
3D-convolutional-speaker-recognition
Documentation

Release

Amirsina Torfi

Sep 19, 2017

Contents

1 DEMO 3

2 General View 5
2.1 Speaker Verification Protocol(SVP) . 5
2.2 How to leverage 3D Convolutional Neural Networks? . 5

3 Code Implementation 7
3.1 Input Pipeline for this work . 7
3.2 Implementation of 3D Convolutional Operation . 7

4 Disclaimer 9

5 Citation 11

6 License 13

7 Contribution 15

Bibliography 17

i

ii

3D-convolutional-speaker-recognition Documentation, Release

This repository contains the code release for our paper titled as “Text-Independent Speaker Verification Using 3D
Convolutional Neural Networks”. The link to the paper is provided as well.

The code has been developed using TensorFlow. The input pipeline must be prepared by the users. This code is aimed
to provide the implementation for Speaker Verification (SR) by using 3D convolutional neural networks following the
SR protocol.

Contents 1

https://arxiv.org/abs/1705.09422
https://www.tensorflow.org/
https://github.com/astorfi/3D-convolutional-speaker-recognition/blob/master/_images/conv_gif.gif

3D-convolutional-speaker-recognition Documentation, Release

2 Contents

CHAPTER 1

DEMO

For running a demo, after forking the repository, run the following scrit:

./run.sh

readme_images/speakerrecognition.png

3

https://asciinema.org/a/yfy6FryUAWWMl1vgylrRagMdw

3D-convolutional-speaker-recognition Documentation, Release

4 Chapter 1. DEMO

CHAPTER 2

General View

We leveraged 3D convolutional architecture for creating the speaker model in order to simultaneously capturing the
speech-related and temporal information from the speakers’ utterances.

Speaker Verification Protocol(SVP)

In this work, a 3D Convolutional Neural Network (3D-CNN) architecture has been utilized for text-independent
speaker verification in three phases.

1. At the development phase, a CNN is trained to classify speakers at the utterance-level.

2. In the enrollment stage, the trained network is utilized to directly create a speaker model for each
speaker based on the extracted features.

3. Finally, in the evaluation phase, the extracted features from the test utterance will be compared to the
stored speaker model to verify the claimed identity.

The aforementioned three phases are usually considered as the SV protocol. One of the main challenges is the creation
of the speaker models. Previously-reported approaches create speaker models based on averaging the extracted features
from utterances of the speaker, which is known as the d-vector system.

How to leverage 3D Convolutional Neural Networks?

In our paper, we propose to use the 3D-CNNs for direct speaker model creation in which, for both development
and enrollment phases, an identical number of speaker utterances is fed to the network for representing the spoken
utterances and creation of the speaker model. This leads to simultaneously capturing the speaker-related information
and building a more robust system to cope with within-speaker variation. We demonstrate that the proposed method
significantly outperforms the d-vector verification system.

5

3D-convolutional-speaker-recognition Documentation, Release

6 Chapter 2. General View

CHAPTER 3

Code Implementation

The input pipeline must be provided by the user. The rest of the implementation consider the dataset which contains the
utterance-based extracted features are stored in a HDF5 file. However, this is not a necessity because by following the
code, it can be seen that the experiments can be done by any file format as long as it is adaptable with TensorFlow.

Input Pipeline for this work

The MFCC features can be used as the data representation of the spoken utterances at the frame level. However, a
drawback is their non-local characteristics due to the last DCT 1 operation for generating MFCCs. This operation
disturbs the locality property and is in contrast with the local characteristics of the convolutional operations. The
employed approach in this work is to use the log-energies, which we call MFECs. The extraction of MFECs is similar
to MFCCs by discarding the DCT operation. The temporal features are overlapping 20ms windows with the stride of
10ms, which are used for the generation of spectrum features. From a 0.8- second sound sample, 80 temporal feature
sets (each forms a 40 MFEC features) can be obtained which form the input speech feature map. Each input feature
map has the dimen- sionality of 𝜁 × 80 × 40 which is formed from 80 input frames and their corresponding spectral
features, where 𝜁 is the number of utterances used in modeling the speaker during the development and enrollment
stages.

The speech features have been extracted using [SpeechPy] package.

