
abridger Documentation
Release 0.1.1

Will Angenent

July 24, 2016

Contents

1 About abridger 1
1.1 Overview . 1
1.2 Getting Started . 2
1.3 Extraction Model . 4
1.4 Extraction . 8
1.5 SQL Generation . 9
1.6 Databases . 9
1.7 Examples . 10

i

ii

CHAPTER 1

About abridger

Abridger is a tool for creating a referentially intact copy of a subset of a database.

Contents:

1.1 Overview

The objective is to create a new database with a referentially intact subset of data from another database. The schema
of the database is identical, but the data is different. Creating a new database with the same schema as an old database
is easy, however copying just some of the data can be tricky due to the database’s relational nature.

It all comes down to defining rules on what to extract. If the rules are too strict, then not enough data is copied. If the
rules are not strict enough, too much data is copied. Furthermore, for highly complex databases, it can become quite
a task to define the rules and combine them in a sensible way.

The rules are defined in an Extraction Model which is configured in one or more yaml files.

1.1.1 Concepts

Extraction model A collection of rules describing what to extract.

Subject An extraction model has one or more subjects. A subject is a collection of tables and relations.
See Subjects for more information.

Table A subject has one or more tables. A table can either be an extraction of all rows in the table, or
filtered rows using a column and list of values. A table can also be set as top-level and be applied to
all subjects. See Tables for more information.

Relation A relation is a reference to a database foreign key. A relation is either outgoing or incoming
from the perspective of a subject. Relations can be disabled or made sticky. See Relations for more
information.

Default relations By default, any row found in a table in the extraction model is fetched in its entirety.
This will pull in rows required to satisfy any foreign key constraints on the row’s table. Rows in
other tables referencing the source table aren’t fetched by default. These defaults can be overridden.
See Defaults for more information.

Not null columns When populating the destination database or generating SQL, nullable columns can be
treated as not null so that they are included in the insert statements. This is useful if check constraints
are used. See Not Null Columns for more information.

1

abridger Documentation, Release 0.1.1

1.2 Getting Started

1.2.1 Installation

The code is hosted on GitHub. Abridger should be installed with python’s pip installer.

If you don’t have pip installed, run:

$ sudo easy_install pip

Root installation

Installation using pip

$ sudo pip install abridger

Install from github

$ git clone https://github.com/freewilll/abridger
$ cd abridger
$ sudo python setup.py install

Or alternatively, you can do it in one step:

$ sudo pip install git+https://github.com/freewilll/abridger

If you wish to use postgresql, install the psycopg2 package:

$ sudo pip install psycopg2

Non-root installation

If you would rather not install it as root, you can use virtualenv to install a local copy

$ virtualenv venv
$ source venv/bin/activate
$ pip install abridger

If you want to use postgresql
$ pip install psycopg2

1.2.2 Quick start

In the following example, a test sqlite3 database will be created with some tables and some data. An extraction is
shown using all relations as a default.

Create a test database

Create a file called test-input.sql and put the following in it:

2 Chapter 1. About abridger

https://github.com/freewilll/abridger

abridger Documentation, Release 0.1.1

CREATE TABLE departments (
id INTEGER PRIMARY KEY,
name TEXT

);

CREATE TABLE employees (
id INTEGER PRIMARY KEY,
name TEXT,
department_id INTEGER NOT NULL REFERENCES departments

);

INSERT INTO departments (id, name) VALUES
(1, 'Research'),
(2, 'Accounting');

INSERT INTO employees (id, name, department_id) VALUES
(1, 'John', 1),
(2, 'Jane', 1),
(3, 'Janet', 2);

Load test-input.sql into an sqlite3 database called test-db.sqlite3

$ sqlite3 test-db.sqlite3 < test-input.sql

The contents of the test database

$ sqlite3 -header -column test-db.sqlite3 'SELECT e.*, d.name as department_name FROM employees e join departments d on (e.department_id=d.id) ORDER by id;'

id name department_id department_name
---------- ---------- ------------- ---------------
1 John 1 Research
2 Jane 1 Research
3 Janet 2 Accounting

Create an extraction config file

In this example, we’ll fetch the Research department, which will also fetch all employees in it. Create a file called
getting-started-config.yaml and put the following in it:

- relations:
- { defaults: everything}

- subject:
- tables:
- {table: departments, column: name, values: Research}

Run abridger

$ abridge-db getting-started-config.yaml sqlite:///test-db.sqlite3 -f test-output.sql

Connecting to sqlite:///test-db.sqlite3
Querying...
Extraction completed: fetched rows=4, tables=2, queries=3, depth=2, duration=0.0 seconds
Writing SQL for 3 inserts and 0 updates in 2 tables...
Done

1.2. Getting Started 3

abridger Documentation, Release 0.1.1

Results

$ cat test-output.sql

BEGIN;
INSERT INTO departments (id, name) VALUES(1, 'Research');
INSERT INTO employees (id, name, department_id) VALUES(1, 'John', 1);
INSERT INTO employees (id, name, department_id) VALUES(2, 'Jane', 1);
COMMIT;

1.2.3 Running abridger

Usage: abridge-db [-h] [-u URL] [-f FILE] [-e] [-q] [-v] CONFIG_PATH SRC_URL

positional arguments:

CONFIG_PATH path to extraction config file
SRC_URL source database url

optional arguments:

-h, --help show this help message and exit

-u URL, --url URL destination database url

-f FILE, --file FILE destination database file. Use - for stdout

-e, --explain explain where rows are coming from

-q, --quiet don’t output anything

-v, --verbose verbose output

Unless --explain is being used, exactly one of --file and --url must be specified. Use --file - to output
the SQL results to stdout.

Note that using --explain is very inefficient since the extractor will do one query for each row.

