
2isa Documentation
Release

Martin Larralde, Tom Lawson, Reza Salek

February 09, 2017

Contents

1 Documentation 3
1.1 Command Line Applications / Libraries . 3
1.2 Graphical User Interfaces . 31
1.3 Galaxy interfaces . 45
1.4 Other . 51

2 About 55
2.1 Contacts . 55

i

ii

2isa Documentation, Release

The 2isa suite is a collection of programs that can extract metadata out of various metabolomics file formats and
write them to ISA-Tab files, creating the backbone for an ISA-Tab study that can then be shared on databases such as
MetaboLights. Right now the following source files are supported:

.mzML XML-like files containing derived spectral data of mass spectrometry scans

.imzML XML-like files containing metadata about imaging mass spectrometry scans

.nmrML XML-like files containing derived spectral data of nuclear magnetic resonance scans

Contents 1

http://isa-tools.org/format/specification/
http://metabolights.org
http://www.psidev.info/mzml_1_0_0%20
http://www.imzml.org/index.php?option=com_content&view=article&id=188&Itemid=63
http://nmrml.org/schema/

2isa Documentation, Release

2 Contents

CHAPTER 1

Documentation

1.1 Command Line Applications / Libraries

The command line applications / libraries are currently divided into the mzml2isa package (covering mzML and
imzML) and nmrml2isa (covering nmrML).

1.1.1 mzml2isa

mzml2isa is a program that allows you to convert metabolomic studies in .mzML (and .imzML) format to the open
ISA-Tab standard supported by the MetaboLights database.

Installation

mzml2isa is available on PyPI, so if pip is installed on your machine, installing mzml2isa should be quite straight-
forward, without the need to worry about dependencies. It is also possible to install mzml2isa development version
directly from the mzml2isa GitHub repository.

Windows

Windows users can either install mzml2isa as described below or use a ‘ready to go’ Windows executable (no python
install required). The executables be found on the mzml2isa Github release section. See file mzml2isa_cli.exe.

Dependencies

Warning: Without pip you’ll have to install the requirements yourself, otherwise running setup.py will fail
when trying to import mzml2isa for the first time.

Requirements

pronto an interface to ontology files (used to import the MS controled vocabulary)

3

https://github.com/ISA-tools/mzml2isa
https://github.com/ISA-tools/mzml2isa/releases
https://pypi.python.org/pypi/pronto

2isa Documentation, Release

Extras

lxml an XML parser generally quicker than the builtin python xml.cElementTree (used as an alternative to parse the
mzML files)

Note: If installing lxml on windows, you can either:

1. Compile it directly (requires Microsoft Visual C++ to be installed on the Windows machine): run the
command set STATICBUILD=true && pip install lxml

2. Install the unofficial windows binaries (whls)

PyPI (stable version)

With pip Just run one of the following commands in a terminal:

pip install mzml2isa # install in /usr, needs super-user rights
pip install mzml2isa --user # install in ~/.local/

Without pip This requires the python setuptools module to be installed, as well as the dependencies listed
above. Download the latest stable release from the PyPI repository of mzml2isa , unpack it and install it by running
the following commands:

tar xf mzml2isa-xx.yy.zz.tar.gz # replace with whatever version you downloaded
cd mzml2isa-xx.yy.zz.tar.gz
python setup.py install # will require super-user rights

GitHub (development version)

Warning: Please check the current version of the program passes the Travis CI validation beforehand, or you
could be installing a non-functional version of the program ! The program is working if the badge above displays
.

With pip
pip install git+git://github.com/ISA-tools/mzml2isa

Without pip
git clone https://github.com/ISA-tools/mzml2isa
cd mzml2isa
python setup.py install

Usage

Folder structure

mzML For mzML files, mzml2isa only requires that you put all you files in the same folder, and parsing should
work fine. Note that reference to RAW files is extracted from the mzML files, so if you plan to create an ISA archive
after mzml2isa creates ISA files, don’t forget to include those as well.

4 Chapter 1. Documentation

https://pypi.python.org/pypi/lxml
http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml
https://pypi.python.org/pypi/mzml2isa

2isa Documentation, Release

Example structure:

/
home/
metabolomics/

MZML study/ # the name of the folder doesn't matter
Sample1.mzML # the name of the file must correspond to the sample name
Sample2.mzML
...

imzML For imzML files, you must have your imzML files in the same folder, but also the low- and high-res images
of your scans (*.jpg, *.ibd, *.ndpi, etc...) named exactly like the imzML file of that particular scan (as mzml2isa scans
the directory of the source file to eventually extract the location of those images):

/
home/
metabolomics/

MTBLS289/
A14 5cm S3.ndpi
A14 5cm S3.jpg # Sample name will be
A14 5cm S3-centroid.ibd # "A14 5cm S3"
A14 5cm S3-centroid.imzML # and centroid and profile
A14 5cm S3-profile.ibd # scans will be merged.
A14 5cm S3-profile.imzML
A14 10cm S3.ndpi
A14 10cm S3.jpg # Sample name will be
A14 10cm S3-centroid.ibd # "A14 10cm S3"
A14 10cm S3-centroid.imzML # and centroid and profile
A14 10cm S3-profile.ibd # scans will be merged
A14 10cm S3-profile.imzML
...

Furthermore, mzml2isa tries to merge centroid and profile scans of the same sample into the same ISA-Tab row.
Merging of said files relies on alphabetic order of files to make centroid and profile scans correspond to each other,
which means the following structure will work:

IMZML study/
Sample1_centroid.imzML
Sample1_profile.imzML
Sample2_centroid.imzML
Sample2_profile.imzML
...

This will also work:

IMZML study/
c_Sample1.imzML
p_Sample1.imzML
c_Sample2.imzML
p_Sample2.imzML
...

Or even this:

IMZML study/
Sample1_1.imzML
Sample1_2.imzML
Sample2_1.imzML

1.1. Command Line Applications / Libraries 5

2isa Documentation, Release

Sample2_2.imzML
...

Any structure in which centroid and profile scans are sequentially in the same rank following alphabetic order will
probably work.

CLI

mzml2isa -i /path/to/mzml/folder -o /path/to/out_folder -s STUDYID

Python module

from mzml2isa.parsing import full_parse
full_parse("/path/to/mzml/folder", "/path/to/out_folder", "STUDYID")
this will do the same thing as the command line above.

See the Examples and the API reference for more hindsights.

Editing with ISAcreator

The ISA-Tab structure can be further populated with the ISAcreator software.

See brief tutorial for more details.

Examples

CLI

Create a new MetaboLights study with existing nmrML data:

mzml2isa -i "/home/metabolomics/NMRML study" -o "/home/metabolomics/isa" -s MZML1

This will create a new folder and write the following ISA-Tab files:

/
home/

metabolomics/
isa/

a_MZML1_metabolite_profiling_mass_spectrometry.txt
i_Investigation.txt
s_MZML1.txt

Python module

Note: Syntax for imzML and mzML is the same, except when the class mzMLmeta is used: for imzML files, simply
replace mzMLmeta with imzMLmeta.

Extract metadata of a file called sample1.mzML and print a JSON dictionary containing those metadata

6 Chapter 1. Documentation

http://isa-tools.org/software-suite/
http://2isa.readthedocs.io/en/latest/other/isacreator.html

2isa Documentation, Release

python -m mzml2isa.mzml sample1.mzML

Or within a Python program

from mzml2isa.mzml import mzMLmeta
mz = mzMLmeta('sample1.mzML')

json formatted dict
print(mz.meta_json)

same metadata, Python dict
print(mz.meta['Sample Name']['value'])

Frequently Asked Questions

What metadata does mzml2isa extract from .mzML files ?

See mzML.

What metadata does mzml2isa extract from .imzML files ?

See imzML.

How do I report an issue / ask for a new feature ?

Go on the GitHub repository issue tracker of the program, check that no similar issue already exist, and if so, open a
new issue and include the following information:

• what software and software version you used (you can know the version of the program by running mzml2isa
--version in a terminal)

• one of the files you used (without this, nothing can be done to analyze the issue !)

• any remark you might have on how you think your file may not be generic (special instrument, multiple instru-
ments, special parameters, etc.)

• the complete traceback of the error if you report a crash

The program crashed when I used it on my files, what should I do ?

While the mzML file format is supposed to be a standard, it so happens that depending on what hardware and software
were used to generate .mzML files after a Mass Spectrometry study, some tags may not be named the same, and that
some metadata may be absent or elsewhere than expected in the final .mzML file.

Even though the example files used to test mzml2isa are thought to be comprehensive, it might happen that the files
you use are one of the special cases we did not consider. But a new version of the program may have corrected the bug
that hit you already, so make sure you are running the latest version of mzml2isa.

To communicate that crash to us, see How do I report an issue / ask for a new feature ?

