
2DNS Documentation
Release 0.0.1

Sayop Kim

September 25, 2014

Contents

1 Project description 3
1.1 Given task . 3
1.2 Governing Equations . 3
1.3 Computational Domain . 4

2 Code development 5
2.1 2DNS Code summary . 5

3 Numerical Method 7
3.1 Flux vector evaluation . 7
3.2 Initial Conditions . 8
3.3 Boundary Conditions . 9
3.4 Convergence Log (RMS error) . 9

4 How to run the code 11
4.1 Machine platform for development . 11
4.2 Code setup . 11
4.3 Input file setup . 12

5 Results and discussions 15
5.1 Computational Grid . 15
5.2 Inviscid solution (CASE 1 & CASE 2) . 15
5.3 Viscous flow solution (CASE 3 & CASE 4) . 17
5.4 Prediction of Boundary Layer Profile . 19
5.5 Computational performance . 22

i

ii

2DNS Documentation, Release 0.0.1

Contents:

Contents 1

2DNS Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Project description

1.1 Given task

In this project, 2-D explicit Navier-Stokes solver (Hereafter called 2DNS code) has been developed. The 2DNS code
was verified in this project by applying supersonic flow over a 10 deg. diamond airfoil. The test cases were employed
in terms of inviscid and viscous conditions.

1.2 Governing Equations

Here, the 2-D, unsteady Navier-Stokes equations will be solved. The equations will be marched forward in time until
a steady state solution is achieved. The transformed conservative form of 2-D Navier-Stokes equations can be written:

𝜕
(︀
�̄�/𝐽

)︀
𝜕𝑡

+
𝜕𝐹 ′

𝜕𝜉
+

𝜕�⃗�′

𝜕𝜂
= 0

where the transformed state and inviscid flux vectors are

�⃗� =

⎡⎢⎢⎣
𝜌
𝜌𝑢
𝜌𝑣
𝐸𝑡

⎤⎥⎥⎦
and transformed flux vector can be represented by:

𝐹 ′ =
1

𝐽

[︁
𝜉𝑥(𝐹𝐼 − 𝐹𝑉) + 𝜉𝑦(�⃗�𝐼 − �⃗�𝑉)

]︁
, �⃗�′ =

1

𝐽

[︁
𝜂𝑥(𝐹𝐼 − 𝐹𝑉) + 𝜂𝑦(�⃗�𝐼 − �⃗�𝑉)

]︁
Here 𝐹𝐼 and 𝐹𝑉 indicate the inviscid and viscous flux terms in x-direction, respectively. The same notation is em-
ployed to flux vector �⃗�. The total energy per unit volume and stagnation enthalpy per unit mass are defined by
followings:

𝐸𝑡 =
𝑝

𝛾 − 1
+

𝜌

2

(︀
𝑢2 + 𝑣2

)︀

ℎ0 =
𝑝𝛾

𝜌(𝛾 − 1)
+

1

2

(︀
𝑢2 + 𝑣2

)︀
Detailed process for solving the Navier-Stokes equations will be repeated in the following sections.

3

2DNS Documentation, Release 0.0.1

1.3 Computational Domain

This project analyze the top half of a 10 deg. diamond airfoil so the location of point E is (x,y) = (0.5, 0.0882). Each
grid point can be describd by (x,y) location or (𝑖, 𝑗) location where the 𝑖 index is in the 𝜉 direction and the 𝑗 index
is in the 𝜂 direction. The grid will consist of 65 points in the “𝑖” direction and 57 points in the “𝑗” direction. The
inverse grid metrics must be evaluated at every grid point in the computational domain (including the boundaries). Use
2nd order accurate, central differences for interior points and 2nd order accurate, one-sided differences for boundary
points. After the inverse metrics are computed, the grid Jacobian and grid metrics must be computed and stored at
every location (including the boundaries)

4 Chapter 1. Project description

CHAPTER 2

Code development

The present project is aimed to develop a computer program for solving 2-D unsteady Navier-Stokes equations for a
supersonic problem. Hereafter, the program developed here in this project is called ‘2DNS’.

