
actor-critic Documentation
Release 0.1

Jan Robine

Aug 08, 2018

Contents

1 API Documentation 3

2 Quickstart Guide 29

Python Module Index 33

i

ii

actor-critic Documentation, Release 0.1

Documentation of the actor-critic repository on GitHub.

Contents 1

https://github.com/jrobine/actor-critic

actor-critic Documentation, Release 0.1

2 Contents

CHAPTER 1

API Documentation

actorcritic The root package.

1.1 actorcritic

The root package.

agents Contains agents, which are an abstraction from environ-
ments.

baselines Contains baselines, which are used to compute the ad-
vantage.

kfac_utils Contains utilities that concern K-FAC.
model Contains the base class of actor-critic models.
multi_env Contains classes that provide the ability to run multiple

environments in subprocesses.
nn Contains utilities that concern TensorFlow and neural

networks.
objectives Contains objectives that are used to optimize actor-critic

models.
policies Contains policies that determine the behavior of an

agent.
envs Contains functions that are dedicated to certain environ-

ments.
examples Contains examples of how to use this project.

1.1.1 actorcritic.agents

Contains agents, which are an abstraction from environments.

3

actor-critic Documentation, Release 0.1

Functions

transpose_list(values) Transposes a list of lists.

Classes

Agent Takes environments and a model (containing a policy)
and provides interact(), which manages operations
such as selecting actions from the model and stepping in
the environments.

MultiEnvAgent(multi_env, model, num_steps) An agent that maintains multiple environments (via
MultiEnv) and samples multiple steps.

SingleEnvAgent(env, model, num_steps) An agent that maintains a single environment and sam-
ples multiple steps.

class actorcritic.agents.Agent
Bases: object

Takes environments and a model (containing a policy) and provides interact(), which manages operations
such as selecting actions from the model and stepping in the environments.

See also:

This allows to create multi-step agents, like SingleEnvAgent and MultiEnvAgent.

interact(session)
Samples actions from the model, and steps in the environments.

Parameters session (tf.Session) – A session that will be used to compute the actions.

Returns

tuple – A tuple of (observations, actions, rewards, terminals, next_observations, infos).

All values are in batch-major format, meaning that the rows determine the batch and the
columns determine the time: [batch, time]. In our case the rows correspond to the environ-
ments and the columns correspond to the steps: [environment, step]. The opposite is the
time-major format: [time, batch] or [step, environment].

Example:

If the agent maintains 3 environments and samples for 5 steps, the result would consist
of a matrix (list of list) with shape [3, 5]:

[[step 1, step 2, step 3, step 4, step 5], # environment 1
[step 1, step 2, step 3, step 4, step 5], # environment 2
[step 1, step 2, step 3, step 4, step 5]] # environment 3

observations, actions, rewards, terminals, and infos are collected during sampling and have
the shape [environments, steps].

next_observations contains the observations that the agent received at last, but did not use
for selecting actions yet. These e.g. can be used to bootstrap the remaining returns. Has the
shape [environments, 1].

class actorcritic.agents.MultiEnvAgent(multi_env, model, num_steps)
Bases: actorcritic.agents.Agent

4 Chapter 1. API Documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

actor-critic Documentation, Release 0.1

An agent that maintains multiple environments (via MultiEnv) and samples multiple steps.

__init__(multi_env, model, num_steps)

Parameters

• multi_env (MultiEnv) – Multiple environments.

• model (ActorCriticModel) – A model to sample actions.

• num_steps (int) – The number of steps to take in interact().

interact(session)
Samples actions from the model, and steps in the environments.

Parameters session (tf.Session) – A session that will be used to compute the actions.

Returns

tuple – A tuple of (observations, actions, rewards, terminals, next_observations, infos).

All values are in batch-major format, meaning that the rows determine the batch and the
columns determine the time: [batch, time]. In our case the rows correspond to the environ-
ments and the columns correspond to the steps: [environment, step]. The opposite is the
time-major format: [time, batch] or [step, environment].

Example:

If the agent maintains 3 environments and samples for 5 steps, the result would consist
of a matrix (list of list) with shape [3, 5]:

[[step 1, step 2, step 3, step 4, step 5], # environment 1
[step 1, step 2, step 3, step 4, step 5], # environment 2
[step 1, step 2, step 3, step 4, step 5]] # environment 3

observations, actions, rewards, terminals, and infos are collected during sampling and have
the shape [environments, steps].

next_observations contains the observations that the agent received at last, but did not use
for selecting actions yet. These e.g. can be used to bootstrap the remaining returns. Has the
shape [environments, 1].

class actorcritic.agents.SingleEnvAgent(env, model, num_steps)
Bases: actorcritic.agents.Agent

An agent that maintains a single environment and samples multiple steps.

__init__(env, model, num_steps)

Parameters

• env (gym.Env) – An environment.

• model (ActorCriticModel) – A model to sample actions.

• num_steps (int) – The number of steps to take in interact().

interact(session)
Samples actions from the model and steps in the environment.

Parameters session (tf.Session) – A session that will be used to compute the actions.

Returns

tuple – A tuple (observations, actions, rewards, terminals, next_observations, infos).

1.1. actorcritic 5

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

actor-critic Documentation, Release 0.1

All values are in batch-major format, meaning that the rows determine the batch and the
columns determine the time: [batch, time]. In our case we have one environment so the
row corresponds to the environment and the columns correspond to the steps: [1, step]. The
opposite is the time-major format: [time, batch] or [step, 1].

observations, actions, rewards, terminals, and infos are collected during sampling and have
the shape [1, steps].

next_observations contains the observation that the agent received at last, but did not use for
selecting an action yet. This e.g. can be used to bootstrap the remaining return. Has the
shape [1, 1].

actorcritic.agents.transpose_list(values)
Transposes a list of lists. Can be used to convert from time-major format to batch-major format and vice versa.

Example

Input:

[[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]]

Output:

[[1, 5, 9],
[2, 6, 10],
[3, 7, 11],
[4, 8, 12]]

Parameters values (list of list) – Values to transpose.

Returns list of list – The transposed values.

1.1.2 actorcritic.baselines

Contains baselines, which are used to compute the advantage.

Classes

Baseline A wrapper class for the baseline that is subtracted from
the target values to get the advantage.

StateValueFunction(value) A baseline defined by a state-value function.

class actorcritic.baselines.Baseline
Bases: object

A wrapper class for the baseline that is subtracted from the target values to get the advantage.

register_predictive_distribution(layer_collection, random_seed=None)
Registers the predictive distribution of this baseline in the specified kfac.LayerCollection (re-
quired for K-FAC).

Parameters

6 Chapter 1. API Documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object

actor-critic Documentation, Release 0.1

• layer_collection (kfac.LayerCollection) – A layer collection used by the
KfacOptimizer.

• random_seed (int, optional) – A random seed for sampling from the predictive distri-
bution.

Raises NotImplementedError – If this baseline does not support K-FAC.

value
tf.Tensor – The output values of this baseline.

class actorcritic.baselines.StateValueFunction(value)
Bases: actorcritic.baselines.Baseline

A baseline defined by a state-value function.

__init__(value)

Parameters value (tf.Tensor) – The output values of this state-value function.

register_predictive_distribution(layer_collection, random_seed=None)
Registers the predictive distribution (normal distribution) of this state-value function in the specified
kfac.LayerCollection (required for K-FAC).

Parameters

• layer_collection (kfac.LayerCollection) – A layer collection used by the
KfacOptimizer.

• random_seed (int, optional) – A random seed for sampling from the predictive distri-
bution.

value
tf.Tensor – The output values of this state-value function.

1.1.3 actorcritic.kfac_utils

Contains utilities that concern K-FAC.

Classes

ColdStartPeriodicInvUpdateKfacOpt(. . .) A modified KfacOptimizer that runs the inverse op-
eration periodically and uses a standard SGD optimizer
for a few updates in the beginning, called cold updates
and cold optimizer.

class actorcritic.kfac_utils.ColdStartPeriodicInvUpdateKfacOpt(num_cold_updates,
cold_optimizer,
invert_every,
**kwargs)

Bases: kfac.python.ops.optimizer.KfacOptimizer

A modified KfacOptimizer that runs the inverse operation periodically and uses a standard SGD optimizer
for a few updates in the beginning, called cold updates and cold optimizer.

