
    
      Navigation

      
        	
          index

        	
          next |

        	Adhocracy 2.0dev documentation 
 
      

    


    
      
          
            
  
Welcome to Adhocracy’s documentation!

Adhocracy is a web-based platform that allows disperse groups to engage in
a constructive process to draft proposals which will then represent the
group’s opinions and eventually its decisions regarding a given subject.

Contents:


Development documentation



	Architecture
	Database and model classes

	Indexing/Searching

	Authentication and Permissions





	Internal API Documentation
	Core polling logic

	Delegation management and traversal

	Database models and helper classes

	Template Variables





	Update translations
	Translations for contributors

	Translations for developers





	Add and run tests
	Add a new test

	Run all tests

	Run one test file












REST interface (outdated)


Warning

This is the documentation for the REST interface. Unfortunately
it is outdated and parts of the interface may not work anymore.





	REST API Conventions
	Data Submission

	Authentication and Security

	Pagination





	REST Resources
	/instance - Group/Organization Instances

	/user - User Management

	/proposal - Proposal drafting

	/poll - Poll data and voting

	/comment - Commenting and comment history

	/delegation - Vote delegation management














Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2010, Friedrich Lindenberg.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Adhocracy 2.0dev documentation 
 
      

    


    
      
          
            
  
Architecture


Database and model classes


Overview

We have 4 top level content classes user work with:


	page.Page

	When the user creates a Norm (respectively Paper, or german
“Papier”) through the web interface, he is internally creating a
Page with the page.Page.function set to
page.Page.NORM. The text of the page is saved in
Text objects in page.Page.texts, that may have different
variants.

Page is a subclass of delegateable.Delegateable.



	proposal.Proposal

	The actual text of the proposal is saved as a Page object with the
Page.function page.Page.DESCRIPTIION
in an attribute page.Page.description.

In a Page a user can propose changes to a Page (Norm). These are saved as
selection.Selection objects (see below).

Proposal is a subclass of delegateable.Delegateable.



	milestone.Milestone

	A Milestone is used to represent a date or a deadline. Each Delegtable
have a relation to one Milestone.

	comment.Comment

	Comments can be created for delegateable.Delegateable
objects.  The reference to the Delegateable is available as
comment.Comment.topic.  Each comment is associated with a
poll.Poll to rate content.  If it is an answer to another
Comment this is referenced with comment.Comment.reply_id. The
text of an comment is stored as a revision.Revision. If a comment
is edited, a new Revision is created. Revisions have similar
function for Comments like Texts have for Pages.



Some of the more interesting models and support classes are:


	selection.Selection

	A Selection is a “reference” object for the relation between
Pages (Norms) and Proposals and stores additional information,
especially when the relation was created or removed.

	text.Text

	Text objects are only used to save text for page.Page
objects. See Page.

	revision.Revision

	Store the text of a Comment. Similar to Text. See Comment.

	poll.Poll

	A Poll is an object representing a particular poll process a
:class:Comment, :class:Proposal or :class:Page/Norm
Single votes relate to the :class:Poll object.

	vote.Vote

	A Vote is a single vote from a user. It knows about the user whose vote
it is, and if it was a delegated vote the useris of the delegatee that
voted for the user.

	delegation.Delegation

	Created when a user delegates the voting to an delegatee. It knows
about the user who (principal_id) delegated, who is the delegatee
(agent_id) for which poll (scope_id - the id of the delegateable
object).

	delegateable.Delegateable

	Base class for Pages and Proposals for which a user can delegate
the voting. Sqlalchemy’s joint table inheritance is used.

	tally.Tally

	A Tally saves the linear history of the :class:Poll noting which
vote occured and what is the sum number of for/against/abstains.

	watch.Watch

	Users can subscribe to content changes and will be notified depending
settings in their preferences. A Watch object is created
in these cases.

	meta.Indexable

	Mixin class for content that should be indexed in Solr. It defines only
one method meta.Indexable.to_index() that collects data from
the models and will be uses automatically when a model object participates
in a transaction.



Almost all model classes have a classmethod .create() to create
a new instance of the model and setup the necessary data or relationships.
Furthermore methods like .find() and .all() as convenient query
method that support limiting the query to the current
model.instance.Instance or in-/exclude deleted model instances.




Diagrams

Tables


[image: ../_images/adhocracy-tables.png]
Diagram of the mapped tables




[image: ../_images/adhocracy-classes.png]
Diagramm of all model classes




Updating the diagrams

To update the diagramms install graphviz [http://www.graphviz.org/] and easy_install
sqlalchemy_schemadisplay [http://pypi.python.org/pypi/sqlalchemy_schemadisplay/] into the environment adhocracy is installed in.
Then run python /adhocracy/scripts/generate-db-diagrams.py. It will
create the diagrams as GIF files. Finally replace the GIF files in
adhocracy/docs/development with the new versions.






Delegateables

A user can delegate his vote to another user for
comment.Comment,
proposal.Proposal and
page.Page. This functionality is enabled by
inheriting from Delegateable

Inheritance is done with sqlalchemy’s joint table inheritance [http://www.sqlalchemy.org/docs/orm/inheritance.html#joined-table-inheritance] where the
delegateable table is polymorphic on delegateable.Delegateable.type




Page Models

The model class page.Page has 2 uses in adhocracy that are
differentiated by the value of page.Page.function.


	A Page represents a Norm if page.Page.function is
page.Page.NORM. This is the primary usage of Page.

	For every proposal.Proposal a page is created
and available as proposal.Proposal.description
to manage the text and text versions of the proposal.
page.Page.function is page.Page.DESCRIPTION in this case.



Pages are delegateable and inherit from delegateable.Delegateable.


Variants and Versions

The text of the Page is not saved in the page table but created as a
text.Text object. A page can contain different
variants of the text, and for each variant an arbitrary number of versions,
e.g.:


	initial text
	version 1

	version 2

	...





	other text variant
	version 1

	version 2

	...





	...



Text variants are used for Norms. For the initial text, variant is set to
text.Text.HEAD. This text variant is handled
special in the UI and labeled Status Quo in Norms. Other variants can be
freely named. All text variants are listed in Page.variants.