1.1. Command Line Applications / Libraries 7

https://github.com/ISA-tools/mzml2isa/issues

2isa Documentation, Release

Extracted Terms list

mzML

Data Transformation Name

- type:
list of cv terms

- definition:
The successive transformation process the MS data underwent
(all being subclasses of NMR:1400042)

- example value:
{"entry_list": [

{"accession": "http://purl.obolibrary.org/obo/MS_1000544",
"name": "Conversion to mzML","ref": "MS"},

{"accession": "http://purl.obolibrary.org/obo/MS_1000035",
"name": "peak picking","ref": "MS"}

]}

Data Transformation software

- type:
cv term

- definition:
The software that was used for the data transformations

- example value:
{"accession": "http://purl.obolibrary.org/obo/MS_1000615",
"name": "ProteoWizard software","ref": "MS"}

Data Transformation software version

- type:
free text

- definition
The version of the data transformation software

- example value:
{"value": "3.0.6002"}

Data file checksum type

- type
cv term w/ value

- definition
The type of the checksum used to check the data file integrity

- example value
{"accession": "http://purl.obolibrary.org/obo/MS_1000569",
"name": "SHA-1","ref": "MS",
"value": "58f67219180d0e67da2b8f1652681b925371fcb9"}

Data file content

- type
list of cv terms

- definition
The contents of the Raw Data files

- example value
{"entry_list": [

{"accession": "http://purl.obolibrary.org/obo/MS_1000579",
"name": "MS1 spectrum","ref": "MS"},

{"accession": "http://purl.obolibrary.org/obo/MS_1000580",

8 Chapter 1. Documentation

http://purl.obolibrary.org/obo/MS_1000452
http://purl.obolibrary.org/obo/MS_1001457
http://purl.obolibrary.org/obo/MS_1000561
http://purl.obolibrary.org/obo/MS_1000524

2isa Documentation, Release

"name": "MSn spectrum","ref": "MS"}
]},

Derived Spectral Data File

- type:
free text
- definition
The name of the derived spectral data file (the .mzML file itself)
- example value:
{"value": "Person30_RBC_elder_NEG.mzML"}

Detector

- type:
cv term

- definition
The detector used in the mass spectrometer (child of MS:1000026)

- example value:
{"accession": "http://purl.obolibrary.org/obo/MS_1000253",
"name": "electron multiplier","ref": "MS"}

Inlet type

- type
cv term

- definition
The type of inlet (child of MS:1000007)

- example value:
{"accession": "http://purl.obolibrary.org/obo/MS_1000057",
"name": "electrospray inlet","ref": "MS"}

Instrument

- type
cv term

- definition
The mass spectrometry instrument used for the scan

- example value:
{"accession": "http://purl.obolibrary.org/obo/MS_1000449",
"name": "LTQ Orbitrap","ref": "MS"}

Instrument manufacturer

- type
cv term

- definition
The manufacturer of the MS instrument

- example value:
{"accession": "http://purl.obolibrary.org/obo/MS_1000483",
"name": "Thermo Fisher Scientific instrument model","ref": "MS"}

Instrument serial number

- type
free text

- definition
The serial number of the MS instrument

"value": "1057B"

Instrument software

1.1. Command Line Applications / Libraries 9

http://purl.obolibrary.org/obo/MS_1000026
http://purl.obolibrary.org/obo/MS_1000007
http://purl.obolibrary.org/obo/MS_1000031
http://purl.obolibrary.org/obo/MS_1001269
http://purl.obolibrary.org/obo/MS_1000529
http://purl.obolibrary.org/obo/MS_1001455

2isa Documentation, Release

- type
cv term

- definition
The software used by the MS instrument

- example value:
{"accession": "http://purl.obolibrary.org/obo/MS_1000532",
"name": "Xcalibur","ref": "MS"}

Instrument software version

- type:
free text

- definition
The version of the Instrument software

- example value:
{"value": "2.2"}

Ion source

- type
cv term

- definition
The method by which gas phase ions are generated from the sample.

- example value:
{"accession": "http://purl.obolibrary.org/obo/MS_1000073",
"name": "electrospray ionization","ref": "MS"}

MS Assay Name

- type
free text

- definition
The name of the MS Assay (mzML file name w/o extension)

- example value
{"value": "Person30_RBC_elder_NEG"}

Mass analyzer

- type
cv term

- definition
How ions are separated according to their mass-to-charge ratio

- example value
{"accession": "http://purl.obolibrary.org/obo/MS_1000083",
"name": "radial ejection linear ion trap","ref": "MS"}

Native spectrum identifier format

- type
cv term

- definition
The format of the native spectrum identifier

- example value
{"accession": "http://purl.obolibrary.org/obo/MS_1000768",
"name": "Thermo nativeID format","ref": "MS"}

Number of scans

- type:
int

- definition

10 Chapter 1. Documentation

http://purl.obolibrary.org/obo/MS_1000008
http://purl.obolibrary.org/obo/MS_1000443
http://purl.obolibrary.org/obo/MS_1000767

2isa Documentation, Release

The number of scans performed
- example value
{"value": 1073}

Raw Spectral Data File

- type
free text

- definition
The raw spectral data file (as extracted from the .mzML)

- example value
{"value": "20120627_SAM00533_RBC_NEG.RAW"}

Raw data file format

- type
cv term

- definition
The format of the raw data file

- example value
{"accession": "http://purl.obolibrary.org/obo/MS_1000563",
"name": "Thermo RAW format","ref": "MS"}

Sample Name

- type
free text

- definition
The name of the sample (populated as the .mzML filename w/o extension)

- example value
{"value": "Person30_RBC_elder_NEG"}

Scan m/z range

- type
free text

- definition
The isolation window m/z range used during the scans

- example value
{"value": "50-1945"}

Scan polarity

- type
free text

- definition
The polarity of the scan (can be 'positive', 'negative', 'alternating' or 'n/a')

- example value
{"value": "negative"}

Note: It would be preferable for this to be a cv term, but while the PSI-MS ontology provides positive scan and
a negative scan term, it doesn’t provide any alternating scan term although referencing it among the possible
scan polarity values. A request to add alternating scan to the MS ontology will probably be made.

Time range

- type:
free text

- definition

1.1. Command Line Applications / Libraries 11

http://purl.obolibrary.org/obo/MS_1000577
http://purl.obolibrary.org/obo/MS_1000560
http://purl.obolibrary.org/obo/MS_1000465
http://purl.obolibrary.org/obo/MS_1000130
http://purl.obolibrary.org/obo/MS_1000129
http://purl.obolibrary.org/obo/MS_1000465

2isa Documentation, Release

The range of scan start times of all the scans
- example value
{"value": "0.0061-30.0042"}

imzML

All the aforementioned (if relevant), and the following

Binary file checksum type

- type:
cv term w/ value

- definition
The value and type of the checksum used to check the binary file.

- example value:
{"accession":"IMS:1000091", "name": "ibd SHA-1", "ref": "IMS"}

Detector mode

- type
list of cv terms

- definition
The mode the detector was set on during the scans

- example value
{"entry_list": [

{"accession": "http://purl.obolibrary.org/obo/MS_1000118",
"name": "pulse counting","ref": "MS"},

]},

High-res image

- type
free text

- definition
The name of the high-res image file

- example value
{"value": "BRB04W.ndpi"}

Warning: Although the default value for this term will always be extracted as
"name_of_the_imzML_file".ndpi, mzml2isa will always try to find that file in the parsed
folder. Which means, if it can find it, nothing will be extracted for that value.

Ibd binary type

- type
cv term

- definition
The type of data contained in the ibd binary file

- example value
{"accession": "IMS:1000031",
"name": "processed","ref": "IMS"}

Line scan direction

- type
cv term

- definition
The direction in which the lines of the sample were scanned

12 Chapter 1. Documentation

http://purl.obolibrary.org/obo/MS_1000027

2isa Documentation, Release

- example value
{"accession": "IMS:1000491",
"name": "linescan left right","ref": "IMS"}

Linescan sequence

- type
cv term

- definition
The direction of the succession of the assembling of the linescans.

- example value
{"accession": "IMS:1000401",
"name": "top down","ref": "IMS"}

Max count of pixel x

- type
cv term w/ value

- definition
The max length of the x axis among all scans

- example value
{"accession": "IMS:1000042","name": "max count of pixel x",
"ref": "IMS","value": "103"}

Max count of pixel y

- type
cv term w/ value

- definition
The max length of the y axis among all scans

- example value
{"accession": "IMS:1000043","name": "max count of pixel y",
"ref": "IMS","value": "58"}

Max dimension x

- type
cv term w/ value w/ unit

- definition
The size of the largest scanned line of x axis

- example value
{"accession": "IMS:1000044",
"name": "max dimension x", "ref": "IMS",
"value": "9095"
"unit": {"accession": "UO:0000017",

"name": "micrometer","ref": "UO"} }

Max dimension y

- type
cv term w/ value w/ unit

- definition
The size of the largest scanned line of y axis

- example value
{"accession": "IMS:1000044",
"name": "max dimension x", "ref": "IMS",
"value": "8900"
"unit": {"accession": "UO:0000017",

"name": "micrometer","ref": "UO"} }

Pixel size x

1.1. Command Line Applications / Libraries 13

2isa Documentation, Release

- type
cv term w/ value w/ unit

- definition
The size of the x dimension of a pixel

- example value
{"accession": "IMS:1000046",
"name": "pixel size x","ref": "IMS",
"value": "85",
"unit": {"accession": "UO:0000017",

"name": "micrometer","ref": "UO"} }

Pixel size y

- type
cv term w/ value w/ unit

- definition
The size of the y dimension of a pixel

- example value
{"accession": "IMS:1000047",
"name": "pixel size y","ref": "IMS",
"value": "85",
"unit": {"accession": "UO:0000017",

"name": "micrometer","ref": "UO"} }

Scan pattern

- type
cv term

- definition
The pattern how the image was scanned (child of IMS:1000041)

- example value
{"accession": "IMS:1000413",
"name": "flyback","ref": "IMS"}

Scan type

- type
cv term

- definition
The direction in which the lines were scanned (child of IMS:1000048)

- example value
{"accession": "IMS:1000480",
"name": "horizontal line scan", "ref": "IMS"}

Solvent

- type
cv term w/ value

- definition
The solvent used on the sample

- example value
{"accession": "IMS:1001211",
"name": "solvent","ref": "IMS",
"value": "methanol"}

Note: That parameter was only seen once, and it was a free text value. It would be better if this was a cv term,
so changing the solvent column in the ISA file may be considered.

