

Welcome to 3D City Database documentation!

Contents:

	1. First steps
	1.1. System requirements
	1.1.1. 3D City Database

	1.1.2. Importer/Exporter Tool

	1.2. Installation of the Importer/Exporter

	1.3. Setting up the database schema
	1.3.1. Shell Scripts

	1.3.2. SQL Scripts

	1.3.3. Installation steps on Oracle Databases

	1.3.4. Installation steps on PostgreSQL

	1.4. Migration from previous releases
	1.4.1. V2 to V4 Migration on Oracle

	1.4.2. V2 to V4 Migration on PostgreSQL

	1.4.3. V3 to V4 Migration

	1.4.4. Upgrade between minor releases

	1.5. 3DCityDB Docker Images
	1.5.1. Getting started

	1.5.2. Further images

	2. 3D City Database
	2.1. Introduction

	2.2. Main features of 3DCityDB
	2.2.1. CityGML 2.0.0 and 1.0.0 compliant database

	2.2.2. Support for CityGML Application Domain Extensions (ADEs)

	2.2.3. Importing and exporting CityGML data

	2.2.4. Export to KML, COLLADA and glTF

	2.2.5. Spreadsheet export

	2.2.6. Interactive 3D web visualization

	2.2.7. Web Feature Service (WFS) 2.0

	2.2.8. Docker support

	2.2.9. Open Source and Platform Independence

	2.2.10. Features inherited from CityGML

	2.3. System and design decisions

	2.4. Development history
	2.4.1. Version 1 - 2003 - 2007

	2.4.2. Version 2 - 2006 - 2014

	2.4.3. Version 3 - 2013 - 2018

	2.4.4. Version 4 - since 2015

	2.4.5. Acknowledgements

	2.4.6. List of changes between software versions
	2.4.6.1. Notable changes between 4.0 and 3.3

	2.5. Data Modelling and Database Design
	2.5.1. Simplification compared to CityGML 2.0.0
	2.5.1.1. Multiplicities of attributes

	2.5.1.2. Cardinalities and types of relationships

	2.5.1.3. Simplified treatment of recursions

	2.5.1.4. Data type adaptation

	2.5.1.5. Project specific classes and class attributes

	2.5.1.6. Simplified design of GML geometry classes

	2.6. UML class diagram
	2.6.1. Geometric-topological Model

	2.6.2. Implicit Geometry

	2.6.3. Appearance Model

	2.6.4. Thematic model
	2.6.4.1. Core Model

	2.6.4.2. Building model

	2.6.4.3. Bridge Model

	2.6.4.4. CityFurniture Model

	2.6.4.5. Generic Objects and Attributes

	2.6.4.6. LandUse Model

	2.6.4.7. Digital Terrain Model

	2.6.4.8. Transportation Model

	2.6.4.9. Tunnel Model

	2.6.4.10. Vegetation Model

	2.6.4.11. WaterBodies Model

	2.7. Relational database schema
	2.7.1. Mapping rules, schema conventions
	2.7.1.1. Mapping of classes onto tables

	2.7.1.2. Explicit declaration of class affiliation

	2.7.2. Conceptual database structure

	2.7.3. Database schema
	2.7.3.1. Metadata Model

	2.7.3.2. Core Model

	2.7.3.3. Tables for geometry representation

	2.7.3.4. Appearance Model

	2.7.3.5. Building Model

	2.7.3.6. Bridge Model

	2.7.3.7. CityFurniture Model

	2.7.3.8. Generic Objects and Attributes

	2.7.3.9. LandUse Model

	2.7.3.10. Digital Terrain Model

	2.7.3.11. Transportation Model

	2.7.3.12. Tunnel Model

	2.7.3.13. Vegetation Model

	2.7.3.14. WaterBody Model

	2.7.3.15. Sequences

	2.8. Definition of the CRS for a 3D City Database instance

	2.9. Working with multiple database schemas
	2.9.1. Create and address database schemas

	2.9.2. Read and write access to a schema

	2.9.3. Schema support in stored procedures

	2.10. Stored procedures and additional features
	2.10.1. User-defined data types

	2.10.2. CITYDB_UTIL

	2.10.3. CITYDB_CONSTRAINT

	2.10.4. CITYDB_IDX

	2.10.5. CITYDB_SRS

	2.10.6. CITYDB_STAT

	2.10.7. CITYDB_OBJCLASS

	2.10.8. CITYDB_DELETE

	2.10.9. CITYDB_ENVELOPE

	3. Importer-Exporter
	3.1. Interfaces

	3.2. Database connections and operations
	3.2.1. Managing and establishing database connections

	3.2.2. Executing database operations
	3.2.2.1. Generating a database report

	3.2.2.2. Calculating/updating the bounding box

	3.2.2.3. Managing indexes

	3.2.2.4. Managing the spatial reference system of the database

	3.2.2.5. Displaying supported CityGML ADEs

	3.3. Importing CityGML files

	3.4. Exporting to CityGML
	3.4.1. SQL queries

	3.4.2. XML query expressions
	3.4.2.1. <typeNames> parameter

	3.4.2.2. <propertyNames> projection clause

	3.4.2.3. <filter> selection clause

	3.4.2.4. <count> parameter

	3.4.2.5. <lods> parameter

	3.4.2.6. <appearance> parameter

	3.4.2.7. <tiling> parameter

	3.4.2.8. targetSrid attribute

	3.4.2.9. Address information

	3.4.2.10. 3DCityDB metadata

	3.4.2.11. Using XML queries in batch processes

	3.5. Exporting to KML/COLLADA/glTF
	3.5.1. Support of GenericCityObject having any geometry types

	3.5.2. Loading exported models in Google Earth and Cesium Virtual Globe

	3.6. Preferences
	3.6.1. CityGML import preferences
	3.6.1.1. Continuation

	3.6.1.2. gml:id handling

	3.6.1.3. Address

	3.6.1.4. Appearance

	3.6.1.5. Geometry

	3.6.1.6. Indexes

	3.6.1.7. XML validation

	3.6.1.8. XSL Transformation

	3.6.1.9. Import log

	3.6.1.10. Resources

	3.6.2. CityGML export preferences
	3.6.2.1. CityGML version

	3.6.2.2. Tiling options

	3.6.2.3. CityObjectGroup

	3.6.2.4. Address

	3.6.2.5. Appearance

	3.6.2.6. XLinks

	3.6.2.7. XSL Transformation

	3.6.2.8. Resources

	3.6.3. KML/COLLADA/glTF export preferences
	3.6.3.1. General Preferences

	3.6.3.2. Rendering Preferences

	3.6.3.3. Information Balloon Preferences

	3.6.3.4. Altitude/Terrain Preferences

	3.6.3.5. General setting recommendations

	3.6.4. Management of user-defined coordinate reference systems

	3.6.5. General preferences
	3.6.5.1. Cache

	3.6.5.2. Import and export path

	3.6.5.3. Network proxies

	3.6.5.4. API Keys

	3.6.5.5. Logging

	3.6.5.6. Language selection

	3.7. Map window for bounding box selections

	3.8. Using the command line interface (CLI)

	3.9. Importer/Exporter plugins
	3.9.1. Introduction to the plugin architecture

	3.9.2. Spreadsheet Generator Plugin (SPSHG)
	3.9.2.1. Definition

	3.9.2.2. Plugin installation

	3.9.2.3. User Interface

	3.9.2.4. Output

	3.9.3. ADE Manager Plugin
	3.9.3.1. Definition

	3.9.3.2. Plugin installation

	3.9.3.3. User Interface

	3.9.3.4. Workflow of extending the Import/Export Tool

	4. Web Feature Service
	4.1. System requirements

	4.2. Installation

	4.3. Configuring the Web Feature Service
	4.3.1. Database settings

	4.3.2. Capabilities settings

	4.3.3. Feature type settings

	4.3.4. Operations settings

	4.3.5. Postprocessing settings

	4.3.6. Server settings

	4.3.7. Cache settings

	4.3.8. Constraints settings

	4.3.9. Logging settings

	4.4. Functionality
	4.4.1. Basic functionality
	4.4.1.1. WFS operations

	4.4.1.2. Service URL

	4.4.1.3. Service bindings

	4.4.1.4. CityGML feature types

	4.4.1.5. Exception reports

	4.4.2. GetCapabilities operation

	4.4.3. DescribeFeatureType operation

	4.4.4. ListStoredQueries operation

	4.4.5. DescribeStoredQuery operation

	4.4.6. GetFeature operation

	4.5. Web-based WFS client

	5. 3DCityDB-Web-Map-Client
	5.1. System requirements
	5.1.1. Using the 3D Web Client from the 3DCityDB homepage

	5.2. Installation and configuration

	5.3. Feature overview

	5.4. Handling KML/glTF models with online spreadsheet

	5.5. Handling Web Map Service data

	5.6. Handling Digital Terrain Models

	5.7. Interaction with 3D objects

	5.8. Mobile Support Extension
	5.8.1. A more lightweight graphical user interface

	5.8.2. Geolocation-based features

	6. Appendix
	6.1. Contributors
	6.1.1. Active participants in development

	6.1.2. Participants in earlier developments

	6.2. 3DCityDB @ TU München
	6.2.1. Interactive Cloud-based 3D Webclient

	6.2.2. Research Projects in which 3DCityDB is being used

	6.2.3. Current and future work on 3DCityDB

	6.3. 3DCityDB @ virtualcitySYSTEMS
	6.3.1. virtualcityDATABASE

	6.3.2. virtualcitySUITE – The 3D City Platform

	6.4. 3DCityDB @ M.O.S.S.
	6.4.1. novaFACTORY at a glance

	6.4.2. novaFACTORY 3D GDI

	7. References

	8. Changelog
	8.1. 3D City Database relational schema
	8.1.1. General changes

	8.2. 3D City Database scripts

	8.3. 3D City Database stored procedures
	8.3.1. General changes

	8.3.2. UTIL package

	8.3.3. IDX package

	8.3.4. SRS package

	8.3.5. STAT package

	8.3.6. DELETE package

	8.3.7. DELETE_BY_LINEAGE package

	8.3.8. ENVELOPE package

	8.4. 3D City Database Importer/Exporter
	8.4.1. General changes

	8.4.2. CityGML import

	8.4.3. CityGML export

	8.4.4. KML/COLLADA/glTF export

	8.5. Web Feature Service

	8.6. 3D Web Map Client

2. 3D City Database

	2.1. Introduction

	2.2. Main features of 3DCityDB
	2.2.1. CityGML 2.0.0 and 1.0.0 compliant database

	2.2.2. Support for CityGML Application Domain Extensions (ADEs)

	2.2.3. Importing and exporting CityGML data

	2.2.4. Export to KML, COLLADA and glTF

	2.2.5. Spreadsheet export

	2.2.6. Interactive 3D web visualization

	2.2.7. Web Feature Service (WFS) 2.0

	2.2.8. Docker support

	2.2.9. Open Source and Platform Independence

	2.2.10. Features inherited from CityGML

	2.3. System and design decisions

	2.4. Development history
	2.4.1. Version 1 - 2003 - 2007

	2.4.2. Version 2 - 2006 - 2014

	2.4.3. Version 3 - 2013 - 2018

	2.4.4. Version 4 - since 2015

	2.4.5. Acknowledgements

	2.4.6. List of changes between software versions

	2.5. Data Modelling and Database Design
	2.5.1. Simplification compared to CityGML 2.0.0

	2.6. UML class diagram
	2.6.1. Geometric-topological Model

	2.6.2. Implicit Geometry

	2.6.3. Appearance Model

	2.6.4. Thematic model

	2.7. Relational database schema
	2.7.1. Mapping rules, schema conventions

	2.7.2. Conceptual database structure

	2.7.3. Database schema

	2.8. Definition of the CRS for a 3D City Database instance

	2.9. Working with multiple database schemas
	2.9.1. Create and address database schemas

	2.9.2. Read and write access to a schema

	2.9.3. Schema support in stored procedures

	2.10. Stored procedures and additional features
	2.10.1. User-defined data types

	2.10.2. CITYDB_UTIL

	2.10.3. CITYDB_CONSTRAINT

	2.10.4. CITYDB_IDX

	2.10.5. CITYDB_SRS

	2.10.6. CITYDB_STAT

	2.10.7. CITYDB_OBJCLASS

	2.10.8. CITYDB_DELETE

	2.10.9. CITYDB_ENVELOPE

2.1. Introduction

Virtual 3D city and landscape models are provided for an increasing
number of cities, regions, states, and even countries. They are created
and maintained by public authorities like national and state mapping
agencies as well as by cadastre institutions and private companies. The
3D topography of urban and rural areas is essential for both visual
exploration and a range of different analyses in, for example, the urban
planning, environmental, energy, transportation, and facility management
sectors.

3D city models are nowadays used as an integrative information backbone
representing the relevant urban entities along with their spatial,
semantic, and visual properties. They are often created and maintained
with full coverage of entire cities and even countries, i.e. all real
world objects of a specific type like buildings, roads, trees, water
bodies, and the terrain are explicitly represented. In most cases the 3D
city model objects have well-defined identifiers, which are kept stable
during the lifetime of the real world objects and their virtual
counterparts. Such complete 3D models are a good basis to organize
different types of data and sensors within Smart City projects as they
build a stable platform for information linking and enrichment.

In order to establish a common understanding and interpretation of the
urban objects and to achieve interoperable access and exchange of
complete 3D models including the geometric, topologic, visual, and
semantic data, the Open Geospatial Consortium (OGC) has issued the
CityGML standard [https://www.opengeospatial.org/standards/citygml] [Kolb2009].
CityGML defines a feature catalogue and data model for the most relevant
3D topographic elements like buildings, bridges, tunnels, roads,
railways, vegetation, water bodies, etc. The data model is mapped to an
XML-based exchange format using OGC’s Geography Markup Language (GML).

The 3D City Database (3DCityDB) is a free Open Source package consisting
of a database schema and a set of software tools to import, manage,
analyse, visualize, and export virtual 3D city models according to the
CityGML standard [YNKH2018]. The database schema results from a mapping of the
object oriented data model of CityGML 2.0 to the relational structure of
a spatially-enhanced relational database management system (SRDBMS). The
3DCityDB supports the commercial SRDBMS Oracle (with Spatial or
Locator license options) and the Open Source SRDBMS PostGIS (which is
an extension to the free RDBMS PostgreSQL). 3DCityDB makes use of the
specific representation and processing capabilities of the SRDBMS
regarding the spatial data elements. It can handle also very large
models in multiple levels of details consisting of millions of 3D
objects with hundreds of millions of geometries and texture images.

3DCityDB is in use in real life production systems in many places around
the world and is also being used in a number of research projects. For
example, the cities of Berlin, Potsdam, Munich, Frankfurt, Zurich,
Rotterdam, Singapore all keep and manage their virtual 3D city models
within an instance of 3DCityDB. The companies virtualcitySYSTEMS (VCS)
and M.O.S.S., who are also partners in development, use 3DCityDB at the
core of their commercial products and services to create, maintain,
visualize, transform, and export virtual 3D city models (see Appendix B,
Appendix C, and Appendix D for examples how and where TUM,
virtualcitySYSTEMS, and M.O.S.S. employ 3DCityDB in their projects).
Furthermore, the state mapping agencies of all 16 states in Germany
store and manage the state-wide collected 3D building models in CityGML
LOD1 and LOD2 using 3DCityDB. In 2012 the previous version of 3DCityDB
and the developer team received the Oracle Spatial Excellence Award,
issued by Oracle USA.

Since 3DCityDB is based on CityGML, interoperable data access from user
applications to the database can be achieved in at least two ways:

	by using the included high-performance CityGML Import/Export tool or
the included basic Web Feature Service 2.0 in order to exchange the
data in CityGML format (Version 2.0 or 1.0), and

	by directly accessing the database tables whose relational structures
are fully explained in detail within this document. It is easy to
enrich a 3D city model by adding information to the database tables
in some user application (using e.g. the database APIs of programming
language like C++, Java, Python, or of ETL tools like the Feature
Manipulation Engine from Safe Software). The enriched dataset then
can be exchanged or archived by exporting the city model to CityGML
without information loss. Analogously, 3DCityDB can be used to import
a CityGML dataset and then access and work with the city model by
directly accessing the database tables from some application programs
or ETL software.

The Import/Export tool also provides functionalities for the direct
export of 3D visualization models in KML, COLLADA, and glTF formats. A
tiling strategy is supported which allows to visualize even very large
3D city and landscape models in geoinformation systems (GIS) or digital
virtual globes like Google Earth or CesiumJS Virtual Globe. The
Import/Export tool comes with an API to create further importers,
exporters, and database administration tools.

One export plugin coming with the software installer package is the
so-called ‘Spreadsheet Generator Plugin’ (SPSHG) which allows to export
thematic data of 3D objects into tables in CSV and Microsoft Excel format
that can be easily uploaded to and published as online spreadsheets, for
instance, within the Google Cloud.

Starting from release 3.3.0, 3DCityDB software package comes with the
CesiumJS-based 3D viewer called “3DCityDB-Web-Map-Client” which can link
the 3D visualization models with online spreadsheets and facilitates
interactive visualization and exploration of 3D city models over the
internet within web browsers on desktop and mobile computers. The most
significant new functionality in release 4.0.0 is the support of CityGML
Application Domain Extensions (ADEs). ADEs extend the CityGML datamodel
by domain specific object types, attributes, and relations.

This documentation describes the design and the components of the 3D City
Database as well as their usage for the new major release 4.0.0 which
has been developed and implemented by the three partners in development,
namely the Chair of Geoinformatics [https://www.gis.bgu.tum.de/en/home/]
at Technische Universität München, virtualcitySYSTEMS [https://www.virtualcitysystems.de/en/],
and MOSS [https://www.moss.de/].

The development is continuing the previous work carried out at the
Institute for Geodesy and Geoinformation Science [https://www.igg.tu-berlin.de/menue/institut_fuer_geodaesie_und_geoinformationstechnik/parameter/en/]
of the Berlin University of Technology and the
Institute for Cartography and Geoinformation [https://www.geoinfo.uni-bonn.de/en]
of the University of Bonn.

Some figures and texts are cited from the OpenGIS City Geography Markup
Language (CityGML) Encoding Standard, Version 2.0.0 [GKNH2012].

2.2. Main features of 3DCityDB

Many (but not all) of the features referring to object modelling and
representation are implied by following the CityGML standard 2.0.0
issued by the Open Geospatial Consortium.

2.2.1. CityGML 2.0.0 and 1.0.0 compliant database

The implementation defines the classes and relations for the most
relevant topographic objects in cities and regional models with respect
to their geometrical, topological, semantical, and appearance properties.
Included are generalization hierarchies between thematic classes,
aggregations, relations between objects, and spatial properties. These
thematic information go beyond graphic exchange formats and allow to
employ virtual 3D city models for sophisticated analysis tasks in
different application domains.

For the representation of all vector and grid geometry the built-in data
types provided by the spatially-enhanced relational database manage­ment
systems Oracle Spatial/Locator (10G R2 or higher) or PostgreSQL (9.1 or
higher) with PostGIS extension (2.0 or higher) are used. This way,
special solutions are avoided and different geoinformation systems,
CAD/BIM systems, and ETL software systems can directly access (read and
write) the geometry objects stored in the SRDBMS.

The version and history management employs Oracle’s Workspace Manager
and, hence, is only available for 3DCityDB instances running on an
Oracle RDBMS. It is largely transparent to application programs that
work with the database.

2.2.2. Support for CityGML Application Domain Extensions (ADEs)

Semantic 3D city models are employed for many different applications
from diverse domains like energetic, environmental, driving, and
traffic simulations, as-built building infor­mation modeling (as-built
BIM), asset management, and urban information fusion. In order to store
and exchange application specific data aligned and integrated with the
3D city objects, the CityGML datamodel can be extended by new feature
types, attributes, and relations using the CityGML ADE mechanism. ADEs
are specified as (partial) GML application schemas using the modeling
language XML Schema. Starting from release 4.0.0 the 3DCityDB database
schema can be dynamically extended by arbitrary ADEs like the Energy ADE,
UtilityNetwork ADE, Dynamizer ADE, or national CityGML extensions like
IMGeo3D (from The Netherlands).

Since ADEs can define an arbitrary number of new elements with all types
and numbers of spatial properties, a transformation method has been
developed to automatically derive the relational database schemas for
arbitrary ADEs from the ADE XML schema files. Since we intended to follow
similar rules in the mapping of the object-oriented ADE models onto
relational models as we used for the (manual) mapping of the CityGML
datamodel onto the 3DCityDB core schema, the Chair of Geoinformatics at
TUM developed a new transformation method based on graph transformation
systems. This method is described in detail in [YaKo2017] and is
implemented within the “ADE Manager” plugin for the Importer/Exporter
software tool.

The ADE Manager performs a sophisticated analysis of the XML schema files
of an ADE, the automatic derivation of additional relational table
structures, and the registration of the ADE within the 3DCityDB.
Furthermore, SQL scripts are generated for each ADE for e.g. the deletion
of ADE objects and attributes from the database. Please note that in order
to support also the import and export of CityGML datasets with ADE
contents, a Java library for the specific ADE has to be implemented. This
library has to perform the handling of the CityGML ADE XML elements and
the reading from and writing into the respective ADE database tables using
JDBC and SQL. An example how to develop such a Java library is given for a
Test ADE [https://github.com/3dcitydb/extension-test-ade] in the
3DCityDB github repository.

2.2.3. Importing and exporting CityGML data

The included Importer/Exporter software tool allows for high performance
importing and exporting of CityGML datasets according to CityGML versions
2.0 and 1.0. The tool allows processing of very large datasets (>> 4 GB),
even if they include XLinks between CityGML features or XLinks to 3D GML
geometry objects. The multi-threaded programming exploits multiprocessor
systems or multikernel CPUs to speed up the processing of complex
XML-structures, resulting in high performance database access. Objects can
be filtered during import or export according to spatial regions (bounding
box), their object IDs, feature types, names, and levels of detail.
Bounding boxes can be interactively selected using a map window based on
OpenStreetMap (OSM).

A tiling strategy is implemented in order to support the export of very
large datasets. In case of a very high number of texture images they can
be automatically distributed in a configurable number of subdirectories in
order to avoid large directories with millions of files which can render a
Microsoft Windows operating systems unresponsive. The Importer can also
validate CityGML files and can be configured to only import valid features.
It considers CityGML ADE contents, if the ADEs have been registered in the
database and specific Java libraries for reading/writing the ADE contents
from/into the ADE database tables is provided (see above). The
Importer/Exporter tool can be run in interactive or batch mode.

2.2.4. Export to KML, COLLADA and glTF

The Importer/Exporter tool can also export city models to KML, COLLADA and
glTF formats which can directly be viewed and interactively explored in
geoinformation systems (GIS) or digital virtual globes like Google Earth
or Cesium WebGL Virtual Globe. A tiling strategy is supported where only
tiles in the vicinity of the viewer’s location are being loaded
facilitating the visualization of even very large 3D city and landscape
models. Information balloons for all objects can be configured by the user.
The exported models are especially suited to be visualized using the
3DCityDB-Web-Map-Client (see below), an Open Source 3D web viewer that is
based on the CesiumJS Webglobe framework with many functional extensions.

2.2.5. Spreadsheet export

The Spreadsheet Generator (SPSHG) allows exporting thematic data of 3D
objects into tables in CSV and Microsoft Excel format which can be uploaded
to a Google Spreadsheet within the Google Document Cloud. For every
selected geoobject one row is being exported where the first column always
contains the GMLID value of the respective object. The further columns can
be selected by the user. This tool can be used to export attribute data
from e.g. buildings like the class, function, usage, roof type, address,
and further generic attributes that may contain information like the
building energy demand, potential solar energy gain, noise level on the
facades etc. The spreadsheet rows can be linked to the visualization model
generated by the KML/COLLADA/glTF Exporter. This is illustrated in
Appendix B.

2.2.6. Interactive 3D web visualization

The 3DCityDB-Web-Map-Client is a WebGL-based 3D web viewer which extends
the Cesium Virtual Globe to support efficient displaying, caching,
prefetching, dynamic loading and unloading of arbitrarily large pre-styled
3D visualization models in the form of tiled KML/glTF datasets generated
by the KML/COLLADA/glTF Exporter. It provides an intuitive user interface
to facilitate rich interaction with 3D visualization models by means of the
enhanced functionalities like highlighting the objects of interests on
mouseover and mouseclick as well as hiding, showing, and shadowing them.
Moreover, the 3DCityDB-Web-Map-Client is able to link the 3D visualization
model with an online spreadsheet (Google Fusion Table) in the Google Cloud
and allows viewing and querying the thematic data of every city object
according to its GMLID. For details see also [YaCK2016] and [ChYK2015].

2.2.7. Web Feature Service (WFS) 2.0

The 3DCityDB comes with an OGC compliant implementation of a basic WFS 2.0
allowing web-based access to the 3D city objects stored in the database.
WFS clients can directly connect to this interface and retrieve 3D content
for a wide variety of purposes. The implementation currently satisfies the
Simple WFS conformance class. The WFS considers CityGML ADE contents, if
the ADEs have been registered in the database and specific Java libraries
for reading/writing the ADE contents from/into the ADE database tables is
provided (see above). An implementation of a full, transactional WFS is
commercially available from one of the development partners, see Appendix C.

2.2.8. Docker support

We now provide Docker [https://www.docker.com/] images for

	a complete 3DCityDB installation pre-installed in a PostGIS

	a webserver with an installed 3DCityDB-Web-Map-Client

	a 3DCityDB WFS

We also provide a Docker-compose script to launch all three Docker
containers in a linked way with just a single command. Details are given
in Section 1.5 and in the
respective github repositories [https://github.com/tum-gis?q=docker].
Docker is a runtime environment for virtualization. Docker encapsulates
individual software applications in so-called containers, which are –
in contrast to virtual machines – light-weight and can be deployed,
started and stopped very quickly and easily. Using our Docker images a
3DCityDB can be installed by a single command.

2.2.9. Open Source and Platform Independence

The entire software is freely accessible to the interested public. The
3DCityDB is licensed under the Apache License, Version 2.0, which
allows including 3DCityDB in commercial systems. You may obtain a copy
of the Apache License at http://www.apache.org/licenses/LICENSE-2.0.
Both the Importer/Exporter tool and the Web Feature Service are
imple­mented in Java and can be run on different platforms and operating
systems.

2.2.10. Features inherited from CityGML

	Complex city object modelling: The representation of city objects
in the 3D city database ranges from coarse models to geometrically
and semantically fine grained structures. The underlying data model
is a complete realization of the CityGML data model for the levels of
detail (LOD) 0 to 4. For example, buildings can be represented by
simple, monolithic objects or can consist of an aggregation of
building parts. Extensions of buildings, like balconies and stairs,
can be classified thematically and provided with attributes just as
single surfaces can be. LOD4 completes a LOD3 model by adding
interior structures for 3D objects. For example, LOD4 buildings are
composed of rooms, interior doors, stairs, and furniture. This allows
among other things to select the floor space of a building, so that
it can later be used e.g. to derive SmartBuildings or to form 3D
solids by extrusion [DBBF2005]. Buildings can be assigned
addresses that are also stored in the 3D city database. Their
implemen­tation refers to the OASIS xAL Standard, which maps the
address formats of the different countries into a unified XML schema.
In order to model whole complexes of buildings, single buildings can
be aggregated to form special building groups. The same complex
modelling applies to the other CityGML feature types like bridges,
tunnels, transportation and vegetation objects, and water bodies.