Each variant can have a arbitrary number of versions. The newest version of the text is called the head (not to confuse with the default text variant
Text.HEAD). You can get the newest version of a specific variant with
Page.variant_head(). The newest versions of all variants is available
as Page.heads. A shortcut to obtain the newest version of the HEAD variant is Page.head.

Text variants are not used for pages that are used as the description of
proposal.Proposal objects
(proposal.Proposal.description).

The poll tally of a variant or all variant can be optained with
Page.variant_tally() or Page.variant_tallies()

Polls are set up per variant, not for the Page object.




Page Hierarchies

Page objects (that have the funciton Norm) can be organized in a
tree stucture by setting another Page (Norm) object as one of the
Page.parents of the current page. Parents can be an arbitrary
number of delegateable.Delegateable objects, but only one, not
already deleted Page with the Page.function Page.NORM
is allowed. Parents are taken into account when we compute a
delegation graph.

The subpages of a page are available as Page.subpages.




Other functionality

Beside that Pages have functions and attributes to handle purging,
deleting, renaming,  Selections (Page (Norm) <-> Proposal relationships) and
other things. See the api documentation for Page








Indexing/Searching

Indexing and searching is done with sql(alchemy) and solr.
Indexing with solr is done asyncronously most of the time while updates of
the rdbm is done syncronously most of the time. The asyncronous indexing
is done throug a rabbitmq job queue.


Types of search indexes

Beside rdbm intern indexes adhocracy maintains application specific indexes
(that partly act as audit trails too):


	solr’ is used for full text and tag searches. It is an document oriented
index. The index schema can be found in `adhocracy/solr/schema.xml

	new tally.Tally objects are created with every
new or changed vote and provide the current total of votes.






Update application layer indexes

adhocracy implements an sqlalchemy Mapperextension with
hooks.HookExtension that provides hook
method to sqlalchemy that will be called before and after insert,
update and delete operations for every model instance that is part
of a commit. To determinate what to do it will inspect the model instance
for fitting hook methods.

The asyncronous system roughly works like this:


	hooks defines a list of event hook
methods names that are also used as event identifiers (:const:.PREINSERT,
:const:.PREDELETE, :const:.PREUPDATE, :const:.POSTINSERT,
:const:.POSTDELETE, :const:.POSTUPDATE)

	All model classes defined in adhocracy.models.refs.TYPES
are patched by init_queue_hooks().
A function that posts a message message to the job queue
(_handle_event) is patched in as all the method names listed above.
The post to the job queue contains the the entity (model class) and
the event identifier.

	A number of callback functions is registered by
adhocracy.lib.democracy.init_democracy() with the help of
register_queue_callback() in the hooks REGISTRY

	Everytime one of the patched models is inserted, updated, or deleted,
a generic job is inserted into the jobqueue that contains the changed
model instance and the event identifier.

	The background thread (paster background <ini-file>) picks up the jobs
and calls handle_queue_message() which calls all registered
callbacks.



To have indexing and searching working propperly you need:


	a working rabbitmq

	a working solr

	a running background process to process the jobs pushed into the
rabbitmq job queue (paster background <ini-file>)



Read the install documentation for setup information.






Authentication and Permissions







          

      

      

    


    
         Copyright 2010, Friedrich Lindenberg.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Adhocracy 2.0dev documentation 
 
      

    


    
      
          
            
  
Internal API Documentation

Adhocracy does not have a public programming API. There is a plan to develop a
common Kernel interface for Liquid Democracy projects. Once such an API
becomes available, Adhocracy will be modified to implement that API.


Core polling logic




Delegation management and traversal




Database models and helper classes


Badge




Comment




Delegateable




Delegation




Event




Group




Instance




Membership




Milestone




Openid




Page




Permission




Poll




Proposal




Revision




Selection




Tag




Tagging




Tally




Text




Twitter




User




Vote




Watch






Template Variables

Pylons provides a thread local variable
pylons.tmpl_context that is available in templates a
c. The following variables are commonly or always available in
templates:


	c.instance

	A adhocracy.model.Instance object or None. It is set by
adhocracy.lib.base.BaseController from a value determinated
by adhocracy.lib.instance.DescriminatorMiddleware from the
host name.

	c.user

	A adhocracy.model.User object or None if unauthenticated.
It is set by adhocracy.lib.base.BaseController from a value
determinated by the repoze.who middleware.

	c.active_global_nav

	A str naming the current active top navigation item. It is set to
‘instance’ in adhocracy.lib.base.BaseController if the
request is made to an instance and can be overridden in any
controller.









          

      

      

    


    
         Copyright 2010, Friedrich Lindenberg.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Adhocracy 2.0dev documentation 
 
      

    


    
      
          
            
  
Update translations


Translations for contributors

We manage our translations in a Transifex project [https://www.transifex.net/projects/p/adhocracy/]. If you want to
change a translation you can go to the project page, choose your
language and click on the resource “Adhocracy”. You will get a menu
where you can download the .po file to edit it on your computer with
an application like poedit [http://www.poedit.net/] (“Download for use”). After you
translated the file you can go to the menu and upload the file. From
the menu you can also use the transifex online editor (Button: “✔
Translate now”)

It would be nice to drop us a note before you start to translate, to
adhocracy-dev@lists.liqd.net or info@liqd.net. You can also contact us
to set up a new language on transifex.




Translations for developers

Adhocracy uses Babel [http://babel.edgewall.org/] together with Transifex to manage translations.
Both are preconfigured in setup.cfg and .tx/config.


Preperations

CAUTION:: If you’re using the adhocracy.buildout [https://bitbucket.org/liqd/adhocracy.buildout] (highly
recommended) you need to use the --distribute option to
bootstrap.py to work with the preconfigured babel commands.
This document assumes that you installed the buildout in a virtualenv
“adhocracy”.

Install the transifex client [http://pypi.python.org/pypi/transifex-client] on your system.  Then add your
username and password for transifex.net to ~/.transifexrc:

[https://www.transifex.net]
hostname = https://www.transifex.net
username = <your transifex username>
password = <your transifex password>
token =






Translation workflow

All .po and .pot files should go through transifex before they are
committed. This might be annoying but unifies the formatting and
makes it easier to review commits.


