

Don’t be afraid to commit

Introduction

A workshop/tutorial for Python/Django developers who would like to contribute
more to the projects they use, but need more grounding in some of the tools
required.

The workshop will take participants through the complete cycle of identifying a simple issue in a
Django or Python project, writing a patch with documentation, and submitting it.

The purpose of the workshop

Don’t be afraid to commit will help put you in a position to commit
successfully to collaborative projects.

You’ll find it particularly useful if you think you have some good coding
ideas, but find that managing the development process sometimes gets in the
way of your actual development.

What’s covered

virtualenv and pip will help you manage your own work in a more
streamlined and efficient way.

Git and GitHub will also help you manage your own workflow and
development, and will make it possible for you to collaborate effectively with
others. The Django Project, like many other open projects, uses both.

Documentation - being able to create, manage and publish documentation in
an efficient and orderly way will make your work more accessible and more
interesting to other people.

Contributing - how to submit your work

Contents

	What you need to know and have installed before you begin

	Virtualenv and pip

	Git and GitHub
	Git and GitHub

	Git on the commandline

	Working with remotes

	Resolving conflicts

	More key Git techniques

	Documentation using Sphinx and ReadTheDocs.org

	Contributing your work

	Cheatsheet - a handy summary of key commands and techniques

	A record of people who attended a workshop or followed the tutorial

	Notes for anyone planning a workshop

Credits

“Don’t be afraid to commit” was created by Daniele Procida. Other contributors
include:

	Daniel Quinn

	Brian Crain (@crainbf)

	Paul Grau

	Nimesh Ghelani https://github.com/nims11

	Robert Dragan https://github.com/rmdragan

	David Garcia https://github.com/davideire

	Jason Blum https://github.com/jasonblum

	Kevin Daum https://github.com/kevindaum

Many thanks are also due to the members of #django, #python, #git and #github
on irc.freenode.net for their endless online help.

… and if I have neglected to mention someone, please let me know.

Please feel free to use and adapt the tutorial.

Prerequisites

What you need to know

The tutorial assumes some basic familiarity with the commandline prompt in a
terminal.

You’ll need to know how to install software. Some of the examples given refer
to Debian/Ubuntu’s apt-get; you ought to know what the equivalent is on
whatever operating system you’re using.

You’ll also need to know how to edit plain text or source files of various
kinds.

It will be very useful to have some understanding of Python, but it’s not
strictly necessary. However, if you’ve never done any programming, that will
probably be an obstacle.

Software

The tutorial assumes that you’re using a Unix-like system, but there should be
no reason why (for example) it would not work for Windows users.

You’ll need a suitable text editor, that you’re comfortable using.

Other software will be used, but the tutorial will discuss its installation.

However, your environment does need to be set up appropriately, and you
will need to know how to use it effectively.

If your system already has Django and/or Python packages running that you’ve
installed, you probably already have what you need and know what you need to
know. All the same:

Platform-specific notes

GNU/Linux

Please make sure that you know how to use your system’s package manager, whether
it’s aptitude or YUM or something else.

Mac OS X

There are two very useful items that you should install.

	Command Line Tools for Xcode [https://developer.apple.com/downloads/],
various useful components (requires registration)

	Homebrew [http://brew.sh], a command line package manager

Python

You’ll need a reasonably up-to-date version of Python installed on your
machine. 2.6 or newer should be fine.

Git

Please do check you can install Git:

sudo apt-get install git # for Debian/Ubuntu users

or:

brew install git # for Mac OS X users with Homebrew installed

There are other ways of installing Git; you can even get a graphical Git application, that will include the commandline tools. These are described at:

http://git-scm.com/book/en/Getting-Started-Installing-Git

Virtualenv and pip

In this section you will:

	use pip to install packages

	install virtualenv

	create and destroy, activate and deactivate virtual environments

	use pip freeze to show installed items

What is virtualenv?

Virtualenv lets you create and manage virtual Python environments.

If you’re running a Python project for deployment or development, the chances
are that you’ll need more than one version of it, or the numerous other Python
applications it depends upon, at any one time.

For example, when a new version of Django is released, you might want to check
to see if your project is still compatible. You don’t want to have to set up a whole new
server with a different version of Django to find out.

With virtualenv, you can quickly set up a brand new Python environment, and
install your components into it - along with the new version of Django,
without touching or affecting what you already have running.

You can have literally dozens of virtualenvs on the same machine, all running
different versions of your Python software, all independently of each other,
and can safely make changes to one without affecting anything else.

pip goes hand-in-hand with virtualenv; in fact, it comes with virtualenv
(as well as separately). It’s an installer, and is the easiest way to install
things into a virtualenv.

Installing pip

You will most probably find that pip is already installed on your system.

Run:

pip --version

to find out.

If it’s not, you have various options.

On Debian/Ubuntu systems

sudo apt-get install python-pip

On Debian you probably will not be authorised to use sudo. In this case use:

su -

to switch to the root user before installing pip.

Use get-pip.py

Another option is to use the official get-pip.py [https://pip.pypa.io/en/stable/installing/#installing-with-get-pip-py] script.

Install virtualenv

Try:

virtualenv --version

Keep it up-to-date:

sudo pip install --upgrade virtualenv
hash -r # purge shell's PATH, though this may not be necessary for you

If you got a “Command not found” when you tried to use virtualenv, try:

sudo pip install virtualenv

or:

sudo apt-get install python-virtualenv # for a Debian-based system

If that fails or you’re using a different system, you might need more help:

Virtualenv installation documentation [http://www.virtualenv.org/en/latest/#installation]

Create and activate a virtual environment

virtualenv my-first-virtualenv
cd my-first-virtualenv
source bin/activate

Note

Windows users should run Scripts\activate instead of source bin/activate.

Notice how your command prompt tells you that the virtualenv is active (and it remains active even
while you’re not in its directory):

(my-first-virtualenv)~/my-first-virtualenv$

Using pip

pip freeze

pip freeze lists installed Python packages:

(my-first-virtualenv)daniele@v029:~/my-first-virtualenv$ pip freeze
argparse==1.2.1
distribute==0.6.24
pyasn1==0.1.7
virtualenv==1.9.1
wsgiref==0.1.2

pip install

Earlier, you may have used sudo pip install. You don’t need sudo
now, because you’re in a virtualenv. Let’s install something.

pip install rsa

pip will visit PyPI, the Python Package Index, and will install Python-RSA (a
“Pure-Python RSA implementation”). It will also install its dependencies -
things it needs - if any have been listed at PyPI.

Now see what pip freeze reports. You will probably find that as well as
Python-RSA it installed some other packages - they were ones that Python-RSA
needed.

And try:

(my-first-virtualenv)~/my-first-virtualenv$ python
Python 2.7.2+ (default, Jul 20 2012, 22:15:08)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import rsa

To uninstall it:

pip uninstall rsa

To install a particular version:

pip install rsa==3.0

To ugrade the package to the latest version:

pip install --upgrade rsa

Where packages get installed

Your virtualenv has a site-packages directory, in the same way your system does. So now rsa can be found in:

~/my-first-virtualenv/lib/python2.7/site-packages/rsa

(It’s possible that you’ll have a different version of Python listed in that
path.)

Dependencies

Python-RSA doesn’t have any dependencies, but if it did, and if those
dependencies had dependencies, pip would install them all.

So if all the package authors have done a good job of informing PyPI about
their software’s requirements, you can install a Django application, for
example, and pip will will install it, and Django, and possibly dozens of other
pieces of software, all into your virtualenv, and without your having to make
sure that everything required is in place.

