

    
      
          
            
  
ZODB - a native object database for Python

Because ZODB is an object database:


	no separate language for database operations


	very little impact on your code to make objects persistent


	no database mapper that partially hides the database.

Using an object-relational mapping is not like using an object database.



	almost no seam between code and database.


	Relationships between objects are handled very naturally, supporting
complex object graphs without joins.




Check out the Tutorial!

ZODB runs on Python 2.7 or Python 3.4 and above. It also runs on PyPy.


Transactions

Transactions make programs easier to reason about.


	Transactions are atomic

	Changes made in a transaction are either saved in their entirety or
not at all.

This makes error handling a lot easier.  If you have an error, you
just abort the current transaction. You don’t have to worry about
undoing previous database changes.



	Transactions provide isolation

	Transactions allow multiple logical threads (threads or processes)
to access databases and the database prevents the threads from
making conflicting changes.

This allows you to scale your application across multiple threads,
processes or machines without having to use low-level locking
primitives.

You still have to deal with concurrency on some level. For
timestamp-based systems like ZODB, you may have to retry conflicting
transactions. With locking-based systems, you have to deal with
possible deadlocks.



	Transactions affect multiple objects

	Most NoSQL databases don’t have transactions. Their notions of
consistency are much weaker, typically applying to single documents.
There can be good reasons to use NoSQL databases for their extreme
scalability, but otherwise, think hard about giving up the benefits
of transactions.





ZODB transaction support:


	ACID [https://en.wikipedia.org/wiki/ACID] transactions with
snapshot isolation [https://en.wikipedia.org/wiki/Snapshot_isolation]


	Distributed transaction support using two-phase commit

This allows transactions to span multiple ZODB databases and to span
ZODB and non-ZODB databases.








Other notable ZODB features


	Database caching with invalidation

	Every database connection has a cache that is a consistent partial database
replica. When accessing database objects, data already in the cache
is accessed without any database interactions.  When data are
modified, invalidations are sent to clients causing cached objects
to be invalidated. The next time invalidated objects are accessed
they’ll be loaded from the database.

Applications don’t have to invalidate cache entries. The database
invalidates cache entries automatically.



	Pluggable layered storage

	ZODB has a pluggable storage architecture. This allows a variety of
storage schemes including memory-based, file-based and distributed
(client-server) storage.  Through storage layering, storage
components provide compression, encryption, replication and more.



	Easy testing

	Because application code rarely has database logic, it can
usually be unit tested without a database.

ZODB provides in-memory storage implementations as well as
copy-on-write layered “demo storage” implementations that make testing
database-related code very easy.



	Garbage collection

	Removal of unused objects is automatic, so application developers
don’t have to worry about referential integrity.



	Binary large objects, Blobs

	ZODB blobs are database-managed files.  This can be especially
useful when serving media.  If you use AWS, there’s a Blob
implementation that stores blobs in S3 and caches them on disk.



	Time travel

	ZODB storages typically add new records on write and remove old
records on “pack” operations.  This allows limited time travel, back
to the last pack time.  This can be very useful for forensic
analysis.








When should you use ZODB?


	You want to focus on your application without writing a lot of database code.

	ZODB provides highly transparent persistence.



	Your application has complex relationships and data structures.

	In relational databases you have to join tables to model complex
data structures and these joins can be tedious and expensive.  You
can mitigate this to some extent in databases like Postgres by using
more powerful data types like arrays and JSON columns, but when
relationships extend across rows, you still have to do joins.

In NoSQL databases, you can model complex data structures with
documents, but if you have relationships across documents, then you
have to do joins and join capabilities in NoSQL databases are
typically far less powerful and transactional semantics typically don’t
cross documents, if they exist at all.

In ZODB, you can make objects as complex as you want and cross
object relationships are handled with Python object references.



	You access data through object attributes and methods.

	If your primary object access is search, then other database
technologies might be a better fit.

ZODB has no query language other than Python. It’s primary support
for search is through mapping objects called BTrees.  People have
build higher-level search APIs on top of ZODB. These work well
enough to support some search.



	You read data a lot more than you write it.

	ZODB caches aggressively, and if your working set fits (or mostly
fits) in memory, performance is very good because it rarely has to
touch the database server.

If your application is very write heavy (e.g. logging), then you’re
better off using something else.  Sometimes, you can use a database
suitable for heavy writes in combination with ZODB.



	Need to test logic that uses your database.

	ZODB has a number of storage implementations, including layered
in-memory implementations that make testing very easy.

A database without an in-memory storage option can make testing very
complicated.








When should you not use ZODB?


	You have very high write volume.

ZODB can commit thousands of transactions per second with suitable
storage configuration and without conflicting changes.

Internal search indexes can lead to lots of conflicts, and can
therefore limit write capacity.  If you need high write volume and
search beyond mapping access, consider using external indexes.



	You need to use non-Python tools to access your database.

especially tools designed to work with relational databases





Newt DB addresses these issues to a significant degree. See
http://newtdb.org.




How does ZODB scale?

Not as well as many technologies, but some fairly large applications
have been built on ZODB.

At Zope Corporation, several hundred newspaper content-management
systems and web sites were hosted using a multi-database configuration
with most data in a main database and a catalog database.  The
databases had several hundred gigabytes of ordinary database records
plus multiple terabytes of blob data.




ZODB is mature

ZODB is very mature. Development started in 1996 and it has been used
in production in thousands of applications for many years.

ZODB is in heavy use in the Pyramid [http://www.pylonsproject.org/]
and Plone [https://plone.org/] communities and in many other
applications.




Learning more



	Tutorial

	ZODB programming guide

	Reference Documentation

	ZODB articles






	The ZODB Book (in progress) [http://zodb.readthedocs.org/en/latest/]







Downloads

ZODB is distributed through the Python Package Index [http://pypi.python.org/pypi/ZODB].