Examples

Extract data from a postgresql database and add it to another

abridge-db config.yaml postgresql://user@localhost/test -u postgresql://user@localhost/abridged_test

Extract data from a postgresql database and write an sql file

abridge-db config.yaml postgresql://user@localhost/test -f test-postgresql.sql

Extract data from a sqlite3 database and output SQL to stdout

abridge-db config.yaml sqlite:///test-db.sqlite3 -q -f -

1.3 Extraction Model

1.3.1 Subjects

An extraction model consists of one more more subjects. Each subject has its own set of tables and relations. Relations
can also be global, which allows setting of global defaults that can be overridden by subjects. By default, any row

4 Chapter 1. About abridger

abridger Documentation, Release 0.1.1

found in a table in the extraction model is fetched in its entirety.

1.3.2 Tables

A table on a subject consists of the following:

table The name of the table

column The name of the column to extract values out of, when used together with values

values A single number of string or an array of numbers or strings

Examples:

Example Description
All departments A table entry with just a table name will fetch all rows for that table
One department A table entry with a single column/value will fetch one row
Two departments A table entry with multiple column/values will fetch multiple rows
Two tables A table entry with multiple column/values will fetch multiple rows
Two subjects Two subjects with one table each

1.3.3 Relations

A relation enables or disables the processing of a foreign key in the database schema. A relationship is incoming
or outgoing as seen from the perspective of a subject. All outgoing not null foreign keys must be processed to
satisfy the foreign key constraint. This type of relationship is therefore always enabled and cannot be disabled,

A relation can be applied globally or to a subject. A global relation is always included in all subjects. Relations in a
subject are only processed on rows related to the subject. See Extraction for more information.

defaults Add all relations from a couple of selected types. See defaults for more details.

table A foreign key constraint is identified by specifying a table and column in a relation. The first
foreign key relationship to match the table and column is used. Compound foreign keys are fully
supported, but can only be identified by a specifying a single column.

column Must be specified when using table to identify a foreign key.

type One of incoming or outgoing, with incoming the default. This identifies the direction of a
relationship from the perspective of a subject.

name Optional and purely for informational purposes.

disabled Foreign key relations can be disabled. This is useful in the blacklisting approach where the
everything default is used and then relations disabled.

sticky Sticky relations can be used to keep track of which rows are directly connected to the subject. See
sticky relations for more details.

Compound keys are also supported, see e.g. Compound Foreign Keys

A relationship is uniquely identified by its table, column, type and name. Identical relationships are processed
in order and merged according to the following rules:

• If any relation is disabled, then the relation is disabled and not processed.

• If any relation is sticky, then the relation is sticky.

Examples:

1.3. Extraction Model 5

abridger Documentation, Release 0.1.1

Example Description
Default relations for a department Default relations for a department
Incoming Relation Incoming Relation
Relation for two departments 1 Default relations for two departments
Relation for two departments 2 Alternative default relations for two departments
Relation for two departments 3 Another alternative default relations for two departments
Relation for an employee All relations
Outgoing relation Outgoing relation
Disabled incoming relation Blacklisting approach with a disabled incoming relation
Disabled outgoing relation Blacklisting approach with a disabled outgoing relation

1.3.4 Defaults

Default relations can be set by using the relations default key. There are four default settings that can be
combined in an additive way:

Setting Default Meaning
all-outgoing-not-null yes Always satisfy not null foreign key constraints
all-outgoing-nullable yes Ensures that complete rows are fetched
all-incoming no Process incoming foreign keys
everything no All of the above

If no defaults are specified, a single relation of type all-outgoing-nullable is used. The
all-outgoing-not-null default is always present. The combination of these two ensures that whenever a
row is encountered, all outgoing foreign keys are processed. This causes rows referenced by the foreign key to be
fetched.

This is the default setting:

- relations:
- {defaults: all-outgoing-not-null}
- {defaults: all-outgoing-nullable}

To add all incoming relations to the default, use:

- relations:
- {defaults: everything}

Since all-outgoing-not-null is always included implicitly, the above is equivalent to:

- relations:
- {defaults: all-outgoing-nullable}
- {defaults: all-incoming}

Use this to disable all relations except the minimal required all-outgoing-not-null:

- relations:
- {defaults: all-outgoing-not-null}

Setting default relations is useful when using the blacklisting approach. See Disabled incoming relation and Disabled
outgoing relation.

Examples:

6 Chapter 1. About abridger

abridger Documentation, Release 0.1.1

Example Description
all-outgoing-not-null all-outgoing-not-null
all-outgoing-nullable all-outgoing-nullable
all-incoming all-incoming
all-incoming and all-outgoing-nullable all-incoming and all-outgoing-nullable
everything everything

1.3.5 Includes

Yaml files can be included in each other using the include directive. For example having this in a top level file:

- include basic-tables.yaml
- subject:

- tables:
- {table: departments}

and this in another file called basic-tables.yaml

- subject:
- tables:
- {table: building_types}
- {table: something_essential}

is equivalent to:

- subject:
- tables:
- {table: building_types}
- {table: something_essential}

- subject:
- tables:
- {table: departments}

Includes can be done anywhere, so that e.g. a common file of relations can be defined and then used in several subjects
like so:

- subject:
- tables:
- {table: employees, column: name, values: ['John', 'Jane']}
- include employee-relations.yaml

- subject:
- tables:
- {table: departments, column: name, values: ['Research']}
- include employee-relations.yaml

This is useful in complex databases where several combinations of relations and tables could get combined in several
subjects.

