
aduana Documentation
Release 1.0

Pedro López-Adeva Fernández-Layos

June 23, 2015

Contents

1 Introduction 3
1.1 Components . 3
1.2 Installation . 3

2 Python library 5
2.1 Installation . 5
2.2 Using Scrapy/Frontera with Aduana . 5
2.3 Single spider backend . 6
2.4 Distributed spider backend . 6
2.5 Running the examples . 8

3 C Library 11
3.1 CrawledPage . 11
3.2 PageInfo . 14
3.3 PageDB . 15
3.4 PageInfoList . 19
3.5 LinkStream . 20
3.6 HashInfoStream . 22
3.7 HashIdxStream . 22
3.8 DomainTemp . 23
3.9 Error handling . 25
3.10 TxnManager . 26
3.11 BFScheduler . 28
3.12 Scorer . 31
3.13 PageRankScorer . 32
3.14 Settings . 33
3.15 HitsScorer . 33
3.16 Settings . 34
3.17 PageRank . 35
3.18 Hits . 37
3.19 MMapArray . 40

4 Indices and tables 43

i

ii

aduana Documentation, Release 1.0

Contents:

Contents 1

aduana Documentation, Release 1.0

2 Contents

CHAPTER 1

Introduction

Aduana is a component to be used with a web crawler. It contains the logic to decide which page to crawl next. It
accepts as inputs crawled pages and it outputs the next pages to be crawled (requests).

Fig. 1.1: Aduana input/output

The main objectives of Aduana are:

• Speed: it must be able to output thousands of requests per second.

• Scalability: it must be able to consider billions of crawled pages.

• Intelligence: it must be able to direct the crawl to interesting pages.

1.1 Components

There are two main components right now: a C library and Python bindings.

The C library does the heavy lifting. In addition it also ships with several command line tools. It’s portable ANSI C99
code and all the necessary dependencies are bundled with the library. Ideally you should not concern yourself with
this library unless you plan to extend Aduana.

The Python bindings contain low-level bindings to the C library and also:

• Frontera backends. Frontera is an extension to Scrapy which allows to plug different crawl frontier backends.
Aduana can be used as a Frontera backend.

• An Aduana server, to be used when crawling using multiple spiders.

1.2 Installation

Use pip:

pip install aduana

3

https://github.com/scrapinghub/frontera
http://scrapy.org/

aduana Documentation, Release 1.0

4 Chapter 1. Introduction

CHAPTER 2

Python library

2.1 Installation

To install just make:

pip install aduana

It will automatically compile the C library and wrap it using CFFI. Not all parts of the C library are accessible from
python, only the necessary ones for the Frontera backends.

Apart from the python module it will also install two scripts:

• aduana-server.py

• aduana-server-cert.py

These scripts are to be used when using the Distributed spider backend.

2.2 Using Scrapy/Frontera with Aduana

Check the Frontera documentation, for general instructions about setting up Scrapy, Frontera and custom backends.
The workflow specific for Aduana is:

1. Set the backend, either as:

BACKEND = 'aduana.frontera.Backend'

or if you want to make a distributed crawl with multiple spiders as:

BACKEND = 'aduana.frontera.WebBackend'

2. Set additional options, for example:

PAGE_DB_PATH = 'test-crawl'
SCORER = 'HitsScorer'
USE_SCORES = True

3. Run your spider:

scrapy crawl your_spider_here

5

https://cffi.readthedocs.org/en/latest/
http://frontera.readthedocs.org/en/latest/

aduana Documentation, Release 1.0

2.3 Single spider backend

This backend is the easiest one to run and works by calling directly the wrapped C library. To use it set the backend
as:

BACKEND = 'aduana.frontera.Backend'

Additionally, the following setting are also used by this backend

• PAGE_DB_PATH

String with the path where you want the PageDB to be stored. Note that Aduana will actually make two
directories. One will be the one specified by PAGE_DB_PATH and the other will add the suffix _bfs. This
second directory contains the database necessary for the operation of the (best first) scheduler. If this settings is
not specified, of it is set to None, the directory will be generated randomly, with suffix frontera_ and it will
be automatically deleted when the spider is closed.

• SCORER

Strategy to use to compute final page scores. Can be one of the following:

– None

– ’HitsScorer’

– ’PageRankScorer’

• USE_SCORES

Set to True if you want that the scorer, in case that it was HITS or PageRank based merges the
content scores with link based scores. Default is False.

• SOFT_CRAWL_LIMIT

When a domain reaches this limit of crawls per second Aduana will try to make requests to other
domains. Default is 0.25.

• HARD_CRAWL_LIMIT

When a domain reaches this limit of crawls per second Aduana will stop making new requests for
this domain. Default is 100.

• PAGE_RANK_DAMPING

If the scorer is PageRank then set the damping to this value. Default is 0.85.

2.4 Distributed spider backend

This backend allows to use several spiders simultaneously, maybe at different computers to improve CPU and network
performance. It works by having a central server and several spiders connecting to it through a REST api.

The first thing you need to do is launch the server:

aduana-server.py --help

usage: aduana-server.py [-h] [--seeds [SEEDS]] [settings]

Start Aduana server.

positional arguments:
settings Path to python module containing server settings

6 Chapter 2. Python library

aduana Documentation, Release 1.0

optional arguments:
-h, --help show this help message and exit
--seeds [SEEDS] Path to seeds file

Once the server is launched press Ctrl-C to exit.

The server settings are specified in a separate file that is passed as a positional argument to the aduana-server.py
script. The reason is that they are settings that will be shared by all spiders that connect to the server.

The following server settings have the same meaning as the ones in the Single spider backend.

• PAGE_DB_PATH

• SCORER

• USE_SCORES

• SOFT_CRAWL_LIMIT

• HARD_CRAWL_LIMIT

• PAGE_RANK_DAMPING

Additionally the following settings are available:

• SEEDS

Path to the seeds file, where each line is a different URL. This setting has no default and is mandatory.
It can be specified/overriden with the --seeds option when launching the server.

• DEFAULT_REQS

If the client does not specify the desired number of requests serve this number. Default number is 10.

• ADDRESS

Server will listen on this address. Default ’0.0.0.0’.

• PORT

Server will listen on this port. Default 8000.

• PASSWDS

A dictionary mapping login name to password. If None then all connections will be accepted. Notice
that it uses BasicAuth which sends login data in plain text. If security is of concern then it is adviced
to use this option along with SSL_KEY and SSL_CERT. Default value for this setting is None.

• SSL_KEY

Path to SSL keyfile. If this setting is used then SSL_CERT must be set too and all communications
will be encrypted between server and clients using HTTPS. Default None.

• SSL_CERT

Path to SSL certificate. Default None.

The Frontera settings to use this backend are:

BACKEND = 'aduana.frontera.WebBackend'

Additionally, the following setting are also used by this backend

• SERVER_NAME

Address of the server. Default ’localhost’

• SERVER_PORT

2.4. Distributed spider backend 7

https://en.wikipedia.org/wiki/Basic_access_authentication

aduana Documentation, Release 1.0

Server port number. Default 8000.

• SERVER_CERT

Path to server certificate. If this option is set it will try to connecto to the server using HTTPS. Default
None.

2.4.1 WebBackend REST API

There are two messages exchanged between the spiders and the server.

• Crawled

When a spider crawls a page it sends a POST message to /crawled. The body is a json dictionary with the
following fields:

– url: The URL of the crawled page, ASCII encoded. This is the only mandatory field.

– score: a floating point number. If omited defaults to zero.

– links: a list links. Each element of the links is a pair made from link URL and link score.

En example message:

{ "url" : "http://scrapinghub.com",
"score": 0.5,
"links": [["http://scrapinghub.com/professional-services/", 1.0],

["http://scrapinghub.com/platform/", 0.5],
["http://scrapinghub.com/pricing/", 0.8],
["http://scrapinghub.com/clients/", 0.9]] }

• Request

When the spider needs to know which pages to crawl next it sends a GET message to /request. The query
strings accepts an optional parameter n with the maximum number of URLs. If not specified the default value
specified in the server settings will be used. The response will be a json encoded list of URLs. Example (pip
install httpie):

$ http --auth test:123 --verify=no https://localhost:8000/request n==3

HTTP/1.1 200 OK
Date: Tue, 23 Jun 2015 08:40:46 GMT
content-length: 120
content-type: application/json

[
"http://www.reddit.com/r/MachineLearning/",
"http://www.datanami.com/",
"http://venturebeat.com/tag/machine-learning/"

]

2.5 Running the examples

To run the single spider example just go to the example directory, install the requirements and run the crawl:

cd example
pip install -r requirements.txt
scrapy crawl example

8 Chapter 2. Python library

aduana Documentation, Release 1.0

To run the distributed spider example we need to dance a little more:

1. Go to the example directory:

cd example

2. Generate a server certificate:

aduana-server-cert.py

3. Launch the server:

aduana-server.py server-config.py

4. Go to the example directory in another terminal and then:

scrapy crawl -s FRONTERA_SETTINGS=example.frontera.web_settings example

2.5. Running the examples 9

aduana Documentation, Release 1.0

10 Chapter 2. Python library

CHAPTER 3

C Library

This section is aimed at developers that want to understand the architecture of the library, in order to extend it.