This can be used to slowly initialize the parameters in the beginning before using the heavy K-FAC optimizer.
The covariances get updated every step (after the cold updates).

See also:

1.1. actorcritic 7

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/functions.html#int

actor-critic Documentation, Release 0.1

• kfac.PeriodicInvCovUpdateKfacOpt

• The idea is taken from the original ACKTR implementation.

__init__(num_cold_updates, cold_optimizer, invert_every, **kwargs)

Parameters

• num_cold_updates (int) – The number of cold updates in the beginning before using
the actual K-FAC optimizer.

• cold_optimizer (tf.train.Optimizer) – An optimizer that is used for the cold
updates.

• invert_every (int) – The inverse operation gets called every invert_every steps (after
the cold updates have finished).

apply_gradients(grads_and_vars, global_step=None, name=None)
Applies gradients to variables.

Parameters

• grads_and_vars – List of (gradient, variable) pairs.

• *args – Additional arguments for super.apply_gradients.

• **kwargs – Additional keyword arguments for super.apply_gradients.

Returns An Operation that applies the specified gradients.

1.1.4 actorcritic.model

Contains the base class of actor-critic models.

Classes

ActorCriticModel(observation_space, ac-
tion_space)

Represents a model (e.g.

class actorcritic.model.ActorCriticModel(observation_space, action_space)
Bases: object

Represents a model (e.g. a neural net) that provides the functionalities required for actor-critic algorithms.
Provides a policy, a baseline (that is subtracted from the target values to compute the advantage) and the values
used for bootstrapping from next observations (ideally the values of the baseline), and the placeholders.

__init__(observation_space, action_space)

Parameters

• observation_space (gym.spaces.Space) – A space that de-
termines the shape of the observations_placeholder and the
bootstrap_observations_placeholder.

• action_space (gym.spaces.Space) – A space that determines the shape of the
actions_placeholder.

actions_placeholder
tf.Tensor – The placeholder for the sampled actions.

8 Chapter 1. API Documentation

https://github.com/openai/baselines/blob/master/baselines/acktr/kfac.py
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

actor-critic Documentation, Release 0.1

baseline
Baseline – The baseline used by this model.

bootstrap_observations_placeholder
tf.Tensor – The placeholder for the sampled next observations. These are used to compute the
bootstrap_values.

bootstrap_values
tf.Tensor – The bootstrapped values that are computed based on the observations passed to the
bootstrap_observations_placeholder.

observations_placeholder
tf.Tensor – The placeholder for the sampled observations.

policy
Policy – The policy used by this model.

register_layers(layer_collection)
Registers the layers of this model (neural net) in the specified kfac.LayerCollection (required for
K-FAC).

Parameters layer_collection (kfac.LayerCollection) – A layer collection used
by the KfacOptimizer.

Raises NotImplementedError – If this model does not support K-FAC.

register_predictive_distributions(layer_collection, random_seed=None)
Registers the predictive distributions of the policy and the baseline in the specified kfac.
LayerCollection (required for K-FAC).

Parameters

• layer_collection (kfac.LayerCollection) – A layer collection used by the
KfacOptimizer.

• random_seed (int, optional) – A random seed used for sampling from the predictive
distributions.

rewards_placeholder
tf.Tensor – The placeholder for the sampled rewards (scalars).

sample_actions(observations, session)
Samples actions from the policy based on the specified observations.

Parameters

• observations – The observations that will be passed to the
observations_placeholder.

• session (tf.Session) – A session that will be used to compute the values.

Returns list of list – A list of lists of actions. The shape equals the shape of observations.

select_max_actions(observations, session)
Selects actions from the policy that have the highest probability (mode) based on the specified observations.

Parameters

• observations – The observations that will be passed to the
observations_placeholder.

• session (tf.Session) – A session that will be used to compute the values.

Returns list of list – A list of lists of actions. The shape equals the shape of observations.

1.1. actorcritic 9

https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

actor-critic Documentation, Release 0.1

terminals_placeholder
tf.Tensor – The placeholder for the sampled terminals (booleans).

1.1.5 actorcritic.multi_env

Contains classes that provide the ability to run multiple environments in subprocesses.

Functions

create_subprocess_envs(env_fns) Utility function that creates environments by calling the
functions in env_fns and wrapping the returned environ-
ments in SubprocessEnvs.

Classes

MultiEnv(envs) An environment that maintains multiple
SubprocessEnvs and executes them in paral-
lel.

SubprocessEnv(env_fn) Maintains a gym.Env inside a subprocess, so it can run
concurrently.

class actorcritic.multi_env.MultiEnv(envs)
Bases: object

An environment that maintains multiple SubprocessEnvs and executes them in parallel.

The environments will be reset automatically when a terminal state is reached. That means that reset()
actually only has to be called once in the beginning.

__init__(envs)

Parameters envs (list of SubprocessEnv) – The environments. The observation and
action spaces must be equal across the environments.

action_space
gym.spaces.Space – The action space used by all environments.

close()
Closes all environments.

envs
list of gym.Env – The environments.

observation_space
gym.spaces.Space – The observation space used by all environments.

reset()
Resets all environments.

Returns list – A list of observations received from each environment.

step(actions)
Proceeds one step in all environments.

Parameters actions (list) – A list of actions to be executed in the environments.

10 Chapter 1. API Documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

actor-critic Documentation, Release 0.1

Returns tuple – A tuple of (observations, rewards, terminals, infos). Each element is a list
containing the values received from the environments.

class actorcritic.multi_env.SubprocessEnv(env_fn)
Bases: gym.core.Env

Maintains a gym.Env inside a subprocess, so it can run concurrently. If the subprocess ends unexpectedly, it
will be recreated automatically without interrupting the execution.

To use the subprocess start() has to be called first. After that initialize() has to be called to retrieve
the observation space and the action space from the underlying environment. The purpose of these methods is
that multiple SubprocessEnvs can be created and started in parallel without blocking the execution, which
creates the underlying gym.Env already. Afterwards start(), which blocks the execution, can be called in
parallel. See create_subprocess_envs() which implements this idea.

__init__(env_fn)

Parameters env_fn (callable) – A function that returns a gym.Env. It will be called
inside the subprocess, so watch out for referencing variables on the main process or the
like. It possibly will be called multiple times, since the subprocess will be recreated when it
unexpectedly ends.

action_space
gym.spaces.Space – The action space of the underlying environment. Does not block the execution.
start() and initialize() must have been called.

close()
Closes the subprocess.

initialize()
Retrieves the observation space and the action space from the environment in the subprocess. This method
blocks until the execution is finished. start() must have been called.

observation_space
gym.spaces.Space – The observation space of the underlying environment. Does not block the exe-
cution. start() and initialize() must have been called.

render(mode=’human’)
Remotely calls gym.Env.render() in the subprocess. This methods blocks until execution is finished.
start() and initialize() must have been called.

Parameters mode (str) – The mode argument passed to gym.Env.render().

Returns The value returned by gym.Env.render().

reset(**kwargs)
Remotely calls gym.Env.reset() in the underlying environment. This method blocks until execution
is finished. start() and initialize() must have been called.

Parameters kwargs (dict) – Keyword arguments passed to gym.Env.reset().

Returns The value returned by gym.Env.reset().

start()
Starts the subprocess. Does not block. You should call initialize() afterwards.

step(action)
Remotely calls gym.Env.step() in the underlying environment. This method blocks until execution
is finished. start() and initialize() must have been called.

Parameters action – The action argument passed to gym.Env.step().

1.1. actorcritic 11

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

actor-critic Documentation, Release 0.1

Returns tuple – A tuple of (observation, reward, terminal, info). The values returned by
gym.Env.step().

class actorcritic.multi_env._AutoResetWrapper(env)
Bases: gym.core.Wrapper

reset(**kwargs)
Resets the state of the environment and returns an initial observation.

