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A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation1 with stochastic
gradient variational Bayes inference2.

1 Cutajar, K. Bonilla, E. Michiardi, P. Filippone, M. Random Feature Expansions for Deep Gaussian Processes. In ICML, 2017.
2 Kingma, D. P. and Welling, M. Auto-encoding variational Bayes. In ICLR, 2014.
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CHAPTER 1

Features

Some of the features of Aboleth:

• Bayesian fully-connected, embedding and convolutional layers using SGVB2 for inference.

• Random Fourier and arc-cosine features for approximate Gaussian processes. Optional variational optimisation
of these feature weights as per1.

• Imputation layers with parameters that are learned as part of a model.

• Noise Contrastive Priors3 for better out-of-domain uncertainty estimation.

• Very flexible construction of networks, e.g. multiple inputs, ResNets etc.

• Compatible and interoperable with other neural net frameworks such as Keras (see the demos for more informa-
tion).

3 Hafner, D., Tran, D., Irpan, A., Lillicrap, T. and Davidson, J., 2018. Reliable Uncertainty Estimates in Deep Neural Networks using Noise
Contrastive Priors. arXiv preprint arXiv:1807.09289.
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CHAPTER 2

Why?

The purpose of Aboleth is to provide a set of high performance and light weight components for building Bayesian
neural nets and approximate (deep) Gaussian process computational graphs. We aim for minimal abstraction over
pure TensorFlow, so you can still assign parts of the computational graph to different hardware, use your own data
feeds/queues, and manage your own sessions etc.

Here is an example of building a simple Bayesian neural net classifier with one hidden layer and Normal prior/posterior
distributions on the network weights:

import tensorflow as tf
import aboleth as ab

# Define the network, ">>" implements function composition,
# the InputLayer gives a kwarg for this network, and
# allows us to specify the number of samples for stochastic
# gradient variational Bayes.
net = (

ab.InputLayer(name="X", n_samples=5) >>
ab.DenseVariational(output_dim=100) >>
ab.Activation(tf.nn.relu) >>
ab.DenseVariational(output_dim=1)

)

X_ = tf.placeholder(tf.float, shape=(None, D))
Y_ = tf.placeholder(tf.float, shape=(None, 1))

# Build the network, nn, and the parameter regularization, kl
nn, kl = net(X=X_)

# Define the likelihood model
likelihood = tf.distributions.Bernoulli(logits=nn).log_prob(Y_)

# Build the final loss function to use with TensorFlow train
loss = ab.elbo(likelihood, kl, N)

(continues on next page)
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(continued from previous page)

# Now your TensorFlow training code here!
...

At the moment the focus of Aboleth is on supervised tasks, however this is subject to change in subsequent releases if
there is interest in this capability.
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CHAPTER 3

Installation

NOTE: Aboleth is a Python 3 library only. Some of the functionality within it depends on features only found in
python 3. Sorry.

To get up and running quickly you can use pip and get the Aboleth package from PyPI:

$ pip install aboleth

For the best performance on your architecture, we recommend installing TensorFlow from sources.

Or, to install additional dependencies required by the demos:

$ pip install aboleth[demos]

To install in develop mode with packages required for development we recommend you clone the repository from
GitHub:

$ git clone git@github.com:data61/aboleth.git

Then in the directory that you cloned into, issue the following:

$ pip install -e .[dev]

7
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CHAPTER 4

Getting Started

See the quick start guide to get started, and for more in depth guide, have a look at our tutorials. Also see the demos
folder for more examples of creating and training algorithms with Aboleth.

The full project documentation can be found on readthedocs.
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CHAPTER 5

References
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CHAPTER 6

License

Copyright 2017 CSIRO (Data61)

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

13
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CHAPTER 7

Documentation Contents

7.1 Installation

Firstly, make sure you have TensorFlow installed, preferably compiled specifically for your architecture, see installing
TensorFlow from sources.

To get up and running quickly you can use pip and get the Aboleth package from PyPI:

$ pip install aboleth

Or, to install additional dependencies required by the demos:

$ pip install aboleth[demos]

To install in develop mode with packages required for development we recommend you clone the repository from
GitHub:

$ git clone git@github.com:data61/aboleth.git

Then in the directory that you cloned into, issue the following:

$ pip install -e .[dev]

Or:

$ pip install -e .[dev,demos]

If you also want to develop with the demos.

7.2 Quick Start Guide

In Aboleth we use function composition to compose machine learning models. These models are callable python
classes that when called return a TensorFlow computational graph (really a tf.Tensor). We can best demonstrate

15
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this with a few examples.

7.2.1 Logistic Classification

For our first example, lets make a simple logistic classifier with 𝐿2 regularisation on the model weights:

import tensorflow as tf
import aboleth as ab

layers = (
ab.InputLayer(name="X") >>
ab.Dense(output_dim=1, l1_reg=0, l2_reg=.05) >>
ab.Activation(tf.nn.sigmoid)

)

Here the right shift operator, >>, implements functions composition (or specifically, a writer monad) from the inner-
most function to the outermost. The above code block has has implemented the following function,

𝑝(y = 1|X) = 𝜎(Xw),

where w ∈ R𝐷 are the model weights, y ∈ N𝑁
2 are the binary labels, X ∈ R𝑁×𝐷 are the predictive inputs and 𝜎(·) is a

logistic sigmoid function. At this stage layers is a callable class (ab.baselayers.MultiLayerComposite),
and no computational graph has been built. ab.InputLayer allows us to name our inputs so we can refer to them
later when we call our class layers. This is useful when we have multiple inputs into our model, for examples, if
we want to deal with continuous and categorical features separately (see Multiple Input Data).

So now we have defined the structure of the predictive model, if we wish we can create its computational graph,

net, reg = layers(X=X_)

where the keyword argument X was defined in the InputLayer and X_ is a placeholder (tf.placeholder) or
the actual predictive data we want to build into our model. net is the resulting computational graph of our predictive
model/network, and reg are the regularisation terms associated with the model parameters (layer weights in this case).

If we wanted, we could evaluate net right now in a TensorFlow session, however none of the weights have been fit to
the data. In order to fit the weights, we need to define a loss function. For this we need to define a likelihood model
for our classifier, here we choose a Bernoulli distribution for our binary classifier (which corresponds to a log-loss):

likelihood = tf.distributions.Bernoulli(probs=net)
log_like = likelihood.log_prob(Y_)

which returns a tensor that implements the log of a Bernoulli probability mass function,

ℒ(𝑦𝑛, 𝑝𝑛) = 𝑦𝑛 log 𝑝𝑛 + (1− 𝑦𝑛) log(1− 𝑝𝑛).

This is an integral part of our loss function. Here we have used 𝑝𝑛 as shorthand for 𝑝(𝑦𝑛 = 1).

Note: We actually find it is more numerically stable to define Bernoulli likelihoods with logits:

likelihood = tf.distributions.Bernoulli(logits=net)

Where:

16 Chapter 7. Documentation Contents
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layers = (
ab.InputLayer(name="X") >>
ab.Dense(output_dim=1, l1_reg=0, l2_reg=.05) >>

)
net, reg = layers(X=X_)

The Bernoulli class then computes the sigmoid activation internally.

Now we have enough to build the loss function we will use to optimize the model weights:

loss = ab.max_posterior(log_like, reg)

This is a maximum a-posteriori loss function, which can be thought of as a maximum likelihood objective with a
penalty on the magnitude of the weights from a Gaussian prior (controlled by l2_reg or 𝜆),

min
w

− 1

𝑁

∑︁
𝑛

ℒ(𝑦𝑛, 𝜎(x⊤
𝑛w)) +

𝜆

2
‖w‖22.

Now we have enough to use the tf.train module to learn the weights of our model:

optimizer = tf.train.AdamOptimizer()
train = optimizer.minimize(loss)

with tf.Session() as sess:
tf.global_variables_initializer().run()

for _ in range(1000):
sess.run(train, feed_dict={X_: X, Y_: Y})

This will run 1000 iterations of stochastic gradient optimization (using the Adam learning rate algorithm) where the
model sees all of the data every iteration. We can also run this on mini-batches, see ab.batch for a simple batch
generator, or TensorFlow’s train and data modules for a more comprehensive set of utilities (we recommend looking
at tf.train.MonitoredTrainingSession, and tf.data.Dataset)

Now that we have learned our classifier’s weights, ŵ, we will probably want to use for predicting class label probabil-
ities on unseen data x*,

𝑝(𝑦* = 1|X,x*) = 𝜎(x*⊤ŵ).

This can be very easily achieved by just evaluating our model on the unseen predictive data (still in the TensorFlow
session from above):

probs = net.eval(feed_dict={X_: X_query})

However, you may find that probs.shape will be something like (1, N, 1) where N = len(X_query).
Aboleth made a new, 0th, axis here, and we’ll talk about why this is the case in the next section.

Note: If you used logits as per the above note, then the prediction becomes:

probs = likelihood.probs.eval(feed_dict={X_: X_query})

And that is it!

7.2. Quick Start Guide 17
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7.2.2 Bayesian Logistic Classification

Aboleth is all about Bayesian inference, so now we’ll demonstrate how to make a variational inference version of the
logistic classifier. Now we explicitly place a prior distribution on the weights,

𝑝(w) = 𝒩 (w|0, 𝜓2I𝐷).

Here 𝜓 is the prior weight standard deviation (note that this corresponds to
√
𝜆−1 in the MAP logistic classifier). We

use the same likelihood model as before,

𝑝(𝑦𝑛|w,x𝑛) = Bernoulli(𝑦𝑛|𝜎(x⊤
𝑛w)),

and ideally we would like to infer the posterior distribution over these weights using Bayes’ rule (as opposed to just
the MAP value, ŵ),

𝑝(w|X,y) =
𝑝(w)

∏︀
𝑛 𝑝(𝑦𝑛|w,x𝑛)∫︀

𝑝(w)
∏︀

𝑛 𝑝(𝑦𝑛|w,x𝑛)𝑑w
.

Unfortunately the integral in the denominator is intractable for this model. This is where variational inference comes
to the rescue by approximating the posterior with a known form – in this case a Gaussian,

𝑝(w|X,y) ≈ 𝑞(w),

= 𝒩 (w|𝜇,Σ),

where 𝜇 ∈ R𝐷 and Σ ∈ R𝐷×𝐷. To make this approximation as close as possible, variational inference optimizes
the Kullback Leibler divergence between this and true posterior using the evidence lower bound, ELBO, and the
reparameterization trick in1:

min
𝜇,Σ

KL [𝑞(w)‖𝑝(w|X,y)] .

One question you may ask is why would we want to go to all this bother over the MAP approach? Specifically, why
learn an extra 𝒪(𝐷2) number of parameters over the MAP approach? Well, a few reasons, the first being that the
weights are well regularised in this formulation, for instance we can actually learn 𝜓, rather than having to set it (this
optimization of the prior is called empirical Bayes). Secondly, we have a principled way of incorporating modelling
uncertainty over the weights into our predictions,

𝑝(𝑦* = 1|X,x*) =

∫︁
𝜎(x*⊤w)𝑞(w)𝑑w,

≈ 1

𝑆

𝑆∑︁
𝑠=1

𝜎(x*⊤w(𝑠)), w(𝑠) ∼ 𝑞(w).

This will have the effect of making our predictive probabilities closer to 0.5 when the model is uncertain. The MAP
approach has no mechanism to achieve this since it only learns the mode of the posterior, ŵ, with no notion of variance.