The library can be compiled and installed independently of the python bindings. To build and install:

cd lib
mkdir debug
cd debug
cmake .. -DCMAKE_BUILD_TYPE=Debug
make && sudo make install

When trying to understand some code I like to start with the data structures that make the inputs and the outputs of the
code. CrawledPage is the input of Aduana and the best place to start.

3.1 CrawledPage

3.1.1 Data structures

struct CrawledPage
The information that comes with a crawled page.

Public Members

char *url
ASCII, null terminated string for the page URL

PageLinks *links
List of links inside this page

double time
Number of seconds since epoch

float score
A number giving an idea of the page content’s value

char *content_hash
A hash to detect content change since last crawl. Arbitrary byte sequence

size_t content_hash_length
Number of byes of the content_hash

11

aduana Documentation, Release 1.0

The utility of CrawledPage::url and CrawledPage::links are quite obvious, the others need an explana-
tion:

• CrawledPage::time: this is used to compute how often a page changes and also it would be useful for a
revisiting schedule to know how much time has passed since the page was crawled.

• CrawledPage::score: one of the objectives of Aduana is to guide the crawl to interesting pages. Since the
definition of interesting is application dependent each crawler can give a measure of how interesting they found
the page to be. How this number will be exactly used depends on which scorer are we going to use. This field is
not mandatory and actually Aduana can be configured to ignore it.

• CrawledPage::content_hash: in order to detect if a page has changed this hash is compared with the
hash previously stored for this same page. If the hash has changed we consider that the page has changed. Notice
that the content hash is also application dependent: some applications may consider that the page has changed
only if there are new links, others will consider a page has changed if the body text, after stripping HTML tags,
has changed, etc... This field can be ignored too, in which case the pages will be considered as unchanging.

C is not known for its powerful and flexible data structures. In order to store a variable number of links per crawled
page we implement this resizable array. Each time we run out of allocated memory the size of the reserved memory is
doubled.

struct PageLinks
A (resizable) array of page links.

Initially: n_links = 0 m_links = PAGE_LINKS_MIN_LINKS

Always: 0 <= n_links <= m_links

Public Members

LinkInfo *link_info
Array of LinkInfo

size_t n_links
Number of items inside link_info

size_t m_links
Maximum number of items that can be stored inside link_info

Initially we reserve this number of links

PAGE_LINKS_MIN_LINKS
Allocate at least this amount of memory for link info

Finally, each link not only carries an URL, but also a score. The score gives an idea of how good the (maybe uncrawled)
link is, according to the web crawler. Think of the link score as an approximation to CrawledPage::score when
we have not crawled the link yet.

struct LinkInfo
The information that comes with a link inside a crawled page.

The link score is used to decide which links should be crawled next. It is application dependent and tipically
computed by looking at the link surrounding text.

Public Members

char *url
ASCII, null terminated string for the page URL

12 Chapter 3. C Library

aduana Documentation, Release 1.0

float score
An estimated value of the link score

3.1.2 Constructor/Destructor

CrawledPage *crawled_page_new(const char *url)
Create a new CrawledPage

url is a new copy

The following defaults are used for the different fields:

•links: no links initially. Use crawled_page_add_link to add some.

•time: current time

•score: 0. It can be setted directly.

•content_hash: NULL. Use crawled_page_set_hash to change

Return

NULL if failure, otherwise a newly allocated CrawledPage

void crawled_page_delete(CrawledPage *cp)
Delete a Crawled Page created with crawled_page_new

3.1.3 Manipulate links

int crawled_page_add_link(CrawledPage *cp, const char *url, float score)
Add a new link to the crawled page

const LinkInfo *crawled_page_get_link(const CrawledPage *cp, size_t i)
Get a pointer to the link

size_t crawled_page_n_links(const CrawledPage *cp)
Get number of links inside page

3.1.4 Set content hash

int crawled_page_set_hash(CrawledPage *cp, const char *hash, size_t hash_length)
Set content hash

The hash is a new copy

int crawled_page_set_hash128(CrawledPage *cp, char *hash)
Set content hash from a 128bit hash

int crawled_page_set_hash64(CrawledPage *cp, uint64_t hash)
Set content hash from a 64bit hash

int crawled_page_set_hash32(CrawledPage *cp, uint32_t hash)
Set content hash from a 32bit hash

3.1. CrawledPage 13

aduana Documentation, Release 1.0

3.2 PageInfo

3.2.1 Data structures

This structure contains all we know about a given page, and it’s changed as new CrawledPage arrive.

And here it is:

struct PageInfo
The information we keep about crawled and uncrawled pages

PageInfo are created at the PageDB, that’s why there are no public constructors/destructors available.

Public Members

char *url
A copy of either CrawledPage::url or CrawledPage::links[i]

uint64_t linked_from
The page that first linked this one

double first_crawl
First time this page was crawled

double last_crawl
Last time this page was crawled

size_t n_changes
Number of content changes detected between first and last crawl

size_t n_crawls
Number of times this page has been crawled. Can be zero if it has been observed just as a link

float score
A copy of the same field at the last crawl

size_t content_hash_length
Number of bytes in PageInfo::content_hash

char *content_hash
Byte sequence with the hash of the last crawl

3.2.2 Constructor/Destructor

There is no constructor available for this structure. The reason is that they are automatically created from the info
inside CrawledPage when page_db_add() is called.

void page_info_delete(PageInfo *pi)
Destroy PageInfo if not NULL, otherwise does nothing

3.2.3 Functions

int page_info_print(const PageInfo *pi, char *out)
Write printed representation of PageInfo.

14 Chapter 3. C Library

aduana Documentation, Release 1.0

This function is intended mainly for debugging and development. The representation is: first_crawl last_crawl
n_crawls n_changes url

Each field is separated with an space. The string is null terminated. We use the following format for each field:

•first_crawl: the standard fixed size (24 bytes) as output by ctime. For example: Mon Jan 1 08:01:59 2015

•last_crawl: the same as first_crawl

•n_crawls: To ensure fixed size representation this value is converted to double and represented in expo-
nential notation with two digits. It has therefore always 8 bytes length: 1.21e+01

•n_changes: The same as n_crawls

•url: This is the only variable length field. However, it is truncated at 512 bytes length.

Return

size of representation or -1 if error

Parameters

• pi - The PageInfo to be printed

• out - The output buffer, which must be at least 580 bytes long

float page_info_rate(const PageInfo *pi)
Estimate change rate of the given page. If no valid rate can be computed return -1.0, otherwise a valid nonnega-
tive change rate.

3.3 PageDB

This is one of the main components of the library. Here we store all the PageInfo and how pages are linked between
them.

The first thing to understand is that there are two different ways to refer to a given page, using either the URL hash or
the index. Both ways of addressing the page are linked in the hash2idx database.

3.3.1 URL hash

The URL hash is computed using the following function:

uint64_t page_db_hash(const char *url)
Hash function used to convert from URL to hash.

The hash is a 64 bit number where the first 32 bits are a hash of the domain and the last 32 bits are a hash of
the full URL. In this way all URLs whith the same domain get grouped together in the database. This has some
good consequences:

1.We can access all pages inside a domain by accessing the first of them in the database and moving sequen-
tially.

2.When streaming links this improves locality since pages in the same domain tend to have similar links.

When a new CrawledPage arrives we compute the hash of CrawledPage::url and use this as the key inside
the hash2info database, to retrieve the associated PageInfo. If no entry is found inside the database a new one is
created. We do the same with each one of the links inside CrawledPage::links.

The following two functions are useful to extract the different parts of the hash.

3.3. PageDB 15

aduana Documentation, Release 1.0

uint32_t page_db_hash_get_domain(uint64_t hash)
Extract the domain hash from the full hash

uint32_t page_db_hash_get_url(uint64_t hash)
Extract the URL hash from the full hash

3.3.2 Index

We could store links between pages using their URL hash, for example, as a list of pairs of the form:

004619df1e9191ff 004619df1eb839e2
004619df1e9191ff 004619df1f1a5477
004619df01e223ae 00115773f1ea355c
...

