

Contents

	abimap
	Why use symbol versioning?

	How to add symbol versioning to my library?

	Installation:

	Usage:

	tl;dr

	Long version

	Import as a library:

	Documentation:

	References:

	Installation

	Usage
	tl;dr

	Long version

	Import as a library:

	Reference
	abimap package

	abimap

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	Changelog
	0.3.2 (2019-08-05)

	0.3.1 (2018-08-20)

	0.3.0 (2018-08-03)

	0.2.5 (2018-07-26)

	0.2.4 (2018-06-15)

	0.2.3 (2018-06-15)

	0.2.2 (2018-06-01)

	0.2.1 (2018-05-30)

	0.2.0 (2018-05-29)

	0.1.0 (2018-05-09)

Indices and tables

	Index

	Module Index

	Search Page

 [image: Documentation Status] [https://readthedocs.org/projects/abimap] [image: Travis-CI Build Status] [https://travis-ci.org/ansasaki/abimap] [image: Coverage Status] [https://coveralls.io/github/ansasaki/abimap?branch=master] [image: Coverage Status] [https://codecov.io/github/ansasaki/abimap]

abimap

A helper for library maintainers to use symbol versioning

Why use symbol versioning?

The main reason is to be able to keep the library [ABI] stable.

If a library is intended to be used for a long time, it will need updates for
eventual bug fixes and/or improvement.
This can lead to changes in the [API] and, in the worst case, changes to the
[ABI].

Using symbol versioning, it is possible to make compatible changes and keep the
applications working without recompiling.
If incompatible changes were made (breaking the [ABI]), symbol versioning allows both
incompatible versions to live in the same system without conflict.
And even more uncommon situations, like an application to be linked to
different (incompatible) versions of the same library.

For more information, I strongly recommend reading:

	[HOW_TO] How to write shared libraries, by Ulrich Drepper

How to add symbol versioning to my library?

Adding version information to the symbols is easy.
Keeping the [ABI] stable, unfortunately, is not. This project intends to help in the first part.

To add version information to symbols of a library, one can use version scripts (in Linux).
Version scripts are files used by linkers to map symbols to a given version.
It contains the symbols exported by the library grouped by the releases where they were introduced. For example:

LIB_EXAMPLE_1_0_0
 {
 global:
 symbol;
 another_symbol;
 local:
 *;
 };

In this example, the release LIB_EXAMPLE_1_0_0 introduces the symbols symbol and another_symbol.
The * wildcard in local catches all other symbols, meaning only symbol and another_symbol are globally exported as part of the library [API].

If a compatible change is made, it would introduce a new release, like:

LIB_EXAMPLE_1_0_0
{
 global:
 symbol;
 another_symbol;
 local:
 *;
};

LIB_EXAMPLE_1_1_0
{
 global:
 new_symbol;
} LIB_EXAMPLE_1_0_0;

The new release LIB_EXAMPLE_1_1_0 introduces the symbol new_symbol.
The * wildcard should be only in one version, usually in the oldest version.
The } LIB_EXAMPLE_1_0_0; part in the end of the new release means the new release depends on the old release.

Suppose a new incompatible version LIB_EXAMPLE_2_0_0 released after LIB_EXAMPLE_1_1_0. Its map would look like:

LIB_EXAMPLE_2_0_0
{
 global:
 a_newer_symbol;
 another_symbol;
 new_symbol;
 local:
 *;
};

The symbol symbol was removed (and that is why it was incompatible). And a new symbol was introduced, a_newer_symbol.

Note that all global symbols in all releases were merged in a unique new release.

Installation:

At the command line:

pip install abimap

Usage:

This project delivers a script, abimap. This is my first project in python, so feel free to point out ways to improve it.

The sub-commands update and new expect a list of symbols given in stdin. The list of symbols are words separated by non-alphanumeric characters (matches with the regular expression [a-zA-Z0-9_]+). For example:

symbol, another, one_more

and:

symbol
another
one_more

are valid inputs.

The last sub-command, check, expects only the path to the map file to be
checked.

tl;dr

$ abimap update lib_example.map < symbols_list

or (setting an output):

$ abimap update lib_example.map -o new.map < symbols_list

or:

$ cat symbols_list | abimap update lib_example.map -o new.map

or (to create a new map):

$ cat symbols_list | abimap new -r lib_example_1_0_0 -o new.map

or (to check the content of a existing map):

$ abimap check my.map

or (to check the current version):

$ abimap version

Long version

Running abimap -h will give:

usage: abimap [-h] {update,new,check,version} ...