You can install the ZODB using pip command:

$ pip install ZODB








Community and contributing

Discussion occurs on the ZODB mailing list [https://groups.google.com/forum/#!forum/zodb]. (And for the
transaction system on the transaction list [https://groups.google.com/forum/#!forum/python-transaction])

Bug reporting and feature requests are submitted through github issue
trackers for various ZODB components:


	ZODB [https://github.com/zopefoundation/zodb]


	persistent [https://github.com/zopefoundation/persistent]


	transaction [https://github.com/zopefoundation/transaction]


	BTrees [https://github.com/zopefoundation/BTrees]


	ZEO (client-server framework) [https://github.com/zopefoundation/ZEO]




If you’d like to contribute then we’ll gladly accept work on documentation,
helping out other developers and users at the mailing list, submitting bugs,
creating proposals and writing code.

ZODB is a project managed by the Zope Foundation so you can get write access
for contributing directly - check out the foundation’s Zope Developer Information [http://docs.zope.org/developer].







          

      

      

    

  

    
      
          
            
  
Tutorial

This tutorial is intended to guide developers with a step-by-step introduction
of how to develop an application which stores its data in the ZODB.


Introduction

To save application data in ZODB, you’ll generally define classes that
subclass persistent.Persistent:

# account.py

import persistent

class Account(persistent.Persistent):

    def __init__(self):
        self.balance = 0.0

    def deposit(self, amount):
        self.balance += amount

    def cash(self, amount):
        assert amount < self.balance
        self.balance -= amount





This code defines a simple class that holds the balance of a bank
account and provides two methods to manipulate the balance: deposit
and cash.

Subclassing Persistent provides a number of features:


	The database will automatically track object changes made by setting
attributes 1.


	Data will be saved in its own database record.

You can save data that doesn’t subclass Persistent, but it will be
stored in the database record of whatever persistent object
references it.



	Objects will have unique persistent identity.

Multiple objects can refer to the same persistent object and they’ll
continue to refer to the same object even after being saved
and loaded from the database.

Non-persistent objects are essentially owned by their containing
persistent object and if multiple persistent objects refer to the
same non-persistent subobject, they’ll (eventually) get their own
copies.





Note that we put the class in a named module.  Classes aren’t stored
in the ZODB 2.  They exist on the file system and
their names, consisting of their class and module names, are stored in
the database. It’s sometimes tempting to create persistent classes in
scripts or in interactive sessions, but if you do, then their module
name will be '__main__' and you’ll always have to define them that
way.




Installation

Before being able to use ZODB we have to install it. A common way to
do this is with pip:

$ pip install ZODB








Creating Databases

When a program wants to use the ZODB it has to establish a connection,
like any other database. For the ZODB we need 3 different parts: a
storage, a database and finally a connection:

import ZODB, ZODB.FileStorage

storage = ZODB.FileStorage.FileStorage('mydata.fs')
db = ZODB.DB(storage)
connection = db.open()
root = connection.root





ZODB has a pluggable storage framework.  This means there are a
variety of storage implementations to meet different needs, from
in-memory databases, to databases stored in local files, to databases
on remote database servers, and specialized databases for compression,
encryption, and so on.  In the example above, we created a database
that stores its data in a local file, using the FileStorage
class.

Having a storage, we then use it to instantiate a database, which we
then connect to by calling open().  A process with multiple
threads will often have multiple connections to the same database,
with different threads having different connections.

There are a number of convenient shortcuts you can use for some of the
commonly used storages:


	You can pass a file name to the DB constructor to have it construct
a FileStorage for you:

db = ZODB.DB('mydata.fs')





You can pass None to create an in-memory database:

memory_db = ZODB.DB(None)







	If you’re only going to use one connection, you can call the
connection function:

connection = ZODB.connection('mydata.fs')
memory_connection = ZODB.connection(None)












Storing objects

To store an object in the ZODB we simply attach it to any other object
that already lives in the database. Hence, the root object functions
as a boot-strapping point.  The root object is meant to serve as a
namespace for top-level objects in your database.  We could store
account objects directly on the root object:

import account

# Probably a bad idea:
root.account1 = account.Account()





But if you’re going to store many objects, you’ll want to use a
collection object 3:

import account, BTrees.OOBTree

root.accounts = BTrees.OOBTree.BTree()
root.accounts['account-1'] = Account()





Another common practice is to store a persistent object in the root of
the database that provides an application-specific root:

root.accounts = AccountManagementApplication()





That can facilitate encapsulation of an application that shares a
database with other applications.  This is a little bit like using
modules to avoid namespace colisions in Python programs.




Containers and search

BTrees provide the core scalable containers and indexing facility for
ZODB. There are different families of BTrees.  The most general are
OOBTrees, which have object keys and values. There are specialized
BTrees that support integer keys and values.  Integers can be stored
more efficiently, and compared more quickly than objects and they’re
often used as application-level object identifiers.  It’s critical,
when using BTrees, to make sure that its keys have a stable ordering.

ZODB doesn’t provide a query engine.  The primary way to access
objects in ZODB is by traversing (accessing attributes or items, or
calling methods) other objects.  Object traversal is typically much
faster than search.

You can use BTrees to build indexes for efficient search, when
necessary.  If your application is search centric, or if you prefer to
approach data access that way, then ZODB might not be the best
technology for you. Before you turn your back on the ZODB, it
may be worth checking out the up-and-coming Newt DB 6 project,
which combines the ZODB with Postgresql for indexing, search and access
from non-Python applications.




Transactions

You now have objects in your root object and in your database.
However, they are not permanently stored yet. The ZODB uses
transactions and to make your changes permanent, you have to commit
the transaction:

import transaction

transaction.commit()





Now you can stop and start your application and look at the root object again,
and you will find the data you saved.

