
afkmc2 Documentation
Release .1

Adrian Goedeckemeyer

Apr 20, 2017





Contents

1 Introduction 1
1.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Contribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Reference 3
2.1 Seeding Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Seeding Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Bibliography 9

i



ii



CHAPTER 1

Introduction

This package contains sklearn compatible python implementations of various K-Means seeding algorithms.

The package was inspired by the AFKMC^2 algorithm detailed in

Fast and Provably Good Seedings for k-Means [afkmc2]
Olivier Bachem, Mario Lucic, S. Hamed Hassani and Andreas Krause
In Neural Information Processing Systems (NIPS), 2016.
https://las.inf.ethz.ch/files/bachem16fast.pdf

The algorithm uses Monte Carlo Markov Chain to quickly find good seedings for KMeans and offers a runtime im-
provement over the common K-Means++ algorithm.

Usage

Using this package to get seedings for KMeans in sklearn is as simple as:

import afkmc2
X = np.array([[1, 2], [1, 4], [1, 0],

[4, 2], [4, 4], [4, 0]])
seeds = afkmc2.afkmc2(X, 2)

from sklearn.custer import KMeans
model = KMeans(n_clusters=2, init=seeds).fit(X)
print model.cluster_centers_

Installation

Quickly install afkmc2 by running:

1

https://las.inf.ethz.ch/files/bachem16fast.pdf


afkmc2 Documentation, Release .1

pip install afkmc2

Contribute

• Issue Tracker: https://github.com/adriangoe/afkmc2/issues

• Source Code: https://github.com/adriangoe/afkmc2

Support

You can reach out to me through https://adriangoe.me/#contact-us.

License

The project is licensed under the MIT License.

2 Chapter 1. Introduction

https://github.com/adriangoe/afkmc2/issues
https://github.com/adriangoe/afkmc2
https://adriangoe.me/#contact-us


CHAPTER 2

Reference

Seeding Reference

View Code On Github.

K-Means++

K-Means++ is the original seeding algorithm for K-Means as proposed by Arthur and Vassilvitskii in 2007 [kmpp].

It chooses one center uniformly, then computes distance of every datapoint to already chosen centers in order to use
distance as weights when sampling next center. These steps are repeated until k centers are chosen.

Chosing good seedings speeds up convergence for K-Means, but extra time cost is occurred calculating all distances.

afkmc2.kmpp(X, k)

KMeans++ Seeding as described by Arthur and Vassilvitskii (2007)
Runtime O(nkd)

Parameters

• X (np.array) – Datapoints. Shape: (n, d)

• k (int) – Number cluster centers.

Returns Cluster centers for seeding. Shape: (k, d)

Return type np.array

Example seeds = afkmc2.kmpp(X, 3)

3

https://github.com/adriangoe/afkmc2/blob/master/afkmc2/afkmc2.py


afkmc2 Documentation, Release .1

K-Means Markov Chain Monte Carlo

KMC^2 was proposed as an improvement over K-Means++ in 2016 [kmc2]. While K-Means++ requires k full passes
over the dataset, KMC^2 replaces the D^2 sampling step with Markov Chain Monte Carlo sampling. Runtime is no
longer tied to number of datapoints while new centers will be chosen far from current centers.

afkmc2.kmc2(X, k, m=200)

KMC^2 Seeding as described by Bachem, Lucic, Hassani and Krause (2016)
Runtime O(mk^2d)

Parameters

• X (np.array) – Datapoints. Shape: (n, d)

• k (int) – Number cluster centers.

• m (int) – Length of Markov Chain. Default 200

Returns Cluster centers for seeding. Shape: (k, d)

Return type np.array

Example seeds = afkmc2.kmc2(X, 3)

Assumption Free KMC^2

AFKMC^2 is an improvement proposed by the same authors [afkmc2]. While KMC^2 requires assumptions about
the data generating distribution (in our implementation uniformity), this algorithm works without such assumptions. It
the true D^2-sampling distribution with regards to the first center c_1 as a proposal distribution that can approximate
nonuniform distributions.

This means an added runtime cost of O(nd) to calculate the initial distribution, but performance improvements for
nonuniform samples.

afkmc2.afkmc2(X, k, m=200)

AFKMC^2 Seeding as described by Bachem, Lucic, Hassani and Krause (2016)
Runtime O(nd + mk^2d)

Parameters

• X (np.array) – Datapoints. Shape: (n, d)

• k (int) – Number cluster centers.

• m (int) – Length of Markov Chain. Default 200

Returns Cluster centers for seeding. Shape: (k, d)

Return type np.array

Example seeds = afkmc2.afkmc2(X, 3)

Cached AFKMC^2

The author of this package proposed this slight runtime improvement for AFKMC^2 (it could also be applied to
KMC^2). Since the first O(nd) pass already calculates all distances between X and c_1 we can at minimum save

4 Chapter 2. Reference



afkmc2 Documentation, Release .1

ourselves k*m distance calculations by storing these results to be reused in the Markov Chain. This comes with an
additional space cost of O(nk).