Managing virtualenvs

Create a second virtualenv

cd ~/ # let's not create it inside the other...
virtualenv my-second-virtualenv

When you activate your new virtualenv, it will deactivate the first:

cd my-second-virtualenv
source bin/activate

Note

Windows users: don’t forget to use Scripts\activate rather than source bin/activate.

pip freeze will show you that you don’t have Python-RSA installed in this
one - it’s a completely different Python environment from the other, and both
are isolated from the system-wide Python setup.

Deactivate a virtualenv manually

Activating a virtualenv automatically deactivates one that was previously
active, but you can also do this manually:

deactivate

Now you’re no longer in any virtualenv.

–system-site-packages

When you create a virtualenv, it doesn’t include any Python packages already
installed on your system. But sometimes you do want to install all packages. In that
case you’d do:

virtualenv --system-site-packages my-third-virtualenv

remove a virtualenv

virtualenvs are disposable. You can get rid of these:

cd ~/
rm -r my-first-virtualenv my-second-virtualenv my-third-virtualenv

And that’s pretty much all you need to get started and to use pip and
virtualenv effectively.

Git and GitHub

	Git and GitHub

	Git on the commandline

	Working with remotes

	Resolving conflicts

	More key Git techniques

Git is a source code management system, designed to support collaboration.

GitHub is a web-based service that hosts Git projects, including Django
itself: https://github.com/django/django.

Git is a quite remarkable tool. It’s fearsomely complex, but you can start
using it effectively without needing to know very much about it. All you really
need is to be familiar with some basic operations.

The key idea in Git is that it’s distributed. If you’re not already familiar
with version control systems, then explaining why this is important will only
introduce distinctions and complications that you don’t need to worry about,
so that’s the last thing I will say on the subject.

Git and GitHub

In this section you will:

	create a GitHub account

	create your own fork of a repository

	create a new Git branch

	edit and commit a file on GitHub

	make a pull request

	merge upstream changes into your fork

What is it?

Git is a source code management system, designed to support collaboration.

GitHub is a web-based service that hosts Git projects, including Django
itself: https://github.com/django/django.

The key idea in Git is that it’s distributed. If you’re not already familiar
with version control systems, then explaining why this is important will only
introduce distinctions and complications that you don’t need to worry about,
so that’s the last thing I will say on the subject.

Set up a GitHub account

	sign up at GitHub [https://github.com/] if you don’t already have an
account

It’s free.

Some basic editing on GitHub

Forking

	visit https://github.com/evildmp/afraid-to-commit/

You can do various things there, including browsing through all the code and files.

	hit the Fork button

A few moments later, you’ll have your own copy, on GitHub, of everything in
that repository, and from now on you’ll do your work on your copy of it.

Your copy is at https://github.com/<your github account>/afraid-to-commit/.

Note

About angular brackets

Angular brackets, such as those in the line above, are used as placeholders;
they do not need to be included in the command line terminal. Just write in your
GitHub account name. The same applies for any angular brackets used throughout
the tutorial.

You will typically do this for any Git project you want to contribute to. It’s
good for you because it means you don’t have to sign up for access to a
central repository to be permitted to work on it, and even better for the
maintainers because they certainly don’t want to be managing a small army of
volunteers on top of all their other jobs.

Note

Don’t worry about all the forks

You’ll notice that there might be a few forks of
https://github.com/evildmp/afraid-to-commit; if you have a look at
https://github.com/django/django you’ll see thousands. There’ll even be
forks of the forks. Every single one is complete and independent. So,
which one is the real one - which one is the Django repository?

In a technical sense, they all are, but the more useful answer is: the
one that most people consider to be the canonical or official version.

In the case of Django, the version at https://github.com/django/django is
the one that forms the basis of the package on PyPI, the one behind the
https://djangoproject.com/ website, and above all, it’s the one that the
community treats as cannonical and official, not because it’s the original
one, but because it’s the most useful one to rally around.

The same goes for https://github.com/evildmp/afraid-to-commit and its
more modest collection of forked copies. If I stop updating it, but
someone else is making useful updates to their own fork, then in time
theirs might start to become the one that people refer to and contribute
to. This could even happen to Django itself, though it’s not likely to
any time soon.

The proliferation of forks doesn’t somehow dilute the original. Don’t be
afraid to create more. Forks are simply the way collaboration is made
possible.

Create a new branch

Don’t edit the master (default) branch of the repository. It’s much better to
edit the file in a new branch, leaving the master branch clean and untouched:

	select the branch menu

	in Find or create a branch… enter add-my-name

	hit Create branch: add-my-name

Note

Don’t hesitate to branch

As you may have noticed on GitHub, a repository can have numerous branches
within it. Branches are ways of organising work on a project: you can have
a branch for a new feature, for trying out something new, for exploring an
issue - anything at all.

Just as virtualenvs are disposable, so are branches in Git. You can
have too many branches, but don’t hesitate to create new ones; it costs
almost nothing.

It’s a good policy to create a new branch for every new bit of work you
start doing, even if it’s a very small one.

It’s especially useful to create a new branch for every new feature you
start work on.

Branch early and branch often. If you’re in any doubt, create a new
branch.

Edit a file

GitHub allows you to edit files online. This isn’t the way you will normally
use Git, and it’s certainly not something you’ll want to spend very much time
doing, but it’s handy for very small changes, for example typos and spelling
mistakes you spot.

	go to https://github.com/<your github account>/afraid-to-commit

	find the attendees_and_learners.rst file

	hit the Edit button

	add your name (just your name, you will add other information later) to the
appropriate place in the file. If you’re following the tutorial by yourself,
add your details in the I followed the tutorial online section.

Commit your changes

	hit Commit Changes

Now your copy of the file, the one that belongs to your fork of the
project, has been changed; it’s reflected right away on GitHub.

If you managed to mis-spell your name, or want to correct what you entered,
you can simply edit it again.

What you have done now is make some changes, in a new branch, in your own fork
of the repository. You can see them there in the file.

Make a Pull Request

When you’re ready to have your changes incorporated into my
original/official/canonical repository, you do this by making a Pull
Request.

	go back to https://github.com/<your github account>/afraid-to-commit

You’ll see that GitHub has noted your recent changes, and now offers various
buttons to allow you to compare them with the original or make a pull request.

	hit Compare & pull request

This will show you a compare view, from which you can make your pull request.

When preparing for a pull request, GitHub will show you what’s being compared:

evildmp:master ... <your github account>:add-my-name

On the left is the base for the comparison, my fork and branch. On the
right is the head, your fork and branch, that you want to compare with
it.

A pull request goes from the head to the base - from right to left.

You can change the bases of the comparison if you need to:

	hit Edit

	select the forks and branches as appropriate

You want your version, the head branch of the head fork - on the
right - with some commits containing file changes, to be sent to my base
repo - on the left.

	hit the Pull Request button

	add a comment if you like (e.g. “please add me to the attendees list”)

	hit Send pull request

You have now made a pull request to an open-source community
project - if it’s your first one, congratulations.

GitHub will notify me (by email and on the site, and will show me the changes
you’re proposing to make). It’ll tell me whether they can be merged in
automatically, and I can reject, or accept, or defer a decision on, or comment
on, your pull request.

GitHub can automatically merge your contribution into my repository if mine
hasn’t changed too much since you forked it. If I want to accept it but GitHub
can’t do it automatically, I will have to merge the changes manually (we will
cover this later).

Once they’re merged, your contributions will become a part of
https://github.com/evildmp/afraid-to-commit. And this is the basic lifecycle of
a contribution using git: fork > edit > commit > pull request >
merge.

