

 Navigation

 	
 index

 	1stAlphaOmega latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/1stalphaomega/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/1stalphaomega/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	1stAlphaOmega latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_posts/2010-08-30-joining-github.html

 Navigation

 		
 index

 		1stAlphaOmega latest documentation »

layout: post
title: Joining GitHub
excerpt: Whoaaaaaaaaaaaaaaaaaaaaa

Today is my first day at GitHub [http://github.com]. I’m not gonna lie, it’s a little
intimidating working alongside these amazing people:

		tom [http://tom.preston-werner.com]

		chris [http://ozmm.org]

		pj [http://pjhyett.com]

		scott [http://schacon.github.com/]

		tekkub [http://tekkub.net]

		melissa [http://luckiestmonkey.com]

		ryan [http://tomayko.com/about]

		kyle [http://warpspire.com]

		zach [http://zachholman.com]

		rick [http://techno-weenie.net]

I use GitHub daily. I love open source and have for about a decade. I love
the ecosystem that exists around sharing code for both teaching and learning.
I believe GitHub will continue to grow over the next few years and I’m
abso-fucking-lutely delighted to be a part of something I feel so passionate
about.

I’m hoping that they’ll keep me around for a while. :)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		1stAlphaOmega latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_posts/2010-07-28-constantly-shipping-refactorings.html

 Navigation

 		
 index

 		1stAlphaOmega latest documentation »

layout: post
title: Constantly Shipping Refactorings
excerpt: Unicorn and Zero Downtime Migrations with DataMapper

Recently, two of my favorite hackers, Martin [http://github.com/martinemde] and Tim [http://github.com/halorgium], have been working on a
pretty big refactoring in cloud. In the past our team probably would’ve
worked in a topic branch for a few weeks, followed by a painful
rebase/merge, followed by a deployment we really hoped we got right. Since
this refactor requires db schema changes, we’d prolly have to take the site
down for at least a few minutes to do it. They didn’t want to do it this, so
they approached the problem in a new way (to us). Here’s what they’re doing.

Unicorn and Zero Downtime Migrations with DataMapper

We moved to unicorn the other month and have found the 0 downtime deploys
really liberating. If something is ready to go out to customers, we ship it.
We have no planned day of the week or time of day that we ship. On weekdays we
normally ship 5-6 times a day and no one ever notices. DB schema changes currently
make things a little more difficult. When you add a new model, you create a
migration for it, and you ship the model with the migration. This
is where Martin and Tim tried something new. Instead of coupling the migration
and the model addition, they’re doing the migrations before the model is
introduced to the system.

Adding a New Model

So the other day they added a new model, let’s call it User.
When they wanted to introduce the User model, they did it in
two releases. In the first release they shipped a zero downtime deploy to
add the users table. The first release didn’t take advantage of
the user model, it was just a normal deploy with the migrations running AFTER
the unicorn processes had restarted. In the second release they shipped the
User model in another zero downtime deploy that actually started USING the users
tabel. Adding a table is pretty trivial if you think about it, but what about removing a column?

Data Transformation/Migration

Have you ever had to rollback a deployment that had data migrations? You need
to go find your latest database backup, restore that, extend the outage you
took because you hadn’t planned on things going south. It’s insanely stressful
and makes you look like a jackass to your co-workers. Your customers won’t like
it either.

Removing a Column from a Model

Let’s say that during the refactoring they discovered some insanity in our
system: tokens in two places, one on the User model and one on the
associated class Customer. First deployment they tracked down all the places
where the attribute, in this case ‘token’, was accessed directly and removed
it.

Here’s an example of the User class before the changes:

class User
 include DataMapper::Resource

 property :id, Serial
 property :token, String, :required => true,
 belongs_to :customer, Integer

 def valid_token?
 token == some_token_verification_method
 end
end

Here’s an example of the User class after the changes:

class User
 include DataMapper::Resource

 property :id, Serial
 belongs_to :customer, Integer

 def valid_token?
 customer.token == some_token_verification_method
 end
end

When this code deploys, the User table still has the token field.
Shortly after that, they shipped another release with a migration that only
removed the newly unused column. Again, 0 downtime. Guess how we do
tables? The same way.