2.1 2DNS Code summary

The source code contains two directories, ‘io’, and ‘main’, for input/output related sources and main solver routines,
respectively. ‘CMakeLists.txt’ file is also included for cmake compiling.

$ cd 2DNS/CODEdev/src/
$ ls
$ CMakeLists.txt io main

The io folder has io.F90 and ReadGrid.F90 files which contains subroutines for reading input/output data and grid
info. It also includes input directory which contains a default input.dat file.

The main folder is only used for calculating essential subroutines required to solve the ‘2DNS’ equation by using
‘AUSMPW+’ scheme for solving inviscid flux reconstruction and independent viscous flux calculator. The main
routine is run by main.F90 which calls important subroutines from main folder itself and io folder when needed.

5

2DNS Documentation, Release 0.0.1

6 Chapter 2. Code development

CHAPTER 3

Numerical Method

During each time-integration step, the code calculate the fluxes 𝐹 ′
𝑖+1/2,𝑗 at every “𝑖” half-point locations, and

�⃗�′
𝑖,𝑗+1/2 at every “𝑗” half-point locations. In order to obtain the flux terms properly treated with consideration of

characteristics of wave propagation, MUSCL differencing should first be used to extrapolate the state vectors to ev-
ery half point locations. After then AUSMPW+ scheme applies to those points for solving the inviscid flux terms.
In addition, to evaluate the viscous flux terms, shear stress and heat flux terms should then be calculated at every
half-points.

3.1 Flux vector evaluation

Here, the description and formulation of AUSMPW+ scheme are not repeated. The viscous flux vectors in the gener-
alized coordinates can then be evaluated by solving the following forms

𝐹 ′
𝑉 =

1

𝐽

(︁
𝜉𝑥𝐹𝑉 + 𝜉𝑦�⃗�𝑉

)︁
�⃗�′

𝑉 =
1

𝐽

(︁
𝜂𝑥𝐹𝑉 + 𝜂𝑦�⃗�𝑉

)︁
The above froms can be rearranged to the following form composed of shear stress and heat flux terms:

𝐹 ′
𝑉 or �⃗�′

𝑉 =
1

𝐽

⎡⎢⎢⎣
0

𝑚𝑥𝜏𝑥𝑥 + 𝑚𝑦𝜏𝑥𝑦
𝑚𝑥𝜏𝑥𝑦 + 𝑚𝑦𝜏𝑦𝑦

𝑚𝑥 (𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 − 𝑞𝑥) + 𝑚𝑦 (𝑢𝜏𝑥𝑦 + 𝑣𝜏𝑦𝑦 − 𝑞𝑦)

⎤⎥⎥⎦
where,

𝑚𝑥 = 𝜉𝑥 and 𝑚𝑦 = 𝜉𝑦 for 𝐹 ′
𝑉

𝑚𝑥 = 𝜂𝑥 and 𝑚𝑦 = 𝜂𝑦 for �⃗�′
𝑉

7

2DNS Documentation, Release 0.0.1

The nondimensional form of shear stress and heat flux terms are given by:

𝜏𝑥𝑥 =
2𝜇

3Re𝐿

(︂
2
𝜕𝑢

𝜕𝑥
− 𝜕𝑣

𝜕𝑦

)︂
𝜏𝑦𝑦 =

2𝜇

3Re𝐿

(︂
2
𝜕𝑣

𝜕𝑦
− 𝜕𝑢

𝜕𝑥

)︂
𝜏𝑥𝑦 =

𝜇

Re𝐿

(︂
2
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

)︂
𝑞𝑥 = − 𝜇

(𝛾 − 1)𝑀2
∞Re𝐿Pr

𝜕𝑇

𝜕𝑥

𝑞𝑦 = − 𝜇

(𝛾 − 1)𝑀2
∞Re𝐿Pr

𝜕𝑇

𝜕𝑦

where 𝑀∞ is the free stream Mach number,

𝑀∞ =
𝑉∞√
𝛾𝑅𝑇∞

and the perfect gas equations of state become

𝑝 = (𝛾 − 1)𝜌𝑒

𝑇 =
𝜌𝑀2

∞𝑝

𝜌

Note that the above equations should be evaluated by non-dimensional forms.

