

abstar: genetic analysis of antibody repertoires

abstar is a core component of the ab[x] toolkit for antibody sequence analysis.
abstar performs V(D)J germline gene assignment and primary sequence annotation and can readily scale
from a single sequence to billions of sequences.

getting started

getting started

	Overview

	Install

usage

usage

	Commandline Use

	API Examples

	API Reference

about

about

	License

	News

related projects

related projects

	abutils [https://github.com/briney/abutils]

	abcloud [https://github.com/briney/abcloud]

	clonify [https://github.com/briney/clonify-python]

Index

	Module Index

	Search Page

Overview

With technical breakthroughs in the throughput and read-length of
next-generation sequencing platforms, antibody repertoire sequencing
is becoming an increasingly important tool for detailed characterization
of the immune response to infection and immunization. Accordingly,
there is a need for open, scalable software for the genetic analysis of
repertoire-scale antibody sequence data.

We built abstar to be a modular component of these analyses.
abstar is engineered to be highly flexible, capable of processing a single
sequence or billions of sequences and scaling from individual laptops to
large clusters of cloud computing instances.

Workflows

In addition to V(D)J germline gene assignment and primary antibody
sequence annotation, abstar contains utilities for
sequence acquisition, pre-processing, and database import. abstar also
exposes a high-level public API to many of the core functions, which allows
users to easily construct custom analysis workflows
using multiple abstar utilities as well as other third-party tools. To
ease integration of abstar into currently existing antibody analysis
pipelines based on IMGT, abstar can optionally produce output
that mimics the IMGT-HighV/Quest Summary output file.

File formats

abstar accepts standard FASTA or FASTQ files and produces, by default,
JSON-formatted output. This output format allows us to build the output using
data structures that match the way we process data programatically.
JSON is also easily importable into NoSQL databases like MongoDB. We have
found NoSQL databases to be very well suited for performing downstream
analyses of antibody repertoire data, as the flexible schema allows for easy
updating of sequence records with additional annotation information. Although
additional data can be added to relational databases, querying this data
often involves joining tables, which can require significant optimization
for very large datasets.

Scalability

Cloud computing has dramatically changed the landscape of high-performance
computing (HPC), and has allowed small academic labs to ‘rent’ access
to computational resources that would have been previously far outside their
budget. abstar is tightly integrated with abcloud [https://github.com/briney/abcloud], which provides tools
for launching, configuring and managing clusters of compute instances on
Amazon’s Elastic Compute Cloud (EC2). Using the Celery distributed task queue,
jobs are distributed to worker nodes and processed in parallel.

In order to maintain compatability with alternate cloud computing platforms
with minimal effort, an abstar Docker image [https://hub.docker.com/r/briney/abstar/] is also provided.

Install

The easiest way to install abstar locally (on OSX or Linux) is to use pip:

$ pip install abstar

If you don’t have pip, the Anaconda [https://www.continuum.io/downloads] Python distribution contains pip along
with a ton of useful scientific Python packages and is a great way to get
started with Python.

abstar does not run natively on Windows, but Windows users can run abstar with Docker [https://www.docker.com/]:

$ docker pull briney/abstar
$ docker run -it briney/abstar

Stable [https://github.com/briney/abstar/releases] and development [https://github.com/briney/abstar] versions of abstar can also be downloaded from Github.
You can manually install the latest development version of abstar with:

$ git clone https://github.com/briney/abstar
$ cd abstar/
$ python setup.py install

Note

If installing manually via setup.py and you don’t already have scikit-bio installed,
you may get an error when setuptools attempts to install scikit-bio. This can be fixed
by first installing scikit-bio with pip:

$ pip install scikit-bio

and then retrying the manual install of abstar. Starting with version 0.5, scikit-bio
dropped support for Python 2.7, so install scikit-bio on Python 2.7 with:

$ pip install scikit-bio<=0.4.2

Requirements

	Python 2.7 or 3.5+

	abutils [https://github.com/briney/abutils]

	biopython [http://biopython.org/]

	celery [http://www.celeryproject.org/]

	pymongo [https://api.mongodb.org/python/current/]

	pytest [https://docs.pytest.org/en/latest/]

	scikit bio [http://scikit-bio.org/]

Optional dependencies

Several optional abstar components have additional dependencies:

	abstar.preprocessing requires FASTQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/], cutadapt [https://github.com/marcelm/cutadapt/] and sickle [https://github.com/najoshi/sickle]

	sequence merging requires PANDAseq [https://github.com/neufeld/pandaseq]

	downloading data from BaseSpace requires the BaseSpace Python SDK [https://github.com/basespace/basespace-python-sdk]

	batch_mongoimport requires MongoDB [https://www.mongodb.org/]

If using Docker, all of the the optional dependencies are included.

