Inclass Activities Documentation Release 170218

Asela Wijeratne

Nov 05, 2019

Bioinformatics part I

1	Multiple Sequence Alignments	3
	1.1 Getting started with MEGA	3
	1.1.1 How to make an alignment using MEGA	3
	1.1.2 Edit the alignments	7
	1.1.3 Exporting MSA	7
2	Steps of building a tree	9
	2.1 Make multiple sequence alignment for Globin gene family	9
	2.2 Find informative sites for Parsimony	9
	2.3 Building Phylogenetic trees	11
3	Steps of building a tree (Part II)	13
	3.1 Make multiple sequence alignment for Globin gene family	13
	3.2 Find the best substitution model	13
	3.3 Building Phylogenetic trees	15
4	FastQC analysis using Cyverse Discovery Environment (DE)	21
	4.1 Step 1: Login into Cyverse DE	21
	4.2 Step 2: Getting data into Cyverse Discovery Environment	22
	4.2.1 URLs	24
	4.3 Step 3: Performing FastQC analysis:	26
	4.4 Reference:	30
5	Relaunching a stalled analysis in Cyverse Discovery Environment	31
	5.1 Step 1: Click on the message icon	31
	5.2 Step 2: Click on the analysis that appears to be stalled	32
	5.3 Step 3: Check the small box and click on analysis	32
	5.4 Step 4: Click on the relaunch button	32
6	Adapter and quality trimming using trim-galore	35

	 6.1 Step 1: Launching Trim-galore	35 36 37
7	Mapping short reads 4 7.1 Step 1: Mapping with Tophat2 4 7.2 Step 2: Mapping with Bowtie2 4	45 45 49
8	Counting mapped reads	53
9	Differential gene expression analysis9.1DESeq tutorial:9.2Steps to perform DEseq analysis9.3DE gene list	57 57 57 61
10	Secondary Structure Prediction	63
11	Tertiary Structure Prediction	67
12	The Delta-Delta Ct Method 12.1 Normalization 12.2 Average of the control samples (normal cells) 12.3 Calculate the Ct relative to the average of Ct normal cells 12.4 Fold gene expression for each sample 12.5 Overall fold change 12.6 Log transformation 12.7 T-test 12.7 T-test 13.1 Step 1: Login into Galaxy 13.2 Step 2: Getting data 13.3 Step 1: Click on the upload icon on upper left hand corner 13.4 Step 2: Copy one of the links above. Click on the Paste/Fetch icon and paste link in the box. Click on start. 13.5 Step 3: One the data is uploaded, they will appear in the right hand panel. You can use the pencil icon to change the name.	73 74 74 76 76 77 78 79 79 79 80 80 80
14	FastQC analysis using Galaxy 14.1 Step 1: Login into Galaxy 14.2 Step 3: Performing FastOC analysis:	81 83 83 84
15	Adapter and quality trimming using Cutadapt 15.1 Step 1: Launching Cutadapt and performing the analysis	87 87
16	Adapter and quality trimming using trim-galore	93

	 16.1 Step 1: Launching Trim-galore	93 94 95
17	Use Splice aware aligner, Tophat2 to align short reads 17.1 Output files:	97 100
18	Use Htseq to counts reads mapped to features	103
19	Use Kellisto to map reads to cDNA and count	105
20	Setup instructions (This is from Data Carpentry (http://www.datacarpentry.org/R-genomics/)) 1 20.1 Windows 1 20.2 If you already have R and RStudio installed 1 20.3 If you don't have R and RStudio installed 1 20.4 macOS 1 20.5 If you already have R and RStudio installed 1 20.6 If you don't have R and RStudio installed 1	107 107 107 108 108 108
21	Using DEseq and EdgeR to find differentially expressed genes	109
22	DEseq analysis	113
23	Combine DESeq and EdgR to make Venn diagram	115
24	GOseq analysis	117
25	Run RNAseq analysis as a workflow	119
26	Indices and tables	123

Multiple Sequence Alignments

1.1 Getting started with MEGA

Note: There is an excellent tutorial on the MEGA site and this is excerpt of the tutorial for the exercise.

1.1.1 How to make an alignment using MEGA

- Step 1 Open MEGA software and you will see a screen like in the following figure:
- Step 2 Click on the small arrow on the "Align" tab
- Step 3 Click on 'Edit/Build alignment'
- Step 4 Select a new alignment.
- Step 4 Select protein
- Step 5 From file open, select "seq_align2.fasta" and open file.
- Step 6 From Edit, select all sequences. To do an alignment using Muscle, click on Muscle tab.
- Step 7 Use default options and perform an alignment. To learn more about the options, go to the MEGA manual.

	X M7: Alignment Explorer
Data Edit Search Alignment Web Se	5eguencer Display Help
🗋 🚰 🖬 🎬 🧮 🌆 🎆 1	₩ ♥ 煮 誌
Protein Sequences	
Lo	ook in: 📄 Inclass_activities_week5_2 💌 🖻 🔜 📸 🗐
	seq_aln.fasta
Fil	ile <u>pame:</u> <u>Open</u>
Fil	iles of type: Supported sequence files Cancel
Site # ^D 🖨 🕫 with	n w/o Gaps

		-	5		М7	: A	lic	Inr	ne	nt	Ex	pla	ore	r (seo	a a	aln.	.fa:	sta)		-	-									~				•
Data Edit Search Alignmen	it Web Server	ncet		Disr	ılav	F	- telr	,			_									·																
	n <u>100 100</u> Mi M	Y		1	+	L.	<u>101</u>								×	2	Đ	6	፠	Ê	5	×	•	E		a	Ż	3	.	•	D	•		<i>å</i> Å	ا 🕯	M I
Protein Sequences																																				
Species/Abbrv	Group Name					Τ																Τ	Ι												Π	\square
1. P02622.1_cod		A	F	K	Э Т	L	S	N	A	D	I ł	< F	A A	Е	A	A	CF	Fk	E	G	S F	D	E	D	G	F	Y,	A	K۱	V G	i L	D	A	F١	A	D
2. P20472.2_HUMAN		Μ	S	M	r D	L	L	N	A	ΕI	D	l ł	ĸ	A	۷	G	A F	= e	8 A	Т	D	3 F	D	н	Κ	Κ	F	F١	QN	v N	G	L	K	Κk	< S	A
3. P80079.2_cat		М	S	M	r D	L	L	G	А	ΕI	D	ŀ	<κ	A	۷	Е	A F	T	A	۷	D	3 F	D	Y	Κ	Κ	F	F١	QN	νN	' G	L	К	Κk	< S	Р
4. P02626.1_salamander		S	М	ΤC) V	' T	Ρ	Е	A	D	I N	N P	< A	Т	н	A	Fł	< A	G	Е	A F	D	F	Κ	Κ	F	V	н	LΙ	L G	i L	N	K	RB	β P	A
5. P43305.2_CHICK		М	S	L	r D	I.	L	s	Ρ	S I	D	I A	٩A	A	L	R	D	C G	۱A	Ρ	D	B F	S	Ρ	Κ	Κ	F	F١	Q	I S	G	М	s	Κk	< S	S
6. Q91482.1_salmon		Μ	A	C /	۱H	L	С	Κ	Е	A	D	ŀ	< T	A	L	Е	A () k	< A	A	D	F	S	F	Κ	Т	F	FΙ	ΗT	ΓI	G	F	A	S k	< S	A
7. P02620.1_hake		A	F	A (ЭТ	L	A	D	A	D	٦	F A	٩A	L	A	A	C	< <mark>A</mark>	ιE	G	S F	K	Ή	G	Е	F	F	Т	K	I G	i L	Κ	G	KΒ	8 <mark>A</mark>	A
8. P02619.1_northern_pike		S	F	A (ЭL	K	D	A	D	V,	A A	A A	۱L	A	A	С	s /	A A	D	s	F	ЧH	ΙK	Е	F	F	A	K	V C	ЭL	. A	S	К	s L	. D	D
9. P02627.1_frog		Ρ	М	Т) L	L	A	A	G	D	I S	Зŀ	< <mark>A</mark>	۷	S	A	F /	A A	۱P	Е	S <mark>F</mark>	I N	Н	K	Κ	F	F	E	L	C G	i L	Κ	s	K٤	K	Е
•																																				F
Site #1	● with ⊂	W.	/o	Ga	aps	;																														

1.1.2 Edit the alignments

Step 1 You can insert gaps, delete blocks, and delete residues.

Be very careful when you edit a sequence alignment. It should be biologically meaningful.

• •			X	M	7:	Ali	gni	me	nt	Ex	plo	ore	r (s	seq	_a	ln.t	fas	ta)																
Data Edit Search Alignmen	it <u>W</u> eb Seguen	cer	D	ispla	ау	<u>Н</u> е	lp																											
🗋 🚰 🔚 👐 🗮	🖻 🎆 W 🖇	ĥ		Ĭ	1									K.)	C)	0	ю	Ê		X	7		Ŷ	A:	2	1			Þ		ĝ.	i .	
Protein Sequences																						T							I					
Species/Abbrv	Group Name		Τ				Т		ŀ	*	Τ		*			Τ	Γ				*	Π			-	•	Τ		T	*	Τ		*	
1. P02622.1_cod		- /	A F	K	G	ΙL	. s	N.	A I	D I	k	A	A	E/	A A	۱C	F	ĸ	Ē	G 8	3 F	C	Е	D	G F	۶Y	Ά	К	V	G L	. D	A	F S	A
2. P20472.2_HUMAN		М	s N	I T	D	LL	. N	A	ΕI	DI	k	κ	A	V	ЭP	١F	S	F.	Т	D 8	B F	C	н	ΚI	K F	F	Q	Μ	V	G L	. K	ΚI	< s	A
3. P80079.2_cat		M	s N	T	D	LL	. G	A	ΕI	DI	k	κ	A	۷I	ΞÆ	١F	Т		V I	D 8	B F	C	Y	ΚI	K F	FF	Q	М	V	G L	. K	ΚI	< s	P
4. P02626.1_salamander		-	S N	T	D	V I	Ρ	E	A I	ᡝᡀ	A _x	ΙK	A	I	H A	١F	Κ	A	G	ΕÆ	١F	C	F	КI	K F	۶V	Η <mark>Ι</mark>	L	L	G L	. N	Κŀ	R S	P
5. P43305.2_CHICK		M	S L	Τ.	D	ΙL	. S	Ρ	s	D I	A	ι A	A	LF	2 0) C	4	A	P	D 8	3 F	ε	Р	КI	K F	FF	Q	Т	S	G N	1 S	ΚI	< s	S
6. Q91482.1_salmon		M /	<mark>a</mark> c	A	н	LC	ĸ	Е	A I	D I	k	ťΤ	A	LI	ΞÆ	٩C	ĸ	A,	A	D	F	ε	F	ĸ	ΤF	FF	H	Т	1	G F	A	S	< s	A
7. P02620.1_hake		- /	A F	A	G	L	. A	D	A I	D I	Т	A	A	L/	A A	٩¢	K	A	E	G 8	3 F	k	н	G	E F	FF	Т	Κ	I.	GL	. K	G	< s	A
8. P02619.1_northern_pike		-	S F	A	G	- L	. K	D	A I	D V	/ A	A	A	L/	A A	۹ γ	S	A,	A	D 8	B F	k	н	K	ΕF	FF	A	Κ	V	G L	. A	S	< s	L
9. P02627.1_frog		-	P N	T	D	LL	. A	A	G	D I	S	K	A	V :	З <mark>А</mark>	F	A	A	Р	E S	3 F	Ν	н	ΚI	k F	FF	E	L	С	G L	. K	S	< s	K
											[[Del	ete ble	se ock	lec ks	ted										h	ารย	ert g	gap	s			
											_									De	alet	e s	ele	cte	he	٦								
•	residues																																	
Site #2	• with •	w/	0 0	Sac)S																													

1.1.3 Exporting MSA

Mega	allows	to	export	the	MSA	in	different	formats.
-			-					

Steps of building a tree

2.1 Make multiple sequence alignment for Globin gene family

- Step 1 Download globin.fasta from Blackboard and perform a MSA using MUSCLE (follow the steps we discussed last week).
- Step 2 Examine the alignment to make sure it is correct and no additional editing is needed.
- Step 2 Export the alignment as a fasta format file on your Desktop. Name it as globin_align

2.2 Find informative sites for Parsimony

Step 1 Open the alignment file you just created by going to using Open file/Session under Data