Incorporate upstream changes into your master

In the meantime, other people may have made their own forks, edits, commits,
and pull requests, and I may have merged those too - other people’s names may
now be in the list of attendees. Your own version of afraid-to-commit,
downstream from mine, doesn’t yet know about those.

Since your work is based on mine, you can think of my repository as being
upstream of yours. You need to merge any upstream changes into your
version, and you can do this with a pull request on GitHub too.

This time though you will need to switch the bases of the comparison around,
because the changes will be coming from my version to yours.

	hit Pull Request once more

	hit Edit, to switch the bases

	change the head repo on the right to my version,
evildmp/afraid-to-commit, branch master

	change the base repo to yours, and the base branch to master, so
the comparison bar looks like:

<your github account>:master ... evildmp:master

	hit Click to create a pull request for this comparison

	add a Title (e.g. “merging upstream master on Github) and hit Send
pull request

You’re sending a pull request to yourself, based on updates in my
repository. And in fact if you check in your Pull Requests on GitHub,
you’ll see one there waiting for you, and you too can review, accept, reject
or comment on it.

If you decide to Merge it, your fork will now contain any changes that
other people sent to me and that I merged.

The story of your work is this: you forked away from my codebase, and then
created a new branch in your fork.

Then you committed changes to your branch, and sent them upstream back
to me (with a pull request).

I merged your changes, and perhaps those from other people, into my
codebase, and you pulled all my recent changes back into your master
branch (again with a pull request).

So now, your master and mine are once more in step.

Git on the commandline

In this section you will:

	install and configure Git locally

	create your own local clone of a repository

	create a new Git branch

	edit a file and stage your changes

	commit your changes

	push your changes to GitHub

	make a pull request

	merge upstream changes into your fork

	merge changes on GitHub into your local clone

So far we’ve done all our Git work using the GitHub website, but that’s usually
not the most appropriate way to work.

You’ll find that most of your Git-related operations can and need to be done on the commandline.

Install/set up Git

sudo apt-get install git # for Debian/Ubuntu users
brew install git # for Mac OS X users with Homebrew installed

There are other ways of installing Git; you can even get a graphical Git application, that will include the commandline tools. These are described at:

http://git-scm.com/book/en/Getting-Started-Installing-Git

Tell Git who you are

First, you need to tell Git who you are:

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

Give GitHub your public keys

This is a great timesaver: if GitHub has your public keys, you can do all
kinds of things from your commandline without needing to enter your GitHub
password.

	https://github.com/settings/ssh

https://help.github.com/articles/generating-ssh-keys explains much better than
I can how to generate a public key.

This tutorial assumes you have now added your public key to your GitHub
account. If you haven’t, you’ll have to use https instead, and translate
from the format of GitHub’s ssh URLS.

For example, when you see:

git@github.com:evildmp/afraid-to-commit.git

you will instead need to use:

https://github.com/evildmp/afraid-to-commit.git

See https://gist.github.com/grawity/4392747 for a discussion of the different
protocols.

Some basic Git operations

When we worked on GitHub, the basic work cycle was fork > edit > commit
> pull request > merge. The same cycle, with a few differences, is what we
will work through on the commandline.

Clone a repository

When you made a copy of the Don’t be afraid to commit repository on GitHub,
that was a fork. Getting a copy of a repository onto your local machine is
called cloning. Copy the ssh URL from
https://github.com/<your github account>/afraid-to-commit, then:

git clone git@github.com:<your github account>/afraid-to-commit.git

Change into the newly-created afraid-to-commit directory, where you’ll find
all the source code of the Don’t be afraid to commit project.

Now you’re in the working directory, the set of files that you currently
have in front of you, available to edit. We want to know its status:

$ git status
On branch master
nothing to commit (working directory clean)

Create a new branch

Just as you did on GitHub, once again you’re going to create a new branch,
based on master, for new work to go into:

$ git checkout -b amend-my-name
Switched to a new branch 'amend-my-name'

git checkout is a command you’ll use a lot, to switch between branches. The
-b flag tells it to create a new branch at the same time. By default,
the new branch is based upon whatever branch you were on.

You can also choose what to base the new branch on. A quite common thing to do is, just for example:

git checkout -b new-branch existing-branch

This creates a new branch new-branch, based on existing-branch.

Edit a file

	find the attendees_and_learners.rst file in your working directory

	after your name and email address, add your Github account name

	save the file

git status is always useful:

$ git status
On branch amend-my-name
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: attendees_and_learners.rst
#
no changes added to commit (use "git add" and/or "git commit -a")

What this is telling us:

	we’re on the amend-my-name branch

	that we have one modified file

	that there’s nothing to commit

These changes will only be applied to this branch when they’re committed. You
can git add changed files, but until you commit they won’t belong to any
particular branch.

Note

When to branch

You didn’t actually need to create your new amend-my-name branch until
you decided to commit. But creating your new branches before you start
making changes makes it less likely that you will forget later, and commit
things to the wrong branch.

Stage your changes

Git has a staging area, for files that you want to commit. On GitHub
when you edit a file, you commit it as soon as you save it. On your
machine, you can edit a number of files and commit them altogether.

Staging a file in Git’s terminology means adding it to the staging
area, in preparation for a commit.

Add your amended file to the staging area:

git add attendees_and_learners.rst

and check the result:

$ git status
On branch amend-my-name
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: attendees_and_learners.rst
#

If there are other files you want to change, you can add them when you’re
ready; until you commit, they’ll all be together in the staging area.

What gets staged?

It’s not your files, but the changes to your files, that are staged. Make
some further change to attendees_and_learners.rst, and run git status:

$ git status
On branch amend-my-name
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: attendees_and_learners.rst
#
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: attendees_and_learners.rst
#

Some of the changes in attendees_and_learners.rst will be committed, and the
more recent ones will not.

	run git add on the file again to stage the newer changes

Commit your changes

When you’re happy with your files, and have added the changes you want to
commit to the staging area:

git commit -m "added my github name"

The -m flag is for the message (“added my github name”) on the commit -
every commit needs a commit message.

Push your changes to GitHub

When you made a change on GitHub, it not only saved the change and committed
the file at the same time, it also showed up right away in your GitHub
repository. Here there is an extra step: we need to push the files to
GitHub.

If you were pushing changes from master locally to master on GitHub, you
could just issue the command git push and let Git work out what needs to go
where.

It’s always better to be explicit though. What’s more, you have multiple
branches here, so you need to tell git where to push (i.e. back to the remote
repository you cloned from, on GitHub) and what exactly to push (your new
branch).

The repository you cloned from - yours - can be referred to as origin. The
new branch is called amend-my-name. So:

$ git push origin amend-my-name
Counting objects: 34, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (21/21), done.
Writing objects: 100% (28/28), 6.87 KiB, done.
Total 28 (delta 13), reused 12 (delta 7)
To git@github.com:evildmp/afraid-to-commit.git
 * [new branch] amend-my-name -> amend-my-name

Note

Be explicit!

Next time you want to push committed changes in amend-my-name, you won’t
need to specify the branch - you can simply do git push, because now
amend-my-name exists at both ends. However, it’s still a good idea to
be explict. That way you’ll be less likely to get a surprise you didn’t
want, when the wrong thing gets pushed.

Check your GitHub repository

	go to https://github.com/<your GitHub name>/afraid-to-commit

	check that your new amend-my-name branch is there

	check that your latest change to attendees_and_learners.rst is in it

Send me a pull request

You can make more changes locally, and continue committing them, and pushing
them to GitHub. When you’ve made all the changes that you’d like me to accept
though, it’s time to send me a pull request.

