

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page [https://codeocean.com/2017/08/01/3d-convolutional-neural-networks-for-speaker-recognition/code] - Pytorch Implementation [https://github.com/astorfi/3D-convolutional-speaker-recognition-pytorch]

[image: _images/badge.svg]
 [https://codecov.io/gh/astorfi/3D-convolutional-speaker-recognition][image: _images/16128e434e30bf5bb3389ef47d0439a52f7916e0.svg?style=flat]
 [https://github.com/astorfi/3D-convolutional-speaker-recognition/pulls][image: _images/open-source.svg]
 [https://github.com/ellerbrock/open-source-badge/][image: _images/94718341.svg]
 [https://zenodo.org/badge/latestdoi/94718341][image: _images/amirsinatorfi.svg]
 [https://twitter.com/amirsinatorfi]This repository contains the code release for our paper titled as “Text-Independent
Speaker Verification Using 3D Convolutional Neural Networks”. The link to the paper [https://arxiv.org/abs/1705.09422] is
provided as well.

The code has been developed using TensorFlow [https://www.tensorflow.org/]. The input pipeline must be prepared by the users.
This code is aimed to provide the implementation for Speaker Verification (SR) by using 3D convolutional neural networks
following the SR protocol.

[image: readme_images/conv_gif.gif]
 [https://github.com/astorfi/3D-convolutional-speaker-recognition/blob/master/_images/conv_gif.gif]
Citation

If you used this code, please kindly consider citing the following paper:

@article{torfi2017text,
 title={Text-independent speaker verification using 3d convolutional neural networks},
 author={Torfi, Amirsina and Nasrabadi, Nasser M and Dawson, Jeremy},
 journal={arXiv preprint arXiv:1705.09422},
 year={2017}
}

DEMO

For running a demo, after forking the repository, run the following scrit:

./run.sh

[image: speakerrecognition] [https://asciinema.org/a/yfy6FryUAWWMl1vgylrRagMdw]

General View

We leveraged 3D convolutional architecture for creating the speaker model in order to simultaneously
capturing the speech-related and temporal information from the speakers’ utterances.

Speaker Verification Protocol(SVP)

In this work, a 3D Convolutional Neural Network (3D-CNN)
architecture has been utilized for text-independent speaker
verification in three phases.

1. At the development phase, a CNN is trained
to classify speakers at the utterance-level.

2. In the enrollment stage, the trained network is utilized to directly create a
speaker model for each speaker based on the extracted features.

3. Finally, in the evaluation phase, the extracted features
from the test utterance will be compared to the stored speaker
model to verify the claimed identity.

The aforementioned three phases are usually considered as the SV protocol. One of the main
challenges is the creation of the speaker models. Previously-reported approaches create
speaker models based on averaging the extracted features from utterances of the speaker,
which is known as the d-vector system.

How to leverage 3D Convolutional Neural Networks?

In our paper, we propose the implementation of 3D-CNNs for direct speaker model creation
in which, for both development and enrollment phases, an identical number of
speaker utterances is fed to the network for representing the spoken utterances
and creation of the speaker model. This leads to simultaneously capturing the
speaker-related information and building a more robust system to cope with
within-speaker variation. We demonstrate that the proposed method significantly
outperforms the d-vector verification system.

Code Implementation

The input pipeline must be provided by the user. Please refer to ``code/0-input/input_feature.py`` for having an idea about how the input pipeline works.

Input Pipeline for this work

[image: readme_images/Speech_GIF.gif]
 [https://github.com/astorfi/3D-convolutional-speaker-recognition/blob/master/_images/Speech_GIF.gif]The MFCC features can be used as the data representation of the spoken utterances at the frame level. However, a
drawback is their non-local characteristics due to the last DCT 1 operation for generating MFCCs. This operation disturbs the locality property and is in contrast with the local characteristics of the convolutional operations. The employed approach in this work is to use the log-energies, which we
call MFECs. The extraction of MFECs is similar to MFCCs
by discarding the DCT operation. The temporal features are
overlapping 20ms windows with the stride of 10ms, which are
used for the generation of spectrum features. From a 0.8-
second sound sample, 80 temporal feature sets (each forms
a 40 MFEC features) can be obtained which form the input
speech feature map. Each input feature map has the dimen-
sionality of ζ × 80 × 40 which is formed from 80 input
frames and their corresponding spectral features, where ζ is
the number of utterances used in modeling the speaker during
the development and enrollment stages.