Implementation of 3D Convolutional Operation

The Slim high-level API made our life very easy. The following script has been used for our implementation:

net = slim.conv2d(inputs, 16, [3, 1, 5], stride=[1, 1, 1], scope='conv11')
net = PReLU(net, 'conv11_activation')
net = slim.conv2d(net, 16, [3, 9, 1], stride=[1, 2, 1], scope='conv12')
net = PReLU(net, 'conv12_activation')
net = tf.nn.max_pool3d(net, strides=[1, 1, 1, 2, 1], ksize=[1, 1, 1, 2, 1], padding=
→˓'VALID', name='pool1')

7

https://github.com/astorfi/3D-convolutional-speaker-recognition/blob/master/_images/Speech_GIF.gif
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim

3D-convolutional-speaker-recognition Documentation, Release

############ Conv-2 ###############
############ Conv-1 ###############
net = slim.conv2d(net, 32, [3, 1, 4], stride=[1, 1, 1], scope='conv21')
net = PReLU(net, 'conv21_activation')
net = slim.conv2d(net, 32, [3, 8, 1], stride=[1, 2, 1], scope='conv22')
net = PReLU(net, 'conv22_activation')
net = tf.nn.max_pool3d(net, strides=[1, 1, 1, 2, 1], ksize=[1, 1, 1, 2, 1], padding=
→˓'VALID', name='pool2')

############ Conv-3 ###############
############ Conv-1 ###############
net = slim.conv2d(net, 64, [3, 1, 3], stride=[1, 1, 1], scope='conv31')
net = PReLU(net, 'conv31_activation')
net = slim.conv2d(net, 64, [3, 7, 1], stride=[1, 1, 1], scope='conv32')
net = PReLU(net, 'conv32_activation')
net = slim.max_pool2d(net, [1, 1], stride=[4, 1], scope='pool1')

############ Conv-4 ###############
net = slim.conv2d(net, 128, [3, 1, 3], stride=[1, 1, 1], scope='conv41')
net = PReLU(net, 'conv41_activation')
net = slim.conv2d(net, 128, [3, 7, 1], stride=[1, 1, 1], scope='conv42')
net = PReLU(net, 'conv42_activation')
net = slim.max_pool2d(net, [1, 1], stride=[4, 1], scope='pool1')

############ Conv-5 ###############
net = slim.conv2d(net, 128, [4, 3, 3], stride=[1, 1, 1], normalizer_fn=None, scope=
→˓'conv51')
net = PReLU(net, 'conv51_activation')

net = slim.conv2d(net, 256, [1, 1], stride=[1, 1], scope='conv52')
net = PReLU(net, 'conv52_activation')

Last layer which is the logits for classes
logits = tf.contrib.layers.conv2d(net, num_classes, [1, 1, 1], activation_fn=None,
→˓scope='fc')

As it can be seen, slim.conv2d has been used. However, simply by using 3D kernels as [k_x, k_y, k_z] and
stride=[a, b, c] it can be turned into a 3D-conv operation. The base of the slim.conv2d is tf.contrib.
layers.conv2d. Please refer to official Documentation for further details.

8 Chapter 3. Code Implementation

https://www.tensorflow.org/api_docs/python/tf/contrib/layers

CHAPTER 4

Disclaimer

The code architecture part has been heavily inspired by Slim and Slim image classification library. Please refer to this
link for further details.

9

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://github.com/tensorflow/models/tree/master/slim

3D-convolutional-speaker-recognition Documentation, Release

10 Chapter 4. Disclaimer

CHAPTER 5

Citation

If you used this code please kindly cite the following paper:

@article{torfi2017text,
title={Text-Independent Speaker Verification Using 3D Convolutional Neural Networks}

→˓,
author={Torfi, Amirsina and Nasrabadi, Nasser M and Dawson, Jeremy},
journal={arXiv preprint arXiv:1705.09422},
year={2017}

}

11

3D-convolutional-speaker-recognition Documentation, Release

12 Chapter 5. Citation

CHAPTER 6

License

The license is as follows:

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include the brackets!) The

→˓text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright {2017} {Amirsina Torfi}

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Please refer to LICENSE file for further detail.

13

https://github.com/astorfi/3D-convolutional-speaker-recognition/blob/master/LICENSE

3D-convolutional-speaker-recognition Documentation, Release

14 Chapter 6. License

CHAPTER 7

Contribution

We are looking forward to your kind feedback. Please help us to improve the code and make our work better. For
contribution, please create the pull request and we will investigate it promptly. Once again, we appreciate your
feedback and code inspections.

references

15

3D-convolutional-speaker-recognition Documentation, Release

16 Chapter 7. Contribution

Bibliography

[SpeechPy] Amirsina Torfi. 2017. astorfi/speech_feature_extraction: SpeechPy. Zenodo. doi:10.5281/zenodo.810392.

17

	DEMO
	General View
	Speaker Verification Protocol(SVP)
	How to leverage 3D Convolutional Neural Networks?

	Code Implementation
	Input Pipeline for this work
	Implementation of 3D Convolutional Operation

	Disclaimer
	Citation
	License
	Contribution
	Bibliography