14 Chapter 1. Documentation

2isa Documentation, Release

Solvent flowrate

- type
cv term w/ value w/ unit

- definition
The flowrate of the solvent on the sample

- example value
{"accession": "IMS:1001213",
"name": "solvent flowrate", "ref": "IMS",
"value": "1.5"
"unit": {"accession": "IMS:1000131",

"name": "milliliter per minute","ref": "IMS"} }

Spectrum representation

- type
list of cv terms

- definition
The way in which the spectra are reprensented

- example value
{"entry_list": [

{"accession": "MS:1000127",
"name": "centroid spectrum","ref": "MS"}

]}

Target material

- type
free text

- definition
The material that is targeted by the IMS instrument

- example value
{"accession": "IMS:1000202",
"name": "target material","ref": "IMS",
"value": "Glas"}

Universally unique identifier

- type
cv term w/ value

- definition
The UUID of the IBD binary file

- example value
{"accession": "IMS:1000080",
"name": "universally unique identifier","ref": "IMS",
"value": "{6E2F1092-F43A-4169-94CB-61DD5A61047E}"}

Warning: The following items are being extracted with a redundant cv term, which we’ll probably get rid of in
the future:

• Target material
• Solvent
• Solvent flowrate
• Max dimension x
• Max dimension y
• Max count of pixel x
• Max count of pixel y
• Max dimension x
• Max dimension y

1.1. Command Line Applications / Libraries 15

http://purl.obolibrary.org/obo/MS_1000525
http://www.maldi-msi.org/index.php?option=com_content&view=article&id=191&Itemid=65#uuid

2isa Documentation, Release

API reference

mzMLmeta

class mzml2isa.mzml.mzMLmeta(in_file, ontology=None, complete_parse=False)
Class to store and obtain the meta information from the mzML file

The class uses the xpaths of mzML locations and then extracts meta information at these locations. The meta
info taken is determined by the ontology terms and a set of rules associated with that term e.g. if it can be
repeated, if has associated software if it has a value as well as name.

tree
lxml.etree.ElementTree – the tree object created from the mzML file

ns
dict – a dictionary containing the xml namespace mapping

obo
pronto.Ontology – the ontology object

meta
dict – structured dictionary containing extracted metadata

env
dict – the environment variables, tag names that are not standards among different mzML files.

build_env()
Build the env and the ns dictionaries.

cvParam_loop(elements, location_name, terms)
Loop through the elements and eventually update the self.meta dict.

Parameters

• elements (iterator) – the element containing the cvParam tags

• location_name (str) – Name of the xml location

• terms (dict) – terms that are to be extracted

data_file_content()
Extract the Data file content from all scans.

This method is called only in the case the FileContent xml Element contained no actual cvParam elements.
This was witnessed in at least one file from a Waters instrument.

derived()
Get the derived meta information

The derived meta information includes all tags that are solely based on the file name, such as MS Assay
Name, Derived Spectral Data File or Sample Name.

extract_meta(terms, xpaths)
Extract meta information for CV terms based on their location in the xml file

Updates the self.meta dictionary with the relevant meta information

Parameters

• terms (dict) – The CV and search parameters required at the xml locations

• xpath (dict) – the xpath locations to search

16 Chapter 1. Documentation

https://docs.python.org/library/functions.html#str
https://docs.python.org/library/stdtypes.html#dict
https://docs.python.org/library/stdtypes.html#dict
https://docs.python.org/library/stdtypes.html#dict

2isa Documentation, Release

See also:

cvParam_loop

merge_entries(name)
An unoptimized way of merging meta entries only made of duplicates.

This is only useful when the spectrum_meta method is called, as a way of reducing the size of some
meta entries that add no interesting information (for instance, when all binary data is compressed the same
way, it is useless to know that for each scan).

Parameters name (str) – the entry to de-duplicate

Returns the list of the list with deduplicated arguments

Return type list

Note: Using an OrderedSet to deduplicate while preserving order may be a good idea (see
http://code.activestate.com/recipes/576694/) for actual implementation

meta_isa
Returns the metadata dictionary with actual ISA headers

meta_json
Returns the metadata dictionary in json format

mzrange()
Try to extract the m/z range of all scans.

polarity()
Iterates over all scans to get the average polarity.

scan_num()
Extract the total number of scans.

software(soft_ref, name)
Get associated software of cv term. Updates the self.meta dictionary

Parameters

• soft_ref (str) – the reference to the software found in another xml “ref” attribute.

• name (str) – Name of the associated CV term that the software is associated to.

spectrum_meta()
Extract information of each spectrum in entry lists.

This method is only called is the complete_parse parameters was set as True when the mzMLmeta object
was created. This requires more time as iterating through hundreds of elements is bound to be more
performance hungry than just a few elements. It is believed to be useful when mzml2isa is used as a
parsing library.

timerange()
Try to extract the Time range of all the scans.

Time range consists in the smallest and largest time the successive scans were started. The unit (most of
the time minute) will be extracted as well if possible.

urlize()
Urllize all accessions within the meta dictionary

1.1. Command Line Applications / Libraries 17

https://docs.python.org/library/functions.html#str
https://docs.python.org/library/functions.html#list
http://code.activestate.com/recipes/576694/
https://docs.python.org/library/functions.html#str
https://docs.python.org/library/functions.html#str

2isa Documentation, Release

ISA_Tab

class mzml2isa.isa.ISA_Tab(out_dir, name, **kwargs)
Class to export a list of mzML or imzML metadata dictionnaries to ISA-Tab files

usermeta
dict – a dictionary containing metadata defined by the user, such as “Study Publication” or “Submission
Date”. Defaults to None.

isa_env
dict – a dictionary containing various environment variables associated with the current ISA_Tab object
(such as ‘Study file name’, ‘Written assays’, etc.)

create_assay(metalist, headers, data, **kwargs)
Write the assay file

Parameters

• metalist (list) – a list of mzml or imzml metadata dictionaries

• datatype (str) – the datatype of the study (either ‘mzML’ or ‘imzML’)

• headers (list) – the list containing the assay headers row

Keyword Arguments split (bool, optional) – a boolean stating if assay files should be
split based on their polarities. [default: True]

create_investigation(metalist, datatype)
Write the investigation file

Parameters

• metalist (list) – a list of mzml or imzml metadata dictionaries

• datatype (str) – the datatype of the study (either ‘mzML’ or ‘imzML’)

create_study(metalist, datatype)
Write the study file

Parameters

• metalist (list) – a list of mzml or imzml metadata dictionaries

• datatype (str) – the datatype of the study (either ‘mzML’ or ‘imzML’)

make_assay_template(metalist, datatype)
Generate the assay template rows

Parameters

• metalist (list) – a list of mzml or imzml metadata dictionaries

• datatype (str) – the datatype of the study (either ‘mzML’ or ‘imzML’)

Returns

tuple: a tuple containg the list containing the assay headers row and the list containing the assay
data row based on the cardinality of elements in the metalist

static unparameter(string)
Extract string ‘s’ from ‘Parameter Value[s]’

Parameters string (str) – full string

Returns the extracted substring

18 Chapter 1. Documentation

https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#str
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#str
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#str
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#str
https://docs.python.org/library/functions.html#str

2isa Documentation, Release

Return type str

write(metalist, datatype, **kwargs)
Generate and write the ISA files

Parameters

• metalist (list) – a list of mzml or imzml metadata dictionaries

• datatype (str) – the datatype of the study (either ‘mzML’ or ‘imzML’)

Keyword Arguments split (bool, optional) – a boolean stating if assay files should be
split based on their polarities. [default: True]

1.1.2 nmrml2isa

|DOI|

nmrml2isa is a program that allows you to convert metabolomic studies in .nmrML format to the open ISA-Tab
standard supported by the MetaboLights database.

Installation

nmrml2isa is available on PyPI, so if pip is installed on your machine installing nmrml2isa should be quite straight-
forward, without the need to worry about dependencies. It is also possible to install nmrml2isa development version
from its GitHub repository. Please note that the GitHub version of the program may fix bugs but also introduce new
bugs, and that it might not work on your files.

Windows

Windows users can either install mzml2isa as described below or use a ‘ready to go’ Windows executable (no python
install required). The executables be found on the nmrml2isa Github release section. See file nmrml2isa_cli.exe.

Dependencies

Warning: Without pip you’ll have to install the requirements yourself, otherwise running setup.py will fail
when trying to import nmrml2isa for the first time.

Requirements

pronto an interface to ontology files (used to import the MS controlled vocabulary)

chainmap (required for Python 2 or PyPy) a polyfill implementation of collections.ChainMap (available in Python
3 stdlib)

Extras

lxml an XML parser generally quicker than the builtin python xml.cElementTree (used as an alternative to parse the
nmrML files)

Note: If installing lxml on windows, you can either:

1.1. Command Line Applications / Libraries 19

https://docs.python.org/library/functions.html#str
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#str
https://github.com/ISA-tools/nmrml2isa
https://github.com/ISA-tools/nmrml2isa/releases
https://pypi.python.org/pypi/pronto
https://pypi.python.org/pypi/chainmap
https://pypi.python.org/pypi/lxml

2isa Documentation, Release

1. Compile it directly (requires Microsoft Visual C++ to be installed on the Windows machine): run the
command set STATICBUILD=true && pip install lxml

2. Install the unofficial windows binaries (whls)

PyPI (stable version)

With pip Just run one the following commands in a terminal:

pip install nmrml2isa # install for all users, needs super-user rights
pip install nmrml2isa --user # install only for the current user, no rights needed

Without pip This requires the python setuptools module to be installed, as well as the dependencies listed
above. Download the latest stable release from the PyPI repository, unpack it and install it by running the following
commands:

tar xf nmrml2isa-xx.yy.zz.tar.gz # replace with whatever version you downloaded
cd nmrml2isa-xx.yy.zz.tar.gz
python setup.py install # will require super-user rights

GitHub (development version)

Warning: Please check the current version of the program passes the Travis CI validation beforehand, or else
you’re likely to install a non-functioning version of the program ! The program is working if the badge above
displays .

