shipping options.

	
error_message: str | None

	Required if ok is False. Error message in human readable form that explains why it is impossible to complete the order (e.g. “Sorry, delivery to your desired address is unavailable’). Telegram will display this message to the user.

Usage

As bot method

result: bool = await bot.answer_shipping_query(...)

Method as object

Imports:

	from aiogram.methods.answer_shipping_query import AnswerShippingQuery

	alias: from aiogram.methods import AnswerShippingQuery

With specific bot

result: bool = await bot(AnswerShippingQuery(...))

As reply into Webhook in handler

return AnswerShippingQuery(...)

As shortcut from received object

	aiogram.types.shipping_query.ShippingQuery.answer()

createInvoiceLink

Returns: str

	
class aiogram.methods.create_invoice_link.CreateInvoiceLink(*, title: str, description: str, payload: str, provider_token: str, currency: str, prices: List[LabeledPrice], max_tip_amount: int | None = None, suggested_tip_amounts: List[int] | None = None, provider_data: str | None = None, photo_url: str | None = None, photo_size: int | None = None, photo_width: int | None = None, photo_height: int | None = None, need_name: bool | None = None, need_phone_number: bool | None = None, need_email: bool | None = None, need_shipping_address: bool | None = None, send_phone_number_to_provider: bool | None = None, send_email_to_provider: bool | None = None, is_flexible: bool | None = None, **extra_data: Any)

	Use this method to create a link for an invoice. Returns the created invoice link as String on success.

Source: https://core.telegram.org/bots/api#createinvoicelink

	
title: str

	Product name, 1-32 characters

	
description: str

	Product description, 1-255 characters

	
payload: str

	Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user, use for your internal processes.

	
provider_token: str

	Payment provider token, obtained via BotFather [https://t.me/botfather]

	
currency: str

	Three-letter ISO 4217 currency code, see more on currencies [https://core.telegram.org/bots/payments#supported-currencies]

	
prices: List[LabeledPrice]

	Price breakdown, a JSON-serialized list of components (e.g. product price, tax, discount, delivery cost, delivery tax, bonus, etc.)

	
max_tip_amount: int | None

	The maximum accepted amount for tips in the smallest units of the currency (integer, not float/double). For example, for a maximum tip of US$ 1.45 pass max_tip_amount = 145. See the exp parameter in currencies.json [https://core.telegram.org/bots/payments/currencies.json], it shows the number of digits past the decimal point for each currency (2 for the majority of currencies). Defaults to 0

	
suggested_tip_amounts: List[int] | None

	A JSON-serialized array of suggested amounts of tips in the smallest units of the currency (integer, not float/double). At most 4 suggested tip amounts can be specified. The suggested tip amounts must be positive, passed in a strictly increased order and must not exceed max_tip_amount.

	
provider_data: str | None

	JSON-serialized data about the invoice, which will be shared with the payment provider. A detailed description of required fields should be provided by the payment provider.

	
photo_url: str | None

	URL of the product photo for the invoice. Can be a photo of the goods or a marketing image for a service.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
photo_size: int | None

	Photo size in bytes

	
photo_width: int | None

	Photo width

	
photo_height: int | None

	Photo height

	
need_name: bool | None

	Pass True if you require the user’s full name to complete the order

	
need_phone_number: bool | None

	Pass True if you require the user’s phone number to complete the order

	
need_email: bool | None

	Pass True if you require the user’s email address to complete the order

	
need_shipping_address: bool | None

	Pass True if you require the user’s shipping address to complete the order

	
send_phone_number_to_provider: bool | None

	Pass True if the user’s phone number should be sent to the provider

	
send_email_to_provider: bool | None

	Pass True if the user’s email address should be sent to the provider

	
is_flexible: bool | None

	Pass True if the final price depends on the shipping method

Usage

As bot method

result: str = await bot.create_invoice_link(...)

Method as object

Imports:

	from aiogram.methods.create_invoice_link import CreateInvoiceLink

	alias: from aiogram.methods import CreateInvoiceLink

With specific bot

result: str = await bot(CreateInvoiceLink(...))

As reply into Webhook in handler

return CreateInvoiceLink(...)

sendInvoice

Returns: Message

	
class aiogram.methods.send_invoice.SendInvoice(*, chat_id: int | str, title: str, description: str, payload: str, provider_token: str, currency: str, prices: ~typing.List[~aiogram.types.labeled_price.LabeledPrice], message_thread_id: int | None = None, max_tip_amount: int | None = None, suggested_tip_amounts: ~typing.List[int] | None = None, start_parameter: str | None = None, provider_data: str | None = None, photo_url: str | None = None, photo_size: int | None = None, photo_width: int | None = None, photo_height: int | None = None, need_name: bool | None = None, need_phone_number: bool | None = None, need_email: bool | None = None, need_shipping_address: bool | None = None, send_phone_number_to_provider: bool | None = None, send_email_to_provider: bool | None = None, is_flexible: bool | None = None, disable_notification: bool | None = None, protect_content: bool | ~aiogram.client.default.Default | None = <Default('protect_content')>, reply_parameters: ~aiogram.types.reply_parameters.ReplyParameters | None = None, reply_markup: ~aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup | None = None, allow_sending_without_reply: bool | None = None, reply_to_message_id: int | None = None, **extra_data: ~typing.Any)

	Use this method to send invoices. On success, the sent aiogram.types.message.Message is returned.

Source: https://core.telegram.org/bots/api#sendinvoice

	
chat_id: int | str

	Unique identifier for the target chat or username of the target channel (in the format @channelusername)

	
title: str

	Product name, 1-32 characters

	
description: str

	Product description, 1-255 characters

	
payload: str

	Bot-defined invoice payload, 1-128 bytes. This will not be displayed to the user, use for your internal processes.

	
provider_token: str

	Payment provider token, obtained via @BotFather [https://t.me/botfather]

	
currency: str

	Three-letter ISO 4217 currency code, see more on currencies [https://core.telegram.org/bots/payments#supported-currencies]

	
prices: List[LabeledPrice]

	Price breakdown, a JSON-serialized list of components (e.g. product price, tax, discount, delivery cost, delivery tax, bonus, etc.)

	
message_thread_id: int | None

	Unique identifier for the target message thread (topic) of the forum; for forum supergroups only

	
max_tip_amount: int | None

	The maximum accepted amount for tips in the smallest units of the currency (integer, not float/double). For example, for a maximum tip of US$ 1.45 pass max_tip_amount = 145. See the exp parameter in currencies.json [https://core.telegram.org/bots/payments/currencies.json], it shows the number of digits past the decimal point for each currency (2 for the majority of currencies). Defaults to 0

	
suggested_tip_amounts: List[int] | None

	A JSON-serialized array of suggested amounts of tips in the smallest units of the currency (integer, not float/double). At most 4 suggested tip amounts can be specified. The suggested tip amounts must be positive, passed in a strictly increased order and must not exceed max_tip_amount.

	
start_parameter: str | None

	Unique deep-linking parameter. If left empty, forwarded copies of the sent message will have a Pay button, allowing multiple users to pay directly from the forwarded message, using the same invoice. If non-empty, forwarded copies of the sent message will have a URL button with a deep link to the bot (instead of a Pay button), with the value used as the start parameter

	
provider_data: str | None

	JSON-serialized data about the invoice, which will be shared with the payment provider. A detailed description of required fields should be provided by the payment provider.

	
photo_url: str | None

	URL of the product photo for the invoice. Can be a photo of the goods or a marketing image for a service. People like it better when they see what they are paying for.

	
photo_size: int | None

	Photo size in bytes

	
photo_width: int | None

	Photo width

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
photo_height: int | None

	Photo height

	
need_name: bool | None

	Pass True if you require the user’s full name to complete the order

	
need_phone_number: bool | None

	Pass True if you require the user’s phone number to complete the order

	
need_email: bool | None

	Pass True if you require the user’s email address to complete the order

	
need_shipping_address: bool | None

	Pass True if you require the user’s shipping address to complete the order

	
send_phone_number_to_provider: bool | None

	Pass True if the user’s phone number should be sent to provider

	
send_email_to_provider: bool | None

	Pass True if the user’s email address should be sent to provider

	
is_flexible: bool | None

	Pass True if the final price depends on the shipping method

	
disable_notification: bool | None

	Sends the message silently [https://telegram.org/blog/channels-2-0#silent-messages]. Users will receive a notification with no sound.

	
protect_content: bool | Default | None

	Protects the contents of the sent message from forwarding and saving

	
reply_parameters: ReplyParameters | None

	Description of the message to reply to

	
reply_markup: InlineKeyboardMarkup | None

	A JSON-serialized object for an inline keyboard [https://core.telegram.org/bots/features#inline-keyboards]. If empty, one ‘Pay total price’ button will be shown. If not empty, the first button must be a Pay button.

	
allow_sending_without_reply: bool | None

	Pass True if the message should be sent even if the specified replied-to message is not found

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

	
reply_to_message_id: int | None

	If the message is a reply, ID of the original message

Deprecated since version API:7.0: https://core.telegram.org/bots/api-changelog#december-29-2023

Usage

As bot method

result: Message = await bot.send_invoice(...)

Method as object

Imports:

	from aiogram.methods.send_invoice import SendInvoice

	alias: from aiogram.methods import SendInvoice

With specific bot

result: Message = await bot(SendInvoice(...))

As reply into Webhook in handler

return SendInvoice(...)

As shortcut from received object

	aiogram.types.message.Message.answer_invoice()

	aiogram.types.message.Message.reply_invoice()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_invoice()

	aiogram.types.chat_join_request.ChatJoinRequest.answer_invoice_pm()

	aiogram.types.chat_member_updated.ChatMemberUpdated.answer_invoice()

deleteWebhook

Returns: bool

	
class aiogram.methods.delete_webhook.DeleteWebhook(*, drop_pending_updates: bool | None = None, **extra_data: Any)

	Use this method to remove webhook integration if you decide to switch back to aiogram.methods.get_updates.GetUpdates. Returns True on success.

Source: https://core.telegram.org/bots/api#deletewebhook

	
drop_pending_updates: bool | None

	Pass True to drop all pending updates

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: bool = await bot.delete_webhook(...)

Method as object

Imports:

	from aiogram.methods.delete_webhook import DeleteWebhook

	alias: from aiogram.methods import DeleteWebhook

With specific bot

result: bool = await bot(DeleteWebhook(...))

As reply into Webhook in handler

return DeleteWebhook(...)

getUpdates

Returns: List[Update]

	
class aiogram.methods.get_updates.GetUpdates(*, offset: int | None = None, limit: int | None = None, timeout: int | None = None, allowed_updates: List[str] | None = None, **extra_data: Any)

	Use this method to receive incoming updates using long polling (wiki [https://en.wikipedia.org/wiki/Push_technology#Long_polling]). Returns an Array of aiogram.types.update.Update objects.

Notes

1. This method will not work if an outgoing webhook is set up.

2. In order to avoid getting duplicate updates, recalculate offset after each server response.

Source: https://core.telegram.org/bots/api#getupdates

	
offset: int | None

	Identifier of the first update to be returned. Must be greater by one than the highest among the identifiers of previously received updates. By default, updates starting with the earliest unconfirmed update are returned. An update is considered confirmed as soon as aiogram.methods.get_updates.GetUpdates is called with an offset higher than its update_id. The negative offset can be specified to retrieve updates starting from -offset update from the end of the updates queue. All previous updates will be forgotten.

	
limit: int | None

	Limits the number of updates to be retrieved. Values between 1-100 are accepted. Defaults to 100.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
timeout: int | None

	Timeout in seconds for long polling. Defaults to 0, i.e. usual short polling. Should be positive, short polling should be used for testing purposes only.

	
allowed_updates: List[str] | None

	A JSON-serialized list of the update types you want your bot to receive. For example, specify ["message", "edited_channel_post", "callback_query"] to only receive updates of these types. See aiogram.types.update.Update for a complete list of available update types. Specify an empty list to receive all update types except chat_member, message_reaction, and message_reaction_count (default). If not specified, the previous setting will be used.

Usage

As bot method

result: List[Update] = await bot.get_updates(...)

Method as object

Imports:

	from aiogram.methods.get_updates import GetUpdates

	alias: from aiogram.methods import GetUpdates

With specific bot

result: List[Update] = await bot(GetUpdates(...))

getWebhookInfo

Returns: WebhookInfo

	
class aiogram.methods.get_webhook_info.GetWebhookInfo(**extra_data: Any)

	Use this method to get current webhook status. Requires no parameters. On success, returns a aiogram.types.webhook_info.WebhookInfo object. If the bot is using aiogram.methods.get_updates.GetUpdates, will return an object with the url field empty.

Source: https://core.telegram.org/bots/api#getwebhookinfo

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

Usage

As bot method

result: WebhookInfo = await bot.get_webhook_info(...)

Method as object

Imports:

	from aiogram.methods.get_webhook_info import GetWebhookInfo

	alias: from aiogram.methods import GetWebhookInfo

With specific bot

result: WebhookInfo = await bot(GetWebhookInfo(...))

setWebhook

Returns: bool

	
class aiogram.methods.set_webhook.SetWebhook(*, url: str, certificate: InputFile | None = None, ip_address: str | None = None, max_connections: int | None = None, allowed_updates: List[str] | None = None, drop_pending_updates: bool | None = None, secret_token: str | None = None, **extra_data: Any)

	Use this method to specify a URL and receive incoming updates via an outgoing webhook. Whenever there is an update for the bot, we will send an HTTPS POST request to the specified URL, containing a JSON-serialized aiogram.types.update.Update. In case of an unsuccessful request, we will give up after a reasonable amount of attempts. Returns True on success.
If you’d like to make sure that the webhook was set by you, you can specify secret data in the parameter secret_token. If specified, the request will contain a header ‘X-Telegram-Bot-Api-Secret-Token’ with the secret token as content.

Notes

1. You will not be able to receive updates using aiogram.methods.get_updates.GetUpdates for as long as an outgoing webhook is set up.

2. To use a self-signed certificate, you need to upload your public key certificate [https://core.telegram.org/bots/self-signed] using certificate parameter. Please upload as InputFile, sending a String will not work.

3. Ports currently supported for webhooks: 443, 80, 88, 8443.
If you’re having any trouble setting up webhooks, please check out this amazing guide to webhooks [https://core.telegram.org/bots/webhooks].

Source: https://core.telegram.org/bots/api#setwebhook

	
url: str

	HTTPS URL to send updates to. Use an empty string to remove webhook integration

	
certificate: InputFile | None

	Upload your public key certificate so that the root certificate in use can be checked. See our self-signed guide [https://core.telegram.org/bots/self-signed] for details.

	
ip_address: str | None

	The fixed IP address which will be used to send webhook requests instead of the IP address resolved through DNS

	
max_connections: int | None

	The maximum allowed number of simultaneous HTTPS connections to the webhook for update delivery, 1-100. Defaults to 40. Use lower values to limit the load on your bot’s server, and higher values to increase your bot’s throughput.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
allowed_updates: List[str] | None

	A JSON-serialized list of the update types you want your bot to receive. For example, specify ["message", "edited_channel_post", "callback_query"] to only receive updates of these types. See aiogram.types.update.Update for a complete list of available update types. Specify an empty list to receive all update types except chat_member, message_reaction, and message_reaction_count (default). If not specified, the previous setting will be used.

	
drop_pending_updates: bool | None

	Pass True to drop all pending updates

	
secret_token: str | None

	A secret token to be sent in a header ‘X-Telegram-Bot-Api-Secret-Token’ in every webhook request, 1-256 characters. Only characters A-Z, a-z, 0-9, _ and - are allowed. The header is useful to ensure that the request comes from a webhook set by you.

Usage

As bot method

result: bool = await bot.set_webhook(...)

Method as object

Imports:

	from aiogram.methods.set_webhook import SetWebhook

	alias: from aiogram.methods import SetWebhook

With specific bot

result: bool = await bot(SetWebhook(...))

As reply into Webhook in handler

return SetWebhook(...)

setPassportDataErrors

Returns: bool

	
class aiogram.methods.set_passport_data_errors.SetPassportDataErrors(*, user_id: int, errors: List[PassportElementErrorDataField | PassportElementErrorFrontSide | PassportElementErrorReverseSide | PassportElementErrorSelfie | PassportElementErrorFile | PassportElementErrorFiles | PassportElementErrorTranslationFile | PassportElementErrorTranslationFiles | PassportElementErrorUnspecified], **extra_data: Any)

	Informs a user that some of the Telegram Passport elements they provided contains errors. The user will not be able to re-submit their Passport to you until the errors are fixed (the contents of the field for which you returned the error must change). Returns True on success.
Use this if the data submitted by the user doesn’t satisfy the standards your service requires for any reason. For example, if a birthday date seems invalid, a submitted document is blurry, a scan shows evidence of tampering, etc. Supply some details in the error message to make sure the user knows how to correct the issues.

Source: https://core.telegram.org/bots/api#setpassportdataerrors

	
user_id: int

	User identifier

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
errors: List[PassportElementErrorDataField | PassportElementErrorFrontSide | PassportElementErrorReverseSide | PassportElementErrorSelfie | PassportElementErrorFile | PassportElementErrorFiles | PassportElementErrorTranslationFile | PassportElementErrorTranslationFiles | PassportElementErrorUnspecified]

	A JSON-serialized array describing the errors

Usage

As bot method

result: bool = await bot.set_passport_data_errors(...)

Method as object

Imports:

	from aiogram.methods.set_passport_data_errors import SetPassportDataErrors

	alias: from aiogram.methods import SetPassportDataErrors

With specific bot

result: bool = await bot(SetPassportDataErrors(...))

As reply into Webhook in handler

return SetPassportDataErrors(...)

Enums

Here is list of all available enums:

	BotCommandScopeType

	ChatAction

	ChatBoostSourceType

	ChatMemberStatus

	ChatType

	ContentType

	Currency

	DiceEmoji

	EncryptedPassportElement

	InlineQueryResultType

	InputMediaType

	KeyboardButtonPollTypeType

	MaskPositionPoint

	MenuButtonType

	MessageEntityType

	MessageOriginType

	ParseMode

	PassportElementErrorType

	PollType

	ReactionTypeType

	StickerFormat

	StickerType

	TopicIconColor

	UpdateType

BotCommandScopeType

	
class aiogram.enums.bot_command_scope_type.BotCommandScopeType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	This object represents the scope to which bot commands are applied.

Source: https://core.telegram.org/bots/api#botcommandscope

	
DEFAULT = 'default'

	

	
ALL_PRIVATE_CHATS = 'all_private_chats'

	

	
ALL_GROUP_CHATS = 'all_group_chats'

	

	
ALL_CHAT_ADMINISTRATORS = 'all_chat_administrators'

	

	
CHAT = 'chat'

	

	
CHAT_ADMINISTRATORS = 'chat_administrators'

	

	
CHAT_MEMBER = 'chat_member'

	

ChatAction

	
class aiogram.enums.chat_action.ChatAction(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	This object represents bot actions.

Choose one, depending on what the user is about to receive:

	typing for text messages,

	upload_photo for photos,

	record_video or upload_video for videos,

	record_voice or upload_voice for voice notes,

	upload_document for general files,

	choose_sticker for stickers,

	find_location for location data,

	record_video_note or upload_video_note for video notes.

Source: https://core.telegram.org/bots/api#sendchataction

	
TYPING = 'typing'

	

	
UPLOAD_PHOTO = 'upload_photo'

	

	
RECORD_VIDEO = 'record_video'

	

	
UPLOAD_VIDEO = 'upload_video'

	

	
RECORD_VOICE = 'record_voice'

	

	
UPLOAD_VOICE = 'upload_voice'

	

	
UPLOAD_DOCUMENT = 'upload_document'

	

	
CHOOSE_STICKER = 'choose_sticker'

	

	
FIND_LOCATION = 'find_location'

	

	
RECORD_VIDEO_NOTE = 'record_video_note'

	

	
UPLOAD_VIDEO_NOTE = 'upload_video_note'

	

ChatBoostSourceType

	
class aiogram.enums.chat_boost_source_type.ChatBoostSourceType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	This object represents a type of chat boost source.

Source: https://core.telegram.org/bots/api#chatboostsource

	
PREMIUM = 'premium'

	

	
GIFT_CODE = 'gift_code'

	

	
GIVEAWAY = 'giveaway'

	

ChatMemberStatus

	
class aiogram.enums.chat_member_status.ChatMemberStatus(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	This object represents chat member status.

Source: https://core.telegram.org/bots/api#chatmember

	
CREATOR = 'creator'

	

	
ADMINISTRATOR = 'administrator'

	

	
MEMBER = 'member'

	

	
RESTRICTED = 'restricted'

	

	
LEFT = 'left'

	

	
KICKED = 'kicked'

	

ChatType

	
class aiogram.enums.chat_type.ChatType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	This object represents a chat type

Source: https://core.telegram.org/bots/api#chat

	
SENDER = 'sender'

	

	
PRIVATE = 'private'

	

	
GROUP = 'group'

	

	
SUPERGROUP = 'supergroup'

	

	
CHANNEL = 'channel'

	

ContentType

	
class aiogram.enums.content_type.ContentType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	This object represents a type of content in message

	
UNKNOWN = 'unknown'

	

	
ANY = 'any'

	

	
TEXT = 'text'

	

	
ANIMATION = 'animation'

	

	
AUDIO = 'audio'

	

	
DOCUMENT = 'document'

	

	
PHOTO = 'photo'

	

	
STICKER = 'sticker'

	

	
STORY = 'story'

	

	
VIDEO = 'video'

	

	
VIDEO_NOTE = 'video_note'

	

	
VOICE = 'voice'

	

	
CONTACT = 'contact'

	

	
DICE = 'dice'

	

	
GAME = 'game'

	

	
POLL = 'poll'

	

	
VENUE = 'venue'

	

	
LOCATION = 'location'

	

	
NEW_CHAT_MEMBERS = 'new_chat_members'

	

	
LEFT_CHAT_MEMBER = 'left_chat_member'

	

	
NEW_CHAT_TITLE = 'new_chat_title'

	

	
NEW_CHAT_PHOTO = 'new_chat_photo'

	

	
DELETE_CHAT_PHOTO = 'delete_chat_photo'

	

	
GROUP_CHAT_CREATED = 'group_chat_created'

	

	
SUPERGROUP_CHAT_CREATED = 'supergroup_chat_created'

	

	
CHANNEL_CHAT_CREATED = 'channel_chat_created'

	

	
MESSAGE_AUTO_DELETE_TIMER_CHANGED = 'message_auto_delete_timer_changed'

	

	
MIGRATE_TO_CHAT_ID = 'migrate_to_chat_id'

	

	
MIGRATE_FROM_CHAT_ID = 'migrate_from_chat_id'

	

	
PINNED_MESSAGE = 'pinned_message'

	

	
INVOICE = 'invoice'

	

	
SUCCESSFUL_PAYMENT = 'successful_payment'

	

	
USERS_SHARED = 'users_shared'

	

	
CHAT_SHARED = 'chat_shared'

	

	
CONNECTED_WEBSITE = 'connected_website'

	

	
WRITE_ACCESS_ALLOWED = 'write_access_allowed'

	

	
PASSPORT_DATA = 'passport_data'

	

	
PROXIMITY_ALERT_TRIGGERED = 'proximity_alert_triggered'

	

	
BOOST_ADDED = 'boost_added'

	

	
CHAT_BACKGROUND_SET = 'chat_background_set'

	

	
FORUM_TOPIC_CREATED = 'forum_topic_created'

	

	
FORUM_TOPIC_EDITED = 'forum_topic_edited'

	

	
FORUM_TOPIC_CLOSED = 'forum_topic_closed'

	

	
FORUM_TOPIC_REOPENED = 'forum_topic_reopened'

	

	
GENERAL_FORUM_TOPIC_HIDDEN = 'general_forum_topic_hidden'

	

	
GENERAL_FORUM_TOPIC_UNHIDDEN = 'general_forum_topic_unhidden'

	

	
GIVEAWAY_CREATED = 'giveaway_created'

	

	
GIVEAWAY = 'giveaway'

	

	
GIVEAWAY_WINNERS = 'giveaway_winners'

	

	
GIVEAWAY_COMPLETED = 'giveaway_completed'

	

	
VIDEO_CHAT_SCHEDULED = 'video_chat_scheduled'

	

	
VIDEO_CHAT_STARTED = 'video_chat_started'

	

	
VIDEO_CHAT_ENDED = 'video_chat_ended'

	

	
VIDEO_CHAT_PARTICIPANTS_INVITED = 'video_chat_participants_invited'

	

	
WEB_APP_DATA = 'web_app_data'

	

	
USER_SHARED = 'user_shared'

	

Currency

	
class aiogram.enums.currency.Currency(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Currencies supported by Telegram Bot API

Source: https://core.telegram.org/bots/payments#supported-currencies

	
AED = 'AED'

	

	
AFN = 'AFN'

	

	
ALL = 'ALL'

	

	
AMD = 'AMD'

	

	
ARS = 'ARS'

	

	
AUD = 'AUD'

	

	
AZN = 'AZN'

	

	
BAM = 'BAM'

	

	
BDT = 'BDT'

	

	
BGN = 'BGN'

	

	
BND = 'BND'

	

	
BOB = 'BOB'

	

	
BRL = 'BRL'

	

	
BYN = 'BYN'

	

	
CAD = 'CAD'

	

	
CHF = 'CHF'

	

	
CLP = 'CLP'

	

	
CNY = 'CNY'

	

	
COP = 'COP'

	

	
CRC = 'CRC'

	

	
CZK = 'CZK'

	

	
DKK = 'DKK'

	

	
DOP = 'DOP'

	

	
DZD = 'DZD'

	

	
EGP = 'EGP'

	

	
ETB = 'ETB'

	

	
EUR = 'EUR'

	

	
GBP = 'GBP'

	

	
GEL = 'GEL'

	

	
GTQ = 'GTQ'

	

	
HKD = 'HKD'

	

	
HNL = 'HNL'

	

	
HRK = 'HRK'

	

	
HUF = 'HUF'

	

	
IDR = 'IDR'

	

	
ILS = 'ILS'

	

	
INR = 'INR'

	

	
ISK = 'ISK'

	

	
JMD = 'JMD'

	

	
JPY = 'JPY'

	

	
KES = 'KES'

	

	
KGS = 'KGS'

	

	
KRW = 'KRW'

	

	
KZT = 'KZT'

	

	
LBP = 'LBP'

	

	
LKR = 'LKR'

	

	
MAD = 'MAD'

	

	
MDL = 'MDL'

	

	
MNT = 'MNT'

	

	
MUR = 'MUR'

	

	
MVR = 'MVR'

	

	
MXN = 'MXN'

	

	
MYR = 'MYR'

	

	
MZN = 'MZN'

	

	
NGN = 'NGN'

	

	
NIO = 'NIO'

	

	
NOK = 'NOK'

	

	
NPR = 'NPR'

	

	
NZD = 'NZD'

	

	
PAB = 'PAB'

	

	
PEN = 'PEN'

	

	
PHP = 'PHP'

	

	
PKR = 'PKR'

	

	
PLN = 'PLN'

	

	
PYG = 'PYG'

	

	
QAR = 'QAR'

	

	
RON = 'RON'

	

	
RSD = 'RSD'

	

	
RUB = 'RUB'

	

	
SAR = 'SAR'

	

	
SEK = 'SEK'

	

	
SGD = 'SGD'

	

	
THB = 'THB'

	

	
TJS = 'TJS'

	

	
TRY = 'TRY'

	

	
TTD = 'TTD'

	

	
TWD = 'TWD'

	

	
TZS = 'TZS'

	

	
UAH = 'UAH'

	

	
UGX = 'UGX'

	

	
USD = 'USD'

	

	
UYU = 'UYU'

	

	
UZS = 'UZS'

	

	
VND = 'VND'

	

	
YER = 'YER'

	

	
ZAR = 'ZAR'

	

DiceEmoji

	
class aiogram.enums.dice_emoji.DiceEmoji(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Emoji on which the dice throw animation is based

Source: https://core.telegram.org/bots/api#dice

	
DICE = '🎲'

	

	
DART = '🎯'

	

	
BASKETBALL = '🏀'

	

	
FOOTBALL = '⚽'

	

	
SLOT_MACHINE = '🎰'

	

	
BOWLING = '🎳'

	

EncryptedPassportElement

	
class aiogram.enums.encrypted_passport_element.EncryptedPassportElement(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	This object represents type of encrypted passport element.

Source: https://core.telegram.org/bots/api#encryptedpassportelement

	
PERSONAL_DETAILS = 'personal_details'

	

	
PASSPORT = 'passport'

	

	
DRIVER_LICENSE = 'driver_license'

	

	
IDENTITY_CARD = 'identity_card'

	

	
INTERNAL_PASSPORT = 'internal_passport'

	

	
ADDRESS = 'address'

	

	
UTILITY_BILL = 'utility_bill'

	

	
BANK_STATEMENT = 'bank_statement'

	

	
RENTAL_AGREEMENT = 'rental_agreement'

	

	
PASSPORT_REGISTRATION = 'passport_registration'

	

	
TEMPORARY_REGISTRATION = 'temporary_registration'

	

	
PHONE_NUMBER = 'phone_number'

	

	
EMAIL = 'email'

	

InlineQueryResultType

	
class aiogram.enums.inline_query_result_type.InlineQueryResultType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Type of inline query result

Source: https://core.telegram.org/bots/api#inlinequeryresult

	
AUDIO = 'audio'

	

	
DOCUMENT = 'document'

	

	
GIF = 'gif'

	

	
MPEG4_GIF = 'mpeg4_gif'

	

	
PHOTO = 'photo'

	

	
STICKER = 'sticker'

	

	
VIDEO = 'video'

	

	
VOICE = 'voice'

	

	
ARTICLE = 'article'

	

	
CONTACT = 'contact'

	

	
GAME = 'game'

	

	
LOCATION = 'location'

	

	
VENUE = 'venue'

	

InputMediaType

	
class aiogram.enums.input_media_type.InputMediaType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	This object represents input media type

Source: https://core.telegram.org/bots/api#inputmedia

	
ANIMATION = 'animation'

	

	
AUDIO = 'audio'

	

	
DOCUMENT = 'document'

	

	
PHOTO = 'photo'

	

	
VIDEO = 'video'

	

KeyboardButtonPollTypeType

	
class aiogram.enums.keyboard_button_poll_type_type.KeyboardButtonPollTypeType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	This object represents type of a poll, which is allowed to be created and sent when the corresponding button is pressed.

Source: https://core.telegram.org/bots/api#keyboardbuttonpolltype

	
QUIZ = 'quiz'

	

	
REGULAR = 'regular'

	

MaskPositionPoint

	
class aiogram.enums.mask_position_point.MaskPositionPoint(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	The part of the face relative to which the mask should be placed.

Source: https://core.telegram.org/bots/api#maskposition

	
FOREHEAD = 'forehead'

	

	
EYES = 'eyes'

	

	
MOUTH = 'mouth'

	

	
CHIN = 'chin'

	

MenuButtonType

	
class aiogram.enums.menu_button_type.MenuButtonType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	This object represents an type of Menu button

Source: https://core.telegram.org/bots/api#menubuttondefault

	
DEFAULT = 'default'

	

	
COMMANDS = 'commands'

	

	
WEB_APP = 'web_app'

	

MessageEntityType

	
class aiogram.enums.message_entity_type.MessageEntityType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	This object represents type of message entity

Source: https://core.telegram.org/bots/api#messageentity

	
MENTION = 'mention'

	

	
HASHTAG = 'hashtag'

	

	
CASHTAG = 'cashtag'

	

	
BOT_COMMAND = 'bot_command'

	

	
URL = 'url'

	

	
EMAIL = 'email'

	

	
PHONE_NUMBER = 'phone_number'

	

	
BOLD = 'bold'

	

	
ITALIC = 'italic'

	

	
UNDERLINE = 'underline'

	

	
STRIKETHROUGH = 'strikethrough'

	

	
SPOILER = 'spoiler'

	

	
BLOCKQUOTE = 'blockquote'

	

	
CODE = 'code'

	

	
PRE = 'pre'

	

	
TEXT_LINK = 'text_link'

	

	
TEXT_MENTION = 'text_mention'

	

	
CUSTOM_EMOJI = 'custom_emoji'

	

MessageOriginType

	
class aiogram.enums.message_origin_type.MessageOriginType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	This object represents origin of a message.

Source: https://core.telegram.org/bots/api#messageorigin

	
USER = 'user'

	

	
HIDDEN_USER = 'hidden_user'

	

	
CHAT = 'chat'

	

	
CHANNEL = 'channel'

	

ParseMode

	
class aiogram.enums.parse_mode.ParseMode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Formatting options

Source: https://core.telegram.org/bots/api#formatting-options

	
MARKDOWN_V2 = 'MarkdownV2'

	

	
MARKDOWN = 'Markdown'

	

	
HTML = 'HTML'

	

PassportElementErrorType

	
class aiogram.enums.passport_element_error_type.PassportElementErrorType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	This object represents a passport element error type.

Source: https://core.telegram.org/bots/api#passportelementerror

	
DATA = 'data'

	

	
FRONT_SIDE = 'front_side'

	

	
REVERSE_SIDE = 'reverse_side'

	

	
SELFIE = 'selfie'

	

	
FILE = 'file'

	

	
FILES = 'files'

	

	
TRANSLATION_FILE = 'translation_file'

	

	
TRANSLATION_FILES = 'translation_files'

	

	
UNSPECIFIED = 'unspecified'

	

PollType

	
class aiogram.enums.poll_type.PollType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	This object represents poll type

Source: https://core.telegram.org/bots/api#poll

	
REGULAR = 'regular'

	

	
QUIZ = 'quiz'

	

ReactionTypeType

	
class aiogram.enums.reaction_type_type.ReactionTypeType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	This object represents reaction type.

Source: https://core.telegram.org/bots/api#reactiontype

	
EMOJI = 'emoji'

	

	
CUSTOM_EMOJI = 'custom_emoji'

	

StickerFormat

	
class aiogram.enums.sticker_format.StickerFormat(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Format of the sticker

Source: https://core.telegram.org/bots/api#createnewstickerset

	
STATIC = 'static'

	

	
ANIMATED = 'animated'

	

	
VIDEO = 'video'

	

StickerType

	
class aiogram.enums.sticker_type.StickerType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	The part of the face relative to which the mask should be placed.

Source: https://core.telegram.org/bots/api#maskposition

	
REGULAR = 'regular'

	

	
MASK = 'mask'

	

	
CUSTOM_EMOJI = 'custom_emoji'

	

TopicIconColor

	
class aiogram.enums.topic_icon_color.TopicIconColor(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Color of the topic icon in RGB format.

Source: https://github.com/telegramdesktop/tdesktop/blob/991fe491c5ae62705d77aa8fdd44a79caf639c45/Telegram/SourceFiles/data/data_forum_topic.cpp#L51-L56

	
BLUE = 7322096

	

	
YELLOW = 16766590

	

	
VIOLET = 13338331

	

	
GREEN = 9367192

	

	
ROSE = 16749490

	

	
RED = 16478047

	

UpdateType

	
class aiogram.enums.update_type.UpdateType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	This object represents the complete list of allowed update types

Source: https://core.telegram.org/bots/api#update

	
MESSAGE = 'message'

	

	
EDITED_MESSAGE = 'edited_message'

	

	
CHANNEL_POST = 'channel_post'

	

	
EDITED_CHANNEL_POST = 'edited_channel_post'

	

	
BUSINESS_CONNECTION = 'business_connection'

	

	
BUSINESS_MESSAGE = 'business_message'

	

	
EDITED_BUSINESS_MESSAGE = 'edited_business_message'

	

	
DELETED_BUSINESS_MESSAGES = 'deleted_business_messages'

	

	
MESSAGE_REACTION = 'message_reaction'

	

	
MESSAGE_REACTION_COUNT = 'message_reaction_count'

	

	
INLINE_QUERY = 'inline_query'

	

	
CHOSEN_INLINE_RESULT = 'chosen_inline_result'

	

	
CALLBACK_QUERY = 'callback_query'

	

	
SHIPPING_QUERY = 'shipping_query'

	

	
PRE_CHECKOUT_QUERY = 'pre_checkout_query'

	

	
POLL = 'poll'

	

	
POLL_ANSWER = 'poll_answer'

	

	
MY_CHAT_MEMBER = 'my_chat_member'

	

	
CHAT_MEMBER = 'chat_member'

	

	
CHAT_JOIN_REQUEST = 'chat_join_request'

	

	
CHAT_BOOST = 'chat_boost'

	

	
REMOVED_CHAT_BOOST = 'removed_chat_boost'

	

How to download file?

Download file manually

First, you must get the file_id of the file you want to download.
Information about files sent to the bot is contained in Message.

For example, download the document that came to the bot.

file_id = message.document.file_id

Then use the getFile method to get file_path.

file = await bot.get_file(file_id)
file_path = file.file_path

After that, use the download_file method from the bot object.

download_file(…)

Download file by file_path to destination.

If you want to automatically create destination (io.BytesIO) use default
value of destination and handle result of this method.

	
async Bot.download_file(file_path: str, destination: BinaryIO | Path | str | None = None, timeout: int = 30, chunk_size: int = 65536, seek: bool = True) → BinaryIO | None

	Download file by file_path to destination.

If you want to automatically create destination (io.BytesIO) use default
value of destination and handle result of this method.

	Parameters:

	
	file_path – File path on Telegram server (You can get it from aiogram.types.File)

	destination – Filename, file path or instance of io.IOBase. For e.g. io.BytesIO, defaults to None

	timeout – Total timeout in seconds, defaults to 30

	chunk_size – File chunks size, defaults to 64 kb

	seek – Go to start of file when downloading is finished. Used only for destination with typing.BinaryIO type, defaults to True

There are two options where you can download the file: to disk or to binary I/O object.

Download file to disk

To download file to disk, you must specify the file name or path where to download the file.
In this case, the function will return nothing.

await bot.download_file(file_path, "text.txt")

Download file to binary I/O object

To download file to binary I/O object, you must specify an object with the
typing.BinaryIO type or use the default (None) value.

In the first case, the function will return your object:

my_object = MyBinaryIO()
result: MyBinaryIO = await bot.download_file(file_path, my_object)
print(result is my_object) # True

If you leave the default value, an io.BytesIO object will be created and returned.

result: io.BytesIO = await bot.download_file(file_path)

Download file in short way

Getting file_path manually every time is boring, so you should use the download method.

download(…)

Download file by file_id or Downloadable object to destination.

If you want to automatically create destination (io.BytesIO) use default
value of destination and handle result of this method.

	
async Bot.download(file: str | Downloadable, destination: BinaryIO | Path | str | None = None, timeout: int = 30, chunk_size: int = 65536, seek: bool = True) → BinaryIO | None

	Download file by file_id or Downloadable object to destination.

If you want to automatically create destination (io.BytesIO) use default
value of destination and handle result of this method.

	Parameters:

	
	file – file_id or Downloadable object

	destination – Filename, file path or instance of io.IOBase. For e.g. io.BytesIO, defaults to None

	timeout – Total timeout in seconds, defaults to 30

	chunk_size – File chunks size, defaults to 64 kb

	seek – Go to start of file when downloading is finished. Used only for destination with typing.BinaryIO type, defaults to True

It differs from download_file only in that it accepts file_id
or an Downloadable object (object that contains the file_id attribute) instead of file_path.

You can download a file to disk or to a binary I/O object in the same way.

Example:

document = message.document
await bot.download(document)

How to upload file?

As says official Telegram Bot API documentation [https://core.telegram.org/bots/api#sending-files]
there are three ways to send files (photos, stickers, audio, media, etc.):

If the file is already stored somewhere on the Telegram servers or file is available by the URL,
you don’t need to reupload it.

But if you need to upload a new file just use subclasses of InputFile.

Here are the three different available builtin types of input file:

	aiogram.types.input_file.FSInputFile - uploading from file system

	aiogram.types.input_file.BufferedInputFile - uploading from buffer

	aiogram.types.input_file.URLInputFile - uploading from URL

Warning

Be respectful with Telegram

Instances of InputFile are reusable.
That’s mean you can create instance of InputFile and sent this file multiple times but Telegram
does not recommend to do that and when you upload file once just save their file_id
and use it in next times.

Upload from file system

By first step you will need to import InputFile wrapper:

from aiogram.types import FSInputFile

Then you can use it:

cat = FSInputFile("cat.png")
agenda = FSInputFile("my-document.pdf", filename="agenda-2019-11-19.pdf")

	
class aiogram.types.input_file.FSInputFile(path: str | Path, filename: str | None = None, chunk_size: int = 65536)

	
	
__init__(path: str | Path, filename: str | None = None, chunk_size: int = 65536)

	Represents object for uploading files from filesystem

	Parameters:

	
	path – Path to file

	filename – Filename to be propagated to telegram.
By default, will be parsed from path

	chunk_size – Uploading chunk size

Upload from buffer

Files can be also passed from buffer
(For example you generate image using Pillow [https://pillow.readthedocs.io/en/stable/]
and you want to send it to Telegram):

Import wrapper:

from aiogram.types import BufferedInputFile

And then you can use it:

text_file = BufferedInputFile(b"Hello, world!", filename="file.txt")

	
class aiogram.types.input_file.BufferedInputFile(file: bytes, filename: str, chunk_size: int = 65536)

	
	
__init__(file: bytes, filename: str, chunk_size: int = 65536)

	Represents object for uploading files from filesystem

	Parameters:

	
	file – Bytes

	filename – Filename to be propagated to telegram.

	chunk_size – Uploading chunk size

Upload from url

If you need to upload a file from another server, but the direct link is bound to your server’s IP,
or you want to bypass native upload limits [https://core.telegram.org/bots/api#sending-files]
by URL, you can use aiogram.types.input_file.URLInputFile.

Import wrapper:

from aiogram.types import URLInputFile

And then you can use it:

image = URLInputFile(
 "https://www.python.org/static/community_logos/python-powered-h-140x182.png",
 filename="python-logo.png"
)

	
class aiogram.types.input_file.URLInputFile(url: str, headers: Dict[str, Any] | None = None, filename: str | None = None, chunk_size: int = 65536, timeout: int = 30, bot: 'Bot' | None = None)

	

Handling events

aiogram includes Dispatcher mechanism.
Dispatcher is needed for handling incoming updates from Telegram.

With dispatcher you can do:

	Handle incoming updates;

	Filter incoming events before it will be processed by specific handler;

	Modify event and related data in middlewares;

	Separate bot functionality between different handlers, modules and packages

Dispatcher is also separated into two entities - Router and Dispatcher.
Dispatcher is subclass of router and should be always is root router.

Telegram supports two ways of receiving updates:

	Webhook - you should configure your web server to receive updates from Telegram;

	Long polling - you should request updates from Telegram.

So, you can use both of them with aiogram.

	Router
	Router
	Router.__init__()

	Router.include_router()

	Router.include_routers()

	Router.resolve_used_update_types()

	Event observers
	Message

	Edited message

	Channel post

	Edited channel post

	Inline query

	Chosen inline query

	Callback query

	Shipping query

	Pre checkout query

	Poll

	Poll answer

	My chat member

	Chat member

	Chat join request

	Message reaction

	Message reaction count

	Chat boost

	Remove chat boost

	Errors

	Nested routers
	Update

	How it works?

	Dispatcher
	Dispatcher
	Dispatcher.__init__()

	Dispatcher.feed_raw_update()

	Dispatcher.feed_update()

	Dispatcher.run_polling()

	Dispatcher.start_polling()

	Dispatcher.stop_polling()

	Simple usage

	Handling updates

	Dependency injection
	How it works in aiogram

	Injecting own dependencies

	Filtering events
	Builtin filters
	Command
	Usage
	Command
	Command.__init__()

	CommandObject
	CommandObject.prefix

	CommandObject.command

	CommandObject.mention

	CommandObject.args

	CommandObject.regexp_match

	CommandObject.magic_result

	CommandObject.mentioned

	CommandObject.text

	Allowed handlers

	ChatMemberUpdated
	Usage

	Explanation
	ChatMemberUpdatedFilter
	ChatMemberUpdatedFilter.member_status_changed

	Statuses

	Status groups

	Transitions

	Allowed handlers

	Magic filters
	Usage

	Possible actions
	Exists or not None

	Equals

	Is one of

	Contains

	String startswith/endswith

	Regexp

	Custom function

	Inverting result

	Combining

	Attribute modifiers - string manipulations

	Get filter result as handler argument

	Usage in aiogram

	MagicData
	Usage

	Explanation
	MagicData
	MagicData.magic_data

	Allowed handlers

	Callback Data Factory & Filter
	CallbackData
	CallbackData.pack()

	CallbackData.unpack()

	CallbackData.filter()

	CallbackData.model_computed_fields

	Usage

	Known limitations

	Exceptions
	ExceptionTypeFilter
	ExceptionTypeFilter.exceptions

	ExceptionMessageFilter
	ExceptionMessageFilter.pattern

	Allowed handlers

	Writing own filters
	Base class for own filters
	Filter
	Filter.__call__()

	Filter.update_handler_flags()

	Own filter example

	Combining Filters
	Recommended way

	Another possible way

	Long-polling
	Example

	Webhook
	aiohttp integration
	BaseRequestHandler
	BaseRequestHandler.__init__()

	BaseRequestHandler.register()

	BaseRequestHandler.resolve_bot()

	SimpleRequestHandler
	SimpleRequestHandler.__init__()

	SimpleRequestHandler.close()

	SimpleRequestHandler.register()

	SimpleRequestHandler.resolve_bot()

	TokenBasedRequestHandler
	TokenBasedRequestHandler.__init__()

	TokenBasedRequestHandler.register()

	TokenBasedRequestHandler.resolve_bot()

	Security
	Using a secret token

	Using IP filtering
	ip_filter_middleware()

	IPFilter
	IPFilter.__init__()

	Examples
	Behind reverse proxy

	Without reverse proxy (not recommended)

	With using other web framework

	Finite State Machine
	Usage example
	Step by step

	Complete example

	Read more
	Storages
	Storages out of the box
	MemoryStorage
	MemoryStorage
	MemoryStorage.__init__()

	RedisStorage
	RedisStorage
	RedisStorage.__init__()

	RedisStorage.from_url()

	MongoStorage

	KeyBuilder
	KeyBuilder
	KeyBuilder.build()

	DefaultKeyBuilder
	DefaultKeyBuilder.build()

	Writing own storages
	BaseStorage
	BaseStorage.set_state()

	BaseStorage.get_state()

	BaseStorage.set_data()

	BaseStorage.get_data()

	BaseStorage.update_data()

	BaseStorage.close()

	Scenes Wizard
	Understanding Scenes
	Scene Lifecycle

	Scene Listeners

	Scene Interactions

	Scene Benefits

	How to use Scenes

	Components
	Scene
	Scene.add_to_router()

	Scene.as_handler()

	Scene.as_router()

	SceneRegistry
	SceneRegistry.add()

	SceneRegistry.get()

	SceneRegistry.register()

	ScenesManager
	ScenesManager.close()

	ScenesManager.enter()

	SceneConfig
	SceneConfig.actions

	SceneConfig.callback_query_without_state

	SceneConfig.handlers

	SceneConfig.reset_data_on_enter

	SceneConfig.reset_history_on_enter

	SceneConfig.state

	SceneWizard
	SceneWizard.back()

	SceneWizard.clear_data()

	SceneWizard.enter()

	SceneWizard.exit()

	SceneWizard.get_data()

	SceneWizard.goto()

	SceneWizard.leave()

	SceneWizard.retake()

	SceneWizard.set_data()

	SceneWizard.update_data()

	Markers

	Middlewares
	Base theory

	Basics

	Arguments specification
	BaseMiddleware
	BaseMiddleware.__call__()

	Examples
	Class-based

	Function-based

	Facts

	Errors
	Handling errors

	ErrorEvent
	ErrorEvent
	ErrorEvent.update

	ErrorEvent.model_computed_fields

	ErrorEvent.model_post_init()

	ErrorEvent.exception

	Error types
	AiogramError

	DetailedAiogramError

	CallbackAnswerException

	SceneException

	UnsupportedKeywordArgument

	TelegramAPIError

	TelegramNetworkError

	TelegramRetryAfter

	TelegramMigrateToChat

	TelegramBadRequest

	TelegramNotFound

	TelegramConflictError

	TelegramUnauthorizedError

	TelegramForbiddenError

	TelegramServerError

	RestartingTelegram

	TelegramEntityTooLarge

	ClientDecodeError

	Flags
	Via decorators

	Via handler registration method

	Via filters

	Use in middlewares
	check_flags()

	extract_flags()

	get_flag()

	Example in middlewares

	Use in utilities

	Class based handlers
	BaseHandler
	Example

	CallbackQueryHandler
	CallbackQueryHandler
	CallbackQueryHandler.from_user

	CallbackQueryHandler.message

	CallbackQueryHandler.callback_data

	ChosenInlineResultHandler
	Simple usage

	Extension

	ErrorHandler
	Simple usage

	Extension

	InlineQueryHandler
	Simple usage

	Extension

	MessageHandler
	Simple usage

	Extension

	PollHandler
	Simple usage

	Extension

	PreCheckoutQueryHandler
	Simple usage

	Extension

	ShippingQueryHandler
	Simple usage

	Extension

	ChatMemberHandler
	Simple usage

	Extension

Router

Usage:

from aiogram import Router
from aiogram.types import Message

my_router = Router(name=__name__)

@my_router.message()
async def message_handler(message: Message) -> Any:
 await message.answer('Hello from my router!')

	
class aiogram.dispatcher.router.Router(*, name: str | None = None)

	Bases: object

Router can route update, and it nested update types like messages, callback query,
polls and all other event types.

Event handlers can be registered in observer by two ways:

	By observer method - router.<event_type>.register(handler, <filters, ...>)

	By decorator - @router.<event_type>(<filters, ...>)

	
__init__(*, name: str | None = None) → None

	
	Parameters:

	name – Optional router name, can be useful for debugging

	
include_router(router: Router) → Router

	Attach another router.

	Parameters:

	router –

	Returns:

	

	
include_routers(*routers: Router) → None

	Attach multiple routers.

	Parameters:

	routers –

	Returns:

	

	
resolve_used_update_types(skip_events: Set[str] | None = None) → List[str]

	Resolve registered event names

Is useful for getting updates only for registered event types.

	Parameters:

	skip_events – skip specified event names

	Returns:

	set of registered names

Event observers

Warning

All handlers always should be asynchronous.
The name of the handler function is not important. The event argument name is also not important but it is recommended to not overlap the name with contextual data in due to function can not accept two arguments with the same name.

Here is the list of available observers and examples of how to register handlers

In these examples only decorator-style registering handlers are used, but if you don’t like @decorators just use <event type>.register(...) method instead.

Message

Attention

Be attentive with filtering this event

You should expect that this event can be with different sets of attributes in different cases

(For example text, sticker and document are always of different content types of message)

Recommended way to check field availability before usage, for example via magic filter:
F.text to handle text, F.sticker to handle stickers only and etc.

@router.message()
async def message_handler(message: types.Message) -> Any: pass

Edited message

@router.edited_message()
async def edited_message_handler(edited_message: types.Message) -> Any: pass

Channel post

@router.channel_post()
async def channel_post_handler(channel_post: types.Message) -> Any: pass

Edited channel post

@router.edited_channel_post()
async def edited_channel_post_handler(edited_channel_post: types.Message) -> Any: pass

Inline query

@router.inline_query()
async def inline_query_handler(inline_query: types.InlineQuery) -> Any: pass

Chosen inline query

@router.chosen_inline_result()
async def chosen_inline_result_handler(chosen_inline_result: types.ChosenInlineResult) -> Any: pass

Callback query

@router.callback_query()
async def callback_query_handler(callback_query: types.CallbackQuery) -> Any: pass

Shipping query

@router.shipping_query()
async def shipping_query_handler(shipping_query: types.ShippingQuery) -> Any: pass

Pre checkout query

@router.pre_checkout_query()
async def pre_checkout_query_handler(pre_checkout_query: types.PreCheckoutQuery) -> Any: pass

Poll

@router.poll()
async def poll_handler(poll: types.Poll) -> Any: pass

Poll answer

@router.poll_answer()
async def poll_answer_handler(poll_answer: types.PollAnswer) -> Any: pass

My chat member

@router.my_chat_member()
async def my_chat_member_handler(my_chat_member: types.ChatMemberUpdated) -> Any: pass

Chat member

@router.chat_member()
async def chat_member_handler(chat_member: types.ChatMemberUpdated) -> Any: pass

Chat join request

@router.chat_join_request()
async def chat_join_request_handler(chat_join_request: types.ChatJoinRequest) -> Any: pass

Message reaction

@router.message_reaction()
async def message_reaction_handler(message_reaction: types.MessageReactionUpdated) -> Any: pass

Message reaction count

@router.message_reaction_count()
async def message_reaction_count_handler(message_reaction_count: types.MessageReactionCountUpdated) -> Any: pass

Chat boost

@router.chat_boost()
async def chat_boost_handler(chat_boost: types.ChatBoostUpdated) -> Any: pass

Remove chat boost

@router.removed_chat_boost()
async def removed_chat_boost_handler(removed_chat_boost: types.ChatBoostRemoved) -> Any: pass

Errors

@router.errors()
async def error_handler(exception: types.ErrorEvent) -> Any: pass

Is useful for handling errors from other handlers, error event described here

Nested routers

Warning

	Routers by the way can be nested to an another routers with some limitations:
	1. Router CAN NOT include itself
1. Routers CAN NOT be used for circular including (router 1 include router 2, router 2 include router 3, router 3 include router 1)

Example:

module_1.py

	name:

	module_1

router2 = Router()

@router2.message()
…

module_2.py

	name:

	module_2

from module_2 import router2

router1 = Router()
router1.include_router(router2)

Update

@dispatcher.update()
async def message_handler(update: types.Update) -> Any: pass

Warning

The only root Router (Dispatcher) can handle this type of event.

Note

Dispatcher already has default handler for this event type, so you can use it for handling all updates that are not handled by any other handlers.

How it works?

For example, dispatcher has 2 routers, the last router also has one nested router:

[image: Nested routers example]
In this case update propagation flow will have form:

[image: Nested routers example]

Dispatcher

Dispatcher is root Router and in code Dispatcher can be used directly for routing updates or attach another routers into dispatcher.

Here is only listed base information about Dispatcher. All about writing handlers, filters and etc. you can find in next pages:

	Router

	Filtering events

	
class aiogram.dispatcher.dispatcher.Dispatcher(*, storage: BaseStorage | None = None, fsm_strategy: FSMStrategy = FSMStrategy.USER_IN_CHAT, events_isolation: BaseEventIsolation | None = None, disable_fsm: bool = False, name: str | None = None, **kwargs: Any)

	Root router

	
__init__(*, storage: BaseStorage | None = None, fsm_strategy: FSMStrategy = FSMStrategy.USER_IN_CHAT, events_isolation: BaseEventIsolation | None = None, disable_fsm: bool = False, name: str | None = None, **kwargs: Any) → None

	Root router

	Parameters:

	
	storage – Storage for FSM

	fsm_strategy – FSM strategy

	events_isolation – Events isolation

	disable_fsm – Disable FSM, note that if you disable FSM
then you should not use storage and events isolation

	kwargs – Other arguments, will be passed as keyword arguments to handlers

	
async feed_raw_update(bot: Bot, update: Dict[str, Any], **kwargs: Any) → Any

	Main entry point for incoming updates with automatic Dict->Update serializer

	Parameters:

	
	bot –

	update –

	kwargs –

	
async feed_update(bot: Bot, update: Update, **kwargs: Any) → Any

	Main entry point for incoming updates
Response of this method can be used as Webhook response

	Parameters:

	
	bot –

	update –

	
run_polling(*bots: Bot, polling_timeout: int = 10, handle_as_tasks: bool = True, backoff_config: BackoffConfig = BackoffConfig(min_delay=1.0, max_delay=5.0, factor=1.3, jitter=0.1), allowed_updates: List[str] | _SentinelObject | None = sentinel.UNSET, handle_signals: bool = True, close_bot_session: bool = True, **kwargs: Any) → None

	Run many bots with polling

	Parameters:

	
	bots – Bot instances (one or more)

	polling_timeout – Long-polling wait time

	handle_as_tasks – Run task for each event and no wait result

	backoff_config – backoff-retry config

	allowed_updates – List of the update types you want your bot to receive

	handle_signals – handle signals (SIGINT/SIGTERM)

	close_bot_session – close bot sessions on shutdown

	kwargs – contextual data

	Returns:

	

	
async start_polling(*bots: Bot, polling_timeout: int = 10, handle_as_tasks: bool = True, backoff_config: BackoffConfig = BackoffConfig(min_delay=1.0, max_delay=5.0, factor=1.3, jitter=0.1), allowed_updates: List[str] | _SentinelObject | None = sentinel.UNSET, handle_signals: bool = True, close_bot_session: bool = True, **kwargs: Any) → None

	Polling runner

	Parameters:

	
	bots – Bot instances (one or more)

	polling_timeout – Long-polling wait time

	handle_as_tasks – Run task for each event and no wait result

	backoff_config – backoff-retry config

	allowed_updates – List of the update types you want your bot to receive
By default, all used update types are enabled (resolved from handlers)

	handle_signals – handle signals (SIGINT/SIGTERM)

	close_bot_session – close bot sessions on shutdown

	kwargs – contextual data

	Returns:

	

	
async stop_polling() → None

	Execute this method if you want to stop polling programmatically

	Returns:

	

Simple usage

Example:

dp = Dispatcher()

@dp.message()
async def message_handler(message: types.Message) -> None:
 await SendMessage(chat_id=message.from_user.id, text=message.text)

Including routers

Example:

dp = Dispatcher()
router1 = Router()
dp.include_router(router1)

Handling updates

All updates can be propagated to the dispatcher by Dispatcher.feed_update(bot=..., update=...) method:

bot = Bot(...)
dp = Dispatcher()

...

result = await dp.feed_update(bot=bot, update=incoming_update)

Dependency injection

Dependency injection is a programming technique that makes a class independent of its dependencies.
It achieves that by decoupling the usage of an object from its creation.
This helps you to follow SOLID’s [https://en.wikipedia.org/wiki/SOLID] dependency
inversion and single responsibility principles.

How it works in aiogram

For each update aiogram.dispatcher.dispatcher.Dispatcher passes handling context data.
Filters and middleware can also make changes to the context.

To access contextual data you should specify corresponding keyword parameter in handler or filter.
For example, to get aiogram.fsm.context.FSMContext we do it like that:

@router.message(ProfileCompletion.add_photo, F.photo)
async def add_photo(
 message: types.Message, bot: Bot, state: FSMContext
) -> Any:
 ... # do something with photo

Injecting own dependencies

Aiogram provides several ways to complement / modify contextual data.

The first and easiest way is to simply specify the named arguments in
aiogram.dispatcher.dispatcher.Dispatcher initialization, polling start methods
or aiogram.webhook.aiohttp_server.SimpleRequestHandler initialization if you use webhooks.

async def main() -> None:
 dp = Dispatcher(..., foo=42)
 return await dp.start_polling(
 bot, bar="Bazz"
)

Analogy for webhook:

async def main() -> None:
 dp = Dispatcher(..., foo=42)
 handler = SimpleRequestHandler(dispatcher=dp, bot=bot, bar="Bazz")
 ... # starting webhook

aiogram.dispatcher.dispatcher.Dispatcher’s workflow data also can be supplemented
by setting values as in a dictionary:

dp = Dispatcher(...)
dp["eggs"] = Spam()

The middlewares updates the context quite often.
You can read more about them on this page:

	Middlewares

The last way is to return a dictionary from the filter:

from typing import Any, Dict, Optional, Union

from aiogram import Router
from aiogram.filters import Filter
from aiogram.types import Message, User

router = Router(name=__name__)

class HelloFilter(Filter):
 def __init__(self, name: Optional[str] = None) -> None:
 self.name = name

 async def __call__(
 self,
 message: Message,
 event_from_user: User
 # Filters also can accept keyword parameters like in handlers
) -> Union[bool, Dict[str, Any]]:
 if message.text.casefold() == "hello":
 # Returning a dictionary that will update the context data
 return {"name": event_from_user.mention_html(name=self.name)}
 return False

@router.message(HelloFilter())
async def my_handler(
 message: Message, name: str # Now we can accept "name" as named parameter
) -> Any:
 return message.answer("Hello, {name}!".format(name=name))

…or using MagicFilter with .as_(...) method.

Filtering events

Filters is needed for routing updates to the specific handler.
Searching of handler is always stops on first match set of filters are pass.
By default, all handlers has empty set of filters, so all updates will be passed to first handler that has empty set of filters.

aiogram has some builtin useful filters or you can write own filters.

Builtin filters

Here is list of builtin filters:

	Command

	ChatMemberUpdated

	Magic filters

	MagicData

	Callback Data Factory & Filter

	Exceptions

Writing own filters

Filters can be:

	Asynchronous function (async def my_filter(*args, **kwargs): pass)

	Synchronous function (def my_filter(*args, **kwargs): pass)

	Anonymous function (lambda event: True)

	Any awaitable object

	Subclass of aiogram.filters.base.Filter

	Instances of MagicFilter

and should return bool or dict.
If the dictionary is passed as result of filter - resulted data will be propagated to the next
filters and handler as keywords arguments.

Base class for own filters

	
class aiogram.filters.base.Filter

	If you want to register own filters like builtin filters you will need to write subclass
of this class with overriding the __call__
method and adding filter attributes.

	
abstract async __call__(*args: Any, **kwargs: Any) → bool | Dict[str, Any]

	This method should be overridden.

Accepts incoming event and should return boolean or dict.

	Returns:

	bool or Dict[str, Any]

	
update_handler_flags(flags: Dict[str, Any]) → None

	Also if you want to extend handler flags with using this filter
you should implement this method

	Parameters:

	flags – existing flags, can be updated directly

Own filter example

For example if you need to make simple text filter:

from aiogram import Router
from aiogram.filters import Filter
from aiogram.types import Message

router = Router()

class MyFilter(Filter):
 def __init__(self, my_text: str) -> None:
 self.my_text = my_text

 async def __call__(self, message: Message) -> bool:
 return message.text == self.my_text

@router.message(MyFilter("hello"))
async def my_handler(message: Message):
 ...

Combining Filters

In general, all filters can be combined in two ways

Recommended way

If you specify multiple filters in a row, it will be checked with an “and” condition:

@<router>.message(F.text.startswith("show"), F.text.endswith("example"))

Also, if you want to use two alternative ways to run the same handler (“or” condition)
you can register the handler twice or more times as you like

@<router>.message(F.text == "hi")
@<router>.message(CommandStart())

Also sometimes you will need to invert the filter result, for example you have an IsAdmin filter
and you want to check if the user is not an admin

@<router>.message(~IsAdmin())

Another possible way

An alternative way is to combine using special functions (and_f(), or_f(), invert_f() from aiogram.filters module):

and_f(F.text.startswith("show"), F.text.endswith("example"))
or_f(F.text(text="hi"), CommandStart())
invert_f(IsAdmin())
and_f(<A>, or_f(, <C>))

Command

Usage

	Filter single variant of commands: Command("start")

	Handle command by regexp pattern: Command(re.compile(r"item_(\d+)"))

	Match command by multiple variants: Command("item", re.compile(r"item_(\d+)"))

	Handle commands in public chats intended for other bots: Command("command", ignore_mention=True)

	Use aiogram.types.bot_command.BotCommand object as command reference Command(BotCommand(command="command", description="My awesome command")

Warning

Command cannot include spaces or any whitespace

	
class aiogram.filters.command.Command(*values: str | Pattern | BotCommand, commands: Sequence[str | Pattern | BotCommand] | str | Pattern | BotCommand | None = None, prefix: str = '/', ignore_case: bool = False, ignore_mention: bool = False, magic: MagicFilter | None = None)

	This filter can be helpful for handling commands from the text messages.

Works only with aiogram.types.message.Message events which have the text.

	
__init__(*values: str | Pattern | BotCommand, commands: Sequence[str | Pattern | BotCommand] | str | Pattern | BotCommand | None = None, prefix: str = '/', ignore_case: bool = False, ignore_mention: bool = False, magic: MagicFilter | None = None)

	List of commands (string or compiled regexp patterns)

	Parameters:

	
	prefix – Prefix for command.
Prefix is always a single char but here you can pass all of allowed prefixes,
for example: "/!" will work with commands prefixed
by "/" or "!".

	ignore_case – Ignore case (Does not work with regexp, use flags instead)

	ignore_mention – Ignore bot mention. By default,
bot can not handle commands intended for other bots

	magic – Validate command object via Magic filter after all checks done

When filter is passed the aiogram.filters.command.CommandObject will be passed to the handler argument command

	
class aiogram.filters.command.CommandObject(prefix: str = '/', command: str = '', mention: str | None = None, args: str | None = None, regexp_match: Match[str] | None = None, magic_result: Any | None = None)

	Instance of this object is always has command and it prefix.
Can be passed as keyword argument command to the handler

	
prefix: str = '/'

	Command prefix

	
command: str = ''

	Command without prefix and mention

	
mention: str | None = None

	Mention (if available)

	
args: str | None = None

	Command argument

	
regexp_match: Match[str] | None = None

	Will be presented match result if the command is presented as regexp in filter

	
magic_result: Any | None = None

	

	
property mentioned: bool

	This command has mention?

	
property text: str

	Generate original text from object

Allowed handlers

Allowed update types for this filter:

	message

	edited_message

ChatMemberUpdated

Usage

Handle user leave or join events

from aiogram.filters import IS_MEMBER, IS_NOT_MEMBER

@router.chat_member(ChatMemberUpdatedFilter(IS_MEMBER >> IS_NOT_MEMBER))
async def on_user_leave(event: ChatMemberUpdated): ...

@router.chat_member(ChatMemberUpdatedFilter(IS_NOT_MEMBER >> IS_MEMBER))
async def on_user_join(event: ChatMemberUpdated): ...

Or construct your own terms via using pre-defined set of statuses and transitions.

Explanation

	
class aiogram.filters.chat_member_updated.ChatMemberUpdatedFilter(member_status_changed: _MemberStatusMarker | _MemberStatusGroupMarker | _MemberStatusTransition)

	
	
member_status_changed

	

You can import from aiogram.filters all available
variants of statuses, status groups or transitions:

Statuses

	name

	Description

	CREATOR

	Chat owner

	ADMINISTRATOR

	Chat administrator

	MEMBER

	Member of the chat

	RESTRICTED

	Restricted user (can be not member)

	LEFT

	Isn’t member of the chat

	KICKED

	Kicked member by administrators

Statuses can be extended with is_member flag by prefixing with
+ (for is_member == True) or - (for is_member == False) symbol,
like +RESTRICTED or -RESTRICTED

Status groups

The particular statuses can be combined via bitwise or operator, like CREATOR | ADMINISTRATOR

	name

	Description

	IS_MEMBER

	Combination of (CREATOR | ADMINISTRATOR | MEMBER | +RESTRICTED) statuses.

	IS_ADMIN

	Combination of (CREATOR | ADMINISTRATOR) statuses.

	IS_NOT_MEMBER

	Combination of (LEFT | KICKED | -RESTRICTED) statuses.

Transitions

Transitions can be defined via bitwise shift operators >> and <<.
Old chat member status should be defined in the left side for >> operator (right side for <<)
and new status should be specified on the right side for >> operator (left side for <<)

The direction of transition can be changed via bitwise inversion operator: ~JOIN_TRANSITION
will produce swap of old and new statuses.

	name

	Description

	JOIN_TRANSITION

	Means status changed from IS_NOT_MEMBER to IS_MEMBER
(IS_NOT_MEMBER >> IS_MEMBER)

	LEAVE_TRANSITION

	Means status changed from IS_MEMBER to IS_NOT_MEMBER
(~JOIN_TRANSITION)

	PROMOTED_TRANSITION

	Means status changed from
(MEMBER | RESTRICTED | LEFT | KICKED) >> ADMINISTRATOR
((MEMBER | RESTRICTED | LEFT | KICKED) >> ADMINISTRATOR)

Note

Note that if you define the status unions (via |) you will need to add brackets for the statement
before use shift operator in due to operator priorities.