Important: make sure that you send it from your new branch amend-my-name
(not from your master) the way you did before.

And if I like your changes, I’ll merge them.

Note

Keeping master ‘clean’

You could of course have merged your new branch into your master
branch, and sent me a pull request from that. But, once again, it’s a good
policy to keep your master branch, on GitHub too, clean of changes you
make, and only to pull things into it from upstream.

In fact the same thing goes for other branches on my upstream that you
want to work with. Keeping them clean isn’t strictly necessary, but it’s
nice to know that you’ll always be able to pull changes from upstream
without having to tidy up merge conflicts.

Incorporate upstream changes

Once again, I may have merged other people’s pull requests too. Assuming that
you want to keep up-to-date with my changes, you’re going to want to merge
those into your GitHub fork as well as your local clone.

So:

	on GitHub, pull the upstream changes into your fork the way you did
previously

Then switch back to your master branch in the usual way (git checkout
master). Now, fetch updated information from your GitHub fork (origin),
and merge the master:

git fetch
git merge origin/master

So now we have replicated the full cycle of work we described in the previous
module.

Note

git pull

Note that here instead of git fetch followed by git merge, you
could have run git pull. The pull operation does two things: it
fetches updates from your GitHub fork (origin), and merges
them.

However, be warned that occasionally git pull won’t always work in the
way you expect, and doing things the explicit way helps make what you are
doing clearer.

git fetch followed by git merge is generally the safer option.

Switching between branches locally

Show local branches:

git branch

You can switch between local branches using git checkout. To switch back to
the master branch:

git checkout master

If you have a changed tracked file - a tracked file is one that Git is
managing - it will warn you that you can’t switch branches without either
committing, abandoning or ‘stashing’ the changes:

Commit

You already know how to commit changes.

Abandon

You can abandon changes in a couple of ways. The recommended one is:

git checkout <file>

This checks out the previously-committed version of the file.

The one that is not recommended is:

git checkout -f <branch>

The -f flag forces the branch to be checked out.

Note

Forcing operations with -f

Using the -f flag for Git operations is to be avoided. It offers plenty
of scope for mishap. If Git tells you about a problem and you force your
way past it, you’re inviting trouble. It’s almost always better to find a
different way around the problem than forcing it.

git push -f in particular has ruined a nice day for many people.

Stash

If you’re really interested, look up git stash, but it’s beyond the scope of this tutorial.

Working with remotes

In this section you will:

	add a remote repository to your local clone

	fetch remote information

	checkout a remote branch

	merge an upstream branch

Managing remotes

Your repository on GitHub is the remote for the clone on your local
machine. By default, your clone refers to that remote as origin. At
the moment, it’s the only remote you have:

$ git remote
origin

$ git remote show origin
 * remote origin
 Fetch URL: git@github.com:evildmp/afraid-to-commit.git
 Push URL: git@github.com:evildmp/afraid-to-commit.git
 HEAD branch: master
 Remote branches:
 amend-my-name tracked
 master tracked
 Local branch configured for 'git pull':
 master merges with remote master
 Local refs configured for 'git push':
 amend-my-name pushes to amend-my-name (up to date)
 master pushes to master (up to date)

It’s very useful for Git to know about other remote repositories too. For
example, at the end of the previous section, we considered a conflict between
your GitHub fork and and the upstream GitHub repository. The only way to fix
that is locally, on the command line, and by being able to refer to both those
remotes.

Now you can refer to a remote using its full address:

https://github.com/evildmp/afraid-to-commit

But just as your remote is called origin, you can give any remote a more
memorable name. Your own origin has an upstream repository (mine); it’s a
convention to name that upstream.

Add a remote

git remote add upstream git@github.com:evildmp/afraid-to-commit.git

Fetch remote data

The remote’s there, but you don’t yet have any information about it. You need
to fetch that:

git fetch upstream

This means: get the latest information about the branches on upstream.

List remote branches

git branch shows your local branches.

To see a list of them all, including the remote branches:

git branch -a

Checkout a remote branch

You’ll have seen from git branch -a that there’s a branch called
additional-branch on the upstream repository.

You can check this out:

git checkout -b additional-branch upstream/additional-branch

This means: create and switch to a new local branch called additional-branch,
based on branch additional-branch of the remote upstream.

Managing master on the commandline

Until now, you have only updated your master on GitHub using GitHub itself.
Sometimes it will be much more convenient to do it from your commandline.
There are various ways to do it, but here’s one:

git checkout master # switch back to the master branch
git fetch upstream # update information about the remote
git merge upstream/master # merge the changes referred to by
upstream/master

git status will tell you that your local master is ahead of your master
at origin.

Push your changes to master:

git push origin master

And now your master on GitHub contains everything my master does; it’s
up-to-date and clean.

Resolving conflicts

In this section you will:

	encounter a merge conflict on GitHub

	encounter a merge conflict on the commandline

	resolve the conflict in a new temporary Git branch

Encountering a merge conflict on GitHub

Sometimes you’ll discover that your GitHub fork and the upstream repository
have changes that GitHub can’t merge.

There’s an unmergeable-branch at https://github.com/evildmp/afraid-to-commit.
It’s unmergeable because it deliberately contains changes that conflict with
other changes made in master.

Using the GitHub interface, try creating a pull request from
unmergeable-branch to your master on GitHub. If you do, GitHub will tell
you:

We can’t automatically merge this pull request.

Use the command line to resolve conflicts before continuing.

GitHub will in fact tell you the steps you need to take to solve this, but to
understand what’s actually happening, and to do it yourself when you need to,
we need to cover some important concepts.

Merging changes from a remote branch

make sure you have the latest data from upstream
$ git fetch upstream
create and switch to a new branch based on master to explore the conflict
$ git checkout -b explore-conflict upstream/master
now try merging the unmergeable-branch into it
$ git merge upstream/unmergeable-branch
Auto-merging attendees_and_learners.rst
CONFLICT (content): Merge conflict in attendees_and_learners.rst
Automatic merge failed; fix conflicts and then commit the result.

When there’s a conflict, Git marks them for you in the files. You’ll see
sections like this:

<<<<<<< HEAD
* Daniel Pass <daniel.antony.pass@googlemail.com>
* Kieran Moore
=======
* Kermit the Frog
* Miss Piggy
>>>>>>> upstream/unmergeable-branch

The first section, HEAD is what you have in your version. The second
section, upstream/unmergeable-branch is what Git found in the version you
were trying to pull in.

You’ll have to decide what the file should contain, and you’ll need to edit
it. If you decide you want the changes from both versions:

* Daniel Pass <daniel.antony.pass@googlemail.com>
* Kieran Moore
* Kermit the Frog
* Miss Piggy

$ git add attendees_and_learners.rst
$ git commit -m "fixed conflict"
[explore-conflict 91a45ac] fixed conflict

Note

Create new branches when resolving conflicts

It’s very sensible not to do merging work in a branch you have done
valuable work in. In the example above, your explore-conflict branch is
based on master and doesn’t contain anything new, so it will be easy to
re-create if it all goes wrong.

If you had a branch that contained many complex changes however, you
certainly wouldn’t want to discover dozens of conflicts making a mess in
the files containing all your hard work.

So remember, branches are cheap and disposable. Rather than risk
messing up the branch you’ve been working on, create a new one specially
for the purpose of discovering what sort of conflicts arise, and to give
you a place to work on resolving them without disturbing your work so far.

You might have conflicts across dozens of files, if you were unlucky, so
it’s very important to be able to backout gracefully and at the very least
leave things as they were.