With pip
pip install git+git://github.com/ISA-tools/nmrml2isa

Without pip
git clone https://github.com/ISA-tools/nmrml2isa
cd nmrml2isa
python setup.py install

Usage

Folder structure

nmrML nmrml2isa only requires that you put all you nmrML and zipped raw files in the same folder, and parsing
should work fine. Note that reference to RAW files is extracted from the mzML files, so if you plan to create an ISA
archive after mzml2isa creates ISA files, don’t forget to include those as well.

Example structure:

/
home/
metabolomics/

nmrML study/ # the name of the folder doesn't matter

20 Chapter 1. Documentation

http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml
https://pypi.python.org/pypi/nmrml2isa

2isa Documentation, Release

Sample1.nmrML # the name of the file must correspond to the sample name
Sample2.zip # the raw files should be zipped and called exactly like the nmrML
Sample2.nmrML
Sample2.zip
...

CLI

nmrml2isa -i /path/to/nmrml/folder -o /path/to/out_folder -s STUDYID

Python module

from nmrml2isa.parsing import full_parse
full_parse("/path/to/nmrml/folder", "/path/to/out_folder", "STUDYID")
this will do the same thing as the command line.

See the Examples and the API reference for more hindsights.

Editing with ISAcreator

The ISA-Tab structure can be further populated with the ISAcreator software.

See brief tutorial for more details.

Examples

All these examples assume we are working on a folder organized as the following (which is not mandatory, you just
have to put all your nmrML and zipped raw files in the same folder):

/
home/

metabolomics/
NMRML study/ # the name of the folder doesn't matter

Sample1.nmrML # the name of the file must correspond to the sample name
Sample1.zip # the raw files must be zipped and named as the nmrML file
Sample2.nmrML
Sample2.zip
...

Standalone program

Create a new MetaboLights study with existing nmrML data:

nmrml2isa -i "/home/metabolomics/NMRML study" -o "/home/metabolomics/isa" -s NMRML1

This will create a new folder and write the following ISA-Tab files:

/
home/

metabolomics/
isa/

a_NMRML1_metabolite_profiling_NMR_spectroscopy.txt

1.1. Command Line Applications / Libraries 21

http://isa-tools.org/software-suite/
http://2isa.readthedocs.io/en/latest/other/isacreator.html

2isa Documentation, Release

i_Investigation.txt
s_NMRML1.txt

Python module

To do the exact same thing within a Python program:

from nmrml2isa.parsing import full_parse
full_parse("/home/metabolomics/NMRML study", "/home/metabolomics/isa", "NMRML1")

It is also possible only to extract metadatas: for instance, let’s say we want to separate .nmrML files within the same
directory based on what the Acquisition Nucleus was for that particular NMR scan:

from nmrml2isa.nmrml import nmrMLmeta
import os

sorted_files = {}
in_dir = '/home/metabolomics/NMRML study'

for file in os.listdir(in_dir):

meta = nmrMLmeta(os.path.join(in_dir, file)).meta

if 'Acquisition Nucleus' in meta.keys():

if meta['Acquisition Nucleus']['name'] not in sorted_files.keys():
sorted_files[meta['Acquisition Nucleus']['name']] = []

sorted_files[meta['Acquisition Nucleus']['name']].append(file)

At the end of that snippet, sorted_files keys will be the different acquisition nucleuses used and the value of
each key will be a list of nmrML files where that nucleus was used.

Frequently Asked Questions

What metadata does nmrml2isa extract from .nmrML files ?

nmrml2isa extracts a lot more information than it actually writes to the final ISA-Tab files. To see a list of the metadata
that are extracted and can be accessed, look at the Extracted Terms list page.

How do I report an issue / ask for a new feature ?

Go on the GitHub repository issue tracker of the program, check that no similar issue already exist, and if so, open a
new issue and include the following information:

• what software and software version you used (you can know the version of the program by running nmrml2isa
--version in a terminal)

• one of the files you used (without this, nothing can be done to analyze the issue !)

• any remark you might have on how you think your file may not be generic (special instrument, multiple instru-
ments, special parameters, etc.)

• the complete traceback of the error if you report a crash

22 Chapter 1. Documentation

https://github.com/ISA-tools/nmrml2isa/issues

2isa Documentation, Release

The program crashed when I used it on my files !

As the nmrML file format is quite new, there is still issues to fix concerning the standardization of the format. The
converter might not work as intended, there might be missing tags in the nmrML file you tried to parse.

But most of the times those problems are not really complicated to mend, and they help making nmrml2isa a more and
more generic program.

In order to help the resolution of such problems, see How do I report an issue / ask for a new feature ?

The parameter xxxxx does not get extracted properly !

First of all: is it present in the source .nmrML file ? It could happen that some parameters were not successfully
written into the converted file when the nmrML converter converted the Raw NMR files.

Also, nmrml2isa relies on controlled vocabulary terms to extract those parameters from the source nmrML, so if the
parameters are present but not labeled, there are large chances those parameters won’t be extracted from the nmrML
file.

If however you still think the problem comes from our side, see How do I report an issue / ask for a new feature ?

The parameter xxxxx is not extracted !

There is large chances that if a parameter you want to extract was not extracted is that the extraction for that parameter
was not implemented. See How do I report an issue / ask for a new feature ? to report it and create a feature request.

Extracted Terms list

1r Data File

- type:
free text

- definition:
The path to the 1r Data File (relative to folder containing the .nmrML being parsed)

- example value:
{'value': 'ADG10003u_007/10/pdata/1/1r'}

1r Data Format

- type:
cv term

- definition:
The format of the 1r Data file (subclass of NMR:1001459)

- example value:
{"accession": "http://nmrml.org/cv/v1.0.rc1/nmrCV.owl#NMR:1400320",
"name": "Bruker UXNMR/XWIN-NMR format", "ref": "NMRCV"}

1r Data Type

- type:
cv term

- definition:
The type of the 1r Data (subclass of NMR:1000317)

- example value:
{"accession": "http://nmrml.org/cv/v1.0.rc1/nmrCV.owl#NMR:1000319",
"name": "1R file","ref": "NMRCV"}

1.1. Command Line Applications / Libraries 23

2isa Documentation, Release

Acquisition Nucleus

- type:
cv term

- definition:
The Nucleus which was used for the acquisition (reference to CHEBI is prefered)

- example value:
{"accession": "http://purl.obolibrary.org/obo/CHEBI_49637",
"name": "hydrogen atom", "ref": "CHEBI"}

Acquisition Parameter Data File

- type:
free text

- definition:
The path to the Acquisition Parameter Data File

- example value:
{"value": "ADG10003u_007/10/acqus"}

Acquisition Parameter Data Format

- type:
cv term

- definition:
The format of the Acquisition Parameter Data File

- example value:
{"accession": "http://nmrml.org/cv/v1.0.rc1/nmrCV.owl#NMR:1400320",
"name": "Bruker UXNMR/XWIN-NMR format", "ref": "NMRCV"}

Baseline Correction Method

- type:
cv term

- definition:
The algorithm used for baseline correction

- example value:
{"accession": "http://nmrML.org/nmrCV#NMR:1000225",
"name": "baseline correction using polynomial function", "ref": "NMRCV"}

Calibration Reference Shift

- type:
float w/ unit

- definition:
The shift used for calibration

- example value:
{}

Data Transformation Name

- type:
list of cv terms

- definition:
The successive transformation process the NMR data underwent
(all being subclasses of NMR:1400042)

- example value:
{"entry_list": [

{"accession": "http://nmrml.org/cv/v1.0.rc1/nmrCV.owl#NMR:1000071",
"name": "phase correction", "ref": "NMRCV"},

{"accession": "http://nmrml.org/cv/v1.0.rc1/nmrCV.owl#NMR:1400044",

24 Chapter 1. Documentation

2isa Documentation, Release

"name": "fourier transformation", "ref": "NMRCV"}
]}

Data Transformation software

- type:
cv term

- definition:
The software used for the data transformation (subclass of NMR:1400213)

- example value:
{"accession": "http://nmrML.org/nmrCV#NMR:1000352",
"name":"Bruker XWIN-NMR software", "ref":"NMRCV"}

Data Transformation software version

- type:
free text

- definition:
The version of the data transformation software

- example value:
{"value": "Version 3.5"}

Decoupling Nucleus:

- type:
cv term

- definition:
The atom used for decoupling (if any) (reference to CHEBI is prefered)

- example value:
{"accession": "http://purl.obolibrary.org/obo/CHEBI_49637",
"name": "hydrogen atom", "ref": "CHEBI"}

Derived Spectral Data File

- type:
free text

- definition:
The file containing the Derived Spectral Data (the nmrML file itself)

- example value:
{"value": "MMBBI_10M12-CE01-1a.nmrML"}

First Order Phase Correction

- type:
float w/ unit

- definition:
The value of the parameter used to correct the phase.