Allowed handlers

Allowed update types for this filter:

	my_chat_member

	chat_member

Magic filters

Note

This page still in progress. Has many incorrectly worded sentences.

Is external package maintained by aiogram core team.

By default installs with aiogram and also is available on PyPi - magic-filter [https://pypi.org/project/magic-filter/].
That’s mean you can install it and use with any other libraries and in own projects without depending aiogram installed.

Usage

The magic_filter package implements class shortly named magic_filter.F that’s mean F can be imported from aiogram or magic_filter. F is alias for MagicFilter.

Note

Note that aiogram has an small extension over magic-filter and if you want to use this extension you should import magic from aiogram instead of magic_filter package

The MagicFilter object is callable, supports some actions
and memorize the attributes chain and the action which should be checked on demand.

So that’s mean you can chain attribute getters, describe simple data validations
and then call the resulted object passing single object as argument,
for example make attributes chain F.foo.bar.baz then add
action ‘F.foo.bar.baz == 'spam' and then call the resulted object - (F.foo.bar.baz == 'spam').resolve(obj)

Possible actions

Magic filter object supports some of basic logical operations over object attributes

Exists or not None

Default actions.

F.photo # lambda message: message.photo

Equals

F.text == 'hello' # lambda message: message.text == 'hello'
F.from_user.id == 42 # lambda message: message.from_user.id == 42
F.text != 'spam' # lambda message: message.text != 'spam'

Is one of

Can be used as method named in_ or as matmul operator @ with any iterable

F.from_user.id.in_({42, 1000, 123123}) # lambda query: query.from_user.id in {42, 1000, 123123}
F.data.in_({'foo', 'bar', 'baz'}) # lambda query: query.data in {'foo', 'bar', 'baz'}

Contains

F.text.contains('foo') # lambda message: 'foo' in message.text

String startswith/endswith

Can be applied only for text attributes

F.text.startswith('foo') # lambda message: message.text.startswith('foo')
F.text.endswith('bar') # lambda message: message.text.startswith('bar')

Regexp

F.text.regexp(r'Hello, .+') # lambda message: re.match(r'Hello, .+', message.text)

Custom function

Accepts any callable. Callback will be called when filter checks result

F.chat.func(lambda chat: chat.id == -42) # lambda message: (lambda chat: chat.id == -42)(message.chat)

Inverting result

Any of available operation can be inverted by bitwise inversion - ~

~F.text # lambda message: not message.text
~F.text.startswith('spam') # lambda message: not message.text.startswith('spam')

Combining

All operations can be combined via bitwise and/or operators - &/|

(F.from_user.id == 42) & (F.text == 'admin')
F.text.startswith('a') | F.text.endswith('b')
(F.from_user.id.in_({42, 777, 911})) & (F.text.startswith('!') | F.text.startswith('/')) & F.text.contains('ban')

Attribute modifiers - string manipulations

Make text upper- or lower-case

Can be used only with string attributes.

F.text.lower() == 'test' # lambda message: message.text.lower() == 'test'
F.text.upper().in_({'FOO', 'BAR'}) # lambda message: message.text.upper() in {'FOO', 'BAR'}
F.text.len() == 5 # lambda message: len(message.text) == 5

Get filter result as handler argument

This part is not available in magic-filter directly but can be used with aiogram

from aiogram import F

...

@router.message(F.text.regexp(r"^(\d+)$").as_("digits"))
async def any_digits_handler(message: Message, digits: Match[str]):
 await message.answer(html.quote(str(digits)))

Usage in aiogram

@router.message(F.text == 'hello')
@router.inline_query(F.data == 'button:1')
@router.message(F.text.startswith('foo'))
@router.message(F.content_type.in_({'text', 'sticker'}))
@router.message(F.text.regexp(r'\d+'))

...

Many others cases when you will need to check any of available event attribute

MagicData

Usage

	MagicData(F.event.from_user.id == F.config.admin_id) (Note that config should be passed from middleware)

Explanation

	
class aiogram.filters.magic_data.MagicData(magic_data: MagicFilter)

	This filter helps to filter event with contextual data

	
magic_data

	

Can be imported:

	from aiogram.filters import MagicData

Allowed handlers

Allowed update types for this filter:

	message

	edited_message

	channel_post

	edited_channel_post

	inline_query

	chosen_inline_result

	callback_query

	shipping_query

	pre_checkout_query

	poll

	poll_answer

	my_chat_member

	chat_member

	chat_join_request

	error

Callback Data Factory & Filter

	
class aiogram.filters.callback_data.CallbackData

	Base class for callback data wrapper

This class should be used as super-class of user-defined callbacks.

The class-keyword prefix is required to define prefix
and also the argument sep can be passed to define separator (default is :).

	
pack() → str

	Generate callback data string

	Returns:

	valid callback data for Telegram Bot API

	
classmethod unpack(value: str) → T

	Parse callback data string

	Parameters:

	value – value from Telegram

	Returns:

	instance of CallbackData

	
classmethod filter(rule: MagicFilter | None = None) → CallbackQueryFilter

	Generates a filter for callback query with rule

	Parameters:

	rule – magic rule

	Returns:

	instance of filter

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

Usage

Create subclass of CallbackData:

class MyCallback(CallbackData, prefix="my"):
 foo: str
 bar: int

After that you can generate any callback based on this class, for example:

cb1 = MyCallback(foo="demo", bar=42)
cb1.pack() # returns 'my:demo:42'
cb1.unpack('my:demo:42') # returns <MyCallback(foo="demo", bar=42)>

So… Now you can use this class to generate any callbacks with defined structure

...
Pass it into the markup
InlineKeyboardButton(
 text="demo",
 callback_data=MyCallback(foo="demo", bar="42").pack() # value should be packed to string
)
...

… and handle by specific rules

Filter callback by type and value of field :code:`foo`
@router.callback_query(MyCallback.filter(F.foo == "demo"))
async def my_callback_foo(query: CallbackQuery, callback_data: MyCallback):
 await query.answer(...)
 ...
 print("bar =", callback_data.bar)

Also can be used in Keyboard builder:

builder = InlineKeyboardBuilder()
builder.button(
 text="demo",
 callback_data=MyCallback(foo="demo", bar="42") # Value can be not packed to string inplace, because builder knows what to do with callback instance
)

Another abstract example:

class Action(str, Enum):
 ban = "ban"
 kick = "kick"
 warn = "warn"

class AdminAction(CallbackData, prefix="adm"):
 action: Action
 chat_id: int
 user_id: int

...
Inside handler
builder = InlineKeyboardBuilder()
for action in Action:
 builder.button(
 text=action.value.title(),
 callback_data=AdminAction(action=action, chat_id=chat_id, user_id=user_id),
)
await bot.send_message(
 chat_id=admins_chat,
 text=f"What do you want to do with {html.quote(name)}",
 reply_markup=builder.as_markup(),
)
...

@router.callback_query(AdminAction.filter(F.action == Action.ban))
async def ban_user(query: CallbackQuery, callback_data: AdminAction, bot: Bot):
 await bot.ban_chat_member(
 chat_id=callback_data.chat_id,
 user_id=callback_data.user_id,
 ...
)

Known limitations

Allowed types and their subclasses:

	str

	int

	bool

	float

	Decimal (from decimal import Decimal)

	Fraction (from fractions import Fraction)

	UUID (from uuid import UUID)

	Enum (from enum import Enum, only for string enums)

	IntEnum (from enum import IntEnum, only for int enums)

Note

Note that the integer Enum’s should be always is subclasses of IntEnum in due to parsing issues.

Exceptions

This filters can be helpful for handling errors from the text messages.

	
class aiogram.filters.exception.ExceptionTypeFilter(*exceptions: Type[Exception])

	Allows to match exception by type

	
exceptions

	

	
class aiogram.filters.exception.ExceptionMessageFilter(pattern: str | Pattern[str])

	Allow to match exception by message

	
pattern

	

Allowed handlers

Allowed update types for this filters:

	error

Long-polling

Long-polling is a technology that allows a Telegram server to send updates in case
when you don’t have dedicated IP address or port to receive webhooks for example
on a developer machine.

To use long-polling mode you should use aiogram.dispatcher.dispatcher.Dispatcher.start_polling()
or aiogram.dispatcher.dispatcher.Dispatcher.run_polling() methods.

Note

You can use polling from only one polling process per single Bot token,
in other case Telegram server will return an error.

Note

If you will need to scale your bot, you should use webhooks instead of long-polling.

Note

If you will use multibot mode, you should use webhook mode for all bots.

Example

This example will show you how to create simple echo bot based on long-polling.

import asyncio
import logging
import sys
from os import getenv

from aiogram import Bot, Dispatcher, html
from aiogram.client.default import DefaultBotProperties
from aiogram.enums import ParseMode
from aiogram.filters import CommandStart
from aiogram.types import Message

Bot token can be obtained via https://t.me/BotFather
TOKEN = getenv("BOT_TOKEN")

All handlers should be attached to the Router (or Dispatcher)
dp = Dispatcher()

@dp.message(CommandStart())
async def command_start_handler(message: Message) -> None:
 """
 This handler receives messages with `/start` command
 """
 # Most event objects have aliases for API methods that can be called in events' context
 # For example if you want to answer to incoming message you can use `message.answer(...)` alias
 # and the target chat will be passed to :ref:`aiogram.methods.send_message.SendMessage`
 # method automatically or call API method directly via
 # Bot instance: `bot.send_message(chat_id=message.chat.id, ...)`
 await message.answer(f"Hello, {html.bold(message.from_user.full_name)}!")

@dp.message()
async def echo_handler(message: Message) -> None:
 """
 Handler will forward receive a message back to the sender

 By default, message handler will handle all message types (like a text, photo, sticker etc.)
 """
 try:
 # Send a copy of the received message
 await message.send_copy(chat_id=message.chat.id)
 except TypeError:
 # But not all the types is supported to be copied so need to handle it
 await message.answer("Nice try!")

async def main() -> None:
 # Initialize Bot instance with default bot properties which will be passed to all API calls
 bot = Bot(token=TOKEN, default=DefaultBotProperties(parse_mode=ParseMode.HTML))
 # And the run events dispatching
 await dp.start_polling(bot)

if __name__ == "__main__":
 logging.basicConfig(level=logging.INFO, stream=sys.stdout)
 asyncio.run(main())

Webhook

Telegram Bot API supports webhook.
If you set webhook for your bot, Telegram will send updates to the specified url.
You can use aiogram.methods.set_webhook.SetWebhook() method to specify a url
and receive incoming updates on it.

Note

If you use webhook, you can’t use long polling at the same time.

Before start i’ll recommend you to read official Telegram’s documentation about webhook [https://core.telegram.org/bots/webhooks]

After you read it, you can start to read this section.

Generally to use webhook with aiogram you should use any async web framework.
By out of the box aiogram has an aiohttp integration, so we’ll use it.

Note

You can use any async web framework you want, but you should write your own integration if you don’t use aiohttp.

aiohttp integration

Out of the box aiogram has aiohttp integration, so you can use it.

Here is available few ways to do it using different implementations of the webhook controller:

	aiogram.webhook.aiohttp_server.BaseRequestHandler - Abstract class for aiohttp webhook controller

	aiogram.webhook.aiohttp_server.SimpleRequestHandler - Simple webhook controller, uses single Bot instance

	aiogram.webhook.aiohttp_server.TokenBasedRequestHandler - Token based webhook controller, uses multiple Bot instances and tokens

You can use it as is or inherit from it and override some methods.

	
class aiogram.webhook.aiohttp_server.BaseRequestHandler(dispatcher: Dispatcher, handle_in_background: bool = False, **data: Any)

	
	
__init__(dispatcher: Dispatcher, handle_in_background: bool = False, **data: Any) → None

	Base handler that helps to handle incoming request from aiohttp
and propagate it to the Dispatcher

	Parameters:

	
	dispatcher – instance of aiogram.dispatcher.dispatcher.Dispatcher

	handle_in_background – immediately responds to the Telegram instead of
a waiting end of a handler process

	
register(app: None, /, path: str, **kwargs: Any) → None

	Register route and shutdown callback

	Parameters:

	
	app – instance of aiohttp Application

	path – route path

	kwargs –

	
abstract async resolve_bot(request: Request) → Bot

	This method should be implemented in subclasses of this class.

Resolve Bot instance from request.

	Parameters:

	request –

	Returns:

	Bot instance

	
class aiogram.webhook.aiohttp_server.SimpleRequestHandler(dispatcher: Dispatcher, bot: Bot, handle_in_background: bool = True, secret_token: str | None = None, **data: Any)

	
	
__init__(dispatcher: Dispatcher, bot: Bot, handle_in_background: bool = True, secret_token: str | None = None, **data: Any) → None

	Handler for single Bot instance

	Parameters:

	
	dispatcher – instance of aiogram.dispatcher.dispatcher.Dispatcher

	handle_in_background – immediately responds to the Telegram instead of
a waiting end of handler process

	bot – instance of aiogram.client.bot.Bot

	
async close() → None

	Close bot session

	
register(app: None, /, path: str, **kwargs: Any) → None

	Register route and shutdown callback

	Parameters:

	
	app – instance of aiohttp Application

	path – route path

	kwargs –

	
async resolve_bot(request: Request) → Bot

	This method should be implemented in subclasses of this class.

Resolve Bot instance from request.

	Parameters:

	request –

	Returns:

	Bot instance

	
class aiogram.webhook.aiohttp_server.TokenBasedRequestHandler(dispatcher: Dispatcher, handle_in_background: bool = True, bot_settings: Dict[str, Any] | None = None, **data: Any)

	
	
__init__(dispatcher: Dispatcher, handle_in_background: bool = True, bot_settings: Dict[str, Any] | None = None, **data: Any) → None

	Handler that supports multiple bots the context will be resolved
from path variable ‘bot_token’

Note

This handler is not recommended in due to token is available in URL
and can be logged by reverse proxy server or other middleware.

	Parameters:

	
	dispatcher – instance of aiogram.dispatcher.dispatcher.Dispatcher

	handle_in_background – immediately responds to the Telegram instead of
a waiting end of handler process

	bot_settings – kwargs that will be passed to new Bot instance

	
register(app: None, /, path: str, **kwargs: Any) → None

	Validate path, register route and shutdown callback

	Parameters:

	
	app – instance of aiohttp Application

	path – route path

	kwargs –

	
async resolve_bot(request: Request) → Bot

	Get bot token from a path and create or get from cache Bot instance

	Parameters:

	request –

	Returns:

	

Security

Telegram supports two methods to verify incoming requests that they are from Telegram:

Using a secret token

When you set webhook, you can specify a secret token and then use it to verify incoming requests.

Using IP filtering

You can specify a list of IP addresses from which you expect incoming requests, and then use it to verify incoming requests.

It can be acy using firewall rules or nginx configuration or middleware on application level.

So, aiogram has an implementation of the IP filtering middleware for aiohttp.

	
aiogram.webhook.aiohttp_server.ip_filter_middleware(ip_filter: IPFilter) → Callable[[Request, Callable[[Request], Awaitable[StreamResponse]]], Awaitable[Any]]

	
	Parameters:

	ip_filter –

	Returns:

	

	
class aiogram.webhook.security.IPFilter(ips: Sequence[str | IPv4Network | IPv4Address] | None = None)

	
	
__init__(ips: Sequence[str | IPv4Network | IPv4Address] | None = None)

	

Examples

Behind reverse proxy

In this example we’ll use aiohttp as web framework and nginx as reverse proxy.

"""
This example shows how to use webhook on behind of any reverse proxy (nginx, traefik, ingress etc.)
"""
import logging
import sys
from os import getenv

from aiohttp import web

from aiogram import Bot, Dispatcher, Router, types
from aiogram.enums import ParseMode
from aiogram.filters import CommandStart
from aiogram.types import Message
from aiogram.utils.markdown import hbold
from aiogram.webhook.aiohttp_server import SimpleRequestHandler, setup_application

Bot token can be obtained via https://t.me/BotFather
TOKEN = getenv("BOT_TOKEN")

Webserver settings
bind localhost only to prevent any external access
WEB_SERVER_HOST = "127.0.0.1"
Port for incoming request from reverse proxy. Should be any available port
WEB_SERVER_PORT = 8080

Path to webhook route, on which Telegram will send requests
WEBHOOK_PATH = "/webhook"
Secret key to validate requests from Telegram (optional)
WEBHOOK_SECRET = "my-secret"
Base URL for webhook will be used to generate webhook URL for Telegram,
in this example it is used public DNS with HTTPS support
BASE_WEBHOOK_URL = "https://aiogram.dev/"

All handlers should be attached to the Router (or Dispatcher)
router = Router()

@router.message(CommandStart())
async def command_start_handler(message: Message) -> None:
 """
 This handler receives messages with `/start` command
 """
 # Most event objects have aliases for API methods that can be called in events' context
 # For example if you want to answer to incoming message you can use `message.answer(...)` alias
 # and the target chat will be passed to :ref:`aiogram.methods.send_message.SendMessage`
 # method automatically or call API method directly via
 # Bot instance: `bot.send_message(chat_id=message.chat.id, ...)`
 await message.answer(f"Hello, {hbold(message.from_user.full_name)}!")

@router.message()
async def echo_handler(message: types.Message) -> None:
 """
 Handler will forward receive a message back to the sender

 By default, message handler will handle all message types (like text, photo, sticker etc.)
 """
 try:
 # Send a copy of the received message
 await message.send_copy(chat_id=message.chat.id)
 except TypeError:
 # But not all the types is supported to be copied so need to handle it
 await message.answer("Nice try!")

async def on_startup(bot: Bot) -> None:
 # If you have a self-signed SSL certificate, then you will need to send a public
 # certificate to Telegram
 await bot.set_webhook(f"{BASE_WEBHOOK_URL}{WEBHOOK_PATH}", secret_token=WEBHOOK_SECRET)

def main() -> None:
 # Dispatcher is a root router
 dp = Dispatcher()
 # ... and all other routers should be attached to Dispatcher
 dp.include_router(router)

 # Register startup hook to initialize webhook
 dp.startup.register(on_startup)

 # Initialize Bot instance with a default parse mode which will be passed to all API calls
 bot = Bot(TOKEN, parse_mode=ParseMode.HTML)

 # Create aiohttp.web.Application instance
 app = web.Application()

 # Create an instance of request handler,
 # aiogram has few implementations for different cases of usage
 # In this example we use SimpleRequestHandler which is designed to handle simple cases
 webhook_requests_handler = SimpleRequestHandler(
 dispatcher=dp,
 bot=bot,
 secret_token=WEBHOOK_SECRET,
)
 # Register webhook handler on application
 webhook_requests_handler.register(app, path=WEBHOOK_PATH)

 # Mount dispatcher startup and shutdown hooks to aiohttp application
 setup_application(app, dp, bot=bot)

 # And finally start webserver
 web.run_app(app, host=WEB_SERVER_HOST, port=WEB_SERVER_PORT)

if __name__ == "__main__":
 logging.basicConfig(level=logging.INFO, stream=sys.stdout)
 main()

When you use nginx as reverse proxy, you should set proxy_pass to your aiohttp server address.

location /webhook {
 proxy_set_header Host $http_host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_redirect off;
 proxy_buffering off;
 proxy_pass http://127.0.0.1:8080;
}

Without reverse proxy (not recommended)

In case without using reverse proxy, you can use aiohttp’s ssl context.

Also this example contains usage with self-signed certificate.

"""
This example shows how to use webhook with SSL certificate.
"""
import logging
import ssl
import sys
from os import getenv

from aiohttp import web

from aiogram import Bot, Dispatcher, Router, types
from aiogram.enums import ParseMode
from aiogram.filters import CommandStart
from aiogram.types import FSInputFile, Message
from aiogram.utils.markdown import hbold
from aiogram.webhook.aiohttp_server import SimpleRequestHandler, setup_application

Bot token can be obtained via https://t.me/BotFather
TOKEN = getenv("BOT_TOKEN")

Webserver settings
bind localhost only to prevent any external access
WEB_SERVER_HOST = "127.0.0.1"
Port for incoming request from reverse proxy. Should be any available port
WEB_SERVER_PORT = 8080

Path to webhook route, on which Telegram will send requests
WEBHOOK_PATH = "/webhook"
Secret key to validate requests from Telegram (optional)
WEBHOOK_SECRET = "my-secret"
Base URL for webhook will be used to generate webhook URL for Telegram,
in this example it is used public address with TLS support
BASE_WEBHOOK_URL = "https://aiogram.dev"

Path to SSL certificate and private key for self-signed certificate.
WEBHOOK_SSL_CERT = "/path/to/cert.pem"
WEBHOOK_SSL_PRIV = "/path/to/private.key"

All handlers should be attached to the Router (or Dispatcher)
router = Router()

@router.message(CommandStart())
async def command_start_handler(message: Message) -> None:
 """
 This handler receives messages with `/start` command
 """
 # Most event objects have aliases for API methods that can be called in events' context
 # For example if you want to answer to incoming message you can use `message.answer(...)` alias
 # and the target chat will be passed to :ref:`aiogram.methods.send_message.SendMessage`
 # method automatically or call API method directly via
 # Bot instance: `bot.send_message(chat_id=message.chat.id, ...)`
 await message.answer(f"Hello, {hbold(message.from_user.full_name)}!")

@router.message()
async def echo_handler(message: types.Message) -> None:
 """
 Handler will forward receive a message back to the sender

 By default, message handler will handle all message types (like text, photo, sticker etc.)
 """
 try:
 # Send a copy of the received message
 await message.send_copy(chat_id=message.chat.id)
 except TypeError:
 # But not all the types is supported to be copied so need to handle it
 await message.answer("Nice try!")

async def on_startup(bot: Bot) -> None:
 # In case when you have a self-signed SSL certificate, you need to send the certificate
 # itself to Telegram servers for validation purposes
 # (see https://core.telegram.org/bots/self-signed)
 # But if you have a valid SSL certificate, you SHOULD NOT send it to Telegram servers.
 await bot.set_webhook(
 f"{BASE_WEBHOOK_URL}{WEBHOOK_PATH}",
 certificate=FSInputFile(WEBHOOK_SSL_CERT),
 secret_token=WEBHOOK_SECRET,
)

def main() -> None:
 # Dispatcher is a root router
 dp = Dispatcher()
 # ... and all other routers should be attached to Dispatcher
 dp.include_router(router)

 # Register startup hook to initialize webhook
 dp.startup.register(on_startup)

 # Initialize Bot instance with a default parse mode which will be passed to all API calls
 bot = Bot(TOKEN, parse_mode=ParseMode.HTML)

 # Create aiohttp.web.Application instance
 app = web.Application()

 # Create an instance of request handler,
 # aiogram has few implementations for different cases of usage
 # In this example we use SimpleRequestHandler which is designed to handle simple cases
 webhook_requests_handler = SimpleRequestHandler(
 dispatcher=dp,
 bot=bot,
 secret_token=WEBHOOK_SECRET,
)
 # Register webhook handler on application
 webhook_requests_handler.register(app, path=WEBHOOK_PATH)

 # Mount dispatcher startup and shutdown hooks to aiohttp application
 setup_application(app, dp, bot=bot)

 # Generate SSL context
 context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
 context.load_cert_chain(WEBHOOK_SSL_CERT, WEBHOOK_SSL_PRIV)

 # And finally start webserver
 web.run_app(app, host=WEB_SERVER_HOST, port=WEB_SERVER_PORT, ssl_context=context)

if __name__ == "__main__":
 logging.basicConfig(level=logging.INFO, stream=sys.stdout)
 main()

With using other web framework

You can pass incoming request to aiogram’s webhook controller from any web framework you want.

Read more about it in aiogram.dispatcher.dispatcher.Dispatcher.feed_webhook_update()
or aiogram.dispatcher.dispatcher.Dispatcher.feed_update() methods.

update = Update.model_validate(await request.json(), context={"bot": bot})
await dispatcher.feed_update(update)

Note

If you want to use reply into webhook, you should check that result of the feed_update
methods is an instance of API method and build multipart/form-data
or application/json response body manually.

Finite State Machine

A finite-state machine (FSM) or finite-state automaton (FSA, plural: automata), finite automaton,
or simply a state machine, is a mathematical model of computation.

It is an abstract machine that can be in exactly one of a finite number of states at any given time.
The FSM can change from one state to another in response to some inputs;
the change from one state to another is called a transition.

An FSM is defined by a list of its states, its initial state,
and the inputs that trigger each transition.

Source: WikiPedia

 Storages

Storages

Storages out of the box

MemoryStorage

	
class aiogram.fsm.storage.memory.MemoryStorage

	Default FSM storage, stores all data in dict and loss everything on shutdown

Warning

Is not recommended using in production in due to you will lose all data
when your bot restarts

	
__init__() → None

	

RedisStorage

	
class aiogram.fsm.storage.redis.RedisStorage(redis: ~redis.asyncio.client.Redis, key_builder: ~aiogram.fsm.storage.base.KeyBuilder | None = None, state_ttl: int | ~datetime.timedelta | None = None, data_ttl: int | ~datetime.timedelta | None = None, json_loads: ~typing.Callable[[...], ~typing.Any] = <function loads>, json_dumps: ~typing.Callable[[...], str] = <function dumps>)

	Redis storage required redis package installed (pip install redis)

	
__init__(redis: ~redis.asyncio.client.Redis, key_builder: ~aiogram.fsm.storage.base.KeyBuilder | None = None, state_ttl: int | ~datetime.timedelta | None = None, data_ttl: int | ~datetime.timedelta | None = None, json_loads: ~typing.Callable[[...], ~typing.Any] = <function loads>, json_dumps: ~typing.Callable[[...], str] = <function dumps>) → None

	
	Parameters:

	
	redis – Instance of Redis connection

	key_builder – builder that helps to convert contextual key to string

	state_ttl – TTL for state records

	data_ttl – TTL for data records

	
classmethod from_url(url: str, connection_kwargs: Dict[str, Any] | None = None, **kwargs: Any) → RedisStorage

	Create an instance of RedisStorage with specifying the connection string

	Parameters:

	
	url – for example redis://user:password@host:port/db

	connection_kwargs – see redis docs

	kwargs – arguments to be passed to RedisStorage

	Returns:

	an instance of RedisStorage

MongoStorage

KeyBuilder

Keys inside Redis and Mongo storages can be customized via key builders:

	
class aiogram.fsm.storage.base.KeyBuilder

	Base class for key builder.

	
abstract build(key: StorageKey, part: Literal['data', 'state', 'lock'] | None = None) → str

	Build key to be used in storage’s db queries

	Parameters:

	
	key – contextual key

	part – part of the record

	Returns:

	key to be used in storage’s db queries

	
class aiogram.fsm.storage.base.DefaultKeyBuilder(*, prefix: str = 'fsm', separator: str = ':', with_bot_id: bool = False, with_business_connection_id: bool = False, with_destiny: bool = False)

	Simple key builder with default prefix.

Generates a colon-joined string with prefix, chat_id, user_id,
optional bot_id, business_connection_id, destiny and field.

	Format:
	<prefix>:<bot_id?>:<business_connection_id?>:<chat_id>:<user_id>:<destiny?>:<field?>

	
build(key: StorageKey, part: Literal['data', 'state', 'lock'] | None = None) → str

	Build key to be used in storage’s db queries

	Parameters:

	
	key – contextual key

	part – part of the record

	Returns:

	key to be used in storage’s db queries

Writing own storages

	
class aiogram.fsm.storage.base.BaseStorage

	Base class for all FSM storages

	
abstract async set_state(key: StorageKey, state: str | State | None = None) → None

	Set state for specified key

	Parameters:

	
	key – storage key

	state – new state

	
abstract async get_state(key: StorageKey) → str | None

	Get key state

	Parameters:

	key – storage key

	Returns:

	current state

	
abstract async set_data(key: StorageKey, data: Dict[str, Any]) → None

	Write data (replace)

	Parameters:

	
	key – storage key

	data – new data

	
abstract async get_data(key: StorageKey) → Dict[str, Any]

	Get current data for key

	Parameters:

	key – storage key

	Returns:

	current data

	
async update_data(key: StorageKey, data: Dict[str, Any]) → Dict[str, Any]

	Update date in the storage for key (like dict.update)

	Parameters:

	
	key – storage key

	data – partial data

	Returns:

	new data

	
abstract async close() → None

	Close storage (database connection, file or etc.)

 Scenes Wizard

Scenes Wizard

New in version 3.2.

Warning

This feature is experimental and may be changed in future versions.

aiogram’s basics API is easy to use and powerful,
allowing the implementation of simple interactions such as triggering a command or message
for a response.
However, certain tasks require a dialogue between the user and the bot.
This is where Scenes come into play.

Understanding Scenes

A Scene in aiogram is like an abstract, isolated namespace or room that a user can be
ushered into via the code. When a user is within a Scene, most other global commands or
message handlers are bypassed, unless they are specifically designed to function outside of the Scenes.
This helps in creating an experience of focused interactions.
Scenes provide a structure for more complex interactions,
effectively isolating and managing contexts for different stages of the conversation.
They allow you to control and manage the flow of the conversation in a more organized manner.

Scene Lifecycle

Each Scene can be “entered”, “left” of “exited”, allowing for clear transitions between different
stages of the conversation.
For instance, in a multi-step form filling interaction, each step could be a Scene -
the bot guides the user from one Scene to the next as they provide the required information.

Scene Listeners

Scenes have their own hooks which are command or message listeners that only act while
the user is within the Scene.
These hooks react to user actions while the user is ‘inside’ the Scene,
providing the responses or actions appropriate for that context.
When the user is ushered from one Scene to another, the actions and responses change
accordingly as the user is now interacting with the set of listeners inside the new Scene.
These ‘Scene-specific’ hooks or listeners, detached from the global listening context,
allow for more streamlined and organized bot-user interactions.

Scene Interactions

Each Scene is like a self-contained world, with interactions defined within the scope of that Scene.
As such, only the handlers defined within the specific Scene will react to user’s input during
the lifecycle of that Scene.

Scene Benefits

Scenes can help manage more complex interaction workflows and enable more interactive and dynamic
dialogs between the user and the bot.
This offers great flexibility in handling multi-step interactions or conversations with the users.

How to use Scenes

For example we have a quiz bot, which asks the user a series of questions and then displays the results.

Lets start with the data models, in this example simple data models are used to represent
the questions and answers, in real life you would probably use a database to store the data.

Questions list

@dataclass
class Answer:
 """
 Represents an answer to a question.
 """

 text: str
 """The answer text"""
 is_correct: bool = False
 """Indicates if the answer is correct"""

@dataclass
class Question:
 """
 Class representing a quiz with a question and a list of answers.
 """

 text: str
 """The question text"""
 answers: list[Answer]
 """List of answers"""

 correct_answer: str = field(init=False)

 def __post_init__(self):
 self.correct_answer = next(answer.text for answer in self.answers if answer.is_correct)

Fake data, in real application you should use a database or something else
QUESTIONS = [
 Question(
 text="What is the capital of France?",
 answers=[
 Answer("Paris", is_correct=True),
 Answer("London"),
 Answer("Berlin"),
 Answer("Madrid"),
],
),
 Question(
 text="What is the capital of Spain?",
 answers=[
 Answer("Paris"),
 Answer("London"),
 Answer("Berlin"),
 Answer("Madrid", is_correct=True),
],
),
 Question(
 text="What is the capital of Germany?",
 answers=[
 Answer("Paris"),
 Answer("London"),
 Answer("Berlin", is_correct=True),
 Answer("Madrid"),
],
),
 Question(
 text="What is the capital of England?",
 answers=[
 Answer("Paris"),
 Answer("London", is_correct=True),
 Answer("Berlin"),
 Answer("Madrid"),
],
),
 Question(
 text="What is the capital of Italy?",
 answers=[
 Answer("Paris"),
 Answer("London"),
 Answer("Berlin"),
 Answer("Rome", is_correct=True),
],
),
]

Then, we need to create a Scene class that will represent the quiz game scene:

Note

Keyword argument passed into class definition describes the scene name - is the same as state of the scene.

Quiz Scene

class QuizScene(Scene, state="quiz"):
 """
 This class represents a scene for a quiz game.

 It inherits from Scene class and is associated with the state "quiz".
 It handles the logic and flow of the quiz game.
 """

Also we need to define a handler that helps to start the quiz game:

Start command handler

quiz_router = Router(name=__name__)
Add handler that initializes the scene
quiz_router.message.register(QuizScene.as_handler(), Command("quiz"))

Once the scene is defined, we need to register it in the SceneRegistry:

Registering the scene

def create_dispatcher():
 # Event isolation is needed to correctly handle fast user responses
 dispatcher = Dispatcher(
 events_isolation=SimpleEventIsolation(),
)
 dispatcher.include_router(quiz_router)

 # To use scenes, you should create a SceneRegistry and register your scenes there
 scene_registry = SceneRegistry(dispatcher)
 # ... and then register a scene in the registry
 # by default, Scene will be mounted to the router that passed to the SceneRegistry,
 # but you can specify the router explicitly using the `router` argument
 scene_registry.add(QuizScene)

 return dispatcher

So, now we can implement the quiz game logic, each question is sent to the user one by one,
and the user’s answer is checked at the end of all questions.

Now we need to write an entry point for the question handler:

Question handler entry point

 @on.message.enter()
 async def on_enter(self, message: Message, state: FSMContext, step: int | None = 0) -> Any:
 """
 Method triggered when the user enters the quiz scene.

 It displays the current question and answer options to the user.

 :param message:
 :param state:
 :param step: Scene argument, can be passed to the scene using the wizard
 :return:
 """
 if not step:
 # This is the first step, so we should greet the user
 await message.answer("Welcome to the quiz!")

 try:
 quiz = QUESTIONS[step]
 except IndexError:
 # This error means that the question's list is over
 return await self.wizard.exit()

 markup = ReplyKeyboardBuilder()
 markup.add(*[KeyboardButton(text=answer.text) for answer in quiz.answers])

 if step > 0:
 markup.button(text="🔙 Back")
 markup.button(text="🚫 Exit")

 await state.update_data(step=step)
 return await message.answer(
 text=QUESTIONS[step].text,
 reply_markup=markup.adjust(2).as_markup(resize_keyboard=True),
)

Once scene is entered, we should expect the user’s answer, so we need to write a handler for it,
this handler should expect the text message, save the answer and retake
the question handler for the next question:

Answer handler

 @on.message(F.text)
 async def answer(self, message: Message, state: FSMContext) -> None:
 """
 Method triggered when the user selects an answer.

 It stores the answer and proceeds to the next question.

 :param message:
 :param state:
 :return:
 """
 data = await state.get_data()
 step = data["step"]
 answers = data.get("answers", {})
 answers[step] = message.text
 await state.update_data(answers=answers)

 await self.wizard.retake(step=step + 1)

When user answer with unknown message, we should expect the text message again:

Unknown message handler

 @on.message()
 async def unknown_message(self, message: Message) -> None:
 """
 Method triggered when the user sends a message that is not a command or an answer.

 It asks the user to select an answer.

 :param message: The message received from the user.
 :return: None
 """
 await message.answer("Please select an answer.")

When all questions are answered, we should show the results to the user, as you can see in the code below,
we use await self.wizard.exit() to exit from the scene when questions list is over in the QuizScene.on_enter handler.

Thats means that we need to write an exit handler to show the results to the user:

Show results handler

 @on.message.exit()
 async def on_exit(self, message: Message, state: FSMContext) -> None:
 """
 Method triggered when the user exits the quiz scene.

 It calculates the user's answers, displays the summary, and clears the stored answers.

 :param message:
 :param state:
 :return:
 """
 data = await state.get_data()
 answers = data.get("answers", {})

 correct = 0
 incorrect = 0
 user_answers = []
 for step, quiz in enumerate(QUESTIONS):
 answer = answers.get(step)
 is_correct = answer == quiz.correct_answer
 if is_correct:
 correct += 1
 icon = "✅"
 else:
 incorrect += 1
 icon = "❌"
 if answer is None:
 answer = "no answer"
 user_answers.append(f"{quiz.text} ({icon} {html.quote(answer)})")

 content = as_list(
 as_section(
 Bold("Your answers:"),
 as_numbered_list(*user_answers),
),
 "",
 as_section(
 Bold("Summary:"),
 as_list(
 as_key_value("Correct", correct),
 as_key_value("Incorrect", incorrect),
),
),
)

 await message.answer(**content.as_kwargs(), reply_markup=ReplyKeyboardRemove())
 await state.set_data({})

Also we can implement a actions to exit from the quiz game or go back to the previous question:

Exit handler

 @on.message(F.text == "🚫 Exit")
 async def exit(self, message: Message) -> None:
 """
 Method triggered when the user selects the "Exit" button.

 It exits the quiz.

 :param message:
 :return:
 """
 await self.wizard.exit()

Back handler

 @on.message(F.text == "🔙 Back")
 async def back(self, message: Message, state: FSMContext) -> None:
 """
 Method triggered when the user selects the "Back" button.

 It allows the user to go back to the previous question.

 :param message:
 :param state:
 :return:
 """
 data = await state.get_data()
 step = data["step"]

 previous_step = step - 1
 if previous_step < 0:
 # In case when the user tries to go back from the first question,
 # we just exit the quiz
 return await self.wizard.exit()
 return await self.wizard.back(step=previous_step)

Now we can run the bot and test the quiz game:

Run the bot

async def main():
 dispatcher = create_dispatcher()
 bot = Bot(TOKEN)
 await dispatcher.start_polling(bot)

if __name__ == "__main__":
 logging.basicConfig(level=logging.INFO)
 asyncio.run(main())
 # Alternatively, you can use aiogram-cli:
 # `aiogram run polling quiz_scene:create_dispatcher --log-level info --token BOT_TOKEN`

Complete them all

Quiz Example

import asyncio
import logging
from dataclasses import dataclass, field
from os import getenv
from typing import Any

from aiogram import Bot, Dispatcher, F, Router, html
from aiogram.filters import Command
from aiogram.fsm.context import FSMContext
from aiogram.fsm.scene import Scene, SceneRegistry, ScenesManager, on
from aiogram.fsm.storage.memory import SimpleEventIsolation
from aiogram.types import KeyboardButton, Message, ReplyKeyboardRemove
from aiogram.utils.formatting import (
 Bold,
 as_key_value,
 as_list,
 as_numbered_list,
 as_section,
)
from aiogram.utils.keyboard import ReplyKeyboardBuilder

TOKEN = getenv("BOT_TOKEN")

@dataclass
class Answer:
 """
 Represents an answer to a question.
 """

 text: str
 """The answer text"""
 is_correct: bool = False
 """Indicates if the answer is correct"""

@dataclass
class Question:
 """
 Class representing a quiz with a question and a list of answers.
 """

 text: str
 """The question text"""
 answers: list[Answer]
 """List of answers"""

 correct_answer: str = field(init=False)

 def __post_init__(self):
 self.correct_answer = next(answer.text for answer in self.answers if answer.is_correct)

Fake data, in real application you should use a database or something else
QUESTIONS = [
 Question(
 text="What is the capital of France?",
 answers=[
 Answer("Paris", is_correct=True),
 Answer("London"),
 Answer("Berlin"),
 Answer("Madrid"),
],
),
 Question(
 text="What is the capital of Spain?",
 answers=[
 Answer("Paris"),
 Answer("London"),
 Answer("Berlin"),
 Answer("Madrid", is_correct=True),
],
),
 Question(
 text="What is the capital of Germany?",
 answers=[
 Answer("Paris"),
 Answer("London"),
 Answer("Berlin", is_correct=True),
 Answer("Madrid"),
],
),
 Question(
 text="What is the capital of England?",
 answers=[
 Answer("Paris"),
 Answer("London", is_correct=True),
 Answer("Berlin"),
 Answer("Madrid"),
],
),
 Question(
 text="What is the capital of Italy?",
 answers=[
 Answer("Paris"),
 Answer("London"),
 Answer("Berlin"),
 Answer("Rome", is_correct=True),
],
),
]

class QuizScene(Scene, state="quiz"):
 """
 This class represents a scene for a quiz game.

 It inherits from Scene class and is associated with the state "quiz".
 It handles the logic and flow of the quiz game.
 """

 @on.message.enter()
 async def on_enter(self, message: Message, state: FSMContext, step: int | None = 0) -> Any:
 """
 Method triggered when the user enters the quiz scene.

 It displays the current question and answer options to the user.

 :param message:
 :param state:
 :param step: Scene argument, can be passed to the scene using the wizard
 :return:
 """
 if not step:
 # This is the first step, so we should greet the user
 await message.answer("Welcome to the quiz!")

 try:
 quiz = QUESTIONS[step]
 except IndexError:
 # This error means that the question's list is over
 return await self.wizard.exit()

 markup = ReplyKeyboardBuilder()
 markup.add(*[KeyboardButton(text=answer.text) for answer in quiz.answers])

 if step > 0:
 markup.button(text="🔙 Back")
 markup.button(text="🚫 Exit")

 await state.update_data(step=step)
 return await message.answer(
 text=QUESTIONS[step].text,
 reply_markup=markup.adjust(2).as_markup(resize_keyboard=True),
)

 @on.message.exit()
 async def on_exit(self, message: Message, state: FSMContext) -> None:
 """
 Method triggered when the user exits the quiz scene.

 It calculates the user's answers, displays the summary, and clears the stored answers.

 :param message:
 :param state:
 :return:
 """
 data = await state.get_data()
 answers = data.get("answers", {})

 correct = 0
 incorrect = 0
 user_answers = []
 for step, quiz in enumerate(QUESTIONS):
 answer = answers.get(step)
 is_correct = answer == quiz.correct_answer
 if is_correct:
 correct += 1
 icon = "✅"
 else:
 incorrect += 1
 icon = "❌"
 if answer is None:
 answer = "no answer"
 user_answers.append(f"{quiz.text} ({icon} {html.quote(answer)})")

 content = as_list(
 as_section(
 Bold("Your answers:"),
 as_numbered_list(*user_answers),
),
 "",
 as_section(
 Bold("Summary:"),
 as_list(
 as_key_value("Correct", correct),
 as_key_value("Incorrect", incorrect),
),
),
)

 await message.answer(**content.as_kwargs(), reply_markup=ReplyKeyboardRemove())
 await state.set_data({})

 @on.message(F.text == "🔙 Back")
 async def back(self, message: Message, state: FSMContext) -> None:
 """
 Method triggered when the user selects the "Back" button.

 It allows the user to go back to the previous question.

 :param message:
 :param state:
 :return:
 """
 data = await state.get_data()
 step = data["step"]

 previous_step = step - 1
 if previous_step < 0:
 # In case when the user tries to go back from the first question,
 # we just exit the quiz
 return await self.wizard.exit()
 return await self.wizard.back(step=previous_step)

 @on.message(F.text == "🚫 Exit")
 async def exit(self, message: Message) -> None:
 """
 Method triggered when the user selects the "Exit" button.

 It exits the quiz.

 :param message:
 :return:
 """
 await self.wizard.exit()

 @on.message(F.text)
 async def answer(self, message: Message, state: FSMContext) -> None:
 """
 Method triggered when the user selects an answer.

 It stores the answer and proceeds to the next question.

 :param message:
 :param state:
 :return:
 """
 data = await state.get_data()
 step = data["step"]
 answers = data.get("answers", {})
 answers[step] = message.text
 await state.update_data(answers=answers)

 await self.wizard.retake(step=step + 1)

 @on.message()
 async def unknown_message(self, message: Message) -> None:
 """
 Method triggered when the user sends a message that is not a command or an answer.

 It asks the user to select an answer.

 :param message: The message received from the user.
 :return: None
 """
 await message.answer("Please select an answer.")

quiz_router = Router(name=__name__)
Add handler that initializes the scene
quiz_router.message.register(QuizScene.as_handler(), Command("quiz"))

@quiz_router.message(Command("start"))
async def command_start(message: Message, scenes: ScenesManager):
 await scenes.close()
 await message.answer(
 "Hi! This is a quiz bot. To start the quiz, use the /quiz command.",
 reply_markup=ReplyKeyboardRemove(),
)

def create_dispatcher():
 # Event isolation is needed to correctly handle fast user responses
 dispatcher = Dispatcher(
 events_isolation=SimpleEventIsolation(),
)
 dispatcher.include_router(quiz_router)

 # To use scenes, you should create a SceneRegistry and register your scenes there
 scene_registry = SceneRegistry(dispatcher)
 # ... and then register a scene in the registry
 # by default, Scene will be mounted to the router that passed to the SceneRegistry,
 # but you can specify the router explicitly using the `router` argument
 scene_registry.add(QuizScene)

 return dispatcher

async def main():
 dispatcher = create_dispatcher()
 bot = Bot(TOKEN)
 await dispatcher.start_polling(bot)

if __name__ == "__main__":
 logging.basicConfig(level=logging.INFO)
 asyncio.run(main())
 # Alternatively, you can use aiogram-cli:
 # `aiogram run polling quiz_scene:create_dispatcher --log-level info --token BOT_TOKEN`

Components

	aiogram.fsm.scene.Scene - represents a scene, contains handlers

	aiogram.fsm.scene.SceneRegistry - container for all scenes in the bot, used to register scenes and resolve them by name

	aiogram.fsm.scene.ScenesManager - manages scenes for each user, used to enter, leave and resolve current scene for user

	aiogram.fsm.scene.SceneConfig - scene configuration, used to configure scene

	aiogram.fsm.scene.SceneWizard - scene wizard, used to interact with user in scene from active scene handler

	Markers - marker for scene handlers, used to mark scene handlers

	
class aiogram.fsm.scene.Scene(wizard: SceneWizard)

	Represents a scene in a conversation flow.

A scene is a specific state in a conversation where certain actions can take place.

Each scene has a set of filters that determine when it should be triggered,
and a set of handlers that define the actions to be executed when the scene is active.

Note

This class is not meant to be used directly. Instead, it should be subclassed
to define custom scenes.

	
classmethod add_to_router(router: Router) → None

	Adds the scene to the given router.

	Parameters:

	router –

	Returns:

	

	
classmethod as_handler(**kwargs: Any) → Callable[[...], Any]

	Create an entry point handler for the scene, can be used to simplify the handler
that starts the scene.

>>> router.message.register(MyScene.as_handler(), Command("start"))

	
classmethod as_router(name: str | None = None) → Router

	Returns the scene as a router.

	Returns:

	new router

	
class aiogram.fsm.scene.SceneRegistry(router: Router, register_on_add: bool = True)

	A class that represents a registry for scenes in a Telegram bot.

	
add(*scenes: Type[Scene], router: Router | None = None) → None

	This method adds the specified scenes to the registry
and optionally registers it to the router.

If a scene with the same state already exists in the registry, a SceneException is raised.

Warning

If the router is not specified, the scenes will not be registered to the router.
You will need to include the scenes manually to the router or use the register method.

	Parameters:

	
	scenes – A variable length parameter that accepts one or more types of scenes.
These scenes are instances of the Scene class.

	router – An optional parameter that specifies the router
to which the scenes should be added.

	Returns:

	None

	
get(scene: Type[Scene] | str | None) → Type[Scene]

	This method returns the registered Scene object for the specified scene.
The scene parameter can be either a Scene object or a string representing
the name of the scene. If a Scene object is provided, the state attribute
of the SceneConfig object associated with the Scene object will be used as the scene name.
If None or an invalid type is provided, a SceneException will be raised.

If the specified scene is not registered in the SceneRegistry object,
a SceneException will be raised.

	Parameters:

	scene – A Scene object or a string representing the name of the scene.

	Returns:

	The registered Scene object corresponding to the given scene parameter.

	
register(*scenes: Type[Scene]) → None

	Registers one or more scenes to the SceneRegistry.

	Parameters:

	scenes – One or more scene classes to register.

	Returns:

	None

	
class aiogram.fsm.scene.ScenesManager(registry: SceneRegistry, update_type: str, event: TelegramObject, state: FSMContext, data: Dict[str, Any])

	The ScenesManager class is responsible for managing scenes in an application.
It provides methods for entering and exiting scenes, as well as retrieving the active scene.

	
async close(**kwargs: Any) → None

	Close method is used to exit the currently active scene in the ScenesManager.

	Parameters:

	kwargs – Additional keyword arguments passed to the scene’s exit method.

	Returns:

	None

	
async enter(scene_type: Type[Scene] | str | None, _check_active: bool = True, **kwargs: Any) → None

	Enters the specified scene.

	Parameters:

	
	scene_type – Optional Type[Scene] or str representing the scene type to enter.

	_check_active – Optional bool indicating whether to check if
there is an active scene to exit before entering the new scene. Defaults to True.

	kwargs – Additional keyword arguments to pass to the scene’s wizard.enter() method.

	Returns:

	None

	
class aiogram.fsm.scene.SceneConfig(state: 'Optional[str]', handlers: 'List[HandlerContainer]', actions: 'Dict[SceneAction, Dict[str, CallableObject]]', reset_data_on_enter: 'Optional[bool]' = None, reset_history_on_enter: 'Optional[bool]' = None, callback_query_without_state: 'Optional[bool]' = None)

	
	
actions: Dict[SceneAction, Dict[str, CallableObject]]

	Scene actions

	
callback_query_without_state: bool | None = None

	Allow callback query without state

	
handlers: List[HandlerContainer]

	Scene handlers

	
reset_data_on_enter: bool | None = None

	Reset scene data on enter

	
reset_history_on_enter: bool | None = None

	Reset scene history on enter

	
state: str | None

	Scene state

	
class aiogram.fsm.scene.SceneWizard(scene_config: SceneConfig, manager: ScenesManager, state: FSMContext, update_type: str, event: TelegramObject, data: Dict[str, Any])

	A class that represents a wizard for managing scenes in a Telegram bot.

Instance of this class is passed to each scene as a parameter.
So, you can use it to transition between scenes, get and set data, etc.

Note

This class is not meant to be used directly. Instead, it should be used
as a parameter in the scene constructor.

	
async back(**kwargs: Any) → None

	This method is used to go back to the previous scene.

	Parameters:

	kwargs – Keyword arguments that can be passed to the method.

	Returns:

	None

	
async clear_data() → None

	Clears the data.

	Returns:

	None

	
async enter(**kwargs: Any) → None

	Enter method is used to transition into a scene in the SceneWizard class.
It sets the state, clears data and history if specified,
and triggers entering event of the scene.

	Parameters:

	kwargs – Additional keyword arguments.

	Returns:

	None

	
async exit(**kwargs: Any) → None

	Exit the current scene and enter the default scene/state.

	Parameters:

	kwargs – Additional keyword arguments.

	Returns:

	None

	
async get_data() → Dict[str, Any]

	This method returns the data stored in the current state.

	Returns:

	A dictionary containing the data stored in the scene state.

	
async goto(scene: Type[Scene] | str, **kwargs: Any) → None

	The goto method transitions to a new scene.
It first calls the leave method to perform any necessary cleanup
in the current scene, then calls the enter event to enter the specified scene.

	Parameters:

	
	scene – The scene to transition to. Can be either a Scene instance
or a string representing the scene.

	kwargs – Additional keyword arguments to pass to the enter
method of the scene manager.

	Returns:

	None

	
async leave(_with_history: bool = True, **kwargs: Any) → None

	Leaves the current scene.
This method is used to exit a scene and transition to the next scene.

	Parameters:

	
	_with_history – Whether to include history in the snapshot. Defaults to True.

	kwargs – Additional keyword arguments.

	Returns:

	None

	
async retake(**kwargs: Any) → None

	This method allows to re-enter the current scene.

	Parameters:

	kwargs – Additional keyword arguments to pass to the scene.

	Returns:

	None

	
async set_data(data: Dict[str, Any]) → None

	Sets custom data in the current state.

	Parameters:

	data – A dictionary containing the custom data to be set in the current state.

	Returns:

	None

	
async update_data(data: Dict[str, Any] | None = None, **kwargs: Any) → Dict[str, Any]

	This method updates the data stored in the current state

	Parameters:

	
	data – Optional dictionary of data to update.

	kwargs – Additional key-value pairs of data to update.

	Returns:

	Dictionary of updated data

Markers

Markers are similar to the Router event registering mechanism,
but they are used to mark scene handlers in the Scene class.

It can be imported from from aiogram.fsm.scene import on and should be used as decorator.

Allowed event types:

	message

	edited_message

	channel_post

	edited_channel_post

	inline_query

	chosen_inline_result

	callback_query

	shipping_query

	pre_checkout_query

	poll

	poll_answer

	my_chat_member

	chat_member

	chat_join_request

Each event type can be filtered in the same way as in the Router.

Also each event type can be marked as scene entry point, exit point or leave point.

If you want to mark the scene can be entered from message or inline query,
you should use on.message or on.inline_query marker:

class MyScene(Scene, name="my_scene"):
 @on.message.enter()
 async def on_enter(self, message: types.Message):
 pass

 @on.callback_query.enter()
 async def on_enter(self, callback_query: types.CallbackQuery):
 pass

Scene has only tree points for transitions:

	enter point - when user enters to the scene

	leave point - when user leaves the scene and the enter another scene

	exit point - when user exits from the scene

 Middlewares

Middlewares

aiogram provides powerful mechanism for customizing event handlers via middlewares.

Middlewares in bot framework seems like Middlewares mechanism in web-frameworks
like aiohttp [https://docs.aiohttp.org/en/stable/web_advanced.html#aiohttp-web-middlewares],
fastapi [https://fastapi.tiangolo.com/tutorial/middleware/],
Django [https://docs.djangoproject.com/en/3.0/topics/http/middleware/] or etc.)
with small difference - here is implemented two layers of middlewares (before and after filters).

Note

Middleware is function that triggered on every event received from
Telegram Bot API in many points on processing pipeline.

Base theory

As many books and other literature in internet says:

Middleware is reusable software that leverages patterns and frameworks to bridge
the gap between the functional requirements of applications and the underlying operating systems,
network protocol stacks, and databases.

Middleware can modify, extend or reject processing event in many places of pipeline.

Basics

Middleware instance can be applied for every type of Telegram Event (Update, Message, etc.) in two places

	Outer scope - before processing filters (<router>.<event>.outer_middleware(...))

	Inner scope - after processing filters but before handler (<router>.<event>.middleware(...))

[image: Middleware basics]

Attention

Middleware should be subclass of BaseMiddleware (from aiogram import BaseMiddleware) or any async callable

Arguments specification

	
class aiogram.dispatcher.middlewares.base.BaseMiddleware

	Bases: ABC

Generic middleware class

	
abstract async __call__(handler: Callable[[TelegramObject, Dict[str, Any]], Awaitable[Any]], event: TelegramObject, data: Dict[str, Any]) → Any

	Execute middleware

	Parameters:

	
	handler – Wrapped handler in middlewares chain

	event – Incoming event (Subclass of aiogram.types.base.TelegramObject)

	data – Contextual data. Will be mapped to handler arguments

	Returns:

	Any

Examples

Danger

Middleware should always call await handler(event, data) to propagate event for next middleware/handler.
If you want to stop processing event in middleware you should not call await handler(event, data).

Class-based

from aiogram import BaseMiddleware
from aiogram.types import Message

class CounterMiddleware(BaseMiddleware):
 def __init__(self) -> None:
 self.counter = 0

 async def __call__(
 self,
 handler: Callable[[Message, Dict[str, Any]], Awaitable[Any]],
 event: Message,
 data: Dict[str, Any]
) -> Any:
 self.counter += 1
 data['counter'] = self.counter
 return await handler(event, data)

and then

router = Router()
router.message.middleware(CounterMiddleware())

Function-based

@dispatcher.update.outer_middleware()
async def database_transaction_middleware(
 handler: Callable[[Update, Dict[str, Any]], Awaitable[Any]],
 event: Update,
 data: Dict[str, Any]
) -> Any:
 async with database.transaction():
 return await handler(event, data)

Facts

	Middlewares from outer scope will be called on every incoming event

	Middlewares from inner scope will be called only when filters pass

	Inner middlewares is always calls for aiogram.types.update.Update event type in due to all incoming updates going to specific event type handler through built in update handler

 Errors

Errors

Handling errors

Is recommended way that you should use errors inside handlers using try-except block,
but in common cases you can use global errors handler at router or dispatcher level.

If you specify errors handler for router - it will be used for all handlers inside this router.

If you specify errors handler for dispatcher - it will be used for all handlers inside all routers.

@router.error(ExceptionTypeFilter(MyCustomException), F.update.message.as_("message"))
async def handle_my_custom_exception(event: ErrorEvent, message: Message):
 # do something with error
 await message.answer("Oops, something went wrong!")

@router.error()
async def error_handler(event: ErrorEvent):
 logger.critical("Critical error caused by %s", event.exception, exc_info=True)
 # do something with error
 ...

ErrorEvent

	
class aiogram.types.error_event.ErrorEvent(*, update: Update, exception: Exception, **extra_data: Any)

	Internal event, should be used to receive errors while processing Updates from Telegram

Source: https://core.telegram.org/bots/api#error-event

	
update: Update

	Received update

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
exception: Exception

	Exception

Error types

	
exception aiogram.exceptions.AiogramError

	Base exception for all aiogram errors.

	
exception aiogram.exceptions.DetailedAiogramError(message: str)

	Base exception for all aiogram errors with detailed message.

	
exception aiogram.exceptions.CallbackAnswerException

	Exception for callback answer.

	
exception aiogram.exceptions.SceneException

	Exception for scenes.

	
exception aiogram.exceptions.UnsupportedKeywordArgument(message: str)

	Exception raised when a keyword argument is passed as filter.

	
exception aiogram.exceptions.TelegramAPIError(method: TelegramMethod, message: str)

	Base exception for all Telegram API errors.

	
exception aiogram.exceptions.TelegramNetworkError(method: TelegramMethod, message: str)

	Base exception for all Telegram network errors.

	
exception aiogram.exceptions.TelegramRetryAfter(method: TelegramMethod, message: str, retry_after: int)

	Exception raised when flood control exceeds.

	
exception aiogram.exceptions.TelegramMigrateToChat(method: TelegramMethod, message: str, migrate_to_chat_id: int)

	Exception raised when chat has been migrated to a supergroup.

	
exception aiogram.exceptions.TelegramBadRequest(method: TelegramMethod, message: str)

	Exception raised when request is malformed.

	
exception aiogram.exceptions.TelegramNotFound(method: TelegramMethod, message: str)

	Exception raised when chat, message, user, etc. not found.

	
exception aiogram.exceptions.TelegramConflictError(method: TelegramMethod, message: str)

	Exception raised when bot token is already used by another application in polling mode.

	
exception aiogram.exceptions.TelegramUnauthorizedError(method: TelegramMethod, message: str)

	Exception raised when bot token is invalid.

	
exception aiogram.exceptions.TelegramForbiddenError(method: TelegramMethod, message: str)

	Exception raised when bot is kicked from chat or etc.

	
exception aiogram.exceptions.TelegramServerError(method: TelegramMethod, message: str)

	Exception raised when Telegram server returns 5xx error.

	
exception aiogram.exceptions.RestartingTelegram(method: TelegramMethod, message: str)

	Exception raised when Telegram server is restarting.

It seems like this error is not used by Telegram anymore,
but it’s still here for backward compatibility.

	Currently, you should expect that Telegram can raise RetryAfter (with timeout 5 seconds)
	error instead of this one.

	
exception aiogram.exceptions.TelegramEntityTooLarge(method: TelegramMethod, message: str)

	Exception raised when you are trying to send a file that is too large.

	
exception aiogram.exceptions.ClientDecodeError(message: str, original: Exception, data: Any)

	Exception raised when client can’t decode response. (Malformed response, etc.)

 Flags

Flags

Flags is a markers for handlers that can be used in middlewares
or special utilities to make classification of the handlers.

Flags can be added to the handler via decorators,
handlers registration or
filters.

Via decorators

For example mark handler with chat_action flag

from aiogram import flags

@flags.chat_action
async def my_handler(message: Message)

Or just for rate-limit or something else

from aiogram import flags

@flags.rate_limit(rate=2, key="something")
async def my_handler(message: Message)

Via handler registration method

@router.message(..., flags={'chat_action': 'typing', 'rate_limit': {'rate': 5}})

Via filters

class Command(Filter):
 ...

 def update_handler_flags(self, flags: Dict[str, Any]) -> None:
 commands = flags.setdefault("commands", [])
 commands.append(self)

Use in middlewares

	
aiogram.dispatcher.flags.check_flags(handler: HandlerObject | Dict[str, Any], magic: MagicFilter) → Any

	Check flags via magic filter

	Parameters:

	
	handler – handler object or data

	magic – instance of the magic

	Returns:

	the result of magic filter check

	
aiogram.dispatcher.flags.extract_flags(handler: HandlerObject | Dict[str, Any]) → Dict[str, Any]

	Extract flags from handler or middleware context data

	Parameters:

	handler – handler object or data

	Returns:

	dictionary with all handler flags

	
aiogram.dispatcher.flags.get_flag(handler: HandlerObject | Dict[str, Any], name: str, *, default: Any | None = None) → Any

	Get flag by name

	Parameters:

	
	handler – handler object or data

	name – name of the flag

	default – default value (None)

	Returns:

	value of the flag or default

Example in middlewares

async def my_middleware(handler, event, data):
 typing = get_flag(data, "typing") # Check that handler marked with `typing` flag
 if not typing:
 return await handler(event, data)

 async with ChatActionSender.typing(chat_id=event.chat.id):
 return await handler(event, data)

Use in utilities

For example you can collect all registered commands with handler description and then it can be used for generating commands help

def collect_commands(router: Router) -> Generator[Tuple[Command, str], None, None]:
 for handler in router.message.handlers:
 if "commands" not in handler.flags: # ignore all handler without commands
 continue
 # the Command filter adds the flag with list of commands attached to the handler
 for command in handler.flags["commands"]:
 yield command, handler.callback.__doc__ or ""
 # Recursively extract commands from nested routers
 for sub_router in router.sub_routers:
 yield from collect_commands(sub_router)

 Class based handlers

Class based handlers

A handler is a async callable which takes a event with contextual data and returns a response.

In aiogram it can be more than just an async function, these allow you to use classes
which can be used as Telegram event handlers to structure your event handlers and reuse code by harnessing inheritance and mixins.

There are some base class based handlers what you need to use in your own handlers:

	BaseHandler
	Example

	CallbackQueryHandler
	CallbackQueryHandler
	CallbackQueryHandler.from_user

	CallbackQueryHandler.message

	CallbackQueryHandler.callback_data

	ChosenInlineResultHandler
	Simple usage

	Extension

	ErrorHandler
	Simple usage

	Extension

	InlineQueryHandler
	Simple usage

	Extension

	MessageHandler
	Simple usage

	Extension

	PollHandler
	Simple usage

	Extension

	PreCheckoutQueryHandler
	Simple usage

	Extension

	ShippingQueryHandler
	Simple usage

	Extension

	ChatMemberHandler
	Simple usage

	Extension

 BaseHandler

BaseHandler

Base handler is generic abstract class and should be used in all other class-based handlers.

Import: from aiogram.handlers import BaseHandler

By default you will need to override only method async def handle(self) -> Any: ...

This class also has a default initializer and you don’t need to change it.
The initializer accepts the incoming event and all contextual data, which
can be accessed from the handler through attributes: event: TelegramEvent and data: Dict[Any, str]

If an instance of the bot is specified in context data or current context it can be accessed through bot class attribute.

Example

class MyHandler(BaseHandler[Message]):
 async def handle(self) -> Any:
 await self.event.answer("Hello!")

 CallbackQueryHandler

CallbackQueryHandler

	
class aiogram.handlers.callback_query.CallbackQueryHandler(event: T, **kwargs: Any)

	There is base class for callback query handlers.

	Example:
	from aiogram.handlers import CallbackQueryHandler

...

@router.callback_query()
class MyHandler(CallbackQueryHandler):
 async def handle(self) -> Any: ...

	
property from_user: User

	Is alias for event.from_user

	
property message: MaybeInaccessibleMessage | None

	Is alias for event.message

	
property callback_data: str | None

	Is alias for event.data

 ChosenInlineResultHandler

ChosenInlineResultHandler

There is base class for chosen inline result handlers.

Simple usage

from aiogram.handlers import ChosenInlineResultHandler

...

@router.chosen_inline_result()
class MyHandler(ChosenInlineResultHandler):
 async def handle(self) -> Any: ...

Extension

This base handler is subclass of BaseHandler with some extensions:

	self.chat is alias for self.event.chat

	self.from_user is alias for self.event.from_user

 ErrorHandler

ErrorHandler

There is base class for error handlers.

Simple usage

from aiogram.handlers import ErrorHandler

...

@router.errors()
class MyHandler(ErrorHandler):
 async def handle(self) -> Any:
 log.exception(
 "Cause unexpected exception %s: %s",
 self.exception_name,
 self.exception_message
)

Extension

This base handler is subclass of BaseHandler with some extensions:

	self.exception_name is alias for self.event.__class__.__name__

	self.exception_message is alias for str(self.event)

 InlineQueryHandler

InlineQueryHandler

There is base class for inline query handlers.

Simple usage

from aiogram.handlers import InlineQueryHandler

...

@router.inline_query()
class MyHandler(InlineQueryHandler):
 async def handle(self) -> Any: ...

Extension

This base handler is subclass of BaseHandler with some extensions:

	self.chat is alias for self.event.chat

	self.query is alias for self.event.query

 MessageHandler

MessageHandler

There is base class for message handlers.

Simple usage

from aiogram.handlers import MessageHandler

...

@router.message()
class MyHandler(MessageHandler):
 async def handle(self) -> Any:
 return SendMessage(chat_id=self.chat.id, text="PASS")

Extension

This base handler is subclass of BaseHandler with some extensions:

	self.chat is alias for self.event.chat

	self.from_user is alias for self.event.from_user

 PollHandler

PollHandler

There is base class for poll handlers.

Simple usage

from aiogram.handlers import PollHandler

...

@router.poll()
class MyHandler(PollHandler):
 async def handle(self) -> Any: ...

Extension

This base handler is subclass of BaseHandler with some extensions:

	self.question is alias for self.event.question

	self.options is alias for self.event.options

 PreCheckoutQueryHandler

PreCheckoutQueryHandler

There is base class for callback query handlers.

Simple usage

from aiogram.handlers import PreCheckoutQueryHandler

...

@router.pre_checkout_query()
class MyHandler(PreCheckoutQueryHandler):
 async def handle(self) -> Any: ...

Extension

This base handler is subclass of BaseHandler with some extensions:

	self.from_user is alias for self.event.from_user

 ShippingQueryHandler

ShippingQueryHandler

There is base class for callback query handlers.

Simple usage

from aiogram.handlers import ShippingQueryHandler

...

@router.shipping_query()
class MyHandler(ShippingQueryHandler):
 async def handle(self) -> Any: ...

Extension

This base handler is subclass of BaseHandler with some extensions:

	self.from_user is alias for self.event.from_user

 ChatMemberHandler

ChatMemberHandler

There is base class for chat member updated events.

Simple usage

from aiogram.handlers import ChatMemberHandler

...

@router.chat_member()
@router.my_chat_member()
class MyHandler(ChatMemberHandler):
 async def handle(self) -> Any: ...