If your application makes changes during a transaction and finds that it does
not want to commit those changes, then you can abort the transaction and have
the changes rolled back 4 for you:

transaction.abort()





Transactions are a very powerful way to protect the integrity of a
database.  Transactions have the property that all of the changes made
in a transaction are saved, or none of them are.  If in the midst of a
program, there’s an error after making changes, you can simply abort
the transaction (or not commit it) and all of the intermediate changes
you make are automatically discarded.




Memory Management

ZODB manages moving objects in and out of memory for you.  The unit of
storage is the persistent object.  When you access attributes of a
persistent object, they are loaded from the database automatically, if
necessary. If too many objects are in memory, then objects used least
recently are evicted 5.  The maximum number of objects or
bytes in memory is configurable.




Summary

You have seen how to install ZODB and how to open a database in your
application and to start storing objects in it. We also touched the
two simple transaction commands: commit and abort. The
reference documentation contains sections with more information on the
individual topics.


	1

	You can manually mark an object as changed by setting its
_p_changed__ attribute to True. You might do this if you
update a subobject, such as a standard Python list or set,
that doesn’t subclass Persistent.



	2

	Actually, there is semi-experimental support for storing classes in
the database, but applications rarely do this.



	3

	The root object is a fairy simple persistent object that’s stored
in a single database record.  If you stored many objects in it,
its database record would become very large, causing updates to be
inefficient and causing memory to be used ineffeciently.

Another reason not to store items directly in the root object is
that doing so would make adding a second collection of objects
later awkward.



	4

	A caveat is that ZODB can only roll back changes to objects that
have been stored and committed to the database.  Objects not
previously committed can’t be rolled back because there’s no
previous state to roll back to.



	5

	Objects aren’t actually evicted, but their state is released, so
they take up much less memory and any objects they referenced can
be removed from memory.



	6

	Here is an overview of the Newt DB architecture: http://www.newtdb.org/en/latest/how-it-works.html











          

      

      

    

  

    
      
          
            
  
ZODB programming guide

This guide consists of a collection of topics that should be of
interest to most developers.  They’re provided in order of importance,
which is also an order from least to most advanced, but they can be
read in any order.

If you haven’t yet, you should read the Tutorial.



	Installing and running ZODB
	Installation

	Configuration

	Using databases: connections





	Writing persistent objects
	Access and modification

	Rules of persistence

	Properties

	Special attributes

	Object storage and management

	You can’t change your mind in subclassing persistent

	Schema migration

	Object life cycle states and special attributes (advanced)

	Things you can do, but need to carefully consider (advanced)

	Links





	Transactions and concurrency
	Using transactions

	ZODB and atomicity

	Concurrency, threads and processes













          

      

      

    

  

    
      
          
            
  
Installing and running ZODB

This topic discusses some boring nitty-gritty details needed to
actually run ZODB.


Installation

Installation of ZODB is pretty straightforward using Python’s
packaging system. For example, using pip:

pip install ZODB





You may need additional optional packages, such as ZEO [https://pypi.python.org/pypi/ZEO] or RelStorage [https://pypi.python.org/pypi/RelStorage], depending your deployment
choices.




Configuration

You can set up ZODB in your application using either Python, or
ZODB’s configuration language.  For simple database setup, and
especially for exploration, the Python APIs are sufficient.

For more complex configurations, you’ll probably find ZODB’s
configuration language easier to use.

To understand database setup, it’s important to understand ZODB’s
architecture.  ZODB separates database functionality
from storage concerns. When you create a database object,
you specify a storage object for it to use, as in:

import ZODB, ZODB.FileStorage

storage = ZODB.FileStorage.FileStorage('mydata.fs')
db = ZODB.DB(storage)





So when you define a database, you’ll also define a storage. In the
example above, we define a file storage and then use it to define
a database.

Sometimes, storages are created through composition.  For example, if
we want to save space, we could layer a ZlibStorage
1 over the file storage:

import ZODB, ZODB.FileStorage, zc.zlibstorage

storage = ZODB.FileStorage.FileStorage('mydata.fs')
compressed_storage = zc.zlibstorage.ZlibStorage(storage)
db = ZODB.DB(compressed_storage)





ZlibStorage [https://pypi.python.org/pypi/zc.zlibstorage]
compresses database records 2.


Python configuration

To set up a database with Python, you’ll construct a storage using the
storage APIs, and then pass the
storage to the DB class to create a database, as shown
in the examples in the previous section.

The DB class also accepts a string path name as its
storage argument to automatically create a file storage.  You can also
pass None as the storage to automatically use a
MappingStorage, which is convenient when
exploring ZODB:

db = ZODB.DB(None) # Create an in-memory database.








Text configuration

ZODB supports a text-based configuration language.  It uses a syntax
similar to Apache configuration files.  The syntax was chosen to be
familiar to site administrators.

ZODB’s text configuration uses ZConfig [https://pypi.python.org/pypi/ZConfig]. You can use ZConfig to
create your application’s configuration, but it’s more common to
include ZODB configuration strings in their own files or embedded in
simpler configuration files, such as configarser [https://docs.python.org/3/library/configparser.html#module-configparser]
files.

A database configuration string has a zodb section wrapping a
storage section, as in:

<zodb>
  cache-size-bytes 100MB
  <mappingstorage>
  </mappingstorage>
</zodb>





In the example above, the mappingstorage section defines the storage used
by the database.

To create a database from a string, use
ZODB.config.databaseFromString():

>>> import ZODB.config
>>> db = ZODB.config.databaseFromString(snippet)





To load databases from file names or URLs, use
ZODB.config.databaseFromURL().