- example value:
{"value": "-9.745789",
"unit": {"accession": "http://purl.obolibrary.org/obo/UO_0000185",

"name": "degree", "ref": "UO"} }

Free Induction Decay Data File

- type:
free text

- definition:
The file containing the FID data

- example value:
{"value": "ADG10003u_007/10/fid"}

1.1. Command Line Applications / Libraries 25

2isa Documentation, Release

Free Induction Decay Data Format

- type:
cv term

- definition:
The format of the Free Induction Decay Data file (subclass of NMR:1000767)

- example value:
{"accession": "http://nmrML.org/nmrCV#NMR:1002003",
"name": "Varian FID format", "ref": "NMRCV"}

Instrument

- type:
cv term

- definition:
The NMR instrument that was used (subclass of NMR:1000031)

- example value:
{"accession": "http://nmrml.org/cv/v1.0.rc1/nmrCV.owl#NMR:1400236",
"name": "INOVA", "ref": "NMRCV"}

Instrument manufacturer

- type:
cv term

- definition:
The manufacturer of the instrument (subclass of NMR:1400255)

- example value:
{"accession": "http://nmrml.org/nmrCV.owl#NMR:1400257",
"name": "Varian", "ref": "NMRCV"}

Instrument software

- type:
cv term

- definition:
The software used by the NMR instrument (subclass of NMR:1400213)

- example value:
{"accession": "http://nmrML.org/nmrCV#NMR:1000352",
"name": "Bruker XWIN-NMR software", "ref": "NMRCV"}

Instrument software version

- type:
free text

- definition:
The version of the instrument software

- example value:
{"value": "Version 3.5"}

Irradiation Frequency

- type:
float w/ unit

- definition:
The irradiation frequency

- example value:
{"value": "699.873291",
"unit": {"accession": "http://purl.obolibrary.org/obo/UO_0000325",

"name": "megaHertz","ref": "UO"} }

Magnetic field strength

26 Chapter 1. Documentation

2isa Documentation, Release

- type:
float w/ unit

- definition:
The strength of the magnetic field (a.k.a Effective Excitation Field strength)

- example value:
{"value": "16.43813416009019",
"unit": {"accession": "http://purl.obolibrary.org/obo/UO_0000228",

"name": "tesla","ref": "UO"} }

Note: If the nmrML file also references an Acquisition Nucleus, and that this acquisition nucleus is among
known ones (1H, 2H, 13C, 14N, 15N, 17O, 31P), then the Magnetic field strength will be converted from mHz
to Tesla for the output to be SI-compliant.

NMR Assay Name

- type:
free text

- definition:
The name of the NMR Assay (default is nmrML file name w/o extension)

- example value:
{"value": "ADG10003u_007"}

NMR Probe

- type:
cv term or free text

- definition:
The NMR probe used for the scans.

- example value:
{"name": "5 mm PATXI 1H-13C/15N XYZ-GRD Z561501/0002"
"ref": "", "accession": ""} # No CV term

{"accession": "http://nmrml.org/cv/v1.0.rc1/nmrCV.owl#NMR:1000236",
"name": "5mm HCN probe", "ref": "NMRCV"} # CV term

Note: If the nmrML file contains both a controlled vocabulary referenced probe and an UserParam with a free
text probe reference, only the controlled vocabulary term will be extracted.

NMR tube type

- type:
cv term

- definition:
The sample tube used in the NMR instrument (subclass of NMR:1400132)

- example value:
{"accession": "http://nmrml.org/cv/v1.0.rc1/nmrCV.owl#NMR:1400132",
"name": "Sample-tube", "ref": "NMRCV"}

Number of data points

- type:
int

- definition:
The number of data points measured

- example value:
{"value": 65536}

1.1. Command Line Applications / Libraries 27

2isa Documentation, Release

Number of steady state scans

- type:
int

- definition:
The number of steady state scans performed

- example value:
{"value": 8}

Number of transients

- type:
int

- definition:
The number of scans performed

- example value:
{"value": 128}

Processing Parameter Data File

- type:
free text

- definition:
The file containing the Processing Parameter data

- example value:
{"value": "ADG10003u_007/10/pdata/1/procs"}

Processing Parameter Data Format

- type:
cv term

- definition:
The format of the Processing Parameter Data file

- example value:
{"accession": "http://nmrml.org/cv/v1.0.rc1/nmrCV.owl#NMR:1400320",
"name": "Bruker UXNMR/XWIN-NMR format", "ref": "NMRCV"}

Pulse Sequence Data File

- type:
free text

- definition:
The file containing the Pulse sequence data

- example value:
{"value": "ADG10003u_007/10/pulseprogram"}

Pulse Sequence Data Format

- type:
cv term

- definition:
The format of the Pulse Sequence Data file

- example value:
{"accession": "http://nmrml.org/cv/v1.0.rc1/nmrCV.owl#NMR:1400320",
"name": "Bruker UXNMR/XWIN-NMR format", "ref": "NMRCV"}

Pulse Width

- type:
float w/ unit

- definition:

28 Chapter 1. Documentation

2isa Documentation, Release

The pulse width of the scan
- example value:
{"value": "7.750000",
"unit": {"accession": "http://purl.obolibrary.org/obo/UO_0000029",

"name": "microsecond","ref": "UO"} }

Pulse sequence

- type:
cv term or free text

- definition:
The pulse sequence used for the scans (subclass of NMR:1400037)

- example value:
{"name": "noesypr1d"
"ref": "", "accession": ""} # No CV term

{"name": "1D carr purcell meiboom gill pulse sequence",
"accession": "http://nmrML.org/nmrCV#NMR:1400167", "ref": "NMRCV"} # CV term

Note: If the nmrML file contains both a controlled vocabulary referenced pulse sequence and an UserParam
with a free text pulse sequence defined, only the controlled vocabulary term will be extracted.

Relaxation Delay

- type:
float w/ unit

- definition:
The relaxation delay

- example value:
{"value": "3.000000",
"unit": {"accession": "http://purl.obolibrary.org/obo/UO_0000010",

"name": "secon","ref": "UO"} }

Sample Name

- type:
free text

- definition:
The name of the sample (default is nmrML file w/o extension)

- example value:
{"value": "ADG10003u_007"}

Sampling Strategy

- type:
cv term

- definition:
The sampling strategy used during the NMR scan (subclass of NMR:1000348)

- example value:
{"accession": "http://nmrml.org/cv/v1.0.rc1/nmrCV.owl#NMR:1000349",
"name": "uniform sampling", "ref": "NMRCV"}

Spectral Denoising Method

- type:
cv term

- definition:
The method used for spectral denoising

Spinning Rate

1.1. Command Line Applications / Libraries 29

2isa Documentation, Release

- type:
float w/ unit

- definition:
The spinning rate (if any)

- example value:
{"value": "0",
"unit": {"accession": "http://purl.obolibrary.org/obo/UO_0000169",

"name": "dimensionless","ref": "UO"} }

Sweep Width

- type:
float w/ unit

- definition:
The sweep width of the scan

- example value:
{"value": "14005.602241",
"unit": {"accession": "http://purl.obolibrary.org/obo/UO_0000106",

"name": "hertz", "ref": "UO"} }

Study_contacts

- type:
list

- definition:
A list of contacts references found in the nmrML file

- example value:
[{"first_name": "Lutger", "mid": "A.", "last_name": "Wessjohann",

"mail": "Ludger.Wessjohann [a] ipb-halle.de"},
{"first_name": "Mohamed", "mid": "A.", "last_name": "Farag",
"mail": "mfarag73 [a] yahoo.com"}]

Temperature

- type:
float w/ unit

- definition:
The temperature of the sample

- example value:
{"value": "300.0000",
"unit": {"accession": "http://purl.obolibrary.org/obo/UO_0000012",

"name": "kelvin", "ref": "UO"} }

Window Function Method

- type:
cv term

- definition:
The format of the window function method that was used (subclass of NMR:1400068)

- example value:
{"accession": "http://nmrml.org/cv/v1.0.rc1/nmrCV.owl#NMR:1400069",
"name": "exponential multiplication window function", "ref": "NMRCV"}

X axis range

- type:
free text w/ unit

- definition:
The range of the X axis

- example value:

30 Chapter 1. Documentation

2isa Documentation, Release

{"value": "2-25",
"unit": {"accession": "http://purl.obolibrary.org/obo/UO_0000169",

"name": "parts per million", "ref": "UO"} }

Y axis type

- type:
cv term

- definition:
The unit of the Y axis of the spectrum

- example value:
{"accession": "http://purl.obolibrary.org/obo/UO_0000169",
"name": "dimensionless","ref": "UO"}

Zero Value Phase Correction

- type:
float w/ unit

- definition:
The parameter used for the Zero Value Phase Correction

- example value:
{"value": "-37.977290"
"unit": {"accession": "http://purl.obolibrary.org/obo/UO_0000185",

"name": "degree","ref": "UO"} }

API reference

nmrMLmeta

class nmrml2isa.nmrml.nmrMLmeta(in_file, cached_onto=None)

ISA_Tab

class nmrml2isa.isa.ISA_Tab(out_dir, name, usermeta=None, template_directory=None)

1.2 Graphical User Interfaces

The graphical user interfaces are divided into mzmlisa-qt (covering mzML), imzml2isa-qt (covering imzML) and
nmrml2isa-qt (covering nmrML).

1.2.1 mzml2isa-qt

mzml2isa-qt is a Graphical User Interface for mzml2isa, that allows converting mzML files to ISA-Tab files with the
help of mzml2isa as well as adding more metadata to the generated ISA files through its interface.

Installation

mzml2isa-qt is available on PyPI, so if pip is installed on your machine, installing mzml2isa should be quite straight-
forward, without the need to worry about dependencies. It is also possible to install mzml2isa development version
directly from the mzml2isa-qt GitHub repository.

