
j1939 Documentation
Release

Feng

Apr 30, 2018

Contents

1 Introduction 19
1.1 Manual Overview . 19
1.2 Overview of the MTLT Series Inertial Systems . 21

2 Connections 25
2.1 Connections . 25
2.2 Power Input and Power Input Ground . 25
2.3 Serial Data Interface . 25
2.4 Alarm . 26

3 Installation and Operation of NAV-VIEW 27
3.1 NAV-VIEW Computer Requirements . 27
3.2 Connections . 27
3.3 Setting up NAV-VIEW . 28
3.4 Data Recording . 28
3.5 Data Playback . 29
3.6 Raw Data Console . 30
3.7 Packet Statistics View . 30
3.8 Unit Configuration . 31
3.9 Advanced Configuration . 32
3.10 Bit Configuration . 33
3.11 Tilt alarm . 34

4 Theory of Operation 37
4.1 MTLT Series Default Coordinate System . 38
4.2 4.2 Dynamic MTLT Theory of Operation . 39
4.3 Tilt Alarm (Independent vs. Cone Angle) . 43

5 Application Guide 45
5.1 Introduction . 45
5.2 Equipment Leveling and lockout . 45
5.3 Aerial Work Platform Safety . 46
5.4 Land Vehicle . 46

6 Programming Guide 47
6.1 General Settings . 47
6.2 Number Formats . 48

i

6.3 Packet Format . 49

7 Communicating with the MTLT1 Series 53
7.1 Link Test. 53
7.2 Interactive Commands . 54
7.3 Output Packets (Polled) . 56
7.4 Output Packets (Polled or Continuous) . 59

8 Advanced Commands 61
8.1 Configuration Fields . 61
8.2 Continuous Packet Type Field . 63
8.3 Digital Filter Settings . 63
8.4 Orientation Field . 63
8.5 User Behavior Switches . 64
8.6 Tilt alarm . 65
8.7 Commands to Program Configuration . 65
8.8 Read Fields Command . 70
8.9 Read Fields Response . 71
8.10 Get Fields Command . 73
8.11 Get Fields Response . 74

9 Advanced BIT 75
9.1 Built In Test (BIT) and Status Fields . 75
9.2 Master BIT and Status (BITstatus) Field . 77
9.3 hardwareBIT Field . 79
9.4 hardwarePowerBIT Field . 79
9.5 hardwareEnvironmentalBIT Field . 80
9.6 comBIT Field . 80
9.7 comSerialABIT Field . 80
9.8 softwareBIT Field . 81
9.9 softwareAlgorithmBIT Field . 81
9.10 softwareDataBIT Field . 81
9.11 hardwareStatus Field . 82
9.12 comStatus Field . 82
9.13 softwareStatus Field . 83
9.14 sensorStatus Field . 83
9.15 Configuring the Master Status . 84

10 Appendix A. Mechanical Specifications 87

11 Appendix C. Sample Packet-Parser Code 89
11.1 Overview . 89
11.2 Code listing . 90

12 Appendix D. Sample Packet Decoding 97

13 Warranty and Support Information 99
13.1 Customer Service . 99
13.2 Contact Directory . 99
13.3 Return Procedure . 99
13.4 Warranty . 101

ii

j1939 Documentation, Release

ANS is an open source ecosystem of inertial measurement unit

A web-based development platform efficiently to build up navigation system

Contents

The Application Protocol of Aceinna SAE J1939

REVISION HISTORY

Revi-
sion

Date Author Description

1.0 Jan 23, 2017 Feng Initial version
1.1 Apr 20, 2017 Feng Updated version upon feedback from customers
1.2 May 17,

2017
JF Formatting

1.3 Sept 5, 2017 Feng /
JF

Add configuration tables of MTLT user’s guide and Change Name to
Aceinna

1.3.1 Sept 6, 2017 JF Updated Packet Rate Divider Table
1.3.2 Sept 22,

2017
JF Update Data format description, New logo.

1.3.3 Sept 25,
2017

Feng /
JF

Fix typo page 6

1.3.4 Mar 15, 2018 Feng Change 5.5.1 and 5.5.2 match against firmware

TABLE OF CONTENTS

1 Introduction 4

1.1 Purpose

Contents 1

j1939 Documentation, Release

1.2 Technical assistance

2 Data Unit Definition 5

3 Function Overview 6

4 Packet type 7

5 Function Detail 8

5.1 Command and Status Functions

5.2 Test Functions

5.3 Status

5.4 Configure commands

5.5 Assigning PS Numbers

5.6 Data Packet

6 Address claiming 17

6.1 Non-existence of node address

6.2 Existence of node address

1. Introduction

1.1 Purpose

Aceinna J1939 Protocol (AJP) is a communication mechanism used for resolution of the identification of CAN nodes,
configuration, and data exchange based upon SAE J1939 and the related standards.

It is a request and reply protocol and communicated within the boundaries of a single CAN network,never routed
internetwork nodes. The property places AJP into the layer fourth in Open Systems Interconnection (OSI) model, but
not developed into OSI framework. 1.2 Technical assistance

For assistance or clarification on information in this document, submit a case to Aceinna Inc., www.Aceinna.com

2. Data Unit Definition

Unit reports data in standard engineering units as shown in following table.

Data Type Name
**Scaling **

Range
**Offset* *

Units

Pitch / roll Degree 1/32768 -250 to 252 -250 Deg
Angular rate Rate of angular change 1/128 -250 to 250.992 -250 Deg/s
Accelerat ion Linear accelerat ion 0.01 -320 to 322.55 -320 m/s2

TABLE 1: Data Unit Definition

3. Function Overview

To execute a command the host controller sends a request packet as:

Priority Base PGN PDU format PDU specific Source Address Host Data Field
6 59904 234 255 128-247

2 Contents

http://www.memsic.com/

j1939 Documentation, Release

The data field contains the priority, page and PGN of the function to be executed. The table below summarizes the
functions supported and their base PGN.

Name Ref Base
PGN

Description

Get Ver-
sion

5.1.1 65242 Requests firmware version from SAE J1939 Node

Get ECU
ID

5.1.2 64965 Requests the ECU ID

Algorithm
Reset

5.1.3 65360 Resets the state estimation algorithm without reloading fields from EEPROM

Save Con-
figuration

5.1.4 65361 Writes the current configuration into EEPROM

Test HW 5.2.1 65362 Checks the status of the hardware, software and sensors on the specific node
Test SW 5.2.2 65363
Test Status 5.3 65364 Sets parameters on the specific node. Parameters include: packets to be broadcast;

broadcast rate; orientation; accelerometer and rate sensor filter settings; user behav-
ior switches

Packet
Rate Di-
vider

5.4.1 65365 Determines the Broadcast Rate

Data
Packet
Type

5.4.2 65366 Determines the type of packets broadcast

Digital Fil-
ter

5.4.3 65367 Set low pass filter for acceleration and rate sensors

Orientation 5.4.4 65368 Allows the orientation to be changed
User Be-
havior
Switches

5.4.5 65369

Accel-
eration
Parameters

5.4.6 65373 Set acceleration parameters for Extended Kalman Filter

PS Setting
Bank 0

5.5.1 65520 Allows user to change default PS for Bank 0 functions

PS Setting
Bank 1

5.5.2 65521 Allows user to change default PS for Bank 1 functions

TABLE 2: Function Summary

4. Packet type

AJP claims two types of packets among J1939 nodes, as control and data message.

AJP supports two types of communication methods as SAE J1939 requests, global and specific.

Global packets may be performed as a sender to all, that all recipients must reply with a global address.

Specific packets may be used to exchange the operations between sender and recipient.

5. Function Detail

5.1 Command and Status Functions

5.1.1 Version Command:

Contents 3

j1939 Documentation, Release

Type: Global

Host Data Field: 0 Bytes

Host broadcasts a request packet following up SAEJ1939.

Units on the bus respond with PGN message: 0x18FEDASA

Priority Base PGN PDU format PDU specific Source Address Data Field
6 65242 254 218 128-247 5 bytes

Version Data Field Description

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4
Major Minor Patch Stage Build

5.1.2 ECU ID Command:

Type: Global

Host Data Field: 0 bytes

Units on the bus respond with message: 0x18FDC5SA*

Priority Base PGN PDU format PDU specific Source address Data Field
6 64965 253 197 128-247 8 bytes

Data Field Definition follows up Table 1 of SAE J1939-81.

5.1.3 Algorithm Reset Command:

Type: Specific

Host Data Field: 3 Bytes

Response Data Field: 3 Bytes

PS is Host configurable. See section 5.5

Units on the bus respond with message: 00x18FF50SA (default).

Priority Base PGN PDU format PDU specific Source address Data Field
6 65360 255 80 (Default) 128-247 3 bytes

Data Field Definition

Byte Description Value
1 Request or response 0x00 = Request (Host)

0x01 = Response (Unit)
2 Address of unit being reset Address of Unit (128- 247)
3 Success or failure 0x00 = Failure

0x01 = Success

5.1.4 Save Configuration Command:

Type: Specific.

Host Data Field: 3 Bytes.

4 Contents

j1939 Documentation, Release

Response Data Field: 3 Bytes.

PS is Host configurable. See section 5.5.

Units on the bus respond with message: 0x18FF51SA (default).

Priority Base PGN PDU format PDU specific Source address Data Field
6 65361 255 81 128-247 3 bytes

Data Field Definition.

Byte Description Value
1 Request or response 0x00 = Request (Host)

0x01 = Response (Unit)
2 Address of unit being reset Address of Unit (128- 247)
3 Success or failure 0x00 = Failure

0x01 = Success

5.2 Test Functions:

5.2.1 Hardware bits:

Type: Broadcast

Host sends out a request command.

Response Data Field: 8 Bytes

Units on the bus respond with message: 0x18FF52SA

Priority Base PGN PDU format PDU specific Source address Data Field
6 65362 255 82 128-247

HW Bits Data Field Definition

Bit Description Value
0 masterFail 0 = normal, 1 = fatal error has occurred
1 hardwareError 0 = normal, 1= internal hardware error
2 Not Defined
3 softwareError 0 = normal, 1 = internal software error
4 inpPower 0 = normal, 1 = out of bounds
5 inpCurrent 0 = normal, 1 = out of bounds
6 inpVoltage 0 = normal, 1 = out of bounds
7 fiveVolt 0 = normal, 1 = out of bounds
8 threeVolt 0 = normal, 1 = out of bounds
9 twoVolt 0 = normal, 1 = out of bounds
10 twoFiveRef 0 = normal, 1 = out of bounds
11 sixVolt 0 = normal, 1 = out of bounds
12 grdRef 0 = normal, 1 = out of bounds
13 pcbTemp 0 = normal, 1 = out of bounds

The signals masterFail and hardwareError are controlled by y various systems checks in software that are classified
into two categories: hardware and software. Instantaneous soft failures in each of these four categories will trigger
these intermediate signals, but will not trigger the masterFail until the persistency conditions are met.

Contents 5

j1939 Documentation, Release

There are three intermediate signals that are used to determine when the masterStatus flag is asserted: hardwareStatus,
sensorStatus, and softwareStatus. masterStatus is the logical OR of these intermediate signals. Each of these inter-
mediate signals has a separate field with individual indication flags. Each of these indication flags can be enabled or
disabled by the user. Any enabled indication flag will trigger the associated intermediate signal and masterStatus flag.

The hardwareError field contains flag that indicate various types of internal hardware errors.

5.2.2 Software bits:

Type: Specific

Host sends out a request command.

Response Data Field: 1 Byte

Units on the bus respond with message: 0x18FF53SA

Priority Base PGN PDU format PDU specific Source address Data Field
6 65363 255 83 128-247

Software Bits Data Field Definition

Bit Description Value
0 softwareError 0 = normal, 1 = internal software error
1 algorithmError 0 = normal, 1= error
2 dataError 0 = normal, 1= error
3 initialization 0 = normal, 1 = error during algorithm initialization
4 overRange 0 = normal, 1 = fatal sensor over-range
5 missedNaviga-

tionStep
0 = normal, 1 = deadline missed for navigation

6 calibra-
tionCRCError

0 = normal, 1 = incorrect CRC on calibration EEPROM data or data has been compro-
mised by a WE command.

The softwareError field contains flags that indicate various types of software errors. Each type has an associated
message with low level error signals. The softwareError flag in the BITstatus field is the bit-wise OR of algorithm and
data error.

The software algorithmError contains flags that indicate various types of software errors and is the bit-wise OR of
initialization, overRange and missedNavigationStep.

The software DataError contains flags that indicate low level software data errors, calibrationCRCError. 5.3 Status:

Type: Specific

Host sends out a request command.

Response Data Field: 2 Bytes

Units on the bus respond with message: 0x18FF54SA

Priority Base PGN PDU format PDU specific Source address Data Field
6 65364 255 84 128-247

Software Bits Data Field Definition

6 Contents

j1939 Documentation, Release

Bit Description Value
0 masterStatus 0 = nominal, 1 = hardware, sensor, com, or software alert
1 hardwareStatus 0 = nominal, 1 = programmable alert
2 softwareStatus 0 = nominal, 1 = programmable alert
3 sensorStatus 0 = nominal, 1 = programmable alert
4 unlocked1PPS 0 = not asserted, 1 = asserted
5 unlockedInternalGPS 0 = not asserted, 1 = asserted
6 noDGPS 0 = DGPS lock, 1 = no DGPS
7 unlockedEEPROM 0=locked, WE disabled, 1=unlocked, WE enabled
8 algorithmInit 0 = normal, 1 = the algorithm is in initialization mode
9 highGain 0 = low gain mode, 1 high gain mode
10 attitudeOnlyAlgorithm 0 = navigation state tracking, 1 = attitude only state tracking
11 turnSwitch 0 = off, 1 = yaw rate greater than turnSwitch threshold
12 Sensor overRange 0 = not asserted, 1 = asserted

The hardwareStatus field contains flags that indicate various internal hardware conditions and alerts that are not errors
or problems and is the bit-wise OR of the logical AND of bit 4 to 7.

The softwareStatus field contains flags that indicate various software conditions and alerts that are not errors or prob-
lems and is the bit-wise OR of the logical AND of bit 8 to 11.

The sensorStatus field contains flags that indicate various internal sensor conditions and alerts that are not errors or
problems and is bit 12. 5.4 Configure commands:

5.4.1 Packet rate divider:

Priority Base PGN PDU format PDU specific Source address Data Field
6 65365 255 85 128-247 2 bytes

1st byte: destination address

2nd byte is packet rate divider

Packet Rate Divider Field Value Definition

Byte Value Packet Broadcast Rate
0 Quite Mode – No Broadcast
1 100 Hz (default)
2 50 Hz
4 25 Hz
5 20 Hz
10 10 Hz
20 5 Hz
25 4 Hz
50 2 Hz

The default PGN message on CAN bus is 0x18FF55SA and PS is configurable.

5.4.2 Data packet type:

Priority Base PGN PDU format PDU specific Source address Data Field
6 65366 255 86 128-247 2 bytes

1st byte: destination address

Contents 7

j1939 Documentation, Release

2nd byte: Selects which packets to broadcast

bit 1 – slope sensor, bit 2 – angular rate, bit 3 – accelerometer.

The default PGN message on CAN bus is 0x18FF56SA and PS is configurable.

