
Team L205 IDP Documentation
Release 1.0

Eric Wieser, Matt Diesel

Dec 30, 2016

Contents

1 Getting started 1
1.1 Useful programs . 1
1.2 When things go wrong . 2
1.3 Building the docs . 2

2 Navigation plan 5
2.1 Subroutines . 6

3 Line following algorithm 7

4 Color classification 9
4.1 Api documentation . 9

5 Hardware access layer 11
5.1 Actuators . 11
5.2 Sensors . 13
5.3 Low level . 14

6 Utilities 17

i

ii

CHAPTER 1

Getting started

A guide for the electronics and mechanics team, when they need to test.

First of all, you’ll want to get a copy of the code. We’re using git for version control, so you can get that like this on
the command line:

$ cd ~/idp_shared/<yourcrsid>
$ git clone ~/idp_shared/Common/repo.git
Initialized empty Git repository in /groups/IB/idp/idp-l205/efw27/repo/.git/
$ cd repo

After you’ve done this once, you should type the following every time the software team change the code:

$ cd ~/idp_shared/<yourcrsid>/repo
$ git pull

1.1 Useful programs

The following launches a keyboard interface for remote controlling the robot. Upon startup, it describes the key-
mapping:

$./test t_remote

To test the competition code, use:

$./test t_all

Which allows you to enter the main routine at any point in the sequence

1.1.1 Calibration

To calibrate the eggsensor:

1

Team L205 IDP Documentation, Release 1.0

$./test dev/t_eggsensor_calib
constructed
initialized
Try and vary the ambient light while sampling
Place over brown egg, and hit enter

This program will expect you to place each egg until it in turn, and will take samples. Do this on the conveyor. Make
sure to sample the edges of eggs as well as the centers. Also, spin the creme egg.

Running this will regenerate the egg_stats.cc file. To check the calibration, run the following, which will show
which eggs are being read:

$./test t_eggidentify
none
none
brown
...

1.2 When things go wrong

You’ll get errors if things aren’t working. A common one is:

terminate called after throwing an instance of 'LinkError'
what(): Host not found on network

./test: line 1: 22780 Aborted tests/$1.wifi

If this occurs, the robot is probably not yet powered. Wait for the blue LED. If all fails, pull the plug on it and try
again.

Another one is:

terminate called after throwing an instance of 'PortError'
what(): Port P1 disconnected.

./test: line 1: 22780 Aborted tests/$1.wifi

Which indicates a missing or broken electronics board. You can debug further with:

$./test t_conns
constructed
initialized
Testing P1... Connected
Testing P2... Connected
Testing P3... Disconnected

If all fails, then the controller itself probably needs its power taken away.

TL;DR: turn it off and on again

1.3 Building the docs

This documentation is autogenerated. Building it is slightly involved, and won’t work on the department computers.
It requires python and doxygen:

2 Chapter 1. Getting started

Team L205 IDP Documentation, Release 1.0

$ pip install breathe sphinx_rtd_theme # first time only
$ cd docs
$ doxygen
$ make html # or make.bat html on windows

The docs will be placed in docs/_build/html.

1.3. Building the docs 3

Team L205 IDP Documentation, Release 1.0

4 Chapter 1. Getting started

CHAPTER 2

Navigation plan

Q1 Q2
Q3

Q4
Q5 Q6

Start

Depart Conveyor
Move

Forward: 1
Steer: 0.5

Line Follow

Line
After at
least 1s Turn CCWJunction` Go up ramp

Line Follow
90 deg

Turn CCW
Junction

Line Follow
90 deg

Move Forward

2 Junctions

At Delivery Nexus

10cm

Next Eggs
Brown?