Step 2 Go to Explore Active Data under Data

Step 3 Click on Pi button and this show site that are informative for Parsimony

		C	X	M7:	: Se	equ	enc	ce [Data	a Ex	plo	rer												
Data Display Search Gro	ups Highlight Statistics Help 👝																							
🔚 MELA 🟃 CSV 🗄		S 0 2 4 Spe	cial	l •	;	NAME	á	in fr																
✓ Name	V																							
🗹 1. myoglobin kangaroo P	02194 Macropus rufus (red kangaro	10)	-	-	-	-	-	-	-	-	-	-	-	-	-	М	G	L	8	D	G	E	W	Q
🗹 2. myoglobin harbor porp	ooise P68278 Phocoena phocoena		-	-	-	-	-	-	-	-	-	-	-	-	-	М	G	L	S	Е	G	E	W	Q
🗹 3. myoglobin gray seal P	68081 Halichoerus grypus		-	-	-	-	-	-	-	-	-	-	-	-	-	М	G	L	8	D	G	E	W	Н
🗹 4. alpha globin horse PO	1958 Equus caballus		-	-	-	-	-	-	-	-	-	-	-	-	-	М	V	L	8	А	А	D	ĸ	Т
🗹 5. alpha globin kangaroo	P01975 Macropus giganteus (easte	ern gray kangaroo)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	V	L	8	А	А	D	ĸ	G
🗹 6. alpha globin dog P605	529 Canis lupus familiaris (dog)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	V	L	8	Р	A	D	ĸ	Т
7. beta globin dog XP 53	7902 Canis lupus familiaris (dog)		-	-	-	-	-	-	-	-	-	-	-	-	М	V	н	L	Т	А	Е	Е	ĸ	S
🗷 8. beta globin rabbit NP (001075729 Oryctolagus cuniculus (ra	abbit) Text	-	-	-	-	-	-	-	-	-	-	-	-	М	۷	Н	L	S	s	Е	Е	K	s
🗹 9. beta globin kangaroo l	P02106 Macropus giganteus (easter	m gray kangaroo)	-	-	-	-	-	-	-	-	-	-	-	-	-	V	н	L	Т	А	Е	Е	ĸ	N
🗹 10. globin lamprey 6909:	51A Lampetra fluviatilis (European riv	ver lamprey)	-	-	-	-	-	Ρ	Т	V	D	8	G	S	Р	А	V	L	s	А	А	Е	ĸ	Т
🗹 11. globin sealamprey P	02208 Petromyzon marinus (sea l <mark>:</mark> n	nprey)	-	-	-	-	М	Ρ	Т	V	D	Т	G	S	V	А	Р	L	S	А	A	Е	ĸ	Т
12. globin insect P02229	Chironomus thummi thummi (mi	je)	М	К	F	L	1	L	А	L	С	F	А	А	А	s	А	L	s	А	D	Q	I –	S
🗹 13. globin soybean 7116	74A Glycine max (soybean)		-	-	-	-	-	-	-	-	-	-	-	-	-	V	А	F	Т	Е	К	Q	D	А
•	Clic	k here																						
1/171	Highlighted: None	Data																						

2.3 Building Phylogenetic trees

			X ME	GA 7.0.21(71	l 61111-i386)			5
Eile Analysis Help								
E ↓ [₹] Align ↓ Da <u>t</u> a	<u>₽</u> Models	• <u>D</u> istance •	<u>™</u> Di⊻ersity	4년 hylogeny Us	ැබ් 🕅 er Tree ් A <u>n</u> ces	stors <u>S</u> electic	n <u>R</u> ates	
Close Data				↑				
								<u><</u> س
			СІ	ick here				വ
								≥
								7
89 J	õ		=	G	۵.	Ľ	<u>@</u>	
Help Docs	Examples	Citation	Report a <u>B</u> ug	Updates <u>?</u>	MEGA Links	Toolbar	Pr <u>e</u> ferences	
MEGA release #71	61111-i386							globins_aligned.fas 📈

Step 1 Click on Phylogeny

Step 2 Make Neighbor-Joining tree with Bootstrap 500 replicates

- A What relationships can you see in the tree?
- **B** What can you say about the statistical support for each relationship?
- **C** What should be the out-group?
- Step 3 Save the tree as a pdf file by clicking on Image button
- Step 4 Build a tree using Parsimony method with **50 Bootstrap** replicates (500 will be very slow).
 - A What relationships can you see in the tree?
 - **B** What can you say about the statistical support for each relationship?
 - C Do you see the same relationships that you saw with NJ tree?

	X M7: Analysis Preferences	3	
Options Summary			
Option	Selection		
Analysis	Phylogeny Reconstruction		
Scope	All Selected Taxa		
Statistical Method	Neighbor-joining 🤘		
Phylogeny Test			
Test of Phylogeny	Bootstrap method		
No. of Bootstrap Replications	500		÷
Substitution Model			
Substitutions Type	Amino acid		
Model/Method	Poisson model		
Rates and Patterns			
Rates among Sites	Uniform rates		
Gamma Parameter	Not Applicable		
Pattern among Lineages	Same (Homogeneous)		
Data Subset to Use			
Gaps/Missing Data Treatment	Complete deletion		
Site Coverage Cutoff (%)	Not Applicable		
? Help		✓ Compute	X Cancel

Steps of building a tree (Part II)

3.1 Make multiple sequence alignment for Globin gene family

- Step 1 Download globin.fasta from Blackboard and perform a MSA using MUSCLE (follow the steps we discussed last week).
- Step 2 Examine the alignment to make sure it is correct and no additional editing is needed.
- Step 3 Export the alignment as a fasta format file on your Desktop. Name it as globin_align

3.2 Find the best substitution model

Step 1 Calculate the distance using different substitution models :a: Select **Distance** and then **Compute Pairwise distance** :b: Calculate distance using the following methods

- i No. of Differences
- ii p-distances
- iii Poisson model

- **Step 2** Use the same alignment file and build three NJ trees using different substitution models:
 - a No. of Differences
 - **b** p-distances
 - c Poisson model

	X M7: Analysis Preferences	5	
Options Summary			
Option	Selection		
Analysis	Phylogeny Reconstruction		
Scope	All Selected Taxa		
Statistical Method	Neighbor-joining		
Phylogeny Test			
Test of Phylogeny	Bootstrap method		
No. of Bootstrap Replications	500		
Substitution Model			
Substitutions Type	Amino acid		
Model/Method	No. of differences		
Rates and Patterns			
Rates among Sites	Uniform rates		
Gamma Parameter	Not Applicable		
Pattern among Lineages	Same (Homogeneous)		
Data Subset to Use			
Gaps/Missing Data Treatment	Complete deletion		
Site Coverage Cutoff (%)	Not Applicable		
		🗸 Compute	🗙 Cancel

Step 3 Best model based on ProtTest

3.3 Building Phylogenetic trees

Step 1 Click on Phylogeny

Step 2 Make Neighbor-Joining tree with Bootstrap 500 replicates

- A What relationships can you see in the tree?
- **B** What can you say about the statistical support for each relationship?
- **C** What should be the out-group?

Step 3 Save the tree as a pdf file by clicking on Image button

	X M7: Analysis Preferences
Options Summary	
Option	Selection
Analysis	Phylogeny Reconstruction
Scope	All Selected Taxa
Statistical Method	Neighbor-joining 🧲
Phylogeny Test	
Test of Phylogeny	Bootstrap method
No. of Bootstrap Replications	500
Substitution Model	
Substitutions Type	Amino acid
Model/Method	Poisson model
Rates and Patterns	
Rates among Sites	Uniform rates
Gamma Parameter	Not Applicable
Pattern among Lineages	Same (Homogeneous)
Data Subset to Use	
Gaps/Missing Data Treatment	Complete deletion
Site Coverage Cutoff (%)	Not Applicable
? Help	Compute X Cancel

- Step 4 Build a tree using Parsimony method with 50 Bootstrap replicates (500 will be very slow).
 - A What relationships can you see in the tree?
 - **B** What can you say about the statistical support for each relationship?
 - C Do you see the same relationships that you saw with NJ tree?

Step 5 Bayesian inference of phylogeny

Follow this link to MrBayes online server

- **A** Use the same alignment file
- **B** In MrBayes select Poisson amino acid model with equal rates of substitution.
- **C** Select prior parameters (e.g. equal, fixed frequencies for the states; equal probability for all topologies; unconstrained branch lengths).
- **D** Run 1,000,000 trials for Monte Carlo Markov Chain estimation of the posterior distribution.
- E Obtain phylogram
- **F** Export tree files
- G View in MEGA software

Input:

Alignment

Outputs:

Tree in Newick format (automatically recognized by MEGA if installed)

wirdayes logs

Taxon names association table
 Download taxon names association table

FastQC analysis using Cyverse Discovery Environment (DE)

Data we are using for this analysis came from Loraine et al, 2015 study. In the original study, there are 10 samples (Five Controls and heat treated). Here we are using only 3 samples for each group (3 control and 3 heat treated). These files were downloaded from NCBI's Short Read Archive (SRA) using SRA toolkit.

First step of the data analysis is to check the quality of the sequences. For this purpose, we are using the FastQC tool on Cyverse DE.

4.1 Step 1: Login into Cyverse DE

First login to your Cyverse account using your name and password.

Trellis: CyVerse User Management A centralized place for you to manage your CyVerse user	rofile and services. Login
Register Click to manage your CyVerse user profile information and the CyVerse services that are available to you	ion Forgot your Password? Reset Password Click here to reset your password.
Log in with: CyVerse Login Clici here if you have previously created	CyVerse user ID.

Then, go to your DE account.

	CyVerse		
60	Discovery Environment Maintained by: CyVerse	Use hundred of bioinformatics apps and manage data in the CyVerse Data Store from a simple web interface	Go to Discovery Environ

4.2 Step 2: Getting data into Cyverse Discovery Environment

a. Click on "Data" button

b. Click on "File" and then "New Folder"

c. Create a folder called "Data" and click "OK". Create another folder called "Analysis".

🕒 Data: aselaw					
Upload • File • Edit • Dow	vnload 🔹 Share 👻 Metadata 👻 🍣 Re	fresh			
Navigatio 🕂 New Data Wind	ow				
asela 🕂 New Data Window at this location ome/aselaw					
Ir 🕞 New Folder	>	Last Modified S	ize		
a 📝 Create		2017 Mar 14 17:47:16	ශ 🦽 🖓 🖉		
Move to Trash	;	2017 Mar 14 12:06:03	ee 🤧 🖓 🧟		
I class_data	🔲 🎇 🚞 class_data	2017 Mar 15 13:05:42	ee 🤧 🖓 🧟		
🕨 📁 sra	🔲 🎇 🧰 sra	2017 Mar 15 16:03:29	a 🥵 🖓 🧟		
🕨 📁 Community Data	🔲 🎇 🛅 read_1.fastq	2017 Mar 14 17:46:29 6	5.44 КВ 🛛 🧠 🧞 🏷 🍧		
🕨 📁 Shared With Me	🔲 🎇 🛅 read_2.fastq	2017 Mar 14 17:48:47 6	5.44 KB 🛛 🧠 🧬 🥪 🧬		
📗 🕨 📫 Trash					

🗲 Data: aselaw					8 🗆 🗢 😣
Upload - File - Edit - Down	nload 🔹 Share 👻 Metadata 🔹 🎅 Refresh				💎 Trash 🔹
Navigation aselaw Community Data Shared With Me Trash Favorites	aselaw Viewing: /iplant/home/aselaw Name Yama In_class Yama In_class_data Yama Incertain aselaw. Yama Incerain aselaw. <td< th=""><th>Last Modified 2017 Mar 14 17:47:16 2017 Mar 14 12:06:03 2017 Mar 15 13:05:42 Data OK</th><th>Size</th><th>60 25 70 25 60 25 70 25 70 20</th><th>Details Select a file or folder to view its details</th></td<>	Last Modified 2017 Mar 14 17:47:16 2017 Mar 14 12:06:03 2017 Mar 15 13:05:42 Data OK	Size	60 25 70 25 60 25 70 25 70 20	Details Select a file or folder to view its details
	Displaying 1 - 6 of 6		0	item(s)	

d. Click on the "Data" folder to enter into it. Click on "Upload" and then "Import from URL"

e. I have create public links for fastq files. Copy and paste URLs in the box (one for each box). **You will need to do this for all 12 URLs.** Then click on "Import from URL"

4.2.1 URLs

http://de.cyverse.org/dl/d/5B50EFE6-D0BA-4833-980E-E81E5B63C15E/Control1_1.fastq http://de.cyverse.org/dl/d/BBFB60AC-8855-40AC-9634-7C62F5B9B02D/Control1_2.fastq http://de.cyverse.org/dl/d/2AB5824F-73BA-4C6B-8530-457609F632BA/Control2_1.fastq

