

python

Radiative transfer and ionisation code

Python is a Monte-Carlo radiative transfer code designed to simulate the spectrum of biconical (or spherical)
winds in disk systems. It was origianally written by
Long and Knigge (2002) [https://ui.adsabs.harvard.edu/abs/2002ApJ...579..725L/abstract] and
was intended for simulating the spectra of winds in cataclysmic variables. Since then, it has
also been used to simulate the spectra of systems ranging from young stellar objects to AGN.

The name Python is today unfortunate, and changing the name is an ongoing debate within the development team.
The program is written in C and can be compiled on systems runining various flavors of linux, including OSX on Macs.

The code is is available on github [https://github.com/agnwinds/python]

Documentation

Various documentation exists:

	A Quick Guide describing how to install and run Python (in a fairly mechanistic fashion).

For more information on how this page was generated and how to create documentation for python,
look at the page for documentation on the documentation.

Authors

The authors of the python code and their institutions are:

	Knox Long

	Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
Eureka Scientific, Inc., 2452 Delmer St., Suite 100, Oakland, CA 94602-3017, USA

	Christian Knigge

	Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK

	Stuart Sim

	School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast, BT7 1NN, UK

	Nick Higginbottom

	Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK

	James Matthews

	University of Oxford, Astrophysics, Keble Road, Oxford, OX1 3RH, UK

	Sam Mangham

	Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK

	Edward Parkinson

	Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK

	Mandy Hewitt

	School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast, BT7 1NN, UK

Getting Started

What machines will python run on? We have run python various versions of linux and on Mac.
It is compiled using mpicc, with an option to compile with gcc. It uses the Gnu Scientific Libraries (gsl)

Installation

Python and the various routines associated are set up in a self-contained directory structure.
The basic directory structure and the data files that one needs to run Python need to be retrieved and compiled.

If you want to obtain a stable (!) release, go to the Releases [https://github.com/agnwinds/python/releases/] page.

If you want to download the latest dev version, you can zip up the git repository by clicking on the zip icon to the right of the GitHub page.
Alternatively, clone it directly as

$ git clone https://github.com/agnwinds/python.git

If you anticipate contributing to development we suggest Forking the repository and submitting pull requests with any proposed changes.

Once you have the files, you need to cd to the new directory and set your environment variables

$ export PYTHON = /path/to/python/
$ cd $PYTHON
$./configure
$ make install
$ make clean

One can run a more rigorous clean of GSL with make distclean, or remove the compiled GSL libraries altogether with make rm_lib.

note that export syntax is for bash- for csh use

$ setenv PYTHON /path/to/python/

Atomic data is stored in our data repository [https://github.com/agnwinds/data/] with it’s own releases page-
one should unzip these files and place them in a $PYTHON/data folder.

A development user may want to work on atomic data as part of their work, and pull in changes as they are made, in which case we recommend cloning the data repository:

$ cd $PYTHON; git clone https://github.com/agnwinds/data data

Running python

To run python you need to add the following to your $PATH variable:

$PYTHON/bin

You can then setup your symbolic links by running

$ Setup_Py_Dir

and run the code by typing, e.g.

$ py root.pf

Directory structure

The python directory structure is fairly simple:

	progs

	Location of source code for various fully debugged version of the code (Note that the progs directory is created as part of the make process.)

	bin

	Location of executables

	data

	Location for all datafiles. Files that are mainly for reference should be gzipped to save space. Such files are not recreated in

	bin

	The location of the executables. (It is a good idea to put this directory in your path)

	software

	This directory contains libraries which are used in in python that must be recompiled when creating an installation on a new machine, primarily Bill Pence’s cfitsio package and the GNU scientific library gsl

	Example

	A directory with a few examples of python runs. (Note that the input files will have changed and so one may not be able to run these examples without some changes in the input files.)

Please help by reporting bugs in installation

This can be done by submitting a bug under the Issues [https://github.com/agnwinds/python/issues/] page

Inputs

Todo

Fill in

	Overview

	System Description

	Wind Models

	Importing Models
	Creating your own model

	Generating example inputs for testing and familiarizing oneself with Python’s import capability

	Parameters
	Top-level parameters

Overview

Python uses a keyword based parameter file the specify a model. A portion of a parameter file (which must have the extension .pf) is as follows:

Wind.radiation(yes,no) yes
Wind.number_of_components 1
Wind.type(SV,star,hydro,corona,kwd,homologous,yso,shell,imported) sv
Wind.coord_system(spherical,cylindrical,polar,cyl_var) cylindrical
Wind.dim.in.x_or_r.direction 30
Wind.dim.in.z_or_theta.direction 30

Each line begins with a keyword followed optionally by a comment in parentheses, and then a value, e.g

	Keyword: Wind.type

	Comment: SV,star,hydro,corona,kwd,homologous,shell,imported

	Value: SV

The comment generally specifies a set of valid choices or the units in which information is expected.

When a series of choices is presented, one does not need to enter the complete word, just enough to provide unique match to the choice.

One does not need to create a parameter file before running Python.
Instead, assuming one is not working from a template parameter file, one simply invokes Python.

py my_new_model

or

py -n my_new_model

Python then queries the user for answers to a series of question, creating in the process a pf file, my_new_model.pf,
that can be edited and used in future runs.

An example of a line presented to the user in interactive mode is:

Disk.mdot(msol/yr) (1e-08) :

There the number in the second set of parenthesis is a suggested value of the parameter.
The user types in a new value and a carriage return, or, if the the suggested value seems appropriate,
responds with a carriage return, in which case the suggested value will be used.

The -n switch above indicates that Python should accumulate all of the necessary inputs, write out the parameter file,
and exit, which is useful if one is not completely sure what one wants.

System Description

The first set of parameters which Python needs are information about the overall system

System_type(star,cv,bh,agn,previous) bh

Parameters for the Central Object
Central_object.mass(msol) 10
Central_object.radius(cm) 8.85667e+06
Binary.mass_sec(msol) 15
Binary.period(hr) 72

Parameters for the Disk (if there is one)
Disk.type(none,flat,vertically.extended) flat
Disk.radiation(yes,no) yes
Disk.rad_type_to_make_wind(bb,models) bb
Disk.temperature.profile(standard,readin) standard
Disk.mdot(msol/yr) 1e-6
Disk.radmax(cm) 1e13

Parameters for Boundary Layer or the compact object in an X-ray Binary or AGN
BH.radiation(yes,no) yes
BH.rad_type_to_make_wind(bb,models,power,cloudy,brems) power
Boundary_layer.lum(ergs/s) 4.72063e+39
Boundary_layer.power_law_index -1.5

System_type is starting point, a basic classification of the type of object one is trying to model.
This is used to guide further questions about the object and to set defaults.

Most of the other parameters are fairly self-explanatory, and are documented fully in the various Parameters entries.

Wind Models

Python allows for various types of models, which are defined by the following parameters

Parameters describing the various winds or coronae in the system
Wind.radiation(yes,no) yes
Wind.number_of_components 1
Wind.type(SV,star,hydro,corona,kwd,homologous,shell,imported) sv
Wind.coord_system(spherical,cylindrical,polar,cyl_var) cylindrical
Wind.dim.in.x_or_r.direction 30
Wind.dim.in.z_or_theta.direction 30

Wind.radiation (WHICH PROBABLY WILL BE MOVED) allows for wind not only to scatter and absorb photons,
but also to emit them by various processes, bound-bound, free-free, and recombination. It is the default for simple radiative transfer.

Wind.number_of_components is usually 1, but can be greater if one wishes to construct a wind from a combination of several wind models,
for example a fast flow near the poles of a system, and a slow for near the disk.
If the number of components exceeds 1, then the remaining questions relating to the wind will be posed multiple times.

The wind models incorporated into Python currently are:

	SV

	The Shlosman and Vitello parameterization of a bi-conical flow

	Stellar_wind

	A fairly standard parameterization of a spherical outflow for a hot star

	Hydro

	A special purpose mode used by us for importing models from Zeus and Pluto

	Corona

	A simple model for a corona above the disk

	KWD

	The Knigge Woods and Drew parameterization of a bi-conical flow

	Homologous

	A homologous expansion law useful for simulating SNe

	Shell

	A model of a thin shell useful for diagnostic studies

	Imported

	A general purpose mode for importing a wind from an ascii file

Todo

Update paths as they move

Importing Models

Python can read 1D or 2.5D grids of density and velocity, instead of setting up the model from an analytic prescription. Caution should be exercised with this mode, as it is still in a development phase, and the mode requires the user to ensure that things like mass and angular momentum conservation are enforced.

This mode is activated via wind type option “imported”, which triggers an extra question, e.g.

Wind.type(SV,star,hydro,corona,kwd,homologous,shell,imported) imported
Wind.coord_system(spherical,cylindrical,polar,cyl_var) cylindrical
Wind.model2import cv.import.txt

An example in cylindrical geometry, cv_import.pf, is given with a supplementary grid file in examples/beta/.
The format expected in the grid input file for such
a cylindrical model is as follows, although the column headers lines are actually not read.

i j inwind x z v_x v_y v_z rho t_r
-- -- ------ ----- ----- ----- ----- ----- ----- -----
0 0 -1 1.4e9 3.5e9 0.0 0.0 6e5 0.0 0.0
0 1 0 1.4e9 3.5e10 1e5 0.0 2e6 1e9 0.0

where all physical units are CGS. i and j refer to the rows and
columns of the wind cells respectively, while inwind tells the code whether
the cell is in the wind (0), or out of the wind (-1). If a
partially in wind flag is provided (1), the code defaults to treating this
cell as not in the wind. This could in principle be adapted, but means that for the moment
this mode is most useful when using models with sufficiently high resolution or covering factors
that partially in wind cells
are unimportant.

The other input files have slightly different formats. The best way to see the format is use the process described at the end of the page.

Creating your own model

In order to create your own model, there are a few important things to consider:

	all units should be CGS (except for indices and flags, which are integers)

	x and z for cylindrical (or r and theta for spherical polar) coordinates are supplied at the edges, rather than centres, of cells. Thus, a given cell is described by the location of it’s bottom left hand corner in (x,z) space.

	Ghost cells must be included. This means that additional rows and columns of cells must be included at the edges of the grid, and they must be excluded from the wind so that their velocities and densities are set to zero, but have a velocity that python can interpolate with.

	i and j correspond to rows and columns respectively, so that the first row of cells at the disk plane has i = 0.

	rho the density of the cell in cgs units

	The t_r column is currently not used, although it could be in future

Although cv_import.pf is designed to closely match the
cv_standard.pf model, it does not match the model perfectly as
the imported model does not deal with ‘partially in wind’ cells. As such,
we generally recommend imported models are used for either wind models
that entirely fill the grid or that have sufficiently high resolution
that the partial filled cells are relatively unimportant.

Generating example inputs for testing and familiarizing oneself with Python’s import capability

If one is trying to use the import capability of Python for the first time,
it will be useful to familiarize oneself with the process, and the file format for a particular coordinate system,
by running first running Python on a model that is something similar to model to be imported,
but which takes advantage of one of the kinematic models available with the code.

For example, suppose you have a hydrodynamical simulation of an AGN wind which
is in polar coordinates and you want to use Python to calculate the spectrum.
Then you might create a model of an AGN with a similar coordinate system using, say, a Knigge Wood & Drew wind (and similar atomic data).
For specificity, suppose this model has the root name “test”

Once you have run the model, you can create an import file file by first running the routine windsave2table, or more specifically:

windsave2table test

This produces a large number of ascii tables, which are described elsewhere

In the py_progs directory, you will find 3 scripts, import_1d.py, import_cyl.py and import_rtheta.py,
which will convert one of the output files test.0.master.txt to an import file, test.import.txt,
that can be used with the import mode of Python. The 3 different routines are for 1d spherical coordinates,
and polar (r-theta) coordinates respectively.

Assuming the py_progs directory is in your PATH, and given that our example is for cylindrical coordinates, one would run:

import_cyl.py test

At that point, you can test this import file, by modifying the first .pf file to import mode (imported).
Running Python on this file, will result in your being asked the name of the import file,
and give you a “baseline” to import the hydrodynamical simulation to work.