	Complex digital terrain models: DTMs may be represented in four
different ways in CityGML and therefore also in the 3D city database:
regular grids, triangular irregular networks (TINs), 3D mass points
and 3D break lines. For every level of detail, a complex DTM
consisting of any number of DTM components and DTM types can be
defined. Besides, it is possible to combine certain kinds of DTM
representations for the same geographic area with each other (e.g.
mass points and break lines or grids and break lines). In Oracle
Spatial (but not Locator) Grid-based DTMs may be of arbitrary size
and are composed from separate tiles to a single overall grid using
the Oracle GeoRaster functionality. Please note that the
Import/Export tool provides functions to read and write TIN, mass
point, and break line DTM components, but not for raster based DTMs.
GeoRaster data would have to be imported and exported using other
tools from e.g. Oracle, ESRI, or Safe Software.

	Support of different kinds of multi-representations: Levels of
detail, different appearances, (and with Oracle RDBMS only) planning
versions and history: Every geoobject as well as the DTM can be
represented in five different resolution or fidelity steps (Levels of
Detail, LOD). With increasing LOD, objects do not only obtain a more
precise and finer geometry, but do also gain a thematic refinement.
Different appearance data may be stored for each city object**:
Appearance relates to any surface-based theme, e.g. infrared radiation
or noise pollution, not just visual properties. Consequently, data
provided by appearances can be used as input for both presentation and
analysis of virtual 3D city models. The database supports feature
appearances for an arbitrary number of themes per city model. Each LOD
of a feature can have individual appearances. Appearances can represent
– among others – textures and georeferenced textures. All texture images
can be stored in the database. (cf. [GKSS2005])

	Representation of generic and prototypical 3D objects: Generic
objects enable the storage of 3D geoobjects that are not explicitly
modelled in CityGML yet, for example dams or city walls, or that are
available in a proprietary file format only. This way, files from
other software systems like architecture or computer graphics
programs can be imported directly into the database (without
interpretation). However, application systems that would like to use
these data must be able to interpret the corresponding file formats
after retrieving them back from the 3D geodatabase.

Prototypical objects are used for memory-efficient management of
objects that occur frequently in the city model and that do not
differ with respect to geometry and appearance. Examples are elements
of street furniture like lanterns, road signs or benches as well as
vegetation objects like shrubs, certain tree types etc. Every
instance of a prototypical object is represented by a reference to
the prototype, a base point and a transformation matrix for scaling,
rotating and translating the prototype.

The geometries (and appearances like textures, colors etc.) of
generic objects as well as prototypes can be stored either using the
geometry datatype of the spatial database management system (Oracle
Spatial/Locator or PostGIS) or in proprietary file formats. In the
latter case a single file may be saved for every object, but the file
type (MIME type), the coordinate transformation matrix that is needed
to integrate the object into the world coordinate reference system
(CRS) and the target CRS have to be specified.

	Extendable object attribution: All objects in the 3D geodatabase
can be augmented with an arbitrary number of additional generic
attributes. This way, it is possible to add further thematic
information as well as further spatial properties to the objects at
any time. In combination with the concept of generic 3D objects this
provides a highly flexible storage option for object types which are
not explicitly defined in the CityGML standard. Every generic
attribute consists of a triple of attribute name, data type, and
value. Supported data types are: string; integer and floating-point
numbers; date; time; binary object (BLOB, e.g. for storing a file);
geometry object according to the specific geometry data type of
Oracle or PostGIS respectively; simple, composite, or aggregate 3D
solids or surfaces. Please note that generic attributes of type BLOB
or geometry are not allowed as generic attributes in CityGML (and
will, thus, not be exported by the CityGML exporter). However, it may
be useful to store binary data associated with the individual city
objects, for example, to store derived 3D computer graphics
representations.

	Free, also recursive grouping of geoobjects: Geoobjects can be
grouped arbitrarily. The aggregates can be named and may also be
provided with an arbitrary number of generic attributes (see above).
Object groups may also contain object groups, which leads to nested
aggregations of arbitrary depth. In addition, for every object of an
aggregation, its role in the group can be specified explicitly
(qualified association).

	External references for all geoobjects: All geoobjects can be
provided with an arbitrary number of references to corresponding
objects in external data sources (i.e. hyperlinks / linked data). For
example, in case of building objects this allows to store e.g. the
IDs of the corresponding objects in official cadasters, digital
landscape models (DLM), or Building Information Models (BIM). Each
reference consists of an URI to the external data store or database
and the corresponding object ID or URI within that external data
store or database.

	Flexible 3D geometries: The geometry of most 3D objects can be
represented through the combination of solids and surfaces as well as
any - also recursive - aggregation of these elements. Each surface
may has attached different textures and colors on both its front and
back face. It may also comprise information on transparency.
Additional geometry types (any geometry type supported by the spatial
database management system Oracle Spatial/Locator or PostGIS) can be
added to the geoobjects by using generic attributes.

2.3. System and design decisions

The 3D City Database is implemented as a relational database schema
using the spatial datatypes provided by a spatially-enhanced relational
database management system (SRDBMS). Above, external software
applications and database stored procedures are provided working on this
database schema. Since only Oracle with the Spatial or Locator licensing
option (10G R2 or higher) and PostgreSQL (9.3 or higher) with
PostGIS extension (2.0 or higher) offer comprehensive support for
3D spatial data, the 3D City Database schema is being provided for these
two systems only.

In addition to the general advantages arising from the usage of a widely
used relational database management system (RDBMS), both Oracle
Spatial/Locator and PostgreSQL/ PostGIS offer some important performance
characteristics that allow an efficient imple­men­tation of the required
functionalities:

	Both RDBMS support spatial data types with coordinates ranging from
2D to 4D. Spatial indexes and filters can be 2D or 3D allowing for
efficient spatial selections in very large city models.

	The spatial data types are supported by a number of commercial and
Open Source GIS that provide a database connection as for example
ESRI’s ArcGIS/ArcSDE or Safe Software’s Feature Manipulation Engine
(FME). This enables such systems to directly access the data stored
in the 3D geodatabase.

	Rules can be implemented using stored procedures and trigger
mechanisms which propagate updates of objects to likewise affected
objects in the database (transparent for the user).

The data model of the 3D City Database is based on the CityGML 2.0
standard. The object-oriented data model of CityGML has been mapped to a
purely relational data model with the exception that geometry objects
are mapped to the spatial datatypes provided by the SDBMS. In order to
achieve high performance for data manipulations and queries the mapping
was done manually with a number of optimizations. A few simplifying
assumptions where made regarding the usage of the CityGML concepts in
the real world helping to increase performance. These are documented in
the data modelling chapter.

Surface-based geometries like Polygons, TINs, MultiSurfaces as well as
Solids are stored in a special way: they are decomposed into their
primitive surfaces and each surface is stored as an individual tuple in
one big surface table. The reason for this is that each surface can be
assigned multiple appearances (e.g. textures) in CityGML and, thus, each
appearance must be explicitly linkable to the corresponding surface. For
Solids also the solid geometry objects are stored in addition to their
decomposed boundary surfaces allowing to apply spatial operations on
them like the computation of the volume.

The provided software tools like the Importer/Exporter application are
implemented in the Java language in order to be platform independent.
The tools have been confirmed to run under Microsoft Windows, Linux, and
Apple Mac OS X. High performance is achieved by exploiting
multi-threading on multiprocessor or multi-core CPU systems.

2.4. Development history

2.4.1. Version 1 - 2003 - 2007

The development of the 3D City Database was always closely related to
the development of the CityGML standard [KoGr2003]. It was
started back in 2003 by Dr. Kolbe and Prof. Plümer at the Institute
for Cartography and Geoinformation at University of Bonn. In the period
from November 2003 to December 2005 the official virtual 3D city model
of Berlin, commissioned by The Berlin Senate and Berlin Partner
GmbH, was developed within a pilot project funded by the European Union
[PGKS2005]. Since then, the model has been playing
a central role in the three-dimensional spatial data infrastructure of
Berlin and opened up a multitude of applications for the public and
private sector alike. As an example the virtual city model is
successfully used for presentation of the business location, its urban
development combined with application related information to
politicians, investors, and the public in order to support civic
participation, provide access to decision-making content, assist in
policy-formulation, and control implementation processes [DKLS2006].
3DCityDB was key in demonstrating the real world usage of CityGML
to the Open Geospatial Consortium on the one hand, and the practical
usability and versatility of CityGML to the city of Berlin on the other
hand. This first develop­ment phase was carried out by University of
Bonn in collaboration with the company lat/lon GmbH. Oracle Spatial
was the only supported SDBMS in that phase and the next (3DCityDB
Versions 0.2 up to 1.3).

2.4.2. Version 2 - 2006 - 2014

Within the framework Europäische Fonds für regionale Entwicklung
(EFRE II) the project Geodatenmanagement in der Berliner Verwaltung
– Amtliches 3D-Stadtmodell für Berlin allowed for upgrading the
official 3D city model based on the former CityGML specification draft
0.4.0 in the year 2007. The developments were carried out by the
Institute for Geodesy und Geoinformation Science (IGG) of the Berlin
University of Technology (where Kolbe became full professor for
Geoinformation Science in 2006) on behalf of the Berliner
Senatsverwaltung für Wirtschaft, Arbeit und Frauen and the Berlin
Partner GmbH (former Wirtschaftsförderung Berlin International).
The relational database model (3DCityDB versions 1.4 up to 1.8) was
implemented and evaluated in cooperation with 3DGeo GmbH (later bought
by Autodesk GmbH) in Potsdam. A special database interface for
LandXPlorer was provided by 3DGeo / Autodesk. Later on, a first
version of the Java based CityGML Importer/Exporter was developed
[SNKK2009].

In August 2008, CityGML 1.0.0 became an adopted standard of the Open
Geospatial Consortium (OGC). In the follow-up project Digitaler
Gestaltplan Potsdam starting in 2010 the 3DCityDB version 2 (cf. [KKNS2009] and [NaSt2008]) was
developed which brought support for all CityGML 1.0.0 feature types. The
KML/COLLADA exporter was added as well as a ‘Matching’ plugin. This
project was carried out by IGG of TU Berlin on behalf of and in
collaboration with the company virtualcitySYSTEMS (VCS) in Berlin. In
2012 the developer team at TU Berlin received the Oracle Spatial
Excellence Award for Education and Research from Oracle USA for our
work on 3DCityDB. Also in 2012 3DCityDB was ported to PostgreSQL/PostGIS
by Felix Kunde, a master student from the University of Potsdam, who
did his master thesis in collaboration with IGG [Kund2013].

In August 2012, CityGML 2.0.0 became an adopted standard of the Open
Geospatial Consor­tium (OGC). In September 2012, Prof. Kolbe moved from
IGG, TU Berlin to the Chair of Geoinformatics at Technische Universität
München (TUM). The companies virtualcity­SYSTEMS GmbH in Berlin and
M.O.S.S. Computer Grafik Systeme GmbH in Taufkirchen (near Munich) have
also been using the 3D City Database in their commercial projects for a
number of years. In this context, the Chair of Geoinformatics at TUM and
the companies virtualcitySYSTEMS and M.O.S.S. signed an official
collaboration agreement on the joint further development of 3DCityDB and
its tools.

2.4.3. Version 3 - 2013 - 2018

The work on the new major release version 3.0.0 began in 2013
when Dr. Nagel finished his PhD and joined the company VCS. In Version
3.3.0 the new 3D web client was being added. The webclient was developed
by Zhihang Yao with contributions from Kanishk Chaturvedi and Son
Nguyen. In 2015 Zhihang Yao and Kanishk Chaturvedi were awarded the
first price in the ‘Best Students Contribution’ of the ‘Web3D city
modeling competition’ under the annual ACM SIGGRAPH Web3D Conference for
the 3DCityDB-Web-Map-Client.

2.4.4. Version 4 - since 2015

The work on version 4.0.0 – especially the support of CityGML ADEs –
began in 2015 in the course of the PhD work of Zhihang Yao. One part of
his PhD thesis is focusing on the model transformation of CityGML ADEs
onto spatial relational databases using pattern matching and graph
transformation rules. Support of CityGML ADEs in the Importer/Exporter
required a substantial rewriting of the citygml4j Java library, the
Importer/Exporter and WFS source code performed by Dr. Nagel starting
from 2016. Felix Kunde worked, among others, on performance improvements
and restructuring of the PL/(pg)SQL scripts. Son Nguyen added support
for mobile devices in the 3DCityDB-Web-Map-Client in 2017. Docker
support was added by Bruno Willenborg in 2018. Starting from 2017 all
partners worked on updating diverse functionalities, scripts,
documentation, and on testing.

2.4.5. Acknowledgements

The 3D City Database project team is grateful and appreciative for the
financial assistance and support we received from partners that
contributed to the development of version 4.0 and the work on the ADE
support.

Government Technology Agency of Singapore

The Government Technology Agency of Singapore (GovTech Singapore) has
been developing a 3D city standard for Singapore based on CityGML, to
establish a common 3D representation of the city-state. GovTech wanted
to extend the representation to include other city features through the
ADE approach, and had worked with virtualcitySYSTEMS GmbH to start the
development of the ADE support on 3DCityDB. The intent is to open source
the 3DCityDB ADE support to the international community, so as to
encourage wider adoption and implementation of the CityGML standard and
ADEs.

CADFEM International GmbH

Founded in 1985, CADFEM is one of the pioneers of numerical simulation
based on the Finite Element Method and one of the largest European
suppliers of Computer-Aided Engineering. Through the Leonard Obermeyer
Center of the Technical University Munich, CADFEM supports the research
on digital methods for the design, creation and maintenance of the built
environment and the work on the 3D City Database. Bridging the gap
between simulation systems and 3D GIS / BIM is a key requirement for
enabling multi-physics Urban Simulations and for building Digital Twins
of the urban space. The CityGML ADE mechanism supports this in two ways:
1) city features can be enriched with data that is relevant for
simulations, and 2) simulation results can be brought back into the city
model, turning it into a dynamic knowledge base. CADFEM is supporting
the 3D City Database project to leverage the adoption and usage of
CityGML ADEs in the field of Urban Simulations.

Climate-KIC of the EIT

Climate-KIC is a so-called ‘Knowledge and Innovation Community’ about
Climate Change and Mitigation. It is one of three Knowledge and
Innovation Communities (KICs) created in 2010 by the European Institute
of Innovation and Technology (EIT). The EIT is an EU body whose mission
is to create sustainable growth. Most 3DCityDB developments at TU Munich
were done in the context of the projects Energy Atlas Berlin, Modeling
City Systems (MCS), Smart Sustainable Districts (SSD), and Smart
District Data Infrastructure (SDDI), all financially supported by
Climate-KIC.

2.4.6. List of changes between software versions

2.4.6.1. Notable changes between 4.0 and 3.3

New features and functionalities:

	Importer/Exporter 4.2: Reworked Plugin API to support non-GUI
plugins.

	Importer/Exporter 4.2: Property projections can now also be defined
for abstract feature types.

	Importer/Exporter 4.1: Added support for using SQL and XML queries
for CityGML exports to be able express more flexible and complex
filter conditions

	Importer/Exporter 4.1: Added support for importing CityGML data from
(G)ZIP files and exporting CityGML content to (G)ZIP files

	Importer/Exporter 4.1: OSM Nominatim is now used as default geocoder
for the map window. Google Map API services can still be used for the
map window and for KML/COLLADA exports but require an API key.

	Management and storage of arbitrary CityGML ADEs with the 3DCityDB,
the Importer/Exporter ADE Manager Plugin and the 3DCityDB WFS

	New 3DCityDB Docker images to support continuous integration
workflows

	New metadata tables ADE, SCHEMA, SCHEMA_REFERENCING and
SCHEMA_TO_OBJECTCLASS for registering CityGML ADEs

	New prefilled metadata table AGGREGATION_INFO that supports the
automatic generation of DELETE and ENVELOPE scripts

	New function to create entries in USER_SDO_GEOM_METADATA view
(Oracle)

	Function objectclass_id_to_table_name now has a counterpart:
table_name_to_objectclass_ids returning an array of objectclass ids
(CITYDB_OBJCLASS package in Oracle, part of a data schema in
PostgreSQL)

	New database procedures to enable/disable foreign key constraints to
speed up bulk write operations (CITYDB_CONSTRAINT package in Oracle,
part of the citydb_pkg schema in PostgreSQL)

	New SQL script to create additional data schemas in one database
(PostgreSQL)

	New shell and SQL scripts to grant read-only or full read-write
access to another schema.

	Importer/Exporter can connect to different database schemas with the
same user

	Enabling XSL transformations on CityGML imports and exports as well
as WFS responses

	New database operation panel to change the spatial reference system
used in the database (incl. optional coordinate transformation)

	New LoD filter for CityGML exports

	3DCityDB WFS allows for exporting into the CityJSON format

Improved and updated features and functionalities:

	Moved interactive prompts from SQL to batch/shell scripts for better
setup automation

	Added OBJECTCLASS_ID column to all feature tables to distinguish
objects from CityGML ADEs. Also extended OBJECTCLASS table by more
feature-specific details and inserted new entries for feature
properties such as geometry, generic attributes etc.

	Improved performance on stored procedures by reducing amount of
dynamic SQL. Therefore, schema_name parameter has been removed from
DELETE and ENVELOPE scripts. Under PostgreSQL these scripts (as well
as the INDEX_TABLE) are now part of a data schema such as citydb.

	DELETE and ENVELOPE are now generated automatically in order to deal
with schema changes introduced by ADEs. Therefore, the function
prefix has been shortened to del_ and env_ not hit the character
limit under Oracle,

	The CITYDB_DELETE_BY_LINEAGE package has been removed. The only
function left is del_cityobjects_by_lineage which is now part of the
DELETE package

	Database migration scripts for version 2.1.0 or version 3.3.0 to
version 4.0.0

	Switching from Ant to Gradle as the new build system for the
Importer/Exporter tools

	Allow import of CityGML files with flat hierarchies between city
objects

	Added support for importing gml:MultiGeometry objects containing only
polygons

	Added support for exporting to glTF v2.0

	3DCityDB WFS now supports CORS and provides a KVP over HTTP GET
endpoint for every operation simplifying the integration with GIS and
ETL software such as FME

2.5. Data Modelling and Database Design

In this section the slightly simplified data model with respect to
CityGML is described at the conceptual level using UML class diagrams.
These diagrams form the basis for the implementation-dependent
realization of the model with a relational database system which is
presented in database schema section.
However, UML diagrams may also form the basis for other implementations
e.g. for the definition of an exchange format based on XML or GML. The
UML diagrams of the 3D city model are depicted in
UML sub chapter.

2.5.1. Simplification compared to CityGML 2.0.0

CityGML is a common information model for 3D urban objects and provides
a comprehensive and extensible representation of the objects. It is
explained in detail in the CityGML specification [GKCN2008], [GKNH2012]
and [Kolb2009]. An analysis of the previous versions of the 3D City
Database indicated that for the data collected and processed a less
complex schema is sufficient. Using a simplified schema usually allows
improving system performance. Therefore, the first task was related to
database design aspects with respect to adjusting the comprehensive
CityGML features.

As result a simplified database schema was generated, allowing an
optimized workflow and guaranteeing efficient processing time. The
related UML-diagrams were discussed and coordinated with the project
partners and translated into the relational schema. Based on this work
the SQL scripts for setting up the Oracle and PostgreSQL database
schema were generated.

Note

All test CityGML datasets (versions 1.0.0 and 2.0.0) from the
CityGML homepage [http://www.citygml.org]
(and others) can be stored and managed without restrictions
with this simplified database schema.

2.5.1.1. Multiplicities of attributes

Attributes with a variable amount of occurrences (*) are substituted by
a data type enabling the storage of arbitrary values (e.g. data type
String with a predefined separator) or by an array with a predefined
amount of elements representing the number of objects that participate
in the association. This means that object attributes can be stored in
a single column.

2.5.1.2. Cardinalities and types of relationships

n:m relations require an additional table in the database. This table
consists of the primary keys of both elements’ tables which form a
composite primary key. If the relation can be restricted to a 1:n or
n:1 relationship the additional table can be avoided. Therefore, all
n:m relations in CityGML were checked for a more restrictive
definition. This results in simplified cardinalities and relations.

2.5.1.3. Simplified treatment of recursions

Some recursive relations are used in the CityGML data model. Recursive
database queries may cause high cost, especially if the amount of
recursive steps is unknown. In order to guarantee good performance,
implementation of recursive associations receive two additional columns
which contain the ID of the parent and of the root element. For example,
if all building parts related to a specific building are queried, only
those tuples containing the ID of the building as root element have to
be selected. Thus, typical queries concerning object geometry remain
high-performance.

2.5.1.4. Data type adaptation

Data types specified in CityGML were substituted by data types which
allow an effective representation in the database. Strings for example
are used to represent code types and number vectors; GML geometry types
were changed to the database geometry data type. Matrices are stored
each one as String data type, with values listed in a row-major sequence
separated by spaces.

2.5.1.5. Project specific classes and class attributes

The 3D city database may contain some classes for representation of
project specific metadata, version control and attributes for
representation of additional project specific information. Since this
information is represented in the CityGML specification differently or
even not at all, appropriate classes and class attributes are added or
respectively adopted.

2.5.1.6. Simplified design of GML geometry classes

Spatial properties of features are represented by objects of GML3’s
geometry model based on the ISO 19107 standard Spatial Schema
[Herr2001], representing 3D geometry according to the well-known
Boundary Representation (B-Rep, cf. [FVFH1995]). Actually only a subset
of the GML3 geometry package is used. Moreover, for 2D and 3D
surface-based geometry types a simpler but equally powerful model is
used: These geometries are stored as polygons, which are aggregated to
MultiSurfaces, CompositeSurfaces, TriangulatedSurfaces, Solids,
MultiSolids, as well as CompositeSolids.

2.6. UML class diagram

The following pages cite several parts of the CityGML specification
[GKNH2012] which are necessary for a better understanding.
Main focus is put on explaining the customization and the differences to
the CityGML standard.

Design decisions in the model are explicitly visualised within the UML
diagrams. Following models are presented in detail:

	2.6.1. Geometric-topological Model

	2.6.2. Implicit Geometry

	2.6.3. Appearance Model

	2.6.4. Thematic model

For intuitive understanding, classes which will be merged to a single
table in the relational schema, are shown as orange blocks in the UML
diagrams. n:m relations, which only can be represented by additional
tables, are represented as green blocks.

2.6.1. Geometric-topological Model

The geometry model of CityGML consists of primitives, which may be
combined to form complexes, composite geometries or aggregates. A
zero-dimensional object is modelled as a Point, a one-dimensional as a
_Curve. A curve is restricted to be a straight line, thus only the
GML3 class LineString is used.

Combined geometries can be aggregates, complexes or composites of
primitives (see illustration in Fig. 2.1). In an Aggregate, the
spatial relationship between components is not restricted. They may be
disjoint, overlapping, touching, or disconnected. GML3 provides a
special aggregate for each dimension, a MultiPoint, a MultiCurve, a
MultiSurface or a MultiSolid. In contrast to aggregates, a Complex
is topologically structured: its parts must be disjoint, must not
overlap and are allowed to touch, at most, at their boundaries or share
parts of their boundaries. A Composite is a special complex provided
by GML3. It can only contain elements of the same dimension. Its
elements must be disjoint as well, but they must be topologically
connected along their boundaries. A Composite can be a
CompositeSolid, a CompositeSurface, or CompositeCurve.

[image: ../../_images/citydb_aggregated_geometry_types.png]
Fig. 2.1 Different types of aggregated geometries [GKNH2012]

The modelling of two-dimensional and three-dimensional geometry types is
handled in a simplified way. All surface-based geometries are stored as
polygons, which are aggregated to MultiSurfaces, CompositeSurfaces,
TriangulatedSurfaces, Solids, MultiSolids, as well as
CompositeSolids accordingly. This simplification substitutes the more
complex representation used for those GML geometry classes in grey
blocks in Fig. 2.2.
Mapping the UML diagram to the relational schema now
requires only one table (SURFACE_GEOMETRY), which is explained in
Section 2.7.3.3.

[image: ../../_images/citydb_geometrical-topographical_model.png]
Fig. 2.2 Geometrical-topographical model. For simplification the geometry classes
in the grey block are substituted by the construct in the orange block

In order to implement topology, CityGML uses the XML concept of XLinks
provided by GML. Each geometry object that should be shared by different
geometric aggregates or different thematic features is assigned a unique
identifier, which may be referenced by a GML geometry property using a
href attribute. The XLink topology is simple and flexible and nearly
as powerful as the explicit GML3 topology model. However, a disadvantage
of the XLink topology is that navigation between topologically connected
objects can only be performed in one direction (from an aggregate to its
components), not (immediately) bidirectional, as it is the case for
GML’s built-in topology.

2.6.2. Implicit Geometry

The concept of implicit geometries is an enhancement of the GML3
geometry model.

An implicit geometry is a geometric object, where the shape is stored
only once as a prototypical geometry, for example a tree or other
vegetation objects, a traffic light or traffic sign. This prototypic
geometry object is re-used or referenced many times, wherever the
corresponding feature occurs in the 3D city model. Each occurrence is
represented by a link to the prototypic shape geometry (in a local
Cartesian coordinate system), by a transformation matrix that is
multiplied with each 3D coordinate of the prototype, and by an anchor
point denoting the base point of the object in the world coordinate
reference system. The concept of implicit geometries is similar to the
well-known concept of primitive instancing used for the
representation of scene graphs in the field of computer graphics
[FVFH1995].

[image: ../../_images/citydb_implicit_geometry_model.png]
Fig. 2.3 Implicit Geometry model

Implicit geometries may be applied to features from different thematic
fields in order to geometrically represent the features within a
specific level of detail (LOD). Thus, each CityGML thematic extension
module (like Building, Bridge, and Tunnel etc.) may define spatial
properties providing implicit geometries for its thematic classes.

The shape of an implicit geometry can be represented in an external file
with a proprietary format, e.g. a VRML file, a DXF file, or a 3D Studio
MAX file. The reference to the implicit geometry can be specified by an
URI pointing to a local or remote file, or even to an appropriate web
service. Alternatively, a GML3 geometry object can define the shape.
This has the advantage that it can be stored or exchanged inline within
the CityGML dataset. Typically, the shape of the geometry is defined in
a local coordinate system where the origin lies within or near to the
object’s extent. If the shape is referenced by an URI, also the MIME
type of the denoted object has to be specified (e.g. “model/vrml” for
VRML models or “model/x3d+xml” for X3D models).

The implicit representation of 3D object geometry has some advantages
compared to the explicit modelling, which represents the objects using
absolute world coordinates. It is more space-efficient, and thus more
extensive scenes can be stored or handled by a system. The visualization
is accelerated since 3D graphics hardware supports the scene graph
concept. Furthermore, the usage of different shape versions of objects
is facilitated, e.g. different seasons, since only the library objects
have to be exchanged.

2.6.3. Appearance Model

Information about a surface’s appearance, i.e. observable properties of
the surface, is considered an integral part of virtual 3D city models in
addition to semantics and geometry. Appearance relates to any
surface-based theme, e.g. infrared radiation or noise pollution, not
just visual properties and can be represented by – among others –
textures and georeferenced textures. Appearances are supported for an
arbitrary number of themes per city model. Each LoD of a feature can
have individual appearances. Each city object or city model respectively
may store its own appearance data. Therefore, the base CityGML classes
_CityObject and CityModel contain a relation appearance and
appearanceMember respectively.

[image: ../../_images/citydb_appearance_model.png]
Fig. 2.4 Appearance model

Themes are represented by an identifier only. The appearance of a city
model for a given theme is defined by a set of objects of class
Appearance, referencing this theme through the attribute theme. All
appearance objects belonging to the same theme compose a virtual group.
An Appearance object collects surface data relevant for a specific
theme through the relation surfaceDataMember. Surface data is
represented by objects of the abstract class _SurfaceData. Its only
attribute is the Boolean flag isFront, which determines the side
(front and back face of the surface) a surface data object applies to.

