
FRC Team 5940 Documentation

May 13, 2019

Welcome

1 Welcome to Team 5940’s Documentation! 1

2 FalconLibrary 3

3 FalconDashboard 5

4 FalconLibrary Units and Math 11

5 FalconLibrary’s Command-based Implememntation 17

6 Pathing with FalconLibrary 19

7 Example path following drivebases 25

i

ii

CHAPTER 1

Welcome to Team 5940’s Documentation!

Here lives documentation of Team 5940’s code, including team-specific items. Please refer to the frc-docs companion
documentation for WPILibJ and WPILibC resoureces.

This repository also includes documentation of Team 5190 Green Hope Robotics’ FalconLibrary and FalconDashboard
as an unnoficial resourece.

1

https://frc-docs.readthedocs.io/en/latest/
https://frc-docs.readthedocs.io/en/latest/

FRC Team 5940 Documentation

2 Chapter 1. Welcome to Team 5940’s Documentation!

CHAPTER 2

FalconLibrary

2.1 Overview

Falcon Library is the backend library that is used on all FRC Team 5190 robots. This library was written in the Kotlin
JVM Language. Some features of this library include:

• Wrapped WPILib Commands and Subsystems with Kotlin Coroutines asynchronous optimzation.

• High level mathematics for path generation, tracking, custom typesafe units of measure, etc.

– Two-dimensional parametric and functional splines.

– Arc length of parametric quintic hermite splines evaluated using recursive arc subdivision (from Team
254).

– Trajectory generation that respects constraints (i.e. centripetal acceleration, motor voltage).

– Custom trajectory followers

* Ramsete

* Adaptive Pure Pursuit

* Feedforward

– Typesafe units of measure

* Quick and easy conversions between all length, velocity, acceleration, electrical units.

* Support for Talon SRX native unit length and rotation models.

• AHRS sensor wrapper for Pigeon IMU and NavX.

• Tank Drive Subsystem abstraction with built-in odometry and command to follow trajectories.

• Talon SRX wrapper that utilizes Kotlin properties to set configurations.

• Custom robot base with fully implemented state machine and coroutine support.

• Other WPILib wrappers for NetworkTables, etc.

3

FRC Team 5940 Documentation

2.2 Java Interoperability

FalconLibrary is written in Kotlin, a new programming language based on the Java Virtual Machine. Kotlin code is
fully interoperable with Java code. One caviat: static functions and members will be split into their own class. For
instance, to construct a Java Length, one would do:

var x = LengthKt.getFeet(10);

2.3 Contributing

This library is open source and we would love to have you contribute code to this repository. Please make sure that
before submitting a pull request, your code is formatted according to ktlint (already in the project). The Gradle
build will fail if all code is not formatted correctly.

To format code automatically, run ./gradlew spotlessApply. Please build the project locally using ./
gradlew build to make sure everything works before submitting a pull request.

When adding new features, it is encouraged that these features be game-agnostic. This library is intended to be used
for robots that play any game. Also make sure to include unit-tests for any new features.

4 Chapter 2. FalconLibrary

CHAPTER 3

FalconDashboard

Falcon Dashboard is a Kotlin-based utility that can be used to generate trajectories and visualize the robot’s position
on the field live. This utility uses FalconLibrary as the backend trajectory generation code, and generates code that can
be pasted into your robot code. The source code is publicly available at https://github.com/5190GreenHopeRobotics/
FalconDashboard

5

https://github.com/5190GreenHopeRobotics/FalconDashboard
https://github.com/5190GreenHopeRobotics/FalconDashboard

FRC Team 5940 Documentation

6 Chapter 3. FalconDashboard

FRC Team 5940 Documentation

3.1 Running FalconDashboard

Clone or download the repository, and execute this command from within the project root directory:

./gradlew run

3.1. Running FalconDashboard 7

FRC Team 5940 Documentation

3.2 Generating code

To generate code, just click generate and paste the code into a command or command group. Specific implementation
will vary user to user. See Following Trajectories (TODO Link) for more information. One example might be:

Java

var traject = Trajectories.generateTrajectory(
Arrays.asList(

new Pose2d(LengthKt.getFeet(5.634),
LengthKt.getFeet(17.719),
Rotation2dKt.getDegree(0)),

new Pose2d(LengthKt.getFeet(18.36),
LengthKt.getFeet(19.143),
Rotation2dKt.getDegree(0)),

new Pose2d(LengthKt.getFeet(20.822),
LengthKt.getFeet(25.301),
Rotation2dKt.getDegree(153.33))

),
Arrays.asList(new CentripetalAccelerationConstraint(

AccelerationKt.getAcceleration(LengthKt.getFeet(8.0)))),
VelocityKt.getVelocity(LengthKt.getFeet(0.0)),

(continues on next page)

8 Chapter 3. FalconDashboard

FRC Team 5940 Documentation

(continued from previous page)

VelocityKt.getVelocity(LengthKt.getFeet(0.0)),
VelocityKt.getVelocity(LengthKt.getFeet(7.0)),
AccelerationKt.getAcceleration(LengthKt.getFeet(8.0)),
false
true

);

addSequential(new FollowPathCommand(traject, true, m_DriveBase);

Kotlin

// coming soon, coz i don't know Kotlin at all

3.2. Generating code 9

FRC Team 5940 Documentation

10 Chapter 3. FalconDashboard

CHAPTER 4

FalconLibrary Units and Math

4.1 Summery

FalconLibrary includes all common SI units and derived units as typesafe objects. This includes base units such as
Length, Time and Voltage, as well as derived units such as Velocity and Acceleration.

All typesafe units include common mathematical operators such as unary plus, unary minus, equivalency checks,
multiplication and division.

Note: To use these functions in Java, one must call Rotation2dKt.getDegree(10).div(TimeUnitsKt.
getSecond(10)) rather than Rotation2dKt.getDegree(10) / TimeUnitsKt.getSecond(10).
This does not apply to Kotlin users.

Note: These functions do not modify the class on which they are called, but instead return a new instance of it. So if
I construct a new Length of 5 inches and call .plus(x) on it, that original length is still 5 inches.

All the base units contain the basic SI increments, such as milli-, micro-, nano, as well as kilo- or even yotta- and exa-.
Additionally, units include (in general) the imperial equivalent, such as inches and feet or miles for Length or pounds
for Mass. See your autocomplete for a full list of types.

4.2 Time

Time represents a time, and implements SIUnit. Use this to represent a passing time, a duration, or to construct derived
units such as Velocity and Acceleration.’

Java

Time aTime = TimeUnitsKt.getSecond(10);

11

FRC Team 5940 Documentation

Kotlin

val aTime = 10.second

val anotherTime = 10.millisecond

4.3 Length

A Length represents a displacement in 1D space, and can be either positive or negative. The function aLength.
getValue() will return the value in meters, as it is the base unit of Length in the SI system.

Java

// creating a Length
Length aLength = LengthKt.getFeet(10);
Length anotherLen = LengthKt.getMeter(3);

// getting a Length
double aLengthInInches = aLength.getInch();
double miles = anotherLen.getMile();

Kotlin

val aLen = 10.feet
val anotherLen = 3.meter

val inches = aLen.inch
val miles = anotherLen.mile

4.4 Rotation2d

A Rotation2d represents a rotation in 2d space. Think of it like an angle on a unit circle - it can represent the angle
of the triangle’s hypotenuse, and can be converted into a Translation2d with X and Y components correlated to the
angle’s sine and cosine components.

Java

Rotation2d rotation = Rotation2dkt.getDegree(45);

// returns true
var isParallel = rotation.isParallel(rotation);

Rotation2d aMultiple = rotation.times(4);

Rotation2d mMinus = rotation.minus(Rotation2dKt.getDegree(30);

Rotation2d mPlus = rotation.plus(Rotation2dKt.getDegree(-10);

Kotlin

val rotation = 45.degree

val isParallel = rotation.isParallel(rotation)

(continues on next page)

12 Chapter 4. FalconLibrary Units and Math

FRC Team 5940 Documentation

(continued from previous page)

val aMultiple = rotation.times(4)

val mMinus = rotation.minus(30.degree)

val mPlus = rotation.plus((-10).radian)