Extension

This base handler is subclass of BaseHandler with some extensions:

	self.chat is alias for self.event.chat

 Utils

Utils

	Keyboard builder
	Usage example

	Inline Keyboard
	InlineKeyboardBuilder
	InlineKeyboardBuilder.__init__()

	InlineKeyboardBuilder.add()

	InlineKeyboardBuilder.adjust()

	InlineKeyboardBuilder.buttons

	InlineKeyboardBuilder.copy()

	InlineKeyboardBuilder.export()

	InlineKeyboardBuilder.from_markup()

	InlineKeyboardBuilder.row()

	Reply Keyboard
	ReplyKeyboardBuilder
	ReplyKeyboardBuilder.__init__()

	ReplyKeyboardBuilder.add()

	ReplyKeyboardBuilder.adjust()

	ReplyKeyboardBuilder.buttons

	ReplyKeyboardBuilder.copy()

	ReplyKeyboardBuilder.export()

	ReplyKeyboardBuilder.from_markup()

	ReplyKeyboardBuilder.row()

	Translation
	Installation

	Make messages translatable

	Configuring engine
	SimpleI18nMiddleware
	SimpleI18nMiddleware
	SimpleI18nMiddleware.__init__()

	ConstI18nMiddleware
	ConstI18nMiddleware
	ConstI18nMiddleware.__init__()

	FSMI18nMiddleware
	FSMI18nMiddleware
	FSMI18nMiddleware.__init__()

	FSMI18nMiddleware.set_locale()

	I18nMiddleware
	I18nMiddleware
	I18nMiddleware.__init__()

	I18nMiddleware.get_locale()

	I18nMiddleware.setup()

	Deal with Babel
	Step 1 Extract messages

	Step 2: Init language

	Step 3: Translate texts

	Step 4: Compile translations

	Step 5: Updating messages

	Chat action sender
	Sender
	ChatActionSender
	ChatActionSender.__init__()

	ChatActionSender.choose_sticker()

	ChatActionSender.find_location()

	ChatActionSender.record_video()

	ChatActionSender.record_video_note()

	ChatActionSender.record_voice()

	ChatActionSender.typing()

	ChatActionSender.upload_document()

	ChatActionSender.upload_photo()

	ChatActionSender.upload_video()

	ChatActionSender.upload_video_note()

	ChatActionSender.upload_voice()

	Usage

	Middleware
	ChatActionMiddleware

	Usage

	WebApp
	Usage

	Functions
	check_webapp_signature()

	parse_webapp_init_data()

	safe_parse_webapp_init_data()

	Types
	WebAppInitData
	WebAppInitData.model_computed_fields

	WebAppInitData.model_config

	WebAppInitData.model_fields

	WebAppInitData.model_post_init()

	WebAppInitData.query_id

	WebAppInitData.user

	WebAppInitData.receiver

	WebAppInitData.chat

	WebAppInitData.chat_type

	WebAppInitData.chat_instance

	WebAppInitData.start_param

	WebAppInitData.can_send_after

	WebAppInitData.auth_date

	WebAppInitData.hash

	WebAppUser
	WebAppUser.id

	WebAppUser.is_bot

	WebAppUser.first_name

	WebAppUser.last_name

	WebAppUser.username

	WebAppUser.language_code

	WebAppUser.is_premium

	WebAppUser.added_to_attachment_menu

	WebAppUser.allows_write_to_pm

	WebAppUser.model_computed_fields

	WebAppUser.model_config

	WebAppUser.model_fields

	WebAppUser.model_post_init()

	WebAppUser.photo_url

	WebAppChat
	WebAppChat.id

	WebAppChat.type

	WebAppChat.title

	WebAppChat.username

	WebAppChat.photo_url

	WebAppChat.model_computed_fields

	WebAppChat.model_config

	WebAppChat.model_fields

	WebAppChat.model_post_init()

	Callback answer
	Simple usage

	Advanced usage
	Global defaults

	Handler specific

	A special case

	Combine that all at once

	Description of objects
	CallbackAnswerMiddleware
	CallbackAnswerMiddleware.__init__()

	CallbackAnswer
	CallbackAnswer.__init__()

	CallbackAnswer.disable()

	CallbackAnswer.disabled

	CallbackAnswer.answered

	CallbackAnswer.text

	CallbackAnswer.show_alert

	CallbackAnswer.url

	CallbackAnswer.cache_time

	Formatting
	Usage
	Basic scenario

	Advanced scenario
	as_line()

	as_list()

	as_marked_list()

	as_numbered_list()

	as_section()

	as_marked_section()

	as_numbered_section()

	as_key_value()

	Available methods
	Text
	Text.__init__()

	Text.render()

	Text.as_kwargs()

	Text.as_html()

	Text.as_markdown()

	Available elements
	HashTag

	CashTag

	BotCommand

	Url

	Email

	PhoneNumber

	Bold

	Italic

	Underline

	Strikethrough

	Spoiler

	Code

	Pre

	TextLink

	TextMention

	CustomEmoji

	Media group builder
	Usage

	References
	MediaGroupBuilder
	MediaGroupBuilder.add()

	MediaGroupBuilder.add_audio()

	MediaGroupBuilder.add_document()

	MediaGroupBuilder.add_photo()

	MediaGroupBuilder.add_video()

	MediaGroupBuilder.build()

	Deep Linking
	Examples
	Basic link example

	Encoded link

	Decode it back

	References
	create_start_link()

	decode_payload()

 Keyboard builder

Keyboard builder

Keyboard builder helps to dynamically generate markup.

Note

Note that if you have static markup, it’s best to define it explicitly rather than using builder,
but if you have dynamic markup configuration, feel free to use builder as you wish.

Usage example

For example you want to generate inline keyboard with 10 buttons

builder = InlineKeyboardBuilder()

for index in range(1, 11):
 builder.button(text=f"Set {index}", callback_data=f"set:{index}")

then adjust this buttons to some grid, for example first line will have 3 buttons, the next lines will have 2 buttons

builder.adjust(3, 2)

also you can attach another builder to this one

another_builder = InlineKeyboardBuilder(...)... # Another builder with some buttons
builder.attach(another_builder)

or you can attach some already generated markup

markup = InlineKeyboardMarkup(inline_keyboard=[...]) # Some markup
builder.attach(InlineKeyboardBuilder.from_markup(markup))

and finally you can export this markup to use it in your message

await message.answer("Some text here", reply_markup=builder.as_markup())

Reply keyboard builder has the same interface

Warning

Note that you can’t attach reply keyboard builder to inline keyboard builder and vice versa

Inline Keyboard

	
class aiogram.utils.keyboard.InlineKeyboardBuilder(markup: List[List[InlineKeyboardButton]] | None = None)

	Inline keyboard builder inherits all methods from generic builder

	
button(text: str, url: str | None = None, login_url: LoginUrl | None = None, callback_data: str | CallbackData | None = None, switch_inline_query: str | None = None, switch_inline_query_current_chat: str | None = None, callback_game: CallbackGame | None = None, pay: bool | None = None, **kwargs: Any) → aiogram.utils.keyboard.InlineKeyboardBuilder

	Add new inline button to markup

	
as_markup() → aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup

	Construct an InlineKeyboardMarkup

	
__init__(markup: List[List[InlineKeyboardButton]] | None = None) → None

	

	
add(*buttons: ButtonType) → KeyboardBuilder[ButtonType]

	Add one or many buttons to markup.

	Parameters:

	buttons –

	Returns:

	

	
adjust(*sizes: int, repeat: bool = False) → KeyboardBuilder[ButtonType]

	Adjust previously added buttons to specific row sizes.

By default, when the sum of passed sizes is lower than buttons count the last
one size will be used for tail of the markup.
If repeat=True is passed - all sizes will be cycled when available more buttons
count than all sizes

	Parameters:

	
	sizes –

	repeat –

	Returns:

	

	
property buttons: Generator[ButtonType, None, None]

	Get flatten set of all buttons

	Returns:

	

	
copy() → InlineKeyboardBuilder

	Make full copy of current builder with markup

	Returns:

	

	
export() → List[List[ButtonType]]

	Export configured markup as list of lists of buttons

>>> builder = KeyboardBuilder(button_type=InlineKeyboardButton)
>>> ... # Add buttons to builder
>>> markup = InlineKeyboardMarkup(inline_keyboard=builder.export())

	Returns:

	

	
classmethod from_markup(markup: InlineKeyboardMarkup) → InlineKeyboardBuilder

	Create builder from existing markup

	Parameters:

	markup –

	Returns:

	

	
row(*buttons: ButtonType, width: int | None = None) → KeyboardBuilder[ButtonType]

	Add row to markup

When too much buttons is passed it will be separated to many rows

	Parameters:

	
	buttons –

	width –

	Returns:

	

Reply Keyboard

	
class aiogram.utils.keyboard.ReplyKeyboardBuilder(markup: List[List[KeyboardButton]] | None = None)

	Reply keyboard builder inherits all methods from generic builder

	
button(text: str, request_contact: bool | None = None, request_location: bool | None = None, request_poll: KeyboardButtonPollType | None = None, **kwargs: Any) → aiogram.utils.keyboard.ReplyKeyboardBuilder

	Add new button to markup

	
as_markup() → aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup

	Construct an ReplyKeyboardMarkup

	
__init__(markup: List[List[KeyboardButton]] | None = None) → None

	

	
add(*buttons: ButtonType) → KeyboardBuilder[ButtonType]

	Add one or many buttons to markup.

	Parameters:

	buttons –

	Returns:

	

	
adjust(*sizes: int, repeat: bool = False) → KeyboardBuilder[ButtonType]

	Adjust previously added buttons to specific row sizes.

By default, when the sum of passed sizes is lower than buttons count the last
one size will be used for tail of the markup.
If repeat=True is passed - all sizes will be cycled when available more buttons
count than all sizes

	Parameters:

	
	sizes –

	repeat –

	Returns:

	

	
property buttons: Generator[ButtonType, None, None]

	Get flatten set of all buttons

	Returns:

	

	
copy() → ReplyKeyboardBuilder

	Make full copy of current builder with markup

	Returns:

	

	
export() → List[List[ButtonType]]

	Export configured markup as list of lists of buttons

>>> builder = KeyboardBuilder(button_type=InlineKeyboardButton)
>>> ... # Add buttons to builder
>>> markup = InlineKeyboardMarkup(inline_keyboard=builder.export())

	Returns:

	

	
classmethod from_markup(markup: ReplyKeyboardMarkup) → ReplyKeyboardBuilder

	Create builder from existing markup

	Parameters:

	markup –

	Returns:

	

	
row(*buttons: ButtonType, width: int | None = None) → KeyboardBuilder[ButtonType]

	Add row to markup

When too much buttons is passed it will be separated to many rows

	Parameters:

	
	buttons –

	width –

	Returns:

	

 Translation

Translation

In order to make you bot translatable you have to add a minimal number of hooks to your Python code.

These hooks are called translation strings.

The aiogram translation utils is build on top of GNU gettext Python module [https://docs.python.org/3/library/gettext.html]
and Babel library [http://babel.pocoo.org/en/latest/].

Installation

Babel is required to make simple way to extract translation strings from your code

Can be installed from pip directly:

pip install Babel

or as aiogram extra dependency:

pip install aiogram[i18n]

Make messages translatable

In order to gettext need to know what the strings should be translated you will need to write translation strings.

For example:

from aiogram import html
from aiogram.utils.i18n import gettext as _

async def my_handler(message: Message) -> None:
 await message.answer(
 _("Hello, {name}!").format(
 name=html.quote(message.from_user.full_name)
)
)

Danger

f-strings can’t be used as translations string because any dynamic variables should be added to message after getting translated message

Also if you want to use translated string in keyword- or magic- filters you will need to use lazy gettext calls:

from aiogram import F
from aiogram.utils.i18n import lazy_gettext as __

@router.message(F.text == __("My menu entry"))
...

Danger

Lazy gettext calls should always be used when the current language is not know at the moment

Danger

Lazy gettext can’t be used as value for API methods or any Telegram Object (like aiogram.types.inline_keyboard_button.InlineKeyboardButton or etc.)

Working with plural forms

The gettext from aiogram.utils.i18n is the one alias for two functions _gettext_ and _ngettext_
of GNU gettext Python module [https://docs.python.org/3/library/gettext.html]. Therefore, the wrapper for message
strings is the same _(). You need to pass three parameters to the function:
a singular string, a plural string, and a value.

Configuring engine

After you messages is already done to use gettext your bot should know how to detect user language

On top of your application the instance of aiogram.utils.i18n.I18n should be created

i18n = I18n(path="locales", default_locale="en", domain="messages")

After that you will need to choose one of builtin I18n middleware or write your own.

Builtin middlewares:

SimpleI18nMiddleware

	
class aiogram.utils.i18n.middleware.SimpleI18nMiddleware(i18n: I18n, i18n_key: str | None = 'i18n', middleware_key: str = 'i18n_middleware')

	Simple I18n middleware.

Chooses language code from the User object received in event

	
__init__(i18n: I18n, i18n_key: str | None = 'i18n', middleware_key: str = 'i18n_middleware') → None

	Create an instance of middleware

	Parameters:

	
	i18n – instance of I18n

	i18n_key – context key for I18n instance

	middleware_key – context key for this middleware

ConstI18nMiddleware

	
class aiogram.utils.i18n.middleware.ConstI18nMiddleware(locale: str, i18n: I18n, i18n_key: str | None = 'i18n', middleware_key: str = 'i18n_middleware')

	Const middleware chooses statically defined locale

	
__init__(locale: str, i18n: I18n, i18n_key: str | None = 'i18n', middleware_key: str = 'i18n_middleware') → None

	Create an instance of middleware

	Parameters:

	
	i18n – instance of I18n

	i18n_key – context key for I18n instance

	middleware_key – context key for this middleware

FSMI18nMiddleware

	
class aiogram.utils.i18n.middleware.FSMI18nMiddleware(i18n: I18n, key: str = 'locale', i18n_key: str | None = 'i18n', middleware_key: str = 'i18n_middleware')

	This middleware stores locale in the FSM storage

	
__init__(i18n: I18n, key: str = 'locale', i18n_key: str | None = 'i18n', middleware_key: str = 'i18n_middleware') → None

	Create an instance of middleware

	Parameters:

	
	i18n – instance of I18n

	i18n_key – context key for I18n instance

	middleware_key – context key for this middleware

	
async set_locale(state: FSMContext, locale: str) → None

	Write new locale to the storage

	Parameters:

	
	state – instance of FSMContext

	locale – new locale

I18nMiddleware

or define you own based on abstract I18nMiddleware middleware:

	
class aiogram.utils.i18n.middleware.I18nMiddleware(i18n: I18n, i18n_key: str | None = 'i18n', middleware_key: str = 'i18n_middleware')

	Abstract I18n middleware.

	
__init__(i18n: I18n, i18n_key: str | None = 'i18n', middleware_key: str = 'i18n_middleware') → None

	Create an instance of middleware

	Parameters:

	
	i18n – instance of I18n

	i18n_key – context key for I18n instance

	middleware_key – context key for this middleware

	
abstract async get_locale(event: TelegramObject, data: Dict[str, Any]) → str

	Detect current user locale based on event and context.

This method must be defined in child classes

	Parameters:

	
	event –

	data –

	Returns:

	

	
setup(router: Router, exclude: Set[str] | None = None) → BaseMiddleware

	Register middleware for all events in the Router

	Parameters:

	
	router –

	exclude –

	Returns:

	

Deal with Babel

Step 1 Extract messages

pybabel extract --input-dirs=. -o locales/messages.pot

Here is --input-dirs=. - path to code and the locales/messages.pot
is template where messages will be extracted and messages is translation domain.

Working with plural forms

Extracting with Pybabel all strings options:

	-k _:1,1t -k _:1,2 - for both singular and plural

	-k __ - for lazy strings

pybabel extract -k _:1,1t -k _:1,2 -k __ --input-dirs=. -o locales/messages.pot

Note

Some useful options:

	Add comments for translators, you can use another tag if you want (TR) --add-comments=NOTE

	Contact email for bugreport --msgid-bugs-address=EMAIL

	Disable comments with string location in code --no-location

	Copyrights --copyright-holder=AUTHOR

	Set project name --project=MySuperBot

	Set version --version=2.2

Step 2: Init language

pybabel init -i locales/messages.pot -d locales -D messages -l en

	-i locales/messages.pot - pre-generated template

	-d locales - translations directory

	-D messages - translations domain

	-l en - language. Can be changed to any other valid language code (For example -l uk for ukrainian language)

Step 3: Translate texts

To open .po file you can use basic text editor or any PO editor, e.g. Poedit [https://poedit.net/]

Just open the file named locales/{language}/LC_MESSAGES/messages.po and write translations

Step 4: Compile translations

pybabel compile -d locales -D messages

Step 5: Updating messages

When you change the code of your bot you need to update po & mo files

	Step 5.1: regenerate pot file: command from step 1

	
	Step 5.2: update po files
	pybabel update -d locales -D messages -i locales/messages.pot

	Step 5.3: update your translations: location and tools you know from step 3

	Step 5.4: compile mo files: command from step 4

 Chat action sender

Chat action sender

Sender

	
class aiogram.utils.chat_action.ChatActionSender(*, bot: Bot, chat_id: str | int, message_thread_id: int | None = None, action: str = 'typing', interval: float = 5.0, initial_sleep: float = 0.0)

	This utility helps to automatically send chat action until long actions is done
to take acknowledge bot users the bot is doing something and not crashed.

Provides simply to use context manager.

Technically sender start background task with infinity loop which works
until action will be finished and sends the
chat action [https://core.telegram.org/bots/api#sendchataction]
every 5 seconds.

	
__init__(*, bot: Bot, chat_id: str | int, message_thread_id: int | None = None, action: str = 'typing', interval: float = 5.0, initial_sleep: float = 0.0) → None

	
	Parameters:

	
	bot – instance of the bot

	chat_id – target chat id

	message_thread_id – unique identifier for the target message thread; supergroups only

	action – chat action type

	interval – interval between iterations

	initial_sleep – sleep before first sending of the action

	
classmethod choose_sticker(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval: float = 5.0, initial_sleep: float = 0.0) → ChatActionSender

	Create instance of the sender with choose_sticker action

	
classmethod find_location(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval: float = 5.0, initial_sleep: float = 0.0) → ChatActionSender

	Create instance of the sender with find_location action

	
classmethod record_video(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval: float = 5.0, initial_sleep: float = 0.0) → ChatActionSender

	Create instance of the sender with record_video action

	
classmethod record_video_note(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval: float = 5.0, initial_sleep: float = 0.0) → ChatActionSender

	Create instance of the sender with record_video_note action

	
classmethod record_voice(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval: float = 5.0, initial_sleep: float = 0.0) → ChatActionSender

	Create instance of the sender with record_voice action

	
classmethod typing(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval: float = 5.0, initial_sleep: float = 0.0) → ChatActionSender

	Create instance of the sender with typing action

	
classmethod upload_document(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval: float = 5.0, initial_sleep: float = 0.0) → ChatActionSender

	Create instance of the sender with upload_document action

	
classmethod upload_photo(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval: float = 5.0, initial_sleep: float = 0.0) → ChatActionSender

	Create instance of the sender with upload_photo action

	
classmethod upload_video(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval: float = 5.0, initial_sleep: float = 0.0) → ChatActionSender

	Create instance of the sender with upload_video action

	
classmethod upload_video_note(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval: float = 5.0, initial_sleep: float = 0.0) → ChatActionSender

	Create instance of the sender with upload_video_note action

	
classmethod upload_voice(chat_id: int | str, bot: Bot, message_thread_id: int | None = None, interval: float = 5.0, initial_sleep: float = 0.0) → ChatActionSender

	Create instance of the sender with upload_voice action

Usage

async with ChatActionSender.typing(bot=bot, chat_id=message.chat.id):
 # Do something...
 # Perform some long calculations
 await message.answer(result)

Middleware

	
class aiogram.utils.chat_action.ChatActionMiddleware

	Helps to automatically use chat action sender for all message handlers

Usage

Before usa should be registered for the message event

<router or dispatcher>.message.middleware(ChatActionMiddleware())

After this action all handlers which works longer than initial_sleep will produce the ‘typing’ chat action.

Also sender can be customized via flags feature for particular handler.

Change only action type:

@router.message(...)
@flags.chat_action("sticker")
async def my_handler(message: Message): ...

Change sender configuration:

@router.message(...)
@flags.chat_action(initial_sleep=2, action="upload_document", interval=3)
async def my_handler(message: Message): ...

 WebApp

WebApp

Telegram Bot API 6.0 announces a revolution in the development of chatbots using WebApp feature.

You can read more details on it in the official blog [https://telegram.org/blog/notifications-bots#bot-revolution]
and documentation [https://core.telegram.org/bots/webapps].

aiogram implements simple utils to remove headache with the data validation from Telegram WebApp on the backend side.

Usage

For example from frontend you will pass application/x-www-form-urlencoded POST request
with _auth field in body and wants to return User info inside response as application/json

from aiogram.utils.web_app import safe_parse_webapp_init_data
from aiohttp.web_request import Request
from aiohttp.web_response import json_response

async def check_data_handler(request: Request):
 bot: Bot = request.app["bot"]

 data = await request.post() # application/x-www-form-urlencoded
 try:
 data = safe_parse_webapp_init_data(token=bot.token, init_data=data["_auth"])
 except ValueError:
 return json_response({"ok": False, "err": "Unauthorized"}, status=401)
 return json_response({"ok": True, "data": data.user.dict()})

Functions

	
aiogram.utils.web_app.check_webapp_signature(token: str, init_data: str) → bool

	Check incoming WebApp init data signature

Source: https://core.telegram.org/bots/webapps#validating-data-received-via-the-web-app

	Parameters:

	
	token – bot Token

	init_data – data from frontend to be validated

	Returns:

	

	
aiogram.utils.web_app.parse_webapp_init_data(init_data: str, *, loads: ~typing.Callable[[...], ~typing.Any] = <function loads>) → WebAppInitData

	Parse WebApp init data and return it as WebAppInitData object

This method doesn’t make any security check, so you shall not trust to this data,
use safe_parse_webapp_init_data instead.

	Parameters:

	
	init_data – data from frontend to be parsed

	loads –

	Returns:

	

	
aiogram.utils.web_app.safe_parse_webapp_init_data(token: str, init_data: str, *, loads: ~typing.Callable[[...], ~typing.Any] = <function loads>) → WebAppInitData

	Validate raw WebApp init data and return it as WebAppInitData object

Raise ValueError when data is invalid

	Parameters:

	
	token – bot token

	init_data – data from frontend to be parsed and validated

	loads –

	Returns:

	

Types

	
class aiogram.utils.web_app.WebAppInitData(**extra_data: Any)

	This object contains data that is transferred to the Web App when it is opened.
It is empty if the Web App was launched from a keyboard button.

Source: https://core.telegram.org/bots/webapps#webappinitdata

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'defer_build': True, 'extra': 'allow', 'frozen': True, 'populate_by_name': True, 'use_enum_values': True, 'validate_assignment': True}

	Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

	
model_fields: ClassVar[dict[str, FieldInfo]] = {'auth_date': FieldInfo(annotation=datetime, required=True), 'can_send_after': FieldInfo(annotation=Union[int, NoneType], required=False, default=None), 'chat': FieldInfo(annotation=Union[WebAppChat, NoneType], required=False, default=None), 'chat_instance': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'chat_type': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'hash': FieldInfo(annotation=str, required=True), 'query_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'receiver': FieldInfo(annotation=Union[WebAppUser, NoneType], required=False, default=None), 'start_param': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'user': FieldInfo(annotation=Union[WebAppUser, NoneType], required=False, default=None)}

	Metadata about the fields defined on the model,
mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
query_id: str | None

	A unique identifier for the Web App session, required for sending messages
via the answerWebAppQuery method.

	
user: WebAppUser | None

	An object containing data about the current user.

	
receiver: WebAppUser | None

	An object containing data about the chat partner of the current user in the chat where
the bot was launched via the attachment menu.
Returned only for Web Apps launched via the attachment menu.

	
chat: WebAppChat | None

	An object containing data about the chat where the bot was launched via the attachment menu.
Returned for supergroups, channels, and group chats – only for Web Apps launched via the
attachment menu.

	
chat_type: str | None

	Type of the chat from which the Web App was opened.
Can be either “sender” for a private chat with the user opening the link,
“private”, “group”, “supergroup”, or “channel”.
Returned only for Web Apps launched from direct links.

	
chat_instance: str | None

	Global identifier, uniquely corresponding to the chat from which the Web App was opened.
Returned only for Web Apps launched from a direct link.

	
start_param: str | None

	The value of the startattach parameter, passed via link.
Only returned for Web Apps when launched from the attachment menu via link.
The value of the start_param parameter will also be passed in the GET-parameter
tgWebAppStartParam, so the Web App can load the correct interface right away.

	
can_send_after: int | None

	Time in seconds, after which a message can be sent via the answerWebAppQuery method.

	
auth_date: datetime

	Unix time when the form was opened.

	
hash: str

	A hash of all passed parameters, which the bot server can use to check their validity.

	
class aiogram.utils.web_app.WebAppUser(**extra_data: Any)

	This object contains the data of the Web App user.

Source: https://core.telegram.org/bots/webapps#webappuser

	
id: int

	A unique identifier for the user or bot. This number may have more than 32 significant bits
and some programming languages may have difficulty/silent defects in interpreting it.
It has at most 52 significant bits, so a 64-bit integer or a double-precision float type
is safe for storing this identifier.

	
is_bot: bool | None

	True, if this user is a bot. Returns in the receiver field only.

	
first_name: str

	First name of the user or bot.

	
last_name: str | None

	Last name of the user or bot.

	
username: str | None

	Username of the user or bot.

	
language_code: str | None

	IETF language tag of the user’s language. Returns in user field only.

	
is_premium: bool | None

	True, if this user is a Telegram Premium user.

	
added_to_attachment_menu: bool | None

	True, if this user added the bot to the attachment menu.

	
allows_write_to_pm: bool | None

	True, if this user allowed the bot to message them.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'defer_build': True, 'extra': 'allow', 'frozen': True, 'populate_by_name': True, 'use_enum_values': True, 'validate_assignment': True}

	Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

	
model_fields: ClassVar[dict[str, FieldInfo]] = {'added_to_attachment_menu': FieldInfo(annotation=Union[bool, NoneType], required=False, default=None), 'allows_write_to_pm': FieldInfo(annotation=Union[bool, NoneType], required=False, default=None), 'first_name': FieldInfo(annotation=str, required=True), 'id': FieldInfo(annotation=int, required=True), 'is_bot': FieldInfo(annotation=Union[bool, NoneType], required=False, default=None), 'is_premium': FieldInfo(annotation=Union[bool, NoneType], required=False, default=None), 'language_code': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'last_name': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'photo_url': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'username': FieldInfo(annotation=Union[str, NoneType], required=False, default=None)}

	Metadata about the fields defined on the model,
mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

	
photo_url: str | None

	URL of the user’s profile photo. The photo can be in .jpeg or .svg formats.
Only returned for Web Apps launched from the attachment menu.

	
class aiogram.utils.web_app.WebAppChat(**extra_data: Any)

	This object represents a chat.

Source: https://core.telegram.org/bots/webapps#webappchat

	
id: int

	Unique identifier for this chat. This number may have more than 32 significant bits
and some programming languages may have difficulty/silent defects in interpreting it.
But it has at most 52 significant bits, so a signed 64-bit integer or double-precision
float type are safe for storing this identifier.

	
type: str

	Type of chat, can be either “group”, “supergroup” or “channel”

	
title: str

	Title of the chat

	
username: str | None

	Username of the chat

	
photo_url: str | None

	URL of the chat’s photo. The photo can be in .jpeg or .svg formats.
Only returned for Web Apps launched from the attachment menu.

	
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

	A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

	
model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'defer_build': True, 'extra': 'allow', 'frozen': True, 'populate_by_name': True, 'use_enum_values': True, 'validate_assignment': True}

	Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

	
model_fields: ClassVar[dict[str, FieldInfo]] = {'id': FieldInfo(annotation=int, required=True), 'photo_url': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'title': FieldInfo(annotation=str, required=True), 'type': FieldInfo(annotation=str, required=True), 'username': FieldInfo(annotation=Union[str, NoneType], required=False, default=None)}

	Metadata about the fields defined on the model,
mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

	
model_post_init(_ModelMetaclass__context: Any) → None

	We need to both initialize private attributes and call the user-defined model_post_init
method.

 Callback answer

Callback answer

Helper for callback query handlers, can be useful in bots with a lot of callback
handlers to automatically take answer to all requests.

Simple usage

For use, it is enough to register the inner middleware aiogram.utils.callback_answer.CallbackAnswerMiddleware in dispatcher or specific router:

dispatcher.callback_query.middleware(CallbackAnswerMiddleware())

After that all handled callback queries will be answered automatically after processing the handler.

Advanced usage

In some cases you need to have some non-standard response parameters, this can be done in several ways:

Global defaults

Change default parameters while initializing middleware, for example change answer to pre mode and text “OK”:

dispatcher.callback_query.middleware(CallbackAnswerMiddleware(pre=True, text="OK"))

Look at aiogram.utils.callback_answer.CallbackAnswerMiddleware to get all available parameters

Handler specific

By using flags you can change the behavior for specific handler

@router.callback_query(<filters>)
@flags.callback_answer(text="Thanks", cache_time=30)
async def my_handler(query: CallbackQuery):
 ...

Flag arguments is the same as in aiogram.utils.callback_answer.CallbackAnswerMiddleware
with additional one disabled to disable answer.

A special case

It is not always correct to answer the same in every case,
so there is an option to change the answer inside the handler. You can get an instance of aiogram.utils.callback_answer.CallbackAnswer object inside handler and change whatever you want.

Danger

Note that is impossible to change callback answer attributes when you use pre=True mode.

@router.callback_query(<filters>)
async def my_handler(query: CallbackQuery, callback_answer: CallbackAnswer):
 ...
 if <everything is ok>:
 callback_answer.text = "All is ok"
 else:
 callback_answer.text = "Something wrong"
 callback_answer.cache_time = 10

Combine that all at once

For example you want to answer in most of cases before handler with text “🤔” but at some cases need to answer after the handler with custom text,
so you can do it:

dispatcher.callback_query.middleware(CallbackAnswerMiddleware(pre=True, text="🤔"))

@router.callback_query(<filters>)
@flags.callback_answer(pre=False, cache_time=30)
async def my_handler(query: CallbackQuery):
 ...
 if <everything is ok>:
 callback_answer.text = "All is ok"

Description of objects

	
class aiogram.utils.callback_answer.CallbackAnswerMiddleware(pre: bool = False, text: str | None = None, show_alert: bool | None = None, url: str | None = None, cache_time: int | None = None)

	Bases: BaseMiddleware

	
__init__(pre: bool = False, text: str | None = None, show_alert: bool | None = None, url: str | None = None, cache_time: int | None = None) → None

	Inner middleware for callback query handlers, can be useful in bots with a lot of callback
handlers to automatically take answer to all requests

	Parameters:

	
	pre – send answer before execute handler

	text – answer with text

	show_alert – show alert

	url – game url

	cache_time – cache answer for some time

	
class aiogram.utils.callback_answer.CallbackAnswer(answered: bool, disabled: bool = False, text: str | None = None, show_alert: bool | None = None, url: str | None = None, cache_time: int | None = None)

	Bases: object

	
__init__(answered: bool, disabled: bool = False, text: str | None = None, show_alert: bool | None = None, url: str | None = None, cache_time: int | None = None) → None

	Callback answer configuration

	Parameters:

	
	answered – this request is already answered by middleware

	disabled – answer will not be performed

	text – answer with text

	show_alert – show alert

	url – game url

	cache_time – cache answer for some time

	
disable() → None

	Deactivate answering for this handler

	
property disabled: bool

	Indicates that automatic answer is disabled in this handler

	
property answered: bool

	Indicates that request is already answered by middleware

	
property text: str | None

	Response text
:return:

	
property show_alert: bool | None

	Whether to display an alert

	
property url: str | None

	Game url

	
property cache_time: int | None

	Response cache time

 Formatting

Formatting

Make your message formatting flexible and simple

This instrument works on top of Message entities instead of using HTML or Markdown markups,
you can easily construct your message and sent it to the Telegram without the need to
remember tag parity (opening and closing) or escaping user input.

Usage

Basic scenario

Construct your message and send it to the Telegram.

content = Text("Hello, ", Bold(message.from_user.full_name), "!")
await message.answer(**content.as_kwargs())

Is the same as the next example, but without usage markup

await message.answer(
 text=f"Hello, {html.quote(message.from_user.full_name)}!",
 parse_mode=ParseMode.HTML
)

Literally when you execute as_kwargs method the Text object is converted
into text Hello, Alex! with entities list [MessageEntity(type='bold', offset=7, length=4)]
and passed into dict which can be used as **kwargs in API call.

The complete list of elements is listed on this page below.

Advanced scenario

On top of base elements can be implemented content rendering structures,
so, out of the box aiogram has a few already implemented functions that helps you to format
your messages:

	
aiogram.utils.formatting.as_line(*items: Any, end: str = '\n', sep: str = '') → Text

	Wrap multiple nodes into line with \n at the end of line.

	Parameters:

	
	items – Text or Any

	end – ending of the line, by default is \n

	sep – separator between items, by default is empty string

	Returns:

	Text

	
aiogram.utils.formatting.as_list(*items: Any, sep: str = '\n') → Text

	Wrap each element to separated lines

	Parameters:

	
	items –

	sep –

	Returns:

	

	
aiogram.utils.formatting.as_marked_list(*items: Any, marker: str = '- ') → Text

	Wrap elements as marked list

	Parameters:

	
	items –

	marker – line marker, by default is ‘- ‘

	Returns:

	Text

	
aiogram.utils.formatting.as_numbered_list(*items: Any, start: int = 1, fmt: str = '{}. ') → Text

	Wrap elements as numbered list

	Parameters:

	
	items –

	start – initial number, by default 1

	fmt – number format, by default ‘{}. ‘

	Returns:

	Text

	
aiogram.utils.formatting.as_section(title: Any, *body: Any) → Text

	Wrap elements as simple section, section has title and body

	Parameters:

	
	title –

	body –

	Returns:

	Text

	
aiogram.utils.formatting.as_marked_section(title: Any, *body: Any, marker: str = '- ') → Text

	Wrap elements as section with marked list

	Parameters:

	
	title –

	body –

	marker –

	Returns:

	

	
aiogram.utils.formatting.as_numbered_section(title: Any, *body: Any, start: int = 1, fmt: str = '{}. ') → Text

	Wrap elements as section with numbered list

	Parameters:

	
	title –

	body –

	start –

	fmt –

	Returns:

	

	
aiogram.utils.formatting.as_key_value(key: Any, value: Any) → Text

	Wrap elements pair as key-value line. ({key}: {value})

	Parameters:

	
	key –

	value –

	Returns:

	Text

and lets complete them all:

content = as_list(
 as_marked_section(
 Bold("Success:"),
 "Test 1",
 "Test 3",
 "Test 4",
 marker="✅ ",
),
 as_marked_section(
 Bold("Failed:"),
 "Test 2",
 marker="❌ ",
),
 as_marked_section(
 Bold("Summary:"),
 as_key_value("Total", 4),
 as_key_value("Success", 3),
 as_key_value("Failed", 1),
 marker=" ",
),
 HashTag("#test"),
 sep="\n\n",
)

Will be rendered into:

Success:

✅ Test 1

✅ Test 3

✅ Test 4

Failed:

❌ Test 2

Summary:

Total: 4

Success: 3

Failed: 1

#test

Or as HTML:

Success:
✅ Test 1
✅ Test 3
✅ Test 4

Failed:
❌ Test 2

Summary:
 Total: 4
 Success: 3
 Failed: 1

#test

Available methods

	
class aiogram.utils.formatting.Text(*body: Any, **params: Any)

	Bases: Iterable[Any]

Simple text element

	
__init__(*body: Any, **params: Any) → None

	

	
render(*, _offset: int = 0, _sort: bool = True, _collect_entities: bool = True) → Tuple[str, List[MessageEntity]]

	Render elements tree as text with entities list

	Returns:

	

	
as_kwargs(*, text_key: str = 'text', entities_key: str = 'entities', replace_parse_mode: bool = True, parse_mode_key: str = 'parse_mode') → Dict[str, Any]

	Render elements tree as keyword arguments for usage in the API call, for example:

entities = Text(...)
await message.answer(**entities.as_kwargs())

	Parameters:

	
	text_key –

	entities_key –

	replace_parse_mode –

	parse_mode_key –

	Returns:

	

	
as_html() → str

	Render elements tree as HTML markup

	
as_markdown() → str

	Render elements tree as MarkdownV2 markup

Available elements

	
class aiogram.utils.formatting.Text(*body: Any, **params: Any)

	Bases: Iterable[Any]

Simple text element

	
class aiogram.utils.formatting.HashTag(*body: Any, **params: Any)

	Bases: Text

Hashtag element.

Warning

The value should always start with ‘#’ symbol

Will be wrapped into aiogram.types.message_entity.MessageEntity
with type aiogram.enums.message_entity_type.MessageEntityType.HASHTAG

	
class aiogram.utils.formatting.CashTag(*body: Any, **params: Any)

	Bases: Text

Cashtag element.

Warning

The value should always start with ‘$’ symbol

Will be wrapped into aiogram.types.message_entity.MessageEntity
with type aiogram.enums.message_entity_type.MessageEntityType.CASHTAG

	
class aiogram.utils.formatting.BotCommand(*body: Any, **params: Any)

	Bases: Text

Bot command element.

Warning

The value should always start with ‘/’ symbol

Will be wrapped into aiogram.types.message_entity.MessageEntity
with type aiogram.enums.message_entity_type.MessageEntityType.BOT_COMMAND

	
class aiogram.utils.formatting.Url(*body: Any, **params: Any)

	Bases: Text

Url element.

Will be wrapped into aiogram.types.message_entity.MessageEntity
with type aiogram.enums.message_entity_type.MessageEntityType.URL

	
class aiogram.utils.formatting.Email(*body: Any, **params: Any)

	Bases: Text

Email element.

Will be wrapped into aiogram.types.message_entity.MessageEntity
with type aiogram.enums.message_entity_type.MessageEntityType.EMAIL

	
class aiogram.utils.formatting.PhoneNumber(*body: Any, **params: Any)

	Bases: Text

Phone number element.

Will be wrapped into aiogram.types.message_entity.MessageEntity
with type aiogram.enums.message_entity_type.MessageEntityType.PHONE_NUMBER

	
class aiogram.utils.formatting.Bold(*body: Any, **params: Any)

	Bases: Text

Bold element.

Will be wrapped into aiogram.types.message_entity.MessageEntity
with type aiogram.enums.message_entity_type.MessageEntityType.BOLD

	
class aiogram.utils.formatting.Italic(*body: Any, **params: Any)

	Bases: Text

Italic element.

Will be wrapped into aiogram.types.message_entity.MessageEntity
with type aiogram.enums.message_entity_type.MessageEntityType.ITALIC

	
class aiogram.utils.formatting.Underline(*body: Any, **params: Any)

	Bases: Text

Underline element.

Will be wrapped into aiogram.types.message_entity.MessageEntity
with type aiogram.enums.message_entity_type.MessageEntityType.UNDERLINE

	
class aiogram.utils.formatting.Strikethrough(*body: Any, **params: Any)

	Bases: Text

Strikethrough element.

Will be wrapped into aiogram.types.message_entity.MessageEntity
with type aiogram.enums.message_entity_type.MessageEntityType.STRIKETHROUGH

	
class aiogram.utils.formatting.Spoiler(*body: Any, **params: Any)

	Bases: Text

Spoiler element.

Will be wrapped into aiogram.types.message_entity.MessageEntity
with type aiogram.enums.message_entity_type.MessageEntityType.SPOILER

	
class aiogram.utils.formatting.Code(*body: Any, **params: Any)

	Bases: Text

Code element.

Will be wrapped into aiogram.types.message_entity.MessageEntity
with type aiogram.enums.message_entity_type.MessageEntityType.CODE

	
class aiogram.utils.formatting.Pre(*body: Any, language: str | None = None, **params: Any)

	Bases: Text

Pre element.

Will be wrapped into aiogram.types.message_entity.MessageEntity
with type aiogram.enums.message_entity_type.MessageEntityType.PRE

	
class aiogram.utils.formatting.TextLink(*body: Any, url: str, **params: Any)

	Bases: Text

Text link element.

Will be wrapped into aiogram.types.message_entity.MessageEntity
with type aiogram.enums.message_entity_type.MessageEntityType.TEXT_LINK

	
class aiogram.utils.formatting.TextMention(*body: Any, user: User, **params: Any)

	Bases: Text

Text mention element.

Will be wrapped into aiogram.types.message_entity.MessageEntity
with type aiogram.enums.message_entity_type.MessageEntityType.TEXT_MENTION

	
class aiogram.utils.formatting.CustomEmoji(*body: Any, custom_emoji_id: str, **params: Any)

	Bases: Text

Custom emoji element.

Will be wrapped into aiogram.types.message_entity.MessageEntity
with type aiogram.enums.message_entity_type.MessageEntityType.CUSTOM_EMOJI

 Media group builder

Media group builder

This module provides a builder for media groups, it can be used to build media groups
for aiogram.types.input_media_photo.InputMediaPhoto, aiogram.types.input_media_video.InputMediaVideo,
aiogram.types.input_media_document.InputMediaDocument and aiogram.types.input_media_audio.InputMediaAudio.

Warning

aiogram.types.input_media_animation.InputMediaAnimation
is not supported yet in the Bot API to send as media group.

Usage

media_group = MediaGroupBuilder(caption="Media group caption")

Add photo
media_group.add_photo(media="https://picsum.photos/200/300")
Dynamically add photo with known type without using separate method
media_group.add(type="photo", media="https://picsum.photos/200/300")
... or video
media_group.add(type="video", media=FSInputFile("media/video.mp4"))

To send media group use aiogram.methods.send_media_group.SendMediaGroup() method,
but when you use aiogram.utils.media_group.MediaGroupBuilder
you should pass media argument as media_group.build().

If you specify caption in aiogram.utils.media_group.MediaGroupBuilder
it will be used as caption for first media in group.

await bot.send_media_group(chat_id=chat_id, media=media_group.build())

References

	
class aiogram.utils.media_group.MediaGroupBuilder(media: List[InputMediaAudio | InputMediaPhoto | InputMediaVideo | InputMediaDocument] | None = None, caption: str | None = None, caption_entities: List[MessageEntity] | None = None)

	
	
add(*, type: Literal[InputMediaType.AUDIO], media: str | InputFile, caption: str | None = None, parse_mode: str | None = UNSET_PARSE_MODE, caption_entities: List[MessageEntity] | None = None, duration: int | None = None, performer: str | None = None, title: str | None = None, **kwargs: Any) → None

	
add(*, type: Literal[InputMediaType.PHOTO], media: str | InputFile, caption: str | None = None, parse_mode: str | None = UNSET_PARSE_MODE, caption_entities: List[MessageEntity] | None = None, has_spoiler: bool | None = None, **kwargs: Any) → None

	
add(*, type: Literal[InputMediaType.VIDEO], media: str | InputFile, thumbnail: InputFile | str | None = None, caption: str | None = None, parse_mode: str | None = UNSET_PARSE_MODE, caption_entities: List[MessageEntity] | None = None, width: int | None = None, height: int | None = None, duration: int | None = None, supports_streaming: bool | None = None, has_spoiler: bool | None = None, **kwargs: Any) → None

	
add(*, type: Literal[InputMediaType.DOCUMENT], media: str | InputFile, thumbnail: InputFile | str | None = None, caption: str | None = None, parse_mode: str | None = UNSET_PARSE_MODE, caption_entities: List[MessageEntity] | None = None, disable_content_type_detection: bool | None = None, **kwargs: Any) → None

	Add a media object to the media group.

	Parameters:

	kwargs – Keyword arguments for the media object.
The available keyword arguments depend on the media type.

	Returns:

	None

	
add_audio(media: str | ~aiogram.types.input_file.InputFile, thumbnail: ~aiogram.types.input_file.InputFile | None = None, caption: str | None = None, parse_mode: str | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, duration: int | None = None, performer: str | None = None, title: str | None = None, **kwargs: ~typing.Any) → None

	Add an audio file to the media group.

	Parameters:

	
	media – File to send. Pass a file_id to send a file that exists on the
Telegram servers (recommended), pass an HTTP URL for Telegram to get a file from
the Internet, or pass ‘attach://<file_attach_name>’ to upload a new one using
multipart/form-data under <file_attach_name> name.

More information on Sending Files »

	thumbnail – Optional. Thumbnail of the file sent; can be ignored if
thumbnail generation for the file is supported server-side. The thumbnail should
be in JPEG format and less than 200 kB in size. A thumbnail’s width and height
should not exceed 320.

	caption – Optional. Caption of the audio to be sent, 0-1024 characters
after entities parsing

	parse_mode – Optional. Mode for parsing entities in the audio caption.
See formatting options [https://core.telegram.org/bots/api#formatting-options]
for more details.

	caption_entities – Optional. List of special entities that appear in the caption,
which can be specified instead of parse_mode

	duration – Optional. Duration of the audio in seconds

	performer – Optional. Performer of the audio

	title – Optional. Title of the audio

	Returns:

	None

	
add_document(media: str | ~aiogram.types.input_file.InputFile, thumbnail: ~aiogram.types.input_file.InputFile | None = None, caption: str | None = None, parse_mode: str | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, disable_content_type_detection: bool | None = None, **kwargs: ~typing.Any) → None

	Add a document to the media group.

	Parameters:

	
	media – File to send. Pass a file_id to send a file that exists on the
Telegram servers (recommended), pass an HTTP URL for Telegram to get a file
from the Internet, or pass ‘attach://<file_attach_name>’ to upload a new one using
multipart/form-data under <file_attach_name> name.
More information on Sending Files »

	thumbnail – Optional. Thumbnail of the file sent; can be ignored
if thumbnail generation for the file is supported server-side.
The thumbnail should be in JPEG format and less than 200 kB in size.
A thumbnail’s width and height should not exceed 320.
Ignored if the file is not uploaded using multipart/form-data.
Thumbnails can’t be reused and can be only uploaded as a new file,
so you can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded
using multipart/form-data under <file_attach_name>.
More information on Sending Files »

	caption – Optional. Caption of the document to be sent,
0-1024 characters after entities parsing

	parse_mode – Optional. Mode for parsing entities in the document caption.
See formatting options [https://core.telegram.org/bots/api#formatting-options]
for more details.

	caption_entities – Optional. List of special entities that appear
in the caption, which can be specified instead of parse_mode

	disable_content_type_detection – Optional. Disables automatic server-side
content type detection for files uploaded using multipart/form-data.
Always True, if the document is sent as part of an album.

	Returns:

	None

	
add_photo(media: str | ~aiogram.types.input_file.InputFile, caption: str | None = None, parse_mode: str | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, has_spoiler: bool | None = None, **kwargs: ~typing.Any) → None

	Add a photo to the media group.

	Parameters:

	
	media – File to send. Pass a file_id to send a file that exists on the
Telegram servers (recommended), pass an HTTP URL for Telegram to get a file
from the Internet, or pass ‘attach://<file_attach_name>’ to upload a new
one using multipart/form-data under <file_attach_name> name.

More information on Sending Files »

	caption – Optional. Caption of the photo to be sent, 0-1024 characters
after entities parsing

	parse_mode – Optional. Mode for parsing entities in the photo caption.
See formatting options [https://core.telegram.org/bots/api#formatting-options]
for more details.

	caption_entities – Optional. List of special entities that appear in the caption,
which can be specified instead of parse_mode

	has_spoiler – Optional. Pass True if the photo needs to be covered
with a spoiler animation

	Returns:

	None

	
add_video(media: str | ~aiogram.types.input_file.InputFile, thumbnail: ~aiogram.types.input_file.InputFile | None = None, caption: str | None = None, parse_mode: str | None = <Default('parse_mode')>, caption_entities: ~typing.List[~aiogram.types.message_entity.MessageEntity] | None = None, width: int | None = None, height: int | None = None, duration: int | None = None, supports_streaming: bool | None = None, has_spoiler: bool | None = None, **kwargs: ~typing.Any) → None

	Add a video to the media group.

	Parameters:

	
	media – File to send. Pass a file_id to send a file that exists on the
Telegram servers (recommended), pass an HTTP URL for Telegram to get a file
from the Internet, or pass ‘attach://<file_attach_name>’ to upload a new one
using multipart/form-data under <file_attach_name> name.
More information on Sending Files »

	thumbnail – Optional. Thumbnail of the file sent; can be ignored if thumbnail
generation for the file is supported server-side. The thumbnail should be in JPEG
format and less than 200 kB in size. A thumbnail’s width and height should
not exceed 320. Ignored if the file is not uploaded using multipart/form-data.
Thumbnails can’t be reused and can be only uploaded as a new file, so you
can pass ‘attach://<file_attach_name>’ if the thumbnail was uploaded using
multipart/form-data under <file_attach_name>.
More information on Sending Files »

	caption – Optional. Caption of the video to be sent,
0-1024 characters after entities parsing

	parse_mode – Optional. Mode for parsing entities in the video caption.
See formatting options [https://core.telegram.org/bots/api#formatting-options]
for more details.

	caption_entities – Optional. List of special entities that appear in the caption,
which can be specified instead of parse_mode

	width – Optional. Video width

	height – Optional. Video height

	duration – Optional. Video duration in seconds

	supports_streaming – Optional. Pass True if the uploaded video is
suitable for streaming

	has_spoiler – Optional. Pass True if the video needs to be covered
with a spoiler animation

	Returns:

	None

	
build() → List[InputMediaAudio | InputMediaPhoto | InputMediaVideo | InputMediaDocument]

	Builds a list of media objects for a media group.

Adds the caption to the first media object if it is present.

	Returns:

	List of media objects.

 Deep Linking

Deep Linking

Telegram bots have a deep linking mechanism, that allows for passing
additional parameters to the bot on startup. It could be a command that
launches the bot — or an auth token to connect the user’s Telegram
account to their account on some external service.

You can read detailed description in the source:
https://core.telegram.org/bots/features#deep-linking

We have added some utils to get deep links more handy.

Examples

Basic link example

from aiogram.utils.deep_linking import create_start_link

link = await create_start_link(bot, 'foo')

result: 'https://t.me/MyBot?start=foo'

Encoded link

from aiogram.utils.deep_linking import create_start_link

link = await create_start_link(bot, 'foo', encode=True)
result: 'https://t.me/MyBot?start=Zm9v'

Decode it back

from aiogram.utils.deep_linking import decode_payload
from aiogram.filters import CommandStart, CommandObject
from aiogram.types import Message

@router.message(CommandStart(deep_link=True))
async def handler(message: Message, command: CommandObject):
 args = command.args
 payload = decode_payload(args)
 await message.answer(f"Your payload: {payload}")

References

	
async aiogram.utils.deep_linking.create_start_link(bot: Bot, payload: str, encode: bool = False, encoder: Callable[[bytes], bytes] | None = None) → str

	Create ‘start’ deep link with your payload.

	If you need to encode payload or pass special characters -
	set encode as True

	Parameters:

	
	bot – bot instance

	payload – args passed with /start

	encode – encode payload with base64url or custom encoder

	encoder – custom encoder callable

	Returns:

	link

	
aiogram.utils.deep_linking.decode_payload(payload: str, decoder: Callable[[bytes], bytes] | None = None) → str

	Decode URL-safe base64url payload with decoder.

 Changelog

Changelog

3.7.0 [UNRELEASED DRAFT] (2024-05-10)

Features

	Added new storage aiogram.fsm.storage.MongoStorage for Finite State Machine based on Mongo DB (using motor library)
#1434 [https://github.com/aiogram/aiogram/issues/1434]

3.6.0 (2024-05-06)

Features

	Added full support of Bot API 7.3 [https://core.telegram.org/bots/api-changelog#may-6-2024]
#1480 [https://github.com/aiogram/aiogram/issues/1480]

Improved Documentation

	Added telegram objects transformation block in 2.x -> 3.x migration guide
#1412 [https://github.com/aiogram/aiogram/issues/1412]

3.5.0 (2024-04-23)

Features

	Added message_thread_id parameter to ChatActionSender class methods.
#1437 [https://github.com/aiogram/aiogram/issues/1437]

	Added context manager interface to Bot instance, from now you can use:

async with Bot(...) as bot:
 ...

instead of

async with Bot(...).context() as bot:
 ...

#1468 [https://github.com/aiogram/aiogram/issues/1468]

Bugfixes

	
	WebAppUser Class Fields: Added missing is_premium, added_to_attachment_menu, and allows_write_to_pm fields to WebAppUser class to align with the Telegram API.

	WebAppChat Class Implementation: Introduced the WebAppChat class with all its fields (id, type, title, username, and photo_url) as specified in the Telegram API, which was previously missing from the library.

	WebAppInitData Class Fields: Included previously omitted fields in the WebAppInitData class: chat, chat_type, chat_instance, to match the official documentation for a complete Telegram Web Apps support.

#1424 [https://github.com/aiogram/aiogram/issues/1424]

	Fixed poll answer FSM context by handling voter_chat for poll_answer event
#1436 [https://github.com/aiogram/aiogram/issues/1436]

	Added missing error handling to _background_feed_update (when in handle_in_background=True webhook mode)
#1458 [https://github.com/aiogram/aiogram/issues/1458]

Improved Documentation

	Added WebAppChat class to WebApp docs, updated uk_UA localisation of WebApp docs.
#1433 [https://github.com/aiogram/aiogram/issues/1433]

Misc

	Added full support of Bot API 7.2 [https://core.telegram.org/bots/api-changelog#march-31-2024]
#1444 [https://github.com/aiogram/aiogram/issues/1444]

	Loosened pydantic version upper restriction from <2.7 to <2.8
#1460 [https://github.com/aiogram/aiogram/issues/1460]

3.4.1 (2024-02-17)

Bugfixes

	Fixed JSON serialization of the LinkPreviewOptions class while it is passed
as bot-wide default options.
#1418 [https://github.com/aiogram/aiogram/issues/1418]

3.4.0 (2024-02-16)

Features

	Reworked bot-wide globals like parse_mode, disable_web_page_preview, and others to be more flexible.

Warning

Note that the old way of setting these global bot properties is now deprecated and will be removed in the next major release.

#1392 [https://github.com/aiogram/aiogram/issues/1392]

	A new enum KeyboardButtonPollTypeType for KeyboardButtonPollTypeType.type field has bed added.
#1398 [https://github.com/aiogram/aiogram/issues/1398]

	Added full support of Bot API 7.1 [https://core.telegram.org/bots/api-changelog#february-16-2024]

	Added support for the administrator rights can_post_stories, can_edit_stories, can_delete_stories in supergroups.

	Added the class ChatBoostAdded and the field boost_added to the class Message for service messages about a user boosting a chat.

	Added the field sender_boost_count to the class Message.

	Added the field reply_to_story to the class Message.

	Added the fields chat and id to the class Story.

	Added the field unrestrict_boost_count to the class Chat.

	Added the field custom_emoji_sticker_set_name to the class Chat.

#1417 [https://github.com/aiogram/aiogram/issues/1417]

Bugfixes

	Update KeyboardBuilder utility, fixed type-hints for button method, adjusted limits of the different markup types to real world values.
#1399 [https://github.com/aiogram/aiogram/issues/1399]

	Added new reply_parameters param to message.send_copy because it hasn’t been added there
#1403 [https://github.com/aiogram/aiogram/issues/1403]

Improved Documentation

	Add notion “Working with plural forms” in documentation Utils -> Translation
#1395 [https://github.com/aiogram/aiogram/issues/1395]

3.3.0 (2023-12-31)

Features

	Added full support of Bot API 7.0 [https://core.telegram.org/bots/api-changelog#december-29-2023]

	Reactions

	Replies 2.0

	Link Preview Customization

	Block Quotation

	Multiple Message Actions

	Requests for multiple users

	Chat Boosts

	Giveaway

	Other changes

#1387 [https://github.com/aiogram/aiogram/issues/1387]

3.2.0 (2023-11-24)

Features

	Introduced Scenes feature that helps you to simplify user interactions using Finite State Machine.
Read more about 👉 Scenes.
#1280 [https://github.com/aiogram/aiogram/issues/1280]

	Added the new FSM strategy CHAT_TOPIC, which sets the state for the entire topic in the chat, also works in private messages and regular groups without topics.
#1343 [https://github.com/aiogram/aiogram/issues/1343]

Bugfixes

	Fixed parse_mode argument in the in Message.send_copy shortcut. Disable by default.
#1332 [https://github.com/aiogram/aiogram/issues/1332]

	Added ability to get handler flags from filters.
#1360 [https://github.com/aiogram/aiogram/issues/1360]

	Fixed a situation where a CallbackData could not be parsed without a default value.
#1368 [https://github.com/aiogram/aiogram/issues/1368]

Improved Documentation

	Corrected grammatical errors, improved sentence structures, translation for migration 2.x-3.x
#1302 [https://github.com/aiogram/aiogram/issues/1302]

	Minor typo correction, specifically in module naming + some grammar.
#1340 [https://github.com/aiogram/aiogram/issues/1340]

	Added CITATION.cff file for automatic academic citation generation.
Now you can copy citation from the GitHub page and paste it into your paper.
#1351 [https://github.com/aiogram/aiogram/issues/1351]

	Minor typo correction in middleware docs.
#1353 [https://github.com/aiogram/aiogram/issues/1353]

Misc

	Fixed ResourceWarning in the tests, reworked RedisEventsIsolation fixture to use Redis connection from RedisStorage
#1320 [https://github.com/aiogram/aiogram/issues/1320]

	Updated dependencies, bumped minimum required version:

	magic-filter - fixed .resolve operation

	pydantic - fixed compatibility (broken in 2.4)

	aiodns - added new dependency to the fast extras (pip install aiogram[fast])

	others…

#1327 [https://github.com/aiogram/aiogram/issues/1327]

	Prevent update handling task pointers from being garbage collected, backport from 2.x
#1331 [https://github.com/aiogram/aiogram/issues/1331]

	Updated typing-extensions package version range in dependencies to fix compatibility with FastAPI
#1347 [https://github.com/aiogram/aiogram/issues/1347]

	Introduce Python 3.12 support
#1354 [https://github.com/aiogram/aiogram/issues/1354]

	Speeded up CallableMixin processing by caching references to nested objects and simplifying kwargs assembly.
#1357 [https://github.com/aiogram/aiogram/issues/1357]

	Added pydantic v2.5 support.
#1361 [https://github.com/aiogram/aiogram/issues/1361]

	Updated thumbnail fields type to InputFile only
#1372 [https://github.com/aiogram/aiogram/issues/1372]

3.1.1 (2023-09-25)

Bugfixes

	Fixed pydantic version <2.4, since 2.4 has breaking changes.
#1322 [https://github.com/aiogram/aiogram/issues/1322]

3.1.0 (2023-09-22)

Features

	Added support for custom encoders/decoders for payload (and also for deep-linking).
#1262 [https://github.com/aiogram/aiogram/issues/1262]

	Added aiogram.utils.input_media.MediaGroupBuilder for media group construction.
#1293 [https://github.com/aiogram/aiogram/issues/1293]

	Added full support of Bot API 6.9 [https://core.telegram.org/bots/api-changelog#september-22-2023]
#1319 [https://github.com/aiogram/aiogram/issues/1319]

Bugfixes

	Added actual param hints for InlineKeyboardBuilder and ReplyKeyboardBuilder.
#1303 [https://github.com/aiogram/aiogram/issues/1303]

	Fixed priority of events isolation, now user state will be loaded only after lock is acquired
#1317 [https://github.com/aiogram/aiogram/issues/1317]

3.0.0 (2023-09-01)

Bugfixes

	Replaced datetime.datetime with DateTime type wrapper across types to make dumped JSONs object
more compatible with data that is sent by Telegram.
#1277 [https://github.com/aiogram/aiogram/issues/1277]

	Fixed magic .as_(...) operation for values that can be interpreted as False (e.g. 0).
#1281 [https://github.com/aiogram/aiogram/issues/1281]

	Italic markdown from utils now uses correct decorators
#1282 [https://github.com/aiogram/aiogram/issues/1282]

	Fixed method Message.send_copy for stickers.
#1284 [https://github.com/aiogram/aiogram/issues/1284]

	Fixed Message.send_copy method, which was not working properly with stories, so not you can copy stories too (forwards messages).
#1286 [https://github.com/aiogram/aiogram/issues/1286]

	Fixed error overlapping when validation error is caused by remove_unset root validator in base types and methods.
#1290 [https://github.com/aiogram/aiogram/issues/1290]

3.0.0rc2 (2023-08-18)

Bugfixes

	Fixed missing message content types (ContentType.USER_SHARED, ContentType.CHAT_SHARED)
#1252 [https://github.com/aiogram/aiogram/issues/1252]

	Fixed nested hashtag, cashtag and email message entities not being parsed correctly when these entities are inside another entity.
#1259 [https://github.com/aiogram/aiogram/issues/1259]

	Moved global filters check placement into router to add chance to pass context from global filters
into handlers in the same way as it possible in other places
#1266 [https://github.com/aiogram/aiogram/issues/1266]

Improved Documentation

	Added error handling example examples/error_handling.py
#1099 [https://github.com/aiogram/aiogram/issues/1099]

	Added a few words about skipping pending updates
#1251 [https://github.com/aiogram/aiogram/issues/1251]

	Added a section on Dependency Injection technology
#1253 [https://github.com/aiogram/aiogram/issues/1253]

	This update includes the addition of a multi-file bot example to the repository.
#1254 [https://github.com/aiogram/aiogram/issues/1254]

	Refactored examples code to use aiogram enumerations and enhanced chat messages with markdown
beautification’s for a more user-friendly display.
#1256 [https://github.com/aiogram/aiogram/issues/1256]

	Supplemented “Finite State Machine” section in Migration FAQ
#1264 [https://github.com/aiogram/aiogram/issues/1264]

	Removed extra param in docstring of TelegramEventObserver’s filter method
and fixed typo in I18n documentation.
#1268 [https://github.com/aiogram/aiogram/issues/1268]

Misc

	Enhanced the warning message in dispatcher to include a JSON dump of the update when update type is not known.
#1269 [https://github.com/aiogram/aiogram/issues/1269]

	Added support for Bot API 6.8 [https://core.telegram.org/bots/api-changelog#august-18-2023]
#1275 [https://github.com/aiogram/aiogram/issues/1275]

3.0.0rc1 (2023-08-06)

Features

	Added Currency enum.
You can use it like this:

from aiogram.enums import Currency

await bot.send_invoice(
 ...,
 currency=Currency.USD,
 ...
)

#1194 [https://github.com/aiogram/aiogram/issues/1194]

	Updated keyboard builders with new methods for integrating buttons and keyboard creation more seamlessly.
Added functionality to create buttons from existing markup and attach another builder.
This improvement aims to make the keyboard building process more user-friendly and flexible.
#1236 [https://github.com/aiogram/aiogram/issues/1236]

	Added support for message_thread_id in ChatActionSender
#1249 [https://github.com/aiogram/aiogram/issues/1249]

Bugfixes

	Fixed polling startup when “bot” key is passed manually into dispatcher workflow data
#1242 [https://github.com/aiogram/aiogram/issues/1242]

	Added codegen configuration for lost shortcuts:

	ShippingQuery.answer

	PreCheckoutQuery.answer

	Message.delete_reply_markup

#1244 [https://github.com/aiogram/aiogram/issues/1244]

Improved Documentation

	Added documentation for webhook and polling modes.
#1241 [https://github.com/aiogram/aiogram/issues/1241]

Misc

	Reworked InputFile reading, removed __aiter__ method, added bot: Bot argument to
the .read(...) method, so, from now URLInputFile can be used without specifying
bot instance.
#1238 [https://github.com/aiogram/aiogram/issues/1238]

	Code-generated __init__ typehints in types and methods to make IDE happy without additional pydantic plugin
#1245 [https://github.com/aiogram/aiogram/issues/1245]

3.0.0b9 (2023-07-30)

Features

	Added new shortcuts for aiogram.types.chat_member_updated.ChatMemberUpdated
to send message to chat that member joined/left.
#1234 [https://github.com/aiogram/aiogram/issues/1234]

	Added new shortcuts for aiogram.types.chat_join_request.ChatJoinRequest
to make easier access to sending messages to users who wants to join to chat.
#1235 [https://github.com/aiogram/aiogram/issues/1235]

Bugfixes

	Fixed bot assignment in the Message.send_copy shortcut
#1232 [https://github.com/aiogram/aiogram/issues/1232]

	Added model validation to remove UNSET before field validation.
This change was necessary to correctly handle parse_mode where ‘UNSET’ is used as a sentinel value.
Without the removal of ‘UNSET’, it would create issues when passed to model initialization from Bot.method_name.
‘UNSET’ was also added to typing.
#1233 [https://github.com/aiogram/aiogram/issues/1233]

	Updated pydantic to 2.1 with few bugfixes

Improved Documentation

	Improved docs, added basic migration guide (will be expanded later)
#1143 [https://github.com/aiogram/aiogram/issues/1143]

Deprecations and Removals

	Removed the use of the context instance (Bot.get_current) from all placements that were used previously.
This is to avoid the use of the context instance in the wrong place.
#1230 [https://github.com/aiogram/aiogram/issues/1230]

3.0.0b8 (2023-07-17)

Features

	Added possibility to use custom events in routers (If router does not support custom event it does not break and passes it to included routers).
#1147 [https://github.com/aiogram/aiogram/issues/1147]

	Added support for FSM in Forum topics.

The strategy can be changed in dispatcher:

from aiogram.fsm.strategy import FSMStrategy
...
dispatcher = Dispatcher(
 fsm_strategy=FSMStrategy.USER_IN_TOPIC,
 storage=..., # Any persistent storage
)

Note

If you have implemented you own storages you should extend record key generation
with new one attribute - thread_id

#1161 [https://github.com/aiogram/aiogram/issues/1161]

	Improved CallbackData serialization.

	Minimized UUID (hex without dashes)

	Replaced bool values with int (true=1, false=0)

#1163 [https://github.com/aiogram/aiogram/issues/1163]

	Added a tool to make text formatting flexible and easy.
More details on the corresponding documentation page
#1172 [https://github.com/aiogram/aiogram/issues/1172]

	Added X-Telegram-Bot-Api-Secret-Token header check
#1173 [https://github.com/aiogram/aiogram/issues/1173]

	Made allowed_updates list to revolve automatically in start_polling method if not set explicitly.
#1178 [https://github.com/aiogram/aiogram/issues/1178]

	Added possibility to pass custom headers to URLInputFile object
#1191 [https://github.com/aiogram/aiogram/issues/1191]

Bugfixes

	Change type of result in InlineQueryResult enum for InlineQueryResultCachedMpeg4Gif
and InlineQueryResultMpeg4Gif to more correct according to documentation.

Change regexp for entities parsing to more correct (InlineQueryResultType.yml).
#1146 [https://github.com/aiogram/aiogram/issues/1146]

	Fixed signature of startup/shutdown events to include the **dispatcher.workflow_data as the handler arguments.
#1155 [https://github.com/aiogram/aiogram/issues/1155]

	Added missing FORUM_TOPIC_EDITED value to content_type property
#1160 [https://github.com/aiogram/aiogram/issues/1160]

	Fixed compatibility with Python 3.8-3.9 (from previous release)
#1162 [https://github.com/aiogram/aiogram/issues/1162]

	Fixed the markdown spoiler parser.
#1176 [https://github.com/aiogram/aiogram/issues/1176]

	Fixed workflow data propagation
#1196 [https://github.com/aiogram/aiogram/issues/1196]

	Fixed the serialization error associated with nested subtypes
like InputMedia, ChatMember, etc.

The previously generated code resulted in an invalid schema under pydantic v2,
which has stricter type parsing.
Hence, subtypes without the specification of all subtype unions were generating
an empty object. This has been rectified now.
#1213 [https://github.com/aiogram/aiogram/issues/1213]

Improved Documentation

	Changed small grammar typos for upload_file
#1133 [https://github.com/aiogram/aiogram/issues/1133]

Deprecations and Removals

	Removed text filter in due to is planned to remove this filter few versions ago.

Use F.text instead
#1170 [https://github.com/aiogram/aiogram/issues/1170]

Misc

	Added full support of Bot API 6.6 [https://core.telegram.org/bots/api-changelog#march-9-2023]

Danger

Note that this issue has breaking changes described in the Bot API changelog,
this changes is not breaking in the API but breaking inside aiogram because
Beta stage is not finished.