😉 Data: Data				
Upload • Download • Share • Metadata • 😌 Refresh				
Lange Simple Upload from Desktop	а			Details
A Bulk Upload from Desktop	wing: /iplant/home/aselaw/Data	Select a file or folder to view its details		
🛓 🛓 Import from URL	Nomo	Last Modified	Size	
Import Genome from CoGe				
i i i i i i i i i i i i i i i i i i i				
Community Data				
Image: Shared With Me				
🕨 🧊 Trash				
Favorites				
	Displaying 0 - 0 of 0		0 item(s)	

Se Data: Data		🥲 🗉 🖨 🖸 😒
Upload - File - Edit - Down	nload 🗸 Share 🗸 Metadata 🗸 🍣 Refresh	Trash 🕶
Navigation Image: State of the state o	Dat Import Vie Uploading to Data. Enter URLs below (HTTP(S) or FTP only): http://de.cyverse.org/dl/d/46E690E4-C4A0-495F-9B11- F12AD9A25EE3/Control2_2.fastq	Details Select a file or folder to view its details
	Displaying 0 - 0 of 0	0 item(s)

http://de.cyverse.org/dl/d/46E690E4-C4A0-495F-9B11-F12AD9A25EE3/Control2_2.fastq http://de.cyverse.org/dl/d/7FEE6359-24AE-478D-A0B1-C6D2CA09E45E/Control3_1.fastq http://de.cyverse.org/dl/d/8FBB264D-F0CA-4F2C-821A-DB1C709315B2/Control3_2.fastq http://de.cyverse.org/dl/d/E7AD135C-F2BC-445C-BBC2-695B1D76B010/Heat1_1.fastq http://de.cyverse.org/dl/d/46093383-493A-4D4E-A607-D3E56916DF59/Heat1_2.fastq http://de.cyverse.org/dl/d/9668B243-7009-4AD3-BBDA-350D6A60119D/Heat2_1.fastq http://de.cyverse.org/dl/d/FE1C3CC3-9133-4244-BCBB-816B8D2D5F97/Heat2_2.fastq http://de.cyverse.org/dl/d/D635B6EE-BE26-4BC4-A058-3E51B1AA69C4/Heat3_1.fastq http://de.cyverse.org/dl/d/F88561AF-CFF2-4FC8-B6B4-D8623779BB24/Heat3_2.fastq

4.3 Step 3: Performing FastQC analysis:

- Data
- a. Click on "Apps" button.

b. Type "fastqc" in the search window and select the app shown in red arrow.

- c. Follow the direction as in the figure to select the folder where your results will be saved. Then, click on the small downward arrow (black circle).
- d. Click on "+" sign to select the fastq files.

e. Go to the folder where you have your fastq files and select them as indicated in the figure below. Then launch the analysis. Once the analysis is complete, you will be notified via email.

FastQC 0.10.1 (multi-file) Refresh fastac	cic1	
Analysis Name: PastQC_0.10.1Inutti-fileanalysis1	You can change name if you want	
Select output folder: /iplant/home/aselaw/analyses	This is where your results will be saved.	Browse
* Select input data		
	Click here to select the input files.	
		Launch Analysis

4.4 Reference:

Loraine AE, Blakley IC, Jagadeesan S, Harper J, Miller G, Firon N. Analysis and Visualization of RNA-Seq Expression Data Using RStudio, Bioconductor, and Integrated Genome Browser. *Methods Mol Biol.* 2015;1284:481-501. doi: 10.1007/978-1-4939-2444-8_24. PubMed PMID: 25757788.

Relaunching a stalled analysis in Cyverse Discovery Environment

If your analysis is appeared to be stalled, you could try restarting it.

5.1 Step 1: Click on the message icon

5.2 Step 2: Click on the analysis that appears to be stalled

Sickle-quality-based-trimming_analysis1 failed

Sickle-quality-based-trimming_analysis1 running

Sickle-quality-based-trimming_analysis1 submitted

Trim-galore-0.4.1_analysis1 failed

Trim-galore-0.4.1_analysis1 running

Trim-galore-0.4.1_analysis1 submitted

Sickle-quality-based-trimming_analysis1 failed

Sickle-quality-based-trimming_analysis1 running

See all notifications

5.3 Step 3: Check the small box and click on analysis

5.4 Step 4: Click on the relaunch button

Analyses 🥹 🗇 🖓						
Analyses 🗸 Edit 🗸 🍣 Refresh 🛛 Share 🗸 🗌			Sickle-quality-based-trimming_analysis1			
Name	Owner		Арр	Start Date	End Date	Status
Sckle-quality-based-tri	kiriya@iplantcollab	8	Sickle-quality	2017 Mar 29 09:50	2017 Mar 29 09:52	Failed
\smile						
Displaying 1 - 1 of 1					1 item	(s)

Se Analyses					() ()	
Analyses 🗸 Edit 🖌 🍣 Refresh 🛛 Share 🗸 🚽		✓ Sickle-qu			ality-based-trimming_analysis1	
Go to output folder	Owner		Арр	Start Date	End Date	Status
🔄 View Parameters	kiriya@iplantcollab	8	Sickle-quality	2017 Mar 29 09:50	2017 Mar 29 09:52	Failed
Relaunch						
🔄 View Analysis Info						
Cancel						
X Delete						
Displaying 1 - 1 of 1					1 item	(s)

Once the analysis window appears, launch the analysis.

Adapter and quality trimming using trim-galore

We are going to use Trim-galore to trim adapters, and poor quality bases. This tool has several advantages. It allows selection multiple files. You can also select both forward and reverse reads. If you want to read more about Trim-galore, please visit their website. Also, Trim-galore is a wrapper for Cutadapt, which is the actual tool that performs the trimming.

Please follow the tutorial carefully.

6.1 Step 1: Launching Trim-galore

- 1. Click on App.
- 2. In the finder window type "trim-galore"
- 3. Select "trim-galore-0.4.1".

Apps		? 🗆 🗖 😒
Apps - Workflow - Share - 🎅 Refresh	trim-galore	🕒 Switch View
Categories 🔍	Search results: 1 found for trim-galore	
My Apps Topic Operation HPC	Sort By: Name	
 Apps under development Favorite Apps My public apps Shared with me 	Trim-galore-0.4.1 Upendra kumar Devisetty (0)	

6.2 Step 2: Selecting output folder

As indicated in the figure: 1. Name your analysis as you want

- 2. Select the output folder where your analysis is going to be
- 3. Click on "Paired end Input fastq files"

Trim-galore-0.4. Refresh Share	🗸 Trim-galore-0.4.1 analysi 🗒 🗖 🖸 😣
Analysis Name:Trim-galore-0.4.1_analysis1	
Analysis Name:	
Trim-galore-0.4.1_analysis1	
Comments:	
Select output folder:	
/iplant/home/kiriya/analyses	Browse
Retain Inputs? Enabling this flag will copy all the input files in	to the analysis result folder.
README	
* Paired end Input fastq files	3
Parameters	
RRBS-specific options (MspI digested material)	
	Launch Analysis

6.3 Step 3: Selecting input files

1. Click on the Green "+" sign.

2. Navigate to the folder where your samples are located. Select only the **first read files**. Click "OK".

3. You should all your first read files selected like this.

Inclass Activities Documentation, Release 170218

Trim-galore-0.4.1	
Note: For single end reads use the Read 1 option to upload your read files. For paired en and Read 2 options	d reads, use both Read 1
Note: For paired end reads, Trim Galore! expects paired-end files to be supplied in a pair file1_1.fq file1_2.fq SRR2_1.fq.gz SRR2_2.fq.gz \dots .	wise fashion, e.g.
* Fastq file(s) (Single end reads or Read 1 of Paired end reads) :	
	🕂 Add 🗙 Delete
Name	
Select multiple input files. Tip: You can also drag and drop files from the Data window.	
	Launch Analysis

Select a file YOU NEE	d to select the	files asign	to you	r group×]
Navigation	SRA_fastq	Ŭ		
4	Viewing: /iplant/home/kiriya	a/class_fastq/SRA_fastq		
	Name	Last Modified	Size	
	🔲 🎇 🛅 Control1_1.fastq	2017 Mar 16 07:40:54	1.26 GB	ቈቇዏዿ
	🔲 🎇 🛅 Control1_2.fastq	2017 Mar 16 08:01:34	1.26 GB	ຌℬ℅⅀
a 👩 class_fastq	📃 🊆 🛅 Control2_1.fastq	2017 Mar 16 07:38:26	3.44 GB	₠₷₻₽₽
SRA_fastq	🔲 🚆 🛅 Control2_2.fastq	2017 Mar 16 09:09:50	3.44 GB	₿ <i>₽</i> ₽
Image: provide the second s	🔲 🚆 🛅 Control3_1.fastq	2017 Mar 16 07:45:37	2.63 GB	ೄௐௐௐ
Community Data	🔲 🎇 🛅 Control3_2.fastq	2017 Mar 16 08:42:05	2.63 GB	ቈቇዏኇ
Shared With Me	V 📲 🕒 Heat1_1.fastq	2017 Mar 16 07:53:39	2.5 GB	≈\$ \$\\$\\$
Favorites	🔲 🏆 🛅 Heat1_2.fastq	2017 Mar 16 08:27:07	2.5 GB	\$\$\$₽\$
	V 📲 🕒 Heat2_1.fastq	2017 Mar 16 08:49:15	2.01 GB	ೄ₺₽₽
	🔲 🎇 🛅 Heat2_2.fastq	2017 Mar 16 08:37:16	2.01 GB	ቈቇዏኇ
	🔽 🦉 🕒 Heat3_1.fastq	2017 Mar 16 08:22:46	2.92 GB	☜盏∿⊳ଛ
	📃 🐺 📄 Heat3_2.fastq	2017 Mar 16 09:03:59	2.92 GB	₩ \$\$\$\$\$
	Displaying 1 - 12 of 12 3 item(s)			
Selected file: Heat1_1.fas	stq, Heat2_1.fastq, Heat3_1.fas	tq		
			ОК	Cancel

Trim-galore-	0.4.1 Refresh trim-galore				
Note: For single end reads use the Read 1 option to upload your read files. For paired end reads, use both Read 1 and Read 2 options					
Note: For paired e file1_1.fq file1_2.	end reads, Trim Galore! expects paired-end files to be supplied in a pairwise fashion, a SRR2_1.fq.gz SRR2_2.fq.gz	e.g.			
* Fastq file(s) (Sir	gle end reads or Read 1 of Paired end reads) :				
	bbo 📲				
	Add	X Delete			
Name					
Heat1_1.fastq					
Heat2_1.fastq					
Heat3_1.fastq					
	L	aunch Analysis			

4. Scroll down and click on the "+" below "Fastq file(s) (Read 2 of paired end reads):"

5. Select the read two files as above. You will see them in the box as in the figure below.

6. Scroll down and check box beside "Paired (Select this option for paired-end files)" to indicate these are paired end reads.

very important

Fastq file(s) (Read 2 of paired end reads):		
Name Select multiple input files. Tip: You can also drag and drop files from the Data window.	Add X Delete	
	Launch Analysis	

Fastq file(s) (Read 2 of paired end reads):	
	🕨 Add 🛛 🗙 Delete
Name	
Heat1_2.fastq	
Heat2_2.fastq	
Heat3_2.fastq	
	Launch Analysis

Frimgalore-0.4.1 Refresh trim-galore	Image: Contract of the second seco
 Paired (Select this option for paired-end files) Retain unpaired reads Unpaired single-end read length cut-off for read 1: 	() () ()
Enter text	
Unpaired single-end read length cut-off for read 2:	0
Enter text	
Trim 1bp from 3'end	0
Parameters	
RRBS-specific options (MspI digested material)	
	Launch Analysis

- 7. Click on "Parameters" as indicated in the above figure.
- 8. Set the parameters as indicated in the figure:
- a. Use Fred 20 as quality trimming cut off (this is the default).
- b. Copy and paste the following adapter sequence for in the box below "Adapter sequence to be trimmed:"

AATGATACGGCGA

c. Copy and paste the following adapter sequence for in the box below "Adapter2"

CAAGCAGAAGACGG

d. Set the stringency to 6.

Parameters	
Quality:	
20 a	
Phred64	
fastqc	
Adapter sequence to be trimmed:	
AATGATACGGCGA	
Note: If you want to use Adapter2, then this option requires 'paired' to be specified as well	
Adapter2:	
CAAGCAGAAGACGG - C	
stringency:	
6 d	
Error rate:	
0.01	
Compress the output file with gzip.	
	Launch Analysis

e. Scroll down and set the length as 40. Any sequence become shorter than this length during the trimming will be discarded. | f. Launch the analysis.