URI-based configuration

Another database configuration option is provided by the zodburi [https://pypi.python.org/pypi/zodburi] package. See:
http://docs.pylonsproject.org/projects/zodburi.  It’s less powerful
than the Python or text configuration options, but allows
configuration to be reduced to a single URI and handles most cases.






Using databases: connections

Once you have a database, you need to get a database connection to do
much of anything.  Connections take care of loading and saving objects
and manage object caches. Each connection has its own cache
3.


Getting connections

Amongst 4 the common ways of getting a connection:


	db.open()

	The database open() method opens a
connection, returning a connection object:

>>> conn = db.open()





It’s up to the application to call
close() when the application is
done using the connection.

If changes are made, the application commits transactions to make them permanent.



	db.transaction()

	The database transaction() method
returns a context manager that can be used with the python with
statement [https://docs.python.org/3/reference/compound_stmts.html#grammar-token-with_stmt]
to execute a block of code in a transaction:

with db.transaction() as connection:
    connection.root.foo = 1





In the example above, we used as connection to get the database
connection used in the variable connection.



	some_object._p_jar

	For code that’s already running in the context of an open
connection, you can get the current connection as the _p_jar
attribute of some persistent object that was accessed via the
connection.








Getting objects

Once you have a connection, you access objects by traversing the
object graph from the root object.

The database root object is a mapping object that holds the top level
objects in the database.  There should only be a small number of
top-level objects (often only one).  You can get the root object by calling a
connection’s root attribute:

>>> root = conn.root()
>>> root
{'foo': 1}
>>> root['foo']
1





For convenience 5, you can also get top-level
objects by accessing attributes of the connection root object:

>>> conn.root.foo
1





Once you have a top-level object, you use its methods, attributes, or
operations to access other objects and so on to get the objects you
need.  Often indexing data structures like BTrees [https://pythonhosted.org/BTrees/] are used to
make it possible to search objects in large collections.


	1

	zc.zlibstorage [https://pypi.python.org/pypi/zc.zlibstorage] is an optional
package that you need to install separately.



	2

	ZlibStorage uses the zlib standard module, which
uses the zlib library [http://www.zlib.net/].



	3

	ZODB can be very efficient at caching data
in memory, especially if your working set [https://en.wikipedia.org/wiki/Working_set] is small enough to
fit in memory, because the cache is simply an object tree and
accessing a cached object typically requires no database
interaction.  Because each connection has its own cache,
connections can be expensive, depending on their cache sizes.  For
this reason, you’ll generally want to limit the number of open
connections you have at any one time.  Connections are pooled, so
opening a connection is inexpensive.



	4

	https://www.youtube.com/watch?v=7WJXHY2OXGE



	5

	The ability to access top-level objects of the
database as root attributes is a recent convenience. Originally,
the root() method was used to access the root object which was
then accessed as a mapping.  It’s still potentially useful to
access top-level objects using the mapping interface if their names
aren’t valid attribute names.













          

      

      

    

  

    
      
          
            
  
Writing persistent objects

In the Tutorial, we discussed the basics of
implementing persistent objects by subclassing
persistent.Persistent.  This is probably enough for 80% of
persistent-object classes you write, but there are some other aspects
of writing persistent classes you should be aware of.


Access and modification

Two of the main jobs of the Persistent base class are to detect
when an object has been accessed and when it has been modified.  When
an object is accessed, its state may need to be loaded from the
database.  When an object is modified, the modification needs to be
saved if a transaction is committed.

Persistent detects object accesses by hooking into object
attribute access and update.  In the case of object update, there
may be other ways of modifying state that we need to make provision for.




Rules of persistence

When implementing persistent objects, be aware that an object’s
attributes should be :


	immutable (such as strings or integers),


	persistent (subclass Persistent), or


	You need to take special precautions.




If you modify a non-persistent mutable value of a persistent-object
attribute, you need to mark the persistent object as changed yourself
by setting _p_changed to True:

import persistent

class Book(persistent.Persistent):

   def __init__(self, title):
       self.title = title
       self.authors = []

   def add_author(self, author):
       self.authors.append(author)
       self._p_changed = True





In this example, Book objects have an authors object that’s a
regular Python list, so it’s mutable and non-persistent.  When we add
an author, we append it to the authors attribute’s value.  Because
we didn’t set an attribute on the book, it’s not marked as changed, so
we set _p_changed ourselves.

Using standard Python lists, dicts, or sets is a common thing to do,
so this pattern of setting _p_changed is common.

Let’s look at some alternatives.


Using tuples for small sequences instead of lists

If objects contain sequences that are small or that don’t change
often, you can use tuples instead of lists:

import persistent

class Book(persistent.Persistent):

   def __init__(self, title):
       self.title = title
       self.authors = ()

   def add_author(self, author):
       self.authors += (author, )





Because tuples are immutable, they satisfy the rules of persistence
without any special handling.




Using persistent data structures

The persistent package provides persistent versions of list
and dict, namely persistent.list.PersistentList and
persistent.mapping.PersistentMapping. We can update our example to
use PersistentList:

import persistent
import persistent.list

class Book(persistent.Persistent):

   def __init__(self, title):
       self.title = title
       self.authors = persistent.list.PersistentList()

   def add_author(self, author):
       self.authors.append(author)





Note that in this example, when we added an author, the book itself
didn’t change, but the authors attribute value did.  Because
authors is a persistent object, it’s stored in a separate database
record from the book record and is managed by ZODB independent of the
management of the book.

In addition to PersistentList and PersistentMapping, general
persistent data structures are provided by the BTrees [https://pythonhosted.org/BTrees/] package,
most notably BTree and TreeSet objects.  Unlike
PersistentList and PersistentMapping, BTree and
TreeSet objects are scalable and can easily hold millions of
objects, because their data are spread over many subobjects.