Extract new messages


	Extract new messages with extract_messages. This will update
adhocracy/i18n/adhocracy.pot:

(adhocracy)/src/adhocracy$ ../../bin/adhocpy setup.py extract_messages





	Push that to transifex:

(adhocracy)/src/adhocracy$ tx push --source





	Pull all files from transifex:

(adhocracy)/src/adhocracy$ tx pull



If it skips languages the files on transifex are older than the
files on your system. See Troubleshooting.



	Commit adhocracy.pot:

(adhocracy)/src/adhocracy$ hg ci adhocracy/i18n/adhocracy.pot \
> -m 'i18n: extract new messages'










Update the translations


	Go to the transifex project and use the the online translation
editor to translate and continue with 4.

Or translate it locally. To do that make sure you have pulled the
most recent translations from transifex:

$ (adhocracy)/src/adhocracy$ tx pull  # pulls all languages or
$ (adhocracy)/src/adhocracy$ tx pull -l <language>





	Edit the .po files for your language(s).

INFO:: The prefered way to edit .po files is to use an
application like poedit [http://www.poedit.net/]. It will highlight untranslated messages
and messages that were created with fuzzy matching and will
automatically update or remove markers like , fuzzy and update
the header of the .po file.



	Push the translation to transifex:

(adhocracy)/src/adhocracy$ tx push -l <language>





	Pull the translation back:

(adhocracy)/src/adhocracy$ tx pull -l <language>





	Compile the catalogs with compile_catalog:

(adhocracy)/src/adhocracy$ ../../bin/adhocpy setup.py compile_catalog



This will also show you errors in the .po files and statistics
about the translation.



	Commit the .po and .mo files of the language(s) you translated, e.g.:

(adhocracy)/src/adhocracy$ hg ci adhocracy/i18n/de' -m 'i18n: ...'










Troubleshooting

If tx skips the languages you want to pull from the server, the local
file is most likely newer than the file on transifex.net. You can add
-d to the command to get debug output, e.g.:

tx -d pull -l de



Than you have to check which of the files to use. Copy the local file
and pull the language (with -f/–force) from transifex...:

(adhocracy)/src/adhocracy$ cd adhocracy/i18n/de/LC_MESSAGES
(adhocracy) .../de/LC_MESSAGES$ cp adhocracy.po local.po
(adhocracy) .../de/LC_MESSAGES$ tx  pull -f -l de



..and compare them. A good tool to compare is podiff from the Python
GetText Translation Toolkit [https://launchpad.net/pyg3t] (which you can install from source of
from their ubuntu ppa). It contains several other tools to work with
po-files. You might have to give the -r (relax) option to podiff.

(adhocracy) .../de/LC_MESSAGES$ podiff local.po adhocracy.po



(There is also another podiff package [http://pypi.python.org/pypi/podiff] on pypi.)




Babel command


	(adhocracy)/src/adhocracy$ ../../bin/adhocpy setup.py extract_messages

	Extract the messages from the python files and templates into
adhocracy/i18n/adhocracy.pot

	(adhocracy)/src/adhocracy$ ../../adhocpy setup.py compile_catalog

	Compile the .po files for all languages to .mo files.



The babel command update_catalog should not be used anymore. Use the
tx client instead.











          

      

      

    


    
         Copyright 2010, Friedrich Lindenberg.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Adhocracy 2.0dev documentation 
 
      

    


    
      
          
            
  
Add and run tests

Before every commit you have to run all tests. Every new feature
has to have a good test coverage. You should use Test Driven Develpment
(http://en.wikipedia.org/wiki/Test-driven_development) and Acceptance Test
Driven Develpment. Acceptance Tests correspondence to user stories
(http://en.wikipedia.org/wiki/User_story). They use TestBrowser
sessions and reside inside the functional tests directory.


Add a new test


	``Go to (adhocracy)/src/adhocracy/adhocracy/tests and add you test

	(http://pylonsbook.com/en/1.1/testing.html).






Run all tests

In an adhocracy.buildout [https://bitbucket.org/liqd/adhocracy.buildout] you have bin/test. Alternatively you can call:

(adhocracy)$ bin/nosetests --with-pylons=src/adhocracy/test.ini src/adhocracy/adhocracy/tests``






Run one test file

(adhocracy)/src/adhocracy/$ ../../bin/nosetest -s adhocracy.tests.test_module



The -s option enables stdout, so you can use pdb/ipdb statements in your code.







          

      

      

    


    
         Copyright 2010, Friedrich Lindenberg.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Adhocracy 2.0dev documentation 
 
      

    


    
      
          
            
  
Warning

This is the documentation for the REST interface. Unfortunately
it is outdated and parts of the interface may not work anymore.




REST API Conventions

Adhocracy provides a REST-inspired API for client applications to
remotely gather or submit data or to synchronize Adhocracy sign-ups
and voting processes with other sites.

While at the moment only JSON and RSS is produced and only JSON is
processed by the software, future support for other formats, such as
XML (i.e. StratML, EML) is planned.


Data Submission

All data submitted is expected to be either URL-encoded (for GET requests)
or application/x-www-form-urlencoded (i.e. formatted as an HTML form, for
either POST and PUT requests). Accept/Content-type based submission of
JSON/XML data will be implemented in a later release.

A meta parameter called _method is evaluated for each request to fake a
request method if needed. This is useful for older HTTP libraries or
JavaScript clients which cannot actually perform any of the more exotic
HTTP methods, such as PUT and DELETE.




Authentication and Security

Authentication can take place either via form-based cookie creation
(POST login and password to /perform_login) or via HTTP
Basic authentication (i.e. via HTTP headers).

Please note that for any write action using a cookie-based session,
the site will expect an additional request parameter, _tok, containing
a session ID. This is part of Adhocracy’s CSRF filter and it will
not apply to requests made using HTTP Basic authentication. Since the value
of _tok is not returned by the API, it is recommended to use HTTP Basic
for any API applications.

OAuth-based authorization is planned for a future release and will
allow for token-based access to specific resources or operations.




Pagination

Many listings in Adhocracy are powered by a common pager system. Each
pager has a specific prefix (e.g. proposals_) and a set of request
parameters that can be used to influence the pager:


	[prefix]_page: The page number to retrieve, i.e. page offset.

	[prefix]_count: Number of items to retrieve per page.

	[prefix]_sort: Sorting key. These are somewhat erratically numbered and need to be redone in the future.

	[prefix]_q (in some cases): A search query used to filter the items.