Trim-galore-0.4.1	
stringency:	0
6	
Error rate:	
0.01	
Compress the output file with gzip.	0
Do not compress the output file with gzip Length:	0
40 4	
No report file	0
Clip R1:	Ŏ
Enter text	
Clip R2 (Paired-end reads only):	
Enter text	
3' Clip R1:	0
Enter tevt	
	Launch Analysis

Mapping short reads

If you are using genome as the reference for RNAseq reads, you will need to use a splice-aware aligner like Tophat2. If you are using cDNA as the reference, you can use a general purpose aligner like Bowtie2.

You need to do only one of the procedures based on what your group have been assigned to.

7.1 Step 1: Mapping with Tophat2

- 1. Click on App.
- 2. In the finder window type "Tophat"
- 3. Select "Tophat2-PE".

Apps	🤨 🕀 🖨 🕞 😒
Apps - Workflow - Share - 🎅 Refresh	Tophat
Categories	Search results: 24 found for Tophat
My Apps Topic Operation HPC	Sort By: Name
 Apps under development Favorite Apps My public apps Shared with me 	Upendra kumar Devisetty Upendra kumar Devisetty Upendra kumar Devisetty Upendra kumar Devisetty Upendra kumar Devisetty Upendra kumar Devisetty TopHat2-PE Sheldon Mckay Sheldon Mckay TopHat2-SE Sheldon Mckay Sheldon Mckay Sheldon Mckay Sheldon Mckay Sheldon Mckay Sheldon Mckay Sheldon Mckay Sheldon Mckay

- 4. As indicated in the figure, Name your analysis as you want.
- 5. Select the output folder where your analysis is going to be.
- 6. Click on "Input data"

7. Click on the Green "+" sign.

8. Navigate to the folder where your samples are located. Select only the **first read files**. Click "OK". **You can select all three of your first read files**.

TopHat2-PE Refresh Share	▼ TopHat2-PE analysis1	
Analysis Name:TopHat2-PE_analysis1		
Analysis Name:		
TopHat2-PE_analysis1		
Comments:		
Select output folder:		
/iplant/home/aselaw/analyses		Browse
Retain Inputs? Enabling this flag will copy all the input files	into the analysis result folder.	
README		-
* Input data		
Reference Genome (Mandatory)		-
Reference Annotations		-
* Analysis Options		-
		Launch Analysis

TopHat2-PE 2 Refresh Share -	TopHat2-PE analysis1	
Analysis Name:TopHat2-PE_analysis1		
README		
* Input data		
There should be two FASTQ files for each set of paired-end reads. L Scroll down to input right read files. NOTE: for multiple files, the left	eft and right reads have separat t and right files must be in the sa	e input boxes. ame order.
Align all read files:		
separately		~
* Left Read File(s):		
	🐈 Ado	🗙 Delete
Name		
SRR1805811_1.fastq		
read_1.fastq		
Scroll down to add r	ead2 files	Launch Analysis

9. Scroll down and click on the "+" below "Fastq file(s) (Read 2 of paired end reads):"

10. Select "Reference Genome" and select the tomato genome sequence as input.

Analysis Name:TopHat2-PE_analysis1		
README		
* Input data		
Reference Genome (Mandatory)		
Select a reference genome from the list or select your own reference genome file. Note one of these two options MUST be selected.		
Select a reference genome from the list:		
Choose item from list.		
If your species is not in the pull-down menu, try 'Community Data'->iplant_training->reference_genomes. It contains a larger collection. You may also provide your own reference genome in FASTA formation Genome	۱e	
Provide a reference genome file in FASTA format:		
<pre>/iplant/home/aselaw/class_data/S_lycopersicum_chromosomes.3.00.fa</pre> Browse		
Reference Annotations		
* Analysis Options		
Launch Analysi	s	

11. Make sure quality is Sanger and leave rest of the default values as they are. Launch the analysis.

Analysis Name:TopHat2-PE_analysis1	-
README	
* Input data	•
Reference Genome (Mandatory)	-
Reference Annotations	
* Analysis Options	
* FASTQ Quality Scale:	
Sanger (PHRED33)	~
* Anchor length:	
8	*
* Maximum number of mismatches that can appear in the anchor region of spliced alignment:	
0	*
* The minimum intron length:	
70	×
	Launch Analysis

7.2 Step 2: Mapping with Bowtie2

- 1. Click on App.
- 2. In the finder window type "Bowtie".
- 3. Select Bowtie app indicated in the figure.

4. As indicated in the figure, Name your analysis as you want.

⊆ Apps		<mark>()</mark> 🗄 🖨 🗖 🛇
Apps - Workflow - Share - 🍣 Refresh	Bowtie	Switch View
Categories	Search results: 17 found for Bowtie	
My Apps Topic Operation HPC	Sort By: Name	
Apps under development		
Favorite Apps	BowtieBuild-and-Map	Bowtie-2.2.1 Bowtie2-Build
My public apps		indexer
Shared with me	Roger Barthelson	Roger Barthelson
	🕕 🔗 🊆 ★★余余余(5)	③
	Bowtie-2.2.1Build-and-Map	Bowtie-2.2.1Build-and-Map for workflows
	Roger Barthelson	Ryan Joynson
	🕕 🍃 🚆 🛨 🛨 🛨 👘 (5)	🕕 😹 🚆 会会会会(0)
	Bowtie-Build	bowtie2-2.2.4-align-ud

5. Select the output folder where your analysis is going to be.

6. Click on "Input"

8. Navigate to the folder where your samples are located. Select first and second read files. You can only input one sample at a time.

9. You need to name your output file carefully. For e.g., if it is heat1 sample, name the output as heat1.sam.

Bowtie-2.2. IBuild-and-Map	
Analysis Name:Bowtie-2.2.1Build-and-Map_analysis1	
Analysis Name:	
Bowtie-2.2.1Build-and-Map_analysis1	
Comments:	
Select output folder:	
/iplant/home/kiriya/analyses	Browse
Retain Inputs? Enabling this flag will copy all the input files into the analysis result fo	older.
leference Index	-
⁴ Inputs	
Options	•

Bowtie-2.2. IBuild-and-Mapsh Bowtie	
Analysis Name:Bowtie-2.2.1Build-and-Map_analysis1	
Reference Index	
* Inputs	
* Reads1:	
/iplant/home/kiriya/Data/Practice_data/read_1.fastq	Browse
Reads2:	
/iplant/home/kiriya/Data/Practice_data/read_2.fastq	Browse
Input Format:	
fastq	~
Output File:	
heat1,sam	
Name your output according to your inp	ut 🖻
Lau	nch Analysis

10. Select "Reference Index" and select the tomato cDNA sequence as input.

11. Select options. Set "Minimum fragment length" as 100 and "Maximum fragment length" as 600. Launch the analysis.

Reference Index		
* Inputs	•	
Options		ŀ
Reporting:		-2
Best alignment(s) using MAPQ	~	r
phred64 (instead of phred33) other options:		3a
Enter text		F
PAIRED READS OPTIONS		-2
Minimum fragment length:		ŕk
100		
Maximum fragment length:		,yi
600		F
Launch .	Analysis	2-

Counting mapped reads

To get the number of reads mapped to a reference sequences (in this case, predicted tomato cDNA sequences), we can use Samtools. Bowtie2 output is in sam format and first, we need to convert the output files into sorted bam files.

- 1. Type Samtools in app finding window.
- 2. Select "SAM to sorted BAM"
- 3. Select Bowtie2 output files (SAM format).

4. Above will create sorted bam file. You will need to use this as the input for the Samtools Flagstat, which will count the number of mapped reads.

** You can get the flagstat for all six files from following link.** | https://github.com/ajwije/2017_ spring_Bioinfo_class/blob/master/Files/flagstat.txt

I have used the following bash command to count mapped reads in case you are interested in it doing programmatically.

for i in *.sam

(continues on next page)

Refresh	samtoo	ls			
~	Search	results: 30 four	nd for samtools		
HPC	Sort By:	Name	*		
	3	BWA-n	nem + <mark>samtools</mark> par . <i>orant</i> ★★☆☆(1)	tl β	
	\geq	samto	ols part2		

Apps	
SAM to sorted BAM	
Analysis Name:SAM_to_sorted_BAM_analysis1	
Select input data	
Select a SAM File:	
Select a file	Browse
Sort by read names rather than by chromosomal coordinates	ols
	ip
	191
	ю
	f-c
	3ai
	· · · · · · · · · · · · · · · · · · ·
	Launch Analysis

Samtools Flagstat	
Analysis Name:Samtools_Flagstat_analysis1	
* Input file	
* input.bam:	0
Select a file	Browse
	SNP bls B
output	
	a kur
	(c)(c)
	ols rr
	plica
	pynso
	Launch Analysis OLS
	-out
Upendra kumar Dev	isetty Roger Barth

(continued from previous page)

Differential gene expression analysis

Link for Bowtie mapped counts http://de.cyverse.org/dl/d/ E9B4C299-D6CB-4656-A4F6-FF67240AEA49/170407_bowtie_counts.txt

Targetfileforbowtiemappedreads:http://de.cyverse.org/dl/d/BECB62C3-A369-4084-9BC9-2BFD9E6E9600/bowtie_target.txt

9.1 DESeq tutorial:

Tutorial link

9.2 Steps to perform DEseq analysis

1. From Apps select "DEseq (Multifactorial Comparison)

2. Name your analysis and select a folder where your results need to be saved.

DESeq2 (multifactorial pairwise comparisons)	
Analysis Name:DESeq2multifactorial_pairwise_comparisonsanalysis1	
Analysis Name:	
DESeq2multifactorial_pairwise_comparisonsanalysis1	
Comments:	
Select output folder:	
/iplant/home/aselaw/analyses	Browse
Retain Inputs? Enabling this flag will copy all the input files into the analysis result folder.	
README	
* Input files	
* Parameters	
	Launch Analysis

3. Select the correct target file and the count file.

Seq2 (multifactorial pairwise comparisons)		• •
Analysis Name:DESeq2multifactorial_pairwise_comparisonsanalysis1		
README		
* Input files		
* Target file:		
/iplant/home/aselaw/counts/bowtie_target.txt	Browse	
One of the two below is mandatory. For more information about what type to select, please refer to (https://pods.iplantcollaborative.org/wiki/pages/viewpage.action?pageId=28115144b)	wiki	
Raw counts file:		
/iplant/home/aselaw/counts/170407_bowtie_counts.txt	Browse	
Raw counts folder:		
Select a folder	Browse	
* Parameters		•
(Launch A	nalysis

4. Give a name to the project. Reference biological condition should be "control" samples. Variable of interest is "group" (Column header of the third column of the target file).

5. Set the significant threshold to 0.05 and launch the analysis.

DESeq2 (multifactorial pairwise comparisons)	
Analysis Name:DESeq2multifactorial_pairwise_comparisonsanalysis1	
README	
* Input files	
* Parameters	
* Project name:	
pollen_rnaseq	
* Author name:	
AJW	
* Reference biological condition:	
control	
batch:	
Enter text	
* Variable of interest:	
group	
	Launch Analysis

DESeq2 (multifactorial pairwise comparisons)	
VST	
Mean-variance relationship:	0
parametric	
Independent Filtering:	0
TRUE	
Cooks Cutoff:	0
TRUE	
Significance threshold:	0
0.05	~
p-value adjustment method:	0
ВН	
colors:	0
dodgerblue	
	Launch Analysis

9.3 DE gene list

I have used the following R code to merge the DE genes list and the functions.

```
library(reshape2)
library(readr)
# Used the terminal command to grep the fasta headers and wrote it to_
→a file called "ITAG3 10 cDN names.txt"
#imported this file to Rstudio
# Removed the ">" sign
ITAG3_10_formated_names <- as.data.frame(sapply(ITAG3_10_cDN_names,...)</pre>

→gsub, pattern = ">", replacement = ""))
#Seperate gene ids and description using space as delimiter
ITAG3_10_formated_names <- data.frame(colsplit(ITAG3_10_formated_names</pre>
→$X1, " ", c("Id", "Description")))
#imported up regulated genes to Rstudio and merge with the above file.
→using gene ids.
heatvscontrol_up_func <- merge(heatvscontrol_up, ITAG3_10_formated_</pre>
 →names,
                                                               by.x = "Id",
                                                               by.y = "Id")
#write output
write.table(x = heatvscontrol_up_func, file = "heatvscontrol_up_func.
→txt", quote = FALSE, sep = "\t", row.names = FALSE)
#imported down regulated genes to Rstudio and merge with the above_
\rightarrow file using gene ids
heatvscontrol_down_func <- merge(heatvscontrol_down, ITAG3_10_formated_
→names,
                                                               by.x = "Id",
                                                               bv.v = "Id")
#write output
write.table(x = heatvscontrol_down_func, file = "heatvscontrol_down_

where of the set of the se
```

Up-regulated gene list: http://de.cyverse.org/dl/d/E641698E-8688-4C20-B829-0B12BABC8ABB/ heatvscontrol_up_func.txt

Down-regulated gene list: http://de.cyverse.org/dl/d/3C45B913-612F-4B97-8F44-8021470AE527/ heatvscontrol_down_func.txt

Secondary Structure Prediction

1. We will use one of the differentially expressed in tomato pollen transcriptome under head stress.

I have retrive the amino acid sequences for Solyc06g050510 from SolGen website.