1.2. Graphical User Interfaces 31

https://github.com/ISA-tools/mzml2isa-qt

2isa Documentation, Release

Warning: mzml2isa-qt is a Python3 program only !

Windows

Windows users can either install mzml2isa-qt as described below or use a ‘ready to go’ Windows executable
(no python install required). The executables be found on the mzml2isa-qt Github release section. See file
mzml2isa_gui.exe.

Dependencies

Warning: Without pip you’ll have to install the requirements yourself, otherwise running setup.py will fail
when trying to import nmrml2isa for the first time.

Requirements

nmrml2isa the parsing libary (see here)

PyQt5 the GUI toolkit used by nmrml2isa-qt (see here for more information about PyQt)

PyPI (stable version)

With pip Just run one of the following commands in a terminal:

pip install mzml2isa-qt # install on the machine, needs super-user rights
pip install mzml2isa-qt --user # install only for the current user, no rights needed

Without pip This requires the python setuptools module to be installed, as well as the dependencies listed
above. Download the latest stable release from the PyPI repository, unpack it and install it by running the following
commands:

tar xf mzml2isa-qt-xx.yy.zz.tar.gz # replace with whatever version you downloaded
cd mzml2isa-qt-xx.yy.zz.tar.gz
python setup.py install # will require super-user rights

GitHub (development version)

With pip
pip install git+git://github.com/ISA-tools/mzml2isa-qt

Without pip
git clone https://github.com/ISA-tools/mzml2isa-qt
cd mzml2isa-qt
python setup.py install

32 Chapter 1. Documentation

https://github.com/ISA-tools/mzml2isa-qt/releases
https://pypi.python.org/pypi/nmrml2isa
http://2isa.readthedocs.io/en/latest/nmrml2isa/index.html
https://pypi.python.org/pypi/PyQt5/5.6
https://riverbankcomputing.com/software/pyqt/intro
https://pypi.python.org/pypi/mzml2isa-qt

2isa Documentation, Release

Usage

Video tutorial

See below for 5 min video for how to use either mzml2isa-qt, imzml2isa-qt or nmrml2isa-qt.

https://www.youtube.com/watch?v=xy3uusQRkbI

Folder structure

For mzML files, mzml2isa only requires that you put all you files in the same folder, and parsing should work fine.
Note that reference to RAW files is extracted from the mzML files, so if you plan to create an ISA archive after
mzml2isa creates ISA files, don’t forget to include those as well.

Example structure:

/
home/
metabolomics/

MZML study1/ # the name of the folder doesn't matter
Sample1.mzML # the name of the file must correspond to the sample name
Sample2.mzML
...

MZML study2/ # the name of the folder doesn't matter
Sample1.mzML # the name of the file must correspond to the sample name
Sample2.mzML
...

See the mzml2isa documentation for more details.

1.2. Graphical User Interfaces 33

https://www.youtube.com/watch?v=xy3uusQRkbI
http://2isa.readthedocs.io/en/latest/mzml2isa/usage.html

2isa Documentation, Release

Starting interface

1. Directory containing the mzML files. e.g. ‘MZML study1’ in the above example

2. Output folder (automatically the same as input)

3. Study name (automatically the same as the input folder name, e.g. ‘MZML study1’ in the above example)

4. If the ‘input folder’ contains multiple studies then mzML2ISA will be run each study, e.g. in the above example
if ‘metabolomics’ folder was chosen as the ‘input folder’ then the parsing will be performed on both studies
(‘MZML study 1’, ‘MZML study 2’)

5. If selected, separate assay files will be created for positive and negative assays

6. If selected, the output folder will be the same as the input folder and input folder name will be used as the study
name

7. The ‘Add Metadata’ button will open a new dialog box where users can add more metadata

8. Start the conversion process!

Adding additional metadata

Users can add additional metadata manually through the dialog box below. However, all this information can be added
at the final stage with ISAcreator tool.

34 Chapter 1. Documentation

2isa Documentation, Release

Conversion

The following dialog boxes after the convert button is pressed. By default this is run in parallel (multiple cores). The
following file types will be generated Investigation, Study and Assay

1.2. Graphical User Interfaces 35

2isa Documentation, Release

Editing with ISAcreator

The ISA-Tab structure can be further populated with the ISAcreator software.

See brief tutorial for more details.

1.2.2 imzml2isa-qt

imzml2isa-qt is a Graphical User Interface for mzml2isa, that allows converting imzML files to ISA-Tab files with the
help of mzml2isa as well as adding more metadata to the generated ISA files through its interface.

Installation

imzml2isa-qt is available on PyPI, so if pip is installed on your machine, installing mzml2isa should be quite straight-
forward, without the need to worry about dependencies. It is also possible to install mzml2isa development version
directly from the imzml2isa-qt GitHub repository.

Warning: imzml2isa-qt is a Python3 program only !

Windows

Windows users can either install imzml2isa-qt as described below or use a ‘ready to go’ Windows executable
(no python install required). The executables be found on the imzml2isa-qt Github release section. See file
imzml2isa_gui.exe.

Dependencies

Warning: Without pip you’ll have to install the requirements yourself, otherwise running setup.py will fail
when trying to import nmrml2isa for the first time.

Requirements

nmrml2isa the parsing library (see here)

PyQt5 the GUI toolkit used by nmrml2isa-qt (see here for more information about PyQt)

PyPI (stable version)

With pip Just run one of the following commands in a terminal:

pip install imzml2isa-qt # install on the machine, needs super-user rights
pip install imzml2isa-qt --user # install only for the current user, no rights needed

36 Chapter 1. Documentation

http://isa-tools.org/software-suite/
http://2isa.readthedocs.io/en/latest/other/isacreator.html
https://github.com/ISA-tools/imzml2isa-qt
https://github.com/ISA-tools/imzml2isa-qt/releases
https://pypi.python.org/pypi/nmrml2isa
http://2isa.readthedocs.io/en/latest/nmrml2isa/index.html
https://pypi.python.org/pypi/PyQt5/5.6
https://riverbankcomputing.com/software/pyqt/intro

2isa Documentation, Release

Without pip This requires the python setuptools module to be installed, as well as the dependencies listed
above. Download the latest stable release from the PyPI repository, unpack it and install it by running the following
commands:

tar xf imzml2isa-qt-xx.yy.zz.tar.gz # replace with whatever version you downloaded
cd imzml2isa-qt-xx.yy.zz.tar.gz
python setup.py install # will require super-user rights

GitHub (development version)

With pip
pip install git+git://github.com/ISA-tools/imzml2isa-qt

Without pip
git clone https://github.com/ISA-tools/imzml2isa-qt
cd imzml2isa-qt
python setup.py install

Usage

Video tutorial

See below for 5 min video for how to use either mzml2isa-qt, imzml2isa-qt or nmrml2isa-qt.

https://www.youtube.com/watch?v=xy3uusQRkbI

Folder structure

For imzML files, you must have your imzML files in the same folder, but also the low- and high-res images of your
scans (*.jpg, *.ibd, *.ndpi, etc...) named exactly like the imzML file of that particular scan (as mzml2isa scans the
directory of the source file to eventually extract the location of those images):

/
home/
metabolomics/

imzml_study_1/
A14 5cm S3.ndpi
A14 5cm S3.jpg # Sample name will be
A14 5cm S3-centroid.ibd # "A14 5cm S3"
A14 5cm S3-centroid.imzML # and centroid and profile
A14 5cm S3-profile.ibd # scans will be merged.
A14 5cm S3-profile.imzML
A14 10cm S3.ndpi
A14 10cm S3.jpg # Sample name will be
A14 10cm S3-centroid.ibd # "A14 10cm S3"
A14 10cm S3-centroid.imzML # and centroid and profile
A14 10cm S3-profile.ibd # scans will be merged
A14 10cm S3-profile.imzML
...

imzml_study_2/
B14 5cm S3.ndpi
B14 5cm S3.jpg

1.2. Graphical User Interfaces 37

https://pypi.python.org/pypi/imzml2isa-qt
https://www.youtube.com/watch?v=xy3uusQRkbI

2isa Documentation, Release

B14 5cm S3-centroid.ibd
B14 5cm S3-centroid.imzML

See the mzml2isa documentation for more details.

Starting interface

1. Directory containing the mzML files. e.g. ‘imzml_study_1’ in the above example

2. Output folder (automatically the same as input)

3. Study name (automatically the same as the input folder name, e.g. ‘imzml_study_1’ in the above example)

4. If the ‘input folder’ contains multiple studies then mzML2ISA will be run each study, e.g. in the above example
if ‘metabolomics’ folder was chosen as the ‘input folder’ then the parsing will be performed on both studies
(‘imzml_study_1’, ‘imzml_study_2’)

5. If selected, when profile and centroided files of the same run are available the two files will be merged and saved
under a single row in the assay file

6. If selected, the output folder will be the same as the input folder and input folder name will be used as the study
name

7. The ‘Add Metadata’ button will open a new dialog box where users can add more metadata

38 Chapter 1. Documentation

http://2isa.readthedocs.io/en/latest/mzml2isa/usage.html

2isa Documentation, Release

8. Start the conversion process!

Adding additional metadata

Users can add additional metadata manually through the dialog box below. However, all this information can be added
at the final stage with ISAcreator tool.

Conversion

The following dialog boxes after the convert button is pressed. By default this is run in parallel (multiple cores). The
following file types will be generated Investigation, Study and Assay

1.2. Graphical User Interfaces 39

2isa Documentation, Release

Editing with ISAcreator

The ISA-Tab structure can be further populated with the ISAcreator software.

