
Agile Data
Release 1.2-latest

Nov 26, 2022

Contents

1 Overview 3
1.1 Simple to learn . 4
1.2 Not a traditional ORM . 4
1.3 Concern Separation . 4

1.3.1 Class: Field . 4
1.3.2 Class: Model . 5
1.3.3 Class: Persistence . 5

1.4 Code Layers . 5
1.4.1 Domain-Model Code . 6
1.4.2 Persistence-specific code . 6
1.4.3 Generic Persistence-code . 7

1.5 Persistence Scaling . 7

2 Quickstart 9
2.1 Requirements . 9
2.2 Core Concepts . 9

2.2.1 Persistence Domain vs Business Domain . 10
2.2.2 Class vs In-Line definition . 10
2.2.3 Model State . 11

2.3 Getting Started . 13
2.3.1 Adding Fields . 14
2.3.2 Table Joins . 14
2.3.3 Understanding Persistence . 14

2.4 References between Models . 15
2.4.1 One to Many . 15
2.4.2 Many to Many . 16
2.4.3 One to One . 16
2.4.4 Implementation of References . 16

2.5 Actions . 17
2.5.1 Aggregation actions . 17
2.5.2 Field-reference actions . 17
2.5.3 Advanced Use of Actions . 18

2.6 Expressions . 18
2.7 Conclusion . 19

3 Introduction to Architectural Design 21
3.1 The Domain Layer Scope . 22

i

3.1.1 The Danger of Raw Queries . 22
3.1.2 Purity levels of Domain code . 22

3.2 Domain Logic . 23
3.2.1 Domain Models . 23
3.2.2 Domain Model Methods . 23
3.2.3 Domain Model Fields . 24
3.2.4 Domain Model Relationship . 24

3.3 Persistence backed Domain Logic . 25
3.3.1 ID Field . 25

3.4 Persistence-specific Code . 25
3.4.1 Domain Model Expressions . 26
3.4.2 Persistence Hooks . 26

3.5 DataSet Declaration . 27
3.6 Domain Conditions . 27
3.7 Related DataSets . 28

3.7.1 Domain Model Actions . 28
3.7.2 Unique Features of Persistence Layer . 29

4 Model 31
4.1 Understanding Model . 32

4.1.1 Model object = Data Set . 32
4.1.2 Model object = meta information . 32
4.1.3 Domain vs Persistence . 32
4.1.4 Good naming for a Model . 33

4.2 Initialization . 33
4.2.1 Fields . 34
4.2.2 Actions . 36
4.2.3 Hooks . 37
4.2.4 Inheritance . 37

4.3 Associating Model with Database . 38
4.4 Populating Data . 39
4.5 Working with selective fields . 39
4.6 Setting and Getting active record data . 39
4.7 Title Field, ID Field and Model Caption . 41

4.7.1 ID Field . 42
4.7.2 Title Field . 42
4.7.3 Model Caption . 42

4.8 Setting limit and sort order . 42

5 Typecasting 45
5.1 Value types . 46

5.1.1 Undefined type . 46
5.1.2 Type of IDs . 46
5.1.3 Supported types . 46
5.1.4 Types and UI . 47

5.2 Serialization . 47
5.2.1 Array and Object types . 47

6 Loading and Saving (Persistence) 49
6.1 Associating with Persistence . 49

6.1.1 Inserting Record with a specific ID . 50
6.2 Type Converting . 51

6.2.1 Strict Types an Normalization . 51
6.2.2 Typecasting . 52

ii

6.2.3 Validation . 52
6.2.4 Multi-column fields . 53
6.2.5 Dates and Time . 53
6.2.6 Customizations . 54

6.3 Duplicating and Replacing Records . 54
6.3.1 Create copy of existing record . 54
6.3.2 Duplicate then save under a new ID . 54

6.4 Working with Multiple DataSets . 55
6.4.1 Cloning versus New Instance . 55
6.4.2 Looking for duplicates . 55
6.4.3 Archiving Records . 56

6.5 Working with Multiple Persistencies . 56
6.5.1 Creating Cache with Memcache . 57
6.5.2 Using Read / Write Replicas . 58
6.5.3 Archive Copies into different persistence . 58
6.5.4 Store a specific record . 59

6.6 Actions . 59
6.6.1 Action Types . 59
6.6.2 SQL Actions . 60
6.6.3 SQL Actions on Linked Records . 60
6.6.4 Action Matrix . 61

7 Fetching results 63
7.1 Iterate through model data . 63

7.1.1 Keeping models . 64
7.1.2 Raw Data Fetching . 64
7.1.3 Fetching data through action . 64

7.2 Comparison of various ways of fetching . 64

8 Field 65
8.1 Purpose of Field . 65

8.1.1 Field Type . 65
8.1.2 Basic Properties . 66
8.1.3 UI Presentation . 68

9 Conditions and DataSet 69
9.1 Basic Usage . 69

9.1.1 Operations . 70
9.1.2 Multiple Conditions . 70
9.1.3 Adding OR Conditions . 70
9.1.4 Defining your classes . 71

9.2 Vendor-dependent logic . 71
9.2.1 Field Matching . 71
9.2.2 Expression Matching . 71
9.2.3 SQL Expression Matching . 72
9.2.4 Custom Parameters in Expressions . 72
9.2.5 Expression as first argument . 73

9.3 Advanced Usage . 73
9.3.1 Model Scope . 73
9.3.2 Conditions on Referenced Models . 75

10 SQL Extensions 77
10.1 Default Model Classes . 77

10.1.1 SQL Field . 77
10.1.2 SQL Reference . 78

iii

10.1.3 Expressions . 79
10.2 Transactions . 79
10.3 Custom Expressions . 80
10.4 Actions . 80

10.4.1 Action: select . 80
10.4.2 Action: count . 81
10.4.3 Action: field . 81
10.4.4 Action: fx . 81

10.5 Stored Procedures . 81
10.5.1 Compatibility Warning . 82
10.5.2 as a Model method . 82
10.5.3 as a Model Field . 83
10.5.4 as an Action . 84
10.5.5 as a Temporary Table . 85
10.5.6 as an Model Source . 85

11 Static Persistence 87
11.1 Usage . 87

11.1.1 Saving Records . 88

12 References 89
12.1 Persistence . 90
12.2 Safety and Performance . 90

12.2.1 hasMany Reference . 90
12.3 Dealing with many-to-many references . 91
12.4 Dealing with NON-ID fields . 91
12.5 Concatenating Fields . 91
12.6 Add Aggregate Fields . 92
12.7 Available Aggregation Functions . 92
12.8 Aggregate Expressions . 92

12.8.1 hasMany / refLink / refModel . 93
12.8.2 hasOne reference . 94

12.9 Traversing loaded model . 94
12.10 Traversing DataSet . 94
12.11 Importing Fields . 94
12.12 Importing hasOne Title . 95

12.12.1 User-defined Reference . 96
12.12.2 Reference Discovery . 96
12.12.3 Deep traversal . 97
12.12.4 Reference Aliases . 97

12.13 Various ways to specify options . 98
12.13.1 References with New Records . 98
12.13.2 Reference Classes . 99

13 Expressions 101
13.1 Defining Expression . 101
13.2 No-table Model Expression . 102
13.3 Expression Callback . 102
13.4 Model Reloading after Save . 103

14 Model from multiple joined tables 105
14.1 Join Basics . 105

14.1.1 Strong and Weak joins . 106
14.1.2 Join relationship definitions . 106
14.1.3 Method Proxying . 107

iv

14.1.4 Create and Delete behavior . 107
14.1.5 Implementation Detail . 108

14.2 SQL-specific joins . 108
14.2.1 Implementation Details . 108
14.2.2 Specifying complex ON logic . 108

15 Model Aggregates 111
15.1 Grouping . 111

16 Hooks 113
16.1 Model Operation Hooks . 113

16.1.1 Example with beforeSave . 114
16.1.2 Arguments . 114
16.1.3 Interrupting . 114
16.1.4 Insert/Update Hooks . 115
16.1.5 beforeSave, afterSave Hook . 115
16.1.6 Loading, Deleting . 115
16.1.7 Hook execution sequence . 116
16.1.8 How to prevent actions . 116
16.1.9 onRollback Hook . 116

16.2 Persistence Hooks . 117
16.2.1 PersistenceSql . 117

16.3 Other Hooks: . 117

17 Advanced Topics 119
17.1 SubTypes . 119

17.1.1 Best practice for specifying relation type . 120
17.1.2 Type substitution on loading . 120

17.2 Audit Fields . 121
17.3 Soft Delete . 122

17.3.1 Soft Delete that overrides default delete() . 124
17.4 Creating Unique Field . 125
17.5 Using WITH cursors . 126
17.6 Creating Many to Many relationship . 126

17.6.1 1. Create Intermediate Entity - InvoicePayment . 126
17.6.2 2. Update Invoice and Payment model . 127
17.6.3 3. How to use . 127

17.7 Creating Related Entity Lookup . 128
17.7.1 Fallback to default value . 130

17.8 Inserting Hierarchical Data . 130
17.9 Related Record Conditioning . 131
17.10 Narrowing Down Existing References . 132

18 Loading and Saving CSV Files 133
18.1 Setting Up . 133
18.2 Exporting and Importing data from CSV . 133

19 Indices and tables 137

PHP Namespace Index 139

Index 141

v

vi

Agile Data, Release 1.2-latest

Contents:

Contents 1

Agile Data, Release 1.2-latest

2 Contents

CHAPTER 1

Overview

Agile Data is a unique SQL/NoSQL access library that promotes correct Business Logic design in your PHP applica-
tion and implements database access in a flexible and scalable way.

3

https://www.youtube.com/watch?v=XUXZI7123B8

Agile Data, Release 1.2-latest

1.1 Simple to learn

We have designed Agile Data to be very friendly for those who started programming recently and teach them correct
patterns through clever architectural design.

Agile Data carries the spirit of PHP language in general and gives developer ability to make choices. The framework
can be beneficial even in small applications, but the true power of Agile Data is realized when it’s paired with Agile
UI or Agile API projects. (https://github.com/atk4/ui, https://github.com/atk4/api).

1.2 Not a traditional ORM

Agile Data implementation has several significant differences to a traditional ORM (Hibernate / Doctrine style). I will
discuss those in more detail further in documentation, however it’s important to note the reason of not following ORM
pattern:

• More suitable for mapping remote databases

• Give developer control over generated queries

• Better support for Persistence-specific features (e.g. SQL expressions)

• True many-to-many deep traversal and avoiding (explicit eager pre-loading)

• Better aggregation abstraction

To find out more, how Agile Data compares to other PHP data mappers and ORM frameworks, see https://medium.
com/@romaninsh/objectively-comparing-orm-dal-libraries-e4f095de80b5

1.3 Concern Separation

Design of Agile Data follows principle of “concern separation”, but all of the basic functionality is divided into 3
major areas:

• Fields (or Columns)

• DataSets (or Rows)

• Databases (or Persistencies)

Each of the above corresponds to a PHP class, which may use composition principle to hide implementation details.

By design, you will be able to mix and match any any Field with any Database to work with your DataSets.

If you have worked with other ORMs, read the following sections to avoid confusion:

1.3.1 Class: Field

• Represent logical data column (e.g. “date_of_birth”)

• Stores column meta-information (e.g. [‘type’ => ‘date’, ‘caption’ => ‘Birth Date’])

• Handles value normalization

• Documentation: Field

4 Chapter 1. Overview

https://github.com/atk4/ui
https://github.com/atk4/api
https://medium.com/@romaninsh/objectively-comparing-orm-dal-libraries-e4f095de80b5
https://medium.com/@romaninsh/objectively-comparing-orm-dal-libraries-e4f095de80b5

Agile Data, Release 1.2-latest

Note: Meta-information may be a persistence detail, (Field::actual) or presentation detail (Field::ui).
Field class does not interpret the value, it only stores it.

1.3.2 Class: Model

• Represent logical Data Set (e.g. Active Users)

• Stores data location and criteria

• Stores list of Fields

• Stores individual row

• Handle operations over single or all records from Data Set

• Documentation: Model

Note: Model object is defined in such a way to contain enough information to fully provide all information for generic
UI, or generic API, and generic persistence implementations.

Note: Unlike ORMs Model instances are never created during iterating. Also, in most cases, you never instantiate
multiple instances of a model class.

1.3.3 Class: Persistence

• Represent external data storage (e.g. MySQL database)

• Stores connection information

• Translate single or multi-record operations into vendor-specific language

• Type-casts standard data types into vendor-specific format

• Documentation: Persistence

1.4 Code Layers

How is code:

select name from user where id = 1

is different to the code?:

$user->load(1)->get('name');

While both achieve similar things, the SQL-like code is what we call “persistence-specific” code. The second example
is “domain model” code. The job of Agile Data is to map “domain model” code into “persistence-specific” code.

The design and features of Agile Data allow you to perform wider range of operations, be more expressive and efficient
while remaining in “domain model”.

1.4. Code Layers 5

Agile Data, Release 1.2-latest

In normal application, all the database operations can be expressed in domain model without any degradation in
performance due to large data volume or higher database latency.

It’s typical for a web application that uses Agile Data in “domain model” to execute no more than 3-4 requests per
page even for highly complex data pages (such as dashboards) and without use of stored procedures.

Next I’ll show you how code from different “code layers” may look like:

1.4.1 Domain-Model Code

Code is unaware of physical location of your data or which persistence are you using:

$user = new User($db);

$user = $user->load(20); // load specific user record into PHP
echo $user->get('name') . ': '; // access field values

$gross = $user->ref('Invoice')
->addCondition('status', 'due')
->ref('Lines')
->action('sum', 'gross')
->getOne();

// get sum of all gross fields for due invoices

Another important aspect of Domain-model code is that fields such as gross or name can be either a physical values in
the database or can be mapped to expressions (such as vat‘+‘net).

A typical method of your model class will be written in “domain-model” code.

Note: the actual execution and number of queries may vary based on capabilities of persistence. The above example
executes a total of 2 queries if used with SQL database.

1.4.2 Persistence-specific code

This is a type of code which may change if you decide to switch from one persistence to another. For example, this is
how you would define gross field for SQL:

$model->addExpression('gross', ['expr' => '[net] + [vat]']);

If your persistence does not support expressions (e.g. you are using Redis or MongoDB), you would need to define
the field differently:

$model->addField('gross');
$model->onHook(Model::HOOK_BEFORE_SAVE, function (Model $m) {

$m->set('gross', $m->get('net') + $m->get('vat'));
});

When you use persistence-specific code, you must be aware that it will not map into persistencies that does not support
features you have used.

In most cases that is OK as if you prefer to stay with same database type, for instance, the above expression will still
be usable with any SQL vendor, but if you want it to work with NoSQL, then your solution might be:

6 Chapter 1. Overview

Agile Data, Release 1.2-latest

if ($model->hasMethod('addExpression')) {
// method is injected by Persistence
$model->addExpression('gross', ['expr' => '[net] + [vat]']);

} else {
// persistence does not support expressions
$model->addField('gross');
$model->onHook(Model::HOOK_BEFORE_SAVE, function (Model $m) {

$m->set('gross', $m->get('net') + $m->get('vat'));
});

}

1.4.3 Generic Persistence-code

A final type of code is also persistence-specific, but it is agnostic to your data-model. The example would be imple-
mentation of aggregation with “GROUP BY” feature in SQL.

https://github.com/atk4/report/blob/develop/src/GroupModel.php

This code is specific to SQL databases, but can be used with any Model, so in order to use grouping with Agile Data,
your code would be:

$aggregate = new AggregateModel(new Sale($db));
$aggregate->setGroupBy(['contractor_to', 'type'], [// groups by 2 columns

'c' => ['expr' => 'count(*)'], // defines aggregate formulas for fields
'qty' => ['expr' => 'sum([])'], // [] refers back to qty
'total' => ['expr' => 'sum([amount])'], // can specify any field here

]);

1.5 Persistence Scaling

Although in most cases you would be executing operation against SQL persistence, Agile Data makes it very easy to
use models with a simpler persistencies.

For example, consider you want to output a “table” to the user using HTML by using Agile UI:

$htmltable = new \Atk4\Ui\Table();
$htmltable->invokeInit();

$htmltable->setModel(new User($db));

echo $htmltable->render();

Class \Atk4\Ui\Table here is designed to work with persistencies and models - it will populate columns of cor-
rect type, fetch data, calculate totals if needed. But what if you have your data inside an array? You can use
PersistenceStatic_ for that:

$htmltable = new \Atk4\Ui\Table();
$htmltable->invokeInit();

$htmltable->setModel(new User(new Persistence\Static_([
['name' => 'John', 'is_admin' => false, 'salary' => 34_400.0],
['name' => 'Peter', 'is_admin' => false, 'salary' => 42_720.0],

])));

(continues on next page)

1.5. Persistence Scaling 7

https://github.com/atk4/report/blob/develop/src/GroupModel.php

Agile Data, Release 1.2-latest

(continued from previous page)

echo $htmltable->render();

Even if you don’t have a model, you can use Static persistence with Generic model class to display VAT breakdown
table:

$htmltable = new \Atk4\Ui\Table();
$htmltable->invokeInit();

$htmltable->setModel(new Model(new Persistence\Static_([
['VAT_rate' => '12.0%', 'VAT' => 36.0, 'Net' => 300.0],
['VAT_rate' => '10.0%', 'VAT' => 52.0, 'Net' => 520.0],

])));

echo $htmltable->render();

It can be made even simpler:

$htmltable = new \Atk4\Ui\Table();
$htmltable->invokeInit();

$htmltable->setModel(new Model(new Persistence\Static_([
'John',
'Peter',

])));

echo $htmltable->render();

Agile UI even offers a wrapper for static persistence:

$htmltable = new \Atk4\Ui\Table();
$htmltable->invokeInit();

$htmltable->setSource(['John', 'Peter']);

echo $htmltable->render();

8 Chapter 1. Overview

CHAPTER 2

Quickstart

Agile Data Framework is built around some unique concepts. Your knowledge of other ORM, ActiveRecord and
QueryBuilder tools could be helpful, but you should carefully go through the basics if you want to know how to use
Agile Data efficiently.

The distinctive goal for Agile Data is ability to “execute” complex operations on the database server directly, such as
aggregation, sub-queries, joins and unions but only if the database server supports those operations.

Developer would normally create a declaration like this:

$user->hasMany('Order')->addField('total', ['aggregate' => 'sum']);

It is up to Agile Data to decide what’s the most efficient way to implement the aggregation. Currently only SQL
persistence is capable of constructing aggregate sub-query.

2.1 Requirements

If you wish to try out some examples in this guide, you will need the following:

• PHP 7.4 or above.

• any of supported database - Sqlite, MySQL/MariaDB, PostgreSQL, MSSQL or Oracle

2.2 Core Concepts

Business Model (see Model) You define business logic inside your own classes that extend Model. Each class you
create represent one business entity.

Model has 3 major characteristic: Business Logic definition, DataSet mapping and Active Record.

See: Model

9

Agile Data, Release 1.2-latest

Persistence (see Loading and Saving (Persistence)) Object representing a connection to database. Linking your
Business Model to a persistence allows you to load/save individual records as well as execute multi-record
operations (Actions)

For developer, persistence should be a secondary concern, after all it is possible to switch from one persistence
to another and compensate for the feature differences without major refactoring.

DataSet (see DataSet) A set of physical records stored on your database server that correspond to the Business
Model.

Active Record (see Setting and Getting active record data) Model can load individual record from DataSet, work
with it and save it back into DataSet. While the record is loaded, we call it an Active Record.

Action (see Actions) Operation that Model performs on all of DataSet records without loading them individually.
Actions have 3 main purposes: data aggregation, referencing and multi-record operations.

2.2.1 Persistence Domain vs Business Domain

It is very important to understand that there are two “domains” when it comes to your data. If you have used ORM,
ActiveRecord or QueryBuilders, you will be thinking in terms of “Persistence Domain”. That means that you think in
terms of “tables”, “fields”, “foreign keys” and “group by” operations.

In larger application developers does not necessarily have to know the details of your database structure. In fact -
structure can often change and code that depend on specific field names or types can break.

More importantly, if you decide to store some data in different database either for caching (memcache), unique features
(full-text search) or to handle large amounts of data (BigData) you suddenly have to carefully consider that in your
application.

Business Domain is a layer that is designed to hide all the logic of data storage and focus on representing your business
model in great detail. In other words - Business Logic is an API you and the rest of your developer team can use without
concerning about data storage.

Agile Data has a rich set of features to define how Business Domain maps into Persistence Domain. It also allows you
to perform most actions with only knowledge of Business Domain, keeping the rest of your application independent
from your database choice, structure or patterns.

2.2.2 Class vs In-Line definition

Business model entity in Agile Data is represented through PHP object. While it is advisable to create each entity in
its own class, you do not have to do so.

It might be handy to use in-line definition of a model. Try the following inside console:

$m = new \Atk4\Data\Model($db, 'contact_info');
$m->addField('address_1');

(continues on next page)

10 Chapter 2. Quickstart

Agile Data, Release 1.2-latest

(continued from previous page)

$m->addField('address_2');
$m->addCondition('address_1', '!=', null);
$m = $m->loadAny();
$m->get();
$m->executeCountQuery(); // same as ((int) $m->action('count')->getOne())

Next, exit and create file src/Model_ContactInfo.php:

<?php
class Model_ContactInfo extends \Atk4\Data\Model
{

public $table = 'contact_info';

protected function init(): void
{

parent::init();

$this->addField('address_1');
$this->addField('address_2');
$this->addCondition('address_1', '!=', null);

}
}

Save, exit and run console again. You can now type this:

$m = new Model_ContactInfo($db);
$m = $m->loadAny();
$m->get();

Note: Should the “addCondition” be located inside model definition or inside your inline code? To answer this ques-
tion - think - would Model_ContactInfo have application without the condition? If yes then either use addCondition
in-line or create 2 classes.

2.2.3 Model State

When you create a new model object, you can change its state to perform various operations on your data. The state
can be broken down into the following categories:

Persistence

When you create instance of a model (new Model()) you need to specify Persistence as a parameter. If you don’t
you can still use the model, but it won’t be able to Model::load() or Model::save() data.

Once model is associated with one persistence, you cannot re-associate it. Method Model::init()will be executed
only after persistence is known, so that method may make some decisions based on chosen persistence. If you need to
store model inside a different persistence, this is achieved by creating another instance of the same class and copying
data over. You must however remember that any fields that you have added in-line will not be recreated.

2.2. Core Concepts 11

Agile Data, Release 1.2-latest

DataSet (Conditions)

Model object may have one or several conditions applied. Conditions will limit which records model can load (make
active) and save. Once the condition is added, it cannot be removed for safety reasons.

Suppose you have a method that converts DataSet into JSON. Ability to add conditions is your way to specify which
records to operate on:

public function myexport(\Atk4\Data\Model $m, $fields)
{

return json_encode($m->export($fields));
}

$m = new Model_User($db);
$m->addCondition('country_id', '2');

myexport($m, ['id', 'username', 'country_id']);

If you want to temporarily add conditions, then you can either clone the model or use Model::tryLoadBy.

Active Record

Active Record is a third essential piece of information that your model stores. You can load / unload records like this:

$m = new Model_User($db);
$m = $m->loadAny();

$m->get(); // inside console, this will show you what's inside your model

$m->set('email', 'test@example.com');
$m->save();

You can call $m->isLoaded() to see if there is active record and $m->getId() will store the ID of active record. You
can also un-load the record with $m->unload().

By default no records are loaded and if you modify some field and attempt to save unloaded model, it will create a
new record.

Model may use some default values in order to make sure that your record will be saved inside DataSet:

$m = new Model_User($db);
$m->addCondition('country_id', 2);
$m->set('username', 'peter');
$m->save();

$m->get(); // will show country_id as 2
$m->set('country_id', 3);
$m->save(); // will generate exception because model you try to save doesn't match
→˓conditions set

Other Parameters

Apart from the main 3 pieces of “state” your Model holds there can also be some other parameters such as:

• order

• limit

12 Chapter 2. Quickstart

Agile Data, Release 1.2-latest

• onlyFields

You can also define your own parameters like this:

$m = new Model_User($db, ['audit' => false]);

$m->audit

This can be used internally for all sorts of decisions for model behavior.

2.3 Getting Started

It’s time to create the first Model. Open src/Model_User.php which should look like this:

<?php
class Model_User extends \Atk4\Data\Model
{

public $table = 'user';

protected function init(): void
{

parent::init();

$this->addField('username');
$this->addField('email');

$j = $this->join('contact_info', 'contact_info_id');
$j->addField('address_1');
$j->addField('address_2');
$j->addField('address_3');
$j->hasOne('country_id', 'Country');

}
}

Extend either the base Model class or one of your existing classes (like Model_Client). Define $table property unless
it is already defined by parent class. All the properties defined inside your model class are considered “default” you
can re-define them when you create model instances:

$m = new Model_User($db, 'user2'); // will use a different table

$m = new Model_User($db, ['table' => 'user2']); // same

Note: If you’re trying those lines, you will also have to create this new table inside your MySQL database:

create table user2 as select * from user

As I mentioned - Model::init is called when model is associated with persistence. You could create model and
associate it with persistence later:

$m = new Model_User();

$m->setPersistence($db); // calls $m->invokeInit()

You cannot add conditions just yet, although you can pass in some of the defaults:

2.3. Getting Started 13

Agile Data, Release 1.2-latest

$m = new Model_User(null, ['table' => 'user2']);

$m->setPersistence($db); // will use table user2

2.3.1 Adding Fields

Methods Model::addField() and Model::addFields() can declare model fields. You need to declare them
before you are able to use. You might think that some SQL reverse-engineering could be good at this point, but this
would mimic your business logic after your presentation logic, while the whole point of Agile Data is to separate them,
so you should, at least initially, avoid using generators.