MKRHIHYNAHPIDPHPFEAFWYGSWQAVERLRINMGTITTHVLVDGEVIEENIPVTNLRMRSRKATLSDC FLRPGLEVCVLSIPYQGENSGDEKDVKPVWIDGKIRSIERKPHELTCTCKFHVSVYVTQGPPPILKKTLSK IKMLPIDQIAVLQKLEPKPCENKRYRWSSSEDCNSLQTFKLFIGKFSSDLTWLM-TASVLKEATFDVRSIHNQ IVYEIVDDDLVRKETNSNQHSYSVNFKLEGGVQTTTVIQFN-RDIPDINSTSDLSESGPLVLYDLMGPRRSKR RFVQPERYYGCDDDMAEFDVEMTRLVG-GRRKVEYEELPLALSIQADHAYRTGEIEEISSSYKRELFGGNIRS HEKRSSESSSGWR-NALKSDVNKLADKKSVTADRQHQLAIVPLHPPSGTGLTVHEQVPLDVDVPEHLSAEIGE IVSRYIHFNSSSTSHDRKASKMNFTKPEARRWGQVKISKLKFMGLDRRGGTL-**GSHKKYKRNTTKKDSIYDIR** SFKKGSVAANVYKELIRRCMANIDATLNKEQPPI-IDQWKEFQSTKSSQRESGDHLAMNRDEEVSEIDMLWKE MELALASCYLLDDSED-SHAQYASNVRIGAEIRGEVCRHDYRLNEEIGIICRLCGFVSTEIKDVPPFMPSSN HNSSKEQRTEEATDHKQDDDGLDTLSIPVSSRAPSSSGGGEGNVWALIPDL-GNKLRVHQKRAFEFLWKNIAG SIVPAEMQPESKERGGCVISHTPGAGKTL-LIISFLVSYLKLFPGSRPLVLAPKTTLYTWYKEVLKWKIPVPV YQIHGGQT-FKGEVLREKVKLCPGLPRNQDVMHVLDCLEKMQMWLSQPSVLLMGYTSFLTL-MAQVLRQCGLLILDEGHNPRSTKSRLRKGLMKVNTRLRILLS-TREDSPYAHRKY GTLFQNNFGEYFNTLTLARPTFVDEVLKEL DPKYKNKNKGASRFSLENRARKM-

FIDKISTVIDSDIPKKRKEGLNILKKLTGGFIDVHDGGTSDNLPGLQCY TLMMK-STTLQQEILVKLQNQRPIYKGFPLELELLITLGAIHPWLIRTTACSSQYFKEEE-LEALQKFKFDLKL GSKVKFVMSLIPRCLLRREKVLIFCHNIAPINLFLEIFERFYG-WRKGIEVLVLQGDIELFQRGRIMDLFEEP GGPSKVMLASITTCAEGISLTAASRVILLD-SEWNPSKSKQAIARAFRPGQDKVVYVYQLLATGTLEEEKYKR TTWKEWVSSMIFS-EDLVEDPSHWQAPKIEDELLREIVEEDRATLFHAIMKNEKASNMGSLQE

- 2. Point your browser to.
- 3. Copy and paste the amino acid sequence in the box and label the sequence.

4. We will use the previous submitted results:

http://bioinf.cs.ucl.ac.uk/psipred/result/e3f48c8e-28ff-11e7-879a-00163e110593

The PSIPRED Protein Sequence Analysis Workbench

The PSIPRED Protein Sequence Analysis Workbench aggregates several UCL structure prediction methods into one location. Users can submit a protein sequence, perform the predictions of their choice and receive the results of the prediction via e-mail or the web. For a summary of the available methods you can read More...

NOTE: users who need to run our methods on a large number of proteins should consider downloading our software using the menu on the left (Server Navigation -> Software Download).

The PSIPRED Team

Current Contributors David T. Jones, Daniel Buchan, Domenico Cozzetto & Kevin Bryson Previous Contributors Tim Nugent, Federico Minneci, Anna Lobley, Sean Ward, Liam J. McGuffin

For queries regarding PSIPRED: psipred@cs.ucl.ac.uk

Input Sequence Filter				
Choose Prediction Methods				
PSIPRED v3.3 (Predict Secondary Structure)	DISOPRED3 (Disorder Prediction)			
pGenTHREADER (Profile Based Fold Recognition)	MEMSAT3 & MEMSAT-SVM (Membrane Helix Prediction)			
BioSerf v2.0 (Automated Homology Modelling)	DomPred (Protein Domain Prediction)			
FFPred 3 (Eukaryotic Function Prediction)	GenTHREADER (Rapid Fold Recognition)			
MEMPACK (SVM Prediction of TM Topology and Helix Packing)	pDomTHREADER (Fold Domain Recognition)			
DomSerf v2.0 (Automated Domain Modelling by Homology)				
Help				
Input Sequence (Single sequence or Multiple Sequence all	ignments; as raw sequence or fasta format)			
	Sequence			
Help				
Submission Details				
Email Address for job completion alert (optional)				
Help				
Password (only required for licenced commercial e-mail addresses)				
Help				
Short identifier for submission Solvc06a050510				
Help				
Predict Clear form				
Tertiary Structure Prediction

1. Frist find a structure similar to above sequence in PBD. We will use DELTA BLAST to search PBD.

2. Click on the first significant hit to access the PDB. In case, you don't have BLAST results, use the following link to access the previous results. Link

- 3. RCSB provides curated content of PDB and use PDB ID: 1Z3I to visualize the protein in RCSB.
- 4. Perform a multiple sequence alignment to find conserved sequences. |
 - :a:. Retrive sequence from databank
- :b:. Selected sequences are in the following fasta file.

https://github.com/ajwije/2017_spring_Bioinfo_class/blob/master/rad54.fasta

:c:. Use Tcoffee server and align the sequences using structural information:

- 5. You can download crystal structure information from PDB in Cn3 format.
- 6. Download Cn3D software from NCBI and install it on your computer.
- 7. Open above Cn3 file using the Cn3D software.

Inter accession	number(s) gi(s) or FASTA seguence(s) 🔕							
GSKVKFVMSLIP DLFEEP GGPSKVMLASIT TLFEEKYKR	RCLLRREKVLIFCHNIAPINLFLEIFERFYGWRKGIEVLVLQGDIELFQRGRIM From TCAEGISLTAASRVILLDSEWNPSKSKQAIARAFRPGQDKVVYVYQLLATG To							
TTWKEWVSSMI	FSEDLVEDPSHWQAPKIEDELLREIVEEDRATLFHAIMKNEKASNMGSLQE							
Or, upload file	Choose File No file chosen							
Job Title	Protein Sequence (208 letters)							
	Enter a descriptive title for your BLAST search 😡							
□ Align two or m	iore sequences 😡							
Choose Sear	ch Set							
Database	Protein Data Bank proteins(pdb) O O O							
Organism								
Optional	Enter organism name or id-completions will be suggested Exclude +							
	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown. 😡							
Exclude Optional	□ Models (XM/XP) □ Uncultured/environmental sample sequences							
Entrez Query	You Tube Create custom database							
Optional	Enter an Entrez query to limit search 🛞							
Brogram Cold	votion							
Program Sele	ection							
Program Sele	O blastp (protein-protein BLAST)							
Program Sele	 blastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST) 							
Program Sele	 blastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST) PHI-BLAST (Pattern Hit Initiated BLAST) 							
Program Sele	 blastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST) PHI-BLAST (Pattern Hit Initiated BLAST) DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BtAST) 							

Biological Unit for 1Z3I: monomeric; determined by author @

Molecular Components in 1Z3I 🛛

- 8. Go to sequence viewer
- 9. Under view, select find pattern:
- 10. Copy a conserved region from multiple sequence alignment in the search window and click OK:
- 11. You will see conserved region displayed on the crystal structure.

The Delta-Delta Ct Method

Delta-Delta Ct method or Livak method is the most preferred method for qPCR data analysis. However, it can only be used when certain criteria are met. Please refer the lecture notes to make sure that these criteria are fulfilled. If not, more generalized method is called Pfaffl method. Please read the additional reading material to get more information about this method.

Here are the steps for Livak method:

The Excel file with all the calculation are in the qPCR analysis folder on Blackboard.

You have raw Ct (number of cycles that takes to reach threshold) for normal and tumor cells (3 replicates for each).

Samples	Raw Ct	
	GAPDH	p53
Tumor cells 1	21.00	23.00
Tumor cells 2	20.50	22.00
Tumor cells 3	20.60	22.50
Normal cells 1	20.00	26.00
Normal cells 2	20.50	26.20
Normal cells 3	20.30	26.40

12.1 Normalization

First, you will need calculate relative difference between the gene of interest (p53) and the house keeping gene (GAPDH).

Samples	Raw Ct		Delta Ct
	GAPDH	p53	
Tumor cells 1	21.00	23.00	=C3-B3
Tumor cells 2	20.50	22.00	
Tumor cells 3	20.60	22.50	
Normal cells 1	20.00	26.00	
Normal cells 2	20.50	26.20	
Normal cells 3	20.30	26.40	

Ct = Ct (gene of interest) – Ct (housekeeping gene)

12.2 Average of the control samples (normal cells)

As we compare our tumor (treatment) to control (normal cells), first we need to average the Ct for the 3 control (normal) samples.

12.3 Calculate the Ct relative to the average of Ct normal cells

Ct = Ct (Tumor sample) – Ct (normal average)

You can do this normal samples as well. Use \$ signs infront of column number and raw letter (arrows) to fix the cell.

Samples	Raw Ct		Delta Ct	Del
	GAPDH	p53		
Tumor cells 1	21.00	23.00	2.00	
Tumor cells 2	20.50	22.00	1.50	
Tumor cells 3	20.60	22.50	1.90	
Normal cells 1	20.00	26.00	6.00	
Normal cells 2	20.50	26.20	5.70	
Normal cells 3	20.30	26.40	6.10	
Avg delta Ct			=average(E6:	8)

Samples	Raw Ct		Delta Ct	Delta Delta ct	2
	GAPDH	p53			
Tumor cells 1	21.00	23.00	2.00	= E3-\$E\$ 9	
Tumor cells 2	20.50	22.00	1.50	Î Î Î	
Tumor cells 3	20.60	22.50	1.90		
Normal cells 1	20.00	26.00	6.00		
Normal cells 2	20.50	26.20	5.70		
Normal cells 3	20.30	26.40	6.10		
Avg delta Ct			5.93		

12.4 Fold gene expression for each sample

Make sure you raise the negative Ct to power of two.

Fold gene expression = $2^{-(Ct)}$

Samples	Raw Ct		Delta Ct	Delta Delta ct	2^delta d	A
	GAPDH	p53				
Tumor cells 1	21.00	23.00	2.00	-3.93	=2^-(F3)	
Tumor cells 2	20.50	22.00	1.50	-4.43		
Tumor cells 3	20.60	22.50	1.90	-4.03		
Normal cells 1	20.00	26.00	6.00	0.07		
Normal cells 2	20.50	26.20	5.70	-0.23		
Normal cells 3	20.30	26.40	6.10	0.17		
Avg delta Ct			5.93			

12.5 Overall fold change

You can calculate average fold change for both tumor and normal samples. Ratio between these two the fold change between tumor and normal samples.