However the hashing would spoil one interesting property of links: locality. Locality means that pages usually link to
pages inside their same domain. For example, here are the first links extracted from the front page of Wikipedia:

https://en.wikipedia.org/wiki/Main_Page#mw-head
https://en.wikipedia.org/wiki/Main_Page#p-search
https://en.wikipedia.org/wiki/Wikipedia
https://en.wikipedia.org/wiki/Free_content
https://en.wikipedia.org/wiki/Encyclopedia
https://en.wikipedia.org/wiki/Wikipedia:Introduction
https://en.wikipedia.org/wiki/Special:Statistics
https://en.wikipedia.org/wiki/English_language

Locality can also happen when there are several links outgoing to the same domain, but a different one of the originat-
ing page. For example, from among the 135 links at the front page of Hacker News more than 100 remained on the
same domain but there were also the following groups:

http://www.ycombinator.com/
http://www.ycombinator.com/apply/

https://github.com/blog/2024-read-only-deploy-keys
https://github.com/whamtet/Excel-REPL
https://github.com/tadast/switching-to-contracting-uk/blob/master/README.md
https://github.com/HackerNews/API

Instead of storing links using the URL hash we instead assign each page an integer, that starts at zero with the first
page and it’s automatically incremented when a new page is added to the database. Links are stored then as lists where
the first element is the originating page index and the rest of the elements are the indices of the outoging links. For
example, taken from a real crawl:

7 1243 1245 1251 1254 1260 1262 1263
1264 1267 1269 1271 1274 1275 1276
1277 1280 1283 1286 1289 1291 1295
1309 1311 ...

Since we want be able to perform big crawls with billions of pages we use 64 bit integers for the indices, which
means they still take as much space as the URL hashes. However, these links are delta-encoded: starting at the second
element of the list we substract the previous one:

7 2 6 3 6 2 1 1 3 2 2 3 1 1 1 3 3 3 3 2 4 14 2 ...

Finally we use varint encoding for each integer. As you can see in the above example each link requires just 8 bits,
instead of the 64 bits (or 32 bits if somehow we could reuse the domain part of the hash) URL hashing would.

16 Chapter 3. C Library

https://en.wikipedia.org/wiki/Main_Page
https://news.ycombinator.com/
https://developers.google.com/protocol-buffers/docs/encoding#varints

aduana Documentation, Release 1.0

Having indices instead of hashes is also convenient for the PageRank and HITS algorithms. They can store the pages
scores using arrays where the position of each page inside those arrays are just their index. Having fast O(1) access
time greatly improves the speed of the computation when using billions of pages. Besides, locality also helps access
speed, even when working in-memory.

The index for a given page is automatically created when page_db_add() is called.

3.3.3 Data structures

struct PageDB
Page database.

We are really talking about 4 diferent key/value databases:

•info: contains fixed size information about the whole database. Right now it just contains the number of
pages stored.

•hash2idx: maps URL hash to index. Indices are consecutive identifier for every page. This allows to map
pages to elements inside arrays.

•hash2info: maps URL hash to a PageInfo structure.

•links: maps URL index to links indices. This allows us to make a fast streaming of all links inside a
database.

Public Members

char *path
Path to the database directory

TxnManager *txn_manager
The transaction manager counts the number of read and write transactions active and is capable of safely
performing a database resize

DomainTemp *domain_temp
Track the most crawled domains

int persist
If true, do not delete files after deleting object

enum PageDBError
Values:

page_db_error_ok = 0
No error

page_db_error_memory
Error allocating memory

page_db_error_invalid_path
File system error

page_db_error_internal
Unexpected error

page_db_error_no_page
A page was requested but could not be found

3.3. PageDB 17

aduana Documentation, Release 1.0

3.3.4 Constructor/Destructor

PageDBError page_db_new(PageDB **db, const char *path)
Creates a new database and stores data inside path

Return

0 if success, otherwise the error code

Parameters

• db - In case of page_db_error_memory *db could be NULL. In case of other failures it is nevertheles
allocated memory so that the error code and message can be accessed.

• path - Path to directory. In case it doesn’t exist it will created. If it exists and a database is already
present operations will resume with the existing database. Note that you must have read, write and
execute permissions for the directory.

PageDBError page_db_delete(PageDB *db)
Close database

Close database, delete files if it should not be persisted, and free memory

3.3.5 Add page

PageDBError page_db_add(PageDB *db, const CrawledPage *page, PageInfoList **page_info_list)
Update PageDB with a new crawled page

It performs the following actions:

•Compute page hash

•If the page is not already into the database:

–It generates a new ID and stores it in hash2idx

–It creates a new PageInfo and stores it in hash2info

•If already present if updates the PageInfo inside hash2info

•For each link:

–Compute hash

–If already present in the database just retrieves the ID

–If not present:

*Generate new ID and store it in hash2idx

*Creates a new PageInfo and stores it in hash2info

•Create or overwrite list of Page ID -> Links ID mapping inside links database

Return

0 if success, otherwise the error code

Parameters

• db - The database to update

• page - The information of the crawled page

18 Chapter 3. C Library

aduana Documentation, Release 1.0

• page_info_list - If not NULL this function will allocate and populate a new PageInfoList which
contains the PageInfo of the updated pages. It is your responsability to call when you no longer need
this structure.

3.3.6 Get info from database

PageDBError page_db_get_info(PageDB *db, uint64_t hash, PageInfo **pi)
Retrieve the PageInfo stored inside the database.

Beware that if not found it will signal success but the PageInfo will be NULL

PageDBError page_db_get_idx(PageDB *db, uint64_t hash, uint64_t *idx)
Get index for the given URL

PageDBError page_db_get_scores(PageDB *db, MMapArray **scores)
Build a MMapArray with all the scores

float page_db_get_domain_crawl_rate(PageDB *db, uint32_t domain_hash)
Get crawl rate for the given domain

3.3.7 Database settings

void page_db_set_persist(PageDB *db, int value)
Set persist option for database

PageDBError page_db_set_domain_temp(PageDB *db, size_t n_domains, float window)
Set domain temperature tracking options

3.3.8 Export database

This functions are used by the page_db_dump command line utility.

PageDBError page_db_info_dump(PageDB *db, FILE *output)
Dump database to file in human readable format

PageDBError page_db_links_dump(PageDB *db, FILE *output)
Dump database to file in human readable format

3.4 PageInfoList

This structure exists just because page_db_add() needs a way of returning which pages had their info cre-
ated/modified. This information is necessary for schedulers. It’s just a linked list so we are not going to make more
comments about it.

3.4.1 Data structures

struct PageInfoList
A linked list of PageInfo (and hash), to be returned by page_db_add

3.4. PageInfoList 19

aduana Documentation, Release 1.0

Public Members

uint64_t hash
Hash inside the hash2info database

PageInfo *page_info
Info inside the hash2info database

struct PageInfoList *next
A pointer to the next element, or NULL

3.4.2 Constructor/Destructor

PageInfoList *page_info_list_new(PageInfo *pi, uint64_t hash)
Create a new PageInfoList, with just one element.

Return

A pointer to the first element of the list, or NULL if failure

Parameters

• pi - The PageInfo to add. From this point it is the property of the list, so deleting the list deletes this
element.

• hash -

void page_info_list_delete(PageInfoList *pil)
Deletes the list and all its contents

3.4.3 Functions

PageInfoList *page_info_list_cons(PageInfoList *pil, PageInfo *pi, uint64_t hash)
Add a new element to the head of the list.

Return

A pointer to the first element of the list, or NULL if failure

Parameters

• pi - The PageInfo to add. From this point it is the property of the list, so deleting the list deletes this
element.

• hash -

3.5 LinkStream

Maybe the most interesting stream going out of PageDB is the link stream, because it’s the main interface between
PageDB and the different scorers like PageRank and HITS. This stream outputs a list of Link, which are just pairs
of from and to indices. Right now, because of the way links are stored inside the database the stream groups together
all the links with the same from index, however this could change in the future and it’s actually not necessary for the
current PageRank or HITS implementations.

The reason for using a link stream is that when billions of pages are crawled the size of the links database can grow to
several hundreds of megabytes.

20 Chapter 3. C Library

aduana Documentation, Release 1.0

3.5.1 Data structures

struct PageDBLinkStream

Public Members

MDB_cursor *cur
PageDB where links database is stored Cursor to the links database

uint64_t from
Current page

uint64_t *to
A list of links

size_t n_to
Number of links

size_t i_to
Current position inside to

size_t m_to
Allocated memory for to. It must be that n_to <= m_to.

size_t n_diff
Number of out domain links

int only_diff_domain
If true only links that go to a different domain will be streamed

struct Link

3.5.2 Constructor/Destructor

void page_db_link_stream_delete(PageDBLinkStream *es)
Delete link stream and free any transaction hold inside the database.