          

      

      

    


    
         Copyright 2010, Friedrich Lindenberg.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          previous |

        	Adhocracy 2.0dev documentation 
 
      

    


    
      
          
            
  
Warning

This is the documentation for the REST interface. Unfortunately
it is outdated and parts of the interface may not work anymore.




REST Resources


/instance - Group/Organization Instances


index


	List all existing and non-hidden instances.

	URL: http://[instance].adhocracy.cc/instance[.format]

	Method: GET

	Formats: html, json

	Authentication: no

	Pager prefix: instances_






create


	Create a new instance for a group or organization.

	URL: http://[instance].adhocracy.cc/instance[.format]

	Method: POST

	Formats: html, json

	Authentication: yes

	Parameters:
	key: A unique identifier for the instance. Short lower-case alpha-numeric text. This cannot be edited after the instance creation.

	label: A title for the instance.

	description: Short description for the instance, e.g. a mission statement.










show


	View an instance’s home page or base data

	URL: http://[instance].adhocracy.cc/instance/[key][.format]

	Method: GET

	Formats: html, json

	Authentication: no

	Note: If no instance subdomain has been specified, this will 302 to the actual instance.






update


	Update some of an instance’s properties.

	URL: http://[instance].adhocracy.cc/instance/[key][.format]

	Method: PUT

	Formats: html, json

	Authentication: yes

	Parameters:
	label: A title for the instance.

	description: Short description for the instance, e.g. a mission statement.

	required_majority: The percentage of voters required for the adoption of a proposal (e.g. 0.66 for 66%).

	activation_delay: Delay (in days) that a proposal needs to maintain a majority to be adopted.

	allow_adopt: Whether to allow adoption polls on proposals (bool).

	allow_delegate: Whether to enable delegated voting (bool).

	allow_index: Allow search engine indexing (via robots.txt, bool).

	hidden: Show instance in listings.

	default_group: Default group for newly joined members (one of: observer, advisor, voter, supervisor).










delete


	Delete an instance and all contained entities.

	URL: http://[instance].adhocracy.cc/instance/[key][.format]

	Method: DELETE

	Formats: html, json

	Authentication: yes (requires global admin rights)

	Note: This will also delete all contained items, such as proposals, delegations, polls or comments.






activity


	Retrieve a list of the latest events relating to this instance.

	URL: http://[instance].adhocracy.cc/instance/[key]/activity[.format]

	Method: GET

	Formats: html, rss

	Authentication: no

	Pager prefix: events_






join


	Make the authenticated user a member of this Instance.

	URL: http://[instance].adhocracy.cc/instance/[key]/join[.format]

	Method: GET

	Formats: html

	Authentication: yes

	Note: Fails if the user is already a member of the instance.






leave


	Terminate the authenticated user’s membership in this Instance.

	URL: http://[instance].adhocracy.cc/instance/[key]/leave[.format]

	Method: POST

	Formats: html

	Authentication: yes

	Note: Fails if the user is not a member of the instance.








/user - User Management


index


	List all users with an active membership in the specified instance.

	URL: http://[instance].adhocracy.cc/user[.format]

	Method: GET

	Formats: html, json

	Authentication: no

	Pager prefix: users_

	Parameters:
	users_q: A search query to filter with.

	users_filter: Filter by membership group (only in an instance context).





	Note: If no instance is specified, all registered users will be returned.






create


	Create a new user.

	URL: http://[instance].adhocracy.cc/user[.format]

	Method: POST

	Formats: html, json

	Authentication: no

	Parameters:
	user_name: A unique user name for the new user.

	email: An email, must be validated.

	password: A password, min. 3 characters.

	password_confirm: Must be identical to password.





	Note: Does not require an instance to be specified. If an instance is selected, the user will also become a member of that instance.






show


	View an user’s home page and activity stream,

	URL: http://[instance].adhocracy.cc/user/[user_name][.format]

	Method: GET

	Formats: html, json, rss

	Authentication: no

	Note: Also available outside of instance contexts.






update


	Update the user’s profile and settings.

	URL: http://[instance].adhocracy.cc/user/[user_name][.format]

	Method: PUT

	Formats: html, json

	Authentication: yes (either to own user or with user management permissions)

	Parameters:
	display_name: Display name, i.e. the real name to be shown in the application.

	email: E-Mail address. Must be re-validated when changed.

	locale: A locale, currently: de_DE, en_US or fr_FR.

	password: A password, min. 3 characters.

	password_confirm: Must be identical to password.

	bio: A short bio, markdown-formatted.

	email_priority: Minimum priority level for E-Mail notifications to be sent (0-6).

	twitter_priority: Minimum priority level for Twitter direct message notifications to be sent (0-6).










delete


	Delete an user. Not implemented






votes


	Retrieve a list of the decisions that were made by this user.

	URL: http://[instance].adhocracy.cc/user/[user_name]/votes[.format]

	Method: GET

	Formats: html, json

	Authentication: no

	Pager prefix: decisions_

	Note: Does not include rating polls, limited to adoption polls.






delegations


	Retrieve a list of the delegations that were created by this user.

	URL: http://[instance].adhocracy.cc/user/[user_name]/delegations[.format]

	Method: GET

	Formats: html, json

	Authentication: no

	Pager prefix: delegations_ (``json`` view only)

	Note: In html, lists both incoming and outgoing delegations. When rendered as json, this only includes outgoing delegations.






instances


	A list of all non-hidden instances in which the user is a member.

	URL: http://[instance].adhocracy.cc/user/[user_name]/instances[.format]

	Method: GET

	Formats: html, json

	Authentication: no

	Pager prefix: instances_






proposals


	A list of all proposals that the user has introduced.

	URL: http://[instance].adhocracy.cc/user/[user_name]/proposals[.format]

	Method: GET

	Formats: html, json

	Authentication: no

	Pager prefix: proposals_






groupmod


	Modify a user’s membership in the current instance

	URL: http://[instance].adhocracy.cc/user/[user_name]/proposals[.format]

	Method: GET

	Formats: html

	Authentication: yes (requires instance admin privileges)

	Parameters:
	to_group: Target group (one of: observer, advisor, voter, supervisor).










kick


	Terminate a user’s membership in the current instance

	URL: http://[instance].adhocracy.cc/user/[user_name]/proposals[.format]

	Method: GET

	Formats: html

	Authentication: yes (requires instance admin privileges)

	Note: Since the user can re-join at any time, this is largely a symbolic action.