1.3.6 Sticky relations

What can quickly happen when doing an extraction with a complicated database schema is an explosion of data. In
many of these cases, just enabling a foreign key relationship can pull in lots of unwanted data. An easy solution to
prevent this is to make use of the sticky relations. When this flag is set on a relation, then the relation is only
processed if there is a direct graph of sticky relations back to a subject. The rules of transmitting stickiness are:

• Subject’s table’s rows start off being sticky

1.3. Extraction Model 7

abridger Documentation, Release 0.1.1

• Non-sticky relations are always processed, however the fetched rows aren’t marked sticky. This is the default
behavior.

• A sticky relationship is only processed if the row is sticky

• Stickiness is only transmitted if a) the row is sticky and b) the relationship is sticky

This behavior can be summarized in a table:

Fetched row sticky Relationship sticky Relationship is processed Processed row sticky
No No Yes No
Yes No Yes No
No Yes No -
Yes Yes Yes Yes

See Sticky Relations for an example.

1.4 Extraction

Extraction is done by keeping track of a queue of work items for each subject. The work items queue starts with the
subjects and grows as rows in new tables are added by processing relations. The procedure is complete as soon as the
queue is empty.

1.4.1 The procedure

The procedure is as follows

1. Add all subject tables/columns/values to the work item queue

2. Fetch an item from the queue

3. Skip the item if the table, column, subject and values have already been processed

4. Query for the table/column/values

5. For each row, process the subject’s relationships

6. For each row, null any nullable foreign keys that didn’t have their relationship processed

7. If a row has been seen in a previous iteration, merge in any not null values for columns that may have been made
null. This ensures that if a row is seen twice and the second time is processed with more relationships, then the
final row contains foreign key values for the new relationships.

8. Repeat step 2 if the queue isn’t empty

1.4.2 Identical rows

Identical rows for a table are processed by using an effective primary key. This is:

1. The table’s primary key, if available

2. Otherwise, if available, the first discovered most restrictive unique index

3. Otherwise, the entire row is treated as unique, but duplicate rows are allowed. Duplicates are counted and the
row will be inserted the correct amount of times.

8 Chapter 1. About abridger

abridger Documentation, Release 0.1.1

1.4.3 Using explain

When running from the command line, use the --explain option to get a detailed view of the extraction procedure.
The output of the script will have details about each query and processed relationships.

When running with explain, a query is done for each individual row instead of batching them using SQL IN statements.
This makes the procedure much slower, but this is needed to be able to identify exactly where a row is coming from.
The Examples all contain the output of --explain.

1.5 SQL Generation

SQL generation uses the fetched and processed rows from the extraction and converts them into INSERT and UPDATE
statements. The insert statements are done in order so that not null foreign keys are respected.

1.5.1 Not Null Columns

If an insert statement cannot be done without violating foreign key constraints due to nullable foreign keys, then it is
split into an insert and update statement. If a nullable foreign key cannot be made null due to e.g. a CHECK constraint,
then a simple rule can be added which tells the SQL generator to treat that column as if it were not null.

Examples:

Example Description
Not Null Columns Not Null Columns
Not Null Columns Switched Not Null Columns Switched

1.6 Databases

Two databases are supported: sqlite and postgresql. The database URLs follow the django url convention. The
following features are supported in both databases:

• Schema parsing of tables, columns, primary keys, foreign keys and unique indexes

• Compound primary and foreign keys

• SQL generation

1.6.1 Sqlite

Use the sqlite:/// prefix in front of the path name.

For a relative path use e.g.

sqlite:///test-db.sqlite3

For an absolute path use e.g.

sqlite:////var/lib/databases/test-db.sqlite3

1.5. SQL Generation 9

abridger Documentation, Release 0.1.1

1.6.2 Postgresql

A full postgresql URL is something like:

postgresql://user:password@host:port/dbname

host and dbname are required and password and port are optional. This is e.g. a valid url

postgresql://test_user@localhost/test_database

The generated SQL always starts with a BEGIN, ends with a COMMIT and has an extra \set ON_ERROR_STOP for
convenience, so that a full SQL result looks something like:

BEGIN;
\set ON_ERROR_STOP
INSERT INTO ...
COMMIT;

1.7 Examples

1.7.1 Subjects

Schema

CREATE TABLE departments (
id INTEGER PRIMARY KEY,
name TEXT

);

INSERT INTO departments (id, name) VALUES
(1, 'Research'),
(2, 'Accounting'),
(3, 'Finance');

All departments

A table entry with just a table name will fetch all rows.

Config

- subject:
- tables:
- {table: departments}

Explain output

departments*

Results

INSERT INTO departments (id, name) VALUES(1, 'Research');
INSERT INTO departments (id, name) VALUES(2, 'Accounting');
INSERT INTO departments (id, name) VALUES(3, 'Finance');

10 Chapter 1. About abridger

abridger Documentation, Release 0.1.1

One department

A table entry with a single column/value will fetch one row.

Config

- subject:
- tables:
- {column: name, table: departments, values: Research}

Explain output

departments.name=Research*

Results

INSERT INTO departments (id, name) VALUES(1, 'Research');

Two departments

A table entry with multiple column/values will fetch multiple rows.

Config

- subject:
- tables:
- column: name

table: departments
values: [Research, Accounting]

Explain output

departments.name=Research*

Results

INSERT INTO departments (id, name) VALUES(1, 'Research');
INSERT INTO departments (id, name) VALUES(2, 'Accounting');

Two tables

A subject can have multiple tables.

Config

- subject:
- tables:
- {column: name, table: departments, values: Accounting}
- {column: name, table: departments, values: Research}

Explain output

departments.name=Accounting*
departments.name=Research*

Results

INSERT INTO departments (id, name) VALUES(1, 'Research');
INSERT INTO departments (id, name) VALUES(2, 'Accounting');

1.7. Examples 11

abridger Documentation, Release 0.1.1

Two subjects

Subjects can have different tables and relations. This example is a bit silly since both departments can be done in the
same subject, it just illustrates that things can be broken down.

