

Welcome to Abaco’s Documentation!

Introduction:

	Welcome to Abaco
	What is Abaco

	Using Abaco

	Getting Started
	Account Creation and Software Installation

	Working with TACC OAuth

	Abaco Quickstart

Technical Guide:

	Overview

	Actor Registration
	Notes

	Examples

	Abaco Context & Container Runtime
	Context

	Runtime Environment

	Messages, Executions, and Logs
	Messages

	Executions

	Logs

	Search
	Metadata

	Inputs

	Search Examples

	Actor State
	State

	Utilizing State in Actors to Accomplish Something

	Examples

	Additional Work

	Actor Sharing and Nonces
	Permission Levels

	Public Actors

	Nonces

	Networks of Actors
	Actor Aliases

	Actor Events, Links and WebHooks

	Actor Configs

	Autoscaling Actors
	Official “sync” Hint

	API Reference

Samples And Recipes:

	Abaco Samples

	Reactor Recipes

Abaco Tools:

	Overview

	Abaco CLI

	Using Abaco from the TACC Cloud JupyterHub

Welcome to Abaco

What is Abaco

Abaco is an NSF-funded web service and distributed computing platform providing functions-as-a-service (FaaS)
to the research computing community. Abaco implements functions using the Actor Model of concurrent computation. In
Abaco, each actor is associated with a Docker image, and actor containers are executed in response to messages posted
to their inbox which itself is given by a URI exposed over HTTP.

Abaco will ultimately offer three primary higher-level capabilities on top of the underlying Actor model:

	Reactors for event-driven programming

	Asynchronous Executors for scaling out function calls within running applications, and

	Data Adapters for creating rationalized microservices from disparate and heterogeneous sources of data.

Reactors and Asynchronous Executors are available today while Data Adapters are still under active development.

Using Abaco

Abaco is in production and has been adopted by several projects. Abaco is available to researchers and students. To
learn more about the the system, including getting access, follow the instructions in Getting Started.

Getting Started

This Getting Started guide will walk you through the initial steps of setting up the necessary accounts and installing
the required software before moving to the Abaco Quickstart, where you will create and execute your first Abaco actor. If
you are already using Docker Hub and the TACC Cloud APIs, feel free to jump right to the Abaco Quickstart or check
out the Abaco Live Docs site [https://tacc.github.io/abaco-live-docs/].

	Account Creation and Software Installation

	Create a TACC account

	Create a Docker account

	Install the TACC Cloud Python SDK

	Working with TACC OAuth

	Create an OAuth Client

	Reuse an Existing Oauth Client

	Generate a Token

	Check Access to the TACC Cloud APIs

	Abaco Quickstart

	A Basic Python Function

	Building Images From a Dockerfile

	The FROM Instruction

	The RUN, ADD and CMD Instructions

	Registering an Actor

	Executing an Actor

	Retrieving the Logs

	Conclusion

Account Creation and Software Installation

Create a TACC account

The main instance of the Abaco platform is hosted at the Texas Advanced Computing Center (TACC [https://tacc.utexas.edu]).
TACC designs and deploys some of the world’s most powerful advanced computing technologies and innovative software
solutions to enable researchers to answer complex questions. To use the TACC-hosted Abaco service, please
create a TACC account [https://portal.tacc.utexas.edu/account-request] .

Create a Docker account

Docker [https://www.docker.com/] is an open-source container runtime providing operating-system-level
virtualization. Abaco pulls images for its actors from the public Docker Hub. To register actors
you will need to publish images on Docker Hub, which requires a Docker account [https://hub.docker.com/] .

Install the TACC Cloud Python SDK

To interact with the TACC-hosted Abaco platform in Python, we will leverage the TACC Cloud Python SDK. To install it,
simply run:

$ pip3 install agavepy

Attention

While agavepy works with both Python 2 and 3 we strongly recommend using Python 3.

Working with TACC OAuth

Authentication and authorization to the TACC Cloud APIs uses OAuth2 [https://oauth.net/2/], a widely-adopted web standard.
Our implementation of OAuth2 is designed to give you the flexibility you need to script and automate use of TACC
Cloud while keeping your access credentials and digital assets secure. This is covered in great detail in our
Developer Documentation but some key concepts will be highlighted here, interleaved with Python code.

Create an OAuth Client

The first step is to create an OAuth client. This is a one-time set up step, much like creating a TACC account. To do
it, we will use the TACC Cloud API Python SDK. First, import the Agave class and create python object called ag
that points to the TACC Cloud API server using your TACC username and password. Do so by typing the following in
a Python shell:

>>> from agavepy.agave import Agave
>>> ag = Agave(api_server='https://api.tacc.utexas.edu',
... username='your username',
... password='your password')

Once the object is instantiated, interact with it according to the API documentation and your specific usage needs.
For example, to create a new OAuth client we type the following:

>>> ag.clients.create(body={'clientName': 'enter a client name'})

You should see a response like:

{'_links': {'self': {'href': 'https://api.tacc.utexas.edu/clients/v2/abaco_quickstart'},
 'subscriber': {'href': 'https://api.tacc.utexas.edu/profiles/v2/apitest'},
 'subscriptions': {'href': 'https://api.tacc.utexas.edu/clients/v2/abaco_quickstart/subscriptions/'}},
 'callbackUrl': '',
 'consumerKey': 'pYV81QNBxkqeC6Nms3XBzk9UJuca',
 'consumerSecret': 'Oug0gdLa3a_Xt37_fwxO6ZGNffUa',
 'description': '',
 'name': 'abaco_quickstart',
 'tier': 'Unlimited'}

Record the consumerKey and consumerSecret in a secure place; you will use them over and over to generate Oauth tokens,
which are temporary credentials that you can use in place of putting your real credentials into code that
is scripting against the TACC APIs.

Reuse an Existing Oauth Client

Once you generate an OAuth client, you can re-use its key and secret:

>>> from agavepy.agave import Agave
>>> ag = Agave(api_server='https://api.tacc.utexas.edu',
... username='your username', password='your password',
... client_name='my_client',
... api_key='pYV81QNBxkqeC6Nms3XBzk9UJuca',
... api_secret='Oug0gdLa3a_Xt37_fwxO6ZGNffUa')

Generate a Token

With the ag object instantiated and an OAuth client created, we are ready to generate an OAuth token:

>>> ag.token.create()
Out[1]: 'c21199177da6dd4d14d659399a933f5'

Note that the token is automatically stored on the ag object for you. You are now ready to check your access to the
TACC Cloud APIs.

Check Access to the TACC Cloud APIs

The Agave object ag should now be configured to talk to all TACC Cloud APIs on your behalf. We can check that
our client is configured properly by making any API call. Here’s an example: Let’s retrieve the current
user’s profile.

>>> ag.profiles.get()
Out[1]:
{'email': 'aci-cic@tacc.utexas.edu',
 'first_name': 'API',
 'full_name': 'API Test',
 'last_name': 'Test',
 'mobile_phone': '',
 'phone': '',
 'status': '',
 'uid': 834517,
 'username': 'apitest'}

Abaco Quickstart

In this Quickstart, we will create an Abaco actor from a basic Python function. Then we will execute our actor on the
Abaco cloud and get the execution results.

A Basic Python Function

Suppose we want to write a Python function that counts words in a string. We might write something like this:

def string_count(message):
 words = message.split(' ')
 word_count = len(words)
 print('Number of words is: ' + str(word_count))

In order to process a message sent to an actor, we use the raw_message attribute of the context dictionary.
We can access it by using the get_context method from the actors module in agavepy.

For this example, create a new local directory to hold your work. Then, create a new file in this directory called
example.py. Add the following to this file:

example.py

from agavepy.actors import get_context

def string_count(message):
 words = message.split(' ')
 word_count = len(words)
 print('Number of words is: ' + str(word_count))

context = get_context()
message = context['raw_message']
string_count(message)

Building Images From a Dockerfile

To register this function as an Abaco actor, we create a docker image that contains the python function and
execute it as part of the default command.

We can build a Docker image from a text file called a Dockerfile. You can think of a Dockerfile as a recipe for
creating images. The instructions within a Dockerfile either add files/folders to the image, add metadata to the
image, or both.

The FROM Instruction

Create a new file called Dockerfile in the same directory as your example.py file.

We can use the FROM instruction to start our new image from a known image. This should be the first line of our
Dockerfile. We will start an official Python image:

FROM python:3.6

The RUN, ADD and CMD Instructions

We can run arbitrary Linux commands to add files to our image. We’ll run the pip command to install the agavepy
library in our image:

RUN pip install --no-cache-dir agavepy

(note: there is a abacosample image that contains Python and the agavepy library; see Abaco Samples for more
details)

We can also add local files to our image using the ADD instruction. To add the example.py file from our local
directory, we use the following instruction:

ADD example.py /example.py

The last step is to write the command from running the application, which is simply python /example.py. We use
the CMD instruction to do that:

CMD ["python", "/example.py"]

With that, our Dockerfile is now ready. This is what is looks like:

FROM python:3.6

RUN pip install --no-cache-dir agavepy
ADD example.py /example.py

CMD ["python", "/example.py"]

Now that we have our Dockerfile, we can build our image and push it to Docker Hub. To do so, we use the
docker build and docker push commands [note: user is your user on Docker, you must also $ docker login] :

$ docker build -t user/my_actor .
$ docker push user/my_actor

Registering an Actor

Now we are going to register the Docker image we just built as an Abaco actor. To do this, we will use the Agave
client object we created above (see Working with TACC OAuth).

To register an actor using the agavepy library, we use the actors.add() method and pass the arguments describing
the actor we want to register through the body parameter. For example:

>>> from agavepy.agave import Agave
>>> ag = Agave(api_server='https://api.tacc.utexas.edu', token='<access_token>')
>>> my_actor = {"image": "user/my_actor", "name": "word_counter", "description": "Actor that counts words."}
>>> ag.actors.add(body=my_actor)

You should see a response like this:

{'_links': {'executions': 'https://api.tacc.utexas.edu/actors/v2/O08Nzb3mRA7Bz/executions',
'owner': 'https://api.tacc.utexas.edu/profiles/v2/jstubbs',
'self': 'https://api.tacc.utexas.edu/actors/v2/O08Nzb3mRA7Bz'},
'createTime': '2018-07-03 22:41:29.563024',
'defaultEnvironment': {},
'description': 'Actor that counts words.',
'id': 'O08Nzb3mRA7Bz',
'image': 'abacosamples/wc',
'lastUpdateTime': '2018-07-03 22:41:29.563024',
'mounts': [],
'name': 'word_counter',
'owner': 'jstubbs',
'privileged': False,
'state': {},
'stateless': False,
'status': 'SUBMITTED',
'statusMessage': '',
'type': 'none',
'useContainerUid': False}

Notes:

	Abaco assigned an id to the actor (in this case O08Nzb3mRA7Bz) and associated it with the image (in this case,
abacosamples/wc) which it began pulling from the public Docker Hub.