#1139 [https://github.com/aiogram/aiogram/issues/1139]

	Added full support of Bot API 6.7 [https://core.telegram.org/bots/api-changelog#april-21-2023]

Warning

Note that arguments switch_pm_parameter and switch_pm_text was deprecated
and should be changed to button argument as described in API docs.

#1168 [https://github.com/aiogram/aiogram/issues/1168]

	Updated Pydantic to V2 [https://docs.pydantic.dev/2.0/migration/]

Warning

Be careful, not all libraries is already updated to using V2

#1202 [https://github.com/aiogram/aiogram/issues/1202]

	Added global defaults disable_web_page_preview and protect_content in addition to parse_mode to the Bot instance,
reworked internal request builder mechanism.
#1142 [https://github.com/aiogram/aiogram/issues/1142]

	Removed bot parameters from storages
#1144 [https://github.com/aiogram/aiogram/issues/1144]

	Replaced ContextVar’s with a new feature called Validation Context [https://docs.pydantic.dev/latest/usage/validators/#validation-context]
in Pydantic to improve the clarity, usability, and versatility of handling the Bot instance within method shortcuts.

Danger

Breaking: The ‘bot’ argument now is required in URLInputFile

#1210 [https://github.com/aiogram/aiogram/issues/1210]

	Updated magic-filter with new features

	Added hint for len(F) error

	Added not in operation

#1221 [https://github.com/aiogram/aiogram/issues/1221]

3.0.0b7 (2023-02-18)

Warning

Note that this version has incompatibility with Python 3.8-3.9 in case when you create an instance of Dispatcher outside of the any coroutine.

Sorry for the inconvenience, it will be fixed in the next version.

This code will not work:

dp = Dispatcher()

def main():
 ...
 dp.run_polling(...)

main()

But if you change it like this it should works as well:

router = Router()

async def main():
 dp = Dispatcher()
 dp.include_router(router)
 ...
 dp.start_polling(...)

asyncio.run(main())

Features

	Added missing shortcuts, new enums, reworked old stuff

Breaking
All previously added enums is re-generated in new place - aiogram.enums instead of aiogram.types

	Added enums: aiogram.enums.bot_command_scope_type.BotCommandScopeType,
	aiogram.enums.chat_action.ChatAction,
aiogram.enums.chat_member_status.ChatMemberStatus,
aiogram.enums.chat_type.ChatType,
aiogram.enums.content_type.ContentType,
aiogram.enums.dice_emoji.DiceEmoji,
aiogram.enums.inline_query_result_type.InlineQueryResultType,
aiogram.enums.input_media_type.InputMediaType,
aiogram.enums.mask_position_point.MaskPositionPoint,
aiogram.enums.menu_button_type.MenuButtonType,
aiogram.enums.message_entity_type.MessageEntityType,
aiogram.enums.parse_mode.ParseMode,
aiogram.enums.poll_type.PollType,
aiogram.enums.sticker_type.StickerType,
aiogram.enums.topic_icon_color.TopicIconColor,
aiogram.enums.update_type.UpdateType,

Added shortcuts:

	
	Chat aiogram.types.chat.Chat.get_administrators(),
	aiogram.types.chat.Chat.delete_message(),
aiogram.types.chat.Chat.revoke_invite_link(),
aiogram.types.chat.Chat.edit_invite_link(),
aiogram.types.chat.Chat.create_invite_link(),
aiogram.types.chat.Chat.export_invite_link(),
aiogram.types.chat.Chat.do(),
aiogram.types.chat.Chat.delete_sticker_set(),
aiogram.types.chat.Chat.set_sticker_set(),
aiogram.types.chat.Chat.get_member(),
aiogram.types.chat.Chat.get_member_count(),
aiogram.types.chat.Chat.leave(),
aiogram.types.chat.Chat.unpin_all_messages(),
aiogram.types.chat.Chat.unpin_message(),
aiogram.types.chat.Chat.pin_message(),
aiogram.types.chat.Chat.set_administrator_custom_title(),
aiogram.types.chat.Chat.set_permissions(),
aiogram.types.chat.Chat.promote(),
aiogram.types.chat.Chat.restrict(),
aiogram.types.chat.Chat.unban(),
aiogram.types.chat.Chat.ban(),
aiogram.types.chat.Chat.set_description(),
aiogram.types.chat.Chat.set_title(),
aiogram.types.chat.Chat.delete_photo(),
aiogram.types.chat.Chat.set_photo(),

	
	Sticker: aiogram.types.sticker.Sticker.set_position_in_set(),
	aiogram.types.sticker.Sticker.delete_from_set(),

	User: aiogram.types.user.User.get_profile_photos()

#952 [https://github.com/aiogram/aiogram/issues/952]

	Added callback answer feature
#1091 [https://github.com/aiogram/aiogram/issues/1091]

	Added a method that allows you to compactly register routers
#1117 [https://github.com/aiogram/aiogram/issues/1117]

Bugfixes

	Check status code when downloading file
#816 [https://github.com/aiogram/aiogram/issues/816]

	Fixed ignore_case parameter in aiogram.filters.command.Command filter
#1106 [https://github.com/aiogram/aiogram/issues/1106]

Misc

	Added integration with new code-generator named Butcher [https://github.com/aiogram/butcher]
#1069 [https://github.com/aiogram/aiogram/issues/1069]

	Added full support of Bot API 6.4 [https://core.telegram.org/bots/api-changelog#december-30-2022]
#1088 [https://github.com/aiogram/aiogram/issues/1088]

	Updated package metadata, moved build internals from Poetry to Hatch, added contributing guides.
#1095 [https://github.com/aiogram/aiogram/issues/1095]

	Added full support of Bot API 6.5 [https://core.telegram.org/bots/api-changelog#february-3-2023]

Danger

Note that aiogram.types.chat_permissions.ChatPermissions is updated without
backward compatibility, so now this object has no can_send_media_messages attribute

#1112 [https://github.com/aiogram/aiogram/issues/1112]

	Replaced error TypeError: TelegramEventObserver.__call__() got an unexpected keyword argument '<name>'
with a more understandable one for developers and with a link to the documentation.
#1114 [https://github.com/aiogram/aiogram/issues/1114]

	Added possibility to reply into webhook with files
#1120 [https://github.com/aiogram/aiogram/issues/1120]

	Reworked graceful shutdown. Added method to stop polling.
Now polling started from dispatcher can be stopped by signals gracefully without errors (on Linux and Mac).
#1124 [https://github.com/aiogram/aiogram/issues/1124]

3.0.0b6 (2022-11-18)

Features

	(again) Added possibility to combine filters with an and/or operations.

Read more in “Combining filters” documentation section
#1018 [https://github.com/aiogram/aiogram/issues/1018]

	Added following methods to Message class:

	Message.forward(...)

	Message.edit_media(...)

	Message.edit_live_location(...)

	Message.stop_live_location(...)

	Message.pin(...)

	Message.unpin()

#1030 [https://github.com/aiogram/aiogram/issues/1030]

	Added following methods to User class:

	User.mention_markdown(...)

	User.mention_html(...)

#1049 [https://github.com/aiogram/aiogram/issues/1049]

	Added full support of Bot API 6.3 [https://core.telegram.org/bots/api-changelog#november-5-2022]
#1057 [https://github.com/aiogram/aiogram/issues/1057]

Bugfixes

	Fixed Message.send_invoice and Message.reply_invoice, added missing arguments
#1047 [https://github.com/aiogram/aiogram/issues/1047]

	Fixed copy and forward in:

	Message.answer(...)

	Message.copy_to(...)

#1064 [https://github.com/aiogram/aiogram/issues/1064]

Improved Documentation

	Fixed UA translations in index.po
#1017 [https://github.com/aiogram/aiogram/issues/1017]

	Fix typehints for Message, reply_media_group and answer_media_group methods
#1029 [https://github.com/aiogram/aiogram/issues/1029]

	Removed an old now non-working feature
#1060 [https://github.com/aiogram/aiogram/issues/1060]

Misc

	Enabled testing on Python 3.11
#1044 [https://github.com/aiogram/aiogram/issues/1044]

	Added a mandatory dependency certifi in due to in some cases on systems that doesn’t have updated ca-certificates the requests to Bot API fails with reason [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: self signed certificate in certificate chain
#1066 [https://github.com/aiogram/aiogram/issues/1066]

3.0.0b5 (2022-10-02)

Features

	Add PyPy support and run tests under PyPy
#985 [https://github.com/aiogram/aiogram/issues/985]

	Added message text to aiogram exceptions representation
#988 [https://github.com/aiogram/aiogram/issues/988]

	Added warning about using magic filter from magic_filter instead of aiogram’s ones.
Is recommended to use from aiogram import F instead of from magic_filter import F
#990 [https://github.com/aiogram/aiogram/issues/990]

	Added more detailed error when server response can’t be deserialized. This feature will help to debug unexpected responses from the Server
#1014 [https://github.com/aiogram/aiogram/issues/1014]

Bugfixes

	Reworked error event, introduced aiogram.types.error_event.ErrorEvent object.
#898 [https://github.com/aiogram/aiogram/issues/898]

	Fixed escaping markdown in aiogram.utils.markdown module
#903 [https://github.com/aiogram/aiogram/issues/903]

	Fixed polling crash when Telegram Bot API raises HTTP 429 status-code.
#995 [https://github.com/aiogram/aiogram/issues/995]

	Fixed empty mention in command parsing, now it will be None instead of an empty string
#1013 [https://github.com/aiogram/aiogram/issues/1013]

Improved Documentation

	Initialized Docs translation (added Ukrainian language)
#925 [https://github.com/aiogram/aiogram/issues/925]

Deprecations and Removals

	Removed filters factory as described in corresponding issue.
#942 [https://github.com/aiogram/aiogram/issues/942]

Misc

	Now Router/Dispatcher accepts only keyword arguments.
#982 [https://github.com/aiogram/aiogram/issues/982]

3.0.0b4 (2022-08-14)

Features

	Add class helper ChatAction for constants that Telegram BotAPI uses in sendChatAction request.
In my opinion, this will help users and will also improve compatibility with 2.x version
where similar class was called “ChatActions”.
#803 [https://github.com/aiogram/aiogram/issues/803]

	Added possibility to combine filters or invert result

Example:

Text(text="demo") | Command(commands=["demo"])
MyFilter() & AnotherFilter()
~StateFilter(state='my-state')

#894 [https://github.com/aiogram/aiogram/issues/894]

	Fixed type hints for redis TTL params.
#922 [https://github.com/aiogram/aiogram/issues/922]

	Added full_name shortcut for Chat object
#929 [https://github.com/aiogram/aiogram/issues/929]

Bugfixes

	Fixed false-positive coercing of Union types in API methods
#901 [https://github.com/aiogram/aiogram/issues/901]

	Added 3 missing content types:

	proximity_alert_triggered

	supergroup_chat_created

	channel_chat_created

#906 [https://github.com/aiogram/aiogram/issues/906]

	Fixed the ability to compare the state, now comparison to copy of the state will return True.
#927 [https://github.com/aiogram/aiogram/issues/927]

	Fixed default lock kwargs in RedisEventIsolation.
#972 [https://github.com/aiogram/aiogram/issues/972]

Misc

	Restrict including routers with strings
#896 [https://github.com/aiogram/aiogram/issues/896]

	Changed CommandPatterType to CommandPatternType in aiogram/dispatcher/filters/command.py
#907 [https://github.com/aiogram/aiogram/issues/907]

	Added full support of Bot API 6.1 [https://core.telegram.org/bots/api-changelog#june-20-2022]
#936 [https://github.com/aiogram/aiogram/issues/936]

	Breaking! More flat project structure

These packages was moved, imports in your code should be fixed:

	aiogram.dispatcher.filters -> aiogram.filters

	aiogram.dispatcher.fsm -> aiogram.fsm

	aiogram.dispatcher.handler -> aiogram.handler

	aiogram.dispatcher.webhook -> aiogram.webhook

	aiogram.dispatcher.flags/* -> aiogram.dispatcher.flags (single module instead of package)

#938 [https://github.com/aiogram/aiogram/issues/938]

	Removed deprecated router.<event>_handler and router.register_<event>_handler methods.
#941 [https://github.com/aiogram/aiogram/issues/941]

	Deprecated filters factory. It will be removed in next Beta (3.0b5)
#942 [https://github.com/aiogram/aiogram/issues/942]

	MessageEntity method get_text was removed and extract was renamed to extract_from
#944 [https://github.com/aiogram/aiogram/issues/944]

	Added full support of Bot API 6.2 [https://core.telegram.org/bots/api-changelog#august-12-2022]
#975 [https://github.com/aiogram/aiogram/issues/975]

3.0.0b3 (2022-04-19)

Features

	Added possibility to get command magic result as handler argument
#889 [https://github.com/aiogram/aiogram/issues/889]

	Added full support of Telegram Bot API 6.0 [https://core.telegram.org/bots/api-changelog#april-16-2022]
#890 [https://github.com/aiogram/aiogram/issues/890]

Bugfixes

	Fixed I18n lazy-proxy. Disabled caching.
#839 [https://github.com/aiogram/aiogram/issues/839]

	Added parsing of spoiler message entity
#865 [https://github.com/aiogram/aiogram/issues/865]

	Fixed default parse_mode for Message.copy_to() method.
#876 [https://github.com/aiogram/aiogram/issues/876]

	Fixed CallbackData factory parsing IntEnum’s
#885 [https://github.com/aiogram/aiogram/issues/885]

Misc

	Added automated check that pull-request adds a changes description to CHANGES directory
#873 [https://github.com/aiogram/aiogram/issues/873]

	Changed Message.html_text and Message.md_text attributes behaviour when message has no text.
The empty string will be used instead of raising error.
#874 [https://github.com/aiogram/aiogram/issues/874]

	Used redis-py instead of aioredis package in due to this packages was merged into single one
#882 [https://github.com/aiogram/aiogram/issues/882]

	Solved common naming problem with middlewares that confusing too much developers
- now you can’t see the middleware and middlewares attributes at the same point
because this functionality encapsulated to special interface.
#883 [https://github.com/aiogram/aiogram/issues/883]

3.0.0b2 (2022-02-19)

Features

	Added possibility to pass additional arguments into the aiohttp webhook handler to use this
arguments inside handlers as the same as it possible in polling mode.
#785 [https://github.com/aiogram/aiogram/issues/785]

	Added possibility to add handler flags via decorator (like pytest.mark decorator but aiogram.flags)
#836 [https://github.com/aiogram/aiogram/issues/836]

	Added ChatActionSender utility to automatically sends chat action while long process is running.

It also can be used as message middleware and can be customized via chat_action flag.
#837 [https://github.com/aiogram/aiogram/issues/837]

Bugfixes

	Fixed unexpected behavior of sequences in the StateFilter.
#791 [https://github.com/aiogram/aiogram/issues/791]

	Fixed exceptions filters
#827 [https://github.com/aiogram/aiogram/issues/827]

Misc

	Logger name for processing events is changed to aiogram.events.
#830 [https://github.com/aiogram/aiogram/issues/830]

	Added full support of Telegram Bot API 5.6 and 5.7
#835 [https://github.com/aiogram/aiogram/issues/835]

	BREAKING
Events isolation mechanism is moved from FSM storages to standalone managers
#838 [https://github.com/aiogram/aiogram/issues/838]

3.0.0b1 (2021-12-12)

Features

	Added new custom operation for MagicFilter named as_

Now you can use it to get magic filter result as handler argument

from aiogram import F

...

@router.message(F.text.regexp(r"^(\d+)$").as_("digits"))
async def any_digits_handler(message: Message, digits: Match[str]):
 await message.answer(html.quote(str(digits)))

@router.message(F.photo[-1].as_("photo"))
async def download_photos_handler(message: Message, photo: PhotoSize, bot: Bot):
 content = await bot.download(photo)

#759 [https://github.com/aiogram/aiogram/issues/759]

Bugfixes

	Fixed: Missing ChatMemberHandler import in aiogram/dispatcher/handler
#751 [https://github.com/aiogram/aiogram/issues/751]

Misc

	Check destiny in case of no with_destiny enabled in RedisStorage key builder
#776 [https://github.com/aiogram/aiogram/issues/776]

	Added full support of Bot API 5.5 [https://core.telegram.org/bots/api-changelog#december-7-2021]
#777 [https://github.com/aiogram/aiogram/issues/777]

	Stop using feature from #336. From now settings of client-session should be placed as initializer arguments instead of changing instance attributes.
#778 [https://github.com/aiogram/aiogram/issues/778]

	Make TelegramAPIServer files wrapper in local mode bi-directional (server-client, client-server)
Now you can convert local path to server path and server path to local path.
#779 [https://github.com/aiogram/aiogram/issues/779]

3.0.0a18 (2021-11-10)

Features

	Breaking: Changed the signature of the session middlewares
Breaking: Renamed AiohttpSession.make_request method parameter from call to method to match the naming in the base class
Added middleware for logging outgoing requests
#716 [https://github.com/aiogram/aiogram/issues/716]

	Improved description of filters resolving error.
For example when you try to pass wrong type of argument to the filter but don’t know why filter is not resolved now you can get error like this:

aiogram.exceptions.FiltersResolveError: Unknown keyword filters: {'content_types'}
 Possible cases:
 - 1 validation error for ContentTypesFilter
 content_types
 Invalid content types {'42'} is not allowed here (type=value_error)

#717 [https://github.com/aiogram/aiogram/issues/717]

	Breaking internal API change
Reworked FSM Storage record keys propagation
#723 [https://github.com/aiogram/aiogram/issues/723]

	Implemented new filter named MagicData(magic_data) that helps to filter event by data from middlewares or other filters

For example your bot is running with argument named config that contains the application config then you can filter event by value from this config:

@router.message(magic_data=F.event.from_user.id == F.config.admin_id)
...

#724 [https://github.com/aiogram/aiogram/issues/724]

Bugfixes

	Fixed I18n context inside error handlers
#726 [https://github.com/aiogram/aiogram/issues/726]

	Fixed bot session closing before emit shutdown
#734 [https://github.com/aiogram/aiogram/issues/734]

	Fixed: bound filter resolving does not require children routers
#736 [https://github.com/aiogram/aiogram/issues/736]

Misc

	Enabled testing on Python 3.10
Removed async_lru dependency (is incompatible with Python 3.10) and replaced usage with protected property
#719 [https://github.com/aiogram/aiogram/issues/719]

	Converted README.md to README.rst and use it as base file for docs
#725 [https://github.com/aiogram/aiogram/issues/725]

	Rework filters resolving:

	Automatically apply Bound Filters with default values to handlers

	Fix data transfer from parent to included routers filters

#727 [https://github.com/aiogram/aiogram/issues/727]

	Added full support of Bot API 5.4
https://core.telegram.org/bots/api-changelog#november-5-2021
#744 [https://github.com/aiogram/aiogram/issues/744]

3.0.0a17 (2021-09-24)

Misc

	Added html_text and md_text to Message object
#708 [https://github.com/aiogram/aiogram/issues/708]

	Refactored I18n, added context managers for I18n engine and current locale
#709 [https://github.com/aiogram/aiogram/issues/709]

3.0.0a16 (2021-09-22)

Features

	Added support of local Bot API server files downloading

When Local API is enabled files can be downloaded via bot.download/bot.download_file methods.
#698 [https://github.com/aiogram/aiogram/issues/698]

	Implemented I18n & L10n support
#701 [https://github.com/aiogram/aiogram/issues/701]

Misc

	Covered by tests and docs KeyboardBuilder util
#699 [https://github.com/aiogram/aiogram/issues/699]

	Breaking!!!. Refactored and renamed exceptions.

	Exceptions module was moved from aiogram.utils.exceptions to aiogram.exceptions

	Added prefix Telegram for all error classes

#700 [https://github.com/aiogram/aiogram/issues/700]

	Replaced all pragma: no cover marks via global .coveragerc config
#702 [https://github.com/aiogram/aiogram/issues/702]

	Updated dependencies.

Breaking for framework developers
Now all optional dependencies should be installed as extra: poetry install -E fast -E redis -E proxy -E i18n -E docs
#703 [https://github.com/aiogram/aiogram/issues/703]

3.0.0a15 (2021-09-10)

Features

	Ability to iterate over all states in StatesGroup.
Aiogram already had in check for states group so this is relative feature.
#666 [https://github.com/aiogram/aiogram/issues/666]

Bugfixes

	Fixed incorrect type checking in the aiogram.utils.keyboard.KeyboardBuilder
#674 [https://github.com/aiogram/aiogram/issues/674]

Misc

	Disable ContentType filter by default
#668 [https://github.com/aiogram/aiogram/issues/668]

	Moved update type detection from Dispatcher to Update object
#669 [https://github.com/aiogram/aiogram/issues/669]

	Updated pre-commit config
#681 [https://github.com/aiogram/aiogram/issues/681]

	Reworked handlers_in_use util. Function moved to Router as method .resolve_used_update_types()
#682 [https://github.com/aiogram/aiogram/issues/682]

3.0.0a14 (2021-08-17)

Features

	add aliases for edit/delete reply markup to Message
#662 [https://github.com/aiogram/aiogram/issues/662]

	Reworked outer middleware chain. Prevent to call many times the outer middleware for each nested router
#664 [https://github.com/aiogram/aiogram/issues/664]

Bugfixes

	Prepare parse mode for InputMessageContent in AnswerInlineQuery method
#660 [https://github.com/aiogram/aiogram/issues/660]

Improved Documentation

	Added integration with towncrier
#602 [https://github.com/aiogram/aiogram/issues/602]

Misc

	Added .editorconfig
#650 [https://github.com/aiogram/aiogram/issues/650]

	Redis storage speedup globals
#651 [https://github.com/aiogram/aiogram/issues/651]

	add allow_sending_without_reply param to Message reply aliases
#663 [https://github.com/aiogram/aiogram/issues/663]

2.14.3 (2021-07-21)

	Fixed ChatMember type detection via adding customizable object serialization mechanism (#624 [https://github.com/aiogram/aiogram/issues/624], #623 [https://github.com/aiogram/aiogram/issues/623])

2.14.2 (2021-07-26)

	Fixed MemoryStorage cleaner (#619 [https://github.com/aiogram/aiogram/issues/619])

	Fixed unused default locale in I18nMiddleware (#562 [https://github.com/aiogram/aiogram/issues/562], #563 [https://github.com/aiogram/aiogram/issues/563])

2.14 (2021-07-27)

	Full support of Bot API 5.3 (#610 [https://github.com/aiogram/aiogram/issues/610], #614 [https://github.com/aiogram/aiogram/issues/614])

	Fixed Message.send_copy method for polls (#603 [https://github.com/aiogram/aiogram/issues/603])

	Updated pattern for GroupDeactivated exception (#549 [https://github.com/aiogram/aiogram/issues/549]

	Added caption_entities field in InputMedia base class (#583 [https://github.com/aiogram/aiogram/issues/583])

	Fixed HTML text decorations for tag pre (#597 [https://github.com/aiogram/aiogram/issues/597] fixes issues #596 [https://github.com/aiogram/aiogram/issues/596] and #481 [https://github.com/aiogram/aiogram/issues/481])

	Fixed Message.get_full_command method for messages with caption (#576 [https://github.com/aiogram/aiogram/issues/576])

	Improved MongoStorage: remove documents with empty data from aiogram_data collection to save memory. (#609 [https://github.com/aiogram/aiogram/issues/609])

2.13 (2021-04-28)

	Added full support of Bot API 5.2 (#572 [https://github.com/aiogram/aiogram/issues/572])

	Fixed usage of provider_data argument in sendInvoice method call

	Fixed builtin command filter args (#556 [https://github.com/aiogram/aiogram/issues/556]) (#558 [https://github.com/aiogram/aiogram/issues/558])

	Allowed to use State instances FSM storage directly (#542 [https://github.com/aiogram/aiogram/issues/542])

	Added possibility to get i18n locale without User instance (#546 [https://github.com/aiogram/aiogram/issues/546])

	Fixed returning type of Bot.*_chat_invite_link() methods #548 [https://github.com/aiogram/aiogram/issues/548] (#549 [https://github.com/aiogram/aiogram/issues/549])

	Fixed deep-linking util (#569 [https://github.com/aiogram/aiogram/issues/569])

	Small changes in documentation - describe limits in docstrings corresponding to the current limit. (#565 [https://github.com/aiogram/aiogram/issues/565])

	Fixed internal call to deprecated ‘is_private’ method (#553 [https://github.com/aiogram/aiogram/issues/553])

	Added possibility to use allowed_updates argument in Polling mode (#564 [https://github.com/aiogram/aiogram/issues/564])

2.12.1 (2021-03-22)

	Fixed TypeError: Value should be instance of 'User' not 'NoneType' (#527 [https://github.com/aiogram/aiogram/issues/527])

	Added missing Chat.message_auto_delete_time field (#535 [https://github.com/aiogram/aiogram/issues/535])

	Added MediaGroup filter (#528 [https://github.com/aiogram/aiogram/issues/528])

	Added Chat.delete_message shortcut (#526 [https://github.com/aiogram/aiogram/issues/526])

	Added mime types parsing for aiogram.types.Document (#431 [https://github.com/aiogram/aiogram/issues/431])

	Added warning in TelegramObject.__setitem__ when Telegram adds a new field (#532 [https://github.com/aiogram/aiogram/issues/532])

	Fixed examples/chat_type_filter.py (#533 [https://github.com/aiogram/aiogram/issues/533])

	Removed redundant definitions in framework code (#531 [https://github.com/aiogram/aiogram/issues/531])

2.12 (2021-03-14)

	Full support for Telegram Bot API 5.1 (#519 [https://github.com/aiogram/aiogram/issues/519])

	Fixed sending playlist of audio files and documents (#465 [https://github.com/aiogram/aiogram/issues/465], #468 [https://github.com/aiogram/aiogram/issues/468])

	Fixed FSMContextProxy.setdefault method (#491 [https://github.com/aiogram/aiogram/issues/491])

	Fixed Message.answer_location and Message.reply_location unable to send live location (#497 [https://github.com/aiogram/aiogram/issues/497])

	Fixed user_id and chat_id getters from the context at Dispatcher check_key, release_key and throttle methods (#520 [https://github.com/aiogram/aiogram/issues/520])

	Fixed Chat.update_chat method and all similar situations (#516 [https://github.com/aiogram/aiogram/issues/516])

	Fixed MediaGroup attach methods (#514 [https://github.com/aiogram/aiogram/issues/514])

	Fixed state filter for inline keyboard query callback in groups (#508 [https://github.com/aiogram/aiogram/issues/508], #510 [https://github.com/aiogram/aiogram/issues/510])

	Added missing ContentTypes.DICE (#466 [https://github.com/aiogram/aiogram/issues/466])

	Added missing vcard argument to InputContactMessageContent constructor (#473 [https://github.com/aiogram/aiogram/issues/473])

	Add missing exceptions: MessageIdInvalid, CantRestrictChatOwner and UserIsAnAdministratorOfTheChat (#474 [https://github.com/aiogram/aiogram/issues/474], #512 [https://github.com/aiogram/aiogram/issues/512])

	Added answer_chat_action to the Message object (#501 [https://github.com/aiogram/aiogram/issues/501])

	Added dice to message.send_copy method (#511 [https://github.com/aiogram/aiogram/issues/511])

	Removed deprecation warning from Message.send_copy

	Added an example of integration between externally created aiohttp Application and aiogram (#433 [https://github.com/aiogram/aiogram/issues/433])

	Added split_separator argument to safe_split_text (#515 [https://github.com/aiogram/aiogram/issues/515])

	Fixed some typos in docs and examples (#489 [https://github.com/aiogram/aiogram/issues/489], #490 [https://github.com/aiogram/aiogram/issues/490], #498 [https://github.com/aiogram/aiogram/issues/498], #504 [https://github.com/aiogram/aiogram/issues/504], #514 [https://github.com/aiogram/aiogram/issues/514])

2.11.2 (2021-11-10)

	Fixed default parse mode

	Added missing “supports_streaming” argument to answer_video method #462 [https://github.com/aiogram/aiogram/issues/462]

2.11.1 (2021-11-10)

	Fixed files URL template

	Fix MessageEntity serialization for API calls #457 [https://github.com/aiogram/aiogram/issues/457]

	When entities are set, default parse_mode become disabled (#461 [https://github.com/aiogram/aiogram/issues/461])

	Added parameter supports_streaming to reply_video, remove redundant docstrings (#459 [https://github.com/aiogram/aiogram/issues/459])

	Added missing parameter to promoteChatMember alias (#458 [https://github.com/aiogram/aiogram/issues/458])

2.11 (2021-11-08)

	Added full support of Telegram Bot API 5.0 (#454 [https://github.com/aiogram/aiogram/issues/454])

	
	Added possibility to more easy specify custom API Server (example)
	
	WARNING: API method close was named in Bot class as close_bot in due to Bot instance already has method with the same name. It will be changed in aiogram 3.0

	Added alias to Message object Message.copy_to with deprecation of Message.send_copy

	ChatType.SUPER_GROUP renamed to ChatType.SUPERGROUP (#438 [https://github.com/aiogram/aiogram/issues/438])

2.10.1 (2021-09-14)

	Fixed critical bug with getting asyncio event loop in executor. (#424 [https://github.com/aiogram/aiogram/issues/424]) AttributeError: 'NoneType' object has no attribute 'run_until_complete'

2.10 (2021-09-13)

	Breaking change: Stop using _MainThread event loop in bot/dispatcher instances (#397 [https://github.com/aiogram/aiogram/issues/397])

	Breaking change: Replaced aiomongo with motor (#368 [https://github.com/aiogram/aiogram/issues/368], #380 [https://github.com/aiogram/aiogram/issues/380])

	Fixed: TelegramObject’s aren’t destroyed after update handling #307 [https://github.com/aiogram/aiogram/issues/307] (#371 [https://github.com/aiogram/aiogram/issues/371])

	Add setting current context of Telegram types (#369 [https://github.com/aiogram/aiogram/issues/369])

	Fixed markdown escaping issues (#363 [https://github.com/aiogram/aiogram/issues/363])

	Fixed HTML characters escaping (#409 [https://github.com/aiogram/aiogram/issues/409])

	Fixed italic and underline decorations when parse entities to Markdown

	Fixed #413 [https://github.com/aiogram/aiogram/issues/413]: parse entities positioning (#414 [https://github.com/aiogram/aiogram/issues/414])

	Added missing thumb parameter (#362 [https://github.com/aiogram/aiogram/issues/362])

	Added public methods to register filters and middlewares (#370 [https://github.com/aiogram/aiogram/issues/370])

	Added ChatType builtin filter (#356 [https://github.com/aiogram/aiogram/issues/356])

	Fixed IDFilter checking message from channel (#376 [https://github.com/aiogram/aiogram/issues/376])

	Added missed answer_poll and reply_poll (#384 [https://github.com/aiogram/aiogram/issues/384])

	Added possibility to ignore message caption in commands filter (#383 [https://github.com/aiogram/aiogram/issues/383])

	Fixed addStickerToSet method

	Added preparing thumb in send_document method (#391 [https://github.com/aiogram/aiogram/issues/391])

	Added exception MessageToPinNotFound (#404 [https://github.com/aiogram/aiogram/issues/404])

	Fixed handlers parameter-spec solving (#408 [https://github.com/aiogram/aiogram/issues/408])

	Fixed CallbackQuery.answer() returns nothing (#420 [https://github.com/aiogram/aiogram/issues/420])

	CHOSEN_INLINE_RESULT is a correct API-term (#415 [https://github.com/aiogram/aiogram/issues/415])

	Fixed missing attributes for Animation class (#422 [https://github.com/aiogram/aiogram/issues/422])

	Added missed emoji argument to reply_dice (#395 [https://github.com/aiogram/aiogram/issues/395])

	Added is_chat_creator method to ChatMemberStatus (#394 [https://github.com/aiogram/aiogram/issues/394])

	Added missed ChatPermissions to __all__ (#393 [https://github.com/aiogram/aiogram/issues/393])

	Added is_forward method to Message (#390 [https://github.com/aiogram/aiogram/issues/390])

	Fixed usage of deprecated is_private function (#421 [https://github.com/aiogram/aiogram/issues/421])

and many others documentation and examples changes:

	Updated docstring of RedisStorage2 (#423 [https://github.com/aiogram/aiogram/issues/423])

	Updated I18n example (added docs and fixed typos) (#419 [https://github.com/aiogram/aiogram/issues/419])

	A little documentation revision (#381 [https://github.com/aiogram/aiogram/issues/381])

	Added comments about correct errors_handlers usage (#398 [https://github.com/aiogram/aiogram/issues/398])

	Fixed typo rexex -> regex (#386 [https://github.com/aiogram/aiogram/issues/386])

	Fixed docs Quick start page code blocks (#417 [https://github.com/aiogram/aiogram/issues/417])

	fixed type hints of callback_data (#400 [https://github.com/aiogram/aiogram/issues/400])

	Prettify readme, update downloads stats badge (#406 [https://github.com/aiogram/aiogram/issues/406])

2.9.2 (2021-06-13)

	Fixed Message.get_full_command() #352 [https://github.com/aiogram/aiogram/issues/352]

	Fixed markdown util #353 [https://github.com/aiogram/aiogram/issues/353]

2.9 (2021-06-08)

	Added full support of Telegram Bot API 4.9

	Fixed user context at poll_answer update (#322 [https://github.com/aiogram/aiogram/issues/322])

	Fix Chat.set_description (#325 [https://github.com/aiogram/aiogram/issues/325])

	Add lazy session generator (#326 [https://github.com/aiogram/aiogram/issues/326])

	Fix text decorations (#315 [https://github.com/aiogram/aiogram/issues/315], #316 [https://github.com/aiogram/aiogram/issues/316], #328 [https://github.com/aiogram/aiogram/issues/328])

	Fix missing InlineQueryResultPhoto parse_mode field (#331 [https://github.com/aiogram/aiogram/issues/331])

	Fix fields from parent object in KeyboardButton (#344 [https://github.com/aiogram/aiogram/issues/344] fixes #343 [https://github.com/aiogram/aiogram/issues/343])

	Add possibility to get bot id without calling get_me (#296 [https://github.com/aiogram/aiogram/issues/296])

2.8 (2021-04-26)

	Added full support of Bot API 4.8

	Added Message.answer_dice and Message.reply_dice methods (#306 [https://github.com/aiogram/aiogram/issues/306])

2.7 (2021-04-07)

	Added full support of Bot API 4.7 (#294 [https://github.com/aiogram/aiogram/issues/294] #289 [https://github.com/aiogram/aiogram/issues/289])

	Added default parse mode for send_animation method (#293 [https://github.com/aiogram/aiogram/issues/293] #292 [https://github.com/aiogram/aiogram/issues/292])

	Added new API exception when poll requested in public chats (#270 [https://github.com/aiogram/aiogram/issues/270])

	Make correct User and Chat get_mention methods (#277 [https://github.com/aiogram/aiogram/issues/277])

	Small changes and other minor improvements

2.6.1 (2021-01-25)

	Fixed reply KeyboardButton initializer with request_poll argument (#266 [https://github.com/aiogram/aiogram/issues/266])

	Added helper for poll types (aiogram.types.PollType)

	Changed behavior of Telegram_object .as_* and .to_* methods. It will no more mutate the object. (#247 [https://github.com/aiogram/aiogram/issues/247])

2.6 (2021-01-23)

	Full support of Telegram Bot API v4.6 (Polls 2.0) #265 [https://github.com/aiogram/aiogram/issues/265]

	Aded new filter - IsContactSender (commit)

	Fixed proxy extra dependencies version #262 [https://github.com/aiogram/aiogram/issues/262]

2.5.3 (2021-01-05)

	#255 [https://github.com/aiogram/aiogram/issues/255] Updated CallbackData factory validity check. More correct for non-latin symbols

	#256 [https://github.com/aiogram/aiogram/issues/256] Fixed renamed_argument decorator error

	#257 [https://github.com/aiogram/aiogram/issues/257] One more fix of CommandStart filter

2.5.2 (2021-01-01)

	Get back quote_html and escape_md functions

2.5.1 (2021-01-01)

	Hot-fix of CommandStart filter

2.5 (2021-01-01)

	Added full support of Telegram Bot API 4.5 (#250 [https://github.com/aiogram/aiogram/issues/250], #251 [https://github.com/aiogram/aiogram/issues/251])

	#239 [https://github.com/aiogram/aiogram/issues/239] Fixed check_token method

	#238 [https://github.com/aiogram/aiogram/issues/238], #241 [https://github.com/aiogram/aiogram/issues/241]: Added deep-linking utils

	#248 [https://github.com/aiogram/aiogram/issues/248] Fixed support of aiohttp-socks

	Updated setup.py. No more use of internal pip API

	Updated links to documentations (https://docs.aiogram.dev)

	Other small changes and minor improvements (#223 [https://github.com/aiogram/aiogram/issues/223] and others…)

2.4 (2021-10-29)

	Added Message.send_copy method (forward message without forwarding)

	Safe close of aiohttp client session (no more exception when application is shutdown)

	No more “adWanced” words in project #209 [https://github.com/aiogram/aiogram/issues/209]

	Arguments user and chat is renamed to user_id and chat_id in Dispatcher.throttle method #196 [https://github.com/aiogram/aiogram/issues/196]

	Fixed set_chat_permissions #198 [https://github.com/aiogram/aiogram/issues/198]

	Fixed Dispatcher polling task does not process cancellation #199 [https://github.com/aiogram/aiogram/issues/199], #201 [https://github.com/aiogram/aiogram/issues/201]

	Fixed compatibility with latest asyncio version #200 [https://github.com/aiogram/aiogram/issues/200]

	Disabled caching by default for lazy_gettext method of I18nMiddleware #203 [https://github.com/aiogram/aiogram/issues/203]

	Fixed HTML user mention parser #205 [https://github.com/aiogram/aiogram/issues/205]

	Added IsReplyFilter #210 [https://github.com/aiogram/aiogram/issues/210]

	Fixed send_poll method arguments #211 [https://github.com/aiogram/aiogram/issues/211]

	Added OrderedHelper #215 [https://github.com/aiogram/aiogram/issues/215]

	Fix incorrect completion order. #217 [https://github.com/aiogram/aiogram/issues/217]

2.3 (2021-08-16)

	Full support of Telegram Bot API 4.4

	Fixed #143 [https://github.com/aiogram/aiogram/issues/143]

	Added new filters from issue #151 [https://github.com/aiogram/aiogram/issues/151]: #172 [https://github.com/aiogram/aiogram/issues/172], #176 [https://github.com/aiogram/aiogram/issues/176], #182 [https://github.com/aiogram/aiogram/issues/182]

	Added expire argument to RedisStorage2 and other storage fixes #145 [https://github.com/aiogram/aiogram/issues/145]

	Fixed JSON and Pickle storages #138 [https://github.com/aiogram/aiogram/issues/138]

	Implemented MongoStorage #153 [https://github.com/aiogram/aiogram/issues/153] based on aiomongo (soon motor will be also added)

	Improved tests

	Updated examples

	Warning: Updated auth widget util. #190 [https://github.com/aiogram/aiogram/issues/190]

	Implemented throttle decorator #181 [https://github.com/aiogram/aiogram/issues/181]

2.2 (2021-06-09)

	Provides latest Telegram Bot API (4.3)

	Updated docs for filters

	Added opportunity to use different bot tokens from single bot instance (via context manager, #100 [https://github.com/aiogram/aiogram/issues/100])

	IMPORTANT: Fixed Typo: data -> bucket in update_bucket for RedisStorage2 (#132 [https://github.com/aiogram/aiogram/issues/132])

2.1 (2021-04-18)

	Implemented all new features from Telegram Bot API 4.2

	is_member and is_admin methods of ChatMember and ChatMemberStatus was renamed to is_chat_member and is_chat_admin

	Remover func filter

	Added some useful Message edit functions (Message.edit_caption, Message.edit_media, Message.edit_reply_markup) (#121 [https://github.com/aiogram/aiogram/issues/121], #103 [https://github.com/aiogram/aiogram/issues/103], #104 [https://github.com/aiogram/aiogram/issues/104], #112 [https://github.com/aiogram/aiogram/issues/112])

	Added requests timeout for all methods (#110 [https://github.com/aiogram/aiogram/issues/110])

	Added answer* methods to Message object (#112 [https://github.com/aiogram/aiogram/issues/112])

	Maked some improvements of CallbackData factory

	Added deep-linking parameter filter to CommandStart filter

	Implemented opportunity to use DNS over socks (#97 [https://github.com/aiogram/aiogram/issues/97] -> #98 [https://github.com/aiogram/aiogram/issues/98])

	Implemented logging filter for extending LogRecord attributes (Will be usefull with external logs collector utils like GrayLog, Kibana and etc.)

	Updated requirements.txt and dev_requirements.txt files

	Other small changes and minor improvements

2.0.1 (2021-12-31)

	Implemented CallbackData factory (example [https://github.com/aiogram/aiogram/blob/master/examples/callback_data_factory.py])

	Implemented methods for answering to inline query from context and reply with animation to the messages. #85 [https://github.com/aiogram/aiogram/issues/85]

	Fixed installation from tar.gz #84 [https://github.com/aiogram/aiogram/issues/84]

	More exceptions (ChatIdIsEmpty and NotEnoughRightsToRestrict)

2.0 (2021-10-28)

This update will break backward compability with Python 3.6 and works only with Python 3.7+:
- contextvars (PEP-567);
- New syntax for annotations (PEP-563).

Changes:
- Used contextvars instead of aiogram.utils.context;
- Implemented filters factory;
- Implemented new filters mechanism;
- Allowed to customize command prefix in CommandsFilter;
- Implemented mechanism of passing results from filters (as dicts) as kwargs in handlers (like fixtures in pytest);
- Implemented states group feature;
- Implemented FSM storage’s proxy;
- Changed files uploading mechanism;
- Implemented pipe for uploading files from URL;
- Implemented I18n Middleware;
- Errors handlers now should accept only two arguments (current update and exception);
- Used aiohttp_socks instead of aiosocksy for Socks4/5 proxy;
- types.ContentType was divided to types.ContentType and types.ContentTypes;
- Allowed to use rapidjson instead of ujson/json;
- .current() method in bot and dispatcher objects was renamed to get_current();

Full changelog
- You can read more details about this release in migration FAQ: https://aiogram.readthedocs.io/en/latest/migration_1_to_2.html

1.4 (2021-08-03)

	Bot API 4.0 (#57 [https://github.com/aiogram/aiogram/issues/57])

1.3.3 (2021-07-16)

	Fixed markup-entities parsing;

	Added more API exceptions;

	Now InlineQueryResultLocation has live_period;

	Added more message content types;

	Other small changes and minor improvements.

1.3.2 (2021-05-27)

	Fixed crashing of polling process. (i think)

	Added parse_mode field into input query results according to Bot API Docs.

	Added new methods for Chat object. (#42 [https://github.com/aiogram/aiogram/issues/42], #43 [https://github.com/aiogram/aiogram/issues/43])

	Warning: disabled connections limit for bot aiohttp session.

	Warning: Destroyed “temp sessions” mechanism.

	Added new error types.

	Refactored detection of error type.

	Small fixes of executor util.

	Fixed RethinkDBStorage

1.3.1 (2018-05-27)

1.3 (2021-04-22)

	Allow to use Socks5 proxy (need manually install aiosocksy).

	Refactored aiogram.utils.executor module.

	[Warning] Updated requirements list.

1.2.3 (2018-04-14)

	Fixed API errors detection

	Fixed compability of setup.py with pip 10.0.0

1.2.2 (2018-04-08)

	Added more error types.

	Implemented method InputFile.from_url(url: str) for downloading files.

	Implemented big part of API method tests.

	Other small changes and mminor improvements.

1.2.1 (2018-03-25)

	Fixed handling Venue’s [#27 [https://github.com/aiogram/aiogram/issues/27], #26 [https://github.com/aiogram/aiogram/issues/26]]

	Added parse_mode to all medias (Bot API 3.6 support) [#23 [https://github.com/aiogram/aiogram/issues/23]]

	Now regexp filter can be used with callback query data [#19 [https://github.com/aiogram/aiogram/issues/19]]

	Improvements in InlineKeyboardMarkup & ReplyKeyboardMarkup objects [#21 [https://github.com/aiogram/aiogram/issues/21]]

	Other bug & typo fixes and minor improvements.

1.2 (2018-02-23)

	Full provide Telegram Bot API 3.6

	Fixed critical error: Fatal Python error: PyImport_GetModuleDict: no module dictionary!

	Implemented connection pool in RethinkDB driver

	Typo fixes of documentstion

	Other bug fixes and minor improvements.

1.1 (2018-01-27)

	Added more methods for data types (like message.reply_sticker(...) or file.download(...)

	Typo fixes of documentstion

	Allow to set default parse mode for messages (Bot(... , parse_mode='HTML'))

	Allowed to cancel event from the Middleware.on_pre_process_<event type>

	Fixed sending files with correct names.

	Fixed MediaGroup

	Added RethinkDB storage for FSM (aiogram.contrib.fsm_storage.rethinkdb)

1.0.4 (2018-01-10)

1.0.3 (2018-01-07)

	Added middlewares mechanism.

	Added example for middlewares and throttling manager.

	Added logging middleware (aiogram.contrib.middlewares.logging.LoggingMiddleware)

	Fixed handling errors in async tasks (marked as ‘async_task’)

	Small fixes and other minor improvements.

1.0.2 (2017-11-29)

1.0.1 (2017-11-21)

	Implemented types.InputFile for more easy sending local files

	Danger! Fixed typo in word pooling. Now whatever all methods with that word marked as deprecated and original methods is renamed to polling. Check it in you’r code before updating!

	Fixed helper for chat actions (types.ChatActions)

	Added example [https://github.com/aiogram/aiogram/blob/master/examples/media_group.py] for media group.

1.0 (2017-11-19)

	Remaked data types serialozation/deserialization mechanism (Speed up).

	Fully rewrited all Telegram data types.

	Bot object was fully rewritted (regenerated).

	Full provide Telegram Bot API 3.4+ (with sendMediaGroup)

	Warning: Now BaseStorage.close() is awaitable! (FSM)

	Fixed compability with uvloop.

	More employments for aiogram.utils.context.

	Allowed to disable ujson.

	Other bug fixes and minor improvements.

	Migrated from Bitbucket to Github.

0.4.1 (2017-08-03)

0.4 (2017-08-05)

0.3.4 (2017-08-04)

0.3.3 (2017-07-05)

0.3.2 (2017-07-04)

0.3.1 (2017-07-04)

0.2b1 (2017-06-00)

0.1 (2017-06-03)

 Contributing

Contributing

You’re welcome to contribute to aiogram!

aiogram is an open-source project, and anyone can contribute to it in any possible way

Developing

Before making any changes in the framework code, it is necessary to fork the project and clone
the project to your PC and know how to do a pull-request.

How to work with pull-request you can read in the GitHub docs [https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request]

Also in due to this project is written in Python, you will need Python to be installed
(is recommended to use latest Python versions, but any version starting from 3.8 can be used)

Use virtualenv

You can create a virtual environment in a directory using venv module (it should be pre-installed by default):

This action will create a .venv directory with the Python binaries and then you will
be able to install packages into that isolated environment.

Activate the environment

Linux / macOS:

source .venv/bin/activate

Windows cmd

.\.venv\Scripts\activate

Windows PowerShell

.\.venv\Scripts\activate.ps1

To check it worked, use described command, it should show the pip version and location
inside the isolated environment

pip -V

Also make sure you have the latest pip version in your virtual environment to avoid
errors on next steps:

python -m pip install --upgrade pip

Setup project

After activating the environment install aiogram from sources and their dependencies.

Linux / macOS:

pip install -e ."[dev,test,docs,fast,redis,mongo,proxy,i18n]"

Windows:

pip install -e .[dev,test,docs,fast,redis,mongo,proxy,i18n]

It will install aiogram in editable mode into your virtual environment and all dependencies.

Making changes in code

At this point you can make any changes in the code that you want, it can be any fixes,
implementing new features or experimenting.

Format the code (code-style)

Note that this project is Black-formatted, so you should follow that code-style,
too be sure You’re correctly doing this let’s reformat the code automatically:

black aiogram tests examples
isort aiogram tests examples

Run tests

All changes should be tested:

pytest tests

Also if you are doing something with Redis-storage or/and MongoDB-storage,
you will need to test everything works with Redis or/and MongoDB:

pytest --redis redis://<host>:<port>/<db> --mongo mongodb://<user>:<password>@<host>:<port> tests

Docs

We are using Sphinx to render docs in different languages, all sources located in docs directory,
you can change the sources and to test it you can start live-preview server and look what you are doing:

sphinx-autobuild --watch aiogram/ docs/ docs/_build/

Docs translations

Translation of the documentation is very necessary and cannot be done without the help of the
community from all over the world, so you are welcome to translate the documentation
into different languages.

Before start, let’s up to date all texts:

cd docs
make gettext
sphinx-intl update -p _build/gettext -l <language_code>

Change the <language_code> in example below to the target language code, after that
you can modify texts inside docs/locale/<language_code>/LC_MESSAGES as *.po files
by using any text-editor or specialized utilites for GNU Gettext,
for example via poedit [https://poedit.net/].

To view results:

sphinx-autobuild --watch aiogram/ docs/ docs/_build/ -D language=<language_code>

Describe changes

Describe your changes in one or more sentences so that bot developers know what’s changed
in their favorite framework - create <code>.<category>.rst file and write the description.

<code> is Issue or Pull-request number, after release link to this issue will
be published to the Changelog page.

<category> is a changes category marker, it can be one of:

	feature - when you are implementing new feature

	bugfix - when you fix a bug

	doc - when you improve the docs

	removal - when you remove something from the framework

	misc - when changed something inside the Core or project configuration

If you have troubles with changing category feel free to ask Core-contributors to help with choosing it.

Complete

After you have made all your changes, publish them to the repository and create a pull request
as mentioned at the beginning of the article and wait for a review of these changes.

Star on GitHub

You can “star” repository on GitHub - https://github.com/aiogram/aiogram (click the star button at the top right)

Adding stars makes it easier for other people to find this project and understand how useful it is.

Guides

You can write guides how to develop Bots on top of aiogram and publish it into YouTube, Medium,
GitHub Books, any Courses platform or any other platform that you know.

This will help more people learn about the framework and learn how to use it

Take answers

The developers is always asks for any question in our chats or any other platforms like GitHub Discussions,
StackOverflow and others, feel free to answer to this questions.

Funding

The development of the project is free and not financed by commercial organizations,
it is my personal initiative (@JRootJunior [https://t.me/JRootJunior]) and
I am engaged in the development of the project in my free time.

So, if you want to financially support the project, or, for example, give me a pizza or a beer,
you can do it on OpenCollective [https://opencollective.com/aiogram].

 Python Module Index

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 aiogram	

 	
 	
 aiogram.dispatcher.flags	

 	
 	
 aiogram.enums.bot_command_scope_type	

 	
 	
 aiogram.enums.chat_action	

 	
 	
 aiogram.enums.chat_boost_source_type	

 	
 	
 aiogram.enums.chat_member_status	

 	
 	
 aiogram.enums.chat_type	

 	
 	
 aiogram.enums.content_type	

 	
 	
 aiogram.enums.currency	

 	
 	
 aiogram.enums.dice_emoji	

 	
 	
 aiogram.enums.encrypted_passport_element	

 	
 	
 aiogram.enums.inline_query_result_type	

 	
 	
 aiogram.enums.input_media_type	

 	
 	
 aiogram.enums.keyboard_button_poll_type_type	

 	
 	
 aiogram.enums.mask_position_point	

 	
 	
 aiogram.enums.menu_button_type	

 	
 	
 aiogram.enums.message_entity_type	

 	
 	
 aiogram.enums.message_origin_type	

 	
 	
 aiogram.enums.parse_mode	

 	
 	
 aiogram.enums.passport_element_error_type	

 	
 	
 aiogram.enums.poll_type	

 	
 	
 aiogram.enums.reaction_type_type	

 	
 	
 aiogram.enums.sticker_format	

 	
 	
 aiogram.enums.sticker_type	

 	
 	
 aiogram.enums.topic_icon_color	

 	
 	
 aiogram.enums.update_type	

 	
 	
 aiogram.exceptions	

 	
 	
 aiogram.handlers.callback_query	

 	
 	
 aiogram.methods.add_sticker_to_set	

 	
 	
 aiogram.methods.answer_callback_query	

 	
 	
 aiogram.methods.answer_inline_query	

 	
 	
 aiogram.methods.answer_pre_checkout_query	

 	
 	
 aiogram.methods.answer_shipping_query	

 	
 	
 aiogram.methods.answer_web_app_query	

 	
 	
 aiogram.methods.approve_chat_join_request	

 	
 	
 aiogram.methods.ban_chat_member	

 	
 	
 aiogram.methods.ban_chat_sender_chat	

 	
 	
 aiogram.methods.close	

 	
 	
 aiogram.methods.close_forum_topic	

 	
 	
 aiogram.methods.close_general_forum_topic	

 	
 	
 aiogram.methods.copy_message	

 	
 	
 aiogram.methods.copy_messages	

 	
 	
 aiogram.methods.create_chat_invite_link	

 	
 	
 aiogram.methods.create_forum_topic	

 	
 	
 aiogram.methods.create_invoice_link	

 	
 	
 aiogram.methods.create_new_sticker_set	

 	
 	
 aiogram.methods.decline_chat_join_request	

 	
 	
 aiogram.methods.delete_chat_photo	

 	
 	
 aiogram.methods.delete_chat_sticker_set	

 	
 	
 aiogram.methods.delete_forum_topic	

 	
 	
 aiogram.methods.delete_message	

 	
 	
 aiogram.methods.delete_messages	

 	
 	
 aiogram.methods.delete_my_commands	

 	
 	
 aiogram.methods.delete_sticker_from_set	

 	
 	
 aiogram.methods.delete_sticker_set	

 	
 	
 aiogram.methods.delete_webhook	

 	
 	
 aiogram.methods.edit_chat_invite_link	

 	
 	
 aiogram.methods.edit_forum_topic	

 	
 	
 aiogram.methods.edit_general_forum_topic	

 	
 	
 aiogram.methods.edit_message_caption	

 	
 	
 aiogram.methods.edit_message_live_location	

 	
 	
 aiogram.methods.edit_message_media	

 	
 	
 aiogram.methods.edit_message_reply_markup	

 	
 	
 aiogram.methods.edit_message_text	

 	
 	
 aiogram.methods.export_chat_invite_link	

 	
 	
 aiogram.methods.forward_message	

 	
 	
 aiogram.methods.forward_messages	

 	
 	
 aiogram.methods.get_business_connection	

 	
 	
 aiogram.methods.get_chat	

 	
 	
 aiogram.methods.get_chat_administrators	

 	
 	
 aiogram.methods.get_chat_member	

 	
 	
 aiogram.methods.get_chat_member_count	

 	
 	
 aiogram.methods.get_chat_menu_button	

 	
 	
 aiogram.methods.get_custom_emoji_stickers	

 	
 	
 aiogram.methods.get_file	

 	
 	
 aiogram.methods.get_forum_topic_icon_stickers	

 	
 	
 aiogram.methods.get_game_high_scores	

 	
 	
 aiogram.methods.get_me	

 	
 	
 aiogram.methods.get_my_commands	

 	
 	
 aiogram.methods.get_my_default_administrator_rights	

 	
 	
 aiogram.methods.get_my_description	

 	
 	
 aiogram.methods.get_my_name	

 	
 	
 aiogram.methods.get_my_short_description	

 	
 	
 aiogram.methods.get_sticker_set	

 	
 	
 aiogram.methods.get_updates	

 	
 	
 aiogram.methods.get_user_chat_boosts	

 	
 	
 aiogram.methods.get_user_profile_photos	

 	
 	
 aiogram.methods.get_webhook_info	

 	
 	
 aiogram.methods.hide_general_forum_topic	

 	
 	
 aiogram.methods.leave_chat	

 	
 	
 aiogram.methods.log_out	

 	
 	
 aiogram.methods.pin_chat_message	

 	
 	
 aiogram.methods.promote_chat_member	

 	
 	
 aiogram.methods.reopen_forum_topic	

 	
 	
 aiogram.methods.reopen_general_forum_topic	

 	
 	
 aiogram.methods.replace_sticker_in_set	

 	
 	
 aiogram.methods.restrict_chat_member	

 	
 	
 aiogram.methods.revoke_chat_invite_link	

 	
 	
 aiogram.methods.send_animation	

 	
 	
 aiogram.methods.send_audio	

 	
 	
 aiogram.methods.send_chat_action	

 	
 	
 aiogram.methods.send_contact	

 	
 	
 aiogram.methods.send_dice	

 	
 	
 aiogram.methods.send_document	

 	
 	
 aiogram.methods.send_game	

 	
 	
 aiogram.methods.send_invoice	

 	
 	
 aiogram.methods.send_location	

 	
 	
 aiogram.methods.send_media_group	

 	
 	
 aiogram.methods.send_message	

 	
 	
 aiogram.methods.send_photo	

 	
 	
 aiogram.methods.send_poll	

 	
 	
 aiogram.methods.send_sticker	

 	
 	
 aiogram.methods.send_venue	

 	
 	
 aiogram.methods.send_video	

 	
 	
 aiogram.methods.send_video_note	

 	
 	
 aiogram.methods.send_voice	

 	
 	
 aiogram.methods.set_chat_administrator_custom_title	

 	
 	
 aiogram.methods.set_chat_description	

 	
 	
 aiogram.methods.set_chat_menu_button	

 	
 	
 aiogram.methods.set_chat_permissions	

 	
 	
 aiogram.methods.set_chat_photo	

 	
 	
 aiogram.methods.set_chat_sticker_set	

 	
 	
 aiogram.methods.set_chat_title	

 	
 	
 aiogram.methods.set_custom_emoji_sticker_set_thumbnail	

 	
 	
 aiogram.methods.set_game_score	

 	
 	
 aiogram.methods.set_message_reaction	

 	
 	
 aiogram.methods.set_my_commands	

 	
 	
 aiogram.methods.set_my_default_administrator_rights	

 	
 	
 aiogram.methods.set_my_description	

 	
 	
 aiogram.methods.set_my_name	

 	
 	
 aiogram.methods.set_my_short_description	

 	
 	
 aiogram.methods.set_passport_data_errors	

 	
 	
 aiogram.methods.set_sticker_emoji_list	

 	
 	
 aiogram.methods.set_sticker_keywords	

 	
 	
 aiogram.methods.set_sticker_mask_position	

 	
 	
 aiogram.methods.set_sticker_position_in_set	

 	
 	
 aiogram.methods.set_sticker_set_thumbnail	

 	
 	
 aiogram.methods.set_sticker_set_title	

 	
 	
 aiogram.methods.set_webhook	

 	
 	
 aiogram.methods.stop_message_live_location	

 	
 	
 aiogram.methods.stop_poll	

 	
 	
 aiogram.methods.unban_chat_member	

 	
 	
 aiogram.methods.unban_chat_sender_chat	

 	
 	
 aiogram.methods.unhide_general_forum_topic	

 	
 	
 aiogram.methods.unpin_all_chat_messages	

 	
 	
 aiogram.methods.unpin_all_forum_topic_messages	

 	
 	
 aiogram.methods.unpin_all_general_forum_topic_messages	

 	
 	
 aiogram.methods.unpin_chat_message	

 	
 	
 aiogram.methods.upload_sticker_file	

 	
 	
 aiogram.types.animation	

 	
 	
 aiogram.types.audio	

 	
 	
 aiogram.types.background_fill	

 	
 	
 aiogram.types.background_fill_freeform_gradient	

 	
 	
 aiogram.types.background_fill_gradient	

 	
 	
 aiogram.types.background_fill_solid	

 	
 	
 aiogram.types.background_type	

 	
 	
 aiogram.types.background_type_chat_theme	

 	
 	
 aiogram.types.background_type_fill	

 	
 	
 aiogram.types.background_type_pattern	

 	
 	
 aiogram.types.background_type_wallpaper	

 	
 	
 aiogram.types.birthdate	

 	
 	
 aiogram.types.bot_command	

 	
 	
 aiogram.types.bot_command_scope	

 	
 	
 aiogram.types.bot_command_scope_all_chat_administrators	

 	
 	
 aiogram.types.bot_command_scope_all_group_chats	

 	
 	
 aiogram.types.bot_command_scope_all_private_chats	

 	
 	
 aiogram.types.bot_command_scope_chat	

 	
 	
 aiogram.types.bot_command_scope_chat_administrators	

 	
 	
 aiogram.types.bot_command_scope_chat_member	

 	
 	
 aiogram.types.bot_command_scope_default	

 	
 	
 aiogram.types.bot_description	

 	
 	
 aiogram.types.bot_name	

 	
 	
 aiogram.types.bot_short_description	

 	
 	
 aiogram.types.business_connection	

 	
 	
 aiogram.types.business_intro	

 	
 	
 aiogram.types.business_location	

 	
 	
 aiogram.types.business_messages_deleted	

 	
 	
 aiogram.types.business_opening_hours	

 	
 	
 aiogram.types.business_opening_hours_interval	

 	
 	
 aiogram.types.callback_game	

 	
 	
 aiogram.types.callback_query	

 	
 	
 aiogram.types.chat	

 	
 	
 aiogram.types.chat_administrator_rights	

 	
 	
 aiogram.types.chat_background	

 	
 	
 aiogram.types.chat_boost	

 	
 	
 aiogram.types.chat_boost_added	

 	
 	
 aiogram.types.chat_boost_removed	

 	
 	
 aiogram.types.chat_boost_source	

 	
 	
 aiogram.types.chat_boost_source_gift_code	

 	
 	
 aiogram.types.chat_boost_source_giveaway	

 	
 	
 aiogram.types.chat_boost_source_premium	

 	
 	
 aiogram.types.chat_boost_updated	

 	
 	
 aiogram.types.chat_full_info	

 	
 	
 aiogram.types.chat_invite_link	

 	
 	
 aiogram.types.chat_join_request	

 	
 	
 aiogram.types.chat_location	

 	
 	
 aiogram.types.chat_member	

 	
 	
 aiogram.types.chat_member_administrator	

 	
 	
 aiogram.types.chat_member_banned	

 	
 	
 aiogram.types.chat_member_left	

 	
 	
 aiogram.types.chat_member_member	

 	
 	
 aiogram.types.chat_member_owner	

 	
 	
 aiogram.types.chat_member_restricted	

 	
 	
 aiogram.types.chat_member_updated	

 	
 	
 aiogram.types.chat_permissions	

 	
 	
 aiogram.types.chat_photo	

 	
 	
 aiogram.types.chat_shared	

 	
 	
 aiogram.types.chosen_inline_result	

 	
 	
 aiogram.types.contact	

 	
 	
 aiogram.types.dice	

 	
 	
 aiogram.types.document	

 	
 	
 aiogram.types.encrypted_credentials	

 	
 	
 aiogram.types.encrypted_passport_element	

 	
 	
 aiogram.types.error_event	

 	
 	
 aiogram.types.external_reply_info	

 	
 	
 aiogram.types.file	

 	
 	
 aiogram.types.force_reply	

 	
 	
 aiogram.types.forum_topic	

 	
 	
 aiogram.types.forum_topic_closed	

 	
 	
 aiogram.types.forum_topic_created	

 	
 	
 aiogram.types.forum_topic_edited	

 	
 	
 aiogram.types.forum_topic_reopened	

 	
 	
 aiogram.types.game	

 	
 	
 aiogram.types.game_high_score	

 	
 	
 aiogram.types.general_forum_topic_hidden	

 	
 	
 aiogram.types.general_forum_topic_unhidden	

 	
 	
 aiogram.types.giveaway	

 	
 	
 aiogram.types.giveaway_completed	

 	
 	
 aiogram.types.giveaway_created	

 	
 	
 aiogram.types.giveaway_winners	

 	
 	
 aiogram.types.inaccessible_message	

 	
 	
 aiogram.types.inline_keyboard_button	

 	
 	
 aiogram.types.inline_keyboard_markup	

 	
 	
 aiogram.types.inline_query	

 	
 	
 aiogram.types.inline_query_result	

 	
 	
 aiogram.types.inline_query_result_article	

 	
 	
 aiogram.types.inline_query_result_audio	

 	
 	
 aiogram.types.inline_query_result_cached_audio	

 	
 	
 aiogram.types.inline_query_result_cached_document	

 	
 	
 aiogram.types.inline_query_result_cached_gif	

 	
 	
 aiogram.types.inline_query_result_cached_mpeg4_gif	

 	
 	
 aiogram.types.inline_query_result_cached_photo	

 	
 	
 aiogram.types.inline_query_result_cached_sticker	

 	
 	
 aiogram.types.inline_query_result_cached_video	

 	
 	
 aiogram.types.inline_query_result_cached_voice	

 	
 	
 aiogram.types.inline_query_result_contact	

 	
 	
 aiogram.types.inline_query_result_document	

 	
 	
 aiogram.types.inline_query_result_game	

 	
 	
 aiogram.types.inline_query_result_gif	

 	
 	
 aiogram.types.inline_query_result_location	

 	
 	
 aiogram.types.inline_query_result_mpeg4_gif	

 	
 	
 aiogram.types.inline_query_result_photo	

 	
 	
 aiogram.types.inline_query_result_venue	

 	
 	
 aiogram.types.inline_query_result_video	

 	
 	
 aiogram.types.inline_query_result_voice	

 	
 	
 aiogram.types.inline_query_results_button	

 	
 	
 aiogram.types.input_contact_message_content	

 	
 	
 aiogram.types.input_file	

 	
 	
 aiogram.types.input_invoice_message_content	

 	
 	
 aiogram.types.input_location_message_content	

 	
 	
 aiogram.types.input_media	

 	
 	
 aiogram.types.input_media_animation	

 	
 	
 aiogram.types.input_media_audio	

 	
 	
 aiogram.types.input_media_document	

 	
 	
 aiogram.types.input_media_photo	

 	
 	
 aiogram.types.input_media_video	

 	
 	
 aiogram.types.input_message_content	

 	
 	
 aiogram.types.input_poll_option	

 	
 	
 aiogram.types.input_sticker	

 	
 	
 aiogram.types.input_text_message_content	

 	
 	
 aiogram.types.input_venue_message_content	

 	
 	
 aiogram.types.invoice	

 	
 	
 aiogram.types.keyboard_button	

 	
 	
 aiogram.types.keyboard_button_poll_type	

 	
 	
 aiogram.types.keyboard_button_request_chat	

 	
 	
 aiogram.types.keyboard_button_request_user	

 	
 	
 aiogram.types.keyboard_button_request_users	

 	
 	
 aiogram.types.labeled_price	

 	
 	
 aiogram.types.link_preview_options	

 	
 	
 aiogram.types.location	

 	
 	
 aiogram.types.login_url	

 	
 	
 aiogram.types.mask_position	

 	
 	
 aiogram.types.maybe_inaccessible_message	

 	
 	
 aiogram.types.menu_button	

 	
 	
 aiogram.types.menu_button_commands	

 	
 	
 aiogram.types.menu_button_default	

 	
 	
 aiogram.types.menu_button_web_app	

 	
 	
 aiogram.types.message	

 	
 	
 aiogram.types.message_auto_delete_timer_changed	

 	
 	
 aiogram.types.message_entity	

 	
 	
 aiogram.types.message_id	

 	
 	
 aiogram.types.message_origin	

 	
 	
 aiogram.types.message_origin_channel	

 	
 	
 aiogram.types.message_origin_chat	

 	
 	
 aiogram.types.message_origin_hidden_user	

 	
 	
 aiogram.types.message_origin_user	

 	
 	
 aiogram.types.message_reaction_count_updated	

 	
 	
 aiogram.types.message_reaction_updated	

 	
 	
 aiogram.types.order_info	

 	
 	
 aiogram.types.passport_data	

 	
 	
 aiogram.types.passport_element_error	

 	
 	
 aiogram.types.passport_element_error_data_field	

 	
 	
 aiogram.types.passport_element_error_file	

 	
 	
 aiogram.types.passport_element_error_files	

 	
 	
 aiogram.types.passport_element_error_front_side	

 	
 	
 aiogram.types.passport_element_error_reverse_side	

 	
 	
 aiogram.types.passport_element_error_selfie	

 	
 	
 aiogram.types.passport_element_error_translation_file	

 	
 	
 aiogram.types.passport_element_error_translation_files	

 	
 	
 aiogram.types.passport_element_error_unspecified	

 	
 	
 aiogram.types.passport_file	

 	
 	
 aiogram.types.photo_size	

 	
 	
 aiogram.types.poll	

 	
 	
 aiogram.types.poll_answer	

 	
 	
 aiogram.types.poll_option	

 	
 	
 aiogram.types.pre_checkout_query	

 	
 	
 aiogram.types.proximity_alert_triggered	

 	
 	
 aiogram.types.reaction_count	

 	
 	
 aiogram.types.reaction_type	

 	
 	
 aiogram.types.reaction_type_custom_emoji	

 	
 	
 aiogram.types.reaction_type_emoji	

 	
 	
 aiogram.types.reply_keyboard_markup	

 	
 	
 aiogram.types.reply_keyboard_remove	

 	
 	
 aiogram.types.reply_parameters	

 	
 	
 aiogram.types.response_parameters	

 	
 	
 aiogram.types.sent_web_app_message	

 	
 	
 aiogram.types.shared_user	

 	
 	
 aiogram.types.shipping_address	

 	
 	
 aiogram.types.shipping_option	

 	
 	
 aiogram.types.shipping_query	

 	
 	
 aiogram.types.sticker	

 	
 	
 aiogram.types.sticker_set	

 	
 	
 aiogram.types.story	

 	
 	
 aiogram.types.successful_payment	

 	
 	
 aiogram.types.switch_inline_query_chosen_chat	

 	
 	
 aiogram.types.text_quote	

 	
 	
 aiogram.types.update	

 	
 	
 aiogram.types.user	

 	
 	
 aiogram.types.user_chat_boosts	

 	
 	
 aiogram.types.user_profile_photos	

 	
 	
 aiogram.types.user_shared	

 	
 	
 aiogram.types.users_shared	

 	
 	
 aiogram.types.venue	

 	
 	
 aiogram.types.video	

 	
 	
 aiogram.types.video_chat_ended	

 	
 	
 aiogram.types.video_chat_participants_invited	

 	
 	
 aiogram.types.video_chat_scheduled	

 	
 	
 aiogram.types.video_chat_started	

 	
 	
 aiogram.types.video_note	

 	
 	
 aiogram.types.voice	

 	
 	
 aiogram.types.web_app_data	

 	
 	
 aiogram.types.web_app_info	

 	
 	
 aiogram.types.webhook_info	

 	
 	
 aiogram.types.write_access_allowed	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