Config

- subject:
- tables:
- {column: name, table: departments, values: Accounting}

- subject:
- tables:
- {column: name, table: departments, values: Research}

Explain output

departments.name=Accounting*
departments.name=Research*

Results

INSERT INTO departments (id, name) VALUES(1, 'Research');
INSERT INTO departments (id, name) VALUES(2, 'Accounting');

1.7.2 Defaults

Schema

CREATE TABLE buildings (
id INTEGER PRIMARY KEY,
name TEXT

);

CREATE TABLE departments (
id INTEGER PRIMARY KEY,
name TEXT,
building_id INTEGER REFERENCES buildings

);

CREATE TABLE employees (
id INTEGER PRIMARY KEY,
name TEXT,
department_id INTEGER NOT NULL REFERENCES departments

);

INSERT INTO buildings (id, name) VALUES
(1, 'London'),
(2, 'Paris');

INSERT INTO departments (id, name, building_id) VALUES
(1, 'Research', 1),
(2, 'Accounting', NULL);

INSERT INTO employees (id, name, department_id) VALUES
(1, 'John', 1),

12 Chapter 1. About abridger

abridger Documentation, Release 0.1.1

(2, 'Jane', 1),
(3, 'Janet', 2);

all-outgoing-not-null

all-outgoing-not-null is the minimum required relation. Nullable outgoing foreign keys are ignored, as well
as incoming foreign keys. Fetching all departments will make the building_id foreign key null. Also, since
no incoming relations are in the defaults, no rows in employees are fetched. If rows in buildings are required,
they can be enabled by adding an outgoing relation from departments to buildings. This will also make the
null go away in the research department. See Outgoing relation.

Config

- relations:
- {defaults: all-outgoing-not-null}

- subject:
- tables:
- {table: departments}

Explain output

departments*

Results

INSERT INTO departments (id, name, building_id) VALUES(1, 'Research', NULL);
INSERT INTO departments (id, name, building_id) VALUES(2, 'Accounting', NULL);

all-outgoing-nullable

all-outgoing-nullable ensures that all foreign keys are processed. In this example it means that the
buildings row with id=1 must be fetched to satisfy the building_id foreign key constraint on the
departments table. Also, since no incoming relations are in the defaults, no rows in employees are fetched.

Config

- relations:
- {defaults: all-outgoing-nullable}

- subject:
- tables:
- {table: departments}

Explain output

departments*
departments* -> departments.id=1 -> buildings.id=1

Results

INSERT INTO buildings (id, name) VALUES(1, 'London');
INSERT INTO departments (id, name, building_id) VALUES(1, 'Research', 1);
INSERT INTO departments (id, name, building_id) VALUES(2, 'Accounting', NULL);

1.7. Examples 13

abridger Documentation, Release 0.1.1

all-incoming

all-incoming ensures that for any row that is fetched all referencing foreign keys are processed in other tables. In
this example it means that that all employees with department_id in the fetched departments are fetched. Note
how no rows in buildings are fetched, since all-outgoing-nullable wasn’t enabled.

Config

- relations:
- {defaults: all-incoming}

- subject:
- tables:
- {table: departments}

Explain output

departments*
departments* -> departments.id=1 -> employees.department_id=1
departments* -> departments.id=2 -> employees.department_id=2
departments* -> departments.id=1 -> employees.department_id=1 -> employees.id=1 -> departments.id=1
departments* -> departments.id=2 -> employees.department_id=2 -> employees.id=3 -> departments.id=2

Results

INSERT INTO departments (id, name, building_id) VALUES(1, 'Research', NULL);
INSERT INTO departments (id, name, building_id) VALUES(2, 'Accounting', NULL);
INSERT INTO employees (id, name, department_id) VALUES(1, 'John', 1);
INSERT INTO employees (id, name, department_id) VALUES(2, 'Jane', 1);
INSERT INTO employees (id, name, department_id) VALUES(3, 'Janet', 2);

all-incoming and all-outgoing-nullable

The combination of all-outgoing-nullable and all-incoming, which is equivalent to everything, fetches
everything in buildings and employees related to all the departments.

Config

- relations:
- {defaults: all-outgoing-nullable}
- {defaults: all-incoming}

- subject:
- tables:
- {table: departments}

Explain output

departments*
departments* -> departments.id=1 -> buildings.id=1
departments* -> departments.id=1 -> employees.department_id=1
departments* -> departments.id=2 -> employees.department_id=2
departments* -> departments.id=1 -> buildings.id=1 -> departments.building_id=1
departments* -> departments.id=1 -> employees.department_id=1 -> employees.id=1 -> departments.id=1
departments* -> departments.id=2 -> employees.department_id=2 -> employees.id=3 -> departments.id=2

Results

INSERT INTO buildings (id, name) VALUES(1, 'London');
INSERT INTO departments (id, name, building_id) VALUES(1, 'Research', 1);
INSERT INTO departments (id, name, building_id) VALUES(2, 'Accounting', NULL);

14 Chapter 1. About abridger

abridger Documentation, Release 0.1.1

INSERT INTO employees (id, name, department_id) VALUES(1, 'John', 1);
INSERT INTO employees (id, name, department_id) VALUES(2, 'Jane', 1);
INSERT INTO employees (id, name, department_id) VALUES(3, 'Janet', 2);

everything

This is equivalent to the above all-incoming and all-outgoing-nullable

Config

- relations:
- {defaults: everything}

- subject:
- tables:
- {table: departments}

Explain output

departments*
departments* -> departments.id=1 -> buildings.id=1
departments* -> departments.id=1 -> employees.department_id=1
departments* -> departments.id=2 -> employees.department_id=2
departments* -> departments.id=1 -> buildings.id=1 -> departments.building_id=1
departments* -> departments.id=1 -> employees.department_id=1 -> employees.id=1 -> departments.id=1
departments* -> departments.id=2 -> employees.department_id=2 -> employees.id=3 -> departments.id=2