	Abaco returned a status of SUBMITTED for the actor; behind the scenes, Abaco is starting a worker container to
handle messages passed to this actor. The worker must initialize itself (download the image, etc) before the
actor is ready.

	When the actor’s worker is initialized, the status will change to READY.

At any point we can check the details of our actor, including its status, with the following:

>>> ag.actors.get(actorId='O08Nzb3mRA7Bz')

The response format is identical to that returned from the .add() method.

Executing an Actor

We are now ready to execute our actor by sending it a message. We built our actor to process a raw message string, so
that is what we will send, but there other options, including JSON and binary data. For more details, see the
Messages, Executions, and Logs section.

We send our actor a message using the sendMessage() method:

>>> ag.actors.sendMessage(actorId='O08Nzb3mRA7Bz',
 body={'message': 'Actor, please count these words.'})

Abaco queues up an execution for our actor and then responds with JSON, including an id for the execution contained in
the executionId:

{'_links': {'messages': 'https://api.tacc.utexas.edu/actors/v2/O08Nzb3mRA7Bz/messages',
 'owner': 'https://api.tacc.utexas.edu/profiles/v2/jstubbs',
 'self': 'https://api.tacc.utexas.edu/actors/v2/O08Nzb3mRA7Bz/executions/kA1P1m8NkkolK'},
 'executionId': 'kA1P1m8NkkolK',
 'msg': 'Actor, please count these words.'}

In general, an execution does not start immediately but is instead queued until a future time when a worker for the
actor can take the message and start an actor container with the message. We can retrieve the details about an
execution, including its status, using the getExecution() method:

>>> ag.actors.getExecution(actorId='O08Nzb3mRA7Bz', executionId='kA1P1m8NkkolK')

The response will be similar to the following:

{'_links': {'logs': 'https://api.tacc.utexas.edu/actors/v2/TACC-PROD_O08Nzb3mRA7Bz/executions/kA1P1m8NkkolK/logs',
 'owner': 'https://api.tacc.utexas.edu/profiles/v2/jstubbs',
 'self': 'https://api.tacc.utexas.edu/actors/v2/TACC-PROD_O08Nzb3mRA7Bz/executions/kA1P1m8NkkolK'},
 'actorId': 'O08Nzb3mRA7Bz',
 'apiServer': 'https://api.tacc.utexas.edu',
 'cpu': 0,
 'executor': 'jstubbs',
 'exitCode': 1,
 'finalState': {'Dead': False,
 'Error': '',
 'ExitCode': 1,
 'FinishedAt': '2018-07-03T22:56:30.605256563Z',
 'OOMKilled': False,
 'Paused': False,
 'Pid': 0,
 'Restarting': False,
 'Running': False,
 'StartedAt': '2018-07-03T22:56:30.474917256Z',
 'Status': 'exited'},
 'id': 'kA1P1m8NkkolK',
 'io': 0,
 'messageReceivedTime': '2018-07-03 22:56:29.075122',
 'runtime': 1,
 'startTime': '2018-07-03 22:56:29.558470',
 'status': 'COMPLETE',
 'workerId': 'e7B3JXDNxM6M0'}

Note that a status of COMPLETE indicates that the execution has finished and we are ready to retrieve our results.

Retrieving the Logs

The Abaco system collects all standard out from an actor execution and makes it available via the logs endpoint.
Let’s retrieve the logs from the execution we just made. We use the getExecutionLogs()
method, passing out actorId and our executionId:

>>> ag.actors.getExecutionLogs(actorId='O08Nzb3mRA7Bz', executionId='kA1P1m8NkkolK')

The response should be similar to the following:

{'_links': {'execution': 'https://api.tacc.utexas.edu/actors/v2/6PlMbDLa4zlON/executions/kGQk6RRJQBL3',
 'owner': 'https://api.tacc.utexas.edu/profiles/v2/jstubbs',
 'self': 'https://api.tacc.utexas.edu/actors/v2/6PlMbDLa4zlON/executions/kGQk6RRJQBL3/logs'},
 'logs': 'Number of words is: 5\n'}

We see our actor output Number of words is: 5, which is the expected result!

Conclusion

Congratulations! At this point you have created, registered and executed your first actor, but there is a lot more you
can do with the Abaco system. To learn more about the additional capabilities, please continue on to the Technical Guide.

Overview

The Technical Guide for Abaco provides a more detailed reference to Abaco’s advanced features.

	Actor Registration: Complete reference for actor registration and management.

	Messages, Executions, and Logs: Covers the different types of messages that can be sent to an Actor.

	Abaco Context & Container Runtime: Full details regarding the context injected into every Abaco actor.

	Actor State: Working with the State API to store state between actor executions.

	Actor Sharing and Nonces: Sharing actors with other users and using nonces to execute actors.

	Search: Using the database search functionality of Abaco.

	API Reference: Complete HTTP API reference.

Actor Registration

When registering an actor, the only required field is a reference to an image on the public Docker Hub. However,
there are several other properties that can be set. The following table provides a list of the configurable properties
available to all users and their descriptions.

	Property Name

	Description

	image

	The Docker image to associate with the actor. This should be a fully qualified
image available on the public Docker Hub. We encourage users to use to image
tags to version control their actors.

	name

	A user defined name for the actor.

	description

	A user defined description for the actor.

	default_environment

	The default environment is a set of key/value pairs to be injected into every
execution of the actor. The values can also be overridden when passing a
message to the reactor in the query parameters (see Messages, Executions, and Logs).

	hints

	A list of strings representing user-defined “tags” or metadata about the actor.
“Official” Abaco hints can be applied to control configurable aspects of the
actor runtime, such as the autoscaling algorithm used. (see Autoscaling Actors).

	link

	Actor identifier (id or alias) of an actor to “link” this actor’s events to.
Requires execute permissions on the linked actor, and cycles are not permitted.
(see Networks of Actors).

	privileged

	(True/False) - Whether the actor runs in privileged mode and has access to
the Docker daemon. Note: Setting this parameter to True requires elevated
permissions.

	stateless

	(True/False) - Whether the actor stores private state as part of its execution.
If True, the state API will not be available, but in a future release, the
Abaco service will be able to automatically scale reactor processes to execute
messages in parallel. The default value is False.

	token

	(True/False) - Whether to generate an OAuth access token for every execution of
this actor. Generating an OAuth token add about 500 ms of time to the execution
start up time.

*Note: the default value for the token attribute varies from
tenant to tenant. Always explicitly set the token attribute when registering
new actors to ensure the proper behavior.

	use_container_uid

	Run the actor using the UID/GID set in the Docker image. Note: Setting
this parameter to True requires elevated permissions.

	webhook

	URL to publish this actor’s events to.
(see Networks of Actors).

	log_ex

	Configure the amount of time that your logs will exist, in minutes.

	cron_schedule

	Create a schedule to automatically execute your actor (see Messages, Executions, and Logs).

	cron_on

	A switch to turn your cron schedule on or off

Notes

	The default_environment can be used to provide sensitive information to the actor that cannot be put in the image.

	In order to execute privileged actors or to override the UID/GID used when executing an actor container,
talk to the Abaco development team about your use case.

	Abaco supports running specific actors within a given tenant on dedicated and/or specialized hardware for performance reasons. It
accomplishes this through the use of actor queues. If you need to run actors on dedicated resources, talk to the
Abaco development team about your use case.

Examples

curl

Here is an example using curl; note that to set the default environment, we must pass content type application/json and
be sure to pass properly formatted JSON in the payload.

$ curl -H "Authorization: Bearer $TOKEN" \
-H "Content-Type: application/json" \
-d '{"image": "abacosamples/test", "name": "test", "description": "My test actor using the abacosamples image.", "default_environment":{"key1": "value1", "key2": "value2"} }' \
https://api.tacc.utexas.edu/actors/v2

Python

To register the same actor using the agavepy library, we use the actors.add() method and pass the same arguments
through the body parameter. In this case, the default_environment is just a standard Python dictionary where the
keys and values are str type. For example,

>>> from agavepy.agave import Agave
>>> ag = Agave(api_server='https://api.tacc.utexas.edu', token='<access_token>')
>>> actor = {"image": "abacosamples/test",
 "name": "test",
 "description": "My test actor using the abacosamples image registered using agavepy.",
 "default_environment":{"key1": "value1", "key2": "value2"} }
>>> ag.actors.add(body=actor)

Abaco Context & Container Runtime

In this section we describe the environment that Abaco actor containers can utilize during their execution.

Context

When an actor container is launched, Abaco injects information about the execution into a number of environment
variables. This information is collectively referred to as the context. The following table provides a complete
list of variable names and their description:

	Variable Name

	Description

	_abaco_actor_id

	The id of the actor.

	_abaco_actor_dbid

	The Abaco internal id of the actor.

	_abaco_container_repo

	The Docker image used to launch this actor container.

	_abaco_worker_id

	The id of the worker for the actor overseeing this execution.

	_abaco_execution_id

	The id of the current execution.

	_abaco_access_token

	An OAuth2 access token representing the user who registered the actor.

	_abaco_api_server

	The OAuth2 API server associated with the actor.

	_abaco_actor_state

	The value of the actor’s state at the start of the execution.

	_abaco_Content_Type

	The data type of the message (either ‘str’ or ‘application/json’).

	_abaco_username

	The username of the “executor”, i.e., the user who sent the message.

	_abaco_api_server

	The base URL for the Abaco API service.

	MSG

	The message sent to the actor, as a raw string.

Notes

	The _abaco_actor_dbid is unique to each actor. Using this id, an actor can distinguish itself from other actors registered with the same function providing for SPMD techniques.

	The _abaco_access_token is a valid OAuth token that actors can use to make authenticated requests to other TACC Cloud APIs during their execution.

	The actor can update its state during the course of its execution; see the section Actor State for more details.

	The “executor” of the actor may be different from the owner; see Actor Sharing and Nonces for more details.