Renaming a column

Renaming a column is kinda weird because it takes 4 deploys. On the first deploy,
create the new, unused column.
On the second deploy, introduce code that starts using the new column and
denormalizes the attributes as they’re accessed. This deploy also carries a zero downtime migration that copies the attribute over to the new column. All access to the attribute is now directed to the correct column. On the third deploy, remove all reference to the old
column. Finally on the fourth deploy, nuke the old column after the deploy
completes. For an example of how the new column usage works, check this snippet out.

class User
 include DataMapper::Resource

 property :id, Serial
 property :token, String, :required => true,
 property :tos_accepted, Boolean, :default => false
 property :admin, Boolean, :default => false
 property :administrator, Boolean, :default => false

 timestamps :at

 def admin
 value = attribute_get(:admin)
 value.nil? ? copy_admin : value
 end

 def admin?
 admin
 end

 def copy_admin
 unless update(:admin => adminstrator)
 raise "Could not save user: #{errors.full_messages.join(", ")}"
 end
 admin
 end
end

It’s so simple, who cares?

One thing I really love about this is the guys are constantly shipping
incremental improvements. There won’t be an evening where they’re forced to
work late to ship out their schema changes. You’ll never hear them cursing
other developers for introducing changes that mess with their refactoring.
Even though they’re focused on a very large refactoring, they’re never a few
days off from having something to show. You can watch their progress as the
commits flow by. They never entered the mindset that it’s ok to get lost in
refactoring wonderland. Solving a problem elegantly doesn’t mean you have to
go sit and think up the most beautiful solution ever. Break it down into little
pieces and ship ‘em.

Tim, Martin, and I are in the process of automating these kinds of rollouts. We’re testing it right now.

Hiring

We’re also hiring right now [http://www.engineyard.com/company/careers/ruby-engineers]. Send me [http://github.com/atmos] a message on github [http://github.com] if you’re
interested in working with a top notch group of hackers.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

LICENSE.html

 Navigation

 		
 index

 		1stAlphaOmega latest documentation »

 Copyright (c) 2014 Corey Donohoe

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

github-services/aws-opsworks/index.html

 Navigation

 		
 index

 		1stAlphaOmega latest documentation »

layout: default
title: AWS OpsWorks ~ Deploy GitHub repos to amazon’s cloud
repository_url: https://github.com/github/github-services/blob/master/lib/services/aws_opsworks.rb

AWS OpsWorks Service

The OpsWorks service allows you to deploy a specific branch to Amazon’s OpsWorks [http://aws.amazon.com/opsworks/] cloud. Using the deployments API you can have multi-environment deployments as well.

By default you can deploy one app. When it receives a push event it will create a deployment for the application in Amazon OpsWorks.

Configuration

Attributes	Description
———————–	————————————————-
app_id	“OpsWorks ID” on the app setting page in the AWS OpsWorks Console or see AppId [http://docs.aws.amazon.com/opsworks/latest/APIReference/API_App.html].
stack_id	“OpsWorks ID” on the stack setting page in the AWS OpsWorks Console or see StackId [http://docs.aws.amazon.com/opsworks/latest/APIReference/API_Stack.html].
branch_name	“Branch/Revision” configured for that app in the AWS OpsWorks Console or see Revision [http://docs.aws.amazon.com/opsworks/latest/APIReference/API_Source.html].
aws_access_key_id	Access key id of an AWS IAM user having the permission for the opsworks:CreateDeployment action.
aws_secret_access_key	Corresponding secret access key of the AWS IAM user.

IAM User Configuration

Try to identify the least number of privileges required to trigger these deployments.