4.5 NativeUnit

NativeUnit, an SIValue, are often used on motor controllers with feedback sensors, such as TalonSRXes with Quadra-
ture encoders. These encoders output a fixed number of pulses for every rotation of the shaft they are connected to,
and a NativeUnit represents these pulses distinct from information encoding actual, real-life position measurements
such as distance or angles. Because NativeUnit is a SIValue, it inherits the same common operators as Length and
Rotation2d. Conversion between NativeUnits and physical units are done using the Native Unit Model abstract class.
Included in FalconLibrary are NativeUnitLengthModel and NativeUnitRotationModel models, which
covers both linear applications (for example, an elevator or slide) and angular applications (such as an arm). These
models include methods to convert between native and physical unit positions, velocities, accelerations, and error,
among other things.

Warning: The TalonSRX encodes velocity as ticks per 100ms, however other motor controllers such as the Spark
Max encode rpm by default. Furthermore, most motor controllers will let you multiply their measured ticks by an
arbitrary constant, so even if the Spark MAX says RPM, you may have it configured for RPS. Keep this in mind
when using Length and Rotation models!

Java

NativeUnit someUnits = NativeUnitKt.getNativeUnits(10);

Kotlin

val nativeUnits = 10.nativeUnits

4.6 Velocity

Velocity, a derived unit, is often used to represent a linear or angular speed. However it is possible to make a
Velocity of any type that impalements SIValue. The type of Velocity represented can be parameterized by any
class that implements SIValue - for instance, a Velocity<Length>, or Velocity<Rotation2d>, or even
Velocity<NativeUnit>.

Java

// a linear velocity
Velocity<Length> tenFeetPerSec = LengthKt.getFeet(10).div(TimeUnitsKt.getSecond(1));

// an angular velocity
Velocity<Rotation2d> tenDegPerSec = Rotation2dKt.getDegree(10).div(TimeUnitsKt.
→˓getSecond(1));

double radPerSec = tenDegPerSec.getType$FalconLibrary().getRadian();

(continues on next page)

4.5. NativeUnit 13

FRC Team 5940 Documentation

(continued from previous page)

Velocity<NativeUnit> ticksPerSec = NativeUnitKt.getNativeUnits(10).div(TimeUnitsKt.
→˓getSecond(1));

Kotlin

val tenFeetPerSec = 10.feet / 1.second

val tenDegPerSec = 10.degree / 1.second

val ticksPerSec = 10.nativeUnits / 1.second

// TODO make this actually work in kotlin
val inRadiansPerSec = aVel.getType$FalconLibrary().getRadian();

4.7 Acceleration

Acceleration, a derived unit of Velocity, is used to represent either a linear or angular acceleration. Similar to Length,
the type can be parameterized by any class that implements SIValue. Similar to Length, Acceleration must be param-
eterized by a class with inherits SIValue.

Java

Velocity<Length> tenFeetPerSecSquared = LengthKt.getFeet(10).div(TimeUnitsKt.
→˓getSecond(1)).div(TimeUnitsKt.getSecond(1));

Velocity<Rotation2d> nyooooomAccel = Rotation2dKt.getDegree(10000).div(TimeUnitsKt.
→˓getSecond(1)).div(TimeUnitsKt.getSecond(1));

Velocity<NativeUnit> fastNativeUnitNyoom = NativeUnitKt.getNativeUnits(10000).
→˓div(TimeUnitsKt.getSecond(1)).div(TimeUnitsKt.getSecond(1));

Kotlin

val tenFeetPerSecSquared = 10.feet / 1.second / 1.second

val angularAccel = 10000.degree / 1.second / 1.second

val fastNativeUnitNyoom = 1000000.nativeUnits / 1.second / 1.second

4.8 Translation2d

A Translation2d is similar to a 2d vector. It can be constructed either with a typesafe magnitude and direction, or
from x and y components, or from the displacement between two other Translation2ds. Translation2d is also special
because it implements VaryInterpolatable, which means that you can linearly interpolate between two Translation2ds.
This is very useful for path following.