Returns: observation (object): the initial observation of the space.

step(action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

Parameters action (object) – an action provided by the environment

Returns observation (object) – agent’s observation of the current environment reward (float) :
amount of reward returned after previous action done (boolean): whether the episode has
ended, in which case further step() calls will return undefined results info (dict): contains
auxiliary diagnostic information (helpful for debugging, and sometimes learning)

actorcritic.multi_env.create_subprocess_envs(env_fns)
Utility function that creates environments by calling the functions in env_fns and wrapping the returned envi-
ronments in SubprocessEnvs. They will be started and initialized in parallel.

Parameters env_fns (list of callable) – A list of functions that return a gym.Env. They
should not be instances of SubprocessEnv .

Returns list of SubprocessEnv – A list of the created environments.

1.1.6 actorcritic.nn

Contains utilities that concern TensorFlow and neural networks.

Functions

conv2d(input, params, stride, padding) Creates a 2D convolutional layer with bias (without ac-
tivation).

conv2d_params(num_input_channels, . . .) Creates weights and bias variables for a 2D convolu-
tional layer.

flatten(input) Flattens inputs but keeps the batch size.
fully_connected(input, params) Creates a fully connected layer with bias (without acti-

vation).
fully_connected_params(input_size, . . .) Creates weights and bias variables for a fully connected

layer.
linear_decay(start_value, end_value, step, . . .) Applies linear decay from start_value to end_value.

Classes

12 Chapter 1. API Documentation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#list

actor-critic Documentation, Release 0.1

ClipGlobalNormOptimizer(optimizer,
clip_norm)

A tf.train.Optimizer that wraps around
another optimizer and minimizes the loss by
clipping gradients using the global norm (tf.
clip_by_global_norm()).

class actorcritic.nn.ClipGlobalNormOptimizer(optimizer, clip_norm, name=None)
Bases: tensorflow.python.training.optimizer.Optimizer

A tf.train.Optimizer that wraps around another optimizer and minimizes the loss by clipping gradients
using the global norm (tf.clip_by_global_norm()).

See also:

• https://www.tensorflow.org/versions/r1.2/api_docs/python/tf/clip_by_global_norm

• https://stackoverflow.com/questions/36498127/how-to-apply-gradient-clipping-in-tensorflow/43486487#
43486487

__init__(optimizer, clip_norm, name=None)

Parameters

• optimizer (tf.train.Optimizer) – An optimizer whose gradients will be
clipped.

• clip_norm (tf.Tensor or float) – Value for the global norm (passed to tf.
clip_by_global_norm()).

• name (string, optional) – A name for this optimizer.

apply_gradients(grads_and_vars, global_step=None, name=None)
Apply gradients to variables.

This is the second part of minimize(). It returns an Operation that applies gradients.

Parameters

• grads_and_vars – List of (gradient, variable) pairs as returned by com-
pute_gradients().

• global_step – Optional Variable to increment by one after the variables have been
updated.

• name – Optional name for the returned operation. Default to the name passed to the
Optimizer constructor.

Returns An Operation that applies the specified gradients. If global_step was not None, that
operation also increments global_step.

Raises

• TypeError – If grads_and_vars is malformed.

• ValueError – If none of the variables have gradients.

actorcritic.nn.conv2d(input, params, stride, padding)
Creates a 2D convolutional layer with bias (without activation).

Parameters

• input (tf.Tensor) – The input values.

1.1. actorcritic 13

https://www.tensorflow.org/versions/r1.2/api_docs/python/tf/clip_by_global_norm
https://stackoverflow.com/questions/36498127/how-to-apply-gradient-clipping-in-tensorflow/43486487#43486487
https://stackoverflow.com/questions/36498127/how-to-apply-gradient-clipping-in-tensorflow/43486487#43486487
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

actor-critic Documentation, Release 0.1

• params (tuple of (tf.Variable, tf.Variable)) – A tuple of (weights, bias).
Probably obtained by conv2d_params().

• stride (int) – The stride of the convolution.

• padding (string) – The padding of the convolution. One of ‘VALID’, ‘SAME’.

Returns tf.Tensor – The output values.

actorcritic.nn.conv2d_params(num_input_channels, num_filters, filter_extent, dtype,
weights_initializer, bias_initializer)

Creates weights and bias variables for a 2D convolutional layer. These can be used in conv2d().

Parameters

• num_input_channels (int) – The size of the input layer.

• num_filters (int) – The output size. Number of filters to apply.

• filter_extent (int) – The spatial extent of the filters. Determines the size of the
weights.

• dtype (tf.DType) – The data type of the variables.

• weights_initializer (tf.keras.initializers.Initializer) – An ini-
tializer for the weights.

• bias_initializer (tf.keras.initializers.Initializer) – An initializer
for the bias.

Returns tuple of (tf.Variable, tf.Variable) – A tuple of (weights, bias).

actorcritic.nn.flatten(input)
Flattens inputs but keeps the batch size.

Parameters input (tf.Tensor) – Input values of shape [batch_size, d_1, . . . , d_n].

Returns tf.Tensor – Flattened input values of shape [batch_size, d1 * . . . * d_n].

actorcritic.nn.fully_connected(input, params)
Creates a fully connected layer with bias (without activation).

Parameters

• input (tf.Tensor) – The input values.

• params (tuple of (tf.Variable, tf.Variable)) – A tuple of (weights, bias).
Probably obtained by fully_connected_params().

Returns tf.Tensor – The output values.

actorcritic.nn.fully_connected_params(input_size, output_size, dtype, weights_initializer,
bias_initializer)

Creates weights and bias variables for a fully connected layer. These can be used in fully_connected().

Parameters

• input_size (int) – The size of the input layer.

• output_size (int) – The output size. Number of units.

• dtype (tf.DType) – The data type of the variables.

• weights_initializer (tf.keras.initializers.Initializer) – An ini-
tializer for the weights.

• bias_initializer (tf.keras.initializers.Initializer) – An initializer
for the bias.

14 Chapter 1. API Documentation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

actor-critic Documentation, Release 0.1

Returns tuple of (tf.Variable, tf.Variable) – A tuple of (weights, bias).

actorcritic.nn.linear_decay(start_value, end_value, step, total_steps, name=None)
Applies linear decay from start_value to end_value. The value at a specific step is computed as:

value = (start_value - end_value) * (1 - step / total_steps) + end_value

Parameters

• start_value (tf.Tensor or float) – The start value.

• end_value (tf.Tensor or float) – The end value.

• step (tf.Tensor) – The current step (e.g. global_step).

• total_step (int or tf.Tensor) – The total number of steps. Steps to reach
end_value.

• name (string, optional) – A name for the operation.

Returns tf.Tensor – The linear decayed value.

1.1.7 actorcritic.objectives

Contains objectives that are used to optimize actor-critic models.

Classes

A2CObjective(model[, discount_factor, . . .]) An objective that defines the loss of the policy and the
baseline according to the A3C and A2C/ACKTR pa-
pers.

ActorCriticObjective An objective takes an ActorCriticModel and de-
termines how it is optimized.

class actorcritic.objectives.A2CObjective(model, discount_factor=0.99, en-
tropy_regularization_strength=0.01,
name=None)

Bases: actorcritic.objectives.ActorCriticObjective

An objective that defines the loss of the policy and the baseline according to the A3C and A2C/ACKTR papers.

The rewards are discounted and the policy loss uses entropy regularization. The baseline is optimized using a
squared error loss.

The policy objective uses entropy regularization:

J(theta) = log(policy(state, action | theta)) * (target_values - baseline) + beta
→˓* entropy(policy)

where beta determines the strength of the entropy regularization.

See also:

• https://arxiv.org/pdf/1602.01783.pdf (A3C)

• https://arxiv.org/pdf/1708.05144.pdf (A2C/ACKTR)

1.1. actorcritic 15

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1708.05144.pdf

actor-critic Documentation, Release 0.1

__init__(model, discount_factor=0.99, entropy_regularization_strength=0.01, name=None)

Parameters

• model (ActorCriticModel) – A model that provides the policy and the baseline that
will be optimized.

• discount_factor (float) – Used for discounting the rewards. Should be between
[0, 1].