Enter B	С	D	E	F	G	Н
Samples	Raw Ct		Delta Ct	Delta Delta ct	2^delta delta Ct	Log10
	GAPDH	p53				
Tumor cells 1	21.00	23.00	2.00	-3.93	15.27746566	
Tumor cells 2	20.50	22.00	1.50	-4.43	21.60559914	
Tumor cells 3	20.60	22.50	1.90	-4.03	16.37398227	
Normal cells 1	20.00	26.00	6.00	0.07	0.954841604	
Normal cells 2	20.50	26.20	5.70	-0.23	1.175547906	
Normal cells 3	20.30	26.40	6.10	0.17	0.890898718	
Avg delta Ct			5.93			
Average Tumor cells	=average(G3	:G5)				
Average Normal cells						

Samples	Raw Ct		Delta Ct	Delta Delta ct	2^delta delta Ct	Log10
	GAPDH	p53				
Tumor cells 1	21.00	23.00	2.00	-3.93	15.27746566	
Tumor cells 2	20.50	22.00	1.50	-4.43	21.60559914	
Tumor cells 3	20.60	22.50	1.90	-4.03	16.37398227	
Normal cells 1	20.00	26.00	6.00	0.07	0.954841604	
Normal cells 2	20.50	26.20	5.70	-0.23	1.175547906	
Normal cells 3	20.30	26.40	6.10	0.17	0.890898718	
Avg delta Ct			5.93			
Average Tumor cells	17.752349					
Average Normal cells	=average(G6	G8)				

Samples	Raw Ct		Delta Ct	Delta Delta ct	2^delta delta Ct	Log10
	GAPDH	p53				
Tumor cells 1	21.00	23.00	2.00	-3.93	15.27746566	;
Tumor cells 2	20.50	22.00	1.50	-4.43	21.60559914	
Tumor cells 3	20.60	22.50	1.90	-4.03	16.37398227	,
Normal cells 1	20.00	26.00	6.00	0.07	0.954841604	
Normal cells 2	20.50	26.20	5.70	-0.23	1.175547906	5
Normal cells 3	20.30	26.40	6.10	0.17	0.890898718	
Avg delta Ct			5.93			
Average Tumor cells	17.7523					
Average Normal cells	1.0071					
Fold change Tumor/normal	=C11/C12					

12.6 Log transformation

To perform parametric statistical tests such as T-test, it advised to transform the final gene expression results to log values (any log base). This would make data distribution symmetric.

Here we have change the $2^{-}(Ct)$ to log 10.

Samples	Raw Ct		Delta Ct	Delta Delta ct	2^delta delta Ct	Log10
	GAPDH	p53				
Tumor cells 1	21.00	23.00	2.00	-3.93	15.27746566	1.184051316
Tumor cells 2	20.50	22.00	1.50	-4.43	21.60559914	1.334566314
Tumor cells 3	20.60	22.50	1.90	-4.03	16.37398227	1.214154316
Normal cells 1	20.00	26.00	6.00	0.07	0.954841604	-0.020068666
Normal cells 2	20.50	26.20	5.70	-0.23	1.175547906	0.070240332
Normal cells 3	20.30	26.40	6.10	0.17	0.890898718	-0.050171666
Avg delta Ct			5.93			
Average Tumor cells	17.75234902		Two tail test			
Average Normal cells	1.007096076		1	Unequal variance		
Tumor SEM	1.952454822					
Normal SEM	0.086224876					
Fold change Tumor/normal	17.62726461					
T-TEST	=TTEST(HB:H5	5.H6:H8.	2.3)			

12.7 T-test

Need to be careful when using parametric tests if data is not normally distributed, it would lead to erroneous conclusions.

Samples	Raw Ct		Delta Ct	Delta Delta ct	2^delta delta Ct	Log10
	GAPDH	p53				
Tumor cells 1	21.00	23.00	2.00	-3.93	15.27746566	1.184051316
Tumor cells 2	20.50	22.00	1.50	-4.43	21.60559914	1.334566314
Tumor cells 3	20.60	22.50	1.90	-4.03	16.37398227	1.214154316
Normal cells 1	20.00	26.00	6.00	0.07	0.954841604	-0.020068666
Normal cells 2	20.50	26.20	5.70	-0.23	1.175547906	0.070240332
Normal cells 3	20.30	26.40	6.10	0.17	0.890898718	-0.050171666
Avg delta Ct			5.93			
Average Tumor cells	17.75234902		Two tail test			
Average Normal cells	1.007096076		1	Unequal variance		
Tumor SEM	1.952454822			/		
Normal SEM	0.086224876					
Fold change Tumor/normal	17.62726461					
T-TEST	=TTEST(H3:H5	5,H6:H8,	2,3)			

Select log 10 of 2⁻(Ct) values for Normal and tumor samples as indicated. Use two tail test (number 2) and assuming unequal variance (3).

Resulting P value is less than 0.05 and therefore, we reject the null hypothesis and two sample means are significantly different at 0.05 level.

	-	_	_			
Samples	Raw Ct		Delta Ct	Delta Delta ct	2^delta delta Ct	Log10
	GAPDH	p53				
Tumor cells 1	21.00	23.00	2.00	-3.93	15.27746566	1.184051316
Tumor cells 2	20.50	22.00	1.50	-4.43	21.60559914	1.334566314
Tumor cells 3	20.60	22.50	1.90	-4.03	16.37398227	1.214154316
Normal cells 1	20.00	26.00	6.00	0.07	0.954841604	-0.020068666
Normal cells 2	20.50	26.20	5.70	-0.23	1.175547906	0.070240332
Normal cells 3	20.30	26.40	6.10	0.17	0.890898718	-0.050171666
Avg delta Ct			5.93			
Average Tumor cells	17.75234902					
Average Normal cells	1.007096076					
Fold change Tumor/normal	17.62726461					
T-TEST	4.39604E-05	•	P-value			

. module:: Getting Data into Galaxy

synopsis

Getting data into Galaxy

13.1 Step 1: Login into Galaxy

Click on the following link to go to the ASU Galaxy site:

https://orpheus.cs.astate.edu/

Use your ASU username and password to login to Galaxy.

13.2 Step 2: Getting data

Data we are using for this analysis came from Loraine et al, 2015 study. In the original study, there are 10 samples (Five Controls and heat treated). Here we are using only 3 samples for each group (3 control and 3 heat treated). These files were downloaded from NCBI's Short Read Archive (SRA) using SRA toolkit.

Use the following links to get data. Each link is one data file.

https://de.cyverse.org/dl/d/2AB5824F-73BA-4C6B-8530-457609F632BA/Control2_1.fastq https://de.cyverse.org/dl/d/46E690E4-C4A0-495F-9B11-F12AD9A25EE3/Control2_2.fastq https://de.cyverse.org/dl/d/7FEE6359-24AE-478D-A0B1-C6D2CA09E45E/Control3_1.fastq https://de.cyverse.org/dl/d/8FBB264D-F0CA-4F2C-821A-DB1C709315B2/Control3_2.fastq https://de.cyverse.org/dl/d/9A45E994-2CDC-4643-AC4C-45C9625138F6/Heat1_1.fastq https://de.cyverse.org/dl/d/46093383-493A-4D4E-A607-D3E56916DF59/Heat1_2.fastq https://de.cyverse.org/dl/d/9668B243-7009-4AD3-BBDA-350D6A60119D/Heat2_1.fastq https://de.cyverse.org/dl/d/FE1C3CC3-9133-4244-BCBB-816B8D2D5F97/Heat2_2.fastq https://de.cyverse.org/dl/d/D635B6EE-BE26-4BC4-A058-3E51B1AA69C4/Heat3_1.fastq https://de.cyverse.org/dl/d/F88561AF-CFF2-4FC8-B6B4-D8623779BB24/Heat3_2.fastq

13.3 Step 1: Click on the upload icon on upper left hand corner

13.4 Step 2: Copy one of the links above. Click on the Paste/Fetch icon and paste link in the box. Click on start.

<u>ular</u>	<u>Composite</u>	<u>Collection</u>					
	Name	Size	Туре	Genome	Settings	Status	
	New File	81 b	Auto-det 🔻 🔍	Additional S	• •	100%	~
Ye	u can tell Galaxy te	o download data fr	om web by entering UPL in	this box (one per line). You	i can also directly pa	ste the contents of a file	
tps	://de.cvverse.org/g	dl/d/BBFB60AC-88	55-40AC-9634-7C62F5B9	B02D/Control1 2.fastg			
	.,,						
						G	
						G	
						J	
	Type (set all):	Auto d		Conome (set all)	Additio		
	Type (set all):	Auto-de	etect v Q	Genome (set all)	Addition	nal Species 💌	

13.5 Step 3: One the data is uploaded, they will appear in the right hand panel. You can use the pencil icon to change the name.

13.6 |Reference:

Loraine AE, Blakley IC, Jagadeesan S, Harper J, Miller G, Firon N. Analysis and Visualization of RNA-Seq Expression Data Using RStudio, Bioconductor, and Integrated Genome Browser. *Methods Mol Biol.* 2015;1284:481-501. doi: 10.1007/978-1-4939-2444-8_24. PubMed PMID: 25757788.

search datasets	8
Unnamed history 1 shown	
1.26 GB	
1: https://de.cyverse.or g/dl/d/BBFB60AC-8855 -40AC-9634-7C62F5B9B0 ol1 2.fastq	• • ×

FastQC analysis using Galaxy

14.1 Step 1: Login into Galaxy

First login to your Cyverse account using your name and password.

Trellis: CyVerse User Management A centralized place for you to manage your CyVerse user profile a	nd services. Log
New User? Register Click to manage your CyVerse user profile information and the CyVerse services that are available to you.	Forgot your Password? Reset Password Click here to reset your password.
Log in with: CyVerse Login Clic here if you have previously created a CyVerse	e user ID.

Then, go to your DE account.

14.2 Step 3: Performing FastQC analysis:

First step of the data analysis is to check the quality of the sequences. For this purpose, we are using the FastQC tool on Galaxy. a. Type FastQC in the search box on top left hand corner.

Tools	
search tools	
<u>Get Data</u>	
FastQC Read Quality reports	
<u>Bowtie2</u> – map reads against reference genome	
<u>Cutadapt</u> Remove adapter sequences from Fastq/Fasta	
Upload File from your computer	
UCSC Main table browser	
UCSC Test table browser	
UCSC Archaea table browser	
<u>EBI SRA</u> ENA SRA	

d. Select a fastq file and execute the analysis.

FastQC Read Quality reports (Galaxy Version 0.71)	✓ Options			
Short read data from your current history				
□ ℓ₂ □ 4: Control2_1.fastq	-			
Contaminant list				
D C Nothing selected	•			
tab delimited file with 2 columns: name and e: Illumina Small RNA RT Primer CAAGCAGAAGACGGCAT	ACGA			
Submodule and Limit specifing file				
C 2 Nothing selected				
a file that specifies which submodules are to be executed (default=all) and also specifies the thresholds for the each submodules warning parameter				
✓ Execute				

🚹 Purpose

FastQC aims to provide a simple way to do some quality control checks on raw sequence data coming from high throughput sequencing pipelines. It provides a modular set of analyses which you can use to give a quick impression of whether your data has any problems of which you should be aware before doing any further analysis.

Adapter and quality trimming using Cutadapt

We are going to use Trim-galore to trim adapters, and poor quality bases. This tool has several advantages. It allows selection multiple files. You can also select both forward and reverse reads. If you want to read more about Trim-galore, please visit their website. Also, Trim-galore is a wrapper for Cutadapt, which is the actual tool that performs the trimming.

Please follow the tutorial carefully.

15.1 Step 1: Launching Cutadapt and performing the analysis

- 1. Type Trim-galore in the search box on top left hand corner.
- 2. Select paired-end and select the two paired-end files are shown below. Use Illumina universal adapter to trim.
- 3. Click on the advance settings. Set the parameters as indicated in blue arrows.

Cutadapt Kemove adapter sequences from Fastq/Fasta (Galaxy Version 1.16.3)	 Options
Single-end or Paired-end reads?	
Paired-end	•
FASTQ/A file #1	
□ 4 □ 125: Heat3_1.fastq	•
Should be of datatype "fastq.gz"or "fasta"	
FASTQ/A file #2	
□ 4 □ 126: Heat3_2.fastq	•
Should be of datatype "fastq.gz"or "fasta"	
Read 1 Options	۲
3' (End) Adapters	
1: 3' (End) Adapters	圓
Source	
Enter custom sequence	•
Enter custom 3' adapter name (Optional)	
Entre outlos 21 a factor comune	
Enter custom 3' adapter sequence	
(-a)	

Read 2 Options	۲
3' (End) Adapters	
1: 3' (End) Adapters	圓
Source	
Enter custom sequence	•
Enter custom 3' adapter name (Optional)	
Enter custom 3' adapter sequence	
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT	
(-A)	

+ Insert 3' (End) Adapters

Sequence of an adapter ligated to the 3' end of the second read in each pair. The adapter and subsequent bases are trimmed. If a '\$' character is appended ('anchoring'), the adapter is only found if it is a suffix of the read. To search for a linked adapter, separate the 2 sequences with 3 dots (ADAPTER1...ADAPTER2), see Help below.