So how do we implement this with Aboleth? Easy; we change layers to the following,

import numpy as np
import tensorflow as tf
import aboleth as ab

n_samples_ = tf.placeholder_with_default(5, [])
layers = (

ab.InputLayer(name="X", n_samples=n_samples_) >>
ab.DenseVariational(output_dim=1, prior_std=1., full=True) >>
ab.Activation(tf.nn.sigmoid)

)

1 Kingma, D. P. and Welling, M. Auto-encoding variational Bayes. In ICLR, 2014.
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Note we are using DenseVariational instead of Dense. In the DenseVariational layer the full param-
eter tells the layer to use a full covariance Gaussian, and prior_std is value of the weight prior standard deviation,
𝜓. Also we’ve set n_samples=5 (as a default value of a place holder) in the InputLayer, this lets the subsequent
layers know that we are making a stochastic model, that is, whenever we call layers we are actually expecting back
5 samples of the model output. This argument defaults to 1, which is why we got a one-dimensional 0th axis in the
last section. In this instance a setting of 5 makes the DenseVariational layer multiply its input with 5 samples of
the weights from the approximate posterior, Xw(𝑠), where w(𝑠) ∼ 𝑞(w), for 𝑠 = {1 . . . 5}. These 5 samples are then
passed to the Activation layer. We have used a place holder here because we usually want to use more samples of
the network for prediction than for training.

Then like before to complete the model specification:

net, kl = layers(X=X_)
likelihood = tf.distributions.Bernoulli(probs=net)
log_like = likelihood.log_prob(Y_)
loss = ab.elbo(log_like, KL=kl, N=10000)

The main differences here are that reg is now kl, and we use the elbo loss function. For all intents and purposes
kl is still a regularizer on the weights (it is the Kullback Leibler divergence between the posterior and the prior
distributions on the weights), and elbo is the evidence lower bound objective. Here N is the (expected) size of the
dataset, we need to know this term in order to properly calculate the evidence lower bound when using mini-batches
of data.

We train this model in exactly the same way as the logistic classifier, however prediction is slightly different - that
is we need to average the samples drawn from the network to get a predicted probability (as in the sum over weight
samples above),

predict_p = tf.reduce_mean(net, axis=0)
probs = net.eval(predict_p,

feed_dict={X_: X_query, n_samples_: 20})

So probs also has a shape of (𝑁*, 1), and we have used 20 samples to calculate the average probability.

Note: If you used logits in the likelihood, then the prediction becomes:

predict_p = tf.reduce_mean(likelihood.probs, axis=0)
probs = net.eval(predict_p,

feed_dict={X_: X_query, n_samples_: 20})

7.2.3 Approximate Gaussian Processes

Aboleth also provides the building blocks to easily create scalable (approximate) Gaussian processes. We’ll implement
a simple Gaussian process regressor here, but for brevity, we’ll skip the introduction to Gaussian processes, and refer
the interested reader to2.

The approximation we have implemented in Aboleth is the random feature expansions (see3 and4), where we can
approximate a kernel function from a set of random basis functions,

k(x𝑖,x𝑗) ≈
1

𝑆

𝑆∑︁
𝑠=1

𝜑(𝑠)(x𝑖)
⊤𝜑(𝑠)(x𝑗),

2 Rasmussen, C. E., and Williams, C. K. I. Gaussian processes for machine learning. Cambridge: MIT press, 2006.
3 Rahimi, A., & Recht, B. Random features for large-scale kernel machines. Advances in neural information processing systems. 2007.
4 Cutajar, K. Bonilla, E. Michiardi, P. Filippone, M. Random Feature Expansions for Deep Gaussian Processes. In ICML, 2017.

7.2. Quick Start Guide 19
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with equality in the infinite limit. The trick is to find the right family of basis functions, 𝜑, that corresponds to a
particular family of kernel functions, e.g. radial basis, Matern, etc. This insight allows us to approximate a Gaussian
process regressor with a Bayesian linear regressor using these random basis functions, 𝜑(𝑠)(X)!

We can easily do this using Aboleth, for example, with a radial basis kernel,

import tensorflow as tf
import aboleth as ab

lenscale = tf.Variable(1.) # learn isotropic length scale
kern = ab.RBF(lenscale=ab.pos(lenscale))

n_samples_ = tf.placeholder_with_default(5, [])
layers = (

ab.InputLayer(name="X", n_samples=n_samples_) >>
ab.RandomFourier(n_features=100, kernel=kern) >>
ab.DenseVariational(output_dim=1, full=True)

)

Here we have made lenscale a TensorFlow variable so it will be optimized, and we have also used the ab.pos
function to make sure it stays positive. The ab.RandomFourier class implements random Fourier features3, that
can model shift invariant kernel functions like radial basis, Matern, etc. See ab.kernels for implemented kernels. We
have also implemented random arc-cosine kernels4 see ab.RandomArcCosine in ab.layers.

Then to complete the formulation of the Gaussian process (likelihood and loss),

std = tf.Variable(1.) # learn likelihood std. deviation

net, kl = layers(X=X_)
likelihood = tf.distributions.Normal(net, scale=ab.pos(std))
log_like = likelihood.log_prob(Y_)
loss = ab.elbo(log_like, kl, N=10000)

Here we just have a Normal likelihood since we are creating a model for regression, and we can also get TensorFlow
to optimise the likelihood standard deviation, std.

Training and prediction work in exactly the same way as the Bayesian logistic classifier. Here is an example of the
approximate GP in action (see Regression for a more detailed demonstration);

7.2.4 See Also

For more detailed demonstrations of the functionality within Aboleth, we recommend you check out the demos,

• Regression and SARCOS - for more regression applications.

• Multiple Input Data - models with multiple input data types.

• Bayesian Classification with Dropout - Bayesian nets using dropout.

• Imputation Layers - let Aboleth deal with missing data for you.

7.2.5 References

7.3 Demos

We have included some demonstration scripts with Aboleth to help you get familiar with some of the possible model
architectures that can be build with Aboleth. We also demonstrate in these scripts a few methods for actually training

20 Chapter 7. Documentation Contents
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Fig. 1: Example of an approximate Gaussian process with a radial basis kernel. We have shown 50 samples of the
predicted latent functions, the mean of these draws, and the heatmap is the probability of observing a target under the
predictive distribution, 𝑝(𝑦*|X,y,x*).

7.3. Demos 21
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models using TensorFlow, and how to get up and running with TensorBoard, etc.

7.3.1 Regression

This is a simple demo that draws a random, non linear function from a Gaussian process with a specified kernel and
length scale. We then use Aboleth (in Gaussian process approximation mode) to try to learn this function given only a
few noisy observations of it. This script also demonstrates how we can divide the data into mini-batches using utilities
in the tf.data module, and how we can use tf.train.MonitoredTrainingSession to log the learning progress.

This demo can be used to generate figures like the following:

You can find the full script here: regression.py.

7.3.2 SARCOS

Here we use Aboleth, again in Gaussian process regression mode, to fit the venerable SARCOS robot arm inverse
kinematics dataset. The aim is to learn the inverse kinematics from 44484 observations of joint positions, velocities
and accelerations to joint torques.

This problem is too large for a regular Gaussian process, and so is a good demonstration of why the approximation
in Aboleth is useful (see Approximate Gaussian Processes). It also demonstrates how we learn automatic relevance
determination (ARD, or anisotropic) kernels.

We have also demonstrated how you can use TensorBoard with the models you construct in Aboleth, so you can
visually monitor the progress of learning. This also allows us to visualise the model’s performance on the validation

22 Chapter 7. Documentation Contents
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set every training epoch. Using TensorBoard has the nice side-effect of also enabling model check point saving, so
you can actually resume learning this model if you run the script again!!

Fig. 2: Using TensorBoard to visualise the learning progress of the Aboleth model fitting the SARCOS dataset. The
“r-square” plot here is made from evaluating the R-square performance on the held-out test set every epoch of training.

This demo will make a sarcos folder in the directory you run the demo from. This contains all of the model
checkpoints, and to visualise these with TensorBoard, run the following:

$ tensorboard --logdir=./sarcos

The full script is here: sarcos.py.

7.3.3 Multiple Input Data

This demo takes inspiration from TensorFlow’s Wide & Deep tutorial in that it treats continuous data separately from
categorical data, though we combine both input types into a “deep” network. It also uses the census dataset from the
TensorFlow tutorial.

We demonstrate a few things in this script:

• How to use Aboleth to learn embeddings of categorical data using the ab.EmbedVariational layer (see
ab.layers).

• How to easily apply these embeddings over multiple columns using the ab.PerFeature higher-order layer
(see ab.hlayers).

• Concatenating these input layers (using ab.Concat) before feeding them into subsequent layers to learn joint
representations.

• How to loop over mini-batches directly using a feed_dict and an appropriate mini-batch generator, ab.
batch (see ab.util).

7.3. Demos 23
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Using this set up we get an accuracy of about 85.3%, compared to the wide and deep model that achieves 84.4%.

The full script is here: multi_input.py.

7.3.4 Bayesian Classification with Dropout

Here we demonstrate a slightly different take on Bayesian deep learning. Yarin Gal in his thesis and associate pub-
lications demonstrates that we can view regular neural networks with dropout as a form of variational inference with
specific prior and posterior distributions on the weights.

In this demo we implement this elegant idea with maximum a-posteriori weight and dropout layers in a classifier (see
ab.layers). We leave these layers as stochastic in the prediction step, and draw samples from the network’s predictive
distribution, as we would in variational networks.

We test the classifier against a random forest classifier on the breast cancer dataset with 5-fold cross validation, and
get quite good and robust performance.

The script can be found here: classification.py

7.3.5 Imputation Layers

Aboleth has a few layers that we can use to impute data and also to learn imputation statistics, see ab.impute. This
drastically simplifies the pipeline for dealing with messy data, and means our imputation methods can benefit from
information contained in the labels (as opposed to imputing as a separate stage from supervised learning).

This script demonstrates various imputation layers, some of which can learn scalar values per column to impute
missing values with, and some can randomly impute data (based on mini-batch means or learned statistics)!

The task is a multi-task classification problem in which we have to predict forest coverage types from 54 features or
various types, described here. We have randomly removed elements from the continuous features, which we impute
using the two aforementioned techniques.

You can find the script here: imputation.py

7.3.6 Compatibility with TensorFlow / Keras

In most circumstances, Aboleth’s layer composition framework is interoperable with TensorFlow and Keras layers.
This gives us access to a vast range of layers not directly implemented in Aboleth which are suitable for various
problems, such as LSTMs, GRUs and other variants of recurrent layers for sequence prediction, to name just one
example.

This script demonstrates how to use Keras dense layers with an Aboleth with dropout to approximate a Bayesian neural
net. We also have a tutorial associated with the demo that you can find here: Integrating Aboleth with Keras.

You can find the script here: regression_keras.py

7.4 Authors

7.4.1 Development Leads

• Daniel Steinberg

• Lachlan McCalman

• Louis Tiao
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7.4.2 Contributors

• Simon O’Callaghan

• Alistair Reid

• Joyce Wang

7.5 Contributing Guidelines

Please contribute if you think a feature is missing in Aboleth, if you think an implementation could be better or if you
can solve an existing issue!

We just request you read the following before making any changes to the codebase.

7.5.1 Pull Requests

This is the best way to contribute. We usually follow a git-flow based development cycle. The way this works is quite
simple:

1. Make an issue on our github with your proposed feature or fix.

2. Fork, or make a branch name with the issue number like feature/#113.

3. When finished, submit a pull request to merge into develop, and refer to which issue is being closed in the pull
request comment (i.e. closes #113).

4. One of use will review the pull request.

5. If accepted, your feature will be merged into develop.

6. Your change will eventually be merged into master and tagged with a release number.

7.5.2 Code and Documentation Style

In Aboleth we are only targeting python 3 - our code is much more elegant as a result, and we don’t have the resources
to also support python 2, sorry.

We adhere to the PEP 8 convention for code, and the PEP 257 convention for docstrings, using the NumPy/SciPy doc-
umentation style. Our continuous integration automatically runs linting checks, so any pull-request will automatically
fail if these conventions are not followed.