See brief tutorial for more details.

1.2.3 nmrml2isa-qt

nmrml2isa-qt is a Graphical User Interface for nmrml2isa, that allows converting mzML files to ISA-Tab files with the
help of nmrml2isa as well as adding more metadata to the generated ISA files through its interface.

Installation

nmrml2isa-qt is available on PyPI, so if pip is installed on your machine, installing nmrml2isa should be quite
straightforward, without the need to worry about dependencies. It is also possible to install nmrml2isa development
version directly from the nmrml2isa-qt GitHub repository.

Warning: nmrml2isa-qt is a Python3 program only !

Windows

Windows users can either install nmrml2isa-qt as described below or use a ‘ready to go’ Windows executable (no
python install required). The executables be found on the nmrml2isa-qt Github release section. See file nm-
rml2isa_gui.exe.

40 Chapter 1. Documentation

http://isa-tools.org/software-suite/
http://2isa.readthedocs.io/en/latest/other/isacreator.html
https://github.com/Isa-tools/nmrml2isa-qt
https://github.com/ISA-tools/nmrml2isa-qt/releases

2isa Documentation, Release

Dependencies

Warning: Without pip you’ll have to install the requirements yourself, otherwise running setup.py will fail
when trying to import nmrml2isa for the first time.

Requirements

nmrml2isa the parsing libary (see here)

PyQt5 the GUI toolkit used by nmrml2isa-qt (see here for more information about PyQt)

PyPI (stable version)

With pip Just run one of the following commands in a terminal:

pip install nmrml2isa-qt # install in /usr, needs super-user rights
pip install nmrml2isa-qt --user # install in ~/.local

Without pip This requires the python setuptools module to be installed, as well as the dependencies listed
above. Download the latest stable release from the PyPI repository, unpack it and install it by running the following
commands:

tar xf nmrml2isa-qt-xx.yy.zz.tar.gz # replace with whatever version you downloaded
cd nmrml2isa-qt-xx.yy.zz.tar.gz
python setup.py install # will require super-user rights

GitHub (development version)

With pip
pip install git+git://github.com/ISA-tools/nmrml2isa-qt

Without pip
git clone https://github.com/ISA-tools/nmrml2isa-qt
cd nmrml2isa-qt
python setup.py install # will require super-user rights

Usage

Video tutorial

See below for 5 min video for how to use either mzml2isa-qt, imzml2isa-qt or nmrml2isa-qt.

https://www.youtube.com/watch?v=xy3uusQRkbI

1.2. Graphical User Interfaces 41

https://pypi.python.org/pypi/nmrml2isa
http://2isa.readthedocs.io/en/latest/nmrml2isa/index.html
https://pypi.python.org/pypi/PyQt5/5.6
https://riverbankcomputing.com/software/pyqt/intro
https://pypi.python.org/pypi/nmrml2isa-qt
https://www.youtube.com/watch?v=xy3uusQRkbI

2isa Documentation, Release

Folder structure

nmrml2isa only requires that you put all you nmrML and zipped raw files in the same folder, and parsing should work
fine. Note that reference to RAW files is extracted from the mzML files, so if you plan to create an ISA archive after
mzml2isa creates ISA files, don’t forget to include those as well.

Example structure:

/
home/
metabolomics/

nmrML_study1/ # the name of the folder doesn't matter
Sample1.nmrML # the name of the file must correspond to the sample name
Sample2.zip # the raw files should be zipped and called exactly like the nmrML
Sample2.nmrML
Sample2.zip
...

nmrML_study2/
Sample1.nmrML
Sample2.zip
Sample2.nmrML
Sample2.zip
...

42 Chapter 1. Documentation

2isa Documentation, Release

Starting interface

1. Directory containing the mzML files. e.g. ‘nmrML_study1’ in the above example

2. Output folder (automatically the same as input)

3. Study name (automatically the same as the input folder name, e.g. ‘nmrML_study1’ in the above example)

4. If the ‘input folder’ contains multiple studies then mzML2ISA will be run each study, e.g. in the above example
if ‘metabolomics’ folder was chosen as the ‘input folder’ then the parsing will be performed on both studies
(‘nmrML_study 1’, ‘nmrML_study 2’)

5. If selected, separate assay files will be created for positive and negative assays

6. If selected, the output folder will be the same as the input folder and input folder name will be used as the study
name

7. The ‘Add Metadata’ button will open a new dialog box where users can add more metadata

8. Start the conversion process!

Adding additional metadata

Users can add additional metadata manually through the dialog box below. However, all this information can be added
at the final stage with ISAcreator tool.

1.2. Graphical User Interfaces 43

2isa Documentation, Release

Conversion

The following dialog boxes after the convert button is pressed. By default this is run in parallel (multiple cores). The
following file types will be generated Investigation, Study and Assay

44 Chapter 1. Documentation

2isa Documentation, Release

Editing with ISAcreator

The ISA-Tab structure can be further populated with the ISAcreator software.

See brief tutorial for more details.

1.3 Galaxy interfaces

The Galaxy interfaces are divided into mzml2isa-galaxy (covering mzML and imzML) and nmrml2isa-galaxy (cover-
ing nmrML)

1.3.1 mzml2isa-galaxy

mzml2isa-galaxy is a Galaxy wrapper for the nmrml2isa python package tool.

Galaxy repository is a web based workflow platform that can be used to perform bioinformatics in a reproducible and
sharable environment.

Installation

The recommended installation is via the toolshed repository. Dependencies should be installed automatically when
using Galaxy version >= 16.10.

The dependencies are dealt with Bioconda. To ensure that Bioconda is working check to make sure the following
settings are in the config/galaxy.ini file:

dependencies before each job runs.
conda_auto_install = True
Set to True to instruct Galaxy to install Conda from the web automatically
if it cannot find a local copy and conda_exec is not configured.
conda_auto_init = True

Usage

Folder structure

For mzML files, mzml2isa only requires that you put all you files in the same folder, and parsing should work fine.
Note that reference to RAW files is extracted from the mzML files, so if you plan to create an ISA archive after
mzml2isa creates ISA files, don’t forget to include those as well.

Example structure:

/
home/
metabolomics/

MZML study1/ # the name of the folder doesn't matter
Sample1.mzML # the name of the file must correspond to the sample name
Sample2.mzML
...

MZML study2/ # the name of the folder doesn't matter
Sample1.mzML # the name of the file must correspond to the sample name
Sample2.mzML
...

1.3. Galaxy interfaces 45

http://isa-tools.org/software-suite/
http://2isa.readthedocs.io/en/latest/other/isacreator.html
https://galaxyproject.org/
https://toolshed.g2.bx.psu.edu/

2isa Documentation, Release

See the mzml2isa documentation for more details.

The folders need to be zipped before adding to galaxy e.g. MZML study1.zip. The zipped folders are then added 1 at
a time through the GetData interface of Galaxy.

Getting data into Galaxy

Using the GetData tab, add the zipped metabolomics study into galaxy. Remember to use the ‘zip’ file type

Running nmrml2isa

1. Study name

2. zipped folder containing the nmrML files

3. For advanced users only. This allows any additional metadata to be added in json format see json format

46 Chapter 1. Documentation

http://2isa.readthedocs.io/en/latest/mzml2isa/usage.html
http://2isa.readthedocs.io/en/latest/json-metadata/index.html

2isa Documentation, Release

4. Optional simple additional metadata can be added manually through the dropdown tabs

Output

The output consists of the following:

• I File: Investigation file

• S Files: Dataset collection containing 1 or more study files

• A Files: Dataset collection containing 1 or more assay files

• ISA zip file: A zip file containing all of the outputs

Editing with ISAcreator

The ISA-Tab structure can be further populated with the ISAcreator software.

See brief tutorial for more details.

1.3.2 nmrml2isa-galaxy

nmrml2isa-galaxy is a Galaxy wrapper for the nmrml2isa python package tool.

Galaxy repository is a web based workflow platform that can be used to perform bioinformatics in a reproducible and
sharable environment.

1.3. Galaxy interfaces 47

http://isa-tools.org/software-suite/
http://2isa.readthedocs.io/en/latest/other/isacreator.html
https://galaxyproject.org/

2isa Documentation, Release

Installation

The recommended installation is via the toolshed repository. Dependencies should be installed automatically when
using Galaxy version >= 16.10.

The dependencies are dealt with Bioconda. To ensure that Bioconda is working check to make sure the following
settings are in the config/galaxy.ini file:

dependencies before each job runs.
conda_auto_install = True
Set to True to instruct Galaxy to install Conda from the web automatically
if it cannot find a local copy and conda_exec is not configured.
conda_auto_init = True

Usage

Folder structure

nmrml2isa only requires that you put all you nmrML and zipped raw files in the same folder, and parsing should work
fine. Note that reference to RAW files is extracted from the mzML files, so if you plan to create an ISA archive after
mzml2isa creates ISA files, don’t forget to include those as well.

Example structure:

/
home/
metabolomics/

nmrML_study1/ # the name of the folder doesn't matter
Sample1.nmrML # the name of the file must correspond to the sample name
Sample2.zip # the raw files should be zipped and called exactly like the nmrML
Sample2.nmrML
Sample2.zip
...

nmrML_study2/
Sample1.nmrML
Sample2.zip
Sample2.nmrML
Sample2.zip
...

The folders need to be zipped before adding to galaxy e.g. nmrML_study1.zip. The zipped folders are then added 1 at
a time through the GetData interface of Galaxy.