3.5.3 Functions

The signature of these functions use void because they must agree with the following interfaces:

typedef StreamState(LinkStreamNextFunc)(void *state, Link *link)

for

StreamState page_db_link_stream_next(void *es, Link *link)
Get next element inside stream.

Return

::link_stream_state_next if success

and

typedef StreamState(LinkStreamResetFunc)(void *state)

for

3.5. LinkStream 21

aduana Documentation, Release 1.0

StreamState page_db_link_stream_reset(void *es)
Rewind stream to the beginning

3.6 HashInfoStream

3.6.1 Data structures

This is used by the command line utility page_db_find, which iterates over all the pages and returns which ones have
their URL matching some regexp.

struct HashInfoStream
Stream over HashInfo inside PageDB

Public Members

MDB_cursor *cur
Cursor to info database

3.6.2 Constructor/Destructor

PageDBError hashinfo_stream_new(HashInfoStream **st, PageDB *db)
Create a new stream

void hashinfo_stream_delete(HashInfoStream *st)
Free stream

3.6.3 Functions

StreamState hashinfo_stream_next(HashInfoStream *st, uint64_t *hash, PageInfo **pi)
Get next element in stream

3.7 HashIdxStream

This is used in two different places. The first one is the command line utility page_db_links which returns which pages
link or are linked from other page.

The other more important use case is inside schedulers, which after pages scores are updated, need to iterate over all
of them to see which ones have changed enough to be rescheduled.

3.7.1 Data structures

struct HashIdxStream
Stream over hash/index pairs inside PageDB

Public Members

MDB_cursor *cur
Cursor to the hash2idx database

22 Chapter 3. C Library

aduana Documentation, Release 1.0

3.7.2 Constructor/Destructor

PageDBError hashidx_stream_new(HashIdxStream **st, PageDB *db)
Create a new stream

void hashidx_stream_delete(HashIdxStream *st)
Free stream

3.7.3 Functions

StreamState hashidx_stream_next(HashIdxStream *st, uint64_t *hash, size_t *idx)
Get next element in stream

3.8 DomainTemp

This is used inside PageDB to track how many times the most often domains are crawled. This information will in
turn be used by the scheduler, which will try to not serve requests for the most crawled domains.

Ideally, for each domain we would store a (growing) list of timestamps when some page in the domain has been
crawled. With this list in hand we could answer questions like How many times the domain has been crawled in the
last 60 seconds?. Instead of that we make the following approximation: imagine that we store only how many times
the domain has been crawled in the last 𝑇 seconds. We don’t know how the crawls have been distributed in that time,
it could be that thay are distributed all at the beginning:

or maybe following some strange pattern:

Instead we will assume they are evenly distributed:

Now, if some time 𝑡 is elapsed without any more crawled, how many crawls remain in the time window?

The answer is that since there are 𝑛 crawls evenly distributed then there are 𝑛/𝑇 crawls per second, and then 𝑛 𝑡
𝑇 have

moved out of the time window.

𝑛(𝑡0 + 𝑡)− 𝑛(𝑡0) = 𝑛(𝑡0)
𝑡

𝑇

If 𝑡 → 𝑑𝑡 then we have the following differential equation:

𝑑𝑛

𝑑𝑡
= − 1

𝑇
𝑛

The solution of the above equation is obviously:

𝑛(𝑡) = 𝑛(0)𝑒−
𝑡
𝑇

And 𝑛 would evolve following some similar shape to:

The above figure has a time window of just 2 seconds and there are crawls at instants 1, 2.5, 2.6, 2.7, 4 and 5.

3.8. DomainTemp 23

aduana Documentation, Release 1.0

3.8.1 Data structures

struct DomainTemp
Tracks how “hot” are the most crawled domains.

We want to avoid crawling the same domain repeatedly. For this purpose this structure tracks how many times a
domain has been crawled in the specified time window. For performance reasons an approximation of the actual
number of crawls is maintained. Under certain assumptions it can be shown that if ‘n’ is the number of crawled
for a domain it follows the following (cool down) differential equation:

𝑑𝑛

𝑑𝑡
= − 1

𝑇
𝑛

where 𝑇 is the time window.

Public Members

DomainTempEntry *table
An array of domain/temperature pairs

size_t length
Length of DomainTemp::table

float time
Last time temperatures were updated

float window
Time window to consider in the cooldown

struct DomainTempEntry
Associate a domain hash with a temperature

Public Members

uint32_t hash
Domain hash

float temp
Domain temperature: an estimation of how many times the domain has been crawled in the time window

3.8.2 Constructor/Destructor

DomainTemp *domain_temp_new(size_t length, float window)
Create a new domain temp tracking structure

Return

A pointer to the new struct of NULL if failure

Parameters

• length - Maximum number of domains to track

• window - Time window

24 Chapter 3. C Library

aduana Documentation, Release 1.0

void domain_temp_delete(DomainTemp *dh)
Free memory

3.8.3 Functions

void domain_temp_update(DomainTemp *dh, float t)
Updates temp up to current time t

void domain_temp_heat(DomainTemp *dh, uint32_t hash)
Adds another count to domain.

If the domain already in already tracked its counter is incremented. If the domain is not present then we try to
initialize it in an empty slot. If not empty slot is available then the domain with fewest crawls is replaced with
the new domain if its counter is below 1.

float domain_temp_get(DomainTemp *dh, uint32_t hash)
Gets domain temp

3.9 Error handling

Errors are signaled in the following ways:

• For functions not returning pointers 0 means success and any other value some kind of failure. Usually an
enumeration of error codes is defined, otherwise -1 is used as failure code.

• For functions returning pointers failure is signaled returning a null pointer.

• If the causes of error are varied enough the structures inside this library have an Error structure, which contains
the error code and an error message. The error message usually resembles an stack trace to aid debugging the
problem.

3.9.1 Data structures

MAX_ERROR_LENGTH
Maximum length of error message

struct Error

Public Members

pthread_mutex_t mtx
Make operations on errors atomic.

If an error is produced dealing with this mutex it will be silently ignored

int code
Error code, depends on the application but 0 always signals no error

char message[MAX_ERROR_LENGTH+1]
A descriptive message associated with the error code. If no error then it contains “NO ERROR”

3.9. Error handling 25

aduana Documentation, Release 1.0

3.9.2 Constructor/Destructor

void error_init(Error *error)
Initialize structure.

Error code is set to 0 and message to “NO ERROR”.

void error_destroy(Error *error)
Clean up. Will NOT free error

Error *error_new(void)
Allocate and initialize a new error structure

void error_delete(Error *error)
Destroy and free an error structure

3.9.3 Functions

void error_set(Error *error, int code, const char *msg)
Set error.

If an error is already present then do nothing. If you want to overwrite an already existing error then first call
error_clean

void error_clean(Error *error)
Clean error.

Error code is set to 0 and the message to NO ERROR.

void error_add(Error *error, const char *msg)
Add a description message to the existing message and leaves as is the error code

const char *error_message(const Error *error)
Return error message if error, otherwise NULL

int error_code(const Error *error)
Return error code

3.10 TxnManager

3.10.1 Data structures

struct TxnManager
Transaction Manager.

LMDB has several restrictions in the operations it allows in multiple threads, but some of these restrictions must
be imposed in the application code. In particular:

1.Some operations require that no transactions in the same process are active, for example
mdb_env_set_mapsize

2.Some operations require that no write transactions are active. For example it is not documented, but it
seems to happen that, mdb_env_info crashes if write transactions are active.

This structure tracks the number of read and write transactions active inside the process and allows blocking
until all of them are aborted or commited.

26 Chapter 3. C Library

aduana Documentation, Release 1.0

Public Members

MDB_env *env
LMDB environment where transactions happen

InvSemaphore txn_counter_read
Counter of read transactions

InvSemaphore txn_counter_write
Counter of write transactions

struct InvSemaphore
Inverse Semaphore.

An inverse semaphore blocks when the count is greater than zero (a regular semaphore blocks when the count
is at zero).

enum TxnManagerError
Values:

txn_manager_error_ok = 0
No error

txn_manager_error_internal
Unexpected error

txn_manager_error_memory
Error allocating new memory

txn_manager_error_thread
Error inside pthreads

txn_manager_error_mdb
Error inside LMDB

3.10.2 Constructor/Destructor

TxnManagerError txn_manager_new(TxnManager **tm, MDB_env *env)
Allocate a new TxnManager

Return

0 if success, otherwise error code.