The builtin Sphinx extension Napoleon is used to parse NumPy style docstrings. To build the documentation you can
run make from the docs directory with the html option:

$ make html

7.5.3 Testing

We use py.test for all of our unit testing, most of which lives in the tests directory, with judicious use of doctests –
i.e. only when they are illustrative of a functions usage.

All of the dependencies for testing can be installed by issuing:

$ pip install -e .[dev]
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You can run the tests by issuing from the top level repository directory:

$ pytest .

Our continuous integration (CI) will fail if coverage drops below 90%, and we generally want coverage to remain
significantly above this. Furthermore, our CI will fail if the code doesn’t pass PEP 8 and PEP 257 conventions. You
can run the exact CI tests by issuing:

$ make coverage
$ make lint

from the top level repository directory.

7.6 Tutorials

The following are guided tutorials on how to use Aboleth for particular machine learning tasks. These are a great place
to start getting more familiar with how to use Aboleth for more complex problems.

7.6.1 Saving and Loading Aboleth Models

In this tutorial we will cover the basics of how to save and load models constructed with Aboleth. We don’t provide
any inherent saving and loading code in this library, and rely directly on TensorFlow functionality.

Naming the Graph

Even though the whole graph you create is saved and automatically named, it helps when loading to know the exact
name of the part of the graph you want to evaluate. So to begin, we will create a very simple Bayesian linear regressor
with place holders for data. Let’s start with the place holders,

with tf.name_scope("Placeholders"):
n_samples_ = tf.placeholder_with_default(NSAMPLES, shape=[],

name="samples")
X_ = tf.placeholder_with_default(X_train, shape=(None, D),

name="X")
Y_ = tf.placeholder_with_default(Y_train, shape=(None, 1),

name="Y")

We have used a name_scope here for easy reference later. Also, we’ll assume variables in all-caps have been defined
elsewhere. Now let’s make our simple network (just a linear layer),

net = ab.stack(
ab.InputLayer(name='X', n_samples=n_samples_),
ab.DenseVariational(output_dim=1, full=True)

)

And now lets build and name our graph and associate names with the parts of it we will to evaluate later,

with tf.name_scope("Model"):
f, kl = net(X=X_)
likelihood = tf.distributions.Normal(loc=f, scale=ab.pos(NOISE))
loss = ab.elbo(likelihood, Y_, N, kl)

with tf.name_scope("Predict"):

(continues on next page)
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tf.identity(f, name="f")
ab.sample_mean(f, name="Ey")

Now note how we have used tf.identity here to name the latent function, f, again this is so we can easily load it
later for drawing samples from our network. We also don’t need any variables to assign these operations to (unless we
want to use them before saving), we just need to build them into the graph.

Saving the Graph

At this point we recommend reading the Tensorflow tutorial on saving and restoring. We typically use a tf.
MonitoredTrainingSession as it handles all of the model saving and check-pointing etc. You can see how
we do this in the SARCOS demo, but we have also copied the code below for convenience,

# Training graph with step counter
with tf.name_scope("Train"):

optimizer = tf.train.AdamOptimizer()
global_step = tf.train.create_global_step()
train = optimizer.minimize(loss, global_step=global_step)

# Logging
log = tf.train.LoggingTensorHook(

{'step': global_step, 'loss': loss},
every_n_iter=1000

)

# Training loop
with tf.train.MonitoredTrainingSession(

config=CONFIG,
checkpoint_dir="./",
save_summaries_steps=None,
save_checkpoint_secs=20,
save_summaries_secs=20,
hooks=[log]

) as sess:
for i in range(NEPOCHS):

# your training code here
...

This code will also make it easy to use TensorBoard to monitor your training, simply point it at the
checkpoint_dir and run it like,

$ tensorboard --logdir=<checkpoint_dir>

Once you are satisfied that your model has converged, you can just kill the python process. If you think it could do
with a bit more “baking”, then just simply re-run the training script and the MonitoredTrainingSession will
ensure you resume learning where you left off!

Loading Specific Parts of the Graph for Prediction

Typically we only want to evaluate particular parts of the graph (that is, the ones we named previously). In this section
we’ll go through how to load the last checkpoint saved by the MonitoredTrainingSession, and to get hold of
the tensors that we named. We then use these tensors to predict on new query data!
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# Get latest checkpoint
model = tf.train.latest_checkpoint(CHECKPOINT_DIR)

# Make a graph and a session we will populate with our saved graph
graph = tf.Graph()
with graph.as_default():

sess = tf.Session()
with sess.as_default():

# Restore graph
saver = tf.train.import_meta_graph("{}.meta".format(model))
saver.restore(sess, model_file)

# Restore place holders
X_ = graph.get_operation_by_name("Placeholders/X").outputs[0]
Y_ = graph.get_operation_by_name("Placeholders/Y").outputs[0]
n_samples_ = graph.\

get_operation_by_name("Placeholders/samples").outputs[0]

feed_dict = {X_: X_test, n_samples_: PREDICTSAMPLES}

f = graph.get_operation_by_name("Predict/f").outputs[0]
Ey = graph.get_operation_by_name("Predict/Ey").outputs[0]

f_samples, y_pred = sess.run([f, Ey], feed_dict=feed_dict)

The most complicated part of the above code is remembering all of the boiler-plate to insert the saved graph into a
new session, and then do get our place holders and prediction tensors. Once we have done this though, evaluating the
operations we need for prediction is handled in the usual way. We have also assumed in this demo that you want to
use more samples for prediction (PREDICTSAMPLES) than for training (NSAMPLES), so we have made this also a
place holder.

That’s it!

7.6.2 A Regression Master Class with Aboleth

In this tutorial we will show you how to build a variety of linear and non linear regressors with the building blocks in
Aboleth - and demonstrate how easy it is once you have the basics down!

We’ll start off with with some linear regressors, then we’ll extend these models to various types of neural networks.
We’ll also talk about how we can approximate other types of non linear regressors with Aboleth, such as support vector
regressors and Gaussian processes.

Firstly, for the purposes of this tutorial we have generated 100 noisy samples from the non-linear function,

𝑦𝑖 =
sin(𝑥𝑖)

𝑥𝑖
+ 𝜖𝑖,

where we draw 𝜖𝑖 ∼ 𝒩 (0, 0.05). We will use this data to fit the regressors, with the aim of getting them to reconstruct
the latent function,

𝑓 =
sin(𝑥)

𝑥
,

with as little error as possible. This is what this data set looks like:

We use 𝑅2, AKA the coefficient of determination to evaluate how good the estimate of the latent functions is. An 𝑅2

of 1.0 is a perfect fit, and 0.0 means no better than a Normal distribution fit only to the targets, 𝑦𝑖.

7.6. Tutorials 29

https://en.wikipedia.org/wiki/Coefficient_of_determination


Aboleth Documentation, Release 0.9.0

Fig. 3: The dataset used for fitting the regressors. There are 100 noisy training points (blue dots) that the algorithms
get to see, and 1000 noise free points (blue line) that the algorithm has to predict.

Note in the figure above that we have only generated training data for 𝑥 from -10 to 10, but we evaluate the algorithms
from -14 to 14. This is because we want to see how well the algorithms extrapolate away from the data; which is a hard
problem. We don’t evaluate the𝑅2 in this extrapolation region since it makes it harder to differentiate the performance
of the algorithms within the bounds of the training data. However, it is interesting to see how the algorithms perform
in this region.

Linear regression

The easiest algorithms to build with Aboleth are linear regressors, and so this is where we’ll start this tutorial. Specif-
ically, we’ll start with ridge regression, which represents the latent function as,

𝑓 = 𝑤𝑥+ 𝑏,

where 𝑤 and 𝑏 are the regression weights and bias we wish to learn. It has the following objective function (𝑙2
“reconstruction error” loss and 𝑙2 regularisation),

min
𝑤,𝑏

1

2𝑁

𝑁∑︁
𝑖=1

‖𝑤𝑥𝑖 + 𝑏− 𝑦𝑖‖22 +
𝜆

2

(︀
‖𝑤‖22 + ‖𝑏‖22

)︀
,

where 𝜆 is the regularization coefficient that penalises large magnitude weights. This can be simply implemented in
Aboleth using the following code,

lambda_ = 1e-4 # Weight regularizer
noise = 1. # Likelihood st. dev.

(continues on next page)
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net = (
ab.InputLayer(name="X") >>
ab.Dense(output_dim=1, l2_reg=lambda_, l1_reg=0.)

)

f, reg = net(X=X)
lkhood = tf.distributions.Normal(loc=f, scale=noise).log_prob(Y)
loss = ab.max_posterior(lkhood, reg)

Here reg is the second regularizing term in the objective function, and putting a Normal likelihood distribution with
a standard deviation of 1.0, gives us the first term, up to a constant value, when using max_posterior (we are
performing maximum a-posteriori inference here, hence the name of the function). Alternatively, if we didn’t want to
use a likelihood function we could have constructed the loss as

loss = 0.5 * tf.reduce_mean((Y - f)**2) + reg

We can then give this loss tensor to a TensorFlow optimisation routine, such as the AdamOptimizer that we use
in the regression demo.

When we evaluate the model (the tensor f) on the testing inputs we get a terrible result:

Fig. 4: Ridge linear regression, R-square ≈ 0.

Which we would expect from fitting a linear regressor to a non-linear function! Just for illustrative purposes we’ll now
make a Bayesian linear regressor. We shouldn’t expect this to do any better than the ridge regressor since they have
equivalent predictive means. However, it is not really any harder to create this regressor using Aboleth, and we can
also easily obtain predictive uncertainty from it.

In a Bayesian linear regressor (following1) we model the observations as being drawn from a Normal likelihood, and

1 Rasmussen, C.E., and Williams, C.K.I. “Gaussian processes for machine learning.” Vol. 1. Cambridge: MIT press, 2006.
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the weights from a Normal prior (we have ignored the bias, 𝑏, for simplicity),

𝑦𝑖 ∼ 𝒩 (𝑤𝑥𝑖, 𝜎
2),

𝑤 ∼ 𝒩 (0, 𝜆−1),

where the aim is to estimate the parameters of the posterior distribution over the weights (and optionally point esti-
mates for 𝜆, 𝜎),

𝑤 ∼ 𝒩 (𝑚, 𝑣).

The objective we use in this case is the evidence lower bound or ELBO as it is easy to use with stochastic gradient
descent for a variety of different models2. For Bayesian linear regression the ELBO takes the form,

min
𝑚,𝑣,𝜎

−
𝑁∑︁
𝑖=1

E𝒩 (𝑤|𝑚,𝑣)

[︀
log𝒩 (𝑦𝑖|𝑤𝑥𝑖, 𝜎2)

]︀
+ KL

[︀
𝒩 (𝑤|𝑚, 𝑣)‖𝒩 (𝑤|0, 𝜆−1)

]︀
.

This looks complicated, but it’s actually not too bad, especially when we compare it to the ridge regression objective.
Firstly, the expectation acts like a data-fitting term (expected log likelihood of the targets given the inputs and the
weights), which corresponds to the l2 reconstruction term. Next, the Kullback Leibler term (KL) is acting as a regu-
lariser on the weights, penalizing the posterior diverging from the prior. We can implement this model with Aboleth
using the following code,

lambda_ = 100.
std = (1 / lambda_) ** .5 # Weight st. dev. prior
noise = tf.Variable(1.) # Likelihood st. dev. initialisation

net = (
ab.InputLayer(name="X", n_samples=n_samples_) >>
ab.DenseVariational(output_dim=1, prior_std=std, full=True)

)

f, kl = net(X=X)
lkhood = tf.distributions.Normal(loc=f, scale=ab.pos(noise)).log_prob(Y)
loss = ab.elbo(lkhood, kl, N)

Note here that we have set n_samples_ to some value (e.g. 5, or use a place holder) because the
DenseVariational layer uses samples from its posterior distribution on the weights for evaluation. The more
samples, the smoother the estimates of the model gradients during training, and the better the estimate of the posterior
predictive distribution when querying (more on this soon).