Note that one should not assume that spectra produced by the original run of Python and the run of the imported model will be identical.
There are several reasons for this:

First, in creating the original model, Python accounts for the possibility that some cells are partially in the wind.
This is not possible in the imported models. Only cells that are complete in the wind are counted.

Second, within Python, positions and velocities are assumed defined at the corners of cells, whereas densities are assumed to be cell centered.
If one provides a table where all of the quantities are at the same exact position (namely density is at the same position as x),
there will be a slight discrepancy between the way in model as calculated internally and as represented within Python.

Parameters

Todo

Fill in

Top-level parameters

	System_type

	Central_object.mass

	Central_object.radius

	Central_object.radiation

	Disk.type

	Wind.ionization

	Wind.radiation

	Photons_per_cycle

	Spectrum_cycles

	Ionization_cycles

	Wind_heating.extra_processes

	Line_transfer

	Surface.reflection.or.absorption

	Photon_sampling.approach

	Reverb.type

	Diag.extra

	Diag.use_standard_care_factors

	Diag.write_atomicdata

System_type

The parameter is provides the program with a broad
overview of the type of system that will be simulated, and is used
by Python to initialize certain variable, and to control what variables
are asked for later.

	Type

	Enumerator

	Values

	
	star

	System in which the central object is a star

	cv

	System with a secondary star, which can occult the central object and disk depending on phase

	bh

	System with a black hole binary

	agn

	AGN

	previous

	In this case, one is starting from a previous run with python, and one want to either continue the
run or change some parameters associated with radiation sources

	File

	python.c [https://github.com/agnwinds/python/blob/master/source/python.c]

	Child(ren)

	
	Boundary_layer.radiation

	Wind.old_windfile

	Spectrum.orbit_phase

	Central_object.geometry_for_source

	Binary.mass_sec

	Central_object.temp

	Atomic_data

	Central_object.blackbody_temp

	Wind.number_of_components

	Central_object.luminosity

	Binary.period

Central object

Todo

Fill in

	Binary
	Binary.mass_sec

	Binary.period

	Boundary_layer
	Boundary_layer.luminosity

	Boundary_layer.power_law_cutoff

	Boundary_layer.power_law_index

	Boundary_layer.rad_type_in_final_spectrum

	Boundary_layer.rad_type_to_make_wind

	Boundary_layer.radiation

	Boundary_layer.temp

	Central_object
	Central_object.blackbody_temp

	Central_object.bremsstrahlung_alpha

	Central_object.bremsstrahlung_temp

	Central_object.cloudy.high_energy_break

	Central_object.cloudy.low_energy_break

	Central_object.geometry_for_source

	Central_object.lamp_post_height

	Central_object.luminosity

	Central_object.mass

	Central_object.power_law_cutoff

	Central_object.power_law_index

	Central_object.rad_type_in_final_spectrum

	Central_object.rad_type_to_make_wind

	Central_object.radiation

	Central_object.radius

	Central_object.temp

Binary

Todo

Fill in

	Binary.mass_sec

	Binary.period

Binary.mass_sec

In binary systems the mass of the secondary. This is used along
with the period to establish the Roche lobes, so that one can
see the effects of eclipses on the system

	Type

	Double

	Unit

	M☉/year

	Values

	Greater than 0

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	System_type: cv, bh

Binary.period

The perids of a binary system. Along with a mass, the binary period is
used to define the Roche lobe of the system, which in turn can be used
to see the effect of eclipses on the spectrum. Defining the system as
a secondary also initializes the outer radius of the disk.

	Type

	Double

	Unit

	Hours

	Values

	Greater than 0

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	System_type: cv, bh

Boundary_layer

Todo

Fill in

	Boundary_layer.luminosity

	Boundary_layer.power_law_cutoff

	Boundary_layer.power_law_index

	Boundary_layer.rad_type_in_final_spectrum

	Boundary_layer.rad_type_to_make_wind

	Boundary_layer.radiation

	Boundary_layer.temp

Boundary_layer.luminosity

The luminosity of the boundary layer.

	Type

	Double

	Unit

	ergs/s

	Values

	Greater than 0

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	Boundary_layer.rad_type_to_make_wind: models, power

	Boundary_layer.rad_type_in_final_spectrum: models, uniform

Boundary_layer.power_law_cutoff

This is a low frequency cutoff for an AGN-style power law spectrum
of a form $L_nu=Knu^alpha$, as applied to the boundary layer of a star.
It prevents the power-law being applied to low frequencies and giving an odd SED.
See Radiation_types and Boundary_layer.power_law_cutoff.

	Type

	Double

	Unit

	Hz

	Values

	Greater than 0

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	Boundary_layer.rad_type_to_make_wind: power_law

Boundary_layer.power_law_index

The exponent 𝛼 in a power law SED applied to an AGN-style power law source for a non-AGN system.
central source of the form $L_nu=Knu^alpha$.

See Radiation_types and Central_object.power_law_index.

	Type

	Double

	Values

	Any - but sign is not assumed, so for negative index use a negative value

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	Boundary_layer.rad_type_to_make_wind: power_law

Boundary_layer.rad_type_in_final_spectrum

Determines the luminosity and SED of the boundary layer.
The code can cause a source to radiate differently in the ionisation and spectral cycles.
This variable allows a boundary layer source to radiate differently from Boundary_layer.rad_type_to_make_wind
during the cycles used to calculate the output spectra. This can be

	Type

	Enumerator

	Values

	
	bb

	Black-body radiation. The boundary layer radiates as a black-body source with surface luminosity set by its
effective temperature (Boundary_layer.temp) and resulting in a total luminosity
proportional to its surface area.

	models

	Radiate according to a model. Python can support tabulated models that output with a binned luminosity distribution
depending on system properties like temperature and gravity. See Input_spectra.model_file. The total
luminosity will be set by Boundary_layer.luminosity.

	uniform

	Available for System_type of star or cv.
Photons are generated with a random, uniformly-distributed wavelength between
Spectrum.wavemin and Spectrum.wavemax. Can in some cases substitute for a Kurcuz spectrum.
This mode is only available when generating final spectra.

	File

	python.c [https://github.com/agnwinds/python/blob/master/source/python.c]

	Parent(s)

	
	Boundary_layer.radiation: True

	Child(ren)

	
	Input_spectra.model_file

	Boundary_layer.luminosity

	Boundary_layer.temp

Boundary_layer.rad_type_to_make_wind

Determines the luminosity and SED of the boundary layer.
The code can cause a source to radiate differently in the ionisation and spectral cycles.
This variable allows a boundary layer source to radiate differently from Boundary_layer.rad_type_in_final_spectrum
during the cycles used to calculate the wind ionisation state and temperature.

	Type

	Enumerator

	Values

	
	bb

	Black-body radiation. The boundary layer radiates as a black-body source with surface luminosity set by its
effective temperature (Boundary_layer.temp) and resulting in a total luminosity
proportional to its surface area.

	models

	Radiate according to a model. Python can support tabulated models that output with a binned luminosity distribution
depending on system properties like temperature and gravity. See Input_spectra.model_file. The total
luminosity will be set by Boundary_layer.luminosity.

	power

	Radiate following a power-law model as $L_nu=Knu^alpha$. The total luminosity will be set by Boundary_layer.luminosity.

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	Boundary_layer.radiation: True

	Child(ren)

	
	Boundary_layer.power_law_index

	Input_spectra.model_file

	Boundary_layer.luminosity

	Boundary_layer.power_law_cutoff

	Boundary_layer.temp

Boundary_layer.radiation

Says whether the boundary layer will radiate.

	Type

	Boolean (yes/no)

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	System_type: star, cv

	Child(ren)

	
	Boundary_layer.rad_type_to_make_wind

	Boundary_layer.rad_type_in_final_spectrum

Boundary_layer.temp

The temperature of the boundary layer when radiating as a black body.

	Type

	Double

	Unit

	Kelvin

	Values

	Greater than 0

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Boundary_layer.rad_type_to_make_wind: bb

	Boundary_layer.rad_type_in_final_spectrum: bb

Central_object

Todo

Fill in

	Central_object.blackbody_temp

	Central_object.bremsstrahlung_alpha

	Central_object.bremsstrahlung_temp

	Central_object.cloudy.high_energy_break

	Central_object.cloudy.low_energy_break

	Central_object.geometry_for_source

	Central_object.lamp_post_height

	Central_object.luminosity

	Central_object.mass

	Central_object.power_law_cutoff

	Central_object.power_law_index

	Central_object.rad_type_in_final_spectrum

	Central_object.rad_type_to_make_wind

	Central_object.radiation

	Central_object.radius

	Central_object.temp

Central_object.blackbody_temp

If the AGN/BH is radiating as a black body, what temperature should it radiate at?

	Type

	Double

	Unit

	Kelvin

	Values

	Greater than 0

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	System_type: agn, bh

	Central_object.rad_type_to_make_wind: bb

Central_object.bremsstrahlung_alpha

The frequency exponent 𝛼 in bremstrahlung SED of the form
$L_nu=nu^{alpha}e^{-hnu/kT}$

	Type

	Double

	Values

	Any - sign is not assumed so use negative if you want negative

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	Central_object.rad_type_to_make_wind: brems

Central_object.bremsstrahlung_temp

The temperature T in bremstrahlung SED of the form
$L_nu=nu^{alpha}e^{-hnu/kT}$

	Type

	Double

	Unit

	K

	Values

	Greater than 0

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	Central_object.rad_type_to_make_wind: brems

Central_object.cloudy.high_energy_break

This is a command to define a cloudy type broken power
law SED - mainly used for testing the code against cloudy.
This SED has hardwired frequency exponents of 2.5 below the
low energy break and -2.0 above the high energy break. This
parameter defines the energy of the high energy break.

	Type

	Double

	Unit

	eV

	Values

	Greater than Central_object.cloudy.low_energy_break

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	Central_object.rad_type_to_make_wind: cloudy

Central_object.cloudy.low_energy_break

This is a command to define a cloudy type broken power
law SED - mainly used for testing the code against cloudy.
This SED has hardwired frequency exponents of 2.5 below the
low energy break and -2.0 above the high energy break. This
parameter defines the energy of the low energy break.

	Type

	Double

	Unit

	eV

	Values

	Greater than 0

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	Central_object.rad_type_to_make_wind: cloudy

Central_object.geometry_for_source

	If the central source in an AGN/BH system is radiating, what geometry should it radiate from?

	This is applicable even for black-body sources, where the luminosity depends on Central_object.radius.

	Type

	Enumerator

	Values

	
	lamp_post

	The central source radiates from two point sources
located on the system axis above and below the disk plane.
Emission is completely isotropic.

	sphere

	The central source radiates from a spherical surface with radius Central_object.radius.
Emission is cosine-weighted in the direction of the sphere normal at the point of emission.
Photons that would be spawned in an extended disk (if Disk.type is vertically.extended)
are re-generated.

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	System_type: agn, bh

	Central_object.radiation: True

	Child(ren)

	
	Central_object.lamp_post_height

Central_object.lamp_post_height

The distance above and below the disk plane of the two point sources used in the lamp-post model.

	Type

	Double

	Unit

	Central_object.radius

	Values

	Greater than 0

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	Central_object.geometry_for_source: lamp_post

Central_object.luminosity

The luminosity of a non-blackbody AGN central source.
This is defined as the luminosity from 2-10keV.

	Type

	Double

	Unit

	ergs/s

	Values

	Greater than 0.

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	System_type: agn, bh

	Central_object.rad_type_to_make_wind: brems, cloudy, model, power

Central_object.mass

Mass of the central object. This is very important, affecting wind speeds, gravitational heating and such.

	Type

	Double

	Unit

	M☉

	Values

	Greater than 0

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

Central_object.power_law_cutoff

Adds a low-frequency cutoff to the power law spectrum.
Whilst this is required for power-law emission modes,
it’s set globally and also used in cloudy broken-power-law emission modes!

	Type

	Double

	Unit

	Hz

	Values

	Greater than or equal to 0

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	Central_object.rad_type_to_make_wind: power

Central_object.power_law_index

The exponent 𝛼 in a power law SED applied to a power law source of the form $L_nu=Knu^alpha$.