Getting data into Galaxy

Using the GetData tab, add the zipped metabolomics study into galaxy. Remember to use the ‘zip’ file type

48 Chapter 1. Documentation

https://toolshed.g2.bx.psu.edu/

2isa Documentation, Release

Running nmrml2isa

1. Study name

2. zipped folder containing the nmrML files

3. For advanced users only. This allows any additional metadata to be added in json format

4. Optional simple additional metadata can be added manually through the dropdown tabs

1.3. Galaxy interfaces 49

http://2isa.readthedocs.io/en/latest/json-metadata/index.html

2isa Documentation, Release

Output

The output consists of the following:

• I File: Investigation file

• S Files: Dataset collection containing 1 or more study files

• A Files: Dataset collection containing 1 or more assay files

• ISA zip file: A zip file containing all of the outputs

Editing with ISAcreator

The ISA-Tab structure can be further populated with the ISAcreator software.

See brief tutorial for more details.

50 Chapter 1. Documentation

http://isa-tools.org/software-suite/
http://2isa.readthedocs.io/en/latest/other/isacreator.html

2isa Documentation, Release

1.4 Other

1.4.1 Other

Editing with ISAcreator

The ISA-Tab structure genearted from the 2ISA tools can be further populated with the ISAcreator software.

The workflow being as follows:

1. Open the ISAcreator software (available for Mac, Linux and Windows)

2. Select the ISAcreator button

3. Login (create a profile if the first time being used)

4. Choose a configuration that is suited for the study

5. Choose the ‘Load and existing isatab file’ option

6. Click on the ‘open another’ button and find the folder containing the newly created ISA-tab files

7. Fill all remaining fields with ISAcreator

A video of the standard Metabolights procedure can be found on youtube.

Metadata in JSON format

Warning: For advanced use and developers only

1.4. Other 51

http://isa-tools.org/software-suite/
https://www.youtube.com/watch?v=LJFf4O6QPl8/

2isa Documentation, Release

Metadata extraction in JSON format

All metadata extracted from the XML files can be saved in a JSON format. The format is easily interchangeable with
python dictionaries can also be easily ‘piped’ to other bioinformatic pipelines regardless of programming language
used.

Adding experimental metadata via JSON format

Additional metadata not found in the XML files can be added in a JSON format e.g. organism studied, chromatography
used, contact details etc.

This allows existing bioinformatic/computational workflows, which may already have collected some additional meta-
data, to automatically populate additional entries in the ISA-Tab files.

Example format:

{
"characteristics": {

"organism": {
"name": "",
"accession": "",
"ref": ""

},
"organism_variant": {

"name": "",
"accession": "",
"ref": ""

},
"organism_part": {

"name": "",
"accession": "",
"ref": ""

}
}

}

See the following link for full example of JSON used for mzml2isa.

Example templates for the metadata JSON can be extracted from either mzml2isa-qt, imzml2isa-qt or nmrml2isa-qt.

Run either of the following:

python3 -m mzml2isa_qt.usermeta
python3 -m imzml2isa_qt.usermeta
python3 -m nmrml2isa_qt.usermeta

Add any metadata through the GUI and then click apply. The terminal will then spit out the JSON text.

Adding additional metadata via JSON for CLI:

For the CLI simply use the -m option and direct to the json file.

mzml2isa -i /path/to/mzml/folder -o /path/to/out_folder -s STUDYID -m metadata.json
nmrml2isa -i /path/to/mzml/folder -o /path/to/out_folder -s STUDYID -m metadata.json

Adding additional metadata via JSON for API:

52 Chapter 1. Documentation

http://codebeautify.org/jsonviewer/cba2a5c8

2isa Documentation, Release

For the API the usermeta paramater can be used to pass the JSON metadata as a python dictionary to the ISA_Tab
class. See the following API documentation for class mzml2isa.isa.ISA_Tab and class nmrml2isa.isa.ISA_Tab

Adding additional metadata via JSON for Galaxy:

This metadata can be added manually via the dropdown options or via a prepared JSON file using the Additional
user metadata in json option.

Adding additional metadata via JSON for GUI:

Not possible. This metadata is added directly via the GUI using the usermeta dialog.

1.4. Other 53

http://2isa.readthedocs.io/en/latest/mzml2isa/api/isatab.html
http://2isa.readthedocs.io/en/latest/nmrml2isa/api/isatab.html

2isa Documentation, Release

54 Chapter 1. Documentation

CHAPTER 2

About

2.1 Contacts

2.1.1 Martin Larralde

Co-author of mzml2isa, author of nmrml2isa
Ecole Normale Supérieure de Cachan, France
martin.larralde@ens-cachan.fr

2.1.2 Tom Lawson

Co-author of mzml2isa
University of Birmingham, United Kingdom
tnl495@bham.ac.uk

2.1.3 Reza Salek

Scientific coordinator of mzml2isa and nmrml2isa
European Bioinformatics Institute, United Kingdom
reza.salek@ebi.ac.uk

55

mailto:martin.larralde@ens-cachan.fr
mailto:tnl495@bham.ac.uk
mailto:reza.salek@ebi.ac.uk

2isa Documentation, Release

56 Chapter 2. About

Index

Symbols
1r Data File, 23
1r Data Format, 23
1r Data Type, 23

A
Acquisition Nucleus, 24
Acquisition Parameter Data File, 24
Acquisition Parameter Data Format, 24

B
Baseline Correction Method, 24
Binary file checksum type, 12
build_env() (mzml2isa.mzml.mzMLmeta method), 16

C
Calibration Reference Shift, 24
create_assay() (mzml2isa.isa.ISA_Tab method), 18
create_investigation() (mzml2isa.isa.ISA_Tab method),

18
create_study() (mzml2isa.isa.ISA_Tab method), 18
cvParam_loop() (mzml2isa.mzml.mzMLmeta method),

16

D
Data file checksum type, 8
Data file content, 8
Data Transformation Name, 8, 24
Data Transformation software, 8, 25
Data Transformation software version, 8, 25
data_file_content() (mzml2isa.mzml.mzMLmeta

method), 16
Decoupling Nucleus:, 25
Derived Spectral Data File, 9, 25
derived() (mzml2isa.mzml.mzMLmeta method), 16
Detector, 9
Detector mode, 12

E
env (mzMLmeta attribute), 16

extract_meta() (mzml2isa.mzml.mzMLmeta method), 16

F
First Order Phase Correction, 25
Free Induction Decay Data File, 25
Free Induction Decay Data Format, 26

H
High-res image, 12

I
Ibd binary type, 12
Inlet type, 9
Instrument, 9, 26
Instrument manufacturer, 9, 26
Instrument serial number, 9
Instrument software, 9, 26
Instrument software version, 10, 26
Ion source, 10
Irradiation Frequency, 26
isa_env (ISA_Tab attribute), 18
ISA_Tab (class in mzml2isa.isa), 18
ISA_Tab (class in nmrml2isa.isa), 31

L
Line scan direction, 12
Linescan sequence, 13

M
Magnetic field strength, 26
make_assay_template() (mzml2isa.isa.ISA_Tab method),

18
Mass analyzer, 10
Max count of pixel x, 13
Max count of pixel y, 13
Max dimension x, 13
Max dimension y, 13
merge_entries() (mzml2isa.mzml.mzMLmeta method),

17
meta (mzMLmeta attribute), 16

57

2isa Documentation, Release

meta_isa (mzml2isa.mzml.mzMLmeta attribute), 17
meta_json (mzml2isa.mzml.mzMLmeta attribute), 17
MS Assay Name, 10
mzMLmeta (class in mzml2isa.mzml), 16
mzrange() (mzml2isa.mzml.mzMLmeta method), 17

N
Native spectrum identifier format, 10
NMR Assay Name, 27
NMR Probe, 27
NMR tube type, 27
nmrMLmeta (class in nmrml2isa.nmrml), 31
ns (mzMLmeta attribute), 16
Number of data points, 27
Number of scans, 10
Number of steady state scans, 28
Number of transients, 28

O
obo (mzMLmeta attribute), 16

P
Pixel size x, 13
Pixel size y, 14
polarity() (mzml2isa.mzml.mzMLmeta method), 17
Processing Parameter Data File, 28
Processing Parameter Data Format, 28
Pulse sequence, 29
Pulse Sequence Data File, 28
Pulse Sequence Data Format, 28
Pulse Width, 28

R
Raw data file format, 11
Raw Spectral Data File, 11
Relaxation Delay, 29

S
Sample Name, 11, 29
Sampling Strategy, 29
Scan m/z range, 11
Scan pattern, 14
Scan polarity, 11
Scan type, 14
scan_num() (mzml2isa.mzml.mzMLmeta method), 17
software() (mzml2isa.mzml.mzMLmeta method), 17
Solvent, 14
Solvent flowrate, 15
Spectral Denoising Method, 29
Spectrum representation, 15
spectrum_meta() (mzml2isa.mzml.mzMLmeta method),

17
Spinning Rate, 29

Study_contacts, 30
Sweep Width, 30

T
Target material, 15
Temperature, 30
Time range, 11
timerange() (mzml2isa.mzml.mzMLmeta method), 17
tree (mzMLmeta attribute), 16

U
Universally unique identifier, 15
unparameter() (mzml2isa.isa.ISA_Tab static method), 18
urlize() (mzml2isa.mzml.mzMLmeta method), 17
usermeta (ISA_Tab attribute), 18

W
Window Function Method, 30
write() (mzml2isa.isa.ISA_Tab method), 19

X
X axis range, 30

Y
Y axis type, 31

Z
Zero Value Phase Correction, 31

58 Index

	Documentation
	Command Line Applications / Libraries
	Graphical User Interfaces
	Galaxy interfaces
	Other

	About
	Contacts