• entropy_regularization_strength (float or tf.Tensor) – Determining
the strength of the entropy regularization. Corresponds to the beta parameter in A3C.

• name (string, optional) – A name for this objective.

baseline_loss
tf.Tensor – The current loss of the baseline of the model.

mean_entropy
tf.Tensor – The current mean entropy of the policy of the model.

policy_loss
tf.Tensor – The current loss of the policy of the model.

class actorcritic.objectives.ActorCriticObjective
Bases: object

An objective takes an ActorCriticModel and determines how it is optimized. It defines the loss of the
policy and the loss of the baseline, and can create train operations based on these losses.

baseline_loss
tf.Tensor – The current loss of the baseline of the model.

optimize_separate(policy_optimizer, baseline_optimizer, policy_kwargs=None, base-
line_kwargs=None)

Creates an operation that minimizes the policy loss and the baseline loss separately. This means that it
minimizes the losses using two different optimizers.

Parameters

• policy_optimizer (tf.train.Optimizer) – An optimizer that is used for the
policy loss.

• baseline_optimizer (tf.train.Optimizer) – An optimizer that is used for
the baseline loss.

• policy_kwargs (dict, optional) – Keyword arguments passed to the minimize()
method of the policy_optimizer.

• baseline_kwargs (dict, optional) – Keyword arguments passed to the
minimize() method of the baseline_optimizer.

Returns tf.Operation – An operation that updates both the policy and the baseline.

optimize_shared(optimizer, baseline_loss_weight=0.5, **kwargs)
Creates an operation that minimizes both the policy loss and the baseline loss using the same optimizer.
This is used for models that share parameters between the policy and the baseline. The shared loss is
defined as:

shared_loss = policy_loss + baseline_loss_weight * baseline_loss

where baseline_loss_weight determines the ‘learning rate’ relative to the policy loss.

Parameters

16 Chapter 1. API Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

actor-critic Documentation, Release 0.1

• optimizer (tf.train.Optimizer) – An optimizer that is used for both the policy
loss and the baseline loss.

• baseline_loss_weight (float or tf.Tensor) – Determines the relative ‘learn-
ing rate’.

• kwargs (dict, optional) – Keyword arguments passed to the minimize() method of
the optimizer.

Returns tf.Operation – An operation that updates both the policy and the baseline.

policy_loss
tf.Tensor – The current loss of the policy of the model.

1.1.8 actorcritic.policies

Contains policies that determine the behavior of an agent.

Classes

DistributionPolicy(distribution, actions[, . . .]) Base class for stochastic policies that follow a concrete
tf.distributions.Distribution.

Policy Base class for stochastic policies.
SoftmaxPolicy(logits, actions[, . . .]) A stochastic policy that follows a categorical distribu-

tion.

class actorcritic.policies.DistributionPolicy(distribution, actions, ran-
dom_seed=None)

Bases: actorcritic.policies.Policy

Base class for stochastic policies that follow a concrete tf.distributions.Distribution. Implements
the required methods based on this distribution.

__init__(distribution, actions, random_seed=None)

Parameters

• distribution (tf.distributions.Distribution) – The distribution.

• actions (tf.Tensor) – The input actions used to compute the log-probabilities. Must
have the same shape as the inputs.

• random_seed (int, optional) – A random seed used for sampling.

entropy
tf.Tensor – Computes the entropy of this policy based on the inputs that are provided for computing
the probabilities. The shape equals the shape of the inputs.

log_prob
tf.Tensor – Computes the log-probability of the given actions based on the inputs that are provided for
computing the probabilities. The shape equals the shape of the actions and the inputs.

mode
tf.Tensor – Selects actions from this policy which have the highest probability (mode) based on the
inputs that are provided for computing the probabilities. The shape equals the shape of the inputs.

sample
tf.Tensor – Samples actions from this policy based on the inputs that are provided for computing the

1.1. actorcritic 17

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

actor-critic Documentation, Release 0.1

probabilities. The shape equals the shape of the inputs.

class actorcritic.policies.Policy
Bases: object

Base class for stochastic policies.

entropy
tf.Tensor – Computes the entropy of this policy based on the inputs that are provided for computing
the probabilities. The shape equals the shape of the inputs.

log_prob
tf.Tensor – Computes the log-probability of the given actions based on the inputs that are provided for
computing the probabilities. The shape equals the shape of the actions and the inputs.

mode
tf.Tensor – Selects actions from this policy which have the highest probability (mode) based on the
inputs that are provided for computing the probabilities. The shape equals the shape of the inputs.

register_predictive_distribution(layer_collection, random_seed=None)
Registers the predictive distribution of this policy in the specified kfac.LayerCollection (required
for K-FAC).

Parameters

• layer_collection (kfac.LayerCollection) – A layer collection used by the
KfacOptimizer.

• random_seed (int, optional) – A random seed for sampling from the predictive distri-
bution.

Raises NotImplementedError – If this policy does not support K-FAC.

sample
tf.Tensor – Samples actions from this policy based on the inputs that are provided for computing the
probabilities. The shape equals the shape of the inputs.

class actorcritic.policies.SoftmaxPolicy(logits, actions, random_seed=None,
name=None)

Bases: actorcritic.policies.DistributionPolicy

A stochastic policy that follows a categorical distribution.

__init__(logits, actions, random_seed=None, name=None)

Parameters

• logits (tf.Tensor) – The input logits (or ‘scores’) used to compute the probabilities.

• actions (tf.Tensor) – The input actions used to compute the log-probabilities. Must
have the same shape as logits.

• random_seed (int, optional) – A random seed used for sampling.

• name (string, optional) – A name for this policy.

register_predictive_distribution(layer_collection, random_seed=None)
Registers the predictive distribution of this policy in the specified kfac.LayerCollection (required
for K-FAC).

Parameters

• layer_collection (kfac.LayerCollection) – A layer collection used by the
KfacOptimizer.

18 Chapter 1. API Documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string

actor-critic Documentation, Release 0.1

• random_seed (int, optional) – A random seed for sampling from the predictive distri-
bution.

1.1.9 actorcritic.envs

Contains functions that are dedicated to certain environments.

atari Contains functions that are dedicated to Atari environ-
ments.

actorcritic.envs.atari

Contains functions that are dedicated to Atari environments.

model An implementation of an actor-critic model that is
aimed at Atari games.

wrappers Contains wrappers that can wrap around environments
to modify their functionality.

actorcritic.envs.atari.model

An implementation of an actor-critic model that is aimed at Atari games.

Classes

AtariModel(observation_space, action_space) An ActorCriticModel that follows the A3C and
ACKTR paper.

class actorcritic.envs.atari.model.AtariModel(observation_space, action_space,
conv3_num_filters=64, ran-
dom_seed=None, name=None)

Bases: actorcritic.model.ActorCriticModel

An ActorCriticModel that follows the A3C and ACKTR paper.

The observations are sent to three convolutional layers followed by a fully connected layer, each using rectifier
activation functions (ReLU). The policy and the baseline use fully connected layers built on top of the last
hidden fully connected layer separately. The policy layer has one unit for each action and its outputs are used as
logits for a categorical distribution (softmax). The baseline layer has only one unit which represents its value.

The weights of the layers are orthogonally initialized.

Detailed network architecture:

• Conv2D: 32 filters 8x8, stride 4

• ReLU

• Conv2D: 64 filters 4x4, stride 2

• ReLU

• Conv2D: 64 filters 3x3, stride 1 (number of filters based on argument conv3_num_filters)

1.1. actorcritic 19

https://docs.python.org/3/library/functions.html#int

actor-critic Documentation, Release 0.1

• Flatten

• Fully connected: 512 units

• ReLU

• Fully connected (policy): units = number of actions / Fully connected (baseline): 1 unit

A2C uses 64 filters in the third convolutional layer. ACKTR uses 32.

The policy is a SoftmaxPolicy . The baseline is a StateValueFunction.

See also:

This network architecture was originally used in: https://www.nature.com/articles/nature14236

__init__(observation_space, action_space, conv3_num_filters=64, random_seed=None,
name=None)

Parameters

• observation_space (gym.spaces.Space) – A space that de-
termines the shape of the observations_placeholder and the
bootstrap_observations_placeholder.