Again, since we’re using a linear model, we don’t get great performance.

What’s the point of going to all this effort implementing the ELBO over just the ridge regression? Well, since we
have a posterior distribution over 𝑤, we can get a distribution over predictions of the latent function, 𝑓 – samples from
which we can see in the above figure. This tells us how confident out model is in its predictions. This will come in
handy later with some of the more complex models.

Note: The model looks over-confident in its estimation of observations, however, we have only sampled the latent
function. The value learned for the likelihood standard deviation, 𝜎, is quite large, and compensates for this small
latent function variance.

If we wanted to obtain predictive samples from our model over the observations instead of just the latent function, we
would simply need to draw samples from our likelihood (e.g. lkhood.sample()).

Ok, now lets move beyond building linear models with Aboleth.
2 Kingma, D. P. and Welling, M. “Auto-encoding variational Bayes.” In ICLR, 2014.
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Fig. 5: Bayesian linear regression, R-square ≈ 0.

Neural Networks

The first family of non-linear regressors we’ll look at now are neural networks and represent the latent function as,

𝑓 = NN(𝑥).

Here NN refers to the neural net function, which is a sequential composition of linear layers (like our linear regressor)
and non-linear activation functions. Learning a neural net classically has an objective something like,

min
𝑤,𝑏

1

2𝑁

𝑁∑︁
𝑖=1

‖NN(𝑥𝑖)− 𝑦𝑖‖22 +
𝐿∑︁

𝑙=1

𝜆𝑙
2

(︀
‖𝑤𝑙‖22 + ‖𝑏𝑙‖22

)︀
.

Note that it also has regularisers for each of the 𝐿 linear layers in the network.

In this tutorial we use 4 layers, and the code for constructing this model in Aboleth is here:

lambda_ = 1e-4 # Weight regularizer
noise = .5 # Likelihood st. dev.

net = (
ab.InputLayer(name="X", n_samples=1) >>
ab.Dense(output_dim=40, l2_reg=lambda_, l1_reg=0.) >>
ab.Activation(tf.tanh) >>
ab.Dense(output_dim=20, l2_reg=lambda_, l1_reg=0.) >>
ab.Activation(tf.tanh) >>
ab.Dense(output_dim=10, l2_reg=lambda_, l1_reg=0.) >>
ab.Activation(tf.tanh) >>
ab.Dense(output_dim=1, l2_reg=lambda_, l1_reg=0.)

(continues on next page)
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)

f, reg = net(X=X)
lkhood = tf.distributions.Normal(loc=f, scale=noise).log_prob(Y)
loss = ab.max_posterior(lkhood, reg)

Where we have used hyperbolic tan activation functions. Now we get much better performance on our regression task!

Fig. 6: Neural network with l2 regularization, R-square 0.9903.

There is a very easy trick to turn the above network into a Bayesian neural net, courtesy of Yarin Gal3. All we have to
do is to add dropout to our network, and then keep dropout on during prediction! We can optionally also sample the
network more than once during learning since the dropout makes it a stochastic network like our variational layers.

lambda_ = 1e-3 # Weight prior
noise = .5 # Likelihood st. dev.

net = (
ab.InputLayer(name="X", n_samples=n_samples_) >>
ab.Dense(output_dim=40, l2_reg=lambda_, l1_reg=0.) >>
ab.Activation(tf.tanh) >>
ab.DropOut(keep_prob=0.9, independent=True) >>
ab.Dense(output_dim=20, l2_reg=lambda_, l1_reg=0.) >>
ab.Activation(tf.tanh) >>
ab.DropOut(keep_prob=0.95, independent=True) >>
ab.Dense(output_dim=10, l2_reg=lambda_, l1_reg=0.) >>
ab.Activation(tf.tanh) >>
ab.Dense(output_dim=1, l2_reg=lambda_, l1_reg=0.)

(continues on next page)

3 Gal, Yarin. “Uncertainty in deep learning.” PhD thesis, University of Cambridge, 2016.
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)

f, reg = net(X=X)
lkhood = tf.distributions.Normal(loc=f, scale=noise).log_prob(Y)
loss = ab.max_posterior(lkhood, reg)

Now we get uncertainty on our latent functions:

Fig. 7: Neural network with dropout, R-square 0.9865.

Though in this example we have a smoother prediction than the regular neural network and have lost a bit of perfor-
mance. . . this is something we could potentially rectify with a bit more architecture tweaking (tuning the regularisers
per layer for example).

We can also use our DenseVariational layers with an ELBO objective to create a Bayesian neural net. For
brevity’s sake we won’t go into the exact form of the objective, except to say that it parallels the conversion of the
linear regressor objective to the neural network objective. The code for building the Bayesian neural net regressor is,

noise = 0.05

net = (
ab.InputLayer(name="X", n_samples=n_samples_) >>
ab.DenseVariational(output_dim=5) >>
ab.Activation(tf.nn.relu) >>
ab.DenseVariational(output_dim=4) >>
ab.Activation(tf.nn.relu) >>
ab.DenseVariational(output_dim=3) >>
ab.Activation(tf.tanh) >>
ab.DenseVariational(output_dim=1)

)
(continues on next page)
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f, kl = net(X=X)
lkhood = tf.distributions.Normal(loc=f, scale=noise).log_prob(Y)
loss = ab.elbo(lkhood, kl, N)

Unfortunately, this prediction is even smoother than the previous one. This behaviour with Gaussian weight distri-
butions is also something observed in3, and is likely because of the strong complexity penalty coming from the KL
regulariser.

Fig. 8: Bayesian Neural network, R-square 0.9668.

If we train with more data, like in the figure below that uses 1000 training points as opposed to 100, the KL term has
less of an influence and we obtain a good fit – at least inside the range of the training data. This suggests that with these
types of Bayesian neural networks we need a lot of data to justify fitting a complex function (or fewer parameters).

Support Vector-like Regression

We can also approximate a non linear support vector regressor (SVR) with Aboleth. This approximation represents
the latent function as,

𝑓 = 𝑤 × RFF(𝑥) + 𝑏

Where RFF are random Fourier features4, that approximate the radial basis functions used in kernel support vector
machines. We learn the parameters using the following objective,

min
𝑤,𝑏

1

𝑁

𝑁∑︁
𝑖=1

max (|𝑤 × RFF(𝑥𝑖) + 𝑏− 𝑦𝑖| − 𝜖, 0) +
𝜆

2

(︀
‖𝑤‖22 + ‖𝑏‖22

)︀
,

4 Rahimi, Ali, and Benjamin Recht. “Random features for large-scale kernel machines.” In NIPS, 2007.
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Fig. 9: Bayesian Neural network with 1000 training points, R-square 0.9983.

were 𝜖 ≥ 0 is the SVR’s threshold parameter, under which errors go un-penalised. Naturally we will be using stochastic
gradients to solve this objective, and not the original convex SVR formulation. Despite these approximations, we
would expect support vector regressor-like behaviour! The code for this is as follows:

lambda_ = 1e-4
eps = 0.01
lenscale = 1.

# Specify kernel to approximate with the random Fourier features
kern = ab.RBF(lenscale=lenscale)

net = (
ab.InputLayer(name="X", n_samples=1) >>
ab.RandomFourier(n_features=50, kernel=kern) >>
ab.Dense(output_dim=1, l2_reg=lambda_, l1_reg=0.)

)

f, reg = net(X=X)
loss = tf.reduce_mean(tf.nn.relu(tf.abs(Y - f) - eps)) + reg

This results in the following prediction, which is the best we have achieved so far (not including the 1000 training
point Bayesian neural net). Though its extrapolation performance leaves quite a lot to be desired.

Interestingly, because Aboleth is just a set of “building blocks” we can employ the same dropout trick that we used pre-
viously to make a “Bayesian” support vector regressor. We just insert a DropOut layer after the RandomFourier
layer in the code above and increase the number of samples, this gives the following prediction.

This is better than our last SVR prediction, and adding the dropout layer seems to have somewhat controlled our
extrapolation problem.
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Fig. 10: Support vector regression, R-square 0.9962.

Fig. 11: Support vector regression with dropout, R-square 0.9972.
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Gaussian process

The final class of non-linear regressors we will construct with Aboleth are (approximate) Gaussian process (GP)
regressors. They represent the latent function in a similar manner to SVRs, but have a different learning objective.
See1 for a full discussion and derivation of GPs, we’ll not go into detail in this tutorial.

Full Gaussian processes have a computational complexity of 𝒪(𝑁3) in training where 𝑁 is the training set size. This
limits their application to fairly small problems; a few thousands of training points. However, again using random
Fourier features4, we can approximate them by slightly modifying the Bayesian linear regressor from before,

lambda_ = 0.1 # Initial weight prior std. dev
noise = tf.Variable(.5) # Likelihood st. dev. initialisation
lenscale = tf.Variable(1.) # learn the length scale
kern = ab.RBF(lenscale=ab.pos(lenscale)) # keep length scale +ve

net = (
ab.InputLayer(name="X", n_samples=n_samples_) >>
ab.RandomFourier(n_features=50, kernel=kern) >>
ab.DenseVariational(output_dim=1, prior_std=lambda_, full=True)

)

f, kl = net(X=X)
lkhood = tf.distributions.Normal(loc=f, scale=ab.pos(noise)).log_prob(Y)
loss = ab.elbo(lkhood, kl, N)

Which makes these approximate GPs scale linearly with𝑁 and allows us to trivially use mini-batch stochastic gradient
optimisation! The tradeoff is, of course, how well they approximate GPs (in much the same way using random Fourier
features approximated SVRs before).

When we look at our prediction, we can see that we can approximate a GP pretty well, and we get the sensible
extrapolation behaviour we would expect from a GP too - falling back to zero away from the data in this case. Though,
perhaps it over-estimates the uncertainty in the latent function relative to a regular GP. And as expected, the GP
performs similarly to the “Bayesian” SVR in terms of 𝑅2 within the training domain.

Finally, we can also easily implement some of the recent Fourier feature Deep-GP algorithms with Aboleth, such as
those presented in5:

lambda_ = 0.1 # Initial weight prior std. dev
noise = tf.Variable(.01) # Likelihood st. dev. initialisation
lenscale = tf.Variable(1.) # learn the first length scale only

net = (
ab.InputLayer(name="X", n_samples=n_samples_) >>
ab.RandomFourier(n_features=20, kernel=ab.RBF(ab.pos(lenscale))) >>
ab.DenseVariational(output_dim=5, prior_std=lambda_, full=False) >>
ab.RandomFourier(n_features=10, kernel=ab.RBF(1.)) >>
ab.DenseVariational(output_dim=1, prior_std=lambda_, full=False)

)

f, kl = net(X=X)
lkhood = tf.distributions.Normal(loc=f, scale=ab.pos(noise)).log_prob(Y)
loss = ab.elbo(lkhood, kl, N)

On such a simple problem we obtain similar performance to the regular GP, though we see that extrapolation is worse,
and is quite reminiscent of the Neural network and SVR behaviour we were seeing previously. It would be interesting
to explore why this happens, and if it is a consequence of the variational approximation, the random Fourier features,
or just an inherent property of Deep-GPs.

5 Cutajar, K. Bonilla, E. Michiardi, P. Filippone, M. “Random Feature Expansions for Deep Gaussian Processes.” In ICML, 2017.
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Fig. 12: Gaussian process regression, RBF kernel, R-square = 0.9974.

Fig. 13: Deep Gaussian process regression, RBF kernel, R-square = 0.9969.
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And that is it! We hope this tutorial conveys just how flexible Aboleth is in allowing you to construct different models.
You can find the code used to generate these figures and results in this tutorial with the demos here.