See Radiation_types and Boundary_layer.power_law_index.

	Type

	Double

	Values

	Greater than 0

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	Central_object.rad_type_to_make_wind: cloudy, power

Central_object.rad_type_in_final_spectrum

Determines the SED of the central object in the spectral cycles. The luminosity is set by the options for the
ionisation cycles, however.

	Type

	Enumerator

	Values

	
	bb

	Available for System_type of star or cv.
Black-body radiation. The boundary layer radiates as a black-body source with surface luminosity set by its
effective temperature (Central_object.temp) and resulting in a total luminosity
proportional to its surface area.

	models

	Available for System_type of star or cv.
Radiate according to a model. Python can support tabulated models that output with a binned luminosity distribution
depending on system properties like temperature and gravity. See Input_spectra.model_file. The total
luminosity will be set by Central_object.luminosity.

	uniform

	Available for System_type of star or cv.
Photons are generated with a random, uniformly-distributed wavelength between
Spectrum.wavemin and Spectrum.wavemax. Can in some cases substitute for a Kurcuz spectrum.
This mode is only available when generating final spectra.

	brems

	Available for System_type of agn or bh.
Central object radiates with SED of a brehmsstralung spectrum as $L_nu=nu^{alpha}e^{-hnu/kT}$.
This was originally developed to allow comparison to spectra generated
according to Blondin heating and cooling rates.

	cloudy

	Available for System_type of agn or bh.
Central object radiates with a ‘broken’ power law, intended largely for testing purposes against Cloudy.
The SED form is $L_nu=Knu^alpha$, but beyond the provided high and low energy
breakpoints the luminosity falls off sharply.

	power

	Available for System_type of agn or bh.
Radiate following a power-law model as $L_nu=Knu^alpha$.
The total luminosity will be set by Boundary_layer.luminosity.

	File

	python.c [https://github.com/agnwinds/python/blob/master/source/python.c]

	Parent(s)

	
	Central_object.radiation: True

	Child(ren)

	
	Input_spectra.model_file

Central_object.rad_type_to_make_wind

Multi-line description, must keep indentation.

	Type

	Enumerator

	Values

	
	bb

	Black-body radiation. The boundary layer radiates as a black-body source with surface luminosity set by its
effective temperature (Central_object.temp) and resulting in a total luminosity
proportional to its surface area.

	models

	Radiate according to a model. Python can support tabulated models that output with a binned luminosity distribution
depending on system properties like temperature and gravity. See Input_spectra.model_file. The total
luminosity will be set by Central_object.luminosity.

	brems

	Available for System_type of agn or bh.
Central object radiates with SED of a brehmsstralung spectrum as $L_nu=nu^{alpha}e^{-hnu/kT}$.
This was originally developed to allow comparison to spectra generated
according to Blondin heating and cooling rates.

	cloudy

	Available for System_type of agn or bh.
Central object radiates with a ‘broken’ power law, intended largely for testing purposes against Cloudy.
The SED form is $L_nu=Knu^alpha$, but beyond the provided high and low energy
breakpoints the luminosity falls off sharply.

	power

	Available for System_type of agn or bh.
Radiate following a power-law model as $L_nu=Knu^alpha$.
The total luminosity will be set by Boundary_layer.luminosity.

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	Central_object.radiation: True

	Child(ren)

	
	Central_object.power_law_cutoff

	Central_object.bremsstrahlung_alpha

	Central_object.cloudy.low_energy_break

	Central_object.bremsstrahlung_temp

	Central_object.blackbody_temp

	Input_spectra.model_file

	Central_object.cloudy.high_energy_break

	Central_object.luminosity

	Central_object.power_law_index

Central_object.radiation

A booliean variable stating whether of not the central object should radiate.
This will enable different follow-up questions depending on the system type.

	Type

	Boolean (yes/no)

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Child(ren)

	
	Central_object.geometry_for_source

	Central_object.rad_type_to_make_wind

	Central_object.rad_type_in_final_spectrum

Central_object.radius

Radius of the central object in the system, e.g the white dwarf or black hole

	Type

	Double

	Unit

	cm

	Values

	Greater than 0

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

Central_object.temp

Temperature of the central star. Physically, this is used in blackbody radiation, shock heating and disk heating in
YSO models. It is also used to help determine the frequency bands in which photons are emitted.

	Type

	Double

	Unit

	Kelvin

	Values

	Greater than zero

	File

	setup_star_bh.c [https://github.com/agnwinds/python/blob/master/source/setup_star_bh.c]

	Parent(s)

	
	System_type: star, cv

Disk

Todo

Fill in

	Disk.T_profile_file

	Disk.mdot

	Disk.rad_type_in_final_spectrum

	Disk.rad_type_to_make_wind

	Disk.radiation

	Disk.radmax

	Disk.temperature.profile

	Disk.type

	Disk.z0

	Disk.z1

Disk.T_profile_file

When the user chooses to read in the temperature profile as a
function of radius, the user is asked the name of the file that
contains the desired profile.

	Type

	String

	File

	setup_disk.c [https://github.com/agnwinds/python/blob/master/source/setup_disk.c]

	Parent(s)

	
	Disk.temperature.profile: readin

Disk.mdot

The mass transfer rate in the disk when considering a standard Shakura-disk.

	Type

	Double

	Unit

	M☉/year

	File

	setup_disk.c [https://github.com/agnwinds/python/blob/master/source/setup_disk.c]

	Parent(s)

	
	Disk.temperature.profile: standard

Disk.rad_type_in_final_spectrum

Multi-line description, must keep indentation.

	Type

	Enumerator

	Values

	
	bb

	Multi-line description, must keep indentation.

	models

	Multi-line description, must keep indentation.

	uniform

	Multi-line description, must keep indentation.

	File

	python.c [https://github.com/agnwinds/python/blob/master/source/python.c]

	Parent(s)

	
	Disk.radiation: True

	Child(ren)

	
	Input_spectra.model_file

Disk.rad_type_to_make_wind

Multi-line description, must keep indentation.

	Type

	Enumerator

	Values

	
	bb

	Multi-line description, must keep indentation.

	models

	Multi-line description, must keep indentation.

	File

	setup_disk.c [https://github.com/agnwinds/python/blob/master/source/setup_disk.c]

	Parent(s)

	
	Disk.radiation: True

	Disk.type: flat, vertically.extended

	Child(ren)

	
	Input_spectra.model_file

Disk.radiation

Multi-line description, must keep indentation.

	Type

	Boolean(yes/no)

	File

	setup_disk.c [https://github.com/agnwinds/python/blob/master/source/setup_disk.c]

	Parent(s)

	
	Disk.type: flat, vertically.extended

	Child(ren)

	
	Disk.rad_type_to_make_wind

	Disk.temperature.profile

	Disk.rad_type_in_final_spectrum

Disk.radmax

The outer edge of the disk. Photons inside this radius are
absorbed or re-radiated. Photons which are outside this radius
pass through the disk plane.

	Type

	Double

	Unit

	cm

	Values

	Greater than 0

	File

	setup_disk.c [https://github.com/agnwinds/python/blob/master/source/setup_disk.c]

	Parent(s)

	
	Disk.type: flat, vertically.extended

Disk.temperature.profile

The choice of disk temperature profile

	Type

	Enumerator

	Values

	
	standard

	A Shakura - Sunyaev disk, with a hard inner boundar

	readin

	Read the profile in from a file; the user will be queried for the name of the file

	yso

	YSO???

	analytic

	DEPRECATED??? A profile designed for the situation where the disk is being illuminated by star

	File

	setup_disk.c [https://github.com/agnwinds/python/blob/master/source/setup_disk.c]

	Parent(s)

	
	Disk.radiation: True

	Child(ren)

	
	Disk.mdot

	Disk.T_profile_file

Disk.type

Parameter defining whether there is a disk in the system

	Type

	Enumerator

	Values

	
	none

	No disk

	flat

	Standard flat disk

	vertically.extended

	Vertically extended disk

	File

	setup_disk.c [https://github.com/agnwinds/python/blob/master/source/setup_disk.c]

	Child(ren)

	
	Disk.rad_type_to_make_wind

	Disk.radiation

	Disk.z1

	Disk.z0

Disk.z0

Fractional height at maximum radius. The physical height at the
outer disk will be this * Disk.radmax.

	Type

	Double

	Values

	Greater than 0

	File

	setup_disk.c [https://github.com/agnwinds/python/blob/master/source/setup_disk.c]

	Parent(s)

	
	Disk.type: vertically.extended

Disk.z1

For a vertically extended the disk, the height of the disk is
set to be Disk.z0 * Disk.radmax * (r/Disk.radmax)**Disk.z1 where Disk.z1
is the power law index

	Type

	Double

	Values

	Greater than 0

	File

	setup_disk.c [https://github.com/agnwinds/python/blob/master/source/setup_disk.c]

	Parent(s)

	
	Disk.type: vertically.extended

Wind

Todo

Fill in

	Corona
	Corona.base_den

	Corona.radmax

	Corona.radmin

	Corona.scale_height

	Corona.vel_frac

	Corona.zmax

	Homologous
	Homologous.boundary_mdot

	Homologous.density_exponent

	Homologous.radmax

	Homologous.radmin

	Homologous.vbase

	Hydro
	Hydro.file

	Hydro.thetamax

	KWD
	KWD.acceleration_exponent

	KWD.acceleration_length

	KWD.d

	KWD.mdot_r_exponent

	KWD.rmax

	KWD.rmin

	KWD.v_infinity

	KWD.v_zero

	SV
	SV.acceleration_exponent

	SV.acceleration_length

	SV.diskmax

	SV.diskmin

	SV.mdot_r_exponent

	SV.thetamax

	SV.thetamin

	SV.v_infinity

	SV.v_zero

	SV.v_zero_mode

	Shell
	Shell.wind.acceleration_exponent

	Shell.wind.radmax

	Shell.wind.radmin

	Shell.wind.v_at_rmax

	Shell.wind_mdot

	Shell.wind_v_at_rmin

	Stellar_wind
	Stellar_wind.acceleration_exponent

	Stellar_wind.mdot

	Stellar_wind.radmax

	Stellar_wind.radmin

	Stellar_wind.v_infinity

	Stellar_wind.vbase

	Wind
	Wind.coord_system

	Wind.dim.in.x_or_r.direction

	Wind.dim.in.z_or_theta.direction

	Wind.filling_factor

	Wind.fixed_concentrations_file

	Wind.ionization

	Wind.mdot

	Wind.model2import

	Wind.number_of_components

	Wind.old_windfile

	Wind.radiation

	Wind.radmax

	Wind.t.init

	Wind.type

Corona

Todo

Fill in

	Corona.base_den

	Corona.radmax

	Corona.radmin

	Corona.scale_height

	Corona.vel_frac

	Corona.zmax

Corona.base_den

The coronal model is defined in terms of a base density
and a scale height

	Type

	Double

	Unit

	number/cm**3

	Values

	Greater than 0

	File

	corona.c [https://github.com/agnwinds/python/blob/master/source/corona.c]

	Parent(s)

	
	Wind.type: corona

Corona.radmax

The corona is a box-shaped region which sits immediately
above the disk. radmax defines the outer edge of the box.

	Type

	Double

	Unit

	cm

	Values

	Greater than Central_object.radius

	File

	corona.c [https://github.com/agnwinds/python/blob/master/source/corona.c]

	Parent(s)

	
	Wind.type: corona

Corona.radmin

The corona is a box-shaped region which sits immediately
above the disk. radmin defines the inner edge of the box.

	Type

	Double

	Unit

	cm

	Values

	Greater than Central_object.radius

	File

	corona.c [https://github.com/agnwinds/python/blob/master/source/corona.c]

	Parent(s)

	
	Wind.type: corona

Corona.scale_height

The coronal model is defined in terms of a base density
and a scale height

	Type

	Double

	Unit

	cm

	Values

	Greater than 0

	File

	corona.c [https://github.com/agnwinds/python/blob/master/source/corona.c]

	Parent(s)

	
	Wind.type: corona

Corona.vel_frac

For the coronal model, the azimuthal velocity is
given by the velocity of the underlying disk. One
can also give the corona a radial velocity, which is
a fraction of the disk velocity. (As coded, if this
number is positive, the velicty is the r direction is
toward the central object).