_

 	
 	__call__() (aiogram.dispatcher.middlewares.base.BaseMiddleware method)

 	(aiogram.filters.base.Filter method)

 	__init__() (aiogram.dispatcher.dispatcher.Dispatcher method)

 	(aiogram.dispatcher.router.Router method)

 	(aiogram.filters.command.Command method)

 	(aiogram.fsm.storage.memory.MemoryStorage method)

 	(aiogram.fsm.storage.redis.RedisStorage method)

 	(aiogram.types.input_file.BufferedInputFile method)

 	(aiogram.types.input_file.FSInputFile method)

 	(aiogram.utils.callback_answer.CallbackAnswer method)

 	(aiogram.utils.callback_answer.CallbackAnswerMiddleware method)

 	(aiogram.utils.chat_action.ChatActionSender method)

 	(aiogram.utils.formatting.Text method)

 	(aiogram.utils.i18n.middleware.ConstI18nMiddleware method)

 	(aiogram.utils.i18n.middleware.FSMI18nMiddleware method)

 	(aiogram.utils.i18n.middleware.I18nMiddleware method)

 	(aiogram.utils.i18n.middleware.SimpleI18nMiddleware method)

 	(aiogram.utils.keyboard.InlineKeyboardBuilder method)

 	(aiogram.utils.keyboard.ReplyKeyboardBuilder method)

 	(aiogram.webhook.aiohttp_server.BaseRequestHandler method)

 	(aiogram.webhook.aiohttp_server.SimpleRequestHandler method)

 	(aiogram.webhook.aiohttp_server.TokenBasedRequestHandler method)

 	(aiogram.webhook.security.IPFilter method)

A

 	
 	accent_color_id (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	action (aiogram.methods.send_chat_action.SendChatAction attribute)

 	actions (aiogram.fsm.scene.SceneConfig attribute)

 	active_usernames (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	actor_chat (aiogram.types.message_reaction_updated.MessageReactionUpdated attribute)

 	add() (aiogram.fsm.scene.SceneRegistry method)

 	(aiogram.utils.keyboard.InlineKeyboardBuilder method)

 	(aiogram.utils.keyboard.ReplyKeyboardBuilder method)

 	(aiogram.utils.media_group.MediaGroupBuilder method)

 	add_audio() (aiogram.utils.media_group.MediaGroupBuilder method)

 	add_date (aiogram.types.chat_boost.ChatBoost attribute)

 	add_document() (aiogram.utils.media_group.MediaGroupBuilder method)

 	add_photo() (aiogram.utils.media_group.MediaGroupBuilder method)

 	add_to_router() (aiogram.fsm.scene.Scene class method)

 	add_video() (aiogram.utils.media_group.MediaGroupBuilder method)

 	added_to_attachment_menu (aiogram.types.user.User attribute)

 	(aiogram.utils.web_app.WebAppUser attribute)

 	additional_chat_count (aiogram.types.giveaway_winners.GiveawayWinners attribute)

 	ADDRESS (aiogram.enums.encrypted_passport_element.EncryptedPassportElement attribute)

 	address (aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.types.business_location.BusinessLocation attribute)

 	(aiogram.types.chat_location.ChatLocation attribute)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue attribute)

 	(aiogram.types.input_venue_message_content.InputVenueMessageContent attribute)

 	(aiogram.types.venue.Venue attribute)

 	AddStickerToSet (class in aiogram.methods.add_sticker_to_set)

 	adjust() (aiogram.utils.keyboard.InlineKeyboardBuilder method)

 	(aiogram.utils.keyboard.ReplyKeyboardBuilder method)

 	ADMINISTRATOR (aiogram.enums.chat_member_status.ChatMemberStatus attribute)

 	AED (aiogram.enums.currency.Currency attribute)

 	AFN (aiogram.enums.currency.Currency attribute)

 	
 aiogram.dispatcher.flags

 	module

 	
 aiogram.enums.bot_command_scope_type

 	module

 	
 aiogram.enums.chat_action

 	module

 	
 aiogram.enums.chat_boost_source_type

 	module

 	
 aiogram.enums.chat_member_status

 	module

 	
 aiogram.enums.chat_type

 	module

 	
 aiogram.enums.content_type

 	module

 	
 aiogram.enums.currency

 	module

 	
 aiogram.enums.dice_emoji

 	module

 	
 aiogram.enums.encrypted_passport_element

 	module

 	
 aiogram.enums.inline_query_result_type

 	module

 	
 aiogram.enums.input_media_type

 	module

 	
 aiogram.enums.keyboard_button_poll_type_type

 	module

 	
 aiogram.enums.mask_position_point

 	module

 	
 aiogram.enums.menu_button_type

 	module

 	
 aiogram.enums.message_entity_type

 	module

 	
 aiogram.enums.message_origin_type

 	module

 	
 aiogram.enums.parse_mode

 	module

 	
 aiogram.enums.passport_element_error_type

 	module

 	
 aiogram.enums.poll_type

 	module

 	
 aiogram.enums.reaction_type_type

 	module

 	
 aiogram.enums.sticker_format

 	module

 	
 aiogram.enums.sticker_type

 	module

 	
 aiogram.enums.topic_icon_color

 	module

 	
 aiogram.enums.update_type

 	module

 	
 aiogram.exceptions

 	module

 	
 aiogram.handlers.callback_query

 	module

 	
 aiogram.methods.add_sticker_to_set

 	module

 	
 aiogram.methods.answer_callback_query

 	module

 	
 aiogram.methods.answer_inline_query

 	module

 	
 aiogram.methods.answer_pre_checkout_query

 	module

 	
 aiogram.methods.answer_shipping_query

 	module

 	
 aiogram.methods.answer_web_app_query

 	module

 	
 aiogram.methods.approve_chat_join_request

 	module

 	
 aiogram.methods.ban_chat_member

 	module

 	
 aiogram.methods.ban_chat_sender_chat

 	module

 	
 aiogram.methods.close

 	module

 	
 aiogram.methods.close_forum_topic

 	module

 	
 aiogram.methods.close_general_forum_topic

 	module

 	
 aiogram.methods.copy_message

 	module

 	
 aiogram.methods.copy_messages

 	module

 	
 aiogram.methods.create_chat_invite_link

 	module

 	
 aiogram.methods.create_forum_topic

 	module

 	
 aiogram.methods.create_invoice_link

 	module

 	
 aiogram.methods.create_new_sticker_set

 	module

 	
 aiogram.methods.decline_chat_join_request

 	module

 	
 aiogram.methods.delete_chat_photo

 	module

 	
 aiogram.methods.delete_chat_sticker_set

 	module

 	
 aiogram.methods.delete_forum_topic

 	module

 	
 aiogram.methods.delete_message

 	module

 	
 aiogram.methods.delete_messages

 	module

 	
 aiogram.methods.delete_my_commands

 	module

 	
 aiogram.methods.delete_sticker_from_set

 	module

 	
 aiogram.methods.delete_sticker_set

 	module

 	
 aiogram.methods.delete_webhook

 	module

 	
 aiogram.methods.edit_chat_invite_link

 	module

 	
 aiogram.methods.edit_forum_topic

 	module

 	
 aiogram.methods.edit_general_forum_topic

 	module

 	
 aiogram.methods.edit_message_caption

 	module

 	
 aiogram.methods.edit_message_live_location

 	module

 	
 aiogram.methods.edit_message_media

 	module

 	
 aiogram.methods.edit_message_reply_markup

 	module

 	
 aiogram.methods.edit_message_text

 	module

 	
 aiogram.methods.export_chat_invite_link

 	module

 	
 aiogram.methods.forward_message

 	module

 	
 aiogram.methods.forward_messages

 	module

 	
 aiogram.methods.get_business_connection

 	module

 	
 aiogram.methods.get_chat

 	module

 	
 aiogram.methods.get_chat_administrators

 	module

 	
 aiogram.methods.get_chat_member

 	module

 	
 aiogram.methods.get_chat_member_count

 	module

 	
 aiogram.methods.get_chat_menu_button

 	module

 	
 aiogram.methods.get_custom_emoji_stickers

 	module

 	
 aiogram.methods.get_file

 	module

 	
 aiogram.methods.get_forum_topic_icon_stickers

 	module

 	
 aiogram.methods.get_game_high_scores

 	module

 	
 aiogram.methods.get_me

 	module

 	
 aiogram.methods.get_my_commands

 	module

 	
 aiogram.methods.get_my_default_administrator_rights

 	module

 	
 aiogram.methods.get_my_description

 	module

 	
 aiogram.methods.get_my_name

 	module

 	
 aiogram.methods.get_my_short_description

 	module

 	
 aiogram.methods.get_sticker_set

 	module

 	
 aiogram.methods.get_updates

 	module

 	
 aiogram.methods.get_user_chat_boosts

 	module

 	
 aiogram.methods.get_user_profile_photos

 	module

 	
 aiogram.methods.get_webhook_info

 	module

 	
 aiogram.methods.hide_general_forum_topic

 	module

 	
 aiogram.methods.leave_chat

 	module

 	
 aiogram.methods.log_out

 	module

 	
 aiogram.methods.pin_chat_message

 	module

 	
 aiogram.methods.promote_chat_member

 	module

 	
 aiogram.methods.reopen_forum_topic

 	module

 	
 aiogram.methods.reopen_general_forum_topic

 	module

 	
 aiogram.methods.replace_sticker_in_set

 	module

 	
 aiogram.methods.restrict_chat_member

 	module

 	
 aiogram.methods.revoke_chat_invite_link

 	module

 	
 aiogram.methods.send_animation

 	module

 	
 aiogram.methods.send_audio

 	module

 	
 aiogram.methods.send_chat_action

 	module

 	
 aiogram.methods.send_contact

 	module

 	
 aiogram.methods.send_dice

 	module

 	
 aiogram.methods.send_document

 	module

 	
 aiogram.methods.send_game

 	module

 	
 aiogram.methods.send_invoice

 	module

 	
 aiogram.methods.send_location

 	module

 	
 aiogram.methods.send_media_group

 	module

 	
 aiogram.methods.send_message

 	module

 	
 aiogram.methods.send_photo

 	module

 	
 aiogram.methods.send_poll

 	module

 	
 aiogram.methods.send_sticker

 	module

 	
 aiogram.methods.send_venue

 	module

 	
 aiogram.methods.send_video

 	module

 	
 aiogram.methods.send_video_note

 	module

 	
 aiogram.methods.send_voice

 	module

 	
 aiogram.methods.set_chat_administrator_custom_title

 	module

 	
 aiogram.methods.set_chat_description

 	module

 	
 aiogram.methods.set_chat_menu_button

 	module

 	
 aiogram.methods.set_chat_permissions

 	module

 	
 aiogram.methods.set_chat_photo

 	module

 	
 aiogram.methods.set_chat_sticker_set

 	module

 	
 aiogram.methods.set_chat_title

 	module

 	
 aiogram.methods.set_custom_emoji_sticker_set_thumbnail

 	module

 	
 aiogram.methods.set_game_score

 	module

 	
 aiogram.methods.set_message_reaction

 	module

 	
 aiogram.methods.set_my_commands

 	module

 	
 aiogram.methods.set_my_default_administrator_rights

 	module

 	
 aiogram.methods.set_my_description

 	module

 	
 aiogram.methods.set_my_name

 	module

 	
 aiogram.methods.set_my_short_description

 	module

 	
 aiogram.methods.set_passport_data_errors

 	module

 	
 aiogram.methods.set_sticker_emoji_list

 	module

 	
 aiogram.methods.set_sticker_keywords

 	module

 	
 aiogram.methods.set_sticker_mask_position

 	module

 	
 aiogram.methods.set_sticker_position_in_set

 	module

 	
 aiogram.methods.set_sticker_set_thumbnail

 	module

 	
 aiogram.methods.set_sticker_set_title

 	module

 	
 aiogram.methods.set_webhook

 	module

 	
 aiogram.methods.stop_message_live_location

 	module

 	
 aiogram.methods.stop_poll

 	module

 	
 aiogram.methods.unban_chat_member

 	module

 	
 aiogram.methods.unban_chat_sender_chat

 	module

 	
 aiogram.methods.unhide_general_forum_topic

 	module

 	
 aiogram.methods.unpin_all_chat_messages

 	module

 	
 aiogram.methods.unpin_all_forum_topic_messages

 	module

 	
 aiogram.methods.unpin_all_general_forum_topic_messages

 	module

 	
 aiogram.methods.unpin_chat_message

 	module

 	
 aiogram.methods.upload_sticker_file

 	module

 	
 aiogram.types.animation

 	module

 	
 aiogram.types.audio

 	module

 	
 aiogram.types.background_fill

 	module

 	
 aiogram.types.background_fill_freeform_gradient

 	module

 	
 aiogram.types.background_fill_gradient

 	module

 	
 aiogram.types.background_fill_solid

 	module

 	
 aiogram.types.background_type

 	module

 	
 aiogram.types.background_type_chat_theme

 	module

 	
 aiogram.types.background_type_fill

 	module

 	
 aiogram.types.background_type_pattern

 	module

 	
 aiogram.types.background_type_wallpaper

 	module

 	
 aiogram.types.birthdate

 	module

 	
 aiogram.types.bot_command

 	module

 	
 aiogram.types.bot_command_scope

 	module

 	
 aiogram.types.bot_command_scope_all_chat_administrators

 	module

 	
 aiogram.types.bot_command_scope_all_group_chats

 	module

 	
 aiogram.types.bot_command_scope_all_private_chats

 	module

 	
 aiogram.types.bot_command_scope_chat

 	module

 	
 aiogram.types.bot_command_scope_chat_administrators

 	module

 	
 aiogram.types.bot_command_scope_chat_member

 	module

 	
 aiogram.types.bot_command_scope_default

 	module

 	
 aiogram.types.bot_description

 	module

 	
 aiogram.types.bot_name

 	module

 	
 aiogram.types.bot_short_description

 	module

 	
 aiogram.types.business_connection

 	module

 	
 aiogram.types.business_intro

 	module

 	
 aiogram.types.business_location

 	module

 	
 aiogram.types.business_messages_deleted

 	module

 	
 aiogram.types.business_opening_hours

 	module

 	
 aiogram.types.business_opening_hours_interval

 	module

 	
 aiogram.types.callback_game

 	module

 	
 aiogram.types.callback_query

 	module

 	
 aiogram.types.chat

 	module

 	
 aiogram.types.chat_administrator_rights

 	module

 	
 aiogram.types.chat_background

 	module

 	
 aiogram.types.chat_boost

 	module

 	
 aiogram.types.chat_boost_added

 	module

 	
 aiogram.types.chat_boost_removed

 	module

 	
 aiogram.types.chat_boost_source

 	module

 	
 aiogram.types.chat_boost_source_gift_code

 	module

 	
 aiogram.types.chat_boost_source_giveaway

 	module

 	
 aiogram.types.chat_boost_source_premium

 	module

 	
 aiogram.types.chat_boost_updated

 	module

 	
 aiogram.types.chat_full_info

 	module

 	
 aiogram.types.chat_invite_link

 	module

 	
 aiogram.types.chat_join_request

 	module

 	
 aiogram.types.chat_location

 	module

 	
 aiogram.types.chat_member

 	module

 	
 aiogram.types.chat_member_administrator

 	module

 	
 aiogram.types.chat_member_banned

 	module

 	
 aiogram.types.chat_member_left

 	module

 	
 aiogram.types.chat_member_member

 	module

 	
 aiogram.types.chat_member_owner

 	module

 	
 aiogram.types.chat_member_restricted

 	module

 	
 aiogram.types.chat_member_updated

 	module

 	
 aiogram.types.chat_permissions

 	module

 	
 aiogram.types.chat_photo

 	module

 	
 aiogram.types.chat_shared

 	module

 	
 aiogram.types.chosen_inline_result

 	module

 	
 aiogram.types.contact

 	module

 	
 aiogram.types.dice

 	module

 	
 	
 aiogram.types.document

 	module

 	
 aiogram.types.encrypted_credentials

 	module

 	
 aiogram.types.encrypted_passport_element

 	module

 	
 aiogram.types.error_event

 	module

 	
 aiogram.types.external_reply_info

 	module

 	
 aiogram.types.file

 	module

 	
 aiogram.types.force_reply

 	module

 	
 aiogram.types.forum_topic

 	module

 	
 aiogram.types.forum_topic_closed

 	module

 	
 aiogram.types.forum_topic_created

 	module

 	
 aiogram.types.forum_topic_edited

 	module

 	
 aiogram.types.forum_topic_reopened

 	module

 	
 aiogram.types.game

 	module

 	
 aiogram.types.game_high_score

 	module

 	
 aiogram.types.general_forum_topic_hidden

 	module

 	
 aiogram.types.general_forum_topic_unhidden

 	module

 	
 aiogram.types.giveaway

 	module

 	
 aiogram.types.giveaway_completed

 	module

 	
 aiogram.types.giveaway_created

 	module

 	
 aiogram.types.giveaway_winners

 	module

 	
 aiogram.types.inaccessible_message

 	module

 	
 aiogram.types.inline_keyboard_button

 	module

 	
 aiogram.types.inline_keyboard_markup

 	module

 	
 aiogram.types.inline_query

 	module

 	
 aiogram.types.inline_query_result

 	module

 	
 aiogram.types.inline_query_result_article

 	module

 	
 aiogram.types.inline_query_result_audio

 	module

 	
 aiogram.types.inline_query_result_cached_audio

 	module

 	
 aiogram.types.inline_query_result_cached_document

 	module

 	
 aiogram.types.inline_query_result_cached_gif

 	module

 	
 aiogram.types.inline_query_result_cached_mpeg4_gif

 	module

 	
 aiogram.types.inline_query_result_cached_photo

 	module

 	
 aiogram.types.inline_query_result_cached_sticker

 	module

 	
 aiogram.types.inline_query_result_cached_video

 	module

 	
 aiogram.types.inline_query_result_cached_voice

 	module

 	
 aiogram.types.inline_query_result_contact

 	module

 	
 aiogram.types.inline_query_result_document

 	module

 	
 aiogram.types.inline_query_result_game

 	module

 	
 aiogram.types.inline_query_result_gif

 	module

 	
 aiogram.types.inline_query_result_location

 	module

 	
 aiogram.types.inline_query_result_mpeg4_gif

 	module

 	
 aiogram.types.inline_query_result_photo

 	module

 	
 aiogram.types.inline_query_result_venue

 	module

 	
 aiogram.types.inline_query_result_video

 	module

 	
 aiogram.types.inline_query_result_voice

 	module

 	
 aiogram.types.inline_query_results_button

 	module

 	
 aiogram.types.input_contact_message_content

 	module

 	
 aiogram.types.input_file

 	module

 	
 aiogram.types.input_invoice_message_content

 	module

 	
 aiogram.types.input_location_message_content

 	module

 	
 aiogram.types.input_media

 	module

 	
 aiogram.types.input_media_animation

 	module

 	
 aiogram.types.input_media_audio

 	module

 	
 aiogram.types.input_media_document

 	module

 	
 aiogram.types.input_media_photo

 	module

 	
 aiogram.types.input_media_video

 	module

 	
 aiogram.types.input_message_content

 	module

 	
 aiogram.types.input_poll_option

 	module

 	
 aiogram.types.input_sticker

 	module

 	
 aiogram.types.input_text_message_content

 	module

 	
 aiogram.types.input_venue_message_content

 	module

 	
 aiogram.types.invoice

 	module

 	
 aiogram.types.keyboard_button

 	module

 	
 aiogram.types.keyboard_button_poll_type

 	module

 	
 aiogram.types.keyboard_button_request_chat

 	module

 	
 aiogram.types.keyboard_button_request_user

 	module

 	
 aiogram.types.keyboard_button_request_users

 	module

 	
 aiogram.types.labeled_price

 	module

 	
 aiogram.types.link_preview_options

 	module

 	
 aiogram.types.location

 	module

 	
 aiogram.types.login_url

 	module

 	
 aiogram.types.mask_position

 	module

 	
 aiogram.types.maybe_inaccessible_message

 	module

 	
 aiogram.types.menu_button

 	module

 	
 aiogram.types.menu_button_commands

 	module

 	
 aiogram.types.menu_button_default

 	module

 	
 aiogram.types.menu_button_web_app

 	module

 	
 aiogram.types.message

 	module

 	
 aiogram.types.message_auto_delete_timer_changed

 	module

 	
 aiogram.types.message_entity

 	module

 	
 aiogram.types.message_id

 	module

 	
 aiogram.types.message_origin

 	module

 	
 aiogram.types.message_origin_channel

 	module

 	
 aiogram.types.message_origin_chat

 	module

 	
 aiogram.types.message_origin_hidden_user

 	module

 	
 aiogram.types.message_origin_user

 	module

 	
 aiogram.types.message_reaction_count_updated

 	module

 	
 aiogram.types.message_reaction_updated

 	module

 	
 aiogram.types.order_info

 	module

 	
 aiogram.types.passport_data

 	module

 	
 aiogram.types.passport_element_error

 	module

 	
 aiogram.types.passport_element_error_data_field

 	module

 	
 aiogram.types.passport_element_error_file

 	module

 	
 aiogram.types.passport_element_error_files

 	module

 	
 aiogram.types.passport_element_error_front_side

 	module

 	
 aiogram.types.passport_element_error_reverse_side

 	module

 	
 aiogram.types.passport_element_error_selfie

 	module

 	
 aiogram.types.passport_element_error_translation_file

 	module

 	
 aiogram.types.passport_element_error_translation_files

 	module

 	
 aiogram.types.passport_element_error_unspecified

 	module

 	
 aiogram.types.passport_file

 	module

 	
 aiogram.types.photo_size

 	module

 	
 aiogram.types.poll

 	module

 	
 aiogram.types.poll_answer

 	module

 	
 aiogram.types.poll_option

 	module

 	
 aiogram.types.pre_checkout_query

 	module

 	
 aiogram.types.proximity_alert_triggered

 	module

 	
 aiogram.types.reaction_count

 	module

 	
 aiogram.types.reaction_type

 	module

 	
 aiogram.types.reaction_type_custom_emoji

 	module

 	
 aiogram.types.reaction_type_emoji

 	module

 	
 aiogram.types.reply_keyboard_markup

 	module

 	
 aiogram.types.reply_keyboard_remove

 	module

 	
 aiogram.types.reply_parameters

 	module

 	
 aiogram.types.response_parameters

 	module

 	
 aiogram.types.sent_web_app_message

 	module

 	
 aiogram.types.shared_user

 	module

 	
 aiogram.types.shipping_address

 	module

 	
 aiogram.types.shipping_option

 	module

 	
 aiogram.types.shipping_query

 	module

 	
 aiogram.types.sticker

 	module

 	
 aiogram.types.sticker_set

 	module

 	
 aiogram.types.story

 	module

 	
 aiogram.types.successful_payment

 	module

 	
 aiogram.types.switch_inline_query_chosen_chat

 	module

 	
 aiogram.types.text_quote

 	module

 	
 aiogram.types.update

 	module

 	
 aiogram.types.user

 	module

 	
 aiogram.types.user_chat_boosts

 	module

 	
 aiogram.types.user_profile_photos

 	module

 	
 aiogram.types.user_shared

 	module

 	
 aiogram.types.users_shared

 	module

 	
 aiogram.types.venue

 	module

 	
 aiogram.types.video

 	module

 	
 aiogram.types.video_chat_ended

 	module

 	
 aiogram.types.video_chat_participants_invited

 	module

 	
 aiogram.types.video_chat_scheduled

 	module

 	
 aiogram.types.video_chat_started

 	module

 	
 aiogram.types.video_note

 	module

 	
 aiogram.types.voice

 	module

 	
 aiogram.types.web_app_data

 	module

 	
 aiogram.types.web_app_info

 	module

 	
 aiogram.types.webhook_info

 	module

 	
 aiogram.types.write_access_allowed

 	module

 	AiogramError

 	AiohttpSession (class in aiogram.client.session.aiohttp)

 	ALL (aiogram.enums.currency.Currency attribute)

 	ALL_CHAT_ADMINISTRATORS (aiogram.enums.bot_command_scope_type.BotCommandScopeType attribute)

 	ALL_GROUP_CHATS (aiogram.enums.bot_command_scope_type.BotCommandScopeType attribute)

 	ALL_PRIVATE_CHATS (aiogram.enums.bot_command_scope_type.BotCommandScopeType attribute)

 	allow_bot_chats (aiogram.types.switch_inline_query_chosen_chat.SwitchInlineQueryChosenChat attribute)

 	allow_channel_chats (aiogram.types.switch_inline_query_chosen_chat.SwitchInlineQueryChosenChat attribute)

 	allow_group_chats (aiogram.types.switch_inline_query_chosen_chat.SwitchInlineQueryChosenChat attribute)

 	allow_sending_without_reply (aiogram.methods.copy_message.CopyMessage attribute)

 	(aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.methods.send_contact.SendContact attribute)

 	(aiogram.methods.send_dice.SendDice attribute)

 	(aiogram.methods.send_document.SendDocument attribute)

 	(aiogram.methods.send_game.SendGame attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.methods.send_location.SendLocation attribute)

 	(aiogram.methods.send_media_group.SendMediaGroup attribute)

 	(aiogram.methods.send_message.SendMessage attribute)

 	(aiogram.methods.send_photo.SendPhoto attribute)

 	(aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.methods.send_sticker.SendSticker attribute)

 	(aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.methods.send_video_note.SendVideoNote attribute)

 	(aiogram.methods.send_voice.SendVoice attribute)

 	(aiogram.types.reply_parameters.ReplyParameters attribute)

 	allow_user_chats (aiogram.types.switch_inline_query_chosen_chat.SwitchInlineQueryChosenChat attribute)

 	allowed_updates (aiogram.methods.get_updates.GetUpdates attribute)

 	(aiogram.methods.set_webhook.SetWebhook attribute)

 	(aiogram.types.webhook_info.WebhookInfo attribute)

 	allows_multiple_answers (aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.types.poll.Poll attribute)

 	allows_write_to_pm (aiogram.utils.web_app.WebAppUser attribute)

 	AMD (aiogram.enums.currency.Currency attribute)

 	amount (aiogram.types.labeled_price.LabeledPrice attribute)

 	ANIMATED (aiogram.enums.sticker_format.StickerFormat attribute)

 	ANIMATION (aiogram.enums.content_type.ContentType attribute)

 	(aiogram.enums.input_media_type.InputMediaType attribute)

 	animation (aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.game.Game attribute)

 	(aiogram.types.message.Message attribute)

 	Animation (class in aiogram.types.animation)

 	answer() (aiogram.types.callback_query.CallbackQuery method)

 	(aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.inline_query.InlineQuery method)

 	(aiogram.types.message.Message method)

 	(aiogram.types.pre_checkout_query.PreCheckoutQuery method)

 	(aiogram.types.shipping_query.ShippingQuery method)

 	answer_animation() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.message.Message method)

 	answer_animation_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	answer_audio() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.message.Message method)

 	answer_audio_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	answer_contact() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.message.Message method)

 	answer_contact_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	answer_dice() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.message.Message method)

 	answer_dice_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	answer_document() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.message.Message method)

 	answer_document_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	answer_game() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.message.Message method)

 	answer_game_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	answer_invoice() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.message.Message method)

 	answer_invoice_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	answer_location() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.message.Message method)

 	answer_location_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	answer_media_group() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.message.Message method)

 	answer_media_group_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	answer_photo() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.message.Message method)

 	answer_photo_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	answer_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	answer_poll() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.message.Message method)

 	answer_poll_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	answer_sticker() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.message.Message method)

 	answer_sticker_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	answer_venue() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.message.Message method)

 	answer_venue_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	answer_video() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.message.Message method)

 	answer_video_note() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.message.Message method)

 	answer_video_note_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	answer_video_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	answer_voice() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.message.Message method)

 	answer_voice_pm() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	AnswerCallbackQuery (class in aiogram.methods.answer_callback_query)

 	answered (aiogram.utils.callback_answer.CallbackAnswer property)

 	AnswerInlineQuery (class in aiogram.methods.answer_inline_query)

 	AnswerPreCheckoutQuery (class in aiogram.methods.answer_pre_checkout_query)

 	AnswerShippingQuery (class in aiogram.methods.answer_shipping_query)

 	AnswerWebAppQuery (class in aiogram.methods.answer_web_app_query)

 	ANY (aiogram.enums.content_type.ContentType attribute)

 	api_url() (aiogram.client.telegram.TelegramAPIServer method)

 	approve() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	ApproveChatJoinRequest (class in aiogram.methods.approve_chat_join_request)

 	args (aiogram.filters.command.CommandObject attribute)

 	ARS (aiogram.enums.currency.Currency attribute)

 	ARTICLE (aiogram.enums.inline_query_result_type.InlineQueryResultType attribute)

 	as_handler() (aiogram.fsm.scene.Scene class method)

 	as_html() (aiogram.utils.formatting.Text method)

 	as_key_value() (in module aiogram.utils.formatting)

 	as_kwargs() (aiogram.utils.formatting.Text method)

 	as_line() (in module aiogram.utils.formatting)

 	as_list() (in module aiogram.utils.formatting)

 	as_markdown() (aiogram.utils.formatting.Text method)

 	as_marked_list() (in module aiogram.utils.formatting)

 	as_marked_section() (in module aiogram.utils.formatting)

 	as_numbered_list() (in module aiogram.utils.formatting)

 	as_numbered_section() (in module aiogram.utils.formatting)

 	as_router() (aiogram.fsm.scene.Scene class method)

 	as_section() (in module aiogram.utils.formatting)

 	AUD (aiogram.enums.currency.Currency attribute)

 	AUDIO (aiogram.enums.content_type.ContentType attribute)

 	(aiogram.enums.inline_query_result_type.InlineQueryResultType attribute)

 	(aiogram.enums.input_media_type.InputMediaType attribute)

 	audio (aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.message.Message attribute)

 	Audio (class in aiogram.types.audio)

 	audio_duration (aiogram.types.inline_query_result_audio.InlineQueryResultAudio attribute)

 	audio_file_id (aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio attribute)

 	audio_url (aiogram.types.inline_query_result_audio.InlineQueryResultAudio attribute)

 	auth_date (aiogram.utils.web_app.WebAppInitData attribute)

 	author_signature (aiogram.types.message.Message attribute)

 	(aiogram.types.message_origin_channel.MessageOriginChannel attribute)

 	(aiogram.types.message_origin_chat.MessageOriginChat attribute)

 	available_reactions (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	AZN (aiogram.enums.currency.Currency attribute)

B

 	
 	back() (aiogram.fsm.scene.SceneWizard method)

 	background_custom_emoji_id (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	BackgroundFill (class in aiogram.types.background_fill)

 	BackgroundFillFreeformGradient (class in aiogram.types.background_fill_freeform_gradient)

 	BackgroundFillGradient (class in aiogram.types.background_fill_gradient)

 	BackgroundFillSolid (class in aiogram.types.background_fill_solid)

 	BackgroundType (class in aiogram.types.background_type)

 	BackgroundTypeChatTheme (class in aiogram.types.background_type_chat_theme)

 	BackgroundTypeFill (class in aiogram.types.background_type_fill)

 	BackgroundTypePattern (class in aiogram.types.background_type_pattern)

 	BackgroundTypeWallpaper (class in aiogram.types.background_type_wallpaper)

 	BAM (aiogram.enums.currency.Currency attribute)

 	ban() (aiogram.types.chat.Chat method)

 	ban_sender_chat() (aiogram.types.chat.Chat method)

 	BanChatMember (class in aiogram.methods.ban_chat_member)

 	BanChatSenderChat (class in aiogram.methods.ban_chat_sender_chat)

 	BANK_STATEMENT (aiogram.enums.encrypted_passport_element.EncryptedPassportElement attribute)

 	base (aiogram.client.telegram.TelegramAPIServer attribute)

 	BaseMiddleware (class in aiogram.dispatcher.middlewares.base)

 	BaseRequestHandler (class in aiogram.webhook.aiohttp_server)

 	BaseSession (class in aiogram.client.session.base)

 	BaseStorage (class in aiogram.fsm.storage.base)

 	BASKETBALL (aiogram.enums.dice_emoji.DiceEmoji attribute)

 	(aiogram.types.dice.DiceEmoji attribute)

 	BDT (aiogram.enums.currency.Currency attribute)

 	BGN (aiogram.enums.currency.Currency attribute)

 	big_file_id (aiogram.types.chat_photo.ChatPhoto attribute)

 	big_file_unique_id (aiogram.types.chat_photo.ChatPhoto attribute)

 	bio (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	(aiogram.types.chat_join_request.ChatJoinRequest attribute)

 	birthdate (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	Birthdate (class in aiogram.types.birthdate)

 	BLOCKQUOTE (aiogram.enums.message_entity_type.MessageEntityType attribute)

 	BLUE (aiogram.enums.topic_icon_color.TopicIconColor attribute)

 	BND (aiogram.enums.currency.Currency attribute)

 	BOB (aiogram.enums.currency.Currency attribute)

 	BOLD (aiogram.enums.message_entity_type.MessageEntityType attribute)

 	Bold (class in aiogram.utils.formatting)

 	boost (aiogram.types.chat_boost_updated.ChatBoostUpdated attribute)

 	BOOST_ADDED (aiogram.enums.content_type.ContentType attribute)

 	boost_added (aiogram.types.message.Message attribute)

 	boost_count (aiogram.types.chat_boost_added.ChatBoostAdded attribute)

 	boost_id (aiogram.types.chat_boost.ChatBoost attribute)

 	(aiogram.types.chat_boost_removed.ChatBoostRemoved attribute)

 	boosts (aiogram.types.user_chat_boosts.UserChatBoosts attribute)

 	bot_administrator_rights (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat attribute)

 	BOT_COMMAND (aiogram.enums.message_entity_type.MessageEntityType attribute)

 	bot_is_member (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat attribute)

 	bot_username (aiogram.types.login_url.LoginUrl attribute)

 	BotCommand (class in aiogram.types.bot_command)

 	(class in aiogram.utils.formatting)

 	BotCommandScope (class in aiogram.types.bot_command_scope)

 	BotCommandScopeAllChatAdministrators (class in aiogram.types.bot_command_scope_all_chat_administrators)

 	BotCommandScopeAllGroupChats (class in aiogram.types.bot_command_scope_all_group_chats)

 	
 	BotCommandScopeAllPrivateChats (class in aiogram.types.bot_command_scope_all_private_chats)

 	BotCommandScopeChat (class in aiogram.types.bot_command_scope_chat)

 	BotCommandScopeChatAdministrators (class in aiogram.types.bot_command_scope_chat_administrators)

 	BotCommandScopeChatMember (class in aiogram.types.bot_command_scope_chat_member)

 	BotCommandScopeDefault (class in aiogram.types.bot_command_scope_default)

 	BotCommandScopeType (class in aiogram.enums.bot_command_scope_type)

 	BotDescription (class in aiogram.types.bot_description)

 	BotName (class in aiogram.types.bot_name)

 	BotShortDescription (class in aiogram.types.bot_short_description)

 	bottom_color (aiogram.types.background_fill_gradient.BackgroundFillGradient attribute)

 	BOWLING (aiogram.enums.dice_emoji.DiceEmoji attribute)

 	(aiogram.types.dice.DiceEmoji attribute)

 	BRL (aiogram.enums.currency.Currency attribute)

 	BufferedInputFile (class in aiogram.types.input_file), [1]

 	build() (aiogram.fsm.storage.base.DefaultKeyBuilder method)

 	(aiogram.fsm.storage.base.KeyBuilder method)

 	(aiogram.utils.media_group.MediaGroupBuilder method)

 	BUSINESS_CONNECTION (aiogram.enums.update_type.UpdateType attribute)

 	business_connection (aiogram.types.update.Update attribute)

 	business_connection_id (aiogram.methods.get_business_connection.GetBusinessConnection attribute)

 	(aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.methods.send_chat_action.SendChatAction attribute)

 	(aiogram.methods.send_contact.SendContact attribute)

 	(aiogram.methods.send_dice.SendDice attribute)

 	(aiogram.methods.send_document.SendDocument attribute)

 	(aiogram.methods.send_game.SendGame attribute)

 	(aiogram.methods.send_location.SendLocation attribute)

 	(aiogram.methods.send_media_group.SendMediaGroup attribute)

 	(aiogram.methods.send_message.SendMessage attribute)

 	(aiogram.methods.send_photo.SendPhoto attribute)

 	(aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.methods.send_sticker.SendSticker attribute)

 	(aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.methods.send_video_note.SendVideoNote attribute)

 	(aiogram.methods.send_voice.SendVoice attribute)

 	(aiogram.types.business_messages_deleted.BusinessMessagesDeleted attribute)

 	(aiogram.types.message.Message attribute)

 	business_intro (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	business_location (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	BUSINESS_MESSAGE (aiogram.enums.update_type.UpdateType attribute)

 	business_message (aiogram.types.update.Update attribute)

 	business_opening_hours (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	BusinessConnection (class in aiogram.types.business_connection)

 	BusinessIntro (class in aiogram.types.business_intro)

 	BusinessLocation (class in aiogram.types.business_location)

 	BusinessMessagesDeleted (class in aiogram.types.business_messages_deleted)

 	BusinessOpeningHours (class in aiogram.types.business_opening_hours)

 	BusinessOpeningHoursInterval (class in aiogram.types.business_opening_hours_interval)

 	button (aiogram.methods.answer_inline_query.AnswerInlineQuery attribute)

 	button_text (aiogram.types.web_app_data.WebAppData attribute)

 	buttons (aiogram.utils.keyboard.InlineKeyboardBuilder property)

 	(aiogram.utils.keyboard.ReplyKeyboardBuilder property)

 	BYN (aiogram.enums.currency.Currency attribute)

C

 	
 	cache_time (aiogram.methods.answer_callback_query.AnswerCallbackQuery attribute)

 	(aiogram.methods.answer_inline_query.AnswerInlineQuery attribute)

 	(aiogram.utils.callback_answer.CallbackAnswer property)

 	CAD (aiogram.enums.currency.Currency attribute)

 	callback_data (aiogram.handlers.callback_query.CallbackQueryHandler property)

 	(aiogram.types.inline_keyboard_button.InlineKeyboardButton attribute)

 	callback_game (aiogram.types.inline_keyboard_button.InlineKeyboardButton attribute)

 	CALLBACK_QUERY (aiogram.enums.update_type.UpdateType attribute)

 	callback_query (aiogram.types.update.Update attribute)

 	callback_query_id (aiogram.methods.answer_callback_query.AnswerCallbackQuery attribute)

 	callback_query_without_state (aiogram.fsm.scene.SceneConfig attribute)

 	CallbackAnswer (class in aiogram.utils.callback_answer)

 	CallbackAnswerException

 	CallbackAnswerMiddleware (class in aiogram.utils.callback_answer)

 	CallbackData (class in aiogram.filters.callback_data)

 	CallbackGame (class in aiogram.types.callback_game)

 	CallbackQuery (class in aiogram.types.callback_query)

 	CallbackQueryHandler (class in aiogram.handlers.callback_query)

 	can_add_web_page_previews (aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	(aiogram.types.chat_permissions.ChatPermissions attribute)

 	can_be_edited (aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	can_change_info (aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	(aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	(aiogram.types.chat_permissions.ChatPermissions attribute)

 	can_connect_to_business (aiogram.types.user.User attribute)

 	can_delete_messages (aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	can_delete_stories (aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	can_edit_messages (aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	can_edit_stories (aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	can_invite_users (aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	(aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	(aiogram.types.chat_permissions.ChatPermissions attribute)

 	can_join_groups (aiogram.types.user.User attribute)

 	can_manage_chat (aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	can_manage_topics (aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	(aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	(aiogram.types.chat_permissions.ChatPermissions attribute)

 	can_manage_video_chats (aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	can_pin_messages (aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	(aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	(aiogram.types.chat_permissions.ChatPermissions attribute)

 	can_post_messages (aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	can_post_stories (aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	can_promote_members (aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	can_read_all_group_messages (aiogram.types.user.User attribute)

 	can_reply (aiogram.types.business_connection.BusinessConnection attribute)

 	can_restrict_members (aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	can_send_after (aiogram.utils.web_app.WebAppInitData attribute)

 	can_send_audios (aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	(aiogram.types.chat_permissions.ChatPermissions attribute)

 	can_send_documents (aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	(aiogram.types.chat_permissions.ChatPermissions attribute)

 	can_send_messages (aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	(aiogram.types.chat_permissions.ChatPermissions attribute)

 	can_send_other_messages (aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	(aiogram.types.chat_permissions.ChatPermissions attribute)

 	can_send_photos (aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	(aiogram.types.chat_permissions.ChatPermissions attribute)

 	can_send_polls (aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	(aiogram.types.chat_permissions.ChatPermissions attribute)

 	can_send_video_notes (aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	(aiogram.types.chat_permissions.ChatPermissions attribute)

 	can_send_videos (aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	(aiogram.types.chat_permissions.ChatPermissions attribute)

 	can_send_voice_notes (aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	(aiogram.types.chat_permissions.ChatPermissions attribute)

 	can_set_sticker_set (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	caption (aiogram.methods.copy_message.CopyMessage attribute)

 	(aiogram.methods.edit_message_caption.EditMessageCaption attribute)

 	(aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.methods.send_document.SendDocument attribute)

 	(aiogram.methods.send_photo.SendPhoto attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.methods.send_voice.SendVoice attribute)

 	(aiogram.types.inline_query_result_audio.InlineQueryResultAudio attribute)

 	(aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio attribute)

 	(aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument attribute)

 	(aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif attribute)

 	(aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto attribute)

 	(aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo attribute)

 	(aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice attribute)

 	(aiogram.types.inline_query_result_document.InlineQueryResultDocument attribute)

 	(aiogram.types.inline_query_result_gif.InlineQueryResultGif attribute)

 	(aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto attribute)

 	(aiogram.types.inline_query_result_video.InlineQueryResultVideo attribute)

 	(aiogram.types.inline_query_result_voice.InlineQueryResultVoice attribute)

 	(aiogram.types.input_media_animation.InputMediaAnimation attribute)

 	(aiogram.types.input_media_audio.InputMediaAudio attribute)

 	(aiogram.types.input_media_document.InputMediaDocument attribute)

 	(aiogram.types.input_media_photo.InputMediaPhoto attribute)

 	(aiogram.types.input_media_video.InputMediaVideo attribute)

 	(aiogram.types.message.Message attribute)

 	caption_entities (aiogram.methods.copy_message.CopyMessage attribute)

 	(aiogram.methods.edit_message_caption.EditMessageCaption attribute)

 	(aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.methods.send_document.SendDocument attribute)

 	(aiogram.methods.send_photo.SendPhoto attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.methods.send_voice.SendVoice attribute)

 	(aiogram.types.inline_query_result_audio.InlineQueryResultAudio attribute)

 	(aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio attribute)

 	(aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument attribute)

 	(aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif attribute)

 	(aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto attribute)

 	(aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo attribute)

 	(aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice attribute)

 	(aiogram.types.inline_query_result_document.InlineQueryResultDocument attribute)

 	(aiogram.types.inline_query_result_gif.InlineQueryResultGif attribute)

 	(aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto attribute)

 	(aiogram.types.inline_query_result_video.InlineQueryResultVideo attribute)

 	(aiogram.types.inline_query_result_voice.InlineQueryResultVoice attribute)

 	(aiogram.types.input_media_animation.InputMediaAnimation attribute)

 	(aiogram.types.input_media_audio.InputMediaAudio attribute)

 	(aiogram.types.input_media_document.InputMediaDocument attribute)

 	(aiogram.types.input_media_photo.InputMediaPhoto attribute)

 	(aiogram.types.input_media_video.InputMediaVideo attribute)

 	(aiogram.types.message.Message attribute)

 	CASHTAG (aiogram.enums.message_entity_type.MessageEntityType attribute)

 	CashTag (class in aiogram.utils.formatting)

 	certificate (aiogram.methods.set_webhook.SetWebhook attribute)

 	CHANNEL (aiogram.enums.chat_type.ChatType attribute)

 	(aiogram.enums.message_origin_type.MessageOriginType attribute)

 	CHANNEL_CHAT_CREATED (aiogram.enums.content_type.ContentType attribute)

 	channel_chat_created (aiogram.types.message.Message attribute)

 	CHANNEL_POST (aiogram.enums.update_type.UpdateType attribute)

 	channel_post (aiogram.types.update.Update attribute)

 	CHAT (aiogram.enums.bot_command_scope_type.BotCommandScopeType attribute)

 	(aiogram.enums.message_origin_type.MessageOriginType attribute)

 	chat (aiogram.types.business_messages_deleted.BusinessMessagesDeleted attribute)

 	(aiogram.types.chat_boost_removed.ChatBoostRemoved attribute)

 	(aiogram.types.chat_boost_updated.ChatBoostUpdated attribute)

 	(aiogram.types.chat_join_request.ChatJoinRequest attribute)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated attribute)

 	(aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.giveaway_winners.GiveawayWinners attribute)

 	(aiogram.types.inaccessible_message.InaccessibleMessage attribute)

 	(aiogram.types.message.Message attribute)

 	(aiogram.types.message_origin_channel.MessageOriginChannel attribute)

 	(aiogram.types.message_reaction_count_updated.MessageReactionCountUpdated attribute)

 	(aiogram.types.message_reaction_updated.MessageReactionUpdated attribute)

 	(aiogram.types.story.Story attribute)

 	(aiogram.utils.web_app.WebAppInitData attribute)

 	Chat (class in aiogram.types.chat)

 	CHAT_ADMINISTRATORS (aiogram.enums.bot_command_scope_type.BotCommandScopeType attribute)

 	CHAT_BACKGROUND_SET (aiogram.enums.content_type.ContentType attribute)

 	chat_background_set (aiogram.types.message.Message attribute)

 	CHAT_BOOST (aiogram.enums.update_type.UpdateType attribute)

 	chat_boost (aiogram.types.update.Update attribute)

 	chat_has_username (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat attribute)

 	chat_id (aiogram.methods.approve_chat_join_request.ApproveChatJoinRequest attribute)

 	(aiogram.methods.ban_chat_member.BanChatMember attribute)

 	(aiogram.methods.ban_chat_sender_chat.BanChatSenderChat attribute)

 	(aiogram.methods.close_forum_topic.CloseForumTopic attribute)

 	(aiogram.methods.close_general_forum_topic.CloseGeneralForumTopic attribute)

 	(aiogram.methods.copy_message.CopyMessage attribute)

 	(aiogram.methods.copy_messages.CopyMessages attribute)

 	(aiogram.methods.create_chat_invite_link.CreateChatInviteLink attribute)

 	(aiogram.methods.create_forum_topic.CreateForumTopic attribute)

 	(aiogram.methods.decline_chat_join_request.DeclineChatJoinRequest attribute)

 	(aiogram.methods.delete_chat_photo.DeleteChatPhoto attribute)

 	(aiogram.methods.delete_chat_sticker_set.DeleteChatStickerSet attribute)

 	(aiogram.methods.delete_forum_topic.DeleteForumTopic attribute)

 	(aiogram.methods.delete_message.DeleteMessage attribute)

 	(aiogram.methods.delete_messages.DeleteMessages attribute)

 	(aiogram.methods.edit_chat_invite_link.EditChatInviteLink attribute)

 	(aiogram.methods.edit_forum_topic.EditForumTopic attribute)

 	(aiogram.methods.edit_general_forum_topic.EditGeneralForumTopic attribute)

 	(aiogram.methods.edit_message_caption.EditMessageCaption attribute)

 	(aiogram.methods.edit_message_live_location.EditMessageLiveLocation attribute)

 	(aiogram.methods.edit_message_media.EditMessageMedia attribute)

 	(aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup attribute)

 	(aiogram.methods.edit_message_text.EditMessageText attribute)

 	(aiogram.methods.export_chat_invite_link.ExportChatInviteLink attribute)

 	(aiogram.methods.forward_message.ForwardMessage attribute)

 	(aiogram.methods.forward_messages.ForwardMessages attribute)

 	(aiogram.methods.get_chat.GetChat attribute)

 	(aiogram.methods.get_chat_administrators.GetChatAdministrators attribute)

 	(aiogram.methods.get_chat_member.GetChatMember attribute)

 	(aiogram.methods.get_chat_member_count.GetChatMemberCount attribute)

 	(aiogram.methods.get_chat_menu_button.GetChatMenuButton attribute)

 	(aiogram.methods.get_game_high_scores.GetGameHighScores attribute)

 	(aiogram.methods.get_user_chat_boosts.GetUserChatBoosts attribute)

 	(aiogram.methods.hide_general_forum_topic.HideGeneralForumTopic attribute)

 	(aiogram.methods.leave_chat.LeaveChat attribute)

 	(aiogram.methods.pin_chat_message.PinChatMessage attribute)

 	(aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.methods.reopen_forum_topic.ReopenForumTopic attribute)

 	(aiogram.methods.reopen_general_forum_topic.ReopenGeneralForumTopic attribute)

 	(aiogram.methods.restrict_chat_member.RestrictChatMember attribute)

 	(aiogram.methods.revoke_chat_invite_link.RevokeChatInviteLink attribute)

 	(aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.methods.send_chat_action.SendChatAction attribute)

 	(aiogram.methods.send_contact.SendContact attribute)

 	(aiogram.methods.send_dice.SendDice attribute)

 	(aiogram.methods.send_document.SendDocument attribute)

 	(aiogram.methods.send_game.SendGame attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.methods.send_location.SendLocation attribute)

 	(aiogram.methods.send_media_group.SendMediaGroup attribute)

 	(aiogram.methods.send_message.SendMessage attribute)

 	(aiogram.methods.send_photo.SendPhoto attribute)

 	(aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.methods.send_sticker.SendSticker attribute)

 	(aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.methods.send_video_note.SendVideoNote attribute)

 	(aiogram.methods.send_voice.SendVoice attribute)

 	(aiogram.methods.set_chat_administrator_custom_title.SetChatAdministratorCustomTitle attribute)

 	(aiogram.methods.set_chat_description.SetChatDescription attribute)

 	(aiogram.methods.set_chat_menu_button.SetChatMenuButton attribute)

 	(aiogram.methods.set_chat_permissions.SetChatPermissions attribute)

 	(aiogram.methods.set_chat_photo.SetChatPhoto attribute)

 	(aiogram.methods.set_chat_sticker_set.SetChatStickerSet attribute)

 	(aiogram.methods.set_chat_title.SetChatTitle attribute)

 	(aiogram.methods.set_game_score.SetGameScore attribute)

 	(aiogram.methods.set_message_reaction.SetMessageReaction attribute)

 	(aiogram.methods.stop_message_live_location.StopMessageLiveLocation attribute)

 	(aiogram.methods.stop_poll.StopPoll attribute)

 	(aiogram.methods.unban_chat_member.UnbanChatMember attribute)

 	(aiogram.methods.unban_chat_sender_chat.UnbanChatSenderChat attribute)

 	(aiogram.methods.unhide_general_forum_topic.UnhideGeneralForumTopic attribute)

 	(aiogram.methods.unpin_all_chat_messages.UnpinAllChatMessages attribute)

 	(aiogram.methods.unpin_all_forum_topic_messages.UnpinAllForumTopicMessages attribute)

 	(aiogram.methods.unpin_all_general_forum_topic_messages.UnpinAllGeneralForumTopicMessages attribute)

 	(aiogram.methods.unpin_chat_message.UnpinChatMessage attribute)

 	(aiogram.types.bot_command_scope_chat.BotCommandScopeChat attribute)

 	(aiogram.types.bot_command_scope_chat_administrators.BotCommandScopeChatAdministrators attribute)

 	(aiogram.types.bot_command_scope_chat_member.BotCommandScopeChatMember attribute)

 	(aiogram.types.chat_shared.ChatShared attribute)

 	(aiogram.types.reply_parameters.ReplyParameters attribute)

 	
 	chat_instance (aiogram.types.callback_query.CallbackQuery attribute)

 	(aiogram.utils.web_app.WebAppInitData attribute)

 	chat_is_channel (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat attribute)

 	chat_is_created (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat attribute)

 	chat_is_forum (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat attribute)

 	CHAT_JOIN_REQUEST (aiogram.enums.update_type.UpdateType attribute)

 	chat_join_request (aiogram.types.update.Update attribute)

 	CHAT_MEMBER (aiogram.enums.bot_command_scope_type.BotCommandScopeType attribute)

 	(aiogram.enums.update_type.UpdateType attribute)

 	chat_member (aiogram.types.update.Update attribute)

 	CHAT_SHARED (aiogram.enums.content_type.ContentType attribute)

 	chat_shared (aiogram.types.message.Message attribute)

 	chat_type (aiogram.types.inline_query.InlineQuery attribute)

 	(aiogram.utils.web_app.WebAppInitData attribute)

 	ChatAction (class in aiogram.enums.chat_action)

 	ChatActionMiddleware (class in aiogram.utils.chat_action)

 	ChatActionSender (class in aiogram.utils.chat_action)

 	ChatAdministratorRights (class in aiogram.types.chat_administrator_rights)

 	ChatBackground (class in aiogram.types.chat_background)

 	ChatBoost (class in aiogram.types.chat_boost)

 	ChatBoostAdded (class in aiogram.types.chat_boost_added)

 	ChatBoostRemoved (class in aiogram.types.chat_boost_removed)

 	ChatBoostSource (class in aiogram.types.chat_boost_source)

 	ChatBoostSourceGiftCode (class in aiogram.types.chat_boost_source_gift_code)

 	ChatBoostSourceGiveaway (class in aiogram.types.chat_boost_source_giveaway)

 	ChatBoostSourcePremium (class in aiogram.types.chat_boost_source_premium)

 	ChatBoostSourceType (class in aiogram.enums.chat_boost_source_type)

 	ChatBoostUpdated (class in aiogram.types.chat_boost_updated)

 	ChatFullInfo (class in aiogram.types.chat_full_info)

 	ChatInviteLink (class in aiogram.types.chat_invite_link)

 	ChatJoinRequest (class in aiogram.types.chat_join_request)

 	ChatLocation (class in aiogram.types.chat_location)

 	ChatMember (class in aiogram.types.chat_member)

 	ChatMemberAdministrator (class in aiogram.types.chat_member_administrator)

 	ChatMemberBanned (class in aiogram.types.chat_member_banned)

 	ChatMemberLeft (class in aiogram.types.chat_member_left)

 	ChatMemberMember (class in aiogram.types.chat_member_member)

 	ChatMemberOwner (class in aiogram.types.chat_member_owner)

 	ChatMemberRestricted (class in aiogram.types.chat_member_restricted)

 	ChatMemberStatus (class in aiogram.enums.chat_member_status)

 	ChatMemberUpdated (class in aiogram.types.chat_member_updated)

 	ChatMemberUpdatedFilter (class in aiogram.filters.chat_member_updated)

 	ChatPermissions (class in aiogram.types.chat_permissions)

 	ChatPhoto (class in aiogram.types.chat_photo)

 	chats (aiogram.types.giveaway.Giveaway attribute)

 	ChatShared (class in aiogram.types.chat_shared)

 	ChatType (class in aiogram.enums.chat_type)

 	check_flags() (in module aiogram.dispatcher.flags)

 	check_response() (aiogram.client.session.base.BaseSession method)

 	check_webapp_signature() (in module aiogram.utils.web_app)

 	CHF (aiogram.enums.currency.Currency attribute)

 	CHIN (aiogram.enums.mask_position_point.MaskPositionPoint attribute)

 	CHOOSE_STICKER (aiogram.enums.chat_action.ChatAction attribute)

 	choose_sticker() (aiogram.utils.chat_action.ChatActionSender class method)

 	CHOSEN_INLINE_RESULT (aiogram.enums.update_type.UpdateType attribute)

 	chosen_inline_result (aiogram.types.update.Update attribute)

 	ChosenInlineResult (class in aiogram.types.chosen_inline_result)

 	city (aiogram.types.shipping_address.ShippingAddress attribute)

 	clear_data() (aiogram.fsm.scene.SceneWizard method)

 	ClientDecodeError

 	Close (class in aiogram.methods.close)

 	close() (aiogram.client.session.base.BaseSession method)

 	(aiogram.fsm.scene.ScenesManager method)

 	(aiogram.fsm.storage.base.BaseStorage method)

 	(aiogram.webhook.aiohttp_server.SimpleRequestHandler method)

 	close_date (aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.types.poll.Poll attribute)

 	CloseForumTopic (class in aiogram.methods.close_forum_topic)

 	CloseGeneralForumTopic (class in aiogram.methods.close_general_forum_topic)

 	closing_minute (aiogram.types.business_opening_hours_interval.BusinessOpeningHoursInterval attribute)

 	CLP (aiogram.enums.currency.Currency attribute)

 	CNY (aiogram.enums.currency.Currency attribute)

 	CODE (aiogram.enums.message_entity_type.MessageEntityType attribute)

 	Code (class in aiogram.utils.formatting)

 	color (aiogram.types.background_fill_solid.BackgroundFillSolid attribute)

 	colors (aiogram.types.background_fill_freeform_gradient.BackgroundFillFreeformGradient attribute)

 	command (aiogram.filters.command.CommandObject attribute)

 	(aiogram.types.bot_command.BotCommand attribute)

 	Command (class in aiogram.filters.command)

 	CommandObject (class in aiogram.filters.command)

 	COMMANDS (aiogram.enums.menu_button_type.MenuButtonType attribute)

 	commands (aiogram.methods.set_my_commands.SetMyCommands attribute)

 	CONNECTED_WEBSITE (aiogram.enums.content_type.ContentType attribute)

 	connected_website (aiogram.types.message.Message attribute)

 	ConstI18nMiddleware (class in aiogram.utils.i18n.middleware)

 	CONTACT (aiogram.enums.content_type.ContentType attribute)

 	(aiogram.enums.inline_query_result_type.InlineQueryResultType attribute)

 	contact (aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.message.Message attribute)

 	Contact (class in aiogram.types.contact)

 	content_type (aiogram.types.message.Message property)

 	ContentType (class in aiogram.enums.content_type)

 	COP (aiogram.enums.currency.Currency attribute)

 	copy() (aiogram.utils.keyboard.InlineKeyboardBuilder method)

 	(aiogram.utils.keyboard.ReplyKeyboardBuilder method)

 	copy_to() (aiogram.types.message.Message method)

 	CopyMessage (class in aiogram.methods.copy_message)

 	CopyMessages (class in aiogram.methods.copy_messages)

 	correct_option_id (aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.types.poll.Poll attribute)

 	country_code (aiogram.types.shipping_address.ShippingAddress attribute)

 	country_codes (aiogram.types.giveaway.Giveaway attribute)

 	CRC (aiogram.enums.currency.Currency attribute)

 	create_invite_link() (aiogram.types.chat.Chat method)

 	create_start_link() (in module aiogram.utils.deep_linking)

 	CreateChatInviteLink (class in aiogram.methods.create_chat_invite_link)

 	CreateForumTopic (class in aiogram.methods.create_forum_topic)

 	CreateInvoiceLink (class in aiogram.methods.create_invoice_link)

 	CreateNewStickerSet (class in aiogram.methods.create_new_sticker_set)

 	creates_join_request (aiogram.methods.create_chat_invite_link.CreateChatInviteLink attribute)

 	(aiogram.methods.edit_chat_invite_link.EditChatInviteLink attribute)

 	(aiogram.types.chat_invite_link.ChatInviteLink attribute)

 	CREATOR (aiogram.enums.chat_member_status.ChatMemberStatus attribute)

 	creator (aiogram.types.chat_invite_link.ChatInviteLink attribute)

 	credentials (aiogram.types.passport_data.PassportData attribute)

 	currency (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	(aiogram.types.invoice.Invoice attribute)

 	(aiogram.types.pre_checkout_query.PreCheckoutQuery attribute)

 	(aiogram.types.successful_payment.SuccessfulPayment attribute)

 	Currency (class in aiogram.enums.currency)

 	CUSTOM_EMOJI (aiogram.enums.message_entity_type.MessageEntityType attribute)

 	(aiogram.enums.reaction_type_type.ReactionTypeType attribute)

 	(aiogram.enums.sticker_type.StickerType attribute)

 	custom_emoji_id (aiogram.methods.set_custom_emoji_sticker_set_thumbnail.SetCustomEmojiStickerSetThumbnail attribute)

 	(aiogram.types.message_entity.MessageEntity attribute)

 	(aiogram.types.reaction_type_custom_emoji.ReactionTypeCustomEmoji attribute)

 	(aiogram.types.sticker.Sticker attribute)

 	custom_emoji_ids (aiogram.methods.get_custom_emoji_stickers.GetCustomEmojiStickers attribute)

 	custom_emoji_sticker_set_name (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	custom_title (aiogram.methods.set_chat_administrator_custom_title.SetChatAdministratorCustomTitle attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	(aiogram.types.chat_member_owner.ChatMemberOwner attribute)

 	CustomEmoji (class in aiogram.utils.formatting)

 	CZK (aiogram.enums.currency.Currency attribute)

D

 	
 	dark_theme_dimming (aiogram.types.background_type_fill.BackgroundTypeFill attribute)

 	(aiogram.types.background_type_wallpaper.BackgroundTypeWallpaper attribute)

 	DART (aiogram.enums.dice_emoji.DiceEmoji attribute)

 	(aiogram.types.dice.DiceEmoji attribute)

 	DATA (aiogram.enums.passport_element_error_type.PassportElementErrorType attribute)

 	data (aiogram.types.callback_query.CallbackQuery attribute)

 	(aiogram.types.encrypted_credentials.EncryptedCredentials attribute)

 	(aiogram.types.encrypted_passport_element.EncryptedPassportElement attribute)

 	(aiogram.types.passport_data.PassportData attribute)

 	(aiogram.types.web_app_data.WebAppData attribute)

 	data_hash (aiogram.types.passport_element_error_data_field.PassportElementErrorDataField attribute)

 	date (aiogram.types.business_connection.BusinessConnection attribute)

 	(aiogram.types.chat_join_request.ChatJoinRequest attribute)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated attribute)

 	(aiogram.types.inaccessible_message.InaccessibleMessage attribute)

 	(aiogram.types.message.Message attribute)

 	(aiogram.types.message_origin_channel.MessageOriginChannel attribute)

 	(aiogram.types.message_origin_chat.MessageOriginChat attribute)

 	(aiogram.types.message_origin_hidden_user.MessageOriginHiddenUser attribute)

 	(aiogram.types.message_origin_user.MessageOriginUser attribute)

 	(aiogram.types.message_reaction_count_updated.MessageReactionCountUpdated attribute)

 	(aiogram.types.message_reaction_updated.MessageReactionUpdated attribute)

 	day (aiogram.types.birthdate.Birthdate attribute)

 	decline() (aiogram.types.chat_join_request.ChatJoinRequest method)

 	DeclineChatJoinRequest (class in aiogram.methods.decline_chat_join_request)

 	decode_payload() (in module aiogram.utils.deep_linking)

 	DEFAULT (aiogram.enums.bot_command_scope_type.BotCommandScopeType attribute)

 	(aiogram.enums.menu_button_type.MenuButtonType attribute)

 	DefaultKeyBuilder (class in aiogram.fsm.storage.base)

 	delete() (aiogram.types.message.Message method)

 	DELETE_CHAT_PHOTO (aiogram.enums.content_type.ContentType attribute)

 	delete_chat_photo (aiogram.types.message.Message attribute)

 	delete_from_set() (aiogram.types.sticker.Sticker method)

 	delete_message() (aiogram.types.chat.Chat method)

 	delete_photo() (aiogram.types.chat.Chat method)

 	delete_reply_markup() (aiogram.types.message.Message method)

 	delete_sticker_set() (aiogram.types.chat.Chat method)

 	DeleteChatPhoto (class in aiogram.methods.delete_chat_photo)

 	DeleteChatStickerSet (class in aiogram.methods.delete_chat_sticker_set)

 	DELETED_BUSINESS_MESSAGES (aiogram.enums.update_type.UpdateType attribute)

 	deleted_business_messages (aiogram.types.update.Update attribute)

 	DeleteForumTopic (class in aiogram.methods.delete_forum_topic)

 	DeleteMessage (class in aiogram.methods.delete_message)

 	DeleteMessages (class in aiogram.methods.delete_messages)

 	DeleteMyCommands (class in aiogram.methods.delete_my_commands)

 	DeleteStickerFromSet (class in aiogram.methods.delete_sticker_from_set)

 	DeleteStickerSet (class in aiogram.methods.delete_sticker_set)

 	DeleteWebhook (class in aiogram.methods.delete_webhook)

 	description (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.methods.set_chat_description.SetChatDescription attribute)

 	(aiogram.methods.set_my_description.SetMyDescription attribute)

 	(aiogram.types.bot_command.BotCommand attribute)

 	(aiogram.types.bot_description.BotDescription attribute)

 	(aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	(aiogram.types.game.Game attribute)

 	(aiogram.types.inline_query_result_article.InlineQueryResultArticle attribute)

 	(aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument attribute)

 	(aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto attribute)

 	(aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo attribute)