Java

// This is assumed to be meters
Translation2d tran = new Translation2d(

4, 5

(continues on next page)

14 Chapter 4. FalconLibrary Units and Math

FRC Team 5940 Documentation

(continued from previous page)

);

// This is a typesafe translation
tran = new Translation2d(

LengthKt.getInch(4),
LengthKt.getFeet(10)

);

// make a Translation2d out of essentially a vector
tran = new Translation2d(

LengthKt.getFeet(20),
Rotation2dKt.getDegree(21)

);

// This will have a "norm" of 1 meter
Translation2d anotherTran = Translation2dKt.fromRotation(Rotation2dkt.getDegree(45));

// return the point interpolated half way between these two points
var interpolated = tran.interpolate(anotherTran, 0.5);

// get the Length of the hypotenuse of this
var hypotenuseLength = tran.norm();

Kotlin

// This is assumed to be meters
val tran = Translation2d(4, 5);
val tran = Translation2d(4.feet, 10.meter)

// make a Translation2d out of essentially a vector
val tran = Translation2d(5.feet, 21.degree)

// This will have a "norm" of 1 meter
val anotherTran = Translation2d.fromRotation(45.degree)

// return the point interpolated half way between these two points
val interpolated = tran.interpolate(anotherTran, 0.5);

// get the Length of the hypotenuse of this
val hypotenuseLength = tran.norm()

4.9 Pose2d

Pose2d is a composition of Translation2d and Rotation2d. It represents a point in 2 dimensional space with an associ-
ated heading, for example,

Java

var pose = new Pose2d(LengthKt.getInch(5), LengthKt.getInch(5), Rotation2dKt.
→˓getDegree(45);

Kotlin

val pose = Pose2d(Translation2d(5.feet, 2.inch), 45.degree)

4.9. Pose2d 15

FRC Team 5940 Documentation

This unit is also really useful for path following, and is used to represent a robot’s 2d position on the field and a
heading. The type also includes methods such as .mirror(), which mirrors the Pose2d about the middle of the
field (left/right, relative to the alliance wall), and the usual plus/minus functions, and interpolation methods. For more
advanced functions such as inFrameOfReferenceOf() or twist(), teams are encourage to Read the github
source.

4.10 Twist2d

Coming soon, i’m confused.

Twist2d holds a dx, dy and dtheta component to represent a robot “twist.” More docs coming soon.

4.11 Pose2dWithCurvature

Pose2dWithCurvature, similar to Twist2d, holds Pose2d and curvature components. Curvature is defined as one over
the radius of a circle, and curvature can be positive or negative depending on the direction that the pose twists - left or
right.

4.12 Other Units

Other SI Units of FalconLibrary not men sioned here include Mass, Ohms, Volts and Amps.

16 Chapter 4. FalconLibrary Units and Math

https://github.com/5190GreenHopeRobotics/FalconLibrary/blob/32a9657467ad7866b9cca710cd937748f3c3aefb/src/main/kotlin/org/ghrobotics/lib/mathematics/twodim/geometry/Pose2d.kt
https://github.com/5190GreenHopeRobotics/FalconLibrary/blob/32a9657467ad7866b9cca710cd937748f3c3aefb/src/main/kotlin/org/ghrobotics/lib/mathematics/twodim/geometry/Pose2d.kt

CHAPTER 5

FalconLibrary’s Command-based Implememntation

FalconLibrary implements a Command Based framework, similar to WPILib. This command based implementation
is based upon wrapping WPILib’s Command based Commands and Subsystems, but is scheduled based upon Kotlin
Coroutines and includes syntactic sugar for command group building. This example from Team 5190’s 2018 offseason
code demonstrates building CommandGroups with both parallel and sequential commands.

// Place third cube in scale
+parallel { // run all these commands in parallel

+DriveSubsystem.followTrajectory(cube2ToScale, shouldMirrorPath)
.withExit(stopScalePathCondition)

+sequential { // run first the DelayCommand, then move the arm back
+DelayCommand(cube2ToScale.lastState.t - 2.7.second)
+SubsystemPreset.BEHIND.command

}
+sequential { // wait for the arm, then outtake a cube.