Results

INSERT INTO buildings (id, name) VALUES(1, 'London');
INSERT INTO departments (id, name, building_id) VALUES(1, 'Research', 1);
INSERT INTO departments (id, name, building_id) VALUES(2, 'Accounting', NULL);
INSERT INTO employees (id, name, department_id) VALUES(1, 'John', 1);
INSERT INTO employees (id, name, department_id) VALUES(2, 'Jane', 1);
INSERT INTO employees (id, name, department_id) VALUES(3, 'Janet', 2);

1.7.3 Relations

Schema

CREATE TABLE buildings (
id INTEGER PRIMARY KEY,
name TEXT

);

CREATE TABLE departments (
id INTEGER PRIMARY KEY,
name TEXT,
building_id INTEGER REFERENCES buildings

);

CREATE TABLE employees (
id INTEGER PRIMARY KEY,
name TEXT,
department_id INTEGER NOT NULL REFERENCES departments

1.7. Examples 15

abridger Documentation, Release 0.1.1

);

INSERT INTO buildings (id, name) VALUES
(1, 'London'),
(2, 'Paris');

INSERT INTO departments (id, name, building_id) VALUES
(1, 'Research', 1),
(2, 'Accounting', NULL);

INSERT INTO employees (id, name, department_id) VALUES
(1, 'John', 1),
(2, 'Jane', 1),
(3, 'Janet', 2);

Default relations for a department

By default, whenever a row is seen, everything is done to ensure the row is complete. Since the departments table
contains a foreign key on building_id, all buildings referenced from departments will be also fetched. However
rows referencing the department aren’t fetched.

Config

- subject:
- tables:
- {column: name, table: departments, values: Research}

Explain output

departments.name=Research*
departments.name=Research* -> departments.id=1 -> buildings.id=1

Results

INSERT INTO buildings (id, name) VALUES(1, 'London');
INSERT INTO departments (id, name, building_id) VALUES(1, 'Research', 1);

Incoming Relation

This does an extraction with a relation from employees to departments. This will include both employees in
the research department. Note how rows in buildings are also included since by the default all outgoing foreign
keys are fetched. See Defaults for more details. The type of incoming doesn’t have to be included in the config
since this is the default.

Config

- subject:
- tables:
- {column: name, table: departments, values: Research}

- relations:
- {column: department_id, table: employees}

Explain output

departments.name=Research*
departments.name=Research* -> departments.id=1 -> buildings.id=1

16 Chapter 1. About abridger

abridger Documentation, Release 0.1.1

departments.name=Research* -> departments.id=1 -> employees.department_id=1
departments.name=Research* -> departments.id=1 -> employees.department_id=1 -> employees.id=1 -> departments.id=1

Results

INSERT INTO buildings (id, name) VALUES(1, 'London');
INSERT INTO departments (id, name, building_id) VALUES(1, 'Research', 1);
INSERT INTO employees (id, name, department_id) VALUES(1, 'John', 1);
INSERT INTO employees (id, name, department_id) VALUES(2, 'Jane', 1);

Relation for two departments 1

This does an extraction with the above relation, but with both departments. This ends up fetching all employees.

Config

- subject:
- tables:
- column: name

table: departments
values: [Research, Accounting]

- relations:
- {column: department_id, table: employees}

Explain output

departments.name=Research*
departments.name=Research* -> departments.id=1 -> buildings.id=1
departments.name=Research* -> departments.id=1 -> employees.department_id=1
departments.name=Research* -> departments.id=2 -> employees.department_id=2
departments.name=Research* -> departments.id=1 -> employees.department_id=1 -> employees.id=1 -> departments.id=1
departments.name=Research* -> departments.id=2 -> employees.department_id=2 -> employees.id=3 -> departments.id=2

Results

INSERT INTO buildings (id, name) VALUES(1, 'London');
INSERT INTO departments (id, name, building_id) VALUES(1, 'Research', 1);
INSERT INTO departments (id, name, building_id) VALUES(2, 'Accounting', NULL);
INSERT INTO employees (id, name, department_id) VALUES(1, 'John', 1);
INSERT INTO employees (id, name, department_id) VALUES(2, 'Jane', 1);
INSERT INTO employees (id, name, department_id) VALUES(3, 'Janet', 2);

Relation for two departments 2

This is equivalent to Relation for two departments 1, except it used two separate table sections.

Config

- relations:
- {column: department_id, table: employees}

- subject:
- tables:
- {column: id, table: departments, values: 1}
- {column: id, table: departments, values: 2}

Explain output

1.7. Examples 17

abridger Documentation, Release 0.1.1

departments.id=1*
departments.id=2*
departments.id=1* -> departments.id=1 -> employees.department_id=1
departments.id=1* -> departments.id=1 -> buildings.id=1
departments.id=2* -> departments.id=2 -> employees.department_id=2
departments.id=1* -> departments.id=1 -> employees.department_id=1 -> employees.id=1 -> departments.id=1
departments.id=2* -> departments.id=2 -> employees.department_id=2 -> employees.id=3 -> departments.id=2

Results

INSERT INTO buildings (id, name) VALUES(1, 'London');
INSERT INTO departments (id, name, building_id) VALUES(1, 'Research', 1);
INSERT INTO departments (id, name, building_id) VALUES(2, 'Accounting', NULL);
INSERT INTO employees (id, name, department_id) VALUES(1, 'John', 1);
INSERT INTO employees (id, name, department_id) VALUES(2, 'Jane', 1);
INSERT INTO employees (id, name, department_id) VALUES(3, 'Janet', 2);

Relation for two departments 3

This is equivalent to Relation for two departments 1, except it used two separate subjects.