A constant surface property is modelled as material. A surface property,
which depends on the location within the surface, is modelled as
texture. Each surface object can have both a material and a texture per
theme and side. This allows for providing both a constant approximation
and a complex measurement of a surface’s property simultaneously. If a
surface object is to receive multiple textures or materials, each
texture or material requires a separate theme. The mixing of themes or
their usage is not explicitly defined but left to the application.

Materials define light reflection properties being constant for a whole
surface object. The definition of the class X3DMaterial is adopted
from the X3D and COLLADA specification (cf. X3D, COLLADA specification):

	diffuseColor defines the colour of diffusely reflected light.

	specularColor defines the colour of a directed reflection.

	emissiveColor is the colour of light generated by the surface.

All colours use RGB values with red, green, and blue chanels, each
defined as value between 0 and 1. Transparency is stored separately
using the transparency element where 0 stands for fully opaque and 1
for fully transparent. ambientIntensity specifies the minimum
percentage of diffuseColor that is visible regardless of light
sources. shininess controls the sharpness of the specular highlight. 0
produces a soft glow while 1 results in a sharp highlight. isSmooth
gives a hint for normal interpolation. If this Boolean flag is set to
true, vertex normals should be used for shading (Gouraud shading).
Otherwise, normals should be constant for a surface patch (flat
shading). Target surfaces are specified using target elements. Each
element contains the URI of one target surface geometry object.

The base class for textures is _AbstractTexture. Here, textures are
always raster-based 2D textures. The raster image is specified by
imageURI using a URI and may contain an arbitrary image data resource,
even a preformatted request for a web service. The image data format can
be defined using standard MIME types in the mimeType element. Textures
can be qualified by the attribute textureType, differentiating between
textures, which are specific for a certain object (specific) and
prototypic textures being typical for that object surface (typical).
Textures may also be classified as unknown. The specification of
texture wrapping is adopted from the COLLADA standard. Possible values
of the attribute wrapMode are none, wrap, mirror, clamp and
border.

_AbstractTexture is further specialised according to the texture
parameterisation, i.e. the mapping function from a location on the
surface to a location in the texture image. Texture parameterisation
uses the notion of texture space, where the texture image always
occupies of the region [0,1]² regardless of the actual image size or
aspect ratio. The lower left image corner is located at the origin. To
receive textures, the mapping function must be known for each surface
object.

The class GeoreferencedTexture describes a texture that uses a
planimetric projection. Such a texture has a unique mapping function
which is usually provided with the image file (e.g. georeferenced TIFF)
or as a separate ESRI world file. The search order for an external
georeference is determined by the Boolean flag preferWorldFile.
Alternatively, inline specification of a georeference similar to a world
file is possible. This internal georeference specification always takes
precedence over any external georeference. referencePoint defines the
location of the centre of the upper left image pixel in world space and
corresponds to values 5 and 6 in an ESRI world file. Since
GeoreferencedTexture uses a planimetric projection, referencePoint
is two-dimensional and the orientation defines the rotation and
scaling of the image in form of a 2x2 matrix (a list of 4 doubles in
row-major order corresponding to values 1, 3, 2, and 4 in an ESRI world
file). The CRS of this transformation is identical to the
referencePoint’s CRS. If neither an internal nor an external
georeference is given, the GeoreferencedTexture is invalid. Target
surfaces are specified using target elements. Each element contains the
URI of one target surface geometry object. All target surface objects
share the mapping function defined by the georeference.

The class ParameterizedTexture describes a texture with a
target-dependent mapping function. Each target surface geometry object
is specified as URI in the uri attribute of a separate target
element. The mapping is defined by associated classes of
_TextureParameterization:

	TexCoordList for the concept of texture coordinates, defining an
explicit mapping of a surface’s boundary points to points in texture
space, and

	TexCoordGen when using a common 3x4 transformation matrix from
world space to texture space, specified by the attribute
worldToTexture.

2.6.4. Thematic model

The thematic model consists of the class definitions for the most
important types of objects within virtual 3D city models. Most thematic
classes are (transitively) derived from the basic classes Feature and
FeatureCollection, the basic notions defined in ISO 19109 and GML3 for
the representation of features and their aggregations. Features contain
spatial as well as non-spatial attributes, which are mapped to GML3
feature properties with corresponding data types. Geometric properties
are represented as associations to the geometry classes described in
Section 2.6.1 The thematic model also comprises different types of
interrelationships between Feature classes like aggregations,
generalizations, and associations.

The aim of the explicit modelling is to reach a high degree of semantic
interoperability between different applications. By specifying the
thematic concepts and their semantics along with their mapping to UML
and GML3, different applications can rely on a well-defined set of
Feature types, attributes, and data types with a standardised meaning
or interpretation. In order to allow also for the exchange of objects
and/or attributes that are not explicitly modelled in CityGML, the
concepts of GenericCityObjects and GenericAttributes have been
introduced.

	2.6.4.1. Core Model

	2.6.4.2. Building model

	2.6.4.3. Bridge Model

	2.6.4.4. CityFurniture Model

	2.6.4.5. Generic Objects and Attributes

	2.6.4.6. LandUse Model

	2.6.4.7. Digital Terrain Model

	2.6.4.8. Transportation Model

	2.6.4.9. Tunnel Model

	2.6.4.10. Vegetation Model

	2.6.4.11. WaterBodies Model

2.6.4.1. Core Model

The base class of all thematic classes within CityGML’s data model is
the abstract class _CityObject. _CityObject provides a
creation and a termination date for the management of histories of
features as well as generic attributes and external references to
corresponding objects in other data sets. _CityObject is a subclass
of the GML class Feature, thus it may inherit multiple names from
Feature, which may be optionally qualified by a codeSpace. This
enables the differentiation between, for example, an official name from
a popular name or names in different languages. The generalisation property
generalizesTo of _CityObject may be used to relate features,
which represent the same real-world object in different LoD, i.e. a
feature and its generalized counterpart(s). The direction of this
relation is from the feature to the corresponding generalised feature.

Features of _CityObject and its specialized subclasses may be
aggregated to a CityModel, which is a feature collection with optional
metadata. Generally, each feature has the attributes class,
function, and usage, unless it is stated otherwise. The class
attribute can occur only once, while the attributes usage and
function can be used multiple times. The class attribute describes
the classification of the objects, e.g. road, track, railway, or square.
The attribute function contains the purpose of the object, like
national highway or county road, while the attribute usage defines
whether an object is e.g. navigable or usable for pedestrians. The
attributes class, function and usage are specified as
gml:CodeType. The values of these properties can be enumerated in code
lists. Furthermore, for each feature the geographical extent can be
defined using the Envelope element. Minimum and maximum coordinate
values have to be assigned to opposite corners of the feature’s bounding
box.

[image: ../../../_images/citydb_core_model_and_toplevel_classes.png]
Fig. 2.5 Core Model and thematic top level classes

The subclasses of _CityObject comprise the different thematic
fields of a city model, in the following covered by separate thematic
models: building model (_AbstractBuilding), tunnel model
(_AbstractTunnel), bridge model (_AbstractBridge), city furniture
model (CiyFurniture), digital terrain model (ReliefFeature), land
use model (LandUse), transportation model (TransportationObject),
vegetation model (_VegetationObject), water bodies model
(_WaterObject) and generic city object model (GenericCityObject). The
latter one allows for the modelling of features, which are not
explicitly covered by one of the other models. The separation into these
models strongly correlates with CityGML’s extension modules, each
defining a respective part of a virtual 3D city model.

3D objects are often derived from or have relations to objects in other
databases or data sets. For example, a 3D building model may have been
constructed from a two-dimensional footprint in a cadastre data set. The
reference of a 3D object to its corresponding object in an external data
set is essential, if an update must be propagated or if additional data
is required (like the name and address of a building’s owner in a
cadastral information system). In order to supply such information, each
_CityObject may have External References to corresponding objects
in external data sets. Such a reference denotes the external information
system and the unique identifier of the object in this system.

CityObjectGroups aggregate CityObjects and furthermore are defined
as special CityObjects. This implies that a group may become a member
of another group realizing a recursive aggregation schema. Since
CityObjectGroup is a feature, it has the optional attributes class,
function and usage. The class attribute allows a group
classification with respect to the stated function and may occur only
once. The function attribute is intended to express the main purpose
of a group, possibly to which thematic area it belongs (e.g. site,
building, transportation, architecture, unknown etc.). The attribute
usage can be used, if the object’s usage differs from its function.
The attributes class, function and usage are specified as
gml:CodeType. The values of these properties can be enumerated in code
lists.

Each member of a group may be qualified by a role name, reflecting the
role each CityObject plays in the context of the group. Furthermore, a
CityObjectGroup can optionally be assigned an arbitrary geometry
object. This may be used to represent a generalised geometry generated
from the member’s geometries. The parent association linking a
CityObjectGroup to a CityObject allows for the modelling of generic
hierarchical groupings. This concept is used, for example, to represent
storeys in buildings. See Fig. 2.5 for the simplified UML diagram.

2.6.4.2. Building model

Buildings can be represented in five levels of detail (LoD0 to LoD4).
The building model allows the representation of simple buildings that
consist of only one component, as well as the representation of complex
relations between parts of a building, e.g. a building consisting of
three parts – a main house, a garage and an extension. The parts can
again consist of parts etc. The subclasses Building and BuildingPart
of _AbstractBuilding enable these modelling options.

[image: ../../../_images/citydb_example_building_parts.png]
Fig. 2.6 Example of buildings consisting of one and two building parts [GKCN2008]

In the case of a simple, one-piece house there is only one Building
which inherits all attributes and relations from _AbstractBuilding
(cf. Fig. 2.6). However,
such a Building can also comprise BuildingParts which likewise
inherit all properties from _AbstractBuilding: the building’s class,
function (e.g. residential, public, or industry), usage, year of
construction, year of demolition, roof type, measured height, and the
number and individual heights of all its storeys above and below ground
(cf. Fig. 2.7).

[image: ../../../_images/citydb_building_model.png]
Fig. 2.7 UML diagram of Building model

Furthermore, Addresses can be assigned to Buildings or
BuildingParts. In particular, BuildingParts may again comprise
BuildingParts as components, because the composition relation is
inherited. This way a tree-like hierarchy can be created whose root
object is a Building and whose non-root nodes are BuildingParts. The
attribute values are generally filled in the lower hierarchy level,
because basically every part can have its own construction year and
function. However, the function can also be defined in the root of the
hierarchy and therefore span the whole building. The individual
BuildingParts within a Building must not penetrate each other and
must form a coherent object.

The geometric representation of an _AbstractBuilding is
successively refined from LOD0 to LOD4. Therefore, a single building can
have multiple spatial representations in different levels of detail at
the same time by Solid, MultiSurface, and/or MultiCurve (cf.
Fig. 2.7).

In LoD0, the building can be represented by horizontal, 3-dimentional
surfaces describing the footprint and the roof edge. In LoD1, a building
model consists of a geometric representation of the building volume.
Optionally, a MultiCurve representing the TerrainIntersectionCurve
can be specified. This geometric representation is refined in LoD2 by
additional MultiSurface and MultiCurve geometries, used for
modelling architectural details like a roof overhang, columns, or
antennas. In LoD2 and higher LoDs the outer facade of a building can
also be differentiated semantically by the classes _BoundarySurface
and BuildingInstallation. A _BoundarySurface is a part of the
building’s exterior shell with a special function like wall
(WallSurface), roof (RoofSurface), ground plate (GroundSurface),
or closing surface (ClosureSurface) as shown
in Fig. 2.8. Closure
surfaces can be used to virtually seal open buildings as for example
hangars, allowing e.g. volume calculation. The BuildingInstallation
class is used for building elements like balconies, chimneys, dormers,
or outer stairs, strongly affecting the outer appearance of a building.
A BuildingInstallation is used for the representation of chimneys,
stairs, balconies etc. and optionally has the attributes class,
function, and usage.

[image: ../../../_images/citydb_building_boundary_surface.png]
Fig. 2.8 Boundary surfaces

In LoD3, the openings in _BoundarySurface objects (doors and
windows) can be represented as thematic objects. In LoD4, the highest
level of resolution, also the interior of a building, composed of
several rooms, is represented in the building model by the class Room.
The aggregation of rooms according to arbitrary, user-defined criteria
(e.g. for defining the rooms corresponding to a certain storey) is
achieved by employing the general grouping concept provided by CityGML.
Interior installations of a building, i.e. objects within a building
which (in contrast to furniture) cannot be moved, are represented by the
class IntBuildingInstallation. If an installation is attached to a
specific room (e.g. radiators or lamps), they are associated with the
Room class, otherwise (e.g. in case of rafters or pipes) with
_AbstractBuilding. A Room may have the attributes class,
function, and usage referenced to external code lists. The class
attribute allows a classification of rooms with respect to the stated
function, e.g. commercial or private rooms, and occurs only once. The
function attribute is intended to express the main purpose of the
room, e.g. living room, kitchen. The attribute usage can be used if
the object’s usage differs from its function. Both attributes can
occur multiple times.

The visible surface of a room is represented geometrically as a Solid
or MultiSurface. Semantically, the surface can be structured into
specialised _BoundarySurfaces, representing floor (FloorSurface),
ceiling (CeilingSurface), and interior walls (InteriorWallSurface)
(cf. Fig. 2.8). Room furniture, like tables and chairs, can be
represented in the CityGML building model with the class
BuildingFurniture. A BuildingFurniture may have the attributes
class, function, and usage.

2.6.4.3. Bridge Model

The bridge model was developed in analogy to the building model (cf.
Section 2.6.4.2) with regard to structure and attributes [GKCN2008].
The bridge model allows for the representation of the thematic,
spatial and visual aspects of bridges and bridge parts in four levels of
detail, LOD 1 – 4. A (movable or unmovable) bridge can consist of
multiple BridgeParts. Like Bridge, BridgePart is a subclass of
_AbstractBridge and hence, has the same attributes and relations. The
relation consistOfBridgePart represents the aggregation hierarchy
between a Bridge (or a BridgePart) and it’s BridgeParts. By this
means, an aggregation hierarchy of arbitrary depth can be modelled. The
semantic attributes of an _AbstractBridge are class, function,
usage and is_movable. The attribute class is used to classify
bridges, e.g. to distinguish different construction types (cf. Fig. 2.9).
The attribute function allows representing the utilization of the
bridge independently of the construction. Possible values may be railway
bridge, roadway bridge, pedestrian bridge, aqueduct, etc. The option to
denote a usage which is divergent to one of the primary functions of the
bridge (function) is given by the attribute usage. Each Bridge or
BridgePart feature may be assigned zero or more addresses using the
address property.

[image: ../../../_images/citydb_example_bridge_parts.png]
Fig. 2.9 Example of bridge consisting of bridge parts

The spatial properties are defined by a solid for each of the four LODs
(relations lod1Solid to lod4Solid). In analogy to the building
model, the semantical as well as the geometrical richness increases from
LOD1 (blocks model) to LOD3 (architectural model). Interior structures
like rooms are dedicated to LOD4. To cover the case of bridge models
where the topology does not satisfy the properties of a solid
(essentially water tightness), a multi-surface representation is allowed
(lod1MultiSurface to lod4MultiSurface). The line where the bridge
touches the terrain surface is represented by a terrain intersection
curve, which is provided for each LOD (relations
lod1TerrainIntersection to lod4TerrainIntersection). In addition to
the solid representation of a bridge, linear characteristics like ropes
or antennas can be specified geometrically by the lod1MultiCurve to
lod4MultiCurve relations.

The thematic boundary surfaces of a bridge are defined in analogy to the
building module. _BoundarySurface is the abstract base class for
several thematic classes, structuring the exterior shell of a bridge as
well as the visible surfaces of rooms, bridge construction elements and
both outer and interior bridge installations. From _BoundarySurface,
the thematic classes RoofSurface, WallSurface, GroundSurface,
OuterCeilingSurface, OuterFloorSurface, ClosureSurface, FloorSurface,
InteriorWallSurface, and CeilingSurface are derived.

[image: ../../../_images/citydb_bridge_boundary_surface.png]
Fig. 2.10 Different BoundarySurfaces of a bridge

Bridge elements which do not have the size, significance or meaning of a
BridgePart can be modelled either as BridgeConstructionElement or as
BridgeInstallation. Elements which are essential from a structural
point of view are modelled as BridgeConstructionElement, for example
structural elements like pylons, anchorages etc. (cf. Fig. 2.9
and Fig. 2.11).
A general classification as well as the intended and actual
function of the construction element are represented by the attributes
class, function, and usage. The visible surfaces of a bridge
construction element can be semantically classified using the concept of
boundary surfaces representing floor (FloorSurface), ceiling
(CeilingSurface), and interior walls (InteriorWallSurface) (cf.
Fig. 2.10). Whereas a BridgeConstructionElement has structural
relevance, a BridgeInstallation represents an element of the bridge
which can be eliminated without collapsing of the bridge (e.g. stairway,
antenna, and railing) (cf. Fig. 2.11). BridgeInstallations occur in
LOD 2 to 4. The class BridgeInstallation contains the semantic
attributes class, function and usage. The attribute class gives a
classification of installations of a bridge. With the attributes
function and usage, nominal and real functions of the bridge
installation can be described.

[image: ../../../_images/citydb_example_bridge_construction_element.png]
Fig. 2.11 Example of bridge consisting of BridgeConstructionElement and BridgeInstallation

In LOD3 and LOD4, a _BoundarySurface may contain _Openings like
doors and windows. The classes BridgeRoom, IntBridgeInstallation and
BridgeFurniture allow for the representation of the bridge interior.
They are designed in analogy to the classes Room,
IntBuildingInstallation and BuildingFurniture of the building module
and share the same meaning. The bridge interior can only be modelled in
LOD4.

[image: ../../../_images/citydb_bridge_model.png]
Fig. 2.12 UML diagram of bridge model

2.6.4.4. CityFurniture Model

City furniture objects are immovable objects like lanterns, traffic
lights, traffic signs, flower buckets, advertising columns, benches,
delimitation stakes, or bus stops. The class CityFurniture may have
the attributes class, function and usage (cf. UML-diagram in Fig. 2.13).
Their possible values are explained in detail in the CityGML
specification. The class attribute allows an object classification like
traffic light, traffic sign, delimitation stake, or garbage can, and can
occur only once. The function attribute describes, to which thematic
area the city furniture object belongs to (e.g. transportation, traffic
regulation, architecture etc.), and can occur multiple times. The
attribute usage denotes the real purpose of the city object, and can
occur multiple times as well.

[image: ../../../_images/citydb_cityfurniture_model.png]
Fig. 2.13 City furniture model

Since CityFurniture is a subclass of CityObject and hence is a
feature, it inherits the attribute gml:name. As with any CityObject,
CityFurniture objects may be assigned ExternalReferences and
GenericAttributes. For ExternalReferences city furniture objects can
have links to external thematic databases. Thereby, semantical
information of the objects, which cannot be modelled in CityGML, can be
transmitted and used in the 3D city model for further processing, for
example information from systems of power lines or pipelines, traffic
sign cadastre, or water resources for disaster management.

City furniture objects can be represented in city models with their
specific geometry, but in most cases the same kind of object has an
identical geometry. The geometry of CityFurniture objects in LoD 1-4
may be represented by an explicit geometry (lodXGeometry where X is
between 1 and 4) or an ImplicitGeometry object
(lodXImplicitRepresentation with X between 1 and 4). In the concept of
ImplicitGeometry the geometry of a prototype city furniture object is
stored only once in a local coordinate system and referenced by a number
of features. Spatial information of city furniture objects can be taken
from city maps or from public and private external information systems.
In order to specify the exact intersection of the DTM with the 3D
geometry of a city furniture object, the latter can have a
TerrainIntersectionCurve (TIC) for each LoD. This allows for ensuring
a smooth transition between the DTM and the city furniture object.

2.6.4.5. Generic Objects and Attributes

The concept of generic objects and attributes has been introduced to
facilitate the storage and exchange of 3D objects, which are not covered
by explicitly modelled classes within CityGML or which requires
additional attributes. These generic extensions are realised by the
class GenericCityObject and the data type genericAttribute (cf.
Fig. 2.14).

A GenericCityObject may have the attributes class, function, and
usage are specified as gml:CodeType. The class attribute allows an
object classification within the thematic area such as bridge, tunnel,
pipe, power line, dam, or unknown. The function attribute describes to
which thematic area the GenericCityObject belongs (e.g. site,
transportation, architecture, energy supply, water supply, unknown
etc.). The attribute usage can be used, if the object’s usage differs
from its function. Each _CityObject and all thematic subclasses can
have an arbitrary number of genericAttributes. Data types may be
String, Integer, Double (floating point number), URI (Unified
Resource Identifier), Date, and gml:MeasureType. The attribute type
is defined by the selection of the particular subclass of
_genericAttribute (stringAttribute, intAttribute etc.). In
addition, generic attributes can be grouped using the
genericAttributeSet class which is derived from _genericAttribute
and thus is also realized as generic attribute. Its value is the set of
contained generic attributes.

[image: ../../../_images/citydb_generic_model.png]
Fig. 2.14 GenericCityObject model

The geometry of a GenericCityObject can either be an explicit GML3
geometry or an ImplicitGeometry. In the case of an explicit geometry,
the object can have only one geometry for each LoD, which may be an
arbitrary 3D GML geometry object (class _Geometry, which is the base
class of all GML geometries, lodXGeometry, X in 0…4). Absolute
coordinates according to the reference system of the city model must be
given for the explicit geometry. In the case of an ImplicitGeometry, a
reference point (anchor point) of the object and optionally a
transformation matrix must be given. In order to compute the actual
location of the object, the transformation of the local coordinates into
the reference system of the city model must be processed and the anchor
point coordinates must be added. The shape of an ImplicitGeometry can
be given as an external resource with a proprietary format, e.g. a VRML
or DXF file from a local file system or an external web service.
Alternatively, the shape can be specified as a 3D GML3 geometry with
local Cartesian coordinates using the property relativeGeometry.

In order to specify the exact intersection of the DTM with the 3D
geometry of a GenericCityObject, the latter can have
TerrainIntersectionCurves for every LoD. This is important for 3D
visualization but also for certain applications like driving simulators.
For example, if a city wall (e.g., the Great Wall of China) should be
represented as a GenericCityObject, a smooth transition between the
DTM and the road on the city wall would have to be ensured (in order to
avoid unrealistic bumps).

2.6.4.6. LandUse Model

LandUse objects describe areas of the earth’s surface dedicated to a
specific land use. They can be employed to represent parcels in 3D.
Fig. 2.15 shows the UML diagram of land use objects.

Every LandUse object may have the attributes class (e.g. settlement
area, industrial area, farmland etc.), function (purpose, e.g.
cornfield), and usage which can be used, if the way the object is
actually used differs from the function. Since the attributes usage
and function may be used multiple times, storing them in only one
string requires a single white space as unique separatorRelational
database schema.

[image: ../../../_images/citydb_landuse_model.png]
Fig. 2.15 LandUse model

The LandUse object is defined for all LoD 0-4 and may have different
geometries for each LoD. The surface geometry of a LandUse object is
required to have 3D coordinate values. It must be a GML3 MultiSurface,
which might be assigned appearance properties like material
(X3DMaterial) and texture (_Abstract­Texture and its subclasses).

2.6.4.7. Digital Terrain Model

CityGML includes a very adaptable digital terrain model (DTM) which
permits the combination of heterogeneous DTM types (grid, TIN, break
lines, mass points) available in different levels of detail.

A DTM fitting to a certain city model is represented by the class
ReliefFeature. This is a CityObject having the LoD step that fits
the DTM as attribute. A relief consists of several ReliefComponents.
Each of these components that are likewise CityObjects also comprises
a LoD step. Individual geometrical types of the components are defined
by the four subclasses of ReliefComponent: breaklines, triangular
networks (TINs), mass points, and grids (raster). Geometrically, the
corresponding ISO 19107 or GML classes define these types: breaklines by
a single MultiCurve, TINs by TriangulatedSurfaces, mass points by
MultiPoint, and raster by RectifiedGridCoverage.

[image: ../../../_images/citydb_terrain_model.png]
Fig. 2.16 UML diagram representing the digital terrain model

A relief can contain ReliefComponents of heterogeneous type and
different LoDs. A relief in LoD2, for example, can contain some
LoD3-TIN-ReliefComponents beside a LoD2-Raster-ReliefComponent. In
some cases even a LoD1 grid may exist in some regions of the relief.

In order to geometrically separate the individual components of a grid,
which can exist in different LoD, the validity polygon of a component
(extent) is used. This polygon defines the scope in which the
component is valid. A grid with three components is shown in Fig. 2.17.
It depicts a coarse raster containing two high-resolution TINs (TIN 1
and 2). The validity polygon of the raster is represented by the blue
line, while the validity polygons of the TINs are bordered in green and
red. In this case, the validity polygon of the raster (grid) has two
holes where the raster (grid) is not valid, although it does exist.
Instead, the high-resolution TINs are used for the representation of the
terrain in these regions. That means the validity polygons of the TINs
exactly fit the two holes in the validity polygon of the raster (grid).

[image: ../../../_images/citydb_example_relief_components.png]
Fig. 2.17 A relief, consisting of three components and its validity polygons (from: [PGKS2005])

In the simplest and most frequent case, the validity polygon of a grid
corresponds exactly with its Bounding box, i.e. the spatial extent of
the grid.

2.6.4.8. Transportation Model

The transportation model of CityGML is a multi-functional, multi-scale
model focusing on thematic and functional as well as
geometrical/topological aspects. Transportation features are represented
as a linear network in LoD0. Starting from LoD1, all transportation
features are geometrically described by 3D surfaces.

The main class is TransportationComplex (cf. Fig. 2.19) which
represents, for example, a road, a track, a railway, or a square. It is
composed of the parts TrafficArea and AuxiliaryTrafficArea. Fig. 2.18
depicts an example for a LoD2 TransportationComplex configuration
within a virtual 3D city model. The Road consists of several
TrafficAreas for the sidewalks, road lanes, parking lots, and of
AuxiliaryTrafficAreas below the raised flower beds.

[image: ../../../_images/citydb_lod2_transportation_complex.png]
Fig. 2.18 LoD2 representation of a transportation complex (from: [GKCN2008])

The road itself is represented as a TransportationComplex, which is
further subdivided into TrafficAreas and AuxiliaryTrafficAreas. The
TrafficAreas are those elements, which are important in terms of
traffic usage, like car driving lanes, pedestrian zones and cycle lanes.
The AuxiliaryTrafficAreas are describing further elements of the road,
like kerbstones, middle lanes, and green areas.

[image: ../../../_images/citydb_transportation_model.png]
Fig. 2.19 UML model for transportation complex

TransportationComplex objects can be thematically differentiated using
the subclasses Track, Road, Railway, and Square. Every
TransportationComplex has the attributes class, function and
usage, referencing to the external code lists. The attribute class
describes the classification of the object. The attribute function
describes the purpose of the object like, for example national motorway,
country road, or airport, while the attribute usage can be used, if
the actual usage differs from the function.

In addition, both TrafficArea and AuxiliaryTrafficArea may have the
attributes class, function, usage, and surfaceMaterial. The
attribute class describe the classification of the object. For
TrafficArea, the attribute function describes whether the object is
a car driving lane, a pedestrian zone, or a cycle lane, while the
usage attribute indicates which modes of transportation can use it
(e.g. pedestrian, car, tram, roller skates). The attribute
surfaceMaterial specifies the type of pavement and may also be used
for AuxiliaryTrafficAreas (e.g. asphalt, concrete, gravel, soil, rail,
grass etc.). The function attribute of the AuxiliaryTrafficArea
defines, among others, kerbstones, middle lanes, or green areas. The
possible values are specified in external code lists.