Multi-Environment Deployments

If you’re using [hubot-deploy][10] then you can specify different stacks and applications and group them into an environment. An example apps.json script for hubot looks like this.

apps.json entry

"camo": {
 "provider": "aws_opsworks",
 "repository": "atmos/camo",
 "environments": ["production", "staging"],

 "opsworks": {
 "production": {
 "app_id": "<app_id>",
 "stack_id": "<stack_id>"
 },
 "staging": {
 "app_id": "<staging_app_id>",
 "stack_id": "<staging_stack_id>"
 }
 }
}

The associated GitHub Deployment API payload ends up looking like this:

Deployment API Payload

"payload": {
 "name": "camo",
 "config": {
 "opsworks": {
 "production": {
 "app_id": "<app_id>",
 "stack_id": "<stack_id>"
 },
 "staging": {
 "app_id": "<staging_app_id>",
 "stack_id": "<staging_stack_id>"
 }
 }
 }
}

You can then issue commands like:

hubot deploy camo to staging

or

hubot deploy camo/my-topic-branch to production.

The deployment will still be triggered with the credentials stored on GitHub.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		1stAlphaOmega latest documentation »

This is the data for my personal website

This is the combination of two older blog dumps that I have from 2000 - 2009. all of my atmos.org posts combined!

It is automatically transformed by Jekyll into a static site whenever I push this repository to GitHub.

License

The following directories and their contents are Copyright Corey Donohoe. You may not reuse anything therein without my permission:

		_posts/

		images/

All other directories and files are MIT Licensed.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

github-services/auto-deployment/index.html

 Navigation

 		
 index

 		1stAlphaOmega latest documentation »

layout: default
title: GitHub Auto-Deployment ~ Workflows for free
repository_url: http://github.com/atmos/hubot-auto-deploy

GitHub Auto-Deployment

GitHub Auto-Deployment is a workflow service for software teams deploying applications. It uses simple interactions around git usage to decide when code changes to your application should be deployed.

[image: GitHub Flow] [https://guides.github.com/introduction/flow/]

Behaviors

There’s two different ways to trigger deployments, by pushing and by commit status.

Deploy on Push

Upon receiving a push to the default branch, GitHub emits a deployment event for that sha. This is great for workflows where you push to GitHub and see changes on heroku in 30-60 seconds.

Example:

		You run git push origin master

		GitHub creates a deployment for your push

		The HerokuBeta service picks up the deployment and pushes your master branch out.

[image: Push to Deploy]

Deploy on Commit Status

Upon receiving a commit status [https://developer.github.com/v3/repos/statuses/] to the default branch, GitHub emits a deployment event if the commit status is successful.

Example:

		You run git push origin master

		GitHub dispatches a push event to your CI system.

		Your CI system calls back to GitHub stating that the commit passed tests.

		GitHub creates a deployment for your successful commit status.

		The HerokuBeta service picks up the deployment and pushes your master branch out.

[image: CI Based Deploy]

Setup

Auto-Deployment is available as a github service [https://github.com/github/github-services] and is configured in your repository’s admin settings under the Webhooks & Services section.

GitHub will handle creating Deployments via the API, but you will still need to configure a system that does the actual deployment for you.

Supported Deployment Systems

Right now there’s only a few easy ways to deploy. You can use heaven [https://github.com/atmos/heaven] with webhooks, the HerokuBeta GitHub service, or the AWS OpsWorks GitHub service.

Configuration

Attributes	Description
——————	————————————————-
github_token	A GitHub personal oauth token [https://help.github.com/articles/creating-an-access-token-for-command-line-use] with repo_deployment scope
environments	A comma delimited list of environments to deploy to automatically.
push_on_status	When set to 1 deployments are only created on successful commit statuses.
status_contexts	A comma delimimted list of commit status context names to verify against.Unimplemented

Chat Configuration

The easiest way to configure auto-deployment is via Hubot. You can configure things on a per-repo basis via hubot with the hubot-auto-deploy [https://github.com/atmos/hubot-auto-deploy] script. This saves you from having to do things like look up a GitHub API token or remember the exact syntax.