+ConditionCommand { ArmSubsystem.armPosition > Constants.kArmBehindPosition -
→˓Constants.kArmAutoTolerance }

+IntakeCommand(IntakeSubsystem.Direction.OUT, 0.4).withTimeout(500.
→˓millisecond)

}
}

Note: To use FalconLibrary’s built-in tank-drive drivetrains a team will have to be completely Falcon-command-
based, and teams using WPI’s command-based cannot use any FalconCommands or FalconSubsystems.

17

FRC Team 5940 Documentation

18 Chapter 5. FalconLibrary’s Command-based Implememntation

19

FRC Team 5940 Documentation

CHAPTER 6

Pathing with FalconLibrary

6.1 Summery

20 Chapter 6. Pathing with FalconLibrary

FRC Team 5940 Documentation

To get from point A to B in the fastest way possible, FalconLibrary generates a spline between the two points. (iirc)
Team 254 teh Chezy Pofs were the first to use splines, back in 2014. FalconLibrary generates splines using user
provided waypoints, initial and ending velocities, maximum speeds and accelerations, and additional constraints in-
cluding velocity limiting regions and drivetrain models (see the article on these). These trajectories are then uploaded
to the robot, which follows them using a selection of available followers. To do this, though, the robot needs to know
where it is on the field and update it in real-time using a technique called Odometry, meaning that your robot needs
encoders and a form of gyroscope such as NavX or Pigeon IMU.

6.2 Odometry

Odometry is the process of deriving robot position using Dead Reckoning. Using information about driven distance
and heading, a robot can be “localized” on the field. The process of relocalization is deriving an absolute robot position
by way of known robot pose or a vision target. FalconLibrary implements for users a build in Tank Drive Odometry
class - all that users need to do is in give it Suppliers for drivetrain distances and robot heading. Review this for more
information on Functional Interfaces in Java.

Java

/* Create a localization object because lambda expressions are fun */
localization = new TankEncoderLocalization(

// the gyro needs to be positive counter-clockwise
() -> Rotation2dKt.getDegree(getGyro(true)),
// and these need to return a Length
() -> getLeft().getDistance(),
() -> getRight().getDistance());

/* set the robot pose to 0,0,0 */
localization.reset(new Pose2d());

// the update() method must be called periodically,
// as fast as possible. 100hz is ideal, but 20 will work.
Notifier localizationNotifier = new Notifier(

() -> {localization.update();}
);
localizationNotifier.startPeriodic(1d / 100d);

Kotlin

// coming soon, coz i don't know Kotlin at all

6.3 Following paths

Paths should be generated with /docs/unnoficial-libraries/team5190/falcon-dash (TODO fix that link) Paths are stored
as a TimedTrajectory<Pose2dWithCurvature>, which can be followed using:

• Feedforward, using no pose feedback

• Pure Pursuit, which uses a lookahead point and angle to follow a path. This should be phased out for tank
drive in favor of

• RAMSETE, non-linear feedback based on robot pose.

It is recommended that teams make their drivetrains implement DifferentialTrackerDriveBase and convert
their motors to FalconMotor<Length>, or it’s subclasses, such as FalconSRX<Length>.

6.2. Odometry 21

https://en.wikipedia.org/wiki/Dead_reckoning
https://www.geeksforgeeks.org/functional-interfaces-java/

FRC Team 5940 Documentation

6.3.1 The DifferentialTrackerDriveBase

DifferentialTrackerDriveBase is an interface for teams to quickly make their drivetrains integrate with
FalconLibrary path following. The interface requires you to have characterized and modeled your drivetrain, to have
drive motors which subclass FalconMotor, and have implemented a form of localization. The method contains and
inherits methods for utilizing the feedforward models of your drivetrain to estimate the voltage required for a (veloc-
ity, acceleration) command and setting motor output to a PID setpoint + feedforward voltage. See (TODO LINK)
characterizing your drivetrain for information on the DifferentialDrive class. A bare-bones example of a Differential-
TrackerDriveBase can be found (TODO LINK) HERE.