Access from Python

The agavepy.actors module provides access to the above data in native Python objects.
Currently, the actors module provides the following utilities:

	
	get_context() - returns a Python dictionary with the following fields:

	
	raw_message - the original message, either string or JSON depending on the Contetnt-Type.

	content_type - derived from the original message request.

	message_dict - A Python dictionary representing the message (for Content-Type: application/json)

	execution_id - the ID of this execution.

	username - the username of the user that requested the execution.

	state - (for stateful actors) state value at the start of the execution.

	actor_id - the actor’s id.

	get_client() - returns a pre-authenticated agavepy.Agave object.

	update_state(val) - Atomically, update the actor’s state to the value val.

Runtime Environment

The environment in which an Abaco actor container runs has been built to accommodate a number of typical use cases
encountered in research computing in a secure manner.

Container UID and GID

When Abaco launches an actor container, it instructs Docker to execute the process using the UID and GID associated
with the TACC account of the owner of the actor. This practice guarantees that an Abaco actor will have exactly the
same accesses as the original author of the actor (for instance, access to files or directories on shared storage)
and that files created or updated by the actor process will be owned by the underlying API user.
Abaco API users that have elevated privilleges within the platform can override the UID and GID used to run the
actor when registering the actor (see Actor Registration).

POSIX Interface to the TACC WORK File System

When Abaco launches an actor container, it mounts the actor owner’s TACC WORK file system into the running container.
The owner’s work file system is made available at /work with the container. This gives the actor a POSIX
interface to the work file system.

Messages, Executions, and Logs

Once you have an Abaco actor created the next logical step is to send this actor
some type of job or message detailing what the actor should do. The act of sending
an actor information to execute a job is called sending a message. This sent
message can be raw string data, JSON data, or a binary message.

Once a message is sent to an Abaco actor, the actor will create an execution with
a unique execution_id tied to it that will show results, time running, and other
stats which will be listed below. Executions also have logs, and when the log are
called for, you’ll receive the command line logs of your running execution.
Akin to what you’d see if you and outputted a script to the command line.
Details on messages, executions, and logs are below.

Note: Due to each message being tied to a specific execution, each execution
will have exactly one message that can be processed.

Messages

A message is simply the message given to an actor with data that can be used to run
the actor. This data can be in the form of a raw message string, JSON, or binary.
Once this message is sent, the messaged Abaco actor will queue an execution of
the actor’s specified image.

Once off the queue, if your specified image has inputs for the messaged data,
then that messaged data will be visible to your program. Allowing you to set
custom parameters or inputs for your executions.

Sending a message

cURL

To send a message to the messages endpoint with cURL, you would do the following:

$ curl -H "Authorization: Bearer $TOKEN" \
-d "message=<your content here>" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/messages

Python

To send a message to the messages endpoint with AgavePy and Python, you would do the following:

ag.actors.sendMessage(actorId='<actor_id>',
 body={'message':'<your content here>'})

Results

These calls result in a JSON list similar to the following:

{'message': 'The request was successful',
 'result': {'_links': {'messages': 'https://api.tacc.utexas.edu/actors/v2/R0y3eYbWmgEwo/messages',
 'owner': 'https://api.tacc.utexas.edu/profiles/v2/apitest',
 'self': 'https://api.tacc.utexas.edu/actors/v2/R0y3eYbWmgEwo/executions/00wLaDX53WBAr'},
 'executionId': '00wLaDX53WBAr',
 'msg': '<your content here>'},
 'status': 'success',
 'version': '0.11.0'}

Get message count

It is possible to retrieve the current number of messages an actor has with the
messages end point.

cURL

The following retrieves the current number of messages an actor has:

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/messages

Python

To retrieve the current number of messages with AgavePy the following is done:

ag.actors.getMessages(actorId='<actor_id>')

Results

The result of getting the messages endpoint should be similar to:

{'message': 'The request was successful',
 'result': {'_links': {'owner': 'https://api.tacc.utexas.edu/profiles/v2/cgarcia',
 'self': 'https://api.tacc.utexas.edu/actors/v2/R4OR3KzGbRQmW/messages'},
 'messages': 12},
 'status': 'success',
 'version': '0.11.0'}

Binary Messages

An additional feature of the Abaco message system is the ability to post binary
data. This data, unlike raw string data, is sent through a Unix Named Pipe
(FIFO), stored at /_abaco_binary_data, and can be retrieved from within the
execution using a FIFO message reading function. The ability to read binary
data like this allows our end users to do numerous tasks such as reading in
photos, reading in code to be ran, and much more.

The following is an example of sending a JPEG as a binary message in order to
be read in by a TensorFlow image classifier and being returned predicted image
labels. For example, sending a photo of a golden retriever might yield, 80%
golden retriever, 12% labrador, and 8% clock.

This example uses Python and AgavePy in order to keep code in one script.

Python with AgavePy

Setting up an AgavePy object with token and API address information:

from agavepy.agave import Agave
ag = Agave(api_server='https://api.tacc.utexas.edu',
 username='<username>', password='<password>',
 client_name='JPEG_classifier',
 api_key='<api_key>',
 api_secret='<api_secret>')

ag.get_access_token()
ag = Agave(api_server='https://api.tacc.utexas.edu/', token=ag.token)

Creating actor with the TensorFlow image classifier docker image:

my_actor = {'image': 'notchristiangarcia/bin_classifier',
 'name': 'JPEG_classifier',
 'description': 'Labels a read in binary image'}
actor_data = ag.actors.add(body=my_actor)

The following creates a binary message from a JPEG image file:

with open('<path to jpeg image here>', 'rb') as file:
 binary_image = file.read()

Sending binary JPEG file to actor as message with the application/octet-stream header:

result = ag.actors.sendMessage(actorId=actor_data['id'],
 body={'binary': binary_image},
 headers={'Content-Type': 'application/octet-stream'})

The following returns information pertaining to the execution:

execution = ag.actors.getExecution(actorId=actor_data['id'],
 executionId = result['executionId'])

Once the execution has complete, the logs can be called with the following:

exec_info = requests.get('{}/actors/v2/{}/executions/{}'.format(url, actor_id, exec_id),
 headers={'Authorization': 'Bearer {}'.format(token)})

Sending binary from execution

Another useful feature of Abaco is the ability to write to a socket connected
to an Abaco endpoint from within an execution. This Unix Domain (Datagram)
socker is mounted in the actor container at /_abaco_results.sock.

In order to write binary data this socket you can use AgavePy functions,
in particular the send_bytes_result() function that sends bytes as single
result to the socket. Another useful function is the send_python_result()
function that allows you to send any Python object that can be pickled with
cloudpickle.

In order to retrieve these results from Abaco you can get the
/actor/<actor_id>/executions/<execution_id>/results endpoint. Each get of
the endpoint will result in exactly one result being popped and retrieved. An
empty result with be returned if the results queue is empty.

As a socket, the maximum size of a result is 131072 bytes. An execution can
send multiple results to the socket and said results will be added to a queue.
It is recommended to to return a reference to a file or object store.

As well, results are sent to the socket and available immediately, an execution
does not have to complete to pop a result. Results are given an expiry time of
60 minutes from creation.

cURL

To retrieve a result with cURL you would do the following:

$ curl -H "Authorization: Bearer $TOKEN" \
-d "message=<your content here>" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/executions/<execution_id>/results

Synchronous Messaging

Important

Support for Synchronous Messaging was added in version 1.1.0.

Starting with 1.1.0, Abaco provides support for sending a synchronous message to an actor; that is, the client
sends the actor a message and the request blocks until the execution completes. The result of the execution is returned
as an HTTP response to the original message request.

Synchronous messaging prevents the client from needing to poll the executions endpoint to determine when an execution
completes. By eliminating this polling and returning the response as soon as it is ready, the overall latency
is minimized.

While synchronous messaging can simplify client code and improve performance, it introduces some additional challenges.
Primarily, if the execution cannot be completed within the HTTP request/response window, the request will time out.
This window is usually about 30 seconds.

Warning

Abaco strictly adheres to message ordering and, in particular, synchronous messages do not skip to the front of the
actor’s message queue. Therefore, a synchronous message and all queued messages must be processed within the HTTP
timeout window. To avoid excessive synchronous message requests, Abaco will return a 400 level request if the actor
already has more than 3 queued messages at the time of the synchronous message request.

To send a synchronous message, the client appends _abaco_synchronous=true query parameter to the request; the rest of
the messaging semantics follows the rules and conventions of asynchronous messages.

cURL

The following example uses the curl command line client to send a synchronous message:

$ curl -H "Authorization: Bearer $TOKEN" \
-d "message=<your content here>" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/messages?_abaco_synchronous=true

As stated above, the request blocks until the execution (and all previous executions queued for the actor) completes.
To make the response to a synchronous message request, Abaco uses the following rules:

	If a (binary) result is registered by the actor for the execution, that result is returned with along with a content-type application/octet-stream.

	If no result is available when the execution completes, the logs associated with the execution are returned with content-type text/html (charset utf8 is assumed).

Executions

Once you send a message to an actor, that actor will create an execution for the actor
with the inputted data. This execution will be queued waiting for a worker to spool up
or waiting for a worker to be freed. When the execution is initially created it is
given an execution_id so that you can access information about it using the execution_id endpoint.