 	(aiogram.types.inline_query_result_document.InlineQueryResultDocument attribute)

 	(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto attribute)

 	(aiogram.types.inline_query_result_video.InlineQueryResultVideo attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	(aiogram.types.invoice.Invoice attribute)

 	DetailedAiogramError

 	DICE (aiogram.enums.content_type.ContentType attribute)

 	(aiogram.enums.dice_emoji.DiceEmoji attribute)

 	(aiogram.types.dice.DiceEmoji attribute)

 	
 	dice (aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.message.Message attribute)

 	Dice (class in aiogram.types.dice)

 	DiceEmoji (class in aiogram.enums.dice_emoji)

 	(class in aiogram.types.dice)

 	disable() (aiogram.utils.callback_answer.CallbackAnswer method)

 	disable_content_type_detection (aiogram.methods.send_document.SendDocument attribute)

 	(aiogram.types.input_media_document.InputMediaDocument attribute)

 	disable_edit_message (aiogram.methods.set_game_score.SetGameScore attribute)

 	disable_notification (aiogram.methods.copy_message.CopyMessage attribute)

 	(aiogram.methods.copy_messages.CopyMessages attribute)

 	(aiogram.methods.forward_message.ForwardMessage attribute)

 	(aiogram.methods.forward_messages.ForwardMessages attribute)

 	(aiogram.methods.pin_chat_message.PinChatMessage attribute)

 	(aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.methods.send_contact.SendContact attribute)

 	(aiogram.methods.send_dice.SendDice attribute)

 	(aiogram.methods.send_document.SendDocument attribute)

 	(aiogram.methods.send_game.SendGame attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.methods.send_location.SendLocation attribute)

 	(aiogram.methods.send_media_group.SendMediaGroup attribute)

 	(aiogram.methods.send_message.SendMessage attribute)

 	(aiogram.methods.send_photo.SendPhoto attribute)

 	(aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.methods.send_sticker.SendSticker attribute)

 	(aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.methods.send_video_note.SendVideoNote attribute)

 	(aiogram.methods.send_voice.SendVoice attribute)

 	disable_web_page_preview (aiogram.methods.edit_message_text.EditMessageText attribute)

 	(aiogram.methods.send_message.SendMessage attribute)

 	(aiogram.types.input_text_message_content.InputTextMessageContent attribute)

 	disabled (aiogram.utils.callback_answer.CallbackAnswer property)

 	Dispatcher (class in aiogram.dispatcher.dispatcher)

 	distance (aiogram.types.proximity_alert_triggered.ProximityAlertTriggered attribute)

 	DKK (aiogram.enums.currency.Currency attribute)

 	do() (aiogram.types.chat.Chat method)

 	DOCUMENT (aiogram.enums.content_type.ContentType attribute)

 	(aiogram.enums.inline_query_result_type.InlineQueryResultType attribute)

 	(aiogram.enums.input_media_type.InputMediaType attribute)

 	document (aiogram.methods.send_document.SendDocument attribute)

 	(aiogram.types.background_type_pattern.BackgroundTypePattern attribute)

 	(aiogram.types.background_type_wallpaper.BackgroundTypeWallpaper attribute)

 	(aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.message.Message attribute)

 	Document (class in aiogram.types.document)

 	document_file_id (aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument attribute)

 	document_url (aiogram.types.inline_query_result_document.InlineQueryResultDocument attribute)

 	DOP (aiogram.enums.currency.Currency attribute)

 	download() (aiogram.client.bot.Bot method)

 	download_file() (aiogram.client.bot.Bot method)

 	DRIVER_LICENSE (aiogram.enums.encrypted_passport_element.EncryptedPassportElement attribute)

 	drop_pending_updates (aiogram.methods.delete_webhook.DeleteWebhook attribute)

 	(aiogram.methods.set_webhook.SetWebhook attribute)

 	duration (aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.methods.send_video_note.SendVideoNote attribute)

 	(aiogram.methods.send_voice.SendVoice attribute)

 	(aiogram.types.animation.Animation attribute)

 	(aiogram.types.audio.Audio attribute)

 	(aiogram.types.input_media_animation.InputMediaAnimation attribute)

 	(aiogram.types.input_media_audio.InputMediaAudio attribute)

 	(aiogram.types.input_media_video.InputMediaVideo attribute)

 	(aiogram.types.video.Video attribute)

 	(aiogram.types.video_chat_ended.VideoChatEnded attribute)

 	(aiogram.types.video_note.VideoNote attribute)

 	(aiogram.types.voice.Voice attribute)

 	DZD (aiogram.enums.currency.Currency attribute)

E

 	
 	edit_caption() (aiogram.types.message.Message method)

 	edit_date (aiogram.types.message.Message attribute)

 	edit_invite_link() (aiogram.types.chat.Chat method)

 	edit_live_location() (aiogram.types.message.Message method)

 	edit_media() (aiogram.types.message.Message method)

 	edit_reply_markup() (aiogram.types.message.Message method)

 	edit_text() (aiogram.types.message.Message method)

 	EditChatInviteLink (class in aiogram.methods.edit_chat_invite_link)

 	EDITED_BUSINESS_MESSAGE (aiogram.enums.update_type.UpdateType attribute)

 	edited_business_message (aiogram.types.update.Update attribute)

 	EDITED_CHANNEL_POST (aiogram.enums.update_type.UpdateType attribute)

 	edited_channel_post (aiogram.types.update.Update attribute)

 	EDITED_MESSAGE (aiogram.enums.update_type.UpdateType attribute)

 	edited_message (aiogram.types.update.Update attribute)

 	EditForumTopic (class in aiogram.methods.edit_forum_topic)

 	EditGeneralForumTopic (class in aiogram.methods.edit_general_forum_topic)

 	EditMessageCaption (class in aiogram.methods.edit_message_caption)

 	EditMessageLiveLocation (class in aiogram.methods.edit_message_live_location)

 	EditMessageMedia (class in aiogram.methods.edit_message_media)

 	EditMessageReplyMarkup (class in aiogram.methods.edit_message_reply_markup)

 	EditMessageText (class in aiogram.methods.edit_message_text)

 	EGP (aiogram.enums.currency.Currency attribute)

 	element_hash (aiogram.types.passport_element_error_unspecified.PassportElementErrorUnspecified attribute)

 	EMAIL (aiogram.enums.encrypted_passport_element.EncryptedPassportElement attribute)

 	(aiogram.enums.message_entity_type.MessageEntityType attribute)

 	email (aiogram.types.encrypted_passport_element.EncryptedPassportElement attribute)

 	(aiogram.types.order_info.OrderInfo attribute)

 	Email (class in aiogram.utils.formatting)

 	EMOJI (aiogram.enums.reaction_type_type.ReactionTypeType attribute)

 	emoji (aiogram.methods.send_dice.SendDice attribute)

 	(aiogram.methods.send_sticker.SendSticker attribute)

 	(aiogram.types.dice.Dice attribute)

 	(aiogram.types.reaction_type_emoji.ReactionTypeEmoji attribute)

 	(aiogram.types.sticker.Sticker attribute)

 	emoji_list (aiogram.methods.set_sticker_emoji_list.SetStickerEmojiList attribute)

 	(aiogram.types.input_sticker.InputSticker attribute)

 	emoji_status_custom_emoji_id (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	emoji_status_expiration_date (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	
 	EncryptedCredentials (class in aiogram.types.encrypted_credentials)

 	EncryptedPassportElement (class in aiogram.enums.encrypted_passport_element)

 	(class in aiogram.types.encrypted_passport_element)

 	enter() (aiogram.fsm.scene.ScenesManager method)

 	(aiogram.fsm.scene.SceneWizard method)

 	entities (aiogram.methods.edit_message_text.EditMessageText attribute)

 	(aiogram.methods.send_message.SendMessage attribute)

 	(aiogram.types.input_text_message_content.InputTextMessageContent attribute)

 	(aiogram.types.message.Message attribute)

 	(aiogram.types.text_quote.TextQuote attribute)

 	error_message (aiogram.methods.answer_pre_checkout_query.AnswerPreCheckoutQuery attribute)

 	(aiogram.methods.answer_shipping_query.AnswerShippingQuery attribute)

 	ErrorEvent (class in aiogram.types.error_event)

 	errors (aiogram.methods.set_passport_data_errors.SetPassportDataErrors attribute)

 	ETB (aiogram.enums.currency.Currency attribute)

 	EUR (aiogram.enums.currency.Currency attribute)

 	event (aiogram.types.update.Update property)

 	event_type (aiogram.types.update.Update property)

 	exception (aiogram.types.error_event.ErrorEvent attribute)

 	ExceptionMessageFilter (class in aiogram.filters.exception)

 	exceptions (aiogram.filters.exception.ExceptionTypeFilter attribute)

 	ExceptionTypeFilter (class in aiogram.filters.exception)

 	exit() (aiogram.fsm.scene.SceneWizard method)

 	expiration_date (aiogram.types.chat_boost.ChatBoost attribute)

 	expire_date (aiogram.methods.create_chat_invite_link.CreateChatInviteLink attribute)

 	(aiogram.methods.edit_chat_invite_link.EditChatInviteLink attribute)

 	(aiogram.types.chat_invite_link.ChatInviteLink attribute)

 	explanation (aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.types.poll.Poll attribute)

 	explanation_entities (aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.types.poll.Poll attribute)

 	explanation_parse_mode (aiogram.methods.send_poll.SendPoll attribute)

 	export() (aiogram.utils.keyboard.InlineKeyboardBuilder method)

 	(aiogram.utils.keyboard.ReplyKeyboardBuilder method)

 	export_invite_link() (aiogram.types.chat.Chat method)

 	ExportChatInviteLink (class in aiogram.methods.export_chat_invite_link)

 	external_reply (aiogram.types.message.Message attribute)

 	ExternalReplyInfo (class in aiogram.types.external_reply_info)

 	extract_flags() (in module aiogram.dispatcher.flags)

 	extract_from() (aiogram.types.message_entity.MessageEntity method)

 	EYES (aiogram.enums.mask_position_point.MaskPositionPoint attribute)

F

 	
 	feed_raw_update() (aiogram.dispatcher.dispatcher.Dispatcher method)

 	feed_update() (aiogram.dispatcher.dispatcher.Dispatcher method)

 	field_name (aiogram.types.passport_element_error_data_field.PassportElementErrorDataField attribute)

 	file (aiogram.client.telegram.TelegramAPIServer attribute)

 	FILE (aiogram.enums.passport_element_error_type.PassportElementErrorType attribute)

 	File (class in aiogram.types.file)

 	file_date (aiogram.types.passport_file.PassportFile attribute)

 	file_hash (aiogram.types.passport_element_error_file.PassportElementErrorFile attribute)

 	(aiogram.types.passport_element_error_front_side.PassportElementErrorFrontSide attribute)

 	(aiogram.types.passport_element_error_reverse_side.PassportElementErrorReverseSide attribute)

 	(aiogram.types.passport_element_error_selfie.PassportElementErrorSelfie attribute)

 	(aiogram.types.passport_element_error_translation_file.PassportElementErrorTranslationFile attribute)

 	file_hashes (aiogram.types.passport_element_error_files.PassportElementErrorFiles attribute)

 	(aiogram.types.passport_element_error_translation_files.PassportElementErrorTranslationFiles attribute)

 	file_id (aiogram.methods.get_file.GetFile attribute)

 	(aiogram.types.animation.Animation attribute)

 	(aiogram.types.audio.Audio attribute)

 	(aiogram.types.document.Document attribute)

 	(aiogram.types.file.File attribute)

 	(aiogram.types.passport_file.PassportFile attribute)

 	(aiogram.types.photo_size.PhotoSize attribute)

 	(aiogram.types.sticker.Sticker attribute)

 	(aiogram.types.video.Video attribute)

 	(aiogram.types.video_note.VideoNote attribute)

 	(aiogram.types.voice.Voice attribute)

 	file_name (aiogram.types.animation.Animation attribute)

 	(aiogram.types.audio.Audio attribute)

 	(aiogram.types.document.Document attribute)

 	(aiogram.types.video.Video attribute)

 	file_path (aiogram.types.file.File attribute)

 	file_size (aiogram.types.animation.Animation attribute)

 	(aiogram.types.audio.Audio attribute)

 	(aiogram.types.document.Document attribute)

 	(aiogram.types.file.File attribute)

 	(aiogram.types.passport_file.PassportFile attribute)

 	(aiogram.types.photo_size.PhotoSize attribute)

 	(aiogram.types.sticker.Sticker attribute)

 	(aiogram.types.video.Video attribute)

 	(aiogram.types.video_note.VideoNote attribute)

 	(aiogram.types.voice.Voice attribute)

 	file_unique_id (aiogram.types.animation.Animation attribute)

 	(aiogram.types.audio.Audio attribute)

 	(aiogram.types.document.Document attribute)

 	(aiogram.types.file.File attribute)

 	(aiogram.types.passport_file.PassportFile attribute)

 	(aiogram.types.photo_size.PhotoSize attribute)

 	(aiogram.types.sticker.Sticker attribute)

 	(aiogram.types.video.Video attribute)

 	(aiogram.types.video_note.VideoNote attribute)

 	(aiogram.types.voice.Voice attribute)

 	file_url() (aiogram.client.telegram.TelegramAPIServer method)

 	FILES (aiogram.enums.passport_element_error_type.PassportElementErrorType attribute)

 	files (aiogram.types.encrypted_passport_element.EncryptedPassportElement attribute)

 	fill (aiogram.types.background_type_fill.BackgroundTypeFill attribute)

 	(aiogram.types.background_type_pattern.BackgroundTypePattern attribute)

 	Filter (class in aiogram.filters.base)

 	filter() (aiogram.filters.callback_data.CallbackData class method)

 	FIND_LOCATION (aiogram.enums.chat_action.ChatAction attribute)

 	find_location() (aiogram.utils.chat_action.ChatActionSender class method)

 	first_name (aiogram.methods.send_contact.SendContact attribute)

 	(aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	(aiogram.types.contact.Contact attribute)

 	(aiogram.types.inline_query_result_contact.InlineQueryResultContact attribute)

 	(aiogram.types.input_contact_message_content.InputContactMessageContent attribute)

 	(aiogram.types.shared_user.SharedUser attribute)

 	(aiogram.types.user.User attribute)

 	(aiogram.utils.web_app.WebAppUser attribute)

 	
 	FOOTBALL (aiogram.enums.dice_emoji.DiceEmoji attribute)

 	(aiogram.types.dice.DiceEmoji attribute)

 	for_channels (aiogram.methods.get_my_default_administrator_rights.GetMyDefaultAdministratorRights attribute)

 	(aiogram.methods.set_my_default_administrator_rights.SetMyDefaultAdministratorRights attribute)

 	force (aiogram.methods.set_game_score.SetGameScore attribute)

 	force_reply (aiogram.types.force_reply.ForceReply attribute)

 	ForceReply (class in aiogram.types.force_reply)

 	FOREHEAD (aiogram.enums.mask_position_point.MaskPositionPoint attribute)

 	format (aiogram.methods.set_sticker_set_thumbnail.SetStickerSetThumbnail attribute)

 	(aiogram.types.input_sticker.InputSticker attribute)

 	FORUM_TOPIC_CLOSED (aiogram.enums.content_type.ContentType attribute)

 	forum_topic_closed (aiogram.types.message.Message attribute)

 	FORUM_TOPIC_CREATED (aiogram.enums.content_type.ContentType attribute)

 	forum_topic_created (aiogram.types.message.Message attribute)

 	FORUM_TOPIC_EDITED (aiogram.enums.content_type.ContentType attribute)

 	forum_topic_edited (aiogram.types.message.Message attribute)

 	FORUM_TOPIC_REOPENED (aiogram.enums.content_type.ContentType attribute)

 	forum_topic_reopened (aiogram.types.message.Message attribute)

 	ForumTopic (class in aiogram.types.forum_topic)

 	ForumTopicClosed (class in aiogram.types.forum_topic_closed)

 	ForumTopicCreated (class in aiogram.types.forum_topic_created)

 	ForumTopicEdited (class in aiogram.types.forum_topic_edited)

 	ForumTopicReopened (class in aiogram.types.forum_topic_reopened)

 	forward() (aiogram.types.message.Message method)

 	forward_date (aiogram.types.message.Message attribute)

 	forward_from (aiogram.types.message.Message attribute)

 	forward_from_chat (aiogram.types.message.Message attribute)

 	forward_from_message_id (aiogram.types.message.Message attribute)

 	forward_origin (aiogram.types.message.Message attribute)

 	forward_sender_name (aiogram.types.message.Message attribute)

 	forward_signature (aiogram.types.message.Message attribute)

 	forward_text (aiogram.types.login_url.LoginUrl attribute)

 	ForwardMessage (class in aiogram.methods.forward_message)

 	ForwardMessages (class in aiogram.methods.forward_messages)

 	foursquare_id (aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue attribute)

 	(aiogram.types.input_venue_message_content.InputVenueMessageContent attribute)

 	(aiogram.types.venue.Venue attribute)

 	foursquare_type (aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue attribute)

 	(aiogram.types.input_venue_message_content.InputVenueMessageContent attribute)

 	(aiogram.types.venue.Venue attribute)

 	from_attachment_menu (aiogram.types.write_access_allowed.WriteAccessAllowed attribute)

 	from_base() (aiogram.client.telegram.TelegramAPIServer class method)

 	from_chat_id (aiogram.methods.copy_message.CopyMessage attribute)

 	(aiogram.methods.copy_messages.CopyMessages attribute)

 	(aiogram.methods.forward_message.ForwardMessage attribute)

 	(aiogram.methods.forward_messages.ForwardMessages attribute)

 	from_file() (aiogram.types.input_file.BufferedInputFile class method)

 	from_markup() (aiogram.utils.keyboard.InlineKeyboardBuilder class method)

 	(aiogram.utils.keyboard.ReplyKeyboardBuilder class method)

 	from_request (aiogram.types.write_access_allowed.WriteAccessAllowed attribute)

 	from_url() (aiogram.fsm.storage.redis.RedisStorage class method)

 	from_user (aiogram.handlers.callback_query.CallbackQueryHandler property)

 	(aiogram.types.callback_query.CallbackQuery attribute)

 	(aiogram.types.chat_join_request.ChatJoinRequest attribute)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated attribute)

 	(aiogram.types.chosen_inline_result.ChosenInlineResult attribute)

 	(aiogram.types.inline_query.InlineQuery attribute)

 	(aiogram.types.message.Message attribute)

 	(aiogram.types.pre_checkout_query.PreCheckoutQuery attribute)

 	(aiogram.types.shipping_query.ShippingQuery attribute)

 	FRONT_SIDE (aiogram.enums.passport_element_error_type.PassportElementErrorType attribute)

 	front_side (aiogram.types.encrypted_passport_element.EncryptedPassportElement attribute)

 	FSInputFile (class in aiogram.types.input_file), [1]

 	FSMI18nMiddleware (class in aiogram.utils.i18n.middleware)

 	full_name (aiogram.types.chat.Chat property)

 	(aiogram.types.user.User property)

G

 	
 	GAME (aiogram.enums.content_type.ContentType attribute)

 	(aiogram.enums.inline_query_result_type.InlineQueryResultType attribute)

 	game (aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.message.Message attribute)

 	Game (class in aiogram.types.game)

 	game_short_name (aiogram.methods.send_game.SendGame attribute)

 	(aiogram.types.callback_query.CallbackQuery attribute)

 	(aiogram.types.inline_query_result_game.InlineQueryResultGame attribute)

 	GameHighScore (class in aiogram.types.game_high_score)

 	GBP (aiogram.enums.currency.Currency attribute)

 	GEL (aiogram.enums.currency.Currency attribute)

 	GENERAL_FORUM_TOPIC_HIDDEN (aiogram.enums.content_type.ContentType attribute)

 	general_forum_topic_hidden (aiogram.types.message.Message attribute)

 	GENERAL_FORUM_TOPIC_UNHIDDEN (aiogram.enums.content_type.ContentType attribute)

 	general_forum_topic_unhidden (aiogram.types.message.Message attribute)

 	GeneralForumTopicHidden (class in aiogram.types.general_forum_topic_hidden)

 	GeneralForumTopicUnhidden (class in aiogram.types.general_forum_topic_unhidden)

 	get() (aiogram.fsm.scene.SceneRegistry method)

 	get_administrators() (aiogram.types.chat.Chat method)

 	get_data() (aiogram.fsm.scene.SceneWizard method)

 	(aiogram.fsm.storage.base.BaseStorage method)

 	get_flag() (in module aiogram.dispatcher.flags)

 	get_locale() (aiogram.utils.i18n.middleware.I18nMiddleware method)

 	get_member() (aiogram.types.chat.Chat method)

 	get_member_count() (aiogram.types.chat.Chat method)

 	get_profile_photos() (aiogram.types.user.User method)

 	get_state() (aiogram.fsm.storage.base.BaseStorage method)

 	get_url() (aiogram.types.message.Message method)

 	GetBusinessConnection (class in aiogram.methods.get_business_connection)

 	GetChat (class in aiogram.methods.get_chat)

 	GetChatAdministrators (class in aiogram.methods.get_chat_administrators)

 	GetChatMember (class in aiogram.methods.get_chat_member)

 	GetChatMemberCount (class in aiogram.methods.get_chat_member_count)

 	GetChatMenuButton (class in aiogram.methods.get_chat_menu_button)

 	GetCustomEmojiStickers (class in aiogram.methods.get_custom_emoji_stickers)

 	GetFile (class in aiogram.methods.get_file)

 	GetForumTopicIconStickers (class in aiogram.methods.get_forum_topic_icon_stickers)

 	GetGameHighScores (class in aiogram.methods.get_game_high_scores)

 	GetMe (class in aiogram.methods.get_me)

 	GetMyCommands (class in aiogram.methods.get_my_commands)

 	GetMyDefaultAdministratorRights (class in aiogram.methods.get_my_default_administrator_rights)

 	GetMyDescription (class in aiogram.methods.get_my_description)

 	GetMyName (class in aiogram.methods.get_my_name)

 	GetMyShortDescription (class in aiogram.methods.get_my_short_description)

 	
 	GetStickerSet (class in aiogram.methods.get_sticker_set)

 	GetUpdates (class in aiogram.methods.get_updates)

 	GetUserChatBoosts (class in aiogram.methods.get_user_chat_boosts)

 	GetUserProfilePhotos (class in aiogram.methods.get_user_profile_photos)

 	GetWebhookInfo (class in aiogram.methods.get_webhook_info)

 	GIF (aiogram.enums.inline_query_result_type.InlineQueryResultType attribute)

 	gif_duration (aiogram.types.inline_query_result_gif.InlineQueryResultGif attribute)

 	gif_file_id (aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif attribute)

 	gif_height (aiogram.types.inline_query_result_gif.InlineQueryResultGif attribute)

 	gif_url (aiogram.types.inline_query_result_gif.InlineQueryResultGif attribute)

 	gif_width (aiogram.types.inline_query_result_gif.InlineQueryResultGif attribute)

 	GIFT_CODE (aiogram.enums.chat_boost_source_type.ChatBoostSourceType attribute)

 	GIVEAWAY (aiogram.enums.chat_boost_source_type.ChatBoostSourceType attribute)

 	(aiogram.enums.content_type.ContentType attribute)

 	giveaway (aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.message.Message attribute)

 	Giveaway (class in aiogram.types.giveaway)

 	GIVEAWAY_COMPLETED (aiogram.enums.content_type.ContentType attribute)

 	giveaway_completed (aiogram.types.message.Message attribute)

 	GIVEAWAY_CREATED (aiogram.enums.content_type.ContentType attribute)

 	giveaway_created (aiogram.types.message.Message attribute)

 	giveaway_message (aiogram.types.giveaway_completed.GiveawayCompleted attribute)

 	giveaway_message_id (aiogram.types.chat_boost_source_giveaway.ChatBoostSourceGiveaway attribute)

 	(aiogram.types.giveaway_winners.GiveawayWinners attribute)

 	GIVEAWAY_WINNERS (aiogram.enums.content_type.ContentType attribute)

 	giveaway_winners (aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.message.Message attribute)

 	GiveawayCompleted (class in aiogram.types.giveaway_completed)

 	GiveawayCreated (class in aiogram.types.giveaway_created)

 	GiveawayWinners (class in aiogram.types.giveaway_winners)

 	google_place_id (aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue attribute)

 	(aiogram.types.input_venue_message_content.InputVenueMessageContent attribute)

 	(aiogram.types.venue.Venue attribute)

 	google_place_type (aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue attribute)

 	(aiogram.types.input_venue_message_content.InputVenueMessageContent attribute)

 	(aiogram.types.venue.Venue attribute)

 	goto() (aiogram.fsm.scene.SceneWizard method)

 	GREEN (aiogram.enums.topic_icon_color.TopicIconColor attribute)

 	GROUP (aiogram.enums.chat_type.ChatType attribute)

 	GROUP_CHAT_CREATED (aiogram.enums.content_type.ContentType attribute)

 	group_chat_created (aiogram.types.message.Message attribute)

 	GTQ (aiogram.enums.currency.Currency attribute)

H

 	
 	handlers (aiogram.fsm.scene.SceneConfig attribute)

 	has_aggressive_anti_spam_enabled (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	has_custom_certificate (aiogram.types.webhook_info.WebhookInfo attribute)

 	has_hidden_members (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	has_media_spoiler (aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.message.Message attribute)

 	has_private_forwards (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	has_protected_content (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	(aiogram.types.message.Message attribute)

 	has_public_winners (aiogram.types.giveaway.Giveaway attribute)

 	has_restricted_voice_and_video_messages (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	has_spoiler (aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_photo.SendPhoto attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.types.input_media_animation.InputMediaAnimation attribute)

 	(aiogram.types.input_media_photo.InputMediaPhoto attribute)

 	(aiogram.types.input_media_video.InputMediaVideo attribute)

 	has_visible_history (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	hash (aiogram.types.encrypted_credentials.EncryptedCredentials attribute)

 	(aiogram.types.encrypted_passport_element.EncryptedPassportElement attribute)

 	(aiogram.utils.web_app.WebAppInitData attribute)

 	HASHTAG (aiogram.enums.message_entity_type.MessageEntityType attribute)

 	
 	HashTag (class in aiogram.utils.formatting)

 	heading (aiogram.methods.edit_message_live_location.EditMessageLiveLocation attribute)

 	(aiogram.methods.send_location.SendLocation attribute)

 	(aiogram.types.inline_query_result_location.InlineQueryResultLocation attribute)

 	(aiogram.types.input_location_message_content.InputLocationMessageContent attribute)

 	(aiogram.types.location.Location attribute)

 	height (aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.types.animation.Animation attribute)

 	(aiogram.types.input_media_animation.InputMediaAnimation attribute)

 	(aiogram.types.input_media_video.InputMediaVideo attribute)

 	(aiogram.types.photo_size.PhotoSize attribute)

 	(aiogram.types.sticker.Sticker attribute)

 	(aiogram.types.video.Video attribute)

 	HIDDEN_USER (aiogram.enums.message_origin_type.MessageOriginType attribute)

 	hide_url (aiogram.types.inline_query_result_article.InlineQueryResultArticle attribute)

 	HideGeneralForumTopic (class in aiogram.methods.hide_general_forum_topic)

 	HKD (aiogram.enums.currency.Currency attribute)

 	HNL (aiogram.enums.currency.Currency attribute)

 	horizontal_accuracy (aiogram.methods.edit_message_live_location.EditMessageLiveLocation attribute)

 	(aiogram.methods.send_location.SendLocation attribute)

 	(aiogram.types.inline_query_result_location.InlineQueryResultLocation attribute)

 	(aiogram.types.input_location_message_content.InputLocationMessageContent attribute)

 	(aiogram.types.location.Location attribute)

 	HRK (aiogram.enums.currency.Currency attribute)

 	HTML (aiogram.enums.parse_mode.ParseMode attribute)

 	html_text (aiogram.types.message.Message property)

 	HUF (aiogram.enums.currency.Currency attribute)

I

 	
 	I18nMiddleware (class in aiogram.utils.i18n.middleware)

 	icon_color (aiogram.methods.create_forum_topic.CreateForumTopic attribute)

 	(aiogram.types.forum_topic.ForumTopic attribute)

 	(aiogram.types.forum_topic_created.ForumTopicCreated attribute)

 	icon_custom_emoji_id (aiogram.methods.create_forum_topic.CreateForumTopic attribute)

 	(aiogram.methods.edit_forum_topic.EditForumTopic attribute)

 	(aiogram.types.forum_topic.ForumTopic attribute)

 	(aiogram.types.forum_topic_created.ForumTopicCreated attribute)

 	(aiogram.types.forum_topic_edited.ForumTopicEdited attribute)

 	id (aiogram.types.business_connection.BusinessConnection attribute)

 	(aiogram.types.callback_query.CallbackQuery attribute)

 	(aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	(aiogram.types.inline_query.InlineQuery attribute)

 	(aiogram.types.inline_query_result_article.InlineQueryResultArticle attribute)

 	(aiogram.types.inline_query_result_audio.InlineQueryResultAudio attribute)

 	(aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio attribute)

 	(aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument attribute)

 	(aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif attribute)

 	(aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto attribute)

 	(aiogram.types.inline_query_result_cached_sticker.InlineQueryResultCachedSticker attribute)

 	(aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo attribute)

 	(aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice attribute)

 	(aiogram.types.inline_query_result_contact.InlineQueryResultContact attribute)

 	(aiogram.types.inline_query_result_document.InlineQueryResultDocument attribute)

 	(aiogram.types.inline_query_result_game.InlineQueryResultGame attribute)

 	(aiogram.types.inline_query_result_gif.InlineQueryResultGif attribute)

 	(aiogram.types.inline_query_result_location.InlineQueryResultLocation attribute)

 	(aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto attribute)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue attribute)

 	(aiogram.types.inline_query_result_video.InlineQueryResultVideo attribute)

 	(aiogram.types.inline_query_result_voice.InlineQueryResultVoice attribute)

 	(aiogram.types.poll.Poll attribute)

 	(aiogram.types.pre_checkout_query.PreCheckoutQuery attribute)

 	(aiogram.types.shipping_option.ShippingOption attribute)

 	(aiogram.types.shipping_query.ShippingQuery attribute)

 	(aiogram.types.story.Story attribute)

 	(aiogram.types.user.User attribute)

 	(aiogram.utils.web_app.WebAppChat attribute)

 	(aiogram.utils.web_app.WebAppUser attribute)

 	IDENTITY_CARD (aiogram.enums.encrypted_passport_element.EncryptedPassportElement attribute)

 	IDR (aiogram.enums.currency.Currency attribute)

 	ILS (aiogram.enums.currency.Currency attribute)

 	InaccessibleMessage (class in aiogram.types.inaccessible_message)

 	include_router() (aiogram.dispatcher.router.Router method)

 	include_routers() (aiogram.dispatcher.router.Router method)

 	inline_keyboard (aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup attribute)

 	inline_message_id (aiogram.methods.edit_message_caption.EditMessageCaption attribute)

 	(aiogram.methods.edit_message_live_location.EditMessageLiveLocation attribute)

 	(aiogram.methods.edit_message_media.EditMessageMedia attribute)

 	(aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup attribute)

 	(aiogram.methods.edit_message_text.EditMessageText attribute)

 	(aiogram.methods.get_game_high_scores.GetGameHighScores attribute)

 	(aiogram.methods.set_game_score.SetGameScore attribute)

 	(aiogram.methods.stop_message_live_location.StopMessageLiveLocation attribute)

 	(aiogram.types.callback_query.CallbackQuery attribute)

 	(aiogram.types.chosen_inline_result.ChosenInlineResult attribute)

 	(aiogram.types.sent_web_app_message.SentWebAppMessage attribute)

 	INLINE_QUERY (aiogram.enums.update_type.UpdateType attribute)

 	inline_query (aiogram.types.update.Update attribute)

 	inline_query_id (aiogram.methods.answer_inline_query.AnswerInlineQuery attribute)

 	InlineKeyboardBuilder (class in aiogram.utils.keyboard)

 	InlineKeyboardButton (class in aiogram.types.inline_keyboard_button)

 	InlineKeyboardMarkup (class in aiogram.types.inline_keyboard_markup)

 	InlineQuery (class in aiogram.types.inline_query)

 	InlineQueryResult (class in aiogram.types.inline_query_result)

 	InlineQueryResultArticle (class in aiogram.types.inline_query_result_article)

 	InlineQueryResultAudio (class in aiogram.types.inline_query_result_audio)

 	InlineQueryResultCachedAudio (class in aiogram.types.inline_query_result_cached_audio)

 	InlineQueryResultCachedDocument (class in aiogram.types.inline_query_result_cached_document)

 	InlineQueryResultCachedGif (class in aiogram.types.inline_query_result_cached_gif)

 	InlineQueryResultCachedMpeg4Gif (class in aiogram.types.inline_query_result_cached_mpeg4_gif)

 	InlineQueryResultCachedPhoto (class in aiogram.types.inline_query_result_cached_photo)

 	InlineQueryResultCachedSticker (class in aiogram.types.inline_query_result_cached_sticker)

 	InlineQueryResultCachedVideo (class in aiogram.types.inline_query_result_cached_video)

 	InlineQueryResultCachedVoice (class in aiogram.types.inline_query_result_cached_voice)

 	InlineQueryResultContact (class in aiogram.types.inline_query_result_contact)

 	InlineQueryResultDocument (class in aiogram.types.inline_query_result_document)

 	InlineQueryResultGame (class in aiogram.types.inline_query_result_game)

 	InlineQueryResultGif (class in aiogram.types.inline_query_result_gif)

 	InlineQueryResultLocation (class in aiogram.types.inline_query_result_location)

 	InlineQueryResultMpeg4Gif (class in aiogram.types.inline_query_result_mpeg4_gif)

 	InlineQueryResultPhoto (class in aiogram.types.inline_query_result_photo)

 	InlineQueryResultsButton (class in aiogram.types.inline_query_results_button)

 	InlineQueryResultType (class in aiogram.enums.inline_query_result_type)

 	InlineQueryResultVenue (class in aiogram.types.inline_query_result_venue)

 	InlineQueryResultVideo (class in aiogram.types.inline_query_result_video)

 	InlineQueryResultVoice (class in aiogram.types.inline_query_result_voice)

 	input_field_placeholder (aiogram.types.force_reply.ForceReply attribute)

 	(aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup attribute)

 	input_message_content (aiogram.types.inline_query_result_article.InlineQueryResultArticle attribute)

 	(aiogram.types.inline_query_result_audio.InlineQueryResultAudio attribute)

 	(aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio attribute)

 	(aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument attribute)

 	(aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif attribute)

 	(aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto attribute)

 	(aiogram.types.inline_query_result_cached_sticker.InlineQueryResultCachedSticker attribute)

 	(aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo attribute)

 	(aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice attribute)

 	(aiogram.types.inline_query_result_contact.InlineQueryResultContact attribute)

 	(aiogram.types.inline_query_result_document.InlineQueryResultDocument attribute)

 	(aiogram.types.inline_query_result_gif.InlineQueryResultGif attribute)

 	(aiogram.types.inline_query_result_location.InlineQueryResultLocation attribute)

 	(aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto attribute)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue attribute)

 	(aiogram.types.inline_query_result_video.InlineQueryResultVideo attribute)

 	(aiogram.types.inline_query_result_voice.InlineQueryResultVoice attribute)

 	
 	InputContactMessageContent (class in aiogram.types.input_contact_message_content)

 	InputFile (class in aiogram.types.input_file)

 	InputInvoiceMessageContent (class in aiogram.types.input_invoice_message_content)

 	InputLocationMessageContent (class in aiogram.types.input_location_message_content)

 	InputMedia (class in aiogram.types.input_media)

 	InputMediaAnimation (class in aiogram.types.input_media_animation)

 	InputMediaAudio (class in aiogram.types.input_media_audio)

 	InputMediaDocument (class in aiogram.types.input_media_document)

 	InputMediaPhoto (class in aiogram.types.input_media_photo)

 	InputMediaType (class in aiogram.enums.input_media_type)

 	InputMediaVideo (class in aiogram.types.input_media_video)

 	InputMessageContent (class in aiogram.types.input_message_content)

 	InputPollOption (class in aiogram.types.input_poll_option)

 	InputSticker (class in aiogram.types.input_sticker)

 	InputTextMessageContent (class in aiogram.types.input_text_message_content)

 	InputVenueMessageContent (class in aiogram.types.input_venue_message_content)

 	INR (aiogram.enums.currency.Currency attribute)

 	intensity (aiogram.types.background_type_pattern.BackgroundTypePattern attribute)

 	INTERNAL_PASSPORT (aiogram.enums.encrypted_passport_element.EncryptedPassportElement attribute)

 	invite_link (aiogram.methods.edit_chat_invite_link.EditChatInviteLink attribute)

 	(aiogram.methods.revoke_chat_invite_link.RevokeChatInviteLink attribute)

 	(aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	(aiogram.types.chat_invite_link.ChatInviteLink attribute)

 	(aiogram.types.chat_join_request.ChatJoinRequest attribute)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated attribute)

 	INVOICE (aiogram.enums.content_type.ContentType attribute)

 	invoice (aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.message.Message attribute)

 	Invoice (class in aiogram.types.invoice)

 	invoice_payload (aiogram.types.pre_checkout_query.PreCheckoutQuery attribute)

 	(aiogram.types.shipping_query.ShippingQuery attribute)

 	(aiogram.types.successful_payment.SuccessfulPayment attribute)

 	ip_address (aiogram.methods.set_webhook.SetWebhook attribute)

 	(aiogram.types.webhook_info.WebhookInfo attribute)

 	ip_filter_middleware() (in module aiogram.webhook.aiohttp_server)

 	IPFilter (class in aiogram.webhook.security)

 	is_animated (aiogram.types.sticker.Sticker attribute)

 	(aiogram.types.sticker_set.StickerSet attribute)

 	is_anonymous (aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	(aiogram.types.chat_member_owner.ChatMemberOwner attribute)

 	(aiogram.types.poll.Poll attribute)

 	is_automatic_forward (aiogram.types.message.Message attribute)

 	is_big (aiogram.methods.set_message_reaction.SetMessageReaction attribute)

 	is_blurred (aiogram.types.background_type_wallpaper.BackgroundTypeWallpaper attribute)

 	is_bot (aiogram.types.user.User attribute)

 	(aiogram.utils.web_app.WebAppUser attribute)

 	is_closed (aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.types.poll.Poll attribute)

 	is_disabled (aiogram.types.link_preview_options.LinkPreviewOptions attribute)

 	is_enabled (aiogram.types.business_connection.BusinessConnection attribute)

 	is_flexible (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	is_forum (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	is_from_offline (aiogram.types.message.Message attribute)

 	is_inverted (aiogram.types.background_type_pattern.BackgroundTypePattern attribute)

 	is_local (aiogram.client.telegram.TelegramAPIServer attribute)

 	is_manual (aiogram.types.text_quote.TextQuote attribute)

 	is_member (aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	is_moving (aiogram.types.background_type_pattern.BackgroundTypePattern attribute)

 	(aiogram.types.background_type_wallpaper.BackgroundTypeWallpaper attribute)

 	is_persistent (aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup attribute)

 	is_personal (aiogram.methods.answer_inline_query.AnswerInlineQuery attribute)

 	is_premium (aiogram.types.user.User attribute)

 	(aiogram.utils.web_app.WebAppUser attribute)

 	is_primary (aiogram.types.chat_invite_link.ChatInviteLink attribute)

 	is_revoked (aiogram.types.chat_invite_link.ChatInviteLink attribute)

 	is_topic_message (aiogram.types.message.Message attribute)

 	is_unclaimed (aiogram.types.chat_boost_source_giveaway.ChatBoostSourceGiveaway attribute)

 	is_video (aiogram.types.sticker.Sticker attribute)

 	(aiogram.types.sticker_set.StickerSet attribute)

 	ISK (aiogram.enums.currency.Currency attribute)

 	ITALIC (aiogram.enums.message_entity_type.MessageEntityType attribute)

 	Italic (class in aiogram.utils.formatting)

J

 	
 	JMD (aiogram.enums.currency.Currency attribute)

 	join_by_request (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	
 	join_to_send_messages (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	JPY (aiogram.enums.currency.Currency attribute)

K

 	
 	KES (aiogram.enums.currency.Currency attribute)

 	keyboard (aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup attribute)

 	KeyboardButton (class in aiogram.types.keyboard_button)

 	KeyboardButtonPollType (class in aiogram.types.keyboard_button_poll_type)

 	KeyboardButtonPollTypeType (class in aiogram.enums.keyboard_button_poll_type_type)

 	KeyboardButtonRequestChat (class in aiogram.types.keyboard_button_request_chat)

 	KeyboardButtonRequestUser (class in aiogram.types.keyboard_button_request_user)

 	
 	KeyboardButtonRequestUsers (class in aiogram.types.keyboard_button_request_users)

 	KeyBuilder (class in aiogram.fsm.storage.base)

 	keywords (aiogram.methods.set_sticker_keywords.SetStickerKeywords attribute)

 	(aiogram.types.input_sticker.InputSticker attribute)

 	KGS (aiogram.enums.currency.Currency attribute)

 	KICKED (aiogram.enums.chat_member_status.ChatMemberStatus attribute)

 	KRW (aiogram.enums.currency.Currency attribute)

 	KZT (aiogram.enums.currency.Currency attribute)

L

 	
 	label (aiogram.types.labeled_price.LabeledPrice attribute)

 	LabeledPrice (class in aiogram.types.labeled_price)

 	language (aiogram.types.message_entity.MessageEntity attribute)

 	language_code (aiogram.methods.delete_my_commands.DeleteMyCommands attribute)

 	(aiogram.methods.get_my_commands.GetMyCommands attribute)

 	(aiogram.methods.get_my_description.GetMyDescription attribute)

 	(aiogram.methods.get_my_name.GetMyName attribute)

 	(aiogram.methods.get_my_short_description.GetMyShortDescription attribute)

 	(aiogram.methods.set_my_commands.SetMyCommands attribute)

 	(aiogram.methods.set_my_description.SetMyDescription attribute)

 	(aiogram.methods.set_my_name.SetMyName attribute)

 	(aiogram.methods.set_my_short_description.SetMyShortDescription attribute)

 	(aiogram.types.user.User attribute)

 	(aiogram.utils.web_app.WebAppUser attribute)

 	last_error_date (aiogram.types.webhook_info.WebhookInfo attribute)

 	last_error_message (aiogram.types.webhook_info.WebhookInfo attribute)

 	last_name (aiogram.methods.send_contact.SendContact attribute)

 	(aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	(aiogram.types.contact.Contact attribute)

 	(aiogram.types.inline_query_result_contact.InlineQueryResultContact attribute)

 	(aiogram.types.input_contact_message_content.InputContactMessageContent attribute)

 	(aiogram.types.shared_user.SharedUser attribute)

 	(aiogram.types.user.User attribute)

 	(aiogram.utils.web_app.WebAppUser attribute)

 	last_synchronization_error_date (aiogram.types.webhook_info.WebhookInfo attribute)

 	latitude (aiogram.methods.edit_message_live_location.EditMessageLiveLocation attribute)

 	(aiogram.methods.send_location.SendLocation attribute)

 	(aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.types.inline_query_result_location.InlineQueryResultLocation attribute)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue attribute)

 	(aiogram.types.input_location_message_content.InputLocationMessageContent attribute)

 	(aiogram.types.input_venue_message_content.InputVenueMessageContent attribute)

 	(aiogram.types.location.Location attribute)

 	LBP (aiogram.enums.currency.Currency attribute)

 	leave() (aiogram.fsm.scene.SceneWizard method)

 	(aiogram.types.chat.Chat method)

 	LeaveChat (class in aiogram.methods.leave_chat)

 	LEFT (aiogram.enums.chat_member_status.ChatMemberStatus attribute)

 	LEFT_CHAT_MEMBER (aiogram.enums.content_type.ContentType attribute)

 	left_chat_member (aiogram.types.message.Message attribute)

 	
 	length (aiogram.methods.send_video_note.SendVideoNote attribute)

 	(aiogram.types.message_entity.MessageEntity attribute)

 	(aiogram.types.video_note.VideoNote attribute)

 	limit (aiogram.methods.get_updates.GetUpdates attribute)

 	(aiogram.methods.get_user_profile_photos.GetUserProfilePhotos attribute)

 	link_preview_options (aiogram.methods.edit_message_text.EditMessageText attribute)

 	(aiogram.methods.send_message.SendMessage attribute)

 	(aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.input_text_message_content.InputTextMessageContent attribute)

 	(aiogram.types.message.Message attribute)

 	linked_chat_id (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	LinkPreviewOptions (class in aiogram.types.link_preview_options)

 	live_period (aiogram.methods.edit_message_live_location.EditMessageLiveLocation attribute)

 	(aiogram.methods.send_location.SendLocation attribute)

 	(aiogram.types.inline_query_result_location.InlineQueryResultLocation attribute)

 	(aiogram.types.input_location_message_content.InputLocationMessageContent attribute)

 	(aiogram.types.location.Location attribute)

 	LKR (aiogram.enums.currency.Currency attribute)

 	LOCATION (aiogram.enums.content_type.ContentType attribute)

 	(aiogram.enums.inline_query_result_type.InlineQueryResultType attribute)

 	location (aiogram.types.business_location.BusinessLocation attribute)

 	(aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	(aiogram.types.chat_location.ChatLocation attribute)

 	(aiogram.types.chosen_inline_result.ChosenInlineResult attribute)

 	(aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.inline_query.InlineQuery attribute)

 	(aiogram.types.message.Message attribute)

 	(aiogram.types.venue.Venue attribute)

 	Location (class in aiogram.types.location)

 	login_url (aiogram.types.inline_keyboard_button.InlineKeyboardButton attribute)

 	LoginUrl (class in aiogram.types.login_url)

 	LogOut (class in aiogram.methods.log_out)

 	longitude (aiogram.methods.edit_message_live_location.EditMessageLiveLocation attribute)

 	(aiogram.methods.send_location.SendLocation attribute)

 	(aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.types.inline_query_result_location.InlineQueryResultLocation attribute)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue attribute)

 	(aiogram.types.input_location_message_content.InputLocationMessageContent attribute)

 	(aiogram.types.input_venue_message_content.InputVenueMessageContent attribute)

 	(aiogram.types.location.Location attribute)

M

 	
 	MAD (aiogram.enums.currency.Currency attribute)

 	magic_data (aiogram.filters.magic_data.MagicData attribute)

 	magic_result (aiogram.filters.command.CommandObject attribute)

 	MagicData (class in aiogram.filters.magic_data)

 	make_request() (aiogram.client.session.base.BaseSession method)

 	MARKDOWN (aiogram.enums.parse_mode.ParseMode attribute)

 	MARKDOWN_V2 (aiogram.enums.parse_mode.ParseMode attribute)

 	MASK (aiogram.enums.sticker_type.StickerType attribute)

 	mask_position (aiogram.methods.set_sticker_mask_position.SetStickerMaskPosition attribute)

 	(aiogram.types.input_sticker.InputSticker attribute)

 	(aiogram.types.sticker.Sticker attribute)

 	MaskPosition (class in aiogram.types.mask_position)

 	MaskPositionPoint (class in aiogram.enums.mask_position_point)

 	max_connections (aiogram.methods.set_webhook.SetWebhook attribute)

 	(aiogram.types.webhook_info.WebhookInfo attribute)

 	max_quantity (aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers attribute)

 	max_reaction_count (aiogram.types.chat_full_info.ChatFullInfo attribute)

 	max_tip_amount (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	MaybeInaccessibleMessage (class in aiogram.types.maybe_inaccessible_message)

 	md_text (aiogram.types.message.Message property)

 	MDL (aiogram.enums.currency.Currency attribute)

 	media (aiogram.methods.edit_message_media.EditMessageMedia attribute)

 	(aiogram.methods.send_media_group.SendMediaGroup attribute)

 	(aiogram.types.input_media_animation.InputMediaAnimation attribute)

 	(aiogram.types.input_media_audio.InputMediaAudio attribute)

 	(aiogram.types.input_media_document.InputMediaDocument attribute)

 	(aiogram.types.input_media_photo.InputMediaPhoto attribute)

 	(aiogram.types.input_media_video.InputMediaVideo attribute)

 	media_group_id (aiogram.types.message.Message attribute)

 	MediaGroupBuilder (class in aiogram.utils.media_group)

 	MEMBER (aiogram.enums.chat_member_status.ChatMemberStatus attribute)

 	member_limit (aiogram.methods.create_chat_invite_link.CreateChatInviteLink attribute)

 	(aiogram.methods.edit_chat_invite_link.EditChatInviteLink attribute)

 	(aiogram.types.chat_invite_link.ChatInviteLink attribute)

 	member_status_changed (aiogram.filters.chat_member_updated.ChatMemberUpdatedFilter attribute)

 	MemoryStorage (class in aiogram.fsm.storage.memory)

 	MENTION (aiogram.enums.message_entity_type.MessageEntityType attribute)

 	mention (aiogram.filters.command.CommandObject attribute)

 	mention_html() (aiogram.types.user.User method)

 	mention_markdown() (aiogram.types.user.User method)

 	mentioned (aiogram.filters.command.CommandObject property)

 	menu_button (aiogram.methods.set_chat_menu_button.SetChatMenuButton attribute)

 	MenuButton (class in aiogram.types.menu_button)

 	MenuButtonCommands (class in aiogram.types.menu_button_commands)

 	MenuButtonDefault (class in aiogram.types.menu_button_default)

 	MenuButtonType (class in aiogram.enums.menu_button_type)

 	MenuButtonWebApp (class in aiogram.types.menu_button_web_app)

 	MESSAGE (aiogram.enums.update_type.UpdateType attribute)

 	message (aiogram.handlers.callback_query.CallbackQueryHandler property)

 	(aiogram.types.business_intro.BusinessIntro attribute)

 	(aiogram.types.callback_query.CallbackQuery attribute)

 	(aiogram.types.passport_element_error_data_field.PassportElementErrorDataField attribute)

 	(aiogram.types.passport_element_error_file.PassportElementErrorFile attribute)

 	(aiogram.types.passport_element_error_files.PassportElementErrorFiles attribute)

 	(aiogram.types.passport_element_error_front_side.PassportElementErrorFrontSide attribute)

 	(aiogram.types.passport_element_error_reverse_side.PassportElementErrorReverseSide attribute)

 	(aiogram.types.passport_element_error_selfie.PassportElementErrorSelfie attribute)

 	(aiogram.types.passport_element_error_translation_file.PassportElementErrorTranslationFile attribute)

 	(aiogram.types.passport_element_error_translation_files.PassportElementErrorTranslationFiles attribute)

 	(aiogram.types.passport_element_error_unspecified.PassportElementErrorUnspecified attribute)

 	(aiogram.types.update.Update attribute)

 	Message (class in aiogram.types.message)

 	message_auto_delete_time (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	(aiogram.types.message_auto_delete_timer_changed.MessageAutoDeleteTimerChanged attribute)

 	MESSAGE_AUTO_DELETE_TIMER_CHANGED (aiogram.enums.content_type.ContentType attribute)

 	message_auto_delete_timer_changed (aiogram.types.message.Message attribute)

 	message_id (aiogram.methods.copy_message.CopyMessage attribute)

 	(aiogram.methods.delete_message.DeleteMessage attribute)

 	(aiogram.methods.edit_message_caption.EditMessageCaption attribute)

 	(aiogram.methods.edit_message_live_location.EditMessageLiveLocation attribute)

 	(aiogram.methods.edit_message_media.EditMessageMedia attribute)

 	(aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup attribute)

 	(aiogram.methods.edit_message_text.EditMessageText attribute)

 	(aiogram.methods.forward_message.ForwardMessage attribute)

 	(aiogram.methods.get_game_high_scores.GetGameHighScores attribute)

 	(aiogram.methods.pin_chat_message.PinChatMessage attribute)

 	(aiogram.methods.set_game_score.SetGameScore attribute)

 	(aiogram.methods.set_message_reaction.SetMessageReaction attribute)

 	(aiogram.methods.stop_message_live_location.StopMessageLiveLocation attribute)

 	(aiogram.methods.stop_poll.StopPoll attribute)

 	(aiogram.methods.unpin_chat_message.UnpinChatMessage attribute)

 	(aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.inaccessible_message.InaccessibleMessage attribute)

 	(aiogram.types.message.Message attribute)

 	(aiogram.types.message_id.MessageId attribute)

 	(aiogram.types.message_origin_channel.MessageOriginChannel attribute)

 	(aiogram.types.message_reaction_count_updated.MessageReactionCountUpdated attribute)

 	(aiogram.types.message_reaction_updated.MessageReactionUpdated attribute)

 	(aiogram.types.reply_parameters.ReplyParameters attribute)

 	message_ids (aiogram.methods.copy_messages.CopyMessages attribute)

 	(aiogram.methods.delete_messages.DeleteMessages attribute)

 	(aiogram.methods.forward_messages.ForwardMessages attribute)

 	(aiogram.types.business_messages_deleted.BusinessMessagesDeleted attribute)

 	MESSAGE_REACTION (aiogram.enums.update_type.UpdateType attribute)

 	message_reaction (aiogram.types.update.Update attribute)

 	MESSAGE_REACTION_COUNT (aiogram.enums.update_type.UpdateType attribute)

 	message_reaction_count (aiogram.types.update.Update attribute)

 	message_text (aiogram.types.input_text_message_content.InputTextMessageContent attribute)

 	message_thread_id (aiogram.methods.close_forum_topic.CloseForumTopic attribute)

 	(aiogram.methods.copy_message.CopyMessage attribute)

 	(aiogram.methods.copy_messages.CopyMessages attribute)

 	(aiogram.methods.delete_forum_topic.DeleteForumTopic attribute)

 	(aiogram.methods.edit_forum_topic.EditForumTopic attribute)

 	(aiogram.methods.forward_message.ForwardMessage attribute)

 	(aiogram.methods.forward_messages.ForwardMessages attribute)

 	(aiogram.methods.reopen_forum_topic.ReopenForumTopic attribute)

 	(aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.methods.send_chat_action.SendChatAction attribute)

 	(aiogram.methods.send_contact.SendContact attribute)

 	(aiogram.methods.send_dice.SendDice attribute)

 	(aiogram.methods.send_document.SendDocument attribute)

 	(aiogram.methods.send_game.SendGame attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.methods.send_location.SendLocation attribute)

 	(aiogram.methods.send_media_group.SendMediaGroup attribute)

 	(aiogram.methods.send_message.SendMessage attribute)

 	(aiogram.methods.send_photo.SendPhoto attribute)

 	(aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.methods.send_sticker.SendSticker attribute)

 	(aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.methods.send_video_note.SendVideoNote attribute)

 	(aiogram.methods.send_voice.SendVoice attribute)

 	(aiogram.methods.unpin_all_forum_topic_messages.UnpinAllForumTopicMessages attribute)

 	(aiogram.types.forum_topic.ForumTopic attribute)

 	(aiogram.types.message.Message attribute)

 	MessageAutoDeleteTimerChanged (class in aiogram.types.message_auto_delete_timer_changed)

 	MessageEntity (class in aiogram.types.message_entity)

 	MessageEntityType (class in aiogram.enums.message_entity_type)

 	MessageId (class in aiogram.types.message_id)

 	MessageOrigin (class in aiogram.types.message_origin)

 	MessageOriginChannel (class in aiogram.types.message_origin_channel)

 	MessageOriginChat (class in aiogram.types.message_origin_chat)

 	MessageOriginHiddenUser (class in aiogram.types.message_origin_hidden_user)

 	MessageOriginType (class in aiogram.enums.message_origin_type)

 	MessageOriginUser (class in aiogram.types.message_origin_user)

 	MessageReactionCountUpdated (class in aiogram.types.message_reaction_count_updated)

 	MessageReactionUpdated (class in aiogram.types.message_reaction_updated)

 	MIGRATE_FROM_CHAT_ID (aiogram.enums.content_type.ContentType attribute)

 	migrate_from_chat_id (aiogram.types.message.Message attribute)

 	MIGRATE_TO_CHAT_ID (aiogram.enums.content_type.ContentType attribute)

 	migrate_to_chat_id (aiogram.types.message.Message attribute)

 	(aiogram.types.response_parameters.ResponseParameters attribute)

 	mime_type (aiogram.types.animation.Animation attribute)

 	(aiogram.types.audio.Audio attribute)

 	(aiogram.types.document.Document attribute)

 	(aiogram.types.inline_query_result_document.InlineQueryResultDocument attribute)

 	(aiogram.types.inline_query_result_video.InlineQueryResultVideo attribute)

 	(aiogram.types.video.Video attribute)

 	(aiogram.types.voice.Voice attribute)

 	MNT (aiogram.enums.currency.Currency attribute)

 	model_computed_fields (aiogram.filters.callback_data.CallbackData attribute)

 	(aiogram.methods.add_sticker_to_set.AddStickerToSet attribute)

 	(aiogram.methods.answer_callback_query.AnswerCallbackQuery attribute)

 	(aiogram.methods.answer_inline_query.AnswerInlineQuery attribute)

 	(aiogram.methods.answer_pre_checkout_query.AnswerPreCheckoutQuery attribute)

 	(aiogram.methods.answer_shipping_query.AnswerShippingQuery attribute)

 	(aiogram.methods.answer_web_app_query.AnswerWebAppQuery attribute)

 	(aiogram.methods.approve_chat_join_request.ApproveChatJoinRequest attribute)

 	(aiogram.methods.ban_chat_member.BanChatMember attribute)

 	(aiogram.methods.ban_chat_sender_chat.BanChatSenderChat attribute)

 	(aiogram.methods.close.Close attribute)

 	(aiogram.methods.close_forum_topic.CloseForumTopic attribute)

 	(aiogram.methods.close_general_forum_topic.CloseGeneralForumTopic attribute)

 	(aiogram.methods.copy_message.CopyMessage attribute)

 	(aiogram.methods.copy_messages.CopyMessages attribute)

 	(aiogram.methods.create_chat_invite_link.CreateChatInviteLink attribute)

 	(aiogram.methods.create_forum_topic.CreateForumTopic attribute)

 	(aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.create_new_sticker_set.CreateNewStickerSet attribute)

 	(aiogram.methods.decline_chat_join_request.DeclineChatJoinRequest attribute)

 	(aiogram.methods.delete_chat_photo.DeleteChatPhoto attribute)

 	(aiogram.methods.delete_chat_sticker_set.DeleteChatStickerSet attribute)

 	(aiogram.methods.delete_forum_topic.DeleteForumTopic attribute)

 	(aiogram.methods.delete_message.DeleteMessage attribute)

 	(aiogram.methods.delete_messages.DeleteMessages attribute)

 	(aiogram.methods.delete_my_commands.DeleteMyCommands attribute)

 	(aiogram.methods.delete_sticker_from_set.DeleteStickerFromSet attribute)

 	(aiogram.methods.delete_sticker_set.DeleteStickerSet attribute)

 	(aiogram.methods.delete_webhook.DeleteWebhook attribute)

 	(aiogram.methods.edit_chat_invite_link.EditChatInviteLink attribute)

 	(aiogram.methods.edit_forum_topic.EditForumTopic attribute)

 	(aiogram.methods.edit_general_forum_topic.EditGeneralForumTopic attribute)

 	(aiogram.methods.edit_message_caption.EditMessageCaption attribute)

 	(aiogram.methods.edit_message_live_location.EditMessageLiveLocation attribute)

 	(aiogram.methods.edit_message_media.EditMessageMedia attribute)

 	(aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup attribute)

 	(aiogram.methods.edit_message_text.EditMessageText attribute)

 	(aiogram.methods.export_chat_invite_link.ExportChatInviteLink attribute)

 	(aiogram.methods.forward_message.ForwardMessage attribute)

 	(aiogram.methods.forward_messages.ForwardMessages attribute)

 	(aiogram.methods.get_business_connection.GetBusinessConnection attribute)

 	(aiogram.methods.get_chat.GetChat attribute)

 	(aiogram.methods.get_chat_administrators.GetChatAdministrators attribute)

 	(aiogram.methods.get_chat_member.GetChatMember attribute)

 	(aiogram.methods.get_chat_member_count.GetChatMemberCount attribute)

 	(aiogram.methods.get_chat_menu_button.GetChatMenuButton attribute)

 	(aiogram.methods.get_custom_emoji_stickers.GetCustomEmojiStickers attribute)

 	(aiogram.methods.get_file.GetFile attribute)

 	(aiogram.methods.get_forum_topic_icon_stickers.GetForumTopicIconStickers attribute)

 	(aiogram.methods.get_game_high_scores.GetGameHighScores attribute)

 	(aiogram.methods.get_me.GetMe attribute)

 	(aiogram.methods.get_my_commands.GetMyCommands attribute)

 	(aiogram.methods.get_my_default_administrator_rights.GetMyDefaultAdministratorRights attribute)

 	(aiogram.methods.get_my_description.GetMyDescription attribute)

 	(aiogram.methods.get_my_name.GetMyName attribute)

 	(aiogram.methods.get_my_short_description.GetMyShortDescription attribute)

 	(aiogram.methods.get_sticker_set.GetStickerSet attribute)

 	(aiogram.methods.get_updates.GetUpdates attribute)

 	(aiogram.methods.get_user_chat_boosts.GetUserChatBoosts attribute)

 	(aiogram.methods.get_user_profile_photos.GetUserProfilePhotos attribute)

 	(aiogram.methods.get_webhook_info.GetWebhookInfo attribute)

 	(aiogram.methods.hide_general_forum_topic.HideGeneralForumTopic attribute)

 	(aiogram.methods.leave_chat.LeaveChat attribute)

 	(aiogram.methods.log_out.LogOut attribute)

 	(aiogram.methods.pin_chat_message.PinChatMessage attribute)

 	(aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.methods.reopen_forum_topic.ReopenForumTopic attribute)

 	(aiogram.methods.reopen_general_forum_topic.ReopenGeneralForumTopic attribute)

 	(aiogram.methods.replace_sticker_in_set.ReplaceStickerInSet attribute)

 	(aiogram.methods.restrict_chat_member.RestrictChatMember attribute)

 	(aiogram.methods.revoke_chat_invite_link.RevokeChatInviteLink attribute)

 	(aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.methods.send_chat_action.SendChatAction attribute)

 	(aiogram.methods.send_contact.SendContact attribute)

 	(aiogram.methods.send_dice.SendDice attribute)

 	(aiogram.methods.send_document.SendDocument attribute)

 	(aiogram.methods.send_game.SendGame attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.methods.send_location.SendLocation attribute)

 	(aiogram.methods.send_media_group.SendMediaGroup attribute)

 	(aiogram.methods.send_message.SendMessage attribute)

 	(aiogram.methods.send_photo.SendPhoto attribute)

 	(aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.methods.send_sticker.SendSticker attribute)

 	(aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.methods.send_video_note.SendVideoNote attribute)

 	(aiogram.methods.send_voice.SendVoice attribute)

 	(aiogram.methods.set_chat_administrator_custom_title.SetChatAdministratorCustomTitle attribute)

 	(aiogram.methods.set_chat_description.SetChatDescription attribute)

 	(aiogram.methods.set_chat_menu_button.SetChatMenuButton attribute)

 	(aiogram.methods.set_chat_permissions.SetChatPermissions attribute)

 	(aiogram.methods.set_chat_photo.SetChatPhoto attribute)

 	(aiogram.methods.set_chat_sticker_set.SetChatStickerSet attribute)

 	(aiogram.methods.set_chat_title.SetChatTitle attribute)

 	(aiogram.methods.set_custom_emoji_sticker_set_thumbnail.SetCustomEmojiStickerSetThumbnail attribute)

 	(aiogram.methods.set_game_score.SetGameScore attribute)

 	(aiogram.methods.set_message_reaction.SetMessageReaction attribute)

 	(aiogram.methods.set_my_commands.SetMyCommands attribute)

 	(aiogram.methods.set_my_default_administrator_rights.SetMyDefaultAdministratorRights attribute)

 	(aiogram.methods.set_my_description.SetMyDescription attribute)

 	(aiogram.methods.set_my_name.SetMyName attribute)

 	(aiogram.methods.set_my_short_description.SetMyShortDescription attribute)

 	(aiogram.methods.set_passport_data_errors.SetPassportDataErrors attribute)

 	(aiogram.methods.set_sticker_emoji_list.SetStickerEmojiList attribute)

 	(aiogram.methods.set_sticker_keywords.SetStickerKeywords attribute)

 	(aiogram.methods.set_sticker_mask_position.SetStickerMaskPosition attribute)

 	(aiogram.methods.set_sticker_position_in_set.SetStickerPositionInSet attribute)

 	(aiogram.methods.set_sticker_set_thumbnail.SetStickerSetThumbnail attribute)

 	(aiogram.methods.set_sticker_set_title.SetStickerSetTitle attribute)

 	(aiogram.methods.set_webhook.SetWebhook attribute)

 	(aiogram.methods.stop_message_live_location.StopMessageLiveLocation attribute)

 	(aiogram.methods.stop_poll.StopPoll attribute)

 	(aiogram.methods.unban_chat_member.UnbanChatMember attribute)

 	(aiogram.methods.unban_chat_sender_chat.UnbanChatSenderChat attribute)

 	(aiogram.methods.unhide_general_forum_topic.UnhideGeneralForumTopic attribute)

 	(aiogram.methods.unpin_all_chat_messages.UnpinAllChatMessages attribute)

 	(aiogram.methods.unpin_all_forum_topic_messages.UnpinAllForumTopicMessages attribute)

 	(aiogram.methods.unpin_all_general_forum_topic_messages.UnpinAllGeneralForumTopicMessages attribute)

 	(aiogram.methods.unpin_chat_message.UnpinChatMessage attribute)

 	(aiogram.methods.upload_sticker_file.UploadStickerFile attribute)

 	(aiogram.types.animation.Animation attribute)

 	(aiogram.types.audio.Audio attribute)

 	(aiogram.types.background_fill.BackgroundFill attribute)

 	(aiogram.types.background_fill_freeform_gradient.BackgroundFillFreeformGradient attribute)

 	(aiogram.types.background_fill_gradient.BackgroundFillGradient attribute)

 	(aiogram.types.background_fill_solid.BackgroundFillSolid attribute)

 	(aiogram.types.background_type.BackgroundType attribute)

 	(aiogram.types.background_type_chat_theme.BackgroundTypeChatTheme attribute)

 	(aiogram.types.background_type_fill.BackgroundTypeFill attribute)

 	(aiogram.types.background_type_pattern.BackgroundTypePattern attribute)

 	(aiogram.types.background_type_wallpaper.BackgroundTypeWallpaper attribute)

 	(aiogram.types.birthdate.Birthdate attribute)

 	(aiogram.types.bot_command.BotCommand attribute)

 	(aiogram.types.bot_command_scope.BotCommandScope attribute)

 	(aiogram.types.bot_command_scope_all_chat_administrators.BotCommandScopeAllChatAdministrators attribute)

 	(aiogram.types.bot_command_scope_all_group_chats.BotCommandScopeAllGroupChats attribute)

 	(aiogram.types.bot_command_scope_all_private_chats.BotCommandScopeAllPrivateChats attribute)

 	(aiogram.types.bot_command_scope_chat.BotCommandScopeChat attribute)

 	(aiogram.types.bot_command_scope_chat_administrators.BotCommandScopeChatAdministrators attribute)

 	(aiogram.types.bot_command_scope_chat_member.BotCommandScopeChatMember attribute)

 	(aiogram.types.bot_command_scope_default.BotCommandScopeDefault attribute)

 	(aiogram.types.bot_description.BotDescription attribute)

 	(aiogram.types.bot_name.BotName attribute)

 	(aiogram.types.bot_short_description.BotShortDescription attribute)

 	(aiogram.types.business_connection.BusinessConnection attribute)

 	(aiogram.types.business_intro.BusinessIntro attribute)