References

7.6.3 Integrating Aboleth with Keras

In most circumstances, Aboleth’s layer composition framework is interoperable with TensorFlow and Keras layers.
This gives us access to a vast range of layers not directly implemented in Aboleth which are suitable for various
problems, such as LSTMs, GRUs and other variants of recurrent layers for sequence prediction, to name just one
example. Furthermore, this also allows us to readily take advantage of the various sophisticated normalization and
activation layers proposed in the current research, such as Batch Normalization1, Leaky ReLU, ELU2, et cetera.

Here we define a simple wrapper layer that allows one to plug in Keras / TensorFlow layers.

class WrapperLayer(SampleLayer):

def __init__(self, layer, *args, **kwargs):

self.layer = layer(*args, **kwargs)

def _build(self, X):
"""Build the graph of this layer."""

# keras first flattens the `n - len(input_shape)` dimensions
# of the array and operates on last `len(input_shape)` dimensions
# which has shape `input_shape`
Net = self.layer(X)
# aggregate layer regularization terms
KL = tf.reduce_sum(self.layer.losses)

return Net, KL

Now we can use the wrapped layers and Aboleth’s native layers interchangeably. For example, consider tackling a
toy regression problem using a deep neural net with dropout layers, where we perform maximum a posteriori (MAP)
estimation of the layer weights / biases. The following are effectively equivalent:

net = (
ab.InputLayer(name="X", n_samples=n_samples_) >>
ab.Dense(output_dim=64, l2_reg=0.01, l1_reg=0.) >>
ab.Activation(tf.tanh) >>
ab.DropOut(keep_prob=.5) >>
ab.Dense(output_dim=64, l2_reg=0.01, l1_reg=0.) >>
ab.Activation(tf.tanh) >>
ab.DropOut(keep_prob=.5) >>
ab.Dense(output_dim=1, l2_reg=0.01, l1_reg=0.)

)

l1_l2_reg = tf.keras.regularizers.l1_l2(l1=0., l2=0.01)

net = (
ab.InputLayer(name="X", n_samples=n_samples_) >>

(continues on next page)

1 S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” in Proceedings
of the 32nd International Conference on Machine Learning, 2015, vol. 37, pp. 448–456.

2 D.-A. Clevert, T. Unterthiner, and S. Hochreiter, Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs),” Nov. 2015.
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(continued from previous page)

WrapperLayer(tf.keras.layers.Dense, units=64, activation='tanh',
kernel_regularizer=l1_l2_reg, bias_regularizer=l1_l2_reg) >>

ab.DropOut(keep_prob=.5) >>
WrapperLayer(tf.keras.layers.Dense, units=64, activation='tanh',

kernel_regularizer=l1_l2_reg, bias_regularizer=l1_l2_reg) >>
ab.DropOut(keep_prob=.5) >>
WrapperLayer(tf.keras.layers.Dense, units=1, kernel_regularizer=l1_l2_reg,

bias_regularizer=l1_l2_reg)
)

Now it’s easy to augment this model by incorporating other building blocks from Keras, e.g.

net = (
ab.InputLayer(name="X", n_samples=n_samples_) >>
WrapperLayer(tf.keras.layers.Dense, units=64) >>
WrapperLayer(tf.keras.layers.BatchNormalization) >>
WrapperLayer(tf.keras.layers.LeakyReLU) >>
ab.DropOut(keep_prob=.5) >>

WrapperLayer(tf.keras.layers.Dense, units=64) >>
WrapperLayer(tf.keras.layers.BatchNormalization) >>
WrapperLayer(tf.keras.layers.LeakyReLU) >>
ab.DropOut(keep_prob=.5) >>

WrapperLayer(tf.keras.layers.Dense, units=1, kernel_regularizer=l1_l2_reg,

(continues on next page)
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(continued from previous page)

bias_regularizer=l1_l2_reg)
)

Or use it to perform classification on sequences:

net = (
ab.InputLayer(name="X", n_samples=n_samples_) >>
WrapperLayer(tf.keras.layers.LSTM, units=128) >>
ab.DropOut(keep_prob=.5) >>
WrapperLayer(tf.keras.layers.Dense, units=1)

)

You can find the script here: regression_keras.py

7.7 API

This is the application programming interface guide for Aboleth.

Aboleth is implemented in pure Python 3 only (we don’t test Python 2, and we may use Python 3 language specific
features). If you would like to contribute (please do), see the Contributing Guidelines.

7.7.1 ab.losses

Network loss functions.

aboleth.losses.elbo(log_likelihood, KL, N)
Build the evidence lower bound (ELBO) loss for a neural net.

Parameters

• log_likelihood (Tensor) – the log-likelihood Tensor that takes neural network(s) and
targets as an input. We recommend using a tf.distributions object’s log_prob()
method to obtain this tensor. The shape of this Tensor should be (n_samples, N, ...
), where n_samples is the number of log-likelihood samples (defined by ab.InputLayer)
and N is the number of observations (can be ? if you are using a placeholder and mini-
batching). These likelihoods can also be weighted to, for example, adjust for class imbalance
etc. This weighting is left up to the user.

• KL (float, Tensor) – the Kullback Leibler divergence between the posterior and prior
parameters of the model (KL[𝑞‖𝑝]).

• N (int, Tensor) – the total size of the dataset (i.e. number of observations).

Returns nelbo – the loss function of the Bayesian neural net (negative ELBO).

Return type Tensor

Example

This is how we would typically generate a likelihood for this objective,

noise = ab.pos_variable(1.0)
likelihood = tf.distributions.Normal(loc=NN, scale=noise)
log_likelihood = likelihood.log_prob(Y)
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where NN is our neural network, and Y are our targets.

Note: The way tf.distributions.Bernoulli and tf.distributions.Categorical are im-
plemented are a little confusing. . . it is worth noting that you should use a target array, Y, of shape (N, 1) of
ints with the Bernoulli likelihood, and a target array of shape (N,) of ints with the Categorical likelihood.

aboleth.losses.max_posterior(log_likelihood, regulariser)
Build maximum a-posteriori (MAP) loss for a neural net.

Parameters

• log_likelihood (Tensor) – the log-likelihood Tensor that takes neural network(s) and
targets as an input. We recommend using a tf.distributions object’s log_prob()
method to obtain this tensor. The shape of this Tensor should be (n_samples, N, ...
), where n_samples is the number of log-likelihood samples (defined by ab.InputLayer)
and N is the number of observations (can be ? if you are using a placeholder and mini-
batching). These likelihoods can also be weighted to, for example, adjust for class imbalance
etc. This weighting is left up to the user.

• regulariser (float, Tensor) – the regulariser on the parameters of the model to
penalise model complexity.

Returns map – the loss function of the MAP neural net.

Return type Tensor

Example

This is how we would typically generate a likelihood for this objective,

noise = ab.pos_variable(1.0)
likelihood = tf.distributions.Normal(loc=NN, scale=noise)
log_likelihood = likelihood.log_prob(Y)

where NN is our neural network, and Y are our targets.

Note: The way tf.distributions.Bernoulli and tf.distributions.Categorical are im-
plemented are a little confusing. . . it is worth noting that you should use a target array, Y, of shape (N, 1) of
ints with the Bernoulli likelihood, and a target array of shape (N,) of ints with the Categorical likelihood.

7.7.2 ab.baselayers

Base Classes for Layers.

class aboleth.baselayers.Layer
Bases: object

Layer base class.

This is an identity layer, and is primarily meant to be subclassed to construct more intersting layers.

__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer
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Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.baselayers.LayerComposite(*layers)
Bases: aboleth.baselayers.Layer

Composition of Layers.

Parameters *layers – the layers to compose. All must be of type Layer.

__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.baselayers.MultiLayer
Bases: object

Base class for layers that take multiple inputs as kwargs.

This is an Abstract class as there is no canonical identity for this layer (because it must do some kind of reduc-
tion).

__call__(**kwargs)
Construct the subgraph for this layer.

Parameters **kwargs – the inputs to this layer (Tensors)

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.baselayers.MultiLayerComposite(*layers)
Bases: aboleth.baselayers.MultiLayer

Composition of MultiLayers.

Parameters *layers – the layers to compose. First layer must be of type Multilayer, subsequent
layers must be of type Layer.

__call__(**kwargs)
Construct the subgraph for this layer.

Parameters **kwargs – the inputs to this layer (Tensors)

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

aboleth.baselayers.stack(l, *layers)
Stack multiple Layers.

This is a convenience function that acts as an alternative to the rshift operator implemented for Layers and
Multilayers. It is syntatically more compact for stacking large numbers of layers or lists of layers.
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The type of stacking (Layer or Multilayer) is dispatched on the first argument.

Parameters

• l (Layer or MultiLayer) – The first layer to stack. The type of this layer determines
the type of the output; MultiLayerComposite or LayerComposite.

• *layers – list of additional layers to stack. Must all be of type Layer, because function
composition only works with the first function having multiple arguments.

Returns result – A single layer that is the composition of the input layers.

Return type MultiLayerComposite or LayerComposite

7.7.3 ab.layers

Network layers and utilities.

class aboleth.layers.Activation(h=<function Activation.<lambda>>)
Bases: aboleth.baselayers.Layer

Activation function layer.

Parameters h (callable) – the element-wise activation function.

__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding=’SAME’, l1_reg=0.0,
l2_reg=0.0, use_bias=True, init_fn=’glorot_trunc’)

Bases: aboleth.layers.SampleLayer

A 2D convolution layer.

This layer uses maximum likelihood or maximum a-posteriori inference to learn the convolutional kernels and
biases, and so also returns complexity penalities (l1 or l2) for the weights and biases.

Parameters

• filters (int) – the dimension of the output of this layer (i.e. the number of filters in the
convolution).

• kernel_size (int, tuple or list) – width and height of the 2D convolution
window. Can be a single integer to specify the same value for all spatial dimensions.

• strides (int, tuple or list) – the strides of the convolution along the height and
width. Can be a single integer to specify the same value for all spatial dimensions

• padding (str) – One of ‘SAME’ or ‘VALID’. Defaults to ‘SAME’. The type of padding
algorithm to use.

• l1_reg (float) – the value of the l1 weight regularizer,

•••__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer
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Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.Conv2DVariational(filters, kernel_size, strides=(1, 1), padding=’SAME’,
prior_std=’glorot’, learn_prior=False,
use_bias=True)

Bases: aboleth.layers.SampleLayer

A 2D convolution layer, with variational inference.

(Does not currently support full covariance weights.)

Parameters

• filters (int) – the dimension of the output of this layer (i.e. the number of filters in the
convolution).

• kernel_size (int, tuple or list) – width and height of the 2D convolution
window. Can be a single integer to specify the same value for all spatial dimensions.

• strides (int, tuple or list) – the strides of the convolution along the height and
width. Can be a single integer to specify the same value for all spatial dimensions

• padding (str) – One of ‘SAME’ or ‘VALID’. Defaults to ‘SAME’. The type of padding
algorithm to use.

• prior_std (str, float) – the value of the weight prior standard deviation (𝜎 above).
The user can also provide a string to specify an initialisation function. Defaults to ‘glorot’.
If a string, must be one of ‘glorot’ or ‘autonorm’.

• learn_prior (bool, optional) – Whether to learn the prior standard deviation.

• use_bias (bool) – If true, also learn a bias weight, e.g. a constant offset weight.

__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.Dense(output_dim, l1_reg=0.0, l2_reg=0.0, use_bias=True, init_fn=’glorot’)
Bases: aboleth.layers.SampleLayer

Dense (fully connected) linear layer.

This implements a linear layer, and when called returns

𝑓(X) = XW + b

where X ∈ R𝑁×𝐷𝑖𝑛 , W ∈ R𝐷𝑖𝑛×𝐷𝑜𝑢𝑡 and b ∈ R𝐷𝑜𝑢𝑡 . This layer uses maximum likelihood or maximum
a-posteriori inference to learn the weights and biases, and so also returns complexity penalities (l1 or l2) for the
weights and biases.