6.3.2 An example path following command

Java

public class TrajectoryTrackerCommand extends SendableCommandBase {
private TrajectoryTracker trajectoryTracker;
private Supplier<TimedTrajectory<Pose2dWithCurvature>> trajectorySource;
private DriveTrain driveBase;
private boolean reset;
private TrajectoryTrackerOutput output;
Length mDesiredLeft;
Length mDesiredRight;
double mCurrentLeft;
double mCurrentRight;

Notifier mUpdateNotifier;

public TrajectoryTrackerCommand(DriveTrain driveBase, Supplier<TimedTrajectory
→˓<Pose2dWithCurvature>> trajectorySource) {

this(driveBase, trajectorySource, false);
}

public TrajectoryTrackerCommand(DriveTrain driveBase, Supplier<TimedTrajectory
→˓<Pose2dWithCurvature>> trajectorySource, boolean reset) {

this(driveBase, Robot.drivetrain.getTrajectoryTracker(),
→˓trajectorySource, reset);

}

public TrajectoryTrackerCommand(DriveTrain driveBase, TrajectoryTracker
→˓trajectoryTracker, Supplier<TimedTrajectory<Pose2dWithCurvature>> trajectorySource,
→˓boolean reset) {

addRequirements(driveBase);
this.driveBase = driveBase;
this.trajectoryTracker = trajectoryTracker;
this.trajectorySource = trajectorySource;
this.reset = reset;

}

@Override
public void initialize() {

LiveDashboard.INSTANCE.setFollowingPath(false);

if (trajectorySource == null) {
Logger.log("Sadly the trajectories are not generated. the

→˓person responsible for the trajectories has been sacked.");
Trajectories.generateAllTrajectories();

(continues on next page)

22 Chapter 6. Pathing with FalconLibrary

FRC Team 5940 Documentation

(continued from previous page)

}

trajectoryTracker.reset(this.trajectorySource.get());

if (reset == true) {
Robot.drivetrain.getLocalization().reset(trajectorySource.

→˓get().getFirstState().getState().getPose());
}

LiveDashboard.INSTANCE.setFollowingPath(true);

mUpdateNotifier = new Notifier(() -> {
output = trajectoryTracker.nextState(driveBase.

→˓getRobotPosition(), TimeUnitsKt.getSecond(Timer.getFPGATimestamp()));

TrajectorySamplePoint<TimedEntry<Pose2dWithCurvature>>
→˓referencePoint = trajectoryTracker.getReferencePoint();

if (referencePoint != null) {
Pose2d referencePose = referencePoint.getState().

→˓getState().getPose();

LiveDashboard.INSTANCE.setPathX(referencePose.
→˓getTranslation().getX().getFeet());

LiveDashboard.INSTANCE.setPathY(referencePose.
→˓getTranslation().getY().getFeet());

LiveDashboard.INSTANCE.setPathHeading(referencePose.
→˓getRotation().getRadian());

}

driveBase.setOutput(output);

});
mUpdateNotifier.startPeriodic(0.01);

}

@Override
public void end(boolean interrupted) {

mUpdateNotifier.stop();
driveBase.stop();
LiveDashboard.INSTANCE.setFollowingPath(false);

}

@Override
public boolean isFinished() {

return trajectoryTracker.isFinished();
}

public TimedTrajectory<Pose2dWithCurvature> getTrajectory() {
return this.trajectorySource.get();

}

}

Kotlin

6.3. Following paths 23

FRC Team 5940 Documentation

// coming soon, coz i don't know Kotlin at all

24 Chapter 6. Pathing with FalconLibrary

CHAPTER 7

Example path following drivebases

Some example drivebases to get you started on path following quickly. For path following Commands, see :/falconlib-
pathing