	Type

	Double

	Unit

	Disk velocity

	Values

	Any, 0 implies no radial velocity.

	File

	corona.c [https://github.com/agnwinds/python/blob/master/source/corona.c]

	Parent(s)

	
	Wind.type: corona

Corona.zmax

The corona is a box-shaped region which sits immediately
above the disk. zmax defines the height of the box.

	Type

	Double

	Unit

	cm

	Values

	Greater than that the radius of the central object

	File

	corona.c [https://github.com/agnwinds/python/blob/master/source/corona.c]

	Parent(s)

	
	Wind.type: corona

Homologous

Todo

Fill in

	Homologous.boundary_mdot

	Homologous.density_exponent

	Homologous.radmax

	Homologous.radmin

	Homologous.vbase

Homologous.boundary_mdot

The mass loss rate at the base of the wind in a homlogous flow model, a flow
in which the velocity is proporional to the radius. In general, mdot will
decline with radius, depending on the exponent of the power law that describes
the trend in density.

	Type

	Double

	Unit

	M☉/yr

	Values

	Greater than 0

	File

	homologous.c [https://github.com/agnwinds/python/blob/master/source/homologous.c]

	Parent(s)

	
	Wind.type: homologous

Homologous.density_exponent

The power law exponent which defines the decline in density of
a homologous flow as a function of radious.

	Type

	Double

	Values

	Greater than 0 for a density that declines with radius

	File

	homologous.c [https://github.com/agnwinds/python/blob/master/source/homologous.c]

	Parent(s)

	
	Wind.type: homologous

Homologous.radmax

Maximum extent of the homologous wind.

	Type

	Double

	Unit

	cm

	Values

	Greater than Homologous.radmin

	File

	homologous.c [https://github.com/agnwinds/python/blob/master/source/homologous.c]

	Parent(s)

	
	Wind.type: homologous

Homologous.radmin

The starting point of for madel of a homologous flow, a model in
which the velocity at any radius is proportional to the radius

	Type

	Double

	Unit

	cm

	Values

	Greater than or equal to Central_object.radius

	File

	homologous.c [https://github.com/agnwinds/python/blob/master/source/homologous.c]

	Parent(s)

	
	Wind.type: homologous

Homologous.vbase

Velocity at the base of the wind

	Type

	Double

	Unit

	cm

	Values

	Greater than 0

	File

	homologous.c [https://github.com/agnwinds/python/blob/master/source/homologous.c]

	Parent(s)

	
	Wind.type: homologous

Hydro

Todo

Fill in

	Hydro.file

	Hydro.thetamax

Hydro.file

Relative path to a hydrodynamic snapshot file to be imported.

	Type

	String

	File

	hydro_import.c [https://github.com/agnwinds/python/blob/master/source/hydro_import.c]

	Parent(s)

	
	Wind.type: hydro

Hydro.thetamax

The maximum theta value to be read in from a hydrodynamic snapshot.
This is typically used to excise a dense disk from the midplane of
such a snapshot. Use a negative value to tell the code to use all
the data.

	Type

	Double

	Unit

	Degrees

	Values

	
	-1

	use all data

	X

	use up to that angle (typically less than 90)

	File

	hydro_import.c [https://github.com/agnwinds/python/blob/master/source/hydro_import.c]

	Parent(s)

	
	Wind.type: hydro

KWD

Todo

Fill in

	KWD.acceleration_exponent

	KWD.acceleration_length

	KWD.d

	KWD.mdot_r_exponent

	KWD.rmax

	KWD.rmin

	KWD.v_infinity

	KWD.v_zero

KWD.acceleration_exponent

Sets the length scale over which the accleration to v_inf is accomplished.
It is the value of the exponent beta for the Caster & Lamers equation of a
stellar wind,
v(r) = v_0 + (v_inf - v_0) * (1 - R_s/r) ** beta.

	Type

	Double

	Values

	Greater than 0

	File

	knigge.c [https://github.com/agnwinds/python/blob/master/source/knigge.c]

	Parent(s)

	
	Wind.type: kwd

KWD.acceleration_length

The size of the acceleration length scale for a disk wind described by the
KWD model.

	Type

	Double

	Unit

	cm

	Values

	Greater than 0

	File

	knigge.c [https://github.com/agnwinds/python/blob/master/source/knigge.c]

	Parent(s)

	
	Wind.type: kwd

KWD.d

The ratio d/d_min is used to describe the degree of geometric collimation of
the disk wind in the KWD model. However, d (the distance to the focal point in
central object radii) is used as this provides a more natural parameter.

	Type

	Double

	Unit

	Central_object.radius

	Values

	Greater than 0

	File

	knigge.c [https://github.com/agnwinds/python/blob/master/source/knigge.c]

	Parent(s)

	
	Wind.type: kwd

KWD.mdot_r_exponent

The exponent for the mass loss rate as defined in the KWD model,
m_dot(r) = F(r) ** alpha = T(r) ** (4 * alpha).
F is the local luminous flux and T is the local temperature at a radius R. A
value of 0 sets a uniform mass loss rate.

	Type

	Double

	Values

	Greater than or equal to 0

	File

	knigge.c [https://github.com/agnwinds/python/blob/master/source/knigge.c]

	Parent(s)

	
	Wind.type: kwd

KWD.rmax

The radius at which the disk wind terminates, in units of central object
radii. This has to be greater than rmin.

	Type

	Double

	Unit

	Central_object.radius

	Values

	Greater than KWD.rmin

	File

	knigge.c [https://github.com/agnwinds/python/blob/master/source/knigge.c]

	Parent(s)

	
	Wind.type: kwd

KWD.rmin

The radius at which the disk wind begins, in units of central object radii.

	Type

	Double

	Unit

	Central_object.radius

	Values

	Greater than 1

	File

	knigge.c [https://github.com/agnwinds/python/blob/master/source/knigge.c]

	Parent(s)

	
	Wind.type: kwd

KWD.v_infinity

The velocity at large distances of a steller wind described by the KWD model,
in units of escape velocity. Described in terms of Castor & Lamers equation,
v(r) = v_0 + (v_inf - v_0) * (1 - R_s/r) ** beta.

	Type

	Double

	Unit

	Escape velocity

	Values

	Greater than 0

	File

	knigge.c [https://github.com/agnwinds/python/blob/master/source/knigge.c]

	Parent(s)

	
	Wind.type: kwd

KWD.v_zero

Multiple of the local sound speed at the base of the wind, this results in
the initial velocity of the wind being able to be greater or less than the
local sound speed.

	Type

	Double

	Unit

	Sound speed at wind base

	Values

	Greater than 0

	File

	knigge.c [https://github.com/agnwinds/python/blob/master/source/knigge.c]

	Parent(s)

	
	Wind.type: kwd

SV

Todo

Fill in

	SV.acceleration_exponent

	SV.acceleration_length

	SV.diskmax

	SV.diskmin

	SV.mdot_r_exponent

	SV.thetamax

	SV.thetamin

	SV.v_infinity

	SV.v_zero

	SV.v_zero_mode

SV.acceleration_exponent

Power-law acceleration exponent (i.e. alpha) of a line driven wind in a Shlosman & Vitello (SV) CV disk wind model.
Sets the length scale over which the accleration to v_inf is accomplished.
This value is a constant; when equal to 1 the results resemble those of a linear velocity law.
Typically for an SV type wind this power law exponent is 1.5.
See equation (2) Shlosman & Vitello 1993, ApJ 409, 372.

	Type

	Double

	Values

	Greater than 0

	File

	sv.c [https://github.com/agnwinds/python/blob/master/source/sv.c]

	Parent(s)

	
	Wind.type: SV

SV.acceleration_length

The size of the acceleration length scale for a disk wind described by the
Shlosman Vitelo model. See equation (2) Shlosman & Vitelo ApJ (1993),409,372

	Type

	Double

	Unit

	cm

	Values

	Greater than 0

	File

	sv.c [https://github.com/agnwinds/python/blob/master/source/sv.c]

	Parent(s)

	
	Wind.type: SV

SV.diskmax

The outermost radius from which the wind rises in a Shlossman-Vitello type disk wind.
This radius is measured along the radial disk (r) direction i.e. zero describes the centre of the central object
(white dwarf)
See figure 1 of Shlosman & Vitello 1993, ApJ 409,372.

	Type

	Double

	Unit

	cm

	Values

	Greater than or equal to SV.diskmin (inner radius disk wind)

	File

	sv.c [https://github.com/agnwinds/python/blob/master/source/sv.c]

	Parent(s)

	
	Wind.type: SV

SV.diskmin

The innermost radius from which the wind rises in a Shlossman-Vitello type disk wind.
This radius is measured along the radial disk (r) direction i.e. zero describes the centre of the central object
(white dwarf)
See figure 1 of Shlosman & Vitello 1993, ApJ 409,372.

	Type

	Double

	Unit

	cm

	Values

	Greater than or equal to Central_object.radius

	File

	sv.c [https://github.com/agnwinds/python/blob/master/source/sv.c]

	Parent(s)

	
	Wind.type: SV

SV.mdot_r_exponent

The exponent for the mass loss rate as defined in the Shlosman Vitelo model,
See lambda in equation (4) Shlosman & Vitelo,ApJ,1993,409,372.

	Type

	Double

	Values

	Greater than or equal to 0. 0 sets a uniform mass loss rate.

	File

	sv.c [https://github.com/agnwinds/python/blob/master/source/sv.c]

	Parent(s)

	
	Wind.type: SV

SV.thetamax

The angle at which the wind rises from the outermost launching radius in a Shlossman-Vitello type disk wind.
This angle is measured with respect to the vertical (z) direction i.e. zero describes a vertical wind.
See figure 1 of Shlossman & Vitello 1993, ApJ 409,372.

	Type

	Double

	Unit

	Degrees

	Values

	Greater than sv.thetamin

	File

	sv.c [https://github.com/agnwinds/python/blob/master/source/sv.c]

	Parent(s)

	
	Wind.type: SV

SV.thetamin

The angle at which the wind rises from the innermost launching radius in a Shlossman-Vitello type disk wind.
This angle is measured with respect to the vertical (z) direction. I.e. zero descirbes a vertical wind.
See figure 1 of Shlossman & Vitello 1993, ApJ, 409, 372.

	Type

	Double

	Unit

	Degrees

	Values

	Greater than 0

	File

	sv.c [https://github.com/agnwinds/python/blob/master/source/sv.c]

	Parent(s)

	
	Wind.type: SV

SV.v_infinity

Asymptotic (i.e. final) velocity of a line driven wind in a Shlosman & Vitello CV disk wind model.
Assumed to scale with the local velocity at the base of the streamline.
See equation (2) Shlosman & Vitello 1993, ApJ 409, 372.

	Type

	Double

	Unit

	Escape velocity

	Values

	Greater than 0

	File

	sv.c [https://github.com/agnwinds/python/blob/master/source/sv.c]

	Parent(s)

	
	Wind.type: SV

SV.v_zero

The velocity at the wind base.

	Type

	Double

	Unit

	[‘Speed of sound in the wind’, ‘cm/s’]

	Values

	Greater than 0

	File

	sv.c [https://github.com/agnwinds/python/blob/master/source/sv.c]

	Parent(s)

	
	SV.v_zero_mode: sound_speed, fixed

SV.v_zero_mode

Multi-line description, must keep indentation.

	Type

	Enumerator

	Values

	
	fixed

	Multi-line description, must keep indentation.

	sound_speed

	Multi-line description, must keep indentation.

	File

	sv.c [https://github.com/agnwinds/python/blob/master/source/sv.c]

	Parent(s)

	
	Wind.type: SV

	Child(ren)

	
	SV.v_zero

Shell

Todo

Fill in

	Shell.wind.acceleration_exponent

	Shell.wind.radmax

	Shell.wind.radmin

	Shell.wind.v_at_rmax

	Shell.wind_mdot

	Shell.wind_v_at_rmin

Shell.wind.acceleration_exponent

Exponent beta for the Caster and Lamers description of a stellar wind
v(r)=v_o + (v_inf - v_o) (1+R_s/r)**beta for a shell wind.