Parameters

• output_dim (int) – the dimension of the output of this layer

• l1_reg (float) – the value of the l1 weight regularizer,
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•••__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.DenseNCP(output_dim, prior_std=1.0, learn_prior=False, use_bias=True,
latent_mean=0.0, latent_std=1.0)

Bases: aboleth.layers.DenseVariational

A DenseVariational layer with Noise Constrastive Prior.

This is basically just a DenseVariational layer, but with an added Kullback Leibler penalty on the latent
function, as derived in Equation (6) in “Reliable Uncertainty Estimates in Deep Neural Networks using Noise
Contrastive Priors” https://arxiv.org/abs/1807.09289.

This should be the last layer in a network, and needs to be used in conjuction with NCPContinuousPerturb
and/or NCPCategoricalPerturb layers (after an input layer). For example:

net = (
ab.InputLayer(name="X", n_samples=n_samples_) >>
ab.NCPContinuousPerturb() >>
ab.Dense(output_dim=32) >>
ab.Activation(tf.nn.selu) >>
...
ab.Dense(output_dim=8) >>
ab.Activation(tf.nn.selu) >>
ab.DenseNCP(output_dim=1)

)

As you can see from this example, we have only made the last layer probabilistic/Bayesian (DenseNCP), and
have left the rest of the network maximum likelihood/MAP. This is also how the original authors of the algorithm
have implemented it. While this layer also works with DenseVariational layers (etc.) this is not how is
has been originally implemented, and the contribution of uncertainty from these layers to the latent function will
not be accounted for in this layer. This is because the nonlinear activations between layers make evaluating this
density intractable, unless we had something like normalising flows.

Parameters

• output_dim (int) – the dimension of the output of this layer

• prior_std (str, float) – the value of the weight prior standard deviation (𝜎 above).
The user can also provide a string to specify an initialisation function. Defaults to ‘glorot’.
If a string, must be one of ‘glorot’ or ‘autonorm’.

• learn_prior (bool, optional) – Whether to learn the prior on the weights.

• use_bias (bool) – If true, also learn a bias weight, e.g. a constant offset weight.

• latent_mean (float) – The prior mean over the latent function(s) on the output of this
layer. This specifies what value the latent function should take away from the support of the
training data.

• latent_std (float) – The prior standard deviation over the latent function(s) on the
output of this layer. This controls the strength of the regularisation away from the latent
mean.
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Note: This implementation is inspired by: https://github.com/brain-research/ncp/blob/master/ncp/models/bbb_
ncp.py

__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.DenseVariational(output_dim, prior_std=1.0, learn_prior=False,
full=False, use_bias=True)

Bases: aboleth.layers.SampleLayer3

A dense (fully connected) linear layer, with variational inference.

This implements a dense linear layer,

𝑓(X) = XW + b

where prior, 𝑝(·), and approximate posterior, 𝑞(·) distributions are placed on the weights and also the biases.
Here X ∈ R𝑁×𝐷𝑖𝑛 , W ∈ R𝐷𝑖𝑛×𝐷𝑜𝑢𝑡 and b ∈ R𝐷𝑜𝑢𝑡 . By default, the same Normal prior is placed on each of
the layer weights and biases,

𝑤𝑖𝑗 ∼ 𝒩 (0, 𝜎2), 𝑏𝑗 ∼ 𝒩 (0, 𝜎2),

and a different Normal posterior is learned for each of the layer weights and biases,

𝑤𝑖𝑗 ∼ 𝒩 (𝑚𝑖𝑗 , 𝑐𝑖𝑗), 𝑏𝑗 ∼ 𝒩 (𝑙𝑗 , 𝑜𝑗).

We also have the option of placing full-covariance Gaussian posteriors on the input dimension of the weights,

w𝑗 ∼ 𝒩 (m𝑗 ,C𝑗),

where m𝑗 ∈ R𝐷𝑖𝑛 and C𝑗 ∈ R𝐷𝑖𝑛×𝐷𝑖𝑛 .

This layer will use variational inference to learn the posterior parameters, and optionally the prior_std
parameter can be learned if learn_prior is set to True. The given value is then used to initialize.

Whenever this layer is called, it will return the result,

𝑓 (𝑠)(X) = XW(𝑠) + b(𝑠)

with samples from the posteriors, W(𝑠) ∼ 𝑞(W) and b(𝑠) ∼ 𝑞(b). The number of samples, s, can be controlled
by using the n_samples argument in an InputLayer used to feed the first layer of a model, or by tiling X
on the first dimension. This layer also returns the result of KL[𝑞‖𝑝] for all parameters.

Parameters

• output_dim (int) – the dimension of the output of this layer

• prior_std (str, float) – the value of the weight prior standard deviation (𝜎 above).
The user can also provide a string to specify an initialisation function. Defaults to ‘glorot’.
If a string, must be one of ‘glorot’ or ‘autonorm’.

• learn_prior (bool, optional) – Whether to learn the prior
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• full (bool) – If true, use a full covariance Gaussian posterior for each of the output
weight columns, otherwise use an independent (diagonal) Normal posterior.

• use_bias (bool) – If true, also learn a bias weight, e.g. a constant offset weight.

__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.DropOut(keep_prob, independent=True, observation_axis=1, alpha=False)
Bases: aboleth.baselayers.Layer

Dropout layer, Bernoulli probability of not setting an input to zero.

This is just a thin wrapper around tf.dropout

Parameters

• keep_prob (float, Tensor) – the probability of keeping an input. See tf.dropout.

• independent (bool) – Use independently sampled droput for each observation if True.
This may dramatically increase convergence, but will no longer only sample the latent func-
tion.

• observation_axis (int) – The axis that indexes the observations (N). This will as-
sume the obserations are on the second axis, i.e. (n_samples, N, ...). This is so
we can repeat the dropout pattern over observations, which has the effect of dropping out
weights consistently, thereby sampling the “latent function” of the layer. This is only active
if independent is set to False.

• alpha (bool) – Use alpha dropout (tf.contrib.nn.alpha_dropout) that maintains the self
normalising property of SNNs.

Note: If a more complex noise shape, or some other modification to dropout is required, you can use an
Activation layer. E.g. ab.Activation(lambda x: tf.nn.dropout(x, **your_args)).

__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.Embed(output_dim, n_categories, l1_reg=0.0, l2_reg=0.0, init_fn=’glorot’)
Bases: aboleth.layers.SampleLayer3

Dense (fully connected) embedding layer.

This layer works directly on inputs of K category indices rather than one-hot representations, for efficiency.
Note, this only works on a single column, see the PerFeature layer to embed multiple columns. E.g.
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cat_layers = [Embed(10, k) for k in x_categories]

net = (
ab.InputLayer(name="X", n_samples=n_samples_) >>
ab.PerFeature(*cat_layers) >>
ab.Activation(tf.nn.selu) >>
...

)

It is a dense linear layer,

𝑓(X) = XW

Here X ∈ N𝑁×𝐾
2 and W ∈ R𝐾×𝐷𝑜𝑢𝑡 . Though in code we represent X as a vector of indices in N𝑁×1

𝐾 . This
layer uses maximum likelihood or maximum a-posteriori inference to learn the weights and so also returns
complexity penalities (l1 or l2) for the weights.

Parameters

• output_dim (int) – the dimension of the output (embedding) of this layer

• n_categories (int) – the number of categories in the input variable

• l1_reg (float) – the value of the l1 weight regularizer,

••__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.EmbedVariational(output_dim, n_categories, prior_std=1.0,
learn_prior=False, full=False)

Bases: aboleth.layers.DenseVariational

Dense (fully connected) embedding layer, with variational inference.

This layer works directly on inputs of K category indices rather than one-hot representations, for efficiency.
Note, this only works on a single column, see the PerFeature layer to embed multiple columns. Eg.

cat_layers = [EmbedVar(10, k) for k in x_categories]

net = (
ab.InputLayer(name="X", n_samples=n_samples_) >>
ab.PerFeature(*cat_layers) >>
ab.Activation(tf.nn.selu) >>
...

)

This layer is a effectively a DenseVariational layer,

𝑓(X) = XW,

where prior, 𝑝(·), and approximate posterior, 𝑞(·) distributions are placed on the weights. Here X ∈ N𝑁×𝐾
2 and

W ∈ R𝐾×𝐷𝑜𝑢𝑡 . Though in code we represent X as a vector of indices in N𝑁×1
𝐾 . By default, the same Normal

prior is placed on each of the layer weights,

𝑤𝑖𝑗 ∼ 𝒩 (0, 𝜎2),
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and a different Normal posterior is learned for each of the layer weights,

𝑤𝑖𝑗 ∼ 𝒩 (𝑚𝑖𝑗 , 𝑐𝑖𝑗).

We also have the option of placing full-covariance Gaussian posteriors on the input dimension of the weights,

w𝑗 ∼ 𝒩 (m𝑗 ,C𝑗),

where m𝑗 ∈ R𝐾 and C𝑗 ∈ R𝐾×𝐾 .

This layer will use variational inference to learn the posterior parameters, and optionally the prior_std
parameter can be learned if learn_prior is set to True. The prior_std value given will be used for
initialization.

Whenever this layer is called, it will return the result,

𝑓 (𝑠)(X) = XW(𝑠)

with samples from the posterior, W(𝑠) ∼ 𝑞(W). The number of samples, s, can be controlled by using the
n_samples argument in an InputLayer used to feed the first layer of a model, or by tiling X on the first
dimension. This layer also returns the result of KL[𝑞‖𝑝] for all parameters.

Parameters

• output_dim (int) – the dimension of the output (embedding) of this layer

• n_categories (int) – the number of categories in the input variable

• prior_std (str, float) – the value of the weight prior standard deviation (𝜎 above).
The user can also provide a string to specify an initialisation function. Defaults to ‘glorot’.
If a string, must be one of ‘glorot’ or ‘autonorm’.

• learn_prior (bool, optional) – Whether to learn the prior

• full (bool) – If true, use a full covariance Gaussian posterior for each of the output
weight columns, otherwise use an independent (diagonal) Normal posterior.

__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.Flatten
Bases: aboleth.baselayers.Layer

Flattening layer.

Reshape and output a tensor to be always rank 3 (keeps first dimension which is samples, and second dimension
which is observations).

I.e. if X.shape is (3, 100, 5, 5, 3) this flatten the last dimensions to (3, 100, 75).

__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns
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• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.InputLayer(name, n_samples=1)
Bases: aboleth.baselayers.MultiLayer

Create an input layer.

This layer defines input kwargs so that a user may easily provide the right inputs to a complex set of layers.
It takes a tensor of shape (N, ...). The input is tiled along a new first axis creating a (n_samples, N,
...) tensor for propagating samples through a variational deep net.

Parameters

• name (string) – The name of the input. Used as the argument for input into the net.

• n_samples (int, Tensor) – The number of samples to propagate through the net-
work. We recommend making this a tf.placeholder so you can vary it as required.

Note: We recommend making n_samples a tf.placeholder so it can be varied between training and
prediction!

__call__(**kwargs)
Construct the subgraph for this layer.

Parameters **kwargs – the inputs to this layer (Tensors)

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.MaxPool2D(pool_size, strides, padding=’SAME’)
Bases: aboleth.baselayers.Layer

Max pooling layer for 2D inputs (e.g. images).

This is just a thin wrapper around tf.nn.max_pool

Parameters

• pool_size (tuple or list of 2 ints) – width and height of the pooling win-
dow.

• strides (tuple or list of 2 ints) – the strides of the pooling operation along
the height and width.

• padding (str) – One of ‘SAME’ or ‘VALID’. Defaults to ‘SAME’. The type of padding

__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.NCPCategoricalPerturb(n_categories, flip_prob=0.1)
Bases: aboleth.layers.SampleLayer

7.7. API 53

https://www.tensorflow.org/api_docs/python/tf/nn/max_pool


Aboleth Documentation, Release 0.9.0

Noise Constrastive Prior categorical variable perturbation layer.