Helper tools for linker version script maintenance

optional arguments:
 -h, --help show this help message and exit

Subcommands:
 {update,new,check,version}
 These subcommands have their own set of options
 update Update the map file
 new Create a new map file
 check Check the map file
 version Print version

Call a subcommand passing '-h' to see its specific options

Call a subcommand passing ‘-h’ to see its specific options
There are four subcommands, update, new, check, and version

Running abimap update -h will give:

usage: abimap update [-h] [-o OUT] [-i INPUT] [-d]
 [--verbosity {quiet,error,warning,info,debug} | --quiet | --debug]
 [-l LOGFILE] [-n NAME] [-v VERSION] [-r RELEASE]
 [--no_guess] [--allow-abi-break] [-f] [-a | --remove]
 file

positional arguments:
 file The map file being updated

optional arguments:
 -h, --help show this help message and exit
 -o OUT, --out OUT Output file (defaults to stdout)
 -i INPUT, --in INPUT Read from this file instead of stdio
 -d, --dry Do everything, but do not modify the files
 --verbosity {quiet,error,warning,info,debug}
 Set the program verbosity
 --quiet Makes the program quiet
 --debug Makes the program print debug info
 -l LOGFILE, --logfile LOGFILE
 Log to this file
 -n NAME, --name NAME The name of the library (e.g. libx)
 -v VERSION, --version VERSION
 The release version (e.g. 1_0_0 or 1.0.0)
 -r RELEASE, --release RELEASE
 The full name of the release to be used (e.g.
 LIBX_1_0_0)
 --no_guess Disable next release name guessing
 --allow-abi-break Allow removing symbols, and to break ABI
 -f, --final Mark the modified release as final, preventing later
 changes.
 -a, --add Adds the symbols to the map file.
 --remove Remove the symbols from the map file. This breaks the
 ABI.

A list of symbols is expected as the input. If a file is provided with '-i',
the symbols are read from the given file. Otherwise the symbols are read from
stdin.

Running abimap new -h will give:

usage: abimap new [-h] [-o OUT] [-i INPUT] [-d]
 [--verbosity {quiet,error,warning,info,debug} | --quiet | --debug]
 [-l LOGFILE] [-n NAME] [-v VERSION] [-r RELEASE]
 [--no_guess] [-f]

optional arguments:
 -h, --help show this help message and exit
 -o OUT, --out OUT Output file (defaults to stdout)
 -i INPUT, --in INPUT Read from this file instead of stdio
 -d, --dry Do everything, but do not modify the files
 --verbosity {quiet,error,warning,info,debug}
 Set the program verbosity
 --quiet Makes the program quiet
 --debug Makes the program print debug info
 -l LOGFILE, --logfile LOGFILE
 Log to this file
 -n NAME, --name NAME The name of the library (e.g. libx)
 -v VERSION, --version VERSION
 The release version (e.g. 1_0_0 or 1.0.0)
 -r RELEASE, --release RELEASE
 The full name of the release to be used (e.g.
 LIBX_1_0_0)
 --no_guess Disable next release name guessing
 -f, --final Mark the new release as final, preventing later
 changes.

A list of symbols is expected as the input. If a file is provided with '-i',
the symbols are read from the given file. Otherwise the symbols are read from
stdin.

Running abimap check -h will give:

usage: abimap check [-h]
 [--verbosity {quiet,error,warning,info,debug} | --quiet | --debug]
 [-l LOGFILE]
 file

positional arguments:
 file The map file to be checked

optional arguments:
 -h, --help show this help message and exit
 --verbosity {quiet,error,warning,info,debug}
 Set the program verbosity
 --quiet Makes the program quiet
 --debug Makes the program print debug info
 -l LOGFILE, --logfile LOGFILE
 Log to this file

Running abimap version -h will give:

usage: abimap version [-h]

optional arguments:
 -h, --help show this help message and exit

Import as a library:

To use abimap in a project as a library:

from abimap import symver

Documentation:

Check in Read the docs [https://abimap.readthedocs.io/en/latest/index.html]

References:

	ABI(1,2,3,4)

	https://en.wikipedia.org/wiki/Application_binary_interface

	API(1,2)

	https://en.wikipedia.org/wiki/Application_programming_interface

	HOW_TO

	https://www.akkadia.org/drepper/dsohowto.pdf, How to write shared libraries by Ulrich Drepper

Installation

At the command line:

pip install abimap

Usage

This project delivers a script, abimap. This is my first project in python, so feel free to point out ways to improve it.

The sub-commands update and new expect a list of symbols given in stdin. The list of symbols are words separated by non-alphanumeric characters (matches with the regular expression [a-zA-Z0-9_]+). For example:

symbol, another, one_more

and:

symbol
another
one_more

are valid inputs.

The last sub-command, check, expects only the path to the map file to be
checked.

tl;dr

$ abimap update lib_example.map < symbols_list

or (setting an output):

$ abimap update lib_example.map -o new.map < symbols_list

or:

$ cat symbols_list | abimap update lib_example.map -o new.map

or (to create a new map):

$ cat symbols_list | abimap new -r lib_example_1_0_0 -o new.map

or (to check the content of a existing map):

$ abimap check my.map

or (to check the current version):

$ abimap version

Long version

Running abimap -h will give:

usage: abimap [-h] {update,new,check,version} ...