5.4.3 Digital filter:

Priority Base PGN PDU format PDU specific Source address Data Field
6 65367 255 87 128-247 3 bytes

1st byte: destination address

2nd byte is to set low pass cutoff for rate sensors. Cutoff Frequency choices are 5, 10, 20, and 50Hz

3rd byte is to set low pass cutoff for accelerometers. Cutoff Frequency choices are 5, 10, 20, and 50Hz

The default PGN message on CAN bus is 0x18FF57SA and PS is configurable.

5.4.4 Orientation:

Priority Base PGN PDU format PDU specific Source address Data Field
6 65368 255 88 128-247 3 bytes

1st byte: destination address

2nd and 3rd bytes determine forward, rightward, and downward facing sides

The default PGN message on CAN bus is 0x18FF58SA and PS is configurable.

Orientation Field Byte Value Definition

Orientation Field Value *X Axis* *Y Axis* *Z Axis*
0x0000 +Ux +Uy +Uz
0x0009 -Ux -Uy +Uz
0x0023 -Uy +Ux +Uz
0x002A +Uy -Ux +Uz
0x0041 -Ux +Uy -Uz
0x0048 +Ux -Uy -Uz
0x0062 +Uy +Ux -Uz
0x006B -Uy -Ux -Uz
0x0085 -Uz +Uy +Ux
0x008C +Uz -Uy +Ux
0x0092 +Uy +Uz +Ux
0x009B -Uy -Uz +Ux
0x00C4 +Uz +Uy -Ux
0x00CD -Uz -Uy -Ux
0x00D3 -Uy +Uz -Ux
0x00DA +Uy -Uz -Ux
0x0111 -Ux +Uz +Uy
0x0118 +Ux -Uz +Uy
0x0124 +Uz +Ux +Uy
0x012D -Uz -Ux +Uy
0x0150 +Ux +Uz -Uy
0x0159 -Ux -Uz -Uy
0x0165 -Uz +Ux -Uy
0x016C +Uz -Ux -Uy

8 Contents

j1939 Documentation, Release

Figure: Default Orientation

5.4.5 User behavior switches:

Priority Base PGN PDU format PDU specific Source address Data Field
6 65369 255 89 128-247

1st byte: destination address

2nd and 3rd bytes are to set Restart on Over-range and Dynamic Motion.

The default PGN message on CAN bus is 0x18FF59SA and PS is configurable

Bit definition for User Behavior Switches

Bit Description Value
0 Free Integrate 0 = use feedback to stabilize the algorithm
1 Use Mags 1 = 6DOF inertial integration without stabilized feedback for 60 seconds
2 Use GPS N/A
3 Stationary Yaw Lock N/A
4 Restart on Over-range N/A
5 Dynamic Motion 0 = Do not restart the system after a sensor over-range

5.4.6 Acceleration parameters (optional):

Priority Base PGN PDU format PDU specific Source address Data Field
6 65373 255 93 128-247

1st byte: destination address

2nd to 7th bytes are 16-bit x, y and z acceleration parameters for the EKF coming from host side.

The default PGN message on CAN bus is 0x18FF5DSA and PS is configurable. 5.5 Assigning PS Numbers

5.5.1 Bank0 of PS numbers:

Priority Base PGN PDU format PDU specific Source address Data Field
6 65520 255 240 128-247

8-byte payload indicates PS numbers instead of default values declared in this doc.

Contents 9

j1939 Documentation, Release

Byte 0: algorithm reset, byte 1: reserved, byte 2: hardware bits, byte 3: software bits, byte 4: status, byte 5–7:
reserved.

PGN message on CAN bus is 0x18FFF0SA.

5.5.2 Bank1 of PS numbers:

Priority Base PGN PDU format PDU specific Source address Data Field
6 65521 255 241 128-247

Byte 0: packet rate, byte 1: packet type, byte 2: digital filter, byte 3: orientation, byte 4-7: reserved.

PGN message on CAN bus is 0x18FFF1SA.

The pool of PS values should be from decimal 80 to 111. 5.6 Data Packet

5.6.1 Slope sensor information 2:

Priority Base PGN PDU format PDU specific Source address Data Field
6 61481 240 41 128-247

PGN message on CAN bus is 0xCF029SA

The format follows up the definition of slope sensor information 2 in J1939DA_201702.

The first 24-bit indicates pitch and the next 24-bit indicates roll, little-endian.

SLOT Id Slot Name Scaling Range Offset Length
294 SAEad11 1/32768 deg/bit -250 to 252 deg -250 deg 3 bytes

5.6.2 Angular rate packet:

Priority Base PGN PDU format PDU specific Source address Data Field
6 61482 240 42 128-247

PGN message on CAN bus is 0xCF02ASA

The format follows up the definition of angular rate information in J1939DA_201702.

Each 16 bits indicates the angular velocity (rate) of x, y, z, (little endian).

SLOT Id Slot Name Scaling Range Offset Length
288 SAEva03 1/128 deg/s/bit -250 to 252 deg/s -250 deg/s 2 bytes

5.6.3 Acceleration sensor packet:

Priority Base PGN PDU format PDU specific Source address Data Field
6 61485 240 45 128-247

PGN message on CAN bus is 0x8F02DSA

The format follows the definition of acceleration sensor information in J1939DA_201702.

Each 16 bits indicates the acceleration of x, y, z, (little endian), with LSB = 0.01 m/s/s.

10 Contents

j1939 Documentation, Release

SLOT Id Slot Name Scaling Range Offset Length
303 SAEad11 0.01 m/s:sup :2/bit -320 to 322.55 m/s:sup :2 –320 m/s:sup :2 2 bytes

6. Address claiming

6.1 Non-existence of node address:

The node with null address sends out a global request and waits for the responses from all the nodes on CAN bus.
Then, it sends out an address claim message with a chosen address.

6.2 Existence of node
address:

The node with an existed address sends out an address claim message and waits for responses from all the nodes on
CAN bus, then decides to keep the address or choose next available address.

Contents 11

j1939 Documentation, Release

12 Contents

j1939 Documentation, Release

Contents 13

j1939 Documentation, Release

• WARNING

This product has been developed by Aceinna exclusively for commercial applications. It has not been tested for, and
Aceinna makes no representation or warranty as to conformance with, any military specifications or that the product
is appropriate for any military application or end-use. Additionally, any use of this product for nuclear, chemical,
biological weapons, or weapons research, or for any use in missiles, rockets, and/or UAV’s of 300km or greater range,
or any other activity prohibited by the Export Administration Regulations, is expressly prohibited without the written
consent of Aceinna and without obtaining appropriate US export license(s) when required by law. Diversion contrary
to law is prohibited.

©2018 Aceinna, Inc. All rights reserved. Information in this document is subject to change without notice.

**Table of Contents **

1 Introduction 1

1.1 Manual Overview 1

1.2 Overview of the MTLT Series Inertial Systems 2

2 Connections 3

2.1 Connections 3

2.2 Power Input and Power Input Ground 3

2.3 Serial Data Interface 3

2.4 Alarm 3

3 Installation and Operation of NAV-VIEW 4

3.1 NAV-VIEW Computer Requirements 4

3.1.1 Install NAV-VIEW 4

3.2 Connections 4

3.3 Setting up NAV-VIEW 4

3.4 Data Recording 5

3.5 Data Playback 6

3.6 Raw Data Console 6

3.7 Packet Statistics View 7

3.8 Unit Configuration 8

3.9 Advanced Configuration 9

3.10 Bit Configuration 11

3.11 Tilt alarm 12

3.12 Read Unit Configuration 13

4 Theory of Operation 14

4.1 MTLT Series Default Coordinate System 15

4.1.1 Advanced Settings 16

4.2 Dynamic MTLT Theory of Operation 16

4.2.1 MTLT1xxD Advanced Settings 17

4.2.2 MTLT1xxD Built-In Test 18

14 Contents

j1939 Documentation, Release

4.3 Tilt Alarm (Independent vs. Cone Angle) 19

5 Application Guide 20

5.1 Introduction 20

5.2 Equipment Leveling and lockout 20

5.3 Aerial Work Platform Safety 21

5.4 Land Vehicle 21

6 Programming Guide 22

6.1 General Settings 22

6.2 Number Formats 22

6.3 Packet Format 23

6.3.1 Packet Header 23

6.3.2 Packet Type 23

6.3.3 Payload Length 23

6.3.4 Payload 23

6.3.5 16-bit CRC-CCITT 24

6.3.6 Messaging Overview 24

7 Communicating with the MTLT1 Series 26

7.1 Link Test. 26

7.1.1 Ping Command 26

7.1.2 Ping Response 26

7.1.3 Echo Command 26

7.1.4 Echo Response 26

7.2 Interactive Commands 26

7.2.1 Get Packet Request 26

7.2.2 Algorithm Reset Command 27

7.2.3 Algorithm Reset Response 27

7.2.4 Error Response 27

7.3 Output Packets (Polled) 27

7.3.1 Identification Data Packet 27

7.3.2 Version Data Packet 28

7.3.3 Test 0 (Detailed BIT and Status) Packet 28

7.4 Output Packets (Polled or Continuous) 29

7.4.1 Angle Data Packet 6 (Default Data) 29

7.4.2 Angle Data Packet 7 30

8 Advanced Commands 31

8.1 Configuration Fields 31

Contents 15

j1939 Documentation, Release

8.2 Continuous Packet Type Field 32

8.3 Digital Filter Settings 32

8.4 Orientation Field 32

8.5 User Behavior Switches 34

8.6 Tilt alarm 34

8.7 Commands to Program Configuration 35

8.7.1 Write Fields Command 35

8.7.2 Set Fields Command 36

8.8 Read Fields Command 37

8.9 Read Fields Response 37

8.10 Get Fields Command 37

8.11 Get Fields Response 38

9 Advanced BIT 39

9.1 Built In Test (BIT) and Status Fields 39

9.2 Master BIT and Status (BITstatus) Field 41

9.3 hardwareBIT Field 42

9.4 hardwarePowerBIT Field 42

9.5 hardwareEnvironmentalBIT Field 42

9.6 comBIT Field 42

9.7 comSerialABIT Field 43

9.8 softwareBIT Field 43

9.9 softwareAlgorithmBIT Field 44

9.10 softwareDataBIT Field 44

9.11 hardwareStatus Field 44

9.12 comStatus Field 44

9.13 softwareStatus Field 45

9.14 sensorStatus Field 45

9.15 Configuring the Master Status 45

9.15.1 hardwareStatusEnable Field 45

9.15.2 comStatusEnable Field 46

9.15.3 softwareStatusEnable Field 46

9.15.4 sensorStatusEnable Field 46

10 Appendix A. Mechanical Specifications 47

11 Appendix C. Sample Packet-Parser Code 48

11.1 Overview 48

11.2 Code listing 49

16 Contents

j1939 Documentation, Release

12 Appendix D. Sample Packet Decoding 55

13 Warranty and Support Information 57

13.1 Customer Service 57

13.2 Contact Directory 57

13.3 Return Procedure 57

13.3.1 Authorization 57

13.3.2 Identification and Protection 57

13.3.3 Sealing the Container 58

13.3.4 Marking 58

13.3.5 Return Shipping Address 58

13.4 Warranty 58

** About this Manual**

The following annotations have been used to provide additional information.

NOTE

Note provides additional information about the topic.

EXAMPLE

Examples are given throughout the manual to help the reader understand the terminology.

IMPORTANT

This symbol defines items that have significant meaning to the user

WARNING

The user should pay particular attention to this symbol. It means there is a chance that physical harm could happen to
either the person or the equipment.

Contents 17

j1939 Documentation, Release

18 Contents

CHAPTER 1

Introduction

1.1 Manual Overview

This manual provides a comprehensive introduction to Aceinna’s MTLT Series industrial tilt sensor products. For
users wishing to get started quickly, please refer to the three page quick start guide included with each shipment. Table
1 table highlights the content in each section and suggests how to use this manual.

1. Manual Content

19

j1939 Documentation, Release

Manual Section Who Should Read ?

Section 1:

Manual Overview

All customers should read
sections 1.1 and 1.2.

**Section 2: **

Connections

Customers who are connecting the
MTLT Series products into a
system with their own power
supply and cable.

**Section 3: **

Installation and Operation of
NAV-VIEW

Customers who are installing the
MTLT Series products into a
system and need details on using
NAV-VIEW.

**Section 4: **

Theory of Operation

All customers should read Section
4.

As the MTLT Series products are
inter-related, use the chart at
the beginning of Section 4 to
ensure that you get an overview
of all of the functions and
features of your MTLT Series
system.

**Section 5: **

Application Guide

Customers who want product
configuration tips for operating
the MTLT Series tilt sensors in a
wide range of applications.

**Section 6-9: **

Programming, Communicating,
Advanced Commands and BIT

Customers who wish to communicate
with the MTLT Series system for
sensor data, should review
Section 6 and 7. Section 8 is for users who wish to
configure the MTLT Series operating parameters (e.g.,
baud rate or power-up output rate) without NAV-VIEW.

20 Chapter 1. Introduction

j1939 Documentation, Release

1.2 Overview of the MTLT Series Inertial Systems

This manual provides a comprehensive introduction to the use of Aceinna’s MTLT Industrial Tilt Sensor products
listed in Table 2. This manual is intended to be used as a detailed technical reference and operating guide for the
MTLT Series. Aceinna’s MTLT Series products combine the latest in high-performance commercial MEMS (Micro-
electromechanical Systems) sensors and digital signal processing techniques to provide a small, cost-effective alterna-
tive to existing tilt sensors.

2. MTLT Series Feature Description

1.2. Overview of the MTLT Series Inertial Systems 21

j1939 Documentation, Release

Series Product Features
MTLT1 Series MTLT110S

Accelerometer based static tilt
sensor.
3-DOF Accelerometer data plus
static Roll
and Pitch, plus a single pin tilt
alarm. Plastic IP67 Housing with a
1.0
degree over-temperature
accuracy on static tilt angles.

MTLT105S

Accelerometer based static tilt
sensor.
3-DOF Accelerometer data plus
static Roll
and Pitch, plus a single pin tilt
alarm. Plastic IP67 Housing with a
0.5
degree over-temperature
accuracy on static tilt angles.

MTLT101S

Accelerometer based static tilt
sensor.
3-DOF Accelerometer data plus
static Roll
and Pitch, plus a single pin tilt
alarm. Plastic IP67 Housing with a
0.1
degree over-temperature
accuracy on static tilt angles.

MTLT105D

Gyro compensated dynamic tilt
sensor.
3-DOF Accelerometer data, 3-DOF
Gyro
data, plus dynamic Roll and Pitch,
plus
a single pin tilt alarm. Plastic IP67
Housing with a 0.5 degree
over-temperature accuracy on static
tilt angles and 2.0 degree accuracy
on
dynamic tilt angles.

MTLT101D

Gyro compensated dynamic tilt
sensor.
3-DOF Accelerometer data, 3-DOF
Gyro
data, plus dynamic Roll and Pitch,
plus
a single pin tilt alarm. Plastic IP67
Housing with a 0.1 degree
over-temperature accuracy on static
tilt angles and 1.0 degree accuracy
on
dynamic tilt angles.