This layer doubles the number of samples going through the model, and randomly flips the categories in the sec-
ond set of samples. This implements (the categorical version of) Equation 3 in “Reliable Uncertainty Estimates
in Deep Neural Networks using Noise Contrastive Priors” https://arxiv.org/abs/1807.09289.

The choice to randomly flip a category is drawn from a Bernoulli distribution per sample (with probability
flip_prob), then the new category is randomly chosen with probability 1 / n_categories.

This should be the first layer in a network after an input layer, and needs to be used in conjuction with
DenseNCP. Also, like the embedding layers, this only applies to one column of categorical inputs, so we
advise you use it with the PerFeature layer. For example:

cat_layers = [
(NCPCategoricalPerturb(k) >> Embed(10, k))
for k in x_categories

]

net = (
ab.InputLayer(name="X", n_samples=n_samples_) >>
ab.PerFeature(*cat_layers) >>
ab.Activation(tf.nn.selu) >>
ab.Dense(output_dim=32) >>
ab.Activation(tf.nn.selu) >>
...
ab.Dense(output_dim=8) >>
ab.Activation(tf.nn.selu) >>
ab.DenseNCP(output_dim=1)

)

Parameters input_noise (float, tf.Tensor, tf.Variable) – The standard devia-
tion of the random perturbation to add to the inputs.

__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.NCPContinuousPerturb(input_noise=1.0)
Bases: aboleth.layers.SampleLayer

Noise Constrastive Prior continous variable perturbation layer.

This layer doubles the number of samples going through the model, and adds a random normal perturbation
to the second set of samples. This implements Equation 3 in “Reliable Uncertainty Estimates in Deep Neural
Networks using Noise Contrastive Priors” https://arxiv.org/abs/1807.09289.

This should be the first layer in a network after an input layer, and needs to be used in conjuction with
DenseNCP. For example:

net = (
ab.InputLayer(name="X", n_samples=n_samples_) >>
ab.NCPContinuousPerturb() >>
ab.Dense(output_dim=32) >>

(continues on next page)
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(continued from previous page)

ab.Activation(tf.nn.selu) >>
...
ab.Dense(output_dim=8) >>
ab.Activation(tf.nn.selu) >>
ab.DenseNCP(output_dim=1)

)

Parameters input_noise (float, tf.Tensor, tf.Variable) – The standard devia-
tion of the random perturbation to add to the inputs.

__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.RandomArcCosine(n_features, lenscale=None, p=1, variational=False,
learn_lenscale=False)

Bases: aboleth.layers.RandomFourier

Random arc-cosine kernel layer.

Parameters

• n_features (int) – the number of unique random features, the actual output dimension
of this layer will be 2 * n_features.

• lenscale (float, ndarray, optional) – The length scales of the arc-cosine ker-
nel. This can be a scalar for an isotropic kernel, or a vector of shape (input_dim,) for an
automatic relevance detection (ARD) kernel. If not provided, it will be set to sqrt(1
/ input_dim) (this is similar to the ‘auto’ setting for a scikit learn SVM with a RBF
kernel). If learn_lenscale is True, lenscale will be its initial value.

• p (int) – The order of the arc-cosine kernel, this must be an integer greater than, or eual
to zero. 0 will lead to sigmoid-like kernels, 1 will lead to relu-like kernels, 2 quadratic-relu
kernels etc.

• variational (bool) – use variational features instead of random features, (i.e. VAR-
FIXED in [2]).

• learn_lenscale (bool) – Whether to learn the length scale. If True, the lenscale value
provided is used for initialisation.

Note: This should be followed by a dense layer to properly implement a kernel approximation.

See also:

[1] Cho, Youngmin, and Lawrence K. Saul. “Analysis and extension of arc-cosine kernels for large margin
classification.” arXiv preprint arXiv:1112.3712 (2011).

[2] Cutajar, K. Bonilla, E. Michiardi, P. Filippone, M. Random Feature Expansions for Deep Gaussian Pro-
cesses. In ICML, 2017.
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__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.RandomFourier(n_features, kernel)
Bases: aboleth.layers.SampleLayer3

Random Fourier feature (RFF) kernel approximation layer.

Parameters

• n_features (int) – the number of unique random features, the actual output dimension
of this layer will be 2 * n_features.

• kernel (kernels.ShiftInvariant) – the kernel object that yeilds the random sam-
ples from the fourier spectrum of a particular kernel to approximate. See the ab.kernels
module.

Note: This should be followed by a dense layer to properly implement a kernel approximation.

__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.SampleLayer
Bases: aboleth.baselayers.Layer

Sample Layer base class.

This is the base class for layers that build upon stochastic (variational) nets. These expect rank >= 3 input
Tensors, where the first dimension indexes the random samples of the stochastic net.

__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.layers.SampleLayer3
Bases: aboleth.layers.SampleLayer

Special case of SampleLayer restricted to rank == 3 input Tensors.

__call__(X)
Construct the subgraph for this layer.
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Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

7.7.4 ab.hlayers

Higher-order neural network layers (made from other layers).

class aboleth.hlayers.Concat(*layers)
Bases: aboleth.baselayers.MultiLayer

Concatenates the output of multiple layers.

Parameters layers ([MultiLayer]) – The layers to concatenate.

__call__(**kwargs)
Construct the subgraph for this layer.

Parameters **kwargs – the inputs to this layer (Tensors)

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.hlayers.PerFeature(*layers, slices=None)
Bases: aboleth.baselayers.Layer

Concatenate multiple layers with sliced inputs.

Each layer will recieve a slice along the last axis of the input to the new function. In other words,
PerFeature(l1, l2)(X) will call l1(X[..., 0]) and l2(X[..., 1]) then concatenate their
outputs into a single tensor. This is mostly useful for simplifying embedding multiple categorical inputs that are
stored columnwise in the same 2D tensor.

This function assumes the tensor being provided is 3D.

Parameters

• layers ([Layer]) – The layers to concatenate.

• slices ([slice]) – The slices into X to give to each layer, this has to be the same length
as layers. If this is None, it will give columns of X to each layer, the number of columns is
determined by the number of layers.

__call__(X)
Construct the subgraph for this layer.

Parameters X (Tensor) – the input to this layer

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.hlayers.Sum(*layers)
Bases: aboleth.baselayers.MultiLayer

Sums multiple layers by adding their outputs.
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Parameters layers ([MultiLayer]) – The layers to add.

__call__(**kwargs)
Construct the subgraph for this layer.

Parameters **kwargs – the inputs to this layer (Tensors)

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

7.7.5 ab.kernels

Random kernel classes for use with the RandomKernel layers.

class aboleth.kernels.Matern(lenscale=None, learn_lenscale=False, p=1, seed=0)
Bases: aboleth.kernels.ShiftInvariant

Matern kernel approximation.

Parameters

• lenscale (float, ndarray, optional) – The length scales of the Matern ker-
nel. This can be a scalar for an isotropic kernel, or a vector of shape (input_dim,) for an
automatic relevance detection (ARD) kernel. If not provided, it will be set to sqrt(1
/ input_dim) (this is similar to the ‘auto’ setting for a scikit learn SVM with a RBF
kernel). If learn_lenscale is True, lenscale will be its initial value.

• learn_lenscale (bool, optional) – Whether to learn the length scale. If True,
the lenscale value provided (or its default) is used for initialisation.

• p (int) – a zero or positive integer specifying the number of the Matern kernel, e.g. p ==
0 results int a Matern 1/2 kernel, p == 1 results in the Matern 3/2 kernel etc.

• seed (int, optional) – The seed for the internal random number generator. Setting a
fixed seed ensures that remaking the tensorflow graph results in the same weights.

weights(input_dim, n_features, dtype=<class ’numpy.float32’>)
Generate the random fourier weights for this kernel.

Parameters

• input_dim (int) – the input dimension to this layer.

• n_features (int) – the number of unique random features, the actual output dimen-
sion of this layer will be 2 * n_features.

• dtype (np.dtype) – the dtype of the features to draw, this should match the observa-
tions.

Returns

• P (ndarray) – the random weights of the fourier features of shape (input_dim,
n_features).

• KL (Tensor, float) – the KL penalty associated with the parameters in this kernel (0.0).

class aboleth.kernels.RBF(lenscale=None, learn_lenscale=False, seed=0)
Bases: aboleth.kernels.ShiftInvariant

Radial basis kernel approximation.

Parameters
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• lenscale (float, ndarray, optional) – The length scales of the RBF kernel.
This can be a scalar for an isotropic kernel, or a vector of shape (input_dim,) for an au-
tomatic relevance detection (ARD) kernel. If not provided, it will be set to sqrt(1 /
input_dim) (this is similar to the ‘auto’ setting for a scikit learn SVM with a RBF ker-
nel). If learn_lenscale is True, lenscale will be its initial value.

• learn_lenscale (bool, optional) – Whether to learn the length scale. If True,
the lenscale value provided (or its default) is used for initialisation.

• seed (int, optional) – The seed for the internal random number generator. Setting a
fixed seed ensures that remaking the tensorflow graph results in the same weights.

weights(input_dim, n_features, dtype=<class ’numpy.float32’>)
Generate the random fourier weights for this kernel.

Parameters

• input_dim (int) – the input dimension to this layer.

• n_features (int) – the number of unique random features, the actual output dimen-
sion of this layer will be 2 * n_features.

• dtype (np.dtype) – the dtype of the features to draw, this should match the observa-
tions.

Returns

• P (ndarray) – the random weights of the fourier features of shape (input_dim,
n_features).

• KL (Tensor, float) – the KL penalty associated with the parameters in this kernel (0.0).

class aboleth.kernels.RBFVariational(lenscale=None, learn_lenscale=False, seed=0)
Bases: aboleth.kernels.ShiftInvariant

Variational Radial basis kernel approximation.

This kernel is similar to the RBF kernel, however we learn an independant Gaussian posterior distribution over
the kernel weights to sample from.

Parameters

• lenscale (float, ndarray, optional) – The length scales of the RBF kernel.
This can be a scalar for an isotropic kernel, or a vector of shape (input_dim,) for an au-
tomatic relevance detection (ARD) kernel. If not provided, it will be set to sqrt(1 /
input_dim) (this is similar to the ‘auto’ setting for a scikit learn SVM with a RBF ker-
nel). If learn_lenscale is True, lenscale will be the initial value of the prior precision of the
Fourier weight distribution.

• learn_lenscale (bool, optional) – Whether to learn the (prior) length scale. If
True, the lenscale value provided (or its default) is used for initialisation.

• seed (int, optional) – The seed for the internal random number generator. Setting a
fixed seed ensures that remaking the tensorflow graph results in the same weights.

weights(input_dim, n_features, dtype=<class ’numpy.float32’>)
Generate the random fourier weights for this kernel.

Parameters

• input_dim (int) – the input dimension to this layer.

• n_features (int) – the number of unique random features, the actual output dimen-
sion of this layer will be 2 * n_features.
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• dtype (np.dtype) – the dtype of the features to draw, this should match the observa-
tions.

Returns

• P (ndarray) – the random weights of the fourier features of shape (input_dim,
n_features).

• KL (Tensor, float) – the KL penalty associated with the parameters in this kernel.

class aboleth.kernels.ShiftInvariant(lenscale=None, learn_lenscale=False, seed=0)
Bases: object

Abstract base class for shift invariant kernel approximations.

Parameters

• lenscale (float, ndarray, optional) – The length scales of the shift invariant
kernel. This can be a scalar for an isotropic kernel, or a vector of shape (input_dim,) for an
automatic relevance detection (ARD) kernel. If learn_lenscale is True, lenscale will be its
initial value.

• learn_lenscale (bool, optional) – Whether to learn the length scale. If True,
the lenscale value provided (or its default) is used for initialisation.