Helper tools for linker version script maintenance

optional arguments:
 -h, --help show this help message and exit

Subcommands:
 {update,new,check,version}
 These subcommands have their own set of options
 update Update the map file
 new Create a new map file
 check Check the map file
 version Print version

Call a subcommand passing '-h' to see its specific options

Call a subcommand passing ‘-h’ to see its specific options
There are four subcommands, update, new, check, and version

Running abimap update -h will give:

usage: abimap update [-h] [-o OUT] [-i INPUT] [-d]
 [--verbosity {quiet,error,warning,info,debug} | --quiet | --debug]
 [-l LOGFILE] [-n NAME] [-v VERSION] [-r RELEASE]
 [--no_guess] [--allow-abi-break] [-f] [-a | --remove]
 file

positional arguments:
 file The map file being updated

optional arguments:
 -h, --help show this help message and exit
 -o OUT, --out OUT Output file (defaults to stdout)
 -i INPUT, --in INPUT Read from this file instead of stdio
 -d, --dry Do everything, but do not modify the files
 --verbosity {quiet,error,warning,info,debug}
 Set the program verbosity
 --quiet Makes the program quiet
 --debug Makes the program print debug info
 -l LOGFILE, --logfile LOGFILE
 Log to this file
 -n NAME, --name NAME The name of the library (e.g. libx)
 -v VERSION, --version VERSION
 The release version (e.g. 1_0_0 or 1.0.0)
 -r RELEASE, --release RELEASE
 The full name of the release to be used (e.g.
 LIBX_1_0_0)
 --no_guess Disable next release name guessing
 --allow-abi-break Allow removing symbols, and to break ABI
 -f, --final Mark the modified release as final, preventing later
 changes.
 -a, --add Adds the symbols to the map file.
 --remove Remove the symbols from the map file. This breaks the
 ABI.

A list of symbols is expected as the input. If a file is provided with '-i',
the symbols are read from the given file. Otherwise the symbols are read from
stdin.

Running abimap new -h will give:

usage: abimap new [-h] [-o OUT] [-i INPUT] [-d]
 [--verbosity {quiet,error,warning,info,debug} | --quiet | --debug]
 [-l LOGFILE] [-n NAME] [-v VERSION] [-r RELEASE]
 [--no_guess] [-f]

optional arguments:
 -h, --help show this help message and exit
 -o OUT, --out OUT Output file (defaults to stdout)
 -i INPUT, --in INPUT Read from this file instead of stdio
 -d, --dry Do everything, but do not modify the files
 --verbosity {quiet,error,warning,info,debug}
 Set the program verbosity
 --quiet Makes the program quiet
 --debug Makes the program print debug info
 -l LOGFILE, --logfile LOGFILE
 Log to this file
 -n NAME, --name NAME The name of the library (e.g. libx)
 -v VERSION, --version VERSION
 The release version (e.g. 1_0_0 or 1.0.0)
 -r RELEASE, --release RELEASE
 The full name of the release to be used (e.g.
 LIBX_1_0_0)
 --no_guess Disable next release name guessing
 -f, --final Mark the new release as final, preventing later
 changes.

A list of symbols is expected as the input. If a file is provided with '-i',
the symbols are read from the given file. Otherwise the symbols are read from
stdin.

Running abimap check -h will give:

usage: abimap check [-h]
 [--verbosity {quiet,error,warning,info,debug} | --quiet | --debug]
 [-l LOGFILE]
 file

positional arguments:
 file The map file to be checked

optional arguments:
 -h, --help show this help message and exit
 --verbosity {quiet,error,warning,info,debug}
 Set the program verbosity
 --quiet Makes the program quiet
 --debug Makes the program print debug info
 -l LOGFILE, --logfile LOGFILE
 Log to this file

Running abimap version -h will give:

usage: abimap version [-h]

optional arguments:
 -h, --help show this help message and exit

Import as a library:

To use abimap in a project as a library:

from abimap import symver

Reference

	abimap package
	Submodules

	abimap.main module

	abimap.symver module

	Module contents

	abimap
	abimap package
	Submodules

	abimap.main module

	abimap.symver module

	Module contents

abimap package

Submodules

abimap.main module

Entrypoint used to generate the command line application

	
abimap.main.main()

	

abimap.symver module

	
class abimap.symver.Map(filename=None, logger=None)

	Bases: object

A linker map (version script) representation

This class is an internal representation of a version script.
It is intended to be initialized by calling the method read() and
passing the path to a version script file.
The parser will parse the file and check the file syntax, creating a list of
releases (instances of the Release class), which is stored in releases.

	Variables

	
	init – Indicates if the object was initialized by calling
read()

	logger – The logger object; can be specified in the constructor

	filename – Holds the name (path) of the file read

	lines – A list containing the lines of the file

	
all_global_symbols()

	Returns all global symbols from all releases contained in the Map
object

	Returns

	A set containing all global symbols in all releases

	
check()

	Check the map structure.

Reports errors found in the structure of the map in form of warnings.

	
dependencies()

	Construct the dependencies lists

Contruct a list of dependency lists. Each dependency list contain the
names of the releases in a dependency path.
The heads of the dependencies lists are the releases not refered as a
previous release in any release.

	Returns

	A list containing the dependencies lists

	
duplicates()

	Find and return a list of duplicated symbols for each release

If no duplicates are found, return an empty list

	Returns

	A list of tuples [(release, [(scope, [duplicates])])]

	
guess_latest_release()

	Try to guess the latest release

It uses the information found in the releases present in the version
script read. It tries to find the latest release using heuristics.