Access execution data

cURL

You can access the execution_id endpoint using cURL with the following:

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/executions/<execution_id>

Python

You can access the execution_id endpoint using AgavePy and Python with the following:

ag.actors.getExecution(actorId='<actor_id>',
 executionId='<execution_id>')

Results

Access the execution_id endpoint will result in something similar to the following:

{'message': 'Actor execution retrieved successfully.',
 'result': {'_links': {'logs': 'https://api.tacc.utexas.edu/actors/v2/R0y3eYbWmgEwo/executions/00wLaDX53WBAr/logs',
 'owner': 'https://api.tacc.utexas.edu/profiles/v2/apitest',
 'self': 'https://api.tacc.utexas.edu/actors/v2/R0y3eYbWmgEwo/executions/00wLaDX53WBAr'},
 'actorId': 'R0y3eYbWmgEwo',
 'apiServer': 'https://api.tacc.utexas.edu',
 'cpu': 7638363913,
 'executor': 'apitest',
 'exitCode': 1,
 'finalState': {'Dead': False,
 'Error': '',
 'ExitCode': 1,
 'FinishedAt': '2019-02-21T17:32:18.56680737Z',
 'OOMKilled': False,
 'Paused': False,
 'Pid': 0,
 'Restarting': False,
 'Running': False,
 'StartedAt': '2019-02-21T17:32:14.893485694Z',
 'Status': 'exited'},
 'id': '00wLaDX53WBAr',
 'io': 124776656,
 'messageReceivedTime': '2019-02-21 17:31:24.300900',
 'runtime': 11,
 'startTime': '2019-02-21 17:32:12.798836',
 'status': 'COMPLETE',
 'workerId': 'oQpeybmGRVNyB'},
 'status': 'success',
 'version': '0.11.0'}

List executions

Abaco allows users to retrieve all executions tied to an actor with the
executions endpoint.

cURL

List executions with cURL by getting the executions endpoint

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/executions

Python

To list executions with AgavePy the following is done:

ag.actors.listExecutions(actorId='<actor_id>')

Results

Calling the list of executions should result in something similar to:

{'message': 'Actor execution retrieved successfully.',
 'result': {'_links': {'logs': 'https://api.tacc.utexas.edu/actors/v2/R4OR3KzGbRQmW/executions/YqM3RPRoWqz3g/logs',
 'owner': 'https://api.tacc.utexas.edu/profiles/v2/apitest',
 'self': 'https://api.tacc.utexas.edu/actors/v2/R4OR3KzGbRQmW/executions/YqM3RPRoWqz3g'},
 'actorId': 'R4OR3KzGbRQmW',
 'apiServer': 'https://api.tacc.utexas.edu',
 'cpu': 0,
 'executor': 'apitest',
 'id': 'YqM3RPRoWqz3g',
 'io': 0,
 'messageReceivedTime': '2019-02-22 01:01:50.546993',
 'runtime': 0,
 'startTime': 'None',
 'status': 'SUBMITTED'},
 'status': 'success',
 'version': '0.11.0'}

Reading message in execution

One of the most important parts of using data in an execution is reading said
data. Retrieving sent data depends on the data type sent.

Python - Reading in raw string data or JSON

To retrieve JSON or raw data from inside of an execution using Python and
AgavePy, you would get the message context from within the actor and then
get it’s raw_message field.

from agavepy.actors import get_context

context = get_context()
message = context['raw_message']

Python - Reading in binary

Binary data is transmitted to an execution through a FIFO pipe located at
/_abaco_binary_data. Reading from a pipe is similar to reading from a regular
file, however AgavePy comes with an easy to use get_binary_message()
function to retrieve the binary data.

Note: Each Abaco execution processes one message, binary or not. This means
that reading from the FIFO pipe will result with exactly the entire sent
message.

from agavepy.actors import get_binary_message

bin_message = get_binary_message()

Cron Schedule

Note

The Abaco Cron Schedule feature was implemented in version 1.7.0.

Abaco’s cron schedule is a tool to automatically execute your actor based on a schedule.
Each actor has two user-defined parameters associated with the cron execution:
cronSchedule and cronOn. The scheduler has another variable, cronNextEx,
which holds the next execution time of the actor. This is an internal variable
and cannot be edited by users.
To create a schedule, set the cronSchedule parameter when registering a new actor or updating an
existing actor.
The value of cronSchedule should be a string in the following format:

yyyy-mm-dd hh + <number> <unit of time>

where the first part is the datetime when the first execution will happen, and the
second part is the time increment for each subsequent execution. Note that the spaces,
plus characters (+) and dash characters (-) in the template above are meaningful and
are a required part of
the format. Abaco’s cron schedule also has an alias
called now, which lets you execute the actor at the current UTC time. For example,
if an actor was registered with this schedule

"cronSchedule": "now + 1 hour"

the actor would execute at the current time, and then again at the top of the hour every hour.

Note

The highest granularity is the hour, and the units of time that can be used are hour, day, week, and month.

To create an actor with a schedule, make a request like the following:

$ curl -H "Authorization: Bearer $TOKEN" \
-H "Content-Type: application/json" \
-d '{"image": "abacosamples/test", "cronSchedule": "2020-09-28 16 + 1 hour"}' \
https://api.tacc.utexas.edu/actors/v2

To update the schedule, make a request like the following:

$ curl -H "Authorization: Bearer $TOKEN" \
-X PUT \
-H "Content-Type: application/json" \
-d '{"image": "abacosamples/test", "cronSchedule": "2020-12-11 16 + 3 days"}' \
https://api.tacc.utexas.edu/actors/v2/<actor_id>

This last request above will update the cron schedule for the actor with id <actor_id> as
follows: the actor will be scheduled to
automatically execute on December 11th, 2020 at 4 pm, UTC timezone.
That actor will be executed again 3 days later on the 14th,
at 4pm, and then 3 days after that, again at 4pm. This execution will
recur every 3 days until the user changes the cron schedule,
turns off the cron schedule, or deletes the actor.

Note

The cron schedule runs on the UTC timezone.

Note

When making requests to set the cronSchedule, be sure to pass “application/json” content to avoid
issues requiring escaping characters inside the schedule value.

To turn off the schedule, use the cronOn switch like so:

$ curl -H "Authorization: Bearer $TOKEN" \
-X PUT \
-H "Content-Type: application/json" \
-d '{"image": "abacosamples/test", "cronOn": "False"}' \
https://api.tacc.utexas.edu/actors/v2/<actor_id>

By turning off the schedule, the actor will no longer execute itself at each increment.
You can turn it on again at any time, and the actor will
resume incrementing as before. For example, if an actor is set to
execute every hour, and then the cron switch is turned off, the actor will
stop executing itself. After a week, the switch can be turned back on, and the
actor will resume executing on the hour.

Cron Schedule - Error Messages

If users supply a value for cronSchedule in an incorrect format, they will receive an error
letting them know to check the format. The API also checks that the schedule
sent in has not already past. For example, if you pass in the year 1955, you
will get an error message saying the cron schedule has already passed. The error
message will also tell you the current UTC time for reference.

Cron Message and Execution

When it is time to execute an actor configured with a cronSchedule, Abaco’s internal cron agent
simply queues a message on the actor’s internal message queue, just as if a client had sent a message
to the actor using the /messages API. If the actor already has (unprocessed) messages in its queue,
these messages will be processed first before the cron message. This means that there could be some delay
between the time Abaco internally queues the message and the actor starts executing it.

Currently, the cron message sent to the actor is the static string

This is your cron execution

Accordingly, the _abaco_Content_Type context variable is set to str. The rest of the context
variables are set normally, as described in Abaco Context & Container Runtime.

Logs

At any point of an execution you are also able to access the execution logs
using the logs endpoint. This returns information
about the log along with the log itself. If the execution is still in the
submitted phase, then the log will be an empty string, but once the execution
is in the completed phase the log would contain all outputted command line data.

Retrieving an executions logs

cURL

To call the log endpoint using cURL, do the following:

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/executions/<execution_id>/logs

Python

To call the log endpoint using AgavePy and Python, do the following:

ag.actors.getExecutionLogs(actorId='<actor_id>',
 executionId='<executionId>')

Results

This would result in data similar to the following:

{'message': 'Logs retrieved successfully.',
 'result': {'_links': {'execution': 'https://api.tacc.utexas.edu/actors/v2/qgKRpNKxg0DME/executions/qgmq08wKARlg3',
 'owner': 'https://api.tacc.utexas.edu/profiles/v2/apitest',
 'self': 'https://api.tacc.utexas.edu/actors/v2/qgKRpNKxg0DME/executions/qgmq08wKARlg3/logs'},
 'logs': '<command line output here>'},
 'status': 'success',
 'version': '0.11.0'}

Search

With the release of Abaco 1.6.0, a search capability has been introduced using
the Mongo aggregation system, full-text searching, and indexing. Searching can be
done on actor, worker, execution, and log collections. This feature allows users
to search based on any attribute associated with resources that they have permission
to view. For example, using search, a user could retrieve all viewable executions with status
“ERROR” in one API call. The search currently makes use of logical operators and
datetime to allow for easy searching of any object based on any specific field.

Attention

Search in Abaco was implemented in version 1.6.0.

Search has been implemented via query parameters on a new /search/<collection> endpoint. To use it, specify the collection to be
searched (actors, workers, executions, or logs) in the URL. With no query arguments Abaco will return
all entries in the collection that you have permission to view. To specify query arguments, add a ? to the end of
the url and specify the parameters in form <attribute_name>.<operator>=<param_value> separated by &. If not
specified, the search defaults the operator to the equality operator (i.e., the eq operator). The general form for
requests to the search endpoint looks like:

GET /actors/v2/search/<collection>?<attr_1>.<op_1>=<value_1>&<attr_2>.<op_2>=<value_2>&...

where <attr_1>, <attr_2>, etc. are valid attributes on an instance of <collection> (for example, image
for the actors collection), <op_1>, <op_2>,
etc. are valid Abaco search operators (see table below), and <value_1>, <value_2>, etc. are values for the
attribute type. The response from a
search consists of the list of objects of type <collection> that meet the search criteria and that the caller has
view access to.

The same query parameters can also be used on the following existing endpoints:

	Endpoint

	Description

	/actors

	Search all actors; equivalent to /search/actors

	/actors/{aid}/executions

	Search all executions for a fixed actor.

	/actors/{aid}/executions/{eid}/logs

	Search logs for a specific execution.

	/actors/{aid}/workers

	Search all workers for a fixed actor.

When applied to one of the existing endpoints above, the query parameters can be thought of as filters,
refining the set of objects that would have been returned by the listing.

A table of valid operator parameters, their function, and examples are below.

	Operator

	Function

	Examples

	eq

	Checks if given value is equal to db value matching given key. This is the default operator.

	?id.eq=AKY5o4Z847lB3

	neq

	Checks if given value is not equal to db value matching given key.

	?id.neq=AKY5o4Z847lB3

	gt

	Checks if given value is greater than db value matching given key.

	?start_time.gt=2020-04-29+06:00

	gte

	Checks if given value is greater than or equal to db value matching given key.

	?runtime.gte=423

	lt

	Checks if given value is less than db value matching given key.

	?message_received_time.lt=2020

	lte

	Checks if given value is less than or equal to db value matching given key.

	?final_state.FinishedAt.lte=2020-04-29

	in

	Checks if db value matching given key match any values in the given list of values.

	?status.in=[“BUSY”,”REQUESTED”,”READY”]

	nin

	Checks if db value matching given key does not match any values in the given list of values.

	?status.nin=[“COMPLETED”, “READY”]

	like

	Checks if given value in (through regex) db value matching given key.

	?image.like=abaco_docker_username

	nlike

	Checks if given value not in (through regex) db value matching given key.

	?image.nlike=abaco_test

	between

	Checks if db value matching given key is greater than or equal to first given value, and less than or equal to second given value.