Commandline Use

Running abstar from the command line is reasonably simple, even for users with
minimal experience with command-line applications. In the most
basic case, with a single input file of human antibody sequences:

$ abstar -i /path/to/mydata.fasta -t /path/to/temp/ -o /path/to/output/

abstar will process all sequences contained in mydata.fasta and the
results will be written to /path/to/output/mydata.json. If either (or both)
of /path/to/temp/ or /path/to/output/ don’t exist, they will be created.

If you have a directory of FASTA/Q-formatted files for abstar to process, you
can pass a directory via -i and all files in the directory will be processed:

$ abstar -i /path/to/input/ -t /path/to/temp/ -o /path/to/output/

For input directories that contain paired FASTQ files that need to be merged
prior to processing, passing the -m flag instructs abstar to merge
paired files with PANDAseq:

$ abstar -i /path/to/input/ -t /path/to/temp/ -o /path/to/output/ -m

The merged reads will be deposited into a merged directory located in the parent directory
of the input directory. By default, abstar will use PANDAseq’s simple_bayesian
merging algorithm, although alternate merging algorithms can be selected with --pandaseq-algo.

For data generated with Illumina sequencers, abstar can directly interface with
BaseSpace to download raw sequencing data. In order for abstar to connect to BaseSpace,
you need BaseSpace access token. The easiest way to do this is to set up a
BaseSpace developer account following
these instructions [https://support.basespace.illumina.com/knowledgebase/articles/403618-python-run-downloader].
Once you have your credentials, you can generate a BaseSpace credentials file by
running:

$ make_basespace_credfile

and following the instructions.

When downloading data from BaseSpace, you obviously
don’t have an input directory of data for abstar to process (since that data hasn’t
been downloaded yet). Instead of providing input, output and temp directories, you
can just pass abstar a project directory using -p and abstar will create all of the
necessary subdirectories within the project directory. Running abstar with the -b
option indicates that input data should be downloaded from BaseSpace:

$ abstar -p /path/to/project_dir/ -b

A list of available BaseSpace projects will be displayed and you can select the
appropriate project. If downloading data from BaseSpace, -m is assumed and
paired-end reads will be merged.

abstar uses a human germline database by default,
but germline databases are also provided for macaque, mouse and rabbit. To process
macaque antibody sequences (from BaseSpace):

$ abstar -p /path/to/project_dir/ -b -s macaque

API Examples

abstar and abutils [https://github.com/briney/abutils] both expose a public API containing many of the core functions.
This makes it reasonably straightforward to build custom pipelines that include
several abstar/abutils components or integrate these tools with third-party tools.
A few simple examples are shown below.

Case #1

Sequencing data consists of an Illumina MiSeq run on human samples, with the raw data
stored in BaseSpace (project ID: 123456789). Samples are indexed, so each sample will
be downloaded from BaseSpace as a separate pair of read files. We’d like to do several things:

	get a FASTQC report on the raw data

	remove adapters

	quality trim

	get another FASTQC report on the cleaned data

	merge paired reads

	annotate with abstar

import os

import abstar
from abstar.utils import basespace, pandaseq

PROJECT_DIR = '/path/to/project'
PROJECT_ID = '123456789'

download data from BaseSpace
bs_dir = os.path.join(PROJECT_DIR, 'raw_data')
basespace.download(bs_dir, project_id=PROJECT_ID)

FASTQC on the raw data
fastqc1_dir = os.path.join(PROJECT_DIR, 'fastqc-pre')
abstar.fastqc(bs_dir, output=fastqc1_dir)

adapter trimming
adapter_dir = os.path.join(PROJECT_DIR, 'adapter_trimed')
adapters = '/path/to/adapters.fasta'
abstar.adapter_trim(bs_dir, output=adapter_dir, adapter_both=adapters)

quality trimming
quality_dir = os.path.join(PROJECT_DIR, 'quality_trimed')
abstar.quality_trim(adapter_dir, output=quality_dir)