	Returns

	A list [release, prefix, suffix, version[CUR, AGE, REV]]

	
guess_name(new_release, abi_break=False, guess=False)

	Use the given information to guess the name for the new release

	The two parts necessary to make the release name:

	
	The new prefix: Usually the library name (e.g. LIBX)

	The new suffix: The version information (e.g. _1_2_3)

	If the new release is not provided, try a guess strategy:

	
	If the new prefix is not provided:

	
	Try to find a common prefix between release names

	Try to find latest release

	If the new suffix is not provided:

	
	Try to find latest release version and bump

	Parameters

	
	new_release – String, the name of the new release. If this is

	abi_break – Boolean, indicates if the ABI was broken

	guess – Boolean, indicates if should try to guess

	Returns

	The guessed release name (new prefix + new suffix)

	
parse(lines)

	A simple version script parser.

This is the main initializator of the releases list.
This simple parser receives the lines of a given version script, check its
syntax, and construct the list of releases.
Some semantic aspects are checked, like the existence of the * wildcard
in global scope and the existence of duplicated release names.

It works by running a finite state machine:

	The parser states. Can be:

	
	name: The parser is searching for a release name or EOF

	opening: The parser is searching for the release opening {

	element: The parser is searching for an identifier name or }

	element_closer: The parser is searching for : or ;

	previous: The parser is searching for previous release name

	previous_closer: The parser is searching for ;

	Parameters

	lines – The lines of a version script file

	
read(filename)

	Read a linker map file (version script) and store the obtained releases

Obtain the lines of the file and calls parse() to parse the file

	Parameters

	filename – The path to the file to be read

	Raises

	ParserError – Raised when a syntax error is found in the file

	
sort_releases_nice(top_release)

	Sort the releases contained in a map file putting the dependencies of
top_release first. This changes the order of the list in
releases.

	Parameters

	top_release – The release whose dependencies should be prioritized

	
exception abimap.symver.ParserError(filename, context, line, column, message)

	Bases: exceptions.Exception

Exception type raised by the map parser

Used mostly to keep track where an error was found in the given file

	Variables

	
	filename – The name (path) of the file being parsed

	context – The line where the error was detected

	line – The index of the line where the error was detected

	column – The index of the column where the error was detected

	message – The error message

	
class abimap.symver.Release

	Bases: object

A internal representation of a release version and its symbols

A release is usually identified by the library name (suffix) and the release
version (suffix). A release contains symbols, grouped by their visibility
scope (global or local).

In this class the symbols of a release are stored in a list of dictionaries
mapping a visibility scope name (e.g. “global”) to a list of the contained
symbols:

([{"global": [symbols]}, {"local": [local_symbols]}])

	Variables

	
	name – The release name

	previous – The previous release to which this release is dependent

	symbols – The symbols contained in the release, grouped by the visibility
scope.

	
duplicates()

	

	
class abimap.symver.Single_Logger

	Bases: object

A singleton logger for the module

This class is a singleton logger factory. It takes advantage of the
uniqueness of class attributes to hold a unique instance of the logger for
the module.
It logs to the default log output, and prints WARNING and ERROR messages to
stderr.
It allows the caller to provide a file to receive the log (the messages will
be logged by all handlers: to stderr if WARNING or ERROR, to default log,
and to the provided file)

	Variables

	__instance – Holds the unique instance given by the factory when called.

	
classmethod getLogger(name, filename=None)

	Get the unique instance of the logger

	Parameters

	name – The name of the module (usually just __name__)

	Returns

	An instance of logging.Logger

	
abimap.symver.bump_version(version, abi_break)

	Bump a version depending if the ABI was broken or not

If the ABI was broken, CUR is bumped; AGE and REV are set to zero.
Otherwise, CUR is kept, AGE is bumped, and REV is set to zero.
This also works with versions without the REV component (e.g. [1, 4, None])

	Parameters

	
	version – A list in format [CUR, AGE, REV]

	abi_break – A boolean indication if the ABI was broken

	Returns

	A list in format [CUR, AGE, REV]

	
abimap.symver.check(args)

	‘check’ subcommand

Check the content of a symbol version script

	Parameters

	args – Arguments given in command line parsed by argparse

	
abimap.symver.check_files(out_arg, out_name, in_arg, in_name, dry)

	Check if output and input are the same file. Create a backup if so.

	Parameters

	
	out_arg – The name of the option used to receive output file name

	out_name – The received string as output file path

	in_arg – The name of the option used to receive input file name

	in_name – The received string as input file path

	
abimap.symver.clean_symbols(symbols)

	Receives a list of lines read from the input and returns a list of words

	Parameters

	symbols – A list of lines containing symbols

	Returns

	A list of the obtained symbols

	
abimap.symver.get_arg_parser()

	Get a parser for the command line arguments

The parser is capable of checking requirements for the arguments and
possible incompatible arguments.

	Returns

	A parser for command line arguments. (argparse.ArgumentParser)

	
abimap.symver.get_info_from_args(args)

	Get the release information from the provided arguments

It is possible to set the new release name to be used through the command
line arguments.

	Parameters

	args – Arguments given in command line parsed by argparse

	
abimap.symver.get_info_from_release_string(release)

	Get the information from a release name

The given string is split in a prefix (usually the name of the lib) and a
suffix (the version part, e.g. ‘_1_4_7’). A list with the version info
converted to ints is also contained in the returned list.