The coefficients of viscosity and thermal conductivity can be related to the thermodynamic variables according to
the gas kinetic theory. Based on this theory, Sutherland’s formulas can be applied to evaluate the mass and thermal
diffusivity by solving:

𝜇 = 𝐶1
𝑇 3/2

𝑇 + 𝐶2
, 𝑘 = 𝐶3

𝑇 3/2

𝑇 + 𝐶4

where 𝐶1 to 𝐶4 are constants for a given gas. For air at moderate temperatures, 𝐶1 = 1.458 × 10−6, 𝐶2 = 110.4,
𝐶3 = 2.495×10−3 and 𝐶4 = 194 in SI units. Note that the temperature 𝑇 here must be here assumed to be dimenional
variable in SI unit.

In this project, the Prandtl number is assumed to variable based on the following definition:

Pr =
𝑐𝑝𝜇

𝑘

3.2 Initial Conditions

At the beginning of simulation, the 2DNS code sets the initial condition. After then the code set the boundary con-
ditions at every time step. The initial conditions at all grid points is set on the basis of following pre-specified flow
quantities in nondimensional forms:

𝑀 = 2.0, 𝜌 = 1.0, 𝑢 = 1.0, 𝑣 = 1.0, 𝛾 = 1.4, 𝑝 =
1

𝛾𝑀2
, 𝑇 = 1.0

The reference free stream conditions used to nondimensionalize the flow variables are given by:

𝜌∞ = 0.01[kg/m3], 𝑇∞ = 300[K], 𝑉∞ = 694.44[m/sec], 𝐿∞ = 1.0[m]

8 Chapter 3. Numerical Method

2DNS Documentation, Release 0.0.1

3.3 Boundary Conditions

The flow is assumed to be coming in and blowing out at both inlet and outlet under a supersonic condition. Thus the
following boundary conditions can be suitable:

Inflow: �⃗�𝑛
1,𝑗 = fixed at initial conditions at every time step

Outflow: �⃗�𝑛
𝑖𝑚𝑎𝑥,𝑗 = �⃗�𝑛

𝑖𝑚𝑎𝑥−1,𝑗 (1st order extrapolation for all n)

Inviscid wall (top): No velocity in the 𝜂 direction. The 2DNS code uses a 2nd order extrapolation that is described in
the 3rd computer project assignment.

Bottom wall:

In this project, two different wall boundary conditions are employed based on the treatment of wall temperature:
adiabatic wall and isothermal wall boundaries. For the adiabatic wall boundary condition, the heat flux normal to the
surface is enforced to be zero by:

𝑇𝑖,1 = 𝑇𝑖,2

For the isothermal wall boundary, the pre-specified wall temperature is applied to every 𝑗 = 1 node points. In this
project, 300 K is applied to the wall temperature as isothermal boundary condition.

In addition to the wall temperature BC, viscous wall boundary should be taken account. This can be made by assuming
no-slip wall boundary for the moderate gas pressure. In this approach, the velocity right at the wall is set to zero. Then
the surface pressure is calculated from the assumption that the normal component of the momentum equation is zero.
This can be implemented by resolving the following relation for a non-orthogonal grid with no-slip condition:

(︀
𝑥2
𝜉 + 𝑦2𝜉

)︀ 𝜕𝑝

𝜕𝜂
= (𝑥𝜉𝑥𝜂 + 𝑦𝜉𝑦𝜂)

𝜕𝑝

𝜕𝜉

From the pressure and temperature resolved above, the density is then enforced by solving the gas equations of state.

3.4 Convergence Log (RMS error)

In order to see the convergence history, the 2DNS code calculates the following RMS error at every time step:

RMS𝑛 =

⎯⎸⎸⎷ 1

𝑁

4∑︁
𝑚=1

𝑖𝑚𝑎𝑥∑︁
𝑖=1

𝑗𝑚𝑎𝑥∑︁
𝑗=1

[︂(︁
�⃗�𝑛+1
𝑖,𝑗 − �⃗�𝑛

𝑖,𝑗

)︁2
]︂

This error log was used for checking convergence history only not for the termination of program. Every cases in this
project was run by 40,000 iterations.