22 Chapter 1. Introduction

j1939 Documentation, Release

The MTLT Series continues in Aceinna’s long history of inertial sensors. We have 20 years of history building inertial
and tilt sensor products. The MTLT Series comes in both a static (accelerometer only) configuration for stationary
or low speed applications, and a dynamic (gyro compensated) configuration for mobile applications. Both static and
dynamic configurations use the same high-performance microprocessor for on-board angle computations, and high-
accuracy accelerometers.

The MTLT1 series sensors are housed in a sealed IP67 plastic enclosure ideal for outdoor or external applications. The
MTLT1 uses a standard RS232 communication protocol for easy integration and a wide 9 – 32 volt input power range.

In addition to the accelerometers, the dynamic MTLT also includes a 3-axis gyro for dynamic compensation. Tradi-
tional accelerometer only tilt sensors are great in static or slow moving applications where the linear accelerations are
insignificant compared to the Earth’s gravity vector. However, when placed in a moving vehicle (land, water, or aerial),
the linear accelerations of the vehicle motion can be interpreted as changes in tilt. With a gyro compensated tilt sensor,
these linear accelerations can be filtered out by the on-board Kalman filter resulting in an accurate tilt measurement
across all dynamic.

Each sensor in the MTLT family includes a tilt alarm. The tilt alarm is a single pin output that is raised high when
the tilt exceeds a user defined threshold. The user defined threshold can be set using the RS232 port. The tilt alarm is
ideal for low-cost applications that may not include a microprocessor for reading the tilt angles. After the threshold
is set, the alarm pin can be attached directly to a control relay to lock out equipment when dangerous tilt levels are
exceeded, or simply attached to an LED to give an operator an indication that he/she is driving on an unsafe incline.

The MTLT Series is supported by Aceinna’s NAV-VIEW, a powerful PC-based operating tool that provides complete
field configuration, diagnostics, charting of sensor performance, and data logging with playback.

1.2. Overview of the MTLT Series Inertial Systems 23

j1939 Documentation, Release

24 Chapter 1. Introduction

CHAPTER 2

Connections

2.1 Connections

The MTLT1 Series has 6 flying leads on a 1 meter long cable

3. Connector Pin Assignments

Color Signal
Red Power Input
Black Power Return
Green RS232-RX
Yellow Tilt Alarm
Orange RS232-TX
Brown RS232 Return

The maintain IP67 performance, the user must carefully seal the terminations of the flying leads.

2.2 Power Input and Power Input Ground

Power is applied to the MTLT1 Series sensor on red and black leads. The black wire is ground; the red wire should
have 9 to 32 VDC.

• WARNING

Do not reverse the power leads or damage may occur.

2.3 Serial Data Interface

The serial interface is standard RS-232, 9600, 19200, 38400, or 57600 baud, 8 data bits, 1 start bit, 1 stop bit, no parity,
and no flow control and will output at a user configurable output rate. The green and orange leads are designated as

25

j1939 Documentation, Release

the main RS-232 interface pins. The serial data settings can be configured on a MTLT1 Series unit with NAV-VIEW.
In order to set the serial data interface, select Unit Configuration, under the Menu Tab.

2.4 Alarm

The Alarm output is normally pulled low by a current sinking transistor. When the Alarm threshold is exceeded the
transistor is turned off and the output will be pulled high by a 10K 1/16W resistor to the internal 3.3 Volt power supply.

26 Chapter 2. Connections

CHAPTER 3

Installation and Operation of NAV-VIEW

NAV-VIEW allows users to control all aspects of the MTLT Series operation including data recording, definable alarm
threshold and data transfer. In addition you will be able to control the orientation of the unit, sampling rate, packet
type, and filter settings.

3.1 NAV-VIEW Computer Requirements

The following are minimum requirements for the installation of the NAV-VIEW Software:

• CPU: Pentium-class (1.5GHz minimum)

• RAM Memory: 500MB minimum, 1GB+ recommended

• Hard Drive Free Memory: 20MB

• Operating System: Windows 2000™, or XP™, Windows® 7

• Properly installed Microsoft .NET 2.0 or higher

3.1.1 Install NAV-VIEW

To install NAV-VIEW onto your computer:

1. Insert the CD “Inertial Systems Product Support” (Part No. 8160-0063) in the CD-ROM drive.

2. Locate the “NAV-VIEW” folder. Double click on the “setup.exe” file.

3. Follow the setup wizard instructions. You will install NAV-VIEW and .NET 2.0 framework.

3.2 Connections

The MTLT1 Series Inertial Systems products are shipped flying leads. To connect to NAV-VIEW the flying leads can
be attached to a standard DB9 connector.

27

j1939 Documentation, Release

1. Connect the green lead (RS232-RX) to pin 3 of the DB9 connector

2. Connect the orange lead (RS232-TX) to pin 2 of the DB9 connector

3. Connect the brown lead (RS232-GND) to pin 5 of the DB9 connector

4. Connect the red lead (+) to power supply positive, 9-32VDC

5. Connect the black lead (-) to power supply negative

6. Connect the yellow lead (Alarm) to oscilloscope or DMM. GND is brown lead

Note: Allow at least 60 seconds after power up for the MTLT1 Series product to

initialize. The MTLT1 Series needs to be held motionless during this period.

WARNING

Do not reverse the power leads! Reversing the power leads to the MTLT Series can damage the unit; although there
is reverse power protection, Aceinna is not responsible for resulting damage to the unit should the reverse voltage
protection electronics fail.

3.3 Setting up NAV-VIEW

With the MTLT Series product powered up and connected to your PC serial port, open the NAV-VIEW software
application.

1. NAV-VIEW should automatically detect the MTLT Series product and display the serial number and firmware
version if it is connected.

2. If NAV-VIEW does not connect, check that you have the correct COM port selected. You will find this under the
“Setup” menu. Select the appropriate COM port and allow the unit to automatically match the baud rate by leaving
the “Auto: match baud rate” selection marked.

3. If the status indicator at the bottom is green and states, , you’re ready to go. If the status indicator
doesn’t say connected and is red, check the connections between the MTLT Series product and the computer, check
the power supply, and verify that the COM port is not occupied by another device.

4. Under the “View” menu you have several choices of data presentation. Graph display is the default setting and will
provide a real time graph of all the MTLT Series data. The remaining choices will be discussed in the following pages.

3.4 Data Recording

NAV-VIEW allows the user to log data to a text file (.txt) using the simple interface at the top of the screen. Customers
can now tailor the type of data, rate of logging and can even establish predetermined recording lengths.

To begin logging data follow the steps below (See Figure 1):

1. Locate the icon at the top of the page or select “Log to File” from the “File” drop down menu.

2. The following menu will appear.

1. Log to File Dialog Screen

28 Chapter 3. Installation and Operation of NAV-VIEW

j1939 Documentation, Release

3. Select the “Browse” box to enter the file name and location that you wish to save your data to.

4. Select the type of data you wish to record. “Engineering Data” records the converted values provided from
the system in engineering units, “Hex Data” provides the raw hex values separated into columns displaying the
value, and the “Raw Packets” will simply record the raw hex strings as they are sent from the unit.

5. Users can also select a predetermined “Test Duration” from the menu. Using the arrows, simply select the
duration of your data recording.

6. Logging Rate can also be adjusted using the features on the right side of the menu.

7. Once you have completed the customization of your data recording, you will be returned to the main screen
where you can start the recording process using the button at the top of the page or select “Start Logging”
from the “File” menu. Stopping the data recording can be accomplished using the button and the recording
can also be paused using the button.

3.5 Data Playback

In addition to data recording, NAV-VIEW allows the user to replay saved data that has been stored in a log file.

1. To playback data, select “Playback Mode” from the “Data Source” drop down menu at the top.

2. Selecting Playback mode will open a text prompt which will allow users to specify the location of the file they
wish to play back. All three file formats are supported (Engineering, Hex, and Raw) for playback. In addition,
each time recording is stopped/started a new section is created. These sections can be individually played back
by using the drop down menu and associated VCR controls.

3. Once the file is selected, users can utilize the VCR style controls at the top of the page to start, stop, and pause
the playback of the data.

4. NAV-VIEW also provides users with the ability to alter the start time for data playback. Using the

slide bar at the top of the page users can adjust the starting time.

3.5. Data Playback 29

j1939 Documentation, Release

3.6 Raw Data Console

NAV-VIEW offers some unique debugging tools that may assist programmers in the development process. One such
tool is the Raw Data Console. From the “View” drop down menu, simply select the “Raw Data Console”. This console
provides users with a simple display of the packets that have been transmitted to the unit (Tx) and the messages received
(Rx). An example is provided in Figure 2.

2. Raw Data Console

3.7 Packet Statistics View

Packet statistics can be obtained from the “View” menu by selecting the “Packet Statistics” option (See Figure 3).
This view simply provides the user with a short list of vital statistics (including Packet Rate, CRC Failures, and overall
Elapsed Time) that are calculated over a one second window. This tool should be used to gather information regarding
the overall health of the user configuration. Incorrectly configured communication settings can result in a large number
of CRC Failures and poor data transfer.

3. Packet Statistics

30 Chapter 3. Installation and Operation of NAV-VIEW

j1939 Documentation, Release

3.8 Unit Configuration

The Unit Configuration window (See Figure 4) gives the user the ability to view and alter the system settings. This
window is accessed through the “Unit Configuration” menu item under the configuration menu. Under the “General”
tab, users have the ability to verify the current configuration by selecting the “Get All Values” button. This button
simply provides users with the currently set configuration of the unit and displays the values in the left column of
boxes.

There are four tabs within the “Unit Configuration” menu; General, Advanced, BIT Configuration and tilt alarm. The
General tab displays some of the most commonly used settings. The Advanced , BIT Configuration and tilt alarm
menus provide users with more detailed setting information that they can tailor to meet their specific needs.

To alter a setting, simply select the check box on the left of the value that you wish to modify and then select the value
using the drop down menu on the right side. Once you have selected the appropriate value, these settings can be set
temporarily or permanently (a software reset or power cycle is required for the changes to take affect) by selecting
from the choices at the bottom of the dialog box. Once the settings have been altered a “Success” box will appear at
the bottom of the page.

IMPORTANT

Caution must be taken to ensure that the settings selected are compatible with the system that is being configured.
In most cases a “FAIL” message will appear if incompatible selections are made by the user, however it is the users
responsibility to ensure proper configuration of the unit.

IMPORTANT

Unit orientation selections must conform to the right hand coordinate system as noted in Section 4.1 of this user
manual. Selecting orientations that do not conform to this criteria are not allowed.

4. Unit Configuration

3.8. Unit Configuration 31

j1939 Documentation, Release

3.9 Advanced Configuration

Users who wish to access some of the more advanced features of NAV-VIEW and the MTLT1 Series products can do
so by selecting the “Advanced” tab at the top of the “Unit Configuration” window.

WARNING

Users are strongly encouraged to read and thoroughly understand the consequences of altering the settings in the
“Advanced” tab before making changes to the unit configuration. These settings are discussed in detail in Chapter 4
below.

Behavior switches are identified at the top of the page with marked boxes. A blue box will appear if a switch has been
enabled similar to Figure 5 below. The values can be set in the same manner as noted in the previous section. To set a
value, users select the appropriate “Modify” checkbox on the left side of the menu and select or enable the appropriate
value they wish to set. At the bottom of the page, users have the option of temporarily or permanently setting values.
When all selections have been finalized, simply press the “Set Values” button to change the selected settings.

5. Advanced Settings

32 Chapter 3. Installation and Operation of NAV-VIEW

j1939 Documentation, Release

3.10 Bit Configuration

The third tab of the unit configuration window is “Bit Configuration” (See Figure 6). This tab allows the users to
alter the logic of individual status flags that affect the masterStatus flag in the master BITstatus field (available in
most output packets). By enabling individual status flags users can determine which flags are logically OR’ed to
generate the masterStatus flag. This gives the user the flexibility to listen to certain indications that affect their specific
application. The masterFail and all error flags are not configurable. These flags represent serious errors and should
never be ignored.

6. BIT Configuration

3.10. Bit Configuration 33

j1939 Documentation, Release

3.11 Tilt alarm

The final tab of the unit configuration window is “Tilt alarm” (See Figure 7). This tab allows the users to select alarm
source and set alarm threshold angles with hysteresis.

Tilt alarm selector: independent roll/pitch or cone angle

Alarm limit: alarm upper and lower limits.

Hysteresis: alarm limit hysteresis

Figure 7. Tilt alarm

34 Chapter 3. Installation and Operation of NAV-VIEW

j1939 Documentation, Release

Read Unit Configuration

NAV-VIEW allows users to view the current settings and calibration data for a given MTLT Series unit by accessing
the “Read Configuration” selection from the “Configuration” drop down menu (See Figure 8). From this dialog, users
can print a copy of the unit’s current configuration and calibration values with the click of a button. Simply select the
“Read” button at the top of the dialog box and upon completion select the “Print” or “Print Preview” buttons to print
a copy to your local network printer. This information can be helpful when storing hard copies of unit configuration,
replicating the original data sheet and for troubleshooting if you need to contact Aceinna’s Support Staff.

Figure 8. Read Configuration

3.11. Tilt alarm 35

j1939 Documentation, Release

36 Chapter 3. Installation and Operation of NAV-VIEW

CHAPTER 4

Theory of Operation

This section of the manual covers detailed theory of operation for both the static and dynamic versions of the MTLT
series family.

4. MTLT1 Series Overview

Product Features Learning More
MTLT1xxS Accelerometer-based static tilt sensor Read 4.1 and 4.2
MTLT1xxD Gyro-compensated dynamic tilt sensor Read 4.1, 4.2 and 4.3

Figure 9 shows the MTLT Series hardware block diagram. At the core of the MTLT Series is a high-performance
MEMS 3-axis accelerometer. The dynamic MTLT tilt sensors also include a 3-axis MEMS gyroscope used for linear
acceleration compensation. These sensors are based on rugged, field proven silicon bulk micromachining technology.
Each sensor within the cluster is individually factory calibrated using Aceinna’s automated manufacturing process.
Sensor errors are compensated for temperature bias, scale factor, non-linearity and misalignment effects using a pro-
prietary algorithm from data collected during manufacturing. Accelerometer, rate gyro, and magnetometer sensor bias
shifts over temperature (-40 0C to +70 0C) are compensated and verified using calibrated thermal chambers and rate
tables. The sensor data is fed into a high-speed microprocessor which calculates the roll and pitch data using our
proprietary Kalman filters.

Figure 9. MTLT Series Hardware Block Diagram

Figure 10 shows the software block diagram. The accelerometer and gyro (dynamic only) sensor data is fed into a
high speed 200Hz signal processing chain. Measurement data packets are available at fixed continuous output rates or
on a polled basis.

Figure 10. MTLT Series Software Block Diagram

Figure 9 shows a simplified functional block diagrams for MTLT static and dynamic sensors. Dynamic sensors include
a 3-axis gyro and take advantage of the Extended Kalman Filter. The common aiding sensor for the drift correction
for the attitude (i.e., roll and pitch only) is a 3-axis accelerometer.

37

j1939 Documentation, Release

4.1 MTLT Series Default Coordinate System

The MTLT Series Inertial System default coordinate system is shown in Figure 11. As with many elements of the
MTLT Series, the coordinate system is configurable with either NAV-VIEW or by sending the appropriate serial
commands. These configurable elements are known as *Advanced Settings*. This section of the manual describes
the default coordinate system settings of the MTLT Series when it leaves the factory.