In practice, Model::addField() creates a new ‘Field’ object and then links it up to your model. This object is
used to store some information about your field, but it also participates in some field-related activity.

2.3.2 Table Joins

Similarly, Model::join() creates a Join object and stores it in $j. The Join object defines a relationship between
the master Model::table and some other table inside persistence domain. It makes sure relationship is maintained
when objects are saved / loaded:

$j = $this->join('contact_info', 'contact_info_id');
$j->addField('address_1');
$j->addField('address_2');

That means that your business model will contain ‘address_1’ and ‘address_2’ fields, but when it comes to storing
those values, they will be sent into a different database table and the records will be automatically linked.

Lets once again load up the console for some exercises:

$m = new Model_User($db);

$m = $m->loadBy('username', 'john');
$m->get();

At this point you’ll see that address has also been loaded for the user. Agile Data makes management of related
records transparent. In fact you can introduce additional joins depending on class. See classes Model_Invoice and
Model_Payment that join table document with either payment or invoice.

As you load or save models you should see actual queries in the console, that should give you some idea what kind of
information is sent to the database.

Adding Fields, Joins, Expressions and References creates more objects and ‘adds’ them into Model (to better un-
derstand how Model can behave like a container for these objects, see documentation on Agile Core Containers).
This architecture of Agile Data allows database persistence to implement different logic that will properly manipulate
features of that specific database engine.

2.3.3 Understanding Persistence

To make things simple, console has already created persistence inside variable $db. Load up console.php in your editor
to look at how persistence is set up:

$app->db = \Atk4\Data\Persistence::connect($dsn, $user, $pass);

14 Chapter 2. Quickstart

http://agile-core.readthedocs.io/en/develop/container.html

Agile Data, Release 1.2-latest

The $dsn can also be using the PEAR-style DSN format, such as: “mysql://user:pass@db/host”, in which case you do
not need to specify $user and $pass.

For some persistence classes, you should use constructor directly:

$array = [];
$array[1] = ['name' => 'John'];
$array[2] = ['name' => 'Peter'];

$db = new \Atk4\Data\Persistence\Array_($array);
$m = new \Atk4\Data\Model($db);
$m->addField('name');
$m = $m->load(2);
echo $m->get('name'); // Peter

There are several Persistence classes that deal with different data sources. Lets load up our console and try out a
different persistence:

$a = ['user' => [], 'contact_info' => []];
$ar = new \Atk4\Data\Persistence\Array_($a);
$m = new Model_User($ar);
$m->set('username', 'test');
$m->set('address_1', 'street');

$m->save();

var_dump($a); // shows you stored data

This time our Model_User logic has worked pretty well with Array-only persistence logic.

Note: Persisting into Array or MongoDB are not fully functional as of 1.0 version. We plan to expand this function-
ality soon, see our development roadmap.

2.4 References between Models

Your application normally uses multiple business entities and they can be related to each-other.

Warning: Do not mix-up business model references with database relations (foreign keys).

References are defined by calling Model::hasOne() or Model::hasMany(). You always specify destination
model and you can optionally specify which fields are used for conditioning.

2.4.1 One to Many

Launch up console again and let’s create reference between ‘User’ and ‘System’. As per our database design - one
user can have multiple ‘system’ records:

$m = new Model_User($db);
$m->hasMany('System');

Next you can load a specific user and traverse into System model:

2.4. References between Models 15

https://github.com/atk4/data#roadmap

Agile Data, Release 1.2-latest

$m = $m->loadBy('username', 'john');
$s = $m->ref('System');

Unlike most ORM and ActiveRecord implementations today - instead of returning array of objects, Model::ref()
actually returns another Model to you, however it will add one extra Condition. This type of reference traversal is
called “Active Record to DataSet” or One to Many.

Your Active Record was user john and after traversal you get a model with DataSet corresponding to all Systems that
belong to user john. You can use the following to see number of records in DataSet or export DataSet:

$s->isLoaded();
$s->executeCountQuery();
$s->export();
$s->action('count')->getDebugQuery();

2.4.2 Many to Many

Agile Data also supports another type of traversal - ‘DataSet to DataSet’ or Many to Many:

$c = $m->ref('System')->ref('Client');

This will create a Model_Client instance with a DataSet corresponding to all the Clients that are contained in all of the
Systems that belong to user john. You can examine the this model further:

$c->isLoaded();
$c->executeCountQuery();
$c->export();
$c->action('count')->getDebugQuery();

By looking at the code - both MtM and OtM references are defined with ‘hasMany’. The only difference is the loaded()
state of the source model.

Calling ref()->ref() is also called Deep Traversal.

2.4.3 One to One

The third and final reference traversal type is “Active Record to Active Record”:

$cc = $m->ref('country_id');

This results in an instance of Model_Country with Active Record set to the country of user john:

$cc->isLoaded();
$cc->getId();
$cc->get();

2.4.4 Implementation of References

When reference is added using Model::hasOne() or Model::hasMany(), the new object is created and added
into Model of class ReferenceHasMany or Reference\HasOne (or Reference\HasOneSql in case you
use SQL database). The object itself is quite simple and you can fetch it from the model if you keep the return value
of hasOne() / hasMany() or call Model::getReference() with the same identifier later on. You can also use
Model::hasReference() to check if reference exists in model.

16 Chapter 2. Quickstart

Agile Data, Release 1.2-latest

Calling Model::ref() will proxy into the ref() method of reference object which will in turn figure out what to do.

Additionally you can call Model::addField() on the reference model that will bring one or several fields from
related model into your current model.

Finally this reference object contains method Reference::getModel() which will produce a (possibly) fresh
copy of related entity and will either adjust it’s DataSet or set the active record.

2.5 Actions

Since NoSQL databases will always have some specific features, Agile Data uses the concept of ‘action’ to map into
vendor-specific operations.

2.5.1 Aggregation actions

SQL implements methods such as sum(), count() or max() that can offer you some basic aggregation without grouping.
This type of aggregation provides some specific value from a data-set. SQL persistence implements some of the
operations:

$m = new Model_Invoice($db);
$m->executeCountQuery();
$m->action('fx', ['sum', 'total'])->getOne();
$m->action('fx', ['max', 'shipping'])->getOne();

Aggregation actions can be used in Expressions with hasMany references and they can be brought into the original
model as fields:

$m = new Model_Client($db);
$m->getReference('Invoice')->addField('max_delivery', ['aggregate' => 'max', 'field'
→˓=> 'shipping']);
$m->getReference('Payment')->addField('total_paid', ['aggregate' => 'sum', 'field' =>
→˓'amount']);
$m->export(['name', 'max_delivery', 'total_paid']);

The above code is more concise and can be used together with reference declaration, although this is how it works:

$m = new Model_Client($db);
$m->addExpression('max_delivery', ['expr' => $m->refLink('Invoice')->action('fx', [
→˓'max', 'shipping'])]);
$m->addExpression('total_paid', ['expr' => $m->refLink('Payment')->action('fx', ['sum
→˓', 'amount'])]);
$m->export(['name', 'max_delivery', 'total_paid']);

In this example calling refLink is similar to traversing reference but instead of calculating DataSet based on Active
Record or DataSet it references the actual field, making it ideal for placing into sub-query which SQL action is using.
So when calling like above, action() will produce expression for calculating max/sum for the specific record of Client
and those calculation are used inside an Expression().

Expression is a special type of read-only Field that uses sub-query or a more complex SQL expression instead of a
physical field. (See Expressions and References)

2.5.2 Field-reference actions

Field referencing allows you to fetch a specific field from related model:

2.5. Actions 17

Agile Data, Release 1.2-latest

$m = new Model_Country($db);
$m->action('field', ['name'])->get();
$m->action('field', ['name'])->getDebugQuery();

This is useful with hasMany references:

$m = new Model_User($db);
$m->getReference('country_id')->addField('country', 'name');
$m = $m->loadAny();
$m->get(); // look for 'country' field

hasMany::addField() again is a short-cut for creating expression, which you can also build manually:

$m->addExpression('country', $m->refLink('country_id')->action('field', ['name']));

2.5.3 Advanced Use of Actions

Actions prove to be very useful in various situations. For instance, if you are looking to add a new user:

$m = new Model_User($db);
$m->set('username', 'peter');
$m->set('address_1', 'street 49');
$m->set('country', 'UK');
$m->save();

Normally this would not work, because country is read-only expression, however if you wish to avoid creating an
intermediate select to determine ID for ‘UK’, you could do this:

$m = new Model_User($db);
$m->set('username', 'peter');
$m->set('address_1', 'street 49');
$m->set('country_id', (new Model_Country($db))->addCondition('name', 'UK')->action(
→˓'field', ['id']));
$m->save();

This way it will not execute any code, but instead it will provide expression that will then be used to lookup ID of
‘UK’ when inserting data into SQL table.

2.6 Expressions

Expressions that are defined based on Actions (such as aggregate or field-reference) will continue to work even without
SQL (although might be more performance-expensive), however if you’re stuck with SQL you can use free-form
pattern-based expressions:

$m = new Model_Client($db);
$m->getReference('Invoice')->addField('total_purchase', ['aggregate' => 'sum', 'field
→˓' => 'total']);
$m->getReference('Payment')->addField('total_paid', ['aggregate' => 'sum', 'field' =>
→˓'amount']);

$m->addExpression('balance', ['expr' => '[total_purchase] + [total_paid]']);
$m->export(['name', 'balance']);

18 Chapter 2. Quickstart

Agile Data, Release 1.2-latest

2.7 Conclusion

You should now be familiar with the basics of Agile Data. To find more information on specific topics, use the rest of
the documentation.

Agile Data is designed in an extensive pattern - by adding more objects inside Model a new functionality can be
introduced. The described functionality is never a limitation and 3rd party code or you can add features that Agile
Data authors are not even considered.

2.7. Conclusion 19

Agile Data, Release 1.2-latest

20 Chapter 2. Quickstart

CHAPTER 3

Introduction to Architectural Design

Layering is one of the most common techniques that software designers use to break apart a complicated software
system. A modern application would have three primary layers:

• Presentation - Display of information (HTML generation, UI, API or CLI interface)

• Domain - Logic that is the real point of the system

• Data Source - Communication with databases, messaging systems, transaction managers, other packages

A persistence mechanism is a way how you save the data from some kind of in-memory model to the database. Apart
from data-bases modern system also use REST services or interact with caches or files to load/store data.

Due to implementation specifics of the various data sources, making a “universal” persistence logic that can store
Domain objects efficiently is not a trivial task. Various frameworks implement “Active Record”, “ORM” and “Query
Builder” patterns in attempts to improve data access.

The common problems when trying to simplify mapping of domain logic include:

• Performance - Traversing references where you deal with millions of related records - Executing multi-row
database operation

• Reduced features - Inability to use vendor-specific features such as SQL expression syntax - Derive calculations
from multi-row sub-selects - Tweak persistence-related operations

• Abstraction - Domain objects are often restricted by database schema - Difficult to use Domain objects without
database connection (e.g. in Unit Tests)

Agile Data implements a fresh concepts that separates your Domain from persistence cleanly yet manages to solve
problems mentioned above.

The concepts implemented by Agile Data framework may require some getting used to (especially if you used some
traditional ORMs or Active Record implementations before).

Once you learn the concept behind Agile Data, you’ll be able to write “Domain objects” of your application with ease
through a readable code and without impact on your application performance or feature restrictions.

21

Agile Data, Release 1.2-latest

3.1 The Domain Layer Scope

Agile Data is a framework that will allow you to define your Domain objects and will map them into database of your
choice.

You can use Agile Data with SQL (PDO-compatible) vendors, NoSQL (MongoDB) or memory Arrays. Support for
other database vendors can be added through add-ons.

3.1.1 The Danger of Raw Queries

If you still think that writing SQL queries is the most efficient way to work with database, you are probably not
considering other disadvantages of this approach:

• Parameters you specify to a query need to be escaped

• Complex queries are more difficult to write and debug

• Various parts of your application may want to change query (soft-delete add-on?)

• Optimization in your database may impact your Domain logic and even presentation

• Changing your database vendor or storing object data in cache is harder

• Difficult to maintain code

There are more problems such as difficulty in unit-testing your Domain object code.

3.1.2 Purity levels of Domain code

Agile Data focuses on creating “patterns” that can live in “Domain” layer. There are three levels of code “purity”:

• Implement patterns for working with for Domain objects.

• Implement patterns for “persistence-backed” Domain objects.

• Implement extensions for “persisting”

Some of your code will focus on working with Domain object without any concern about “persistence”. A good
example is “Validation”. When you Validate your Domain object you just need to check field values, you would not
even care where data came from.

Most of your code, however, will assume existence of SOME “persistence”, but will not rely on anything specific.
Calculating total amount of your shopping basked price is such an operation. Basket items are stored somewhere -
array, SQL or NoSQL and all you need is to calculate sum(amount). You don’t even know how “amount” field is
called in the database.

While most of relational mapping solutions would load all basket items, Agile Data performs same operations inside
database if possible.

Finally - some of your code may rely of some specific database vendor features. Example would be defining an
expression using “IF (expr, val1, val2)” expression for some field of Domain model or using stored procedure as the
source instead of table.

Agile Data offers you ability to move as much code as possible to the level with highest “purity”, but even if you have
to write chunk of SQL code, you can do it without compromising cross-vendor compatibility.

22 Chapter 3. Introduction to Architectural Design

Agile Data, Release 1.2-latest

3.2 Domain Logic

When dealing with Domain logic, you work with a single object.

When we start developing a new application, we first decide on the Model structure. Think what models your appli-
cation will use and how they are related. Do not think in terms of “tables”, but rather think in terms of “objects” and
properties of those objects.

All of those model properties are “declared”.

3.2.1 Domain Models

Congratulations, you have just designed a model layer of your application. Remember that it had nothing to do with
your database structure, right?

• Client

• Order

• Admin

A code to declare a model:

class Model_User extends \Atk4\Data\Model
{
}

class Model_Client extends Model_User
{
}

class Model_Admin extends Model_User
{
}

class Model_Order extends \Atk4\Data\Model
{
}

3.2.2 Domain Model Methods

Next we need to write down various “functions” your application would have to perform and attribute those to indi-
vidual models. At the same time think about object inheritance.

• User - sendPasswordReminder()

• Client (extends User) - register() - checkout()

• Admin (extends User) - showAuditLog()

• Order

Code:

class Model_Client extends Model_User
{

public function sendPasswordReminder()
{

(continues on next page)

3.2. Domain Logic 23

Agile Data, Release 1.2-latest

(continued from previous page)

mail($this->get('email'), 'Your password is: ' . $this->get('password'));
}

}

At this stage you should not think about “saving” your entries. Think of your objects as if they would forever exist in
your memory. Also don’t bother with basic actions such as adding new order or deleting order.

3.2.3 Domain Model Fields

Our next step is to define object fields (or properties). Remember that inheritance is at play here so you can take
advantage of OOP:

• User - name, is_vip, email, password, password_change_date

• Client - phone

• Admin - permission_level

• Order - description, amount, is_paid

Those fields are not just mere “properties”, but have more “meta” information behind them and that’s why we call
them “fields” and not “properties”. A typical field contain information about field name, caption, type, validation
rules, persistence rules, presentation rules and more. Meta information is optional and it can be used by automated
processes (such as presentation or persistence).

For instance, is_paid has a type(‘boolean’) which means it will be stored as 1/0 in MySQL, but will use true/false in
MongoDB. It will be displayed as a checkbox. Those decisions are made by the framework and will simplify your
life, however if you want to do things differently, you will still be able to override default behavior.

Code to declare fields:

class Model_Order extends \Atk4\Data\Model
{

protected function init(): void
{

parent::init();

$this->addField('description');
$this->addField('amount')->type('atk4_money');
$this->addField('is_paid')->type('boolean');

}
}

Code to access field values:

$order->set('amount', 1200.2);

3.2.4 Domain Model Relationship

Next - references. Think how those objects relate to each-other. Think in terms of “specific object” and not database
relations. Client has many Orders. Order has one Client.

• User - hasMany(Client)

• Client - hasOne(User)

24 Chapter 3. Introduction to Architectural Design

Agile Data, Release 1.2-latest

There are no “many-to-many” relationship in Domain Model because relationships work from a specific record, but
more on that later.

Code (add inside init()):

class Model_Client extends Model_User
{

protected function init(): void
{

parent::init();

$this->hasMany('Order', ['model' => [Model_Order::class]]);
}

}

class Model_Order extends \Atk4\Data\Model
{

protected function init(): void
{

parent::init();

$this->hasOne('Client', ['model' => [Model_Client::class]]);

// addField declarations
}

}

3.3 Persistence backed Domain Logic

Once we establish that Model object and set its persistence layer, we can start accessing it. Here is the code:

$order = new Model_Order();
// $order is not linked with persistence

$order = new Model_Order();
$order->setPersistence($db); // same as $order = new Model_Order($db)
// $order is associated with specific persistence layer $db

3.3.1 ID Field

Each object is stored with some unique identifier, so you can load and store object if you know it’s ID:

$order = $order->load(20);
$order->set('amount', 1200.2);
$order->save();

3.4 Persistence-specific Code

Finally, some code may rely on specific features of your persistence layer.

3.3. Persistence backed Domain Logic 25

Agile Data, Release 1.2-latest

3.4.1 Domain Model Expressions

A final addition to our Domain Model are expressions. Those are the “formulas” where the value cannot be changed
directly, but is actually derived from other values.

• User - is_password_expired

• Client - amount_due, total_order_amount

Here field is_password_expired is the type of expression that is based on the field password_change_date and system
date. In other words the value of this expression will be different depending on parameter outside of your app.

Field amount_due is a sum of amount for all Orders by specific User for which condition “is_paid=false” is met.
total_order_amount is similar, however there is no condition on the order.

With all of the above we have finished our “Domain Model” declaration. We haven’t done any assumptions on where
and how data is stored, which vendor we are using or how we can ensure that expressions will operate.

This is, however, a good point for you to write the initial batch of the code.

Code:

class Model_User extends \Atk4\Data\Model
{

protected function init(): void
{

parent::init();

$this->addField('password');
$this->addField('password_change_date');

$this->addExpression('is_password_expired', [
'expr' => '[password_change_date] < (NOW() - INTERVAL 1 MONTH)',
'type' => 'boolean',

]);
}

}

3.4.2 Persistence Hooks

Hooks can help you perform operations when object is being persisted:

class Model_User extends \Atk4\Data\Model
{

protected function init(): void
{

parent::init();

// add fields here

$this->onHookShort(Model::HOOK_BEFORE_SAVE, function () {
if ($this->isDirty('password')) {

$this->set('password', encrypt_password($this->get('password')));
$this->set('password_change_date', $this->expr('now()'));

}
});

}
}

26 Chapter 3. Introduction to Architectural Design

Agile Data, Release 1.2-latest

3.5 DataSet Declaration

So far we have only looked at a single record - one User or one Order. In practice our application must operate with
multiple records.

DataSet is an object that represents collection of Domain model records that are persisted:

$order = new Model_Order($db);
$order = $order->load(10);

In scenario above we loaded a specific record. Agile Data does not create a separate object when loading, instead the
same object is re-used. This is done to preserve some memory.

So in the code above $order is not created for the record, but it can load any record from the DataSet. Think of it as a
“window” into a large table of Orders:

$sum = 0;
$order = new Model_Order($db);
$order = $order->load(10);
$sum += $order->get('amount');

$order = $order->load(11);
$sum += $order->get('amount');

$order = $order->load(13);
$sum += $order->get('amount');

You can iterate over the DataSet:

$sum = 0;
foreach (new Model_Order($db) as $order) {

$sum += $order->get('amount');
}

You must remember that the code above will only create a single object and iterating it will simply make it load
different values.

At this point, I’ll jump ahead a bit and will show you an alternative code:

$sum = (new Model_Order($db))->fx0(['sum', 'amount'])->getOne();

It will have same effect as the code above, but will perform operation of adding up all order amounts inside the database
and save you a lot of CPU cycles.

3.6 Domain Conditions

If your database has 3 clients - ‘Joe’, ‘Bill’, and ‘Steve’ then the DataSet of “Client” has 3 records.

DataSet concept lives in “Domain Logic” therefore you can use it safely without worrying that you will introduce
unnecessary bindings into persistence and break single-purpose principle of your objects:

foreach ($clients as $client) {
// echo $client->get('name') . "\n";

}

The above is a Domain Model code. It will iterate through the DataSet of “Clients” and output 3 names. You can also
“narrow down” your DataSet by adding a restriction:

3.5. DataSet Declaration 27

Agile Data, Release 1.2-latest

$sum = 0;
foreach ((new Model_Order($db))->addCondition('is_paid', true) as $order) {

$sum += $order->get('amount');
}

And again it’s much more effective to do this on database side:

$sum = (new Model_Order($db))
->addCondition('is_paid', true)
->fx0(['sum', 'amount'])
->getOne();

3.7 Related DataSets

Next, let’s look on the orders of specific user. How would you load orders of a specific user. Depending on your
past experience you might think about “querying” Order table with condition on user_id. We can’t do that, because
“query”, “table” and “user_id” are persistence details and we must keep them outside of business logic. Other ORM
solution give you something like this:

$arrayOfOrders = $user->orders();

Unfortunately this has practical performance implications and scalability constraints. What if your user is having
millions of orders? Even with lazy-loading, you will be operating with million “id” records.

Agile Data implements traversal as a simple operation that converts one DataSet into another:

$userModel->addCondition('is_vip', true);
$vipOrders = $userModel->ref('Order');

$sum = $vipOrders->fx0(['sum', 'amount'])->getOne();

The implementation of ref() is pretty powerful - $userModel can address 3 users in the database and only 2 of those
users are VIP. Typical ORM would require you to fetch all VIP records and then perform additional queries to find
their orders.

Agile Data, however, perform traversal without accessing database at all. After ref() is executed, you have a new
DataSet with a condition based on user sub-query. The actual implementation may be different depending on vendor,
but Agile Data will prefer not to fetch list of “user_id”s without need.

3.7.1 Domain Model Actions

Persistence layer in Agile Data uses intelligent mapping of your Domain Logic into DatabaseVendor-specific opera-
tions.

To continue my example from above, I’ll use a query method to calculate number of orders placed by VIP clients:

$vipOrderCount = $vipOrders->fx(['count'])->getOne();

This code will attempt to execute a single-query only, however the ability to optimize your request relies on the
capabilities of database vendor. The actual database operation(s) might look like this on SQL database:

select count(*) from `order` where user_id in
(select id from user where type = "user" and is_vip = 1)

28 Chapter 3. Introduction to Architectural Design

Agile Data, Release 1.2-latest

While with MongoDB, the query could be different:

$ids = collections.client.find({'is_vip': true}).field('id');

return collections.order.find({'user_id': $ids}).count();

Finally the code above will work even if you use a simple Array as a data source:

$db = new \Atk4\Data\Persistence\Array_([
'client' => [

[
'name' => 'Joe',
'email' => 'joe@yahoo.com',
'Orders' => [

['amount' => 10],
['amount' => 20],

],
],
[

'name' => 'Bill',
'email' => 'bill@yahoo.com',
'Orders' => [

['amount' => 35],
],

],
],

]);

So getting back to the operation above, lets look at it in more details:

$vipOrderCount = $vipOrders->fx(['count'])->getOne();

While “$vipOrders” is actually a DataSet, executing count() will cross you over into persistence layer. However this
method is returning a new object, which is then executed when you call getOne(). For SQL persistencies it returns
Atk4DataPersistenceSqlQuery object, for example.

Even though for a brief moment you had your hands on a “database-vendor specific” object, you have immediately
converted Action into an actual value. As result your code is universal and is not persistence-specific. In Agile Data
we permit code like that in our Domain Model and we call it “Domain Model Action”.

Let me define this properly: Domain Model Action is an operation that can be executed in your Domain Model layer
which assumes existence of SOME Persistence for your model, but not a specific one.

As long as your Domain Model is restricted to generic Domain Model Actions, it will not violate SRP (Single Re-
sponsibility Principle)

3.7.2 Unique Features of Persistence Layer

More often thannot, your application is designed and built with a specific persistence layer in mind. If you are using
SQL database, you want to

to be continued

Before we talk “databases”, we must outline a few challenges:

• our business model described above should work with various database vendors

• we should be able to perform basic Unit tests on our domain logic

• single vs multiple records

3.7. Related DataSets 29

Agile Data, Release 1.2-latest

• ..add more..

30 Chapter 3. Introduction to Architectural Design

CHAPTER 4

Model

class Model

Probably the most significant class in ATK Data - Model - acts as a Parent for all your entity classes:

class User extends \Atk4\Data\Model

You must define individual classes for all your business entities. Other frameworks may rely on XML or annotations,
in ATK everything is defined inside your “Model” class through pure PHP (See Initialization below)

Once you create instance of your model class, it can be recycled. With a single object you can load/unload individual
records (See Single record Operations below):

$m = new User($db);

$m = $m->load(3);
$m->set('note', 'just updating');
$m->save();
$m->unload();

$m = $m->load(8);
...

and even perform operations on multiple records (See Persistence Actions below).

When data is loaded from associated Persistence, it is automatically converted into a native PHP type (such as Date-
Time object) through a process called Typecasting. Various rules apply when you set value for model fields (Normal-
ization) or when data is stored into database that does support a field type (Serialization)

Furthermore, because you define Models as a class, it is very easy to introduce your own extensions which may include
Hooks and Actions.

There are many advanced topics that ATK Data covers, such as References, Joins, Aggregation, SQL actions, Unions,
Deep Traversal and Containment.

The design is also very extensible allowing you to introduce new Field types, Join strategies, Reference patterns,
Action types.

31

Agile Data, Release 1.2-latest

I suggest you to read the next section to make sure you fully understand the Model and its role in ATK Data.