Config

- relations:
- {column: department_id, table: employees}

- subject:
- tables:
- {column: id, table: departments, values: 1}

- subject:
- tables:
- {column: name, table: departments, values: Accounting}

Explain output

departments.id=1*
departments.name=Accounting*
departments.id=1* -> departments.id=1 -> employees.department_id=1
departments.id=1* -> departments.id=1 -> buildings.id=1
departments.name=Accounting* -> departments.id=2 -> employees.department_id=2
departments.id=1* -> departments.id=1 -> employees.department_id=1 -> employees.id=1 -> departments.id=1
departments.name=Accounting* -> departments.id=2 -> employees.department_id=2 -> employees.id=3 -> departments.id=2

Results

INSERT INTO buildings (id, name) VALUES(1, 'London');
INSERT INTO departments (id, name, building_id) VALUES(1, 'Research', 1);
INSERT INTO departments (id, name, building_id) VALUES(2, 'Accounting', NULL);
INSERT INTO employees (id, name, department_id) VALUES(1, 'John', 1);
INSERT INTO employees (id, name, department_id) VALUES(2, 'Jane', 1);
INSERT INTO employees (id, name, department_id) VALUES(3, 'Janet', 2);

Relation for an employee

A subject to fetch the John employee with the everything default leads to all employees in the research department
being fetched since:

• John belongs to the research department

18 Chapter 1. About abridger

abridger Documentation, Release 0.1.1

• All employees in the research department are fetched, which pulls in Jane

Config

- relations:
- {defaults: everything}

- subject:
- tables:
- {column: name, table: employees, values: John}

Explain output

employees.name=John*
employees.name=John* -> employees.id=1 -> departments.id=1
employees.name=John* -> employees.id=1 -> departments.id=1 -> buildings.id=1
employees.name=John* -> employees.id=1 -> departments.id=1 -> employees.department_id=1
employees.name=John* -> employees.id=1 -> departments.id=1 -> buildings.id=1 -> departments.building_id=1

Results

INSERT INTO buildings (id, name) VALUES(1, 'London');
INSERT INTO departments (id, name, building_id) VALUES(1, 'Research', 1);
INSERT INTO employees (id, name, department_id) VALUES(1, 'John', 1);
INSERT INTO employees (id, name, department_id) VALUES(2, 'Jane', 1);

Outgoing relation

This shows the explicit enabling of an outgoing nullable relation when using the minimal defaults of
all-outgoing-not-null. Without the relation, no rows in the buildings table would be fetched, since the
default rules don’t including following nullable foreign keys as described on all-outgoing-not-null. In this example,
the relation is enabled, resulting in building being included.

Config

- relations:
- {defaults: all-outgoing-not-null}

- subject:
- tables:
- column: name

table: departments
values: [Research, Accounting]

- relations:
- {column: building_id, table: departments, type: outgoing}

Explain output

departments.name=Research*
departments.name=Research* -> departments.id=1 -> buildings.id=1

Results

INSERT INTO buildings (id, name) VALUES(1, 'London');
INSERT INTO departments (id, name, building_id) VALUES(1, 'Research', 1);
INSERT INTO departments (id, name, building_id) VALUES(2, 'Accounting', NULL);

1.7. Examples 19

abridger Documentation, Release 0.1.1

Disabled incoming relation

This demonstrates the blacklisting approach. All relations are enabled by default, however the relation from
employees to departments is disabled. Fetching a department will therefore not fetch any of the employees.

This is an incoming relationship type from the perspective of the employees table. The type key doesn’t have
to be included since the default type is incoming. Relations can be disabled globally or per subject.

Config

- relations:
- {defaults: everything}

- subject:
- tables:
- column: name

table: departments
values: [Research, Accounting]

- relations:
- {column: department_id, disabled: true, table: employees}

Explain output

departments.name=Research*
departments.name=Research* -> departments.id=1 -> buildings.id=1
departments.name=Research* -> departments.id=1 -> buildings.id=1 -> departments.building_id=1

Results

INSERT INTO buildings (id, name) VALUES(1, 'London');
INSERT INTO departments (id, name, building_id) VALUES(1, 'Research', 1);
INSERT INTO departments (id, name, building_id) VALUES(2, 'Accounting', NULL);

Disabled outgoing relation

This is another example of the blacklisting approach. All relations are enabled by default, however the relation from
departments to buildings is disabled. Fetching a department will therefore not fetch any of the buildings. This
is an outgoing relationship type from the perspective of the departments table due to the building_id for-
eign key. A side effect of disabling this relation is that building_id becomes null for the “Research” department,
even though the “Research” department is associated with the “London” building.

Config

- relations:
- {defaults: everything}

- subject:
- tables:
- column: name

table: departments
values: [Research, Accounting]

- relations:
- {column: building_id, disabled: true, table: departments, type: outgoing}

Explain output

departments.name=Research*
departments.name=Research* -> departments.id=1 -> employees.department_id=1
departments.name=Research* -> departments.id=2 -> employees.department_id=2
departments.name=Research* -> departments.id=1 -> employees.department_id=1 -> employees.id=1 -> departments.id=1
departments.name=Research* -> departments.id=2 -> employees.department_id=2 -> employees.id=3 -> departments.id=2

20 Chapter 1. About abridger

abridger Documentation, Release 0.1.1

Results

INSERT INTO departments (id, name, building_id) VALUES(1, 'Research', NULL);
INSERT INTO departments (id, name, building_id) VALUES(2, 'Accounting', NULL);
INSERT INTO employees (id, name, department_id) VALUES(1, 'John', 1);
INSERT INTO employees (id, name, department_id) VALUES(2, 'Jane', 1);
INSERT INTO employees (id, name, department_id) VALUES(3, 'Janet', 2);