TransportationComplex is a subclass of _TransportationObject and of
the root class _CityObject. The geometrical representation of the
TransportationComplex varies through the different levels of detail.
In the coarsest LoD0, the transportation complexes are modelled by line
objects establishing a linear network. Starting from LoD1, a
TransportationComplex provides an explicit surface geometry,
reflecting the actual shape of the object, not just its centreline. In
LoD2 to LoD4, it is further subdivided thematically into TrafficAreas,
which are used by transportation, such as cars, trains, public
transport, airplanes, bicycles, or pedestrians and in
AuxiliaryTrafficAreas, which are of minor importance for
transportation purposes, for example road markings, green spaces or
flower tubs.

2.6.4.9. Tunnel Model

The tunnel model is closely related to the building model. It supports
the representation of thematic and spatial aspects of tunnels and tunnel
parts in four levels of detail, LOD1 to LOD4. The UML diagram of the
tunnel model is shown in Fig. 2.21. The pivotal class of the model is
_AbstractTunnel, which is a subclass of the thematic class _Site
(and transitively of the root class _CityObject). _AbstractTunnel
is specialized either to a Tunnel or to a TunnelPart. Since an
_AbstractTunnel consists of TunnelParts, which again are
_AbstractTunnels, an aggregation hierarchy of arbitrary depth may be
realized. Both classes Tunnel and TunnelPart inherit the attributes of
_AbstractTunnel: the class of the tunnel, the function, the usage,
the year of construction and the year of demolition. In contrast to
_AbstractBuilding, Address features cannot be assigned to
_AbstractTunnel.

[image: ../../../_images/citydb_example_tunnel_parts.png]
Fig. 2.20 Example of a tunnel modelled with two tunnel parts

The geometric representation and semantic structure of an
_AbstractTunnel is shown in Fig. 2.21. The model is successively
refined from LOD1 to LOD4. Therefore, not all components of a tunnel
model are represented equally in each LOD and not all aggregation levels
are allowed in each LOD. An object can be represented simultaneously in
different LODs by providing distinct geometries for the corresponding
LODs.

[image: ../../../_images/citydb_tunnel_model.png]
Fig. 2.21 UML diagram of tunnel model

Similar to the building and bridge models (cf. Section 2.6.4.2 and
Section 2.6.4.3), only the outer shell of a tunnel is represented in LOD1 – 3,
which is composed of the tunnel’s boundary surfaces to the surrounding
earth, water, or outdoor air. The interior of a tunnel may only be
modelled in LOD4.

In LOD1, a tunnel model consists of a geometric representation of the
tunnel volume. Optionally, a MultiCurve representing the
TerrainIntersectionCurve can be specified. The geometric
representation is refined in LOD2 by additional MultiSurface and
MultiCurve geometries. In LOD2 and higher LODs the outer structure of
a tunnel can also be differentiated semantically by the classes
_BoundarySurface and TunnelInstallation. A boundary surface is a
part of the tunnel’s exterior shell with a special function like wall
(WallSurface), roof (RoofSurface), ground plate (GroundSurface),
outer floor (OuterFloorSurface), outer ceiling (OuterCeilingSurface)
or ClosureSurface (see Fig. 2.22). The TunnelInstallation class is
used for tunnel elements like outer stairs, strongly affecting the outer
appearance of a tunnel. A TunnelInstallation may have the attributes
class, function and usage.

[image: ../../../_images/citydb_tunnel_boundary_surface.png]
Fig. 2.22 Different BoundarySurfaces of a tunnel

In LOD3, the openings in _BoundarySurface objects (doors and windows)
can be represented as thematic objects. In LOD4, the highest level of
resolution, also the interior of a tunnel, composed of several hollow
spaces, is represented in the tunnel model by the class HollowSpace.
This enlargement allows a virtual accessibility of tunnels, e.g. for
driving through a tunnel, for simulating disaster management or for
presenting the light illumination within a tunnel. The aggregation of
hollow spaces according to arbitrary, user defined criteria (e.g. for
defining the hollow spaces corresponding to horizontal or vertical
sections) is achieved by employing the general grouping concept provided
by CityGML (cf. Section 2.6.4.1). Interior installations of a tunnel,
i.e. objects within a tunnel which (in contrast to furniture) cannot be
moved, are represented by the class IntTunnelInstallation. If an
installation is attached to a specific hollow space (e.g. lamps,
ventilator), they are associated with the HollowSpace class, otherwise
(e.g. pipes) with _AbstractTunnel. A HollowSpace may have the
attributes class, function and usage whose possible values can be
enumerated in code lists. The class attribute allows a general
classification of hollow spaces, e.g. commercial or private rooms, and
occurs only once. The function attribute is intended to express the main
purpose of the hollow space, e.g. control area, installation space, and
storage space. The attribute usage can be used if the way the object
is actually used differs from the function. Both attributes can occur
multiple times. The visible surface of a hollow space is represented
geometrically as a Solid or MultiSurface. Semantically, the surface
can be structured into specialized _BoundarySurfaces, representing
floor (FloorSurface), ceiling (CeilingSurface), and interior walls
(InteriorWallSurface). Hollow space furniture, like movable equipment
in control areas, can be represented in the CityGML tunnel model with
the class TunnelFurniture. A TunnelFurniture may have the attributes
class, function and usage.

2.6.4.10. Vegetation Model

The vegetation model of CityGML distinguishes between solitary
vegetation objects like trees and vegetation areas, which represent
biotopes like forests or other plant communities. Single vegetation
objects are modelled by the class SolitaryVegetationObject, while for
areas filled with specific vegetation the class PlantCover is used.

[image: ../../../_images/citydb_example_vegetation_model.png]
Fig. 2.23 Image illustrates objects of the vegetation model (from: [GKCN2008])

The geometry representation of a PlantCover feature may be a
MultiSurface or a MultiSolid, depending on the vertical extent of
the vegetation. For example, regarding forests, a MultiSolid
representation might be more appropriate (cf. Fig. 2.23).

The UML diagram of the vegetation model is depicted in Fig. 2.24. A
SolitaryVegetation­Object may have the attributes class (e.g. tree,
bush, grass), species (species’ name, e.g. Abies alba), usage, and
function (e.g. botanical monument), height, trunkDiameter and
crownDiameter. A PlantCover feature may have the attributes class
(plant community), usage, function (e.g. national forest) and
averageHeight. Since both SolitaryVegetationObject and PlantCover
are CityObjects, they inherit all attributes of a city object, in
particular its name (gml:name) and an ExternalReference to a
corresponding object in an external information system, which may
contain botanical information from public environmental agencies.

[image: ../../../_images/citydb_vegetation_model.png]
Fig. 2.24 Vegetation Model

The geometry of a SolitaryVegetationObject may be defined in LoD 1-4
by absolute coordinates, or prototypically by an ImplicitGeometry.
Season dependent appearances may be mapped using ImplicitGeometries.
For visualisation purposes, only the content of the library object
defining the object’s shape and appearance has to be swapped.

A SolitaryVegetationObject or a PlantCover may have a different
geometry in each LoD. Whereas a SolitaryVegetationObject is associated
with the _Geometry class representing an arbitrary GML geometry (by
the relation lodXGeometry), a PlantCover is restricted to be either
a MultiSolid or a MultiSurface.

2.6.4.11. WaterBodies Model

The water bodies model represents the thematic aspects and 3D geometry
of rivers, canals, lakes, and basins. In LoD 2-4 water bodies are
bounded by distinct thematic surfaces. These surfaces are the obligatory
WaterSurface, defined as the boundary between water and air, the
optional WaterGroundSurface, defined as the boundary between water and
underground (e.g. DTM or floor of a 3D basin object), and zero or more
WaterClosureSurfaces, defined as virtual boundaries between different
water bodies or between water and the end of a modelled region (cf.
Fig. 2.25). A
dynamic element may be the WaterSurface to represent temporarily
changing situations of tidal flats.

[image: ../../../_images/citydb_waterbody_definitions.png]
Fig. 2.25 Definition of waterbody attributes (from: [GKNH2012])

Each WaterBody object may have the attributes class (e.g. lake,
river, or fountain), function (e.g. national waterway or public
swimming) and usage (e.g. navigable) referencing to external code
lists. Since the attributes usage and function may be used multiple
times, storing them in only one string requires a unique delimiter.

WaterBody is a subclass of the root class _CityObject. The
geometrical representation of the WaterBody varies for different
levels of detail. The WaterBody can be differentiated semantically by
the class _WaterBoundarySurface. A _WaterBoundarySurface is a
part of the water body’s exterior shell with a special function like
WaterSurface, WaterGroundSurface or WaterClosureSurface. As with
any _CityObject, WaterBody objects as well as WaterSurface,
WaterGroundSurface, and WaterClosureSurface objects may be assigned
ExternalReferences and GenericAttributes.

Both LoD0 and LoD1 represent a low level of illustration and high grade
of generalisation. Here the rivers are modelled as MultiCurve geometry
and brooks are omitted. Seas, oceans, and lakes with significant extent
are represented as MultiSurfaces. (cf. Fig. 2.26)

[image: ../../../_images/citydb_waterbody_model.png]
Fig. 2.26 Waterbody model

Starting from LoD1, water bodies may also be modelled as volumes filled
with water, represented by Solids. If a water body is represented by a
Solid in LoD2 or higher, the surface geometries of the corresponding
thematic WaterClosureSurface, WaterGroundSurface, and WaterSurface
objects must coincide with the exterior shell of the Solid. This can
be ensured, if for one LoD X the respective lodXSurface elements
(where X is between 2 and 4) of WaterClosureSurface,
WaterGroundSurface, and WaterSurface reference the corresponding
polygons (using XLink) within the CompositeSurface that defines the
exterior shell of the Solid. Furthermore, every
_WaterBoundarySurface must have at least one associated surface
geometry attached.

The water body model implicitly includes the concept of
TerrainIntersectionCurves (TIC), e.g. to specify the exact
intersection of the DTM with the 3D geometry of a WaterBody or to
adjust a WaterBody or WaterSurface to the surrounding DTM. The rings
defining the WaterSurface polygons implicitly delineate the
intersection of the water body with the terrain or basin.

2.7. Relational database schema

	2.7.1. Mapping rules, schema conventions

	2.7.2. Conceptual database structure

	2.7.3. Database schema

2.7.1. Mapping rules, schema conventions

2.7.1.1. Mapping of classes onto tables

Generally, one or more classes of the UML diagram are mapped onto one
table; the name of the table is identical to the class name (a leading
underscore indicating an abstract class is left out). Classes are
combined into a single table according to the class relations as shown
in the UML diagrams by using orange coloured boxes. The scalar
attributes of the classes become columns of the corresponding table with
identical name.

The types of the attributes are customized to corresponding database
(Oracle/PostgreSQL) data types (see Table 2.1). Some attributes of the
data type date were mapped to TIMESTAMP WITH TIME ZONE to allow a more
accurate storage of time values.

Table 2.1 Data type mapping (excerpt)

	
UML

	
Oracle

	
PostgreSQL / PostGIS

	
String, anyURI

	
VARCHAR2, CLOB

	
VARCHAR, TEXT

	
Integer

	
NUMBER

	
NUMERIC

	
Double, gml:LengthType

	
BINARY_DOUBLE

	
DOUBLE PRECISION

	
Boolean

	
NUMBER(1,0)

	
NUMERIC

	
Date

	
DATE

TIMESTAMP WITH TIME ZONE

	
DATE

TIMESTAMP WITH TIME ZONE

	
Primitive Type

(Color, TransformationMatrix,

CodeType etc.)

	
VARCHAR2

	
VARCHAR

	
Enumeration

	
VARCHAR2

	
VARCHAR

	
GML Geometry,

textureCoordinates

	
SDO_GEOMETRY

	
GEOMETRY

	
GML RectifiedGridCoverage

	
SDO_GEORASTER

& SDO_RASTER

	
RASTER

	
Texture (only reference

of type anyURI in CityGML)

	
BLOB

	
BYTEA

2.7.1.2. Explicit declaration of class affiliation

In the (meta) table OBJECTCLASS, all class names (attribute CLASSNAME)
of the schema are managed. The relation of the subclass to its parent
class is represented via the attribute SUPERCLASS_ID in the subclass as
a foreign key to the ID of the parent class.

The table OBJECTCLASS is used to efficiently determine the affiliation
to a class in the superclass tables. In addition, the table CITYOBJECT
contains the attribute OBJECTCLASS_ID which refers to the respective
table OBJECTCLASS. This way, while looking at a tuple in CITYOBJECT, the
subclass and – if needed – the name of the class can be determined
directly. This mechanism has also been adopted in other tables that are
used to store different CityGML features, e.g. THEMATIC_SURFACE (for all
different BoundarySurfaces of a Building feature) or
BUILDING_INSTALLATION (outer or interior) etc. Please consider that
using CityGML ADEs could lead to additional OBJECTCLASS_IDs in this
table (please also refer to Section 2.7.3.1).

Table 2.2 Contents of the OBJECTCLASS table

	
ID

	
CLASSNAME

	
SUPERCLASS_ID

	
0

	
Undefined

	

	
1

	
_GML

	

	
2

	
_Feature

	
1

	
3

	
_CityObject

	
2

	
4

	
LandUse

	
3

	
5

	
GenericCityObject

	
3

	
6

	
_VegetationObject

	
3

	
7

	
SolitaryVegetationObject

	
6

	
8

	
PlantCover

	
6

	
9

	
WaterBody

	
105

	
10

	
_WaterBoundarySurface

	
3

	
11

	
WaterSurface

	
10

	
12

	
WaterGroundSurface

	
10

	
13

	
WaterClosureSurface

	
10

	
14

	
ReliefFeature

	
3

	
15

	
_ReliefComponent

	
3

	
16

	
TINRelief

	
15

	
17

	
MassPointRelief

	
15

	
18

	
BreaklineRelief

	
15

	
19

	
RasterRelief

	
15

	
20

	
_Site

	
3

	
21

	
CityFurniture

	
3

	
22

	
_TransportationObject

	
3

	
23

	
CityObjectGroup

	
3

	
24

	
_AbstractBuilding

	
20

	
25

	
BuildingPart

	
24

	
26

	
Building

	
24

	
27

	
BuildingInstallation

	
3

	
28

	
IntBuildingInstallation

	
3

	
29

	
_BuildingBoundarySurface

	
3

	
30

	
BuildingCeilingSurface

	
29

	
31

	
InteriorBuildingWallSurface

	
29

	
32

	
BuildingFloorSurface

	
29

	
33

	
BuildingRoofSurface

	
29

	
34

	
BuildingWallSurface

	
29

	
35

	
BuildingGroundSurface

	
29

	
36

	
BuildingClosureSurface

	
29

	
37

	
_BuildingOpening

	
3

	
38

	
BuildingWindow

	
37

	
39

	
BuildingDoor

	
37

	
40

	
BuildingFurniture

	
3

	
41

	
BuildingRoom

	
3

	
42

	
TransportationComplex

	
22

	
43

	
Track

	
42

	
44

	
Railway

	
42

	
45

	
Road

	
42

	
46

	
Square

	
42

	
47

	
TrafficArea

	
22

	
48

	
AuxiliaryTrafficArea

	
22

	
49

	
FeatureCollection

	
2

	
50

	
Appearance

	
2

	
51

	
_SurfaceData

	
2

	
52

	
_Texture

	
51

	
53

	
X3DMaterial

	
51

	
54

	
ParameterizedTexture

	
52

	
55

	
GeoreferencedTexture

	
52

	
56

	
_TextureParametrization

	
1

	
57

	
CityModel

	
49

	
58

	
Address

	
2

	
59

	
ImplicitGeometry

	
1

	
60

	
OuterBuildingCeilingSurface

	
29

	
61

	
OuterBuildingFloorSurface

	
29

	
62

	
_AbstractBridge

	
20

	
63

	
BridgePart

	
62

	
64

	
Bridge

	
62

	
65

	
BridgeInstallation

	
3

	
66

	
IntBridgeInstallation

	
3

	
67

	
_BridgeBoundarySurface

	
3

	
68

	
BridgeCeilingSurface

	
67

	
69

	
InteriorBridgeWallSurface

	
67

	
70

	
BridgeFloorSurface

	
67

	
71

	
BridgeRoofSurface

	
67

	
72

	
BridgeWallSurface

	
67

	
73

	
BridgeGroundSurface

	
67

	
74

	
BridgeClosureSurface

	
67

	
75

	
OuterBridgeCeilingSurface

	
67

	
76

	
OuterBridgeFloorSurface

	
67

	
77

	
_BridgeOpening

	
3

	
78

	
BridgeWindow

	
77

	
79

	
BridgeDoor

	
77

	
80

	
BridgeFurniture

	
3

	
81

	
BridgeRoom

	
3

	
82

	
BridgeConstructionElement

	
3

	
83

	
_AbstractTunnel

	
20

	
84

	
TunnelPart

	
83

	
85

	
Tunnel

	
83

	
86

	
TunnelInstallation

	
3

	
87

	
IntTunnelInstallation

	
3

	
88

	
_TunnelBoundarySurface

	
3

	
89

	
TunnelCeilingSurface

	
88

	
90

	
InteriorTunnelWallSurface

	
88

	
91

	
TunnelFloorSurface

	
88

	
92

	
TunnelRoofSurface

	
88

	
93

	
TunnelWallSurface

	
88

	
94

	
TunnelGroundSurface

	
88

	
95

	
TunnelClosureSurface

	
88

	
96

	
OuterTunnelCeilingSurface

	
88

	
97

	
OuterTunnelFloorSurface

	
88

	
98

	
_TunnelOpening

	
3

	
99

	
TunnelWindow

	
98

	
100

	
TunnelDoor

	
98

	
101

	
TunnelFurniture

	
3

	
102

	
HollowSpace

	
3

	
103

	
TexCoordList

	
56

	
104

	
TexCoordGen

	
56

	
105

	
_WaterObject

	
3

	
106

	
_BrepGeometry

	
0

	
107

	
Polygon

	
106

	
108

	
BrepAggregate

	
106

	
109

	
TexImage

	
0

	
110

	
ExternalReference

	
0

	
111

	
GridCoverage

	
0

	
112

	
_genericAttribute

	
0

	
113

	
genericAttributeSet

	
112

2.7.2. Conceptual database structure

Starting from version 4.0.0, the 3DCityDB database schema has been
slightly modified to support the handling of CityGML ADEs (Application
Domain Extensions). With this enhancement, user-defined database schemas
can be dynamically created and attached to a 3DCityDB instance for
storing ADE data contents. In addition, every existing CityGML class
table is now equipped with an OBJECTCLASS_ID column which allows to
distinguish the stored data contents of different CityGML and ADE
classes having inheritance relationships. Moreover, a set of new
metadata tables are introduced in addition to the existing OBJECTCLASS
table, for holding the relevant meta-information of the registered
CityGML ADEs. In general, all 3DCityDB tables now logically belong to
one of the three modules Metadata Module, Core Data Module, and
Dynamic Data Module, whose relations are shown in the following
figure.

[image: ../../_images/citydb_conceptual_database_structure.png]
Fig. 2.27 New conceptual 3DCityDB database structure for handling CityGML ADEs

The green tables enclosed in the Core Data Module represent those
database tables that are responsible for storing the standard CityGML
models such as Building, Transportation, Tunnel, CityFurniture,
CityObjectGroup, Generic, Appearance etc. This module comprises
basically the tables of the database schema of previous versions of the
3DCityDB (cf. the next section for more details). For a given CityGML
ADE, an additional group of database tables forming a separate module
belonging to the Dynamic Data Module (pink tables in the figure) can
be created and attached to the 3DCityDB database schema. In addition,
the relationships (e.g. generalization/specialization and associations)
among the model classes of CityGML and CityGML ADEs are adequately
reflected using database foreign key constraints which allow to ensure
the data integrity and consistency within the database system. The
Metadata Module associated with the Dynamic Data Module is utilized
for storing the relevant meta-information (e.g. the XML namespaces,
schema files, and class affiliations etc.) about ADEs as well as the
referencing relations among the ADE and CityGML application schemas.
This way, the dependencies between the registered ADE application
schemas can be directly read from the 3DCityDB database schema to
facilitate the database administration process, i.e. the registration
and deregistration of multiple CityGML ADEs within a 3DCityDB instance.

2.7.3. Database schema

In the following paragraph, the tables of the relational schema are
displayed graphically and described in detail. The description is based
on the remarks on UML charts in Section 2.6.
Focus is put on situations where the conversion into tables leads to
changes in the model.

	2.7.3.1. Metadata Model

	2.7.3.2. Core Model

	2.7.3.3. Tables for geometry representation

	2.7.3.4. Appearance Model

	2.7.3.5. Building Model

	2.7.3.6. Bridge Model

	2.7.3.7. CityFurniture Model

	2.7.3.8. Generic Objects and Attributes

	2.7.3.9. LandUse Model

	2.7.3.10. Digital Terrain Model

	2.7.3.11. Transportation Model

	2.7.3.12. Tunnel Model

	2.7.3.13. Vegetation Model

	2.7.3.14. WaterBody Model

	2.7.3.15. Sequences

The figures are taken from Oracle JDeveloper, which allows to design
different diagrams and reuse already defined tables. JDeveloper
(v12.2.1) was used to design the database schema and extract SQL DDL
scripts automatically for Oracle databases. It is a freeware IDE by
Oracle and can be downloaded at:
http://www.oracle.com/technetwork/developer-tools/jdev.

For PostgreSQL databases the Open Source tool pgModeler (v0.8.2) has
been used to maintain the schema. Packed installers can be purchased at
http://pgmodeler.com.br/ or the user compiles the software from the
source code available at GitHub
(https://github.com/pgmodeler/pgmodeler).

Starting from version 3.0.0 of the 3DCityDB the corresponding schema
modelling projects are shipped with the release and can be edited by the
user to create customized SQL scripts. However, the 3DCityDB
Import/Export tool only supports the default schema, unless it is not
reprogrammed against the user’s new database schema.

2.7.3.1. Metadata Model

An overview of the relational structure of the Metadata Module is
shown in Fig. 2.28. The table ADE serves as a central registry for all
the registered CityGML ADEs each of which corresponds to a table row and
the relevant ADE metadata attributes are mapped onto the respective
columns. For example, each registered ADE shall own a globally unique ID
value for identification purpose. This ID value could be a UUID
(Universally Unique Identifier) which can be automatically generated and
stored in the column ADEID while registering the ADE. The columns NAME
and DESCRIPTION are mainly used for storing the basic description
information of each ADE. The column VERSION denotes the version number
of an ADE and allows to distinguish different release versions. In the
3DCityDB database schema, the database objects like tables, indexes,
foreign key constrains, and sequences of a certain ADE shall be named by
starting with a unique prefix. This allows applications to rapidly fetch
out the database schema of a certain ADE using a wildcard filter. In
this way, it is possible to automatically perform some kinds of
statistics on the ADE data contents stored in the individual tables. In
addition, the column XML_SCHEMAMAPPING_FILE is used to store the
XML-formatted schema mapping information of each ADE and is henced
defined with the CLOB data type. Another CLOB-typed column is
DROP_DB_SCRIPT where the SQL statements for dropping the individual ADE
database schema is saved and can be easily retrieved and carried out at
the database side. Moreover, the CREATION_DATE and CREATION_PERSON are
two application-specific attribute columns for providing the information
about who and when have operated the ADE registration process. This
meta-information is typically helpful for 3DCityDB users to accomplish
the administration work e.g. searching and cleaning up those ADEs that
are outdated or registered by certain database users.

[image: ../../../_images/citydb_schema_metadata_diagram.png]
Fig. 2.28 Technical implementation of the 3DCityDB Metadata Module in a relational diagram

A CityGML ADE may consist of multiple application schemas one of which
should be the root schema referencing the others. Such dependency
information along with the meta-information of the individual schema are
stored in two tables, namely SCHEMA and SCHEMA_REFERENCING. The
SCHEMA_REFERENCING table is an associative table which contains two
foreign key columns REFERENCED_ID and REFERENCING_ID to link the
respective referencing and referenced schemas. In the table SCHEMA, the
flag attribute IS_ADE_ROOT is used for denoting the root schema that
directly or indirectly references all the other ADE schemas of an ADE.
In this way, the dependency hierarchy of the ADE schemas can be fully
represented in a relational model to facilitate the reconstruction of
the original schema relations through user applications. For each
schema, its meta-information such as the schema location, namespace,
namespace prefix, source XML schema definition file, as well as the file
type (e.g. plain XML text or archived) of the schema can also be stored
in the further columns of the SCHEMA table. The column CITYGML_VERSION
refers to the consideration that an ADE schema may have two different
versions, because they can be defined based on both CityGML version
1.0.0 and 2.0.0 at the same time.

The table OBJECTCLASS is a central registry for enumerating not only the
standard CityGML classes but also the classes of the registered ADEs.
Each class is assigned with a globally unique numeric ID for querying
and accessing the class-related information.
As explained in the Section 2.7.1.2,
the ID values ranging from 0 to 113 have already been reserved
for the standard CityGML classes. Thus, the ID values of the registered
ADE classes must be larger than 113. Concerning the situation that more
additional feature classes might be introduced into the future versions
of the CityGML standard, a certain range of integer values must be
preserved and shall not be used for ADEs. Therefore, for each ADE, it is
recommended to assign its classes with a set of relatively large integer
values which can be incrementally sequenced with an initial value of
10000. In order to avoid the class ID conflict, each ADE shall own a
certain large value range which can be centrally maintained and
organized by an official community like the 3DCityDB group. The
OBJECTCLASS table also contains a few additional columns like the
IS_ADE_CLASS which is a flag attribute to denote which classes are
belonging to ADEs. Another column named TABLENAME refers to the table
name of a CityGML or ADE class and provides the basic information about
model mapping. The last two columns SUPERCLASS_ID and BASECLASS_ID are
two foreign key columns of the ID column for representing the
inheritance hierarchy of all the CityGML and ADE classes in a relational
structure.

In addition to the inheritance relationship, the aggregation
relationship between CityGML and ADE classes can also be represented
within a 3DCityDB instance by means of the table AGGREGATION_INFO. Its
first two columns CHILD_ID and PARENT_ID are two foreign key columns
which point to the primary key column of the table OBJECTCLASS to
reflect the two related classes. The aggregation or composition
relationship between each pair of classes can be distinguished by using
the flag attribute IS_COMPOSITE whose value can either be 0
(aggregation) or 1 (composition). In 3DCityDB, each
aggregation/composition is logically mapped onto a foreign key column or
an associative table for joining the two respective class tables. This
meta-information can also be stored in the table AGGREGATION_INFO using
its column JOIN_TABLE_OR_COLUMN_NAME. In addition, the multiplicity of
the individual aggregation/composition are stored in the two numeric
columns MIN_OCCURS and MAX_OCCURS. In case of a 0..* relationship where
the value of the multiplicity end is unbounded, the value in the column
MAX_OCCURS shall be set NULL.

2.7.3.2. Core Model

CITYOBJECT, CITYOBJECT_SEQ

All CityObjects (and instances of the subclasses like Buildings
etc.) are represented by tuples in the table CITYOBJECT. The fields are
identical to the attributes of the corresponding UML class, plus
additional columns for metadata like LAST_MODIFICATION_DATE,
UPDATING_PERSON, REASON_FOR_UPDATE and LINEAGE.

The bounding box (gml:Envelope) is stored as rectangular geometry
using five points, that join the minimum and maximum x, y and z
coordinates of the bounding box and define it completely. For backwards
compatibility reasons (to Oracle 10g), the envelope cannot be stored as
a volume.