• action_space (gym.spaces.Space) – A space that determines the shape of the
actions_placeholder.

• conv3_num_filters (int, optional) – Number of filters used for the third convolu-
tional layer, defaults to 64. ACKTR uses 32.

• random_seed (int, optional) – A random seed used for sampling from the ~actor-
critic.policies.SoftmaxPolicy.

• name (string, optional) – A name for this model.

register_layers(layer_collection)
Registers the layers of this model (neural net) in the specified kfac.LayerCollection (required for
K-FAC).

Parameters layer_collection (kfac.LayerCollection) – A layer collection used
by the KfacOptimizer.

actorcritic.envs.atari.wrappers

Contains wrappers that can wrap around environments to modify their functionality.

The implementations of these wrappers are adopted from OpenAI.

Classes

AtariClipRewardWrapper(env) A wrapper that clips the rewards between -1 and 1.
AtariEpisodicLifeWrapper(env) A wrapper that ends episodes (returns terminal = True)

after a life in the Atari game has been lost.
AtariFireResetWrapper(env) A wrapper that executes the ‘FIRE’ action after the en-

vironment has been reset.
AtariFrameskipWrapper(env, frameskip) A wrapper that skips frames.
AtariInfoClearWrapper(env) A wrapper that removes unnecessary data in the info re-

turned by gym.Env.step().
Continued on next page

20 Chapter 1. API Documentation

https://www.nature.com/articles/nature14236
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string
https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py

actor-critic Documentation, Release 0.1

Table 17 – continued from previous page
AtariNoopResetWrapper(env, noop_max) A wrapper that executes a random number of ‘NOOP’

actions.
AtariPreprocessFrameWrapper(env) A wrapper that scales the observations from 210x160

down to 84x84 and converts from RGB to grayscale by
extracting the luminance.

EpisodeInfoWrapper(env) A wrapper that stores episode information in the info re-
turned by gym.Env.step() at the end of an episode.

FrameStackWrapper(env, num_stacked_frames) A wrapper that stacks the last observations.
RenderWrapper(env[, fps]) A wrapper that calls gym.Env.render() every step.

class actorcritic.envs.atari.wrappers.AtariClipRewardWrapper(env)
Bases: gym.core.RewardWrapper

A wrapper that clips the rewards between -1 and 1.

__init__(env)

Parameters env (gym.Env) – An environment that will be wrapped.

class actorcritic.envs.atari.wrappers.AtariEpisodicLifeWrapper(env)
Bases: gym.core.Wrapper

A wrapper that ends episodes (returns terminal = True) after a life in the Atari game has been lost.

__init__(env)

Parameters env (gym.Env) – An environment that will be wrapped.

reset(**kwargs)
Resets the state of the environment and returns an initial observation.

Returns: observation (object): the initial observation of the space.

step(action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

Parameters action (object) – an action provided by the environment

Returns observation (object) – agent’s observation of the current environment reward (float) :
amount of reward returned after previous action done (boolean): whether the episode has
ended, in which case further step() calls will return undefined results info (dict): contains
auxiliary diagnostic information (helpful for debugging, and sometimes learning)

class actorcritic.envs.atari.wrappers.AtariFireResetWrapper(env)
Bases: gym.core.Wrapper

A wrapper that executes the ‘FIRE’ action after the environment has been reset.

__init__(env)

Parameters env (gym.Env) – An environment that will be wrapped.

reset(**kwargs)
Resets the state of the environment and returns an initial observation.

Returns: observation (object): the initial observation of the space.

step(action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

1.1. actorcritic 21

https://docs.python.org/3/library/functions.html#object

actor-critic Documentation, Release 0.1

Accepts an action and returns a tuple (observation, reward, done, info).

Parameters action (object) – an action provided by the environment

Returns observation (object) – agent’s observation of the current environment reward (float) :
amount of reward returned after previous action done (boolean): whether the episode has
ended, in which case further step() calls will return undefined results info (dict): contains
auxiliary diagnostic information (helpful for debugging, and sometimes learning)

class actorcritic.envs.atari.wrappers.AtariFrameskipWrapper(env, frameskip)
Bases: gym.core.Wrapper

A wrapper that skips frames.

__init__(env, frameskip)

Parameters

• env (gym.Env) – An environment that will be wrapped.

• frameskip (int) – Every frameskip-th frame is used. The remaining frames are
skipped.

reset(**kwargs)
Resets the state of the environment and returns an initial observation.

Returns: observation (object): the initial observation of the space.

step(action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

Parameters action (object) – an action provided by the environment

Returns observation (object) – agent’s observation of the current environment reward (float) :
amount of reward returned after previous action done (boolean): whether the episode has
ended, in which case further step() calls will return undefined results info (dict): contains
auxiliary diagnostic information (helpful for debugging, and sometimes learning)

class actorcritic.envs.atari.wrappers.AtariInfoClearWrapper(env)
Bases: gym.core.Wrapper

A wrapper that removes unnecessary data in the info returned by gym.Env.step(). This reduces the amount
of inter-process data.

Warning: AtariEpisodicLifeWrapper does not work afterwards, so it should be used before.

__init__(env)

Parameters env (gym.Env) – An environment that will be wrapped.

reset(**kwargs)
Resets the state of the environment and returns an initial observation.

Returns: observation (object): the initial observation of the space.

step(action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

22 Chapter 1. API Documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

actor-critic Documentation, Release 0.1

Parameters action (object) – an action provided by the environment

Returns observation (object) – agent’s observation of the current environment reward (float) :
amount of reward returned after previous action done (boolean): whether the episode has
ended, in which case further step() calls will return undefined results info (dict): contains
auxiliary diagnostic information (helpful for debugging, and sometimes learning)

class actorcritic.envs.atari.wrappers.AtariNoopResetWrapper(env, noop_max)
Bases: gym.core.Wrapper

A wrapper that executes a random number of ‘NOOP’ actions.

__init__(env, noop_max)

Parameters

• env (gym.Env) – An environment that will be wrapped.

• noop_max (int) – The maximum number of ‘NOOP’ actions. The number is selected
randomly between 1 and noop_max.

reset(**kwargs)
Resets the state of the environment and returns an initial observation.

Returns: observation (object): the initial observation of the space.

step(action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

Parameters action (object) – an action provided by the environment

Returns observation (object) – agent’s observation of the current environment reward (float) :
amount of reward returned after previous action done (boolean): whether the episode has
ended, in which case further step() calls will return undefined results info (dict): contains
auxiliary diagnostic information (helpful for debugging, and sometimes learning)

class actorcritic.envs.atari.wrappers.AtariPreprocessFrameWrapper(env)
Bases: gym.core.ObservationWrapper

A wrapper that scales the observations from 210x160 down to 84x84 and converts from RGB to grayscale by
extracting the luminance.

__init__(env)

Parameters env (gym.Env) – An environment that will be wrapped.

class actorcritic.envs.atari.wrappers.EpisodeInfoWrapper(env)
Bases: gym.core.Wrapper

A wrapper that stores episode information in the info returned by gym.Env.step() at the end of an episode.
More specifically, if an episode is terminal, info will contain the key ‘episode’ which has a dict value contain-
ing the ‘total_reward’, which is the cumulative reward of the episode.

Note: If you want to get the cumulative reward of the entire episode, AtariEpisodicLifeWrapper
should be used after this wrapper.

__init__(env)

Parameters env (gym.Env) – An environment that will be wrapped.

1.1. actorcritic 23

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

actor-critic Documentation, Release 0.1

static get_episode_rewards_from_info_batch(infos)
Utility function that extracts the episode rewards, that are inserted by the EpisodeInfoWrapper, out
of the infos.

Parameters infos (list of list) – A batch-major list of infos as returned by
interact().

Returns numpy.ndarray – A batch-major array with the same shape as infos. It contains the
episode reward of an info at the corresponding position. If no episode reward was in an info,
the result will contain numpy.nan respectively.

reset(**kwargs)
Resets the state of the environment and returns an initial observation.