4.1 Understanding Model

Please understand that Model in ATK Data is unlike models in other data frameworks. The Model class can be seen
as a “gateway” between your code and many other features of ATK Data.

For example - you may define fields and relations for the model:

$model->addField('age', ['type' => 'integer']);
$model->hasMany('Children', ['model' => [Person::class]]);

Methods addField and hasMany will ultimatelly create and link model with a corresponding Field object and Reference
object. Those classes contain the logic, but in 95% of the use-cases, you will not have to dive deep into them.

4.1.1 Model object = Data Set

From the moment when you create instance of your model class, it represents a DataSet - set of records that share
some common traits:

$allUsers = new User($db); // John, Susan, Leo, Bill, Karen

Certain operations may “shrink” this set, such as adding conditions:

$maleUsers = $allUsers->addCondition('gender', 'M');

send_email_to_users($maleUsers);

This essentially filters your users without fetching them from the database server. In my example, when I pass
$maleUsers to the method, no records are loaded yet from the database. It is up to the implementation of
send_email_to_users to load or iterate records or perhaps approach the data-set differently, e.g. execute multi-record
operation.

Note that most operations on Model are mutating (meaning that in example above $allUsers will also be filtered and
in fact, $allUsers and $maleUsers will reference same object. Use clone if you do not wish to affect $allUsers.

4.1.2 Model object = meta information

By design, Model object does not have direct knowledge of higher level objects or specific implementations. Still -
Model will be a good place to deposit some meta-information:

$model->addField('age', ['ui' => ['caption' => 'Put your age here']]);

Model and Field class will simply store the “ui” property which may (or may not) be used by ATK UI component or
some add-on.

4.1.3 Domain vs Persistence

When you declare a model Field you can also store some persistence-related meta-information:

32 Chapter 4. Model

Agile Data, Release 1.2-latest

// override how your persistence formats date field
$model->addField('date_of_birth', ['type' => 'date', 'persistence' => ['format' =>
→˓'Ymd']]);

// declare field which is not saved
$model->addField('secret', ['neverPersist' => true]);

// rellocate into a different field
$model->addField('old_field', ['actual' => 'new_field']);

// or even into a different table
$model->join('new_table')->addField('extra_field');

Model also has a property $table, which indicate name of default table/collection/file to be used by persistence. (Name
of property is decided to avoid beginner confusion)

4.1.4 Good naming for a Model

Some parts of this documentation were created years ago and may use class notation: Model_User. We actually
recommend you to use namespaces instead:

namespace yourapp\Model;

use \Atk4\Data\Model;

class User extends Model
{

protected function init(): void
{

parent::init();

$this->addField('name');

$this->hasMany('Invoices', ['model' => [Invoice::class]]);
}

}

PHP does not have a “class” type, so Invoice::class will translate into a string “yourappModelInvoice” and is a most
efficient way to specify related class name.

You way also use new Invoice() there but be sure not to specify any argument, unless you intend to use cross-persistence
referencing (this is further explained in Advanced section)

4.2 Initialization

Model::init()

Method init() will automatically be called when your Model is associated with Persistence object. It is commonly used
to declare fields, conditions, relations, hooks and more:

class Model_User extends Atk4\Data\Model
{

protected function init(): void
{

(continues on next page)

4.2. Initialization 33

Agile Data, Release 1.2-latest

(continued from previous page)

parent::init();

$this->addField('name');
$this->addField('surname');

}
}

You may safely rely on $this->getPersistence() result to make choices:

if ($this->getPersistence() instanceof \Atk4\Data\Persistence\Sql) {
// Calculating on SQL server is more efficient!!
$this->addExpression('total', ['expr' => '[amount] + [vat]']);

} else {
// Fallback
$this->addCalculatedField('total', ['expr' => function (self $m) {

return $m->get('amount') + $m->get('vat');
}, 'type' => 'float']);

}

To invoke code from init() methods of ALL models (for example soft-delete logic), you use Persistence’s “afterAdd”
hook. This will not affect ALL models but just models which are associated with said persistence:

$db->onHook(Persistence::HOOK_AFTER_ADD, function (Persistence $p, Model $m) use (
→˓$acl) {

$fields = $m->getFields();

$acl->disableRestrictedFields($fields);
});

$invoice = new Invoice($db);

4.2.1 Fields

Each model field is represented by a Field object:

$model->addField('name');

var_dump($model->getField('name'));

Other persistence framework will use “properties”, because individual objects may impact performance. In ATK Data
this is not an issue, because “Model” is re-usable:

foreach (new User($db) as $user) {
// will be the same object every time!!
var_dump($user->getField['name']);

// this is also the same object every time!!
var_dump($user);

}

Instead, Field handles many very valuable operations which would otherwise fall on the shoulders of developer (Read
more here Field)

Model::addField($name, $seed)

34 Chapter 4. Model

Agile Data, Release 1.2-latest

Creates a new field object inside your model (by default the class is ‘Field’). The fields are implemented on top of
Containers from Agile Core.

Second argument to addField() will contain a seed for the Field class:

$this->addField('surname', ['default' => 'Smith']);

You may also specify your own Field implementation:

$this->addField('amount_and_currency', [MyAmountCurrencyField::class]);

Read more about Field

Model::addFields(array $fields, $seed = [])

Creates multiple field objects in one method call. See multiple syntax examples:

$m->addFields(['name'], ['default' => 'anonymous']);

$m->addFields([
'last_name',
'login' => ['default' => 'unknown'],
'salary' => ['type' => 'atk4_money', CustomField::class, 'default' => 100],
['tax', CustomField::class, 'type' => 'atk4_money', 'default' => 20],
'vat' => new CustomField(['type' => 'atk4_money', 'default' => 15]),

]);

Read-only Fields

Although you may make any field read-only:

$this->addField('name', ['readOnly' => true]);

There are two methods for adding dynamically calculated fields.

Model::addExpression($name, $seed)

Defines a field as server-side expression (e.g. SQL):

$this->addExpression('total', ['expr' => '[amount] + [vat]']);

The above code is executed on the server (SQL) and can be very powerful. You must make sure that expression is
valid for current $this->getPersistence():

$product->addExpression('discount', ['expr' => $this->refLink('category_id')->
→˓fieldQuery('default_discount')]);
// expression as a sub-select from referenced model (Category) imported as a read-
→˓only field
// of $product model

$product->addExpression('total', ['expr' => 'if ([is_discounted], ([amount] +
→˓[vat])*[discount], [amount] + [vat])']);
// new "total" field now contains complex logic, which is executed in SQL

$product->addCondition('total', '<', 10);
// filter products that cost less than 10.0 (including discount)

For the times when you are not working with SQL persistence, you can calculate field in PHP.

4.2. Initialization 35

Agile Data, Release 1.2-latest

Model::addCalculatedField($name[, ’expr’ => $callback])
Creates new field object inside your model. Field value will be automatically calculated by your callback method right
after individual record is loaded by the model:

$this->addField('term', ['caption' => 'Repayment term in months', 'default' => 36]);
$this->addField('rate', ['caption' => 'APR %', 'default' => 5]);

$this->addCalculatedField('interest', ['expr' => function (self $m) {
return $m->calculateInterest();

}, 'type' => 'float']);

Important: always use argument $m instead of $this inside your callbacks. If model is to be cloned, the code relying
on $this would reference original model, but the code using $m will properly address the model which triggered the
callback.

This can also be useful for calculating relative times:

class MyModel extends Model
{

use HumanTiming; // see https://stackoverflow.com/questions/2915864/php-how-to-
→˓find-the-time-elapsed-since-a-date-time

protected function init(): void
{

parent::init();

$this->addCalculatedField('event_ts_human_friendly', ['expr' => function
→˓(self $m) {

return $this->humanTiming($m->get('event_ts'));
}]);

}
}

4.2.2 Actions

Another common thing to define inside Model::init() would be a user invokable actions:

class User extends Model
{

protected function init(): void
{

parent::init();

$this->addField('name');
$this->addField('email');
$this->addField('password');

$this->addUserAction('send_new_password');
}

public function send_new_password()
{

// .. code here

(continues on next page)

36 Chapter 4. Model

Agile Data, Release 1.2-latest

(continued from previous page)

$this->save(['password' => ..]);

return 'generated and sent password to ' . $m->get('name');
}

}

With a method alone, you can generate and send passwords:

$user = $user->load(3);
$user->send_new_password();

but using $this->addUserAction() exposes that method to the ATK UI wigets, so if your admin is using Crud, a new
button will be available allowing passwords to be generated and sent to the users:

Crud::addTo($app)->setModel(new User($app->db));

Read more about ModelUserAction

4.2.3 Hooks

Hooks (behaviours) can allow you to define callbacks which would trigger when data is loaded, saved, deleted etc.
Hooks are typically defined in Model::init() but will be executed accordingly.

There are countless uses for hooks and even more opportunities to use hook by all sorts of extensions.

Validation

Validation is an extensive topic, but the simplest use-case would be through a hook:

$this->addField('name');

$this->onHookShort(Model::HOOK_VALIDATE, function () {
if ($this->get('name') === 'C#') {

return ['name' => 'No sharp objects are allowed'];
}

});

Now if you attempt to save object, you will receive ValidationException:

$model->set('name', 'Swift');
$model->saveAndUnload(); // all good

$model->set('name', 'C#');
$model->saveAndUnload(); // exception here

Other Uses

Other uses for model hooks are explained in Hooks

4.2.4 Inheritance

ATK Data models are really good for structuring hierarchically. Here is example:

4.2. Initialization 37

Agile Data, Release 1.2-latest

class VipUser extends User
{

protected function init(): void
{

parent::init();

$this->addCondition('purchases', '>', 1000);

$this->addUserAction('send_gift');
}

public function send_gift()
{

...
}

}

This introduces a new business object, which is a sub-set of User. The new class will inherit all the fields, methods
and actions of “User” class but will introduce one new action - send_gift.

4.3 Associating Model with Database

After talking extensively about model definition, lets discuss how model is associated with persistence. In the most
basic form, model is associated with persistence like this:

$m = new User($db);

If model was created without persistence Model::init() will not fire. You can explicitly associate model with
persistence like this:

$m = new User();

//

$m->setPersistence($db); // links with persistence

Multiple models can be associated with the same persistence. Here are also some examples of static persistence:

$m = new Model(new Persistence\Static_(['john', 'peter', 'steve']);

$m = $m->load(1);
echo $m->get('name'); // peter

See Persistence\Static_

property Model::$persistence

Refers to the persistence driver in use by current model. Calling certain methods such as save(), addCondition() or
action() will rely on this property.

property Model::$persistenceData

DO NOT USE: Array containing arbitrary data by a specific persistence layer.

property Model::$table

If $table property is set, then your persistence driver will use it as default table / collection when loading data. If you
omit the table, you should specify it when associating model with database:

38 Chapter 4. Model

Agile Data, Release 1.2-latest

$m = new User($db, 'user');

This also overrides current table value.

Model::withPersistence($persistence)

Creates a duplicate of a current model and associate new copy with a specified persistence. This method is useful for
moving model data from one persistence to another.

4.4 Populating Data

Model::insert($row)
Inserts a new record into the database and returns $id. It does not affect currently loaded record and in practice
would be similar to:

$entity = $m->createEntity();
$entity->setMulti($row);
$entity->save();

return $entity;

The main goal for insert() method is to be as fast as possible, while still performing data validation. After
inserting method will return cloned model.

Model::import($data)
Similar to insert() however works across array of rows. This method will not return any IDs or models and is
optimized for importing large amounts of data.

The method will still convert the data needed and operate with joined tables as needed. If you wish to access
tables directly, you’ll have to look into Persistence::insert($m, $data);

4.5 Working with selective fields

When you normally work with your model then all fields are available and will be loaded / saved. You may, however,
specify that you wish to load only a sub-set of fields.

Model::setOnlyFields($fields)
Specify array of fields. Only those fields will be accessible and will be loaded / saved. Attempt to access any
other field will result in exception.

Null restore to full set of fields. This will also unload active record.

property Model::$onlyFields
Contains list of fields to be loaded / accessed.

4.6 Setting and Getting active record data

When your record is loaded from database, record data is stored inside the $data property:

property Model::$data
Contains the data for an active record.

Model allows you to work with the data of single a record directly. You should use the following syntax when accessing
fields of an active record:

4.4. Populating Data 39

Agile Data, Release 1.2-latest

$m->set('name', 'John');
$m->set('surname', 'Peter');
// or
$m->setMulti(['name' => 'John', 'surname' => 'Peter']);

When you modify active record, it keeps the original value in the $dirty array:

Model::set($field, $value)
Set field to a specified value. The original value will be stored in $dirty property.

Model::setMulti($fields)
Set multiple field values.

Model::setNull($field)
Set value of a specified field to NULL, temporarily ignoring normalization routine. Only use this if you intend
to set a correct value shortly after.

Model::unset($field)
Restore field value to it’s original:

$m->set('name', 'John');
echo $m->get('name'); // John

$m->_unset('name');
echo $m->get('name'); // Original value is shown

This will restore original value of the field.

Model::get()
Returns one of the following:

• If value was set() to the field, this value is returned

• If field was loaded from database, return original value

• if field had default set, returns default

• returns null.

Model::isset()
Return true if field contains unsaved changes (dirty):

$m->_isset('name'); // returns false
$m->set('name', 'Other Name');
$m->_isset('name'); // returns true

Model::isDirty()
Return true if one or multiple fields contain unsaved changes (dirty):

if ($m->isDirty(['name', 'surname'])) {
$m->set('full_name', $m->get('name') . ' ' . $m->get('surname'));

}

When the code above is placed in beforeSave hook, it will only be executed when certain fields have been
changed. If your recalculations are expensive, it’s pretty handy to rely on “dirty” fields to avoid some complex
logic.

property Model::$dirty
Contains list of modified fields since last loading and their original values.

40 Chapter 4. Model

Agile Data, Release 1.2-latest

Model::hasField($field)
Returns true if a field with a corresponding name exists.

Model::getField($field)
Finds a field with a corresponding name. Throws exception if field not found.

Full example:

$m = new Model_User($db, 'user');

// Fields can be added after model is created
$m->addField('salary', ['default' => 1000]);

echo $m->_isset('salary'); // false
echo $m->get('salary'); // 1000

// Next we load record from $db
$m = $m->load(1);

echo $m->get('salary'); // 2000 (from db)
echo $m->_isset('salary'); // false, was not changed

$m->set('salary', 3000);

echo $m->get('salary'); // 3000 (changed)
echo $m->_isset('salary'); // true

$m->_unset('salary'); // return to original value

echo $m->get('salary'); // 2000
echo $m->_isset('salary'); // false

$m->set('salary', 3000);
$m->save();

echo $m->get('salary'); // 3000 (now in db)
echo $m->_isset('salary'); // false

protected Model::normalizeFieldName()
Verify and convert first argument got get / set;

4.7 Title Field, ID Field and Model Caption

Those are three properties that you can specify in the model or pass it through defaults:

class MyModel ..
public ?string $titleField = 'full_name';

or as defaults:

$m = new MyModel($db, ['titleField' => 'full_name']);

4.7. Title Field, ID Field and Model Caption 41

Agile Data, Release 1.2-latest

4.7.1 ID Field

property Model::$idField
If your data storage uses field different than id to keep the ID of your records, then you can specify that in
$idField property.

ID value of loaded entity cannot be changed. If you want to duplicate a record, you need to create a new entity
and save it.

4.7.2 Title Field

property Model::$titleField
This field by default is set to ‘name’ will act as a primary title field of your table. This is especially handy if you
use model inside UI framework, which can automatically display value of your title field in the header, or inside
drop-down.

If you don’t have field ‘name’ but you want some other field to be title, you can specify that in the property. If
titleField is not needed, set it to false or point towards a non-existent field.

See: :php:meth::hasOne::addTitle()

public Model::getTitle()
Return title field value of currently loaded record.

public Model::getTitles()
Returns array of title field values of all model records in format [id => title].

4.7.3 Model Caption

property Model::$caption
This is caption of your model. You can use it in your UI components.

public Model::getModelCaption()
Returns model caption. If caption is not set, then try to generate one from model class name.

4.8 Setting limit and sort order

public Model::setLimit($count, $offset = null)
Sets limit on how many records to select. Will select only $count records starting from $offset record.

public Model::setOrder($field, $desc = null)
Sets sorting order of returned data records. Here are some usage examples. All these syntaxes work the same:

$m->setOrder('name, salary desc');
$m->setOrder(['name', 'salary desc']);
$m->setOrder(['name', 'salary' => true]);
$m->setOrder(['name' => false, 'salary' => true]);
$m->setOrder([['name'], ['salary', 'desc']]);
$m->setOrder([['name'], ['salary', true]]);
$m->setOrder([['name'], ['salary desc']]);
// and there can be many more similar combinations how to call this

Keep in mind - true means desc, desc means descending. Otherwise it will be ascending order by default.

42 Chapter 4. Model

Agile Data, Release 1.2-latest

You can also use Atk4DataPersistenceSqlExpression or array of expressions instead of field name here. Or even
mix them together:

$m->setOrder($m->expr('[net] * [vat]'));
$m->setOrder([$m->expr('[net] * [vat]'), $m->expr('[closing] - [opening]')]);
$m->setOrder(['net', $m->expr('[net] * [vat]', 'ref_no')]);

4.8. Setting limit and sort order 43

Agile Data, Release 1.2-latest

44 Chapter 4. Model

CHAPTER 5

Typecasting

Typecasting is evoked when you are attempting to save or load the record. Unlike strict types and normalization,
typecasting is a persistence-specific operation. Here is the sequence and sample:

$m->addField('birthday', ['type' => 'date']);
// type has a number of pre-defined values. Using 'date'
// instructs AD that we will be using it for staring dates
// through 'DateTime' class.

$m->set('birthday', 'Jan 1 1960');
// If non-compatible value is provided, it will be converted
// into a proper date through Normalization process. After
// this line value of 'birthday' field will be DateTime.

$m->save();
// At this point typecasting converts the "DateTime" value
// into UTC date-time representation for SQL or "MongoDate"
// type if you're persisting with MongoDB. This does not affect
// value of a model field.

Typecasting is necessary to save the values inside the database and restore them back just as they were before. When
modifying a record, typecasting will only be invoked on the fields which were dirty.

The purpose of a flexible typecasting system is to allow you to store your date in a compatible format or even fine-tune
it to match your database settings (e.g. timezone) without affecting your domain code.

You must remember that type-casting is a two-way operation. If you are introducing your own types, you will need to
make sure they can be saved and loaded correctly.

Some types such as boolean may support additional options like:

$m->addField('is_married', [
'type' => 'boolean',
'enum' => ['No', 'Yes'],

]);

(continues on next page)

45

Agile Data, Release 1.2-latest

(continued from previous page)

$m->set('is_married', 'Yes'); // normalizes into true
$m->set('is_married', true); // better way because no need to normalize

$m->save(); // stores as "Yes" because of type-casting

5.1 Value types

Any type can have a value of null:

$m->set('is_married', null);
if (!$m->get('is_married')) {

// either null or false
}

If value is passed which is not compatible with field type, Agile Data will try to normalize value:

$m->addField('age', ['type' => 'integer']);
$m->addField('name', ['type' => 'string']);

$m->set('age', '49.8');
$m->set('name', ' John');

echo $m->get('age'); // 49 - normalization cast value to integer
echo $m->get('name'); // 'John' - normalization trims value

5.1.1 Undefined type

If you do not set type for a field, Agile Data will not normalize and type-cast its value.

Because of the loose PHP types, you can encounter situations where undefined type is changed from ‘4’ to 4. This
change is still considered “dirty”.

If you use numeric value with a type-less field, the response from SQL does not distinguish between integers and
strings, so your value will be stored as “string” inside the model.

The same can be said about forms, which submit all their data through POST request that has no types, so undefined
type fields should work relatively good with the standard setup of Agile Data + Agile Toolkit + SQL.

5.1.2 Type of IDs

Many databases will allow you to use different types for ID fields. In SQL the ‘id’ column will usually be “integer”,
but sometimes it can be of a different type.

The same applies for references ($m->hasOne()).

5.1.3 Supported types

• ‘string’ - for storing short strings, such as name of a person. Normalize will trim the value.

• ‘text’ - for storing long strings, suchas notes or description. Normalize will trim the value.

• ‘boolean’ - normalize will cast value to boolean.

46 Chapter 5. Typecasting

Agile Data, Release 1.2-latest

• ‘integer’ - normalize will cast value to integer.

• ‘atk4_money’ - normalize will round value with 4 digits after dot.

• ‘float’ - normalize will cast value to float.

• ‘date’ - normalize will convert value to DateTime object.

• ‘datetime’ - normalize will convert value to DateTime object.

• ‘time’ - normalize will convert value to DateTime object.

• ‘json’ - no normalization by default

• ‘object’ - no normalization by default

5.1.4 Types and UI

UI framework such as Agile Toolkit will typically rely on field type information to properly present data for views
(forms and tables) without you having to explicitly specify the ui property.

5.2 Serialization

Some types cannot be stored natively. For example, generic objects and arrays have no native type in SQL database.
This is where serialization feature is used.

Field may use serialization to further encode field value for the storage purpose:

$this->addField('private_key', [
'type' => 'object',
'system' => true,

]);

5.2.1 Array and Object types

Some types may require serialization for some persistencies, for instance types ‘json’ and ‘object’ cannot be stored in
SQL natively. json type can be used to store these in JSON.

This is handy when mapping JSON data into native PHP structures.

5.2. Serialization 47

Agile Data, Release 1.2-latest

48 Chapter 5. Typecasting

CHAPTER 6

Loading and Saving (Persistence)

class Model

Model object represents your real-life business objects such as “Invoice” or “Client”. The rest of your application
works with “Model” objects only and have no knowledge of what database you are using and how data is stored in
there. This decouples your app from the data storage (Persistence). If in the future you will want to change database
server or structure of your database, you can do it without affecting your application.

Data Persistence frameworks (like ATK Data) provide the bridge between “Model” and the actual database. There
is balance between performance, simplicity and consistency. While other persistence frameworks insist on strict
isolation, ATK Data prefers practicality and simplicity.

ATK Data couples Model and Persistence, they have some intimate knowledge of each-other and work as a unit.
Persistence object is created first and by the time Model is created, you specify persistence to the model.

During the lifecycle of the Model it can work with various records, save, load, unload data etc, but it will always
remain linked with that same persistence.

6.1 Associating with Persistence

Create your persistence object first:

$db = \Atk4\Data\Persistence::connect($dsn);

There are two ways to link your model up with the persistence:

$m = new Model_Invoice($db);

$m = new Model_Invoice();
$m->setPersistence($db);

Model::load()
Load active record from the DataSet:

49

Agile Data, Release 1.2-latest

$m = $m->load(10);
echo $m->get('name');

If record not found, will throw exception.

Model::save($data = [])
Store active record back into DataSet. If record wasn’t loaded, store it as a new record:

$m = $m->load(10);
$m->set('name', 'John');
$m->save();

You can pass argument to save() to set() and save():

$m->unload();
$m->save(['name' => 'John']);

Model::tryLoad()
Same as load() but will return null if record is not found:

$m = $m->tryLoad(10);

Model::unload()
Remove active record and restore model to default state:

$m = $m->load(10);
$m->unload();

$m->set('name', 'New User');
$m->save(); // creates new user

Model::delete($id = null)
Remove current record from DataSet. You can optionally pass ID if you wish to delete a different record. If you
pass ID of a currently loaded record, it will be unloaded.

6.1.1 Inserting Record with a specific ID

When you add a new record with save(), insert() or import, you can specify ID explicitly:

$m->set('id', 123);
$m->save();

// or $m->insert(['Record with ID=123', 'id' => 123']);

However if you change the ID for record that was loaded, then your database record will also have its ID changed.
Here is example:

$m = $m->load(123);
$m->setId(321);
$m->save();

After this your database won’t have a record with ID 123 anymore.

50 Chapter 6. Loading and Saving (Persistence)

Agile Data, Release 1.2-latest

6.2 Type Converting

PHP operates with a handful of scalar types such as integer, string, booleans etc. There are more advanced types such
as DateTime. Finally user may introduce more useful types.

Agile Data ensures that regardless of the selected database, types are converted correctly for saving and restored as
they were when loading:

$m->addField('is_admin', ['type' => 'boolean']);
$m->set('is_admin', false);
$m->save();

// SQL database will actually store `0`

$m = $m->load();

$m->get('is_admin'); // converted back to `false`

Behind a two simple lines might be a long path for the value. The various components are essential and as developer
you must understand the full sequence:

$m->set('is_admin', false);
$m->save();

6.2.1 Strict Types an Normalization

PHP does not have strict types for variables, however if you specify type for your model fields, the type will be
enforced.

Calling “set()” or using array-access to set the value will start by casting the value to an appropriate data-type. If it is
impossible to cast the value, then exception will be generated:

$m->set('is_admin', '1'); // OK, but stores as `true`

$m->set('is_admin', 123); // throws exception.

It’s not only the ‘type’ property, but ‘enum’ can also imply restrictions:

$m->addField('access_type', ['enum' => ['readOnly', 'full']]);

$m->set('access_type', 'full'); // OK
$m->set('access_type', 'half-full'); // Exception

There are also non-trivial types in Agile Data:

$m->addField('salary', ['type' => 'atk4_money']);
$m->set('salary', 20); // converts to '20.00 EUR'

$m->addField('date', ['type' => 'date']);
$m->set('date', time()); // converts to DateTime class

Finally, you may create your own custom field types that follow a more complex logic:

$m->add(new Field_Currency(), 'balance');
$m->set('balance', 12_200.0);

(continues on next page)

6.2. Type Converting 51

Agile Data, Release 1.2-latest

(continued from previous page)

// May transparently work with 2 columns: 'balance_amount' and
// 'balance_currency_id' for example.