[image: ../../../_images/citydb_envelope_definition.png]
Fig. 2.29 The CityObject’s envelope specified by two points with minimum
and maximum coordinate values (left: black points) is stored as a
3D rectangle (right: black polygon using five points)

In order to identify each object, a unique identifier is essential.
Therefore, the column GMLID stores the gml:id value of every city
object. But since gml:ids cannot be guaranteed to be unique over
different CityGML files, the column GMLID_CODESPACE is provided in
addition. It may contain, for instance, the full path to the imported
CityGML file containing the object. The combination of GMLID and
GMLID_CODESPACE should be ensured to be unique for each CityObject.

The attributes NAME or NAME_CODESPACE can contain more than one
gml:name proper­ty. In this case they have to be separated by the
string ‘--/\--’ (more details on the following page). The CityGML
exporter will then create multiple occurrences of <gml:name> elements.

The attribute OBJECTCLASS_ID provides information on the class
affiliation of the CityObject. This helps to identify the proper
subclass tables.

The next free ID value for the table CITYOBJECT is provided by the
database sequence CITYOBJECT_SEQ. This ID is also reused in the separate
tables for the different thematic features.

CITYMODEL, CITYMODEL_SEQ

CityObject features may be aggregated to a single CityModel. A
CityModel serves as root element of a CityGML feature collection. In
order to provide a unique identifier in table CITYMODEL, the next
available ID value is provided by the sequence CITYMODEL_SEQ.

EXTERNAL_REFERENCE, EXTERNAL_REF_SEQ

The table EXTERNAL_REFERENCE is used to store external references; the
foreign key CITYOBJECT_ID refers to the associated CityObject. The
sequence EXTERNAL_REF_SEQ provides the next available ID value for
EXTERNAL_REFERENCE.

CITYOBJECTGROUP, GROUP_TO_CITYOBJECT

The n:m relationship between an object group (table
CITYOBJECTGROUP) consisting of city objects contained in CITYOBJECT is
realized by the table GROUP_TO_CITYOBJECT, which associates the IDs of
both tables. The following tables shows an example, in which two buildings are
grouped to a hotel complex.

Table 2.3 Cityobjectgroup table (excerpt)

	
ID

	
CLASS

	
CLASS_

CODESPACE

	
FUNCTION

	
FUNCTION_

CODESPACE

	
USAGE

	
USAGE_

CODESPACE

	
1

	
NULL

	
NULL

	
Building

group

	
NULL

	
Hotel

	
NULL

Table 2.4 GROUP_TO_CITYOBJECT table

	
CITYOBJECT_ID

	
CITYOBJECTGROUP_ID

	
ROLE

	
2

	
1

	
Main building

	
4

	
1

	
Annex

Table 2.5 Cityobject table (excerpt)

	
ID

	
OBJECTCLASS

_ID

	
GML_ID

	
ENVELOPE

	
CREATION

_DATE

	
TERMINATION

_DATE

	
2

	
26

	
Build1632

	
GEOMETRY

	
2015-02-02

09:26:07.441+01

	
NULL

	
4

	
26

	
Build1633

	
GEOMETRY

	
2015-02-02

09:26:07.441+01

	
NULL

	
1

	
23

	
Group1700

	
NULL

	
2015-02-02

09:26:07.441+01

	
NULL

For attributes CLASS, FUNCTION and USAGE there is an additional
_CODESPACE column in order to specify the source of code lists used for
values (e.g. by a globally unique URL). As a CityGML feature like
CityObjectGroup can have multiple instances of attributes class,
function and usage but only one target column exist in the table,
values are separated by the string sequence ‘--/\--’. The CityGML
exporter will then create multiple occurrences of corresponding
elements. Normalization rules were not applied in this case in order to
avoid many joins when querying all information of building objects.
Array types weren’t used either as their implementation varies between
different database systems.

This concept applies to all CityGML features and can therefore be found
in every object table (except for boundary surfaces of buildings,
bridges and tunnels). They do not appear once in the CITYOBJECT table,
because they are belonging to the namespace of a certain thematic module
and should be stored along with other attributes of that feature.

[image: ../../../_images/citydb_schema_core.png]
Fig. 2.30 Database schema of the CityGML core elements

2.7.3.3. Tables for geometry representation

The representation of the geometry stored in table SURFACE_GEOMETRY
differs substantially from the UML chart explained in the CityGML
specification; nevertheless, it offers about the same functionality.

SURFACE_GEOMETRY, SURFACE_GEOMETRY_SEQ

In the database schema the geometry consists of planar surfaces which
correspond each to one entry in the table SURFACE_GEOMETRY. The
surface-based geometry is stored as attribute GEOMETRY (in each case
exactly one planar polygon, possibly including holes). The implicit
geometry is stored as attribute IMPLICIT_GEOMETRY. The volumetric
geometry is stored as attribute SOLID_GEOMETRY and its boundary surfaces
(outer shell) will be stored as attribute GEOMETRY as well. Any surface
may have textures or a colour on both sides. Textures are stored within
the tables which implement the appearance model (cf. Section 2.6.3).

The geometry information in the fields GEOMETRY and IMPLICIT_GEOMETRY of
the table SURFACE_GEOMETRY is limited as follows:

Table 2.6 Storage of polygonal geometry

	
Oracle

	
PostGIS

	
- SDO_GTYPE must have the type Polygon, i.e. a

polygon with 3D coordinates (SDO_GTYPE = 3003)

- SDO_ETYPE must be 1003/2003 with

SDO_INTERPRETATION = 1 (i.e. polygon with

3D coordinates in the boundary, bounded just by

linesegments, possibly including holes)

- In addition Oracle allows the representation

of a rectangle by two corner points

(SDO_ETYPE=1003/2003,

with SDO_INTERPRETATION = 3)

- SDO_SRID of implicit geometries can be

any SRID Oracle supports. No spatial index

is defined on the column by default.

	
- Only POLYGON Z is allowed, i.e. a polygon

with 3D coordinates

- Polygons might have holes

- The IMPLICIT_GEOMETRY column has no

SRID defined. Thus, entries in that column

will have the SRID 0 automatically

A solid is the basis for 3-dimensional geometry. The extent of a solid
is defined by the boundary surfaces (outer shell). A shell is
represented by a composite surface, where every shell is used to
represent a single connected component of the boundary of a solid. It
consists of a composite surface (a list of OrientableSurfaces)
connected in a topological cycle. Unlike a ring, a shell’s elements have
no natural sort order. Like rings, shells are simple. The geometry in
the field SOLID_GEOMETRY of the table SURFACE_GEOMETRY is limited as
follows:

Table 2.7 Storage of 3D geometry

	
Oracle

	
PostGIS

	
- SDO_GTYPE must have the type Solid, i.e. a solid

with 3D coordinates (SDO_GTYPE = 3008)

- SDO_ETYPE must be 1007 (simple solid) or

1008 (composite solid)

- A simple solid can be represented by using

several polygons as its boundary

(SDO_ETYPE=1007,

with SDO_INTERPRETATION = 1)

- The composite solid can be constructed with

a number of simple solids, e.g. a composite

solid with 4 simple solids (SDO_ETYPE=1008,

with SDO_INTERPRETATION = 4)

	
- Only POLYHEDRALSURFACE is allowed, i.e.

the outer shell of a solid with 3D coordinates

- A simple polyhedral surface can be represented

by using several polygons as its boundary

Surfaces can be aggregated to form a complex of surfaces or the boundary
of a volumetric object. The aggregation of multiple surfaces, e.g.
F1 to Fn, (IDs 6 to 10 in Fig. 2.31 /
Fig. 2.32) is
realized the way that the newly created surface tuple Fn+1 (ID
2) is not assigned a geo­metry (cf. Table 2.8).
Instead, the PARENT_ID of the surfaces F1 to Fn refer to the ID of
Fn+1.

[image: ../../../_images/citydb_schema_example_geometry_hierarchy.png]
Fig. 2.31 Geometry hierarchy for the solid geometry shown in Fig. 2.32

In addition, a further tuple (ID 1) is introduced, which represent the
solid and defines the root element of the whole aggregation structure.
Each surface references to its root, using the ROOT_ID attribute. This
information has big influence on the system performance, as it allows to
avoid recursive queries. If e.g. the retrieval of all surface elements
forming a specific building is of importance, simply those tuples have
to be selected which contain the related ROOT_ID. On the downside there
also follows the limitation that each tuple in SURFACE_GEOMETRY can only
belong to one aggregate.

Various flags characterise the type of aggregation: IS_TRIANGULATED
denotes a TriangulatedSurface, IS_SOLID distinguishes between surface
(0) and solid (1), and IS_COMPOSITE defines whether this is an aggregate
(e.g. MultiSolid, MultiSurface) or a composite (e.g.,
CompositeSolid, CompositeSurface).

Based on these flags the geometry types listed in
Table 2.8 can be
distinguished. To distinguish a MultiSolid from a MultiSurface its
child elements have to be analysed: In case the child is a Solid, the
geometry can be identified as MultiSolid.

Table 2.8 Attributes determining aggregation types

	

	
isSolid

	
isComposite

	
isTriangulated

	
Geometry

	
SOLID_

GEOMETRY

	
Polygon, Triangle,

Rectangle

	

	

	

	
GEOMETRY

	
NULL

	
MultiSurface

	

	

	

	
NULL

	
NULL

	
CompositeSurface

	

	
✔

	

	
NULL

	
NULL

	
TriangulatedSurface

	

	

	
✔

	
NULL

	
NULL

	
Solid

	
✔

	

	

	
NULL

	
GEOMETRY

	
MultiSolid

	

	

	

	
NULL

	
NULL

	
CompositeSolid

	
✔

	
✔

	

	
NULL

	
GEOMETRY

Aggregated surfaces can be grouped again with other (compound) surfaces,
by generating a common parent. This way, arbitrary aggregations of
Surfaces, CompositeSurfaces, Solids, CompositeSolids can be
formed. Since all tuples in an aggregated geometry refer to the same
ROOT_ID all tuples can be retrieved efficiently from the table by
selecting those tuples with the same ROOT_ID.

The aggregation schema allows for the definition of nested aggregations
(hierarchy of components). For example, a building geometry
(CompositeSolid) can be composed of the house geometry
(CompositeSolid) and the garage geometry (Solid), while the house’s
geometry is further decomposed into the roof geometry (Solid) and the
geometry of the house body (Solid).

In addition, the foreign key CITYOBJECT_ID refers directly to the
CityGML features to which the geometry belongs. In order to select all
geometries forming the city object one only has to select those with the
same CITYOBJECT_ID.

In order to provide a unique identifier in table SURFACE_GEOMETRY, the
next available ID value is provided by the sequence
SURFACE_GEOMETRY_SEQ.

Example: The geometry shown in the figure below consists of seven
surfaces which form a volumetric object. In the table it is represented
by the following rows:

[image: ../../../_images/citydb_schema_example_lod1solid_building.png]
Fig. 2.32 LoD 1 building - closed volume bounded by a CompositeSurface which consists of single polygons

Table 2.9 Excerpt of table SURFACE_GEOMETRY representing the example given in Fig. 2.32

	
ID

	
GMLID

	
PARENT_

ID

	
ROOT_

ID

	
IS_

SOLID

	
IS_COM

POSITE

	
GEOMETRY

	
SOLID_

GEOMETRY

	
1

	
UUID

_lod1

	
NULL

	
1

	
1

	
0

	
NULL

	
GEOMETRY

for Solid

	
2

	
lod1

Surface

	
1

	
1

	
0

	
1

	
NULL

	
NULL

	
3

	
Left1

	
2

	
1

	
0

	
0

	
GEOMETRY

for surface 3

	
NULL

	
4

	
Front1

	
2

	
1

	
0

	
0

	
GEOMETRY

for surface 4

	
NULL

	
5

	
Right1

	
2

	
1

	
0

	
0

	
GEOMETRY

for surface 5

	
NULL

	
6

	
Back1

	
2

	
1

	
0

	
0

	
GEOMETRY

for surface 6

	
NULL

	
7

	
Roof1

	
2

	
1

	
0

	
0

	
GEOMETRY

for surface 7

	
NULL

In addition, two further attributes are included in SURFACE_GEOMETRY:
IS_XLINK and IS_REVERSE.

IS_XLINK

CityGML allows for sharing of geometry objects between different
geometries or different thematic features using the XLink concept of
GML3. For this purpose, the geometry object to be shared is assigned an
unique gml:id which may be referenced by a GML geometry property
element through its xlink:href attribute. This concept allows for
avoiding data redundancy. Furthermore, CityGML does not employ the
built-in topology package of GML3 but rather uses the XLink concept for
the explicit modelling of topology (see [GKCN2008] p. 25).

Although an XLink can be seen as a pointer to an existing geometry
object the SURFACE_GEOMETRY table does not offer a foreign key attribute
which could be used to refer to another tuple within this table. The
main reason for this is that the referenced tuple typically belongs to a
different geometry aggregate, e.g. a different gml:Solid object, and
thus contains different values for its ROOT_ID and PARENT_ID attributes.
Therefore, foreign keys would violate the aggregation mechanism of the
SURFACE_GEOMETRY table.

The recommended way of resolving of XLink references to geometry objects
requires two steps: First, the referenced tuple of the SURFACE_GEOMETRY
table has to be identified by searching the GMLID column for the
referenced gml:id value. Second, all attribute values of the
identified tuple have to be copied to a new tuple. However, the ROOT_ID
and PARENT_ID of this new tuple have to be set according to the context
of the referencing geometry property element.

Please note:

	If the referenced tuple is the top of an aggregation (sub)hierarchy
within the SURFACE_GEOMETRY table, then also all nested tuples have
to be recursively copied and their ROOT_ID and PARENT_ID have to be
adapted.

	Copying existing entries of the SURFACE_GEOMETRY table results in
tuples sharing the same GMLID. Thus, these values cannot be used as a
primary key.

When it comes to exporting data to a CityGML instance document, XLink
references can be rebuilt by keeping track of the GMLID values of
exported geometry tuples. Generally, for each and every tuple to be
exported it has to be checked whether a geometry object with the same
GMLID value has already been processed. If so, the export routine should
make use of an XLink reference.

However, checking the GMLID of each and every tuple may dramatically
slow down the export process. For this reason, the IS_XLINK flag of the
SURFACE_GEOMETRY has been introduced. It may be used to explicitly mark
just those tuples for which a corresponding check has to be performed.
The IS_XLINK flag should be used in the following manner. The
Importer/Exporter provides a corresponding reference implementation.

	During import

	By default, the IS_XLINK flag is set to “0”.

	If existing tuples have to be copied due to an XLink reference,
IS_XLINK has to be set to “1” for each and every copy. Please note,
that this rule comprises all copies of nested tuples.

	Furthermore, IS_XLINK has to be set to “1” on the original tuple
addressed by the XLink reference. If this tuple is the top of an
aggregation (sub)hierarchy, IS_XLINK remains “0” for all nested
tuples.

	During export

	The export process just has to keep track of the GMLID values of
those geometry tuples where IS_XLINK is set to “1”.

	When it comes to exporting a tuple with IS_XLINK set to “1”, the
export process has to check whether it already came across the same
GMLID and, thus, can make use of an XLink reference in the instance
document.

	For each tuple with IS_XLINK=0 no further action has to be taken.

Especially due to (2c), the IS_XLINK attribute helps to significantly
speed up the export process when rebuilding XLink references. Please
note, that this is the only intended purpose of the IS_XLINK flag.

IS_REVERSE

The IS_REVERSE flag is used in the context of gml:OrientableSurface
geometry objects. Generally, an OrientableSurface instance cannot be
represented within the SURFACE_GEOMETRY table since it cannot be encoded
using the flags IS_SOLID, IS_COMPOSITE, and IS_TRIANGULATED (cf. Table
5). However, the IS_REVERSE flag is used to encode the information
provided by an OrientableSurface and to rebuild OrientableSurfaces
during data export.

According to GML3, an OrientableSurface consists of a base surface and
an orientation. If the orientation is “+”, then the OrientableSurface
is identical to the base surface. If the orientation is “-“, then the
OrientableSurface is a reference to a surface with an up-normal that
reverses the direction for this OrientableSurface.

During import, only the base surfaces are written to the
SURFACE_GEOMETRY table. The following rules have to be obeyed in the
context of OrientableSurface:

	If the orientation of the OrientableSurface is “-“, then

	The direction of the base surface has to be reversed prior to
importing it (generally, this means reversing the order of coordinate
tuples).

	The IS_REVERSE flag has to be set to “1” for the corresponding entry
in the SURFACE_GEOMETRY table.

	If the base surface is an aggregate, then steps (a) and (b) have to
be recursively applied for all of its surface members.

	If the OrientableSurface is identical to its base surface (i.e., if
its orientation is “+”), then the base surface can be written to the
SURFACE_GEOMETRY table without taking any further action. The
IS_REVERSE flag has to be set to “0” (which is also the default
value).

	Please note, that it is not sufficient to just rely on the
gml:orientation attribute of an OrientableSurface in order to
determine its orientation since OrientableSurfaces may be
arbitrarily nested.

Flipping the direction of the base surface in step (1a) is essential in
order to guarantee that the objects stored within the GEOMETRY column
are always correctly oriented. This enables applications to just access
the GEOMETRY column without having to interpret further attributes of
the SURFACE_GEOMETRY table. For example, in the case of a viewer
application this allows for a fast rendering of a virtual 3d city scene.

When exporting CityGML instance documents, the IS_REVERSE flag can be
used to rebuild OrientableSurface in the following way:

	If the IS_REVERSE flag is set to “1” for a table entry, the exporter
routine has to reverse the direction of the corresponding surface
object prior to exporting it (again, this means reversing the order
of coordinate tuples).

	The surface object has to be wrapped by a gml:OrientableSurface
object with gml:orientation=”-”.

	If the surface object is an aggregate, its surface members having the
same value for the IS_REVERSE flag may not be embraced by
another OrientableSurface. However, if the IS_REVERSE value
changes, e.g., from “1” for the aggregate to “0” for the surface
member, also the surface member has to be embraced by a
gml:OrientableSurface according to (2). Since there might be nested
structures of arbitrary depth this third rule has to be applied
recursively.

Like with the IS_XLINK flag, the Importer/Exporter tool provides a
reference implementation of the IS_REVERSE flag.

2.7.3.4. Appearance Model

APPEARANCE, APPEARANCE_SEQ

The table APPEARANCE contains information about the surface data of
objects (attribute DESCRIPTION), its category is stored in attribute
THEME. Since each city model or city object may store its own appearance
data, the table APPEARANCE is related to the tables for the base classes
CityObject and CityModel by two foreign keys which may be used
alternatively. The classes Appearance and _SurfaceData represent
features, which can be referenced by GML identifiers. For this reason,
the attributes GMLID and GMLID_CODESPACE were added to the corresponding
tables.

[image: ../../../_images/citydb_schema_appearance.png]
Fig. 2.33 Appearance database schema

SURFACE_DATA, TEX_IMAGE, APPEAR_TO_SURFACE_DATA

An appearance is composed of data for each surface geometry object.
Information on the data types and its appearance are stored in table
SURFACE_DATA.

IS_FRONT determines the side a surface data object applies to
(IS_FRONT=1: front face IS_FRONT=0: back face of a surface data object).
The OBJECTCLASS_ID column denotes if materials or textures are used for
the specific object (values: X3DMaterial, Texture or
GeoreferencedTexture). Materials are specified by the attributes
X3D_xxx which define its graphic representation. Details on using
georeferenced textures, such as orientation and reference point, are
contained in attributes GT_xxx. See Section 2.6.3 for more information
on SURFACE_DATA attributes or the CityGML specification (cf. [GKNH2012], p. 33-45)
which explains the texture mapping process in detail.

Raster-based 2D textures are stored in table TEX_IMAGE. The name of the
corresponding images for example is specified by the attribute
TEX_IMAGE_URI. The texture image can be stored within this table in the
attribute TEX_IMAGE_DATA using the BLOB data type under Oracle and the
BYTEA data type under PostgreSQL.

Table APPEAR_TO_SURFACE_DATA represents the interrelationship between
appearances and surfaces for different themes.

TEXTUREPARAM

Attributes for mapping textures to objects (point list or transformation
matrix) which are defined by the CityGML classes
_TextureParameterization, TexCoordList, and TexCoordGen are
stored in the table TEXTUREPARAM.

[image: ../../../_images/citydb_schema_example_appearance_texture.png]
Fig. 2.34 Simple example explaining texture mapping using texture coordinates

Table 2.10 Example for table TEXTUREPARAM

	
SURFACE_

GEOMETRY_ID

	
IS_TEXTURE

_PARAMETRIZATION

	
WORLD_TO

_TEXTURE

	
TEXTURE_

COORDINATES

	
SURFACE_

DATA_ID

	
7

	
1

	
NULL

	
GEOMETRY

	
20

	
…

	
…

	
…

	
…

	
…

Texture coordinates are applicable to polygonal surfaces, whose
boundaries are described by a closed linear ring (last coordinate is
equal to first). Coordinates are stored with a geometry data type. The
WORLD_TO_TEXTURE attribute defines a transformation matrix from a
location in world space to texture space. For more details see the
CityGML Implementation Specification [GKNH2012].

[image: ../../../_images/citydb_schema_example_building_appearance.png]
Fig. 2.35 Visualisation of a simple building in LoD1 and LoD2 using the
appearance model. Two themes are defined for the building and the
surrounding terrain: (a) building in summertime and (b) building in
wintertime

Six surface representations are listed in table SURFACE_DATA
(cf. Fig. 2.41).
First of all, a homogeneous material is defined (ID=1), represented
by a 3-component (RGB) colour value which will be used for both
appearances (summer and winter). This also applies to a general side
façade texture (ID=3, Fig. 2.38 right)
which is repeated (wrapped) to
fill the entire surface. For each of the front side, the back side and
the ground two images are available: parameterized ones for the sides
(Fig. 2.38 left and middle)
and georeferenced ones for the ground and
the roof surfaces (Fig. 2.37).
The information of textures is stored in
a separate table TEX_IMAGE. The coordinates for mapping the textures to
the object are stored in table TEXTUREPARAM. For the general side
texture (SURFACE_DATA_ID=3) five coordinate pairs are needed to define a
closed ring (here: rectangle). Table SURFACE_GEOMETRY contains the
information of all geometry parts that form the building and its
appropriate 3D coordinates.

See the following page for an example of the storage of appearances in
the city database. Fig. 2.38
and Fig. 2.37 show the images used for
texturing a building in LoD2. In LoD1, a material definition is used to
define the wall colors of the building.

Fig. 2.39 to
Fig. 2.43 show
a combination of tables representing the
building’s textures. There are different images available for summer and
winter resulting in two themes: Summer and Winter. The tuples within the
tables are color-coded according to their relation to the respective
theme:

	Green: only summer related data

	Light-grey: only winter related data

	Orange: both summer and winter related data

Fig. 2.36 shows the LoD2 representation
of summer appearances (theme Summer).

[image: ../../../_images/citydb_schema_example_lod2Surface_building.png]
Fig. 2.36 Surface geometries for the building in LoD2

[image: ../../../_images/citydb_schema_images_georeferenced_textures.png]
Fig. 2.37 Images for georeferenced textures. The image ground_winter.png is assigned to the terrain
and the roof surfaces of the building both in LoD1 and
LoD2 within the winter theme (a), ground_summer.png
within the summer theme (b)

[image: ../../../_images/citydb_schema_images_parameterized_textures.png]
Fig. 2.38 Images for parameterized textures

[image: ../../../_images/citydb_schema_APPEARANCE_table_figure.png]
Fig. 2.39 Excerpt of table APEARANCE, The relation to the building feature is given by the foreign key CITYOBJECT_ID

[image: ../../../_images/citydb_schema_APPEAR_TO_SURFACE_table_figure.png]
Fig. 2.40 APPEAR_TO_SURFACE table

[image: ../../../_images/citydb_schema_surface_data_table_figure.png]
Fig. 2.41 Excerpt of table SURFACE_DATA table

[image: ../../../_images/citydb_schema_tex_image_table_figure.png]
Fig. 2.42 Excerpt of table TEX_IMAGE table

[image: ../../../_images/citydb_schema_TEXTUREPARAM_table_figure.png]
Fig. 2.43 TEXTUREPARAM Table

2.7.3.5. Building Model

[image: ../../../_images/citydb_schema_building_diagram.png]
Fig. 2.44 Building database schema

BUILDING

The building model, described in Section 2.6.4.2 at the conceptual
level, is realised by the tables shown in Fig. 2.44. The three CityGML
classes AbstractBuilding, Building and BuildingPart are merged
into the single table BUILDING. They can be distinguished on behalf of
the OBJECTCLASS_ID. The subclass relationship with CITYOBJECT arises
from using identical IDs, i.e. for each tuple in BUILDING
there must exist a tuple within CITYOBJECT with the same
ID.

Table 2.11 Tree-like structure for recursive decomposition of buildings

	
ID

	
BUILDING_

PARENT_ID

	
BUILDING_

ROOT_ID

	
…

	
LOD0_

FOOT

PRINT_ID

	
…

	
LOD1_

MULTISUR

FACE_ID

	
…

	
LOD4_

SOLID_

ID

	
1

	
NULL

	
1

	

	
10

	

	
NULL

	

	
NULL

	
2

	
1

	
1

	

	
NULL

	

	
20

	

	
NULL

	
3

	
1

	
1

	

	
NULL

	

	
30

	

	
NULL

	
4

	
2

	
1

	

	
NULL

	

	
NULL

	

	
400

	
5

	
2

	
1

	

	
NULL

	

	
NULL

	

	
500

	
6

	
3

	
1

	

	
NULL

	

	
NULL

	

	
600

	
7

	
3

	
1

	

	
NULL

	

	
NULL

	

	
700

The component hierarchy within a building is realized by the foreign key
BUILDING_PARENT_ID which refers to the superordinate building
(aggregate) and contains NULL, if such does not exist. This way, a
tree-like structure arises also for building aggregates.
BUILDING_PARENT_ID points at the predecessor in the tree. The foreign
key BUILDING_ROOT_ID refers directly to the top level (root) of a
building tree. In order to select all parts forming a building one only
has to select those with the same BUILDING_ROOT_ID
(cf. Table 2.11).

The meaning and the name of most fields are identical to those of the
attributes in the UML diagram (cf. Fig. 2.7). Like for
CityObjectGroups there are additional _CODESPACE columns for the
attributes class, function and usage. A _CODESPACE column is also
added for the roofType attribute as it is specified as gml:CodeType
in CityGML. For every attribute including measure information like
measuredHeight or storeyHeightsAboveGround etc. an additional _UNIT
column is provided to specify the unit of measurement.

Geometry is represented by several foreign keys LOD0_FOOTPRINT_ID,
LOD0_ROOFPRINT_ID, LODx_MULTI_SURFACE_ID (1≤ x ≤ 4), and LODx_SOLID_ID
(1 ≤ x ≤ 4) which refer to entries in the SURFACE_GEOMETRY table and
represent each LoD’s surface geometry.

Optionally the geometry of the terrain intersection curve is stored in
the attribute LODx_TERRAIN_INTERSECTION (1 ≤ x ≤ 4) using database
geometry type (see Table 2.12).
Additional line-typed building elements
such as antennas are optionally modelled by the attribute
LODx_MULTI_CURVE (1 ≤ x ≤ 4, using the same database geometry like for
terrain intersection curves).