	Type

	Double

	Values

	Greater than or equal to 0

	File

	shell_wind.c [https://github.com/agnwinds/python/blob/master/source/shell_wind.c]

	Parent(s)

	
	Wind.type: shell

Shell.wind.radmax

Multi-line description, must keep indentation.

	Type

	Double

	Unit

	cm

	Values

	Greater than Shell.wind.radmin

	File

	shell_wind.c [https://github.com/agnwinds/python/blob/master/source/shell_wind.c]

	Parent(s)

	
	Wind.type: shell

Shell.wind.radmin

The innermost edge of a diagnostic type of wind made up of a single
(ideally thin) shell.

	Type

	Double

	Unit

	cm

	Values

	Greater than 0

	File

	shell_wind.c [https://github.com/agnwinds/python/blob/master/source/shell_wind.c]

	Parent(s)

	
	Wind.type: shell

Shell.wind.v_at_rmax

The velocity of a shell wind at the outer edge of the
shell - the variation of the velocity in the shell is
set by the velocity law exponent. It allows a gradient
to be enforced.

	Type

	Double

	Unit

	cm/s

	Values

	Greater than or equal to 0

	File

	shell_wind.c [https://github.com/agnwinds/python/blob/master/source/shell_wind.c]

	Parent(s)

	
	Wind.type: shell

Shell.wind_mdot

The mass loss through a diagnostic shell type wind. One normally sets
this experimentally in order to get a required hydrogen density in
the shell

	Type

	Double

	Unit

	M☉/year

	Values

	Greater than 0

	File

	shell_wind.c [https://github.com/agnwinds/python/blob/master/source/shell_wind.c]

	Parent(s)

	
	Wind.type: shell

Shell.wind_v_at_rmin

The velocity of a shell wind at the inner edge of the
shell - the variation of the velocity in the shell is
set by the velocity law exponent. It allows a gradient
to be enforced.

	Type

	Double

	Unit

	cm/s

	Values

	Greater than or equal to 0

	File

	shell_wind.c [https://github.com/agnwinds/python/blob/master/source/shell_wind.c]

	Parent(s)

	
	Wind.type: shell

Stellar_wind

Todo

Fill in

	Stellar_wind.acceleration_exponent

	Stellar_wind.mdot

	Stellar_wind.radmax

	Stellar_wind.radmin

	Stellar_wind.v_infinity

	Stellar_wind.vbase

Stellar_wind.acceleration_exponent

Exponent beta for the Caster and Lamers description of a stellar wind
v(r)=v_o + (v_inf - v_o) (1+R_s/r)**beta

	Type

	Double

	Values

	Greater than or equal to 0

	File

	stellar_wind.c [https://github.com/agnwinds/python/blob/master/source/stellar_wind.c]

	Parent(s)

	
	Wind.type: star

Stellar_wind.mdot

Mass loss rate for a wind modelled in terms of the
Caster and Lamemers prescription for a stellar wind.

	Type

	Double

	Unit

	M☉/year

	Values

	Greater than 0

	File

	stellar_wind.c [https://github.com/agnwinds/python/blob/master/source/stellar_wind.c]

	Parent(s)

	
	Wind.type: star

Stellar_wind.radmax

Multi-line description, must keep indentation.

	Type

	Double

	Unit

	cm

	Values

	Greater than or equal to Stellar_wind.radmin

	File

	stellar_wind.c [https://github.com/agnwinds/python/blob/master/source/stellar_wind.c]

	Parent(s)

	
	Wind.type: star

Stellar_wind.radmin

Inner edge in cm for a stellar wind, normally the
radius of the star.

	Type

	Double

	Unit

	cm

	Values

	Greater than or equal to Central_object.radius

	File

	stellar_wind.c [https://github.com/agnwinds/python/blob/master/source/stellar_wind.c]

	Parent(s)

	
	Wind.type: star

Stellar_wind.v_infinity

The velocity at large distance of a stellar wind described in terms
of the Casters and Larmers equation
v(r)=v_o + (v_inf - v_o) (1+R_s/r)**beta

	Type

	Double

	Unit

	cm/s

	Values

	Greater than 0

	File

	stellar_wind.c [https://github.com/agnwinds/python/blob/master/source/stellar_wind.c]

	Parent(s)

	
	Wind.type: star

Stellar_wind.vbase

Multi-line description, must keep indentation.

	Type

	Double

	Unit

	cm/s

	Values

	Condition e.g. greater than 0 or list e.g. [1, 2, 5]

	File

	stellar_wind.c [https://github.com/agnwinds/python/blob/master/source/stellar_wind.c]

	Parent(s)

	
	Wind.type: star

Wind

Todo

Fill in

	Wind.coord_system

	Wind.dim.in.x_or_r.direction

	Wind.dim.in.z_or_theta.direction

	Wind.filling_factor

	Wind.fixed_concentrations_file

	Wind.ionization

	Wind.mdot

	Wind.model2import

	Wind.number_of_components

	Wind.old_windfile

	Wind.radiation

	Wind.radmax

	Wind.t.init

	Wind.type

Wind.coord_system

The coordinate system used for a describing a component of the wind.

	Type

	Enumerator

	Values

	
	spherical

	Spherical

	cylindrical

	Cylindrical

	polar

	Spherical polar

	cyl_var

	Cylindrical varying z

	File

	setup_domains.c [https://github.com/agnwinds/python/blob/master/source/setup_domains.c]

	Parent(s)

	
	Wind.number_of_components: Greater than 0. Once per wind.

Wind.dim.in.x_or_r.direction

Winds are calulated on spherical, cylindrical, or polar grids.
This input variable gives the size of the grid in the x or r
direction. Because some grid cells are used as a buffer, the
actual wind cells are contained in a slightly smaller grid than
the number given.

Note that in some situations there may be more than one wind
component, known technically as a domain. In that case the user
will be queried for this value mulitple times, one for each domain

	Type

	Integer

	Values

	Greater than or equal to 4, to allow for boundaries.

	File

	setup_domains.c [https://github.com/agnwinds/python/blob/master/source/setup_domains.c]

	Parent(s)

	
	Wind.number_of_components: Greater than or equal to 0. Once per wind.

	Wind.type: Not imported

Wind.dim.in.z_or_theta.direction

Winds are calulated on spherical, cylindrical, or polar grids.
This input variable gives the size of the grid in the z or theta
direction. Because some grid cells are used as a buffer, the
actual wind cells are contained in a slightly smaller grid than
the number given.

Note that in some situations there may be more than one wind
component, known technically as a domain. In that case the user
will be queried for this value mulitple times, one for each domain

	Type

	Integer

	Values

	Greater than 0

	File

	setup_domains.c [https://github.com/agnwinds/python/blob/master/source/setup_domains.c]

	Parent(s)

	
	Wind.number_of_components: Greater than 0. Once per wind.

	Wind.type: Not imported

Wind.filling_factor

The volume filling factor of the outflow. The implementation
of clumping (microclumping) is described in
Matthews et al. (2016), 2016MNRAS.458..293M. Asked once per domain.

	Type

	Double

	Values

	0 < f <= 1, where 1 is a fully smooth wind.

	File

	setup_domains.c [https://github.com/agnwinds/python/blob/master/source/setup_domains.c]

	Parent(s)

	
	Wind.number_of_components: Greater than 0. Once per domain.

Wind.fixed_concentrations_file

The filename for the fixed ion concentrations if you have
set Wind_ionization to 2 (fixed). This file has format
[atomic_number ionizationstage ion fraction].

	Type

	String

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Wind.ionization: fixed

Wind.ionization

Multi-line description, must keep indentation.

	Type

	Enumerator

	Values

	
	LTE_te

	Multi-line description, must keep indentation.

	LTE_tr

	Multi-line description, must keep indentation.

	ML93

	Multi-line description, must keep indentation.

	fixed

	Multi-line description, must keep indentation.

	matrix_bb

	Multi-line description, must keep indentation.

	matrix_pow

	Multi-line description, must keep indentation.

	on.the.spot

	Multi-line description, must keep indentation.

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Child(ren)

	
	Wind.fixed_concentrations_file

Wind.mdot

Multi-line description, must keep indentation.

	Type

	Double

	Unit

	M☉/year

	Values

	Greater than 0

	File

	[‘knigge.c’, ‘sv.c’] [https://github.com/agnwinds/python/blob/master/source/['knigge.c','sv.c']]

	Parent(s)

	
	Wind.type: knigge, SV

Wind.model2import

The name of a file to containing a generic model to read in to python from an ascii file. (Note
that this is not the same as reading in a model generated by python, but is intended to allow
one to read in a generic model in a variety of formats with only a limited amount of information
required).

	Type

	String

	File

	import.c [https://github.com/agnwinds/python/blob/master/source/import.c]

	Parent(s)

	
	Wind.type: imported

Wind.number_of_components

While most simple description of a wind consist of a single region of space, Python can calculate
radiative transfer through more complicated structres, where one region of space is described with one
prescription and another region of space with a second prescription. For example, one might want to place
a disk atmoosphere between the disk and a wind. This parameter describes the number of components (aka domains)
of the wind.

	Type

	Integer

	Values

	Greater than 0

	File

	python.c [https://github.com/agnwinds/python/blob/master/source/python.c]

	Parent(s)

	
	System_type: star, binary, agn

	Child(ren)

	
	Wind.t.init

	Wind.coord_system

	Diag.adjust_grid

	Wind.radmax

	Wind.filling_factor

	Wind.dim.in.z_or_theta.direction

	Wind.type

	Wind.dim.in.x_or_r.direction

Wind.old_windfile

The rootname of a previously saved model in a calculation one wishes to
continue (with the possiblity of making changes to some of the details of
the radiation sources, or to extract spectra from different inclinations)

	Type

	String

	File

	python.c [https://github.com/agnwinds/python/blob/master/source/python.c]

	Parent(s)

	
	System_type: previous

Wind.radiation

Whether or not the wind should radiate.

	Type

	Boolean (yes/no)

	File

	python.c [https://github.com/agnwinds/python/blob/master/source/python.c]

Wind.radmax

Multi-line description, must keep indentation.

	Type

	Double

	Unit

	cm

	Values

	Greater than Central_object.radius and any minimum wind radii in the system.

	File

	setup_domains.c [https://github.com/agnwinds/python/blob/master/source/setup_domains.c]

	Parent(s)

	
	Wind.number_of_components: Greater than 0. Once per domain.

Wind.t.init

Starting temperature of the wind.

	Type

	Double

	Unit

	Kelvin

	Values

	Greater than 0

	File

	setup_domains.c [https://github.com/agnwinds/python/blob/master/source/setup_domains.c]

	Parent(s)

	
	Wind.number_of_components: Greater than 0. Once per domain.

Wind.type

Multi-line description, must keep indentation.

	Type

	Enumerator

	Values

	
	SV

	Multi-line description, must keep indentation.

	corona

	Multi-line description, must keep indentation.

	homologous

	Multi-line description, must keep indentation.

	hydro

	Multi-line description, must keep indentation.

	imported

	Multi-line description, must keep indentation.

	kwd

	Multi-line description, must keep indentation.

	shell

	Multi-line description, must keep indentation.

	star

	Multi-line description, must keep indentation.

	yso

	Multi-line description, must keep indentation.

	File

	setup_domains.c [https://github.com/agnwinds/python/blob/master/source/setup_domains.c]

	Parent(s)

	
	Wind.number_of_components: Greater than 0. Once per domain.