	Parameters

	release – A string in format ‘LIBX_1_0_0’ or similar

	Returns

	A list in format [release, prefix, suffix, [CUR, AGE, REV]]

	
abimap.symver.get_version_from_string(version_string)

	Get the version numbers from a string

	Parameters

	version_string – A string composed by numbers separated by non alphanumeric characters (e.g. 0_1_2 or 0.1.2)

	Returns

	A list of the numbers in the string

	
abimap.symver.new(args)

	‘new’ subcommand

Create a new version script file containing the provided symbols.

	Parameters

	args – Arguments given in command line parsed by argparse

	
abimap.symver.update(args)

	Given the new list of symbols, update the map

	The new map will be generated by the following rules:

	
	If new symbols are added, a new release is created containing the new
symbols. This is a compatible update.

	If a previous existing symbol is removed, then all releases are
unified in a new release. This is an incompatible change, the SONAME
of the library should be bumped

The symbols provided are considered all the exported symbols in the
new version. Such set of symbols is compared to the previous existing
symbols. If symbols are added, but nothing removed, it is a compatible
change. Otherwise, it is an incompatible change and the SONAME of the
library should be bumped.

If –add is provided, the symbols provided are considered new symbols to be
added. This is a compatible change.

If –remove is provided, the symbols provided are considered the symbols to
be removed. This is an incompatible change and the SONAME of the library
should be bumped.

	Parameters

	args – Arguments given in command line parsed by argparse

	
abimap.symver.version(args)

	‘version’ subcommand

Prints and returns the program name and version.

	Parameters

	args – Arguments given in command line parsed by argparse

	Returns

	A string containing the program name and version

Module contents

abimap

	abimap package
	Submodules

	abimap.main module

	abimap.symver module

	Module contents

abimap package

Submodules

abimap.main module

Entrypoint used to generate the command line application

	
abimap.main.main()

	

abimap.symver module

	
class abimap.symver.Map(filename=None, logger=None)

	Bases: object

A linker map (version script) representation

This class is an internal representation of a version script.
It is intended to be initialized by calling the method read() and
passing the path to a version script file.
The parser will parse the file and check the file syntax, creating a list of
releases (instances of the Release class), which is stored in releases.

	Variables

	
	init – Indicates if the object was initialized by calling
read()

	logger – The logger object; can be specified in the constructor

	filename – Holds the name (path) of the file read

	lines – A list containing the lines of the file

	
all_global_symbols()

	Returns all global symbols from all releases contained in the Map
object

	Returns

	A set containing all global symbols in all releases

	
check()

	Check the map structure.

Reports errors found in the structure of the map in form of warnings.

	
dependencies()

	Construct the dependencies lists

Contruct a list of dependency lists. Each dependency list contain the
names of the releases in a dependency path.
The heads of the dependencies lists are the releases not refered as a
previous release in any release.

	Returns

	A list containing the dependencies lists

	
duplicates()

	Find and return a list of duplicated symbols for each release

If no duplicates are found, return an empty list

	Returns

	A list of tuples [(release, [(scope, [duplicates])])]

	
guess_latest_release()

	Try to guess the latest release

It uses the information found in the releases present in the version
script read. It tries to find the latest release using heuristics.

	Returns

	A list [release, prefix, suffix, version[CUR, AGE, REV]]

	
guess_name(new_release, abi_break=False, guess=False)

	Use the given information to guess the name for the new release

	The two parts necessary to make the release name:

	
	The new prefix: Usually the library name (e.g. LIBX)

	The new suffix: The version information (e.g. _1_2_3)

	If the new release is not provided, try a guess strategy:

	
	If the new prefix is not provided:

	
	Try to find a common prefix between release names

	Try to find latest release

	If the new suffix is not provided:

	
	Try to find latest release version and bump

	Parameters

	
	new_release – String, the name of the new release. If this is

	abi_break – Boolean, indicates if the ABI was broken

	guess – Boolean, indicates if should try to guess

	Returns

	The guessed release name (new prefix + new suffix)

	
parse(lines)

	A simple version script parser.

This is the main initializator of the releases list.
This simple parser receives the lines of a given version script, check its
syntax, and construct the list of releases.
Some semantic aspects are checked, like the existence of the * wildcard
in global scope and the existence of duplicated release names.

It works by running a finite state machine:

	The parser states. Can be:

	
	name: The parser is searching for a release name or EOF

	opening: The parser is searching for the release opening {

	element: The parser is searching for an identifier name or }

	element_closer: The parser is searching for : or ;

	previous: The parser is searching for previous release name

	previous_closer: The parser is searching for ;

	Parameters

	lines – The lines of a version script file

	
read(filename)

	Read a linker map file (version script) and store the obtained releases

Obtain the lines of the file and calls parse() to parse the file

	Parameters

	filename – The path to the file to be read

	Raises

	ParserError – Raised when a syntax error is found in the file

	
sort_releases_nice(top_release)

	Sort the releases contained in a map file putting the dependencies of
top_release first. This changes the order of the list in
releases.

	Parameters

	top_release – The release whose dependencies should be prioritized

	
exception abimap.symver.ParserError(filename, context, line, column, message)

	Bases: exceptions.Exception

Exception type raised by the map parser

Used mostly to keep track where an error was found in the given file

	Variables

	
	filename – The name (path) of the file being parsed

	context – The line where the error was detected

	line – The index of the line where the error was detected

	column – The index of the column where the error was detected

	message – The error message

	
class abimap.symver.Release

	Bases: object

A internal representation of a release version and its symbols

A release is usually identified by the library name (suffix) and the release
version (suffix). A release contains symbols, grouped by their visibility
scope (global or local).