Parameters

• tm - The new transaction manager.

• env - The LMDB environment where transactions will be opened, aborted or commited.

TxnManagerError txn_manager_delete(TxnManager *tm)
Destroy and free manager

3.10.3 Functions

The following functions are wrappers around the corresponding ones in LMDB. They will increment/decrement auto-
matically the read and write transactions counters.

3.10. TxnManager 27

aduana Documentation, Release 1.0

TxnManagerError txn_manager_begin(TxnManager *tm, int flags, MDB_txn **txn)
Begin a new transaction.

Return

0 if success, otherwise error code.

Parameters

• tm -

• flags - The flags that you pass to LMDB’s mdb_txn_begin. These flags will be checked for
MDB_RDONLY to decide which transaction counter to increment. This operation will block if an
environment resize is in progress.

• txn - New transaction.

TxnManagerError txn_manager_commit(TxnManager *tm, MDB_txn *txn)
Commit transaction.

The corresponding counter will be decremented

TxnManagerError txn_manager_abort(TxnManager *tm, MDB_txn *txn)
Abort transaction.

The corresponding counter will be decremented

The following function is the main reason for the existence of TxnManager.

TxnManagerError txn_manager_expand(TxnManager *tm)
Check if the environment must be resized. If this is the case then resize it.

This call will block for sure until there are no write transactions active. This call may block until there are no
read transactions active, only if a resize is necessary.

If a resize happens then creation of new read and write transactions will be blocked until it finishes.

MDB_MINIMUM_FREE_PAGES
Parameter associated to txn_manager_expand.

The mmap is resized when the remaining free space is less than this amount.

3.11 BFScheduler

3.11.1 Data structures

BF_SCHEDULER_DEFAULT_SIZE
Size of the mmap to store the schedule

BF_SCHEDULER_DEFAULT_PERSIST
Default value for BFScheduler::persist

struct BFScheduler
BestFirst scheduler.

As it name implies this scheduler follows a greedy strategy to decide which page is going to crawl next. It mains
an ordered list of uncrawled pages. To decide the next page to be crawled this scheduler picks the highest score
page and removes it from the top of the list.

28 Chapter 3. C Library

aduana Documentation, Release 1.0

The key is then to assign valid scores to the pages. If no scorer is selected this scheduler will use the
score provided when the page is crawled. Additionally an alternative scorer can be set up, see for example
page_rank_scorer_setup or hits_scorer_setup.

Public Members

PageDB *page_db
Page database

The page database is neither created nor destroyed by the scheduler. The rationale is that the scheduler can
be changed while using the same PageDB. The schedule is “attached” to the PageDB.

Scorer *scorer
The scorer use to get page score.

If not set up, the PageInfo.score will be used

TxnManager *txn_manager
The scheduler state is maintained inside am LMDB environment

char *path
Path to the env

It is built by appending _bfs to the PageDB::path

int persist
If true, do not delete files after deleting object

float max_soft_domain_crawl_rate
Maximum crawls per second per domain

float max_hard_domain_crawl_rate
Maximum crawls per second per domain

enum BFSchedulerError
Values:

bf_scheduler_error_ok = 0
No error

bf_scheduler_error_memory
Error allocating memory

bf_scheduler_error_invalid_path
File system error

bf_scheduler_error_internal
Unexpected error

bf_scheduler_error_thread
Error inside the threading library

3.11.2 Constructor/Destructor

BFSchedulerError bf_scheduler_new(BFScheduler **sch, PageDB *db)
Allocate memory and create a new scheduler

Return

0 if success, otherwise the error code

3.11. BFScheduler 29

aduana Documentation, Release 1.0

Parameters

• sch - Where to create it. *sch can be NULL in case of memory error

• db - PageDB to attach. Remember it will not be created nor destroyed by the scheduler

void bf_scheduler_delete(BFScheduler *sch)
Delete scheduler.

It may or may not delete associated disk files depending on the BFScheduler::persist flag

3.11.3 Input/Output

BFSchedulerError bf_scheduler_add(BFScheduler *sch, const CrawledPage *page)
Add a new crawled page

It will add the page also to the PageDB.

Return

0 if success, otherwise the error code

Parameters

• sch -

• page -

BFSchedulerError bf_scheduler_request(BFScheduler *sch, size_t n_pages, PageRequest **request)
Add a new crawled page

It will add the page also to the PageDB.

Return

0 if success, otherwise the error code

Parameters

• sch -

• page -

3.11.4 Update scores

BF_SCHEDULER_UPDATE_BATCH_SIZE
Size of the batch used in updating the schedule.

Updating the schedule involves starting a write transaction. However write transactions coming from multiple
threads are serialized. Since adding new pages to the schedule and returning requests also start write transactions
it means that the update thread could block this more critical operations. To avoid this we avoid long write
transactions and split them in batches.

BF_SCHEDULER_UPDATE_NUM_PAGES
Don’t update scores until this amount of new pages has arrived

BF_SCHEDULER_UPDATE_PER_PAGES
Don’t update scores until this percentage of new pages has arrived

30 Chapter 3. C Library

aduana Documentation, Release 1.0

BFSchedulerError bf_scheduler_update_start(BFScheduler *sch)
Start the update thread.

The update thread will run periodically the scorer, in case there is one, to recompute page scores.

BFSchedulerError bf_scheduler_update_stop(BFScheduler *sch)
Stop the update thread

3.11.5 Settings

void bf_scheduler_set_persist(BFScheduler *sch, int value)
Set persist option for scheduler

BF_SCHEDULER_CRAWL_RATE_STEPS
Number of steps to take between soft and hard crawl rate limit

BFSchedulerError bf_scheduler_set_max_domain_crawl_rate(BFScheduler *sch, float
max_soft_crawl_rate, float
max_hard_crawl_rate)

Set BFScheduler::max_soft_domain_crawl_rate and BFScheduler::max_hard_domain_crawl_rate

3.12 Scorer

struct Scorer
Scorers are responsible of computing a measure between 0 and 1 of the relevance of a given page.

In order to be used in different schedulers they must obey the following interface.

Public Members

void *state
Scorer specific state

ScorerUpdateFunc *update
Update scorer

ScorerAddFunc *add
Add new page to scorer

ScorerGetFunc *get
Get a page score

typedef int(ScorerUpdateFunc)(void *state)
Scorer update function interface

typedef int(ScorerAddFunc)(void *state, const PageInfo *page_info, float *score)
Scorer add page function interface

typedef int(ScorerGetFunc)(void *state, size_t idx, float *score_old, float *score_new)
Scorer get page score function

To see concrete implementations have a look at PageRankScorer and HitsScorer.

3.12. Scorer 31

aduana Documentation, Release 1.0

3.13 PageRankScorer

3.13.1 Data structures

PAGE_RANK_SCORER_USE_CONTENT_SCORES
Default value for PageRankScorer::use_content_scores

PAGE_RANK_SCORER_PERSIST
Default value for PageRankScorer::persist

struct PageRankScorer

Public Members

PageRank *page_rank
Implementation of the PageRank algorithm

PageDB *page_db
Database with crawl information

Error *error
Error status

int persist
If true files will not be removed by page_rank_scorer_delete

int use_content_scores
If true use content scores inside PageRank algorithm

enum PageRankScorerError
Values:

page_rank_scorer_error_ok = 0
No error

page_rank_scorer_error_memory
Error allocating memory

page_rank_scorer_error_internal
Unexpected error

page_rank_scorer_error_precision
Could not achieve precision in maximum number of loops

3.13.2 Constructor/Destructor

PageRankScorerError page_rank_scorer_new(PageRankScorer **prs, PageDB *db)
Create new scorer

PageRankScorerError page_rank_scorer_delete(PageRankScorer *prs)
Delete scorer.

Files will be deleted unles PageRankScorer::persist is true

32 Chapter 3. C Library

aduana Documentation, Release 1.0

3.13.3 Functions

int page_rank_scorer_add(void *state, const PageInfo *page_info, float *score)
Add new page to scorer.

Function signature complies with Scorer::add

int page_rank_scorer_get(void *state, size_t idx, float *score_old, float *score_new)
Access PageRank scorer as with page_rank_get.

Function signature complies with Scorer::get

int page_rank_scorer_update(void *state)
Update scores.