Loaded/saved data are always normalized unless the field value normalization is intercepted a hook.

Final field flag that is worth mentioning is called Field::readOnly and if set, then value of a field may not be
modified directly:

$m->addField('ref_no', ['readOnly' => true]);
$m = $m->load(123);

$m->get('ref_no'); // perfect for reading field that is populated by trigger.

$m->set('ref_no', 'foo'); // exception

Note that readOnly can still have a default value:

$m->addField('created', [
'readOnly' => true,
'type' => 'datetime',
'default' => new DateTime(),

]);

$m->save(); // stores creation time just fine and also will loade it.

Note: If you have been following our “Domain” vs “Persistence” then you can probably see that all of the above
functionality described in this section apply only to the “Domain” model.

6.2.2 Typecasting

For full documentation on type-casting see Typecasting

6.2.3 Validation

Validation in application always depends on business logic. For example, if you want age field to be above 14 for the
user registration you may have to ask yourself some questions:

• Can user store 12 inside a age field?

• If yes, Can user persist age with value of 12?

• If yes, Can user complete registration with age of 12?

If 12 cannot be stored at all, then exception would be generated during set(), before you even get a chance to look at
other fields.

If storing of 12 in the model field is OK validation can be called from beforeSave() hook. This might be a better way
if your validation rules depends on multiple field conditions which you need to be able to access.

Finally you may allow persistence to store 12 value, but validate before a user-defined operation. completeRegistration
method could perform the validation. In this case you can create a confirmation page, that actually stores your in-
complete registration inside the database.

52 Chapter 6. Loading and Saving (Persistence)

Agile Data, Release 1.2-latest

You may also make a decision to store registration-in-progress inside a session, so your validation should be aware of
this logic.

Agile Data relies on 3rd party validation libraries, and you should be able to find more information on how to integrate
them.

6.2.4 Multi-column fields

Lets talk more about this currency field:

$m->add(new Field_Currency(), 'balance');
$m->set('balance', 12_200.0);

It may be designed to split up the value by using two fields in the database: balance_amount and balance_currency_id.
Both values must be loaded otherwise it will be impossible to re-construct the value.

On other hand, we would prefer to hide those two columns for the rest of application.

Finally, even though we are storing “id” for the currency we want to make use of References.

Your init() method for a Field_Currency might look like this:

protected function init(): void
{

parent::init();

$this->neverPersist = true;

$f = $this->shortName; // balance

$this->getOwner()->addField(
$f . '_amount',
['type' => 'atk4_money', 'system' => true]

);

$this->getOwner()->hasOne(
$f . '_currency_id',
[

$this->currency_model ?? new Currency(),
'system' => true,

]
);

}

There are more work to be done until Field_Currency could be a valid field, but I wanted to draw your attention to the
use of field flags:

• system flag is used to hide balance_amount and balance_currency_id in UI.

• neverPersist flag is used because there are no balance column in persistence.

6.2.5 Dates and Time

There are 3 datetime formats supported:

• date: Converts into YYYY-MM-DD using UTC timezone for SQL. Defaults to DateTime() class in PHP, but
supports string input (parsed as date in a current timezone) or unix timestamp.

6.2. Type Converting 53

Agile Data, Release 1.2-latest

• time: converts into HH:MM:SS using UTC timezone for storing in SQL. Defaults to DateTime() class in PHP,
but supports string input (parsed as date in current timezone) or unix timestamp. Will discard date from times-
tamp.

• datetime: stores both date and time. Uses UTC in DB. Defaults to DateTime() class in PHP. Supports string
input parsed by strtotime() or unix timestamp.

6.2.6 Customizations

Process which converts field values in native PHP format to/from database-specific formats is called typecasting.
Persistence driver implements a necessary type-casting through the following two methods:

typecastLoadRow($model, $row);
Convert persistence-specific row of data to PHP-friendly row of data.

typecastSaveRow($model, $row);
Convert native PHP-native row of data into persistence-specific.

Row persisting may rely on additional methods, such as:

typecastLoadField(Field $field, $value);
Convert persistence-specific row of data to PHP-friendly row of data.

typecastSaveField(Field $field, $value);
Convert native PHP-native row of data into persistence-specific.

6.3 Duplicating and Replacing Records

In normal operation, once you store a record inside your database, your interaction will always update this existing
record. Sometimes you want to perform operations that may affect other records.

6.3.1 Create copy of existing record

Model::duplicate($id = null)
Normally, active record stores “id”, but when you call duplicate() it forgets current ID and as result it will be
inserted as new record when you execute save() next time.

If you pass the $id parameter, then the new record will be saved under a new ID:

// Assume DB with only one record with ID = 123

// Load and duplicate that record
$m->load(123)->duplicate()->save();

// Now you have 2 records:
// one with ID = 123 and another with ID = {next db generated id}
echo $m->executeCountQuery();

6.3.2 Duplicate then save under a new ID

Assuming you have 2 different records in your database: 123 and 124, how can you take values of 123 and write it on
top of 124?

Here is how:

54 Chapter 6. Loading and Saving (Persistence)

Agile Data, Release 1.2-latest

$m->load(123)->duplicate()->setId(124)->save();

Now the record 124 will be replaced with the data taken from record 123. For SQL that means calling ‘replace into x’.

Warning: There is no special treatment for joins() when duplicating records, so your new record will end up
referencing the same joined record. If the join is reverse then your new record may not load.

This will be properly addressed in a future version of Agile Data.

6.4 Working with Multiple DataSets

When you load a model, conditions are applied that make it impossible for you to load record from outside of a data-
set. In some cases you do want to store the model outside of a data-set. This section focuses on various use-cases like
that.

6.4.1 Cloning versus New Instance

When you clone a model, the new copy will inherit pretty much all the conditions and any in-line modifications that
you have applied on the original model. If you decide to create new instance, it will provide a vanilla copy of model
without any in-line modifications. This can be used in conjunction to escape data-set.

Model::newInstance($class = null, $options = [])

6.4.2 Looking for duplicates

We have a model ‘Order’ with a field ‘ref’, which must be unique within the context of a client. However, orders are
also stored in a ‘Basket’. Consider the following code:

$basket->ref('Order')->insert(['ref' => 123]);

You need to verify that the specific client wouldn’t have another order with this ref, how do you do it?

Start by creating a beforeSave handler for Order:

$this->onHookShort(Model::HOOK_BEFORE_SAVE, function () {
if ($this->isDirty('ref')) {

$m = (new static())
->addCondition('client_id', $this->get('client_id')) // same client
->addCondition($this->idField, '!=', $this->getId()) // has another order
->tryLoadBy('ref', $this->get('ref')) // with same ref

if ($m !== null) {
throw (new Exception('Order with ref already exists for this client'))

->addMoreInfo('client', $this->get('client_id'))
->addMoreInfo('ref', $this->get('ref'))

}
}

});

So to review, we used newInstance() to create new copy of a current model. It is important to note that newInstance()
is using get_class($this) to determine the class.

6.4. Working with Multiple DataSets 55

Agile Data, Release 1.2-latest

6.4.3 Archiving Records

In this use case you are having a model ‘Order’, but you have introduced the option to archive your orders. The method
archive() is supposed to mark order as archived and return that order back. Here is the usage pattern:

$o->addCondition('is_archived', false); // to restrict loading of archived orders
$o = $o->load(123);
$archive = $o->archive();
$archive->set('note', $archive->get('note') . "\nArchived on $date.");
$archive->save();

With Agile Data API building it’s quite common to create a method that does not actually persist the model.

The problem occurs if you have added some conditions on the $o model. It’s quite common to use $o inside a UI
element and exclude Archived records. Because of that, saving record as archived may cause exception as it is now
outside of the result-set.

There are two approaches to deal with this problem. The first involves disabling after-save reloading:

public function archive()
{

$this->reloadAfterSave = false;
$this->set('is_archived', true);

return $this;
}

After-save reloading would fail due to is_archived = false condition so disabling reload is a hack to get your record
into the database safely.

The other, more appropriate option is to re-use a vanilla Order record:

public function archive()
{

$this->save(); // just to be sure, no dirty stuff is left over

$archive = new static();
$archive = $archive->load($this->getId());
$archive->set('is_archived', true);

$this->unload(); // active record is no longer accessible

return $archive;
}

6.5 Working with Multiple Persistencies

Normally when you load the model and save it later, it ends up in the same database from which you have loaded
it. There are cases, however, when you want to store the record inside a different database. As we are looking into
use-cases, you should keep in mind that with Agile Data Persistence can be pretty much anything including ‘RestAPI’,
‘File’, ‘Memcache’ or ‘MongoDB’.

Important: Instance of a model can be associated with a single persistence only. Once it is associated, it stays
like that. To store a model data into a different persistence, a new instance of your model will be created and then
associated with a new persistence.

56 Chapter 6. Loading and Saving (Persistence)

Agile Data, Release 1.2-latest

Model::withPersistence($persistence)

6.5.1 Creating Cache with Memcache

Assuming that loading of a specific items from the database is expensive, you can opt to store them in a MemCache.
Caching is not part of core functionality of Agile Data, so you will have to create logic yourself, which is actually
quite simple.

You can use several designs. I will create a method inside my application class to load records from two persistencies
that are stored inside properties of my application:

public function loadQuick($class, $id)
{

// first, try to load it from MemCache
$m = (clone $class)->setPersistence($this->mdb)->tryLoad($id);

if ($m === null) {
// fall-back to load from SQL
$m = $this->sql->add(clone $class)->load($id);

// store into MemCache too
$m = $m->withPersistence($this->mdb)->save();

}

$m->onHook(Model::HOOK_BEFORE_SAVE, function (Model $m) {
$m->withPersistence($this->sql)->save();

});

$m->onHook(Model::HOOK_BEFORE_DELETE, function (Model $m) {
$m->withPersistence($this->sql)->delete();

});

return $m;
}

The above logic provides a simple caching framework for all of your models. To use it with any model:

$m = $app->loadQuick(new Order(), 123);

$m->set('completed', true);
$m->save();

To look in more details into the actual method, I have broken it down into chunks:

// first, try to load it from MemCache:
$m = (clone $class)->setPersistence($this->mdb)->tryLoad($id);

The $class will be an uninitialized instance of a model (although you can also use a string). It will first be associated
with the MemCache DB persistence and we will attempt to load a corresponding ID. Next, if no record is found in the
cache:

if ($m === null) {
// fall-back to load from SQL
$m = $this->sql->add(clone $class)->load($id);

// store into MemCache too

(continues on next page)

6.5. Working with Multiple Persistencies 57

Agile Data, Release 1.2-latest

(continued from previous page)

$m = $m->withPersistence($this->mdb)->save();
}

Load the record from the SQL database and store it into $m. Next, save $m into the MemCache persistence by replac-
ing (or creating new) record. The $m at the end will be associated with the MemCache persistence for consistency
with cached records. The last two hooks are in order to replicate any changes into the SQL database also:

$m->onHook(Model::HOOK_BEFORE_SAVE, function (Model $m) {
$m->withPersistence($this->sql)->save();

});

$m->onHook(Model::HOOK_BEFORE_DELETE, function (Model $m) {
$m->withPersistence($this->sql)->delete();

});

I have too note that withPersistence() transfers the dirty flags into a new model, so SQL record will be updated with
the record that you have modified only.

If saving into SQL is successful the memcache persistence will be also updated.

6.5.2 Using Read / Write Replicas

In some cases your application have to deal with read and write replicas of the same database. In this case all the
operations would be done on the read replica, except for certain changes.

In theory you can use hooks (that have option to cancel default action) to create a comprehensive system-wide solution,
I’ll illustrate how this can be done with a single record:

$m = new Order($readReplica);

$m->set('completed', true);

$m->withPersistence($writeReplica)->save();
$dirtyRef = &$m->getDirtyRef();
$dirtyRef = [];

// Possibly the update is delayed
// $m->reload();

By changing ‘completed’ field value, it creates a dirty field inside $m, which will be saved inside a $writeReplica.
Although the proper approach would be to reload the $m, if there is chance that your update to a write replica may not
propagate to read replica, you can simply reset the dirty flags.

If you need further optimization, make sure reloadAfterSave is disabled for the write replica:

$m->withPersistence($writeReplica)->setDefaults(['reloadAfterSave' => false])->save();

or use:

$m->withPersistence($writeReplica)->saveAndUnload();

6.5.3 Archive Copies into different persistence

If you wish that every time you save your model the copy is also stored inside some other database (for archive
purposes) you can implement it like this:

58 Chapter 6. Loading and Saving (Persistence)

Agile Data, Release 1.2-latest

$m->onHook(Model::HOOK_BEFORE_SAVE, function (Model $m) {
$arc = $this->withPersistence($m->getApp()->archive_db);

// add some audit fields
$arc->addField('original_id')->set($this->getId());
$arc->addField('saved_by')->set($this->getApp()->user);

$arc->saveAndUnload();
});

6.5.4 Store a specific record

If you are using authentication mechanism to log a user in and you wish to store his details into Session, so that you
don’t have to reload every time, you can implement it like this:

if (!isset($_SESSION['ad'])) {
$_SESSION['ad'] = []; // initialize

}

$sess = new \Atk4\Data\Persistence\Array_($_SESSION['ad']);
$loggedUser = new User($sess);
$loggedUser = $loggedUser->load('active_user');

This would load the user data from Array located inside a local session. There is no point storing multiple users, so
I’m using id=’active_user’ for the only user record that I’m going to store there.

How to add record inside session, e.g. log the user in? Here is the code:

$u = new User($db);
$u = $u->load(123);

$u->withPersistence($sess)->save();

6.6 Actions

Action is a multi-row operation that will affect all the records inside DataSet. Actions will not affect records outside
of DataSet (records that do not match conditions)

Model::action($action, $args = [])
Prepares a special object representing “action” of a persistence layer based around your current model.

6.6.1 Action Types

Actions can be grouped by their result. Some action will be executed and will not produce any results. Others will
respond with either one value or multiple rows of data.

• no results

• single value

• single row

• single column

• array of hashes

6.6. Actions 59

Agile Data, Release 1.2-latest

Action can be executed at any time and that will return an expected result:

$m = Model_Invoice();
$val = (int) $m->action('count')->getOne(); // same as $val = $m->executeCountQuery()

Most actions are sufficiently smart to understand what type of result you are expecting, so you can have the following
code:

$m = Model_Invoice();
$val = $m->action('count')();

When used inside the same Persistence, sometimes actions can be used without executing:

$m = Model_Product($db);
$m->addCondition('name', $productName);
$action = $m->action('getOne', ['id']);

$m = Model_Invoice($db);
$m->insert(['qty' => 20, 'product_id' => $action]);

Insert operation will check if you are using same persistence. If the persistence object is different, it will execute
action and will use result instead.

Being able to embed actions inside next query allows Agile Data to reduce number of queries issued.

The default action type can be set when executing action, for example:

$a = $m->action('field', 'user', 'getOne');

echo $a(); // same as $a->getOne();

6.6.2 SQL Actions

Currently only read-only actions are supported by Persistence\Sql:

• select - produces query that returns DataSet (array of hashes)

There are ability to execute aggregation functions:

echo $m->action('fx', ['max', 'salary'])->getOne();

and finally you can also use count:

echo $m->executeCountQuery(); // same as echo $m->action('count')->getOne()

6.6.3 SQL Actions on Linked Records

In conjunction with Model::refLink() you can produce expressions for creating sub-selects. The functionality is nicely
wrapped inside HasMany::addField():

$client->hasMany('Invoice')
->addField('total_gross', ['aggregate' => 'sum', 'field' => 'gross']);

This operation is actually consisting of 3 following operations:

1. Related model is created and linked up using refLink that essentially places a condition between $client and
$invoice assuming they will appear inside same query.

60 Chapter 6. Loading and Saving (Persistence)

Agile Data, Release 1.2-latest

2. Action is created from $invoice using ‘fx’ and requested method / field.

3. Expression is created with name ‘total_gross’ that uses Action.

Here is a way how to intervene with the process:

$client->hasMany('Invoice');
$client->addExpression('last_sale', ['expr' => function (Model $m) {

return $m->refLink('Invoice')
->setOrder('date desc')
->setLimit(1)
->action('field', ['total_gross'], 'getOne');

}, 'type' => 'float']);

The code above uses refLink and also creates expression, but it tweaks the action used.

6.6.4 Action Matrix

SQL actions apply the following:

• insert: init, mode

• update: init, mode, conditions, limit, order, hook

• delete: init, mode, conditions

• select: init, fields, conditions, limit, order, hook

• count: init, field, conditions, hook,

• field: init, field, conditions

• fx: init, field, conditions

6.6. Actions 61

Agile Data, Release 1.2-latest

62 Chapter 6. Loading and Saving (Persistence)

CHAPTER 7

Fetching results

class Model

Model linked to a persistence is your “window” into DataSet and you get several ways which allow you to fetch the
data.

7.1 Iterate through model data

Model::getIterator()

Create your persistence object first then iterate it:

$db = \Atk4\Data\Persistence::connect($dsn);
$m = new Model_Client($db);

foreach ($m as $id => $item) {
echo $id . ': ' . $item->get('name') . "\n";

}

You must be aware that $item will actually be same as $m and will point to the model. The model, however, will have
the data loaded for you, so you can call methods for each iteration like this:

foreach ($m as $item) {
$item->sendReminder();

}

Warning: Currently ATK Data does not create new copy of your model object for every row. Instead the same
object is re-used, simply $item->getDataRef() is modified by the iterator. For new users this may be surprising that
$item is the same object through the iterator, but for now it’s the most CPU-efficient way.

Additionally model will execute necessary after-load hooks that might trigger some other calculation or validations.

63

Agile Data, Release 1.2-latest

Note: changing query parameter during iteration will has no effect until you finish iterating.

7.1.1 Keeping models

If you wish to preserve the objects that you have loaded (not recommended as they will consume memory), you can
do it like this:

$cat = [];

foreach (new Model_Category($db) as $id => $c) {
$cat[$id] = clone $c;

}

7.1.2 Raw Data Fetching

Model::getRawIterator()

If you do not care about the hooks and simply wish to get the data, you can fetch it:

foreach ($m->getRawIterator() as $row) {
var_dump($row); // array

}

The $row will also contain value for “id” and it’s up to you to find it yourself if you need it.

Model::export()

Will fetch and output array of hashes which will represent entirety of data-set. Similarly to other methods, this will
have the data mapped into your fields for you and server-side expressions executed that are embedded in the query.

By default - onlyFields will be presented as well as system fields.

7.1.3 Fetching data through action

You can invoke and iterate action (particularly SQL) to fetch the data:

foreach ($m->action('select') as $row) {
var_dump($row); // array

}

This has the identical behavior to $m->getRawIterator();

7.2 Comparison of various ways of fetching

• getIterator - action(select), [fetches row, set ID/Data, call afterLoad hook, yields model], unloads data

• getRawIterator - action(select), [fetches row, yields row]

• export - action(select), fetches all rows, returns all rows

class Atk4\Data\Field

64 Chapter 7. Fetching results

CHAPTER 8

Field

Field represents a model property that can hold information about your entity. In Agile Data we call it a Field, to
distinguish it from object properties. Fields inside a model normally have a corresponding instance of Field class.

See Model::addField() on how fields are added. By default, persistence sets the property _defaultSeedAddField
which should correspond to a field object that has enough capabilities for performing field-specific mapping into
persistence-logic.

class Atk4\Data\Field

Field represents a property of your business entity or column if you think of your data in a tabular way. Once you have
defined Field for your Model, you can set and read value of that field:

$model->addField('name');
$model->set('name', 'John');

echo $model->get('name'); // John

Just like you can reuse Model to access multiple data records, Field object will be reused also.

8.1 Purpose of Field

Implementation of Field in Agile Data is a very powerful and distinctive feature. While Model::data store your
field values, the job of Field is to interpret that value, normalize it, type-cast it, validate it and decide on how to store
or present it.

The implementation of Fields is tightly integrated with Model and Persistence.

8.1.1 Field Type

property Atk4\Data\Field::$type

Probably a most useful quality of Field is that it has a clear type:

65

Agile Data, Release 1.2-latest

$model->addField('age', ['type' => 'integer']);
$model->set('age', '123');

var_dump($model->get('age')); // int(123)

Agile Data defines some basic types to make sure that values:

• can be safely stored and manipulated.

• can be saved (Persistence)

• can be presented to user (UI)

A good example would be a date type:

$model->addField('birth', ['type' => 'date']);
$model->set('birth', new DateTime('2014-01-10'));

$model->save();

When used with SQL persistence the value will be automatically converted into a format preferred by the database
2014-10-01. Because PHP has only a single type for storing date, time and datetime, this can lead to various problems
such as handling of timezones or DST. Agile Data takes care of those issues for you automatically.

Conversions between types is what we call Typecasting and there is a documentation section dedicated to it.

Finally, because Field is a class, it can be further extended. For some interesting examples, check out
PasswordField. I’ll explain how to create your own field classes and where they can be beneficial.

Valid types are: string, integer, boolean, datetime, date, time.

You can specify unsupported type too. It will be untouched by Agile Data so you would have to implement your own
handling of a new type.

Persistence implements two methods:

• Persistence::typecastSaveRow()

• Persistence::typecastLoadRow()

Those are responsible for converting PHP native types to persistence specific formats as defined in fields. Those
methods will also change name of the field if needed (see Field::actual)

8.1.2 Basic Properties

Fields have properties, which define its behaviour. Some properties apply on how the values are handled or restrictions
on interaction, other values can even help with data vizualization. For example if Field::enum is used with Agile
UI form, it will be displayed as radio button or a drop-down:

$model->addField('gender', ['enum' => ['F', 'M']]);

// Agile UI code:
$app = new \Atk4\Ui\App('my app');
$app->initLayout('Centered');
Form::addTo($app)->setModel($model);

You will also not be able to set value which is not one of the enum values even if you don’t use UI.

This allows you to define your data fields once and have those rules respected everywhere in your app - in your manual
code, in UI and in API.

66 Chapter 8. Field

Agile Data, Release 1.2-latest

property Atk4\Data\Field::$default

When no value is specified for a field, default value is used when inserting. This value will also appear pre-filled inside
a Form.

property Atk4\Data\Field::$enum

Specifies array containing all the possible options for the value. You can set only to one of the values (loosely typed
comparison is used).

property Atk4\Data\Field::$values

Specifies array containing all the possible options for the value. Similar with $enum, but difference is that this array is
a hash array so array keys will be used as values and array values will be used as titles for these values.

property Atk4\Data\Field::$nullable

Set this to false if field value must NOT be NULL. Attempting to set field value to “NULL” will result in exception.
Example:

$model->set('age', 0);
$model->save();

$model->set('age', null); // exception

property Atk4\Data\Field::$required

Set this to true for field that may not contain “empty” value. You can’t use NULL or any value that is considered
empty/false by PHP. Some examples that are not allowed are:

• empty string ‘’

• 0 numerical value or 0.0

• boolean false

Example:

$model->set('age', 0); // exception

$model->set('age', null); // exception

property Atk4\Data\Field::$readOnly

Modifying field that is read-only through set() methods (or array access) will result in exception.
SqlExpressionField is read-only by default.

property Atk4\Data\Field::$actual

Specify name of the Table Row Field under which field will be persisted.

property Atk4\Data\Field::$join

This property will point to Join object if field is associated with a joined table row.

property Atk4\Data\Field::$system

System flag is intended for fields that are important to have inside hooks or some core logic of a model. System fields
will always be appended to Model::setOnlyFields, however by default they will not appear on forms or grids
(see Field::isVisible, Field::isEditable).

Adding condition on a field will also make it system.

property Atk4\Data\Field::$neverPersist

8.1. Purpose of Field 67

Agile Data, Release 1.2-latest

Field will never be loaded or saved into persistence. You can use this flag for fields that physically are not located in
the database, yet you want to see this field in beforeSave hooks.

property Atk4\Data\Field::$neverSave

This field will be loaded normally, but will not be saved in a database. Unlike “readOnly” which has a similar effect,
you can still change the value of this field. It will simply be ignored on save. You can create some logic in beforeSave
hook to read this value.

property Atk4\Data\Field::$ui

This field contains certain arguments that may be needed by the UI layer to know if user should be allowed to edit this
field.

Atk4\Data\Field::set()

Set the value of the field. Same as $model->set($fieldName, $value);

Atk4\Data\Field::setNull()

Set field value to NULL. This will bypass “nullable” and “required” checks and should only be used if you are planning
to set a different value to the field before executing save().

If you do not set non-null value to a not-nullable field, save() will fail with exception.

Example:

$model['age'] = 0;
$model->save();

$model->getField('age')->setNull(); // no exception
$model->save(); // still getting exception here

See also :php:method:‘Model::setNull‘.

Atk4\Data\Field::get()

Get the value of the field. Same as $model->get($fieldName);

8.1.3 UI Presentation

Agile Data does not deal directly with formatting your data for the user. There may be various items to consider, for
instance the same date can be presented in a short or long format for the user.

The UI framework such as Agile Toolkit can make use of the Field::ui property to allow user to define default
formats or input parsing rules, but Agile Data does not regulate the Field::ui property and different UI frameworks
may use it differently.

Atk4\Data\Field::isEditable()

Returns true if UI should render this field as editable and include inside forms by default.

Atk4\Data\Field::isVisible()

Returns true if UI should render this field in Grid and other readOnly display views by default.

Atk4\Data\Field::isHidden()

Returns true if UI should not render this field in views.

68 Chapter 8. Field

CHAPTER 9

Conditions and DataSet

class Atk4\Data\Model

When model is associated with the database, you can specify a default table either explicitly or through a $table
property inside a model:

$m = new Model_User($db, 'user');
$m = $m->load(1);
echo $m->get('gender'); // "M"

Following this line, you can load ANY record from the table. It’s possible to narrow down set of “loadable” records
by introducing a condition:

$m = new Model_User($db, 'user');
$m->addCondition('gender', 'F');
$m = $m->load(1); // exception, user with ID=1 is M

Conditions serve important role and must be used to intelligently restrict logically accessible data for a model before
you attempt the loading.