Returns: observation (object): the initial observation of the space.

step(action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

Parameters action (object) – an action provided by the environment

Returns observation (object) – agent’s observation of the current environment reward (float) :
amount of reward returned after previous action done (boolean): whether the episode has
ended, in which case further step() calls will return undefined results info (dict): contains
auxiliary diagnostic information (helpful for debugging, and sometimes learning)

class actorcritic.envs.atari.wrappers.FrameStackWrapper(env, num_stacked_frames)
Bases: gym.core.Wrapper

A wrapper that stacks the last observations. The observations returned by this wrapper consist of the last frames.

__init__(env, num_stacked_frames)

Parameters

• env (gym.Env) – An environment that will be wrapped.

• num_stacked_frames (int) – The number of frames that will be stacked.

reset(**kwargs)
Resets the state of the environment and returns an initial observation.

Returns: observation (object): the initial observation of the space.

step(action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

Parameters action (object) – an action provided by the environment

Returns observation (object) – agent’s observation of the current environment reward (float) :
amount of reward returned after previous action done (boolean): whether the episode has
ended, in which case further step() calls will return undefined results info (dict): contains
auxiliary diagnostic information (helpful for debugging, and sometimes learning)

class actorcritic.envs.atari.wrappers.RenderWrapper(env, fps=None)
Bases: gym.core.Wrapper

A wrapper that calls gym.Env.render() every step.

24 Chapter 1. API Documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

actor-critic Documentation, Release 0.1

__init__(env, fps=None)

Parameters

• env (gym.Env) – An environment that will be wrapped.

• fps (int, float, optional) – If it is not None, the steps will be slowed down to run at
the specified frames per second by waiting 1.0/fps seconds every step.

reset(**kwargs)
Resets the state of the environment and returns an initial observation.

Returns: observation (object): the initial observation of the space.

step(action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

Parameters action (object) – an action provided by the environment

Returns observation (object) – agent’s observation of the current environment reward (float) :
amount of reward returned after previous action done (boolean): whether the episode has
ended, in which case further step() calls will return undefined results info (dict): contains
auxiliary diagnostic information (helpful for debugging, and sometimes learning)

1.1.10 actorcritic.examples

Contains examples of how to use this project.

atari Contains examples that deal with Atari environments.

actorcritic.examples.atari

Contains examples that deal with Atari environments.

a2c_acktr An example of how to use A2C and ACKTR to learn to
play an Atari game.

actorcritic.examples.atari.a2c_acktr

An example of how to use A2C and ACKTR to learn to play an Atari game.

Functions

create_environments(env_id, num_envs) Creates multiple Atari environments that run in subpro-
cesses.

create_optimizer(acktr, model, learning_rate) Creates an optimizer based on whether ACKTR or A2C
is used.

load_model(saver, checkpoint_path, session) Loads the latest model checkpoint (with the neural net-
work parameters) from a directory.

Continued on next page

1.1. actorcritic 25

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object

actor-critic Documentation, Release 0.1

Table 20 – continued from previous page
make_atari_env(env_id, render) Creates a gym.Env and wraps it with all Atari wrap-

pers in actorcritic.envs.atari.wrappers.
save_model(saver, checkpoint_path, . . .) Saves a model checkpoint to a directory.
train_a2c_acktr(acktr, env_id, num_envs, . . .) Trains an Atari model using A2C or ACKTR.

actorcritic.examples.atari.a2c_acktr.create_environments(env_id, num_envs)
Creates multiple Atari environments that run in subprocesses.

Parameters

• env_id (string) – An id passed to gym.make() to create the environments.

• num_envs (int) – The number of environments (and subprocesses) that will be created.

Returns list of gym.Wrapper – The environments.

actorcritic.examples.atari.a2c_acktr.create_optimizer(acktr, model, learning_rate)
Creates an optimizer based on whether ACKTR or A2C is used. A2C uses the RMSProp optimizer, ACKTR uses
the K-FAC optimizer. This function is not restricted to Atari models and can be used generally.

Parameters

• acktr (bool) – Whether to use the optimizer of ACKTR or A2C.

• model (ActorCriticModel) – A model that is needed for K-FAC to register the neural
network layers and the predictive distributions.

• learning_rate (float or tf.Tensor) – A learning rate for the optimizer.

actorcritic.examples.atari.a2c_acktr.load_model(saver, checkpoint_path, session)
Loads the latest model checkpoint (with the neural network parameters) from a directory.

Parameters

• saver (tf.train.Saver) – A saver object to restore the model.

• checkpoint_path (string) – A directory where the checkpoint is loaded from.

• session (tf.Session) – A session which will contain the loaded variable values.

actorcritic.examples.atari.a2c_acktr.make_atari_env(env_id, render)
Creates a gym.Env and wraps it with all Atari wrappers in actorcritic.envs.atari.wrappers.

Parameters

• env_id (string) – An id passed to gym.make().

• render (bool) – Whether this environment should be rendered.

Returns gym.Env – The environment.

actorcritic.examples.atari.a2c_acktr.save_model(saver, checkpoint_path, model_name,
step, session)

Saves a model checkpoint to a directory.

Parameters

• saver (tf.train.Saver) – A saver object to save the model.

• checkpoint_path (string) – A directory where the model checkpoint will be saved.

• model_name (string) – A name of the model. The checkpoint file in the check-
point_path directory will have this name.

• step (int or tf.Tensor) – A number that is appended to the checkpoint file name.

26 Chapter 1. API Documentation

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#int

actor-critic Documentation, Release 0.1

• session (tf.Session) – A session whose variables will be saved.

actorcritic.examples.atari.a2c_acktr.train_a2c_acktr(acktr, env_id, num_envs,
num_steps, checkpoint_path,
model_name, sum-
mary_path=None)

Trains an Atari model using A2C or ACKTR. Automatically saves and loads the trained model.

Parameters

• acktr (bool) – Whether the ACKTR or the A2C algorithm should be used. A2C uses the
RMSProp optimizer and 64 filters in the third convolutional layer of the neural network.
ACKTR uses the K-FAC optimizer and 32 filters.

• env_id (string) – An id passed to gym.make() to create the environments.

• num_envs (int) – The number of environments that will be used (so num_envs subpro-
cesses will be created). A2C normally uses 16. ACKTR normally uses 32.

• num_steps (int) – The number of steps to take in each iteration. A2C normally uses 5.
ACKTR normally uses 20.

• checkpoint_path (string) – A directory where the model’s checkpoints will be
loaded and saved.

• model_name (string) – A name of the model. The files in the checkpoint_path directory
will have this name.

• summary_path (string, optional) – A directory where the TensorBoard summaries will
be saved. If not specified, no summaries will be saved.

1.1. actorcritic 27

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string

actor-critic Documentation, Release 0.1

28 Chapter 1. API Documentation

CHAPTER 2

Quickstart Guide

The basic idea of reinforcement learning is to find a behavior for an agent inside an environment that leads to a maximal
reward. Such a behavior is called a policy and it decides what action to take based on the current observation (also
called state).

For example, the environment can be an Atari game. In this case the reward is the score, the actions are the controller
actions, and the current frame/image of the game is an observation.

The gym library (GitHub) by OpenAI provides several types of environments. A basic reinforcement learning setup
to learn a policy for the Breakout environment could look like this:

import gym

create the environment
env = gym.make('BreakoutNoFrameskip-v4')

receive an initial observation (frame) to select the first action
observation = env.reset()

while True:
let the current policy select an action
action = policy(observation)

execute the action and take one step in the environment (go to next frame)
next_observation, reward, terminal, info = env.step(action)

improve the policy based on this experience
improve_policy(observation, action, reward, terminal, next_observation)

observation = next_observation

if terminal:
observation = env.reset()

terminal indicates whether the game ended, so the game has to be reset. reward is just a number that represents
the points that were achieved in this step. info contains debug information (the current number of lives).

29

https://gym.openai.com/
https://github.com/openai/gym

actor-critic Documentation, Release 0.1

A2C and ACKTR actually use multiple environments at once by running them in multiple subprocesses. This means
that we can improve the policy faster, since we simply have more observations and rewards available. For that reason
there is MultiEnv:

from actorcritic.multi_env import MultiEnv

envs = create_environments() # create multiple environments
multi_env = MultiEnv(envs)

Yet the crucial parts are policy(observation) and improve_policy(observation, action,
reward, next_observation). We need to know how to define a policy and especially how to improve it.