	?start_time.between=
2020-04-29T20:15:52:246Z,
2021-06-24-05:00

	limit

	Sets a limit on total amount of results returned. Defaults to 10 results.

	?limit=20

	skip

	Skips a specified amount of results when returning.

	?skip=4

Additionally, the Abaco search supports the following special parameters

	Parameter

	Function

	Examples

	search

	Completes a fuzzy full-text search based on inputs. Returns results by best accuracy/score.

	?search=stringToSearchFor

	exactsearch

	Completes a full-text search and looks for exact matches with inputs.

	?exactsearch=stringToMatchExactly

	limit

	Limit the number of results to return.

	?limit=5

	skip

	The number of results to skip.

	?skip=10

You may use as many search parameters as you want in one query sans limit and skip, where each may only be used once.

Metadata

Abaco formats the responses to searches slightly differently from a typical response in the fact that the response
to a search returns two objects within the result object: a search object, containing the actual results, and
a _metadata object. The _metadata object returns pertinent information about the amount of records returned,
the amount of records the return is limited to, the amount of records skipped (specified in query),
and the total amount of records that match the query searched for. This is useful to implement paging
or to only receive a set amount of records.

Important

A search result object contains a _metadata object and a search object, the latter is a JSON list
containing the actual search results.

Example of a Search Response

{'message': 'Executions search completed successfully.',
 'result': {'_metadata': {'countReturned': 1,
 'recordLimit': 10,
 'recordsSkipped': 0,
 'totalCount': 1},
 'search': [{'_links': {'logs': 'https://dev.tenants.aloedev.tacc.cloud/actors/v2/joBjeDkWyBwLx/logs',
 'owner': 'https://dev.tenants.aloedev.tacc.cloud/profiles/v2/testuser',
 'self': 'https://dev.tenants.aloedev.tacc.cloud/actors/v2/joBjeDkWyBwLx/executions/1JKkQwX75vE56'},
 'actorId': 'joBjeDkWyBwLx',
 'cpu': 444097006,
 'executor': 'testuser',
 'exitCode': 0,
 'finalState': {'Dead': False,
 'Error': '',
 'ExitCode': 0,
 'FinishedAt': '2020-04-29T21:47:21.385Z',
 'OOMKilled': False,
 'Paused': False,
 'Pid': 0,
 'Restarting': False,
 'Running': False,
 'StartedAt': '2020-04-29T21:47:19.382Z',
 'Status': 'exited'},
 'id': '1JKkQwX75vE56',
 'io': 716,
 'messageReceivedTime': '2020-04-29T21:47:18.7Z00',
 'runtime': 2,
 'startTime': '2020-04-29T21:47:18.954Z',
 'status': 'COMPLETE',
 'workerId': '7kvAAKYKB6Qk6'}]},
 'status': 'success',
 'version': ':dev'}

Inputs

All inputs are given to the search function as query parameters and thus are transmitted
as strings. Abaco attempts to convert these inputs to the native type associated with the
attribute. Strings are left untouched. Booleans are expected to be “False” or “false” and
“True” or “true” to be converted. Numbers are all converted to floats. Lists are parsed
with json.loads and will accept either ["test"] or ['test'] with post-processing
on Abaco’s end to convert to lists.

The last consumed input type is datetime objects. Abaco accepts a broad range of ISO 8601
like strings. An example of the most detailed string accepted is 2020-04-29T20:15:52:246252-06:00.
2020-04-29T20:15:52:246Z, 2020-04-29T20:15:52-06:00, 2020-04-29T20:15-06:00,
2020-04-29T20-06:00, 2020-04-29-06:00, 2020-04Z, and 2020 are also acceptable.

Attention

Abaco stores all times in UTC, so addition of your timezone or conversion to UTC is
important. If no timezone information is given (-06:00 or Z (to signal UTC))
the datetime is assumed to be in UTC.

Important

For the purposes of comparison, unspecified elements of a datetime string are set to the minimal possible value. For example,
the string “2020-12-30” is greater than “2020-12” which in turn is greater than “2020”. As datetime objects, these
are converted to 2020-12-30T00:00:00Z, 2020-12-01T00:00:00Z and 2020-01-01T00:00:00Z, respectively. This
holds true until you reach millisecond accurate time.

Note that use of nonces is limited to searching within the actor or alias the nonce was created for. Abaco does not allow
the use of nonce on the global search enpoint.

Important

Nonces can be used along side search query parameters by setting the x-nonce parameter as usual; queries should
still work as expected and do not need any additional modification. Searches using a nonce count as a nonce “use” as
with any other API call using a nonce.

Creating ISO 8601 formatted strings

The following examples may be helpful for working with datetime objects in Python.

Python - String with Timezone

The following gets the current time as an ISO 8601 formatted string with timezone:

import datetime
import pytz

austin_time_zone = pytz.timezone("America/Chicago")
isoString = datetime.datetime.now(tz=austin_time_zone).isoformat()
print(isoString)

This prints 2020-04-29T16:21:34.602078-05:00.

Python - UTC String

The following gets the current UTC time as an ISO 8601 formatted string:

import datetime

isoString = datetime.datetime.utcnow().isoformat()
print(isoString)

This prints 2020-04-29T21:21:34.602078. Feel free to add the Z or leave it absent.

Search Examples

In this section we provide some example searches using the new search endpoint as well as query parameters applied to
some existing endpoints.

1. Use the new search endpoint to search for all actors defined with image “abacosamples/test”, created since 4/29/2020
and in either “READY” or “BUSY” status:

cURL

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/search/actors?image=abacosamples/test&create_time.gt=2020-04-29&status.in=["READY", "BUSY"]

Result

{'message': 'Search completed successfully.',
'result': {'_metadata': {'countReturned': 1,
 'recordLimit': 10,
 'recordsSkipped': 0,
 'totalCount': 1},
 'search': [{'_links': {'executions': 'https://dev.tenants.aloedev.tacc.cloud/actors/v2/joBjeDkWyBwLx/executions',
 'owner': 'https://dev.tenants.aloedev.tacc.cloud/profiles/v2/testuser',
 'self': 'https://dev.tenants.aloedev.tacc.cloud/actors/v2/joBjeDkWyBwLx'},
 'createTime': '2020-04-29T21:46:53.393Z',
 'defaultEnvironment': {'default_env_key1': 'default_env_value1',
 'default_env_key2': 'default_env_value2'},
 'description': '',
 'gid': None,
 'hints': [],
 'id': 'joBjeDkWyBwLx',
 'image': 'abacosamples/test',
 'lastUpdateTime': '2020-04-29T21:46:53.393Z',
 'link': '',
 'maxCpus': None,
 'maxWorkers': None,
 'memLimit': None,
 'mounts': [{'container_path': '/_abaco_data1',
 'host_path': '/data1',
 'mode': 'ro'}],
 'name': 'abaco_test_suite_default_env',
 'owner': 'testuser',
 'privileged': False,
 'queue': 'default',
 'state': {},
 'stateless': True,
 'status': 'READY',
 'statusMessage': ' ',
 'tasdir': None,
 'token': 'false',
 'type': 'none',
 'uid': None,
 'useContainerUid': False,
 'webhook': ''}]},
'status': 'success',
'version': ':dev'}

2. Use the global search endpoint to look for all executions that are not in COMPLETE status across all actors the
user has access to.

cURL

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/search/executions?status.neq="COMPLETE"

Result

{
 "message": "Search completed successfully.",
 "result": {
 "_metadata": {
 "countReturned": 4,
 "recordLimit": 100,
 "recordsSkipped": 0,
 "totalCount": 4
 },
 "search": [
 {
 "_links": {
 "logs": "https://api.tacc.utexas.edu/actors/v2/7zxX7DlZ0eeZY/logs",
 "owner": "https://api.tacc.utexas.edu/profiles/v2/testuser",
 "self": "https://api.tacc.utexas.edu/actors/v2/7zxX7DlZ0eeZY/executions/8mzXG1vxDaZZ1"
 },
 "actorId": "7zxX7DlZ0eeZY",
 "cpu": 0,
 "executor": "testuser",
 "exitCode": null,
 "finalState": null,
 "id": "8mzXG1vxDaZZ1",
 "io": 0,
 "messageReceivedTime": "2020-05-05T19:50:23.813Z",
 "runtime": 0,
 "startTime": null,
 "status": "SUBMITTED",
 "workerId": null
 },
 {
 "_links": {
 "logs": "https://api.tacc.utexas.edu/actors/v2/7zxX7DlZ0eeZY/logs",
 "owner": "https://api.tacc.utexas.edu/profiles/v2/testuser",
 "self": "https://api.tacc.utexas.edu/actors/v2/7zxX7DlZ0eeZY/executions/7mYv7rxYNNYw1"
 },
 "actorId": "7zxX7DlZ0eeZY",
 "cpu": 0,
 "executor": "testuser",
 "exitCode": null,
 "finalState": null,
 "id": "7mYv7rxYNNYw1",
 "io": 0,
 "messageReceivedTime": "2020-05-05T19:50:23.296Z",
 "runtime": 0,
 "startTime": null,
 "status": "RUNNING",
 "workerId": "1zLYaONZxWQAX"
 },
 {
 "_links": {
 "logs": "https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/logs",
 "owner": "https://api.tacc.utexas.edu/profiles/v2/testuser",
 "self": "https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/executions/jg0oLKJg8VvgM"
 },
 "actorId": "jm6kjmDmW885N",
 "cpu": 0,
 "executor": "testuser",
 "exitCode": null,
 "finalState": null,
 "id": "jg0oLKJg8VvgM",
 "io": 0,
 "messageReceivedTime": "2020-05-05T19:50:20.113Z",
 "runtime": 0,
 "startTime": null,
 "status": "RUNNING",
 "workerId": "7XZN4aqvzoJ33"
 },
 {
 "_links": {
 "logs": "https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/logs",
 "owner": "https://api.tacc.utexas.edu/profiles/v2/testuser",
 "self": "https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/executions/jgM7JBmqDDjM5"
 },
 "actorId": "jm6kjmDmW885N",
 "cpu": 0,
 "executor": "testuser",
 "exitCode": null,
 "finalState": null,
 "id": "jgM7JBmqDDjM5",
 "io": 0,
 "messageReceivedTime": "2020-05-05T19:50:20.925Z",
 "runtime": 0,
 "startTime": null,
 "status": "SUBMITTED",
 "workerId": null
 }
]
 },
 "status": "success",
 "version": "1.6.0"
}