Any more eggs?

dropEggs

Yes

Reverse
No

Move
Forward: 0.35

Steer: 0.65

dropEggs

Line
At least
45deg

Move
Forward: -0.35

Steer: -0.65

Continue
Movement45 deg

Line

Reverse

90 deg
Timeout

10cm

End30cmNo

Yes

5

Team L205 IDP Documentation, Release 1.0

Functions

void q1_collect_d2d3(Robot &r)
[Q1] Collect D2/3 Eggs Start: Starting position End: Last position on conveyor

void q2_deliver_d2d3(Robot &r)
[Q2] Deliver D2/3 Eggs Start: Last position on conveyor End: Junction between D2/3 boxes

void q3_return_from_d2d3(Robot &r)
[Q3] Return from D2/3 Boxes Start: Junction between D2/3 boxes End: Starting square (at centre junction,
facing west)

void q4_collect_d1(Robot &r)
[Q4] Collect D1 Eggs Start: Starting square (at centre junction, facing west) End: Last position on conveyor

void q5_deliver_d1(Robot &r)
[Q5] Deliver D1 Eggs Start: Last position on conveyor End: D1 box

void q6_return_from_d1(Robot &r)
[Q6] Return from d1 Start: D1 box End: Within starting area

2.1 Subroutines

Some bits of code are reused across multiple routes

Typedefs

typedef

Functions

void waitForLine(Robot &r, LineSensors::Reading::State s)

void waitForLine(Robot &r, negate n)

void goToConveyor(Robot &r, bool east = true)

void conveyorCollect(Robot &r, EGG_CALLBACK shouldCollect)
Drives along the conveyor collecting eggs.

Start Straight along conveyor

Check Egg TypeLSL Drive StraightshouldCollect
End

Not shouldCollect
And at position 5

Arm Down10cm
Arm Close Arm Up Arm Open

Else

At position 5

void dropEggs(Robot &r, int n = 1)
struct #include <common.h>Public Members

LineSensors::Reading::State negate::s

6 Chapter 2. Navigation plan

CHAPTER 3

Line following algorithm

void followUntil(Robot &r, float distance, linefollowTerminator *terminator = & until_junction)
Follow a line until an event.

For example:

followUntil(robot, 0.6, until_junction) // follow the line to a junction 60cm
→˓away
followUntil(robot, 0.2, until_xjunction) // follow the line to a cross-junction
→˓20cm away
followUntil(robot, 0.2, until_bumper) // follow the line until the bumper is
→˓pressed 20cm away
followUntil(robot, 0.2, NULL) // follow the line for exactly 20cm

Parameters

• r: A reference to a Robot

• distance: The expected distance to drive, in meters, before the event occurs

• terminator: A function taking (Robot&, const LineSensors::Reading&) that re-
turns true when the robot should stop. If NULL, stop after distance has been travelled

Exceptions

• LineLost: The target line couldn’t be found, recovery failed.

• Timeout::Expired: It’s taking more than 25% longer than expected to reach the target

void turnAtJunction(Robot &r, int turns, bool goForward = true)
Turns the robot at a junction.

Parameters

• r: A reference to a Robot

• turns: The number of 90 degree turns to go through, counter-clockwise being positive.

7

Team L205 IDP Documentation, Release 1.0

• goForward: false if the robot already has its wheelbase over the junction

Exceptions

• LineLost: The target line couldn’t be found, recovery failed.

8 Chapter 3. Line following algorithm

CHAPTER 4

Color classification

The egg sensor reads four variables describing the egg. A range of similar eggs can be sampled to calibrate the sensor.
From these readings, a normal distribution can be fitted to each variable and egg. Considering covariances, we can
then generalize to a 4-variable normal distribution for each egg.

To identify the egg, the find the normal distribution with the highest probability density at a given point in variable-
space.

The following steppable animation shows how this works for just two variables (red and blue).

The conversion of the raw recorded data to a set of normal distribution parameters is done with a small python script,
that leverages the numpy numeric toolkit, and generates the egg_stats.cc file.

4.1 Api documentation

enum type EggType
Values:

std::array<MultivariateNormal<4>, EGG_TYPE_COUNT> egg_stats::expectations
We model each egg as a normal distribution over all readings for that egg.

The four variables of the distribution are the red, blue, white, and ambient components of the reading

The parameters for these models are in egg_stats.cc, which is auto-generated by a python script from a set of
calibration readings

template <int N>
struct Represents a generalized normal distribution over N variables, described by the mean and covariance
matrices.