• seed (int, optional) – The seed for the internal random number generator. Setting a
fixed seed ensures that remaking the tensorflow graph results in the same weights.

weights(input_dim, n_features, dtype=<class ’numpy.float32’>)
Generate the random fourier weights for this kernel.

Parameters

• input_dim (int) – the input dimension to this layer.

• n_features (int) – the number of unique random features, the actual output dimen-
sion of this layer will be 2 * n_features.

• dtype (np.dtype) – the dtype of the features to draw, this should match the observa-
tions.

Returns

• P (ndarray) – the random weights of the fourier features of shape (input_dim,
n_features).

• KL (Tensor, float) – the KL penalty associated with the parameters in this kernel.

7.7.6 ab.distributions

Helper functions for model parameter distributions.

aboleth.distributions.gaus_posterior(dim, std0, suffix=None)
Initialise a posterior Gaussian distribution with a diagonal covariance.

Even though this is initialised with a diagonal covariance, a full covariance will be learned, using a lower
triangular Cholesky parameterisation.

Parameters

• dim (tuple or list) – the dimension of this distribution.

• std0 (float) – the initial (unoptimized) diagonal standard deviation of this distribution.
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• suffix (str) – suffix to add to the names of the variables of the parameters of this distri-
bution.

Returns Q – the initialised posterior Gaussian object.

Return type tf.contrib.distributions.MultivariateNormalTriL

Note: This will make tf.Variables on the mean and covariance of the posterior. The initialisation of the mean
is zero, and the initialisation of the (lower triangular of the) covariance is from diagonal matrices with diagonal
elements taking the value of std0.

aboleth.distributions.kl_sum(q, p)
Compute the total KL between (potentially) many distributions.

I.e.
∑︀

𝑖 KL[𝑞𝑖||𝑝𝑖]

Parameters

• q (tf.distributions.Distribution) – A tensorflow Distribution object

• p (tf.distributions.Distribution) – A tensorflow Distribution object

Returns kl – the result of the sum of the KL divergences of the q and p distibutions.

Return type Tensor

aboleth.distributions.norm_posterior(dim, std0, suffix=None)
Initialise a posterior (diagonal) Normal distribution.

Parameters

• dim (tuple or list) – the dimension of this distribution.

• std0 (float, np.array) – the initial (unoptimized) standard deviation of this distri-
bution. Must be a scalar or have the same shape as dim.

• suffix (str) – suffix to add to the names of the variables of the parameters of this distri-
bution.

Returns Q – the initialised posterior Normal object.

Return type tf.distributions.Normal

Note: This will make tf.Variables on the mean standard deviation of the posterior. The initialisation of the
mean is zero and the initialisation of the standard deviation is simply std0 for each element.

aboleth.distributions.norm_prior(dim, std)
Make a prior (zero mean, isotropic) Normal distribution.

Parameters

• dim (tuple or list) – the dimension of this distribution.

• std (float, np.array, tf.Tensor, tf.Variable) – the prior standard devi-
ation of this distribution.

Returns P – the initialised prior Normal object.

Return type tf.distributions.Normal
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7.7.7 ab.impute

Layers that impute missing data.

class aboleth.impute.ExtraCategoryImpute(datalayer, masklayer, ncategory_list)
Bases: aboleth.impute.ImputeColumnWise

Impute missing values from categorical data with an extra category.

Given categorical data, a missing mask and a number of categories for each feature (last dimension), this will
assign missing values as an extra category equal to the number of categories. e.g. for 2 categories (0 and 1)
missing data will be assigned 2.

Parameters

• datalayer (callable) – A layer that returns a data tensor. Must be an InputLayer.

• masklayer (callable) – A layer that returns a boolean mask tensor where True values
are masked. Must be an InputLayer.

• ncategory_list (list) – A list that provides the total number of categories for each
feature (last dimension) of the input. Length of the list must be equal to the size of the last
dimension of X.

__call__(**kwargs)
Construct the subgraph for this layer.

Parameters **kwargs – the inputs to this layer (Tensors)

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.impute.ImputeColumnWise(datalayer, masklayer)
Bases: aboleth.impute.ImputeOp3

Abstract class for imputing column-wise from a vector or scalar.

This implements _impute2D and this calls the _impute_columns method that returns a vector or scalar to
impute X column-wise (as opposed to element-wise). You need to supply the _impute_columns method.

__call__(**kwargs)
Construct the subgraph for this layer.

Parameters **kwargs – the inputs to this layer (Tensors)

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.impute.ImputeOp3(datalayer, masklayer)
Bases: aboleth.baselayers.MultiLayer

Abstract Base Impute operation for rank 3 Tensors (samples, N, D).

These specialise MultiLayers and they expect a data InputLayer and a mask InputLayer. They return layers in
which the masked values have been imputed.

Parameters

• datalayer (callable) – A layer that returns a data tensor. Must be of form
f(**kwargs).
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• masklayer (callable) – A layer that returns a boolean mask tensor where True values
are masked. Must be of form f(**kwargs).

__call__(**kwargs)
Construct the subgraph for this layer.

Parameters **kwargs – the inputs to this layer (Tensors)

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.impute.MaskInputLayer(name)
Bases: aboleth.baselayers.MultiLayer

Create an input layer for a binary mask tensor.

This layer defines input kwargs so that a user may easily provide the right binary mask inputs to a complex set
of layers to enable imputation.

Parameters name (string) – The name of the input. Used as the agument for input into the net.

__call__(**kwargs)
Construct the subgraph for this layer.

Parameters **kwargs – the inputs to this layer (Tensors)

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.impute.MeanImpute(datalayer, masklayer)
Bases: aboleth.impute.ImputeColumnWise

Impute the missing values using the stochastic mean of their column.

Takes two layers, one the returns a data tensor and the other returns a mask layer. Returns a layer that returns a
tensor in which the masked values have been imputed as the column means calculated from the batch.

Parameters

• datalayer (callable) – A layer that returns a data tensor. Must be of form
f(**kwargs).

• masklayer (callable) – A layer that returns a boolean mask tensor where True values
are masked. Must be of form f(**kwargs).

__call__(**kwargs)
Construct the subgraph for this layer.

Parameters **kwargs – the inputs to this layer (Tensors)

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.impute.NormalImpute(datalayer, masklayer, loc, scale)
Bases: aboleth.impute.ImputeColumnWise

Impute the missing values using marginal Gaussians over each column.
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Takes two layers, one the returns a data tensor and the other returns a mask layer. Creates a layer that returns a
tensor in which the masked values have been imputed as random draws from the marginal Gaussians.

Parameters

• datalayer (callable) – A layer that returns a data tensor. Must be of form
f(**kwargs).

• masklayer (callable) – A layer that returns a boolean mask tensor where True values
are masked. Must be of form f(**kwargs).

• loc (float, array-like, tf.Variable) – A list of the global mean values of
each data column

• scale (float, array-like, tf.Variable) – A list of the global standard devi-
ation of each data column

Note: loc and scale can be tf.Variable if you wish to learn these statisics from the data.

__call__(**kwargs)
Construct the subgraph for this layer.

Parameters **kwargs – the inputs to this layer (Tensors)

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

class aboleth.impute.ScalarImpute(datalayer, masklayer, scalars)
Bases: aboleth.impute.ImputeColumnWise

Impute the missing values using a scalar for each column.

Takes two layers, one the returns a data tensor and the other returns a mask layer. Creates a layer that returns a
tensor in which the masked values have been imputed with a provided scalar value per colum.

Parameters

• datalayer (callable) – A layer that returns a data tensor. Must be an InputLayer.

• masklayer (callable) – A layer that returns a boolean mask tensor where True values
are masked. Must be an InputLayer.

• scalars (float, array-like, tf.Variable) – A scalar or an array of the val-
ues with which to impute each data column. This can be learned if it is a tf.Variable.

__call__(**kwargs)
Construct the subgraph for this layer.

Parameters **kwargs – the inputs to this layer (Tensors)

Returns

• Net (Tensor) – the output of this layer

• KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this layer.

7.7.8 ab.random

Random generators and state.
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class aboleth.random.SeedGenerator
Bases: object

Make new random seeds deterministically from a base random seed.

next()
Generate a random int using this object’s base state.

Returns result – an integer that can be used to seed other random states deterministically.

Return type int

set_hyperseed(hs)
Set the random seed state in this object.

Parameters hs (None, int, array_like) – seed the random state of this object, see
numpy.random.RandomState for valid inputs.

aboleth.random.endless_permutations(N)
Generate an endless sequence of permutations of the set [0, . . . , N).

If we call this N times, we will sweep through the entire set without replacement, on the (N+1)th call a new
permutation will be created, etc.

Parameters N (int) – the length of the set

Yields int – yeilds a random int from the set [0, . . . , N)

Examples

>>> perm = endless_permutations(5)
>>> type(perm)
<class 'generator'>
>>> p = next(perm)
>>> p < 5
True
>>> p2 = next(perm)
>>> p2 != p
True

aboleth.random.set_hyperseed(hs)
Set the global hyperseed from which to generate all other seeds.

Parameters hs (None, int, array_like) – seed the random state of the global hyperseed,
see numpy.random.RandomState for valid inputs.

7.7.9 ab.util

Package helper utilities.

aboleth.util.batch(feed_dict, batch_size, n_iter=10000, N_=None)
Create random batches for Stochastic gradients.

Feed dict data generator for SGD that will yeild random batches for a a defined number of iterations, which can
be infinite. This generator makes consecutive passes through the data, drawing without replacement on each
pass.

Parameters
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• feed_dict (dict of ndarrays) – The data with {tf.placeholder: data}
entries. This assumes all items have the same length!

• batch_size (int) – number of data points in each batch.

• n_iter (int, optional) – The number of iterations

• N (tf.placeholder (int), optional) – Place holder for the size of the dataset.
This will be fed to an algorithm.

Yields dict – with each element an array length batch_size, i.e. a subset of data, and an element
for N_. Use this as your feed-dict when evaluating a loss, training, etc.

aboleth.util.batch_prediction(feed_dict, batch_size)
Split the data in a feed_dict into contiguous batches for prediction.

Parameters

• feed_dict (dict of ndarrays) – The data with {tf.placeholder: data}
entries. This assumes all items have the same length!

• batch_size (int) – number of data points in each batch.

Yields

• ndarray – an array of shape approximately (batch_size,) of indices into the original data
for the current batch

• dict – with each element an array length batch_size, i.e. a subset of data. Use this as
your feed-dict when evaluating a model, prediction, etc.

Note: The exact size of the batch may not be batch_size, but the nearest size that splits the size of the data
most evenly.

aboleth.util.pos_variable(initial_value, name=None, **kwargs)
Make a tf.Variable that will remain positive.

Parameters

• initial_value (float, np.array, tf.Tensor) – the initial value of the Vari-
able.

• name (string) – the name to give the returned tensor.

• kwargs (dict) – optional arguments to give the created tf.Variable.

Returns var – a tf.Variable within a Tensor that will remain positive through training.

Return type tf.Tensor

aboleth.util.summary_histogram(values)
Add a summary histogram to TensorBoard.

This will add a summary histogram with name variable.name.

Parameters values (tf.Variable, tf.Tensor) – the Tensor to add to the summaries.

aboleth.util.summary_scalar(values)
Add a summary scalar to TensorBoard.

This will add a summary scalar with name variable.name.

Parameters values (tf.Variable, tf.Tensor) – the Tensor to add to the summaries.
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7.7.10 ab.datasets
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CHAPTER 8

Feedback

If you have any suggestions or questions about Aboleth feel free to email us at lachlan.mccalman@data61.csiro.au or
daniel.steinberg@data61.csiro.au.

If you encounter any errors or problems with Aboleth, please let us know! Open an Issue at the GitHub http://github.
com/determinant-io/aboleth main repository.
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