/proposal - Proposal drafting


index


	List all existing proposals in the given instance.

	URL: http://[instance].adhocracy.cc/proposal[.format]

	Method: GET

	Formats: html, json

	Authentication: no

	Pager prefix: proposals_

	Parameters:
	proposals_q: A search query to filter with.

	proposals_state: Filter by state (one of: draft, polling, adopted). Only available if adoption polling is enabled in the selected instance.










create


	Create a new proposal.

	URL: http://[instance].adhocracy.cc/proposal[.format]

	Method: POST

	Formats: html, json

	Authentication: yes

	Parameters:
	label: A title for the proposal.

	text: Goals of the proposal.

	tags: Comma-separated or space-separated tag list to be applied to the proposal.

	alternative (multiple values): IDs of any proposals that should be marked as an alternative to this proposal.










show


	View an proposals’s goal page

	URL: http://[instance].adhocracy.cc/proposal/[id][.format]

	Method: GET

	Formats: html, json

	Authentication: no






update


	Update some of a proposal’s properties.

	URL: http://[instance].adhocracy.cc/proposal/[id][.format]

	Method: PUT

	Formats: html, json

	Authentication: yes

	Parameters:

	label: A title for the proposal.

	alternative (multiple values): IDs of any proposals that should be marked as an alternative to this proposal.

	Note: The goal description and tag list are edited separately.






delete


	Delete a proposal and any contained entities.

	URL: http://[instance].adhocracy.cc/proposal/[id][.format]

	Method: DELETE

	Formats: html, json

	Authentication: yes (requires instance admin rights)

	Note: This will also delete all contained items, such as comments and delegations.






delegations


	Retrieve a list of the delegations that exist regarding this proposal.

	URL: http://[instance].adhocracy.cc/proposal/[id]/delegations[.format]

	Method: GET

	Formats: html, json

	Authentication: no

	Pager prefix: delegations_






canonicals


	Retrieve a list of canonical comments regarding the proposal. Canonical comments are listed as “provisions” in the UI.

	URL: http://[instance].adhocracy.cc/proposal/[id]/delegations[.format]

	Method: GET

	Formats: html, json

	Authentication: no

	Note: No pager.






alternatives


	Retrieve a list of the alternatives that exist regarding this proposal.

	URL: http://[instance].adhocracy.cc/proposal/[id]/alternatives[.format]

	Method: GET

	Formats: html, json

	Authentication: no

	Pager prefix: proposals_






activity


	Retrieve a list of events within the scope of the given proposal.

	URL: http://[instance].adhocracy.cc/proposal/[id]/activity[.format]

	Method: GET

	Formats: html, rss

	Authentication: no

	Pager prefix: events_






adopt


	Trigger an adoption poll regarding this proposal.

	URL: http://[instance].adhocracy.cc/proposal/[id]/adopt[.format]

	Method: POST

	Formats: html

	Authentication: yes

	Note: Requires at least one canonical comment. Adoption polls must be enabled on the instance level.






tag


	Apply an additional tag to a proposal (or support an existing tag).

	URL: http://[instance].adhocracy.cc/proposal/[id]/tag[.format]

	Method: GET

	Formats: html

	Authentication: yes

	Parameters:
	text: Comma-separated or space-separated tag list to be applied to the proposal.










untag


	Remove a tag association (tagging) from a proposal.

	URL: http://[instance].adhocracy.cc/proposal/[id]/untag[.format]

	Method: GET

	Formats: html

	Authentication: yes

	Parameters:
	tagging: ID of the tagging association to be removed.





	Note: Only taggings created by the user can be removed.








/poll - Poll data and voting


show


	View a poll, listing the current decisions and offering a chance to vote.

	URL: http://[instance].adhocracy.cc/poll/[id][.format]

	Method: GET

	Formats: html, json

	Authentication: no






delete


	End a poll and close voting.

	URL: http://[instance].adhocracy.cc/poll/[id][.format]

	Method: DELETE

	Formats: html, json

	Authentication: yes

	Note: This will only work for adoption polls, rating polls cannot be terminated.






votes


	Retrieve a list of the decisions that were made regarding this poll.

	URL: http://[instance].adhocracy.cc/poll/[id]/votes[.format]

	Method: GET

	Formats: html, json

	Authentication: no

	Pager prefix: decisions_

	Parameters:
	result: Filter for a specific decision, i.e. -1 (No), 1 (Yes), 0 (Abstained).










rate


	Vote in the poll via rating.

	URL: http://[instance].adhocracy.cc/poll/[id]/rate[.format]

	Method: POST

	Formats: html, json

	Authentication: yes

	Note: This implements relative voting, i.e. if a user has previously voted -1 and now votes 1, the result will be 0 (a relative change). Used for comment up-/downvoting. Unlike vote, this will also trigger an automated tallying of the poll. It is thus slower, especially for large polls.






vote


	Vote in the poll.

	URL: http://[instance].adhocracy.cc/poll/[id]/vote[.format]

	Method: POST

	Formats: html, json

	Authentication: yes

	Note: This does not trigger tallying. Thus a subsequent call to show might yield an incorrect tally until a server background job has run.








/comment - Commenting and comment history


index


	List all existing comments.

	URL: http://[instance].adhocracy.cc/comment[.format]

	Method: GET

	Formats: json

	Authentication: no

	Pager prefix: comments_






create


	Create a new comment within a specified context.

	URL: http://[instance].adhocracy.cc/comment[.format]

	Method: POST

	Formats: html, json

	Authentication: yes

	Parameters:
	topic: ID of the Delegateable to which this comment is associated.

	reply: A parent comment ID, if applicable.

	canonical (bool): Specify whether this is part of the implementation description of the proposal to which it will be associated.

	text: The comment text, markdown-formatted.

	sentiment: General tendency of the comment, i.e. -1 for negative, 0 for neutral and 1 for a supporting argument.










show


	View a comment separated out of their context.

	URL: http://[instance].adhocracy.cc/comment/[id][.format]

	Method: GET

	Formats: html, json

	Authentication: no






update


	Create a new revision of the given comment.