	Child(ren)

	
	Shell.wind_v_at_rmin

	Corona.radmax

	Wind.mdot

	KWD.mdot_r_exponent

	Corona.base_den

	KWD.v_zero

	Stellar_wind.mdot

	Homologous.radmin

	KWD.acceleration_length

	Corona.radmin

	KWD.rmax

	Homologous.radmax

	SV.thetamax

	SV.acceleration_exponent

	Corona.zmax

	Corona.scale_height

	Homologous.density_exponent

	Hydro.thetamax

	Wind.dim.in.z_or_theta.direction

	SV.diskmin

	SV.diskmax

	SV.acceleration_length

	Hydro.file

	KWD.acceleration_exponent

	Corona.vel_frac

	Stellar_wind.radmin

	Shell.wind.radmax

	Stellar_wind.radmax

	Wind.model2import

	Homologous.vbase

	Homologous.boundary_mdot

	KWD.rmin

	Shell.wind_mdot

	SV.mdot_r_exponent

	KWD.d

	Shell.wind.v_at_rmax

	Stellar_wind.acceleration_exponent

	Stellar_wind.v_infinity

	Shell.wind.radmin

	Shell.wind.acceleration_exponent

	SV.v_zero_mode

	SV.v_infinity

	Stellar_wind.vbase

	Wind.dim.in.x_or_r.direction

	KWD.v_infinity

	SV.thetamin

Radiative Transfer & Ionisation

Todo

Fill in

	Atomic_data

	Ionization_cycles

	Line_transfer

	Photons_per_cycle

	Spectrum_cycles

	Surface.reflection.or.absorption

	Wind_heating
	Wind_heating.extra_luminosity

	Wind_heating.extra_processes

	Wind_heating.kpacket_frac

Atomic_data

Python uses an atomic data file, as found in the agnwinds/data repository.
This is the relative path to the Atomic Data header file on disk. See Atomic data

	Type

	String

	File

	setup_line_transfer.c [https://github.com/agnwinds/python/blob/master/source/setup_line_transfer.c]

	Parent(s)

	
	System_type: AGN, binary, star

Ionization_cycles

The number of ionization cycles to execute -
these are cycles to determine the ionization and thermal state of the wind

	Type

	Integer

	Values

	Greater than 0

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

Line_transfer

The way in which line transfer and scattering is dealt with
in the code. Governs whether we adopt any approximations
for radiative transfer, whether to use the indivisible packet
and macro-atom machinery, and whether to use isotropic or
anisotropic scattering.

Thermal trapping mode is recommended for non-macro atom runs,
while thermal trapping macro-atom mode is recommended for macro-atom runs.

	Type

	Enumerator

	Values

	
	pure_abs

	Pure absorption

The pure absortion approximation.

	pure_scat

	Pure scattering

The pure scattering approximation.

	sing_scat

	Single scattering

The single scattering approximation.

	escape_prob

	Escape probability

Resonance scattering and electron scattering is dealt with isotropically.
free-free, compton and bound-free opacities attenuate the weight of the photon
wind emission produces additional photons, which have their directions chosen isotropically.
The amount of radiation produced is attenuated by the escape probability.

	thermal_trapping

	Escape probability + anisotropic scattering

We use the ‘thermal trapping method’ to choose an
anistropic direction when an r-packet deactivation
or scatter occurs.

	macro_atoms

	Macro-atoms

use macro-atom line transfer.
Packets are indivisible and thus all opacities are dealt with by activate a macro-atom, scattering,
or creating a k-packet.
the new direction following electron scattering or deactivation of
a macro atom is chosen isotropically.

	macro_atoms_thermal_trapping

	Macro-atoms + anisotropic scattering

as macro_atoms, but we use the ‘thermal trapping method’ to choose an anistropic direction
when an r-packet deactivation or scatter occurs.

	File

	setup_line_transfer.c [https://github.com/agnwinds/python/blob/master/source/setup_line_transfer.c]

	Child(ren)

	
	Reverb.matom_lines

	Wind_heating.kpacket_frac

Photons_per_cycle

Multi-line description, must keep indentation.

	Type

	Double

	Values

	Greater than 0

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

Spectrum_cycles

Multi-line description, must keep indentation.

	Type

	Integer

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Child(ren)

	
	Spectrum.orbit_phase

	Spectrum.no_observers

	Spectrum.wavemin

	Spectrum.select_photons_by_position

	Spectrum.type

	Spectrum.live_or_die

	Spectrum.select_specific_no_of_scatters_in_spectra

	Spectrum.wavemax

Surface.reflection.or.absorption

When photons hit the disk, there are several options

	Type

	Enumerator

	Values

	
	reflect

	The photons are scattered back into the wind

	absorb

	The photons are simply lost from the calculation

	thermalized.rerad

	The photons are absorbed, in the next ionization cycle energy lost is treated as extra heat, and the effective temperature of the ring in the disk will be increased accordingly

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

Wind_heating

Todo

Fill in

	Wind_heating.extra_luminosity

	Wind_heating.extra_processes

	Wind_heating.kpacket_frac

Wind_heating.extra_luminosity

This is a very special option put in place for modelling FU Ori stars, and should be used with extreme caution. Determines the shock factor.

	Type

	Double

	Values

	Condition e.g. greater than 0 or list e.g. [1, 2, 5]

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Wind_heating.extra_processes: nonthermal, both

Wind_heating.extra_processes

Multi-line description, must keep indentation.

	Type

	Enumerator

	Values

	
	adiabatic

	Multi-line description, must keep indentation.

	both

	Multi-line description, must keep indentation.

	none

	Multi-line description, must keep indentation.

	nonthermal

	Multi-line description, must keep indentation.

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Child(ren)

	
	Wind_heating.kpacket_frac

	Wind_heating.extra_luminosity

Wind_heating.kpacket_frac

Multi-line description, must keep indentation.

	Type

	Double

	Unit

	None

	Values

	Condition e.g. greater than 0 or list e.g. [1, 2, 5]

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Wind_heating.extra_processes: nonthermal, both

	Line_transfer: macro_atoms, macro_atoms_thermal_trapping

Spectrum

Todo

Fill in

	Spectrum.angle

	Spectrum.live_or_die

	Spectrum.no_observers

	Spectrum.orbit_phase

	Spectrum.select_azimuth

	Spectrum.select_location

	Spectrum.select_photons_by_position

	Spectrum.select_r

	Spectrum.select_rho

	Spectrum.select_scatters

	Spectrum.select_specific_no_of_scatters_in_spectra

	Spectrum.select_z

	Spectrum.type

	Spectrum.wavemax

	Spectrum.wavemin

Spectrum.angle

The inclination angle with respect to the polar axis for
obtaining a spectrum. This question will be repeated once
for each desired incliniation

	Type

	Double

	Unit

	Degrees

	Values

	0 to 90 degrees, where 0 is normal to the disk and 90 is on the disk plane

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Spectrum.no_observers: Greater than 0. Once per observer.

Spectrum.live_or_die

Normally in creating detailed spectrum Python “extracts” photons in a certain
direction reweighting them to account for the fact that they have been extracted
in a certain direction. It is possible to just count the photons that are emitted
in a single angle range. The two methods should yield the same or very similar results
but the extraction method is much more efficient and live or die is basically a
diagnostic mode.

	Type

	Enumerator

	Values

	
	live.or.die

	Count only those photons that escape within a small angle range towards the observer

	extract

	Extract a component of all photons that scatter towards the observer

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Spectrum_cycles: Greater than or equal to 0

Spectrum.no_observers

The number of different inclination angles for which spectra
will be extracted.

	Type

	Integer

	Values

	Greater than 0

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Spectrum_cycles: Greater than or equal to 0

	Child(ren)

	
	Spectrum.angle

Spectrum.orbit_phase

For binary systems, the orbital phase at which the spectrum
is to be extracted (so the effects of an eclipse can be taken
into account in creating the spectrum). Phase 0 corresponds to
inferior conjunciton, that is with the secondary in front (or
depending on inclination angle, partially in front of) the
primary

	Type

	Double

	Values

	Between 0 and 1

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Spectrum_cycles: Greater than or equal to 0

	System_type: binary

Spectrum.select_azimuth

Advance command which along with several other parameters
specifies a spherical region of space in cylindrical coordinates.
This parameter desribes the azimuth of the region. When
this general option is used, a detailed spectrum is constructed
just from photons that originate or scatter int he region

	Type

	Double

	Unit

	Degrees

	Values

	Between 0, and 360 or -180 to 180

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Spectrum.select_location: spherical_region

Spectrum.select_location

One of several related parameters that permit one to apply
additional conditions on the location of photons extracted in
the detailed spectrum. The location refers here to the either
where the photons was created or where it last scattered

	Type

	Enumerator

	Values

	
	all

	Select photons regardless of where they are generated

	below_disk

	Select only photons generated from below (-z) the disk

	above_disk

	Select only photons orginating above the disk

	spherical_region

	Select photons by defining a spherical region

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Spectrum.select_photons_by_position: True

	Child(ren)

	
	Spectrum.select_r

	Spectrum.select_rho

	Spectrum.select_azimuth

	Spectrum.select_z

Spectrum.select_photons_by_position

Advanced command associated with adding conditions for
the detailed spectra that are extracted. This command simply
asks whether one would like to select photons by position. If
so one will be asked to define a spheical region in interms of
its cylindrical coordinates.

	Type

	Boolean (yes/no)

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Spectrum_cycles: Greater than or equal to 0

	Child(ren)

	
	Spectrum.select_location

Spectrum.select_r

Part of a set of parameters which define a spherical region of space from which
photons are to be extracted. select_r defines the radius of the spherical region

	Type

	Double

	Unit

	cm

	Values

	Greater than 0

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Spectrum.select_location: spherical_region

Spectrum.select_rho

Advanced command which defines a spherical region of
space from which photons are to be extracted in constructing a detailed
spectrum. The region is defined by a cylindrical distance, and z height
and an aximuth, and a radius r. This parameter defines the rho coordiante
of the region.

	Type

	Double

	Unit

	cm

	Values

	Condition e.g. greater than 0 or list e.g. [1, 2, 5]

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Spectrum.select_location: spherical_region

Spectrum.select_scatters

Advaned command that allows one to extract photons that
have undergone a certain number of scatters. If n > MAXSCAT,
that is to say a very large number then all scatters are slected.
If lies between 0 and MAXSCAT then photons will be extracted only
at the point a photon has undergone this number of scatters. If
n is < 0 then photons with n or greater scattters will be extracted.

	Type

	Integer

	Values

	Greater than 0

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Spectrum.select_specific_no_of_scatters_in_spectra: True

Spectrum.select_specific_no_of_scatters_in_spectra

Advanced command which allows one to place additional
constraints on the detailed spectra which are extract.
This includes selectiong photons from above or below the
disk, only photons which have scttered, etc.

	Type

	Boolean (yes/no)

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Spectrum_cycles: Greater than or equal to 0

	Child(ren)

	
	Spectrum.select_scatters

Spectrum.select_z

Advanced command which defines a spherical region of
space from which photons are to be extracted in constructing a detailed
spectrum. The region is defined by a cylindrical distance, and z height
and an aximuth, and a radius r. This parameter defines the z coordiante
of the region.

	Type

	Double

	Unit

	cm

	Values

	Within the z range of the model

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Spectrum.select_location: spherical_region

Spectrum.type

The type of spectra that are produced in the final spectra. The current choices are flambda, fnu, or basic,
where basic implies simply summing up the energy packets that escape within a particularly wavelength/
frequency bin.

	Type

	Enumerator

	Values

	
	flambda

	λF(λ)

	fnu

	νF(ν)

	basic

	F(λ)

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Spectrum_cycles: Greater than or equal to 0

Spectrum.wavemax

The maximum wavelength of the detailed spectra that are to be produced

	Type

	Double

	Unit

	Angstroms

	Values

	
	Spectrum.wavemin

	Greater than

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Spectrum_cycles: Greater than or equal to 0

Spectrum.wavemin

The minimum wavelength of the final spectra in Angstroms

	Type

	Double

	Unit

	Angstroms

	Values

	Greater than 0

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Spectrum_cycles: Greater than or equal to 0

Other

Todo

Fill in

Input_spectra.model_file

In addition to being able to generate several types of spectra, such
as blackbodies and power laws, Python can read in a series of spectra
which are tabulated and are describable in terms of (usually) temperature
and gravity). This parameter defines the name of the file which gives the
location of the individual spectra and the temperate and gravity associated
with each spectrum. (One may wish to use the same files for several radiation sources, viz the disk and the star)
Python actually only reads in the data the first time.