 	(aiogram.types.business_location.BusinessLocation attribute)

 	(aiogram.types.business_messages_deleted.BusinessMessagesDeleted attribute)

 	(aiogram.types.business_opening_hours.BusinessOpeningHours attribute)

 	(aiogram.types.business_opening_hours_interval.BusinessOpeningHoursInterval attribute)

 	(aiogram.types.callback_game.CallbackGame attribute)

 	(aiogram.types.callback_query.CallbackQuery attribute)

 	(aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights attribute)

 	(aiogram.types.chat_background.ChatBackground attribute)

 	(aiogram.types.chat_boost.ChatBoost attribute)

 	(aiogram.types.chat_boost_added.ChatBoostAdded attribute)

 	(aiogram.types.chat_boost_removed.ChatBoostRemoved attribute)

 	(aiogram.types.chat_boost_source.ChatBoostSource attribute)

 	(aiogram.types.chat_boost_source_gift_code.ChatBoostSourceGiftCode attribute)

 	(aiogram.types.chat_boost_source_giveaway.ChatBoostSourceGiveaway attribute)

 	(aiogram.types.chat_boost_source_premium.ChatBoostSourcePremium attribute)

 	(aiogram.types.chat_boost_updated.ChatBoostUpdated attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	(aiogram.types.chat_invite_link.ChatInviteLink attribute)

 	(aiogram.types.chat_join_request.ChatJoinRequest attribute)

 	(aiogram.types.chat_location.ChatLocation attribute)

 	(aiogram.types.chat_member.ChatMember attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	(aiogram.types.chat_member_banned.ChatMemberBanned attribute)

 	(aiogram.types.chat_member_left.ChatMemberLeft attribute)

 	(aiogram.types.chat_member_member.ChatMemberMember attribute)

 	(aiogram.types.chat_member_owner.ChatMemberOwner attribute)

 	(aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated attribute)

 	(aiogram.types.chat_permissions.ChatPermissions attribute)

 	(aiogram.types.chat_photo.ChatPhoto attribute)

 	(aiogram.types.chat_shared.ChatShared attribute)

 	(aiogram.types.chosen_inline_result.ChosenInlineResult attribute)

 	(aiogram.types.contact.Contact attribute)

 	(aiogram.types.dice.Dice attribute)

 	(aiogram.types.document.Document attribute)

 	(aiogram.types.encrypted_credentials.EncryptedCredentials attribute)

 	(aiogram.types.encrypted_passport_element.EncryptedPassportElement attribute)

 	(aiogram.types.error_event.ErrorEvent attribute)

 	(aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.file.File attribute)

 	(aiogram.types.force_reply.ForceReply attribute)

 	(aiogram.types.forum_topic.ForumTopic attribute)

 	(aiogram.types.forum_topic_closed.ForumTopicClosed attribute)

 	(aiogram.types.forum_topic_created.ForumTopicCreated attribute)

 	(aiogram.types.forum_topic_edited.ForumTopicEdited attribute)

 	(aiogram.types.forum_topic_reopened.ForumTopicReopened attribute)

 	(aiogram.types.game.Game attribute)

 	(aiogram.types.game_high_score.GameHighScore attribute)

 	(aiogram.types.general_forum_topic_hidden.GeneralForumTopicHidden attribute)

 	(aiogram.types.general_forum_topic_unhidden.GeneralForumTopicUnhidden attribute)

 	(aiogram.types.giveaway.Giveaway attribute)

 	(aiogram.types.giveaway_completed.GiveawayCompleted attribute)

 	(aiogram.types.giveaway_created.GiveawayCreated attribute)

 	(aiogram.types.giveaway_winners.GiveawayWinners attribute)

 	(aiogram.types.inaccessible_message.InaccessibleMessage attribute)

 	(aiogram.types.inline_keyboard_button.InlineKeyboardButton attribute)

 	(aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup attribute)

 	(aiogram.types.inline_query.InlineQuery attribute)

 	(aiogram.types.inline_query_result.InlineQueryResult attribute)

 	(aiogram.types.inline_query_result_article.InlineQueryResultArticle attribute)

 	(aiogram.types.inline_query_result_audio.InlineQueryResultAudio attribute)

 	(aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio attribute)

 	(aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument attribute)

 	(aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif attribute)

 	(aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto attribute)

 	(aiogram.types.inline_query_result_cached_sticker.InlineQueryResultCachedSticker attribute)

 	(aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo attribute)

 	(aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice attribute)

 	(aiogram.types.inline_query_result_contact.InlineQueryResultContact attribute)

 	(aiogram.types.inline_query_result_document.InlineQueryResultDocument attribute)

 	(aiogram.types.inline_query_result_game.InlineQueryResultGame attribute)

 	(aiogram.types.inline_query_result_gif.InlineQueryResultGif attribute)

 	(aiogram.types.inline_query_result_location.InlineQueryResultLocation attribute)

 	(aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto attribute)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue attribute)

 	(aiogram.types.inline_query_result_video.InlineQueryResultVideo attribute)

 	(aiogram.types.inline_query_result_voice.InlineQueryResultVoice attribute)

 	(aiogram.types.inline_query_results_button.InlineQueryResultsButton attribute)

 	(aiogram.types.input_contact_message_content.InputContactMessageContent attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	(aiogram.types.input_location_message_content.InputLocationMessageContent attribute)

 	(aiogram.types.input_media.InputMedia attribute)

 	(aiogram.types.input_media_animation.InputMediaAnimation attribute)

 	(aiogram.types.input_media_audio.InputMediaAudio attribute)

 	(aiogram.types.input_media_document.InputMediaDocument attribute)

 	(aiogram.types.input_media_photo.InputMediaPhoto attribute)

 	(aiogram.types.input_media_video.InputMediaVideo attribute)

 	(aiogram.types.input_message_content.InputMessageContent attribute)

 	(aiogram.types.input_poll_option.InputPollOption attribute)

 	(aiogram.types.input_sticker.InputSticker attribute)

 	(aiogram.types.input_text_message_content.InputTextMessageContent attribute)

 	(aiogram.types.input_venue_message_content.InputVenueMessageContent attribute)

 	(aiogram.types.invoice.Invoice attribute)

 	(aiogram.types.keyboard_button.KeyboardButton attribute)

 	(aiogram.types.keyboard_button_poll_type.KeyboardButtonPollType attribute)

 	(aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat attribute)

 	(aiogram.types.keyboard_button_request_user.KeyboardButtonRequestUser attribute)

 	(aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers attribute)

 	(aiogram.types.labeled_price.LabeledPrice attribute)

 	(aiogram.types.link_preview_options.LinkPreviewOptions attribute)

 	(aiogram.types.location.Location attribute)

 	(aiogram.types.login_url.LoginUrl attribute)

 	(aiogram.types.mask_position.MaskPosition attribute)

 	(aiogram.types.maybe_inaccessible_message.MaybeInaccessibleMessage attribute)

 	(aiogram.types.menu_button.MenuButton attribute)

 	(aiogram.types.menu_button_commands.MenuButtonCommands attribute)

 	(aiogram.types.menu_button_default.MenuButtonDefault attribute)

 	(aiogram.types.menu_button_web_app.MenuButtonWebApp attribute)

 	(aiogram.types.message.Message attribute)

 	(aiogram.types.message_auto_delete_timer_changed.MessageAutoDeleteTimerChanged attribute)

 	(aiogram.types.message_entity.MessageEntity attribute)

 	(aiogram.types.message_id.MessageId attribute)

 	(aiogram.types.message_origin.MessageOrigin attribute)

 	(aiogram.types.message_origin_channel.MessageOriginChannel attribute)

 	(aiogram.types.message_origin_chat.MessageOriginChat attribute)

 	(aiogram.types.message_origin_hidden_user.MessageOriginHiddenUser attribute)

 	(aiogram.types.message_origin_user.MessageOriginUser attribute)

 	(aiogram.types.message_reaction_count_updated.MessageReactionCountUpdated attribute)

 	(aiogram.types.message_reaction_updated.MessageReactionUpdated attribute)

 	(aiogram.types.order_info.OrderInfo attribute)

 	(aiogram.types.passport_data.PassportData attribute)

 	(aiogram.types.passport_element_error.PassportElementError attribute)

 	(aiogram.types.passport_element_error_data_field.PassportElementErrorDataField attribute)

 	(aiogram.types.passport_element_error_file.PassportElementErrorFile attribute)

 	(aiogram.types.passport_element_error_files.PassportElementErrorFiles attribute)

 	(aiogram.types.passport_element_error_front_side.PassportElementErrorFrontSide attribute)

 	(aiogram.types.passport_element_error_reverse_side.PassportElementErrorReverseSide attribute)

 	(aiogram.types.passport_element_error_selfie.PassportElementErrorSelfie attribute)

 	(aiogram.types.passport_element_error_translation_file.PassportElementErrorTranslationFile attribute)

 	(aiogram.types.passport_element_error_translation_files.PassportElementErrorTranslationFiles attribute)

 	(aiogram.types.passport_element_error_unspecified.PassportElementErrorUnspecified attribute)

 	(aiogram.types.passport_file.PassportFile attribute)

 	(aiogram.types.photo_size.PhotoSize attribute)

 	(aiogram.types.poll.Poll attribute)

 	(aiogram.types.poll_answer.PollAnswer attribute)

 	(aiogram.types.poll_option.PollOption attribute)

 	(aiogram.types.pre_checkout_query.PreCheckoutQuery attribute)

 	(aiogram.types.proximity_alert_triggered.ProximityAlertTriggered attribute)

 	(aiogram.types.reaction_count.ReactionCount attribute)

 	(aiogram.types.reaction_type.ReactionType attribute)

 	(aiogram.types.reaction_type_custom_emoji.ReactionTypeCustomEmoji attribute)

 	(aiogram.types.reaction_type_emoji.ReactionTypeEmoji attribute)

 	(aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup attribute)

 	(aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove attribute)

 	(aiogram.types.reply_parameters.ReplyParameters attribute)

 	(aiogram.types.response_parameters.ResponseParameters attribute)

 	(aiogram.types.sent_web_app_message.SentWebAppMessage attribute)

 	(aiogram.types.shared_user.SharedUser attribute)

 	(aiogram.types.shipping_address.ShippingAddress attribute)

 	(aiogram.types.shipping_option.ShippingOption attribute)

 	(aiogram.types.shipping_query.ShippingQuery attribute)

 	(aiogram.types.sticker.Sticker attribute)

 	(aiogram.types.sticker_set.StickerSet attribute)

 	(aiogram.types.story.Story attribute)

 	(aiogram.types.successful_payment.SuccessfulPayment attribute)

 	(aiogram.types.switch_inline_query_chosen_chat.SwitchInlineQueryChosenChat attribute)

 	(aiogram.types.text_quote.TextQuote attribute)

 	(aiogram.types.update.Update attribute)

 	(aiogram.types.user.User attribute)

 	(aiogram.types.user_chat_boosts.UserChatBoosts attribute)

 	(aiogram.types.user_profile_photos.UserProfilePhotos attribute)

 	(aiogram.types.user_shared.UserShared attribute)

 	(aiogram.types.users_shared.UsersShared attribute)

 	(aiogram.types.venue.Venue attribute)

 	(aiogram.types.video.Video attribute)

 	(aiogram.types.video_chat_ended.VideoChatEnded attribute)

 	(aiogram.types.video_chat_participants_invited.VideoChatParticipantsInvited attribute)

 	(aiogram.types.video_chat_scheduled.VideoChatScheduled attribute)

 	(aiogram.types.video_chat_started.VideoChatStarted attribute)

 	(aiogram.types.video_note.VideoNote attribute)

 	(aiogram.types.voice.Voice attribute)

 	(aiogram.types.web_app_data.WebAppData attribute)

 	(aiogram.types.web_app_info.WebAppInfo attribute)

 	(aiogram.types.webhook_info.WebhookInfo attribute)

 	(aiogram.types.write_access_allowed.WriteAccessAllowed attribute)

 	(aiogram.utils.web_app.WebAppChat attribute)

 	(aiogram.utils.web_app.WebAppInitData attribute)

 	(aiogram.utils.web_app.WebAppUser attribute)

 	model_config (aiogram.utils.web_app.WebAppChat attribute)

 	(aiogram.utils.web_app.WebAppInitData attribute)

 	(aiogram.utils.web_app.WebAppUser attribute)

 	model_fields (aiogram.utils.web_app.WebAppChat attribute)

 	(aiogram.utils.web_app.WebAppInitData attribute)

 	(aiogram.utils.web_app.WebAppUser attribute)

 	model_post_init() (aiogram.methods.add_sticker_to_set.AddStickerToSet method)

 	(aiogram.methods.answer_callback_query.AnswerCallbackQuery method)

 	(aiogram.methods.answer_inline_query.AnswerInlineQuery method)

 	(aiogram.methods.answer_pre_checkout_query.AnswerPreCheckoutQuery method)

 	(aiogram.methods.answer_shipping_query.AnswerShippingQuery method)

 	(aiogram.methods.answer_web_app_query.AnswerWebAppQuery method)

 	(aiogram.methods.approve_chat_join_request.ApproveChatJoinRequest method)

 	(aiogram.methods.ban_chat_member.BanChatMember method)

 	(aiogram.methods.ban_chat_sender_chat.BanChatSenderChat method)

 	(aiogram.methods.close.Close method)

 	(aiogram.methods.close_forum_topic.CloseForumTopic method)

 	(aiogram.methods.close_general_forum_topic.CloseGeneralForumTopic method)

 	(aiogram.methods.copy_message.CopyMessage method)

 	(aiogram.methods.copy_messages.CopyMessages method)

 	(aiogram.methods.create_chat_invite_link.CreateChatInviteLink method)

 	(aiogram.methods.create_forum_topic.CreateForumTopic method)

 	(aiogram.methods.create_invoice_link.CreateInvoiceLink method)

 	(aiogram.methods.create_new_sticker_set.CreateNewStickerSet method)

 	(aiogram.methods.decline_chat_join_request.DeclineChatJoinRequest method)

 	(aiogram.methods.delete_chat_photo.DeleteChatPhoto method)

 	(aiogram.methods.delete_chat_sticker_set.DeleteChatStickerSet method)

 	(aiogram.methods.delete_forum_topic.DeleteForumTopic method)

 	(aiogram.methods.delete_message.DeleteMessage method)

 	(aiogram.methods.delete_messages.DeleteMessages method)

 	(aiogram.methods.delete_my_commands.DeleteMyCommands method)

 	(aiogram.methods.delete_sticker_from_set.DeleteStickerFromSet method)

 	(aiogram.methods.delete_sticker_set.DeleteStickerSet method)

 	(aiogram.methods.delete_webhook.DeleteWebhook method)

 	(aiogram.methods.edit_chat_invite_link.EditChatInviteLink method)

 	(aiogram.methods.edit_forum_topic.EditForumTopic method)

 	(aiogram.methods.edit_general_forum_topic.EditGeneralForumTopic method)

 	(aiogram.methods.edit_message_caption.EditMessageCaption method)

 	(aiogram.methods.edit_message_live_location.EditMessageLiveLocation method)

 	(aiogram.methods.edit_message_media.EditMessageMedia method)

 	(aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup method)

 	(aiogram.methods.edit_message_text.EditMessageText method)

 	(aiogram.methods.export_chat_invite_link.ExportChatInviteLink method)

 	(aiogram.methods.forward_message.ForwardMessage method)

 	(aiogram.methods.forward_messages.ForwardMessages method)

 	(aiogram.methods.get_business_connection.GetBusinessConnection method)

 	(aiogram.methods.get_chat.GetChat method)

 	(aiogram.methods.get_chat_administrators.GetChatAdministrators method)

 	(aiogram.methods.get_chat_member.GetChatMember method)

 	(aiogram.methods.get_chat_member_count.GetChatMemberCount method)

 	(aiogram.methods.get_chat_menu_button.GetChatMenuButton method)

 	(aiogram.methods.get_custom_emoji_stickers.GetCustomEmojiStickers method)

 	(aiogram.methods.get_file.GetFile method)

 	(aiogram.methods.get_forum_topic_icon_stickers.GetForumTopicIconStickers method)

 	(aiogram.methods.get_game_high_scores.GetGameHighScores method)

 	(aiogram.methods.get_me.GetMe method)

 	(aiogram.methods.get_my_commands.GetMyCommands method)

 	(aiogram.methods.get_my_default_administrator_rights.GetMyDefaultAdministratorRights method)

 	(aiogram.methods.get_my_description.GetMyDescription method)

 	(aiogram.methods.get_my_name.GetMyName method)

 	(aiogram.methods.get_my_short_description.GetMyShortDescription method)

 	(aiogram.methods.get_sticker_set.GetStickerSet method)

 	(aiogram.methods.get_updates.GetUpdates method)

 	(aiogram.methods.get_user_chat_boosts.GetUserChatBoosts method)

 	(aiogram.methods.get_user_profile_photos.GetUserProfilePhotos method)

 	(aiogram.methods.get_webhook_info.GetWebhookInfo method)

 	(aiogram.methods.hide_general_forum_topic.HideGeneralForumTopic method)

 	(aiogram.methods.leave_chat.LeaveChat method)

 	(aiogram.methods.log_out.LogOut method)

 	(aiogram.methods.pin_chat_message.PinChatMessage method)

 	(aiogram.methods.promote_chat_member.PromoteChatMember method)

 	(aiogram.methods.reopen_forum_topic.ReopenForumTopic method)

 	(aiogram.methods.reopen_general_forum_topic.ReopenGeneralForumTopic method)

 	(aiogram.methods.replace_sticker_in_set.ReplaceStickerInSet method)

 	(aiogram.methods.restrict_chat_member.RestrictChatMember method)

 	(aiogram.methods.revoke_chat_invite_link.RevokeChatInviteLink method)

 	(aiogram.methods.send_animation.SendAnimation method)

 	(aiogram.methods.send_audio.SendAudio method)

 	(aiogram.methods.send_chat_action.SendChatAction method)

 	(aiogram.methods.send_contact.SendContact method)

 	(aiogram.methods.send_dice.SendDice method)

 	(aiogram.methods.send_document.SendDocument method)

 	(aiogram.methods.send_game.SendGame method)

 	(aiogram.methods.send_invoice.SendInvoice method)

 	(aiogram.methods.send_location.SendLocation method)

 	(aiogram.methods.send_media_group.SendMediaGroup method)

 	(aiogram.methods.send_message.SendMessage method)

 	(aiogram.methods.send_photo.SendPhoto method)

 	(aiogram.methods.send_poll.SendPoll method)

 	(aiogram.methods.send_sticker.SendSticker method)

 	(aiogram.methods.send_venue.SendVenue method)

 	(aiogram.methods.send_video.SendVideo method)

 	(aiogram.methods.send_video_note.SendVideoNote method)

 	(aiogram.methods.send_voice.SendVoice method)

 	(aiogram.methods.set_chat_administrator_custom_title.SetChatAdministratorCustomTitle method)

 	(aiogram.methods.set_chat_description.SetChatDescription method)

 	(aiogram.methods.set_chat_menu_button.SetChatMenuButton method)

 	(aiogram.methods.set_chat_permissions.SetChatPermissions method)

 	(aiogram.methods.set_chat_photo.SetChatPhoto method)

 	(aiogram.methods.set_chat_sticker_set.SetChatStickerSet method)

 	(aiogram.methods.set_chat_title.SetChatTitle method)

 	(aiogram.methods.set_custom_emoji_sticker_set_thumbnail.SetCustomEmojiStickerSetThumbnail method)

 	(aiogram.methods.set_game_score.SetGameScore method)

 	(aiogram.methods.set_message_reaction.SetMessageReaction method)

 	(aiogram.methods.set_my_commands.SetMyCommands method)

 	(aiogram.methods.set_my_default_administrator_rights.SetMyDefaultAdministratorRights method)

 	(aiogram.methods.set_my_description.SetMyDescription method)

 	(aiogram.methods.set_my_name.SetMyName method)

 	(aiogram.methods.set_my_short_description.SetMyShortDescription method)

 	(aiogram.methods.set_passport_data_errors.SetPassportDataErrors method)

 	(aiogram.methods.set_sticker_emoji_list.SetStickerEmojiList method)

 	(aiogram.methods.set_sticker_keywords.SetStickerKeywords method)

 	(aiogram.methods.set_sticker_mask_position.SetStickerMaskPosition method)

 	(aiogram.methods.set_sticker_position_in_set.SetStickerPositionInSet method)

 	(aiogram.methods.set_sticker_set_thumbnail.SetStickerSetThumbnail method)

 	(aiogram.methods.set_sticker_set_title.SetStickerSetTitle method)

 	(aiogram.methods.set_webhook.SetWebhook method)

 	(aiogram.methods.stop_message_live_location.StopMessageLiveLocation method)

 	(aiogram.methods.stop_poll.StopPoll method)

 	(aiogram.methods.unban_chat_member.UnbanChatMember method)

 	(aiogram.methods.unban_chat_sender_chat.UnbanChatSenderChat method)

 	(aiogram.methods.unhide_general_forum_topic.UnhideGeneralForumTopic method)

 	(aiogram.methods.unpin_all_chat_messages.UnpinAllChatMessages method)

 	(aiogram.methods.unpin_all_forum_topic_messages.UnpinAllForumTopicMessages method)

 	(aiogram.methods.unpin_all_general_forum_topic_messages.UnpinAllGeneralForumTopicMessages method)

 	(aiogram.methods.unpin_chat_message.UnpinChatMessage method)

 	(aiogram.methods.upload_sticker_file.UploadStickerFile method)

 	(aiogram.types.animation.Animation method)

 	(aiogram.types.audio.Audio method)

 	(aiogram.types.background_fill.BackgroundFill method)

 	(aiogram.types.background_fill_freeform_gradient.BackgroundFillFreeformGradient method)

 	(aiogram.types.background_fill_gradient.BackgroundFillGradient method)

 	(aiogram.types.background_fill_solid.BackgroundFillSolid method)

 	(aiogram.types.background_type.BackgroundType method)

 	(aiogram.types.background_type_chat_theme.BackgroundTypeChatTheme method)

 	(aiogram.types.background_type_fill.BackgroundTypeFill method)

 	(aiogram.types.background_type_pattern.BackgroundTypePattern method)

 	(aiogram.types.background_type_wallpaper.BackgroundTypeWallpaper method)

 	(aiogram.types.birthdate.Birthdate method)

 	(aiogram.types.bot_command.BotCommand method)

 	(aiogram.types.bot_command_scope.BotCommandScope method)

 	(aiogram.types.bot_command_scope_all_chat_administrators.BotCommandScopeAllChatAdministrators method)

 	(aiogram.types.bot_command_scope_all_group_chats.BotCommandScopeAllGroupChats method)

 	(aiogram.types.bot_command_scope_all_private_chats.BotCommandScopeAllPrivateChats method)

 	(aiogram.types.bot_command_scope_chat.BotCommandScopeChat method)

 	(aiogram.types.bot_command_scope_chat_administrators.BotCommandScopeChatAdministrators method)

 	(aiogram.types.bot_command_scope_chat_member.BotCommandScopeChatMember method)

 	(aiogram.types.bot_command_scope_default.BotCommandScopeDefault method)

 	(aiogram.types.bot_description.BotDescription method)

 	(aiogram.types.bot_name.BotName method)

 	(aiogram.types.bot_short_description.BotShortDescription method)

 	(aiogram.types.business_connection.BusinessConnection method)

 	(aiogram.types.business_intro.BusinessIntro method)

 	(aiogram.types.business_location.BusinessLocation method)

 	(aiogram.types.business_messages_deleted.BusinessMessagesDeleted method)

 	(aiogram.types.business_opening_hours.BusinessOpeningHours method)

 	(aiogram.types.business_opening_hours_interval.BusinessOpeningHoursInterval method)

 	(aiogram.types.callback_game.CallbackGame method)

 	(aiogram.types.callback_query.CallbackQuery method)

 	(aiogram.types.chat.Chat method)

 	(aiogram.types.chat_administrator_rights.ChatAdministratorRights method)

 	(aiogram.types.chat_background.ChatBackground method)

 	(aiogram.types.chat_boost.ChatBoost method)

 	(aiogram.types.chat_boost_added.ChatBoostAdded method)

 	(aiogram.types.chat_boost_removed.ChatBoostRemoved method)

 	(aiogram.types.chat_boost_source.ChatBoostSource method)

 	(aiogram.types.chat_boost_source_gift_code.ChatBoostSourceGiftCode method)

 	(aiogram.types.chat_boost_source_giveaway.ChatBoostSourceGiveaway method)

 	(aiogram.types.chat_boost_source_premium.ChatBoostSourcePremium method)

 	(aiogram.types.chat_boost_updated.ChatBoostUpdated method)

 	(aiogram.types.chat_full_info.ChatFullInfo method)

 	(aiogram.types.chat_invite_link.ChatInviteLink method)

 	(aiogram.types.chat_join_request.ChatJoinRequest method)

 	(aiogram.types.chat_location.ChatLocation method)

 	(aiogram.types.chat_member.ChatMember method)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator method)

 	(aiogram.types.chat_member_banned.ChatMemberBanned method)

 	(aiogram.types.chat_member_left.ChatMemberLeft method)

 	(aiogram.types.chat_member_member.ChatMemberMember method)

 	(aiogram.types.chat_member_owner.ChatMemberOwner method)

 	(aiogram.types.chat_member_restricted.ChatMemberRestricted method)

 	(aiogram.types.chat_member_updated.ChatMemberUpdated method)

 	(aiogram.types.chat_permissions.ChatPermissions method)

 	(aiogram.types.chat_photo.ChatPhoto method)

 	(aiogram.types.chat_shared.ChatShared method)

 	(aiogram.types.chosen_inline_result.ChosenInlineResult method)

 	(aiogram.types.contact.Contact method)

 	(aiogram.types.dice.Dice method)

 	(aiogram.types.document.Document method)

 	(aiogram.types.encrypted_credentials.EncryptedCredentials method)

 	(aiogram.types.encrypted_passport_element.EncryptedPassportElement method)

 	(aiogram.types.error_event.ErrorEvent method)

 	(aiogram.types.external_reply_info.ExternalReplyInfo method)

 	(aiogram.types.file.File method)

 	(aiogram.types.force_reply.ForceReply method)

 	(aiogram.types.forum_topic.ForumTopic method)

 	(aiogram.types.forum_topic_closed.ForumTopicClosed method)

 	(aiogram.types.forum_topic_created.ForumTopicCreated method)

 	(aiogram.types.forum_topic_edited.ForumTopicEdited method)

 	(aiogram.types.forum_topic_reopened.ForumTopicReopened method)

 	(aiogram.types.game.Game method)

 	(aiogram.types.game_high_score.GameHighScore method)

 	(aiogram.types.general_forum_topic_hidden.GeneralForumTopicHidden method)

 	(aiogram.types.general_forum_topic_unhidden.GeneralForumTopicUnhidden method)

 	(aiogram.types.giveaway.Giveaway method)

 	(aiogram.types.giveaway_completed.GiveawayCompleted method)

 	(aiogram.types.giveaway_created.GiveawayCreated method)

 	(aiogram.types.giveaway_winners.GiveawayWinners method)

 	(aiogram.types.inaccessible_message.InaccessibleMessage method)

 	(aiogram.types.inline_keyboard_button.InlineKeyboardButton method)

 	(aiogram.types.inline_keyboard_markup.InlineKeyboardMarkup method)

 	(aiogram.types.inline_query.InlineQuery method)

 	(aiogram.types.inline_query_result.InlineQueryResult method)

 	(aiogram.types.inline_query_result_article.InlineQueryResultArticle method)

 	(aiogram.types.inline_query_result_audio.InlineQueryResultAudio method)

 	(aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio method)

 	(aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument method)

 	(aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif method)

 	(aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif method)

 	(aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto method)

 	(aiogram.types.inline_query_result_cached_sticker.InlineQueryResultCachedSticker method)

 	(aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo method)

 	(aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice method)

 	(aiogram.types.inline_query_result_contact.InlineQueryResultContact method)

 	(aiogram.types.inline_query_result_document.InlineQueryResultDocument method)

 	(aiogram.types.inline_query_result_game.InlineQueryResultGame method)

 	(aiogram.types.inline_query_result_gif.InlineQueryResultGif method)

 	(aiogram.types.inline_query_result_location.InlineQueryResultLocation method)

 	(aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif method)

 	(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto method)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue method)

 	(aiogram.types.inline_query_result_video.InlineQueryResultVideo method)

 	(aiogram.types.inline_query_result_voice.InlineQueryResultVoice method)

 	(aiogram.types.inline_query_results_button.InlineQueryResultsButton method)

 	(aiogram.types.input_contact_message_content.InputContactMessageContent method)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent method)

 	(aiogram.types.input_location_message_content.InputLocationMessageContent method)

 	(aiogram.types.input_media.InputMedia method)

 	(aiogram.types.input_media_animation.InputMediaAnimation method)

 	(aiogram.types.input_media_audio.InputMediaAudio method)

 	(aiogram.types.input_media_document.InputMediaDocument method)

 	(aiogram.types.input_media_photo.InputMediaPhoto method)

 	(aiogram.types.input_media_video.InputMediaVideo method)

 	(aiogram.types.input_message_content.InputMessageContent method)

 	(aiogram.types.input_poll_option.InputPollOption method)

 	(aiogram.types.input_sticker.InputSticker method)

 	(aiogram.types.input_text_message_content.InputTextMessageContent method)

 	(aiogram.types.input_venue_message_content.InputVenueMessageContent method)

 	(aiogram.types.invoice.Invoice method)

 	(aiogram.types.keyboard_button.KeyboardButton method)

 	(aiogram.types.keyboard_button_poll_type.KeyboardButtonPollType method)

 	(aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat method)

 	(aiogram.types.keyboard_button_request_user.KeyboardButtonRequestUser method)

 	(aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers method)

 	(aiogram.types.labeled_price.LabeledPrice method)

 	(aiogram.types.link_preview_options.LinkPreviewOptions method)

 	(aiogram.types.location.Location method)

 	(aiogram.types.login_url.LoginUrl method)

 	(aiogram.types.mask_position.MaskPosition method)

 	(aiogram.types.maybe_inaccessible_message.MaybeInaccessibleMessage method)

 	(aiogram.types.menu_button.MenuButton method)

 	(aiogram.types.menu_button_commands.MenuButtonCommands method)

 	(aiogram.types.menu_button_default.MenuButtonDefault method)

 	(aiogram.types.menu_button_web_app.MenuButtonWebApp method)

 	(aiogram.types.message.Message method)

 	(aiogram.types.message_auto_delete_timer_changed.MessageAutoDeleteTimerChanged method)

 	(aiogram.types.message_entity.MessageEntity method)

 	(aiogram.types.message_id.MessageId method)

 	(aiogram.types.message_origin.MessageOrigin method)

 	(aiogram.types.message_origin_channel.MessageOriginChannel method)

 	(aiogram.types.message_origin_chat.MessageOriginChat method)

 	(aiogram.types.message_origin_hidden_user.MessageOriginHiddenUser method)

 	(aiogram.types.message_origin_user.MessageOriginUser method)

 	(aiogram.types.message_reaction_count_updated.MessageReactionCountUpdated method)

 	(aiogram.types.message_reaction_updated.MessageReactionUpdated method)

 	(aiogram.types.order_info.OrderInfo method)

 	(aiogram.types.passport_data.PassportData method)

 	(aiogram.types.passport_element_error.PassportElementError method)

 	(aiogram.types.passport_element_error_data_field.PassportElementErrorDataField method)

 	(aiogram.types.passport_element_error_file.PassportElementErrorFile method)

 	(aiogram.types.passport_element_error_files.PassportElementErrorFiles method)

 	(aiogram.types.passport_element_error_front_side.PassportElementErrorFrontSide method)

 	(aiogram.types.passport_element_error_reverse_side.PassportElementErrorReverseSide method)

 	(aiogram.types.passport_element_error_selfie.PassportElementErrorSelfie method)

 	(aiogram.types.passport_element_error_translation_file.PassportElementErrorTranslationFile method)

 	(aiogram.types.passport_element_error_translation_files.PassportElementErrorTranslationFiles method)

 	(aiogram.types.passport_element_error_unspecified.PassportElementErrorUnspecified method)

 	(aiogram.types.passport_file.PassportFile method)

 	(aiogram.types.photo_size.PhotoSize method)

 	(aiogram.types.poll.Poll method)

 	(aiogram.types.poll_answer.PollAnswer method)

 	(aiogram.types.poll_option.PollOption method)

 	(aiogram.types.pre_checkout_query.PreCheckoutQuery method)

 	(aiogram.types.proximity_alert_triggered.ProximityAlertTriggered method)

 	(aiogram.types.reaction_count.ReactionCount method)

 	(aiogram.types.reaction_type.ReactionType method)

 	(aiogram.types.reaction_type_custom_emoji.ReactionTypeCustomEmoji method)

 	(aiogram.types.reaction_type_emoji.ReactionTypeEmoji method)

 	(aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup method)

 	(aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove method)

 	(aiogram.types.reply_parameters.ReplyParameters method)

 	(aiogram.types.response_parameters.ResponseParameters method)

 	(aiogram.types.sent_web_app_message.SentWebAppMessage method)

 	(aiogram.types.shared_user.SharedUser method)

 	(aiogram.types.shipping_address.ShippingAddress method)

 	(aiogram.types.shipping_option.ShippingOption method)

 	(aiogram.types.shipping_query.ShippingQuery method)

 	(aiogram.types.sticker.Sticker method)

 	(aiogram.types.sticker_set.StickerSet method)

 	(aiogram.types.story.Story method)

 	(aiogram.types.successful_payment.SuccessfulPayment method)

 	(aiogram.types.switch_inline_query_chosen_chat.SwitchInlineQueryChosenChat method)

 	(aiogram.types.text_quote.TextQuote method)

 	(aiogram.types.update.Update method)

 	(aiogram.types.user.User method)

 	(aiogram.types.user_chat_boosts.UserChatBoosts method)

 	(aiogram.types.user_profile_photos.UserProfilePhotos method)

 	(aiogram.types.user_shared.UserShared method)

 	(aiogram.types.users_shared.UsersShared method)

 	(aiogram.types.venue.Venue method)

 	(aiogram.types.video.Video method)

 	(aiogram.types.video_chat_ended.VideoChatEnded method)

 	(aiogram.types.video_chat_participants_invited.VideoChatParticipantsInvited method)

 	(aiogram.types.video_chat_scheduled.VideoChatScheduled method)

 	(aiogram.types.video_chat_started.VideoChatStarted method)

 	(aiogram.types.video_note.VideoNote method)

 	(aiogram.types.voice.Voice method)

 	(aiogram.types.web_app_data.WebAppData method)

 	(aiogram.types.web_app_info.WebAppInfo method)

 	(aiogram.types.webhook_info.WebhookInfo method)

 	(aiogram.types.write_access_allowed.WriteAccessAllowed method)

 	(aiogram.utils.web_app.WebAppChat method)

 	(aiogram.utils.web_app.WebAppInitData method)

 	(aiogram.utils.web_app.WebAppUser method)

 	
 	
 module

 	aiogram.dispatcher.flags

 	aiogram.enums.bot_command_scope_type

 	aiogram.enums.chat_action

 	aiogram.enums.chat_boost_source_type

 	aiogram.enums.chat_member_status

 	aiogram.enums.chat_type

 	aiogram.enums.content_type

 	aiogram.enums.currency

 	aiogram.enums.dice_emoji

 	aiogram.enums.encrypted_passport_element

 	aiogram.enums.inline_query_result_type

 	aiogram.enums.input_media_type

 	aiogram.enums.keyboard_button_poll_type_type

 	aiogram.enums.mask_position_point

 	aiogram.enums.menu_button_type

 	aiogram.enums.message_entity_type

 	aiogram.enums.message_origin_type

 	aiogram.enums.parse_mode

 	aiogram.enums.passport_element_error_type

 	aiogram.enums.poll_type

 	aiogram.enums.reaction_type_type

 	aiogram.enums.sticker_format

 	aiogram.enums.sticker_type

 	aiogram.enums.topic_icon_color

 	aiogram.enums.update_type

 	aiogram.exceptions

 	aiogram.handlers.callback_query

 	aiogram.methods.add_sticker_to_set

 	aiogram.methods.answer_callback_query

 	aiogram.methods.answer_inline_query

 	aiogram.methods.answer_pre_checkout_query

 	aiogram.methods.answer_shipping_query

 	aiogram.methods.answer_web_app_query

 	aiogram.methods.approve_chat_join_request

 	aiogram.methods.ban_chat_member

 	aiogram.methods.ban_chat_sender_chat

 	aiogram.methods.close

 	aiogram.methods.close_forum_topic

 	aiogram.methods.close_general_forum_topic

 	aiogram.methods.copy_message

 	aiogram.methods.copy_messages

 	aiogram.methods.create_chat_invite_link

 	aiogram.methods.create_forum_topic

 	aiogram.methods.create_invoice_link

 	aiogram.methods.create_new_sticker_set

 	aiogram.methods.decline_chat_join_request

 	aiogram.methods.delete_chat_photo

 	aiogram.methods.delete_chat_sticker_set

 	aiogram.methods.delete_forum_topic

 	aiogram.methods.delete_message

 	aiogram.methods.delete_messages

 	aiogram.methods.delete_my_commands

 	aiogram.methods.delete_sticker_from_set

 	aiogram.methods.delete_sticker_set

 	aiogram.methods.delete_webhook

 	aiogram.methods.edit_chat_invite_link

 	aiogram.methods.edit_forum_topic

 	aiogram.methods.edit_general_forum_topic

 	aiogram.methods.edit_message_caption

 	aiogram.methods.edit_message_live_location

 	aiogram.methods.edit_message_media

 	aiogram.methods.edit_message_reply_markup

 	aiogram.methods.edit_message_text

 	aiogram.methods.export_chat_invite_link

 	aiogram.methods.forward_message

 	aiogram.methods.forward_messages

 	aiogram.methods.get_business_connection

 	aiogram.methods.get_chat

 	aiogram.methods.get_chat_administrators

 	aiogram.methods.get_chat_member

 	aiogram.methods.get_chat_member_count

 	aiogram.methods.get_chat_menu_button

 	aiogram.methods.get_custom_emoji_stickers

 	aiogram.methods.get_file

 	aiogram.methods.get_forum_topic_icon_stickers

 	aiogram.methods.get_game_high_scores

 	aiogram.methods.get_me

 	aiogram.methods.get_my_commands

 	aiogram.methods.get_my_default_administrator_rights

 	aiogram.methods.get_my_description

 	aiogram.methods.get_my_name

 	aiogram.methods.get_my_short_description

 	aiogram.methods.get_sticker_set

 	aiogram.methods.get_updates

 	aiogram.methods.get_user_chat_boosts

 	aiogram.methods.get_user_profile_photos

 	aiogram.methods.get_webhook_info

 	aiogram.methods.hide_general_forum_topic

 	aiogram.methods.leave_chat

 	aiogram.methods.log_out

 	aiogram.methods.pin_chat_message

 	aiogram.methods.promote_chat_member

 	aiogram.methods.reopen_forum_topic

 	aiogram.methods.reopen_general_forum_topic

 	aiogram.methods.replace_sticker_in_set

 	aiogram.methods.restrict_chat_member

 	aiogram.methods.revoke_chat_invite_link

 	aiogram.methods.send_animation

 	aiogram.methods.send_audio

 	aiogram.methods.send_chat_action

 	aiogram.methods.send_contact

 	aiogram.methods.send_dice

 	aiogram.methods.send_document

 	aiogram.methods.send_game

 	aiogram.methods.send_invoice

 	aiogram.methods.send_location

 	aiogram.methods.send_media_group

 	aiogram.methods.send_message

 	aiogram.methods.send_photo

 	aiogram.methods.send_poll

 	aiogram.methods.send_sticker

 	aiogram.methods.send_venue

 	aiogram.methods.send_video

 	aiogram.methods.send_video_note

 	aiogram.methods.send_voice

 	aiogram.methods.set_chat_administrator_custom_title

 	aiogram.methods.set_chat_description

 	aiogram.methods.set_chat_menu_button

 	aiogram.methods.set_chat_permissions

 	aiogram.methods.set_chat_photo

 	aiogram.methods.set_chat_sticker_set

 	aiogram.methods.set_chat_title

 	aiogram.methods.set_custom_emoji_sticker_set_thumbnail

 	aiogram.methods.set_game_score

 	aiogram.methods.set_message_reaction

 	aiogram.methods.set_my_commands

 	aiogram.methods.set_my_default_administrator_rights

 	aiogram.methods.set_my_description

 	aiogram.methods.set_my_name

 	aiogram.methods.set_my_short_description

 	aiogram.methods.set_passport_data_errors

 	aiogram.methods.set_sticker_emoji_list

 	aiogram.methods.set_sticker_keywords

 	aiogram.methods.set_sticker_mask_position

 	aiogram.methods.set_sticker_position_in_set

 	aiogram.methods.set_sticker_set_thumbnail

 	aiogram.methods.set_sticker_set_title

 	aiogram.methods.set_webhook

 	aiogram.methods.stop_message_live_location

 	aiogram.methods.stop_poll

 	aiogram.methods.unban_chat_member

 	aiogram.methods.unban_chat_sender_chat

 	aiogram.methods.unhide_general_forum_topic

 	aiogram.methods.unpin_all_chat_messages

 	aiogram.methods.unpin_all_forum_topic_messages

 	aiogram.methods.unpin_all_general_forum_topic_messages

 	aiogram.methods.unpin_chat_message

 	aiogram.methods.upload_sticker_file

 	aiogram.types.animation

 	aiogram.types.audio

 	aiogram.types.background_fill

 	aiogram.types.background_fill_freeform_gradient

 	aiogram.types.background_fill_gradient

 	aiogram.types.background_fill_solid

 	aiogram.types.background_type

 	aiogram.types.background_type_chat_theme

 	aiogram.types.background_type_fill

 	aiogram.types.background_type_pattern

 	aiogram.types.background_type_wallpaper

 	aiogram.types.birthdate

 	aiogram.types.bot_command

 	aiogram.types.bot_command_scope

 	aiogram.types.bot_command_scope_all_chat_administrators

 	aiogram.types.bot_command_scope_all_group_chats

 	aiogram.types.bot_command_scope_all_private_chats

 	aiogram.types.bot_command_scope_chat

 	aiogram.types.bot_command_scope_chat_administrators

 	aiogram.types.bot_command_scope_chat_member

 	aiogram.types.bot_command_scope_default

 	aiogram.types.bot_description

 	aiogram.types.bot_name

 	aiogram.types.bot_short_description

 	aiogram.types.business_connection

 	aiogram.types.business_intro

 	aiogram.types.business_location

 	aiogram.types.business_messages_deleted

 	aiogram.types.business_opening_hours

 	aiogram.types.business_opening_hours_interval

 	aiogram.types.callback_game

 	aiogram.types.callback_query

 	aiogram.types.chat

 	aiogram.types.chat_administrator_rights

 	aiogram.types.chat_background

 	aiogram.types.chat_boost

 	aiogram.types.chat_boost_added

 	aiogram.types.chat_boost_removed

 	aiogram.types.chat_boost_source

 	aiogram.types.chat_boost_source_gift_code

 	aiogram.types.chat_boost_source_giveaway

 	aiogram.types.chat_boost_source_premium

 	aiogram.types.chat_boost_updated

 	aiogram.types.chat_full_info

 	aiogram.types.chat_invite_link

 	aiogram.types.chat_join_request

 	aiogram.types.chat_location

 	aiogram.types.chat_member

 	aiogram.types.chat_member_administrator

 	aiogram.types.chat_member_banned

 	aiogram.types.chat_member_left

 	aiogram.types.chat_member_member

 	aiogram.types.chat_member_owner

 	aiogram.types.chat_member_restricted

 	aiogram.types.chat_member_updated

 	aiogram.types.chat_permissions

 	aiogram.types.chat_photo

 	aiogram.types.chat_shared

 	aiogram.types.chosen_inline_result

 	aiogram.types.contact

 	aiogram.types.dice

 	aiogram.types.document

 	aiogram.types.encrypted_credentials

 	aiogram.types.encrypted_passport_element

 	aiogram.types.error_event

 	aiogram.types.external_reply_info

 	aiogram.types.file

 	aiogram.types.force_reply

 	aiogram.types.forum_topic

 	aiogram.types.forum_topic_closed

 	aiogram.types.forum_topic_created

 	aiogram.types.forum_topic_edited

 	aiogram.types.forum_topic_reopened

 	aiogram.types.game

 	aiogram.types.game_high_score

 	aiogram.types.general_forum_topic_hidden

 	aiogram.types.general_forum_topic_unhidden

 	aiogram.types.giveaway

 	aiogram.types.giveaway_completed

 	aiogram.types.giveaway_created

 	aiogram.types.giveaway_winners

 	aiogram.types.inaccessible_message

 	aiogram.types.inline_keyboard_button

 	aiogram.types.inline_keyboard_markup

 	aiogram.types.inline_query

 	aiogram.types.inline_query_result

 	aiogram.types.inline_query_result_article

 	aiogram.types.inline_query_result_audio

 	aiogram.types.inline_query_result_cached_audio

 	aiogram.types.inline_query_result_cached_document

 	aiogram.types.inline_query_result_cached_gif

 	aiogram.types.inline_query_result_cached_mpeg4_gif

 	aiogram.types.inline_query_result_cached_photo

 	aiogram.types.inline_query_result_cached_sticker

 	aiogram.types.inline_query_result_cached_video

 	aiogram.types.inline_query_result_cached_voice

 	aiogram.types.inline_query_result_contact

 	aiogram.types.inline_query_result_document

 	aiogram.types.inline_query_result_game

 	aiogram.types.inline_query_result_gif

 	aiogram.types.inline_query_result_location

 	aiogram.types.inline_query_result_mpeg4_gif

 	aiogram.types.inline_query_result_photo

 	aiogram.types.inline_query_result_venue

 	aiogram.types.inline_query_result_video

 	aiogram.types.inline_query_result_voice

 	aiogram.types.inline_query_results_button

 	aiogram.types.input_contact_message_content

 	aiogram.types.input_file

 	aiogram.types.input_invoice_message_content

 	aiogram.types.input_location_message_content

 	aiogram.types.input_media

 	aiogram.types.input_media_animation

 	aiogram.types.input_media_audio

 	aiogram.types.input_media_document

 	aiogram.types.input_media_photo

 	aiogram.types.input_media_video

 	aiogram.types.input_message_content

 	aiogram.types.input_poll_option

 	aiogram.types.input_sticker

 	aiogram.types.input_text_message_content

 	aiogram.types.input_venue_message_content

 	aiogram.types.invoice

 	aiogram.types.keyboard_button

 	aiogram.types.keyboard_button_poll_type

 	aiogram.types.keyboard_button_request_chat

 	aiogram.types.keyboard_button_request_user

 	aiogram.types.keyboard_button_request_users

 	aiogram.types.labeled_price

 	aiogram.types.link_preview_options

 	aiogram.types.location

 	aiogram.types.login_url

 	aiogram.types.mask_position

 	aiogram.types.maybe_inaccessible_message

 	aiogram.types.menu_button

 	aiogram.types.menu_button_commands

 	aiogram.types.menu_button_default

 	aiogram.types.menu_button_web_app

 	aiogram.types.message

 	aiogram.types.message_auto_delete_timer_changed

 	aiogram.types.message_entity

 	aiogram.types.message_id

 	aiogram.types.message_origin

 	aiogram.types.message_origin_channel

 	aiogram.types.message_origin_chat

 	aiogram.types.message_origin_hidden_user

 	aiogram.types.message_origin_user

 	aiogram.types.message_reaction_count_updated

 	aiogram.types.message_reaction_updated

 	aiogram.types.order_info

 	aiogram.types.passport_data

 	aiogram.types.passport_element_error

 	aiogram.types.passport_element_error_data_field

 	aiogram.types.passport_element_error_file

 	aiogram.types.passport_element_error_files

 	aiogram.types.passport_element_error_front_side

 	aiogram.types.passport_element_error_reverse_side

 	aiogram.types.passport_element_error_selfie

 	aiogram.types.passport_element_error_translation_file

 	aiogram.types.passport_element_error_translation_files

 	aiogram.types.passport_element_error_unspecified

 	aiogram.types.passport_file

 	aiogram.types.photo_size

 	aiogram.types.poll

 	aiogram.types.poll_answer

 	aiogram.types.poll_option

 	aiogram.types.pre_checkout_query

 	aiogram.types.proximity_alert_triggered

 	aiogram.types.reaction_count

 	aiogram.types.reaction_type

 	aiogram.types.reaction_type_custom_emoji

 	aiogram.types.reaction_type_emoji

 	aiogram.types.reply_keyboard_markup

 	aiogram.types.reply_keyboard_remove

 	aiogram.types.reply_parameters

 	aiogram.types.response_parameters

 	aiogram.types.sent_web_app_message

 	aiogram.types.shared_user

 	aiogram.types.shipping_address

 	aiogram.types.shipping_option

 	aiogram.types.shipping_query

 	aiogram.types.sticker

 	aiogram.types.sticker_set

 	aiogram.types.story

 	aiogram.types.successful_payment

 	aiogram.types.switch_inline_query_chosen_chat

 	aiogram.types.text_quote

 	aiogram.types.update

 	aiogram.types.user

 	aiogram.types.user_chat_boosts

 	aiogram.types.user_profile_photos

 	aiogram.types.user_shared

 	aiogram.types.users_shared

 	aiogram.types.venue

 	aiogram.types.video

 	aiogram.types.video_chat_ended

 	aiogram.types.video_chat_participants_invited

 	aiogram.types.video_chat_scheduled

 	aiogram.types.video_chat_started

 	aiogram.types.video_note

 	aiogram.types.voice

 	aiogram.types.web_app_data

 	aiogram.types.web_app_info

 	aiogram.types.webhook_info

 	aiogram.types.write_access_allowed

 	month (aiogram.types.birthdate.Birthdate attribute)

 	MOUTH (aiogram.enums.mask_position_point.MaskPositionPoint attribute)

 	mpeg4_duration (aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif attribute)

 	mpeg4_file_id (aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif attribute)

 	MPEG4_GIF (aiogram.enums.inline_query_result_type.InlineQueryResultType attribute)

 	mpeg4_height (aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif attribute)

 	mpeg4_url (aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif attribute)

 	mpeg4_width (aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif attribute)

 	MUR (aiogram.enums.currency.Currency attribute)

 	MVR (aiogram.enums.currency.Currency attribute)

 	MXN (aiogram.enums.currency.Currency attribute)

 	MY_CHAT_MEMBER (aiogram.enums.update_type.UpdateType attribute)

 	my_chat_member (aiogram.types.update.Update attribute)

 	MYR (aiogram.enums.currency.Currency attribute)

 	MZN (aiogram.enums.currency.Currency attribute)

N

 	
 	name (aiogram.methods.add_sticker_to_set.AddStickerToSet attribute)

 	(aiogram.methods.create_chat_invite_link.CreateChatInviteLink attribute)

 	(aiogram.methods.create_forum_topic.CreateForumTopic attribute)

 	(aiogram.methods.create_new_sticker_set.CreateNewStickerSet attribute)

 	(aiogram.methods.delete_sticker_set.DeleteStickerSet attribute)

 	(aiogram.methods.edit_chat_invite_link.EditChatInviteLink attribute)

 	(aiogram.methods.edit_forum_topic.EditForumTopic attribute)

 	(aiogram.methods.edit_general_forum_topic.EditGeneralForumTopic attribute)

 	(aiogram.methods.get_sticker_set.GetStickerSet attribute)

 	(aiogram.methods.replace_sticker_in_set.ReplaceStickerInSet attribute)

 	(aiogram.methods.set_custom_emoji_sticker_set_thumbnail.SetCustomEmojiStickerSetThumbnail attribute)

 	(aiogram.methods.set_my_name.SetMyName attribute)

 	(aiogram.methods.set_sticker_set_thumbnail.SetStickerSetThumbnail attribute)

 	(aiogram.methods.set_sticker_set_title.SetStickerSetTitle attribute)

 	(aiogram.types.bot_name.BotName attribute)

 	(aiogram.types.chat_invite_link.ChatInviteLink attribute)

 	(aiogram.types.forum_topic.ForumTopic attribute)

 	(aiogram.types.forum_topic_created.ForumTopicCreated attribute)

 	(aiogram.types.forum_topic_edited.ForumTopicEdited attribute)

 	(aiogram.types.order_info.OrderInfo attribute)

 	(aiogram.types.sticker_set.StickerSet attribute)

 	need_email (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	
 	need_name (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	need_phone_number (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	need_shipping_address (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	needs_repainting (aiogram.methods.create_new_sticker_set.CreateNewStickerSet attribute)

 	(aiogram.types.sticker.Sticker attribute)

 	new_chat_member (aiogram.types.chat_member_updated.ChatMemberUpdated attribute)

 	NEW_CHAT_MEMBERS (aiogram.enums.content_type.ContentType attribute)

 	new_chat_members (aiogram.types.message.Message attribute)

 	NEW_CHAT_PHOTO (aiogram.enums.content_type.ContentType attribute)

 	new_chat_photo (aiogram.types.message.Message attribute)

 	NEW_CHAT_TITLE (aiogram.enums.content_type.ContentType attribute)

 	new_chat_title (aiogram.types.message.Message attribute)

 	new_reaction (aiogram.types.message_reaction_updated.MessageReactionUpdated attribute)

 	next_offset (aiogram.methods.answer_inline_query.AnswerInlineQuery attribute)

 	NGN (aiogram.enums.currency.Currency attribute)

 	NIO (aiogram.enums.currency.Currency attribute)

 	NOK (aiogram.enums.currency.Currency attribute)

 	NPR (aiogram.enums.currency.Currency attribute)

 	NZD (aiogram.enums.currency.Currency attribute)

O

 	
 	offset (aiogram.methods.get_updates.GetUpdates attribute)

 	(aiogram.methods.get_user_profile_photos.GetUserProfilePhotos attribute)

 	(aiogram.types.inline_query.InlineQuery attribute)

 	(aiogram.types.message_entity.MessageEntity attribute)

 	ok (aiogram.methods.answer_pre_checkout_query.AnswerPreCheckoutQuery attribute)

 	(aiogram.methods.answer_shipping_query.AnswerShippingQuery attribute)

 	old_chat_member (aiogram.types.chat_member_updated.ChatMemberUpdated attribute)

 	old_reaction (aiogram.types.message_reaction_updated.MessageReactionUpdated attribute)

 	old_sticker (aiogram.methods.replace_sticker_in_set.ReplaceStickerInSet attribute)

 	one_time_keyboard (aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup attribute)

 	only_if_banned (aiogram.methods.unban_chat_member.UnbanChatMember attribute)

 	only_new_members (aiogram.types.giveaway.Giveaway attribute)

 	(aiogram.types.giveaway_winners.GiveawayWinners attribute)

 	
 	open_period (aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.types.poll.Poll attribute)

 	opening_hours (aiogram.types.business_opening_hours.BusinessOpeningHours attribute)

 	opening_minute (aiogram.types.business_opening_hours_interval.BusinessOpeningHoursInterval attribute)

 	option_ids (aiogram.types.poll_answer.PollAnswer attribute)

 	options (aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.types.poll.Poll attribute)

 	order_info (aiogram.types.pre_checkout_query.PreCheckoutQuery attribute)

 	(aiogram.types.successful_payment.SuccessfulPayment attribute)

 	OrderInfo (class in aiogram.types.order_info)

 	origin (aiogram.types.external_reply_info.ExternalReplyInfo attribute)

P

 	
 	PAB (aiogram.enums.currency.Currency attribute)

 	pack() (aiogram.filters.callback_data.CallbackData method)

 	parse_mode (aiogram.methods.copy_message.CopyMessage attribute)

 	(aiogram.methods.edit_message_caption.EditMessageCaption attribute)

 	(aiogram.methods.edit_message_text.EditMessageText attribute)

 	(aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.methods.send_document.SendDocument attribute)

 	(aiogram.methods.send_message.SendMessage attribute)

 	(aiogram.methods.send_photo.SendPhoto attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.methods.send_voice.SendVoice attribute)

 	(aiogram.types.inline_query_result_audio.InlineQueryResultAudio attribute)

 	(aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio attribute)

 	(aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument attribute)

 	(aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif attribute)

 	(aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto attribute)

 	(aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo attribute)

 	(aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice attribute)

 	(aiogram.types.inline_query_result_document.InlineQueryResultDocument attribute)

 	(aiogram.types.inline_query_result_gif.InlineQueryResultGif attribute)

 	(aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto attribute)

 	(aiogram.types.inline_query_result_video.InlineQueryResultVideo attribute)

 	(aiogram.types.inline_query_result_voice.InlineQueryResultVoice attribute)

 	(aiogram.types.input_media_animation.InputMediaAnimation attribute)

 	(aiogram.types.input_media_audio.InputMediaAudio attribute)

 	(aiogram.types.input_media_document.InputMediaDocument attribute)

 	(aiogram.types.input_media_photo.InputMediaPhoto attribute)

 	(aiogram.types.input_media_video.InputMediaVideo attribute)

 	(aiogram.types.input_text_message_content.InputTextMessageContent attribute)

 	parse_webapp_init_data() (in module aiogram.utils.web_app)

 	ParseMode (class in aiogram.enums.parse_mode)

 	PASSPORT (aiogram.enums.encrypted_passport_element.EncryptedPassportElement attribute)

 	PASSPORT_DATA (aiogram.enums.content_type.ContentType attribute)

 	passport_data (aiogram.types.message.Message attribute)

 	PASSPORT_REGISTRATION (aiogram.enums.encrypted_passport_element.EncryptedPassportElement attribute)

 	PassportData (class in aiogram.types.passport_data)

 	PassportElementError (class in aiogram.types.passport_element_error)

 	PassportElementErrorDataField (class in aiogram.types.passport_element_error_data_field)

 	PassportElementErrorFile (class in aiogram.types.passport_element_error_file)

 	PassportElementErrorFiles (class in aiogram.types.passport_element_error_files)

 	PassportElementErrorFrontSide (class in aiogram.types.passport_element_error_front_side)

 	PassportElementErrorReverseSide (class in aiogram.types.passport_element_error_reverse_side)

 	PassportElementErrorSelfie (class in aiogram.types.passport_element_error_selfie)

 	PassportElementErrorTranslationFile (class in aiogram.types.passport_element_error_translation_file)

 	PassportElementErrorTranslationFiles (class in aiogram.types.passport_element_error_translation_files)

 	PassportElementErrorType (class in aiogram.enums.passport_element_error_type)

 	PassportElementErrorUnspecified (class in aiogram.types.passport_element_error_unspecified)

 	PassportFile (class in aiogram.types.passport_file)

 	pattern (aiogram.filters.exception.ExceptionMessageFilter attribute)

 	pay (aiogram.types.inline_keyboard_button.InlineKeyboardButton attribute)

 	payload (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	PEN (aiogram.enums.currency.Currency attribute)

 	pending_join_request_count (aiogram.types.chat_invite_link.ChatInviteLink attribute)

 	pending_update_count (aiogram.types.webhook_info.WebhookInfo attribute)

 	performer (aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.types.audio.Audio attribute)

 	(aiogram.types.inline_query_result_audio.InlineQueryResultAudio attribute)

 	(aiogram.types.input_media_audio.InputMediaAudio attribute)

 	permissions (aiogram.methods.restrict_chat_member.RestrictChatMember attribute)

 	(aiogram.methods.set_chat_permissions.SetChatPermissions attribute)

 	(aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	personal_chat (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	PERSONAL_DETAILS (aiogram.enums.encrypted_passport_element.EncryptedPassportElement attribute)

 	PHONE_NUMBER (aiogram.enums.encrypted_passport_element.EncryptedPassportElement attribute)

 	(aiogram.enums.message_entity_type.MessageEntityType attribute)

 	phone_number (aiogram.methods.send_contact.SendContact attribute)

 	(aiogram.types.contact.Contact attribute)

 	(aiogram.types.encrypted_passport_element.EncryptedPassportElement attribute)

 	(aiogram.types.inline_query_result_contact.InlineQueryResultContact attribute)

 	(aiogram.types.input_contact_message_content.InputContactMessageContent attribute)

 	(aiogram.types.order_info.OrderInfo attribute)

 	PhoneNumber (class in aiogram.utils.formatting)

 	PHOTO (aiogram.enums.content_type.ContentType attribute)

 	(aiogram.enums.inline_query_result_type.InlineQueryResultType attribute)

 	(aiogram.enums.input_media_type.InputMediaType attribute)

 	photo (aiogram.methods.send_photo.SendPhoto attribute)

 	(aiogram.methods.set_chat_photo.SetChatPhoto attribute)

 	(aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	(aiogram.types.chat_shared.ChatShared attribute)

 	(aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.game.Game attribute)

 	(aiogram.types.message.Message attribute)

 	(aiogram.types.shared_user.SharedUser attribute)

 	photo_file_id (aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto attribute)

 	photo_height (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	photo_size (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	photo_url (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	(aiogram.utils.web_app.WebAppChat attribute)

 	(aiogram.utils.web_app.WebAppUser attribute)

 	
 	photo_width (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	photos (aiogram.types.user_profile_photos.UserProfilePhotos attribute)

 	PhotoSize (class in aiogram.types.photo_size)

 	PHP (aiogram.enums.currency.Currency attribute)

 	pin() (aiogram.types.message.Message method)

 	pin_message() (aiogram.types.chat.Chat method)

 	PinChatMessage (class in aiogram.methods.pin_chat_message)

 	PINNED_MESSAGE (aiogram.enums.content_type.ContentType attribute)

 	pinned_message (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	(aiogram.types.message.Message attribute)

 	PKR (aiogram.enums.currency.Currency attribute)

 	PLN (aiogram.enums.currency.Currency attribute)

 	point (aiogram.types.mask_position.MaskPosition attribute)

 	POLL (aiogram.enums.content_type.ContentType attribute)

 	(aiogram.enums.update_type.UpdateType attribute)

 	poll (aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.message.Message attribute)

 	(aiogram.types.update.Update attribute)

 	Poll (class in aiogram.types.poll)

 	POLL_ANSWER (aiogram.enums.update_type.UpdateType attribute)

 	poll_answer (aiogram.types.update.Update attribute)

 	poll_id (aiogram.types.poll_answer.PollAnswer attribute)

 	PollAnswer (class in aiogram.types.poll_answer)

 	PollOption (class in aiogram.types.poll_option)

 	PollType (class in aiogram.enums.poll_type)

 	position (aiogram.methods.set_sticker_position_in_set.SetStickerPositionInSet attribute)

 	(aiogram.types.game_high_score.GameHighScore attribute)

 	(aiogram.types.text_quote.TextQuote attribute)

 	post_code (aiogram.types.shipping_address.ShippingAddress attribute)

 	PRE (aiogram.enums.message_entity_type.MessageEntityType attribute)

 	Pre (class in aiogram.utils.formatting)

 	PRE_CHECKOUT_QUERY (aiogram.enums.update_type.UpdateType attribute)

 	pre_checkout_query (aiogram.types.update.Update attribute)

 	pre_checkout_query_id (aiogram.methods.answer_pre_checkout_query.AnswerPreCheckoutQuery attribute)

 	PreCheckoutQuery (class in aiogram.types.pre_checkout_query)

 	prefer_large_media (aiogram.types.link_preview_options.LinkPreviewOptions attribute)

 	prefer_small_media (aiogram.types.link_preview_options.LinkPreviewOptions attribute)

 	prefix (aiogram.filters.command.CommandObject attribute)

 	PREMIUM (aiogram.enums.chat_boost_source_type.ChatBoostSourceType attribute)

 	premium_animation (aiogram.types.sticker.Sticker attribute)

 	premium_subscription_month_count (aiogram.types.giveaway.Giveaway attribute)

 	(aiogram.types.giveaway_winners.GiveawayWinners attribute)

 	prepare_value() (aiogram.client.session.base.BaseSession method)

 	prices (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	(aiogram.types.shipping_option.ShippingOption attribute)

 	PRIVATE (aiogram.enums.chat_type.ChatType attribute)

 	prize_description (aiogram.types.giveaway.Giveaway attribute)

 	(aiogram.types.giveaway_winners.GiveawayWinners attribute)

 	profile_accent_color_id (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	profile_background_custom_emoji_id (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	promote() (aiogram.types.chat.Chat method)

 	PromoteChatMember (class in aiogram.methods.promote_chat_member)

 	protect_content (aiogram.methods.copy_message.CopyMessage attribute)

 	(aiogram.methods.copy_messages.CopyMessages attribute)

 	(aiogram.methods.forward_message.ForwardMessage attribute)

 	(aiogram.methods.forward_messages.ForwardMessages attribute)

 	(aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.methods.send_contact.SendContact attribute)

 	(aiogram.methods.send_dice.SendDice attribute)

 	(aiogram.methods.send_document.SendDocument attribute)

 	(aiogram.methods.send_game.SendGame attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.methods.send_location.SendLocation attribute)

 	(aiogram.methods.send_media_group.SendMediaGroup attribute)

 	(aiogram.methods.send_message.SendMessage attribute)

 	(aiogram.methods.send_photo.SendPhoto attribute)

 	(aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.methods.send_sticker.SendSticker attribute)

 	(aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.methods.send_video_note.SendVideoNote attribute)

 	(aiogram.methods.send_voice.SendVoice attribute)

 	provider_data (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	provider_payment_charge_id (aiogram.types.successful_payment.SuccessfulPayment attribute)

 	provider_token (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	proximity_alert_radius (aiogram.methods.edit_message_live_location.EditMessageLiveLocation attribute)

 	(aiogram.methods.send_location.SendLocation attribute)

 	(aiogram.types.inline_query_result_location.InlineQueryResultLocation attribute)

 	(aiogram.types.input_location_message_content.InputLocationMessageContent attribute)

 	(aiogram.types.location.Location attribute)

 	PROXIMITY_ALERT_TRIGGERED (aiogram.enums.content_type.ContentType attribute)

 	proximity_alert_triggered (aiogram.types.message.Message attribute)

 	ProximityAlertTriggered (class in aiogram.types.proximity_alert_triggered)

 	PYG (aiogram.enums.currency.Currency attribute)

 	
 Python Enhancement Proposals

 	PEP 484

 	PEP 492

Q

 	
 	QAR (aiogram.enums.currency.Currency attribute)

 	query (aiogram.types.chosen_inline_result.ChosenInlineResult attribute)

 	(aiogram.types.inline_query.InlineQuery attribute)

 	(aiogram.types.switch_inline_query_chosen_chat.SwitchInlineQueryChosenChat attribute)

 	query_id (aiogram.utils.web_app.WebAppInitData attribute)

 	question (aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.types.poll.Poll attribute)

 	question_entities (aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.types.poll.Poll attribute)

 	
 	question_parse_mode (aiogram.methods.send_poll.SendPoll attribute)

 	QUIZ (aiogram.enums.keyboard_button_poll_type_type.KeyboardButtonPollTypeType attribute)

 	(aiogram.enums.poll_type.PollType attribute)

 	quote (aiogram.types.message.Message attribute)

 	(aiogram.types.reply_parameters.ReplyParameters attribute)

 	quote_entities (aiogram.types.reply_parameters.ReplyParameters attribute)

 	quote_parse_mode (aiogram.types.reply_parameters.ReplyParameters attribute)

 	quote_position (aiogram.types.reply_parameters.ReplyParameters attribute)

R

 	
 	react() (aiogram.types.message.Message method)

 	reaction (aiogram.methods.set_message_reaction.SetMessageReaction attribute)

 	ReactionCount (class in aiogram.types.reaction_count)

 	reactions (aiogram.types.message_reaction_count_updated.MessageReactionCountUpdated attribute)

 	ReactionType (class in aiogram.types.reaction_type)

 	ReactionTypeCustomEmoji (class in aiogram.types.reaction_type_custom_emoji)