Table 2.12 Storage of composite line string geometry

	
Oracle

	
PostGIS

	
- SDO_GTYPE must have the type

MultiCurve/MultiLine, i.e. a composite

geometry of different line string segments

with 3D coordinates (SDO_GTYPE = 3006)

- SDO_ETYPE must be 1 (straight line segments)

as curved geometries are not allowed in CityGML

and SDO_INTERPRETATION must be 2

	
- Only MULTILINESTRING Z is allowed, i.e. a

composite geometry of different line string

segments with 3D coordinates

- The geometry type MULTICURVE is not used as

CityGML does not allow geometry with arcs

THEMATIC_SURFACE

The table THEMATIC_SURFACE represents thematic boundary features.
CityGML class _BoundarySurface has a number of concrete subclasses
representing different types of surfaces. One possibility would be to
represent each of these classes by its own table. Here, we choose the
approach to create one table representing all those classes. No own
tables for the subclasses of _BoundarySurface were created in the
relational schema; instead, the type of the boundary surface is given by
the foreign key OBJECTCLASS_ID in the table THEMATIC_SURFACE. Allowed
integer values:

	30 (CeilingSurface)

	31 (InteriorWallSurface)

	32 (FloorSurface)

	33 (RoofSurface)

	34 (WallSurface)

	35 (GroundSurface)

	36 (ClosureSurface)

	60 (OuterCeilingSurface)

	61 (OuterFloorSurface)

If a CityGML ADE is used that extends any of the classes named above,
further values for OBJECTCLASS_ID may be added by the ADE manager. Their
concrete numbers depend on the ADE registration (cf. Section 3.9.3.3.1).

The aggregation relation between buildings and the corresponding
boundary surfaces results from the foreign key BUILDING_ID of the table
THEMATIC_SURFACE which refers to the ID of the respective building. The
same applies to references between surfaces of building installations
(BUILDING_INSTALLATION_ID) and rooms (ROOM_ID). Thematic surfaces and
the corresponding parent feature should share their geometry: the
geometry should be defined only once and be used conjointly as XLinks.
The SURFACE_GEOMETRY, which for example geometrically defines a roof,
should at the same time be a part of the volume geometry of the parent
feature the roof belongs to.

Example:

In Fig. 2.45,
a building geometry is shown consisting of several surface
geometries enclosing the outer building shell. Please note that the left
wall (ID 5) is composed of two polygons (IDs 11 and 12) and that the
roof is split into a left and a right part (IDs 20 and 21) each of which
again consists of two polygons, the roof surface and an overhanging
part. In the SURFACE_GEOMETRY table (cf. Table 2.13),
the attribute IS_COMPOSITE is set to 1 for the tuples with IDs 5, 20 and 21
characterising them as composite surfaces. The surface geo­metries are
semantically classified as roof, wall or ground surface by adding an
entry into the THEMATIC_SURFACE table and linking this entry with the
corresponding geometry tuple in SURFACE_GEOMETRY. In Table 2.14, an
excerpt of the THEMATIC_SURFACE table is depicted. The tuple with ID 70
represents a RoofSurface by setting the OBJECTCLASS_ID attribute to
the value 33. For its geometry, the tuple references ID 21 in the
SURFACE_GEOMETRY table via the LOD2_MULTI_SURFACE_ID attribute.

[image: ../../../_images/citydb_schema_lod2_building_roof_overhangs.png]
Fig. 2.45 LoD2 building with roof overhangs, highlighted in red

Table 2.13 Excerpt of table SURFACE_GEOMETRY. Geometry objects are stored as database geometry datatype

	
ID

	
GMLID

	
PARENT_

ID

	
ROOT_

ID

	
IS_

SOLID

	
IS_

COMPO

SITE

	
IS_

XLINK

	
GEOMETRY

	
3

	
UUID_LoD2

	
NULL

	
3

	
0

	
0

	
0

	
NULL

	
5

	
Left_Wall

	
3

	
3

	
0

	
1

	
0

	
NULL

	
11

	
Left_Wall_1

	
5

	
3

	
0

	
0

	
0

	
Geometry

comp (5-1)

surface 11

	
12

	
Left_Wall_2

	
5

	
3

	
0

	
0

	
0

	
Geometry

comp (5-2)

surface 12

	
13

	
Front

	
3

	
3

	
0

	
0

	
0

	
Geometry

surface 13

	
14

	
Right_Wall

	
3

	
3

	
0

	
0

	
0

	
Geometry

surface 14

	
15

	
Back

	
3

	
3

	
0

	
0

	
0

	
Geometry

surface 15

	
16

	
Roof_part_1

	
21

	
3

	
0

	
0

	
1

	
Geometry

surface 16

	
17

	
Roof_part_2

	
20

	
3

	
0

	
0

	
1

	
Geometry

surface 17

	
18

	
Overhang_1

	
21

	
3

	
0

	
0

	
0

	
Geometry of

overhang 18

	
19

	
Overhang_2

	
20

	
3

	
0

	
0

	
0

	
Geometry of

overhang 19

	
20

	
Roof_right

	
3

	
3

	
0

	
1

	
0

	
NULL

	
21

	
Roof_left

	
3

	
3

	
0

	
1

	
0

	
NULL

	
…

	
…

	
…

	
…

	
…

	
…

	
…

	
…

	
30

	
UUID_Solid

	
NULL

	
30

	
1

	
0

	
0

	
NULL

	
31

	
UUID_CS

	
30

	
30

	
0

	
1

	
0

	
NULL

	
32

	
Roof_part_1

	
31

	
30

	
0

	
0

	
1

	
Geometry

surface 16

	
33

	
Roof_part_2

	
31

	
30

	
0

	
0

	
1

	
Geometry

surface 17

	
…

	
…

	
…

	
…

	
…

	
…

	
…

	
…

Table 2.14 Excerpt of table THEMATIC_SURFACE (excerpt)

	
ID

	
…

	
OBJECTCLASS_ID

	
BUILDING_ID

	
ROOM_ID

	
LOD2_MULTI_

SURFACE_ID

	
…

	
…

	
…

	
…

	
…

	
…

	
…

	
…

	
70

	
…

	
33

	
1

	
NULL

	
21

	
…

	
…

	
…

	
…

	
…

	
…

	
…

	
…

In addition to thematic boundary surfaces, assume that we also want to
represent the building volume as separate solid geometry that is
stored with the building itself. For this purpose, another tuple with ID
30 is added to the SURFACE_GEOMETRY table whose IS_SOLID attribute is
set to 1. This tuple is referenced from BUILDING using the LOD2_SOLID_ID
attribute (cf. Table 2.15).

According to the CityGML specification, the surface geometries forming
the solid geometry shall reference the geometries of the thematic
boundary surfaces using GML’s XLink mechanism. Therefore, the referenced
geometries have to be copied and inserted as new tuples into
SURFACE_GEOMETRY. Moreover, the IS_XLINK flag has to be set to 1 for the
referenced geometries and their copies (see Section 2.7.3.3 for
details). In Table 2.13,
this is illustrated for the geometries with ID 32
and 33, which are copies of the tuples with ID 16 and 17 respectively.
Note, that the overhanging roof parts (IDs 18 and 19) are not referenced
by the solid geometry, because they are dangling surfaces and not part
of the volume.

Table 2.15 Excerpt of table BUILDING (excerpt)

	
ID

	
…

	
BUILDING_ROOT_ID

	
…

	
LOD1_SOLID_ID

	
LOD2_SOLID_ID

	
…

	
…

	
…

	
…

	
…

	
…

	
…

	
…

	
1

	
…

	
1

	
…

	
NULL

	
30

	
…

	
…

	
…

	
…

	
…

	
…

	
…

	
…

BUILDING_INSTALLATION

The UML classes BuildingInstallation and IntBuildingInstallation are
realized by the single table BUILDING_INSTALLATION. Internal and
external objects are distinguished by the attribute OBEJCTCLASS_ID
(external 27, internal 28). The relation to the corresponding parent
feature arises from the foreign key BUILDING_ID or ROOM_ID, whereas the
surface based geometry in LoD 2 to 4 is given via the foreign keys
LODx_BREP_ID (2 ≤ x ≤ 4) referring to the table SURFACE_GEOMETRY.

Additional point- or line-typed building installation elements such as
antennas can be modelled by the attribute LODx_OTHER_GEOM (2 ≤ x ≤ 4)
using the database geometry type (any GTYPE, ETYPE etc. in Oracle and
GEOMETRY Z in PostGIS). Since CityGML 2.0.0 building installations can
also be represented by using prototypes which are stored as library
objects implicitly. The information needed for mapping prototype objects
to buildings consists of a base point geometry (LODx_IMPLICIT_REF_POINT
(2 ≤ x ≤ 4)), a transfor­mation matrix (LODx_IMPLICIT_TRANSFORMATION (2
≤ x ≤ 4)), which is stored as a string, and a foreign key reference to
the IMPLICIT_GEOMETRY table (LODx_IMPLICIT_REP_ID (2 ≤ x ≤ 4)) where a
reference to an explicit surface based geometry in LoD 2 to 4 is saved.

OPENING

Openings (CityGML class Opening) are represented by the table OPENING
and are only allowed in LoD3 and 4. No individual tables are created for
the subclasses. Instead, the differentiation is achieved by the foreign
key OBJECTCLASS_ID which refers to the attribute ID of the (meta) table
OBJECTCLASS. Valid integer values are 39 (Door) and 38 (Window). If
a CityGML ADE is used that extends any of the two classes Door or
Window, further values for OBJECTCLASS_ID may be added by the ADE
manager. Their concrete numbers depend on the ADE registration (cf.
Section 3.9.3.3.1).

Table OPENING_TO_THEM_SURFACE associates an opening ID in table OPENING
with a thematic surface ID in table THEMATIC_SURFACE representing the
m:n relation between both tables. An address can be assigned to a door
(table OPENING) by the foreign key ADDRESS_ID in the table OPENING.
Furthermore, addresses may be assigned to buildings (see table ADDRESS
for detailed information).

Like with building installations openings can be modelled via implicit
geometry since CityGML 2.0.0. Thus, the OPENING table does contain the
columns LODx_IMPLICIT_REP_ID, LODx_IMPLICIT_REF_POINT and
LODx_IMPLICIT_TRANSFORMATION, too.

ROOM

Room objects are allowed in LoD4 only. Therefore, the only keys
LOD4_MULTI_SURFACE_ID and LOD4_SOLID_ID are referring to the table
SURFACE_GEOMETRY. Additionally, the foreign keys to tables BUILDING and
CITYOBJECT are necessary to map the relationship to these tables.

BUILDING_FURNITURE

As rooms may be equipped with furniture (chairs, wardrobes, etc.), a
foreign key referencing to ROOM_ID is mandatory. The geometry of
furniture objects can be described explicitly using the attribute
LOD4_OTHER_GEOM representing the point- or line-typed entities or using
the foreign key LOD4_BREP_ID referring to the table SURFACE_GEOMETRY.
Alternatively, the geometry of furniture objects may be represented by
using prototypes (ImplicitGeometry) which are stored as library
objects. Again, the information needed for mapping prototype objects to
rooms consists of a base point, a transformation matrix and a reference
to the IMPLICIT_GEOMETRY table.

ADDRESS, ADDRESS_TO_BUILDING, and ADDRESS_SEQ

Addresses are realized by the table ADDRESS. The m:n relation with
buildings arises from the table ADRESS_TO_BUILDING which associates a
building ID and an address ID. An address can also be assigned to a door
(table OPENING) by the foreign key ADDRESS_ID in the table OPENING. The
same applies to addresses of bridges (incl. a table ADRESS_TO_BRIDGE)
and bridge openings.

The next available ID for the table ADDRESS is provided by the sequence
ADDRESS_SEQ.

2.7.3.6. Bridge Model

[image: ../../../_images/citydb_schema_bridge_diagram.png]
Fig. 2.46 Bridge database schema

The bridge model, described in paragraph Section 2.6.4.3
at the conceptual level, is realised by the tables shown
in Fig. 2.46. The relational
schema is identical to the building schema for the most parts except for
the naming. Please, refer to the explanation of the building schema on
the previous pages for a complete understanding. The main differences to
the building schema are the following:

	Bridges cannot be modelled in LoD 0. Therefore, no corresponding
columns appear in the BRIDGE table.

	CityGML features belonging to bridges, such as boundary surfaces,
installations, openings, rooms and furniture, are mapped to separate
specific tables and are not stored in already existent ones (e.g.
THEMATIC_SURFACE, OPENING, ROOM). Thus, values in OBJECTCLASS_ID
columns are different as well. The reason for this is to provide a
schema that is as close to the UML model as possible. There are
slight differences between the building and the bridge model that
would lead to ambiguous references e.g. a boundary surface of the
building namespace cannot reference to a bridge construction element.

	OBJECTCLASS_ID of table BRIDGE_THEMATIC_SURFACE allows the values:

	68 (BridgeCeilingSurface),

	69 (InteriorBridgeWallSurface)

	70 (BridgeFloorSurface),

	71 (BridgeRoofSurface),

	72 (BridgeWallSurface),

	73 (BridgeGroundSurface),

	74 (BridgeClosureSurface),

	75 (OuterBridgeCeilingSurface),

	76 (OuterBridgeFloorSurface).

If a CityGML ADE is used that extends any of the classes named above,
further values for OBJECTCLASS_ID may be added by the ADE manager.
Their concrete numbers depend on the ADE registration
(cf. Section 3.9.3.3.1).

	In the BRIDGE_INSTALLATION table external bridge installations can be
identified by the OBEJCTCLASS_ID 65 and internal ones by 66.

	The CityGML class BridgeConstructionElement is represented by the
table BRIDGE_CONSTR_ELEMENT. Its schema is analogue to the
BRIDGE_INSTALLATION table for the most parts. The relation to the
corresponding bridge results from the foreign key BRIDGE_ID. Explicit
and implicit geometry or a decomposition through boundary surfaces is
possible. Additionally, terrain intersections curves of construction
elements can also be stored.

	The OBJECTCLASS_ID column in table BRIDGE_OPENING can be of integer
value 79 (BridgeDoor) or 78 (BridgeWindow). They are associated
to entries in the table BRIDGE_THEMATIC_SURFACE via the
BRIDGE_OPEN_TO_THEM_SRF link table. If a CityGML ADE is used that
extends any of the two classes BridgeDoor or BridgeWindow,
further values for OBJECTCLASS_ID may be added by the ADE manager.
Their concrete numbers depend on the ADE registration
(cf. Section 3.9.3.3.1). Like openings of building, bridge openings can have
addresses assigned to it.

2.7.3.7. CityFurniture Model

The CityGML feature class CityFurniture and its attributes specified in
the UML diagram (Fig. 2.13) are directly mapped the CITY_FURNITURE
table and its corresponding columns.

[image: ../../../_images/citydb_schema_cityfurniture_diagram.png]
Fig. 2.47 CityFurniture database schema

The geometry of city furniture objects is represented either as a
surface-based geometry object (LODx_BREP_ID, where 1 ≤ x ≤ 4) related to
table SURFACE_GEOMETRY, as a point- or line-typed object
(LODx_OTHER_GEOM, where 1 ≤ x ≤ 4) or as implicit geometry
LODx_IMPLICIT_REP_ID, LODx_IMPLICIT_REF_POINT,
LODx_IMPLICIT_TRANSFORMATION with 1 ≤ x ≤ 4). Optionally terrain
intersection curves can be stored for city furniture objects.

2.7.3.8. Generic Objects and Attributes

3D city models will most likely contain attributes, which are not
explicitly modelled in CityGML. Moreover, there may be 3D objects that
are not covered by the thematic classes of CityGML. Generic objects and
attributes help to support the storage of such data.

GENERIC_CITYOBJECT

For generic objects the full variety of different geometrical
representations known from other tables is offered. Explicit
(LODx_BREP_ID, LODx_OTHER_GEOM) and implicit geometry
(LODx_IMPLICIT_REP_ID, LODx_IMPLICIT_REF_POINT,
LODx_IMPLICIT_TRANS-FORMATION) as well as terrain intersection curves
(LODx_TERRAIN_INTERSECTION) (all with 0 ≤ x ≤ 4).

[image: ../../../_images/citydb_schema_generics_diagram.png]
Fig. 2.48 GenericCityObject and generic attributes database schema

CITYOBJECT_GENERICATTRIB, CITYOBJECT_GENERICATT_SEQ

The table CITYOBJECT_GENERICATTRIB is used to represent the concept of
generic attributes. However, the creation of a table for every type of
attribute was omitted. Instead a single table CITYOBJECT_GENERICATTRIB
represents all types and the types are differentiated via the values of
the attribute DATATYPE.

The table provides fields for every data type, but only one of those
fields is relevant in each case. An overview of the meaning of the
entries in the field DATATYPE is given in Table 2.16. The relation
between the generic attribute and the corresponding CityObject is
established by the foreign key CITYOBJECT_ID.

Table 2.16 GenericAttribute type

	
DATATYPE

	
attribute type

	
1

	
STRING

	
2

	
INTEGER

	
3

	
REAL

	
4

	
URI

	
5

	
DATE

	
6

	
MEASURE

	
7

	
Group of generic attributes

	
8

	
BLOB

	
9

	
Geometry type

	
10

	
Geometry via surfaces in the table SURFACE_GEOMETRY

lease note that the binary and geometric data types (incl. geometry
via surfaces) are not supported by CityGML and cannot be exported using
the CityGML Import / Export tool! But, if a user wants to add additional
attributes to thematic tables, he should use the schema of the
CITYOBJECT_GENERICATTRIB table rather than adding additional columns to
existing tables, because only in this way the Import / Export tool can
automatically write them to CityGML.

Moreover, generic attributes can be grouped using the CityGML class
genericAttributeSet. Since genericAttributeSet itself is a generic
attribute, it may also be contained in a generic attribute set
facilitating a recursive nesting of arbitrary depth. This hierarchy
within a genericAttributeSet is realized by the foreign key
PARENT_GENATTRIB_ID which refers to the superordinate
genericAttributeSet (aggregate) and contains NULL, if such does not
exist. The foreign key ROOT_GENATTRIB_ID refers directly to the top
level (root) of a genericAttributeSet tree. In order to select all
generic attributes forming a genericAttributeSet one only has to
select those with the same ROOT_GENATTRIB_ID.

The next available ID for the table CITYOBJECT_GENERICATTRIB is provided
by the sequence CITYOBJECT_GENERICATT_SEQ.

2.7.3.9. LandUse Model

The CityGML feature class LandUse and its attributes specified in the
UML (cf. Fig. 2.15) diagram are directly mapped the LAND_USE table and
its corresponding columns. The relation to table SURFACE_GEOMETRY is
established by the foreign keys LODx_MULTI_SURFACE_ID, where 0 ≤ x ≤ 4.

[image: ../../../_images/citydb_schema_landuse_diagram.png]
Fig. 2.49 LandUse database schema

2.7.3.10. Digital Terrain Model

A tuple in the table RELIEF_FEATURE represents a complex relief object,
which consists of different relief components. It has an attribute LOD
that describes the affiliation of the relief object to a certain level
of detail (LoD) of the city model. The individual components of a
complex relief object are stored in the tables BREAKLINE_RELIEF,
TIN_RELIEF, MASSPOINT_RELIEF and RASTER_RELIEF. Every relief component
has an attribute LOD that describes the affiliation to a certain level
of detail (resolution, accuracy). However, individual components of a
complex relief object may belong to different LoD and may be
heterogeneous, i.e. a mixture of TINs, grids and mass points.
Optionally, the geometrical separation between the individual relief
components of a complex relief object can be realized via polygons
(attribute EXTENT), which specify the validity area of the relief
component. Every relief component has an attribute NAME that is used for
naming of the component. The relief as well as every relief component
are derived from CITYOBJECT and receive the same ID as the CityObject.
Table RELIEF_FEAT_TO_REL_COMP represents the interrelationship between
relief features and relief components.

[image: ../../../_images/citydb_schema_relief_diagram.png]
Fig. 2.50 Digital Terrain Model database schema

A raster relief is the only feature in CityGML that can be described by
a grid coverage. Corresponding database types are SDO_GEORASTER in
Oracle Spatial 11g or higher (not available in Oracle Locator) and
RASTER in PostGIS 2.0 or higher. In Oracle for each table that stores
SDO_GEORASTER an additional table of type SDO_RASTER is mandatory
(raster data table = RDT). It stores the metadata of the SDO_GEORASTER.

In case of that a grid representation is introduced to other features in
CityGML in the future, numerous RDT tables would be created when storing
grids along with the thematic tables. Thus, a central table called
GRID_COVERAGE is used to register all grid data and to prevent numerous
additional tables in the 3DCityDB schema. This concept is analogue to
the storage of surface-based geometry whereas SURFACE_GEOMETRY is the
central table.

Since Oracle Spatial 11g the SDO_GEORASTER type supports Oracle
Workspace Manager (cf. [Murr2010]). Therefore, the table GRD_COVERAGE_RDT can be
versioned for history management. However, Oracle Spatial doesn’t allow
user to version-enable the tables, where GeoRaster objects are stored.
Hence, the table GRID_COVERAGE cannot be versioned using the Oracle
Workspace Manager.

Geometry attributes for different relief components are limited to these
value domains:

BREAKLINE_RELIEF

	BREAK_LINES and RIDGE_OR_VALLEY_LINES

	Oracle: MultiLine (GTYPE 3006)

	PostGIS: MultiLineString Z

TIN_RELIEF

	STOP_LINES and BREAK_LINES

	Oracle: MultiLine (GTYPE 3006)

	PostGIS: MultiLineString Z

	RELIEF_POINTS

	Oracle: MultiPoint (GTYPE 3001 or 3005)

	PostGIS: MultiPoint Z

	TIN

	TIN triangles could be stored as triangulated surfaces in table
SURFACE_GEOMETRY

MASSPOINT_RELIEF

	RELIEF_POINTS

	Oracle: MultiPoint (GTYPE 3001 or 3005)

	PostGIS: MultiPoint Z

RELIEF_COMPONENT

	EXTENT (defines the validity extents of each relief component)

	Oracle: Polygon (GTYPE 3003, ETYPE 1003, SDO_ INTERPRETATION 1
or 3 (optimized rectangle))

	PostGIS: Polygon Z

2.7.3.11. Transportation Model

For the realisation of transportation objects two tables are provided:
TRAFFIC_AREA and TRANSPORTATION_COMPLEX.

TRAFFIC_AREA

Next to the common attribute triple class, function and usage
traffic areas can store information about their surfaceMaterial. In
the UML model this attribute is specified as gml:CodeType which makes
an additional _CODESPACE column necessary. The representation of
geometry is handled by foreign keys LODx_MULTI_SURFACE_ID (with 2 ≤ x ≤
4). The aggregation relation between a transportation complex and the
corresponding traffic areas results from the foreign key
TRANSPORTATION_COMPLEX_ID. The foreign key OBJECTCLASS_ID indicates
whether a tuple represents a TrafficArea (value 47) or an
AuxiliaryTrafficArea (value 48) feature. If a CityGML ADE is used that
extends any of the two classes TrafficArea or AuxiliaryTrafficArea,
further values for OBJECTCLASS_ID may be added by the ADE manager. Their
concrete numbers depend on the ADE registration (cf. Section 3.9.3.3.1).

TRANSPORTATION_COMPLEX

As shown in the UML diagram, every traffic area object may have the
attributes class, function and usage. For differentiation between
the subclasses an OBJECTCLASS_ID column is used again:

	42 (TransportationComplex)

	43 (Track)

	44 (Railway)

	45 (Road)

	46 (Square)

If a CityGML ADE is used that extends any of the classes named above,
further values for OBJECTCLASS_ID may be added by the ADE manager. Their
concrete numbers depend on the ADE registration (cf. Section 3.9.3.3.1).

In the coarsest level transportation complexes are modelled by line
objects. The corresponding column is called LOD0_NETWORK of geometry
type MultiCurve in Oracle and MultiLineString Z in PostGIS. Starting
form LOD1 the representation of object geometry is handled by foreign
keys LODx_MULTI_SURFACE_ID (with 1 ≤ x ≤ 4).

[image: ../../../_images/citydb_schema_transportation_diagram.png]
Fig. 2.51 Transportation database schema

2.7.3.12. Tunnel Model

[image: ../../../_images/citydb_schema_tunnel_diagram.png]
Fig. 2.52 Tunnel database schema

The tunnel model, described in Section 2.6.4.9 at the conceptual
level, is realised by the tables shown in Fig. 2.52. The relational
schema is identical to the building and bridge schema for the most parts
except for the naming. Please, refer to the explanation of the building
schema on the previous pages for a complete understanding. The main
differences to the building schema are the following:

	Tunnels cannot be modelled in LoD 0. Therefore, no corresponding
columns appear in the TUNNEL table.

	The CityGML feature HollowSpace can be seen analogue to the feature
Room of a building or a bridge

	CityGML features of tunnels, such as boundary surfaces,
installations, openings, hollow spaces and furniture, are mapped
to separate specific tables and are not stored in already existent
ones (e.g. THEMATIC_SURFACE, OPENING). The reason for this is to
provide a schema that is as close to the UML model as possible.
There are slight differences between the building and the tunnel
model that would lead to ambiguous references e.g. a boundary
surface of the building namespace cannot reference to a tunnel
feature.

	OBJECTCLASS_ID of table TUNNEL_THEMATIC_SURFACE allows the values:

	89 (TunnelCeilingSurface),

	90 (InteriorTunnelWallSurface)

	91 (TunnelFloorSurface),

	92 (TunnelRoofSurface),

	93 (TunnelWallSurface),

	94 (TunnelGroundSurface),

	95 (TunnelClosureSurface),

	96 (OuterTunnelCeilingSurface),

	97 (OuterTunnelFloorSurface).

	In the TUNNEL_INSTALLATION table external tunnel installations can be
identified by the OBJECTCLASS_ID 86 and internal ones by 87.

	The OBJECTCLASS_ID column in table BRIDGE_OPENING can be of integer
value 100 (BridgeDoor) or 99 (BridgeWindow). They are associated
to entries in the table TUNNEL_THEMATIC_SURFACE via the
TUNNEL_OPEN_TO_THEM_SRF link table.

	If a CityGML ADE is used that extends any of the named classes above,
further values for OBJECTCLASS_ID may be added by the ADE manager.
Their concrete numbers depend on the ADE registration (cf. Section 3.9.3.3.1).

	In contrast to the building model tunnels and tunnel openings do not
have addresses.

2.7.3.13. Vegetation Model

The vegetation model specified in Section 2.6.4.10
is realized by the tables shown in Fig. 2.53
which correspond largely to the UML model.

[image: ../../../_images/citydb_schema_vegetation_diagram.png]
Fig. 2.53 Vegetation database schema

SOLITARY_VEGETAT_OBJECT

The attributes class, function, usage, species, height,
trunkDiameter, and crownDiameter describe single vegetation objects.
The attribute species is of type gml:CodeList in CityGML that can be
referenced to a certain codespace. Therefore, another _CODESPACE column
is provided in the SOLITARY_VEGETAT_OBJECT table. Similar to the
building table attribute with measure information can optionally be
coupled with a reference to the used measuring scale by an additional
_UNIT column.

The geometry of the vegetation can either be described explicitly using
the attribute LOD4_OTHER_GEOM or LOD4_BREP_ID or implicitly using a
foreign key relation the IMPLICIT_GEOMETRY table including a reference
point and optionally a transformation matrix (LODx_IMPLICIT_REP_ID,
LODx_IMPLICIT_REF_POINT LODx_IMPLICIT_TRANSFORMATION, with 1 ≤ x ≤ 4).

PLANT_COVER

Information on vegetation areas are contained in attributes usage,
class, function, and averageHeight. There is also a _UNIT column
to specify the scale the averageHeight values are based on. The
geometry is restricted to a MultiSurface or (and this is unique for
PlantCover features) a MultiSolid, represented respectively by the
foreign keys LODx_MULTI_SURFACE_ID (with 1 ≤x ≤ 4) and
LODx_MULTI_SOLID_ID which refer to the SURFACE_GEOMETRY table.