Function signature complies with Scorer::update

void page_rank_scorer_setup(PageRankScorer *prs, Scorer *scorer)
Given a Scorer fill its fields with the necessary info

3.14 Settings

void page_rank_scorer_set_persist(PageRankScorer *prs, int value)
Sets PageRankScorer::persist

void page_rank_scorer_set_use_content_scores(PageRankScorer *prs, int value)
Sets PageRankScorer::use_content_scores

void page_rank_scorer_set_damping(PageRankScorer *prs, float value)
Sets PageRankScorer::page_rank::damping

3.15 HitsScorer

3.15.1 Data structures

HITS_SCORER_USE_CONTENT_SCORES
Default value for HitsScorer::use_content_scores

HITS_SCORER_PERSIST
Default value for HitsScorer::persist

struct HitsScorer

Public Members

Hits *hits
Implementation of the HITS algorithm

PageDB *page_db
Database with crawl information

Error *error
Error status

int persist
If true files will not be removed by page_rank_scorer_delete

3.14. Settings 33

aduana Documentation, Release 1.0

int use_content_scores
If true use content scores inside PageRank algorithm

enum HitsScorerError
Values:

hits_scorer_error_ok = 0
No error

hits_scorer_error_memory
Error allocating memory

hits_scorer_error_internal
Unexpected error

hits_scorer_error_precision
Could not achieve precision in maximum number of loops

3.15.2 Constructor/Destructor

HitsScorerError hits_scorer_new(HitsScorer **hs, PageDB *db)
Create new scorer

HitsScorerError hits_scorer_delete(HitsScorer *hs)
Delete scorer.

Files will be deleted unles HitsScorer::persist is true

3.15.3 Functions

int hits_scorer_add(void *state, const PageInfo *page_info, float *score)
Add new page to scorer.

Function signature complies with Scorer::add

int hits_scorer_get(void *state, size_t idx, float *score_old, float *score_new)
Access HITS scorer as with hits_get_authority.

Function signature complies with Scorer::get

int hits_scorer_update(void *state)
Update scores.

Function signature complies with Scorer::update

void hits_scorer_setup(HitsScorer *hs, Scorer *scorer)
Given a Scorer fill its fields with the necessary info

3.16 Settings

void hits_scorer_set_persist(HitsScorer *hs, int value)
Sets HitsScorer::persist

void hits_scorer_set_use_content_scores(HitsScorer *hs, int value)
Sets HitsScorer::use_content_scores

34 Chapter 3. C Library

aduana Documentation, Release 1.0

3.17 PageRank

3.17.1 Data structures

PAGE_RANK_DEFAULT_DAMPING
Default PageRank::damping

PAGE_RANK_DEFAULT_MAX_LOOPS
Default PageRank::max_loops

PAGE_RANK_DEFAULT_PRECISION
Default PageRank::precision

PAGE_RANK_DEFAULT_PERSIST
Default PageRank::persist

struct PageRank
Implementation of the PageRank algorithm.

See for example Wikipedia.

Additionally, it allows to merge the pure link based original algorithm with page content scores.

Public Members

MMapArray *out_degree
Number of outgoing links.

If page content scores are used then this array is actually the aggregated scores of all the outgoing links.

MMapArray *value1
PageRank value, old iteration

MMapArray *value2
PageRank value, new iteration

size_t n_pages
Number of pages

char *path_out_degree
Path to the out degree mmap array file

char *path_pr
Path to page rank mmap array file

Error *error
Error status

float damping
Probability of making a random page jump: 1.0 - damping

MMapArray *scores
External computed scores associated with the pages

float total_score
Total score

size_t max_loops
If greater than 0 stop computation even if precision was not achieved

3.17. PageRank 35

http://en.wikipedia.org/wiki/PageRank

aduana Documentation, Release 1.0

float precision
Stop iteration when the the largest change in any page score is below this threshold

int persist
If true, do not delete files after deleting

enum PageRankError
Values:

page_rank_error_ok = 0
No error

page_rank_error_memory
Error allocating memory

page_rank_error_internal
Unexpected error

page_rank_error_precision
Could not achieve precision in maximum number of loops

3.17.2 Constructor/Destructor

PageRankError page_rank_new(PageRank **pr, const char *path, size_t max_vertices)
Create a new structure.

Return

0 if success, otherwise an error code.

Parameters

• pr - The new structure is returned here. NULL if memory error.

• path - Directory where all files will be stored.

• max_vertices - Initial hint of the number of pages.

PageRankError page_rank_delete(PageRank *pr)
Free memory and close associated resources.

Files will be deleted or not depending on the value of PageRank::persist.

3.17.3 Functions

PageRankError page_rank_set_n_pages(PageRank *pr, size_t n_pages)
Reserve memory for the specified number of pages

PageRankError page_rank_compute(PageRank *pr, void *link_stream_state, LinkStreamNextFunc
*link_stream_next, LinkStreamResetFunc *link_stream_reset)

Compute PageRank score for all pages.

The algorithm makes random access of pages scores and sequential access of the links.

Return

0 if success, otherwise an error code.

Parameters

• pr -

36 Chapter 3. C Library

aduana Documentation, Release 1.0

• link_stream_state - For example PageDBLinkStream

• link_stream_next - For example page_db_link_stream_next

• link_stream_reset - For example page_db_link_stream_reset

PageRankError page_rank_get(const PageRank *pr, size_t idx, float *score_old, float *score_new)
Get PageRank score associated to a given page.

Return

0 if success, otherwise an error code.

Parameters

• pr -

• idx - Page index.

• score_old - Score on the previous call to page_rank_compute.

• score_new - Score on the last call to page_rank_compute.

void page_rank_set_persist(PageRank *pr, int value)
Set value of PageRank::persist

3.18 Hits

3.18.1 Data structures

HITS_DEFAULT_MAX_LOOPS
Default Hits::max_loops

HITS_DEFAULT_PRECISION
Default Hits::precision

HITS_DEFAULT_PERSIST
Default Hits::persist

struct Hits
Implementation of the HITS algorithm.

See for example Wikipedia.

Additionally, it allows to merge the pure link based original algorithm with page content scores. The idea is that
the authority scores are distributed back to the hub according to the content score. For example imagine that
page A links to B, C and D and the content/authority scores are:

-B: 0.5 / 0.1 -C: 0.1 / 1.0 -D: 0.9 / 0.5

Then the hub score of A would be computed as:

Hub(A) = 0.5*0.1 + 0.1*1.0 + 0.9*0.5

Public Members

MMapArray *h1
Hub score, previous iteration

3.18. Hits 37

http://en.wikipedia.org/wiki/HITS_algorithm

aduana Documentation, Release 1.0

MMapArray *h2
Hub score, current iteration

MMapArray *a1
Authority score, previous iteration

MMapArray *a2
Authority score, current iteration

char *path_h1
Path to mmap file of Hits::h1

char *path_h2
Path to mmap file of Hits::h2

size_t n_pages
Number of pages

Error *error
Error status

MMapArray *scores
External computed scores associated with the pages

size_t max_loops
If greater than 0 stop computation even if precision was not achieved

float precision
Stop iteration when the the largest change in any page score is below this threshold

int persist
If true, do not delete files after deleting object

enum HitsError
Values:

hits_error_ok = 0
No error

hits_error_memory
Error allocating memory

hits_error_internal
Unexpected error

hits_error_precision
Could not achieve precision in maximum number of loops

3.18.2 Constructor/Destructor

HitsError hits_new(Hits **hits, const char *path, size_t max_vertices)
Create a new structure.

Return

0 if success, otherwise an error code.

Parameters

• pr - The new structure is returned here. NULL if memory error.

• path - Directory where all files will be stored.

38 Chapter 3. C Library

aduana Documentation, Release 1.0

• max_vertices - Initial hint of the number of pages.

HitsError hits_delete(Hits *hits)
Free memory and close associated resources.

Files will be deleted or not depending on the value of Hits::persist.

3.18.3 Functions

HitsError hits_set_n_pages(Hits *hits, size_t n_pages)
Reserve memory for the specified number of pages

HitsError hits_compute(Hits *hits, void *link_stream_state, LinkStreamNextFunc *link_stream_next,
LinkStreamResetFunc *link_stream_reset)

Compute HITS score for all pages.

The algorithm makes random access of pages scores and sequential access of the links.

Return

0 if success, otherwise an error code.

Parameters

• pr -

• link_stream_state - For example PageDBLinkStream

• link_stream_next - For example page_db_link_stream_next

• link_stream_reset - For example page_db_link_stream_reset

HitsError hits_get_hub(const Hits *pr, size_t idx, float *score_old, float *score_new)
Get hub score associated to a given page.

Return

0 if success, otherwise an error code.

Parameters

• pr -

• idx - Page index.

• score_old - Score on the previous call to hits_compute.

• score_new - Score on the last call to hits_compute.