More key Git techniques

There are a few more key Git commands and techniques that you need to know
about.

.gitignore

When you’re working with Git, there are lots of things you won’t want to push, including:

	hidden system files

	.pyc files

	rendered documentation files

	… and many more

.gitignore,
https://github.com/evildmp/afraid-to-commit/blob/master/.gitignore, is what
controls this. You should have a .gitignore in your projects, and they
should reflect your way of working. Mine include the things that my
operating system and tools throw into the repository; you’ll find soon enough
what yours are.

With a good .gitignore, you can do things like:

git add docs/

and add whole directories at a time without worrying about including unwanted
files.

Starting a new Git project

You’ve been working so far with an existing Git project. It’s very easy to
start a brand new project, or turn an existing one into a Git project. On
GitHub, just hit the New repository button and follow the instructions.

Combining Git and pip

When you used pip to install a package inside a virtualenv, it put it on your
Python path, that is, in the virtualenv’s site-packages directory. When
you’re actually working on a package, that’s not so convenient - a Git project
is the most handy thing to have.

On the other hand, cloning a Git repository doesn’t install it on your Python
path (assuming that it’s a Python application), so though you can work on it,
you can’t actually use it and test it as an installed package.

However, pip is Git-aware, and can install packages and put them in a
convenient place for editing - so you can get both:

cd ~/
virtualenv git-pip-test
source git-pip-test/bin/activate
pip install -e git+git@github.com:python-parsley/parsley.git#egg=parsley

The -e flag means editable; git+ tells it to use the Git protocol; #egg=parsley tells it what to call it.

(Should you find that this causes an error, try using quotes around the target:

pip install -e "git+git@github.com:python-parsley/parsley.git#egg=parsley"

)

You can also specify the branch:

pip install -e git+git@github.com:python-parsley/parsley.git@master#egg=parsley

And now you will find an editable Git repository installed at:

~/git-pip-test/src/parsley

which is where any other similarly-installed packages will be, and just to prove that it really is installed:

$ pip freeze
-e git+git@github.com:python-parsley/parsley.git@e58c0c6d67142bf3ceb6eceffd50cf0f8dae9da1#egg=Parsley-master
wsgiref==0.1.2

Documentation using Sphinx and ReadTheDocs.org

Without documentation, however wonderful your software, other potential
adopters and developers simply won’t be very interested in it.

The good news is that there are several tools that will make presenting and
publishing it very easy, leaving you only to write the content and mark it up
appropriately.

For documentation, we’ll use Sphinx to generate it, and Read the Docs
to publish it. GitHub will be a helpful middleman.

If you have a package for which you’d like to create documentation, you might
as well start producing that right away. If not, you can do it in a new
dummy project.

Set up your working environment

The virtualenv

As usual, create and activate a new virtualenv:

virtualenv documentation-tutorial
[...]
cd documentation-tutorial/
source bin/activate

The package or project

If you have an existing package to write documentation for

If your package is on GitHub already and you want to start writing documention
for, clone it now using Git. And of course, start a new branch:

git checkout -b first-docs

You can merge your docs into your master branch when they start to look
respectable.

If you don’t have an existing package that needs docs

If you don’t have a suitable existing package on GitHub, create
a repository on GitHub the way you did before. Call it my-first-docs. Then
create a Git repository locally:

mkdir my-first-docs
cd my-first-docs/
Converts the directory into a git repository
git init
Point this repo at the GitHub repo you just created
git remote add origin git@github.com:<your git username>/my-first-docs.git
Create a new branch in which to do your work
git checkout -b first-docs

Create a docs directory

And either way, create a docs directory for your docs to live in:

mkdir docs

Sphinx

Install Sphinx

pip install sphinx

It might take a minute or so, it has quite a few things to download and install.

sphinx-quickstart

sphinx-quickstart will set up the source directory for your documentation.
It’ll ask you a number of questions. Mostly you can just accept the defaults
it offers, and some are just obvious, but there are some you will want to set
yourself as noted below:

sphinx-quickstart

	Root path for the documentation

	docs

	Project name

	<your name>'s first docs, or the name of your application

	Source file suffix

	.rst is the default. (Django’s own documentation uses .txt. It
doesn’t matter too much.)

You’ll find a number of files in your docs directory now, including
index.rst. Open that up.

Using Sphinx & reStructuredText

reStructuredText elements

Sphinx uses reStructuredText. http://sphinx-doc.org/rest.html#rst-primer will tell you most of what
you need to know to get started. Focus on the basics:

	paragraphs

	lists

	headings (‘sections’, as Sphinx calls them)

	quoted blocks

	code blocks

	emphasis, strong emphasis and literals

Edit a page

Create an Introduction section in the index.rst page, with a little text
in it; save it.

Create a new page

You have no other pages yet. In the same directory as index.rst, create
one called all-about-me.rst or something appropriate. Perhaps it might
look like:

############
All about me
############

I'm Daniele Procida, a Django user and developer.

I've contributed to:

* django CMS
* Arkestra
* Django

Sphinx needs to know about it, so in index.rst, edit the .. toctree::
section to add the all-about-me page:

.. toctree::
 :maxdepth: 2

 all-about-me

Save both pages.

Render your documentation

In the docs directory:

make html

This tells Sphinx to render your source pages. Pay attention to its warnings
- they’re helpful!

Note

Sphinx can be fussy, and sometimes about things you weren’t expecting. For
example, you well encounter something like:

WARNING: toctree contains reference to nonexisting document u'all-about-me'
...
checking consistency...
<your repository>/my-first-docs/docs/all-about-me.rst::
WARNING: document isn't included in any toctree

Quite likely, what has happened here is that you indented all-about-me
in your .. toctree:: with four spaces, when Sphinx is expecting
three.

If you accepted the sphinx-quickstart defaults, you’ll find the rendered
pages in docs/_build/html. Open the index.html it has created in your
browser. You should find in it a link to your new all-about-me page too.

Publishing your documentation

Exclude unwanted rendered directories

Remember .gitignore? It’s really useful here, because you don’t want to
commit your rendered files, just the source files.

In my .gitignore, I make sure that directories I don’t want committed are
listed. Check that:

_build
_static
_templates

are listed in .gitignore.

Add, commit and push

git add the files you want to commit; commit them, and push to GitHub.

If this is your first ever push to GitHub for this project, use:

git push origin master

otherwise:

git push origin first-docs # or whatever you called this branch

Now have a look at the .rst documentation files on GitHub. GitHub does a
good enough job of rendering the files for you to read them at a glance,
though it doesn’t always get it right (and sometimes seems to truncate them).

readthedocs.org

However, we want to get them onto Read the Docs. So go to
https://readthedocs.org, and sign up for an account if you don’t have one.

You need to Import a project: https://readthedocs.org/dashboard/import/.

Give it the details of your GitHub project in the repo field -
git@github.com:<your git username>/my-first-docs.git, or whatever it is -
and hit Create.

And now Read the Docs will actually watch your GitHub project, and build,
render and host your documents for you automatically.

It will update every night, but you can do better still: on GitHub:

	select settings for your project (not for your account) in the
navigation panel on the right-hand side

	choose Webhooks & Services

	enable ReadTheDocs under Add Service dropdown

… and now, every time you push documents to GitHub, Read the Docs will be
informed that you have new documents to be published. It’s not magic, but it’s
pretty close.

Contributing

Having identified a contribution you think you can usefully make to a project,
how are you actually going to make it?

For nearly every project, the best first step is:

Talk to somebody about it

You may have been eating, sleeping, dreaming and otherwise living your
idea for days, but until you discuss it, no-one else knows anything about it.
To them, your patch will come flying out of the blue.