9.1 Basic Usage

Atk4\Data\Model::addCondition($field, $operator = null, $value = null)

There are many ways to execute addCondition. The most basic one that will be supported by all the drivers consists of
2 arguments or if operator is ‘=’:

$m->addCondition('gender', 'F');
$m->addCondition('gender', '=', 'F'); // exactly same

Once you add a condition, you can’t get rid of it, so if you want to preserve the state of your model, you need to use
clone:

69

Agile Data, Release 1.2-latest

$m = new Model_User($db, 'user');
$girls = (clone $m)->addCondition('gender', 'F');

$m = $m->load(1); // success
$girls = $girls->load(1); // exception

9.1.1 Operations

Most database drivers will support the following additional operations:

>, <, >=, <=, !=, in, not in, like, not like, regexp, not regexp

The operation must be specified as second argument:

$m = new Model_User($db, 'user');
$girls = (clone $m)->addCondition('gender', 'F');
$notGirls = (clone $m)->addCondition('gender', '!=', 'F');

When you use ‘in’ or ‘not in’ you should pass value as array:

$m = new Model_User($db, 'user');
$girlsOrBoys = (clone $m)->addCondition('gender', 'in', ['F', 'M']);

9.1.2 Multiple Conditions

You can set multiple conditions on the same field even if they are contradicting:

$m = new Model_User($db, 'user');
$noone = (clone $m)

->addCondition('gender', 'F')
->addCondition('gender', 'M');

Normally, however, you would use a different fields:

$m = new Model_User($db, 'user');
$girlSue = (clone $m)

->addCondition('gender', 'F')
->addCondition('name', 'Sue');

You can have as many conditions as you like.

9.1.3 Adding OR Conditions

In Agile Data all conditions are additive. This is done for security - no matter what condition you are adding, it will
not allow you to circumvent previously added condition.

You can, however, add condition that contains multiple clauses joined with OR operator:

$m->addCondition(Model\Scope::createOr(
['name', 'John'],
['surname', 'Smith'],

));

70 Chapter 9. Conditions and DataSet

Agile Data, Release 1.2-latest

This will add condition that will match against records with either name=John OR surname=Smith. If you are building
multiple conditions against the same field, you can use this format:

$m->addCondition('name', ['John', 'Joe']);

For all other cases you can implement them with Model::expr:

$m->addCondition($m->expr('(day([birth_date]) = day([registration_date]) or
→˓day([birth_date]) = [])', 10));

This rather unusual condition will show user records who have registered on same date when they were born OR if
they were born on 10th. (This is really silly condition, please don’t judge, if you have a better example, I’d love to
hear).

9.1.4 Defining your classes

Although I have used in-line addition of the arguments, normally you would want to set those conditions inside the
init() method of your model:

class Model_Girl extends Model_User
{

protected function init(): void
{

parent::init();

$this->addCondition('gender', 'F');
}

}

Note that the field ‘gender’ should be defined inside Model_User::init().

9.2 Vendor-dependent logic

There are many other ways to set conditions, but you must always check if they are supported by the driver that you
are using.

9.2.1 Field Matching

Supported by: SQL (planned for Array, Mongo)

Usage:

$m->addCondition('name', $m->getField('surname'));

Will perform a match between two fields.

9.2.2 Expression Matching

Supported by: SQL (planned for Array)

Usage:

9.2. Vendor-dependent logic 71

Agile Data, Release 1.2-latest

$m->addCondition($m->expr('[name] > [surname]');

Allow you to define an arbitrary expression to be used with fields. Values inside [blah] should correspond to field
names.

9.2.3 SQL Expression Matching

Atk4\Data\Model::expr($template, $arguments = [])
Basically is a wrapper to create DSQL Expression, however this will find any usage of identifiers inside the
template that do not have a corresponding value inside $arguments and replace it with the field:

$m->expr('[age] > 20'); // same as
$m->expr('[age] > 20', ['age' => $m->getField('age')); // same as

Supported by: SQL

Usage:

$m->addCondition($m->expr('[age] between [min_age] and [max_age]'));

Allow you to define an arbitrary expression using SQL language.

9.2.4 Custom Parameters in Expressions

Supported by: SQL

Usage:

$m->addCondition(
$m->expr('[age] between [min_age] and [max_age]'),
['min_age' => 10, 'max_age' => 30]

);

Allow you to pass parameters into expressions. Those can be nested and consist of objects as well as actions:

$m->addCondition(
$m->expr('[age] between [min_age] and [max_age]'),
[

'min_age' => $m->action('min', ['age']),
'max_age' => $m->expr('(20 + [])', [20]),

]
);

This will result in the following condition:

WHERE
`age` between

(select min(`age`) from `user`)
and
(20 + :a)

where the other 20 is passed through parameter. Refer to http://dsql.readthedocs.io/en/develop/expressions.html for
full documentation on expressions.

72 Chapter 9. Conditions and DataSet

http://dsql.readthedocs.io/en/develop/expressions.html

Agile Data, Release 1.2-latest

9.2.5 Expression as first argument

Supported by: SQL, (Planned: Array, Mongo)

The $field of addCondition() can be passed as either an expression or any object implementing
Atk4DataPersistenceSqlExpressionable interface. Same logic applies to the $value:

$m->addCondition($m->getField('name'), '!=', $this->getField('surname'));

9.3 Advanced Usage

9.3.1 Model Scope

Using the Model::addCondition method is the basic way to limit the model scope of records. Under the hood Agile
Data utilizes a special set of classes (Condition and Scope) to apply the conditions as filters on records retrieved. These
classes can be used directly and independently from Model class.

Atk4\Data\Model::scope()

This method provides access to the model scope enabling conditions to be added:

$contact->scope()->addCondition($condition); // adding condition to a model

class Atk4\Data\Scope

Scope object has a single defined junction (AND or OR) and can contain multiple nested Condition and/or Scope
objects referred to as nested conditions. This makes creating Model scopes with deep nested conditions possible, e.g
((Name like ‘ABC%’ and Country = ‘US’) or (Name like ‘CDE%’ and (Country = ‘DE’ or Surname = ‘XYZ’)))

Scope can be created using new Scope() statement from an array or joining Condition objects or condition arguments
arrays:

// $condition1 will be used as nested condition
$condition1 = new Condition('name', 'like', 'ABC%');

// $condition2 will converted to Condtion object and used as nested condition
$condition2 = ['country', 'US'];

// $scope1 is created using AND as junction and $condition1 and $condition2 as nested
→˓conditions
$scope1 = Scope::createAnd($condition1, $condition2);

$condition3 = new Condition('country', 'DE');
$condition4 = ['surname', 'XYZ'];

// $scope2 is created using OR as junction and $condition3 and $condition4 as nested
→˓conditions
$scope2 = Scope::createOr($condition3, $condition4);

$condition5 = new Condition('name', 'like', 'CDE%');

// $scope3 is created using AND as junction and $condition5 and $scope2 as nested
→˓conditions
$scope3 = Scope::createAnd($condition5, $scope2);

(continues on next page)

9.3. Advanced Usage 73

Agile Data, Release 1.2-latest

(continued from previous page)

// $scope is created using OR as junction and $scope1 and $scope3 as nested conditions
$scope = Scope::createOr($scope1, $scope3);

Scope is an independent object not related to any model. Applying scope to model is using the Model::scope()-
>add($condition) method:

$contact->scope()->add($condition); // adding condition to a model
$contact->scope()->add($conditionXYZ); // adding more conditions

__construct($nestedConditions = [], $junction = Scope::AND);

Creates a Scope object from an array:

// below will create 2 conditions and nest them in a compound conditions with AND
→˓junction
$scope1 = new Scope([

['name', 'like', 'ABC%'],
['country', 'US'],

]);

negate();

Negate method has behind the full map of conditions so any condition object can be negated, e.g negating ‘>=’ results
in ‘<’, etc. For compound conditionss this method is using De Morgan’s laws, e.g:

// using $scope1 defined above
// results in "(Name not like 'ABC%') or (Country does not equal 'US')"
$scope1->negate();

createAnd(...$conditions);

Merge $conditions using AND as junction. Returns the resulting Scope object.

createOr(...$conditions);

Merge $conditions using OR as junction. Returns the resulting Scope object.

simplify();

Peels off single nested conditions. Useful for converting (((field = value))) to field = value.

clear();

Clears the condition from nested conditions.

isOr();

Checks if scope components are joined by OR

isAnd();

Checks if scope components are joined by AND

class Atk4\Data\Model\Scope\Condition

Condition represents a simple condition in a form [field, operation, value], similar to the functionality of the
Model::addCondition method

__construct($key, $operator = null, $value = null);

Creates condition object based on provided arguments. It acts similar to Model::addCondition

74 Chapter 9. Conditions and DataSet

Agile Data, Release 1.2-latest

$key can be Model field name, Field object, Expression object, FALSE (interpreted as Expression(‘false’)), TRUE
(interpreted as empty condition) or an array in the form of [$key, $operator, $value] $operator can be one of the
supported operators >, <, >=, <=, !=, in, not in, like, not like, regexp, not regexp $value can be Field object, Expression
object, array (interpreted as ‘any of the values’) or other scalar value

If $value is omitted as argument then $operator is considered as $value and ‘=’ is used as operator

negate();

Negates the condition, e.g:

// results in "name != 'John'"
$condition = (new Condition('name', 'John'))->negate();

toWords(Model $model = null);

Converts the condition object to human readable words. Condition must be assigned to a model or model argument
provided:

// results in 'Contact where Name is John'
(new Condition('name', 'John'))->toWords($contactModel);

9.3.2 Conditions on Referenced Models

Agile Data allows for adding conditions on related models for retrieval of type ‘model has references where’.

Setting conditions on references can be done utilizing the Model::refLink method but there is a shorthand format
directly integrated with addCondition method using “/” to chain the reference names:

$contact->addCondition('company/country', 'US');

This will limit the $contact model to those whose company is in US. ‘company’ is the name of the reference in $contact
model and ‘country’ is a field in the referenced model.

If a condition must be set directly on the existence or number of referenced records the special symbol “#” can be
utilized to indicate the condition is on the number of records:

$contact->addCondition('company/tickets/#', '>', 3);

This will limit the $contact model to those whose company have more than 3 tickets. ‘company’ and ‘tickets’ are the
name of the chained references (‘company’ is a reference in the $contact model and ‘tickets’ is a reference in Company
model)

9.3. Advanced Usage 75

Agile Data, Release 1.2-latest

76 Chapter 9. Conditions and DataSet

CHAPTER 10

SQL Extensions

Databases that support SQL language can use PersistenceSql. This driver will format queries to the database
using SQL language.

In addition to normal operations you can extend and customize various queries.

10.1 Default Model Classes

When using PersistenceSql model building will use different classes for fields, expressions, joins etc:

• addField - FieldSql (field can be used as part of DSQL Expression)

• hasOne - ReferenceHasOneSql (allow importing fields)

• addExpression - SqlExpressionField (define expression through DSQL)

• join - JoinSql (join tables query-time)

10.1.1 SQL Field

class FieldSql

property FieldSql::$actual
PersistenceSql supports field name mapping. Your field could have different column name in your
schema:

$this->addField('name', ['actual' => 'first_name']);

This will apply to load / save operations as well as query mapping.

FieldSql::getDsqlExpression()
SQL Fields can be used inside other SQL expressions:

77

Agile Data, Release 1.2-latest

$q = $connection->expr('[age] + [birth_year]', [
'age' => $m->getField('age'),
'birth_year' => $m->getField('birth_year'),

]);

10.1.2 SQL Reference

class ReferenceHasOneSql
Extends ReferenceHasOne

ReferenceHasOneSql::addField()
Allows importing field from a referenced model:

$model->hasOne('country_id', ['model' => [Country::class]])
->addField('country_name', 'name');

Second argument could be array containing additional settings for the field:

$model->hasOne('account_id', ['model' => [Account::class]])
->addField('account_balance', ['balance', 'type' => 'atk4_money']);

Returns new field object.

ReferenceHasOneSql::addFields()
Allows importing multiple fields:

$model->hasOne('country_id', ['model' => [Country::class]])
->addFields(['country_name', 'country_code']);

You can specify defaults to be applied on all fields:

$model->hasOne('account_id', ['model' => [Account::class]])
->addFields([

'opening_balance',
'balance',

], ['type' => 'atk4_money']);

You can also specify aliases:

$model->hasOne('account_id', ['model' => [Account::class]])
->addFields([

'opening_balance',
'account_balance' => 'balance',

], ['type' => 'atk4_money']);

If you need to pass more details to individual field, you can also use sub-array:

$model->hasOne('account_id', ['model' => [Account::class]])
->addFields([
[

['opening_balance', 'caption' => 'The Opening Balance'],
'account_balance' => 'balance',

], ['type' => 'atk4_money']);

Returns $this.

78 Chapter 10. SQL Extensions

Agile Data, Release 1.2-latest

ReferenceHasOneSql::ref()
While similar to ReferenceHasOne::ref this implementation implements deep traversal:

$countryModel = $customerModel->addCondition('is_vip', true)
->ref('country_id'); // $model was not loaded!

ReferenceHasOneSql::refLink()
Creates a model for related entity with applied condition referencing field of a current model through SQL
expression rather then value. This is usable if you are creating sub-queries.

ReferenceHasOneSql::addTitle()
Similar to addField, but will import “title” field and will come up with good name for it:

$model->hasOne('country_id', ['model' => [Country::class]])
->addTitle();

// creates 'country' field as sub-query for country.name

You may pass defaults:

$model->hasOne('country_id', ['model' => [Country::class]])
->addTitle(['caption' => 'Country Name']);

Returns new field object.

10.1.3 Expressions

class SqlExpressionField
Extends FieldSql

Expression will map into the SQL code, but will perform as read-only field otherwise.

property SqlExpressionField::$expr
Stores expression that you define through DSQL expression:

$model->addExpression('age', ['expr' => 'year(now()) - [birth_year]']);
// tag [birth_year] will be automatically replaced by respective model field

SqlExpressionField::getDsqlExpression()
SQL Expressions can be used inside other SQL expressions:

$model->addExpression('can_buy_alcohol', ['expr' => 'if([age] > 25, 1, 0)', 'type
→˓' => 'boolean']);

Adding expressions to model will make it automatically reload itself after save as default behavior, see
Model::reloadAfterSave.

10.2 Transactions

class PersistenceSql

PersistenceSql::atomic()

This method allows you to execute code within a ‘START TRANSACTION / COMMIT’ block:

10.2. Transactions 79

Agile Data, Release 1.2-latest

class Invoice
{

public function applyPayment(Payment $p)
{

$this->getPersistence()->atomic(function () use ($p) {
$this->set('paid', true);
$this->save();

$p->set('applied', true);
$p->save();

});
}

}

Callback format of this method allows a more intuitive syntax and nested execution of various blocks. If any exception
is raised within the block, then transaction will be automatically rolled back. The return of atomic() is same as return
of user-defined callback.

10.3 Custom Expressions

PersistenceSql::expr()
This method is also injected into the model, that is associated with PersistenceSql so the most convenient way
to use this method is by calling $model->expr(‘foo’).

This method is quite similar to Atk4DataPersistenceSqlQuery::expr() method explained here: http://dsql.readthedocs.
io/en/stable/expressions.html

There is, however, one difference. Expression class requires all named arguments to be specified. Use of Model::expr()
allows you to specify field names and those field expressions will be automatically substituted. Here is long / short
format:

$q = $connection->expr('[age] + [birth_year]', [
'age' => $m->getField('age'),
'birth_year' => $m->getField('birth_year'),

]);

// identical to

$q = $m->expr('[age] + [birth_year']);

This method is automatically used by SqlExpressionField.

10.4 Actions

The most basic action you can use with SQL persistence is ‘select’:

$action = $model->action('select');

Action is implemented by DSQL library, that is further documented at http://dsql.readthedocs.io (See section Queries).

10.4.1 Action: select

This action returns a basic select query. You may pass one argument - array containing list of fields:

80 Chapter 10. SQL Extensions

http://dsql.readthedocs.io/en/stable/expressions.html
http://dsql.readthedocs.io/en/stable/expressions.html
http://dsql.readthedocs.io

Agile Data, Release 1.2-latest

$action = $model->action('select', ['name', 'surname']);

Passing false will not include any fields into select (so that you can include them yourself):

$action = $model->action('select', [false]);
$action->field('count(*)', 'c);

10.4.2 Action: count

Returns query for count(*):

$action = $model->action('count');
$cnt = $action->getOne();
// for materialized count use:
$cnt = $model->executeCountQuery();

You can also specify alias:

$action = $model->action('count', ['alias' => 'cc']);
$data = $action->getRow();
$cnt = $data->get('cc');

10.4.3 Action: field

Get query for a specific field:

$action = $model->action('field', ['age']);
$age = $action->limit(1)->getOne();

You can also specify alias:

$action = $model->action('field', ['age', 'alias' => 'the_age']]);
$age = $action->limit(1)->getRow()['the_age'];

10.4.4 Action: fx

Executes single-argument SQL function on field:

$action = $model->action('fx', ['avg', 'age']);
$ageAvg = $action->getOne();

This method also supports alias. Use of alias is handy if you are using those actions as part of other query (e.g.
UNION)

10.5 Stored Procedures

SQL servers allow to create and use stored procedures and there are several ways to invoke them:

1. CALL procedure. No data / output.

2. Specify OUT parameters.

10.5. Stored Procedures 81

Agile Data, Release 1.2-latest

3. Stored FUNCTION, e.g. select myfunc(123)

4. Stored procedures that return data.

Agile Data has various ways to deal with above scenarios:

1. Custom expression through DSQL

2. Model Method

3. Model Field

4. Model Source

Here I’ll try to look into each of those approaches but closely pay attention to the following:

• Abstraction and concern separation.

• Security and protecting against injection.

• Performance and scalability.

• When to refactor away stored procedures.

10.5.1 Compatibility Warning

Agile Data is designed to be cross-database agnostic. That means you should be able to swap your SQL to NoSQL or
RestAPI at any moment. My relying on stored procedures you will loose portability of your application.

We do have our legacy applications to maintain, so Stored Procedures and SQL extensions are here to stay. By making
your Model rely on those extensions you will loose ability to use the same model with non-sql persistencies.

Sometimes you can fence the code like this:

if ($this->getPersistence() instanceof \Atk4\Data\Persistence\Sql) {
.. sql code ..

}

Or define your pure model, then extend it to add SQL capabilities. Note that using single model with cross-
persistencies should still be possible, so you should be able to retrieve model data from stored procedure then cache
it.

10.5.2 as a Model method

You should be familiar with http://dsql.readthedocs.io/en/develop/expressions.html.

In short this should allow you to build and execute any SQL statement:

$this->expr('call get_nominal_sheet([], [], \'2014-10-01\', \'2015-09-30\', 0)', [
$this->getApp()->system->getId(),
$this->getApp()->system['contractor_id'],

])->executeQuery();

Depending on the statement you can also use your statement to retrieve data:

$data = $this->expr('call get_client_report_data([client_id])', [
'client_id' => $clientId,

])->getRows();

This can be handy if you wish to create a method for your Model to abstract away the data:

82 Chapter 10. SQL Extensions

http://dsql.readthedocs.io/en/develop/expressions.html

Agile Data, Release 1.2-latest

class Client extends \Atk4\Data\Model
{

protected function init(): void
{

...
}

public function getReportData($arg)
{

$this->assertIsLoaded();

return $this->expr('call get_client_report_data([client_id], [arg])', [
'arg' => $arg,
'client_id' => $clientId,

])->getRows();
}

}

Here is another example using PHP generator:

class Client extends \Atk4\Data\Model
{

protected function init(): void
{

...
}

public function fetchReportData($arg)
{

$this->assertIsLoaded();

foreach ($this->expr('call get_client_report_data([client_id], [arg])', [
'arg' => $arg,
'client_id' => $clientId,

]) as $row) {
yield $row;

}
}

}

10.5.3 as a Model Field

Important: Not all SQL vendors may support this approach.

Model::addExpression is a SQL extension that allow you to define any expression for your field query. You
can use SQL stored function for data fetching like this:

class Category extends \Atk4\Data\Model
{

public $table = 'category';

protected function init(): void
{

parent::init();
(continues on next page)

10.5. Stored Procedures 83

Agile Data, Release 1.2-latest

(continued from previous page)

$this->hasOne('parent_id', ['model' => [self::class]]);
$this->addField('name');

$this->addExpression('path', ['expr' => 'get_path([id])']);
}

}

This should translate into SQL query:

select parent_id, name, get_path(id) from category;

where once again, stored function is hidden.

10.5.4 as an Action

Important: Not all SQL vendors may support this approach.

Method PersistenceSql::action and Model::action generates queries for most of model operations. By
re-defining this method, you can significantly affect the query building of an SQL model:

class CompanyProfit extends \Atk4\Data\Model
{

public $companyId; // inject company ID, which will act as a condition/argument
public bool $readOnly = true; // instructs rest of the app, that this model is

→˓read-only

protected function init(): void
{

parent::init();

$this->addField('date_period');
$this->addField('profit');

}

public function action(string $mode, array $args = [])
{

if ($mode == 'select') {
// must return DSQL object here
return $this->expr('call get_company_profit([company_id])', [

'company_id' => $this->companyId,
]);

}

if ($mode == 'count') {
// optionally - expression for counting data rows, for pagination support
return $this->expr('select count(*) from (call get_company_

→˓profit([company_id]))', [
'company_id' => $this->companyId,

]);
}

throw (new \Atk4\Data\Exception('You may only perform "select" or "count"
→˓action on this model'))

(continues on next page)

84 Chapter 10. SQL Extensions

Agile Data, Release 1.2-latest

(continued from previous page)

->addMoreInfo('action', $mode);
}

}

10.5.5 as a Temporary Table

A most convenient (although inefficient) way for stored procedures is to place output data inside a temporary table.
You can perform an actual call to stored procedure inside Model::init() then set $table property to a temporary table:

class NominalReport extends \Atk4\Data\Model
{

public $table = 'temp_nominal_sheet';
public bool $readOnly = true; // instructs rest of the app, that this model is

→˓read-only

protected function init(): void
{

parent::init();

$res = $this->expr('call get_nominal_sheet([], [], \'2014-10-01\', \'2015-09-
→˓30\', 0)', [

$this->getApp()->system->getId(),
$this->getApp()->system['contractor_id'],

])->executeQuery();

$this->addField('date', ['type' => 'date']);
$this->addField('items', ['type' => 'integer']);
...

}
}

10.5.6 as an Model Source

Important: Not all SQL vendors may support this approach.

Technically you can also specify expression as a $table property of your model:

class ClientReport extends \Atk4\Data\Model
{

public $table; // will be set in init()
public bool $readOnly = true; // instructs rest of the app, that this model is

→˓read-only

protected function init(): void
{

parent::init();

$this->init = $this->expr('call get_report_data()');

$this->addField('date', ['type' => 'date']);
$this->addField('items', ['type' => 'integer']);

(continues on next page)

10.5. Stored Procedures 85

Agile Data, Release 1.2-latest

(continued from previous page)

...
}

}

Technically this will give you select date, items from (call get_report_data()).

86 Chapter 10. SQL Extensions

CHAPTER 11

Static Persistence

class PersistenceStatic_

Static Persistence extends PersistenceArray_ to implement a user-friendly way of specifying data through an
array.

11.1 Usage

This is most useful when working with “sample” code, where you want to see your results quick:

$htmltable->setModel(new Model(new Persistence\Static_([
['VAT_rate' => '12.0%', 'VAT' => '36.00', 'Net' => '300.00'],
['VAT_rate' => '10.0%', 'VAT' => '52.00', 'Net' => '520.00'],

])));

Lets unwrap the example:

PersistenceStatic_::__construct()

Constructor accepts array as an argument, but the array could be in various forms:

- can be array of strings ['one', 'two']
- can be array of hashes. First hash will be examined to pick up fields
- can be array of arrays. Will name columns as 'field1', 'field2', 'field3'.

If you are using any fields without keys (numeric keys) it’s important that all your records have same number of
elements.

Static Persistence will also make attempt to deduce a “title” field and will set it automatically for the model. If you
have a field with key “name” then it will be used. Alternative it will check key “title”.

If neither are present you can still manually specify title field for your model.

Finally, static persistence (unlike :php:class:PersistenceArray_) will automatically populate fields for the model and
will even attempt to deduce field types.

87

Agile Data, Release 1.2-latest

Currently it recognizes integer, date, boolean, float, array and object types. Other fields will appear as-is.

11.1.1 Saving Records

Models that you specify against static persistence will not be marked as “Read Only” (Model::readOnly), and
you will be allowed to save data back. The data will only be stored inside persistence object and will be discarded at
the end of your PHP script.

88 Chapter 11. Static Persistence

CHAPTER 12

References

class Model

ref($link, $details = []);

Models can relate one to another. The logic of traversing references, however, is slightly different to the traditional
ORM implementation, because in Agile Data traversing also imposes conditions

There are two basic types of references: hasOne() and hasMany(), but it’s also possible to add other reference types.
The basic ones are really easy to use:

$m = new Model_User($db, 'user');
$m->hasMany('Orders', ['model' => [Model_Order::class]]);
$m = $m->load(13);

$ordersForUser13 = $m->ref('Orders');

As mentioned - $ordersForUser13 will have it’s DataSet automatically adjusted so that you could only access orders
for the user with ID=13. The following is also possible:

$m = new Model_User($db, 'user');
$m->hasMany('Orders', ['model' => [Model_Order::class]]);
$m->addCondition('is_vip', true);

$ordersForVips = $m->ref('Orders');
$ordersForVips = $ordersForVips->loadAny();

Condition on the base model will be carried over to the orders and you will only be able to access orders that belong
to VIP users. The query for loading order will look like this:

select * from order where user_id in (
select id from user where is_vip = 1

) limit 1

Argument $defaults will be passed to the new model that will be used to create referenced model. This will not work
if you have specified reference as existing model that has a persistence set. (See Reference::getModel())

89

Agile Data, Release 1.2-latest

12.1 Persistence

Agile Data supports traversal between persistencies. The code above does not explicitly assign database to
Model_Order. But what if destination model does not reside inside the same database?