Actor-critic methods define the policy as a probability distribution, such that it computes the probability of every action
based on the current observation. Then these probabilities are used to sample one of the actions. For example, if the
ball approaches the bottom in Breakout, the probability to move the paddle towards the ball should be high.

We typically use a neural network to compute these probabilities. Then the observations (frames) are sent into the
network, which produces a score for every action. These scores can be passed in the softmax function to obtain
probabilities. AtariModel provides a neural network and a policy made for Atari environments:

from actorcritic.envs.atari.model import AtariModel

observation_space and action_space define the type and shape of the observations
→˓and actions
e.g. the size of the frames
model = AtariModel(multi_env.observation_space, multi_env.action_space)

Additionally A2C and ACKTR do not take one step only and improve the policy immediately. Instead they take multiple
steps and use all the experienced observations and rewards to improve the policy. A MultiEnvAgent simplifies this
process. It takes the neural network and the policy (the ‘model’), and the environments. Then we just have to call
interact() and it uses the policy to take multiple steps:

from actorcritic.agents import MultiEnvAgent

agent = MultiEnvAgent(multi_env, model, num_steps=5)

while True:
take 5 steps in all environments
session is a tf.Session used to compute the values of the neural network
observations, actions, rewards, terminals, next_observations, infos = agent.

→˓interact(session)

improve the policy based on this experience
improve_policy(observations, actions, rewards, terminals, next_observations)

In actor-critic methods we do not define a loss function directly, but a policy objective function to optimize the neural
network. It needs the observations, the actions, and the rewards that the agent experienced. Then we can learn through
the policy objective, which looks at the rewards in order to decide whether the actions were good or not.

Furthermore we need a baseline function that enhances the policy objective. It should express how much reward we
can expect if we would follow our policy proceeding from the observations we just have seen. This helps the policy
to decide whether the actions it has taken actually were better or worse than expected. This baseline function is the
‘critic’ of actor-critic (the policy is the ‘actor’). It distinguishes actor-critic methods from policy gradient methods
which just have an ‘actor’.

Unfortunately we do not have such a baseline function. That is why we will learn the baseline, too, at the same time as
the policy. Therefore an ActorCriticModel like the AtariModel has to provide a baseline. A2C and ACKTR
use the state-value function which indeed tells us how much reward we can expect from a given observation.

30 Chapter 2. Quickstart Guide

actor-critic Documentation, Release 0.1

It can be beneficial to use the same neural network as the policy for the baseline. AtariModel does exactly this.

In summary we need a ActorCriticObjective. The policy objective of A2C and ACKTR is implemented in
A2CObjective. It discounts the rewards and uses entropy regularization (see A2CObjective).

from actorcritic.objectives import A2CObjective

objective = A2CObjective(model, discount_factor=0.99, entropy_regularization_
→˓strength=0.01)

Next we need an optimizer for our neural network:

import tensorflow as tf

A2C uses the RMSProp optimizer
optimizer = tf.train.RMSPropOptimizer(learning_rate=0.0007)

create an 'optimize' operation that we can call
use optimize_shared() since we share the network between the policy and the baseline
optimize_op = objective.optimize_shared(optimizer)

That is all. We can use all variables defined above to run the A2C algorithm:

while True:
take multiple steps in all environments
observations, actions, rewards, terminals, next_observations, infos = agent.

→˓interact(session)

improve the policy and the baseline
session.run(optimize_op, feed_dict={

model.observations_placeholder: observations,
model.bootstrap_observations_placeholder: next_observations,
model.actions_placeholder: actions,
model.rewards_placeholder: rewards,
model.terminals_placeholder: terminals

})

bootstrap_observations_placeholder is needed to compute the bootstrap_values, which are used
in the policy objective.

In order to use ACKTR we just have to change the optimizer to a kfac.KfacOptimizer.

See a2c_acktr.py for a full implementation, especially how to implement create_environments() and how to
use the K-FAC optimizer.

31

https://github.com/jrobine/actor-critic/blob/master/actorcritic/examples/atari/a2c_acktr.py

actor-critic Documentation, Release 0.1

32 Chapter 2. Quickstart Guide

Python Module Index

a
actorcritic, 3
actorcritic.agents, 3
actorcritic.baselines, 6
actorcritic.envs, 19
actorcritic.envs.atari, 19
actorcritic.envs.atari.model, 19
actorcritic.envs.atari.wrappers, 20
actorcritic.examples, 25
actorcritic.examples.atari, 25
actorcritic.examples.atari.a2c_acktr,

25
actorcritic.kfac_utils, 7
actorcritic.model, 8
actorcritic.multi_env, 10
actorcritic.nn, 12
actorcritic.objectives, 15
actorcritic.policies, 17

33

actor-critic Documentation, Release 0.1

34 Python Module Index

Index

Symbols
_AutoResetWrapper (class in actorcritic.multi_env), 12
__init__() (actorcritic.agents.MultiEnvAgent method), 5
__init__() (actorcritic.agents.SingleEnvAgent method), 5
__init__() (actorcritic.baselines.StateValueFunction

method), 7
__init__() (actorcritic.envs.atari.model.AtariModel

method), 20
__init__() (actorcritic.envs.atari.wrappers.AtariClipRewardWrapper

method), 21
__init__() (actorcritic.envs.atari.wrappers.AtariEpisodicLifeWrapper

method), 21
__init__() (actorcritic.envs.atari.wrappers.AtariFireResetWrapper

method), 21
__init__() (actorcritic.envs.atari.wrappers.AtariFrameskipWrapper

method), 22
__init__() (actorcritic.envs.atari.wrappers.AtariInfoClearWrapper

method), 22
__init__() (actorcritic.envs.atari.wrappers.AtariNoopResetWrapper

method), 23
__init__() (actorcritic.envs.atari.wrappers.AtariPreprocessFrameWrapper

method), 23
__init__() (actorcritic.envs.atari.wrappers.EpisodeInfoWrapper

method), 23
__init__() (actorcritic.envs.atari.wrappers.FrameStackWrapper

method), 24
__init__() (actorcritic.envs.atari.wrappers.RenderWrapper

method), 24
__init__() (actorcritic.kfac_utils.ColdStartPeriodicInvUpdateKfacOpt

method), 8
__init__() (actorcritic.model.ActorCriticModel method),

8
__init__() (actorcritic.multi_env.MultiEnv method), 10
__init__() (actorcritic.multi_env.SubprocessEnv method),

11
__init__() (actorcritic.nn.ClipGlobalNormOptimizer

method), 13
__init__() (actorcritic.objectives.A2CObjective method),

15

__init__() (actorcritic.policies.DistributionPolicy
method), 17

__init__() (actorcritic.policies.SoftmaxPolicy method),
18

A
A2CObjective (class in actorcritic.objectives), 15
action_space (actorcritic.multi_env.MultiEnv attribute),