 	ReactionTypeEmoji (class in aiogram.types.reaction_type_emoji)

 	ReactionTypeType (class in aiogram.enums.reaction_type_type)

 	read() (aiogram.types.input_file.BufferedInputFile method)

 	(aiogram.types.input_file.FSInputFile method)

 	(aiogram.types.input_file.InputFile method)

 	(aiogram.types.input_file.URLInputFile method)

 	receiver (aiogram.utils.web_app.WebAppInitData attribute)

 	RECORD_VIDEO (aiogram.enums.chat_action.ChatAction attribute)

 	record_video() (aiogram.utils.chat_action.ChatActionSender class method)

 	RECORD_VIDEO_NOTE (aiogram.enums.chat_action.ChatAction attribute)

 	record_video_note() (aiogram.utils.chat_action.ChatActionSender class method)

 	RECORD_VOICE (aiogram.enums.chat_action.ChatAction attribute)

 	record_voice() (aiogram.utils.chat_action.ChatActionSender class method)

 	RED (aiogram.enums.topic_icon_color.TopicIconColor attribute)

 	RedisStorage (class in aiogram.fsm.storage.redis)

 	regexp_match (aiogram.filters.command.CommandObject attribute)

 	register() (aiogram.fsm.scene.SceneRegistry method)

 	(aiogram.webhook.aiohttp_server.BaseRequestHandler method)

 	(aiogram.webhook.aiohttp_server.SimpleRequestHandler method)

 	(aiogram.webhook.aiohttp_server.TokenBasedRequestHandler method)

 	REGULAR (aiogram.enums.keyboard_button_poll_type_type.KeyboardButtonPollTypeType attribute)

 	(aiogram.enums.poll_type.PollType attribute)

 	(aiogram.enums.sticker_type.StickerType attribute)

 	remove_caption (aiogram.methods.copy_messages.CopyMessages attribute)

 	remove_date (aiogram.types.chat_boost_removed.ChatBoostRemoved attribute)

 	remove_keyboard (aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove attribute)

 	REMOVED_CHAT_BOOST (aiogram.enums.update_type.UpdateType attribute)

 	removed_chat_boost (aiogram.types.update.Update attribute)

 	render() (aiogram.utils.formatting.Text method)

 	RENTAL_AGREEMENT (aiogram.enums.encrypted_passport_element.EncryptedPassportElement attribute)

 	ReopenForumTopic (class in aiogram.methods.reopen_forum_topic)

 	ReopenGeneralForumTopic (class in aiogram.methods.reopen_general_forum_topic)

 	ReplaceStickerInSet (class in aiogram.methods.replace_sticker_in_set)

 	reply() (aiogram.types.message.Message method)

 	reply_animation() (aiogram.types.message.Message method)

 	reply_audio() (aiogram.types.message.Message method)

 	reply_contact() (aiogram.types.message.Message method)

 	reply_dice() (aiogram.types.message.Message method)

 	reply_document() (aiogram.types.message.Message method)

 	reply_game() (aiogram.types.message.Message method)

 	reply_invoice() (aiogram.types.message.Message method)

 	reply_location() (aiogram.types.message.Message method)

 	reply_markup (aiogram.methods.copy_message.CopyMessage attribute)

 	(aiogram.methods.edit_message_caption.EditMessageCaption attribute)

 	(aiogram.methods.edit_message_live_location.EditMessageLiveLocation attribute)

 	(aiogram.methods.edit_message_media.EditMessageMedia attribute)

 	(aiogram.methods.edit_message_reply_markup.EditMessageReplyMarkup attribute)

 	(aiogram.methods.edit_message_text.EditMessageText attribute)

 	(aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.methods.send_contact.SendContact attribute)

 	(aiogram.methods.send_dice.SendDice attribute)

 	(aiogram.methods.send_document.SendDocument attribute)

 	(aiogram.methods.send_game.SendGame attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.methods.send_location.SendLocation attribute)

 	(aiogram.methods.send_message.SendMessage attribute)

 	(aiogram.methods.send_photo.SendPhoto attribute)

 	(aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.methods.send_sticker.SendSticker attribute)

 	(aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.methods.send_video_note.SendVideoNote attribute)

 	(aiogram.methods.send_voice.SendVoice attribute)

 	(aiogram.methods.stop_message_live_location.StopMessageLiveLocation attribute)

 	(aiogram.methods.stop_poll.StopPoll attribute)

 	(aiogram.types.inline_query_result_article.InlineQueryResultArticle attribute)

 	(aiogram.types.inline_query_result_audio.InlineQueryResultAudio attribute)

 	(aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio attribute)

 	(aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument attribute)

 	(aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif attribute)

 	(aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto attribute)

 	(aiogram.types.inline_query_result_cached_sticker.InlineQueryResultCachedSticker attribute)

 	(aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo attribute)

 	(aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice attribute)

 	(aiogram.types.inline_query_result_contact.InlineQueryResultContact attribute)

 	(aiogram.types.inline_query_result_document.InlineQueryResultDocument attribute)

 	(aiogram.types.inline_query_result_game.InlineQueryResultGame attribute)

 	(aiogram.types.inline_query_result_gif.InlineQueryResultGif attribute)

 	(aiogram.types.inline_query_result_location.InlineQueryResultLocation attribute)

 	(aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto attribute)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue attribute)

 	(aiogram.types.inline_query_result_video.InlineQueryResultVideo attribute)

 	(aiogram.types.inline_query_result_voice.InlineQueryResultVoice attribute)

 	(aiogram.types.message.Message attribute)

 	reply_media_group() (aiogram.types.message.Message method)

 	reply_parameters (aiogram.methods.copy_message.CopyMessage attribute)

 	(aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.methods.send_contact.SendContact attribute)

 	(aiogram.methods.send_dice.SendDice attribute)

 	(aiogram.methods.send_document.SendDocument attribute)

 	(aiogram.methods.send_game.SendGame attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.methods.send_location.SendLocation attribute)

 	(aiogram.methods.send_media_group.SendMediaGroup attribute)

 	(aiogram.methods.send_message.SendMessage attribute)

 	(aiogram.methods.send_photo.SendPhoto attribute)

 	(aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.methods.send_sticker.SendSticker attribute)

 	(aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.methods.send_video_note.SendVideoNote attribute)

 	(aiogram.methods.send_voice.SendVoice attribute)

 	
 	reply_photo() (aiogram.types.message.Message method)

 	reply_poll() (aiogram.types.message.Message method)

 	reply_sticker() (aiogram.types.message.Message method)

 	reply_to_message (aiogram.types.message.Message attribute)

 	reply_to_message_id (aiogram.methods.copy_message.CopyMessage attribute)

 	(aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.methods.send_contact.SendContact attribute)

 	(aiogram.methods.send_dice.SendDice attribute)

 	(aiogram.methods.send_document.SendDocument attribute)

 	(aiogram.methods.send_game.SendGame attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.methods.send_location.SendLocation attribute)

 	(aiogram.methods.send_media_group.SendMediaGroup attribute)

 	(aiogram.methods.send_message.SendMessage attribute)

 	(aiogram.methods.send_photo.SendPhoto attribute)

 	(aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.methods.send_sticker.SendSticker attribute)

 	(aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.methods.send_video_note.SendVideoNote attribute)

 	(aiogram.methods.send_voice.SendVoice attribute)

 	reply_to_story (aiogram.types.message.Message attribute)

 	reply_venue() (aiogram.types.message.Message method)

 	reply_video() (aiogram.types.message.Message method)

 	reply_video_note() (aiogram.types.message.Message method)

 	reply_voice() (aiogram.types.message.Message method)

 	ReplyKeyboardBuilder (class in aiogram.utils.keyboard)

 	ReplyKeyboardMarkup (class in aiogram.types.reply_keyboard_markup)

 	ReplyKeyboardRemove (class in aiogram.types.reply_keyboard_remove)

 	ReplyParameters (class in aiogram.types.reply_parameters)

 	request_chat (aiogram.types.keyboard_button.KeyboardButton attribute)

 	request_contact (aiogram.types.keyboard_button.KeyboardButton attribute)

 	request_id (aiogram.types.chat_shared.ChatShared attribute)

 	(aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat attribute)

 	(aiogram.types.keyboard_button_request_user.KeyboardButtonRequestUser attribute)

 	(aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers attribute)

 	(aiogram.types.user_shared.UserShared attribute)

 	(aiogram.types.users_shared.UsersShared attribute)

 	request_location (aiogram.types.keyboard_button.KeyboardButton attribute)

 	request_name (aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers attribute)

 	request_photo (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat attribute)

 	(aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers attribute)

 	request_poll (aiogram.types.keyboard_button.KeyboardButton attribute)

 	request_title (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat attribute)

 	request_user (aiogram.types.keyboard_button.KeyboardButton attribute)

 	request_username (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat attribute)

 	(aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers attribute)

 	request_users (aiogram.types.keyboard_button.KeyboardButton attribute)

 	request_write_access (aiogram.types.login_url.LoginUrl attribute)

 	reset_data_on_enter (aiogram.fsm.scene.SceneConfig attribute)

 	reset_history_on_enter (aiogram.fsm.scene.SceneConfig attribute)

 	resize_keyboard (aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup attribute)

 	resolve_bot() (aiogram.webhook.aiohttp_server.BaseRequestHandler method)

 	(aiogram.webhook.aiohttp_server.SimpleRequestHandler method)

 	(aiogram.webhook.aiohttp_server.TokenBasedRequestHandler method)

 	resolve_used_update_types() (aiogram.dispatcher.router.Router method)

 	ResponseParameters (class in aiogram.types.response_parameters)

 	RestartingTelegram

 	restrict() (aiogram.types.chat.Chat method)

 	RestrictChatMember (class in aiogram.methods.restrict_chat_member)

 	RESTRICTED (aiogram.enums.chat_member_status.ChatMemberStatus attribute)

 	result (aiogram.methods.answer_web_app_query.AnswerWebAppQuery attribute)

 	result_id (aiogram.types.chosen_inline_result.ChosenInlineResult attribute)

 	results (aiogram.methods.answer_inline_query.AnswerInlineQuery attribute)

 	retake() (aiogram.fsm.scene.SceneWizard method)

 	retry_after (aiogram.types.response_parameters.ResponseParameters attribute)

 	REVERSE_SIDE (aiogram.enums.passport_element_error_type.PassportElementErrorType attribute)

 	reverse_side (aiogram.types.encrypted_passport_element.EncryptedPassportElement attribute)

 	revoke_invite_link() (aiogram.types.chat.Chat method)

 	revoke_messages (aiogram.methods.ban_chat_member.BanChatMember attribute)

 	RevokeChatInviteLink (class in aiogram.methods.revoke_chat_invite_link)

 	rights (aiogram.methods.set_my_default_administrator_rights.SetMyDefaultAdministratorRights attribute)

 	RON (aiogram.enums.currency.Currency attribute)

 	ROSE (aiogram.enums.topic_icon_color.TopicIconColor attribute)

 	rotation_angle (aiogram.types.background_fill_gradient.BackgroundFillGradient attribute)

 	Router (class in aiogram.dispatcher.router)

 	row() (aiogram.utils.keyboard.InlineKeyboardBuilder method)

 	(aiogram.utils.keyboard.ReplyKeyboardBuilder method)

 	RSD (aiogram.enums.currency.Currency attribute)

 	RUB (aiogram.enums.currency.Currency attribute)

 	run_polling() (aiogram.dispatcher.dispatcher.Dispatcher method)

S

 	
 	safe_parse_webapp_init_data() (in module aiogram.utils.web_app)

 	SAR (aiogram.enums.currency.Currency attribute)

 	scale (aiogram.types.mask_position.MaskPosition attribute)

 	Scene (class in aiogram.fsm.scene)

 	SceneConfig (class in aiogram.fsm.scene)

 	SceneException

 	SceneRegistry (class in aiogram.fsm.scene)

 	ScenesManager (class in aiogram.fsm.scene)

 	SceneWizard (class in aiogram.fsm.scene)

 	scope (aiogram.methods.delete_my_commands.DeleteMyCommands attribute)

 	(aiogram.methods.get_my_commands.GetMyCommands attribute)

 	(aiogram.methods.set_my_commands.SetMyCommands attribute)

 	score (aiogram.methods.set_game_score.SetGameScore attribute)

 	(aiogram.types.game_high_score.GameHighScore attribute)

 	secret (aiogram.types.encrypted_credentials.EncryptedCredentials attribute)

 	secret_token (aiogram.methods.set_webhook.SetWebhook attribute)

 	SEK (aiogram.enums.currency.Currency attribute)

 	selective (aiogram.types.force_reply.ForceReply attribute)

 	(aiogram.types.reply_keyboard_markup.ReplyKeyboardMarkup attribute)

 	(aiogram.types.reply_keyboard_remove.ReplyKeyboardRemove attribute)

 	SELFIE (aiogram.enums.passport_element_error_type.PassportElementErrorType attribute)

 	selfie (aiogram.types.encrypted_passport_element.EncryptedPassportElement attribute)

 	send_copy() (aiogram.types.message.Message method)

 	send_email_to_provider (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	send_phone_number_to_provider (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	SendAnimation (class in aiogram.methods.send_animation)

 	SendAudio (class in aiogram.methods.send_audio)

 	SendChatAction (class in aiogram.methods.send_chat_action)

 	SendContact (class in aiogram.methods.send_contact)

 	SendDice (class in aiogram.methods.send_dice)

 	SendDocument (class in aiogram.methods.send_document)

 	SENDER (aiogram.enums.chat_type.ChatType attribute)

 	sender_boost_count (aiogram.types.message.Message attribute)

 	sender_business_bot (aiogram.types.message.Message attribute)

 	sender_chat (aiogram.types.message.Message attribute)

 	(aiogram.types.message_origin_chat.MessageOriginChat attribute)

 	sender_chat_id (aiogram.methods.ban_chat_sender_chat.BanChatSenderChat attribute)

 	(aiogram.methods.unban_chat_sender_chat.UnbanChatSenderChat attribute)

 	sender_user (aiogram.types.message_origin_user.MessageOriginUser attribute)

 	sender_user_name (aiogram.types.message_origin_hidden_user.MessageOriginHiddenUser attribute)

 	SendGame (class in aiogram.methods.send_game)

 	SendInvoice (class in aiogram.methods.send_invoice)

 	SendLocation (class in aiogram.methods.send_location)

 	SendMediaGroup (class in aiogram.methods.send_media_group)

 	SendMessage (class in aiogram.methods.send_message)

 	SendPhoto (class in aiogram.methods.send_photo)

 	SendPoll (class in aiogram.methods.send_poll)

 	SendSticker (class in aiogram.methods.send_sticker)

 	SendVenue (class in aiogram.methods.send_venue)

 	SendVideo (class in aiogram.methods.send_video)

 	SendVideoNote (class in aiogram.methods.send_video_note)

 	SendVoice (class in aiogram.methods.send_voice)

 	SentWebAppMessage (class in aiogram.types.sent_web_app_message)

 	set_administrator_custom_title() (aiogram.types.chat.Chat method)

 	set_data() (aiogram.fsm.scene.SceneWizard method)

 	(aiogram.fsm.storage.base.BaseStorage method)

 	set_description() (aiogram.types.chat.Chat method)

 	set_locale() (aiogram.utils.i18n.middleware.FSMI18nMiddleware method)

 	set_name (aiogram.types.sticker.Sticker attribute)

 	set_permissions() (aiogram.types.chat.Chat method)

 	set_photo() (aiogram.types.chat.Chat method)

 	set_position_in_set() (aiogram.types.sticker.Sticker method)

 	set_state() (aiogram.fsm.storage.base.BaseStorage method)

 	set_sticker_set() (aiogram.types.chat.Chat method)

 	set_title() (aiogram.types.chat.Chat method)

 	SetChatAdministratorCustomTitle (class in aiogram.methods.set_chat_administrator_custom_title)

 	SetChatDescription (class in aiogram.methods.set_chat_description)

 	SetChatMenuButton (class in aiogram.methods.set_chat_menu_button)

 	SetChatPermissions (class in aiogram.methods.set_chat_permissions)

 	SetChatPhoto (class in aiogram.methods.set_chat_photo)

 	SetChatStickerSet (class in aiogram.methods.set_chat_sticker_set)

 	SetChatTitle (class in aiogram.methods.set_chat_title)

 	SetCustomEmojiStickerSetThumbnail (class in aiogram.methods.set_custom_emoji_sticker_set_thumbnail)

 	SetGameScore (class in aiogram.methods.set_game_score)

 	SetMessageReaction (class in aiogram.methods.set_message_reaction)

 	SetMyCommands (class in aiogram.methods.set_my_commands)

 	SetMyDefaultAdministratorRights (class in aiogram.methods.set_my_default_administrator_rights)

 	SetMyDescription (class in aiogram.methods.set_my_description)

 	SetMyName (class in aiogram.methods.set_my_name)

 	SetMyShortDescription (class in aiogram.methods.set_my_short_description)

 	SetPassportDataErrors (class in aiogram.methods.set_passport_data_errors)

 	SetStickerEmojiList (class in aiogram.methods.set_sticker_emoji_list)

 	SetStickerKeywords (class in aiogram.methods.set_sticker_keywords)

 	SetStickerMaskPosition (class in aiogram.methods.set_sticker_mask_position)

 	SetStickerPositionInSet (class in aiogram.methods.set_sticker_position_in_set)

 	SetStickerSetThumbnail (class in aiogram.methods.set_sticker_set_thumbnail)

 	SetStickerSetTitle (class in aiogram.methods.set_sticker_set_title)

 	setup() (aiogram.utils.i18n.middleware.I18nMiddleware method)

 	SetWebhook (class in aiogram.methods.set_webhook)

 	SGD (aiogram.enums.currency.Currency attribute)

 	SharedUser (class in aiogram.types.shared_user)

 	shifted_id (aiogram.types.chat.Chat property)

 	shipping_address (aiogram.types.order_info.OrderInfo attribute)

 	(aiogram.types.shipping_query.ShippingQuery attribute)

 	shipping_option_id (aiogram.types.pre_checkout_query.PreCheckoutQuery attribute)

 	(aiogram.types.successful_payment.SuccessfulPayment attribute)

 	shipping_options (aiogram.methods.answer_shipping_query.AnswerShippingQuery attribute)

 	SHIPPING_QUERY (aiogram.enums.update_type.UpdateType attribute)

 	shipping_query (aiogram.types.update.Update attribute)

 	shipping_query_id (aiogram.methods.answer_shipping_query.AnswerShippingQuery attribute)

 	ShippingAddress (class in aiogram.types.shipping_address)

 	
 	ShippingOption (class in aiogram.types.shipping_option)

 	ShippingQuery (class in aiogram.types.shipping_query)

 	short_description (aiogram.methods.set_my_short_description.SetMyShortDescription attribute)

 	(aiogram.types.bot_short_description.BotShortDescription attribute)

 	show_above_text (aiogram.types.link_preview_options.LinkPreviewOptions attribute)

 	show_alert (aiogram.methods.answer_callback_query.AnswerCallbackQuery attribute)

 	(aiogram.utils.callback_answer.CallbackAnswer property)

 	SimpleI18nMiddleware (class in aiogram.utils.i18n.middleware)

 	SimpleRequestHandler (class in aiogram.webhook.aiohttp_server)

 	SLOT_MACHINE (aiogram.enums.dice_emoji.DiceEmoji attribute)

 	(aiogram.types.dice.DiceEmoji attribute)

 	slow_mode_delay (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	small_file_id (aiogram.types.chat_photo.ChatPhoto attribute)

 	small_file_unique_id (aiogram.types.chat_photo.ChatPhoto attribute)

 	source (aiogram.types.chat_boost.ChatBoost attribute)

 	(aiogram.types.chat_boost_removed.ChatBoostRemoved attribute)

 	(aiogram.types.chat_boost_source_gift_code.ChatBoostSourceGiftCode attribute)

 	(aiogram.types.chat_boost_source_giveaway.ChatBoostSourceGiveaway attribute)

 	(aiogram.types.chat_boost_source_premium.ChatBoostSourcePremium attribute)

 	(aiogram.types.passport_element_error_data_field.PassportElementErrorDataField attribute)

 	(aiogram.types.passport_element_error_file.PassportElementErrorFile attribute)

 	(aiogram.types.passport_element_error_files.PassportElementErrorFiles attribute)

 	(aiogram.types.passport_element_error_front_side.PassportElementErrorFrontSide attribute)

 	(aiogram.types.passport_element_error_reverse_side.PassportElementErrorReverseSide attribute)

 	(aiogram.types.passport_element_error_selfie.PassportElementErrorSelfie attribute)

 	(aiogram.types.passport_element_error_translation_file.PassportElementErrorTranslationFile attribute)

 	(aiogram.types.passport_element_error_translation_files.PassportElementErrorTranslationFiles attribute)

 	(aiogram.types.passport_element_error_unspecified.PassportElementErrorUnspecified attribute)

 	SPOILER (aiogram.enums.message_entity_type.MessageEntityType attribute)

 	Spoiler (class in aiogram.utils.formatting)

 	start_date (aiogram.types.video_chat_scheduled.VideoChatScheduled attribute)

 	start_param (aiogram.utils.web_app.WebAppInitData attribute)

 	start_parameter (aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.inline_query_results_button.InlineQueryResultsButton attribute)

 	(aiogram.types.invoice.Invoice attribute)

 	start_polling() (aiogram.dispatcher.dispatcher.Dispatcher method)

 	state (aiogram.fsm.scene.SceneConfig attribute)

 	(aiogram.types.shipping_address.ShippingAddress attribute)

 	STATIC (aiogram.enums.sticker_format.StickerFormat attribute)

 	status (aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	(aiogram.types.chat_member_banned.ChatMemberBanned attribute)

 	(aiogram.types.chat_member_left.ChatMemberLeft attribute)

 	(aiogram.types.chat_member_member.ChatMemberMember attribute)

 	(aiogram.types.chat_member_owner.ChatMemberOwner attribute)

 	(aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	STICKER (aiogram.enums.content_type.ContentType attribute)

 	(aiogram.enums.inline_query_result_type.InlineQueryResultType attribute)

 	sticker (aiogram.methods.add_sticker_to_set.AddStickerToSet attribute)

 	(aiogram.methods.delete_sticker_from_set.DeleteStickerFromSet attribute)

 	(aiogram.methods.replace_sticker_in_set.ReplaceStickerInSet attribute)

 	(aiogram.methods.send_sticker.SendSticker attribute)

 	(aiogram.methods.set_sticker_emoji_list.SetStickerEmojiList attribute)

 	(aiogram.methods.set_sticker_keywords.SetStickerKeywords attribute)

 	(aiogram.methods.set_sticker_mask_position.SetStickerMaskPosition attribute)

 	(aiogram.methods.set_sticker_position_in_set.SetStickerPositionInSet attribute)

 	(aiogram.methods.upload_sticker_file.UploadStickerFile attribute)

 	(aiogram.types.business_intro.BusinessIntro attribute)

 	(aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.input_sticker.InputSticker attribute)

 	(aiogram.types.message.Message attribute)

 	Sticker (class in aiogram.types.sticker)

 	sticker_file_id (aiogram.types.inline_query_result_cached_sticker.InlineQueryResultCachedSticker attribute)

 	sticker_format (aiogram.methods.create_new_sticker_set.CreateNewStickerSet attribute)

 	(aiogram.methods.upload_sticker_file.UploadStickerFile attribute)

 	sticker_set_name (aiogram.methods.set_chat_sticker_set.SetChatStickerSet attribute)

 	(aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	sticker_type (aiogram.methods.create_new_sticker_set.CreateNewStickerSet attribute)

 	(aiogram.types.sticker_set.StickerSet attribute)

 	StickerFormat (class in aiogram.enums.sticker_format)

 	stickers (aiogram.methods.create_new_sticker_set.CreateNewStickerSet attribute)

 	(aiogram.types.sticker_set.StickerSet attribute)

 	StickerSet (class in aiogram.types.sticker_set)

 	StickerType (class in aiogram.enums.sticker_type)

 	stop_live_location() (aiogram.types.message.Message method)

 	stop_polling() (aiogram.dispatcher.dispatcher.Dispatcher method)

 	StopMessageLiveLocation (class in aiogram.methods.stop_message_live_location)

 	StopPoll (class in aiogram.methods.stop_poll)

 	STORY (aiogram.enums.content_type.ContentType attribute)

 	story (aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.message.Message attribute)

 	Story (class in aiogram.types.story)

 	stream_content() (aiogram.client.session.base.BaseSession method)

 	street_line1 (aiogram.types.shipping_address.ShippingAddress attribute)

 	street_line2 (aiogram.types.shipping_address.ShippingAddress attribute)

 	STRIKETHROUGH (aiogram.enums.message_entity_type.MessageEntityType attribute)

 	Strikethrough (class in aiogram.utils.formatting)

 	SUCCESSFUL_PAYMENT (aiogram.enums.content_type.ContentType attribute)

 	successful_payment (aiogram.types.message.Message attribute)

 	SuccessfulPayment (class in aiogram.types.successful_payment)

 	suggested_tip_amounts (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	SUPERGROUP (aiogram.enums.chat_type.ChatType attribute)

 	SUPERGROUP_CHAT_CREATED (aiogram.enums.content_type.ContentType attribute)

 	supergroup_chat_created (aiogram.types.message.Message attribute)

 	supports_inline_queries (aiogram.types.user.User attribute)

 	supports_streaming (aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.types.input_media_video.InputMediaVideo attribute)

 	switch_inline_query (aiogram.types.inline_keyboard_button.InlineKeyboardButton attribute)

 	switch_inline_query_chosen_chat (aiogram.types.inline_keyboard_button.InlineKeyboardButton attribute)

 	switch_inline_query_current_chat (aiogram.types.inline_keyboard_button.InlineKeyboardButton attribute)

 	switch_pm_parameter (aiogram.methods.answer_inline_query.AnswerInlineQuery attribute)

 	switch_pm_text (aiogram.methods.answer_inline_query.AnswerInlineQuery attribute)

 	SwitchInlineQueryChosenChat (class in aiogram.types.switch_inline_query_chosen_chat)

T

 	
 	telegram_payment_charge_id (aiogram.types.successful_payment.SuccessfulPayment attribute)

 	TelegramAPIError

 	TelegramAPIServer (class in aiogram.client.telegram)

 	TelegramBadRequest

 	TelegramConflictError

 	TelegramEntityTooLarge

 	TelegramForbiddenError

 	TelegramMigrateToChat

 	TelegramNetworkError

 	TelegramNotFound

 	TelegramRetryAfter

 	TelegramServerError

 	TelegramUnauthorizedError

 	TEMPORARY_REGISTRATION (aiogram.enums.encrypted_passport_element.EncryptedPassportElement attribute)

 	TEXT (aiogram.enums.content_type.ContentType attribute)

 	text (aiogram.filters.command.CommandObject property)

 	(aiogram.methods.answer_callback_query.AnswerCallbackQuery attribute)

 	(aiogram.methods.edit_message_text.EditMessageText attribute)

 	(aiogram.methods.send_message.SendMessage attribute)

 	(aiogram.types.game.Game attribute)

 	(aiogram.types.inline_keyboard_button.InlineKeyboardButton attribute)

 	(aiogram.types.inline_query_results_button.InlineQueryResultsButton attribute)

 	(aiogram.types.input_poll_option.InputPollOption attribute)

 	(aiogram.types.keyboard_button.KeyboardButton attribute)

 	(aiogram.types.menu_button.MenuButton attribute)

 	(aiogram.types.menu_button_web_app.MenuButtonWebApp attribute)

 	(aiogram.types.message.Message attribute)

 	(aiogram.types.poll_option.PollOption attribute)

 	(aiogram.types.text_quote.TextQuote attribute)

 	(aiogram.utils.callback_answer.CallbackAnswer property)

 	Text (class in aiogram.utils.formatting)

 	text_entities (aiogram.types.game.Game attribute)

 	(aiogram.types.input_poll_option.InputPollOption attribute)

 	(aiogram.types.poll_option.PollOption attribute)

 	TEXT_LINK (aiogram.enums.message_entity_type.MessageEntityType attribute)

 	TEXT_MENTION (aiogram.enums.message_entity_type.MessageEntityType attribute)

 	text_parse_mode (aiogram.types.input_poll_option.InputPollOption attribute)

 	TextLink (class in aiogram.utils.formatting)

 	TextMention (class in aiogram.utils.formatting)

 	TextQuote (class in aiogram.types.text_quote)

 	THB (aiogram.enums.currency.Currency attribute)

 	theme_name (aiogram.types.background_type_chat_theme.BackgroundTypeChatTheme attribute)

 	thumbnail (aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.methods.send_document.SendDocument attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.methods.send_video_note.SendVideoNote attribute)

 	(aiogram.methods.set_sticker_set_thumbnail.SetStickerSetThumbnail attribute)

 	(aiogram.types.animation.Animation attribute)

 	(aiogram.types.audio.Audio attribute)

 	(aiogram.types.document.Document attribute)

 	(aiogram.types.input_media_animation.InputMediaAnimation attribute)

 	(aiogram.types.input_media_audio.InputMediaAudio attribute)

 	(aiogram.types.input_media_document.InputMediaDocument attribute)

 	(aiogram.types.input_media_video.InputMediaVideo attribute)

 	(aiogram.types.sticker.Sticker attribute)

 	(aiogram.types.sticker_set.StickerSet attribute)

 	(aiogram.types.video.Video attribute)

 	(aiogram.types.video_note.VideoNote attribute)

 	thumbnail_height (aiogram.types.inline_query_result_article.InlineQueryResultArticle attribute)

 	(aiogram.types.inline_query_result_contact.InlineQueryResultContact attribute)

 	(aiogram.types.inline_query_result_document.InlineQueryResultDocument attribute)

 	(aiogram.types.inline_query_result_location.InlineQueryResultLocation attribute)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue attribute)

 	thumbnail_mime_type (aiogram.types.inline_query_result_gif.InlineQueryResultGif attribute)

 	(aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif attribute)

 	thumbnail_url (aiogram.types.inline_query_result_article.InlineQueryResultArticle attribute)

 	(aiogram.types.inline_query_result_contact.InlineQueryResultContact attribute)

 	(aiogram.types.inline_query_result_document.InlineQueryResultDocument attribute)

 	(aiogram.types.inline_query_result_gif.InlineQueryResultGif attribute)

 	(aiogram.types.inline_query_result_location.InlineQueryResultLocation attribute)

 	(aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto attribute)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue attribute)

 	(aiogram.types.inline_query_result_video.InlineQueryResultVideo attribute)

 	thumbnail_width (aiogram.types.inline_query_result_article.InlineQueryResultArticle attribute)

 	(aiogram.types.inline_query_result_contact.InlineQueryResultContact attribute)

 	(aiogram.types.inline_query_result_document.InlineQueryResultDocument attribute)

 	(aiogram.types.inline_query_result_location.InlineQueryResultLocation attribute)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue attribute)

 	time_zone_name (aiogram.types.business_opening_hours.BusinessOpeningHours attribute)

 	timeout (aiogram.methods.get_updates.GetUpdates attribute)

 	title (aiogram.methods.create_invoice_link.CreateInvoiceLink attribute)

 	(aiogram.methods.create_new_sticker_set.CreateNewStickerSet attribute)

 	(aiogram.methods.send_audio.SendAudio attribute)

 	(aiogram.methods.send_invoice.SendInvoice attribute)

 	(aiogram.methods.send_venue.SendVenue attribute)

 	(aiogram.methods.set_chat_title.SetChatTitle attribute)

 	(aiogram.methods.set_sticker_set_title.SetStickerSetTitle attribute)

 	(aiogram.types.audio.Audio attribute)

 	(aiogram.types.business_intro.BusinessIntro attribute)

 	(aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	(aiogram.types.chat_shared.ChatShared attribute)

 	(aiogram.types.game.Game attribute)

 	(aiogram.types.inline_query_result_article.InlineQueryResultArticle attribute)

 	(aiogram.types.inline_query_result_audio.InlineQueryResultAudio attribute)

 	(aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument attribute)

 	(aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif attribute)

 	(aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto attribute)

 	(aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo attribute)

 	(aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice attribute)

 	(aiogram.types.inline_query_result_document.InlineQueryResultDocument attribute)

 	(aiogram.types.inline_query_result_gif.InlineQueryResultGif attribute)

 	(aiogram.types.inline_query_result_location.InlineQueryResultLocation attribute)

 	(aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto attribute)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue attribute)

 	(aiogram.types.inline_query_result_video.InlineQueryResultVideo attribute)

 	(aiogram.types.inline_query_result_voice.InlineQueryResultVoice attribute)

 	(aiogram.types.input_invoice_message_content.InputInvoiceMessageContent attribute)

 	(aiogram.types.input_media_audio.InputMediaAudio attribute)

 	(aiogram.types.input_venue_message_content.InputVenueMessageContent attribute)

 	(aiogram.types.invoice.Invoice attribute)

 	(aiogram.types.shipping_option.ShippingOption attribute)

 	(aiogram.types.sticker_set.StickerSet attribute)

 	(aiogram.types.venue.Venue attribute)

 	(aiogram.utils.web_app.WebAppChat attribute)

 	
 	TJS (aiogram.enums.currency.Currency attribute)

 	TokenBasedRequestHandler (class in aiogram.webhook.aiohttp_server)

 	top_color (aiogram.types.background_fill_gradient.BackgroundFillGradient attribute)

 	TopicIconColor (class in aiogram.enums.topic_icon_color)

 	total_amount (aiogram.types.invoice.Invoice attribute)

 	(aiogram.types.pre_checkout_query.PreCheckoutQuery attribute)

 	(aiogram.types.successful_payment.SuccessfulPayment attribute)

 	total_count (aiogram.types.reaction_count.ReactionCount attribute)

 	(aiogram.types.user_profile_photos.UserProfilePhotos attribute)

 	total_voter_count (aiogram.types.poll.Poll attribute)

 	translation (aiogram.types.encrypted_passport_element.EncryptedPassportElement attribute)

 	TRANSLATION_FILE (aiogram.enums.passport_element_error_type.PassportElementErrorType attribute)

 	TRANSLATION_FILES (aiogram.enums.passport_element_error_type.PassportElementErrorType attribute)

 	traveler (aiogram.types.proximity_alert_triggered.ProximityAlertTriggered attribute)

 	TRY (aiogram.enums.currency.Currency attribute)

 	TTD (aiogram.enums.currency.Currency attribute)

 	TWD (aiogram.enums.currency.Currency attribute)

 	type (aiogram.methods.send_poll.SendPoll attribute)

 	(aiogram.types.background_fill_freeform_gradient.BackgroundFillFreeformGradient attribute)

 	(aiogram.types.background_fill_gradient.BackgroundFillGradient attribute)

 	(aiogram.types.background_fill_solid.BackgroundFillSolid attribute)

 	(aiogram.types.background_type_chat_theme.BackgroundTypeChatTheme attribute)

 	(aiogram.types.background_type_fill.BackgroundTypeFill attribute)

 	(aiogram.types.background_type_pattern.BackgroundTypePattern attribute)

 	(aiogram.types.background_type_wallpaper.BackgroundTypeWallpaper attribute)

 	(aiogram.types.bot_command_scope_all_chat_administrators.BotCommandScopeAllChatAdministrators attribute)

 	(aiogram.types.bot_command_scope_all_group_chats.BotCommandScopeAllGroupChats attribute)

 	(aiogram.types.bot_command_scope_all_private_chats.BotCommandScopeAllPrivateChats attribute)

 	(aiogram.types.bot_command_scope_chat.BotCommandScopeChat attribute)

 	(aiogram.types.bot_command_scope_chat_administrators.BotCommandScopeChatAdministrators attribute)

 	(aiogram.types.bot_command_scope_chat_member.BotCommandScopeChatMember attribute)

 	(aiogram.types.bot_command_scope_default.BotCommandScopeDefault attribute)

 	(aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_background.ChatBackground attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	(aiogram.types.encrypted_passport_element.EncryptedPassportElement attribute)

 	(aiogram.types.inline_query_result_article.InlineQueryResultArticle attribute)

 	(aiogram.types.inline_query_result_audio.InlineQueryResultAudio attribute)

 	(aiogram.types.inline_query_result_cached_audio.InlineQueryResultCachedAudio attribute)

 	(aiogram.types.inline_query_result_cached_document.InlineQueryResultCachedDocument attribute)

 	(aiogram.types.inline_query_result_cached_gif.InlineQueryResultCachedGif attribute)

 	(aiogram.types.inline_query_result_cached_mpeg4_gif.InlineQueryResultCachedMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_cached_photo.InlineQueryResultCachedPhoto attribute)

 	(aiogram.types.inline_query_result_cached_sticker.InlineQueryResultCachedSticker attribute)

 	(aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo attribute)

 	(aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice attribute)

 	(aiogram.types.inline_query_result_contact.InlineQueryResultContact attribute)

 	(aiogram.types.inline_query_result_document.InlineQueryResultDocument attribute)

 	(aiogram.types.inline_query_result_game.InlineQueryResultGame attribute)

 	(aiogram.types.inline_query_result_gif.InlineQueryResultGif attribute)

 	(aiogram.types.inline_query_result_location.InlineQueryResultLocation attribute)

 	(aiogram.types.inline_query_result_mpeg4_gif.InlineQueryResultMpeg4Gif attribute)

 	(aiogram.types.inline_query_result_photo.InlineQueryResultPhoto attribute)

 	(aiogram.types.inline_query_result_venue.InlineQueryResultVenue attribute)

 	(aiogram.types.inline_query_result_video.InlineQueryResultVideo attribute)

 	(aiogram.types.inline_query_result_voice.InlineQueryResultVoice attribute)

 	(aiogram.types.input_media_animation.InputMediaAnimation attribute)

 	(aiogram.types.input_media_audio.InputMediaAudio attribute)

 	(aiogram.types.input_media_document.InputMediaDocument attribute)

 	(aiogram.types.input_media_photo.InputMediaPhoto attribute)

 	(aiogram.types.input_media_video.InputMediaVideo attribute)

 	(aiogram.types.keyboard_button_poll_type.KeyboardButtonPollType attribute)

 	(aiogram.types.menu_button.MenuButton attribute)

 	(aiogram.types.menu_button_commands.MenuButtonCommands attribute)

 	(aiogram.types.menu_button_default.MenuButtonDefault attribute)

 	(aiogram.types.menu_button_web_app.MenuButtonWebApp attribute)

 	(aiogram.types.message_entity.MessageEntity attribute)

 	(aiogram.types.message_origin_channel.MessageOriginChannel attribute)

 	(aiogram.types.message_origin_chat.MessageOriginChat attribute)

 	(aiogram.types.message_origin_hidden_user.MessageOriginHiddenUser attribute)

 	(aiogram.types.message_origin_user.MessageOriginUser attribute)

 	(aiogram.types.passport_element_error_data_field.PassportElementErrorDataField attribute)

 	(aiogram.types.passport_element_error_file.PassportElementErrorFile attribute)

 	(aiogram.types.passport_element_error_files.PassportElementErrorFiles attribute)

 	(aiogram.types.passport_element_error_front_side.PassportElementErrorFrontSide attribute)

 	(aiogram.types.passport_element_error_reverse_side.PassportElementErrorReverseSide attribute)

 	(aiogram.types.passport_element_error_selfie.PassportElementErrorSelfie attribute)

 	(aiogram.types.passport_element_error_translation_file.PassportElementErrorTranslationFile attribute)

 	(aiogram.types.passport_element_error_translation_files.PassportElementErrorTranslationFiles attribute)

 	(aiogram.types.passport_element_error_unspecified.PassportElementErrorUnspecified attribute)

 	(aiogram.types.poll.Poll attribute)

 	(aiogram.types.reaction_count.ReactionCount attribute)

 	(aiogram.types.reaction_type_custom_emoji.ReactionTypeCustomEmoji attribute)

 	(aiogram.types.reaction_type_emoji.ReactionTypeEmoji attribute)

 	(aiogram.types.sticker.Sticker attribute)

 	(aiogram.utils.web_app.WebAppChat attribute)

 	TYPING (aiogram.enums.chat_action.ChatAction attribute)

 	typing() (aiogram.utils.chat_action.ChatActionSender class method)

 	TZS (aiogram.enums.currency.Currency attribute)

U

 	
 	UAH (aiogram.enums.currency.Currency attribute)

 	UGX (aiogram.enums.currency.Currency attribute)

 	unban() (aiogram.types.chat.Chat method)

 	unban_sender_chat() (aiogram.types.chat.Chat method)

 	UnbanChatMember (class in aiogram.methods.unban_chat_member)

 	UnbanChatSenderChat (class in aiogram.methods.unban_chat_sender_chat)

 	unclaimed_prize_count (aiogram.types.giveaway_completed.GiveawayCompleted attribute)

 	(aiogram.types.giveaway_winners.GiveawayWinners attribute)

 	UNDERLINE (aiogram.enums.message_entity_type.MessageEntityType attribute)

 	Underline (class in aiogram.utils.formatting)

 	UnhideGeneralForumTopic (class in aiogram.methods.unhide_general_forum_topic)

 	UNKNOWN (aiogram.enums.content_type.ContentType attribute)

 	unpack() (aiogram.filters.callback_data.CallbackData class method)

 	unpin() (aiogram.types.message.Message method)

 	unpin_all_general_forum_topic_messages() (aiogram.types.chat.Chat method)

 	unpin_all_messages() (aiogram.types.chat.Chat method)

 	unpin_message() (aiogram.types.chat.Chat method)

 	UnpinAllChatMessages (class in aiogram.methods.unpin_all_chat_messages)

 	UnpinAllForumTopicMessages (class in aiogram.methods.unpin_all_forum_topic_messages)

 	UnpinAllGeneralForumTopicMessages (class in aiogram.methods.unpin_all_general_forum_topic_messages)

 	UnpinChatMessage (class in aiogram.methods.unpin_chat_message)

 	unrestrict_boost_count (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	UNSPECIFIED (aiogram.enums.passport_element_error_type.PassportElementErrorType attribute)

 	UnsupportedKeywordArgument

 	until_date (aiogram.methods.ban_chat_member.BanChatMember attribute)

 	(aiogram.methods.restrict_chat_member.RestrictChatMember attribute)

 	(aiogram.types.chat_member_banned.ChatMemberBanned attribute)

 	(aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	update (aiogram.types.error_event.ErrorEvent attribute)

 	Update (class in aiogram.types.update)

 	update_data() (aiogram.fsm.scene.SceneWizard method)

 	(aiogram.fsm.storage.base.BaseStorage method)

 	update_handler_flags() (aiogram.filters.base.Filter method)

 	update_id (aiogram.types.update.Update attribute)

 	UpdateType (class in aiogram.enums.update_type)

 	UpdateTypeLookupError

 	UPLOAD_DOCUMENT (aiogram.enums.chat_action.ChatAction attribute)

 	upload_document() (aiogram.utils.chat_action.ChatActionSender class method)

 	UPLOAD_PHOTO (aiogram.enums.chat_action.ChatAction attribute)

 	upload_photo() (aiogram.utils.chat_action.ChatActionSender class method)

 	UPLOAD_VIDEO (aiogram.enums.chat_action.ChatAction attribute)

 	upload_video() (aiogram.utils.chat_action.ChatActionSender class method)

 	UPLOAD_VIDEO_NOTE (aiogram.enums.chat_action.ChatAction attribute)

 	upload_video_note() (aiogram.utils.chat_action.ChatActionSender class method)

 	UPLOAD_VOICE (aiogram.enums.chat_action.ChatAction attribute)

 	upload_voice() (aiogram.utils.chat_action.ChatActionSender class method)

 	UploadStickerFile (class in aiogram.methods.upload_sticker_file)

 	URL (aiogram.enums.message_entity_type.MessageEntityType attribute)

 	url (aiogram.methods.answer_callback_query.AnswerCallbackQuery attribute)

 	(aiogram.methods.set_webhook.SetWebhook attribute)

 	(aiogram.types.inline_keyboard_button.InlineKeyboardButton attribute)

 	(aiogram.types.inline_query_result_article.InlineQueryResultArticle attribute)

 	(aiogram.types.link_preview_options.LinkPreviewOptions attribute)

 	(aiogram.types.login_url.LoginUrl attribute)

 	(aiogram.types.message_entity.MessageEntity attribute)

 	(aiogram.types.user.User property)

 	(aiogram.types.web_app_info.WebAppInfo attribute)

 	(aiogram.types.webhook_info.WebhookInfo attribute)

 	(aiogram.utils.callback_answer.CallbackAnswer property)

 	Url (class in aiogram.utils.formatting)

 	URLInputFile (class in aiogram.types.input_file), [1]

 	USD (aiogram.enums.currency.Currency attribute)

 	use_independent_chat_permissions (aiogram.methods.restrict_chat_member.RestrictChatMember attribute)

 	(aiogram.methods.set_chat_permissions.SetChatPermissions attribute)

 	USER (aiogram.enums.message_origin_type.MessageOriginType attribute)

 	
 	user (aiogram.types.business_connection.BusinessConnection attribute)

 	(aiogram.types.chat_boost_source_gift_code.ChatBoostSourceGiftCode attribute)

 	(aiogram.types.chat_boost_source_giveaway.ChatBoostSourceGiveaway attribute)

 	(aiogram.types.chat_boost_source_premium.ChatBoostSourcePremium attribute)

 	(aiogram.types.chat_member_administrator.ChatMemberAdministrator attribute)

 	(aiogram.types.chat_member_banned.ChatMemberBanned attribute)

 	(aiogram.types.chat_member_left.ChatMemberLeft attribute)

 	(aiogram.types.chat_member_member.ChatMemberMember attribute)

 	(aiogram.types.chat_member_owner.ChatMemberOwner attribute)

 	(aiogram.types.chat_member_restricted.ChatMemberRestricted attribute)

 	(aiogram.types.game_high_score.GameHighScore attribute)

 	(aiogram.types.message_entity.MessageEntity attribute)

 	(aiogram.types.message_reaction_updated.MessageReactionUpdated attribute)

 	(aiogram.types.poll_answer.PollAnswer attribute)

 	(aiogram.utils.web_app.WebAppInitData attribute)

 	User (class in aiogram.types.user)

 	user_administrator_rights (aiogram.types.keyboard_button_request_chat.KeyboardButtonRequestChat attribute)

 	user_chat_id (aiogram.types.business_connection.BusinessConnection attribute)

 	(aiogram.types.chat_join_request.ChatJoinRequest attribute)

 	user_id (aiogram.methods.add_sticker_to_set.AddStickerToSet attribute)

 	(aiogram.methods.approve_chat_join_request.ApproveChatJoinRequest attribute)

 	(aiogram.methods.ban_chat_member.BanChatMember attribute)

 	(aiogram.methods.create_new_sticker_set.CreateNewStickerSet attribute)

 	(aiogram.methods.decline_chat_join_request.DeclineChatJoinRequest attribute)

 	(aiogram.methods.get_chat_member.GetChatMember attribute)

 	(aiogram.methods.get_game_high_scores.GetGameHighScores attribute)

 	(aiogram.methods.get_user_chat_boosts.GetUserChatBoosts attribute)

 	(aiogram.methods.get_user_profile_photos.GetUserProfilePhotos attribute)

 	(aiogram.methods.promote_chat_member.PromoteChatMember attribute)

 	(aiogram.methods.replace_sticker_in_set.ReplaceStickerInSet attribute)

 	(aiogram.methods.restrict_chat_member.RestrictChatMember attribute)

 	(aiogram.methods.set_chat_administrator_custom_title.SetChatAdministratorCustomTitle attribute)

 	(aiogram.methods.set_game_score.SetGameScore attribute)

 	(aiogram.methods.set_passport_data_errors.SetPassportDataErrors attribute)

 	(aiogram.methods.set_sticker_set_thumbnail.SetStickerSetThumbnail attribute)

 	(aiogram.methods.unban_chat_member.UnbanChatMember attribute)

 	(aiogram.methods.upload_sticker_file.UploadStickerFile attribute)

 	(aiogram.types.bot_command_scope_chat_member.BotCommandScopeChatMember attribute)

 	(aiogram.types.contact.Contact attribute)

 	(aiogram.types.shared_user.SharedUser attribute)

 	(aiogram.types.user_shared.UserShared attribute)

 	user_ids (aiogram.types.users_shared.UsersShared attribute)

 	user_is_bot (aiogram.types.keyboard_button_request_user.KeyboardButtonRequestUser attribute)

 	(aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers attribute)

 	user_is_premium (aiogram.types.keyboard_button_request_user.KeyboardButtonRequestUser attribute)

 	(aiogram.types.keyboard_button_request_users.KeyboardButtonRequestUsers attribute)

 	USER_SHARED (aiogram.enums.content_type.ContentType attribute)

 	user_shared (aiogram.types.message.Message attribute)

 	UserChatBoosts (class in aiogram.types.user_chat_boosts)

 	username (aiogram.types.chat.Chat attribute)

 	(aiogram.types.chat_full_info.ChatFullInfo attribute)

 	(aiogram.types.chat_shared.ChatShared attribute)

 	(aiogram.types.shared_user.SharedUser attribute)

 	(aiogram.types.user.User attribute)

 	(aiogram.utils.web_app.WebAppChat attribute)

 	(aiogram.utils.web_app.WebAppUser attribute)

 	UserProfilePhotos (class in aiogram.types.user_profile_photos)

 	users (aiogram.types.users_shared.UsersShared attribute)

 	(aiogram.types.video_chat_participants_invited.VideoChatParticipantsInvited attribute)

 	USERS_SHARED (aiogram.enums.content_type.ContentType attribute)

 	users_shared (aiogram.types.message.Message attribute)

 	UserShared (class in aiogram.types.user_shared)

 	UsersShared (class in aiogram.types.users_shared)

 	UTILITY_BILL (aiogram.enums.encrypted_passport_element.EncryptedPassportElement attribute)

 	UYU (aiogram.enums.currency.Currency attribute)

 	UZS (aiogram.enums.currency.Currency attribute)

V

 	
 	value (aiogram.types.dice.Dice attribute)

 	vcard (aiogram.methods.send_contact.SendContact attribute)

 	(aiogram.types.contact.Contact attribute)

 	(aiogram.types.inline_query_result_contact.InlineQueryResultContact attribute)

 	(aiogram.types.input_contact_message_content.InputContactMessageContent attribute)

 	VENUE (aiogram.enums.content_type.ContentType attribute)

 	(aiogram.enums.inline_query_result_type.InlineQueryResultType attribute)

 	venue (aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.message.Message attribute)

 	Venue (class in aiogram.types.venue)

 	via_bot (aiogram.types.message.Message attribute)

 	via_chat_folder_invite_link (aiogram.types.chat_member_updated.ChatMemberUpdated attribute)

 	via_join_request (aiogram.types.chat_member_updated.ChatMemberUpdated attribute)

 	VIDEO (aiogram.enums.content_type.ContentType attribute)

 	(aiogram.enums.inline_query_result_type.InlineQueryResultType attribute)

 	(aiogram.enums.input_media_type.InputMediaType attribute)

 	(aiogram.enums.sticker_format.StickerFormat attribute)

 	video (aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.message.Message attribute)

 	Video (class in aiogram.types.video)

 	VIDEO_CHAT_ENDED (aiogram.enums.content_type.ContentType attribute)

 	video_chat_ended (aiogram.types.message.Message attribute)

 	VIDEO_CHAT_PARTICIPANTS_INVITED (aiogram.enums.content_type.ContentType attribute)

 	video_chat_participants_invited (aiogram.types.message.Message attribute)

 	VIDEO_CHAT_SCHEDULED (aiogram.enums.content_type.ContentType attribute)

 	video_chat_scheduled (aiogram.types.message.Message attribute)

 	VIDEO_CHAT_STARTED (aiogram.enums.content_type.ContentType attribute)

 	
 	video_chat_started (aiogram.types.message.Message attribute)

 	video_duration (aiogram.types.inline_query_result_video.InlineQueryResultVideo attribute)

 	video_file_id (aiogram.types.inline_query_result_cached_video.InlineQueryResultCachedVideo attribute)

 	video_height (aiogram.types.inline_query_result_video.InlineQueryResultVideo attribute)

 	VIDEO_NOTE (aiogram.enums.content_type.ContentType attribute)

 	video_note (aiogram.methods.send_video_note.SendVideoNote attribute)

 	(aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.message.Message attribute)

 	video_url (aiogram.types.inline_query_result_video.InlineQueryResultVideo attribute)

 	video_width (aiogram.types.inline_query_result_video.InlineQueryResultVideo attribute)

 	VideoChatEnded (class in aiogram.types.video_chat_ended)

 	VideoChatParticipantsInvited (class in aiogram.types.video_chat_participants_invited)

 	VideoChatScheduled (class in aiogram.types.video_chat_scheduled)

 	VideoChatStarted (class in aiogram.types.video_chat_started)

 	VideoNote (class in aiogram.types.video_note)

 	VIOLET (aiogram.enums.topic_icon_color.TopicIconColor attribute)

 	VND (aiogram.enums.currency.Currency attribute)

 	VOICE (aiogram.enums.content_type.ContentType attribute)

 	(aiogram.enums.inline_query_result_type.InlineQueryResultType attribute)

 	voice (aiogram.methods.send_voice.SendVoice attribute)

 	(aiogram.types.external_reply_info.ExternalReplyInfo attribute)

 	(aiogram.types.message.Message attribute)

 	Voice (class in aiogram.types.voice)

 	voice_duration (aiogram.types.inline_query_result_voice.InlineQueryResultVoice attribute)

 	voice_file_id (aiogram.types.inline_query_result_cached_voice.InlineQueryResultCachedVoice attribute)

 	voice_url (aiogram.types.inline_query_result_voice.InlineQueryResultVoice attribute)

 	voter_chat (aiogram.types.poll_answer.PollAnswer attribute)

 	voter_count (aiogram.types.poll_option.PollOption attribute)

W

 	
 	was_refunded (aiogram.types.giveaway_winners.GiveawayWinners attribute)

 	watcher (aiogram.types.proximity_alert_triggered.ProximityAlertTriggered attribute)

 	WEB_APP (aiogram.enums.menu_button_type.MenuButtonType attribute)

 	web_app (aiogram.types.inline_keyboard_button.InlineKeyboardButton attribute)

 	(aiogram.types.inline_query_results_button.InlineQueryResultsButton attribute)

 	(aiogram.types.keyboard_button.KeyboardButton attribute)

 	(aiogram.types.menu_button.MenuButton attribute)

 	(aiogram.types.menu_button_web_app.MenuButtonWebApp attribute)

 	WEB_APP_DATA (aiogram.enums.content_type.ContentType attribute)

 	web_app_data (aiogram.types.message.Message attribute)

 	web_app_name (aiogram.types.write_access_allowed.WriteAccessAllowed attribute)

 	web_app_query_id (aiogram.methods.answer_web_app_query.AnswerWebAppQuery attribute)

 	WebAppChat (class in aiogram.utils.web_app)

 	WebAppData (class in aiogram.types.web_app_data)

 	WebAppInfo (class in aiogram.types.web_app_info)

 	WebAppInitData (class in aiogram.utils.web_app)

 	WebAppUser (class in aiogram.utils.web_app)

 	WebhookInfo (class in aiogram.types.webhook_info)

 	
 	width (aiogram.methods.send_animation.SendAnimation attribute)

 	(aiogram.methods.send_video.SendVideo attribute)

 	(aiogram.types.animation.Animation attribute)

 	(aiogram.types.input_media_animation.InputMediaAnimation attribute)

 	(aiogram.types.input_media_video.InputMediaVideo attribute)

 	(aiogram.types.photo_size.PhotoSize attribute)

 	(aiogram.types.sticker.Sticker attribute)

 	(aiogram.types.video.Video attribute)

 	winner_count (aiogram.types.giveaway.Giveaway attribute)

 	(aiogram.types.giveaway_completed.GiveawayCompleted attribute)

 	(aiogram.types.giveaway_winners.GiveawayWinners attribute)

 	winners (aiogram.types.giveaway_winners.GiveawayWinners attribute)

 	winners_selection_date (aiogram.types.giveaway.Giveaway attribute)

 	(aiogram.types.giveaway_winners.GiveawayWinners attribute)

 	wrap_local_file (aiogram.client.telegram.TelegramAPIServer attribute)

 	WRITE_ACCESS_ALLOWED (aiogram.enums.content_type.ContentType attribute)

 	write_access_allowed (aiogram.types.message.Message attribute)

 	WriteAccessAllowed (class in aiogram.types.write_access_allowed)

X

 	
 	x_shift (aiogram.types.mask_position.MaskPosition attribute)

Y

 	
 	y_shift (aiogram.types.mask_position.MaskPosition attribute)

 	year (aiogram.types.birthdate.Birthdate attribute)

 	
 	YELLOW (aiogram.enums.topic_icon_color.TopicIconColor attribute)

 	YER (aiogram.enums.currency.Currency attribute)

Z

 	
 	ZAR (aiogram.enums.currency.Currency attribute)

nav.xhtml

 Table of Contents

 		
 aiogram

 		
 Installation

 		
 From PyPI

 		
 From Arch Linux Repository

 		
 Development build (3.x)

 		
 From PyPI

 		
 From GitHub

 		
 Migration FAQ (2.x -> 3.0)

 		
 Dispatcher

 		
 Filtering events

 		
 Bot API

 		
 Middlewares

 		
 Keyboard Markup

 		
 Callbacks data

 		
 Finite State machine

 		
 Sending Files

 		
 Webhook

 		
 Telegram API Server

 		
 Telegram objects transformation (to dict, to json, from json)

 		
 Bot API

 		
 Bot

 		
 Client session

 		
 Use Custom API server

 		
 Base

 		
 aiohttp

 		
 Client session middlewares

 		
 Types

 		
 Available types

 		
 Inline mode

 		
 Stickers

 		
 Telegram Passport

 		
 Payments

 		
 Getting updates

 		
 Games

 		
 Methods

 		
 Stickers

 		
 Available methods

 		
 Updating messages

 		
 Inline mode

 		
 Games

 		
 Payments

 		
 Getting updates

 		
 Telegram Passport

 		
 Enums

 		
 BotCommandScopeType

 		
 ChatAction

 		
 ChatBoostSourceType

 		
 ChatMemberStatus

 		
 ChatType

 		
 ContentType

 		
 Currency

 		
 DiceEmoji

 		
 EncryptedPassportElement

 		
 InlineQueryResultType

 		
 InputMediaType

 		
 KeyboardButtonPollTypeType

 		
 MaskPositionPoint

 		
 MenuButtonType

 		
 MessageEntityType

 		
 MessageOriginType

 		
 ParseMode

 		
 PassportElementErrorType

 		
 PollType

 		
 ReactionTypeType

 		
 StickerFormat

 		
 StickerType

 		
 TopicIconColor

 		
 UpdateType

 		
 How to download file?

 		
 Download file manually

 		
 Download file in short way

 		
 How to upload file?

 		
 Upload from file system

 		
 Upload from buffer

 		
 Upload from url

 		
 Handling events

 		
 Router

 		
 Router

 		
 Event observers

 		
 Nested routers

 		
 Dispatcher

 		
 Dispatcher

 		
 Simple usage

 		
 Handling updates

 		
 Dependency injection

 		
 How it works in aiogram

 		
 Injecting own dependencies

 		
 Filtering events

 		
 Builtin filters

 		
 Writing own filters

 		
 Combining Filters

 		
 Long-polling

 		
 Example

 		
 Webhook

 		
 aiohttp integration

 		
 With using other web framework

 		
 Finite State Machine

 		
 Usage example

 		
 Read more

 		
 Middlewares

 		
 Base theory

 		
 Basics

 		
 Arguments specification

 		
 Examples

 		
 Facts

 		
 Errors

 		
 Handling errors

 		
 ErrorEvent

 		
 Error types

 		
 Flags

 		
 Via decorators

 		
 Via handler registration method

 		
 Via filters

 		
 Use in middlewares

 		
 Use in utilities

 		
 Class based handlers

 		
 BaseHandler

 		
 CallbackQueryHandler

 		
 ChosenInlineResultHandler

 		
 ErrorHandler

 		
 InlineQueryHandler

 		
 MessageHandler

 		
 PollHandler

 		
 PreCheckoutQueryHandler

 		
 ShippingQueryHandler

 		
 ChatMemberHandler

 		
 Utils

 		
 Keyboard builder

 		
 Usage example

 		
 Inline Keyboard

 		
 Reply Keyboard

 		
 Translation

 		
 Installation

 		
 Make messages translatable

 		
 Configuring engine

 		
 Deal with Babel

 		
 Chat action sender

 		
 Sender

 		
 Middleware

 		
 WebApp

 		
 Usage

 		
 Functions

 		
 Types

 		
 Callback answer

 		
 Simple usage

 		
 Advanced usage

 		
 Description of objects

 		
 Formatting

 		
 Usage

 		
 Available methods

 		
 Available elements

 		
 Media group builder

 		
 Usage

 		
 References

 		
 Deep Linking

 		
 Examples

 		
 References

 		
 Changelog

 		
 3.7.0 [UNRELEASED DRAFT] (2024-05-10)

 		
 Features

 		
 3.6.0 (2024-05-06)

 		
 Features

 		
 Improved Documentation

 		
 3.5.0 (2024-04-23)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 3.4.1 (2024-02-17)

 		
 Bugfixes

 		
 3.4.0 (2024-02-16)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 3.3.0 (2023-12-31)

 		
 Features

 		
 3.2.0 (2023-11-24)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 3.1.1 (2023-09-25)

 		
 Bugfixes

 		
 3.1.0 (2023-09-22)

 		
 Features

 		
 Bugfixes

 		
 3.0.0 (2023-09-01)

 		
 Bugfixes

 		
 3.0.0rc2 (2023-08-18)

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 3.0.0rc1 (2023-08-06)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 3.0.0b9 (2023-07-30)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Deprecations and Removals

 		
 3.0.0b8 (2023-07-17)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Deprecations and Removals

 		
 Misc

 		
 3.0.0b7 (2023-02-18)

 		
 Features

 		
 Bugfixes

 		
 Misc

 		
 3.0.0b6 (2022-11-18)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 3.0.0b5 (2022-10-02)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Deprecations and Removals

 		
 Misc

 		
 3.0.0b4 (2022-08-14)

 		
 Features

 		
 Bugfixes

 		
 Misc

 		
 3.0.0b3 (2022-04-19)

 		
 Features

 		
 Bugfixes

 		
 Misc

 		
 3.0.0b2 (2022-02-19)

 		
 Features

 		
 Bugfixes

 		
 Misc

 		
 3.0.0b1 (2021-12-12)

 		
 Features

 		
 Bugfixes

 		
 Misc

 		
 3.0.0a18 (2021-11-10)

 		
 Features

 		
 Bugfixes

 		
 Misc

 		
 3.0.0a17 (2021-09-24)

 		
 Misc

 		
 3.0.0a16 (2021-09-22)

 		
 Features

 		
 Misc

 		
 3.0.0a15 (2021-09-10)

 		
 Features

 		
 Bugfixes

 		
 Misc

 		
 3.0.0a14 (2021-08-17)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 2.14.3 (2021-07-21)

 		
 2.14.2 (2021-07-26)

 		
 2.14 (2021-07-27)

 		
 2.13 (2021-04-28)

 		
 2.12.1 (2021-03-22)

 		
 2.12 (2021-03-14)

 		
 2.11.2 (2021-11-10)

 		
 2.11.1 (2021-11-10)

 		
 2.11 (2021-11-08)

 		
 2.10.1 (2021-09-14)

 		
 2.10 (2021-09-13)

 		
 2.9.2 (2021-06-13)

 		
 2.9 (2021-06-08)

 		
 2.8 (2021-04-26)

 		
 2.7 (2021-04-07)

 		
 2.6.1 (2021-01-25)

 		
 2.6 (2021-01-23)

 		
 2.5.3 (2021-01-05)

 		
 2.5.2 (2021-01-01)

 		
 2.5.1 (2021-01-01)

 		
 2.5 (2021-01-01)

 		
 2.4 (2021-10-29)

 		
 2.3 (2021-08-16)

 		
 2.2 (2021-06-09)

 		
 2.1 (2021-04-18)

 		
 2.0.1 (2021-12-31)

 		
 2.0 (2021-10-28)

 		
 1.4 (2021-08-03)

 		
 1.3.3 (2021-07-16)

 		
 1.3.2 (2021-05-27)

 		
 1.3.1 (2018-05-27)

 		
 1.3 (2021-04-22)

 		
 1.2.3 (2018-04-14)

 		
 1.2.2 (2018-04-08)

 		
 1.2.1 (2018-03-25)

 		
 1.2 (2018-02-23)

 		
 1.1 (2018-01-27)

 		
 1.0.4 (2018-01-10)

 		
 1.0.3 (2018-01-07)

 		
 1.0.2 (2017-11-29)

 		
 1.0.1 (2017-11-21)

 		
 1.0 (2017-11-19)

 		
 0.4.1 (2017-08-03)

 		
 0.4 (2017-08-05)

 		
 0.3.4 (2017-08-04)

 		
 0.3.3 (2017-07-05)

 		
 0.3.2 (2017-07-04)

 		
 0.3.1 (2017-07-04)

 		
 0.2b1 (2017-06-00)

 		
 0.1 (2017-06-03)

 		
 Contributing

 		
 Developing

 		
 Use virtualenv

 		
 Activate the environment

 		
 Setup project

 		
 Making changes in code

 		
 Format the code (code-style)

 		
 Run tests

 		
 Docs

 		
 Docs translations

 		
 Describe changes

 		
 Complete

 		
 Star on GitHub

 		
 Guides

 		
 Take answers

 		
 Funding

_images/basics_middleware.png
“Outer middleware

Filters

Middleware

Handler

_images/nested_routers_example.png
(Dispatcher)

Handler 1

Handler 2

‘ Router 1

Handler 3

Handler 4

Handler 5

Handler 6

Router 3

Handler 7

Handler 8

_images/update_propagation_flow.png
Update’

Response

*No—b
Ves

Main router
(Dispatcher)

Not handled by router

Nw’)
Ves

Not handled by router

Nw’)
Ves

Not handled by router>|

<G>

<>

ves Yes Yes Yes Yes
1 1 1 1
Handler 1 Handler 2 Handler 3 Handler 4 Handler 5 Handler 6 Handler 7 Handler 8

rr T T T T

_images/fsm_example.png
Did you like to wiite bots?

Not bad not teri
See you soon.

@ Awesome bot

Nice to meet you, Alex!
Did you like t0 wiite bots?

Did you like to wiite bots?

Cooll Tmtoo!
What programming
language did you use for it?

‘What programming
language did you use for it?

‘What programming
language did you use for it?

&3

Thank for all Python s in
my hearth!
See you soor

“Thank for information!
See you soor

See you soon.

1l keep in ming, Alex, you
don' ke to wiite bots, so
sad...

See you soon.

1l keep in ming, Alex, you
ke to write bots with
<language>

_static/basics_middleware.png
“Outer middleware

Filters

Middleware

Handler

_static/file.png

_static/middleware_pipeline.png
Pre process update

Pre process message

Process

message

Post process message

Post process update

_static/middleware_pipeline_nested.png
Pre process update: Dispatcher
Nested ruter
Process update
Process update
process message
Pre process message
Process message
Post process message
Post process message
Post process update

Post process update

_static/fsm_example.png
Did you like to wiite bots?

Not bad not teri
See you soon.

@ Awesome bot

Nice to meet you, Alex!
Did you like t0 wiite bots?

Did you like to wiite bots?

Cooll Tmtoo!
What programming
language did you use for it?

‘What programming
language did you use for it?

‘What programming
language did you use for it?

&3

Thank for all Python s in
my hearth!
See you soor

“Thank for information!
See you soor

See you soon.

1l keep in ming, Alex, you
don' ke to wiite bots, so
sad...

See you soon.

1l keep in ming, Alex, you
ke to write bots with
<language>

_static/logo.