9

Team L205 IDP Documentation, Release 1.0

Public Functions

double MultivariateNormal::mahalanobisDistanceSq(Matrix<float, N, 1> value) const
generalization of 𝑥−𝜇

𝜎

2
to N variables

see: http://en.wikipedia.org/wiki/Mahalanobis_distance

Public Members

Matrix<float, N, 1> MultivariateNormal::mean

Matrix<float, N, N> MultivariateNormal::covariance

10 Chapter 4. Color classification

http://en.wikipedia.org/wiki/Mahalanobis_distance

CHAPTER 5

Hardware access layer

To ensure hardware is operated correctly, each independant electronic subsystem is encapsulated in a class. This also
allows us to make meaningful constructors and destructors, such as: setting up ports for inputs; turning off LEDs at
shutdown; driving a motor slowly to hold the deliverer at startup.

These all get wrapped in a single Robot instance, with members as follows.
struct Public Functions

Robot::Robot(RLink &rlink)

Public Members

Drive Robot::drive

Arm Robot::arm

LineSensors Robot::ls

EggSensor Robot::detector

Courier Robot::courier

Bumper Robot::bumper

5.1 Actuators

Things which cause parts of the robot to move
class Interface to the two-wheeled drive system. Inherits from Device Public Functions

Drive::Drive(RLink &r, Configuration c = Drive::_defConfig)
Initialize a drive over a connection.

11

Team L205 IDP Documentation, Release 1.0

Parameters

• r: the link to the robot

• c: the drive geometry and speeds, used to populate Drive::maxSpeeds

void Drive::move(move_args args)

Should ensure that abs(args.forward) + abs(args.steer) <= 1

Parameters

• args.forward: non-dimensional linear speed: 1 is full speed forwards, -1 is full speed back-
wards

• args.steer: non-dimensional rotational speed: 1 is full speed CCW

Timeout Drive::straight(float dist, float speed = 1)
Move in a straight line, and return a timeout indicating expected completion.

Timeout Drive::turn(float angle, float speed = 1)
Turn an angle on the spot, and return a timeout indicating expected completion.

void Drive::setWheelSpeeds(float left, float right)
low-level motor access. Speeds should be between 1 and -1

void Drive::stop()
shorthand for no motion

Public Members

Speeds Drive::maxSpeeds
The maximum speeds the robot is able to acheive.

Public Static Functions

uint8_t Drive::convertSpeed(float s)
convert floating point speed to sign/magnitude
struct Describes the physical configuration of the robot. Public Members

float Drive::Configuration::radius
wheel radius, in m

float Drive::Configuration::spacing
distance between centers of wheels, in m

float Drive::Configuration::rpm
motor speed, in rpm

struct struct indicating maximum speeds, built from a Configuration
class Interface to the egg-grabbing arm of the robot. Inherits from Device Public Functions

Arm::Arm(RLink &r, port::Name name)

void Arm::up()

12 Chapter 5. Hardware access layer

Team L205 IDP Documentation, Release 1.0

void Arm::down()

void Arm::open()

void Arm::close()
class Interface to the runner holding the eggs, its indicator LEDs, the light gate that verifies the presence of an
egg, and the bucket at the end of the runner which delivers the eggs into their cups. Affectionately known as the
courier, as it carries things Inherits from Device Public Functions

void Courier::recordEggAdded(EggType e)
Indicate that a new egg has been added to the rail.

This updates the internal record of currently-held eggs, and turns on the appropriate LEDs.

void Courier::unloadEgg()
Unload the egg at the bottom of the stack, updating state and LEDs.