With the MTLT Series product connector facing you, and the label facing up, the axes are defined as follows:

Figure 11. MTLT1 Series Default Coordinate System

x-axis – from face with connector through the MTLT unit

y-axis – along the face with connector from left to right

z-axis – along the face with the connector from top to bottom

The axes form an orthogonal SAE right-handed coordinate system. Acceleration is positive when it is oriented towards
the positive side of the coordinate axis. For example, with a MTLT Series product sitting on a level table, it will
measure zero g along the x- and y-axes and -1 g along the z-axis. Normal Force acceleration is directed upward, and
thus will be defined as negative for the MTLT Series z-axis.

The angular rate sensors are aligned with these same axes. The rate sensors measure angular rotation rate around a
given axis. The rate measurements are labeled by the appropriate axis. The direction of a positive rotation is defined
by the right-hand rule. With the thumb of your right hand pointing along the axis in a positive direction, your fingers
curl around in the positive rotation direction. For example, if the MTLT Series product is sitting on a level surface and
you rotate it clockwise on that surface, this will be a positive rotation around the z-axis. The x- and y-axis rate sensors
would measure zero angular rates, and the z-axis sensor would measure a positive angular rate.

Pitch is defined positive for a positive rotation around the y-axis (pitch up). Roll is defined as positive for a positive
rotation around the x-axis (roll right). Yaw is defined as positive for a positive rotation around the z-axis (turn right).

The angles are defined as standard Euler angles using a 3-2-1 system. To rotate from the body frame to an earth-level
frame, roll first, then pitch, and then yaw.

4.1.1 Advanced Settings

The MTLT Series Inertial Systems have a number of advanced settings that can be changed. All units support baud
rate, power-up output packet type, output rate, sensor low pass filtering, tilt-alarm configurations, and custom axes
configuration. The units can be configured using NAV-VIEW, as described in Section 3, and also directly with serial
commands as described in Sections 6-9.

IMPORTANT

The Delta-Theta, Delta-V packet is only recommended for use in continuous output mode at 5Hz or greater. Polled
requests for this packet will produce values accumulated since the last poll request, and thus, are subject to overflow
(data type wrap around).

38 Chapter 4. Theory of Operation

j1939 Documentation, Release

4.2 4.2 Dynamic MTLT Theory of Operation

The MTLT1xxD supports dynamic roll and pitch measurements that are stabilized by the using the accelerometers
as a long-term gravity reference and gyro for dynamic motion compensation. At a fixed 200Hz rate, the MTLT1xxD
continuously maintains both the calibrated sensor (accelerometer and gyro) data as well as the roll and pitch data. As
shown in the software block diagram Figure 10, after the Sensor Calibration block, the sensor data is passed into an
Integration to Orientation block. The Integration to Orientation block integrates body frame sensed angular rate to
orientation at a fixed 200 times per second within all of the MTLT1xxD Series products. For improved accuracy and
to avoid singularities when dealing with the cosine rotation matrix, a quaternion formulation is used in the algorithm
to provide attitude propagation.

As also shown in the software block diagram, the Integration to Orientation block receives drift corrections from the
Extended Kalman Filter or Drift Correction Module. In general, rate sensors and accelerometers suffer from bias drift,
misalignment errors, acceleration errors (g-sensitivity), nonlinearity (square terms), and scale factor errors. The largest
error in the orientation propagation is associated with the rate sensor bias terms. The Extended Kalman Filter (EKF)
module provides an on-the-fly calibration for drift errors, including the rate sensor bias, by providing corrections to
the Integration to Orientation block and a characterization of the gyro bias state. In the MTLT1xxD, the internally
computed gravity reference vector provides a reference measurement for the EKF when the MTLT1xxD is in quasi-
static motion to correct roll and pitch angle drift and to estimate the X and Y gyro rate bias. Because the gravity
vector has no horizontal component, the EKF has no ability to estimate either the yaw angle error or the Z gyro rate
bias. The MTLT1xxD adaptively tunes the EKF feedback in order to best balance the bias estimation and attitude
correction with distortion free performance during dynamics when the object is accelerating either linearly (speed
changes) or centripetally (false gravity forces from turns). Because centripetal and other dynamic accelerations are
often associated with yaw rate, the MTLT1xxD maintains a low-passed filtered yaw rate signal and compares it to the
turnSwitch threshold field (user adjustable). When the user platform to which the MTLT1xxD is attached exceeds
the turnSwitch threshold yaw rate, the MTLT1xxD lowers the feedback gains from the accelerometers to allow the
attitude estimate to coast through the dynamic situation with primary reliance on angular rate sensors. This situation is
indicated by the softwareStatusturnSwitch status flag. Using the turn switch maintains better attitude accuracy during
short-term dynamic situations, but care must be taken to ensure that the duty cycle of the turn switch generally stays
below 10% during the vehicle mission. A high turn switch duty cycle does not allow the system to apply enough rate
sensor bias correction and could allow the attitude estimate to become unstable.

The MTLT1xxD algorithm has two major phases of operation. The first phase of operation is the initialization phase.
During the initialization phase, the MTLT1xxD is expected to be stationary or quasi-static so the EKF weights the
accelerometer gravity reference heavily in order to rapidly estimate the roll and pitch angles, and X, Y rate sensor
bias. The initialization phase lasts approximately 60 seconds, and the initialization phase can be monitored in the
softwareStatus BIT transmitted by default in each measurement packet. After the initialization phase, the MTLT1xxD
operates with lower levels of feedback (also referred to as EKF gain) from the accelerometers to continuously estimate
and correct for roll and pitch errors, as well as to estimate X and Y rate sensor bias.

If a user wants to reset the algorithm or re-enter the initialization phase, sending the algorithm reset command, ‘AR’,
will force the algorithm into the reset phase.

The MTLT1xxD outputs digital measurement data over the RS-232 serial link at a selectable fixed rate (100, 50, 25,
20, 10, 5 or 2 Hz) or on as requested basis using the GP, ‘Get Packet’ command.

4.2.1 4.2.1 MTLT1xxD Advanced Settings

In addition to the configurable baud rate, packet rate, axis orientation, and sensor low-pass filter settings, the
MTLT1xxD provides additional advanced settings which are selectable for tailoring the MTLT1xxD to a specific
application requirements. These MTLT1xxD advanced settings are shown in Table 10 below:

5. MTLT1xxD Series Advanced Settings

4.2. 4.2 Dynamic MTLT Theory of Operation 39

j1939 Documentation, Release

Setting Default Comments
Baud Rate 38400

57600, 115200,23040
also available

Packet Type A6 A7 also available
Packet Rate 25Hz

This setting sets the rate at which
selected Packet Type, packets are
output.
If polled mode is desired, then
select
Quiet. If Quiet is selected, the
MTLT1xxD will only send
measurement
packets in response to GP
commands.

Orientation See
Fig. 12

To configure the axis orientation,
select
the desired measurement for each
axes: NAV-VIEW will show the
corresponding image of the
MTLT1xxD, so
it easy to visualize the mode of
operation. See Section 8.4
Orientation Field settings for the
twenty four possible orientation
settings.
The default setting points the
connector
AFT.

Filter Settings (5, 10, 20, 50 Hz) 20 Hz

The low pass filters are set to a
default
of 5Hz for the accelerometers, and
20 Hz for the angular rate sensors.

Freely Integrate OFF

The Freely Integrate setting allows
a user
to turn the MTLT1xxD into a ‘free
gyro’.
In free gyro mode, the roll, pitch
and
yaw are computed exclusively from
angular rate with no kalman filter
based
corrections of roll, pitch, or yaw.
When
turned on, there is no coupling of
acceleration based signals into the
roll
and pitch. As a result, the roll,
pitch, and yaw outputs will drift
roughly linearly with time due to
sensor
bias. For best performance, the
Freely Integrate mode should be
used after
the algorithm has initialized. This
allows the Kalman Filter to estimate
the roll and pitch rate sensor bias
prior to entering the free gyro
mode. Upon
exiting the ‘free gyro’ mode (OFF),
one
of two behaviors will occur

(1) If the MTLT1xxD has been in
freely integrate mode for less
than sixty
seconds, the algorithm will
resume operation
at normal gain settings

(2) If the MTLT1xxD has been in
freely integrate

mode for greater than sixty
seconds, the
algorithm will force a reset
and reinitialize with
high gains automatically.

Restart On Over Range OFF

This setting forces an algorithm
reset
when a sensor over range occurs
i.e., a
rotational rate on any of the three
axes
exceeds the maximum range. The
default
setting is OFF for the MTLT1xxD.
Algorithm reset returns the
MTLT1xxD
to a high gain state, where the
MTLT1xxD
rapidly estimates the gyro bias and
uses
the accelerometer feedback heavily.
This setting is recommended when
the
source of over-range is likely to be
sustained and potentially much
greater than the rate sensor
operating
limit. Large and sustained angular
rate over-ranges result in
unrecoverable errors in roll and
pitch
outputs. An unrecoverable error
is one where the EKF can not
stabilize the
resulting roll and pitch reading. If
the
over-ranges are expected to be of
short duration (<1 sec) and a
modest
percentage over the maximum
operating
range, it is recommended that the
restart on over range setting be
turned
off. Handling of an inertial rate
sensor
over-range is controlled using the
restartOnOverRange switch. If this
switch is off, the system will flag
the
overRange status flag and continue
to
operate through it. If this switch is
on,
the system will flag a masterFail
error
during an over-range condition and
continue to operate with this flag
until
a quasi-static condition is met to
allow for an algorithm restart.
The quasi-static condition required
is
that the absolute value of each
low-passed rate sensor fall below 3
deg/sec to begin initialization. The
system will then attempt a normal
algorithm start.

Dynamic Motion ON

The default setting is ON for the
MTLT1xxD. Turning off the
dynamic motion
setting results in a higher gain state
that uses the accelerometer
feedback heavily. During periods of
time when there is known low
dynamic
acceleration, this switch can be
turned
off to allow the attitude estimate to
quickly stabilize.

Turn Switch threshold 10.0 deg/sec

With respect to centripetal or false
gravity forces from turning
dynamics (or
coordinated turn), the MTLT1xxD
monitors
the yaw-rate. If the yaw rate
exceeds a
given Turnswitch threshold, the
feedback gains from the
accelerometer
signals for attitude correction are
reduced because they are likely
corrupted.

BIT See 4.3.2

40 Chapter 4. Theory of Operation

j1939 Documentation, Release

4.2.2 4.2.2 MTLT1xxD Built-In Test

The MTLT1xxD Built-In Test capability allows users of the MTLT1xxD to monitor health, diagnostic,
and system status information of the unit in real-time. The Built-In Test information consists of a BIT
word (2 bytes) transmitted in every measurement packet. In addition, there is a diagnostic packet ‘T0’
that can be requested via the Get Packet ‘GP’ command which contains a complete set of status for each
hardware and software subsystem in the MTLT1xxD. See Sections 6 and 7 for details on the ‘T0’ packet.

The BIT word contained within each measurement packet is detailed below. The LSB (Least Significant
Bit) is the Error byte, and the MSB (Most Significant Bit) is a Status byte with programmable alerts.
Internal health and status are monitored and communicated in both hardware and software. The ultimate
indication of a fatal problem is the masterFail flag.

The masterStatus flag is a configurable indication that can be modified by the user. This flag is asserted as
a result of any asserted alert signals which have been enabled. See Advanced BIT (Section 9) for details
on configuring the masterStatus flags. Table 11 shows the BIT definition and default settings for BIT
programmable alerts in the MTLT1xxD.

6. MTLT1xxD Default BIT Status Definition

4.2. 4.2 Dynamic MTLT Theory of Operation 41

j1939 Documentation, Release

BITstatus Field Bits Meaning Category
masterFail 0

0 = normal, 1 =
fatal error has occurred

BIT

HardwareError 1

0 = normal, 1= internal
hardware error

BIT

comError 2 0 = normal, 1 =| BIT
communication | error |

softwareError 3 0 = normal, 1 =| BIT
internal | software error |

Reserved 4:7 N/A
masterStatus 8

0 = nominal, 1
= one or more
status alerts

Status

hardwareStatus 9 Disabled Status
comStatus 10

0 = nominal, 1
= No External
GPS Comm

Status

softwareStatus 11

0 = nominal, 1
= Algorithm
Initialization
or High Gain

Status

sensorStatus 12

0 = nominal, 1 =

Status

Reserved 13:15 N/A

The MTLT1xxD also allows a user to configure the Status byte within the BIT message. To configure the word,
select the BIT Configuration tab from the Unit Configuration menu. The dialog box allows selection of which status
types to enable (hardware, software, sensor, and comm). Aceinna recommends for the vast majority of users, that
the default Status byte for the MTLT1xxD is sufficient. For users, who wish to have additional visibility to when the
MTLT1xxD EFK algorithm estimates that the MTLT1xxD is turning about its Z or Yaw axis, the softwareStatus bit
can be configured to go high during a turn. In other words, the turnSwitch will turn on the softwareStatus bit. In the
MTLT1xxD, the turnSwitch is by default set at 10.0 deg/sec about the z-axis.

42 Chapter 4. Theory of Operation

j1939 Documentation, Release

4.3 Tilt Alarm (Independent vs. Cone Angle)

In many safety applications, accurately determining if the vehicle or equipment is tilted beyond a certain safety thresh-
old is the most important requirement. The MTLT1 series tilt sensors is designed by be an all-in-one solution for both
static and dynamic safety solutions.

The user can select tilt alarm mode for independent pitch and roll angles or cone angle through NAV-VIEW. Indepen-
dent and cone angle are show in Figure 12.

Figure 12. Independent & Cone Angle

Independent Cone Angle

Hysteresis: if the tilt exceeds user definable alarm threshold, alarm will change to high and it will hold the high level
until the angle is less than the user definable clear threshold. The clear threshold is not user definable value, user can
get the clear threshold by calculation. the formula is : Clear value = +/-(ABS(alarm limit) - hysteresis). Hysteresis is
shown in figure 13.

Figure 13: Hysteresis

4.3. Tilt Alarm (Independent vs. Cone Angle) 43

j1939 Documentation, Release

44 Chapter 4. Theory of Operation

CHAPTER 5

Application Guide

5.1 Introduction

This section provides recommended advanced settings for tailoring the MTLT1 Series of tilt sensors to different types
of application and platform requirements.

5.2 Equipment Leveling and lockout

MTLT can be used to level equipment or measure tilt while moving in heavy construction machinery, oil industry and
so on.

The unit can be placed on the boom or chassis, for example, to measure tilt angle during moving or platform leveling.
The measurement provides improved control while the alarm signal can be used for added protection and lockout.

In the oil industry, MTILT can be placed on a pumpjack to measure the walking beam angle change.

45

j1939 Documentation, Release

5.3 Aerial Work Platform Safety

To protect the safety of the operator, it is very important to control and correct the angle of the platform. MTLT can
be used to measure and control the angle of the operator platform, chassis or boom. Multiple MTLT sensors can be
used to measure the change of the angle between the chassis and boom. The alarm signal can be used for protection
and lockout.