	URL: http://[instance].adhocracy.cc/comment/[id][.format]

	Method: PUT

	Formats: html, json

	Authentication: yes

	Parameters:
	text: The comment text, markdown-formatted.

	sentiment: General tendency of the comment, i.e. -1 for negative, 0 for neutral and 1 for a supporting argument.










delete


	Delete a comment.

	URL: http://[instance].adhocracy.cc/comment/[id][.format]

	Method: DELETE

	Formats: html, json

	Authentication: yes

	Note: Comments can only be deleted by non-admins if they have not yet been edited.






history


	List all revisions of the specified comment.

	URL: http://[instance].adhocracy.cc/comment/[id]/history[.format]

	Method: GET

	Formats: html, json

	Authentication: yes

	Pager prefix: revisions_






revert


	Revert to an earlier revision of the specified comment.

	URL: http://[instance].adhocracy.cc/comment/[id]/revert[.format]

	Method: GET

	Formats: html, json

	Authentication: yes

	Parameters:
	to: Revision ID to revert to.





	Note: This will actually create a new revision containing the specified revision’s text.








/delegation - Vote delegation management


index


	List all existing delegations (instance-wide).

	URL: http://[instance].adhocracy.cc/delegation[.format]

	Method: GET

	Formats: json, dot

	Authentication: no

	Pager prefix: delegations_

	Note: The dot format produces a graphviz file.






create


	Create a new delegation to a specified principal in a given scope.

	URL: http://[instance].adhocracy.cc/delegation[.format]

	Method: POST

	Formats: html, json

	Authentication: yes

	Parameters:
	scope: ID of the Delegateable which will be the delegation’s scope.

	agent: User name of the delegation recipient.

	replay: Whether or not to re-play all of the agents previous decisions within the scope.










show


	View the delegation.

	URL: http://[instance].adhocracy.cc/delegation/[id][.format]

	Method: GET

	Formats: html, json

	Authentication: no

	Pager prefix: decisions_

	Note: For json this will return a tuple of the actual serialized delegation and a list of decisions.






delete


	Revoke a the delegation.

	URL: http://[instance].adhocracy.cc/delegation/[id][.format]

	Method: DELETE

	Formats: html, json

	Authentication: yes

	Note: Can only be performed by the delegation’s principal.











          

      

      

    


    
         Copyright 2010, Friedrich Lindenberg.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	Adhocracy 2.0dev documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2010, Friedrich Lindenberg.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
    
      
        	latest

      
    

  










  development/use_cases/test.html

    
      Navigation


      
        		
          index


        		Adhocracy 2.0dev documentation »

 
      


    


    
      
          
            
  
testbrowser example


Make (reasonably) sure that we have a clean environment:


>>> model.User.all()
[<User(1,admin)>]






We have a testbrowser browser set up that we can use to browse throug the
site:


>>> browser.open(app_url + "/login")
>>> browser.dc()
>>> browser.status
'200 OK'
>>> '<html class="no-js">' in browser.contents
True






browser.dc(‘/path/to/file’) would dump the current html to a file.


We can also instanciate a new browser and login as a certain user:


>>> admin_browser = make_browser()
>>> admin_browser.open(app_url)
>>> 'http://test.lan/user/admin/dashboard' in admin_browser.contents
False
>>> admin_browser.login('admin')
>>> admin_browser.open(app_url)
>>> 'http://test.lan/user/admin/dashboard' in admin_browser.contents
True






And we can log out.


>>> admin_browser.logout()
>>> admin_browser.open(app_url)
>>> 'http://test.lan/user/admin/dashboard' in admin_browser.contents
False






This won’t affect our first browser:


>>> browser.url
'http://test.lan/login'










          

      

      

    


    
        © Copyright 2010, Friedrich Lindenberg.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_static/minus.png





_static/comment-bright.png





_images/adhocracy-classes.png
Badgs

Event] T Tger
T Tger +create_time : DateTime
+data : UnicodeText +title : Unicode
+event : Unicode +color : Unicode

+time : DateTime +description : Unicode

+user_id : Integer +group_id : Integer 43
+instance_id - Integer +display_group : Boolean
+badge_delegateable : Boolean
[ R

Delegateable
T Teger
g {+1abel : Unicode

e  string !
e ate_tme : DateTime
I cess tme : DateTme
- delete.Eme : DateTime

+milestone id - Integer d5] R
+creator_id” Integer
instance_id : Integer {x}
et g Mybres +
Page
0 heger
+1abel : Unicode
+type - string
+create_time : DateTime
+access_time : DateTime
i A

aciets fme . oateTme
Cnlecion 1 - nteger
[+ creator id Integer
etanca 14 rieger
iancton  Unicade
_function  unicods | wge .1
A A
AN Proposal
Text - +id : Integer
idbel " Uniode
T e ope : Sting wrh
Fome 3 e
+user_id : Integer pcuesteRtimeL [2ate ime] +1d - Integer
+parent_id : Integer [accesstumelA0terine; +create_time : DateTime
+variant : Unicode. eist=ltmejRateTime} +delete time : DateTime
+title : Unicode jmileatonelidElintegen +user_id : Integer
+text : UnicodeText [crmatord i} rtager +entity_type : Unicode
+wiki : Boolean e 1 tinstance id : Integer +entity_ref : Unicode
i Boolean hetgain i kansr A
oeestelmerjDatsTime +adopt _pall 10 - mteger | T
x by R
+adopted : Boolean
wrg
User
T
Ariocale - Bricode
oL, § W
. ol Unicod
Selection +:serrname unbwded
e it
e
idictetime  Datetme el prisey : tager
+page id : Integer Lreser code - Unicode 154
*proposal id : Integer creats_time : DateTime
S 1 e et
A7 |+delete_fime : DateTime
4 1l+banned : Boolean
he bt Eomiean
N A