EggType Courier::egg(int n) const
type of the egg n from the bottom

int Courier::volume() const
The number of eggs on the rail.

bool Courier::eggDetected() const
if an egg is at the bottom of the courier

5.2 Sensors

Things which give the robot information about its surroundings
class Interface to the LEDs and LDR comprising the egg sensor. Includes the algorithm for identifying eggs
Inherits from Device Public Functions

EggSensor::EggSensor(RLink &r, port::Name port)

EggSensor::Reading EggSensor::read(int samples = 5)
read the sensor, taking an average over multiple samples

struct Public Members

uint8_t EggSensor::Reading::r
reflection from red LED

uint8_t EggSensor::Reading::b
reflection from blue LED

uint8_t EggSensor::Reading::w
reflection from white LED

uint8_t EggSensor::Reading::a
ambient reading

std::array<float, EGG_TYPE_COUNT> EggSensor::Reading::probabilities
“distances” to each egg. Lower values indicate greater likelihood

5.2. Sensors 13

Team L205 IDP Documentation, Release 1.0

EggType EggSensor::Reading::bestGuess
shorthand for most likely egg type

class Interface to the three front-mounted line sensors. Inherits from Device Public Functions

LineSensors::LineSensors(RLink &r, port::Name p)

LineSensors::Reading LineSensors::read()
struct Public Members

bool LineSensors::Reading::lsl
left sensor reading

bool LineSensors::Reading::lsc
right sensor reading

bool LineSensors::Reading::lsr
center sensor reading

bool LineSensors::Reading::lsa
arm sensor reading

float LineSensors::Reading::position
Line position, where between -1 and 1, with left positive.

+-Inf and NaN indicate a lost line
class Interface to the limit switch bumper on the front of the robot. Inherits from Device Public Functions

Bumper::Bumper(RLink &r, port::Name port)

Bumper::Reading Bumper::read()
struct Public Members

bool Bumper::Reading::left
left switch is pressed

bool Bumper::Reading::right
right switch is pressed

float Bumper::Reading::position
1 for left, -1 for right, 0 for straight, and NaN for not pressed

For ease of debugging, some of these readings have ostream << overloads, to allow:

std::cout << robot.ls.read() << std::endl

5.3 Low level

All of the above classes use the following utility classes to interface with the hardware.
class Wraps robot_link to indicate failures by throwing a LinkError object. Inherits from robot_link Public
Functions

void RLink::initialise()
Initialise the link by the most appropriate method for the location the code is running.

14 Chapter 5. Hardware access layer

Team L205 IDP Documentation, Release 1.0

void RLink::command(command_instruction cmd, int arg)
Send a command to the robot.

int RLink::request(request_instruction req)
Request data from the robot.

uint8_t RLink::status()
Get the status register, a bitfield containing {comm_err, i2c_err, es_trig, es_mode,
moving, ramped, _, _}

Does not throw LinkError
class Base class for all devices which require a link to the robot. Subclassed by Arm, Bumper, Courier, Drive,
EggSensor, LineSensors, Port Protected Attributes

RLink &Device::_r
internal reference to a robot connection

type port::Name
An enum of port names, from P0 to P7, and PA0 to PA7
class Interface to a set on pins on a particular port. Allows masking of pins, to allow multiple Devices to share
a I2C port without interfering with each other’s bits Provides operator overloading for simple use:

Port sensor(rlink, port::P2, 0xF); // bottom 4 bits of port 2
uint8_t reading = sensor; // read sensor
sensor = 0x42; // write to sensor

Note that conversion to an int will return the current input, which is not necesarily the previous output

Inherits from Device

Public Functions

Port::Port(RLink &r, port::Name p, uint8_t mask = 0xFF)
Create a port over the connection r, using the port with address p.

Optionally specify a set of bits mask to restrict the scope of this instance to. Throws PinsDoublyMapped
if multiple instances attempt to use the same ports

Port::operator uint8_t() const
Read a word to the port, keeping only the bits specified in the mask.

void Port::operator=(uint8_t val)
Write a word to the port, touching only the bits specified in the mask.