5.4 Land Vehicle

Payload imbalance can adversely affect handling and safety. More and more trucks use tilt sensors to optimize payload
balance; increasing safety, improving fuel economy and minimizing wear of vehicle components.

46 Chapter 5. Application Guide

CHAPTER 6

Programming Guide

The MTLT1 Series contains a number of different products which have different measurement capabilities. Depending
on the model you purchased, various commands and output modes are supported. However, all models support a
common packet structure that includes both command or input data packets (data sent to the MTLT1 Series) and
measurement output or response packet formats (data sent from the MTLT1 Series). This section of the manual
explains these packet formats as well as the supported commands. NAV-VIEW also features a number of tools that
can help a user understand the packet types available and the information contained within the packets. This section
of the manual assumes that the user is familiar with ANSI C programming language and data type conventions.

For an example of the code required to parse input data packets, please see refer to Appendix C.

For qualified commercial OEM users, a source code license of NAV-VIEW can be made available under certain
conditions. Please contact your Aceinna representative for more information.

6.1 General Settings

The serial port settings are RS232 with 1 start bit, 8 data bits, no parity bit, 1 stop bit, and no flow control. Standard
baud rates supported are: 9600, 19200, 38400, and 57600.

Common definitions include:

• A word is defined to be 2 bytes or 16 bits.

• All communications to and from the unit are packets that start with a single word alternating bit preamble
0x5555. This is the ASCII string “UU”.

• All multiple byte values are transmitted Big Endian (Most Significant Byte First).

• All communication packets end with a single word CRC (2 bytes). CRC’s are calculated on all packet bytes
excluding the preamble and CRC itself. Input packets with incorrect CRC’s will be ignored.

• Each complete communication packet must be transmitted to the MTLT1 Series tilt sensors within a 4 second
period.

47

j1939 Documentation, Release

6.2 Number Formats

Number Format Conventions include:

• 0x as a prefix to hexadecimal values

• single quotes (‘’) to delimit ASCII characters

• no prefix or delimiters to specify decimal values.

Table 20 defines number formats:

7. Number Formats

Descriptor Description Size(bytes) Comment Range
U1

Unsigned
Char

1 0 to 255

U2

Unsigned
Short

2 0 to 65535

U4

Unsigned
Int

4 0 to 2^32-1

I2

Signed
Short

2

2’s
Complement

-2^15 to 2^15-1

I2*

Signed
Short

2

Shifted 2’s
Complement

Shifted to
specified
range

I4

Signed
Int

4

2’s
Complement

-2^31 to 2^31-1

F4

Floating
Point

4

IEEE754
Single
Precision

-1*2^127 to 2^127

SN String N ASCII

48 Chapter 6. Programming Guide

j1939 Documentation, Release

6.3 Packet Format

All of the Input and Output packets, except the Ping command, conform to the following structure:

0x5555 <2-byte packet type
(U2)>

<payload byte-length
(U1)>

<variable length pay-
load>

<2-byte CRC
(U2)>

The Ping Command does not require a CRC, so a MTLT1 Series unit can be pinged from a terminal emulator. To Ping
a MTLT1 Series unit, type the ASCII string ‘UUPK’. If properly connected, the MTLT1 Series unit will respond with
‘PK’. All other communications with the MTLT1 Series unit require the 2-byte CRC. {Note: A MTLT1 Series unit
will also respond to a ping command using the full packet formation with payload 0 and correctly calculated CRC.
Example: 0x5555504B009ef4 }.

6.3.1 Packet Header

The packet header is always the bit pattern 0x5555.

6.3.2 Packet Type

The packet type is always two bytes long in unsigned short integer format. Most input and output packet types can be
interpreted as a pair of ASCII characters. As a semantic aid consider the following single character acronyms:

P = packet

F = fields

Refers to Fields which are settings or data contained in the unit

E = EEPROM

Refers to factory data stored in EEPROM

R = read

Reads default non-volatile fields

G = get

Gets current volatile fields or settings

W = write

Writes default non-volatile fields. These fields are stored in non-volatile memory and determine the unit’s
behavior on power up. Modifying default fields take effect on the next power up and thereafter.

S = set

Sets current volatile fields or settings. Modifying current fields will take effect immediately by modifying
internal RAM and are lost on a power cycle.

6.3.3 Payload Length

The payload length is always a one byte unsigned character with a range of 0-255. The payload length byte is the
length(in bytes) of the <variable length payload> portion of the packet ONLY, and does not include the CRC.

6.3. Packet Format 49

j1939 Documentation, Release

6.3.4 Payload

The payload is of variable length based on the packet type.

6.3.5 16-bit CRC-CCITT

Packets end with a 16-bit CRC-CCITT calculated on the entire packet excluding the 0x5555 header and the CRC
field itself. A discussion of the 16-bit CRC-CCITT and sample code for implementing the computation of the CRC is
included at the end of this document. This 16-bit CRC standard is maintained by the International Telecommunication
Union (ITU). The highlights are:

Width = 16 bits

Polynomial 0x1021

Initial value = 0xFFFF

No XOR performed on the final value.

See Appendix C for sample code that implements the 16-bit CRC algorithm.

6.3.6 Messaging Overview

Table 21 summarizes the messages available by MTLT1 Series model. Packet types are assigned mostly using the
ASCII mnemonics defined above and are indicated in the summary table below and in the detailed sections for each
command. The payload byte-length is often related to other data elements in the packet as defined in the table below.
The referenced variables are defined in the detailed sections following. Output messages are sent from the MTLT1
Series inertial system to the user system as a result of a poll request or a continuous packet output setting. Input
messages are sent from the user system to the MTLT1 Series inertial system and will result in an associated Reply
Message or NAK message. Note that reply messages typically have the same *<2-byte packet type (U2)>* as the
input message that evoked it but with a different payload.

8. Message Table

50 Chapter 6. Programming Guide

j1939 Documentation, Release

ASCII
Mnemonic

<2-byte
packet
type
(U2)>

<payload
byte-
length
(U1)>

Description Type

Products
Available

Link Test
PK 0x504B 0

Ping Command
and Response

Input/
Reply
Message

ALL

CH 0x4348 N

Echo Command
and Response

Input/
Reply
Message

ALL

Interactive
Commands

GP 0x4750 2

Get Packet
Request

Input
Message

ALL

AR 0x4152 0

Algorithm
Reset

Input/
Reply
Message

ALL

NAK 0x1515 2

Error
Response

Reply
Message

ALL

Output
Messages:
Status &
Other,
(Polled
Only)

ID 0x4944 5+N ID data

Output
Message

ALL

VR 0x5652 5

Version
Data

Output
Message

ALL

T0 0x5430 28

Test 0
(Detailed
BIT and
Status)

Output
Message

ALL

Output
Messages:
Measurement
Data
(Continuous
or polled)

A6

Angle 6
Data

Output
Message

ALL

A7

Angle 7
Data

Output
Message

ALL

Advanced
Commands

WF 0x5746

numFields
*4+1

Write
Fields
Request

Input
Message

ALL

WF 0x5746

numFields
*2+1

Write
Fields
Response

Reply
Message

ALL

SF 0x5346

numFields
*4+1

Set
Fields
Request

Input
Message

ALL

SF 0x5346

numFields
*2+1

Set
Fields
Response

Reply

Message

ALL

RF 0x5246

numFields
*2+1

Read
Fields
Request

Input
Message

ALL

RF 0x5246

numFields
*4+1

Read
Fields
Response

Reply
Message

ALL

GF 0x4746

numFields
*2+1

Get
Fields
Request

Input
Message

ALL

GF 0x4746

numFields
*4+1

Get
Fields
Response

Reply
Message

ALL

6.3. Packet Format 51

j1939 Documentation, Release

52 Chapter 6. Programming Guide

CHAPTER 7

Communicating with the MTLT1 Series

7.1 Link Test.

7.1.1 Ping Command

Ping (‘PK’ = 0x504B)
Preamble Packet Type Length Termination
0x5555 0x504B • •

The ping command has no payload. Sending the ping command will cause the unit to send a ping response. To
facilitate human input from a terminal, the length and CRC fields are not required. (Example: 0x5555504B009ef4 or
0x5555504B))

7.1.2 Ping Response

Ping (‘PK’ = 0x504B)
Preamble Packet Type Length Termination
0x5555 0x504B 0x00 <CRC (U2)>

The unit will send this packet in response to a ping command.

7.1.3 Echo Command

Echo (‘CH’ = 0x4348)
Preamble Packet Type Length Payload Termination
0x5555 0x4348 N <echo payload> <CRC (U2)>

53

j1939 Documentation, Release

The echo command allows testing and verification of the communication link. The unit will respond with an echo
response containing the echo data. The echo data is N bytes long.

7.1.4 Echo Response

Echo Payload
Byte Offset Name Format Scaling Units Description
0 echoData0 U1 • •

first byte of
echo data

1 echoData1 U1 • •
Second byte of
echo data

. U1 • • Echo data

N-2 echoData. .. U1 • •
Second to last
byte
of echo data

N-1 echoData. . . U1 • •
Last byte of
echo
data

7.2 Interactive Commands

Interactive commands are used to interactively request data from the MTLT1 Series, and to calibrate or reset the
MTLT1 Series.

7.2.1 Get Packet Request

Get Packet (‘GP’ = 0x4750)
Preamble Packet Type Length Payload Termination
0x5555 0x4750 0x02 <GP payload> <CRC (U2)>

This command allows the user to poll for both measurement packets and special purpose output packets including
‘T0’, ‘VR’, and ‘ID’.

54 Chapter 7. Communicating with the MTLT1 Series

j1939 Documentation, Release

GP Payload
Byte Offset Name Format Scaling Units Description
0 requested Pack-

etTyp e
U2 • •

The requested
packet type

Refer to the sections below for Packet Definitions sent in response to the ‘GP’ command

7.2.2 Algorithm Reset Command

Algorithm Reset
(‘AR’ = 0x4152)
Preamble Packet Type Length Payload Termination
0x5555 0x4152 0x00 • <CRC (U2)>

This command resets the state estimation algorithm without reloading fields from EEPROM. All current field values
will remain in affect. The unit will respond with an algorithm reset response.

7.2.3 Algorithm Reset Response

Algorithm Reset (‘AR’ = 0x4152)
Preamble Packet Type Length Termination
0x5555 0x4152 0x00 <CRC (U2)>

The unit will send this packet in response to an algorithm reset command.

7.2.4 Error Response

Error
Response
(ASCII NAK,
NAK =
0x1515)

Preamble Packet Type Length Payload Termination
0x5555 0x1515 0x02 <NAK payload> <CRC (U2)>

The unit will send this packet in place of a normal response to a faiiledInputPacketType request if it could not be
completed successfully.

7.2. Interactive Commands 55

j1939 Documentation, Release

NAK
Payload
Contents

Byte Offset Name Format Scaling Units Description
0 failedInp ut-

PacketT ype
U2 • •

the failed
request

7.3 Output Packets (Polled)

The following packet formats are special informational packets which can be requested using the ‘GP’ command.

7.3.1 Identification Data Packet

Identification
Data (‘ID’
= 0x4944)

Preamble Packet Type Length Payload Termination
0x5555 0x4944 5+N <ID payload> <CRC (U2)>

This packet contains the unit serialNumber and modelString. The model string is terminated with 0x00. The model
string contains the programmed versionString (8-bit Ascii values) followed by the firmware part number string delim-
ited by a whitespace.

ID Payload
Contents
Byte Offset Name Format Scaling Units Description
0 serialNumber U4 • • Unit serial num-

ber

4 modelString SN • • Unit Version
String

4+N 0x00 U1 • • Zero Delimiter

7.3.2 Version Data Packet

Version Data (‘VR’ = 0x5652)
Preamble Packet Type Length Payload Termination
0x5555 0x5652 5 <VR payload> <CRC (U2)>

56 Chapter 7. Communicating with the MTLT1 Series

j1939 Documentation, Release

This packet contains firmware version information. majorVersion changes may introduce serious incompatibilities.
minorVersion changes may add or modify functionality, but maintain backward compatibility with previous minor
versions. patch level changes reflect bug fixes and internal modifications with little effect on the user. The build
stage is one of the following: 0=release candidate, 1=development, 2=alpha, 3=beta. The buildNumber is incremented
with each engineering firmware build. The buildNumber and stage for released firmware are both zero. The final
beta candidate is v.w.x.3.y, which is then changed to v.w.x.0.1 to create the first release candidate. The last release
candidate is v.w.x.0.z, which is then changed to v.w.x.0.0 for release.

VR Payload
Byte Offset Name Format Scaling Units Description
0

major
verion

U1 • •
Major
firmware
version

1

minor
version

U1 • •
Minor
firmware
version

2 patch U1 • •
Patch
level

3 stage • • •
Development
Stage
(0=release
candidate,
1=develop
2=alpha,
3=beta)

4 build number U1 • •
Build
number

7.3.3 Test 0 (Detailed BIT and Status) Packet

Test (‘T0’ = 0x5430)
Preamble Packet Type Length Payload Termination
03.3x5555 0x5430 0x1C <T0 payload> <CRC (U2)>

This packet contains detailed BIT and status information. The full BIT Status details are described in Section 9 of this
manual.

7.3. Output Packets (Polled) 57

j1939 Documentation, Release

T0 Payload
Byte Offset Name Format Scaling Units Description
0 BITstatus U2 • •

Master BIT and
Status Field

2 hardware BIT U2 • • Hardware BIT
Field

4 hardware
PowerBIT

U2 • •
Hardware
Power BIT
Field

6

hardware
Environme

ntal |BIT

U2 • •
Hardware
Environment

al | BIT Field
8 comBIT U2 • • communication

BIT Field

10

comSerial
ABIT

U2 • •
Communicati

on | Serial A |
BIT Field

12

comSerial
BBIT

U2 • •
Communicati

on | Serial B |
BIT Field

14

software
BIT

U2 • •
Software
BIT Field

16

software
Algorithm
BIT

U2 • •
Software
Algorithm
BIT Field

18

software
DataBIT

U2 • •
Software
Data BIT
Field

20

hardware
Status

U2 • •
Hardware
Status
Field

22 comStatus U2 • •
Communicati

on | Status |
Field

24

software
Status

U2 • •
Software
Status
Field

26

sensor
Status

U2 • •
Sensor
Status
Field

58 Chapter 7. Communicating with the MTLT1 Series

j1939 Documentation, Release

7.4 Output Packets (Polled or Continuous)

7.4.1 Angle Data Packet 6 (Default Data)

Angle Data
(‘A6’ = 0x4132)

Preamble Packet Type Length Payload Termination
0x5555 0x4136 0x0A <A6 payload> <CRC (U2)>

This packet contains angle data. Data involving angular measurements include the factor pi in the scaling and can be
interpreted in either radians or degrees.

Angles: scaled to a range of [-pi,+pi) or [-180 deg to +180 deg).

A6 Payload
Byte Offset Name Format Scaling Units

Descriptio
n

0 rollAngle I2 2*pi/2^16
[360°/2^1 6]

Radians
[°]

Roll angle

2 pitchAngle I2 2*pi/2^16
[360°/2^1 6]

Radians
[°]

Pitch angle

4 timeITOW U4 1 ms

DMU ITOW
(sync to GPS)

Not

Implemented
8 BITstatus U2 • •

Master BIT and
Status

7.4.2 Angle Data Packet 7

Angle Data (‘A7’ = 0x4137)
Preamble Packet Type Length Payload Termination
0x5555 0x4137 0x10 <A7 payload> <CRC (U2)>

This packet contains angle data and selected sensor data scaled in most cases to a signed 2^16 2’s complement number.
Data involving angular measurements include the factor pi in the scaling and can be interpreted in either radians or
degrees.