2.7.3.14. WaterBody Model

WATERBODY, WATERBOD_TO_WATERBND_SRF

The modelling of the WATERBODY database schema corresponds largely to
the respective UML model. For LoD0 and LoD1 additional attributes are
added, e.g. for modelling river geometry (LODx_MULTI_CURVE).

The geometries of LOD0 and LOD1 areal water bodies are stored within the
table SURFACE_GEOMETRY. The foreign keys LODx_MULTI_SURFACE_ID (with 0 ≤
x ≤ 1) refer to the corresponding rows. Geometry for water filled
volumes is handled in a similar way using foreign keys LODx_SOLID_ID
(with 1 ≤ x ≤ 4).

For mapping the boundedBy aggregation which identifies the water
body’s exterior shell managed by the WATERBOUNDARY_SURFACE table, the
additional table WATERBOD_TO_WATERBND_SRF is needed to realise the m:n
relationship.

WATERBOUNDARY_SURFACE

The exterior shell of a WaterBody can be differentiated semantically
using features of the type _WaterBoundarySurface. These features
are stored in the WATERBOUNDARY_SURFACE table and can be distinguished
by the OBJECTCLASS_ID attribute:

	11 (WaterSurface)

	12 (WaterGroundSurface)

	13 (WaterClosureSurface)

If a CityGML ADE is used that extends any of the named classes above,
further values for OBJECTCLASS_ID may be added by the ADE manager. Their
concrete numbers depend on the ADE registration (cf. Section 3.9.3.3.1).

Since every _WaterBoundarySurface object must have at least one
associated surface geometry, the foreign keys LODx_SURFACE_ID (with 2 ≤x
≤ 4, no MultiSurface here) are used to realise these relations.

[image: ../../../_images/citydb_schema_waterbody_diagram.png]
Fig. 2.54 WaterBody database schema

2.7.3.15. Sequences

Fig. 2.55 lists predefined
sequences from which multiple users may
generate unique integers for primary keys automatically. Sequences help
to coordinate primary keys across multiple rows and tables. For
instance, the ID values of the BUILDING table are generated from the
CITYOBJECT_SEQ sequence. The sequences are defined to start with 1 and
to be incremented by 1 when a sequence number is generated. It is highly
recommended to generate ID values for all tables by using the predefined
sequences only.

The sequence GRID_COVERAGE_RDT_SEQ does not exist in the PostgreSQL
version as the corresponding table does not exist.

[image: ../../../_images/citydb_schema_sequences_diagram.png]
Fig. 2.55 Overview of all sequences used in 3DCityDB

2.8. Definition of the CRS for a 3D City Database instance

The definition of the CRS of a 3D City Database instance consists of two
components: 1) a valid Spatial Reference Identifier (SRID, typically
the EPSG code) and 2) an OGC GML conformant definition identifier for
the CRS. Both components are defined during the database setup (see
Section 1.3) and
are further stored in the table DATABASE_SRS (see Fig. 2.28).

The SRID is an integer value key pointing to spatial reference
information within Oracle’s MDSYS.CS_SRS table or PostGIS’
SPATIAL_REF_SYS table. Both DBMSs are shipped with a large number of
predefined spatial reference systems. At setup time, the SRID chosen
as default value for the 3D City Database instance must already exist in
the mentioned tables.

The GML conformant CRS definition identifier is used as value for
the gml:srsName attribute on GML geometry elements when exporting
database contents to CityGML instance documents. It should follow the
OGC recommendation for the Universal Resource Name (URN) encoding of
CRSs given in the OGC Best Practice Paper Definition identifier URNs
in OGC namespace [Whit2009]. At setup time, please make sure to
provide a URN value which corresponds to the spatial reference system
identified by the default SRID of the database instance. Since CityGML
is a 3D standard, the URN encoding shall always represent a
three-dimensional CRS which, for example, can be denoted as compound
coordinate reference systems [Whit2009]. The general syntax of a
URN encoding for a compound reference system is as follows:

Authority, version, and code depend on the information authority
providing the CRS definition (e.g. EPSG or OGC). The following example
shows a possible combination of an SRID (here referring to a 2D CRS) and
CRS URN encoding (3D) to set up an instance of the 3D City Database:

The example SRID is referencing a Projected CRS defined by EPSG (DHDN /
3-degree Gauss-Krüger zone 2; used in the western part of Germany;
EPSG-Code: 31466). The URN encodes a compound coordinate reference
system which adds a Vertical CRS as height reference (DHHN92 height,
EPSG-Code: 5783).

2.9. Working with multiple database schemas

Most users rarely work with only one 3D City Database. They maintain
multiple instances for each data set, for different city projects or
user groups and probably for various test demos. The new ability to
manage CityGML ADEs sets the ground for even more experiments. This
chapter explains how to manage multiple 3D City Databases in separate
schemas.

2.9.1. Create and address database schemas

Databases and schemas in PostgreSQL

PostgreSQL provides a clustering concept for database schemas that
allows users to group multiple instances of the 3D City Database. This
means within one database object a user can create more schemas like in
the ‘citydb’ schema, that store the table layout of the 3D City
Database. They can be regarded as separate namespaces. To address the
different namespaces, dot notation should be used in queries. Note, if
tables are not schema-qualified the first namespace in the database
search path (see Section 1.3.4)
that contains the tables will be used.
One advantage of using multiple schemas instead of many databases is the
ability to join tables from different namespaces. Cross-database queries
are not directly possible in PostgreSQL (see postgres_fdw extension).

To create an additional 3D City Database instance within a given
database run the CREATE_SCHEMA shell script and define a name for the
new schema. The new instance will obtain the CRS from the ‘citydb’
schema, which can be changed later (see chapter Section 2.10.5).
To drop a schema, call the DROP_SCHEMA shell script.

Oracle user schemas

In Oracle, schemas are bound to one user. All user schemas belong to one
database. There is no clustering concept like in PostgreSQL, so a
CREATE_SCHEMA script would not make too much sense. In fact, a new
instance should be created with a new user and the CREATE_DB script.
Like with PostgreSQL schemas, it is possible to join tables from
different user namespaces if sufficient privileges were granted (see
next section). As another alternative Oracle databases can be set under
version control with the Oracle Workspace Manager so that a user can
also work with multiple versions of a city model in separate
workspaces. To change the workspace a user must execute the
DBMS_WM.GotoWorkspace procedure.

2.9.2. Read and write access to a schema

A shell script called GRANT_ACCESS is provided to grant either READ-ONLY
(RO) or READ-WRITE (RW) access rights to a 3D City Database instance.
The user who acts as the grantor must be specified in the
CONNECTION_DETAILS file. The user name of the grantee must be entered
when executing the script.

Read-only access rights

Granting only read access is useful if you want to protect your data
from unauthorized or accidental modification. This is the default
setting in the GRANT_ACCESS script. Read-only users will be allowed to:

	connect to the given database schema and use its objects (tables,
views, sequences, types etc.),

	export data in both CityGML and KML/COLLADA formats,

	generate database reports, query the index status and calculate
envelopes.

But they can neither import new data into the 3DCityDB nor alter the
data already stored in the tables in any way (incl. updating envelopes,
dropping and creating indexes).

Read and write access rights

By choosing the RW option in the GRANT_ACCESS script the grantee will
also be able to perform UPDATE and DELETE operations against the schema
content. This is especially useful for Oracle users, who want to manage
different database schemas with primarily one user. In PostgreSQL
however, one user can be the owner of multiple schemas. Still, write
access can be interesting in a multi-editor scenario.

Note

Dropping and creating indexes is not possible in PostgreSQL, if
you’re not the owner of the table.

Revoke access

Like with the GRANT_ACCESS script, access rights can also be revoked, of
course. Simply call the REVOKE_ACCESS script and enter the user name of
the grantee and the schema name from which the rights shall be revoked
from.

2.9.3. Schema support in stored procedures

Since v3.0.0, most stored procedures of the 3D City Database offer an
input argument to specify the schema name against which the operation
will be executed. The default for Oracle is the schema of the currently
connected user, for PostgreSQL it is `citydb`. For v4.0 this parameter
has been removed for those type of stored procedures that operate on the
logical level of the database, because managing different ADEs in
separate schemas can result in a different table structure. E.g. one
central delete script is not guaranteed to work against every schema.
Thus, for PostgreSQL these procedures are now part of an instance schema
such as ‘citydb’ (see also Section 2.10). Instead of calling a delete
function from the central ‘citydb_pkg’ schema like this:

SELECT citydb_pkg.delete_cityobject(1, 'my_schema');

you now have to schema-qualify the function itself:

SELECT my_schema.delete_cityobject(1);

In Oracle, every stored procedure could be called this way, as every
user schema stores the PL/SQL packages.

2.10. Stored procedures and additional features

The 3D City Database is shipped with a set of stored procedures referred
to as the CITYDB package (formerly known as the GEODB package in v2.x).
They are automatically installed during the setup procedure of the 3D
City Database. For the Oracle version, it comprises of eight PL/SQL
packages. In the PostgreSQL version, functions are written in PL/pgSQL
and stored either in their own database schema called ‘citydb_pkg’ or as
part of an instance schema like ‘citydb’. Many of these functions and
procedures expose certain tasks on the database side to the
Importer/Exporter client. When calling stored procedures, the package
name has to be included for the Oracle version. With PostgreSQL, the
‘citydb_pkg’ schema has not to be specified as prefix since it is put on
the database search path during setup.

[image: ../../_images/citydb_graphical_database_clients.png]
Fig. 2.56 Graphical database client connected to the 3D City Database
(left: SQL Developer (Oracle), right: pgAdmin 4 (PostgreSQL)

	2.10.1. User-defined data types

	2.10.2. CITYDB_UTIL

	2.10.3. CITYDB_CONSTRAINT

	2.10.4. CITYDB_IDX

	2.10.5. CITYDB_SRS

	2.10.6. CITYDB_STAT

	2.10.7. CITYDB_OBJCLASS

	2.10.8. CITYDB_DELETE

	2.10.9. CITYDB_ENVELOPE

2.10.1. User-defined data types

The Oracle version defines a set of user-defined data types that are
used by functions from the PL/SQL packages. They are not necessary in
PostgreSQL, because of how it deals with arrays and returns of multiple
variables.

	STRARRAY, a nested table of the data type VARCHAR2

	ID_ARRAY, a nested table of the data type NUMBER

	DB_VERSION_OBJ, an object that bundles version information of the
installed 3D City Database instance

	DB_VERSION_TABLE, a nested table of DB_VERSION_OBJ

	DB_INFO_OBJ, an object that bundles metadata of the used reference
system

	DB_INFO_TABLE, a nested table of DB_INFO_OBJ

The definition of the data types can be found in the SQL file for the
CITYDB_UTIL package.

2.10.2. CITYDB_UTIL

The CITYDB_UTIL package can be seen as a container for various single
utility functions. If further releases will bring more stored procedures
with similar functionality some of them will probably be outsourced in
their own package (like CITYDB_CONSTRAINT in v4.0). Nearly all functions
take the schema name as the last input argument (“schema-aware”).
Therefore, they can be executed against another user schema in Oracle or
database schema in PostgreSQL. Note, for the function get_seq_values the
schema name must be part of the first argument – the sequence name, e.g.
‘my_schema.cityobject_seq’.

Here is overview on API of the CITYDB_UTIL package in Oracle:

Table 2.17 API of CITYDB_UTIL package for Oracle

	
Function

	
Return Type

	
Explanation

	
citydb_version ()

	
DB_VERSION_TABLE

	
Returns version information of the

currently installed 3DCityDB

	
construct_solid (geom_root_id)

	
SDO_GEOMETRY

	
Tries to construct a solid geometry

based on a given root_id value in

SURFACE_GEOMETRY table

	
db_info (schema_name)

	
3 OUT variables

	
Returns three columns: schema_srid

INTEGER, schema_gml_srs_name

VARCHAR2, versioning VARCHAR2

	
db_metadata (schema_name)

	
DB_INFO_TABLE

	
Returns a set of 3DCityDB metadata

	
drop_tmp_tables (schema_name)

	
void

	
Drop existing temporal tables

	
get_id_array_size (ID_ARRAY)

	
NUMBER

	
Returns the size of an ID_ARRAY

nested table

	
get_seq_values (seq_name,

seq_count)

	
ID_ARRAY

	
Returns the next k values of a

given sequence

	
min (NUMBER, NUMBER)

	
NUMBER

	
Returns the smaller of two given

numbers

	
sdo2geojson3d

(SDO_GEOMETRY,

decimal_places, compress_tags,

relative2mbr)

	
CLOB

	
Returns a given geometry into a

3D GeoJSON character object

	
split (VARCHAR2, delimiter)

	
STRARRAY

	
Splits a String based on a given

delimiter into a STRARRAY object

	
ST_Affine (SDO_GEOMETRY,

row1col1, row1col2, row1col3,

row2col1, row2col2, row2col3,

row3col1, row3col2, row3col3,

row1col4, row2col4, row3col4)

	
SDO_GEOMETRY

	
Performs an affine transformation

on a given geometry a given 3x3

matrix plus 3 offset values

	
string2id_array (VARCHAR2,

delimiter)

	
ID_ARRAY

	
Transforms a String into an

ID_ARRAY with a given delimiter

	
to_2d (SDO_GEOMETRY, srid)

	
SDO_GEOMETRY

	
Returns a geometry without Z values

	
versioning_db (schema_name)

	
VARCHAR2

	
Returns either ‘ON’ or ‘OFF’

	
versioning_table (table_name,

schema_name)

	
VARCHAR2

	
Returns either ‘ON’ or ‘OFF’

The PostgreSQL API includes less functions, as some functionality is
provided by the PostGIS extension, such as ST_AsGeoJSON, ST_Affine and
ST_Force2D. Returning multiple variables is always performed with OUT
variables.

Table 2.18 API of CITYDB_UTIL package for PostgreSQL

	
Function

	
Return Type

	
Explanation

	
citydb_version ()

	
4 OUT variables

	
Returns version information of the

currently installed 3DCityDB

	
db_info (schema_name)

	
3 OUT variables

	
Returns three columns: schema_srid

INTEGER, schema_gml_srs_name

TEXT, versioning TEXT

	
db_metadata (schema_name)

	
6 OUT variables

	
Returns six variables: schema_srid

INTEGER, schema_gml_srs_name TEXT,

coord_ref_sys_name TEXT,

coord_ref_sys_kind TEXT,

wktext TEXT, versioning TEXT

	
drop_tmp_tables (schema_name)

	
void

	
Drop existing temporal tables

	
get_seq_values (seq_name,

seq_count)

	
SETOF INTEGER

	
Returns the next k values of a

given sequence

	
Min (NUMERIC, NUMERIC)

	
NUMERIC

	
Returns the smaller of two given

numbers

	
versioning_db (schema_name)

	
TEXT

	
Returns ‘OFF’

	
versioning_table (table_name,

schema_name)

	
TEXT

	
Returns ‘OFF’

2.10.3. CITYDB_CONSTRAINT

The CITYDB_CONSTRAINT packages includes stored procedures to define
constraints or change their behavior. A user can temporarily disable
certain foreign key relationships between tables, e.g. the numerous
references to the SURFACE_GEOMETRY table. The constraints are not
dropped. While it comes at the risk of data inconsistency it can improve
the performance for bulk write operations such as huge imports or the
deletion of thousands of city objects.

It is also possible to change the delete rule of foreign keys from ON
DELETE NO ACTION (use ‘a’ as input) to ON DELETE SET NULL (‘n’) or ON
DELETE CASCADE (‘c’). Switching the delete rule will remove and recreate
the foreign key constraint. The delete rule does affect the layout of
automatically generated delete scripts as no explicit code is necessary
in case of cascading deletes. However, we do not recommend to change the
behavior of existing foreign key relationships because some delete
operations might not work properly anymore. For Oracle databases, there
is an additional procedure to define spatial metadata for single
geometry column. All functions are schema-aware and their return type is
void.

Table 2.19 API of CITYDB_CONSTRAINT package for Oracle

	
Function

	
Explanation

	
set_column_sdo_metadata

(geom_column_name, dimension, srid,

table_name, schema_name)

	
Inserts a new entry in the USER_SDO_GEOM_METADATA

view for a given geometry column

	
set_enabled_fkey (fkey_name,

table_name, BOOLEAN,

schema_name)

	
Disables / enables a given foreign key constraint

	
set_enabled_geom_fkeys (BOOLEAN,

schema_name)

	
Disables / enables all foreign key constraints that

reference the SURFACE_GEOMETRY table

	
set_enabled_schema_fkeys (BOOLEAN,

schema_name)

	
Disables / enables all foreign key constraints

within a given user schema

	
set_fkey_delete_rule (fkey_name,

table_name, column_name, ref_table,

ref_column, on_delete_param,

schema_name)

	
Changes the delete rule of a given foreign key

constraint

	
set_schema_fkey_delete_rule

(on_delete_param, schema_name)

	
Changes the delete rule of all foreign key

constraint within a given user schema

	
set_schema_sdo_metadata

(schema_name)

	
Inserts new entries in the USER_SDO_GEOM_METADATA

view for all geometry columns of a given schema

(some expections)

There is only one significant difference in the API in PostgreSQL.
Instead of specifying the name, table and schema of a foreign key, the
OID of the corresponding integrity trigger is enough. This is because
there is no ALTER TABLE command in PostgreSQL to disable foreign keys.

Table 2.20 Notable difference in the API of CITYDB_CONSTRAINT package for PostgreSQL

	
Function

	
Explanation

	
set_enabled_fkey (fkey_trigger_oid, BOOLEAN)

	
Disables / enables a foreign key constraint trigger

2.10.4. CITYDB_IDX

The package CITYDB_IDX provides functions to create, drop, and check
both spatial and non-spatial indexes on tables of the 3D City Database
by using a user-defined data type called INDEX_OBJ. In the Oracle
version, the data type offers three member functions to construct an
INDEX_OBJ. In the PostgreSQL version, these are just separate functions
within the ‘citydb_pkg’ schema:

	construct_spatial_3d for a 3-dimensional spatial index

	construct_spatial_2d for a 2-dimensional spatial index

	construct_normal for a normal B-tree index

The easiest way to take use of this package is by using the
Importer/Exporter (see Section 3.2.2),
which provides an interface for
enabling and disabling indexes (ON and OFF). Disabling spatial indexes
can accelerate some operations such as bulk imports, deletion of many
objects, and migration of data from a 3D City Database v2.1.0 instance
to version 4.0. The methods used by the Importer/Exporter iterate over
the entries in the INDEX_TABLE table which is part of the database
schema. In order to include more indexes the user need to insert their
metadata into INDEX_TABLE. The differences between Oracle and PostgreSQL
only apply to different data types. Instead of STRARRAY an array of TEXT
is used as return type.

Table 2.21 API of CITYDB_IDX package for Oracle

	
Function

	
Return Type

	
Explanation

	
create_index (INDEX_OBJ,

is_versioned, schema_name)

	
VARCHAR2

	
Creates a new index based on the metadata of the

input INDEX_OBJ. Returns a text status.

	
create_normal_indexes

(schema_name)

	
STRARRAY

	
Creates indexes for all normal indexes to be

found in INDEX_TABLE. Returns an array of

status reports.

	
create_spatial_indexes

(schema_name)

	
STRARRAY

	
Creates indexes for all spatial indexes to be

found in INDEX_TABLE. Returns an array of

status reports.

	
drop_index (INDEX_OBJ,

is_versioned, schema_name)

	
VARCHAR2

	
Drops an index that matches the metadata of

the input INDEX_OBJ. Returns a text status.

	
drop_normal_indexes

(schema_name)

	
STRARRAY

	
Drops indexes that match all normal indexes

to be found in INDEX_TABLE. Returns an array

of status reports.

	
drop_spatial_indexes

(schema_name)

	
STRARRAY

	
Drops indexes that match all spatial indexes

to be found in INDEX_TABLE. Returns an array

of status reports.

	
get_index (table_name,

column_name,

schema_name)

	
INDEX_OBJ

	
Returns an INDEX_OBJ from INDEX_TABLE

based on the inputs

	
index_status (INDEX_OBJ,

schema_name)

	
VARCHAR2

	
Returns a text status for an index that matches

the metadata of the input INDEX_OBJ

	
index_status (table_name,

column_name,

schema_name)

	
VARCHAR2

	
Returns a text status for an index that matches

the input argument

	
status_normal_indexes

(schema_name)

	
STRARRAY

	
Returns an array of status reports for all normal

indexes to be found in INDEX_TABLE

	
status_spatial_indexes

(schema_name)

	
STRARRAY

	
Returns an array of status reports for all spatial

indexes to be found in INDEX_TABLE

2.10.5. CITYDB_SRS

The package CITYDB_SRS provides functions and procedures dealing with
the coordinate reference system used for an 3D City Database instance.
The most essential procedure is change_schema_srid to change the
reference system for all spatial columns within a database schema. If a
coordinate transformation is needed because an alternative reference
system shall be used, the value ‘1’ should be passed to the procedure as
the third parameter. If a wrong SRID had been chosen by mistake during
setup, a coordinate transformation might not be necessary in case the
coordinate values of the city objects are already matching the new
reference system. Thus, the value 0 should be provided to the procedure,
which then only changes the spatial metadata to reflect the new
reference system. It can also be omitted, as 0 is the default value for
the procedure. Either way, changing the CRS will drop and recreate the
spatial index for the affected column. Therefore, this operation can
take a lot of time depending on the size of the table. Note that in
Oracle, the reference system cannot be changed for another user schema.
So, there is no schema_name parameter. The is also an additional
function called get_dim(column_name, table_name, schema_name) to fetch
the dimension of the spatial column which is either 2 or 3.

Table 2.22 API of CITYDB_SRS package for PostgreSQL

	
Function

	
Return Type

	
Explanation

	
change_column_srid

(table_name, column_name,

dimension, srid, do_transform,

geometry_type, schema_name)

	
void

	
Changes the reference system for a

given geometry column. Spatial metadata

is needed to recreate the spatial index.

	
change_schema_srid (srid,

gml_srs_name, do_transform,

schema_name)

	
void

	
Changes the reference system for all

spatial columns inside a database schema.

The second parameter needs to be a

GML-compliant URN to the CRS

(see Section 2.8)

	
check_srid (srid)

	
TEXT

	
Returns the message ‘SRID ok’ if the CRS

with the given EPSG code exists in the

database. Returns ‘SRID not ok’ if not.

	
is_coord_ref_sys_3d (srid)

	
INTEGER

	
Tests if CRS with given EPSG code is a

3D CRS. Returns 1 if yes and 0 if not.

	
is_db_coord_ref_sys_3d

(schema_name)

	
INTEGER

	
Tests if the current CRS of a given schema

is a 3D one. Returns 1 if yes and 0 if not.

	
transform_or_null

(GEOMETRY, srid)

	
GEOMETRY

	
Applies a coordinate transformation on the

input geometry with the given CRS. Returns

NULL, if the input geometry is not set.

2.10.6. CITYDB_STAT

The package CITYDB_STAT currently only serves a single purpose: To count
all entries in all tables and generate a report as an array of string
values (STRARRAY data type in Oracle, text[] in PostgreSQL). The
tabulator escape sequence \t is used to generate a nice looking report
for the Importer/Exporter.

Table 2.23 API of CITYDB_STAT package for Oracle

	
Function

	
Return Type

	
Explanation

	
table_content (table_name,

schema_name)

	
NUMBER

	
Returns the count result obtained from a query

against the given table

	
table_contents (schema_name)

	
STRARRAY

	
Returns a text array with row count results

for most tables in 3D City Database (excluding

metadata tables and system tables)

2.10.7. CITYDB_OBJCLASS

The CITYDB_OBJCLASS package only provides two convenience functions to
cast between table names and ID values of the OBJECTCLASS table. In
contrast to the previously introduced packages these functions cannot be
applied against different database schemas as this would require dynamic
SQL. While it would not be problem when converting single values, the
performance with dynamic SQL could be a lot worse when these functions
are integrated in a full table scan. Therefore, for PostgreSQL they are
now part of the ‘citydb’ schema as pure SQL functions. In Oracle, they
make up another PL/SQL package.

Table 2.24 API of CITYDB_OBJCLASS package for Oracle

	
Function

	
Return Type

	
Explanation

	
objectclass_id_to_table_name

(objectclass_id)

	
VARCHAR2

	
Returns the corresponding table name to a given

object class ID

	
table_name_to_objectclass_ids

(table_name)

	
ID_ARRAY

	
Returns an array of object class IDs that a are

managed in the given table

2.10.8. CITYDB_DELETE

The package CITYDB_DELETE consists of several functions that facilitate
to delete single and multiple city objects. Each function automatically
takes care of integrity constraints between relations in the database.
The package is meant as low-level API providing a delete function for
each relation (except for linking tables) – from a single polygon in the
table SURFACE_GEOMETRY (del_surface_geometry) up to a complete
CityObject (del_cityobject) or even a whole CityObjectGroup
(del_cityobjectgroup). This should help users to develop more complex
delete operations on top of these low-level functions without
re-implementing their functionality.

Most of the stored procedures take the primary key ID value of the
entry to be deleted as input parameter and return the ID value if the
entry has been successfully removed. So, if NULL is returned, the entry
is either already gone or the deletion did not work due to an error.
Nearly every delete function comes with a pendant to delete multiple
entries at once. These alternative functions take an array of ID
values as input and return an array of successfully deleted entries.
For PostgreSQL, the array is unrolled inside the functions as PL/pgSQL
can return a SET OF INTEGER values.

In order to illustrate the low-level approach of this package, assume a
user wants to delete a building feature together with all its nested sub
features. For this purpose, the user calls the del_building (or
del_cityobject) function, which internally leads to subsequent calls to
the following stored procedures:

	del_building for the building and its dependent building parts
(recursive call)

	del_thematic_surface for dependent boundary surfaces of the building
(nested call of del_opening for dependent openings of the boundary
surfaces)

	del_building_installation for dependent outer installations of the
building (nested call of del_thematic_surface for boundary surfaces
of the installations)

	del_room for dependent rooms of the building (nested call of
del_thematic_surface for interior boundary surfaces,
del_building_installation for interior installation and
del_building_furniture for furniture within the room)

	del_address for dependent addresses that are not referenced by other
buildings and bridges

	del_implicit_geometry for each prototype geometry of a nested
feature, e.g. Openings, BuildingInstallation

	del_surface_geometry for deleting the geometry of the building and
its nested features

	del_cityobject to remove the entry in the CITYOBJECT table that
corresponds to the deleted building and the deleted child features
(also deletes generic attributes, external references, appearances,
etc.)

Note, that global Appearances with no direct reference to a
CityObject are not deleted during such a deletion process. Therefore,
the method cleanup_appearances should be executed afterwards, to remove
all Appearance information (incl. entries in tables
APPEAR_TO_SURFACE_DATA, SURFACE_DATA and TEX_IMAGE). Like with the
stored procedures from the CITYDB_OBJCLASS package, the delete functions
are part of the ‘citydb’ schema and not ‘citydb_pkg’. This is not only
because of a better performance without dynamic SQL. It is mandatory as
the code for the delete functions is generated automatically based
on the foreign keys.