—7 = S e ————— b
’ S /7\
stnce i teger LT -

e \ . Comment ' ghadges *
e M reger
OpeniD vt [ UserBadge Lt o —— +delettziyds [ DelegateableBadge
Hnstance 1 A Treeger iicte time . DateTime T TReger e — e aeietetims ; DateTime A reger
[ceraatarlif]intaceq create tme : DateTime x ruser id: integer create tme : DateTime [orentatonlintacer Al +badge id : nteger +creator id : Integer +badge d : nteger
il Unicade tag 1d Integer twitar 1d  Integer Ldeicte time : DateTime [eresteTine [0 Luser @ integer HSoplc 14 Integer Ldeieoateable.id . nteger
st dunicqd delagateable id  Integer tkey : Unicode tuser i@ integer e dFlincee <reats_time : DateTime ik “Boolean Ao, creats_tme " DateTime
e 0ais T RN Sereator d” Integer, st Umcose Fidéntiier : Unicode ool irtoo M crestor id : Integer srepty i nteger erestor.id : Integer
g +acreen_name : Unicode i palld  inteqer

deleteltmeLDate Nime} +rahoflys * +priority : Integer ) A +variant : Unicode

vindgnde 1 singgnce 1

instance
+ins e TA T TnEeger 4 cradedingadnces *

+locale : Unicode
+hey - Unicode

+label - Unicode
+description : UnicodeText
+required_majority : Float
+activation_delay - Integer
+create_time : DateTime
+access_time : DateTime Tag
+delste_Eme : DateTime 0 Tteger
+creator_id - integer +create_time : DateTime
+default aroup_id - Integer “+name : Unicode
-+allow_adopt : Boolean

+allow_delegate : Boolean
+allow_propose : Boolean
+allow_index : Boolean
+hidden : Boolean

+css: UnicodeText  +injealie 0.1
+frozen : Boolean
+milestones : Boolean
+use_norms : Boolean

”

X
2

eagho.1

0.1

ot Poll

T Tger
+subject - Unicode |+
+begin_time : DateTime

+end_time : DateTime

+user_id : Integer
+action - Unicode

“+scope_id : Integer

Revision

T rieger

create_tme : DateTime

text : OnicodeText

+sentiment - Integer

Fuser i Integer

+comment 1 : Integer
Tally

i Tnteger

+create time : DateTime
[+poil d Integer
+vote_id - nteger
+num_for : Integer
+num_against - Integer
“+nun_abstain : Integer

Delegation
Ty

+agent id - Integer
+principal id - nteger
+scope 0 Integer

& <reate time : DateTime
revoke_time : DateTime

e manfprfhips ©

Membership
T Thteger
+approved : Boolean
+create_time : DateTime
+expire_time : DateTime
+access time : DateTime
Fuser_id Integer
+instance id : nteger
+aroup_id : Integer

e macfbMins *

roup sxiguf 1

Group

i Tger
+aroup_name : Unicoded o ®6pT-T
+code ~ Unicode

+description : Unicode

il

Permission

i Teger
+permission_name : Unicode






development/use_cases/root.html

    
      Navigation


      
        		
          index


        		Adhocracy 2.0dev documentation »

 
      


    


    
      
          
            
  
Test basic functionality in the page root


Make (reasonably) sure that we have a clean environment:


>>> model.User.all()
[<User(1,admin)>]






Call the root


>>> browser.open(app_url)
>>> browser.status
'200 OK'









Login Form


We have a login link on the start page


>>> '%s/login' %app_url in browser.contents
True
>>> browser.getLink('Login').click()
>>> browser.getControl(name='login')
<Control name='login' type='text'>
>>> browser.getControl(name='password')
<Control name='password' type='password'>









RSS feed


Adhocracy has a global rss feed showing events in all instances:


>>> browser.open(app_url)
>>> browser.xpath("//link[@href='http://test.lan/feed.rss']")
[<Element link at ...>]
>>> browser.open('http://test.lan/feed.rss')
>>> browser.open('http://test.lan/feed.rss')
>>> browser.headers['Content-Type']
'application/rss+xml; charset=utf-8'






We have no items in the rss feed yet:


>>> len(browser.xpath('//item'))
0






If we add content in the test instance an the feed contains an item
for the event:


>>> admin = make_browser()
>>> admin.login('admin')
>>> admin.open(instance_url)
>>> admin.follow('new proposal')
>>> form = admin.getForm(name='create_proposal')
>>> form.getControl(name='label').value = u'Test Proposal'
>>> form.getControl(name='text').value = u'Test Description'
>>> form.submit()
>>> browser.open('http://test.lan/feed.rss')
>>> browser.url
'http://test.lan/feed.rss'
>>> len(browser.xpath('//item'))
1

>>> admin.open(instance_url)
>>> admin.follow('new proposal')
>>> form = admin.getForm(name='create_proposal')
>>> form.getControl(name='label').value = u'Test Proposal 2'
>>> form.getControl(name='text').value = u'Test Description 2'
>>> form.submit()
>>> browser.open('http://test.lan/feed.rss')
>>> browser.url
'http://test.lan/feed.rss'
>>> len(browser.xpath('//item'))
2










          

      

      

    


    
        © Copyright 2010, Friedrich Lindenberg.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_images/adhocracy-tables.png
i nances

everar 8108
timestamp : INTEGER
<alt: ARCHAR(4D)

d_sssociations
Teverurl 8108

handls : VARCHAR(255)
secret BLOB

iasued : INTEGER
Iifetima : INTEGER.
assoc_type : VARCHAR(SA)

aerid
TTTTEGER
crasts_time : DATETIME
o TEXT

sentiment: INTEGER.
user id : INTEGER.
comment_id : INTEGER

+ comingtid

+ dalefation id

iy
TTTTEGER
crasts_time : DATETIME
pollid INTEGER
Vote_id : INTEGER
num_for : INTEGER
num_against : INTEGER
num_abtain : INTEGER

TTTTEGER
orisntation : INTEGER.