Angles: scaled to a range of [-pi,+pi) or [-180 deg to +180 deg).

Accelerometers: scaled to a range of [-10,+10) g

7.4. Output Packets (Polled or Continuous) 59

j1939 Documentation, Release

A7 Payload
Byte Offset Name Format Scaling Units Description
0 rollAngle I2 2*pi/2^16

[360°/2^1 6]
Radians
[°]

Roll angle

2 pitchAngl e I2 2*pi/2^16
[360°/2^1 6]

Radians
[°]

Pitch angle

4 xAccel I2 20/2^16 g

X
accelerom

eter
6 yAccel I2 20/2^16 g

Y
accelerom

eter
8 zAccel I2 20/2^16 g

Z
accelerom

eter
10 timeITOW U4 1 ms

DMU ITOW
(sync to GPS)

Not
Implemented

14 BITstatus U2 • •
Master BIT and
Status

60 Chapter 7. Communicating with the MTLT1 Series

CHAPTER 8

Advanced Commands

The advanced commands allow users to programmatically change the MTLT1 Series settings. This section of the
manual documents all of the settings and options contained under the Unit Configuration tab within NAV-VIEW.
Using these advanced commands, a user’s system can change or modify the settings without the need for NAV-VIEW.

8.1 Configuration Fields

Configuration fields determine various behaviors of the unit that can be modified by the user. These include settings
like baud rate, packet output rate and type, algorithm type, etc. These fields are stored in EEPROM and loaded on
power up. These fields can be read from the EEPROM using the ‘RF’ command. These fields can be written to the
EEPROM affecting the default power up behavior using the ‘WF’ command. The current value of these fields (which
may be different from the value stored in the EEPROM) can also be accessed using the ‘GF’ command. All of these
fields can also be modified immediately for the duration of the current power cycle using the ‘SF’ command. The unit
will always power up in the configuration stored in the EEPROM. Configuration fields can only be set or written with
valid data from Table 22 below.

9. Configuration Fields

61

j1939 Documentation, Release

configuration fields field ID Valid Values Values** description

Packet rate
divider

0x0001

0,1,2,4,5,10,20
25, 50

quiet, 100Hz,
50Hz, 25Hz,
20Hz, 10Hz,
5Hz, 4Hz,2Hz

Unit BAUD
rate

0x0002 ,2,3,5,6

38400, 57600
115200, 230400

Continuous
packet type

0x0003

Any output
packet type

Not all output packets
available for all products.
See detailed product
descriptions.

Unused 0x0004

Gyro Filter
Setting

0x0005 7142-65535 [5Hz] 3571-
7141 [10Hz] 1530-3570
[20Hz] 0-1529 [50 Hz] Sets low pass cutoff for

rate
sensors. Cutoff
Frequency
choices are 5, 10, 20, and
50Hz

Accelerometer
Filter Setting

0x0006 7142-65535 [5Hz] 3571-
7141 [10Hz] 1530-3570
[20Hz] 0-1529 [50 Hz] Sets low pass cutoff for

accelerometers. Cutoff
Frequency choices are 5,
10, 20, and 50Hz

Orientation 0x0007 See below

Determine forward,
rightward, and downward
facing
sides

User Behavior
Switches

0x0008 Any

Free Integrate (60
seconds),
Use Mags, Use GPS,
Stationary
Yaw Lock, . . .

Roll upper
alarm angle

0x0029 [-25,25](deg)

Roll upper
alarm limit

Roll lower
alarm angle

0x002A [-25,25](deg)

Roll lower
alarm limit

Pitch upper
alarm angle

0x002B [-25,25](deg)

Pitch upper
alarm limit

Pitch lower
alarm angle

0x002C [-25,25](deg)

Pitch lower
alarm limit

Roll hysteresis 0x002D [1,3](deg)

Hysteresis for
roll alarm

Pitch
hysteresis

0x002E [1,3](deg)

Hysteresis for
pitch alarm

Alarm selector 0x002F 0,1

Independent
angle, cone
angle

Cone angle
limit

0x0030 [-25,25](deg)

Cone alarm
limit

Cone angle
hysteresis

0x0031 [1,3](deg)

Hysteresis for
cone angle

62 Chapter 8. Advanced Commands

j1939 Documentation, Release

Note: BAUD rate SF has immediate effect. Some output data may be lost. Response will be received at new BAUD
rate.

8.2 Continuous Packet Type Field

This is the packet type that is being continually output. The supported packet depends on the model number. Please
refer to Section 6.4 for a complete list of the available packet types.

8.3 Digital Filter Settings

These two fields set the digital low pass filter cutoff frequencies (See Table 23). Each sensor listed is defined in the
default factory orientation. Users must consider any additional rotation to their intended orientation.

10. Digital Filter Settings

Filter Setting Sensor
FilterGyro Ux,Uy,Uz Rate
FilterAccel Ux,Uy,Uz Accel

8.4 Orientation Field

This field defines the rotation from the factory to user axis sets. This rotation is relative to the default factory orientation
(connector aft, baseplate down). The default factory axis setting for the MTLT1 orientation field is (-Ux, -Uy, +Uz) as
shown in Figure 15 below. With this default orientation, +X is defined as opposite where the connector is pointing, +Z
is down through the base, and +Y is created by making the final orthogonal axis right-hand-rule. The user axis set is
(X, Y, Z) as defined by this default orientation field loaded at the factory, but this can be changed as per Table 24.

Figure 15. MTLT1 Orientation Field (0x0009)

11. MTLT1 Orientation Definitions

8.2. Continuous Packet Type Field 63

j1939 Documentation, Release

Description Bits Meaning
X Axis Sign 0 0 = positive, 1 = negative
X Axis 1:2 0 = Ux, 1 = Uy, 2 = Uz, 3 = N/A
Y Axis Sign 3 0 = positive, 1 = negative
Y Axis 4:5 0 = Uy, 1 = Uz, 2 = Ux, 3 = N/A
Z Axis Sign 6 0 = positive, 1 = negative
Z Axis 7:8 0 = Uz, 1 = Ux, 2 = Uy, 3 = N/A
Reserved 9:15 N/A

There are 24 possible orientation configurations (See Table 25). Setting/Writing the field to anything else generates a
NAK and has no effect.

12. MTLT1 Orientation Fields

Orientation Field Value X Axis Y Axis Z Axi*
0x0000 +Ux +Uy +Uz
0x0009 -Ux -Uy +Uz
0x0023 -Uy +Ux +Uz
0x002A +Uy -Ux +Uz
0x0041 -Ux +Uy -Uz
0x0048 +Ux -Uy -Uz
0x0062 +Uy +Ux -Uz
0x006B -Uy -Ux -Uz
0x0085 -Uz +Uy +Ux
0x008C +Uz -Uy +Ux
0x0092 +Uy +Uz +Ux
0x009B -Uy -Uz +Ux
0x00C4 +Uz +Uy -Ux
0x00CD -Uz -Uy -Ux
0x00D3 -Uy +Uz -Ux
0x00DA +Uy -Uz -Ux
0x0111 -Ux +Uz +Uy
0x0118 +Ux -Uz +Uy
0x0124 +Uz +Ux +Uy
0x012D -Uz -Ux +Uy
0x0150 +Ux +Uz -Uy
0x0159 -Ux -Uz -Uy
0x0165 -Uz +Ux -Uy
0x016C +Uz -Ux -Uy

8.5 User Behavior Switches

This field allows on the fly user interaction with behavioral aspects of the algorithm (See Figure 26).

13. MTLT1 Behavior Switches

64 Chapter 8. Advanced Commands

j1939 Documentation, Release

Description Bits Meaning
Free Integrate 0

0 = use feedback to stabilize the
algorithm, 1 = 6DOF inertial
integration
without stabilized feedback for 60
seconds

Use Mags 1 N/A
Use GPS 2 N/A
Stationary Yaw Lock 3 N/A
Restart on Over-range 4

0 = Do not restart the system after a
sensor over-range, 1 = restart the
system
after a sensor over-range

Dynamic Motion 5

0=vehicle is static, force high gain
corrections, 1= vehicle is dynamic,
use nominal corrections

Reserved 6:15 N/A

8.6 Tilt alarm

The fields from 0x0029 to 0x0031 allow the users to select alarm source and set alarm threshold angles with hysteresis.

8.7 Commands to Program Configuration

8.7.1 Write Fields Command

Write Fields
(‘WF’ = 0x5746)

Preamble Packet Type Length Payload Termination
0x5555 0x5746 1+numFields *4 <WF payload> <CRC (U2)>

This command allows the user to write default power-up configuration fields to the EEPROM. Writing the default
configuration will not take affect until the unit is power cycled. NumFields is the number of words to be written. The
field0, field1, etc. are the field

IDs that will be written with the field0Data, field1Data, etc., respectively. The unit will not write to calibration
or algorithm fields. If at least one field is successfully written, the unit will respond with a write fields response

8.6. Tilt alarm 65

j1939 Documentation, Release

containing the field IDs of the successfully written fields. If any field is unable to be written, the unit will respond
with an error response. Note that both a write fields and an error response may be received as a result of a write fields
command. Attempts to write a field with an invalid value is one way to generate an error response. A table of field IDs
and valid field values is available in Section 8.1.

WF Payload
Byte Offset Name Format Scaling Units

Descripti
on

0 numFields U1 • •
The number of
fields to write

1 field0 U2 • •
The first field
ID
to write

3
field0Dat

a

U2 • •
The first field
ID’s data to
write

5 field1 U2 • •
The second
field ID to write

7
field1Dat

a

U2 • •
The second
field ID’s data

. U2 • • . . .

numFields *4 -3 field. . . U2 • •
The last field ID
to write

numFields *4 -1
field. . . Dat

a

U2 • •
The last field
ID’s data to
write

Write Fields Response

66 Chapter 8. Advanced Commands

j1939 Documentation, Release

Write Fields
(‘WF’ = 0x5746)

Preamble Packet Type Length Payload Termination
0x5555 0x5746 1+numFields *2 <WF payload> <CRC (U2)>

The unit will send this packet in response to a write fields command if the command has completed without errors.

WF Payload
Byte Offset Name Format Scaling Units Descripti on
0 numFields U1 • •

The number of
fields written

1 field0 U2 • •
The first field
ID
written

3 field1 U2 • •
The second
field ID written

. U2 • •
More field IDs
written

numFields *2 –
1

Field. . . U2 • •
The last field ID
written

8.7.2 Set Fields Command

Set Fields
(‘SF’ = 0x5346)

Preamble Packet Type Length Payload Termination
0x5555 0x5346 1+numFields *4 <SF payload> <CRC (U2)>

This command allows the user to set the unit’s current configuration (SF) fields immediately which will
then be lost on power down. NumFields is the number of words to be set. The field0, field1, etc. are the
field IDs that will be written with the field0Data, field1Data, etc., respectively. This command can be
used to set configuration fields. The unit will not set calibration or algorithm fields. If at least one field is

8.7. Commands to Program Configuration 67

j1939 Documentation, Release

successfully set, the unit will respond with a set fields response containing the field IDs of the successfully
set fields. If any field is unable to be set, the unit will respond with an error response. Note that both a set
fields and an error response may be received as a result of one set fields command. Attempts to set a field
with an invalid value is one way to generate an error response. A table of field IDs and valid field values
is available in Section 8.1.

SF Payload
Byte Offset Name Format Scaling Units

*Descript
ion*

0 numFields U1 • •
The number of
fields to set

1 field0 U2 • •
The first field
ID
to set

3
field0Dat

a

U2 • •
The first field
ID’s data to set

5 field1 U2 • •
The second
field ID to set

7
field1Dat

a

U2 • •
The second field
ID’s data to set

. U2 • • . . .

numFields *4 -3 field. . . U2 • •
The last field ID
to set

numFields *4 -1
field. . . Dat a

U2 • •
The last field
ID’s data to set

Set Fields Response

68 Chapter 8. Advanced Commands

j1939 Documentation, Release

Set Fields
(‘SF’ = 0x5346)

Preamble Packet Type Length Payload
*Terminatio

n*
0x5555 0x5346 1+numFields *2 <SF payload> <CRC (U2)>

The unit will send this packet in response to a set fields command if the command has completed without errors.

SF Payload
Byte Offset Name Format Scaling Units

*Descript
ion*

0 numFields U1 • •
The number of
fields set

1 field0 U2 • •
The first field
ID
set

3 field1 U2 • •
The second
field ID set

. U2 • •
More field IDs
set

numFields *2 -
1

Field. . . U2 • •
The last field ID
set

8.7. Commands to Program Configuration 69

j1939 Documentation, Release

8.8 Read Fields Command

Read Fields
(‘RF’ = 0x5246)

Preamble Packet Type Length Payload
*Terminatio

n*
0x5555 0x5246 1+numFields *2 <RF payload> <CRC (U2)>

This command allows the user to read the default power-up configuration fields from the EEPROM.
NumFields is the number of fields to read. The field0, field1, etc. are the field IDs to read. RF may be used
to read configuration and calibration fields from the EEPROM. If at least one field is successfully read,
the unit will respond with a read fields response containing the field IDs and data from the successfully
read fields. If any field is unable to be read, the unit will respond with an error response. Note that both a
read fields and an error response may be received as a result of a read fields command.

RF Payload
Byte Offset Name Format Scaling Units

*Descripti
on*

0 numFields U1 • •
The number of
fields to read

1 field0 U2 • •
The first field
ID
to read

3 field1 U2 • •
The second
field ID to read

. U2 • •
More field IDs
to read

numFields *2 -
1

Field. . . U2 • •
The last field ID
to read

70 Chapter 8. Advanced Commands

j1939 Documentation, Release

8.9 Read Fields Response

Read Fields
(‘RF’ = 0x5246)

Preamble Packet Type Length Payload
*Terminatio

n*
0x5555 0x5246 1+numFields *4 <RF payload> <CRC (U2)>

The unit will send this packet in response to a read fields request if the command has completed without errors.

8.9. Read Fields Response 71

j1939 Documentation, Release

RF Payload
Byte Offset Name Format Scaling Units

*Descripti
ion*

0 numFields U1 • •
The number of
fields read

1 field0 U2 • •
The first field
ID
read

3 field0Dat a U2 • •
The first field
ID’s data read

5 field1 U2 • •
The second
field ID read

7 field1Dat a U2 • •
The second
field ID’s data
read

. U2 • • . . .

numFields *4 -3 field. . . U2 • •
The last field ID
read

numFields *4 -1 field. . . Dat a U2 • •
The last field
ID’s data read

72 Chapter 8. Advanced Commands

j1939 Documentation, Release

8.10 Get Fields Command

Get Fields
(‘GF’ = 0x4746)

Preamble Packet Type Length Payload
*Terminatio

n*
0x5555 0x4746 1+numFields *2 <GF Data> <CRC (U2)>

This command allows the user to get the unit’s current configuration fields. NumFields is the number
of fields to get. The field0, field1, etc. are the field IDs to get. GF may be used to get configuration,
calibration, and algorithm fields from RAM. Multiple algorithm fields will not necessarily be from the
same algorithm iteration. If at least one field is successfully collected, the unit will respond with a get
fields response with data containing the field IDs of the successfully received fields. If any field is unable
to be received, the unit will respond with an error response. Note that both a get fields and an error
response may be received as the result of a get fields command.