The del_ prefix is used to not exceed 30 characters in Oracle. As
explained in Section 2.9,
managing different CityGML ADEs in different
schema would require different delete scripts for each schema. A simple
code block to delete objects based on a query result can look like this:

Oracle:

-- single version
DECLARE
 deleted_id NUMBER;
 dummy_ids ID_ARRAY := ID_ARRAY();
BEGIN
 FOR rec IN (SELECT * FROM cityobject WHERE ...) LOOP
 deleted_id := citydb_delete.del_cityobject(rec.id);
 END LOOP;
 dummy_ids := citydb_delete.cleanup_appearances;
END;
-- array version
DECLARE
 pids ID_ARRAY := ID_ARRAY();
 deleted_ids ID_ARRAY := ID_ARRAY();
 dummy_ids ID_ARRAY := ID_ARRAY();
BEGIN
 SELECT id BULK COLLECT INTO pids
 FROM cityobject WHERE ...;

 deleted_ids := citydb_delete.del_cityobject(pids);
 dummy_ids := citydb_delete.cleanup_appearances;
END;

PostgreSQL:

-- single version
SELECT citydb.del_cityobject(id) FROM cityobject WHERE ... ;
SELECT citydb.cleanup_appearances();

-- array version
SELECT citydb.del_cityobject(array_agg(id))
 FROM cityobject WHERE ... ;
SELECT citydb.cleanup_appearances();

Which delete function to use depends on the ratio between the number of
entries to be deleted and the total count of objects in the database.
One array delete executes each necessary query only once compared to
numerous single deletes and can be faster. However, if the array is huge
and covers a great portion of the table (say 20% of all rows) it might
be faster to go for the single version instead or batches of smaller
arrays. Nested features are deleted with arrays anyway.

The previously available CITYDB_DELETE_BY_LINEAGE package has been
included into the CITYDB_DELETE package and reduced to only one
function. It allows to delete multiple city objects that share a common
value in the LINEAGE column of the CITYOBJECT table. The procedure
cleanup_schema provides a convenient way to reset an entire 3DCityDB
instance under both Oracle and PostgreSQL. After invoking this
procedure, all entries from all tables are deleted and all sequences are
reset.

The following table only lists functions that differ from each other
where del_cityobject stands for the general layout of a delete function:

Table 2.25 API of CITYDB_DELETE package for Oracle

	
Function

	
Return Type

	
Explanation

	
cleanup_appearances

(only_global)

	
ID_ARRAY

	
Removes unreferenced Appearences incl.

SurfaceData and textures and returns an array of

their IDs. Pass 1 (default) to only delete global

appearances, or 0 to include local appearances

	
cleanup_schema

(schema_name)

	
void

	
Truncates most tables and resets sequences in a

given 3D City Database schema

	
cleanup_table (table_name)

	
ID_ARRAY

	
Removes entries in given table which are not

referenced by any other entities

	
del_cityobject (NUMBER)

	
NUMBER

	
Removes the CityObject with the given ID incl.

all references to other tables. The ID value

is returned on success

	
del_cityobject (ID_ARRAY)

	
ID_ARRAY

	
Removes CityObjects with the given IDs incl.

all references to other tables. An array of

IDs of successfully deleted objects is returned

	
del_cityobjects_by_lineage

(lineage_value)

	
ID_ARRAY

	
Removes all CityObjects on behalf of a LINEAGE

value and returns an array of their IDs

Table 2.26 API of CITYDB_DELETE package for PostgreSQL

	
Function

	
Return Type

	
Explanation

	
cleanup_appearances

(only_global)

	
SET OF INTEGER

	
Removes unreferenced Appearences incl.

SurfaceData and textures and returns an array of

their IDs. Pass 1 (default) to only delete global

appearances, or 0 to include local appearances

	
cleanup_schema

(schema_name)

	
void

	
Truncates most tables and resets sequences in a

given 3D City Database schema

	
cleanup_table (table_name)

	
SET OF INTEGER

	
Removes entries in given table which are not

referenced by any other entities

	
del_cityobject (INTEGER)

	
INTEGER

	
Removes the CityObject with the given ID incl.

all references to other tables. The ID value

is returned on success

	
del_cityobject ((INTEGER[])

	
SET OF INTEGER

	
Removes CityObjects with the given IDs incl.

all references to other tables. An array of

IDs of successfully deleted objects is returned

	
del_cityobjects_by_lineage

(lineage_value)

	
SET OF INTEGER

	
Removes all CityObjects on behalf of a LINEAGE

value and returns an array of their IDs

2.10.9. CITYDB_ENVELOPE

The package CITYDB_ENVELOPE provides functions that allow a user to
calculate the maximum 3D bounding volume of a CityObject identified by
its ID. For each feature type, a corresponding function is provided
starting with env_ prefix. In PostgreSQL, they are part of an instance
schema like ‘citydb’ and not ‘citydb_pkg’ due to unforeseen schema
changes by adding CityGML ADEs.

The bounding volume is calculated by evaluating all geometries of the
city object in all LoDs including implicit geometries. In PostGIS, they
are first collected and then fed to the ST_3DExtent aggregate function
which returns a BOX3D object. In Oracle the aggregate function
SDO_AGGR_MBR is used which produces a 3D optimized rectangle with only
two points. The box2envelope function turns this output into a diagonal
cutting plane through the calculated bounding volume. This surface
representation follows the definition of the ENVELOPE column of the
CITYOBJECT table as discussed in Section 2.7.3.2
(see also Fig. 2.29).
All functions in this package return such a geometry.

The CITYDB_ENVELOPE API also allows for updating the ENVELOPE column of
the city objects with the calculated value (by simply setting the
set_envelope argument that is available for all functions to 1).
This is useful, for instance, whenever one of the geometry
representations of the city object has been changed or if the ENVELOPE
column could not be (correctly) filled during import and, for example,
is NULL.

To calculate and update the ENVELOPE of all city objects of a given
feature type, use the get_envelope_cityobjects function and provide the
OBJECTCLASS_ID as parameter. If 0 is passed as OBJECTCLASS_ID, then
the ENVELOPE columns of all city objects are updated. To update only
those ENVELOPE columns having NULL as value, set the only_if_null
parameter to 1.

Table 2.27 API of CITYDB_ENVELOPE package for PostgreSQL

	
Function

	
Return Type

	
Explanation

	
box2envelope (BOX3D)

	
GEOMETRY

	
Takes a BOX3D and returns a 3D polygon that

represents a diagonal cutting plane through this

box. Under Oracle the input is an optimized 3D

rectangle (SDO_INTERPRETATION = 3)

	
env_cityobject (cityobject_id,

set_envelope)

	
GEOMETRY

	
Returns the current envelope representation of

the given CityObject and optionally updates the

ENVELOPE column

	
get_envelope_cityobjects

(objectclass_id, set_envelope,

only_if_null)

	
GEOMETRY

	
Returns the current envelope representation of

all CityObjects of given object class and

optionally updates the ENVELOPE column with

the individual bounding boxes

	
get_envelope_implicit_geometry

(implicit_rep_id, reference_point,

transformation_matrix)

	
GEOMETRY

	
Returns the envelope of an implicit geometry

which has been transformed based on the

passed reference point and transformation

matrix

	
update_bounds (old_box,

new_box)

	
GEOMETRY

	
Takes two GEOMETRY objects to call

box2envelope and returns the result. If one

side is NULL, the non-empty input is

returned.

7. References

	BaFi2008

	Barners, M., Finch, E. L. (2008): COLLADA - Digital Asset Schema
Release 1.5.0. The Khronos Group Inc., Sony Computer Entertainment Inc,
April 2008. http://www.khronos.org/files/collada_spec_1_5.pdf (accessed
September 2018)

	BKDS2015

	Borrmann, A., Kolbe, T. H., Donaubauer, A., Steuer, H., Jubierre, J. R.,
Flurl, M. (2015): Multi-scale geometric-semantic modeling of shield
tunnels for GIS and BIM applications. Computer-Aided Civil and
Infrastructure Engineering (Vol. 30, No. 4). Weblink (accessed September
2018): http://dx.doi.org/10.1111/mice.12090.

	ChYK2015

	Chaturvedi, K., Yao, Z., Kolbe, T. H. (2015): Web-based Exploration of
and Interaction with Large and Deeply Structured Semantic 3D City Models
using HTML5 and WebGL. In: Proc. of the 35th Annual Conference of the
German Society for Photogrammetry, Remote Sensing and Geoinformation
(DGPF), Weblink (accessed September 2018):
http://www.dgpf.de/src/tagung/jt2015/proceedings/papers/34_DGPF2015_Chaturvedi_et_al.pdf

	CGJT1980

	Coffman, E.G. Jr., Garey, M. R., Johnson, D.S., Tarjan, R.E. (1980):
Performance bounds for level-oriented two-dimensional packing
algorithms. In: SIAM Journal on Computing 9 (1980), pp. 801–826.

	DBBF2005

	Döllner, J., Buchholz, H., Brodersen, F., Glander, T., Jütterschenke,
S., Klimetschek, A. (2005): Smart Buildings – A Concept for Ad-Hoc
Creation and Refinement of 3D Building Models. In: Kolbe, T. H.,
Gröger, G. (eds.): Proceedings of the 1st International Workshop on Next
Generation 3D City Models, Bonn, Germany, June 2005, EuroSDR
Publications.

	DKLS2006

	Döllner, J., Kolbe, T. H., Liecke, F., Sgouros, T., Teichmann, K.
(2006): The Virtual 3D City Model of Berlin - Managing, Integrating,
and Communicating Complex Urban Information. In: Proceedings of the
25th Urban Data Management Symposium UDMS 2006 in Aalborg, Denmark, May
15-17. Weblink (accessed September 2018):
http://mediatum.ub.tum.de/doc/1145759/484057.pdf

	FMWD2018

	Fiutak, G.; Marx, C.; Willkomm, P.; Donaubauer, A.; Kolbe, T. H. (2018):
Automatisierte Generierung eines digitalen Landschaftsmodells in 3D.
PFGK18 - Photogrammetrie - Fernerkundung - Geoinformatik - Kartographie,
37. Jahrestagung in München 2018 (Publikationen der Deutschen
Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation
(DGPF) e.V. 27), Deutsche Gesellschaft für Photogrammetrie,
Fernerkundung und Geoinformation e.V., 888-902.

	FVFH1995

	Foley, J., van Dam, A,. Feiner, S., Hughes, J. (1995): Computer
Graphics: Principles and Practice. Addison Wesley, 2nd Ed.

	Khro2018

	glTF - Efficient, Interoperable Transmission of 3D Scenes and Models,
Khronos, Weblink (accessed September 2018): https://www.khronos.org/gltf

	GKSS2005

	Gröger, G., Kolbe, T. H., Schmittwilken, J., Stroh, V., Plümer, L.
(2005): Integrating versions, history and levels-of-detail within a 3D
geodatabase. In: Kolbe, T. H., Gröger, G. (eds.): Proceedings of the
1st International Workshop on Next Generation 3D City Models, Bonn,
Germany, June 2005, EuroSDR Publications. Weblink (accessed September
2018): https://mediatum.ub.tum.de/doc/1453849/1453849.pdf

	GKCN2008

	Gröger G., Kolbe, T. H., Czerwinski, A., Nagel C. (2008): OpenGIS®
City Geography Markup Language (CityGML) Encoding Standard, Version
1.0.0. Open Geospatial Consortium, Doc. No. 08-007r1, August 20th.
http://portal.opengeospatial.org/files/?artifact_id=28802

	GKNH2012

	Gröger G., Kolbe, T. H., Nagel C., Häfele, K. H. (2012): OpenGIS® City
Geography Markup Language (CityGML) Encoding Standard, Version 2.0.0.
Open Geospatial Consortium, Doc. No. 12-019,
http://portal.opengeospatial.org/files/?artifact_id=28802

	HeNK2012

	Herreruela, J., Nagel, C., Kolbe, T. H. (2012): Value-added Services
for 3D City Models using Cloud Computing. In: Löwner, M.-O., Hillen,
F., Wohlfahrt, R. (eds.): Geoinformatik 2012 “Mobilität und Umwelt”,
Proc. of the Conference Geoinformatik 2012, 28.-30. 3. 2012 in
Braunschweig. Weblink: http://mediatum.ub.tum.de/doc/1145739/42082.pdf
(accessed September 2018)

	Herr2001

	Herring, J. (2001): The OpenGIS Abstract Specification, Topic 1:
Feature Geometry (ISO 19107 Spatial Schema). OGC Document Number 01-101

	KaKo2014

	Kaden, R., Kolbe, T. H. (2014): Simulation-Based Total Energy Demand
Estimation of Buildings using Semantic 3D City Models. International
Journal of 3-D Information Modeling, 3(2), 35-53, April-June 2014.
Weblink (accessed September 2018):
http://dx.doi.org/10.4018/ij3dim.2014040103

	KoGr2003

	Kolbe, T. H., Gröger, G. (2003): Towards unified 3D city models. In
Schiewe, J., Hahn, M., Madden, M., Sester, M. (eds.): Proceedings of the
ISPRS Comm. IV Joint Workshop on Challenges in Geospatial Analysis,
Integration and Visualization II in Stuttgart. Weblink:
http://mediatum.ub.tum.de/doc/1145769/703861.pdf (accessed Sept. 2018)

	Kolb2009

	Kolbe, T. H. (2009): Representing and Exchanging 3D City Models with
CityGML. In: Lee, J., Zlatanova, S. (eds.): Proceedings of the 3rd
International Workshop on 3D Geo-Information 2008 in Seoul, South Korea.
Lecture Notes in Geoinformation & Cartography, Springer Verlag, 2009.
Weblink (accessed September 2018):
http://mediatum.ub.tum.de/doc/1145752/947446.pdf

	KKNS2009

	Kolbe, T. H.; König, G.; Nagel, C.; Stadler, A. (2009): 3D-Geo-Database
for CityGML, Documentation Version 2.0.1, Institute for Geodesy and
Geoinformation Science, TU Berlin. Weblink (accessed September 2018):
http://www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityDB-Documentation-v2_0.pdf

	Kund2013

	Kunde, F. (2013): CityGML in PostGIS: portability, usage and
performance analysis using the example of the 3D City Database of
Berlin. (in german only) Master Thesis, University of Potsdam, Germany,
URN: urn:nbn:de:kobv:517-opus-63656 (accessed September 2018).

	LoMV1999

	Lodi A., Martello S., Vigo D. (1999): The Touching Perimeter Algorithm:
Heuristic and Metaheuristic Approaches for a Class of Two-Dimensional
Bin Packing Problems. In: INFORMS J on Computing: pp. 345-357.

	LoMM2002

	Lodi A., Martello S., Monaci M., (2002): Two-dimensional packing
problems: A survey. In: European Journal of Operational Research, 141,
issue 2, pp. 241-252.

	Murr2010

	Murray, C. et al. (2010): Oracle ® Spatial Developer’s Guide 11g
Release 2 (11.2), E11830-06, March 2010. Weblink (accessed
September 2018): http://docs.oracle.com/cd/E18283_01/appdev.112/e11830.pdf

	NaSt2008

	Nagel, C., Stadler, A. (2008): Die Oracle-Schnittstelle des Berliner
3D-Stadtmodells. In: Clemen, C. (Ed.): Entwicklerforum
Geoinformationstechnik 2008, Shaker Verlag, Aachen, S. 197-221.

	PGKS2005

	Plümer, L., Gröger, G., Kolbe, T. H., Schmittwilken, J., Stroh, V.,
Poth, A., Taddeo, U. (2005): 3D-Geodatenbank Berlin, Dokumentation V1.0
Institut für Kartographie und Geoinformation der Universität Bonn (IKG),
lat/lon GmbH. Weblink
https://www.businesslocationcenter.de/imperia/md/content/3d/dokumentation_3d_geo_db_berlin.pdf
(accessed September 2018).

	SNKK2009

	Stadler, A., Nagel, C., König, G., Kolbe, T. H. (2009): Making
interoperability persistent: A 3D geo database based on CityGML. In:
Lee, J., Zlatanova, S. (eds.): Proceedings of the 3rd International
Workshop on 3D Geo-Information 2008 in Seoul, South Korea. Lecture Notes
in Geoinformation & Cartography, Springer Verlag, 2009. Weblink
(accessed September 2018):
http://mediatum.ub.tum.de/doc/1145748/781842.pdf

	Whit2009

	Whiteside, A. (2009): Definition identifier URNs in OGC namespace,
Version 1.3. Open Geospatial Consortium, OGC® Best Practices,
Doc. No. 07-092r3, January 15th.
http://portal.opengeospatial.org/files/?artifact_id=30575

	Wils2008

	Wilson, T. (2008): OGC® KML, OGC® Standard Version 2.2.0. Open
Geospatial Consortium, Doc. No. 07-147r2, April 14th.
http://portal.opengeospatial.org/files/?artifact_id=27810

	Weis2015

	Weisstein, E. W. (2015): Affine Transformation, Wolfram MathWorld,
Weblink (accessed September 2018):
http://mathworld.wolfram.com/AffineTransformation.html

	YSKK2012

	Yao, Z., Sindram, M., Kaden, R., Kolbe, T. H. (2014): Cloud-basierter
3D-Webclient zur kollaborativen Planung energetischer Maßnahmen am
Beispiel von Berlin und London. In: Kolbe, Bill, Donaubauer (eds.):
Geoinformationssysteme 2014 – Beiträge zur 1. Münchner GI-Runde, 24.-25.
2. 2014, Wichmann Verlag, Berlin. Weblink (accessed September 2018):
http://mediatum.ub.tum.de/doc/1276243/359202.pdf

	YaCK2016

	Yao, Z., Chaturvedi, K., Kolbe, T. H. (2016): Browserbasierte
Visualisierung großer 3D-Stadtmodelle durch Erweiterung des Cesium Web
Globe. In: Kolbe, T. H., Bill, R., Donaubauer, A. (eds.):
Geoinformationssysteme 2016 – Beiträge zur 3. Münchner GI-Runde, 24.-25.
2. 2016, Wichmann Verlag, Berlin. Weblink (accessed September 2018):
http://mediatum.ub.tum.de/doc/1296408/547142.pdf

	YaKo2017

	Yao, Z., Kolbe, T. H. (2017): Dynamically Extending Spatial Databases
to support CityGML Application Domain Extensions using Graph
Transformations. In: Kersten, T.P. (ed.): Beitrag zur 37.
Wissenschaftlich-Technische Jahrestagung der DGPF. Deutsche Gesellschaft
für Photogrammetrie, Fernerkundung und Geoinformation e.V. Weblink
(accessed September 2018):
http://mediatum.ub.tum.de/doc/1425154/602735.pdf

	YNKH2018

	Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P., Donaubauer, A.,
Adolphi, T., Kolbe, T. H. (2018): 3DCityDB - a 3D geodatabase solution
for the management, analysis, and visualization of semantic 3D city
models based on CityGML. Open Geospatial Data, Software and Standards 3
(5), 2018, 1-26. Weblink (accessed September 2018):
http://dx.doi.org/10.1186/s40965-018-0046-7

8. Changelog

This appendix provides an overview of the most important changes in
version 4.0 of the 3D City Database and version 4.1 of the
Importer/Exporter compared to the previous release version 3.3.0.

8.1. 3D City Database relational schema

8.1.1. General changes

	New metadata tables ADE, SCHEMA, SCHEMA_REFERENCING and
SCHEMA_TO_OBJECTCLASS for registering CityGML ADEs

	Added OBJECTCLASS_ID column to all feature tables to distinguish
objects from CityGML ADEs. Also extended OBJECTCLASS table by more
feature-specific details and inserted new entries for feature
properties such as geometry, generic attributes etc.

	Added NOT NULL constraints on each OBJECTCLASS_ID column

	New prefilled metadata table AGGREGATION_INFO that supports the
automatic generation of DELETE and ENVELOPE scripts

	Changed delete rule of one foreign key in link tables to ON DELETE
CASCADE to produce better delete scripts

8.2. 3D City Database scripts

	Moved interactive prompts from SQL to batch/shell scripts for better
setup automation

	Provide batch (Windows) and shell scripts (UNIX, macOS) for both
PostgreSQL and Oracle DBMS

	Re-added scripts to create a read-only user (UTIL folder), called
GRANT_ACCESS and REVOKE_ACCESS (removed in v3.x). Also includes a
read-write option.

	New MIGRATION scripts to upgrade from a 3DCityDB v2.1.0 or v3.3.2 to
v4.0.0.

	Tidier folder and script structure:

	Removed folders PL_SQL (Oracle) and PL_pgSQL (PostgreSQL) to make
CITYDB_PKG a top-level directory under the SQLScripts folder

	Moved OBJECTCLASS_INSTANCES script to SCHEMA/OBJECTCLASS folder

	PostgreSQL: New SCHEMAS directory in UTIL folder

	Oracle: One instead of two CREATE_DB scripts

	Oracle: Moved versioning scripts to its own directory in the UTIL
folder

	Oracle: Renamed CREATE_DB folder in UTIL directory to HINTS

	Oracle: Better treatment if SDO_GEORASTER support is missing

	Oracle: Defining spatial metadata on all geometry columns with new
function set_schema_sdo_metadata in CITYDB_CONSTRAINT package instead
of a hard-coded part in SPATIAL_INDEX.sql script

8.3. 3D City Database stored procedures

8.3.1. General changes

	New packages: CITYDB_CONSTRAINT and CITYDB_OBJCLASS

	Removed parts with dynamic SQL where possible. Required renaming of
some function arguments to avoid conflicts with column names in
querys

	PostgreSQL: Added volatility categories for better query planning

8.3.2. UTIL package

	Updated version numbers in citydb_version function

	Moved update_schema_constraints and update_table_constraint
procedures into new CITYDB_CONSTRAINT package and renamed them to
set_schema_fkey_delete_rule and set_fkey_delete_rule. Change data
type for on_delete_param to CHAR as only one letter is needed to set
a new delete rule: ‘a’ for ON DELETE NO ACTION , ‘n’for ON DELETE SET
NULL (‘n’), ‘c’ for ON DELETE CASCADE or (PostgreSQL-only) ‘r’ for ON
DELETE RESTRICT

	Moved objectclass_id_to_table_name function to new CITYDB_OBJCLASS
package.

	Added schema_name parameter to functions db_metadata and db_info

	Removed schema_name parameter from get_seq_values function

	Oracle: Removed schema_name parameter from construct_solid function

8.3.3. IDX package

	Oracle: Added schema_name parameter to get_index function

	Oracle: Dropping spatial indexes will not delete spatial metadata
anymore

8.3.4. SRS package

	Added schema_name parameter to is_db_ref_sys_3d function

	Oracle: Added schema_name parameter to get_dim function

	Oracle: Do not delete spatial metadata when spatial index is not
valid

8.3.5. STAT package

	Exclude new metadata tables from database report

8.3.6. DELETE package

	Aligned API of Oracle version with PostgreSQL (no more _pre and
_post methods)

	Two delete endpoints are provided for each feature class: Delete by
single ID value or delete by a set of IDs

	All 1:n references are deleted right away. Replaced all explicit
cleanup scripts (except for cleanup_appearances) with one generic
cleanup function

	New prefix del_ instead of delete_

	The DELETE scripts have been generated automatically by the ADE
Manager Plugin of the Importer/Exporter. This process shall be
repeated when introducing ADE extensions to the database schema.

8.3.7. DELETE_BY_LINEAGE package

	The package and included stored procedures have been removed

	New function del_delete_cityobjects_by_lineage in DELETE package

8.3.8. ENVELOPE package

	New prefix env_ instead of get_envelope_ (except for
get_envelope_cityobjects function)

	The ENVELOPE scripts have been generated automatically by the ADE
Manager Plugin of the Importer/Exporter. This process shall be
repeated when introducing ADE extensions to the database schema.

8.4. 3D City Database Importer/Exporter

The new version 4.1 of the Importer/Exporter contains many bug fixes as
well as stability and performance improvements. A full list of fixes and
changes is available from the GitHub repository at
https://github.com/3dcitydb/importer-exporter.

8.4.1. General changes

	Java 8 is required since version 3.3.0.

	The Importer/Exporter can now connect to both Oracle and PostgreSQL.

	Temporary information required during data imports and exports (e.g.,
for resolving of XLink references) can now optionally be stored to a
local file-based database instead of using temporary tables in the 3D
City Database instance.

	3.1: Importer/Exporter now checks the version of the 3DCityDB before
connecting

	3.1: Re-Added user dialog to control GMLID_CODESPACE during import

	3.1: Added user dialog to calculate the ENVELOPE of city objects in
the database

	3.3: The location of the main config file (‘project.xml’) has been
changed to %HOMEDRIVE%%HOMEPATH%3dcitydbimporter-exporterconfig
(Windows 7 and higher) respectively
$HOME/3dcitydb/importer-exporter/config (UNIX/Linux, Mac OS
families). Old config files can still be loaded manually (note: was
../importer-exporter-3.0/.. in versions 3.0 to 3.2)

	4.1: OSM Nominatim is now used as default geocoder for the map
window. Google Map API services can still be used for the map window
and for KML/COLLADA exports but require an API key.

	4.2: Reworked Plugin API to support non-GUI plugins.

8.4.2. CityGML import

	4.2: Fixed broken feature type filter for CityGML imports.

	4.2: Added possibility to define a gml:id prefix for the UUIDs that
are created during CityGML imports.

	4.1: Added support for importing CityGML data from (G)ZIP files.

	CityGML import now supports CityGML versions 2.0, 1.0 and 0.4.

	A new import log optionally tracks all successfully imported
top-level city objects in a separate CSV file. In case an import
process aborts abnormally, this file can be used to understand which
city objects have been processed and stored in the database before
termination.

	The import process now follows a fail-on-first-error strategy, i.e.
the import terminates upon the first error thrown instead of trying
to continue.

	Improved import of texture atlases. Each texture atlas is only stored
once in the database (new table ‘tex_image’) even if it is referenced
by more than one city object.

	Local appearance information is now resolved in main memory to reduce
import times instead of using temporary database tables.

	Texture metadata is imported even if texture images are chosen to be
not imported

	3.1: Changed the way global appearances are imported

	3.1: Fixed bug in BRIDGE importer preventing import of bridges with
thematic surfaces

8.4.3. CityGML export

	4.2: Property projections can now also be defined for abstract
feature types.

	4.1: Added support for using SQL and XML queries for CityGML exports
to be able express more flexible and complex filter conditions.

	4.1: Added support for exporting CityGML content to (G)ZIP files.

	Database content can now be exported to CityGML 2.0 or 1.0. When
exporting to CityGML 1.0, feature types only available in CityGML 2.0
such as bridges and tunnels are omitted.

	City object group members can now be exported as-reference (using
XLink references) instead of as-value to reduce export times.
However, note that filter criteria are not applied in this case,
which might result in CityGML files containing non-resolvable XLink
references.

	When exporting city objects with textures, the texture image files
can now be organized into subfolders. This reduces the number of
files per folder.

8.4.4. KML/COLLADA/glTF export

	Support for glTF version 2.0 in addition to version 1.0. New
COLLADA2glTF binaries (version 2.1.3) for Windows, Linux and MacOS.

	Solved bugs that might prevent exporting LandUse 3D models from
functioning correctly.

8.5. Web Feature Service

	Since 3.0: Added a basic Web Feature Service interface for the 3D
City Database

	Fixed a SQL Injection vulnerability with version 3.3.0. It is
strongly recommended to update to this version.

8.6. 3D Web Map Client

	Introduced geolocation-based features such as the first-person view on mobile devices.

	Support for glTF 2.0.

	Support for Cesium 3D Tiles.

Index

 _images/3d_web_client_dtm_gui.png
Add | Configure Layer Remove selected layer
Add WMIS Layer Remove WMS layer

Add Terain Layer Renove Terain layer

Choose Hghighed Object

Choose tidden Otject
Gonerate Scano Link Fide solected Objects
Clear Hihloption ‘Show Hidden Obiects

Create Screenshot Pint curent view

Toggle Shadows | Tooge Terain Shadows

Show the selected object in Extemal Maps.

_images/3d_web_client_dtm_gui_numbers.png