FASTQC on the cleaned data
fastqc2_dir = os.path.join(PROJECT_DIR, 'fastqc-post')
abstar.fastqc(quality_dir, output=fastqc2_dir)

read merging
merged_dir = os.path.join(PROJECT_DIR, 'merged')
pandaseq.run(quality_dir, merged_dir)

run abstar
temp_dir = os.path.join(PROJECT_DIR, 'temp')
json_dir = os.path.join(PROJECT_DIR, 'json')
abstar.run(input=merged_dir,
 temp=temp_dir,
 output=json_dir)

Case #2

Sequencing data is a directory of single-read FASTQ files that have already been quality/adapter trimmed.
We’d like to do the following:

	get a FASTQC report

	annotate with abstar

	import the JSONs into a MongoDB database named MyDatabase

Our FASTQ file names are formatted as: SampleNumber-SampleName.fastq, which means the abstar output
file name would be SampleNumber-SampleName.json. We’d like the corresponding MongoDB collection
to just be named SampleName.

import os

import abstar
from abstar.utils import mongoimport

PROJECT_DIR = '/path/to/project'
FASTQ_DIR = '/path/to/fastqs'

MONGO_IP = '123.45.67.89'
MONGO_PORT = 27017
MONGO_USER = 'MyUsername'
MONGO_PASS = 'Secr3t'

FASTQC on the input data
fastqc_dir = os.path.join(PROJECT_DIR, 'fastqc')
abstar.fastqc(FASTQ_DIR, output=fastqc_dir)

run abstar
temp_dir = os.path.join(PROJECT_DIR, 'temp')
json_dir = os.path.join(PROJECT_DIR, 'json')
abstar.run(input=FASTQ_DIR,
 temp=temp_dir,
 output=json_dir)

import into MongoDB
mongoimport.run(ip=MONGO_IP,
 port=MONGO_PORT
 user=MONGO_USER,
 password=MONGO_PASS,
 input=json_dir,
 db='MyDatabase'
 delim1='-',
 delim2='.')

Case #3

Now we’d like to use abstar as part of an analysis script in which sequence annotation
isn’t the primary output. In the previous
examples, we started with raw(ish) sequence data and ended with either a directory of
JSON files or a MongoDB database populated with abstar output. In this case, we’re
going to start with a MongoDB database, query that database for some sequences, and
generate the unmutated common ancestor (UCA). We’d like to annotate the UCA sequence
inline (as part of the script) so that we can do world-changing things with the
annotated UCA later in our script. For simplicity’s sake, we’re querying a local MongoDB
database that doesn’t have authentication enabled, although abutils.utils.mongodb can
work with remote MongoDB servers that require authentication.

import abstar

from abutils.utils import mongodb
from abutils.utils.sequence import Sequence

DB_NAME = 'MyDatabase'
COLLECTION_NAME = 'MyCollection'

def get_sequences(db_name, collection_name):
 db = mongodb.get_db(db_name)
 c = db[collection]
 seqs = c.find({'chain': 'heavy'})
 return [Sequence(s) for s in seqs]

def calculate_uca(sequences):
 #
 # code to calculate the UCA sequence, as a string
 #
 return uca

get sequences, calculate the UCA
sequences = get_sequences(DB_NAME, COLLECTION_NAME)
uca_seq = calculate_uca(sequences)

run abstar on the UCA, returns an abutils Sequence object
uca = abstar.run(['UCA', uca_seq])

do amazing, world-changing things with the UCA
...
...
...

API Reference

core

	core

assigner

	base assigner

	BLASTn assigner

preprocess

	preprocess

helper utilities

	helper utilities
	abstar.utils.basespace

	abstar.utils.mongoimport

	abstar.utils.pandaseq

core

base assigner

BLASTn assigner

preprocess

helper utilities

abstar.utils.basespace

abstar.utils.mongoimport

abstar.utils.pandaseq

License

The MIT License (MIT)

Copyright (c) 2016 Bryan Briney

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

News

Index

Quick Start

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 abstar: genetic analysis of antibody repertoires

 		
 Overview

 		
 Workflows

 		
 File formats

 		
 Scalability

 		
 Install

 		
 Requirements

 		
 Optional dependencies

 		
 Commandline Use

 		
 API Examples

 		
 Case #1

 		
 Case #2

 		
 Case #3

 		
 API Reference

 		
 core

 		
 core

 		
 assigner

 		
 base assigner

 		
 BLASTn assigner

 		
 preprocess

 		
 preprocess

 		
 helper utilities

 		
 helper utilities

 		
 License

 		
 News

_static/up.png

_static/up-pressed.png