In this class the symbols of a release are stored in a list of dictionaries
mapping a visibility scope name (e.g. “global”) to a list of the contained
symbols:

([{"global": [symbols]}, {"local": [local_symbols]}])

	Variables

	
	name – The release name

	previous – The previous release to which this release is dependent

	symbols – The symbols contained in the release, grouped by the visibility
scope.

	
duplicates()

	

	
class abimap.symver.Single_Logger

	Bases: object

A singleton logger for the module

This class is a singleton logger factory. It takes advantage of the
uniqueness of class attributes to hold a unique instance of the logger for
the module.
It logs to the default log output, and prints WARNING and ERROR messages to
stderr.
It allows the caller to provide a file to receive the log (the messages will
be logged by all handlers: to stderr if WARNING or ERROR, to default log,
and to the provided file)

	Variables

	__instance – Holds the unique instance given by the factory when called.

	
classmethod getLogger(name, filename=None)

	Get the unique instance of the logger

	Parameters

	name – The name of the module (usually just __name__)

	Returns

	An instance of logging.Logger

	
abimap.symver.bump_version(version, abi_break)

	Bump a version depending if the ABI was broken or not

If the ABI was broken, CUR is bumped; AGE and REV are set to zero.
Otherwise, CUR is kept, AGE is bumped, and REV is set to zero.
This also works with versions without the REV component (e.g. [1, 4, None])

	Parameters

	
	version – A list in format [CUR, AGE, REV]

	abi_break – A boolean indication if the ABI was broken

	Returns

	A list in format [CUR, AGE, REV]

	
abimap.symver.check(args)

	‘check’ subcommand

Check the content of a symbol version script

	Parameters

	args – Arguments given in command line parsed by argparse

	
abimap.symver.check_files(out_arg, out_name, in_arg, in_name, dry)

	Check if output and input are the same file. Create a backup if so.

	Parameters

	
	out_arg – The name of the option used to receive output file name

	out_name – The received string as output file path

	in_arg – The name of the option used to receive input file name

	in_name – The received string as input file path

	
abimap.symver.clean_symbols(symbols)

	Receives a list of lines read from the input and returns a list of words

	Parameters

	symbols – A list of lines containing symbols

	Returns

	A list of the obtained symbols

	
abimap.symver.get_arg_parser()

	Get a parser for the command line arguments

The parser is capable of checking requirements for the arguments and
possible incompatible arguments.

	Returns

	A parser for command line arguments. (argparse.ArgumentParser)

	
abimap.symver.get_info_from_args(args)

	Get the release information from the provided arguments

It is possible to set the new release name to be used through the command
line arguments.

	Parameters

	args – Arguments given in command line parsed by argparse

	
abimap.symver.get_info_from_release_string(release)

	Get the information from a release name

The given string is split in a prefix (usually the name of the lib) and a
suffix (the version part, e.g. ‘_1_4_7’). A list with the version info
converted to ints is also contained in the returned list.

	Parameters

	release – A string in format ‘LIBX_1_0_0’ or similar

	Returns

	A list in format [release, prefix, suffix, [CUR, AGE, REV]]

	
abimap.symver.get_version_from_string(version_string)

	Get the version numbers from a string

	Parameters

	version_string – A string composed by numbers separated by non alphanumeric characters (e.g. 0_1_2 or 0.1.2)

	Returns

	A list of the numbers in the string

	
abimap.symver.new(args)

	‘new’ subcommand

Create a new version script file containing the provided symbols.

	Parameters

	args – Arguments given in command line parsed by argparse

	
abimap.symver.update(args)

	Given the new list of symbols, update the map

	The new map will be generated by the following rules:

	
	If new symbols are added, a new release is created containing the new
symbols. This is a compatible update.

	If a previous existing symbol is removed, then all releases are
unified in a new release. This is an incompatible change, the SONAME
of the library should be bumped

The symbols provided are considered all the exported symbols in the
new version. Such set of symbols is compared to the previous existing
symbols. If symbols are added, but nothing removed, it is a compatible
change. Otherwise, it is an incompatible change and the SONAME of the
library should be bumped.

If –add is provided, the symbols provided are considered new symbols to be
added. This is a compatible change.

If –remove is provided, the symbols provided are considered the symbols to
be removed. This is an incompatible change and the SONAME of the library
should be bumped.

	Parameters

	args – Arguments given in command line parsed by argparse

	
abimap.symver.version(args)

	‘version’ subcommand

Prints and returns the program name and version.

	Parameters

	args – Arguments given in command line parsed by argparse

	Returns

	A string containing the program name and version

Module contents

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/ansasaki/abimap/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

abimap could always use more documentation, whether as part of the
official abimap docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/ansasaki/abimap/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up abimap for local development.

	Fork the abimap repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/abimap.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv abimap
$ cd abimap/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 abimap tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check
https://travis-ci.org/ansasaki/abimap/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_abimap

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Anderson Toshiyuki Sasaki <ansasaki@redhat.com>

Contributors

None yet. Why not be the first?