You can specify it like this:

$m = new Model_User($dbArrayCache, 'user');
$m->hasMany('Orders', ['model' => [Model_Order::class, $dbSql]]);
$m->addCondition('is_vip', true);

$ordersForVips = $m->ref('Orders');

Now that a different databases are used, the queries can no longer be joined so Agile Data will carry over list of IDs
instead:

$ids = select id from user where is_vip = 1
select * from order where user_id in ($ids)

Since we are using $dbArrayCache, then field values will actually be retrieved from memory.

Note: This is not implemented as of 1.1.0, see https://github.com/atk4/data/issues/158

12.2 Safety and Performance

When using ref() on hasMany reference, it will always return a fresh clone of the model. You can perform actions on
the clone and next time you execute ref() you will get a fresh copy.

If you are worried about performance you can keep 2 models in memory:

$order = new Order($db);
$client = $order->refModel('client_id');

foreach ($order as $o) {
$c = $client->load($o->get('client_id'));

}

Warning: This code is seriously flawed and is called “N+1 Problem”. Agile Data discourages you from using
this and instead offers you many other tools: field importing, model joins, field actions and refLink().

12.2.1 hasMany Reference

hasMany($link, ['model' => $model]);

There are several ways how to link models with hasMany:

$m->hasMany('Orders', ['model' => [Model_Order::class]]); // using seed

$m->hasMany('Order', ['model' => function (Model $m, $r) { // using callback
return new Model_Order();

}]);

90 Chapter 12. References

https://github.com/atk4/data/issues/158

Agile Data, Release 1.2-latest

12.3 Dealing with many-to-many references

It is possible to perform reference through an 3rd party table:

$i = new Model_Invoice();
$p = new Model_Payment();

// table invoice_payment has 'invoice_id', 'payment_id' and 'amount_allocated'

$p
->join('invoice_payment.payment_id')
->addFields(['amount_allocated', 'invoice_id']);

$i->hasMany('Payments', ['model' => $p]);

Now you can fetch all the payments associated with the invoice through:

$paymentsForInvoice1 = $i->load(1)->ref('Payments');

12.4 Dealing with NON-ID fields

Sometimes you have to use non-ID references. For example, we might have two models describing list of currencies
and for each currency we might have historic rates available. Both models will relate through currency.code =
exchange.currency_code:

$c = new Model_Currency();
$e = new Model_ExchangeRate();

$c->hasMany('Exchanges', ['model' => $e, 'theirField' => 'currency_code', 'ourField'
→˓=> 'code']);

$c->addCondition('is_convertable', true);
$e = $c->ref('Exchanges');

This will produce the following query:

select * from exchange
where currency_code in

(select code form currency where is_convertable = 1)

12.5 Concatenating Fields

You may want to display want to list your related entities by concatenating. For example:

$user->hasMany('Tags', ['model' => [Tag::class]])
->addField('tags', ['concat' => ',', 'field' => 'name']);

This will create a new field for your user, tags which will contain all comma-separated tag names.

12.3. Dealing with many-to-many references 91

Agile Data, Release 1.2-latest

12.6 Add Aggregate Fields

Reference hasMany makes it a little simpler for you to define an aggregate fields:

$u = new Model_User($dbArrayCache, 'user');

$u->hasMany('Orders', ['model' => [Model_Order::class]])
->addField('amount', ['aggregate' => 'sum']);

It’s important to define aggregation functions here. This will add another field inside $m that will correspond to the
sum of all the orders. Here is another example:

$u->hasMany('PaidOrders', (new Model_Order())->addCondition('is_paid', true))
->addField('paid_amount', ['aggregate' => 'sum', 'field' => 'amount']);

You can also define multiple fields, although you must remember that this will keep making your query bigger and
bigger:

$invoice->hasMany('Invoice_Line', ['model' => [Model_Invoice_Line::class]])
->addFields([

['total_vat', 'aggregate' => 'sum'],
['total_net', 'aggregate' => 'sum'],
['total_gross', 'aggregate' => 'sum'],

]);

Imported fields will preserve format of the field they reference. In the example, if ‘Invoice_line’ field total_vat has
type money then it will also be used for a sum.

You can also specify a type yourself:

->addField('paid_amount', ['aggregate' => 'sum', 'field' => 'amount', 'type' => 'atk4_
→˓money']);

Aggregate fields are always declared read-only, and if you try to change them ($m->set(‘paid_amount’, 123);), you
will receive exception.

12.7 Available Aggregation Functions

The mathematical aggregate sum will automatically default to 0 if no respective rows were provided. The default SQL
behaviour is to return NULL, but this does go well with the cascading formulas:

coalesce(sum([field]), 0);

For other functions, such as min, max, avg and non mathematical aggregates such as group_concat no zero-coalesce
will be used. Expect that result could be zero or null.

When you specify ‘aggregate’ => ‘count’ field defaults to *.

12.8 Aggregate Expressions

Sometimes you want to use a more complex formula, and you may do so by specifying expression into ‘aggregate’:

92 Chapter 12. References

Agile Data, Release 1.2-latest

->addField('len', ['expr' => 'sum(length([name]))']),

You can reference fields by using square brackets here. Also you may pass args containing your optional arguments:

->addField('len', [
'expr' => 'sum(if([date] = [exp_date], 1, 0))',
'args' => ['exp_date' => '2003-03-04],

]),

Alternatively you may also specify either ‘aggregate’:

$book->hasMany('Pages', ['model' => [Page::class]])
->addField('page_list', [

'aggregate' => $book->refModel('Pages')->expr('group_concat([number], [])', [
→˓'-']),

]);

or ‘field’:

->addField('paid_amount', ['aggregate' => 'count', 'field' => new
→˓\Atk4\Data\Persistence\Sql\Expression('*')]);

Note: as of 1.3.4 count’s field defaults to * - no need to specify explicitly.

12.8.1 hasMany / refLink / refModel

Model::refLink($link)

Normally ref() will return a usable model back to you, however if you use refLink then the conditioning will be done
differently. refLink is useful when defining sub-queries:

$m = new Model_User($dbArrayCache, 'user');
$m->hasMany('Orders', ['model' => [Model_Order::class]]);
$m->addCondition('is_vip', true);

$sum = $m->refLink('Orders')->action('fx0', ['sum', 'amount']);
$m->addExpression('sum_amount')->set($sum);

The refLink would define a condition on a query like this:

select * from `order` where user_id = `user`.id

And it will not be viable on its own, however if you use it inside a sub-query, then it now makes sense for generating
expression:

select
(select sum(amount) from `order` where user_id = `user`.id) sum_amount

from user
where is_vip = 1

Model::refModel($link)

There are many situations when you need to get referenced model instead of reference itself. In such case refModel()
comes in as handy shortcut of doing $model->refLink($link)->getModel().

12.8. Aggregate Expressions 93

Agile Data, Release 1.2-latest

12.8.2 hasOne reference

Model::hasOne($link[, ’model’ => $model])
$model can be an array containing options: [$model, . . .]

This reference allows you to attach a related model to a foreign key:

$o = new Model_Order($db, 'order');
$u = new Model_User($db, 'user');

$o->hasOne('user_id', ['model' => $u]);

This reference is similar to hasMany, but it does behave slightly different. Also this reference will define a system new
field user_id if you haven’t done so already.

12.9 Traversing loaded model

If your $o model is loaded, then traversing into user will also load the user, because we specifically know the ID of
that user. No conditions will be set:

echo $o->load(3)->ref('user_id')['name']; // will show name of the user, of order #3

12.10 Traversing DataSet

If your model is not loaded then using ref() will traverse by conditioning DataSet of the user model:

$o->unload(); // just to be sure!
$o->addCondition('status', 'failed');
$u = $o->ref('user_id');

$u = $u->loadAny(); // will load some user who has at least one failed order

The important point here is that no additional queries are generated in the process and the loadAny() will look like
this:

select * from user where id in
(select user_id from order where status = 'failed')

By passing options to hasOne() you can also differentiate field name:

$o->addField('user_id');
$o->hasOne('User', ['model' => $u, 'ourField' => 'user_id']);

$o->load(1)->ref('User')['name'];

You can also use theirField if you need non-id matching (see example above for hasMany()).

12.11 Importing Fields

You can import some fields from related model. For example if you have list of invoices, and each invoice contains
“currency_id”, but in order to get the currency name you need another table, you can use this syntax to easily import

94 Chapter 12. References

Agile Data, Release 1.2-latest

the field:

$i = new Model_Invoice($db)
$c = new Model_Currency($db);

$i->hasOne('currency_id', ['model' => $c])
->addField('currency_name', 'name');

This code also resolves problem with a duplicate ‘name’ field. Since you might have a ‘name’ field inside ‘Invoice’
already, you can name the field ‘currency_name’ which will reference ‘name’ field inside Currency. You can also
import multiple fields but keep in mind that this may make your query much longer. The argument is associative array
and if key is specified, then the field will be renamed, just as we did above:

$u = new Model_User($db)
$a = new Model_Address($db);

$u->hasOne('address_id', ['model' => $a])
->addFields([

'address_1',
'address_2',
'address_3',
'address_notes' => ['notes', 'type' => 'text'],

]);

Above, all address_ fields are copied with the same name, however field ‘notes’ from Address model will be called
‘address_notes’ inside user model.

Important: When importing fields, they will preserve type, e.g. if you are importing ‘date’ then the type of your
imported field will also be date. Imported fields are also marked as “read-only” and attempt to change them will result
in exception.

12.12 Importing hasOne Title

When you are using hasOne() in most cases the referenced object will be addressed through “ID” but will have a
human-readable field as well. In the example above Model_Currency has a title field called name. Agile Data provides
you an easier way how to define currency title:

$i = new Invoice($db)

$i->hasOne('currency_id', ['model' => [Currency::class]])
->addTitle();

This would create ‘currency’ field containing name of the currency:

$i = $i->load(20);

echo 'Currency for invoice 20 is ' . $i->get('currency'); // EUR

Unlike addField() which creates fields read-only, title field can in fact be modified:

$i->set('currency', 'GBP');
$i->save();

(continues on next page)

12.12. Importing hasOne Title 95

Agile Data, Release 1.2-latest

(continued from previous page)

// will update $i->get('currency_id') to the corresponding ID for currency with name
→˓GBP.

This behavior is awesome when you are importing large amounts of data, because the lookup for the currency_id is
entirely done in a database.

By default name of the field will be calculated by removing “_id” from the end of hasOne field, but to override this,
you can specify name of the title field explicitly:

$i->hasOne('currency_id', ['model' => [Currency::class]])
->addTitle(['field' => 'currency_name']);

12.12.1 User-defined Reference

Model::addReference($link, $callback)

Sometimes you would want to have a different type of relation between models, so with addReference you can define
whatever reference you want:

$m->addReference('Archive', ['model' => function (Model $m) {
return $m->newInstance(null, ['table' => $m->table . '_archive']);

}]);

The above example will work for a table structure where a main table user is shadowed by a archive table user_archive.
Structure of both tables are same, and if you wish to look into an archive of a User you would do:

$user->ref('Archive');

Note that you can create one-to-many or many-to-one relations, by using your custom logic. No condition will be
applied by default so it’s all up to you:

$m->addReference('Archive', ['model' => function (Model $m) {
$archive = $m->newInstance(null, ['table' => $m->table . '_archive']);

$m->addField('original_id', ['type' => 'integer']);

if ($m->isLoaded())) {
$archive->addCondition('original_id', $m->getId());
// only show record of currently loaded record

}
}]);

12.12.2 Reference Discovery

You can call Model::getReferences() to fetch all the references of a model:

$references = $model->getReferences();
$reference = $references['owner_id'];

or if you know the reference you’d like to fetch, you can use Model::getReference():

$reference = $model->getReference('owner_id');

96 Chapter 12. References

Agile Data, Release 1.2-latest

While Model::ref() returns a related model, Model::getReference() gives you the reference object itself
so that you could perform some changes on it, such as import more fields with Model::addField().

Or you can use Model::refModel() which will simply return referenced model and you can do fancy things with
it.

$refModel = $model->refModel(‘owner_id’);

You can also use Model::hasReference() to check if particular reference exists in model:

if ($model->hasReference('owner_id')) {
$reference = $model->getReference('owner_id');

}

12.12.3 Deep traversal

When operating with data-sets you can define references that use deep traversal:

echo $o->load(1)->ref('user_id')->ref('address_id')['address_1'];

The above example will actually perform 3 load operations, because as I have explained above, Model::ref()
loads related model when called on a loaded model. To perform a single query instead, you can use:

echo $o->addCondition('id', 1)->ref('user_id')->ref('address_id')->loadAny()['address_
→˓1'];

Here addCondition('id', 1) will only set a condition without actually loading the record and traversal will
encapsulate sub-queries resulting in a query like this:

select * from address where id in
(select address_id from user where id in

(select user_id from order where id = 1))

12.12.4 Reference Aliases

When related entity relies on the same table it is possible to run into problem when SQL is confused about which table
to use.

select name, (select name from item where item.parent_id = item.id) parent_name from
→˓item

To avoid this problem Agile Data will automatically alias tables in sub-queries. Here is how it works:

$item->hasMany('parent_item_id', ['model' => [Model_Item::class]])
->addField('parent', 'name');

When generating expression for ‘parent’, the sub-query will use alias pi consisting of first letters in ‘parent_item_id’.
(except _id). You can actually specify a custom table alias if you want:

$item->hasMany('parent_item_id', ['model' => [Model_Item::class], 'tableAlias' =>
→˓'mypi'])

->addField('parent', 'name');

Additionally you can pass tableAlias as second argument into Model::ref() or Model::refLink(). This can
help you in creating a recursive models that relate to itself. Here is example:

12.12. Importing hasOne Title 97

Agile Data, Release 1.2-latest

class Model_Item3 extends \Atk4\Data\Model
{

public $table = 'item';

protected function init(): void
{

parent::init();

$m = new Model_Item3();

$this->addField('name');
$this->addField('age');
$i2 = $this->join('item2.item_id');
$i2->hasOne('parent_item_id', ['model' => $m, 'tableAlias' => 'parent'])

->addTitle();

$this->hasMany('Child', ['model' => $m, 'theirField' => 'parent_item_id',
→˓'tableAlias' => 'child'])

->addField('child_age', ['aggregate' => 'sum', 'field' => 'age']);
}

}

Loading model like that can produce a pretty sophisticated query:

select
`pp`.`id`, `pp`.`name`, `pp`.`age`, `pp_i`.`parent_item_id`,
(select `parent`.`name`
from `item` `parent`
left join `item2` as `parent_i` on `parent_i`.`item_id` = `parent`.`id`
where `parent`.`id` = `pp_i`.`parent_item_id`
) `parent_item`,
(select sum(`child`.`age`) from `item` `child`
left join `item2` as `child_i` on `child_i`.`item_id` = `child`.`id`
where `child_i`.`parent_item_id` = `pp`.`id`
) `child_age`, `pp`.`id` `_i`

from `item` `pp`left join `item2` as `pp_i` on `pp_i`.`item_id` = `pp`.`id`

12.13 Various ways to specify options

When calling hasOne()->addFields() there are various ways to pass options:

• addFields([‘name’, ‘dob’]) - no options are passed, use defaults. Note that reference will not fetch the type of
foreign field due to performance consideration.

• addFields([‘first_name’ => ‘name’]) - this indicates aliasing. Field name will be added as first_name.

• addFields([[‘dob’, ‘type’ => ‘date’]]) - wrap inside array to pass options to field

• addFields([‘the_date’ => [‘dob’, ‘type’ => ‘date’]]) - combination of aliasing and options

• addFields([‘dob’, ‘dod’], [‘type’ => ‘date’]) - passing defaults for multiple fields

12.13.1 References with New Records

Agile Data takes extra care to help you link your new records with new related entities. Consider the following two
models:

98 Chapter 12. References

Agile Data, Release 1.2-latest

class Model_User extends \Atk4\Data\Model
{

public $table = 'user';

protected function init(): void
{

parent::init();

$this->addField('name');

$this->hasOne('contact_id', ['model' => [Model_Contact::class]]);
}

}

class Model_Contact extends \Atk4\Data\Model
{

public $table = 'contact';

protected function init(): void
{

parent::init();

$this->addField('address');
}

}

This is a classic one to one reference, but let’s look what happens when you are working with a new model:

$m = new Model_User($db);

$m->set('name', 'John');
$m->save();

In this scenario, a new record will be added into ‘user’ with ‘contact_id’ equal to null. The next example will traverse
into the contact to set it up:

$m = new Model_User($db);

$m->set('name', 'John');
$m->ref('address_id')->save(['address' => 'street']);
$m->save();

When entity which you have referenced through ref() is saved, it will automatically populate $m->get(‘contact_id’)
field and the final $m->save() will also store the reference.

ID setting is implemented through a basic hook. Related model will have afterSave hook, which will update address_id
field of the $m.

12.13.2 Reference Classes

References are implemented through several classes:

class ReferenceHasOne
Defines generic reference, that is typically created by Model::addReference

property ReferenceHasOne::$tableAlias
Alias for related table. Because multiple references can point to the same table, ability to have unique alias is

12.13. Various ways to specify options 99

Agile Data, Release 1.2-latest

pretty good.

You don’t have to change this property, it is generated automatically.

property ReferenceHasOne::$link
What should we pass into owner->ref() to get through to this reference. Each reference has a unique identifier,
although it’s stored in Model’s elements as ‘#ref-xx’.

property ReferenceHasOne::$model
May store reference to related model, depending on implementation.

property ReferenceHasOne::$ourField
This is an optional property which can be used by your implementation to store field-level relationship based on
a common field matching.

property ReferenceHasOne::$their_filed
This is an optional property which can be used by your implementation to store field-level relationship based on
a common field matching.

ReferenceHasOne::getModel()
Returns referenced model without conditions.

ReferenceHasOne::ref()
Returns referenced model WITH conditions. (if possible)

100 Chapter 12. References

CHAPTER 13

Expressions

class Model

You already know that you can define fields inside your Model with addField. While a regular field maps to physical
field inside your database, sometimes you want to do something different - execute expression or function inside SQL
and use result as an output.

Expressions solve this problem by adding a read-only field to your model that corresponds to an expression:

addExpression($name, $seed);

Example will calculate “total_gross” by adding up values for “net” and “vat”:

$m = new Model_Invoice($db);
$m->addField('total_net');
$m->addField('total_vat');
$m->addExpression('total_gross', ['expr' => '[total_net] + [total_vat]']);

$m = $m->load(1);

echo $m->get('total_gross');

The query using during load() will look like this:

select
`id`, `total_net`, `total_vat`,
(`total_net`+`total_vat`) `total_gross`

from `invoice`',

13.1 Defining Expression

The simplest format to define expression is by simply passing a string. The argument is executed through Model::expr()
which automatically substitutes values for the other fields including other expressions.

There are other ways how you can specify expression:

101

Agile Data, Release 1.2-latest

$m->addExpression('total_gross', [
'expr' => $m->expr('[total_net] + [total_vat] + [fee]', ['fee' => $fee]),

]);

This format allow you to supply additional parameters inside expression. You should always use parameters instead
of appending values inside your expression string (for safety)

You can also use expressions to pass a select action for a specific field:

13.2 No-table Model Expression

Agile Data allows you to define a model without table. While this may have no purpose initially, it does come in handy
in some cases, when you need to unite a few statistical queries. Let’s start by looking a at a very basic example:

$m = new Model($db, ['table' => false]);
$m->addExpression('now', ['expr' => 'now()']);
$m = $m->loadAny();
echo $m->get('now');

In this example the query will look like this:

select (1) `id`, (now()) `now` limit 1

so that $m->getId() will always be 1 which will make it a model that you can actually use consistently throughout
the system. The real benefit from this can be gained when you need to pull various statistical values from your database
at once:

$m = new Model($db, ['table' => false]);
$m->addExpression('total_orders', ['expr' => (new Model_Order($db))->action('count
→˓')]);
$m->addExpression('total_payments', ['expr' => (new Model_Payment($db))->action('count
→˓')]);
$m->addExpression('total_received', ['expr' => (new Model_Payment($db))->action('fx0',
→˓ ['sum', 'amount'])]);

$data = $m->loadOne()->get();

Of course you can also use a DSQL for this:

$q = $db->dsql();
$q->field(new Model_Order($db)->action('count'), 'total_orders');
$q->field(new Model_Payment($db)->action('count'), 'total_orders');
$q->field(new Model_Payment($db)->action('fx0', ['sum', 'amount']), 'total_received');
$data = $q->getRow();

You can decide for yourself based on circumstances.

13.3 Expression Callback

You can use a callback method when defining expression:

102 Chapter 13. Expressions

Agile Data, Release 1.2-latest

$m->addExpression('total_gross', ['expr' => function (Model $m, Expression $q) {
return '[total_net] + [total_vat]';

}, 'type' => 'float']);

13.4 Model Reloading after Save

When you add SQL Expressions into your model, that means that some of the fields might be out of sync and you
might need your SQL to recalculate those expressions.

To simplify your life, Agile Data implements smart model reloading. Consider the following model:

class Model_Math extends \Atk4\Data\Model
{

public $table = 'math';

protected function init(): void
{

parent::init();

$this->addField('a');
$this->addField('b');

$this->addExpression('sum', ['expr' => '[a] + [b]']);
}

}

$m = new Model_Math($db);
$m->set('a', 4);
$m->set('b', 6);

$m->save();

echo $m->get('sum');

When $m->save() is executed, Agile Data will perform reloading of the model. This is to ensure that expression ‘sum’
would be re-calculated for the values of 4 and 6 so the final line will output a desired result - 10;

Reload after save will only be executed if you have defined any expressions inside your model, however you can affect
this behavior:

$m = new Model_Math($db, ['reloadAfterSave' => false]);
$m->set('a', 4);
$m->set('b', 6);

$m->save();

echo $m->get('sum'); // outputs null

$m->reload();
echo $m->get('sum'); // outputs 10

Now it requires an explicit reload for your model to fetch the result. There is another scenario when your database
defines default fields:

alter table math change b b int default 10;

13.4. Model Reloading after Save 103

Agile Data, Release 1.2-latest

Then try the following code:

class Model_Math extends \Atk4\Data\Model
{

public $table = 'math';

protected function init(): void
{

parent::init();

$this->addField('a');
$this->addField('b');

}
}

$m = new Model_Math($db);
$m->set('a', 4);

$m->save();

echo $m->get('a')+$m->get('b');

This will output 4, because model didn’t reload itself due to lack of any expressions. This time you can explicitly
enable reload after save:

$m = new Model_Math($db, ['reloadAfterSave' => true]);
$m->set('a', 4);

$m->save();

echo $m->get('a')+$m->get('b'); // outputs 14

Note: If your model is using reloadAfterSave, but you wish to insert data without additional query - use
Model::insert() or Model::import().

104 Chapter 13. Expressions

CHAPTER 14

Model from multiple joined tables

class Atk4\Data\Model\Join

Sometimes model logically contains information that is stored in various places in the database. Your database may
want to split up logical information into tables for various reasons, such as to avoid repetition or to better optimize
indexes.

14.1 Join Basics

Agile Data allows you to map multiple table fields into a single business model by using joins:

$user->addField('username');
$jContact = $user->join('contact');
$jContact->addField('address');
$jContact->addField('county');
$jContact->hasOne('Country');

This code will load data from two tables simultaneously and if you do change any of those fields they will be update
in their respective tables. With SQL the load query would look like this:

select
u.username, c.address, c.county, c.country_id
(select name from country where country.id = c.country_id) country

from user u
join contact c on c.id = u.contact_id
where u.id = $id

If driver is unable to query both tables simultaneously, then it will load one record first, then load other record and will
collect fields together:

$user = $user->load($id);
$contact = $contact->load($user->get('contact_id'));

When saving the record, Joins will automatically record data correctly:

105

Agile Data, Release 1.2-latest

insert into contact (address, county, country_id) values ($, $, $);
@join_c = last_insert_id();
insert into user (username, contact_id) values ($, @join_c)

14.1.1 Strong and Weak joins

When you are joining tables, then by default a strong join is used. That means that both records are not-nullable and
when adding records, they will both be added and linked.

Weak join is used if you do not really want to modify the other table. For example it can be used to pull country
information based on user.country_id but you wouldn’t want that adding a new user would create a new country:

$user->addField('username');
$user->addField('country_id');
$jCountry = $user->join('country', ['weak' => true, 'prefix' => 'country_']);
$jCountry->addField('code');
$jCountry->addField('name');
$jCountry->addField('default_currency', ['prefix' => false]);

After this you will have the following fields in your model:

• username

• country_id

• country_code [readOnly]

• country_name [readOnly]

• default_currency [readOnly]

14.1.2 Join relationship definitions

When defining joins, you need to outline two fields that must match. In our earlier examples, we the master table was
“user” that contained reference to “contact”. The condition would look like this user.contact_id=contact.
id. In some cases, however, a relation should be reversed:

$jContact = $user->join('contact.user_id');

This will result in the following join condition: user.id=contact.user_id. The first argument to join defines
both the table that we need to join and can optionally define the field in the foreign table. If field is set, we will assume
that it’s a reverse join.