	Find all executions for actor jm6kjmDmW885N that completed after “2020-05-05T19:50:23.748”.

cURL

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/executions?status=COMPLETE&start_time.gt=2020-05-05T19:50:23.748

Result

{
 "message": "Executions search completed successfully.",
 "result": {
 "_metadata": {
 "countReturned": 2,
 "recordLimit": 100,
 "recordsSkipped": 0,
 "totalCount": 2
 },
 "search": [
 {
 "_links": {
 "logs": "https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/logs",
 "owner": "https://api.tacc.utexas.edu/profiles/v2/testuser",
 "self": "https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/executions/jg0oLKJg8VvgM"
 },
 "actorId": "jm6kjmDmW885N",
 "cpu": 159212854,
 "executor": "testuser",
 "exitCode": 0,
 "finalState": {
 "Dead": false,
 "Error": "",
 "ExitCode": 0,
 "FinishedAt": "2020-05-05T19:50:29.038Z",
 "OOMKilled": false,
 "Paused": false,
 "Pid": 0,
 "Restarting": false,
 "Running": false,
 "StartedAt": "2020-05-05T19:50:27.003Z",
 "Status": "exited"
 },
 "id": "jg0oLKJg8VvgM",
 "io": 266,
 "messageReceivedTime": "2020-05-05T19:50:20.113Z",
 "runtime": 2,
 "startTime": "2020-05-05T19:50:26.697Z",
 "status": "COMPLETE",
 "workerId": "7XZN4aqvzoJ33"
 },
 {
 "_links": {
 "logs": "https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/logs",
 "owner": "https://api.tacc.utexas.edu/profiles/v2/testuser",
 "self": "https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/executions/jgM7JBmqDDjM5"
 },
 "actorId": "jm6kjmDmW885N",
 "cpu": 172730092,
 "executor": "testuser",
 "exitCode": 0,
 "finalState": {
 "Dead": false,
 "Error": "",
 "ExitCode": 0,
 "FinishedAt": "2020-05-05T19:50:32.123Z",
 "OOMKilled": false,
 "Paused": false,
 "Pid": 0,
 "Restarting": false,
 "Running": false,
 "StartedAt": "2020-05-05T19:50:30.085Z",
 "Status": "exited"
 },
 "id": "jgM7JBmqDDjM5",
 "io": 396,
 "messageReceivedTime": "2020-05-05T19:50:20.925Z",
 "runtime": 2,
 "startTime": "2020-05-05T19:50:29.723Z",
 "status": "COMPLETE",
 "workerId": "7XZN4aqvzoJ33"
 }
]
 },
 "status": "success",
 "version": "1.6.0"
}

Actor State

In this section we describe the state that can persist through Abaco actor container executions.

State

When an actor is registered, its stateless property is automatically set to true. An actor must be registered with stateless=false to be stateful (maintain state across executions).

Once an actor is executed, the associated worker GETs data from the /actors/v2/{actor_id}/state endpoint and injects it into the actor’s _abaco_actor_state environment variable. While an actor is executing, the actor can update its state by POSTing to the aforementioned endpoint.

Notes

	The worker only GETs data from the state endpoint one time as the actor is initiated. If the actor updates its state endpoint during execution, the worker does not inject the new state until a new execution.

	Stateful actors may only have one associated worker in order to avoid race conditions. Thus generally, stateless actors will execute quicker as they can operate in parallel.

	Issuing a state to a stateless actor will return a actor is stateless. error.

	The state variable must be JSON-serializable. An example of passing JSON-serializable data can be found under Examples below.

Utilizing State in Actors to Accomplish Something

WIP

Examples

curl

Here are some examples interacting with state using curl.

Registering an actor specifying statefulness: stateless=false.

$curl -H "$header" \
-X POST \
-d "image=abacosamples/test&stateless=false" \
https://api.tacc.utexas.edu/actors/v2

POSTing a state to a particular actor; keep in mind we must indicate in the header that we are passing content type application/json.

$curl -H "$header" \
-H "Content-Type: application/json" \
-d '{"some variable": "value", "another variable": "value2"}' \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/state

GETting information about a particular actor’s state.

$curl -H "$header" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/state

Python

Here are some examples interacting with state using Python. The agavepy.actors module provides access to an actor’s environment data in native Python objects.

Registering an actor specifying statefulness: stateless=false.

>>> from agavepy.agave import Agave
>>> ag = Agave(api_server='https://api.tacc.utexas.edu', token='<access_token>')
>>> actor = {"image": "abacosamples/test",
 "stateless": "False"}
>>> ag.actors.add(body=actor)

POSTing a state to a particular actor; again keep in mind we must pass in JSON serializable data.

>>> from agavepy.actors import update_state
>>> state = {"some variable": "value", "another variable": "value2"}
>>> update_state(state)

GETting information about a particular actor’s state. This function returns a Python dictionary with many fields one of which is state.

>>> from agavepy.actors import get_context
>>> get_context()
{'raw_message': '<text>', 'content_type': '<text>', 'execution_id': '<text>', 'username': '<text>', 'state': 'some_state', 'actor_dbid': '<text>', 'actor_id': '<text>', 'raw_message_parse_log': '<text>', 'message_dict': {}}

Additional Work

	Create a pipeline between worker and actor to exchange state without HTTP latency. (Not worker->server->actor->server)

	Develop ‘stateful’ actors that can execute in parallel (utilizing CRDT data-types)

Actor Sharing and Nonces

Abaco provides a basic permissions system for securing actors. An actor registered with Abaco starts out as private
and only accessible to the API user who registered it. This API user is referred to as the “owner” of the actor.
By making a POST request to the permissions endpoint for an actor, a user can manage the list of API users who have
access to the actor.

Permission Levels

Abaco supports sharing an actor at three different permission levels; in increasing order, they are: READ,
EXECUTE and UPDATE. Higher permission imply lower permissions, so a user with EXECUTE also has READ while a
user with UPDATE has EXECUTE and READ. The permission levels provide the followig accesses:

	READ - ability to list the actor to see it’s details, list executions and retrieve execution logs.

	EXECUTE - ability to send an actor a message.

	UPDATE - ability to change the actor’s definition.

cURL

To share an actor with another API user, make a POST request to the /permissions endpoint; the following example
uses curl to grant READ permission to API user jdoe.

$ curl -H "Authorization: Bearer $TOKEN" \
-d "user=jdoe&level=READ" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/permissions

Example response:

{
 "message": "Permission added successfully.",
 "result": {
 "jdoe": "READ",
 "testuser": "UPDATE"
 },
 "status": "success",
 "version": "1.0.0"
}

We can list all permissions associated with an actor at any time using a GET request:

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/permissions

Example response:

{
 "message": "Permissions retrieved successfully.",
 "result": {
 "jdoe": "READ",
 "jsmith": "EXECUTE",
 "testuser": "UPDATE"
 },
 "status": "success",
 "version": "1.0.0"
}

Note

To remove a user’s permission, POST to the permission endpoint and set level=NONE

Public Actors

At times, it can be useful to grant all API users access to an actor. To enable this, Abaco recognizes the special
ABACO_WORLD user. Granting a permission to the ABACO_WORLD user will effectively grant the permission to all API users.

cURL

The following grants READ permission to all API users:

$ curl -H "Authorization: Bearer $TOKEN" \
-d "user=ABACO_WORLD&level=READ" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/permissions

Nonces

Abaco provides a capability referred to as actor nonces to ease integration with third-party systems leveraging
different authentication mechanisms. An actor nonce can be used in place of the typical TACC API access token
(bearer token). However, unlike an access token which can be used for any actor the user has access, a nonce can only be
used for a specific actor.

Creating Nonces

API users create nonces using the nonces endpoint associated with an actor. Nonces can be limited to a specific
permission level (e.g., READ only), and can have a finite number of uses or an unlimited number.

The following example uses curl to create a nonce with READ level permission and with 5 uses.

$ curl -H "Authorization: Bearer $TOKEN" \
-d "maxUses=5&level=READ" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/nonces

A typical response:

{
 "message": "Actor nonce created successfully.",
 "result": {
 "_links": {
 "actor": "https://api.tacc.utexas.edu/actors/v2/rNjQG5BBJoxO1",
 "owner": "https://api.tacc.utexas.edu/profiles/v2/testuser",
 "self": "https://api.tacc.utexas.edu/actors/v2/rNjQG5BBJoxO1/nonces/DEV_qBMrvO6Zy0yQz"
 },
 "actorId": "rNjQG5BBJoxO1",
 "apiServer": "http://172.17.0.1:8000",
 "createTime": "2019-06-18 12:20:53.087704",
 "currentUses": 0,
 "description": "",
 "id": "TACC_qBMrvO6Zy0yQz",
 "lastUseTime": "None",
 "level": "READ",
 "maxUses": 5,
 "owner": "testuser",
 "remainingUses": 5,
 "roles": [
 "Internal/everyone",
 "Internal/AGAVEDEV_testuser_postman-test-client-1497902074_PRODUCTION",
 "Internal/AGAVEDEV_testuser_postman-test-client-1494517466_PRODUCTION",
]
 },
 "status": "success",
 "version": "1.0.0"
}

The id of the nonce (in the above example, TACC_qBMrvO6Zy0yQz) can be used to access the actor in place of the
access token.

Note

Roles are used throughout the TACC API’s to grant users with specific privileges (e.g., administrative access to certain
APIs). The roles of the API user generating the nonce are captured at the time the nonce is created; when using a nonce,
a request will have permissions granted via those roles. Most users will not need to worry about TACC API roles.

To create a nonce with unlimited uses, set maxUses=-1.

Redeeming Nonces

To use a nonce in place of an access token, simply form the request as normal and add the query paramter x-nonce=<nonce_id>.

For example

$ curl -X POST -d "message=<your content here>" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/messages?x-nonce=TACC_vr9rMO6Zy0yHz

The response will be exactly the same as if issuing the request with an access token.

Networks of Actors

Working with individual, isolated actors can augment an existing application with a lot of additional functionality, but the
full power of Abaco’s actor-based system is realized when many actors coordinate together to solve a common problem.
Actor coordination introduces new challenges that the system designer must address, and Abaco provides
features specifically designed to address these challenges.

Actor Aliases

An alias is a user-defined name for an actor that is managed independently of the actor itself. Put simply, an alias
maps a name to an actor id, and Abaco will replace a reference to an alias in any request with the actor id defined by
the alias at the time. Aliases are useful for insulating an actor from changes to another actor to which it will
send messages.