You need - usually - to introduce your idea, and - particularly if you’re new
to the community - yourself.

In the case of Django, this will typically mean posting to the Django
Developers email list, django-developers@googlegroups.com (sign up at
http://groups.google.com/group/django-developers), or raising it on
#django-dev on irc.freenode.net.

Quite apart from letting people know about what you have to offer, it’s an
opportunity to get some feedback on your proposal.

Don’t automatically expect your proposal to be considered a great idea. Be
prepared to explain the need it meets and why you think your solution is a
good one. Be prepared to do some more work.

Above all, you will need to be patient, polite and persistent.

File it

If one doesn’t exist already, lay down a formal public marker raising the
issue your contribution addresses. In Django’s case, this will be a ticket on
https://code.djangoproject.com/. For others, it’s likely to be an issue on
GitHub or whatever system they use. Mention your earlier discussion!

Do your homework

Every project has its standards for things like code and documentation, and
its ways of working. They tend to follow a general pattern, but they often
have their own little quirks or preferences - so learn them.

If you think that sounds tedious, it’s nothing compared to the potential pain
of having to manage or use code and documentation written according to the
individual preferences of all its different contributors.

	https://docs.djangoproject.com/en/1.7/internals/contributing/

	https://docs.djangoproject.com/en/1.7/internals/contributing/writing-code/working-with-git/

Note that the Django Project’s Git guidelines ask contributors to use
rebase - which is firstly a little unusual, and secondly explained in the
documentation above better than I can here - so read that.

And be prepared to get it wrong the first few times, and even the subsequent
ones. It happens to everyone.

Submit it

Now you can make your pull request. Having prepared the way for it, and
having provided the accompaniments - tests and documentation - that might be
required, it has a good chance of enjoying a smooth passage into the project.

What to start with?

Documentation! It’s the easy way in.

Everyone loves documentation, and unlike code where incompleteness or
vagueness can make it worse than useless, documentation has to be really quite
bad to be worse than no documentation.

What’s more, writing documentation will help you better understand the things
you’re writing about, and if you’re new to all this, that’s going to put you
in a better position to understand and improve code.

Some suitable Django Project tickets

Have a look at one of the tickets specially selected for people doing this
tutorial [https://code.djangoproject.com/query?keywords=~afraid-to-commit&groupdesc=1&group=status&col=id&col=summary&col=keywords&col=owner&col=type&col=status&order=priority]. They’re not all for documentation, though most are.

Cheatsheet

virtualenv

	create

	virtualenv [name-of-virtualenv]

	include system’s Python packages

	virtualenv [name-of-virtualenv] --install-site-packages

	activate

	source bin/activate

	deactivate

	deactivate

pip

	install

	pip install [name-of-package]

	install a particular version

	pip install [name-of-package]==[version-number]

	upgrade

	pip install --upgrade [name-of-package]

	uninstall

	pip uninstall [name-of-package]

	show what’s installed

	pip freeze

git

	tell git who you are

	git config --global user.email "you@example.com"

git config --global user.name "Your Name"

	clone a repository

	git clone [repository URL]

	checkout

	git checkout [branch] switches to another branch

git checkout -b [new-branch] creates and switches to a new branch

git checkout -b [new-branch] [existing branch] creates and
switches to a new branch based on an existing one

git checkout -b [new-branch] [remote/branch] creates and
switches to a new branch based on remote/branch

git checkout [commit sha] checks out the state of the repository at a
particular commit

	current status of your local branches

	git status

	show the commit you’re on in the current working directory

	git show

	commit

	git commit -m "[your commit message]"

	add

	git add [filename] adds a file to the staging areas

git add -u [filename] - the -u flag will also remove deleted files

	remote

	git remote add [name] [remote repository URL] sets up remote

git remote show lists remotes

git remote show -v lists remotes and their URLs

	branch

	git branch

git branch -a to show remote branches too

	fetch

	git fetch gets the latest information about the branches on the default
remote

git fetch [remote] gets the latest information about the branches on the
named remote

	merge

	git merge [branch] merges the named branch into the working directory

git merge [remote/branch] -m "[message]" merges the branch referred to
into the working directory - don’t forget to fetch the remote before the
merge

	pull

	fetch followed by merge is often safer than pull - don’t assume
that pull will do what you expect it to

git pull fetches updates from the default remote and merges into the
working directory

	push

	git push pushes committed changes to the default remote, in branches
that exist at both ends

git push [remote] [branch] pushes the current branch to the named
branch on remote

	log

	git log will show you a list of commits

Notes

Throughout Git, anything in the form remote/branchname is a reference, not
a branch.

Documentation

	initialise Sphinx documentation

	sphinx-quickstart

	render documentation

	make html

Attendees & learners

This is a record of people who attended a Don’t be afraid to commit workshop,
or followed the tutorial in their own time.

Workshops

Pycon Zimbabwe in Harare, 24th November 2016

	Bornwell Matembudze https://github.com/bornie21

	Kudakwashe Siziva

	Akim Munthali https://github.com/amunthali @amunthali

Note

Many thanks to Charles Katuri (charle-k) for his invaluable assistance on Windows computers

PyCon Ireland in Dublin, 26th October 2015

	Simon Parker https://github.com/simonparkerdublin @SparkerDublin

	Anna Szewc, https://github.com/NannahA

	Iain Geddes iaingeddes@theiet.org https://github.com/iaingeddes

	Gearoid Ryan https://github.com/gearoid-ryan

	Jakub Pawlicki https://github.com/JakubPawlicki

	Ivin Polo Sony @ivinpolosony http://github.com/ivinpolosony/

	Lisa Cavern @anninireland https://github.com/anninireland

	Jeremie Jost https://github.com/jjst

	Richard Loy https://github.com/Richloy

	Art Knipe https://github.com/artkgithub

	Miao Li https://github.com/masonmiaoli

	Sarah Jackson

	Stefano Fedele https://github.com/stefanofedele/afraid-to-commit

	Barry Kennedy https://github.com/bazkennedy

PyCon UK in Coventry, 21st September 2015

Note

Many thanks to Helen Sherwood-Taylor (helenst) for her invaluable assistance.

	Valerio Campanella @ValerioCamp https://github.com/VCAMP/

	Laura Dreyer https://github.com/lbdreyer

	Aisha Bello https://github.com/shante66

	Paivi Suomela, https://github.com/peconia

	Neil Stoker, https://github.com/nmstoker

	Charles G Barnwell https://github.com/cgbarnwell

	Jo Williams https://githib.com/crocodile2485 fh07jw

	Sylvain Gubian

	Adam Johns https://github.com/ninjaExploder/

	Glen Davies https://github.com/glen442 @GlenDaviesDev

DjangoGirls in Portland, 27th August 2015

	Lacey Williams Henschel @laceynwilliams

	Megan Norton http://walkermacy.com

	Sara “the” Jensen https://github.com/thejensen

	TB

	Stephanie Marson

DjangoCon Europe in Cardiff, 4th June 2015

	David Bannon https://github.com/sp1ky

	Amy Lai

	Sven Groot <sven@mediamoose.nl>

	Rick de Leeuw <rick@mediamoose.nl>

	Zoe Ballard

	Jeff Doyle

	Stewart Houten

	Lukasz Wojcik

	Tom Bakx

	Marissa Zhou <https://github.com/marissazhou>

	Niels Lensink <nielslensink@gmail.nl>

	Bryan Spence

	Andraz Tori <andraz@zemanta.com>

	Gwilym Jones

	Adrienne Lowe http://codingwithkniv.es, @adriennefriend

	Zoe Ballard <https://github.com/zoe-ann-b>

Dutch Django Association Sprint in Amsterdam, 7th March 2015

	Remco Kranenburg <remco@burgsoft.nl>

	Floris den Hengst

	C.T. Matsumoto <todd@l1nda.nl>

	Loek van Gent <https://github.com/gannetson>

	Nathan Schagen

	Hanna Kollo https://github.com/sztrovacsek

	Stephen Albert https://github.com/psiloLR

PyCon Ireland in Dublin, 13th October 2014

	Randal McGuckin <randal.mcguckin@gmail.com>

	Laura Duggan https://github.com/labhra

	Jenny McGee

	Conor McGee <mcgeeco@tcd.ie> https://github.com/mcgeeco

	Nadja Deininger https://github.com/machinelady

	Andrew McCarthy

	Brian McDonnell <https://github.com/brianmcdonnell/>

	Brendan Cahill (https://github.com/brencahill/)