Changelog

0.3.2 (2019-08-05)

	Fixed broken builds due to changes in warning output

	Changed tests to check error messages

	Added python 3.7 to testing matrix

	Added requirement to verify SNI when checking URLs in docs

0.3.1 (2018-08-20)

	Fixed bug when sorting releases: the older come first

	Added missing runtime requirement for setuptools

	Added manpage generation

0.3.0 (2018-08-03)

	Complete rename of the project to abimap

0.2.5 (2018-07-26)

	Add tests using different program names

	Use the command line application name in output strings

	Add a new entry point symver-smap for console scripts

	Skip tests which use caplog if pytest version is < 3.4

	Added an alias for pytest in setup.cfg. This fixed setup.py for test target

0.2.4 (2018-06-15)

	Removed dead code, removed executable file permission

	Removed appveyor related files

0.2.3 (2018-06-15)

	Removed shebangs from scripts

0.2.2 (2018-06-01)

	Fixed a bug in updates with provided release information

	Fixed a bug in get_info_from_release_string()

0.2.1 (2018-05-30)

	Fixed a bug where invalid characters were accepted in release name

0.2.0 (2018-05-29)

	Added version information in output files

	Added sub-command “version” to output name and version

	Added option “–final” to mark modified release as released

	Prevent releases marked with the special comment “# Released” to be modified

	Allow existing release update

	Detect duplicated symbols given as input

0.1.0 (2018-05-09)

	First release on PyPI.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 abimap	

 	
 	
 abimap.main	

 	
 	
 abimap.symver	

Index

 A
 | B
 | C
 | D
 | G
 | M
 | N
 | P
 | R
 | S
 | U
 | V

A

 	
 	abimap (module)

 	abimap.main (module)

 	
 	abimap.symver (module)

 	all_global_symbols() (abimap.symver.Map method)

B

 	
 	bump_version() (in module abimap.symver)

C

 	
 	check() (abimap.symver.Map method)

 	(in module abimap.symver)

 	
 	check_files() (in module abimap.symver)

 	clean_symbols() (in module abimap.symver)

D

 	
 	dependencies() (abimap.symver.Map method)

 	
 	duplicates() (abimap.symver.Map method)

 	(abimap.symver.Release method)

G

 	
 	get_arg_parser() (in module abimap.symver)

 	get_info_from_args() (in module abimap.symver)

 	get_info_from_release_string() (in module abimap.symver)

 	
 	get_version_from_string() (in module abimap.symver)

 	getLogger() (abimap.symver.Single_Logger class method)

 	guess_latest_release() (abimap.symver.Map method)

 	guess_name() (abimap.symver.Map method)

M

 	
 	main() (in module abimap.main)

 	
 	Map (class in abimap.symver)

N

 	
 	new() (in module abimap.symver)

P

 	
 	parse() (abimap.symver.Map method)

 	
 	ParserError

R

 	
 	read() (abimap.symver.Map method)

 	
 	Release (class in abimap.symver)

S

 	
 	Single_Logger (class in abimap.symver)

 	
 	sort_releases_nice() (abimap.symver.Map method)

U

 	
 	update() (in module abimap.symver)

V

 	
 	version() (in module abimap.symver)

Contents

	SYNOPSIS

	DESCRIPTION

	OPTIONS

	SUBCOMMANDS
	abimap update

	abimap new

	abimap check

	abimap version

	NOTES
	Why use symbol versioning?

	How to add symbol versioning to my library?

	References:

DESCRIPTION

abimap is a tool to generate and update linker scripts which add version
information to symbols exported by a shared library.

It is intended to be integrated as part of the build process to check for
changes in the set of exported symbols and update the symbol version linker
script accordingly.

The complete documentation can be found at https://abimap.readthedocs.io

NOTES

Why use symbol versioning?

The main reason is to be able to keep the library [ABI] stable.

If a library is intended to be used for a long time, it will need updates for
eventual bug fixes and/or improvement.
This can lead to changes in the [API] and, in the worst case, changes to the
[ABI].

Using symbol versioning, it is possible to make compatible changes and keep the
applications working without recompiling.
If incompatible changes were made (breaking the [ABI]), symbol versioning allows both
incompatible versions to live in the same system without conflict.
And even more uncommon situations, like an application to be linked to
different (incompatible) versions of the same library.

For more information, I strongly recommend reading:

	[HOW_TO] How to write shared libraries, by Ulrich Drepper

How to add symbol versioning to my library?

Adding version information to the symbols is easy.
Keeping the [ABI] stable, unfortunately, is not. This project intends to help in the first part.

To add version information to symbols of a library, one can use version scripts (in Linux).
Version scripts are files used by linkers to map symbols to a given version.
It contains the symbols exported by the library grouped by the releases where they were introduced. For example:

LIB_EXAMPLE_1_0_0
 {
 global:
 symbol;
 another_symbol;
 local:
 *;
 };

In this example, the release LIB_EXAMPLE_1_0_0 introduces the symbols symbol and another_symbol.
The * wildcard in local catches all other symbols, meaning only symbol and another_symbol are globally exported as part of the library [API].

If a compatible change is made, it would introduce a new release, like:

LIB_EXAMPLE_1_0_0
{
 global:
 symbol;
 another_symbol;
 local:
 *;
};

LIB_EXAMPLE_1_1_0
{
 global:
 new_symbol;
} LIB_EXAMPLE_1_0_0;

The new release LIB_EXAMPLE_1_1_0 introduces the symbol new_symbol.
The * wildcard should be only in one version, usually in the oldest version.
The } LIB_EXAMPLE_1_0_0; part in the end of the new release means the new release depends on the old release.