It’s generally better to use BTree objects than
PersistentMapping objects, because they’re scalable and because
they handle conflicts better. TreeSet
objects are the only ZODB-provided persistent set implementation.
BTree and TreeSets come in a number of families provided via
different modules and differ in their internal implementations:








	Module

	Key type

	Value Type





	BTrees.OOBTree

	object

	object



	BTrees.IOBTree

	integer

	Object



	BTrees.OIBTree

	object

	integer



	BTrees.IIBTree

	integer

	integer



	BTrees.IFBTree

	integer

	float



	BTrees.LOBTree

	64-bit integer

	Object



	BTrees.OLBTree

	object

	64-bit integer



	BTrees.LLBTree

	64-bit integer

	64-bit integer



	BTrees.LFBTree

	64-bit integer

	float






Here’s a version of the example that uses a TreeSet:

import persistent
from BTrees.OOBTree import TreeSet

class Book(persistent.Persistent):

   def __init__(self, title):
       self.title = title
       self.authors = TreeSet()

   def add_author(self, author):
       self.authors.add(author)





If you’re going to use custom classes as keys in a BTree or
entries in a TreeSet, they must provide a total ordering [https://pythonhosted.org/BTrees/#total-ordering-and-persistence].
The builtin python str class is always safe to use as BTree key. You
can use zope.keyreference [https://pypi.python.org/pypi/zope.keyreference] to treat arbitrary
persistent objects as totally orderable based on their persistent
object identity.

Scalable sequences are a bit more challenging. The zc.blist [https://pypi.python.org/pypi/zc.blist/] package provides a scalable
list implementation that works well for some sequence use cases.






Properties

If you implement some attributes using Python properties (or other
types of descriptors), they are treated just like any other attributes
by the persistence machinery.  When you set an attribute through a
property, the object is considered changed, even if the property
didn’t actually modify the object state.




Special attributes

There are some attributes that are treated specially.

Attributes with names starting with _p_ are reserved for use by
the persistence machinery and by ZODB.  These include (but aren’t
limited to):


	_p_changed

	The _p_changed attribute has the value None if the
object is a ghost, True if it’s changed, and
False if it’s not a ghost and not changed.



	_p_oid

	The object’s unique id in the database.



	_p_serial

	The object’s revision identifier also know as the object serial
number, also known as the object transaction id. It’s a timestamp
and if not set has the value 0 encoded as string of 8 zero bytes.



	_p_jar

	The database connection the object was accessed through.  This is
commonly used by database-aware application code to get hold of an
object’s database connection.





Attributes with names starting with _v_ are treated as volatile.
They aren’t saved to the database.  They’re useful for caching data
that can be computed from saved data and shouldn’t be saved 1.
They should be treated as though they can disappear between
transactions.  Setting a volatile attribute doesn’t cause an object to
be considered to be modified.

An object’s __dict__ attribute is treated specially in that
getting it doesn’t cause an object’s state to be loaded.  It may have
the value None rather than a dictionary for ghosts.




Object storage and management

Every persistent object is stored in its own database record. Some
storages maintain multiple object revisions, in which case each
persistent object is stored in its own set of records.  Data for
different persistent objects are stored separately.

The database manages each object separately, according to a life
cycle.

This is important when considering how to distribute data across your
objects.  If you use lots of small persistent objects, then more
objects may need to be loaded or saved and you may incur more memory
overhead. On the other hand, if objects are too big, you may load or
save more data than would otherwise be needed.




You can’t change your mind in subclassing persistent

Currently, you can’t change your mind about whether a class is
persistent (subclasses persistent.Persistent) or not.  If you save
objects in a database who’s classes subclass persistent.Persistent,
you can’t change your mind later and make them non-persistent, and the
other way around.  This may be a bug or misfeature [https://github.com/zopefoundation/ZODB/issues/99].




Schema migration

Object requirements and implementations tend to evolve over time.
This isn’t a problem for objects that are short lived, but persistent
objects may have lifetimes that extend for years.  There needs to be
some way of making sure that state for an older object schema can
still be loaded into an object with the new schema.


Adding attributes

Perhaps the commonest schema change is to add attributes.  This is
usually accomplished easily by adding a default value in a class
definition:

class Book(persistent.Persistent):

   publisher = 'UNKNOWN'

   def __init__(self, title, publisher):
       self.title = title
       self.publisher = publisher
       self.authors = TreeSet()

   def add_author(self, author):
       self.authors.add(author)








Removing attributes

Removing attributes generally doesn’t require any action, assuming
that their presence in older objects doesn’t do any harm.




Renaming/moving classes

The easiest way to handle renaming or moving classes is to leave
aliases for the old name.  For example, if we have a class,
library.Book, and want to move it to catalog.Publication, we
can keep a library module that contains:

from catalog import Publication as Book # XXX deprecated name





A downside of this approach is that it clutters code and may even
cause us to keep modules solely to hold aliases. (zope.deferredimport [http://zopedeferredimport.readthedocs.io/en/latest/narrative.html]
can help with this by making these aliases a little more efficient and
by generating deprecation warnings.)




Migration scripts

If the simple approaches above aren’t enough, then migration scripts
can be used.  How these scripts are written is usually application
dependent, as the application usually determines where objects of a
given type reside in the database. (There are also some low-level
interfaces for iterating over all of the objects of a database, but
these are usually impractical for large databases.)

An improvement to running migration scripts manually is to use a
generational framework like zope.generations [https://pypi.python.org/pypi/zope.generations]. With a generational
framework, each migration is assigned a migration number and the
number is recorded in the database as each migration is run.  This is
useful because remembering what migrations are needed is automated.