3.3. Boundary Conditions 9

2DNS Documentation, Release 0.0.1

10 Chapter 3. Numerical Method

CHAPTER 4

How to run the code

4.1 Machine platform for development

This 2DNS code has been developed on personal computer operating on linux system (Ubuntu Linux 3.2.0-38-generic
x86_64). Machine specification is summarized as shown below:

vendor_id : GenuineIntel

cpu family : 6

model name : Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz

cpu cores : 4

Memory : 16418112 kB

4.2 Code setup

The 2DNS source code has been developed with version management tool, GIT. The git repository was built on
‘github.com’. Thus, the source code as well as related document files can be cloned into user’s local machine by
following command:

$ git clone http://github.com/sayop/2DNS.git

If you open the git-cloned folder CouetteFlow, you will see two different folders and README file. The CODEdev
folder contains again bin folder, Python folder, and src folder. In order to run the code, use should run setup.sh script
in the bin folder. Python folder contains python scripts that are used to postprocess data. It may contain build folder,
which might have been created in the different platform. Thus it is recommended that user should remove build folder
before setting up the code. Note that the setup.sh script will run cmake command. Thus, make sure to have cmake
installed on your system:

$ rm -rf build
$./setup.sh
-- The C compiler identification is GNU 4.8.1
-- The CXX compiler identification is GNU 4.8.1
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info

11

2DNS Documentation, Release 0.0.1

-- Detecting CXX compiler ABI info - done
-- The Fortran compiler identification is GNU
-- Check for working Fortran compiler: /usr/bin/gfortran
-- Check for working Fortran compiler: /usr/bin/gfortran -- works
-- Detecting Fortran compiler ABI info
-- Detecting Fortran compiler ABI info - done
-- Checking whether /usr/bin/gfortran supports Fortran 90
-- Checking whether /usr/bin/gfortran supports Fortran 90 -- yes
-- Configuring done
-- Generating done
-- Build files have been written to: /home/sayop/data/Devel/GitHub.Clones/2DNS/CODEdev/bin/build
Scanning dependencies of target cfd.x
[7%] Building Fortran object CMakeFiles/cfd.x.dir/main/Parameters.F90.o
[15%] Building Fortran object CMakeFiles/cfd.x.dir/main/SimulationVars.F90.o
[23%] Building Fortran object CMakeFiles/cfd.x.dir/main/GridJacobian.F90.o
[30%] Building Fortran object CMakeFiles/cfd.x.dir/main/AUSMPWplus/AUSMPWplus.F90.o
[38%] Building Fortran object CMakeFiles/cfd.x.dir/main/BCvisc/BCvisc.F90.o
[46%] Building Fortran object CMakeFiles/cfd.x.dir/main/VISCflux/VISCflux.F90.o
[53%] Building Fortran object CMakeFiles/cfd.x.dir/main/TimeIntegration.F90.o
[61%] Building Fortran object CMakeFiles/cfd.x.dir/io/io.F90.o
[69%] Building Fortran object CMakeFiles/cfd.x.dir/main/SimulationSetup.F90.o
[76%] Building Fortran object CMakeFiles/cfd.x.dir/io/RestartDataOut.F90.o
[84%] Building Fortran object CMakeFiles/cfd.x.dir/main/MainLoop.F90.o
[92%] Building Fortran object CMakeFiles/cfd.x.dir/io/ReadGrid.F90.o
[100%] Building Fortran object CMakeFiles/cfd.x.dir/main/main.F90.o
Linking Fortran executable cfd.x
[100%] Built target cfd.x

If you run this, you will get executable named cfd.x and input.dat files. The input file is made by default. You can
quickly change the required input options.