1.7.4 Compound Foreign Keys

Schema

CREATE TABLE buildings (
id1 INTEGER,
id2 INTEGER,
name TEXT,
PRIMARY KEY(id1, id2)

);

CREATE TABLE departments (
id1 INTEGER,
id2 INTEGER,
name TEXT,
building1_id INTEGER,
building2_id INTEGER,
FOREIGN KEY(building1_id, building2_id) REFERENCES buildings,
UNIQUE(id1, id2)

);

CREATE TABLE employees (
id1 INTEGER,
id2 INTEGER,
name TEXT,
department1_id INTEGER NOT NULL,
department2_id INTEGER NOT NULL,
PRIMARY KEY(id1, id2),
FOREIGN KEY(department1_id, department2_id) REFERENCES departments(id1, id2)

);

INSERT INTO buildings (id1, id2, name) VALUES
(1, 1, 'London'),
(2, 2, 'Paris');

INSERT INTO departments (id1, id2, name, building1_id, building2_id) VALUES
(1, 1, 'Research', 1, 1),
(2, 2, 'Accounting', NULL, NULL);

INSERT INTO employees (id1, id2, name, department1_id, department2_id) VALUES
(1, 1, 'John', 1, 1),
(2, 2, 'Jane', 1, 1),
(3, 3, 'Janet', 2, 2);

1.7. Examples 21

abridger Documentation, Release 0.1.1

Compound Foreign Keys

This extremely convoluted example shows that compound key support is built in. Relations can also be used, but only
one column is matched in the foreign key.

Config

- relations:
- {defaults: everything}

- subject:
- tables:
- {table: departments}

Explain output

departments*
departments* -> departments.id1,id2=1,1 -> buildings.(id1,id2)=(1,1)
departments* -> departments.id1,id2=1,1 -> employees.(department1_id,department2_id)=(1,1)
departments* -> departments.id1,id2=2,2 -> employees.(department1_id,department2_id)=(2,2)
departments* -> departments.id1,id2=1,1 -> buildings.(id1,id2)=(1,1) -> buildings.id1,id2=1,1 -> departments.(building1_id,building2_id)=(1,1)
departments* -> departments.id1,id2=1,1 -> employees.(department1_id,department2_id)=(1,1) -> employees.id1,id2=1,1 -> departments.(id1,id2)=(1,1)
departments* -> departments.id1,id2=2,2 -> employees.(department1_id,department2_id)=(2,2) -> employees.id1,id2=3,3 -> departments.(id1,id2)=(2,2)

Results

INSERT INTO buildings (id1, id2, name) VALUES(1, 1, 'London');
INSERT INTO departments (id1, id2, name, building1_id, building2_id) VALUES(1, 1, 'Research', 1, 1);
INSERT INTO departments (id1, id2, name, building1_id, building2_id) VALUES(2, 2, 'Accounting', NULL, NULL);
INSERT INTO employees (id1, id2, name, department1_id, department2_id) VALUES(1, 1, 'John', 1, 1);
INSERT INTO employees (id1, id2, name, department1_id, department2_id) VALUES(2, 2, 'Jane', 1, 1);
INSERT INTO employees (id1, id2, name, department1_id, department2_id) VALUES(3, 3, 'Janet', 2, 2);

1.7.5 Sticky Relations

Schema

CREATE TABLE departments (
id INTEGER PRIMARY KEY,
name TEXT

);

CREATE TABLE employees (
id INTEGER PRIMARY KEY,
name TEXT,
department_id INTEGER NOT NULL REFERENCES departments

);

ALTER TABLE employees ADD COLUMN boss_id INTEGER REFERENCES employees;

CREATE TABLE addresses (
id INTEGER PRIMARY KEY,
employee_id INTEGER NOT NULL REFERENCES employees,
details TEXT

);

INSERT INTO departments (id, name) VALUES

22 Chapter 1. About abridger

abridger Documentation, Release 0.1.1

(1, 'Managers'),
(2, 'Engineers');

INSERT INTO employees (id, name, department_id, boss_id) VALUES
(1, 'John', 1, NULL),
(2, 'Jane', 2, 1),
(3, 'Janet', 2, 2);

INSERT INTO addresses (id, employee_id, details) VALUES
(1, 1, 'John''s address'),
(2, 2, 'Jane''s adddress'),
(3, 3, 'Janet''s first address'),
(4, 3, 'Janet''s second address');

Sticky Relations

Let’s say we want to have a database with all engineers in the engineering department and include all engineer’s
addresses. We want to specifically not include manager’s addresses. If we were to simply add relations from
employees to departments and addresses to employees, then any employee’s boss would trigger a fetch
from the management department, which would lead to all employee’s managers being fetched, which would lead to
all manager’s addresses being fetched.

By making relations sticky, they are only processed if there is a sticky trail all the way back to a subject. If we set the
sticky flag on the department_id and employee_id foreign keys, then these relationships are only processed
if there is a direct trail back to a subject. When the boss_id foreign key is processed, the sticky flag is dropped.
Therefore, when the “John” employee is processed, the sticky flag has been lost and the sticky relationships aren’t
used, resulting in no addresses being fetched for John. This can be seen in the explain output in the lines where the
employee to boss relationship is processed: the asterisks, indicating stickiness, disappear.