For example, if actor A sends messages to actor B, the user can create an alias for actor B and configure A to send
messages to that alias. In the future, if changes need to be made to actor B or if messages from actor A need to be
routed to a different actor, the alias value can be updated without any code changes needed on the part of actor A.

Creating and managing aliases is done via the /aliases collection.

cURL

To create an alias, make a POST request passing the alias and actor id. For example, suppose we have an actor that counts
the words sent in a message. We might create an alias for it with the following:

$ curl -H "Authorization: Bearer $TOKEN" \
-d "alias=counter&actorId=6PlMbDLa4zlON" \
https://api.tacc.utexas.edu/actors/v2/aliases

Example response:

{
 "message": "Actor alias created successfully.",
 "result": {
 "_links": {
 "actor": "https://api.tacc.utexas.edu/actors/v2/6PlMbDLa4zlON",
 "owner": "https://api.tacc.utexas.edu/profiles/v2/jstubbs",
 "self": "https://api.tacc.utexas.edu/actors/v2/aliases/counter"
 },
 "actorId": "6PlMbDLa4zlON",
 "alias": "counter",
 "owner": "apitest"
 },
 "status": "success",
 "version": "1.1.0"
}

With the alias counter created, we can now use it in place of the actor id in any Abaco request. For example, we
can get the actor’s details:

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/counter

The response returned is identical to that returned when the actor id is used.

Nonces Attached to Aliases

Important

Support for Nonces attached to aliases was added in version 1.1.0.

Important

The nonces attached to aliases feature was updated in version 1.5.0, so that 1) UPDATE permission on the
underlying actor id is required and 2) It is no longer possible to create an alias nonce for permission level UPDATE.

Nonces can be created for aliases in much the same way as creating nonces for a specific actor id - instead of using
the /nonces endpoint associated with the actor id, use the /nonces endpoint associated with the alias instead. The
POST message payload is the same. For example:

$ curl -H "Authorization: Bearer $TOKEN" \
-d "maxUses=5&level=READ" \
https://api.tacc.utexas.edu/actors/v2/aliases/counter/nonces

will create a nonce associated with the counter alias.

Note

Listing, creating and deleting nonces associated with an alias requires the analagous permission for both the alias
and the associated actor.

Actor Events, Links and WebHooks

Important

Support for Actor events, links and webhooks was added in version 1.2.0.

Abaco captures certain events pertaining to the evolution of the system runtime and provides mechanisms for users to
consume these events in actors as well as in external systems.

First, Abaco provides a facility to automatically send a message to a specified actor whenever certain events occur. This
mechanism is called an actor link: if actor A is registered with a link property specifying actor B, then Abaco will
automatically send actor B a message whenever any of the recognized events occurs.

Second, an actor can be registered with a webhook property: a single string representing a URL to send an HTTP POST
request to. The Abaco events subsystem will send a POST request exactly once to the specified URL whenever a
recognized event occurs.

Webhooks and event messages are guaranteed to be delivered in order relative to the order the events occurred for the
specific actor. Since there is no total ordering on events across different actors, there is no analagous order
guarantee.

Links or Webhooks - Which to use?

In both cases, the details of the event are described in a JSON message (sent to an actor in the case of a link, and
sent in the POST payload in the case of a webhook).

However, the actor link is far more general and flexible since
the user can define arbitrary logic to handle the event. Even when the ultimate goal is a webhook, the user may opt for
defining a link to an actor that performs the webhook. This approach enables users to customtize the webhook processing
in various ways, including retry logic, authentication, etc. In fact, the abacosamples/webhook image provides a
webhook dispatcher built to parse the Abaco events message with many configurable options.

Use of an actor’s webhook property is really intended for simple use cases or situations missed or dropped events
will not cause a major issue.

Adding a Link

Registering an actor with a link (or updating an exisitng actor to add a link property) follows the same semantics as
defined in the Actor Registration section; simply add the link attribute in the payload. For example, the following
request creates an actor with a link to actor id 6PlMbDLa4zlON.

$ curl -H "Authorization: Bearer $TOKEN" \
-H "Content-Type: application/json" \
-d '{"image": "abacosamples/test", "name": "test", "link": "6PlMbDLa4zlON", "description": "My test actor using the abacosamples image.", "default_environment":{"key1": "value1", "key2": "value2"} }' \
https://api.tacc.utexas.edu/actors/v2

It is also possible to link an actor to an alias: just pass link=<the_alias> in the registration payload.

Note

Setting a link attribute requires EXECUTE permission for the associated actor.

Note

Defining a link property that would result in a cycle of linked actors is not permitted, as this would result in
infinite messages. In particular, an actor cannot link to itself.

Adding a WebHook

Registering an actor with a webhook is accomplished similarly by setting the webhook property in the actor
registration (POST) or update (PUT) payload. For example, the following request creates an actor with a webhook
set to the requestbin at https://eniih104j4tan.x.pipedream.net.

$ curl -H "Authorization: Bearer $TOKEN" \
-H "Content-Type: application/json" \
-d '{"image": "abacosamples/test", "name": "test", "webhook": "https://eniih104j4tan.x.pipedream.net", }' \
https://api.tacc.utexas.edu/actors/v2

Events and Event Message Format

Whenever a supported event occurs, Abaco sends a JSON message to the linked actor or webhook with data about the event.
The included data depends on the event type, as documented below.

In the case of a linked actor, all the typical context variables, as
documented in Abaco Context & Container Runtime, will be injected as usual, excepted where noted below. In this case, note that there are
details about two actors: the actor for which the event occurred and the linked actor itself (which are always different,
as self-links are not permitted).
The former is described in the message itself with variables such as actor_id, tenant_id, etc., while the
latter is described using the special reserved Abaco variables, e.g., _abaco_actor_id, etc.

	Variable Name

	Description

	Event Type

	actor_id

	The id of the actor for which the event occurred.

	all types

	tenant_id

	The id of the tenant of the actor for which the event occurred.

	all types

	actor_dbid

	The internal id of the actor for which the event occurred.

	all types

	event_type

	The event type associated with the event. (see table below)

	all types

	event_time_utc

	The time of the event, in UTC, as a float.

	all types

	event_time_display

	The time of the event, as a string, formatted for display.

	all types

	_abaco_link

	The actor id of the linked actor (the actor receiving the event message)

	all types

	_abaco_username

	‘Abaco Event’

	all types

	status_message

	A message indicating details about the error status.

	ACTOR_ERROR

	execution_id

	The id of the completed execution.

	EXECUTION_COMPLETE

	exit_code

	The exit code of the completed execution.

	EXECUTION_COMPLETE

	status

	The final status of the completed execution.

	EXECUTION_COMPLETE

The following table lists all events by their event_type value and a brief description. Additional event types
may be added in subsequent releases.

	Event type

	Description

	ACTOR_READY

	The actor is ready to accept messages.

	ACTOR_ERROR

	The actor is in error status and requires manual intervention.

	EXECUTION_COMPLETE

	An actor execution has just completed.

Actor Configs

Important

Support for Actor configs was added in version 1.9.0.

The actor configs feature allows users to manage a set of conigurations shared by multiple actors all in one place.
Configs can include both standard configuration as well as “secrets” such as database passwords and API keys. With
actor config secrets, Abaco encrypts the config data before saving it in its database.

Actor configs are managed via new endpoint, /actors/v2/configs. Each config object has the following properties:

	name - The name of the config. This attribute must be unique within the tenant.

	value - The content of the config to be shared with actors. The value must be JSON-serializable.

	actors - A comma-separated string of actors to share the config data with. The list can include both actor
id’s and aliases. The user creating the config must have UPDATE access to all actors in the list, as sharing a
config with an actor is equivalent to updating the actor’s default environment.

	isSecret (True/False) - Whether the config data should be considered security sensitive. If true, Abaco will
encrypt the config data (i.e., the contents of value) in the database and decrypt it right before injecting it
into the actor container. Additionally, when retrieving the config object using Abaco’s REST API, Abaco will
display the encrypted version of the secret data.

Creating Actor Configs

Here is an example of creating a simple config using curl:

curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/configs \
-H "content-type: application/json" \
-d '{"name": "config_name", "value": "123", "actors": "JBExVooD31rko", "is_secret": false }'

Warning

When creating actor configs be sure to use content type application/json. Using url-encoded forms will lead
to issues.

In this example, we have shared the config with exactly one actor – the one with id JBExVooD31rko. We can list or
update the config using its name; for example:

curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/configs/config_name \

"message": "Config retrieved successfully.",
"result": {
 "actors": "JBExVooD31rko",
 "is_secret": false,
 "name": "config_name",
 "value": "123"
},
"status": "success",
"version": "1.9.0"

Now, whenever we send actor JBExVooD31rko a message, Abaco will inject a special environment variable,
_actor_configs, into the container, and the value of the variable will be a JSON-serializable representation of all
configs that have been shared with the actor. To be precise, the _actor_configs variable will be a JSON object with
a key for each such config equal to the config’s name and value equal to the config’s value.

For example, assuming this is the only config shared with this actor, the actor container would have an environment
variable _actor_configs with value:

_actor_configs={'config_name': '123'}

We can put any JSON-serializable content for the value of the config. For example, we could create and share a
second, more complicated config with the same actor as follows:

curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/configs \
-H "content-type: application/json" \
-d '{"name": "config2", "value": {"key": "some_key", "int_key": 12345, "a list key": ["a",4, 3.14159]}, "actors": "JBExVooD31rko", "is_secret": false }'

Now when we send a message to actor JBExVooD31rko the _actor_configs variable will have contents

_actor_configs={'config_name': '123', 'config2': "{'key': 'some_key', 'int_key': 12345, 'a list key': ['a', 4, 3.14159]}"}

Updating Actor Configs

Updating an actor config is done by making a PUT request to the /actors/v2/configs/<config_name> endpoint. A complete
description of the config should be given in the PUT body. For example, to add a new actor to the list of actors that
our simple config from above is shared with, we would make a PUT request like so:

curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/configs/config_name \
-X PUT \
-H "content-type: application/json" \
-d '{"name": "config_name", "value": "123", "actors": "JBExVooD31rko, mr_fixer", "is_secret": false }'

Note that in the above example we have shared the config with both an actor id (JBExVooD31rko) and an
alias (mr_fixer) which is perfectly allowable.