Upgrading multiple clients without down time

Production applications typically have multiple clients for
availability and load balancing.  This means an active application may
be committing transactions using multiple software and schema
versions.  In this situation, you may need to plan schema migrations
in multiple steps:


	Upgrade software on all clients to a version that works with the old and new
version of the schema and that writes data using the old schema.


	Upgrade software on all clients to a version that works with the old and new
version of the schema and that writes data using the new schema.


	Migrate objects written with the old schema to the new schema.


	Remove support for the old schema from the software.











Object life cycle states and special attributes (advanced)

Persistent objects typically transition through a collection of
states. Most of the time, you don’t need to think too much about this.


	Unsaved

	When an object is created, it’s said to be in an unsaved state
until it’s associated with a database.



	Added

	When an unsaved object is added to a database, but hasn’t been
saved by committing a transaction, it’s in the added state.

Note that most objects are added implicitly by being set as
subobjects (attribute values or items) of objects already in the
database.



	Saved

	When an object is added and saved through a transaction commit, the
object is in the saved state.



	Changed

	When a saved object is updated, it enters the changed state to
indicate that there are changes that need to be committed. It
remains in this state until either:


	The current transaction is committed, and the object transitions to
the saved state, or


	The current transaction is aborted, and the object transitions to
the ghost state.









	Ghost

	An object in the ghost state is an empty shell. It has no
state. When it’s accessed, its state will be loaded automatically,
and it will enter the saved state.  A saved object can become a
ghost if it hasn’t been accessed in a while and the database
releases its state to make room for other objects.  A changed
object can also become a ghost if the transaction it’s modified in is
aborted.

An object that’s loaded from the database is loaded as a
ghost. This typically happens when the object is a subobject of
another object who’s state is loaded.





We can interrogate and control an object’s state, although somewhat
indirectly.  To do this, we’ll look at some special persistent-object
attributes, described in Special attributes, above.

Let’s look at some state transitions with an example. First, we create
an unsaved book:

>>> book = Book("ZODB")
>>> from ZODB.utils import z64
>>> book._p_changed, bool(book._p_oid)
(False, False)





We can tell that it’s unsaved because it doesn’t have an object id, _p_oid.

If we add it to a database:

>>> import ZODB
>>> connection = ZODB.connection(None)
>>> connection.add(book)
>>> book._p_changed, bool(book._p_oid), book._p_serial == z64
(False, True, True)





We know it’s added because it has an oid, but its serial (object
revision timestamp), _p_serial, is the special zero value, and it’s
value for _p_changed is False.

If we commit the transaction that added it:

>>> import transaction
>>> transaction.commit()
>>> book._p_changed, bool(book._p_oid), book._p_serial == z64
(False, True, False)





We see that the object is in the saved state because it has an object
id and serial, and is unchanged.

Now if we modify the object, it enters the changed state:

>>> book.title = "ZODB Explained"
>>> book._p_changed, bool(book._p_oid), book._p_serial == z64
(True, True, False)





If we abort the transaction, the object becomes a ghost:

>>> transaction.abort()
>>> book._p_changed, bool(book._p_oid)
(None, True)





We can see it’s a ghost because _p_changed is None.
(_p_serial isn’t meaningful for ghosts.)

If we access the object, it will be loaded into the saved state, which
is indicated by a false _p_changed and an object id and non-zero serial.

>>> book.title
'ZODB'
>>> book._p_changed, bool(book._p_oid), book._p_serial == z64
(False, True, False)





Note that accessing _p_ attributes didn’t cause the object’s state
to be loaded.

We’ve already seen how modifying _p_changed can cause an object to
be marked as modified.  We can also use it to make an object into a
ghost:

>>> book._p_changed = None
>>> book._p_changed, bool(book._p_oid)
(None, True)








Things you can do, but need to carefully consider (advanced)

While you can do anything with a persistent subclass that you can with
a normal subclass, certain things have additional implications for
persistent objects. These often show up as performance issues, or the
result may become hard to maintain.


Implement __eq__ and __hash__

When you store an entry into a Python dict (or the persistent
variant PersistentMapping, or a set or frozenset), the
key’s __eq__ and __hash__ methods are used to determine where
to store the value. Later they are used to look it up via in or
__getitem__.

When that dict is later loaded from the database, the internal
storage is rebuilt from scratch. This means that every key has its
__hash__ method called at least once, and may have its __eq__
method called many times.

By default, every object, including persistent objects, inherits an
implementation of __eq__ and __hash__ from object.
These default implementations are based on the object’s identity,
that is, its unique identifier within the current Python process.
Calling them, therefore, is very fast, even on ghosts, and doesn’t cause a ghost to load its state.

If you override __eq__ and __hash__ in a custom persistent
subclass, however, when you use instances of that class as a key
in a dict, then the instance will have to be unghosted before it
can be put in the dictionary. If you’re building a large dictionary
with many such keys that are ghosts, you may find that loading all the
object states takes a considerable amount of time. If you were to
store that dictionary in the database and load it later, all the
keys will have to be unghosted at the same time before the dictionary
can be accessed, again, possibly taking a long time.

For example, a class that defines __eq__ and __hash__ like this:

class BookEq(persistent.Persistent):

   def __init__(self, title):
       self.title = title
       self.authors = ()

   def add_author(self, author):
       self.authors += (author, )

   def __eq__(self, other):
       return self.title == other.title and self.authors == other.authors

   def __hash__(self):
       return hash((self.title, self.authors))





is going to be much slower to use as a key in a persistent dictionary,
or in a new dictionary when the key is a ghost, than the class that
inherits identity-based __eq__ and __hash__.

There are some alternatives:


	Avoiding the use of persistent objects as keys in dictionaries or
entries in sets sidesteps the issue.