HitsError hits_get_authority(const Hits *pr, size_t idx, float *score_old, float *score_new)
Get authority score associated to a given page.

Return

0 if success, otherwise an error code.

Parameters

• pr -

• idx - Page index.

• score_old - Score on the previous call to hits_compute.

3.18. Hits 39

aduana Documentation, Release 1.0

• score_new - Score on the last call to hits_compute.

void hits_set_persist(Hits *hits, int value)
Set value of Hits::persist

3.19 MMapArray

3.19.1 Data structures

struct MMapArray
A memory mapped array

Public Members

char *mem
Pointer to data

int fd
File descriptor for data

char *path
Path to data file

size_t n_elements
Number of elements

size_t element_size
Size of each element

int persist
If true, do not delete files after deleting object

enum MMapArrayError
Values:

mmap_array_error_ok = 0
No error

mmap_array_error_memory
Error allocation memory

mmap_array_error_internal
Unexpected error

mmap_array_error_mmap
Error with a mmap operation (creation, unmapping, advise...)

mmap_array_error_file
Error manipulating the file system

mmap_array_error_out_of_bounds
Tried to access array past boundaries

40 Chapter 3. C Library

aduana Documentation, Release 1.0

3.19.2 Constructor/Destructor

MMapArrayError mmap_array_new(MMapArray **marr, const char *path, size_t n_elements, size_t ele-
ment_size)

Create a new MMapArray

Return

0 if success, otherwise the error code (also available in marr if not NULL)

Parameters

• marr - Will be changed to point to the newly allocated structure, or NULL if failure

• path - Path to the associated file. Can be NULL in which case the mapping is made anonymous.

• n_elements - Number of elements (can be changed later with mmap_array_resize)

• element_size - Number of bytes of each element

MMapArrayError mmap_array_delete(MMapArray *marr)
Delete MMapArray

If the structure cannot be deleted, the memory will not be freed

Return

0 if success, otherwise the error code (also available in marr)

3.19.3 Functions

MMapArrayError mmap_array_advise(MMapArray *marr, int flag)
Advise memory use pattern

It accepts any flag that madvise accepts

Return

0 if success, otherwise the error code (also available in marr)

MMapArrayError mmap_array_sync(MMapArray *marr, int flag)
Force memory-disk syncronization

It accepts any flag that msync accepts

Return

0 if success, otherwise the error code (also available in marr)

void *mmap_array_idx(MMapArray *marr, size_t n)
Returns pointer to the array element

Return

In case of failure it will return NULL. The error code is available in marr

MMapArrayError mmap_array_set(MMapArray *marr, size_t n, const void *x)
Set array element value

3.19. MMapArray 41

aduana Documentation, Release 1.0

Return

0 if success, otherwise the error code (also available in marr)

void mmap_array_zero(MMapArray *marr)
Set all elements of array to zero

MMapArrayError mmap_array_resize(MMapArray *marr, size_t n_elements)
Change number of elements

The new memort is initialized to 0

Return

0 if success, otherwise the error code (also available in marr)

42 Chapter 3. C Library

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

43

aduana Documentation, Release 1.0

44 Chapter 4. Indices and tables

Index

B
bf_scheduler_add (C++ function), 30
BF_SCHEDULER_CRAWL_RATE_STEPS (C macro),

31
BF_SCHEDULER_DEFAULT_PERSIST (C macro), 28
BF_SCHEDULER_DEFAULT_SIZE (C macro), 28
bf_scheduler_delete (C++ function), 30
bf_scheduler_error_internal (C++ class), 29
bf_scheduler_error_invalid_path (C++ class), 29
bf_scheduler_error_memory (C++ class), 29
bf_scheduler_error_ok (C++ class), 29
bf_scheduler_error_thread (C++ class), 29
bf_scheduler_new (C++ function), 29
bf_scheduler_request (C++ function), 30
bf_scheduler_set_max_domain_crawl_rate (C++ func-

tion), 31
bf_scheduler_set_persist (C++ function), 31
BF_SCHEDULER_UPDATE_BATCH_SIZE (C macro),

30
BF_SCHEDULER_UPDATE_NUM_PAGES (C macro),

30
BF_SCHEDULER_UPDATE_PER_PAGES (C macro),

30
bf_scheduler_update_start (C++ function), 30
bf_scheduler_update_stop (C++ function), 31
BFScheduler (C++ class), 28
BFScheduler::max_hard_domain_crawl_rate (C++ mem-

ber), 29
BFScheduler::max_soft_domain_crawl_rate (C++ mem-

ber), 29
BFScheduler::page_db (C++ member), 29
BFScheduler::path (C++ member), 29
BFScheduler::persist (C++ member), 29
BFScheduler::scorer (C++ member), 29
BFScheduler::txn_manager (C++ member), 29
BFSchedulerError (C++ type), 29

C
crawled_page_add_link (C++ function), 13
crawled_page_delete (C++ function), 13

crawled_page_get_link (C++ function), 13
crawled_page_n_links (C++ function), 13
crawled_page_new (C++ function), 13
crawled_page_set_hash (C++ function), 13
crawled_page_set_hash128 (C++ function), 13
crawled_page_set_hash32 (C++ function), 13
crawled_page_set_hash64 (C++ function), 13
CrawledPage (C++ class), 11
CrawledPage::content_hash (C++ member), 11
CrawledPage::content_hash_length (C++ member), 11
CrawledPage::links (C++ member), 11
CrawledPage::score (C++ member), 11
CrawledPage::time (C++ member), 11
CrawledPage::url (C++ member), 11

D
domain_temp_delete (C++ function), 25
domain_temp_get (C++ function), 25
domain_temp_heat (C++ function), 25
domain_temp_new (C++ function), 24
domain_temp_update (C++ function), 25
DomainTemp (C++ class), 24
DomainTemp::length (C++ member), 24
DomainTemp::table (C++ member), 24
DomainTemp::time (C++ member), 24
DomainTemp::window (C++ member), 24
DomainTempEntry (C++ class), 24
DomainTempEntry::hash (C++ member), 24
DomainTempEntry::temp (C++ member), 24

E
Error (C++ class), 25
Error::code (C++ member), 25
Error::message (C++ member), 25
Error::mtx (C++ member), 25
error_add (C++ function), 26
error_clean (C++ function), 26
error_code (C++ function), 26
error_delete (C++ function), 26
error_destroy (C++ function), 26

45

aduana Documentation, Release 1.0

error_init (C++ function), 26
error_message (C++ function), 26
error_new (C++ function), 26
error_set (C++ function), 26

H
hashidx_stream_delete (C++ function), 23
hashidx_stream_new (C++ function), 23
hashidx_stream_next (C++ function), 23
HashIdxStream (C++ class), 22
HashIdxStream::cur (C++ member), 22
hashinfo_stream_delete (C++ function), 22
hashinfo_stream_new (C++ function), 22
hashinfo_stream_next (C++ function), 22
HashInfoStream (C++ class), 22
HashInfoStream::cur (C++ member), 22
Hits (C++ class), 37
Hits::a1 (C++ member), 38
Hits::a2 (C++ member), 38
Hits::error (C++ member), 38
Hits::h1 (C++ member), 37
Hits::h2 (C++ member), 37
Hits::max_loops (C++ member), 38
Hits::n_pages (C++ member), 38
Hits::path_h1 (C++ member), 38
Hits::path_h2 (C++ member), 38
Hits::persist (C++ member), 38
Hits::precision (C++ member), 38
Hits::scores (C++ member), 38
hits_compute (C++ function), 39
HITS_DEFAULT_MAX_LOOPS (C macro), 37
HITS_DEFAULT_PERSIST (C macro), 37
HITS_DEFAULT_PRECISION (C macro), 37
hits_delete (C++ function), 39
hits_error_internal (C++ class), 38
hits_error_memory (C++ class), 38
hits_error_ok (C++ class), 38
hits_error_precision (C++ class), 38
hits_get_authority (C++ function), 39
hits_get_hub (C++ function), 39
hits_new (C++ function), 38
hits_scorer_add (C++ function), 34
hits_scorer_delete (C++ function), 34
hits_scorer_error_internal (C++ class), 34
hits_scorer_error_memory (C++ class), 34
hits_scorer_error_ok (C++ class), 34
hits_scorer_error_precision (C++ class), 34
hits_scorer_get (C++ function), 34
hits_scorer_new (C++ function), 34
HITS_SCORER_PERSIST (C macro), 33
hits_scorer_set_persist (C++ function), 34
hits_scorer_set_use_content_scores (C++ function), 34
hits_scorer_setup (C++ function), 34
hits_scorer_update (C++ function), 34