	Adam Dickey

	Paul O’Grady (Twitter: @paul_ogrady; GITHub: paulogrady)

	Jenny DiMiceli - https://github.com/jdimiceli

	Stephen Kerr

	Wayne Tong

	Vinicius Mayer (viniciusmayer@gmail.com) https://github.com/viniciusmayer

	Dori Czapari https://github.com/doriczapari (@doriczapari)

	Karl Griffin (karl_griffin@hotmail.com) https://github.com/karlgriffin

	Vadims Briksins (https://github.com/Briksins)

PyCon UK in Coventry, 20th September 2014

	Matthew Power https://github.com/mthpower

	Brendan Oates <brenoates@gmail.com>

	Waldek Herka (https://github.com/wherka)

	Stephen Newey (@stevenewey) - https://github.com/stevenewey

	Walter Kummer (work.walter at gmail.com)

	Craig Barnes

	Justin Wing Chung Hui

	Davide Ceretti

	Paul van der Linden https://github.com/pvanderlinden

	Gary Martin https://github.com/garym

	Cedric Da Costa Faro https://github.com/cdcf

	Sebastien Charret <sebastien.charret@gmail.com> https://github.com/moerin

	Nick Smith

	Jonathan Lake-Thomas https://github.com/jonathlt

	Ben Mansbridge

	Glen Davies (@GlenDaviesDev) - https://github.com/glen442

	Mike S Collins (MikeyBoy1969)

DjangoCon US in Portland, 5th September 2014

	Joseph Metzinger (joseph.metzinger@gmail.com) https://github.com/joetheone

	Abdulaziz Alsaffar (alsaff1987@gmail.com) https://github.com/Octowl

	Patrick Beeson (@patrickbeeson) https://github.com/patrickbeeson

	Vishal Shah - https://github.com/shahv

	Kevin Daum (@kevindaum, kevin.daum@gmail.com) https://github.com/kevindaum

	Nasser AlSnayen (nasser.lc9@gmail.com) https://github.com/LC9

	Nicholas Colbert (@45cali) 45cali@gmail.com

	Chris Cauley https://github.com/chriscauley

	Joe Larson (@joelarson)

	Jeff Kile

	Orlando Romero

	Chad Hansen (chadgh@gmail.com) https://github.com/chadgh

DjangoVillage in Orvieto, 14th June 2014

	Gioele

	Christian Barra (@christianbarra) https://github.com/barrachri

	Luca Ippoliti https://github.com/lucaippo

	@joke2k (https://github.com/joke2k)

	Domenico Testa (@domtes)

	Alessio

	Diego Magrini (http://github.com/magrinidiego)

	Matteo (@loacker) https://github.com/loacker

	Simone (@simodalla) https://github.com/simodalla

DjangoCon Europe on The Île des Embiez, 16th May 2014

	Niclas Åhdén (niclas@brightweb.se) https://github.com/niclas-ahden

	Sabine Maennel (sabine.maennel@gmail.com) http://github.com/sabinem

	JB (Juliano Binder)

	Laurent Paoletti

	Alex Semenyuk (https://github.com/gtvblame)

	Moritz Windelen

	Marie-Cécile Gohier

	Isabella Pezzini

	Pavel Meshkoy (@rasstreli)

Dutch Django Association Sprint in Amsterdam, 22nd February 2014

	Stomme poes (@stommepoes)

	Rigel Di Scala (zedr) <zedr@zedr.com> http://github.com/zedr

	Nikalajus Krauklis (@dzhibas) http://github.com/dzhibas

	Ivo Flipse (@ivoflipse5) https://github.com/ivoflipse

	Martin Matusiak

	Jochem Oosterveen https://github.com/jochem

	Pieter Marres

	Nicolaas Heyning (L1NDA)

	Henk Vos h.vos@rapasso.nl https://github.com/henkvos

	Adam Kaliński @ https://github.com/adamkal

	Marco B

	Greg Chapple http://github.com/gregchapple/

	Vincent D. Warmerdam vincentwarmerdam@gmail.com

	Lukasz Gintowt (syzer)

	Bastiaan van der Weij

	Maarten Zaanen <maarten at PZvK.com><Maarten at Zaanen.net>

	Markus Holtermann (@m_holtermann)

Django Weekend Cardiff, 7th February 2014

	Jakub Jarosz (@qba73) jakub.s.jarosz@gmail.com https://github.com/qba73

	Stewart Perrygrove

	Adrian Chu

	Baptiste Darthenay

PyCon Ireland in Dublin, 14th October 2013

	Vincent Hussey vincent.hussey@opw.ie https://github.com/VincentHussey

	Padraic Harley <@pauricthelodger> <padraic@thelodgeronline.com>

	Paul Cunnane <paul.cunnane@gmail.com> https://github.com/paulcunnane

	Sorcha Bowler <saoili @ github, twitter, gmail, most of the internet>

	Jennifer Parak https://github.com/jenpaff

	Andrea Fagan

	Jennifer Casavantes

	Pablo Porto https://github.com/portovep

	Tianyi Wang <wty52133@gmail.com> @TianyiWang33

	James Heslin <program.ix.j@gmail.com> https://github.com/PROGRAM-IX

	Sorcha Bowler <saoili@gmail.com. saoili on github, twitter, most of the
internet>

	Larry O’Neill (larryone)

	Samuel <satiricallaught@gmail.com>

	Frank Healy

	Robert McGivern <Robert.bob.mcgivern@gmail.com>

	James Hickey

	Tommy Gibbons

PyCon UK in Coventry, 22nd September 2013

	Adeel Younas <aedil12155@gmail.com>

	Giles Richard Greenway github: augeas

	Mike Gleen

	Arnav Khare https://github.com/arnav

	Daniel Levy https://github.com/daniell

	Ben Huckvale https://github.com/benhuckvale

	Helen Sherwood-Taylor (helenst)

	Tim Garner

	Stephen Newey @stevenewey (stevenewey)

	Mat Brunt <matbrunt@gmail.com>

	John S

	Carl Reynolds (@drcjar)

	Jon Cage & John Medley (http://www.zephirlidar.com)

	Stephen Paulger (github:stephenpaulger twitter:@aimaz)

	Alasdair Nicol

	Dave Coutts https://github.com/davecoutts

	Daley Chetwynd https://github.com/dchetwynd

	Haris A Khan (harisakhan)

	Chung Dieu https://github.com/chungdieu

	Colin Moore-Hill

	John Hoyland (@datainadequate) https://github.com/datainadequate

	Joseph Francis (joseph@skyscanner.net)