GF Payload
Byte Offset Name Format Scaling Units

Descriptio
n

0 numFields U1 • •
The number of
fields to get

1 field0 U2 • •
The first field
ID
to get

3 field1 U2 • •
The second
field ID to get

. U2 • •
More field IDs
to get

numFields *2 –
1

Field. . . U2 • •
The last field ID
to get

8.10. Get Fields Command 73

j1939 Documentation, Release

8.11 Get Fields Response

Get Fields (‘GF’ = 0x4746)
Preamble Packet Type Length Payload Termination
0x5555 0x4746 1+numFields*4 <GF Data> <CRC (U2)>

The unit will send this packet in response to a get fields request if the command has completed without errors.

GF Payload
Byte Offset Name Format Scaling Units

Descriptio
n

0 numFields U1 • •
The number of
fields retrieved

1 field0 U2 • •
The first field
ID
retrieved

3 field0Dat a U2 • •
The first field
ID’s data
retrieved

5 field1 U2 • •
The second
field ID
retrieved

7 field1Dat a U2 • •
The second
field ID’s data

. U2 • • . . .

numFields *4 -3 field. . . U2 • •
The last field ID
retrieved

numFields *4 -1 field. . . Dat a U2 • •
The last field
ID’s data
retrieved

74 Chapter 8. Advanced Commands

CHAPTER 9

Advanced BIT

9.1 Built In Test (BIT) and Status Fields

Internal health and status are monitored and communicated in both hardware and software. The ultimate indication
of a fatal problem is a hardware BIT signal on the user connector which is mirrored in the software BIT field as the
masterFail flag. This flag is thrown as a result of a number of instantly fatal conditions (known as a “hard” failure) or
a persistent serious problem (known as a “soft” failure). Soft errors are those which must be triggered multiple times
within a specified time window to be considered fatal. Soft errors are managed using a digital high-pass error counter
with a trigger threshold.

The masterStatus flag is a configurable indication as determined by the user. This flag is asserted as a result of any
asserted alert signals which the user has enabled.

The hierarchy of BIT and Status fields and signals is depicted here:

• BITstatus Field

– masterFail

* hardwareError

· hardwareBIT Field

· powerError

· hardwarePowerBIT Field

· inpPower

· inpCurrent

· inpVoltage

· fiveVolt

· threeVolt

· twoVolt

· twoFiveRef

75

j1939 Documentation, Release

· sixVolt

· grdRef

· environmentalError

· hardwareEnvironmentalBIT Field

· pcbTemp

* comError

· comBIT Field

· serialAError

· comSerialABIT Field

· transmitBufferOverflow

· receiveBufferOverflow

· framingError

· breakDetect

· parityError

· serialBError

· comSerialBBIT Field

· transmitBufferOverflow

· receiveBufferOverflow

· framingError

· breakDetect

· parityError

* softwareError

· *softwareBIT Field *

· algorithmError

· softwareAlgorithmBIT Field

· initialization

· overRange

· missedIntegrationStep

· dataError

· softwareDataBIT Field

· calibrationCRCError

· magAlignOutOfBounds

– masterStatus

* hardwareStatus

· hardwareStatus Field

· unlocked1PPS (N/A)

76 Chapter 9. Advanced BIT

j1939 Documentation, Release

· unlockedInternalGPS (N/A)

· noDGPS (N/A)

· unlockedEEPROM

* comStatus

· comStatus Field

· noExternalGPS (Default)

* softwareStatus

· softwareStatus Field

· algorithmInitialization (enabled by default)

· highGain (enabled by default)

· attitudeOnlyAlgorithm

· turnSwitch

* sensorStatus

· sensorStatus Field

· overRange (enabled by default)

9.2 Master BIT and Status (BITstatus) Field

The BITstatus field is the global indication of health and status of the MTLT1 Series product (See Table 29). The LSB
contains BIT information and the MSB contains status information.

There are four intermediate signals that are used to determine when masterFail and the hardware BIT signal are
asserted. These signals are controlled by various systems checks in software that are classified into three categories:
hardware, communication, and software. Instantaneous soft failures in each of these four categories will trigger these
intermediate signals, but will not trigger the masterFail until the persistency conditions are met.

There are four intermediate signals that are used to determine when the masterStatus flag is asserted: hardwareStatus,
sensorStatus, comStatus, and softwareStatus. masterStatus is the logical OR of these intermediate signals. Each of
these intermediate signals has a separate field with individual indication flags. Each of these indication flags can
be enabled or disabled by the user. Any enabled indication flag will trigger the associated intermediate signal and
masterStatus flag.

14. MTLT1 BIT Status Field

9.2. Master BIT and Status (BITstatus) Field 77

j1939 Documentation, Release

BITstatus Field Bits Meaning Category
masterFail 0

0 = normal, 1 = fatal error
has
occurred

BIT

HardwareError 1

0 = normal, 1= internal
hardware error

BIT

comError 2

0 = normal, 1 =
communication
error

BIT

softwareError 3

0 = normal, 1 = internal
software error

BIT

Reserved 4:7 N/A
masterStatus 8

0 = nominal, 1 =
hardware,
sensor, com, or software
alert

Status

hardwareStatus 9

0 = nominal, 1 =
programmable
alert

Status

comStatus 10

0 = nominal, 1 =
programmable
alert

Status

softwareStatus 11

0 = nominal, 1 =
programmable
alert

Status

sensorStatus 12

0 = nominal, 1 =
programmable
alert

Status

Reserved 13:15 N/A

78 Chapter 9. Advanced BIT

j1939 Documentation, Release

9.3 hardwareBIT Field

The hardwareBIT field contains flags that indicate various types of internal hardware errors (See Table 30). Each of
these types has an associated message with low level error signals. The hardwareError flag in the BITstatus field is the
bit-wise OR of this hardwareBIT field.

15. MTLT1 Hardware BIT Field

hardwareBIT Field Bits Meaning Category
powerError 0 0 = normal, 1 = error Soft
environmentalError 1 0 = normal, 1 = error Soft
reserved 2:15 N/A

9.4 hardwarePowerBIT Field

The hardwarePowerBIT field contains flags that indicate low level power system errors (See Table 31). The powerError
flag in the hardwareBIT field is the bit-wise OR of this hardwarePowerBIT field.

16. MTLT1 Hardware Power BIT Field

hardwarePowe rBIT
Field

Bits Meaning Category

inpPower 0 0 = normal, 1 = | Soft
out of bounds |

inpCurrent 1 0 = normal, 1 = | Soft
out of bounds |

inpVoltage 2 0 = normal, 1 = | Soft
out of bounds |

fiveVolt 3 0 = normal, 1 = | Soft
out of bounds |

threeVolt 4 0 = normal, 1 = | Soft
out of bounds |

twoVolt 5 0 = normal, 1 = | Soft
out of bounds |

twoFiveRef 6 0 = normal, 1 = | Soft
out of bounds |

sixVolt 7 0 = normal, 1 = | Soft
out of bounds |

grdRef 8 0 = normal, 1 = | Soft
out of bounds |

Reserved 9:15 N/A

9.3. hardwareBIT Field 79

j1939 Documentation, Release

9.5 hardwareEnvironmentalBIT Field

The hardwareEnvironmentalBIT field contains flags that indicate low level hardware environmental errors (See Table
32). The environmentalError flag in the hardwareBIT field is the bit-wise OR of this hardwareEnvironmentalBIT field.

17. MTLT1 Hardware Environment BIT Field

hardwareEnvi ron-
mentalBIT Field

Bits Meaning Category

pcbTemp 0

0 = normal, 1 =
out of bounds

Soft

Reserved 9:15 N/A

9.6 comBIT Field

The comBIT field contains flags that indicate communication errors with external devices (See Table 33). Each external
device has an associated message with low level error signals. The comError flag in the BITstatus field is the bit-wise
OR of this comBIT field.

18. MTLT1 COM BIT Field

comBIT Field Bits Meaning Category
serialAError 0 0 = normal, 1 = error Soft
serialBError 1 N/A
Reserved 2:15 N/A

9.7 comSerialABIT Field

The comSerialABIT field (See Table 34) contains flags that indicate low level errors with external serial port A (the
user serial port). The serialAError flag in the comBIT field is the bit-wise OR of this comSerialABIT field.

19. MTLT1 Serial Port A BIT Field

**comSerialABI
T Field**

Bits Meaning Category

transmitBufferO verflow 0 0 = normal, 1 = overflow Soft
receiveBufferOv erflow 1 0 = normal, 1 = overflow Soft
framingError 2 0 = normal, 1 = error Soft
breakDetect 3 0 = normal, 1 = error Soft
parityError 4 0 = normal, 1 = error Soft
Reserved 5:15 N/A

80 Chapter 9. Advanced BIT

j1939 Documentation, Release

9.8 softwareBIT Field

The softwareBIT field contains flags that indicate various types of software errors (See Table 36). Each type has an
associated message with low level error signals. The softwareError flag in the BITstatus field is the bit-wise OR of
this softwareBIT field.

20. MTLT1 Softrware BIT Field

softwareBIT Field Bits Meaning Category
algorithmError 0 0 = normal, 1 = error Soft
dataError 1 0 = normal, 1 = error Soft
Reserved 2:15 N/A

9.9 softwareAlgorithmBIT Field

The softwareAlgorithmBIT field contains flags that indicate low level software algorithm errors (See Table 37). The
algorithmError flag in the softwareBIT field is the bit-wise OR of this softwareAlgorithmBIT field.

21. MTLT1 Software Algorithm BIT Field

**SoftwareAlgo
rithmBIT Field**

Bits Meaning Category

initialization 0 0 = normal, 1 = error
during algorithm initial-
ization

Hard

overRange 1 0 = normal, 1 = fatal sen-
sor over-range

Hard

missedNavigatio nStep 2 0 = normal, 1 = fatal hard
deadline missed for navi-
gation

Hard

Reserved 3:15 N/A

9.10 softwareDataBIT Field

The softwareDataBIT field contains flags that indicate low level software data errors (See Table 38). The dataError
flag in the softwareBIT field is the bit-wise OR of this softwareDataBIT field.

22. MTLT1 Software Data BIT Field

9.8. softwareBIT Field 81

j1939 Documentation, Release

SoftwareData BIT
Field*

Bits Meaning Category

calibrationCRCE
rror

0

0 = normal, 1 = incorrect
CRC
on calibration EEPROM
data or
data has been
compromised by
a WE command.

Hard

magAlignOutOfBo unds N/A

Parameter not
implemented in
this software version

N/A

Reserved 2:15 N/A

9.11 hardwareStatus Field

The hardwareStatus field contains flags that indicate various internal hardware conditions and alerts that are not errors
or problems (See Table 39). The hardwareStatus flag in the BITstatus field is the bit-wise OR of the logical AND of
the hardwareStatus field and the hardwareStatusEnable field. The hardwareStatusEnable field is a bit mask that allows
the user to select items of interest that will logically flow up to the masterStatus flag.

23. MTLT1 Hardware Status BIT Field

hardwareStatus Field* Bits Meaning
unlocked1PPS 0 0 = not asserted, 1 = asserted
unlockedInternalGPS 1 0 = not asserted, 1 = asserted
noDGPS 2 0 = DGPS lock, 1 = no DGPS
unlockedEEPROM 3

0=locked, WE disabled,
1=unlocked,
WE enabled

Reserved 4:15 N/A

9.12 comStatus Field

The comStatus field contains flags that indicate various external communication conditions and alerts that are not
errors or problems (See Table 40). The comStatus flag in the BITstatus field is the bit-wise OR of the logical AND
of the comStatus field and the comStatusEnable field. The comStatusEnable field is a bit mask that allows the user to
select items of interest that will logically flow up to the masterStatus flag.

24. MTLT COM Status BIT Field

82 Chapter 9. Advanced BIT

j1939 Documentation, Release

comStatus Field Bits Meaning
noExternalGPS 0 N/A
Reserved 1:15 N/A

9.13 softwareStatus Field

The softwareStatus field contains flags that indicate various software conditions and alerts that are not errors or prob-
lems (See Table 41). The softwareStatus flag in the BITstatus field is the bit-wise OR of the logical AND of the
softwareStatus field and the softwareStatusEnable field. The softwareStatusEnable field is a bit mask that allows the
user to select items of interest that will logically flow up to the masterStatus flag.

25. MTLT1 Software Status Field

softwareStatus Field* Bit* Meaning
algorithmInit 0

0 = normal, 1 = the algorithm is in
initialization mode

highGain 1 0 = low gain mode, 1 high gain
mode

attitudeOnlyAlgorithm 2

0 = navigation state tracking, 1 =
attitude only state tracking

turnSwitch 3

0 = off, 1 = yaw rate greater than
turnSwitch threshold

Reserved 4:15 N/A

9.14 sensorStatus Field

The sensorStatus field contains flags that indicate various internal sensor conditions and alerts that are not errors or
problems (See Table 42). The sensorStatus flag in the BITstatus field is the bit-wise OR of the logical AND of the
sensorStatus field and the sensorStatusEnable field. The sensorStatusEnable field is a bit mask that allows the user to
select items of interest that will logically flow up to the masterStatus flag.

26. MTLT1 Sensor Status Field

sensorStatus Field Bits Meaning
overRange 0 0 = not asserted, 1 = asserted
Reserved 1:15 N/A

9.13. softwareStatus Field 83

j1939 Documentation, Release

9.15 Configuring the Master Status

The masterStatus byte and its associated programmable alerts are configured using the Read Field and Write Field
command as described in Section 8, Advanced Commands. Table 43 shows the definition of the bit mask for config-
uring the status signals.

27. MTLT1 Master Status Byte Configuration Fields

configuration field field ID Valid Values
**Description* *

hardwareStatusE
nable

0x0010 Any

Bit mask of enabled
hardware status signals

comStatusEnable 0x0011 Any

Bit mask of enabled
communication status
signals

softwareStatusE
nable

0x0012 Any

Bit mask of enabled
software status signals

sensorStatusEna
ble

0x0013 Any

Bit mask of enabled
sensor
status signals

9.15.1 hardwareStatusEnable Field

This field is a bit mask of the hardwareStatus field (see BIT and status definitions). This field allows the user to
determine which low level hardwareStatus field signals will flag the hardwareStatus and masterStatus flags in the
BITstatus field. Any asserted bits in this field imply that the corresponding hardwareStatus field signal, if asserted,
will cause the hardwareStatus and masterStatus flags to be asserted in the BITstatus field.

9.15.2 comStatusEnable Field

This field is a bit mask of the comStatus field (see BIT and status definitions). This field allows the user to determine
which low level comStatus field signals will flag the comStatus and masterStatus flags in the BITstatus field. Any
asserted bits in this field imply that the corresponding comStatus field signal, if asserted, will cause the comStatus and
masterStatus flags to be asserted in the BITstatus field.