5.3.1 Exceptions

To prevent errors silently occuring without being noticed (or worse, error codes being handled as values), exceptions
are used for all critical errors. These all derive from std::exception, and implement the const char* what() member to
give a brief summary of the error to the programmer, to allow them to fix the appropriate electrical/network problem.

class Thrown when an RLink command or request goes wrong. Contains the original error code Inherits from
exception Subclassed by PortError Public Functions

virtual const char *LinkError::what() const
override of std::exception::what()

5.3. Low level 15

Team L205 IDP Documentation, Release 1.0

Public Members

const link_err LinkError::err
The original error code.

const bool LinkError::is_fatal
Whether the error is marked as fatal by robot_link.

const bool LinkError::is_i2c
If true, indicates that the error has no code, and is instead a bus error.

struct Specialization of LinkError, thrown when an I2C error occurs when accessing a port. Typically implies
loss of electrical connection Inherits from LinkError Public Functions

virtual const char *PortError::what() const
override of std::exception::what()

Public Members

const port::Name PortError::port
the disconnected port

struct Specialization of LinkError, thrown when an I2C error occurs when accessing a port. Typically implies
loss of electrical connection Inherits from exception Public Members

const port::Name PinsDoublyMapped::port
the port causing the issue

const uint8_t PinsDoublyMapped::pins
the mask of pins that have already been allocated

16 Chapter 5. Hardware access layer

CHAPTER 6

Utilities

class Class for keeping track of expected times for operations. Example usage:

using namespace std::literals::chrono_literals;

Timeout timeout(2s);
try {

doAThing();
timeout.check();
do {

keepGoing();
timeout.check();

} while (stillGoing())
} catch(Timeout::Expired) {

std::cout << "took too long" << std::endl;

Public Functions

Timeout::Timeout(duration_type duration)
create a timeout duration in the future

Timeout::Timeout(clock::time_point end)
create a timeout ending at end

void Timeout::check() const
check if the timeout has expired, and throw Expired if so

void Timeout::wait() const
wait for the timeout to expire
class Inherits from exception

class Heirarchical logger, use to produce indented logs. Public Functions

Logger::~Logger()
upon destruction, log either “[done]” or “[threw]”

17

Team L205 IDP Documentation, Release 1.0

Logger Logger::child(std::string name)
create a sublogger of this logger

void Logger::checkpoint(Robot &r, std::string id)
record a checkpoint. Scope for stopping the robot and waiting for user interaction

int Logger::depth() const
the depth of this logger - used for indentation

Public Static Functions

static Logger &Logger::active()
get the current active logger

Friends

template <typename T>
std::ostream &operator<<(Logger &logger, const T &t)

Output content to the logger, prefixed with appropriate indentation.
class

• genindex

18 Chapter 6. Utilities

Index

A
Arm (C++ class), 12
Arm::Arm (C++ function), 12
Arm::close (C++ function), 13
Arm::down (C++ function), 12
Arm::open (C++ function), 13
Arm::up (C++ function), 12

B
Bumper (C++ class), 14
Bumper::Bumper (C++ function), 14
Bumper::read (C++ function), 14
Bumper::Reading (C++ class), 14
Bumper::Reading::left (C++ member), 14
Bumper::Reading::position (C++ member), 14
Bumper::Reading::right (C++ member), 14

C
conveyorCollect (C++ function), 6
Courier (C++ class), 13
Courier::egg (C++ function), 13
Courier::eggDetected (C++ function), 13
Courier::recordEggAdded (C++ function), 13
Courier::unloadEgg (C++ function), 13
Courier::volume (C++ function), 13

D
Device (C++ class), 15
Device::_r (C++ member), 15
Drive (C++ class), 11
Drive::Configuration (C++ class), 12
Drive::Configuration::radius (C++ member), 12
Drive::Configuration::rpm (C++ member), 12
Drive::Configuration::spacing (C++ member), 12
Drive::convertSpeed (C++ function), 12
Drive::Drive (C++ function), 11
Drive::maxSpeeds (C++ member), 12
Drive::move (C++ function), 12
Drive::setWheelSpeeds (C++ function), 12

Drive::Speeds (C++ class), 12
Drive::stop (C++ function), 12
Drive::straight (C++ function), 12
Drive::turn (C++ function), 12
dropEggs (C++ function), 6