4

TTEGER
crasts_time : DATETIME
dslete ima : DATETIME
erastor_id | INTEGER
copic_id{ INTEGER.
wiki - BOOLEAN
reply_id : INTEGER
pollid : INTEGER
Variant : VARCHAR(2SS)

- gidd

openid

T TEGER
crasts_time : DATETIME
dslete xime : DATETIME
user id £ INTEGER.

identifier - VARCHAR(2SS)

T udid

watch
T TEGER

crasts_time : DATETIME
dslete xime : DATETIME
user id £ INTEGER.
entity_type : VARCHAR(ZSS)
entity_ref: VARCHAR(255)

ermsEd

oyl

o pn
el =
R TR
agentid TEGER \ page.id: INTEGER
pincipal - TEGER Gserd: WTEGER
Seaper necer lscey i e
e o TESER e RCHARCSS) b TS
Crate_time :DATETINE R
e et ime | DATETNE e
\ page.id: ITEGER Crate_time - DATETINE g
bropasalid: INTEGER deeceime | DATETINE
+ prad
wenfbera
Y TR
e = function. \ERCHAR(20)
crate_time :DATETINE IR 2
oo NTEGER A Crata time :DATETINE o
deeaseesbldwtecen| | name encHanzss) o
crestr 4 iTeGER propont X |
EErE—
+ deteqragle 4O B description 4 NTEGER |
4 [ it i :
TG 4 | -ratepalid WEcER \
Iabel ARCHAR(25S) iugred sooLeAN \

ype  VERCHAR(SD)

Iciteqsry arasHl )
[~parent_id  INTEGER| " "““J(”“Q o
chid 1 TeaeR 4 FITETE sccess time

T \

create_time : DATETIME |, FaT T
user id : INTEGER.

poll d : INTEGER

deligation_id | NTEGER

e opic

[eveneid - ecER |
copic_id : INTEGER.

T TEGER.
badge id : INTEGER.
delegateable_id : INTEGER,
crasts_time : DATETIME
crastor_id : INTEGER

+ bad,

dalete_zime : DATETIME
milstane_id : INTEGER T TEGER, Ao
crastorid : INTEGER + begin_time : DATETIHE I
=0 |- instance_id  regeR end_time : DATETIME e
user id : INTEGER. —
esan ncHaR(:c) user_nsme : VRCHAR(255)

subject :VARCHARI250) | dispiay_name : VARCHAR(255)
scope_id : INTEGER bio : TEXT
email: ARCHAR(255)

email_proriy  INTEGER
activation_cod | VARCHARI2SS)
resat_cods : VARCHAR(2SS)

i) |- password  vaRchaR(z0)
locale : VARCHAR(T)
crasts_time : DATETIME
access_sime : DATETIME
dalete_zime : DATETIME

+ i) |- banned : ooLEAN

no_help - BOOLEAN

page.size : INTEGER.

milsztans
e cretorid
instance_id : INTEGER,

erastor_id : INTEGER
il : VARCHAR(2SS)
o TEXT

time : DATETIME
crasts_time : DATETIME
dslate ime : DATETIME

TTTTEGER
crasts_time : DATETIME
dalete xima : DATETIME
user id: INTEGER,

owitter_id : INTEGER.

key : VARCHAR(255)

Sacret  VARCHARIZSS)
Scraen_name : VARCHAR(2SS)
prioity - INTEGER.

rer badges

TTTTEGER
badge id : INTEGER.
userid:NTEGER ¥
crasts_time : DATETIME
crastor_id | NTEGER

T TEGER
key  VARCHAR(20)
label : VARCHAR(2SS)
deseription  TEXT
required_majority : FLOAT
activation_delay : INTEGER
crasts_time : DATETIME
access_sime : DATETIME
dalete_zime : DATETIME
crastor_id | INTEGER
default_group_id : INTEGER
allow_adopt - BOOLEAN
allow_delegate : BOOLEAN
allow_propose : BOOLEAN
allow_indax : BOOLEAN
hidden : BOOLEAN
locale : VARCHAR(T)
essTeXT
frozen BOOLEAN
a millstanes : BOOLEAN
use_norms : BOOLEAN
T TEGER K
approved : BooLEAN
crasts_time : DATETIME
expire_time : DATETIME
access_sime : DATETIME
user id: INTEGER.
instance_id : INTEGER,
group_id - INTEGER.

TTEGER
event : VARCHAR(255)
tima : DATETIME
dta BT

user id: INTEGER
instance_id : INTEGER.

+ dafe

TTTTEGER
S aroup_nams : VRRCHAR(2SS)
T NTEGER Code VRRCHARIZSS)
creats_time : DATETIME deseription : VARCHAR(1000)
il : VARCHAR(40)

Color : VRCHAR(T) y

deseription : VARCHAR(255)
group_id : INTEGER.
display_group : BOOLEAN
badge delegateable - BOOLEAN

+ ordlpid

Sroup_permission permission

w4 e . s [0 WG

permission_id : INTEGER permission_name | VARCHAR(255)






search.html

    
      Navigation


      
        		
          index


        		Adhocracy 2.0dev documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2010, Friedrich Lindenberg.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_static/comment-close.png





_static/up-pressed.png





_static/up.png





_static/down.png





_static/plus.png





_static/comment.png





_static/ajax-loader.gif





_static/file.png





development/use_cases/admin_user_import.html

    
      Navigation


      
        		
          index


        		Adhocracy 2.0dev documentation »

 
      


    


    
      
          
            
  
Mass import users


As a global administrator:


>>> admin = make_browser()
>>> admin.login('admin')
>>> admin.open('http://test.lan/admin')






Open and fill out the Import Users form:


>>> admin.follow('Import Users')
>>> admin.url
'http://test.lan/admin/users/import'
>>> csv = admin.getControl(name='users_csv')
>>> csv.value = ('testuser,"Test User",testuser@example.com\n'
...              'testuser2,"Test User2",testuser2@example.com')
>>> admin.getControl(name='email_subject').value = 'hello new user'
>>> template = admin.getControl(name='email_template')
>>> template.value = ('{user_name}\n{password}\n{url}\n'
...                   '{display_name}\n{email}\nFree Text')
>>> admin.dc('/tmp/saved-user-import-form')
>>> admin.getControl('save').click()






As a result we have two new users and sent out emails to them:


>>> model.User.all()
[<User(1,admin)>, <User(2,testuser)>, <User(3,testuser2)>]
>>> self.mocked_mail_send.assert_any_call(mock.ANY, 'testuser@example.com', mock.ANY)
>>> self.mocked_mail_send.assert_any_call(mock.ANY, 'testuser2@example.com', mock.ANY)






Anonymous users cannot open the form:


>>> anon = make_browser()
>>> anon.handleErrors = True
>>> anon.raiseHttpErrors = False
>>> anon.open('http://test.lan/admin/users/import')
>>> anon.status
'401 Unauthorized'










          

      

      

    


    
        © Copyright 2010, Friedrich Lindenberg.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_static/down-pressed.png