4.3 Input file setup

The 2DNS code allows user to set multiple options to solve the unsteady 2-dimensional Navier-Stokes problem by
reading input.dat file at the beginning of the computation. Followings are default setup values you can find in the
input file when you run setup.sh script:

#Input file for tecplot print
2-D Euler solver
imax 65
jmax 57
ngl 3
gridFile NSgrid.dat
#Initial conditions (SI)
density 1.0
u 1.0
v 0.0
pressure 0.1785714
temp 1.0
gamma 1.4
#Free stream conditions
dens_ref 0.01
temp_ref 300.0
Uvel_ref 694.44
Leng_ref 1.0
Cp 1003.5

12 Chapter 4. How to run the code

2DNS Documentation, Release 0.0.1

#Simulation parameters
restart 0
nmax 1000
CFL 0.5
errorLimit 1e-06
#AUSMPW+ parameters
alpha 0.0
epsil 0
limiter 0
kappa 0.0
#Viscous solver parameters
visc 0
wallT 0.0
#Data Post-Processing (BL profile)
xLoc 0.0

• First line (‘2-D Navier-Stokes solver’ by default): Project Name

• imax: number of grid points in i-direction

• jmax: number of grid points in j-direction

• ngl: number of ghost layers (not available in this project)

• gridFile: grid file name to be read

• density: incoming flow density

• u: incoming flow velocity in x-direction [Non-dimension]

• v: incoming flow velocity in y-direction [Non-dimension]

• pressure: incoming flow pressure [Non-dimension]

• temp: incoming flow temperature [Non-dimension]

• gamma: incoming flow heat specific ratio

• dens_ref: Reference flow density [Dimensional]

• temp_ref: Reference flow temperature [Dimensional]

• Uvel_ref: Reference flow axial velocity [Dimensional]

• Leng_ref: Reference length [Dimensional]

• Cp: Constant pressure specific heat capacity

• restart: If 1, the solver will restart from the specified iteration number. If you run the code from scratch, it must
be set to zero.

• nmax: maximum number of iteration to be allowed and terminate case running

• CFL: CFL number

• errorLimit: normalized RMS error limit for convergence

• alpha: coefficient in AUSMPW+ (not used in this project)

• epsil: switch of second order accurate MUSCL differencing

• limiter: switch of MUSCL minmod limiter

• kappa: control parameter for 1st/2nd order accurate upwind differencing of MUSCL

• visc: If 0, the code runs as 2D Euler solver. If 1, the code runs as 2D Navier-Stokes solver.

4.3. Input file setup 13

2DNS Documentation, Release 0.0.1

• wallT: Bottom wall temperature. If it is set to a positive value, the code set the wall to isothermal wall boundary.
If it is set to negative value, the code assumes the adiabatic wall boundary condition.

• xLoc: x-position to collect the boundary layer profile. The code collects the non-dimensional axial velocity and
dimensional temperature and stores them to separate file called ‘BoundaryLayer.dat’.

14 Chapter 4. How to run the code

CHAPTER 5

Results and discussions

5.1 Computational Grid

The grid used in this project has a resolution of 65 X 57 in i- and j-directions as shown below. In this project, unsteady
2-dimensional Navier-Stokes solution is being resolved by performing the explicit time-integration.

<Computational grid>

5.2 Inviscid solution (CASE 1 & CASE 2)

Following cases were achieved by running the 2DNS code with inviscid option off. The solution was obtained by
running 40,000 iterations.

CASE 1

• Inviscid solution

• 1st order accuracy (CFL = 0.5)

For the first order accurate solution, central differencing was applied to solve the inviscid flux terms with AUSMPW+
scheme and to resolve the first derivatives in shear stress and heat flux terms. The following figure represents the fully
developed shock waves across the airfoil in terms of local Mach number.

15

2DNS Documentation, Release 0.0.1

<Contour plot of Mach number: CASE 1>

CASE 2

• 2nd order accurate (CFL = 0.5)

• with basic minmod limiter

For the second approach to resolve the inviscid solution, the fully upwind scheme for extrapolation was employed
based on the characteristics wave direction. Then the basic minmod limiter was turned on to get TVD(Total Variation
Diminishing) solution.

<Contour plot of Mach number: CASE 2>

The figure shown below illustrates the resolved pressure profile along the bottom wall boundary for the inviscid fluid.
The resulted pressures seem to be overlapped each other. However, very slightly dispersive nature can be found for
the 2nd order accurate solution at the shock wave anchored location around x = 0.0 and x = 1.0. On the other hand,
dissipative nature is dominated in the first order accurate solution. This can be observed in the contour lines shown
above. The CASE 2 contour lines along the shock surface shows wave-looking lines.