Reverse joins are saved in the opposite order - primary table will be saved first and when id of a primary table is
known, foreign table record is stored and ID is supplied. You can pass option ‘masterField’ to the join() which will
specify which field to be used for matching. By default the field is calculated like this: foreignTable . ‘_id’. Here is
usage example:

$user->addField('username');
$jCreditCard = $user->join('credit_card', [

'prefix' => 'cc_',
'masterField' => 'default_credit_card_id',

]);
$jCreditCard->addField('integer'); // creates cc_number
$jCreditCard->addField('name'); // creates cc_name

106 Chapter 14. Model from multiple joined tables

Agile Data, Release 1.2-latest

Master field can also be specified as an object of a Field class.

There are more options that you can pass inside join(), but those are vendor-specific and you’ll have to look into
documentation for sqlJoin and mongoJoin respectfully.

14.1.3 Method Proxying

Once your join is defined, you can call several methods on the join objects, that will create fields, other joins or
expressions but those would be associated with a foreign table.

Atk4\Data\Model\Join::addField()
same as Model::addField but associates field with foreign table.

Atk4\Data\Model\Join::join()
same as Model::join but links new table with this foreign table.

Atk4\Data\Model\Join::hasOne()
same as Model::hasOne but reference ID field will be associated with foreign table.

Atk4\Data\Model\Join::hasMany()
same as Model::hasMany but condition for related model will be based on foreign table field and
Reference::theirField will be set to $foreignTable . ‘_id’.

Atk4\Data\Model\Join::containsOne()
same as Model::hasOne but the data will be stored in a field inside foreign table.

Not yet implemented !

Atk4\Data\Model\Join::containsMany()
same as Model::hasMany but the data will be stored in a field inside foreign table.

Not yet implemented !

14.1.4 Create and Delete behavior

Updating joined records are simple, but when it comes to creation and deletion, there are some conditions. First we
look at dependency. If master table contains id of a foreign table, then foreign table record must be created first, so
that we can store its ID in a master table. If the join is reversed, the master record is created first and then foreign
record is inserted along with the value of master id.

When it comes to deleting record, there are three possible conditions:

1. [delete_behaivour = cascade, reverse = false] If we are using strong join and master table contains ID of foreign
table, then foreign master table record is deleted first. Foreign table record is deleted after. This is done to avoid
error with foreign constraints.

2. [deleteBehaviour = cascade, reverse = true] If we are using strong join and foreign table contains ID of master
table, then foreign table record is deleted first followed by the master table record.

3. [deleteBehaviour = ignore, reverse = false] If we are using weak join and the master table contains ID of foreign
table, then master table is deleted first. Foreign table record is not deleted.

4. [deleteBehaviour = setnull, reverse = true] If we are using weak join and foreign table contains ID of master
table, then foreign table is updated to set ID of master table to NULL first. Then the master table record is
deleted.

Based on the way how you define join an appropriate strategy is selected and Join will automatically decide on
$deleteBehaviour and $reverse values. There are situations, however when it’s impossible to determine in which order
the operations have to be performed. A good example is when you define both master/foreign fields.

14.1. Join Basics 107

Agile Data, Release 1.2-latest

In this case system will default to “reverse=false” and will delete master record first, however you can specify a
different value for “reverse”.

Sometimes it’s also sensible to set deleteBehaviour = ignore and perform your own delete operation yourself.

14.1.5 Implementation Detail

Joins are implemented like this:

• all the fields that has ‘joinName’ property set will not be saved into default table by default driver

• join will add either beforeInsert or afterInsert hook inside your model. When save is executed, it will execute
additional query to update foreign table.

• while $model->getId() stores the ID of the main table active record, $join->id stores ID of the foreign record
and will be used when updating.

• option ‘deleteBehaviour’ is ‘cascade’ for strong joins and ‘ignore’ for weak joins, but you can set some other
value. If you use “setnull” value and you are using reverse join, then foreign table record will not be updated,
but value of the foreign field will be set to null.

class Atk4\Data\Model\JoinSql

14.2 SQL-specific joins

When your model is associated with SQL-capable driver, then instead of using Join class, the Join\Sql is used instead.
This class is designed to improve loading technique, because SQL vendors can query multiple tables simultaneously.

Vendors that cannot do JOINs will have to implement compatibility by pulling data from collections in a correct order.

14.2.1 Implementation Details

• although some SQL vendors allow update .. join .. syntax, this will not be used. That is done to ensure better
compatibility.

• when field has the ‘joinName’ option set, trying to convert this field into expression will prefix the field properly
with the foreign table alias.

• join will be added in all queries

• strong join can potentially reduce your data-set as it exclude table rows that cannot be matched with foreign
table row.

14.2.2 Specifying complex ON logic

When you’re dealing with SQL drivers, you can specify Atk4DataPersistenceSqlExpression for your “on” clause:

$stats = $user->join('stats', [
'on' => $user->expr('year({}) = _st.year'),
'foreignAlias' => '_st',

]);

You can also specify 'on' => false then the ON clause will not be used at all and you’ll have to add additional
where() condition yourself.

108 Chapter 14. Model from multiple joined tables

Agile Data, Release 1.2-latest

foreignAlias can be specified and will be used as table alias and prefix for all fields. It will default to '_' .
$this->foreignTable. Agile Data will also resolve situations when multiple tables have same first character so
the prefixes will be named ‘_c’, ‘_c_2’, ‘_c_3’ etc.

Additional arguments accepted by SQL joins are:

• ‘kind’ - will be “inner” for strong join and “left” for weak join, but you can specify other kind of join, for
example, “right”’.

14.2. SQL-specific joins 109

Agile Data, Release 1.2-latest

110 Chapter 14. Model from multiple joined tables

CHAPTER 15

Model Aggregates

class Atk4\Data\Model\AggregateModel

In order to create model aggregates the AggregateModel model needs to be used:

15.1 Grouping

AggregateModel model can be used for grouping:

$aggregate = new AggregateModel($orders)->setGroupBy(['country_id']);

$aggregate above is a new object that is most appropriate for the model’s persistence and which can be manipulated
in various ways to fine-tune aggregation. Below is one sample use:

$aggregate = new AggregateModel($orders);
$aggregate->addField('country');
$aggregate->setGroupBy(['country_id'], [

'count' => ['expr' => 'count(*)', 'type' => 'integer'],
'total_amount' => ['expr' => 'sum([amount])', 'type' => 'atk4_money'],

],
);

// $aggregate will have following rows:
// ['country' => 'UK', 'count' => 20, 'total_amount' => 123.2];
// ..

Below is how opening balance can be built:

$ledger = new GeneralLedger($db);
$ledger->addCondition('date', '<', $from);

// we actually need grouping by nominal
$ledger->setGroupBy(['nominal_id'], [

(continues on next page)

111

Agile Data, Release 1.2-latest

(continued from previous page)

'opening_balance' => ['expr' => 'sum([amount])', 'type' => 'atk4_money'],
]);

112 Chapter 15. Model Aggregates

CHAPTER 16

Hooks

Hook is a mechanism for adding callbacks. The core features of Hook sub-system (explained in detail here http:
//agile-core.readthedocs.io/en/develop/hook.html) include:

• ability to define “spots” in PHP code, such as “beforeLoad”.

• ability to add callbacks to be executed when PHP goes over the spot.

• prioritization of callbacks

• ability to pass arguments to callbacks

• ability to collect response from callbacks

• ability to break hooks (will stop any other hook execution)

Model implements hook trait and defines various hooks which will allow you to execute code before or after various
operations, such as save, load etc.

16.1 Model Operation Hooks

All of model operations (adding, updating, loading and deleting) have two hooks - one that executes before operation
and another that executes after.

Those hooks are database-agnostic, so regardless where you save your model data, your beforeSave hook will be
triggered.

If database has transaction support, then hooks will be executed while inside the same transaction:

• begin transaction

• beforeSave hook

• actual save

• reload (see Model::reloadAfterSave)

• afterSave hook

113

http://agile-core.readthedocs.io/en/develop/hook.html
http://agile-core.readthedocs.io/en/develop/hook.html

Agile Data, Release 1.2-latest

• commit transaction

In case of error:

• do rollback

• call onRollback hook

If your afterSave hook creates exception, then the entire operation will be rolled back.

16.1.1 Example with beforeSave

The next code snippet demonstrates a basic usage of a beforeSave hook. This one will update field values just before
record is saved:

$m->onHook(Model::HOOK_BEFORE_SAVE, function (Model $m) {
$m->set('name', strtoupper($m->get('name')));
$m->set('surname', strtoupper($m->get('surname')));

});

$m->insert(['name' => 'John', 'surname' => 'Smith']);

// Will save into DB: ['name' => 'JOHN', 'surname' => 'SMITH'];

16.1.2 Arguments

When you define a callback, then you’ll receive reference to model from all the hooks. It’s important that you use this
argument instead of $this to perform operation, otherwise you can run into problems with cloned models.

Callbacks does non expect anything to be returned, but you can modify fields of the model.

16.1.3 Interrupting

You can also break all “before” hooks which will result in cancellation of the original action:

$m->breakHook(false);

If you break beforeSave, then the save operation will not take place, although model will assume the operation was
successful.

You can also break beforeLoad hook which can be used to skip rows:

$model->onHook(Model::HOOK_AFTER_LOAD, function (Model $m) {
if ($m->get('date') < $m->date_from) {

$m->breakHook(false); // will not yield such data row
}
// otherwise yields data row

});

This will also prevent data from being loaded. If you return false from afterLoad hook, then record which
we just loaded will be instantly unloaded. This can be helpful in some cases, although you should still use
Model::addCondition where possible as it is much more efficient.

114 Chapter 16. Hooks

Agile Data, Release 1.2-latest

16.1.4 Insert/Update Hooks

Insert/Update are triggered from inside save() method but are based on current state of Model::isLoaded:

• beforeInsert($m, &$data) (creating new records only)

• afterInsert($m, $id)

• beforeUpdate($m, &$data) (updating existing records only. Not executed if model is not dirty)

• afterUpdate($m)

The $data argument will contain array of actual data (field => value) to be saved, which you can use to withdraw
certain fields from actually being saved into the database (by unsetting it’s value).

Note that altering data via $m->set() does not work in beforeInsert and beforeUpdate hooks, only by altering $data.

afterInsert will receive either $id of new record or null if model couldn’t provide ID field. Also, afterInsert is actually
called before reloading is done (when Model::reloadAfterSave is set).

For some examples, see Soft Delete

16.1.5 beforeSave, afterSave Hook

A good place to hook is beforeSave as it will be fired when adding new records or modifying existing ones:

• beforeSave($m) (saving existing or new records. Not executed if model is not dirty)

• afterSave($m, $isUpdate) (same as above, $isUpdate is boolean true if it was update and false otherwise)

You might consider “save” to be a higher level hook, as beforeSave is called pretty early on during saving the record
and afterSave is called at the very end of save.

You may actually drop validation exception inside save, insert or update hooks:

$m->onHook(Model::HOOK_BEFORE_SAVE, function (Model $m) {
if ($m->get('name') === 'Yagi') {

throw new \Atk4\Data\ValidationException(['name' => "We don't serve like you
→˓"]);

}
});

16.1.6 Loading, Deleting

Those are relatively simple hooks:

• beforeLoad($m, $id) ($m will be unloaded). Break for custom load or skip.

• afterLoad($m). ($m will contain data). Break to unload and skip.

For the deletion it’s pretty similar:

• beforeDelete($m, $id). Unload and Break to preserve record.

• afterDelete($m, $id).

A good place to clean-up delete related records would be inside afterDelete, although if your database consistency
requires those related records to be cleaned up first, use beforeDelete instead.

For some examples, see Soft Delete

16.1. Model Operation Hooks 115

Agile Data, Release 1.2-latest

16.1.7 Hook execution sequence

• beforeSave

– beforeInsert [only if insert] - beforeInsertQuery [sql only] (query) - afterInsertQuery (query, affectedRows)

– beforeUpdate [only if update] - beforeUpdateQuery [sql only] (query) - afterUpdateQuery (query, affect-
edRows)

– afterUpdate [only if existing record, model is reloaded]

– afterInsert [only if new record, model not reloaded yet]

– beforeUnload

– afterUnload

• afterSave (bool $isUpdate) [after insert or update, model is reloaded]

16.1.8 How to prevent actions

In some cases you want to prevent default actions from executing. Suppose you want to check ‘memcache’ before
actually loading the record from the database. Here is how you can implement this functionality:

$m->onHook(Model::HOOK_BEFORE_LOAD, function (Model $m, $id) {
$data = $m->getApp()->cacheFetch($m->table, $id);
if ($data) {

$dataRef = &$m->getDataRef();
$dataRef = $data;
$m->setId($id);

$m->breakHook($m);
}

});

$app property is injected through your $db object and is passed around to all the models. This hook, if successful, will
prevent further execution of other beforeLoad hooks and by specifying argument as ‘false’ it will also prevent call to
$persistence for actual loading of the data.

Similarly you can prevent deletion if you wish to implement soft-delete or stop insert/modify from occurring.

16.1.9 onRollback Hook

This hook is executed right after transaction fails and rollback is done. This can be used in various situations.

Save information into auditLog about failure:

$m->onHook(Model::HOOK_ROLLBACK, function (Model $m) { $m->auditLog-
>registerFailure();

});

Upgrade schema:

use Atk4DataPersistenceSqlException as SqlException;

$m->onHook(Model::HOOK_ROLLBACK, function (Model $m, Throwable $exception) {

if ($exception instanceof SqlException) { $m->schema->upgrade(); $m->breakHook(false); //
exception will not be thrown

116 Chapter 16. Hooks

Agile Data, Release 1.2-latest

}

});

In first example we will register failure in audit log, but afterwards still throw exception. In second example we will
upgrade model schema and will not throw exception at all because we break hook and return false boolean value.

16.2 Persistence Hooks

Persistence has a few spots which it actually executes through $model->hook(), so depending on where you save the
data, there are some more hooks available.

16.2.1 PersistenceSql

Those hooks can be used to affect queries before they are executed. None of these are breakable:

• beforeUpdateQuery($m, Query $query)

• afterUpdateQuery($m, Query $query, int $affectedRows). Executed before retrieving data.

• beforeInsertQUery($m, Query $query)

• afterInsertQuery($m, Query $query, int $affectedRows). Executed before retrieving data.

The delete has only “before” hook:

• beforeDeleteQuery($m, Query $query)

Finally for queries there is hook initSelectQuery($model, $query, $type). It can be used to enhance
queries generated by “action” for:

• “count”

• “update”

• “delete”

• “select”

• “field”

• “fx” or “fx0”

16.3 Other Hooks:

16.2. Persistence Hooks 117

Agile Data, Release 1.2-latest

118 Chapter 16. Hooks

CHAPTER 17

Advanced Topics

Agile Data allow you to implement various tricks.

17.1 SubTypes

Disjoint subtypes is a concept where you give your database just a little bit of OOP by allowing to extend addional
types without duplicating columns. For example, if you are implementing “Account” and “Transaction” models. You
may want to have multiple transaction types. Some of those types would even require additional fields. The pattern
suggest you should add a new table “transaction_transfer” and store extra fields there. In your code:

class Transaction_Transfer extends Transaction
{

protected function init(): void
{

parent::init();

$j = $this->join('transaction_transfer.transaction_id');
$j->addField('destination_account');

}
}

As you implement single Account and multiple Transaction types, you want to relate both:

$account->hasMany('Transactions', ['model' => [Transaction::class]]);

There are however two difficulties here:

1. sometimes you want to operate with specific sub-type.

2. when iterating, you want to have appropriate class, not Transaction()

119

Agile Data, Release 1.2-latest

17.1.1 Best practice for specifying relation type

Although there is no magic behind it, I recommend that you use the following code pattern when dealing with multiple
types:

$account->hasMany('Transactions', ['model' => [Transaction::class]]);
$account->hasMany('Transactions:Deposit', ['model' => [Transaction\Deposit::class]]);
$account->hasMany('Transactions:Transfer', ['model' =>
→˓[Transaction\Transfer::class]]);

You can then use type-specific reference:

$account->ref('Transaction:Deposit')->insert(['amount' => 10]);

and the code would be clean. If you introduce new type, you would have to add extra line to your “Account” model,
but it will not be impacting anything, so that should be pretty safe.

17.1.2 Type substitution on loading

Another technique is for ATK Data to replace your object when data is being loaded. You can treat “Transaction” class
as a “shim”:

$obj = $account->ref('Transactions')->load(123);

Normally $obj would be instance of Transaction class, however we want this class to be selected based on transaction
type. Therefore a more broad record for ‘Transaction’ should be loaded first and then, if necessary, replaced with the
correct class transparently, so that the code above would work without a change.

Another scenario which could benefit by type substitution would be:

foreach ($account->ref('Transactions') as $tr) {
echo get_class($tr) . "\n";

}

ATK Data allow class substitution during load and iteration by breaking “afterLoad” hook. Place the following inside
Transaction::init():

$this->onHookShort(Model::HOOK_AFTER_LOAD, function () {
if (get_class($this) != $this->getClassName()) {

$cl = $this->getClassName();
$m = new $cl($this->getPersistence());
$m = $m->load($this->getId());

$this->breakHook($m);
}

});

You would need to implement method “getClassName” which would return DESIRED class of the record. Finally to
help with performance, you can implement a switch:

public $typeSubstitution = false;

...

protected function init(): void
{

(continues on next page)

120 Chapter 17. Advanced Topics

Agile Data, Release 1.2-latest

(continued from previous page)

...

if ($this->typeSubstitution) {
$this->onHook(Model::HOOK_AFTER_LOAD,

...
)

}
}

Now, every time you iterate (or load) you can decide if you want to invoke type substitution:

foreach ($account->ref('Transactions', ['typeSubstitution' => true]) as $tr) {
$tr->verify(); // verify() method can be overloaded!

}

// however, for export, we don't need expensive substitution
$transactionData = $account->ref('Transaction')->export();

17.2 Audit Fields

If you wish to have a certain field inside your models that will be automatically changed when the record is being
updated, this can be easily implemented in Agile Data.

I will be looking to create the following fields:

• created_dts

• updated_dts

• created_by_user_id

• updated_by_user_id

To implement the above, I’ll create a new class:

class ControllerAudit
{

use \Atk4\Core\InitializerTrait {
init as private _init;

}
use \Atk4\Core\TrackableTrait;
use \Atk4\Core\AppScopeTrait;

}

TrackableTrait means that I’ll be able to add this object inside model with $model->add(new
ControllerAudit()) and that will automatically populate $owner, and $app values (due to AppScopeTrait)
as well as execute init() method, which I want to define like this:

protected function init(): void
{

$this->_init();

if (isset($this->getOwner()->no_audit)) {
return;

}

(continues on next page)

17.2. Audit Fields 121

Agile Data, Release 1.2-latest

(continued from previous page)

$this->getOwner()->addField('created_dts', ['type' => 'datetime', 'default' =>
→˓new \DateTime()]);

$this->getOwner()->hasOne('created_by_user_id', 'User');
if (isset($this->getApp()->user) && $this->getApp()->user->isLoaded()) {

$this->getOwner()->getField('created_by_user_id')->default = $this->getApp()->
→˓user->getId();

}

$this->getOwner()->hasOne('updated_by_user_id', 'User');

$this->getOwner()->addField('updated_dts', ['type' => 'datetime']);

$this->getOwner()->onHook(Model::HOOK_BEFORE_UPDATE, function (Model $m, array
→˓$data) {

if (isset($this->getApp()->user) && $this->getApp()->user->isLoaded()) {
$data['updated_by'] = $this->getApp()->user->getId();

}
$data['updated_dts'] = new \DateTime();

});
}

In order to add your defined behavior to the model. The first check actually allows you to define models that will
bypass audit altogether:

$u1 = new Model_User($db); // Model_User::init() includes audit

$u2 = new Model_User($db, ['no_audit' => true]); // will exclude audit features

Next we are going to define ‘created_dts’ field which will default to the current date and time.

The default value for our ‘created_by_user_id’ field would depend on a currently logged-in user, which would typically
be accessible through your application. AppScope allows you to pass $app around through all the objects, which means
that your Audit Controller will be able to get the current user.

Of course if the application is not defined, no default is set. This would be handy for unit tests where you could
manually specify the value for this field.

The last 2 fields (update_*) will be updated through a hook - beforeUpdate() and will provide the values to be saved
during save(). beforeUpdate() will not be called when new record is inserted, so those fields will be left as “null”
after initial insert.

If you wish, you can modify the code and insert historical records into other table.

17.3 Soft Delete

Most of the data frameworks provide some way to enable ‘soft-delete’ for tables as a core feature. Design of Agile
Data makes it possible to implement soft-delete through external controller. There may be a 3rd party controller for
comprehensive soft-delete, but in this section I’ll explain how you can easily build your own soft-delete controller for
Agile Data (for educational purposes).

Start by creating a class:

122 Chapter 17. Advanced Topics

Agile Data, Release 1.2-latest

class ControllerSoftDelete
{

use \Atk4\Core\InitializerTrait {
init as private _init;

}
use \Atk4\Core\TrackableTrait;

protected function init(): void
{

$this->_init();

if (property_exists($this->getOwner(), 'no_soft_delete')) {
return;

}

$this->getOwner()->addField('is_deleted', ['type' => 'boolean']);

if (property_exists($this->getOwner(), 'deleted_only') && $this->getOwner()->
→˓deleted_only) {

$this->getOwner()->addCondition('is_deleted', true);
$this->getOwner()->addMethod('restore', \Closure::fromCallable([$this,

→˓'restore']));
} else {

$this->getOwner()->addCondition('is_deleted', false);
$this->getOwner()->addMethod('softDelete', \Closure::fromCallable([$this,

→˓'softDelete']));
}

}

public function softDelete(Model $entity)
{

$entity->assertIsLoaded();

$id = $entity->getId();
if ($entity->hook('beforeSoftDelete') === false) {

return $entity;
}

$entity->saveAndUnload(['is_deleted' => true]);

$entity->hook('afterSoftDelete', [$id]);

return $entity;
}

public function restore(Model $entity)
{

$entity->assertIsLoaded();

$id = $entity->getId();
if ($entity->hook('beforeRestore') === false) {

return $entity;
}

$entity->saveAndUnload(['is_deleted' => false]);

$entity->hook('afterRestore', [$id]);

(continues on next page)

17.3. Soft Delete 123

Agile Data, Release 1.2-latest

(continued from previous page)

return $entity;
}

}

This implementation of soft-delete can be turned off by setting model’s property ‘deleted_only’ to true (if you want to
recover a record).

When active, a new field will be defined ‘is_deleted’ and a new dynamic method will be added into a model, allowing
you to do this:

$m = new Model_Invoice($db);
$m = $m->load(10);
$m->softDelete();

The method body is actually defined in our controller. Notice that we have defined 2 hooks - beforeSoftDelete and
afterSoftDelete that work similarly to beforeDelete and afterDelete.

beforeSoftDelete will allow you to “break” it in certain cases to bypass the rest of method, again, this is to maintain
consistency with the rest of before* hooks in Agile Data.

Hooks are called through the model, so your call-back will automatically receive first argument $m, and afterSoft-
Delete will pass second argument - $id of deleted record.

I am then setting reloadAfterSave value to false, because after I set ‘is_deleted’ to false, $m will no longer be able to
load the record - it will fall outside of the DataSet. (We might implement a better method for saving records outside
of DataSet in the future).

After softDelete active record is unloaded, mimicking behavior of delete().

It’s also possible for you to easily look at deleted records and even restore them:

$m = new Model_Invoice($db, ['deleted_only' => true]);
$m = $m->load(10);
$m->restore();

Note that you can call $m->delete() still on any record to permanently delete it.

17.3.1 Soft Delete that overrides default delete()

In case you want $m->delete() to perform soft-delete for you - this can also be achieved through a pretty simple
controller. In fact I’m reusing the one from before and just slightly modifying it:

class ControllerSoftDelete2 extends ControllerSoftDelete
{

protected function init(): void
{

parent::init();

$this->getOwner()->onHook(Model::HOOK_BEFORE_DELETE, \Closure::fromCallable([
→˓$this, 'softDelete']), null, 100);

}

public function softDelete(Model $entity)
{

parent::softDelete();

(continues on next page)

124 Chapter 17. Advanced Topics

Agile Data, Release 1.2-latest

(continued from previous page)

$entity->hook(Model::HOOK_AFTER_DELETE);

$entity->breakHook(false); // this will cancel original delete()
}

}

Implementation of this controller is similar to the one above, however instead of creating softDelete() it overrides the
delete() method through a hook. It will still call ‘afterDelete’ to mimic the behavior of regular delete() after the record
is marked as deleted and unloaded.

You can still access the deleted records:

$m = new Model_Invoice($db, ['deleted_only' => true]);
$m = $m->load(10);
$m->restore();

Calling delete() on the model with ‘deleted_only’ property will delete it permanently.

17.4 Creating Unique Field

Database can has UNIQUE constraint, but this does work if you use DataSet. For instance, you may be only able
to create one ‘Category’ with name ‘Book’, but what if there is a soft-deleted record with same name or record that
belongs to another user?