Note

Updating the value of an actor config takes effect immediately in the sense that any new actor execution will
start to use the new value as soon as the PUT request is processed. Thus, actor configs provide a way to update the
configuration for a set of actors simultaneously, with one API request, instead of updating/redeploying individual
actors one at a time.

Actor Config Permissions

It is important to keep in mind that actor config objects have their own permissions, separate from the permissions
associated with the actors a config may be shared with. To see and manage the permissions associated with a config,
use the /actors/v2/configs/<config_name>/permissions endpoint. For example,

curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/configs/config_name/permissions \

 {
 "message": "Permissions retrieved successfully.",
 "result": {
 "testuser": "UPDATE"
 },
 "status": "success",
 "version": "1.9.0"
 }

A user must have explicit access to a config object to read or update it. When a config is first created, only the owner
has access. We can give access to another user by making a POST request to the permissions endpoint, like so:

curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/configs/config_name/permissions \
-H "content-type: application/json" \
-d '{"user": "testotheruser", "level": "UPDATE"}

 {
 "message": "Permission added successfully.",
 "result": {
 "testotheruser": "UPDATE",
 "testuser": "UPDATE"
 },
 "status": "success",
 "version": "1.9.0"
 }

Autoscaling Actors

The Abaco platform has an optional autoscaler subsystem for automatically managing the pool of workers associated with
the registered actors. In general, the autoscaler ignores actors that are registered with stateless: False, as it
assumes these actors must process their message queues synchronously. For stateless actors without custom
configurations, the austocaling algorithm is as follows:

	Every 5 seconds, check the length of the actor’s message queue.

	If the queue length is greater than 0, and the actor’s worker pool is less than the maximum workers per actor, start a new worker.

	If the queue length is 0, reduce the actor’s worker pool until: a) the worker pool size becomes 0 or b) the actor receives a message.

In particular, the worker pool associated with an actor with 0 messages in its message queue will be reduced to 0 to
free up resources on the Abaco compute cluster.

Official “sync” Hint

Important

Support for actor hints and the official “sync” hint was added in version 1.4.0.

For some use cases, reducing an actor’s worker pool to 0 as soon as its message queue is empty is not desirable.
Starting up a worker takes significant time, typically on the order of 10 seconds or more, depending on configuration
options for the actor, and adding this overhead to actors that have low latency requirements can be a serious issue.
In particular, actors that will respond to “synchronous messages” (i.e., _abaco_synchronous=true) have low
latency requirements to respond within the HTTP timeout window.

For this reason, starting in version 1.4.0, Abaco recognizes an “official” actor hint, sync. When registered
with the sync hint, the Abaco autoscaler will leave at least one worker in the actor’s worker pool up to a
configurable period of idle time (specific to the Abaco tenant). For the Abaco public tenant, this period is 60
minutes.

The hints attribute for an actor is saved at registration time. In the following example, we register an
actor with the sync hint using curl:

$ curl -H "Authorization: Bearer $TOKEN" \
-H "Content-type: application/json" \
-d '{"image": "abacosamples/wc", "hints": ["sync"]}' \
https://api.tacc.utexas.edu/actors/v2

API Reference

The following table lists the public endpoints within the Abaco API.

	GET

	POST

	PUT

	DELETE

	Endpoint

	Description

	X

	
	
	
	/actors/v2/utilization

	Get high-level usage stats.

	X

	X

	
	
	/actors/v2

	List/create actors.

	X

	X

	
	
	/actors/v2/aliases

	List/create aliases.

	X

	
	
	X

	/actors/v2/aliases/{alias}

	List/delete an alias.

	X

	
	X

	X

	/actors/v2/{actor_id}

	List/update/delete an actor.

	X

	X

	
	
	/actors/v2/{actor_id}/messages

	Get number messages/send message

	X

	X

	
	
	/actors/v2/{actor_id}/nonces

	List/create actor nonces.

	X

	
	
	X

	/actors/v2/{actor_id}/nonces/{nonce_id}

	Get nonce details/delete nonce.

	X

	X

	
	
	/actors/v2/{actor_id}/state

	Retrieve/update actor state.

	X

	X

	
	
	/actors/v2/{actor_id}/workers

	List/create actor workers.

	X

	
	
	X

	/actors/v2/{actor_id}/workers/{worker_id}

	Get worker details/delete worker

	X

	X

	
	
	/actors/v2/{actor_id}/permissions

	List/update actor permissions.

	X

	
	
	
	/actors/v2/{actor_id}/executions

	List execution summaries.

	X

	
	
	X

	/actors/v2/{actor_id}/executions/{eid}

	Get details/Halt execution.

	X

	
	
	
	/actors/v2/{actor_id}/executions/{eid}/logs

	Retrieve execution logs.

	X

	
	
	
	/actors/v2/{actor_id}/executions/{eid}/results

	Retrieve execution results.

	X

	
	
	
	/actors/v2/search/{database}

	Searches specified database

	X

	
	
	
	/metrics

	

Abaco Samples

In order to simplify the creation of Abaco actors, the Abaco team is developing a suite of Docker images
that provide code examples and convenience utilities. This growing catalogue of public example images is
available on the public Docker Hub within the abacosamples Docker organization.

Reactor Recipes

Coming soon… some effective patterns for event-driven programming with Abaco.

Overview

In this section we cover additional tools and resources for working with the Abaco Platform.

Abaco CLI

The Abaco CLI is a command line toolkit for developing, managing and using Abaco Actors. The CLI can be installed
directly from its github repository, https://github.com/TACC-Cloud/abaco-cli. Please follow the instructions found on
the project’s README.

Using Abaco from the TACC Cloud JupyterHub

Coming soon… executing functions in parallel on Abaco from the TACC Cloud Jupyter Hub.

Index

Architecture

spawner makes workers, worker only has one actor, worker spawns the container,

there are some things that go back and forth (through pipelines?); others write to their respective endpoint

Three “front-end”s with endpoints admin,

from abaco/docs/architecture.rst:

Abaco is a distributed system made up of independent components that run as isolated processes. The components can
be broken down into synchronous, frontend APIs and asynchronous, backend processes.

![Abaco Architecture Diagram](./Figure1.png “Abaco Architecture Diagram”)

Frontend

	registration API

	messages API

	admin API

Backend

	spawners

	workers

	health checks

In addition to the above components, abaco makes use of Redis and RabbitMQ for persistence. Communication between the processes is achieved through message
passing via RabbitMQ. abaco makes heavy use of channels (inspired from Go channels, see https://github.com/TACC/channelpy) to facilitate both direct communication as well as pub/sub. Four types of channels are used - the command channel, worker channels, actor message channels and anonymous channels. See the channels.py module for more details.

Frontend components

Each frontend component is a flask-restful web application running behind nginx. The frontend components all accept and return JSON. They have been broken out into three separate applications for independent scalability. Their duties are as follows:

	registration API - register and maintain actors; list, create, update and delete details of an actor. Persist details into the Redis database. List executions for an actor. List logs for an exectution. Creates messages on the command channel to instruct spawners to create new workers when actors are registered.

	messages API - POST messages to an actor’s inbox, scheduling the execution of a container from the actor’s image. Will also return pending messages from the actor’s queue. Creates messages on actor message channels to instruct workers to execute containers for their actor.

	admin API - list, create and delete workers for an actor. Creates messages on worker channels to instruct workers to shutdown, and creates messages on the command channel to create new workers.

Backend components

	spawners - these processes listen to the the command channel and spawn new workers when an actor is registered or updated.

	workers - these processes listen to a specific actor message channel and execute containers when a new message arrives.

	health checks - these processes run on a schedule (e.g., via cron) to check the status of workers and to ensure the

number of workers for a given actor meets some requirements.

 _static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Abaco’s Documentation!

 		
 Welcome to Abaco

 		
 What is Abaco

 		
 Using Abaco

 		
 Getting Started

 		
 Account Creation and Software Installation

 		
 Create a TACC account

 		
 Create a Docker account

 		
 Install the TACC Cloud Python SDK

 		
 Working with TACC OAuth

 		
 Create an OAuth Client

 		
 Reuse an Existing Oauth Client

 		
 Generate a Token

 		
 Check Access to the TACC Cloud APIs

 		
 Abaco Quickstart

 		
 A Basic Python Function

 		
 Building Images From a Dockerfile

 		
 Registering an Actor

 		
 Executing an Actor

 		
 Retrieving the Logs

 		
 Conclusion

 		
 Overview

 		
 Actor Registration

 		
 Notes

 		
 Examples

 		
 curl

 		
 Python

 		
 Abaco Context & Container Runtime

 		
 Context

 		
 Notes

 		
 Access from Python

 		
 Runtime Environment

 		
 Container UID and GID

 		
 POSIX Interface to the TACC WORK File System

 		
 Messages, Executions, and Logs

 		
 Messages

 		
 Sending a message

 		
 Get message count

 		
 Binary Messages

 		
 Sending binary from execution

 		
 Synchronous Messaging

 		
 Executions

 		
 Access execution data

 		
 List executions

 		
 Reading message in execution

 		
 Cron Schedule

 		
 Logs

 		
 Retrieving an executions logs

 		
 Search

 		
 Metadata

 		
 Example of a Search Response

 		
 Inputs

 		
 Creating ISO 8601 formatted strings

 		
 Python - String with Timezone

 		
 Python - UTC String

 		
 Search Examples

 		
 cURL

 		
 Result

 		
 cURL

 		
 Result

 		
 cURL

 		
 Result

 		
 Actor State

 		
 State

 		
 Notes

 		
 Utilizing State in Actors to Accomplish Something

 		
 Examples

 		
 curl

 		
 Python

 		
 Additional Work

 		
 Actor Sharing and Nonces

 		
 Permission Levels

 		
 cURL

 		
 Public Actors

 		
 cURL

 		
 Nonces

 		
 Creating Nonces

 		
 Redeeming Nonces

 		
 Networks of Actors

 		
 Actor Aliases

 		
 cURL

 		
 Nonces Attached to Aliases

 		
 Actor Events, Links and WebHooks

 		
 Links or Webhooks - Which to use?

 		
 Adding a Link

 		
 Adding a WebHook

 		
 Events and Event Message Format

 		
 Actor Configs

 		
 Creating Actor Configs

 		
 Updating Actor Configs

 		
 Actor Config Permissions

 		
 Autoscaling Actors

 		
 Official “sync” Hint

 		
 API Reference

 		
 Abaco Samples

 		
 Reactor Recipes

 		
 Overview

 		
 Abaco CLI

 		
 Using Abaco from the TACC Cloud JupyterHub

_static/ajax-loader.gif