16 Chapter 5. Results and discussions

2DNS Documentation, Release 0.0.1

<Comparison of static pressure along the bottom wall boundary>

The following figure present the RMS residual history at every iterations. It is observed that the first order accurate
solution converges very smoothly with no oscillation nature as discussed above. However, the second order accurate
solution clearly represents the TV (Total Varation) dominant phenomenon. This is also called Limit Cycle Oscillations
(LCO).

<Comparison of RMS error log>

5.3 Viscous flow solution (CASE 3 & CASE 4)

Following cases were achieved by running the 2DNS code with inviscid option on. The solution was obtained by
running 40,000 iterations.

CASE 3

• Navier-Storkes solution

• 2nd order accurate (CFL = 0.5)

• with basic minmod limiter

• Adiabatic wall BC

5.3. Viscous flow solution (CASE 3 & CASE 4) 17

2DNS Documentation, Release 0.0.1

<Contour plot of Mach number: CASE 3>

CASE 4

• Navier-Storkes solution

• 2nd order accurate (CFL = 0.5)

• with basic minmod limiter

• Isothermal wall BC (𝑇𝑤𝑎𝑙𝑙 = 300 k)

<Contour plot of Mach number: CASE 4>

The figure shown below illustrates the resolved pressure profile along the bottom wall boundary. Here, remarkable
difference from the inviscid solution can be observed. The Navier-Stokes solution tends to smear the solution out
across the shock forming location. This is a clue of viscous fluid. We observed that the first order accurate solution
has a dissipative nature due to the artificial viscosity. Likewise, physical viscous fluids can play a important role in
dissipative solution in the high gradient region.

In addition to the dissipative profile, we observe the small bump in the leading edge. This is because a very weak
shock forms as the bounday layer grows and leads to the slight change of flow angle.

18 Chapter 5. Results and discussions

2DNS Documentation, Release 0.0.1

<Comparison of static pressure along the bottom wall boundary>

Contrary to the inviscid solution, viscous flow solution tends to show some unsteadiness in the RMS residual history.
We alreay observe that the RMS log goes slowly down and smoothly converges. However, both CASE 3 and CASE 4
show a slight bump-up and bump-down a while later. This represents the developed separation flow in the boundary
layer. This is a distinct nature of viscous flow. Thus the unsteadiness of RMS log is simply due to the physical
unsteadiness of the viscous flow.

Furthermore, a slight reduction in the amplitude of the oscillations for the viscous flows is found compared to the
previous inviscid flow. It is believed that the oscillatory nature of the viscous flow solution can be a little bit diminished.
However, the nature of Limit Cycle Oscillations will never be lost because LCO is the distinct numerical phenomenon
of the 2nd order accurate solution.

<Comparison of RMS error log>

5.4 Prediction of Boundary Layer Profile

Theoretical study of Boundary-Layer thickness

In the earlier study of van Driest (1952) proposed a semiempirical formula to approximate the boundary layer thickness
in compressible fluids as a function of freestream Mach number. In this study, the dimensionless boundary-layer
thickness was found to grow with the Mach number for both adiabatic and nonadiabatic walls. The predicted boundary

5.4. Prediction of Boundary Layer Profile 19

2DNS Documentation, Release 0.0.1

layer thickness can be determined by:

𝛿

𝑥
𝑅𝑒1/2𝑥𝑒 ≈ 𝐶1/2

𝑤

[︂
5.0 +

(︂
0.2 + 0.9

𝑇𝑤

𝑇𝑎𝑤

)︂
(𝛾 − 1)𝑀𝑎2𝑒

]︂
Here, 𝑇𝑎𝑤 is a wall temperature that would have been achieved if it was set to the adiabatic wall for given freestream
Mach number. The estimated adiabatic wall temperature can then be determined by:

𝑇𝑎𝑤

𝑇𝑤
= 1 + Pr1/2

(︂
𝛾 − 1

2

)︂
𝑀𝑎2𝑒

where Pr is Prandtl number which is evaluated as 0.71432 for given freestream temperature, 300 K. In this project, 𝐶𝑤

was set to unity. Finally, boundary layer thickness is then determined as a function of wall temperature 𝑇𝑤, distance
from leading edge 𝑥, and freestream Mach number 𝑀𝑎𝑒.