Suppose a new incompatible version LIB_EXAMPLE_2_0_0 released after LIB_EXAMPLE_1_1_0. Its map would look like:

LIB_EXAMPLE_2_0_0
{
 global:
 a_newer_symbol;
 another_symbol;
 new_symbol;
 local:
 *;
};

The symbol symbol was removed (and that is why it was incompatible). And a new symbol was introduced, a_newer_symbol.

Note that all global symbols in all releases were merged in a unique new release.

References:

	[ABI] https://en.wikipedia.org/wiki/Application_binary_interface

	[API] https://en.wikipedia.org/wiki/Application_programming_interface

	[HOW_TO] https://www.akkadia.org/drepper/dsohowto.pdf, How to write shared libraries by Ulrich Drepper

OPTIONS

	-h,–help:

	Print the available options and subcommands

SUBCOMMANDS

abimap update

Update an existing map file

abimap update [-h] [-o OUT] [-i INPUT] [-d]
 [--verbosity {quiet,error,warning,info,debug} | --quiet | --debug]
 [-l LOGFILE] [-n NAME] [-v VERSION]
 [-r RELEASE] [--no_guess] [--allow-abi-break]
 [-f] [-a | --remove]
 file

	file

	The map file being updated

	-o OUT, --out OUT

	Output file (defaults to stdout)

	-i INPUT, --in INPUT

	Read from this file instead of stdio

	-d, --dry

	Do everything, but do not modify the files

	--verbosity {quiet,error,warning,info,debug}

	Set the program verbosity

	--quiet

	Makes the program quiet

	--debug

	Makes the program print debug info

	-l LOGFILE, --logfile LOGFILE:

	Log to this file

	-n NAME, --name NAME

	The name of the library (e.g. libx)

	-v VERSION, --version VERSION

	The release version (e.g. 1_0_0 or 1.0.0)

	-r RELEASE, --release RELEASE

	The full name of the release to be used (e.g. LIBX_1_0_0)

	--no_guess

	Disable next release name guessing

	--allow-abi-break

	Allow removing symbols, and to break ABI

	-f, --final

	Mark the modified release as final, preventing later changes.

	-a, --add

	Adds the symbols to the map file.

	--remove

	Remove the symbols from the map file. This breaks the ABI.

abimap new

Create a new map file

abimap new [-h] [-o OUT] [-i INPUT] [-d]
 [--verbosity {quiet,error,warning,info,debug} | --quiet | --debug]
 [-l LOGFILE] [-n NAME] [-v VERSION] [-r RELEASE]
 [--no_guess] [-f]

	-o OUT, --out OUT

	Output file (defaults to stdout)

	-i INPUT, --in INPUT

	Read from this file instead of stdio

	-d, --dry

	Do everything, but do not modify the files

	--verbosity {quiet,error,warning,info,debug}

	Set the program verbosity

	--quiet

	Makes the program quiet

	--debug

	Makes the program print debug info

	-l LOGFILE, --logfile LOGFILE

	Log to this file

	-n NAME, --name NAME

	The name of the library (e.g. libx)

	-v VERSION, --version VERSION

	The release version (e.g. 1_0_0 or 1.0.0)

	-r RELEASE, --release RELEASE

	The full name of the release to be used (e.g. LIBX_1_0_0)

	--no_guess

	Disable next release name guessing

	-f, --final

	Mark the new release as final, preventing later changes.

abimap check

Check the syntax of a map file

abimap check [-h]
 [--verbosity {quiet,error,warning,info,debug} | --quiet | --debug]
 [-l LOGFILE]
 file

	file

	The map file to be checked

	--verbosity {quiet,error,warning,info,debug}

	Set the program verbosity

	--quiet

	Makes the program quiet

	--debug

	Makes the program print debug info

	-l LOGFILE, --logfile LOGFILE

	Log to this file

abimap version

Prints the tool version number

usage:

abimap version [-h]

SYNOPSIS

abimap [-h] {update,new,check,version} …

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 abimap

 		
 Why use symbol versioning?

 		
 How to add symbol versioning to my library?

 		
 Installation:

 		
 Usage:

 		
 tl;dr

 		
 Long version

 		
 Import as a library:

 		
 Documentation:

 		
 References:

 		
 Installation

 		
 Usage

 		
 tl;dr

 		
 Long version

 		
 Import as a library:

 		
 Reference

 		
 abimap package

 		
 Submodules

 		
 abimap.main module

 		
 abimap.symver module

 		
 Module contents

 		
 abimap

 		
 abimap package

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 Changelog

 		
 0.3.2 (2019-08-05)

 		
 0.3.1 (2018-08-20)

 		
 0.3.0 (2018-08-03)

 		
 0.2.5 (2018-07-26)

 		
 0.2.4 (2018-06-15)

 		
 0.2.3 (2018-06-15)

 		
 0.2.2 (2018-06-01)

 		
 0.2.1 (2018-05-30)

 		
 0.2.0 (2018-05-29)

 		
 0.1.0 (2018-05-09)

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