7.1 An example TalonSRX drivetrain with a NavX AHRS gyro

Java

public class DriveTrain extends SendableSubsystemBase /* or Subsystem */ implements
→˓DifferentialTrackerDriveBase {

public static final double kRobotMass = 50 /* Robot, kg */ + 5f /* Battery, kg */
→˓+ 2f /* Bumpers, kg */;

public static final double kRobotMomentOfInertia = 10.0; // kg m^2 // TODO Tune
public static final double kRobotAngularDrag = 12.0; // N*m / (rad/sec)

public static final double kWheelRadius = Util.toMeters(2f / 12f);// meters. TODO
→˓tune

public static final double kTrackWidth = Util.toMeters(26f / 12f);// meters

private static final double kVDriveLeftLow = 0.274 * 1d; // Volts per radians per
→˓second - Calculated emperically

private static final double kADriveLeftLow = 0.032 * 1d; // Volts per radians per
→˓second per second TODO tune

private static final double kVInterceptLeftLow = 1.05 * 1d; // Volts - tuned!

private static final double kVDriveRightLow = 0.265 * 1d; // Volts per radians
→˓per second - Calculated emperically

private static final double kADriveRightLow = 0.031 * 1d; // Volts per radians
→˓per second per second TODO tune

private static final double kVInterceptRightLow = 1.02 * 1d; // Volts - tuned!

public static final DCMotorTransmission kLeftTransmissionModelLowGear = new
→˓DCMotorTransmission(1 / kVDriveLeftLow,

(continues on next page)

25

FRC Team 5940 Documentation

(continued from previous page)

kWheelRadius * kWheelRadius * kRobotMass / (2.0 * kADriveLeftLow),
kVInterceptLeftLow);

public static final DCMotorTransmission kRightTransmissionModelLowGear = new
→˓DCMotorTransmission(1 / kVDriveRightLow,

kWheelRadius * kWheelRadius * kRobotMass / (2.0 * kADriveRightLow),
kVInterceptRightLow);

private FalconSRX<Length> left, right;

private Localization localization;

private RamseteTracker ramseteTracker;

private AHRS gyro; // a NavX

private Notifier localizationNotifier;

/* Ramsete constants */
public static final double kDriveBeta = 2 * 1d; // Inverse meters squared
public static final double kDriveZeta = 0.7 * 1d; // Unitless dampening co-

→˓efficient

public mlem() {
var nativeUnitModel = new NativeUnitLengthModel(NativeUnitKt.

→˓getNativeUnits(4096), LengthKt.getInch(2));
left = new FalconSRX<Length>(0, nativeUnitModel, TimeUnitsKt.

→˓getMillisecond(10));
right = new FalconSRX<Length>(0, nativeUnitModel, TimeUnitsKt.

→˓getMillisecond(10));

gyro = new AHRS(Port.kMXP);

/* Create a localization object because lamda expressions are fun */
localization = new TankEncoderLocalization(() -> Rotation2dKt.

→˓getDegree(getGyro(true)),
() -> getLeftMotor().getSensorPosition(), () -> getRightMotor().

→˓getSensorPosition());
/* set the robot pose to 0,0,0 */
localization.reset(new Pose2d());

ramseteTracker = new RamseteTracker(kDriveBeta, kDriveZeta);

localizationNotifier = new Notifier(() -> {
this.getLocalization().update();

});
localizationNotifier.startPeriodic(1d / 100d);

}

private Localization getLocalization() {
return localization;

}

private double getGyro(boolean isReversed) {
return gyro.getFusedHeading() * ((isReversed) ? -1 : 1);

}
(continues on next page)

26 Chapter 7. Example path following drivebases

FRC Team 5940 Documentation

(continued from previous page)

@Override
public FalconSRX<Length> getLeftMotor() {

return left;
}

@Override
public FalconSRX<Length> getRightMotor() {

return right;
}

@Override
public Pose2d getRobotPosition() {

return null;
}

@Override
public TrajectoryTracker getTrajectoryTracker() {

return null;
}

@Override
public DifferentialDrive getDifferentialDrive() {

return null;
}

}

Kotlin

// coming soon, coz i don't know Kotlin at all

7.1. An example TalonSRX drivetrain with a NavX AHRS gyro 27

	Welcome to Team 5940’s Documentation!
	FalconLibrary
	FalconDashboard
	FalconLibrary Units and Math
	FalconLibrary’s Command-based Implememntation
	Pathing with FalconLibrary
	Example path following drivebases