The speech features have been extracted using [SpeechPy] package.

Implementation of 3D Convolutional Operation

The Slim [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim] high-level API made our life very easy. The following script has been used for our
implementation:

net = slim.conv2d(inputs, 16, [3, 1, 5], stride=[1, 1, 1], scope='conv11')
net = PReLU(net, 'conv11_activation')
net = slim.conv2d(net, 16, [3, 9, 1], stride=[1, 2, 1], scope='conv12')
net = PReLU(net, 'conv12_activation')
net = tf.nn.max_pool3d(net, strides=[1, 1, 1, 2, 1], ksize=[1, 1, 1, 2, 1], padding='VALID', name='pool1')

############ Conv-2 ###############
############ Conv-1 ###############
net = slim.conv2d(net, 32, [3, 1, 4], stride=[1, 1, 1], scope='conv21')
net = PReLU(net, 'conv21_activation')
net = slim.conv2d(net, 32, [3, 8, 1], stride=[1, 2, 1], scope='conv22')
net = PReLU(net, 'conv22_activation')
net = tf.nn.max_pool3d(net, strides=[1, 1, 1, 2, 1], ksize=[1, 1, 1, 2, 1], padding='VALID', name='pool2')

############ Conv-3 ###############
############ Conv-1 ###############
net = slim.conv2d(net, 64, [3, 1, 3], stride=[1, 1, 1], scope='conv31')
net = PReLU(net, 'conv31_activation')
net = slim.conv2d(net, 64, [3, 7, 1], stride=[1, 1, 1], scope='conv32')
net = PReLU(net, 'conv32_activation')
net = slim.max_pool2d(net, [1, 1], stride=[4, 1], scope='pool1')

############ Conv-4 ###############
net = slim.conv2d(net, 128, [3, 1, 3], stride=[1, 1, 1], scope='conv41')
net = PReLU(net, 'conv41_activation')
net = slim.conv2d(net, 128, [3, 7, 1], stride=[1, 1, 1], scope='conv42')
net = PReLU(net, 'conv42_activation')
net = slim.max_pool2d(net, [1, 1], stride=[4, 1], scope='pool1')

############ Conv-5 ###############
net = slim.conv2d(net, 128, [4, 3, 3], stride=[1, 1, 1], normalizer_fn=None, scope='conv51')
net = PReLU(net, 'conv51_activation')

net = slim.conv2d(net, 256, [1, 1], stride=[1, 1], scope='conv52')
net = PReLU(net, 'conv52_activation')

Last layer which is the logits for classes
logits = tf.contrib.layers.conv2d(net, num_classes, [1, 1, 1], activation_fn=None, scope='fc')

As it can be seen, slim.conv2d has been used. However, simply by using 3D kernels as [k_x, k_y, k_z]
and stride=[a, b, c] it can be turned into a 3D-conv operation. The base of the slim.conv2d is
tf.contrib.layers.conv2d. Please refer to official Documentation [https://www.tensorflow.org/api_docs/python/tf/contrib/layers] for further details.

Disclaimer

The code architecture part has been heavily inspired by Slim [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim] and Slim image classification
library. Please refer to this link [https://github.com/tensorflow/models/tree/master/slim] for further details.

Citation

If you used this code please kindly cite the following paper:

@article{torfi2017text,
 title={Text-Independent Speaker Verification Using 3D Convolutional Neural Networks},
 author={Torfi, Amirsina and Nasrabadi, Nasser M and Dawson, Jeremy},
 journal={arXiv preprint arXiv:1705.09422},
 year={2017}
}

License

The license is as follows:

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "{}"
 replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright {2017} {Amirsina Torfi}

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Please refer to LICENSE [https://github.com/astorfi/3D-convolutional-speaker-recognition/blob/master/LICENSE] file for further detail.

Contribution

We are looking forward to your kind feedback. Please help us to improve the code and make
our work better. For contribution, please create the pull request and we will investigate it promptly.
Once again, we appreciate your feedback and code inspections.

references

	SpeechPy

	Amirsina Torfi. 2017. astorfi/speech_feature_extraction: SpeechPy. Zenodo. doi:10.5281/zenodo.810392.

Index

 nav.xhtml

 Table of Contents

 		
 TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