5' (Front) Adapters

+ Insert 5' (Front) Adapters

Adapter Options
Maximum error rate
0.1
Maximum allowed error rate (no. of errors divided by the length of the matching region). (error-rate)
Do not allow indels (Use ONLY with anchored 5' (front) adapters).
Yes No
Do not allow indels in the alignments. That is, allow only mismatches. This option is currently only supported for anchored 5' adapters (default: both mismatches and indels are allowed). (no-indels)
Match times
1
Try to remove adapters at most COUNT times. Useful when an adapter gets appended multiple times. (times)
Minimum overlap length
6l
Minimum overlap length. If the overlap between the adapter and the sequence is shorter than LENGTH, the read is not modified. This re number of bases trimmed purely due to short random adapter matches. (overlap)
Match Read Wildcards
Yes No
Allow 'N's in the read as matches to the adapter. (match-read-wildcards)

4. Launch the analysis.

Filter Options

Discard Trimmed Reads

Yes No

Discard reads that contain the adapter instead of trimming them. Use the 'Minimum overlap length' option in ord many randomly matching reads! (--discard-trimmed)

Discard Untrimmed Reads

Yes No

Discard reads that do not contain the adapter. (--discard_untrimmed)

Minimum length

Discard trimmed reads that are shorter than LENGTH. Reads that are too short even before adapter removal are a initial primer is not counted. Value of 0 means no minimum length. (--minimum-length)

Maximum length

0

Discard trimmed reads that are longer than LENGTH. Reads that are too long even before adapter removal are als initial primer is not counted. Value of 0 means no maximum length. (--maximum-length)

Read Modification Options

Quality cutoff

20

Trim low-quality bases from 5' and/or 3' ends of each read before adapter remo only the 3' end is trimmed. If two comma-separated cutoffs are given, the 5' end quality-cutoff)

NextSeq trimming

0

Experimental option for quality trimming of NextSeq data. This is necessary beca end of the fragment (it encodes G as 'black'). This option works like regular qual qualities of G bases are ignored. (--nextseq-trim)

Trim Ns

Yes No

Trim N's on ends of reads. (--trim-n)

Prefix

Add this prefix to read names (--prefix)

Suffix

Add this suffix to read names (--suffix)

Strip suffix

Remove this suffix from read names if present. (--strip-suffix)

Length

40

Adapter and quality trimming using trim-galore

We are going to use Trim-galore to trim adapters, and poor quality bases. This tool has several advantages. It allows selection multiple files. You can also select both forward and reverse reads. If you want to read more about Trim-galore, please visit their website. Also, Trim-galore is a wrapper for Cutadapt, which is the actual tool that performs the trimming.

Please follow the tutorial carefully.

16.1 Step 1: Launching Trim-galore

- 1. In the finder window type "trim-galore"
- 3. Select "Trim Galore".

16.2 Step 2: Selecting input files

As indicated in the figure: 1. Is this library paired- or single-end? "Paired-end"

2. Adapter sequence to be trimmed: "Select Illumina universal"

Trim Galore! Quality and adapter trimmer of reads (Galaxy Version 0.4.3.1)	▼ Options	
is this library paired- or single-end?		
Paired-end	•	
Reads in FASTQ format		
□ 4 □ 218: Control3_1.fastq	•	
Reads in FASTQ format		
□ 4 □ 219: Control3_2.fastq	•	
Adapter sequence to be trimmed		
Illumina universal	•	
Trims 1 bp ott every read from its 3' end.		
Yes No		
Remove N bp from the 3' end of read 1		

16.3 Step 3: Advance settings

1. From "Trim Galore! advanced settings" select "Full parameter list"

Trim Galore! advanced settings		
Use defaults	•	
	٩	
Use defaults		
Full parameter list		
✓ Excute		

2. Set "Overlap with adapter sequence required to trim a sequence" to 6.

Remove N b	pp from the 3' end of read 2
Instructs Trin unwanted bia	n Galore! to remove N bp from the 3' end of read 2 after adapter/quality trimming has been performed. This may remove som as from the 3' end that is not directly related to adapter sequence or basecall quality.
im Galore! a	advanced settings
ull parameter	r list
u can use the	e default settings or set custom values for any of Trim Galore!'s parameters.
Trim low-qu	ality ends from reads in addition to adapter removal (Enter phred quality score threshold)
20	
For more info	rmation please see below.
Overlap wit	h adapter sequence required to trim a sequence
6	
Maximum a	llowed error rate
0.1	
Discard rea	ds that became shorter than length N
20	
structs To	im Galorel to remove N hn from the 5' end of read 1
Instructs Tr	im Galore! to remove N bp from the 5' end of read 2 (Only for paired-end reads)
Generate a	report file

3. Run the analysis.

Use Splice aware aligner, Tophat2 to align short reads

- 1. We are using Paired end reads and set the "Is this library mate-paired?" pulldown to "Pairedend", then a second pulldown will appear to specify the 2nd FASTQ.
- 2. "Mean Inner Distance between Mate Pairs" value for this parameter should obtained from the person incharge of the sequencing.
- 3. Mean Inner Distance between Mate Pairs = length of the Fragments used for sequencing (Length of Illumina adapters (often 120bp) + part sequenced (76+76))
- 4. Genome should be obtained from the SolGenome.net (ftp://ftp.solgenomics.net/tomato_genome/assembly/build_3.00/) and select it from the history.
- 5. This library has been prepared to preserve the strandedness of the RNAs.

- 6. Minimum and maximum intron lengths should be changed according to genome used.
- 7. Change the intron lengths for split reads as well.

TopHat Gapped-read mapper for RNA-seq data (Galaxy Version 2.1.1)	 Options
Is this single-end or paired-end data?	
Paired-end (as individual datasets)	•
RNA-Seq FASTQ file, forward reads	
C 4: Control2_1.fastq	-
Must have Sanger-scaled quality values with ASCII offset 33	
RNA-Seq FASTQ file, reverse reads	
□ 4 □ 5: Control2_2.fastq	•
Must have Sanger-scaled quality values with ASCII offset 33	
Mean Inner Distance between Mate Pairs	
200	
-r/mate-inner-dist; This is the expected (mean) inner distance between mate pairs. For, example, for paired end runs with fragments	selected
at 300bp, where each end is 50bp, you should set -r to be 200. The default is 50bp.	
Std. Dev for Distance between Mate Pairs	
40	
mate-std-dev; The standard deviation for the distribution on inner distances between mate pairs. The default is 20bp.	
Report discordant pair alignments?	
Yes	•
no-discordant	
Use a built in reference genome or own from your history	
Use a genome from history	-
Built-ins genomes were created using default options	
Select the reference genome	
🗅 🖄 🗅 24: S_lycopersicum_chromosomes.3.00.fa	-
TopHat settings to use	

TopHat settings to use

Full par	ameter list		▼

You can use the default settings or set custom values for any of Tophat's parameters.

Max realign edit distance

1000

--read-realign-edit-dist; Some of the reads spanning multiple exons may be mapped incorrectly as a contiguous alignment to the genome even though the correct alignment should be a spliced one – this can happen in the presence of processed pseudogenes that are rarely (if at all) transcribed or expressed. This option can direct TopHat to re-align reads for which the edit distance of an alignment obtained in a previous mapping step is above or equal to this option value. If you set this option to 0, TopHat will map every read in all the mapping steps (transcriptome if you provided gene annotations, genome, and finally splice variants detected by TopHat), reporting the best possible alignment found in any of these mapping steps. This may greatly increase the mapping accuracy at the expense of an increase in running time. The default value for this option is set such that TopHat will not try to realign reads already mapped in earlier steps.

Max edit distance

2

--read-edit-dist; Final read alignments having more than these many edit distance are discarded.

Library Type

FR Unstranded

--library-type; TopHat will treat the reads as strand specific. Every read alignment will have an XS attribute tag. Consider supplying library type options below to select the correct RNA-seq protocol.

Final read mismatches

2

--read-mismatches; Final read alignments having more than these many mismatches are discarded.

Use bowtie -n mode

No

--bowtie-n; TopHat uses "-v" in Bowtie for initial read mapping (the default), but with this option, "-n" is used instead. Read segments are always mapped using "-v" option.

98

•

•

Anchor length (at least 3)

8

-a/--min-anchor-length; TopHat will report junctions spanned by reads with at least this many bases on each side of the junction. Note that individual spliced alignments may span a junction with fewer than this many bases on one side. However, every junction involved in spliced alignments is supported by at least one read with this many bases on each side. This must be at least 3 and the default is 8.

Maximum number of mismatches that can appear in the anchor region of spliced alignment

0

-m/--splice-mismatches; The default is 0.

The minimum intron length

70

-i/--min-intron-length; TopHat will ignore donor/acceptor pairs closer than this many bases apart. The default is 70.

The maximum intron length

20,000

-I/--max-intron-length; When searching for junctions ab initio, TopHat will ignore donor/acceptor pairs farther than this many bases apart, except when such a pair is supported by a split segment alignment of a long read. The default is 500000.

Allow indel search

[Yes 🗸				
Ī	Max insertion length.				
l	3				
L	max-insertion-length; The maximum insertion length. The default is 3.				
l	Max deletion length.				
l	3				
l	max-deletion-length; The maximum deletion length. The default is 3.				
N	faximum number of alignments to be allowed				
[20				

-g/--max-multihits; Instructs TopHat to allow up to this many alignments to the reference for a given read, and choose the alignments based on their alignment scores if there are more than this number. The default is 20 for read mapping. Unless you use --report-secondary-alignments,

code-handout P Allianment of Outco viev

Maximum	number	of	alignments	to	he	allowed
Maximum	number	U 1	angiments	ιu	DC	anoweu

20	
-g/max-multihits; Instructs TopHat to allow up to this many alignments to the reference for a given read, and choose the alignment their alignment scores if there are more than this number. The default is 20 for read mapping. Unless you usereport-secondary-a TopHat will report the alignments with the best alignment score. If there are more alignments with the same score than this number randomly report only this many alignments. In case of usingreport-secondary-alignments, TopHat will try to report alignments up option value, and TopHat may randomly output some of the alignments with the same score to meet this number.	nts based on Ilignments, , TopHat will o to this
Minimum intron length that may be found during split-segment (default) search	
50	
min-segment-intron; The minimum intron length that may be found during split-segment search. The default is 50.	
Maximum intron length that may be found during split-segment (default) search	
20000	
max-segment-intron; The maximum intron length that may be found during split-segment search. The default is 500000.	
Number of mismatches allowed in each segment alignment for reads mapped independently	
2	
segment-mismatches; Read segments are mapped independently, allowing up to this many mismatches in each segment alignment default is 2.	nt. The
Minimum length of read segments	
25	
segment-length; Each read is cut up into segments, each at least this long. These segments are mapped independently. The defau	ılt is 25.
Output unmapped reads	
Yes No	
If checked, a BAM with the unmapped reads will be added to the history	
Do you want to supply your own junction data	
No	•
The options below allow you validate your own list of known transcripts or junctions with your RNA-Seq data. Note that the chromos in the files provided with the options below must match the names in the Bowtie index.	ome names

17.1 Output files:

- 1. accepted_hits (BAM, BAI)
- 2. Two binary files: .BAM (data) and .BAI (index)

3. These are the actual paired reads mapped to their position on the genome, and split across exon junctions. This can be visualized in IGV, IGB or UCSC, but you must download both .BAM and .BAI files to the same directory. splice_junctions (BED)

- 4. BED file (list of genomic locations, no sequence) listing all the places TopHat had to split a read into two pieces to span an exon junction. This can be visualized at UCSC or in IGV, etc.
- 5. deletions (BED) (if indel search is on)
- 6. insertions (BED) (if indel search is on)

Use Htseq to counts reads mapped to features

Use Htseq to counts the reads aligned to exons on the genes. Change the parameters as indicated in red arrows.

7. Change the intron lengths for split reads as well.

Aligned SAM/BAM File
C 58: TopHat on data 24, data 5, and data 4: accepted_hits
GFF File
Image: Contract of the second state
Mode
Union 🗸
Mode to handle reads overlapping more than one feature. (mode)
Stranded
Reverse
Specify whether the data is from a strand-specific assay. **Be sure to choose the correct value** (see help for more information). (stranded)
Minimum alignment quality
20
Skip all reads with alignment quality lower than the given minimum value. (minaqual)
Feature type
mRNA
Feature type (3rd column in GFF file) to be used. All features of other types are ignored. The default, suitable for RNA-Seq and Ensembl GTF files, is
exon. (type)
ID Attribute
GFF attribute to be used as feature ID. Several GFF lines with the same feature ID will be considered as parts of the same feature. The feature ID is
used to identity the counts in the output table. All features of the specified type MUST have a value for this attribute. The default, suitable for RNA-
Seq and Ensembl GTF files, is gene_id. (idattr)

Use Kellisto to map reads to cDNA and count

Kellisto is an ultrafast alignment-free quantification tool.