E
EGG_BROWN (C++ class), 9
EGG_CALLBACK (C++ type), 6
EGG_NONE (C++ class), 9
egg_stats::expectations (C++ member), 9
EGG_TASTY (C++ class), 9
EGG_TYPE_COUNT (C++ class), 9
EGG_WHITE (C++ class), 9
EggSensor (C++ class), 13
EggSensor::EggSensor (C++ function), 13
EggSensor::read (C++ function), 13
EggSensor::Reading (C++ class), 13
EggSensor::Reading::a (C++ member), 13
EggSensor::Reading::b (C++ member), 13
EggSensor::Reading::bestGuess (C++ member), 13
EggSensor::Reading::probabilities (C++ member), 13
EggSensor::Reading::r (C++ member), 13
EggSensor::Reading::w (C++ member), 13
EggType (C++ type), 9

F
followUntil (C++ function), 7

G
goToConveyor (C++ function), 6

L
LineSensors (C++ class), 14
LineSensors::LineSensors (C++ function), 14
LineSensors::read (C++ function), 14
LineSensors::Reading (C++ class), 14
LineSensors::Reading::lsa (C++ member), 14
LineSensors::Reading::lsc (C++ member), 14

19

Team L205 IDP Documentation, Release 1.0

LineSensors::Reading::lsl (C++ member), 14
LineSensors::Reading::lsr (C++ member), 14
LineSensors::Reading::position (C++ member), 14
LinkError (C++ class), 15
LinkError::err (C++ member), 16
LinkError::is_fatal (C++ member), 16
LinkError::is_i2c (C++ member), 16
LinkError::what (C++ function), 15
Logger (C++ class), 17
Logger::~Logger (C++ function), 17
Logger::active (C++ function), 18
Logger::checkpoint (C++ function), 18
Logger::child (C++ function), 18
Logger::depth (C++ function), 18

M
MultivariateNormal (C++ class), 9
MultivariateNormal::covariance (C++ member), 10
MultivariateNormal::mahalanobisDistanceSq (C++ func-

tion), 10
MultivariateNormal::mean (C++ member), 10

N
negate (C++ class), 6
negate::s (C++ member), 6

O
operator<< (C++ function), 18

P
PinsDoublyMapped (C++ class), 16
PinsDoublyMapped::pins (C++ member), 16
PinsDoublyMapped::port (C++ member), 16
Port (C++ class), 15
port::Name (C++ type), 15
Port::operator uint8_t (C++ function), 15
Port::operator= (C++ function), 15
Port::Port (C++ function), 15
PortError (C++ class), 16
PortError::port (C++ member), 16
PortError::what (C++ function), 16

Q
q1_collect_d2d3 (C++ function), 6
q2_deliver_d2d3 (C++ function), 6
q3_return_from_d2d3 (C++ function), 6
q4_collect_d1 (C++ function), 6
q5_deliver_d1 (C++ function), 6
q6_return_from_d1 (C++ function), 6

R
RLink (C++ class), 14
RLink::command (C++ function), 15

RLink::initialise (C++ function), 14
RLink::request (C++ function), 15
RLink::status (C++ function), 15
Robot (C++ class), 11
Robot::arm (C++ member), 11
Robot::bumper (C++ member), 11
Robot::courier (C++ member), 11
Robot::detector (C++ member), 11
Robot::drive (C++ member), 11
Robot::ls (C++ member), 11
Robot::Robot (C++ function), 11

T
Timeout (C++ class), 17
Timeout::check (C++ function), 17
Timeout::Expired (C++ class), 17
Timeout::Timeout (C++ function), 17
Timeout::wait (C++ function), 17
Tracker (C++ class), 18
turnAtJunction (C++ function), 7

W
waitForLine (C++ function), 6

20 Index

	Getting started
	Useful programs
	When things go wrong
	Building the docs

	Navigation plan
	Subroutines

	Line following algorithm
	Color classification
	Api documentation

	Hardware access layer
	Actuators
	Sensors
	Low level

	Utilities