	Type

	String

	File

	setup.c [https://github.com/agnwinds/python/blob/master/source/setup.c]

	Parent(s)

	
	Central_object.rad_type_to_make_wind: models

	Central_object.rad_type_in_final_spectrum: models

	Disk.rad_type_to_make_wind: models

	Disk.rad_type_in_final_spectrum: models

	Boundary_layer.rad_type_to_make_wind: models

	Boundary_layer.rad_type_in_final_spectrum: models

Top level parameters

Todo

Fill in

	Photon_sampling.approach

	Disk.type

	Central_object.radiation

	Ionization_cycles

	Diag.write_atomicdata

	Wind.ionization

	Diag.extra

	Wind.radiation

	Reverb.type

	Central_object.mass

	Photons_per_cycle

	Central_object.radius

	Wind_heating.extra_processes

	Diag.use_standard_care_factors

	Line_transfer

	Spectrum_cycles

	System_type

	Surface.reflection.or.absorption

Outputs

Todo

Fill in

	Diagnostic files

	Model

	Spectra Files
	File types

	Spectra Files
	File types

	Spectrum Generation
	Doppler Shifting out of the Spectrum Wavelength Range

	Removing Photons due to Too Many Scatters

	Issue

Diagnostic files

Python logs a considerable amount of information as it runs.
Some of this information is printed to the screen but a much more voluminous version of progress of the program is placed in a sub- directory,
named diag_whatever, where whatever is the root name of the model being run.

In this directory one will find log files, e.g. whatever_0.diag, whatever_1.diag,
… where the in a multiprocessor run, the number refers to the log of a specific thread.

Inspecting these logs is important for understanding whether a Python run is successful,
and for understanding why if failed if that is the case.

Model

As Python is run, it repeatedly writes out two binary files that contain essentially all information about the wind as calculated in the ionization phase of the program,
along with status of the program at the last point where the file was written.
These files along with the parameter file are sufficient to restart the program,
if for example, one wants to check point the program after a certain time, and restart where one left off,
or to add spectral cycles to get better spectra.

	.wind_save

	A binary file that contains essentially all information about the wind including ion densities,
temperatures, and velocities in each cell, along with status of the program at the last point where the file was written.

	.spec_save

	A binary file that contains all of the information about the spectra that have created. This file is not of interest to users directly. It is used when restarting

Two routines exist as part of the Python distribution allow the user to gain insight into the actual model

	windsave2table

	Executed from the command line with windsave2table rootname.

Produces a set of standard set ascii tables that that show for each grid cell quantities such as wind velocity,
\(n_e\), temperatures, and densities of prominent ions.

	py_wind

	Executed from the command line with py_wind rootname

Allows the user to query for information about the model interactively. The results can be written to ascii files for future reference

Spectra Files

Python is intended to produce simulated spectra. These spectra are all ascii tables intended to be accessible with software packages such as astropy.

All of the ascii begin with commented headers that contain all of the parameters of associated with a run,
along with the date of the run and the specific version of Python used to make the run.
In principle, if one still has access to any of the spectra, one can reproduce the entire run again.

Broad band spectra are created from the last ionization cycle. Detailed are calculated from all of the spectral cycles.

For a model with root name cv, the following broadband spectra will be created:

	cv.spec_tot - various spectra

	cv.log_spec_tot

	cv.spec_tot_wind

	cv.log_spec_tot_wind

File types

	.spec_tot

	An ascii file that contains various spectra from the ionization-calculation phase of the program on a linear frequency scale.
The first few lines of the file (omitting the header) are as follows:

Freq. Lambda Emitted Star+BL Disk Wind HitSurf Scattered
3.023938e+14 9913.975 1.07e+33 2.03e+31 1.05e+33 1.05e+30 4.11e+31 0
3.049952e+14 9829.418 1.1e+33 2.24e+31 1.07e+33 3.97e+30 4.42e+31 0
3.075965e+14 9746.292 1.09e+33 2.1e+31 1.07e+33 1.22e+30 3.63e+31 0
3.101978e+14 9664.559 1.11e+33 1.97e+31 1.09e+33 1.33e+30 4.34e+31 0
3.127991e+14 9584.186 1.08e+33 2.03e+31 1.06e+33 1.27e+30 4.75e+31 0

The first two columns are fairly obvious. Lambda is in Angstroms. The remainder indicate the luminosity of the system in specific bands. Emitted is the total emergent spectrum, Star+BL is the emergent spectrum from photons bundles originating on the Star or BL, Disk and Wind are the same for photons originating in the disk and wind respectively. HitSurf represents photons that did not escape the system but ran into a boundary, and Scattered are photons that somewhere along their path out of the system were actually scattered.

	.log_spec_tot

	An ascii file which contains the same information as .spec_tot, but with a logarithmically space frequency intervals.
This gives better sampling of the SED in a lot of cases and is much better for plotting things such as the input spectrum.

	.spec_tot_wind

	Identical to .spec_tot but just including photons that were generated in the wind or scattered by the wind

	.log_spec_tot_wind

	A logarithmic version of .spec_tot_wind

	.spec

	an ascii file that contains the final detailed spectra for the wavelengths of interest at a distance of 100 pc.

Photons bundles are generated in cycles in python and the .spec file is actually written out at the end of each cycle
as the program is running in the spectrum-generation phase of the program. So one can inspect the spectrum as it is building up.

The beginning of the file (omitting the header) is as follows:

Freq. Lambda Created Emitted CenSrc Disk Wind HitSurf Scattered A10P0.50 A28P0.50 A45P0.50 A62P0.50 A80P0.50
1.620713e+15 1849.757 3.8401e-12 3.6348e-12 9.1429e-14 3.5434e-12 0 8.8693e-14 1.7753e-13 9.2741e-12 7.6342e-12 6.3434e-12 2.3932e-12 9.382e-13
1.620925e+15 1849.514 4.8471e-12 4.7931e-12 2.7382e-13 4.4306e-12 8.8704e-14 1.8213e-13 2.4885e-13 1.0177e-11 7.7666e-12 3.2906e-12 3.4296e-12 1.3389e-12
1.621138e+15 1849.272 5.3058e-12 5.182e-12 9.1477e-14 4.9992e-12 9.1404e-14 2.674e-13 3.5847e-13 1.2354e-11 6.9236e-12 5.9863e-12 3.3748e-12 1.7905e-12
1.621351e+15 1849.029 3.9346e-12 3.9028e-12 0 3.8127e-12 9.0124e-14 8.9142e-14 2.6728e-13 1.1158e-11 6.4932e-12 5.1452e-12 3.9074e-12 8.1597e-13

where the first line indicates the version of python used to generate the spectrum,
the second gives a brief description of each column, and the remainder of the file is the spectrum.
The most important columns are 1 and 2, which are respectively the frequency and wavelength and the columns that begin with,
which give the spectrum that would be observed from the object at various inclination angles and orbital phases
(The number of columns is therefore variable depending on how many inclinations one asked for in the input files).
The other columns Emitted, Star+BL, Disk, Wind, HitSurf and Scattered have approximately the same meaning as in the .spec_tot file.

The remaining files parallel those generated for the broadband spectra.

Spectra Files

Python is intended to produce simulated spectra. These spectra are all ascii tables intended to be accessible with software packages such as astropy.

All of the ascii begin with commented headers that contain all of the parameters of associated with a run,
along with the date of the run and the specific version of Python used to make the run.
In principle, if one still has access to any of the spectra, one can reproduce the entire run again.

Broad band spectra are created from the last ionization cycle. Detailed are calculated from all of the spectral cycles.

For a model with root name cv, the following broadband spectra will be created:

	cv.spec_tot - various spectra

	cv.log_spec_tot

	cv.spec_tot_wind

	cv.log_spec_tot_wind

File types

	.spec_tot

	An ascii file that contains various spectra from the ionization-calculation phase of the program on a linear frequency scale.
The first few lines of the file (omitting the header) are as follows:

Freq. Lambda Emitted Star+BL Disk Wind HitSurf Scattered
3.023938e+14 9913.975 1.07e+33 2.03e+31 1.05e+33 1.05e+30 4.11e+31 0
3.049952e+14 9829.418 1.1e+33 2.24e+31 1.07e+33 3.97e+30 4.42e+31 0
3.075965e+14 9746.292 1.09e+33 2.1e+31 1.07e+33 1.22e+30 3.63e+31 0
3.101978e+14 9664.559 1.11e+33 1.97e+31 1.09e+33 1.33e+30 4.34e+31 0
3.127991e+14 9584.186 1.08e+33 2.03e+31 1.06e+33 1.27e+30 4.75e+31 0

The first two columns are fairly obvious. Lambda is in Angstroms. The remainder indicate the luminosity of the system in specific bands. Emitted is the total emergent spectrum, Star+BL is the emergent spectrum from photons bundles originating on the Star or BL, Disk and Wind are the same for photons originating in the disk and wind respectively. HitSurf represents photons that did not escape the system but ran into a boundary, and Scattered are photons that somewhere along their path out of the system were actually scattered.

	.log_spec_tot

	An ascii file which contains the same information as .spec_tot, but with a logarithmically space frequency intervals.
This gives better sampling of the SED in a lot of cases and is much better for plotting things such as the input spectrum.

	.spec_tot_wind

	Identical to .spec_tot but just including photons that were generated in the wind or scattered by the wind

	.log_spec_tot_wind

	A logarithmic version of .spec_tot_wind

	.spec

	an ascii file that contains the final detailed spectra for the wavelengths of interest at a distance of 100 pc.

Photons bundles are generated in cycles in python and the .spec file is actually written out at the end of each cycle
as the program is running in the spectrum-generation phase of the program. So one can inspect the spectrum as it is building up.

The beginning of the file (omitting the header) is as follows:

Freq. Lambda Created Emitted CenSrc Disk Wind HitSurf Scattered A10P0.50 A28P0.50 A45P0.50 A62P0.50 A80P0.50
1.620713e+15 1849.757 3.8401e-12 3.6348e-12 9.1429e-14 3.5434e-12 0 8.8693e-14 1.7753e-13 9.2741e-12 7.6342e-12 6.3434e-12 2.3932e-12 9.382e-13
1.620925e+15 1849.514 4.8471e-12 4.7931e-12 2.7382e-13 4.4306e-12 8.8704e-14 1.8213e-13 2.4885e-13 1.0177e-11 7.7666e-12 3.2906e-12 3.4296e-12 1.3389e-12
1.621138e+15 1849.272 5.3058e-12 5.182e-12 9.1477e-14 4.9992e-12 9.1404e-14 2.674e-13 3.5847e-13 1.2354e-11 6.9236e-12 5.9863e-12 3.3748e-12 1.7905e-12
1.621351e+15 1849.029 3.9346e-12 3.9028e-12 0 3.8127e-12 9.0124e-14 8.9142e-14 2.6728e-13 1.1158e-11 6.4932e-12 5.1452e-12 3.9074e-12 8.1597e-13

where the first line indicates the version of python used to generate the spectrum,
the second gives a brief description of each column, and the remainder of the file is the spectrum.
The most important columns are 1 and 2, which are respectively the frequency and wavelength and the columns that begin with,
which give the spectrum that would be observed from the object at various inclination angles and orbital phases
(The number of columns is therefore variable depending on how many inclinations one asked for in the input files).
The other columns Emitted, Star+BL, Disk, Wind, HitSurf and Scattered have approximately the same meaning as in the .spec_tot file.

The remaining files parallel those generated for the broadband spectra.

Spectrum Generation

With the current machinery to create spectra, it is possible to come across the
situation where models with large optical depths or wind velocities generate
spectra with different flux normalisation depending on the wavelength range.

This problem was originally encountered whilst modelling Tidal Disruption Events.
Two spectra for the same model were generated over two wavelength ranges; a
restricted (1100 - 2600 A) and a broader (500 - 5000 A) range. The problem
encountered was that the broad range spectrum had more flux than the spectrum
with the restricted range. The figure below shows the same model, but over two
wavelength ranges - as well as two spectra where the maximum number of scatters
a photon can undergo is changed,

	tde_flux_small_range: The restricted wavelength range

	tde_flux_large_range: The broad wavelength range

	tde_flux_small_range_maxscat: The restricted wavelength range with a value MAXSCAT = 50

	tde_flux_no_maxscat: The restricted wavelength range with no MAXSCAT limit

[image: ../_images/spectrum_generation_large_optical_depth.png]
Example spectra showing differing flux totals

The problem here is not caused by a bug with the code, but is a consequence of
the large wind velocities and optical depths of the model. We currently believe
that there are two reasons why the flux differs between these two wavelength ranges.