1. Change parameters as indicated.

2. cDNA file can be obtained from the Solgenome.net(ftp://ftp.solgenomics.net/tomato_genome/ annotation/ITAG3.0_release/ITAG3.0_cDNA.fasta) |

- 3. Once you get the results, click on the "eye" icon on the history pane. Then click on the "disk" icon on the left bottom left-hand corner to download the data into your computer.
- 4. Open the download file with Excel.

5. In Excel, click on "Data" and then click on "Text to Column". Separate column using tab to separate data into columns. Sum the numbers in "est_counts" using Auto Sum function.

Reference transcriptome for quantification
Use a transcriptome from history
FASTA reference transcriptome
□ 43: ITAG3.0_cDNA.fasta
Single-end or paired reads
Paired
Collection or individual datasets
Individual files 🔹
Forward reads
□ 4: Control2_1.fastq
Reverse reads
□ ₽ 5: Control2_2.fastq ✓
Perform sequence based bias correction
Yes No
(bias)
default: 0 (bootstrap-samples)
Seed for the bootstrap sampling
42
default: 42 (seed)
Search for fusions
Yes No for Pizzly (fusion)

Setup instructions (This is from Data Carpentry (http://www.datacarpentry.org/R-genomics/))

R and RStudio are separate downloads and installations. R is the underlying statistical computing environment, but using R alone is no fun. RStudio is a graphical integrated development environment (IDE) that makes using R much easier and more interactive. You need to install R before you install RStudio. After installing both programs, you will need to install the tidyverse package from within RStudio. Follow the instructions below for your operating system, and then follow the instructions to install tidyverse and RSQLite.

20.1 Windows

20.2 If you already have R and RStudio installed

Open RStudio, and click on "Help" > "Check for updates". If a new version is available, quit RStudio, and download the latest version for RStudio. To check which version of R you are using, start RStudio and the first thing that appears in the console indicates the version of R you are running. Alternatively, you can type sessionInfo(), which will also display which version of R you are running. Go on the CRAN website and check whether a more recent version is available. If so, please download and install it. You can check here for more information on how to remove old versions from your system if you wish to do so.

20.3 If you don't have R and RStudio installed

Download R from the CRAN website. Run the .exe file that was just downloaded Go to the RStudio download page Under Installers select RStudio x.yy.zzz - Windows XP/Vista/7/8 (where x, y, and z represent version numbers) Double click the file to install it Once it's installed, open RStudio to make sure it works and you don't get any error messages.

20.4 macOS

20.5 If you already have R and RStudio installed

Open RStudio, and click on "Help" > "Check for updates". If a new version is available, quit RStudio, and download the latest version for RStudio. To check the version of R you are using, start RStudio and the first thing that appears on the terminal indicates the version of R you are running. Alternatively, you can type sessionInfo(), which will also display which version of R you are running. Go on the CRAN website and check whether a more recent version is available. If so, please download and install it.

20.6 If you don't have R and RStudio installed

Download R from the CRAN website. Select the .pkg file for the latest R version Double click on the downloaded file to install R It is also a good idea to install XQuartz (needed by some packages) Go to the RStudio download page Under Installers select RStudio x.yy.zzz - Mac OS X 10.6+ (64bit) (where x, y, and z represent version numbers) Double click the file to install RStudio Once it's installed, open RStudio to make sure it works and you don't get any error messages.

Using DEseq and EdgeR to find differentially expressed genes

The first step is to merge all count data files we got from the Htseq. Use the Join two data sets side-by-side on Galaxy and select output from Control2 and Control3 samples. Use Column one to join the data sets. After this is complete, take the resulting file, and combine with Temperate1 output. Repeat this for the next two data sets.

The resulting file would like this. Your actual number may be different, but should have 10 columns.

Download this file onto your computer and move it to folder called "Counts". Rename file "counts.tabular".

Open Rstudio and go to Session and select "Set Working Directory" and chose the folder that you just created.

In the console, you will see the following message and the part underline in red is the path to your directory.

Replace your path in this portion of the following code "/Users/aselawijeratne/Desktop". Execute this to read file into R.

= Galaxy	Analyze Data Workflow Shared Data - Visualization - Admin Help - User -									
Tools	Join two Datasets side by side on a specified field (Galaxy Version 2.1.1)									
search tools Trim leading or trailing characters Line/Word/Character count of a dataset Secure Hash / Message Digest on a dataset Either and Sort	Join 68: Join two Datasets on data 41 and data 60 using column Column: 1 with 41: htseq-count on data 33 and data 29									
Join, Subtract and Group Join two Datasets side specified field <u>Compare two Datasets</u> to find common or distinct rows	and column Column: 1 Keep lines of first input that do not join with second input Yes									
<u>Group</u> data by a column and perform aggregate operation on other columns.	Keep lines of first input that are incomplete No Fill empty columns									
Convert Formats Extract Features	hvert Formats Fill empty columns ract Features No ch Sequences Keep the header lines ch Alignments No									
Fetch Alignments Statistics Crook (Display Data										
Graph/Display Data										

Geneid	TopHat on data 24	data 5	and data 4: accepted_hits						
mRNA:Solyc00g005000.3.1	0	mRNA:Solyc00g005000.3.1	0	mRNA:Solyc00g005000.3.1	0	mRNA:Solyc00g005000.3.1	0	mRNA:Solyc00g005000.3.1	
nRNA:Solyc00g005005.1.1	0	mRNA:Solyc00g005005.1.1	0	mRNA:Solyc00g005005.1.1	0	mRNA:Solyc00g005005.1.1	0	mRNA:Solyc00g005005.1.1	
mRNA:Solyc00g005040.3.1	0	mRNA:Solyc00g005040.3.1	0	mRNA:Solyc00g005040.3.1	0	mRNA:Solyc00g005040.3.1	0	mRNA:Solyc00g005040.3.1	

⊥ 2 - ## R Markdown

Format data using R.

```
#select only column with data
d1 <- d1[-c(3, 5, 7, 9)]
#Name the columns
colnames(d1) <- c("gene_names", "C2", "C3", "T1", "T2", "T3")
#get rid of the mRNA part infront of the gene name
row_names <- gsub("mRNA:", "", d1$gene_names)
#remove the last trailing ".1" from gene names
row_names <- gsub('.{2}$', '', row_names)
#assign row_name vector to the row names of the data.
row.names(d1) <- row_name
#remove unformated gene names.
d1$gene_names <- NULL</pre>
```

Import necessary libraries.

library(edgeR)
library(DESeq2)

Filter data.

```
#Filter data with rowsum < 10
dl$rowsum <- rowSums(d1)
#Low count filtered
dl_filterd <- dl[dl$rowsum > 10, ]
```

Create a group file and normalize data using EdgeR.

```
conds <- c(rep("C", 2), rep("T", 3))
y <- DGEList(counts=d1_filterd, group=conds, remove.zeros=TRUE) #_
→Constructs DGEList object</pre>
```

dge=calcNormFactors(y)

A multi-dimensional scaling (MDS) plot to see the similarity among samples.

```
# color for controls
cn.color='blue'
# color for treatments
```

(continues on next page)

(continued from previous page)

```
tr.color='brown'
# define a title for the plot
main='MDS Plot for Count Data'
#par(las=1) # makes y axis labels horizontal not vertical
colors=c(rep(cn.color,2),rep(tr.color,3))
plotMDS(dge,main=main,labels=colnames(dge$counts),
col=colors,las=1)
```

Hierarchical clustering can also be used to check how different samples are. As you can see, sample T2 is very different from the rest.

```
>normalized.counts=cpm(dge)
>transposed=t(normalized.counts) # transposes the counts matrix
>distance=dist(transposed) # calculates distance
>clusters=hclust(distance) # does hierarchical clustering
>plot(clusters) # plots the clusters as a dendrogram
```

limage1

Differential expression analysis

Convert data into a dataframe and use dfr and fold change to select genes.

```
edge <- as.data.frame(topTags(et, n=50000))
edge2fold <- edge[edge$logFC >= 1 | edge$logFC <= -1,]
edge2foldpadj <- edge2fold[edge2fold$FDR <= 0.01, ]</pre>
```

DEseq analysis

Create matrix for DESeq2 and prepare data for DEseq

Differential expression analysis

```
dse <- DESeq(dse)
dse <- DESeq(dse)
ddsLocal <- estimateDispersions(dse, fitType="local", maxit =500)
ddsLocal <- nbinomWaldTest(ddsLocal)
res <- results(ddsLocal)</pre>
```

Order the data using p-adjusted value.

```
res <- res[order(res$padj),]
head(res)
res <- na.omit(res)</pre>
```

Use dfr and fold change to select genes.

Writing results files. You can open "edgr_deseq2.txt" file in Excel if you want to look at it.

Combine DESeq and EdgR to make Venn diagram

Count how many gene from each analysis and make a Venn diagram. You need to have overLapper.R file (down loaded from Bb) in Counts folder.

GOseq analysis

1. Ge the up and down regulated gene list. "bothDF" is the dataframe that contains both up and down-regulated genes from both EdgeR and DEseq2.

```
bothDF_down <- bothDF[bothDF$log2FoldChange <= -1,]
bothDF_up <- bothDF[bothDF$log2FoldChange >= 1,]
```

Convert to these dataframes into table with True or False values. Write the table to local directory.

2. Perform the GOseq analysis in Galaxy. You will need to perform the analysis for up and down regulated genes separately.

goseq tests for overrepresented gene categories (Galaxy Version 1.26.0)	 Options
Differentially expressed genes file	
□ 🖄 □ 72: DE_goseq.txt Up or down regulated gene list	•
A tabular file with Gene IDs in the first column, and True or False in the second column. True means a gene is differentially expressed. See section for details.	e Help
Gene lengths file	
1 1 74: Size_goseq.txt	•
You can calculate the gene lengths using featureCounts or the Gene length and GC content tool.	
Gene categories	
Use a category file from history	•
You can obtain a mapping of genes to categories (for some genomes only) or you can provide your own category file.	
Gene category file	
C C 73: GO_goseq.txt	•
Method Options	۲
Use Wallenius method	
Yes No	
See help for details. Default: Yes	
Use Hypergeometric method	
Yes No	
Does not use gene length information. See help for details. Default: No	
Sampling number	
0	
Number of random samples to be calculated when sampling is used. Set to 0 to not do sampling. Larger values take a long time. Defaul	t: 0

3. Combine gene descriptions with up and down regulated genes. You can get the S_lycopersicum_Feb_2014.bed file from the Dropbox link on Bb.

```
annots_file <- 'S_lycopersicum_Feb_2014.bed'
# keep gene id and gene description columns
annots <- read.delim(annots_file,sep='\t',header=F)[,13:14]
# name the columns
names(annots) <- c('gene','description')
# combine gene expression and annotations
bothDF_genedesc <- merge(bothDF,annots, by.x = "Row.names",by.y='gene
$\infty")</pre>
```

4. To order your data using FDR, you use the following command in R.

```
bothDF_genedesc <- bothDF_genedesc[order(bothDF_genedesc$FDR), ]</pre>
```


Run RNAseq analysis as a workflow

	Analyze Data	Workflow	Visualize 🔻	Shared Data 🔻	Admin	Help 🔻	User 🔻			
Your workflows							searc	h for workflow	+	1
Name	Tags	Own <mark>≥</mark> r	# of St	eps	Published		Show	in tools panel		
RNAseq	4	You	7	Text	No					
T		1								
2										

Your workflows Name Tags Owner RNAseq You Edit You Edit Run Share Download Copy Rename View Delete

Vorkflow: RNAseq	Click here to to run the workflow	✓ Run workflow
History Options		
Send results to a new history Yes No		
1: Input dataset		
□ 🖄 125: Heat3_1.fastq	Pair 1 fastq files	•
2: Input dataset		
126: Heat3_2.fastq	Pair 1 fastq files	•
3: Input dataset		
111: S_lycopersicum_chromosomes.3.00.fa	Genome file	•
1 4: Input dataset		
113: ITAG3.0_gene_models.gff	Annotation file	•

Indices and tables

- genindex
- modindex
- search