The savings are highest for small datasets but can yield significant runtime improvement for very large/high-
dimensional ones as well.

afkmc2.afkmc2_c(X, k, m=200)

Cached AFKMC^2 Seeding based on AFKMC
as described by Bachem, Lucic, Hassani and Krause (2016)

Caching addition to prevent duplicate work for small datasets
Additional space cost during execution O(nk)
Runtime O(nd + mk^2d)

Parameters

• X (np.array) – Datapoints. Shape: (n, d)

• k (int) – Number cluster centers.

• m (int) – Length of Markov Chain. Default 200

Returns Cluster centers for seeding. Shape: (k, d)

Return type np.array

Example seeds = afkmc2.afkmc2_c(X, 3)

References

Seeding Demonstration

Iris Dataset

An easy way to see the quality of the seedings chosen by each of these algorithms is visualizing the seed choices on
top of the frequently used “Iris” dataset in sklearn.

2.2. Seeding Demonstration 5



afkmc2 Documentation, Release .1

We easily see that each algorithm finds reasonable choices for seeds that barely differ from each other. These seedings
allow KMeans to categorize the data well, we can see that by comparing tot he ground truth shown below. Clusters
with random seedings are shown below as well, we see that KMeans still converges at a good solution since this is an
easy problem, but the number of iterations needed to get there was higher.

6 Chapter 2. Reference



afkmc2 Documentation, Release .1

We expect KM++ and AFKMC2 to have the highest quality seedings while KMC2 might in some cases suffer from a
poor choice of assumed distribution. The main difference between KM++ and AFKMC2 will be visible when looking
at runtime.

Runtime Comparison

The time complexity of using one of the KMC^2 approaches over KM++ clearly shows for larger datasets.

Average Runtime for 50 passes, 40 dimensions and 3 centers

Size KM++ KMC2 AFKMC2 AFKMC2C
200 .0031 .0054 .0133 .0107
1000 .014 .0053 .0204 .01899
5000 .07838 .00556 .05683 .058771
20000 .29286 .00529 .17766 .188594
100000 .59260 .0057 .87167 .929336

While on a set with 200 observations and 40 dimensions KM++ outperforms the others, the MCMC approaches bring
large time savings for datasets with 2000+ observations. We can still feel the one pass over n in the AF approaches, but
if the number of centers increases KM++ would feel a strong increase in runtime while AFKMC2 is barely affected as
shown below.

Size K Dimensions KM++ KMC2 AFKMC2 AFKMC2C
100000 3 40 .59260 .0057 .87167 .929336
100000 6 40 6.9294 .01998 1.4054 1.47619
100000 3 80 1.5638 .00559 .86605 .924057
500 20 80 .43924 .20874 .28856 .173561

2.2. Seeding Demonstration 7



afkmc2 Documentation, Release .1

We notice that the proposed addition of caching reduces performances in situations with numbers of observations.
This is due to the fact that we save between (1-k)*m and .5*(1-k)^2*m passes over the data. Since MCMC does
not need to increase m for large datasets we will only save slightly above 1200 calculations for the case with 6 centers
and 100000 points but still have to do at least 101000 calculations. Only the last example shows a case in which the
time saving due to caching is significant and clearly outperforms all other cases since in a dataset with 500 points we
are more likely to have duplicates among our 200 points in the Markov Chain.

Demo Code on GitHub.

8 Chapter 2. Reference

https://github.com/adriangoe/afkmc2/blob/master/afkmc2/demo.py


Bibliography

[kmpp] Arthur, D., & Vassilvitskii, S. (2007, January). k-means++: The advantages of careful seeding. In Proceedings
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (pp. 1027-1035). Society for Industrial
and Applied Mathematics.

[kmc2] Bachem, O., Lucic, M., Hassani, S. H., & Krause, A. (2016, February). Approximate K-Means++ in Sublinear
Time. In AAAI (pp. 1459-1467).

[afkmc2] Bachem, O., Lucic, M., Hassani, H., & Krause, A. (2016). Fast and Provably Good Seedings for k-Means.
In Advances in Neural Information Processing Systems (pp. 55-63).

9



afkmc2 Documentation, Release .1

10 Bibliography



Index

A
afkmc2() (in module afkmc2), 4
afkmc2_c() (in module afkmc2), 5

K
kmc2() (in module afkmc2), 4
kmpp() (in module afkmc2), 3

11


	Introduction
	Usage
	Installation
	Contribute
	Support
	License

	Reference
	Seeding Reference
	Seeding Demonstration

	Bibliography