TODO

		More real-world testing.

		Support for status_contexts and multi-commit status aware.

		Support for continuous-deployment on branch deploys.

Branch based continuous deployment

Desired, but currently unimplemented

Example:

		You deploy a non-default branch from chat /deploy myapp/mybranch.

		The HerokuBeta service picks up the deployment and pushes your ‘mybranch’ branch out.

		You add commits and push to the ‘mybranch’ branch.

		GitHub dispatches a push event to your CI system.

		Your CI system calls back to GitHub stating that the commit passed tests.

		GitHub creates a deployment for your successful commit status on the deployed branch.

		The HerokuBeta service picks up the deployment and pushes your ‘mybranch’ branch out.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_posts/2010-12-13-geektalk-interview.html

 Navigation

 		
 index

 		1stAlphaOmega latest documentation »

layout: post
title: The Geek Talk Interview
excerpt: Whoaaaaaaaaaaaaaaaaaaaaa

The folks over at The Geek Talk [http://thegeektalk.com/interviews/corey-donohoe/] posted an interview with me. It’s considerably more informative than my current about page. They’ve also interviewed a bunch of other people doing awesome shit recently too. The format is pretty simple and it’s nice to find out a little more about people doing amazing things.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

camo/index.html

 Navigation

 		
 index

 		1stAlphaOmega latest documentation »

layout: default
title: Camo ~ Making Insecure Assets Look Secure
zip_url: https://github.com/atmos/camo/zipball/master
issue_url: https://github.com/atmos/camo/issues/new
repository_url: http://github.com/atmos/camo

Camo - Image Proxy

What It Gives You

This is an SSL image proxy to prevent mixed content warnings on secure pages served from GitHub.

We want to allow people to keep embedding images in comments/issues/READMEs/google charting.

There’s more info on the GitHub blog.

Using a shared key, proxy URLs are hashed with hmac so we can bust caches/ban/rate limit if needed.

Camo currently runs on node version 0.4.10 at GitHub on Heroku’s Cedar stack.

Features

 		Proxy google charts

 		Proxy images under 5 MB

 		Follow redirects to a configurable depth

 		Proxy remote images with a content-type of image/*

 		404s for anything other than a 200, 301, 302 or 304 HTTP response

 		Disallows proxying to private IP ranges

At GitHub we render markdown and replace all of the src attributes on the img tags with the appropriate URL to hit the proxies. There’s example code for creating URLs in the tests.

Deployment

Heroku’s cedar stack is the easiest way to deploy this. They provide free SSL for you and your signing keys are all your own. Checkout the README [https://github.com/atmos/camo#readme] for more info.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

github-services/heroku/index.html

 Navigation

 		
 index

 		1stAlphaOmega latest documentation »

layout: default
title: Heroku Beta ~ Deploy GitHub repos to heroku with ease
repository_url: https://github.com/github/github-services/blob/master/lib/services/heroku_beta.rb

Herkou Beta

The Heroku Beta integration is a github-service [https://github.com/github/github-services] that responds to deployment events [https://developer.github.com/v3/repos/deployments/] on GitHub to ship your code to a heroku [https://www.heroku.com/] application.

Setup

You can configure the Heroku Beta from the ‘Settings’ link on your repository. Then click on ‘Webhooks & Services’.

[image: Configuration Screen]

Configuration

Attributes	Description
——————	————————————————-
name	The heroku application name to deploy to.
heroku_token	A Heroku direct authorization [https://devcenter.heroku.com/articles/oauth#direct-authorization] or api token [https://devcenter.heroku.com/articles/platform-api-quickstart#authentication].
github_token	A GitHub personal oauth token [https://help.github.com/articles/creating-an-access-token-for-command-line-use] with repo_deployment scope

TODO

		Fix up deployment statuses to mark as complete with a link to the heroku dashboard.

		Support multiple environments via the payload.

[image: GitHub Flow]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