Config

- subject:
- tables:
- {column: name, table: departments, values: Engineers}

- relations:
- {column: department_id, sticky: true, table: employees}
- {column: employee_id, sticky: true, table: addresses}

Explain output

departments.name=Engineers*
departments.name=Engineers* -> departments.id=2* -> employees.department_id=2*
departments.name=Engineers* -> departments.id=2* -> employees.department_id=2* -> employees.id=2* -> addresses.employee_id=2*
departments.name=Engineers* -> departments.id=2* -> employees.department_id=2* -> employees.id=3* -> addresses.employee_id=3*
departments.name=Engineers* -> departments.id=2* -> employees.department_id=2* -> employees.id=2 -> employees.id=1
departments.name=Engineers* -> departments.id=2* -> employees.department_id=2* -> employees.id=3 -> employees.id=2
departments.name=Engineers* -> departments.id=2* -> employees.department_id=2* -> employees.id=2 -> departments.id=2
departments.name=Engineers* -> departments.id=2* -> employees.department_id=2* -> employees.id=3* -> addresses.employee_id=3* -> addresses.id=3 -> employees.id=3
departments.name=Engineers* -> departments.id=2* -> employees.department_id=2* -> employees.id=2 -> employees.id=1 -> departments.id=1

Results

INSERT INTO departments (id, name) VALUES(1, 'Managers');
INSERT INTO departments (id, name) VALUES(2, 'Engineers');
INSERT INTO employees (id, name, department_id, boss_id) VALUES(1, 'John', 1, NULL);
INSERT INTO employees (id, name, department_id, boss_id) VALUES(2, 'Jane', 2, NULL);
INSERT INTO employees (id, name, department_id, boss_id) VALUES(3, 'Janet', 2, NULL);
INSERT INTO addresses (id, employee_id, details) VALUES(2, 2, 'Jane''s adddress');

1.7. Examples 23

abridger Documentation, Release 0.1.1

INSERT INTO addresses (id, employee_id, details) VALUES(3, 3, 'Janet''s first address');
INSERT INTO addresses (id, employee_id, details) VALUES(4, 3, 'Janet''s second address');
UPDATE employees SET boss_id=1 WHERE id=2;
UPDATE employees SET boss_id=2 WHERE id=3;

1.7.6 Not Null Columns

Schema

CREATE TABLE departments (
id INTEGER PRIMARY KEY,
name TEXT

);

CREATE TABLE employees (
id INTEGER PRIMARY KEY,
name TEXT,
department_id INTEGER REFERENCES departments

);

ALTER TABLE departments ADD COLUMN primary_employee_id INTEGER REFERENCES employees;

INSERT INTO departments (id, name) VALUES
(1, 'Managers'),
(2, 'Engineers');

INSERT INTO employees (id, name, department_id) VALUES
(1, 'John', 1),
(2, 'Jane', 2),
(3, 'Janet', NULL);

UPDATE departments SET primary_employee_id=1 WHERE id=1;

Not Null Columns

In this example, two tables, departments and employees both reference each other with nullable foreign keys.
It makes no difference to the SQL generation which table comes first when generating the INSERT statements, so
they are processed in alphabetical order with the departments table getting insert statements generated first. The
value for primary_employee_id can’t be added until the rows have been inserted in to the employees table so
an UPDATE statement for departments is needed after the employees rows have been inserted.

Config

- subject:
- tables:
- {table: departments}

- relations:
- {column: department_id, table: employees}

Explain output

departments*
departments* -> departments.id=1 -> employees.id=1
departments* -> departments.id=1 -> employees.department_id=1

24 Chapter 1. About abridger

abridger Documentation, Release 0.1.1

departments* -> departments.id=2 -> employees.department_id=2
departments* -> departments.id=1 -> employees.id=1 -> departments.id=1
departments* -> departments.id=2 -> employees.department_id=2 -> employees.id=2 -> departments.id=2

Results

INSERT INTO departments (id, name, primary_employee_id) VALUES(1, 'Managers', NULL);
INSERT INTO departments (id, name, primary_employee_id) VALUES(2, 'Engineers', NULL);
INSERT INTO employees (id, name, department_id) VALUES(1, 'John', 1);
INSERT INTO employees (id, name, department_id) VALUES(2, 'Jane', 2);
UPDATE departments SET primary_employee_id=1 WHERE id=1;

Not Null Columns Switched

Let’s pretend there is some reason why a row can’t be inserted into departments without
primary_employee_id being set due to a CHECK constraint. The SQL generation engine can be given a
hint by using a not-null-columns rule. This results in the tables being processed in reverse order with
employees getting inserts first, then departments. This results in the rows in the departments table having
primary_employee_id set in the INSERT statement. The consequence of this is that the department_id on
employees must be set late with an UPDATE statement.

Config

- not-null-columns:
- {column: primary_employee_id, table: departments}

- subject:
- tables:
- {table: departments}

- relations:
- {column: department_id, table: employees}

Explain output

departments*
departments* -> departments.id=1 -> employees.id=1
departments* -> departments.id=1 -> employees.department_id=1
departments* -> departments.id=2 -> employees.department_id=2
departments* -> departments.id=1 -> employees.id=1 -> departments.id=1
departments* -> departments.id=2 -> employees.department_id=2 -> employees.id=2 -> departments.id=2

Results

INSERT INTO employees (id, name, department_id) VALUES(1, 'John', NULL);
INSERT INTO employees (id, name, department_id) VALUES(2, 'Jane', NULL);
INSERT INTO departments (id, name, primary_employee_id) VALUES(1, 'Managers', 1);
INSERT INTO departments (id, name, primary_employee_id) VALUES(2, 'Engineers', NULL);
UPDATE employees SET department_id=1 WHERE id=1;
UPDATE employees SET department_id=2 WHERE id=2;

1.7. Examples 25

	About abridger
	Overview
	Getting Started
	Extraction Model
	Extraction
	SQL Generation
	Databases
	Examples