10
action_space (actorcritic.multi_env.SubprocessEnv at-

tribute), 11
actions_placeholder (actorcritic.model.ActorCriticModel

attribute), 8
actorcritic (module), 3
actorcritic.agents (module), 3
actorcritic.baselines (module), 6
actorcritic.envs (module), 19
actorcritic.envs.atari (module), 19
actorcritic.envs.atari.model (module), 19
actorcritic.envs.atari.wrappers (module), 20
actorcritic.examples (module), 25
actorcritic.examples.atari (module), 25
actorcritic.examples.atari.a2c_acktr (module), 25
actorcritic.kfac_utils (module), 7
actorcritic.model (module), 8
actorcritic.multi_env (module), 10
actorcritic.nn (module), 12
actorcritic.objectives (module), 15
actorcritic.policies (module), 17
ActorCriticModel (class in actorcritic.model), 8
ActorCriticObjective (class in actorcritic.objectives), 16
Agent (class in actorcritic.agents), 4
apply_gradients() (actor-

critic.kfac_utils.ColdStartPeriodicInvUpdateKfacOpt
method), 8

apply_gradients() (actor-
critic.nn.ClipGlobalNormOptimizer method),
13

AtariClipRewardWrapper (class in actor-
critic.envs.atari.wrappers), 21

35

actor-critic Documentation, Release 0.1

AtariEpisodicLifeWrapper (class in actor-
critic.envs.atari.wrappers), 21

AtariFireResetWrapper (class in actor-
critic.envs.atari.wrappers), 21

AtariFrameskipWrapper (class in actor-
critic.envs.atari.wrappers), 22

AtariInfoClearWrapper (class in actor-
critic.envs.atari.wrappers), 22

AtariModel (class in actorcritic.envs.atari.model), 19
AtariNoopResetWrapper (class in actor-

critic.envs.atari.wrappers), 23
AtariPreprocessFrameWrapper (class in actor-

critic.envs.atari.wrappers), 23

B
baseline (actorcritic.model.ActorCriticModel attribute), 8
Baseline (class in actorcritic.baselines), 6
baseline_loss (actorcritic.objectives.A2CObjective

attribute), 16
baseline_loss (actorcritic.objectives.ActorCriticObjective

attribute), 16
bootstrap_observations_placeholder (actor-

critic.model.ActorCriticModel attribute),
9

bootstrap_values (actorcritic.model.ActorCriticModel at-
tribute), 9

C
ClipGlobalNormOptimizer (class in actorcritic.nn), 13
close() (actorcritic.multi_env.MultiEnv method), 10
close() (actorcritic.multi_env.SubprocessEnv method), 11
ColdStartPeriodicInvUpdateKfacOpt (class in actor-

critic.kfac_utils), 7
conv2d() (in module actorcritic.nn), 13
conv2d_params() (in module actorcritic.nn), 14
create_environments() (in module actor-

critic.examples.atari.a2c_acktr), 26
create_optimizer() (in module actor-

critic.examples.atari.a2c_acktr), 26
create_subprocess_envs() (in module actor-

critic.multi_env), 12

D
DistributionPolicy (class in actorcritic.policies), 17

E
entropy (actorcritic.policies.DistributionPolicy attribute),

17
entropy (actorcritic.policies.Policy attribute), 18
envs (actorcritic.multi_env.MultiEnv attribute), 10
EpisodeInfoWrapper (class in actor-

critic.envs.atari.wrappers), 23

F
flatten() (in module actorcritic.nn), 14
FrameStackWrapper (class in actor-

critic.envs.atari.wrappers), 24
fully_connected() (in module actorcritic.nn), 14
fully_connected_params() (in module actorcritic.nn), 14

G
get_episode_rewards_from_info_batch() (actor-

critic.envs.atari.wrappers.EpisodeInfoWrapper
static method), 23

I
initialize() (actorcritic.multi_env.SubprocessEnv

method), 11
interact() (actorcritic.agents.Agent method), 4
interact() (actorcritic.agents.MultiEnvAgent method), 5
interact() (actorcritic.agents.SingleEnvAgent method), 5

L
linear_decay() (in module actorcritic.nn), 15
load_model() (in module actor-

critic.examples.atari.a2c_acktr), 26
log_prob (actorcritic.policies.DistributionPolicy at-

tribute), 17
log_prob (actorcritic.policies.Policy attribute), 18

M
make_atari_env() (in module actor-

critic.examples.atari.a2c_acktr), 26
mean_entropy (actorcritic.objectives.A2CObjective at-

tribute), 16
mode (actorcritic.policies.DistributionPolicy attribute),

17
mode (actorcritic.policies.Policy attribute), 18
MultiEnv (class in actorcritic.multi_env), 10
MultiEnvAgent (class in actorcritic.agents), 4

O
observation_space (actorcritic.multi_env.MultiEnv

attribute), 10
observation_space (actorcritic.multi_env.SubprocessEnv

attribute), 11
observations_placeholder (actor-

critic.model.ActorCriticModel attribute),
9

optimize_separate() (actor-
critic.objectives.ActorCriticObjective method),
16

optimize_shared() (actor-
critic.objectives.ActorCriticObjective method),
16

36 Index

actor-critic Documentation, Release 0.1

P
policy (actorcritic.model.ActorCriticModel attribute), 9
Policy (class in actorcritic.policies), 18
policy_loss (actorcritic.objectives.A2CObjective at-

tribute), 16
policy_loss (actorcritic.objectives.ActorCriticObjective

attribute), 17

R
register_layers() (actorcritic.envs.atari.model.AtariModel

method), 20
register_layers() (actorcritic.model.ActorCriticModel

method), 9
register_predictive_distribution() (actor-

critic.baselines.Baseline method), 6
register_predictive_distribution() (actor-

critic.baselines.StateValueFunction method),
7

register_predictive_distribution() (actor-
critic.policies.Policy method), 18

register_predictive_distribution() (actor-
critic.policies.SoftmaxPolicy method), 18

register_predictive_distributions() (actor-
critic.model.ActorCriticModel method),
9

render() (actorcritic.multi_env.SubprocessEnv method),
11

RenderWrapper (class in actorcritic.envs.atari.wrappers),
24

reset() (actorcritic.envs.atari.wrappers.AtariEpisodicLifeWrapper
method), 21

reset() (actorcritic.envs.atari.wrappers.AtariFireResetWrapper
method), 21

reset() (actorcritic.envs.atari.wrappers.AtariFrameskipWrapper
method), 22

reset() (actorcritic.envs.atari.wrappers.AtariInfoClearWrapper
method), 22

reset() (actorcritic.envs.atari.wrappers.AtariNoopResetWrapper
method), 23

reset() (actorcritic.envs.atari.wrappers.EpisodeInfoWrapper
method), 24

reset() (actorcritic.envs.atari.wrappers.FrameStackWrapper
method), 24

reset() (actorcritic.envs.atari.wrappers.RenderWrapper
method), 25

reset() (actorcritic.multi_env._AutoResetWrapper
method), 12

reset() (actorcritic.multi_env.MultiEnv method), 10
reset() (actorcritic.multi_env.SubprocessEnv method), 11
rewards_placeholder (actor-

critic.model.ActorCriticModel attribute),
9

S
sample (actorcritic.policies.DistributionPolicy attribute),

17
sample (actorcritic.policies.Policy attribute), 18
sample_actions() (actorcritic.model.ActorCriticModel

method), 9
save_model() (in module actor-

critic.examples.atari.a2c_acktr), 26
select_max_actions() (actor-

critic.model.ActorCriticModel method),
9

SingleEnvAgent (class in actorcritic.agents), 5
SoftmaxPolicy (class in actorcritic.policies), 18
start() (actorcritic.multi_env.SubprocessEnv method), 11
StateValueFunction (class in actorcritic.baselines), 7
step() (actorcritic.envs.atari.wrappers.AtariEpisodicLifeWrapper

method), 21
step() (actorcritic.envs.atari.wrappers.AtariFireResetWrapper

method), 21
step() (actorcritic.envs.atari.wrappers.AtariFrameskipWrapper

method), 22
step() (actorcritic.envs.atari.wrappers.AtariInfoClearWrapper

method), 22
step() (actorcritic.envs.atari.wrappers.AtariNoopResetWrapper

method), 23
step() (actorcritic.envs.atari.wrappers.EpisodeInfoWrapper

method), 24
step() (actorcritic.envs.atari.wrappers.FrameStackWrapper

method), 24
step() (actorcritic.envs.atari.wrappers.RenderWrapper

method), 25
step() (actorcritic.multi_env._AutoResetWrapper

method), 12
step() (actorcritic.multi_env.MultiEnv method), 10
step() (actorcritic.multi_env.SubprocessEnv method), 11
SubprocessEnv (class in actorcritic.multi_env), 11

T
terminals_placeholder (actor-

critic.model.ActorCriticModel attribute),
9

train_a2c_acktr() (in module actor-
critic.examples.atari.a2c_acktr), 27

transpose_list() (in module actorcritic.agents), 6

V
value (actorcritic.baselines.Baseline attribute), 7
value (actorcritic.baselines.StateValueFunction attribute),

7

Index 37

	API Documentation
	Quickstart Guide
	Python Module Index