	Åke Forslund <ake.forslund@gmail.com> github:forslund

	Ben McAlister https://github.com/bmcjamin

	Lukasz Prasol <lprasol@gmail.com> github: https://github.com/phoenix85

	Jorge Gueorguiev <yefo.akira@gmail.com> https://github.com/MiyamotoAkira

	Dan Ward (danielward) (dan@regenology.co.uk)

	Kristian Roebuck <roebuck86@gmail.com> https://github.com/kristianroebuck

	Louis Fill tkman220@yahoo.com

	Karim Lameer https://github.com/klameer

	John Medley <john.medley@zephirlidar.com>

DjangoCon US in Chicago, 2nd September 2013

	Barbara Hendrick (bahendri)

	Keith Edmiston <keith.edmiston@mccombs.utexas.edu>

	David Garcia (davideire)

	Ernesto Rodriguez <ernesto@tryolabs.com> https://github.com/ernestorx @ernestorx

	Jason Blum

	Hayssam Hajar <hayssam.hajar@gmail.com> github: hhajar

Cardiff Dev Workshop, 8th June 2013

	Daniel Pass <daniel.antony.pass@googlemail.com>

	Kieran Moore

	Dale Bradley

	Howard Dickins <hdickins@gmail.com> https://github.com/hdickins

	Robert Dragan https://github.com/rmdragan

	Chris Davies

	Gwen Williams

	Chris Lovell <chrisl1991@hotmail.co.uk> https://github.com/polyphant1

	Nezam Shah

	Gwen Williams https://github.com/gwenopeno

	Daniel Pass <daniel.antony.pass@googlemail.com>

	Bitarabe Edgar

DjangoCon Europe in Warsaw, 18th May 2013

	Amjith Ramanujam - The Dark Knight

	@zlatkoc

	larssos@github

	@erccy is my name

	Patrik Gärdeman https://github.com/gardeman

	Gustavo Jimenez-Maggiora https://github.com/gajimenezmaggiora

	Jens Ådne Rydland <jensadne@pvv.ntnu.no> https://github.com/jensadne

	Chris Reeves @krak3n

	Alexander Hansen <alexander@geekevents.org> https://github.com/wckd

	Brian Crain (@crainbf)

	Nicolas Noé <nicolas@niconoe.eu> https://github.com/niconoe

	Peter Bero

	schacki

	Michał Karzyński <djangoconwrkshp@karzyn.com> https://github.com/postrational

	@graup

I followed the tutorial online

	Daniel Quinn - 18th May 2013

	Paul C. Anagnostopoulos - 19 August 2013

	Ben Rowett - 27 August 2013

	Chris Miller, <chris@chrismiller.org> - 5th September 2013

	David Lewis - 7th September 2013

	Josh Chandler - 11th September 2013

	Richie Arnold - <richard@ambercouch.co.uk> - 22nd September 2013

	Padraic Stack - https://github.com/padraic7a

	Patrick Nsukami - <patrick@soon.pro> - lemeteore

	Can Ibanoglu - http://github.com/canibanoglu

	Pedro J. Lledó - http://github.com/pjlledo - 11th October 2013

	Ken Tam - 4th Jan 2014

	Óscar M. Lage - http://github.com/oscarmlage

	Bob Aalsma - https://github.com/BobAalsma/

	Andy Venet - https://github.com/avenet/

	Vathsala Achar - 22nd September, 2014

	Amine Zyad <amizya@gmail.com> http://github.com/amizya

	Xrispies - http://github.com/Xrispies

	Andrew Morales - October 19, 2014

	Suraj Deshmukh <surajssd009005@gmail.com> http://github.com/surajssd

	Suresh - https://github.com/umulingu/

	Chandra Bandi - 20-December 2014

	Drew A. - https://github.com/daldin - 12th December 2014

	Kumar Dheeraj-https://github.com/dhey2k-31-dec-2013

	Omar - 14-1-2015

	Surabhi Borgikar

	Cameron

	Jum - May 20, 2015

	Paul Jewell <paul@jidoka.org> July 2015 https://github.com/paul-jewell

	Alexandro Perez - https://github.com/AlexandroPerez - 6th August 2015

	Rahul bajaj - https://github.com/rahulbajaj0509 2015

	Alejandro Suárez - https://github.com/alsuga 20th October 2015

	Prathamesh Chavan

	Tad Deely

	Abhijit Chowdhury - https://github.com/achowdhury7 12th Feb 2016

	Richard Angeles - Feb 19, 2016

	Adam Shields

	Salvador Rico - April 3, 2016 - https://github.com/salvarico

	Josh Long

	Prashant Jamkhande - https://github.com/prashant0493

	Humphrey Butau - https://github.com/hbutau - 2016-11-7

	Jose Rodriguez -https://github.com/jlrods - 15/11/2016

	Michael Kortstiege - https://github.com/nodexo - Nov 19, 2016

	Steven Lee - https://github.com/stevenlee96 - 2016-11-20

	Dieter Jansen - https://github.com/dieterjansen - 2016-04-20

	Eddy Barratt

	Pooja Gadige - <poojagadige@gmail.com> - pgadige

	Jason Gardner

	Ana

	Dade Murphy

	Leticia Ulloa

	La Chilindrina

	Anselmo ~ <agprocida@gmail.com> ~ anselmoprocida

Running a workshop

If you’d like to run a workshop based on this material, please do, and please
let me know about it.

Notes on running a workshop

To cover all the workshop material seems to take about four and a half hours.

Any of the following will make it take longer:

	attendees who aren’t already a little familiar with the terminal and using a
text editor to edit source files

	attendees whose machines aren’t already suitably-configured for the workshop
and need software installed

	attendees using operating systems you’re not familiar with

If you’re lucky, you’ll find that the majority of attendees have the same
expertise and the same gaps in expertise. This makes it much easier to decide
which parts to dwell upon and which ones you can skim over. If you’re not
lucky, they will each have a completely different skillset.

You’ll do a lot of running around to look at people’s screens, so it helps to
be able to get around the room easily.

The Git on the commandline section is the one where you will be in most
demand - it helps great if at this stage you have one or two helpers who are
familiar with Git.

Watch out for wireless network limitations - at one session the promised
network turned out to block both github.com and ssh, and we had to rely on an
access point created by someone’s mobile telephone.

Things that might look odd

If you’re experienced with things virtualenv and Git, some of the way things
are done here might strike you as odd. For example:

Virtualenvs and code

The workshop has users put all the code they’re working with into their
virtualenv directories. This is done to help associate a particular project and
set of packages with each virtualenv, and saves excessive moving around between
directories.

Editing and committing on GitHub

That’s certainly not what we’d normally do, but we do it here for three main
reasons:

	GitHub’s interface is a friendly, low-barrier introduction to Git operations

	it’s easy for people to see the effects of their actions straight away

	they get to make commits, pull requests and merges as soon as possible after
being introduced to the concepts

The last of these is the most significant.

Other oddities

There may be others, which might be for a good reason or just because I don’t
know better. If you think that something could be done better, please let me
know.

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Don’t be afraid to commit

 		
 What you need to know and have installed before you begin

 		
 Virtualenv and pip

 		
 Git and GitHub

 		
 Git and GitHub

 		
 Git on the commandline

 		
 Working with remotes

 		
 Resolving conflicts

 		
 More key Git techniques

 		
 Documentation using Sphinx and ReadTheDocs.org

 		
 Contributing your work

 		
 Cheatsheet - a handy summary of key commands and techniques

 		
 A record of people who attended a workshop or followed the tutorial

 		
 Notes for anyone planning a workshop

_static/up-pressed.png

_static/up.png