With Agile Data you can create controller that will ensure that certain fields inside your model are unique:

class ControllerUniqueFields
{

use \Atk4\Core\InitializerTrait {
init as private _init;

}
use \Atk4\Core\TrackableTrait;

protected $fields = null;

protected function init(): void
{

$this->_init();

// by default make 'name' unique
if (!$this->fields) {

$this->fields = [$this->getOwner()->titleField];
}

$this->getOwner()->onHook(Model::HOOK_BEFORE_SAVE, \Closure::fromCallable([
→˓$this, 'beforeSave']));

}

protected function beforeSave(Model $entity)
{

foreach ($this->fields as $field) {
if ($entity->getDirtyRef()[$field]) {

$modelCloned = clone $entity->getModel();
$modelCloned->addCondition($entity->idField != $this->id);
$entityCloned = $modelCloned->tryLoadBy($field, $entity->get($field));

(continues on next page)

17.4. Creating Unique Field 125

Agile Data, Release 1.2-latest

(continued from previous page)

if ($entityCloned !== null) {
throw (new \Atk4\Data\Exception('Duplicate record exists'))

->addMoreInfo('field', $field)
->addMoreInfo('value', $entity->get($field));

}
}

}
}

}

As expected - when you add a new model the new values are checked against existing records. You can also slightly
modify the logic to make addCondition additive if you are verifying for the combination of matched fields.

17.5 Using WITH cursors

Many SQL database engines support defining WITH cursors to use in select, update and even delete statements.

addCteModel(string $name, Model $model, bool $recursive = false)
Agile toolkit data models also support these cursors. Usage is like this:

$invoices = new Invoice();

$contacts = new Contact(); $contacts->addCteModel(‘inv’, $invoices); $contacts->join(‘inv.cid’);

with
`inv` as (select `contact_id`, `ref_no`, `total_net` from `invoice`)

select

*
from `contact`

join `inv` on `inv`.`contact_id`=`contact`.`id`

Note: Supported since MySQL 8.x, MariaDB supported it earlier.

17.6 Creating Many to Many relationship

Depending on the use-case many-to-many relationships can be implemented differently in Agile Data. I will be
focusing on the practical approach. My system has “Invoice” and “Payment” document and I’d like to introduce
“invoice_payment” that can link both entities together with fields (‘invoice_id’, ‘payment_id’, and ‘amount_closed’).
Here is what I need to do:

17.6.1 1. Create Intermediate Entity - InvoicePayment

Create new Model:

class Model_InvoicePayment extends \Atk4\Data\Model
{

public $table = 'invoice_payment';

(continues on next page)

126 Chapter 17. Advanced Topics

Agile Data, Release 1.2-latest

(continued from previous page)

protected function init(): void
{

parent::init();

$this->hasOne('invoice_id', 'Model_Invoice');
$this->hasOne('payment_id', 'Model_Payment');
$this->addField('amount_closed');

}
}

17.6.2 2. Update Invoice and Payment model

Next we need to define reference. Inside Model_Invoice add:

$this->hasMany('InvoicePayment');

$this->hasMany('Payment', ['model' => function (self $m) {
$p = new Model_Payment($m->getPersistence());
$j = $p->join('invoice_payment.payment_id');
$j->addField('amount_closed');
$j->hasOne('invoice_id', 'Model_Invoice');

}, 'theirField' => 'invoice_id']);

$this->onHookShort(Model::HOOK_BEFORE_DELETE, function () {
foreach ($this->ref('InvoicePayment') as $payment) {

$payment->delete();
}

});

You’ll have to do a similar change inside Payment model. The code for ‘$j->’ have to be duplicated until we implement
method Join->importModel().

17.6.3 3. How to use

Here are some use-cases. First lets add payment to existing invoice. Obviously we cannot close amount that is bigger
than invoice’s total:

$i->ref('Payment')->insert([
'amount' => $paid,
'amount_closed' => min($paid, $i->get('total')),
'payment_code' => 'XYZ',

]);

Having some calculated fields for the invoice is handy. I’m adding total_payments that shows how much amount is
closed and amount_due:

// define field to see closed amount on invoice
$this->hasMany('InvoicePayment')

->addField('total_payments', ['aggregate' => 'sum', 'field' => 'amount_closed']);
$this->addExpression('amount_due', ['expr' => '[total] - coalesce([total_payments], 0)
→˓']);

17.6. Creating Many to Many relationship 127

Agile Data, Release 1.2-latest

Note that I’m using coalesce because without InvoicePayments the aggregate sum will return NULL. Finally let’s build
allocation method, that allocates new payment towards a most suitable invoice:

// add to Model_Payment
public function autoAllocate()
{

$client = $this->ref['client_id'];
$invoices = $client->ref('Invoice');

// we are only interested in unpaid invoices
$invoices->addCondition('amount_due', '>', 0);

// Prioritize older invoices
$invoices->setOrder('date');

while ($this->get('amount_due') > 0) {
// see if any invoices match by 'reference'
$invoice = $invoices->tryLoadBy('reference', $this->get('reference'));

if ($invoice === null) {
// otherwise load any unpaid invoice
$invoice = $invoices->tryLoadAny();

if ($invoice === null) {
// couldn't load any invoice
return;

}
}

// How much we can allocate to this invoice
$alloc = min($this->get('amount_due'), $invoice->get('amount_due'))
$this->ref('InvoicePayment')->insert(['amount_closed' => $alloc, 'invoice_id'

→˓=> $invoice->getId()]);

// Reload ourselves to refresh amount_due
$this->reload();

}
}

The method here will prioritize oldest invoices unless it finds the one that has a matching reference. Additionally it
will allocate your payment towards multiple invoices. Finally if invoice is partially paid it will only allocate what is
due.

17.7 Creating Related Entity Lookup

Sometimes when you add a record inside your model you want to specify some related records not through ID but
through other means. For instance, when adding invoice, I want to make it possible to specify ‘Category’ through the
name, not only category_id. First, let me illustrate how can I do that with category_id:

class Model_Invoice extends \Atk4\Data\Model
{

protected function init(): void
{

parent::init();

(continues on next page)

128 Chapter 17. Advanced Topics

Agile Data, Release 1.2-latest

(continued from previous page)

...

$this->hasOne('category_id', 'Model_Category');

...
}

}

$m = new Model_Invoice($db);
$m->insert(['total' => 20, 'client_id' => 402, 'category_id' => 6]);

So in situations when client_id and category_id is not known (such as import or API call) this approach will require
us to perform 2 extra queries:

$m = new Model_Invoice($db);
$m->insert([

'total' => 20,
'client_id' => $m->ref('client_id')->loadBy('code', $clientCode)->getId(),
'category_id' => $m->ref('category_id')->loadBy('name', $category)->getId(),

]);

The ideal way would be to create some “non-persistable” fields that can be used to make things easier:

$m = new Model_Invoice($db);
$m->insert([

'total' => 20,
'client_code' => $clientCode,
'category' => $category,

]);

Here is how to add them. First you need to create fields:

$this->addField('client_code', ['neverPersist' => true]);
$this->addField('client_name', ['neverPersist' => true]);
$this->addField('category', ['neverPersist' => true]);

I have declared those fields with neverPersist so they will never be used by persistence layer to load or save anything.
Next I need a beforeSave handler:

$this->onHookShort(Model::HOOK_BEFORE_SAVE, function () {
if ($this->_isset('client_code') && !$this->_isset('client_id')) {

$cl = $this->refModel('client_id');
$cl->addCondition('code', $this->get('client_code'));
$this->set('client_id', $cl->action('field', ['id']));

}

if ($this->_isset('client_name') && !$this->_isset('client_id')) {
$cl = $this->refModel('client_id');
$cl->addCondition('name', 'like', $this->get('client_name'));
$this->set('client_id', $cl->action('field', ['id']));

}

if ($this->_isset('category') && !$this->_isset('category_id')) {
$c = $this->refModel('category_id');
$c->addCondition($c->titleField, 'like', $this->get('category'));
$this->set('category_id', $c->action('field', ['id']));

(continues on next page)

17.7. Creating Related Entity Lookup 129

Agile Data, Release 1.2-latest

(continued from previous page)

}
});

Note that isset() here will be true for modified fields only and behaves differently from PHP’s default behavior. See
documentation for Model::isset

This technique allows you to hide the complexity of the lookups and also embed the necessary queries inside your
“insert” query.

17.7.1 Fallback to default value

You might wonder, with the lookup like that, how the default values will work? What if the user-specified entry is not
found? Lets look at the code:

if ($m->_isset('category') && !$m->_isset('category_id')) {
$c = $this->refModel('category_id');
$c->addCondition($c->titleField, 'like', $m->get('category'));
$m->set('category_id', $c->action('field', ['id']));

}

So if category with a name is not found, then sub-query will return “NULL”. If you wish to use a different value
instead, you can create an expression:

if ($m->_isset('category') && !$m->_isset('category_id')) {
$c = $this->refModel('category_id');
$c->addCondition($c->titleField, 'like', $m->get('category'));
$m->set('category_id', $this->expr('coalesce([], [])', [

$c->action('field', ['id']),
$m->getField('category_id')->default,

]));
}

The beautiful thing about this approach is that default can also be defined as a lookup query:

$this->hasOne('category_id', 'Model_Category');
$this->getField('category_id')->default =

$this->refModel('category_id')->addCondition('name', 'Other')
->action('field', ['id']);

17.8 Inserting Hierarchical Data

In this example I’ll be building API that allows me to insert multi-model information. Here is usage example:

$invoice->insert([
'client' => 'Joe Smith',
'payment' => [

'amount' => 15,
'ref' => 'half upfront',

],
'lines' => [

['descr' => 'Book', 'qty' => 3, 'price' => 5]
['descr' => 'Pencil', 'qty' => 1, 'price' => 10]
['descr' => 'Eraser', 'qty' => 2, 'price' => 2.5],

(continues on next page)

130 Chapter 17. Advanced Topics

Agile Data, Release 1.2-latest

(continued from previous page)

],
]);

Not only ‘insert’ but ‘set’ and ‘save’ should be able to use those fields for ‘payment’ and ‘lines’, so we need to first
define those as ‘neverPersist’. If you curious about client lookup by-name, I have explained it in the previous section.
Add this into your Invoice Model:

$this->addField('payment', ['neverPersist' => true]);
$this->addField('lines', ['neverPersist' => true]);

Next both payment and lines need to be added after invoice is actually created, so:

$this->onHookShort(Model::HOOK_AFTER_SAVE, function (bool $isUpdate) {
if ($this->_isset('payment')) {

$this->ref('Payment')->insert($this->get('payment'));
}

if ($this->_isset('lines')) {
$this->ref('Line')->import($this->get('lines'));

}
});

You should never call save() inside afterSave hook, but if you wish to do some further manipulation, you can reload a
clone:

$entityCloned = clone $entity;
$entityCloned->reload();
if ($entityCloned->get('amount_due') == 0) {

$entityCloned->save(['status' => 'paid']);
}

17.9 Related Record Conditioning

Sometimes you wish to extend one Model into another but related field type can also change. For example let’s say
we have Model_Invoice that extends Model_Document and we also have Model_Client that extends Model_Contact.

In theory Document’s ‘contact_id’ can be any Contact, however when you create ‘Model_Invoice’ you wish that
‘contact_id’ allow only Clients. First, lets define Model_Document:

$this->hasOne('client_id', 'Model_Contact');

One option here is to move ‘Model_Contact’ into model property, which will be different for the extended class:

$this->hasOne('client_id', ['model' => [$this->client_class]]);

Alternatively you can replace model in the init() method of Model_Invoice:

$this->getReference('client_id')->model = 'Model_Client';

You can also use array here if you wish to pass additional information into related model:

$this->getReference('client_id')->model = ['Model_Client', 'no_audit' => true];

Combined with our “Audit” handler above, this should allow you to relate with deleted clients.

17.9. Related Record Conditioning 131

Agile Data, Release 1.2-latest

The final use case is when some value inside the existing model should be passed into the related model. Let’s say we
have ‘Model_Invoice’ and we want to add ‘payment_invoice_id’ that points to ‘Model_Payment’. However we want
this field only to offer payments made by the same client. Inside Model_Invoice add:

$this->hasOne('client_id', 'Client');

$this->hasOne('payment_invoice_id', ['model' => function (self $m) {
return $m->ref('client_id')->ref('Payment');

}]);

/// how to use

$m = new Model_Invoice($db);
$m->set('client_id', 123);

$m->set('payment_invoice_id', $m->ref('payment_invoice_id')->loadOne()->getId());

In this case the payment_invoice_id will be set to ID of any payment by client 123. There also may be some better
uses:

foreach ($cl->ref('Invoice') as $m) {
$m->set('payment_invoice_id', $m->ref('payment_invoice_id')->loadOne()->getId());
$m->save();

}

17.10 Narrowing Down Existing References

Agile Data allow you to define multiple references between same entities, but sometimes that can be quite useful.
Consider adding this inside your Model_Contact:

$this->hasMany('Invoice', 'Model_Invoice');
$this->hasMany('OverdueInvoice', ['model' => function (self $m) {

return $m->ref('Invoice')->addCondition('due', '<', date('Y-m-d'))
}]);

This way if you extend your class into ‘Model_Client’ and modify the ‘Invoice’ reference to use different model:

$this->getReference('Invoice')->model = 'Model_Invoice_Sale';

The ‘OverdueInvoice’ reference will be also properly adjusted.

132 Chapter 17. Advanced Topics

CHAPTER 18

Loading and Saving CSV Files

class PersistenceCsv

Agile Data can operate with CSV files for data loading, or saving. The capabilities of PersistenceCsv are limited to
the following actions:

• open any CSV file, use column mapping

• identify which column is corresponding for respective field

• support custom mapper, e.g. if date is stored in a weird way

• support for CSV files that have extra lines on top/bottom/etc

• listing/iterating

• adding a new record

18.1 Setting Up

When creating new persistence you must provide a valid URL for the file that might be stored either on a local system
or use a remote file scheme (ftp://. . .). The file will not be actually opened unless you perform load/save operation:

$p = new Persistence\Csv('myfile.csv');

$u = new Model_User($p);
$u = $u->tryLoadAny(); // actually opens file and finds first record

18.2 Exporting and Importing data from CSV

You can take a model that is loaded from other persistence and save it into CSV like this. The next example demon-
strates a basic functionality of SQL database export to CSV file:

133

ftp://

Agile Data, Release 1.2-latest

$db = new Persistence\Sql($connection);
$csv = new Persistence\Csv('dump.csv');

$m = new Model_User($db);

foreach (new Model_User($db) as $m) {
$m->withPersistence($csv)->save();

}

Theoretically you can do few things to tweak this process. You can specify which fields you would like to see in the
CSV:

foreach (new Model_User($db) as $m) {
$m->withPersistence($csv)

->setOnlyFields(['id', 'name', 'password'])
->save();

}

Additionally if you want to use a different column titles, you can:

foreach (new Model_User($db) as $m) {
$mCsv = $m->withPersistence($csv);
$mCsv->setOnlyFields(['id', 'name', 'password'])
$mCsv->getField('name')->actual = 'First Name';
$mCsv->save();

}

Like with any other persistence you can use typecasting if you want data to be stored in any particular format.

The examples above also create object on each iteration, that may appear as a performance inefficiency. This can be
solved by re-using Csv model through iterations:

$m = new Model_User($db);
$mCsv = $m->withPersistence($csv);
$mCsv->setOnlyFields(['id', 'name', 'password'])
$mCsv->getField('name')->actual = 'First Name';

foreach ($m as $mCsv) {
$mCsv->save();

}

This code can be further simplified if you use import() method:

$m = new Model_User($db);
$mCsv = $m->withPersistence($csv);
$mCsv->setOnlyFields(['id', 'name', 'password'])
$mCsv->getField('name')->actual = 'First Name';
$mCsv->import($m);

Naturally you can also move data in the other direction:

$m = new Model_User($db);
$mCsv = $m->withPersistence($csv);
$mCsv->setOnlyFields(['id', 'name', 'password'])
$mCsv->getField('name')->actual = 'First Name';

$m->import($mCsv);

134 Chapter 18. Loading and Saving CSV Files

Agile Data, Release 1.2-latest

Only the last line changes and the data will now flow in the other direction.

18.2. Exporting and Importing data from CSV 135

Agile Data, Release 1.2-latest

136 Chapter 18. Loading and Saving CSV Files

CHAPTER 19

Indices and tables

• genindex

• search

137

Agile Data, Release 1.2-latest

138 Chapter 19. Indices and tables

PHP Namespace Index

a
Atk4\Data, 64
Atk4\Data\Model, 104
Atk4\Data\Model\Scope, 74

139

Agile Data, Release 1.2-latest

140 PHP Namespace Index

Index

Symbols
() (method), 126
__construct() (PersistenceStatic_ method), 87

A
action() (Model method), 59
actual (Atk4\Data\Field property), 67
actual (FieldSql property), 77
addCalculatedField() (Model method), 35
addCondition() (Atk4\Data\Model method), 69
addExpression() (Model method), 35
addField() (Atk4\Data\Model\Join method), 107
addField() (Model method), 34
addField() (ReferenceHasOneSql method), 78
addFields() (Model method), 35
addFields() (ReferenceHasOneSql method), 78
addReference() (Model method), 96
addTitle() (ReferenceHasOneSql method), 79
AggregateModel (class in Atk4\Data\Model), 111
Atk4\Data (namespace), 64, 68
Atk4\Data\Model (namespace), 104, 111
Atk4\Data\Model\Scope (namespace), 74
atomic() (PersistenceSql method), 79

C
caption (Model property), 42
Condition (class in Atk4\Data\Model\Scope), 74
containsMany() (Atk4\Data\Model\Join method),

107
containsOne() (Atk4\Data\Model\Join method), 107

D
data (Model property), 39
default (Atk4\Data\Field property), 66
delete() (Model method), 50
dirty (Model property), 40
duplicate() (Model method), 54

E
enum (Atk4\Data\Field property), 67

export() (Model method), 64
expr (SqlExpressionField property), 79
expr() (Atk4\Data\Model method), 72
expr() (PersistenceSql method), 80

F
Field (class in Atk4\Data), 64, 65
FieldSql (class), 77

G
get() (Atk4\Data\Field method), 68
get() (Model method), 40
getDsqlExpression() (FieldSql method), 77
getDsqlExpression() (SqlExpressionField

method), 79
getField() (Model method), 41
getIterator() (Model method), 63
getModel() (ReferenceHasOne method), 100
getModelCaption() (Model method), 42
getRawIterator() (Model method), 64
getTitle() (Model method), 42
getTitles() (Model method), 42

H
hasField() (Model method), 40
hasMany() (Atk4\Data\Model\Join method), 107
hasOne() (Atk4\Data\Model\Join method), 107
hasOne() (Model method), 94

I
idField (Model property), 42
import() (Model method), 39
init() (Model method), 33
insert() (Model method), 39
isDirty() (Model method), 40
isEditable() (Atk4\Data\Field method), 68
isHidden() (Atk4\Data\Field method), 68
isset() (Model method), 40
isVisible() (Atk4\Data\Field method), 68

141

Agile Data, Release 1.2-latest

J
join (Atk4\Data\Field property), 67
Join (class in Atk4\Data\Model), 105
join() (Atk4\Data\Model\Join method), 107
JoinSql (class in Atk4\Data\Model), 108

L
link (ReferenceHasOne property), 100
load() (Model method), 49

M
Model (class in Atk4\Data), 69
Model (class), 31, 49, 63, 89, 101
model (ReferenceHasOne property), 100

N
neverPersist (Atk4\Data\Field property), 67
neverSave (Atk4\Data\Field property), 68
newInstance() (Model method), 55
normalizeFieldName() (Model method), 41
nullable (Atk4\Data\Field property), 67

O
onlyFields (Model property), 39
ourField (ReferenceHasOne property), 100

P
persistence (Model property), 38
PersistenceCsv (class), 133
persistenceData (Model property), 38
PersistenceSql (class), 79
PersistenceStatic_ (class), 87

R
readOnly (Atk4\Data\Field property), 67
ref() (ReferenceHasOne method), 100
ref() (ReferenceHasOneSql method), 78
ReferenceHasOne (class), 99
ReferenceHasOneSql (class), 78
refLink() (Model method), 93
refLink() (ReferenceHasOneSql method), 79
refModel() (Model method), 93
required (Atk4\Data\Field property), 67

S
save() (Model method), 50
Scope (class in Atk4\Data), 73
scope() (Atk4\Data\Model method), 73
set() (Atk4\Data\Field method), 68
set() (Model method), 40
setLimit() (Model method), 42
setMulti() (Model method), 40
setNull() (Atk4\Data\Field method), 68

setNull() (Model method), 40
setOnlyFields() (Model method), 39
setOrder() (Model method), 42
SqlExpressionField (class), 79
system (Atk4\Data\Field property), 67

T
table (Model property), 38
tableAlias (ReferenceHasOne property), 99
their_filed (ReferenceHasOne property), 100
titleField (Model property), 42
tryLoad() (Model method), 50
type (Atk4\Data\Field property), 65

U
ui (Atk4\Data\Field property), 68
unload() (Model method), 50
unset() (Model method), 40

V
values (Atk4\Data\Field property), 67

W
withPersistence() (Model method), 39, 56

142 Index

	Overview
	Simple to learn
	Not a traditional ORM
	Concern Separation
	Class: Field
	Class: Model
	Class: Persistence

	Code Layers
	Domain-Model Code
	Persistence-specific code
	Generic Persistence-code

	Persistence Scaling

	Quickstart
	Requirements
	Core Concepts
	Persistence Domain vs Business Domain
	Class vs In-Line definition
	Model State

	Getting Started
	Adding Fields
	Table Joins
	Understanding Persistence

	References between Models
	One to Many
	Many to Many
	One to One
	Implementation of References

	Actions
	Aggregation actions
	Field-reference actions
	Advanced Use of Actions

	Expressions
	Conclusion

	Introduction to Architectural Design
	The Domain Layer Scope
	The Danger of Raw Queries
	Purity levels of Domain code

	Domain Logic
	Domain Models
	Domain Model Methods
	Domain Model Fields
	Domain Model Relationship

	Persistence backed Domain Logic
	ID Field

	Persistence-specific Code
	Domain Model Expressions
	Persistence Hooks

	DataSet Declaration
	Domain Conditions
	Related DataSets
	Domain Model Actions
	Unique Features of Persistence Layer

	Model
	Understanding Model
	Model object = Data Set
	Model object = meta information
	Domain vs Persistence
	Good naming for a Model

	Initialization
	Fields
	Actions
	Hooks
	Inheritance

	Associating Model with Database
	Populating Data
	Working with selective fields
	Setting and Getting active record data
	Title Field, ID Field and Model Caption
	ID Field
	Title Field
	Model Caption

	Setting limit and sort order

	Typecasting
	Value types
	Undefined type
	Type of IDs
	Supported types
	Types and UI

	Serialization
	Array and Object types

	Loading and Saving (Persistence)
	Associating with Persistence
	Inserting Record with a specific ID

	Type Converting
	Strict Types an Normalization
	Typecasting
	Validation
	Multi-column fields
	Dates and Time
	Customizations

	Duplicating and Replacing Records
	Create copy of existing record
	Duplicate then save under a new ID

	Working with Multiple DataSets
	Cloning versus New Instance
	Looking for duplicates
	Archiving Records

	Working with Multiple Persistencies
	Creating Cache with Memcache
	Using Read / Write Replicas
	Archive Copies into different persistence
	Store a specific record

	Actions
	Action Types
	SQL Actions
	SQL Actions on Linked Records
	Action Matrix

	Fetching results
	Iterate through model data
	Keeping models
	Raw Data Fetching
	Fetching data through action

	Comparison of various ways of fetching

	Field
	Purpose of Field
	Field Type
	Basic Properties
	UI Presentation

	Conditions and DataSet
	Basic Usage
	Operations
	Multiple Conditions
	Adding OR Conditions
	Defining your classes

	Vendor-dependent logic
	Field Matching
	Expression Matching
	SQL Expression Matching
	Custom Parameters in Expressions
	Expression as first argument

	Advanced Usage
	Model Scope
	Conditions on Referenced Models

	SQL Extensions
	Default Model Classes
	SQL Field
	SQL Reference
	Expressions

	Transactions
	Custom Expressions
	Actions
	Action: select
	Action: count
	Action: field
	Action: fx

	Stored Procedures
	Compatibility Warning
	as a Model method
	as a Model Field
	as an Action
	as a Temporary Table
	as an Model Source

	Static Persistence
	Usage
	Saving Records

	References
	Persistence
	Safety and Performance
	hasMany Reference

	Dealing with many-to-many references
	Dealing with NON-ID fields
	Concatenating Fields
	Add Aggregate Fields
	Available Aggregation Functions
	Aggregate Expressions
	hasMany / refLink / refModel
	hasOne reference

	Traversing loaded model
	Traversing DataSet
	Importing Fields
	Importing hasOne Title
	User-defined Reference
	Reference Discovery
	Deep traversal
	Reference Aliases

	Various ways to specify options
	References with New Records
	Reference Classes

	Expressions
	Defining Expression
	No-table Model Expression
	Expression Callback
	Model Reloading after Save

	Model from multiple joined tables
	Join Basics
	Strong and Weak joins
	Join relationship definitions
	Method Proxying
	Create and Delete behavior
	Implementation Detail

	SQL-specific joins
	Implementation Details
	Specifying complex ON logic

	Model Aggregates
	Grouping

	Hooks
	Model Operation Hooks
	Example with beforeSave
	Arguments
	Interrupting
	Insert/Update Hooks
	beforeSave, afterSave Hook
	Loading, Deleting
	Hook execution sequence
	How to prevent actions
	onRollback Hook

	Persistence Hooks
	PersistenceSql

	Other Hooks:

	Advanced Topics
	SubTypes
	Best practice for specifying relation type
	Type substitution on loading

	Audit Fields
	Soft Delete
	Soft Delete that overrides default delete()

	Creating Unique Field
	Using WITH cursors
	Creating Many to Many relationship
	1. Create Intermediate Entity - InvoicePayment
	2. Update Invoice and Payment model
	3. How to use

	Creating Related Entity Lookup
	Fallback to default value

	Inserting Hierarchical Data
	Related Record Conditioning
	Narrowing Down Existing References

	Loading and Saving CSV Files
	Setting Up
	Exporting and Importing data from CSV

	Indices and tables
	PHP Namespace Index
	Index