	If your application can tolerate identity based comparisons, simply
don’t implement the two methods. This means that objects will be
compared only by identity, but because persistent objects are
persistent, the same object will have the same identity in each
connection, so that often works out.

It is safe to remove __eq__ and __hash__ methods from a
class even if you already have dictionaries in a database using
instances of those classes as keys.



	Make your classes orderable [https://pythonhosted.org/BTrees/#total-ordering-and-persistence]
and use them as keys in a BTree or entries in a TreeSet instead of a
dictionary or set. Even though your custom comparison methods will
have to unghost the objects, the nature of a BTree means that only a
small number of objects will have to be loaded in most cases.


	Any persistent object can be wrapped in a zope.keyreferenece to
make it orderable and hashable based on persistent identity. This
can be an alternative for some dictionaries if you can’t alter the
class definition but can accept identity comparisons in some
dictionaries or sets. You must remember to wrap all keys, though.







Implement __getstate__ and __setstate__

When an object is saved in a database, its __getstate__ method is
called without arguments to get the object’s state.  The default
implementation simply returns a copy of an object’s instance
dictionary. (It’s a little more complicated for objects with slots.)

An object’s state is loaded by loading the state from the database and
passing it to the object’s __setstate__ method.  The default
implementation expects a dictionary, which it uses to populate the
object’s instance dictionary.

Early on, we thought that overriding these methods would be useful for
tasks like providing more efficient state representations or for
schema migration, but we found that
the result was to make object implementations brittle and/or complex
and the benefit usually wasn’t worth it.




Implement __getattr__, __getattribute__, or __setattribute__

This is something extremely clever people might attempt, but it’s
probably never worth the bother. It’s possible, but it requires such
deep understanding of persistence and internals that we’re not even
going to document it. :)






Links

persistent.Persistent [http://persistent.readthedocs.io/en/latest/index.html] provides
additional documentation on the Persistent base class.

The zc.blist [https://pypi.python.org/pypi/zc.blist/] package provides
a scalable sequence implementation for many use cases.

The zope.cachedescriptors [https://pypi.python.org/pypi/zope.cachedescriptors] package
provides descriptor implementations that facilitate implementing
caching attributes, especially _v_ volatile attributes.

The zope.deferredimport [http://zopedeferredimport.readthedocs.io/en/latest/narrative.html]
package provides lazy import and support for deprecating import
location, which is helpful when moving classes, especially persistent
classes.

The zope.generations [https://pypi.python.org/pypi/zope.generations] package provides a
framework for managing schema-migration scripts.


	1

	The zope.cachedescriptors [https://pypi.python.org/pypi/zope.cachedescriptors] package
provides some descriptors that help implement attributes that cache
data.
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Transactions [https://en.wikipedia.org/wiki/Database_transaction]
are a core feature of ZODB.  Much has been written about transactions,
and we won’t go into much detail here.  Transactions provide two core
benefits:


	Atomicity

	When a transaction executes, it succeeds or fails completely. If
some data are updated and then an error occurs, causing the
transaction to fail, the updates are rolled back automatically. The
application using the transactional system doesn’t have to undo
partial changes.  This takes a significant burden from developers
and increases the reliability of applications.



	Concurrency

	Transactions provide a way of managing concurrent updates to data.
Different programs operate on the data independently, without having
to use low-level techniques to moderate their access. Coordination
and synchronization happen via transactions.






Using transactions

All activity in ZODB happens in the context of database connections
and transactions.  Here’s a simple example:

import ZODB, transaction
db = ZODB.DB(None) # Use a mapping storage
conn = db.open()

conn.root.x = 1
transaction.commit()





In the example above, we used transaction.commit() to commit a
transaction, making the change to conn.root permanent.  This is
the most common way to use ZODB, at least historically.

If we decide we don’t want to commit a transaction, we can use
abort:

conn.root.x = 2
transaction.abort() # conn.root.x goes back to 1





In this example, because we aborted the transaction, the value of
conn.root.x was rolled back to 1.

There are a number of things going on here that deserve some
explanation.  When using transactions, there are three kinds of
objects involved:


	Transaction

	Transactions represent units of work.  Each transaction has a beginning and
an end. Transactions provide the
ITransaction interface.



	Transaction manager

	Transaction managers create transactions and
provide APIs to start and end transactions.  The transactions
managed are always sequential. There is always exactly one active
transaction associated with a transaction manager at any point in
time. Transaction managers provide the
ITransactionManager interface.



	Data manager

	Data managers manage data associated with transactions.  ZODB
connections are data managers.  The details of how they interact
with transactions aren’t important here.






Explicit transaction managers

ZODB connections have transaction managers associated with them when
they’re opened. When we call the database open() method
without an argument, a thread-local transaction manager is used. Each
thread has its own transaction manager.  When we called
transaction.commit() above we were calling commit on the
thread-local transaction manager.

Because we used a thread-local transaction manager, all of the work in
the transaction needs to happen in the same thread.  Similarly, only
one transaction can be active in a thread.

If we want to run multiple simultaneous transactions in a single
thread, or if we want to spread the work of a transaction over
multiple threads 5,
then we can create transaction managers ourselves and pass them to
open():

my_transaction_manager = transaction.TransactionManager()
conn = db.open(my_transaction_manager)
conn.root.x = 2
my_transaction_manager.commit()





In this example, to commit our work, we called commit() on the
transaction manager we created and passed to open().




Context managers

In the examples above, the transaction beginnings were
implicit. Transactions were effectively
6 created when the transaction
managers were created and when previous transactions were committed.
We can create transactions explicitly using
begin():

my_transaction_manager.begin()





A more modern 7 way to manage transaction
boundaries is to use context managers and the Python with
statement. Transaction managers are context managers, so we can use
them with the with statement directly:

with my_transaction_manager as trans:
   trans.note(u"incrementing x")
   conn.root.x += 1





When used as a context manager, a transaction manager explicitly
begins a new transaction, executes the code block and commits the
transaction if there isn’t an error and aborts it if there is an
error.