HITS_SCORER_USE_CONTENT_SCORES (C macro),
33

hits_set_n_pages (C++ function), 39
hits_set_persist (C++ function), 40
HitsError (C++ type), 38
HitsScorer (C++ class), 33
HitsScorer::error (C++ member), 33
HitsScorer::hits (C++ member), 33
HitsScorer::page_db (C++ member), 33
HitsScorer::persist (C++ member), 33
HitsScorer::use_content_scores (C++ member), 33
HitsScorerError (C++ type), 34

I
InvSemaphore (C++ class), 27

L
Link (C++ class), 21
LinkInfo (C++ class), 12
LinkInfo::score (C++ member), 12
LinkInfo::url (C++ member), 12

M
MAX_ERROR_LENGTH (C macro), 25
MDB_MINIMUM_FREE_PAGES (C macro), 28
mmap_array_advise (C++ function), 41
mmap_array_delete (C++ function), 41
mmap_array_error_file (C++ class), 40
mmap_array_error_internal (C++ class), 40
mmap_array_error_memory (C++ class), 40
mmap_array_error_mmap (C++ class), 40
mmap_array_error_ok (C++ class), 40
mmap_array_error_out_of_bounds (C++ class), 40
mmap_array_idx (C++ function), 41
mmap_array_new (C++ function), 41
mmap_array_resize (C++ function), 42
mmap_array_set (C++ function), 41
mmap_array_sync (C++ function), 41
mmap_array_zero (C++ function), 42
MMapArray (C++ class), 40
MMapArray::element_size (C++ member), 40
MMapArray::fd (C++ member), 40
MMapArray::mem (C++ member), 40
MMapArray::n_elements (C++ member), 40
MMapArray::path (C++ member), 40
MMapArray::persist (C++ member), 40
MMapArrayError (C++ type), 40

P
page_db_add (C++ function), 18
page_db_delete (C++ function), 18
page_db_error_internal (C++ class), 17
page_db_error_invalid_path (C++ class), 17

46 Index

aduana Documentation, Release 1.0

page_db_error_memory (C++ class), 17
page_db_error_no_page (C++ class), 17
page_db_error_ok (C++ class), 17
page_db_get_domain_crawl_rate (C++ function), 19
page_db_get_idx (C++ function), 19
page_db_get_info (C++ function), 19
page_db_get_scores (C++ function), 19
page_db_hash (C++ function), 15
page_db_hash_get_domain (C++ function), 15
page_db_hash_get_url (C++ function), 16
page_db_info_dump (C++ function), 19
page_db_link_stream_delete (C++ function), 21
page_db_link_stream_next (C++ function), 21
page_db_link_stream_reset (C++ function), 21
page_db_links_dump (C++ function), 19
page_db_new (C++ function), 18
page_db_set_domain_temp (C++ function), 19
page_db_set_persist (C++ function), 19
page_info_delete (C++ function), 14
page_info_list_cons (C++ function), 20
page_info_list_delete (C++ function), 20
page_info_list_new (C++ function), 20
page_info_print (C++ function), 14
page_info_rate (C++ function), 15
PAGE_LINKS_MIN_LINKS (C macro), 12
page_rank_compute (C++ function), 36
PAGE_RANK_DEFAULT_DAMPING (C macro), 35
PAGE_RANK_DEFAULT_MAX_LOOPS (C macro), 35
PAGE_RANK_DEFAULT_PERSIST (C macro), 35
PAGE_RANK_DEFAULT_PRECISION (C macro), 35
page_rank_delete (C++ function), 36
page_rank_error_internal (C++ class), 36
page_rank_error_memory (C++ class), 36
page_rank_error_ok (C++ class), 36
page_rank_error_precision (C++ class), 36
page_rank_get (C++ function), 37
page_rank_new (C++ function), 36
page_rank_scorer_add (C++ function), 33
page_rank_scorer_delete (C++ function), 32
page_rank_scorer_error_internal (C++ class), 32
page_rank_scorer_error_memory (C++ class), 32
page_rank_scorer_error_ok (C++ class), 32
page_rank_scorer_error_precision (C++ class), 32
page_rank_scorer_get (C++ function), 33
page_rank_scorer_new (C++ function), 32
PAGE_RANK_SCORER_PERSIST (C macro), 32
page_rank_scorer_set_damping (C++ function), 33
page_rank_scorer_set_persist (C++ function), 33
page_rank_scorer_set_use_content_scores (C++ func-

tion), 33
page_rank_scorer_setup (C++ function), 33
page_rank_scorer_update (C++ function), 33
PAGE_RANK_SCORER_USE_CONTENT_SCORES

(C macro), 32

page_rank_set_n_pages (C++ function), 36
page_rank_set_persist (C++ function), 37
PageDB (C++ class), 17
PageDB::domain_temp (C++ member), 17
PageDB::path (C++ member), 17
PageDB::persist (C++ member), 17
PageDB::txn_manager (C++ member), 17
PageDBError (C++ type), 17
PageDBLinkStream (C++ class), 21
PageDBLinkStream::cur (C++ member), 21
PageDBLinkStream::from (C++ member), 21
PageDBLinkStream::i_to (C++ member), 21
PageDBLinkStream::m_to (C++ member), 21
PageDBLinkStream::n_diff (C++ member), 21
PageDBLinkStream::n_to (C++ member), 21
PageDBLinkStream::only_diff_domain (C++ member),

21
PageDBLinkStream::to (C++ member), 21
PageInfo (C++ class), 14
PageInfo::content_hash (C++ member), 14
PageInfo::content_hash_length (C++ member), 14
PageInfo::first_crawl (C++ member), 14
PageInfo::last_crawl (C++ member), 14
PageInfo::linked_from (C++ member), 14
PageInfo::n_changes (C++ member), 14
PageInfo::n_crawls (C++ member), 14
PageInfo::score (C++ member), 14
PageInfo::url (C++ member), 14
PageInfoList (C++ class), 19
PageInfoList::hash (C++ member), 20
PageInfoList::next (C++ member), 20
PageInfoList::page_info (C++ member), 20
PageLinks (C++ class), 12
PageLinks::link_info (C++ member), 12
PageLinks::m_links (C++ member), 12
PageLinks::n_links (C++ member), 12
PageRank (C++ class), 35
PageRank::damping (C++ member), 35
PageRank::error (C++ member), 35
PageRank::max_loops (C++ member), 35
PageRank::n_pages (C++ member), 35
PageRank::out_degree (C++ member), 35
PageRank::path_out_degree (C++ member), 35
PageRank::path_pr (C++ member), 35
PageRank::persist (C++ member), 36
PageRank::precision (C++ member), 35
PageRank::scores (C++ member), 35
PageRank::total_score (C++ member), 35
PageRank::value1 (C++ member), 35
PageRank::value2 (C++ member), 35
PageRankError (C++ type), 36
PageRankScorer (C++ class), 32
PageRankScorer::error (C++ member), 32
PageRankScorer::page_db (C++ member), 32

Index 47

aduana Documentation, Release 1.0

PageRankScorer::page_rank (C++ member), 32
PageRankScorer::persist (C++ member), 32
PageRankScorer::use_content_scores (C++ member), 32
PageRankScorerError (C++ type), 32

S
Scorer (C++ class), 31
Scorer::add (C++ member), 31
Scorer::get (C++ member), 31
Scorer::state (C++ member), 31
Scorer::update (C++ member), 31

T
txn_manager_abort (C++ function), 28
txn_manager_begin (C++ function), 27
txn_manager_commit (C++ function), 28
txn_manager_delete (C++ function), 27
txn_manager_error_internal (C++ class), 27
txn_manager_error_mdb (C++ class), 27
txn_manager_error_memory (C++ class), 27
txn_manager_error_ok (C++ class), 27
txn_manager_error_thread (C++ class), 27
txn_manager_expand (C++ function), 28
txn_manager_new (C++ function), 27
TxnManager (C++ class), 26
TxnManager::env (C++ member), 27
TxnManager::txn_counter_read (C++ member), 27
TxnManager::txn_counter_write (C++ member), 27
TxnManagerError (C++ type), 27

48 Index

	Introduction
	Components
	Installation

	Python library
	Installation
	Using Scrapy/Frontera with Aduana
	Single spider backend
	Distributed spider backend
	Running the examples

	C Library
	CrawledPage
	PageInfo
	PageDB
	PageInfoList
	LinkStream
	HashInfoStream
	HashIdxStream
	DomainTemp
	Error handling
	TxnManager
	BFScheduler
	Scorer
	PageRankScorer
	Settings
	HitsScorer
	Settings
	PageRank
	Hits
	MMapArray

	Indices and tables