[Ref. Van Driest, E. R. (1951) “Turbulent Boundary Layer in Compressible Fluids”, J. Aeronaut. Sci., vol. 18, pp.
145-160.]

x = -0.25

By solving the theoretical boundary layer thickness relation above, the following were obtained for both adiabatic wall
and isothermal wall.

• Adiabatic wall: 𝛿 = 0.00664

• Isothermal wall: 𝛿 = 0.00493

The following figure presents the axial velocity profiles resolved by current CFD solution. As theoretically predicted,
adiabatic wall condition gives higher boundary layer thickness. Comparing the CFD solution to the theoretical solu-
tion, it can be said that the current CFD solution well follows the theoretical approximation.

<Nondimensional axial velocity profile in boundary layer>

The figure shown below illustrates how the temperature profile looks like for the two different type of wall condition.
As can be simply predicted, the adiabatic wall temperature is higher than the isothermal wall temperature which was
originally identical to the freestream temperature. The higher temperature field in boundary layer for the adiabatic
wall condition can become a primary reason of thicker boundary layer. In other words, the higher temperature the
fluid gets, the higher molecular diffusivity becomes. Thus,the higher diffusivity in boundary layer may drag the upper
layer of higher momentum.

20 Chapter 5. Results and discussions

2DNS Documentation, Release 0.0.1

<Dimensional temperature profile in boundary layer>

x = 0

The same solution can be applied for the boundary layer thickness prediction at x = 0. In this solution, x should be
evaluated as the distance from the leading edge so that x = 0.5 m. The theoretically obtained solution are:

• Adiabatic wall: 𝛿 = 0.00939

• Isothermal wall: 𝛿 = 0.00698

In this case, we observe big difference between CFD solution and theoretical solution. This can be explained by
knowing that the theoretical solution does not take separation flow into account. As the negative axial velocity is
observed from the figure below, the CFD solution predicts the separated flow phenomena at this location due to
the adverse pressure gradient. As already discussed, the adiabatic wall boundary condition gives rise to the thicker
boundary layer regardless of formation of separation flow. Thus it can be concluded that the boundary layer is an
outcome of momentum transfer between two upper and lower layer that have different molecular diffusivities. Since
we know that viscosity is a dominant function of temperature, the higher wall temperature condition is more likely to
give more viscid flow and leads to thicker boundary layer.

<Nondimensional axial velocity profile in boundary layer>

5.4. Prediction of Boundary Layer Profile 21

2DNS Documentation, Release 0.0.1

<Dimensional temperature profile in boundary layer>

5.5 Computational performance

The following table compares the CPU time consumed for each case. We can clearly find that the Navier-Stokes
solution consumes much more CPU resource in terms of computational speed because it has to calculate the additional
flux terms and more derivatives associated with shear stress and heat conductivity.

CASE # CFL CPU Time [sec]
1 0.5 141.714
2 0.5 189.65
3 0.5 590.071
4 0.5 589.124

The CFL number to ensure the convergence varies for each case. The following tables listed the maximum CFL
number that was obtained by experimenting the various CFL number at the interval of 0.05. The slight bigger CFL
number than those number triggers the divergence of numerical solution.

CASE # Maximum CFL
1 0.85
2 0.6
3 0.8
4 0.8

22 Chapter 5. Results and discussions

	Project description
	Given task
	Governing Equations
	Computational Domain

	Code development
	2DNS Code summary

	Numerical Method
	Flux vector evaluation
	Initial Conditions
	Boundary Conditions
	Convergence Log (RMS error)

	How to run the code
	Machine platform for development
	Code setup
	Input file setup

	Results and discussions
	Computational Grid
	Inviscid solution (CASE 1 & CASE 2)
	Viscous flow solution (CASE 3 & CASE 4)
	Prediction of Boundary Layer Profile
	Computational performance

