

Welcome to aioamqp’s documentation

Aioamqp is a library to connect to an amqp broker. It uses asyncio under the hood

Limitations

For the moment, aioamqp is tested against Rabbitmq.

Contents:

	Introduction
	Prerequisites

	Installation

	Changelog
	Next version (not yet released)

	Aioamqp 0.5.1

	Aioamqp 0.5.0

	Aioamqp 0.4.0

	Aioamqp 0.3.0

	Aioamqp 0.2.1

	Aioamqp 0.2.0

	API
	Basics

	Starting a connection

	Handling errors

	Publishing messages

	Consuming messages

	Using exchanges

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This is the documentation for the aioamqp module.

Prerequisites

Aioamqp works only with python >= 3.3 using asyncio library.
If your are using Python 3.3 you’ll have to install asyncio from pypi, but asyncio is now included in python 3.4 standard library.

Installation

You can install the most recent aioamqp release from pypi using pip or easy_install:

pip install aioamqp
easy_install aioamqp

Changelog

Next version (not yet released)

Aioamqp 0.5.1

	Fixes packaging issues when uploading to pypi.

Aioamqp 0.5.0

	Add possibility to pass extra keyword arguments to protocol_factory when from_url is used to create a connection.

	Add SSL support.

	Support connection metadata customization, closes #40.

	Remove the use of rabbitmqctl in tests.

	Reduce the memory usage for channel recycling, closes #43.

	Add the usage of a previously created eventloop, closes #56.

	Removes the checks for coroutine callbacks, closes #55.

	Connection tuning are now configurable.

	Add a heartbeat method to know if the connection has fail, closes #3.

	Change the callback signature. It now takes the channel as first parameter, closes: #47.

Aioamqp 0.4.0

	Call the error callback on all circumtstances.

Aioamqp 0.3.0

	The consume callback takes now 3 parameters: body, envelope, properties, closes #33.

	Channel ids are now recycled, closes #36.

Aioamqp 0.2.1

	connect returns a transport and protocol instance.

Aioamqp 0.2.0

	Use a callback to consume messages.

API

Basics

There are two principal objects when using aioamqp:

	The protocol object, used to begin a connection to aioamqp,

	The channel object, used when creating a new channel to effectively use an AMQP channel.

Starting a connection

Starting a connection to AMQP really mean instanciate a new asyncio Protocol subclass.

	
aioamqp.connect(host, port, login, password, virtualhost, ssl, login_method, insist, protocol_factory, verify_ssl, loop, kwargs) → Transport, AmqpProtocol

	Convenient method to connect to an AMQP broker

	Parameters:	
	host (str) – the host to connect to

	port (int) – broker port

	login (str) – login

	password (str) – password

	virtualhost (str) – AMQP virtualhost to use for this connection

	ssl (bool) – Create an SSL connection instead of a plain unencrypted one

	verify_ssl (bool) – Verify server’s SSL certificate (True by default)

	login_method (str) – AMQP auth method

	insist (bool) – Insist on connecting to a server

	protocol_factory (AmqpProtocol) – Factory to use, if you need to subclass AmqpProtocol

	loop (EventLopp) – Set the event loop to use

	kwargs (dict) – Arguments to be given to the protocol_factory instance

import asyncio
import aioamqp

@asyncio.coroutine
def connect():
 try:
 transport, protocol = yield from aioamqp.connect() # use default parameters
 except aioamqp.AmqpClosedConnection:
 print("closed connections")
 return

 print("connected !")
 yield from asyncio.sleep(1)

 print("close connection")
 yield from protocol.close()
 transport.close()

asyncio.get_event_loop().run_until_complete(connect())

In this example, we just use the method “start_connection” to begin a communication with the server, which deals with credentials and connection tunning.

If you’re not using the default event loop (e.g. because you’re using
aioamqp from a different thread), call aioamqp.connect(loop=your_loop).

The AmqpProtocol uses the kwargs arguments to configure the connection to the AMQP Broker:

	
AmqpProtocol.__init__(self, *args, **kwargs):

	The protocol to communicate with AMQP

	Parameters:	
	channel_max (int) – specifies highest channel number that the server permits.
Usable channel numbers are in the range 1..channel-max.
Zero indicates no specified limit.

	frame_max (int) – the largest frame size that the server proposes for the connection,
including frame header and end-byte. The client can negotiate a lower value.
Zero means that the server does not impose any specific limit
but may reject very large frames if it cannot allocate resources for them.

	heartbeat (int) – the delay, in seconds, of the connection heartbeat that the server wants.
Zero means the server does not want a heartbeat.

	loop (Asyncio.EventLoop) – specify the eventloop to use.

	product (str) – configure the client name product (like a UserAgent).
product_version: str, configure the client product version.

Handling errors

The connect() method has an extra ‘on_error’ kwarg option. This on_error is a callback or a coroutine function which is called with an exception as the argument:

import asyncio
import aioamqp

@asyncio.coroutine
def error_callback(exception):
 print(exception)

@asyncio.coroutine
def connect():
 try:
 transport, protocol = yield from aioamqp.connect(
 host='nonexistant.com',
 on_error=error_callback,
)
 except aioamqp.AmqpClosedConnection:
 print("closed connections")
 return

asyncio.get_event_loop().run_until_complete(connect())

Publishing messages

A channel is the main object when you want to send message to an exchange, or to consume message from a queue:

channel = yield from protocol.channel()

When you want to produce some content, you declare a queue then publish message into it:

queue = yield from channel.queue_declare("my_queue")
yield from queue.publish("aioamqp hello", '', "my_queue")

Note: we’re pushing message to “my_queue” queue, through the default amqp exchange.

Consuming messages

When consuming message, you connect to the same queue you previously created:

import asyncio
import aioamqp

@asyncio.coroutine
def callback(body, envelope, properties):
 print(body)

channel = yield from protocol.channel()
yield from channel.basic_consume(callback, queue_name="my_queue")

The basic_consume method tells the server to send us the messages, and will call callback with amqp response arguments.

The consumer_tag is the id of your consumer, and the delivery_tag is the tag used if you want to acknowledge the message.

In the callback:

	the first body parameter is the message

	the envelope is an instance of envelope.Envelope class which encapsulate a group of amqp parameter such as:

consumer_tag
delivery_tag
exchange_name
routing_key
is_redeliver

	the properties are message properties, an instance of properties.Properties with the following members:

content_type
content_encoding
headers
delivery_mode
priority
correlation_id
reply_to
expiration
message_id
timestamp
type
user_id
app_id
cluster_id

Using exchanges

You can bind an exchange to a queue:

channel = yield from protocol.channel()
exchange = yield from channel.exchange_declare(exchange_name="my_exchange", type_name='fanout')
yield from channel.queue_declare("my_queue")
yield from channel.queue_bind("my_queue", "my_exchange")

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 aioamqp	
 public Jinja2 API

Index

 A
 | C

A

 	
 	aioamqp (module)

C

 	
 	connect() (in module aioamqp)

 nav.xhtml

 Table of Contents

 		Welcome to aioamqp's documentation

 		Introduction

 		Prerequisites

 		Installation

 		Changelog

 		Next version (not yet released)

 		Aioamqp 0.5.1

 		Aioamqp 0.5.0

 		Aioamqp 0.4.0

 		Aioamqp 0.3.0

 		Aioamqp 0.2.1

 		Aioamqp 0.2.0

 		API

 		Basics

 		Starting a connection

 		Handling errors

 		Publishing messages

 		Consuming messages

 		Using exchanges

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