9.15.3 softwareStatusEnable Field

This field is a bit mask of the softwareStatus field (see BIT and status definitions). This field allows the user to deter-
mine which low level softwareStatus field signals will flag the softwareStatus and masterStatus flags in the BITstatus

84 Chapter 9. Advanced BIT

j1939 Documentation, Release

field. Any asserted bits in this field imply that the corresponding softwareStatus field signal, if asserted, will cause the
softwareStatus and masterStatus flags to be asserted in the BITstatus field.

9.15.4 sensorStatusEnable Field

This field is a bit mask of the sensorStatus field (see BIT and status definitions). This field allows the user to determine
which low level sensorStatus field signals will flag the sensorStatus and masterStatus flags in the BITstatus field. Any
asserted bits in this field imply that the corresponding sensorStatus field signal, if asserted, will cause the sensorStatus
and masterStatus flags to be asserted in the BITstatus field.

9.15. Configuring the Master Status 85

j1939 Documentation, Release

86 Chapter 9. Advanced BIT

CHAPTER 10

Appendix A. Mechanical Specifications

7. MTLT1 Series Outline Drawing

87

j1939 Documentation, Release

88 Chapter 10. Appendix A. Mechanical Specifications

CHAPTER 11

Appendix C. Sample Packet-Parser Code

11.1 Overview

This appendix includes sample code written in ANSI C for parsing packets from data sent by the MTLT1 Series Tilt
Systems. This code can be used by a user application reading data directly from the MTLT1 Series product, or perhaps
from a log file.

The sample code contains the actual parser, but also several support functions for CRC calculation and circular queue
access.:

• process_memsic_packet – for parsing out packets from a queue. Returns these fields in structure
ACEINNA_PACKET (see below). Checks for CRC errors

• calcCRC – for calculating CRC on packets.

• Initialize - initialize the queue

• AddQueue - add item in front of queue

• DeleteQueue - return an item from the queue

• peekWord - for retrieving 2-bytes from the queue, without popping

• peekByte – for retrieving a byte from the queue without popping

• Pop - discard item(s) from queue

• Size – returns number of items in queue

• Empty – return 1 if queue is empty, 0 if not

• Full - return 1 if full, 0 if not full

The parser will parse the queue looking for packets. Once a packet is found and the CRC checks out, the packet’s
fields are placed in the ACEINNA_PACKET structure. The parser will then return to the caller. When no packets are
found the parser will simply return to the caller with return value 0.

The ACEINNA_PACKET stucture is defined as follows:

typedef struct memsic_packet

89

j1939 Documentation, Release

{

unsigned short packet_type;

char length;

unsigned short crc;

char data[256];

} ACEINNA_PACKET;

Typically, the parser would be called within a loop in a separate process, or in some time triggered environment,
reading the queue looking for packets. A separate process might add data to this queue when it arrives. It is up to
the user to ensure circular-queue integrity by using some sort of mutual exclusion mechanism within the queue access
functions.

11.2 Code listing

#include <stdio.h>

/* buffer size */

#define MAXQUEUE 500

/*

* circular queue

*/

typedef struct queue_tag

{

int count;

int front;

int rear;

char entry[MAXQUEUE];

} QUEUE_TYPE;

/*

* ACEINNA packet

*/

typedef struct memsic_packet

{

unsigned short packet_type;

char length;

unsigned short crc;

char data[256];

} ACEINNA_PACKET;

QUEUE_TYPE circ_buf;

90 Chapter 11. Appendix C. Sample Packet-Parser Code

j1939 Documentation, Release

/***

* FUNCTION: process_memsic_packet looks for packets in a queue

* ARGUMENTS: queue_ptr: is pointer to queue to process

* result: will contain the parsed info when return value is 1

* RETURNS: 0 when failed.

* 1 when successful

***/

int process_memsic_packet(QUEUE_TYPE *queue_ptr, ACEINNA_PACKET *result)

{

unsigned short myCRC = 0, packetCRC = 0, packet_type = 0, numToPop=0, counter=0;

char packet[100], tempchar, dataLength;

if(Empty(queue_ptr))

{

return 0; /* empty buffer */

}

/* find header */

for(numToPop=0; numToPop+1<Size(queue_ptr) ;numToPop+=1)

{

if(0x5555==peekWord(queue_ptr, numToPop)) break;

}

Pop(queue_ptr, numToPop);

if(Size(queue_ptr) <= 0)

{

/* header was not found */

return 0;

}

/* make sure we can read through minimum length packet */

if(Size(queue_ptr)<7)

{

return 0;

}

/* get data length (5th byte of packet) */

dataLength = peekByte(queue_ptr, 4);

/* make sure we can read through entire packet */

if(Size(queue_ptr) < 7+dataLength)

{

11.2. Code listing 91

j1939 Documentation, Release

return 0;

}

/* check CRC */

myCRC = calcCRC(queue_ptr, 2,dataLength+3);

packetCRC = peekWord(queue_ptr, dataLength+5);

if(myCRC != packetCRC)

{

/* bad CRC on packet – remove the bad packet from the queue and return */

Pop(queue_ptr, dataLength+7);

return 0;

}

/* fill out result of parsing in structure */

result->packet_type = peekWord(queue_ptr, 2);

result->length = peekByte(queue_ptr, 4);

result->crc = packetCRC;

for(counter=0; counter < result->length; counter++)

{

result->data[counter] = peekByte(queue_ptr, 5+counter);

}

Pop(queue_ptr, dataLength+7);

return 1;

}

/***

* FUNCTION: calcCRC calculates a 2-byte CRC on serial data using

* CRC-CCITT 16-bit standard maintained by the ITU

* (International Telecommunications Union).

* ARGUMENTS: queue_ptr is pointer to queue holding area to be CRCed

* startIndex is offset into buffer where to begin CRC calculation

* num is offset into buffer where to stop CRC calculation

* RETURNS: 2-byte CRC

***/

unsigned short calcCRC(QUEUE_TYPE *queue_ptr, unsigned int startIndex, unsigned int num) {

unsigned int i=0, j=0;

unsigned short crc=0x1D0F; //non-augmented inital value equivalent to augmented initial value 0xFFFF

for (i=0; i<num; i+=1) {

crc ^= peekByte(queue_ptr, startIndex+i) << 8;

92 Chapter 11. Appendix C. Sample Packet-Parser Code

j1939 Documentation, Release

for(j=0;j<8;j+=1) {

if(crc & 0x8000) crc = (crc << 1) ^ 0x1021;

else crc = crc << 1;

}

}

return crc;

}

/***

* FUNCTION: Initialize - initialize the queue

* ARGUMENTS: queue_ptr is pointer to the queue

***/

void Initialize(QUEUE_TYPE *queue_ptr)

{

queue_ptr->count = 0;

queue_ptr->front = 0;

queue_ptr->rear = -1;

}

/***

* FUNCTION: AddQueue - add item in front of queue

* ARGUMENTS: item holds item to be added to queue

* queue_ptr is pointer to the queue

* RETURNS: returns 0 if queue is full. 1 if successful

***/

int AddQueue(char item, QUEUE_TYPE *queue_ptr)

{

int retval = 0;

if(queue_ptr->count >= MAXQUEUE)

{

retval = 0; /* queue is full */

}

else

{

queue_ptr->count++;

queue_ptr->rear = (queue_ptr->rear + 1) % MAXQUEUE;

queue_ptr->entry[queue_ptr->rear] = item;

retval = 1;

11.2. Code listing 93

j1939 Documentation, Release

}

return retval;

}

/***

* FUNCTION: DeleteQeue - return an item from the queue

* ARGUMENTS: item will hold item popped from queue

* queue_ptr is pointer to the queue

* RETURNS: returns 0 if queue is empty. 1 if successful

***/

int DeleteQueue(char *item, QUEUE_TYPE *queue_ptr)

{

int retval = 0;

if(queue_ptr->count <= 0)

{

retval = 0; /* queue is empty */

}

else

{

queue_ptr -> count–;

*item = queue_ptr->entry[queue_ptr->front];

queue_ptr->front = (queue_ptr->front+1) % MAXQUEUE;

retval=1;

}

return retval;

}

/***

* FUNCTION: peekByte returns 1 byte from buffer without popping

* ARGUMENTS: queue_ptr is pointer to the queue to return byte from

* index is offset into buffer to which byte to return

* RETURNS: 1 byte

* REMARKS: does not do boundary checking. please do this first

***/

char peekByte(QUEUE_TYPE *queue_ptr, unsigned int index) {

char byte;

int firstIndex;

firstIndex = (queue_ptr->front + index) % MAXQUEUE;

94 Chapter 11. Appendix C. Sample Packet-Parser Code

j1939 Documentation, Release

byte = queue_ptr->entry[firstIndex];

return byte;

}

/***

* FUNCTION: peekWord returns 2-byte word from buffer without popping

* ARGUMENTS: queue_ptr is pointer to the queue to return word from

* index is offset into buffer to which word to return

* RETURNS: 2-byte word

* REMARKS: does not do boundary checking. please do this first

***/

unsigned short peekWord(QUEUE_TYPE *queue_ptr, unsigned int index) {

unsigned short word, firstIndex, secondIndex;

firstIndex = (queue_ptr->front + index) % MAXQUEUE;

secondIndex = (queue_ptr->front + index + 1) % MAXQUEUE;

word = (queue_ptr->entry[firstIndex] << 8) & 0xFF00;

word |= (0x00FF & queue_ptr->entry[secondIndex]);

return word;

}

/***

* FUNCTION: Pop - discard item(s) from queue

* ARGUMENTS: queue_ptr is pointer to the queue

* numToPop is number of items to discard

* RETURNS: return the number of items discarded

***/

int Pop(QUEUE_TYPE *queue_ptr, int numToPop)

{

int i=0;

char tempchar;

for(i=0; i<numToPop; i++)

{

if(!DeleteQueue(&tempchar, queue_ptr))

{

break;

}

}

return i;

11.2. Code listing 95

j1939 Documentation, Release

}

/***

* FUNCTION: Size

* ARGUMENTS: queue_ptr is pointer to the queue

* RETURNS: return the number of items in the queue

***/

int Size(QUEUE_TYPE *queue_ptr)

{

return queue_ptr->count;

}

/***

* FUNCTION: Empty

* ARGUMENTS: queue_ptr is pointer to the queue

* RETURNS: return 1 if empty, 0 if not

***/

int Empty(QUEUE_TYPE *queue_ptr)

{

return queue_ptr->count <= 0;

}

/***

* FUNCTION: Full

* ARGUMENTS: queue_ptr is pointer to the queue

* RETURNS: return 1 if full, 0 if not full

***/

int Full(QUEUE_TYPE *queue_ptr)

{

return queue_ptr->count >= MAXQUEUE;

}

96 Chapter 11. Appendix C. Sample Packet-Parser Code

CHAPTER 12

Appendix D. Sample Packet Decoding

8. Example payload from Angle Data Packet 2 (A2)

9. Example payload from Scaled Data Packet 1 (S1)

97

j1939 Documentation, Release

98 Chapter 12. Appendix D. Sample Packet Decoding

CHAPTER 13

Warranty and Support Information

13.1 Customer Service

As a Aceinna customer you have access to product support services, which include:

• Single-point return service

• Web-based support service

• Same day troubleshooting assistance

• Worldwide Aceinna representation

• Onsite and factory training available

• Preventative maintenance and repair programs

• Installation assistance available

13.2 Contact Directory

United States: Phone: 1-408-964-9700 (8 AM to 5 PM PST)

Fax: 1-408-854-7702 (24 hours)

Email: techsupportca@memsic.com

Non-U.S.: Refer to website www.memsic.com

13.3 Return Procedure

13.3.1 Authorization

Before returning any equipment, please contact Aceinna to obtain a Returned Material Authorization number (RMA).

99

mailto:techsupportca@memsic.com
http://www.memsic.com

j1939 Documentation, Release

Be ready to provide the following information when requesting a RMA:

• Name

• Address

• Telephone, Fax, Email

• Equipment Model Number

• Equipment Serial Number

• Installation Date

• Failure Date

• Fault Description

• Will it connect to NAV-VIEW?

13.3.2 Identification and Protection

If the equipment is to be shipped to Aceinna for service or repair, please attach a tag TO THE EQUIPMENT, as well as
the shipping container(s), identifying the owner. Also indicate the service or repair required, the problems encountered
and other information considered valuable to the service facility such as the list of information provided to request the
RMA number.

Place the equipment in the original shipping container(s), making sure there is adequate packing around all sides of the
equipment. If the original shipping containers were discarded, use heavy boxes with adequate padding and protection.

13.3.3 Sealing the Container

Seal the shipping container(s) with heavy tape or metal bands strong enough to handle the weight of the equipment
and the container.

13.3.4 Marking

Please write the words, “*FRAGILE, DELICATE INSTRUMENT*” in several places on the outside of the shipping
container(s). In all correspondence, please refer to the equipment by the model number, the serial number, and the
RMA number.

13.3.5 Return Shipping Address

Use the following address for all returned products:

Aceinna, Inc.

3180 De La Cruz Blvd, #130

Santa Clara, CA 95054

Attn: RMA Number (XXXXXX)

100 Chapter 13. Warranty and Support Information

j1939 Documentation, Release

13.4 Warranty

The Aceinna product warranty is one year from date of shipment.

13.4. Warranty 101

	Introduction
	Manual Overview
	Overview of the MTLT Series Inertial Systems

	Connections
	Connections
	Power Input and Power Input Ground
	Serial Data Interface
	Alarm

	Installation and Operation of NAV-VIEW
	NAV-VIEW Computer Requirements
	Connections
	Setting up NAV-VIEW
	Data Recording
	Data Playback
	Raw Data Console
	Packet Statistics View
	Unit Configuration
	Advanced Configuration
	Bit Configuration
	Tilt alarm

	Theory of Operation
	MTLT Series Default Coordinate System
	4.2 Dynamic MTLT Theory of Operation
	Tilt Alarm (Independent vs. Cone Angle)

	Application Guide
	Introduction
	Equipment Leveling and lockout
	Aerial Work Platform Safety
	Land Vehicle

	Programming Guide
	General Settings
	Number Formats
	Packet Format

	Communicating with the MTLT1 Series
	Link Test.
	Interactive Commands
	Output Packets (Polled)
	Output Packets (Polled or Continuous)

	Advanced Commands
	Configuration Fields
	Continuous Packet Type Field
	Digital Filter Settings
	Orientation Field
	User Behavior Switches
	Tilt alarm
	Commands to Program Configuration
	Read Fields Command
	Read Fields Response
	Get Fields Command
	Get Fields Response

	Advanced BIT
	Built In Test (BIT) and Status Fields
	Master BIT and Status (BITstatus) Field
	hardwareBIT Field
	hardwarePowerBIT Field
	hardwareEnvironmentalBIT Field
	comBIT Field
	comSerialABIT Field
	softwareBIT Field
	softwareAlgorithmBIT Field
	softwareDataBIT Field
	hardwareStatus Field
	comStatus Field
	softwareStatus Field
	sensorStatus Field
	Configuring the Master Status

	Appendix A. Mechanical Specifications
	Appendix C. Sample Packet-Parser Code
	Overview
	Code listing

	Appendix D. Sample Packet Decoding
	Warranty and Support Information
	Customer Service
	Contact Directory
	Return Procedure
	Warranty