Doppler Shifting out of the Spectrum Wavelength Range

At the edges of the restricted spectrum above, the flux is reduced. This is
due to photon frequencies being shifted outside of the wavelength range of the
spectrum. If a significant number of photons are removed from the spectrum
in this way, then the following Error is printed,

spectrum_create: Fraction of photons lost: 0.10 wi/ freq. low, 0.19 w/freq hi

This tells one the fraction of the photon sample which does not contribute towards
the spectrum due to to the photon frequencies being larger or smaller than the
defined spectrum range, due to Doppler shifting. In models with large wind
velocities (0.2 - 0.5 c) and a small spectral range, the fraction of photons lost
is large and the flux at the edge of generated spectra is reduced - as can be
seen above in the above figure. However, when the wind has a more moderate velocity,
the number of photons lost due to being shifted out of the range is much lower and
does not produce a noticeable effect on the flux normalisation of the spectra.

Removing Photons due to Too Many Scatters

As well as edge effects, flux can be lost due to photons being removed from the
photon sample due to scattering too many times. In Python, when a photon has undergone
MAXSCAT = 500 scatters, a photon is assumed to have become stuck in the wind
and hence it is terminated and no longer tracked.

In models with large optical depths, the number of photons terminated in this way
can become large. During spectrum generation, these photons will never fully
escape the system but will only contribute partially to the spectrum due to
extract - they will never contribute if Live or Die is used instead.

At current, there is no logic to detect this and hence no error is given. However,
it is often insightful to read the output from the Photons contribution to the
various spectra table, as shown below,

Photons contributing to the various spectra
Inwind Scat Esc Star >nscat err Absorb Disk sec Adiab(matom)
 0 0 3455 0 0 0 0 0 0 0
 0 0 3455 0 0 0 0 0 0 0
 0 0 427 0 0 0 0 0 0 0
 0 0 1598 0 0 0 0 0 0 0
 0 0 1430 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 3313 0 17209 0 169 0 0 0
 0 282914 487831 1474 0 0 129 223605 0 0
 0 441756 336514 2223 0 0 135 215325 0 0
 0 609395 180082 5677 0 0 94 200705 0 0
 0 750672 61308 12010 0 0 59 171904 0 0
 0 838923 26143 29057 0 0 55 101775 0 0

In the above table, one can see that 17,209 photons which scattered more than
MAXSCAT times contributed to the the scattered spectrum, suggesting that a large
number of photons were terminated due to too many scatters.

Note

The photon numbers presented in this table are only for the master MPI process. Hence, if
running in multiprocessor mode, the number here will never equal the total
number of photons in the simulation, but only the number of photons in the current
process.

Todo

Link to wiki entry on information about the spectral files when created

Issue

The original GitHub issue discussing this problem can be found here; :issue:`471`.

Dummy Equations

\(L_{\rm line}(\nu, t) = \int_0^{\infty} \Psi(\nu, \tau) C(t - \tau) d\tau\)

Evaluation

Determining whether Python has run successfully from a a scientific point of view depends very specifically on one’s goals. Did the spectra turn out to be what one expected? Here by evaluation we mean, did my run complete without significant errors and did the ionization structure converge to a “steady state” given the number of ionization cycles, the number of photons, and the frequency distributions of the photons we chose.

Convergence

A very basic question about a particular run is, has it reached a “steady state” and if it is in a steady state are cells stable in the sense that fluctuations are small.

Todo

Define what converged means here, and provide examples

Note that it is not always important that all cells be converged.
The Monte Carlo process preferentially picks out the cells which affect the emergent radiation field.
Portions of the grid which do not get many photons are typically the ones that are “not converged”,
but since they don’t contribute much to the emergent radiation, one does not need them to be converged
(except if one wants to make nice plots of the temperature as a function of position in the wind or of the density of a particular ion species).
On the other hand, if one is using Python in conjunction with a hydrodynamical code one wants all the cells to be converged.

Errors

Python is designed to continue to run unless something catastrophic happens.
As it runs, it logs error messages that can be found in the .diag files.
These messages are a combinations of warnings, and/or unusual occurrences,
that if they start occurring often suggest a real problem.

These error messages are all of the form:

Error: wind2d: Cell 0 (0, 0) in domain 0 has 1 corners in wind, but zero volume

that is they begin with the word Error. followed by the subroutine in the code where the error occurred followed by what is hopefully a helpful.
If one is concerned about a particular message, one can hopefully determine what is happening by looking for that message in the log files.

Python keeps a count of the number of times a particular message has occurred and at the end of the program, and the very end of the
diag files contain a listing of how many times a particular error has occurred.

Error summary: End of program, Thread 2 only
Recurrences -- Description
 7 -- getatomic_data: line input incomplete: %s
 128 -- get_atomicdata: Could not interpret line %d in file %s: %s
 1 -- error_count: This error will no longer be logged: %s
 1 -- get_wind_params: zdom[ndom].rmax 0 for wind type %d
 1 -- wind2d: Cell %3d (%2d,%2d) in domain %d has %d corners in wind, but zero volume
 1 -- check_grid: velocity changes by >1,000 km/s in %i cells
 1 -- check_grid: some cells have large changes. Consider modifying zlog_scale or grid dims

As indicated here, these are the errors for only thread 2 of a program.
In order to get a summary of all the threads, there is a script py_error.py that be run as py_error.py rootname from the main run directory.
Note that in many cases, the summary will be the number times an error occurred in one thread times the number of threads, but not always.

One should be aware of these errors, and watch out for situations where the number of errors of a particular type is much larger than usual.

Meta-documentation

How to document Python

This documentation is written in ReStructured Text, and parsed by Sphinx.
We’re trying to maintain a roughly consistent format for the documentation.

Parameter documentation

Parameters are documented in a consistent way. They have a set of properties.
Not every parameter will have all properties but you should fill them all in where possible.
A full example outline is:

Title
===========
Description.
Use :ref:`Parameter.name` to link to other parameters, or other pages within the documentation.

Type
 Enumerator

Values

 option
 Description
 Multi-line if desired

 other
 More description

 Child(ren)
 * :ref:`Corona.radmin`

 yet_another
 More description

 Child(ren)
 * :ref:`KWD.rmin`
 * :ref:`KWD.rmax`

File
 `filename.c <https://github.com/agnwinds/python/blob/master/source/filename.c>`_

Parent(s)
 * :ref:`System_type`: `agn`, `binary`

The sections we expect are entered as a definition list.
A definition list consists of titles followed by a definition block indented by 2 characters.
The headings, in the order we expect, are:

	Name

	The parameter name, as used by Python input files.

	Description

	A description of the parameter and its function.
This can include links to other pages and parameters, using the format

Use :ref:`Parameter.name` to link to other parameters, or other pages within the documentation.

	Type

	This is whether the parameter is an integer, float, or enumerator (a list of choices).

	Unit

	This is the unit. It can be something like cm, m or even derived from other parameters
(e.g. Central_object.radius).

	Values

	If the parameter is an integer or float, this should describe the range of values it can take.
For example, Greater than 0 or 0-1.

If the variable type is Enumerator, then instead it should include a nested definition list of
the possible choices. Where each choice implies a different set of possible children
(e.g. Wind.type`) then each choice should have its own Children definition list.

	File

	The file the parameter is found in. This is a link to the file on the master branch.

	Child(ren)

	If the parameter implies any others.
For example, Spectrum.no_observers has child parameters Spectrum.angle.

	Parent(s)

	If the parameter depends on another.
For example, KWD.rmax is only required for a specific choice of Wind.type.

Old bit to update

It will read the files in the docs/parameters directory and build a HTML page,
then automatically open it in your browser. You may see some errors during the creation:

while scanning a block scalar
 in "/Users/amsys/python/docs/parameters/sv.diskmin.yaml", line 5, column 7
expected chomping or indentation indicators, but found 'c'
 in "/Users/amsys/python/docs/parameters/sv.diskmin.yaml", line 5, column 8

This occurs during the YAML step when a file has an invalid entry, and that parameter file will be
skipped as a consequence. Typically it is cause when a text line is malformed. For inline text
(e.g. values: condition) it occurs when the string starts with a non-alphanumeric character like
> (so `values: >0 is invalid).

You may also see it when using block text (e.g. description:|) if the following lines are not
correctly indented e.g.:

description:|
The text for values has not been indented correctly
and so will throw an error.

description:|
 This text has been indented
 and so will not throw an error

A common warning is:

WARNING: Unknown target name:

This occurs during the Sphinx step when it cannot link to the parent for a variable. If a
parameter has a parent provided as a key:value pair e.g. reverb.type: Anything above 3.

Sphinx will automatically try to link to reverb.type as its parent. If the name is misspelled
(e.g. rverb.type) or the parameter simply doesn’t exist any more, it will throw a warning and
generate a dead link.

Quick Guide to Python

This quide is intended to allow users to install Python, to run Python as a
computer program and then to check whether the run has completed as expected.

It does not describe except in passing any information about the physics of
Python, the details of a particular wind model,or criteria for evaluating whether
the inputs correspond to a plausible model of an astrophysical system.

	Installation – how to install Python from github and to run a model

	Creating the input file for Python – Simple instructions how to set up a model interactively

	The files produced by Python – A quick look at the output files

	Evaluation the results – A discussion of whether a model has run as required, or not

The Shlosman & Vitello prescription of a bi-conical wind

In the SV93 prescription, the wind emerges betwwen \(r_{min}\) and \(r_{rmax}\)
along streamlines whose orientation with respect to the system are descbied an angle

\[\theta = \theta_{min} + (\theta_{max} - \theta_{min}) x^{\gamma}\]

where

\[x=\frac{r_o - r_{min}}{r_{max}-r_{min}}\]

and \(r_o\) refers to the footpoint of a streamline.

[image: _images/sv.png]
The geometry of a Shlosman & Vitello wind

The poloidal velocity along the streamlies is defined to be

\[v_l - v_o + (v_{\ifty}(r_o)-v_o) \frac {(l/R_v)^{\alpha}}{(l/R_v)^{\alpha}+1}\]

The scale length \(R_v\) and the exponent \(\alpha\) control the
acceleration of the wind between a fixed velocity \(v_o\), normally
6 km/s , at the base of the wind and the terminal velocity
\(v_{\infty}(r_o)\). The terminal velocity of each streamline varies
depending on the location of the streamline in the inner and outer
disk, being characterized as a fixed multiple of the escape
velocity at the footpoint of the streamline. Thus the poloidal
velocity is greatest for stream lines that originate from the
inner regions of the disk, since the gravitational potential that
must be overcome is greatest there.

The mass loss per unit surface area \(\delta \dot{m}/\delta A\) of the disk is
controlled by a parameter $lambda$ such that

\[\frac{\delta\dot{m}}{\delta A} \propto \dot{m}_{wind} r_o^{\lambda} cos(\theta(r_o))\]

With this prescription, the overall mass loss rate declines with
radius if \(\lambda\) is somewhat less than -2.

To use the SV93 prescription, therefore, one must provide the
basic parameters of the system, the mass of the WD, the accretion
rate, the inner and outer radius of the disk, and in addition, for
the wind \(\dot{m}_{wind}\), \(r_{min}\), \(r_{max}\), \(\theta_{min}\),
\(\theta_{max}\), \(gamma\) ,:math:R_{nu}, \(\alpha\), \(\lambda\), and the
multiple of the escape velocity to be used for \(v_{\infty}\).

Index

 _static/ajax-loader.gif

_images/spectrum_generation_large_optical_depth.png
Falergs™tcm 247

1072

1072

107*

tde_flux_no_maxscat 62°

Jtde_flux_small_range
Jtde_flux_large_range
Jtde_flux_small_range_maxscat
Jtde_flux_no_maxscat

1000 2000 3000 4000
Wavelength (4)

5000

_images/sv.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 python

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