We used as trans above to get the transaction.

Databases provide the transaction() method to execute a code
block as a transaction:

with db.transaction() as conn2:
   conn2.root.x += 1





This opens a connection, assignes it its own context manager, and
executes the nested code in a transaction.  We used as conn2 to
get the connection.  The transaction boundaries are defined by the
with statement.




Getting a connection’s transaction manager

In the previous example, you may have wondered how one might get the
current transaction. Every connection has an associated transaction
manager, which is available as the transaction_manager attribute.
So, for example, if we wanted to set a transaction note:

with db.transaction() as conn2:
   conn2.transaction_manager.get().note(u"incrementing x again")
   conn2.root.x += 1





Here, we used the
get() method to get
the current transaction.




Connection isolation

In the last few examples, we used a connection opened using
transaction().  This was distinct from and used a
different transaction manager than the original connection. If we
looked at the original connection, conn, we’d see that it has the
same value for x that we set earlier:

>>> conn.root.x
3





This is because it’s still in the same transaction that was begun when
a change was last committed against it.  If we want to see changes, we
have to begin a new transaction:

>>> trans = my_transaction_manager.begin()
>>> conn.root.x
5





ZODB uses a timestamp-based commit protocol that provides snapshot
isolation [https://en.wikipedia.org/wiki/Snapshot_isolation].
Whenever we look at ZODB data, we see its state as of the time the
transaction began.




Conflict errors

As mentioned in the previous section, each connection sees and
operates on a view of the database as of the transaction start time.
If two connections modify the same object at the same time, one of the
connections will get a conflict error when it tries to commit:

with db.transaction() as conn2:
   conn2.root.x += 1

conn.root.x = 9
my_transaction_manager.commit() # will raise a conflict error





If we executed this code, we’d get a ConflictError exception on the
last line.  After a conflict error is raised, we’d need to abort the
transaction, or begin a new one, at which point we’d see the data as
written by the other connection:

>>> my_transaction_manager.abort()
>>> conn.root.x
6





The timestamp-based approach used by ZODB is referred to as an
optimistic approach, because it works best if there are no
conflicts.

The best way to avoid conflicts is to design your application so that
multiple connections don’t update the same object at the same time.
This isn’t always easy.

Sometimes you may need to queue some operations that update shared
data structures, like indexes, so the updates can be made by a
dedicated thread or process, without making simultaneous updates.


Retrying transactions

The most common way to deal with conflict errors is to catch them and
retry transactions.  To do this manually involves code that looks
something like this:

max_attempts = 3
attempts = 0
while True:
    try:
        with transaction.manager:
            ... code that updates a database
    except transaction.interfaces.TransientError:
        attempts += 1
        if attempts == max_attempts:
            raise
    else:
        break





In the example above, we used transaction.manager to refer to the
thread-local transaction manager, which we then used used with the
with statement.  When a conflict error occurs, the transaction
must be aborted before retrying the update. Using the transaction
manager as a context manager in the with statement takes care of this
for us.

The example above is rather tedious.  There are a number of tools to
automate transaction retry.  The transaction [http://zodb.readthedocs.io/en/latest/transactions.html#retrying-transactions]
package provides a context-manager-based mechanism for retrying
transactions:

for attempt in transaction.manager.attempts():
    with attempt:
        ... code that updates a database





Which is shorter and simpler 1.

For Python web frameworks, there are WSGI 2 middle-ware
components, such as repoze.tm2 [https://pypi.python.org/pypi/repoze.tm2] that align transaction
boundaries with HTTP requests and retry transactions when there are
transient errors.

For applications like queue workers or cron jobs [https://en.wikipedia.org/wiki/Cron], conflicts can sometimes be
allowed to fail, letting other queue workers or subsequent cron-job
runs retry the work.




Conflict resolution

ZODB provides a conflict-resolution framework for merging conflicting
changes.  When conflicts occur, conflict resolution is used, when
possible, to resolve the conflicts without raising a ConflictError to
the application.

Commonly used objects that implement conflict resolution are
buckets and Length objects provided by the BTree [https://pythonhosted.org/BTrees/] package.

The main data structures provided by BTrees, BTrees and TreeSets,
spread their data over multiple objects.  The leaf-level objects,
called buckets, allow distinct keys to be updated without causing
conflicts 3.

Length objects are conflict-free counters that merge changes by
simply accumulating changes.


Caution

Conflict resolution weakens consistency.  Resist the temptation to
try to implement conflict resolution yourself.  In the future, ZODB
will provide greater control over conflict resolution, including
the option of disabling it.

It’s generally best to avoid conflicts in the first place, if possible.










ZODB and atomicity

ZODB provides atomic transactions. When using ZODB, it’s important to
align work with transactions.  Once a transaction is committed, it
can’t be rolled back 4 automatically.  For applications, this
implies that work that should be atomic shouldn’t be split over
multiple transactions.  This may seem somewhat obvious, but the rule
can be broken in non-obvious ways. For example a Web API that splits
logical operations over multiple web requests, as is often done in
REST [https://en.wikipedia.org/wiki/Representational_state_transfer]
APIs, violates this rule.


Partial transaction error recovery using savepoints

A transaction can be split into multiple steps that can be rolled back
individually.  This is done by creating savepoints.  Changes in a
savepoint can be rolled back without rolling back an entire
transaction:

import ZODB
db = ZODB.DB(None) # using a mapping storage
with db.transaction() as conn:
    conn.root.x = 1
    conn.root.y = 0
    savepoint = conn.transaction_manager.savepoint()
    conn.root.y = 2
    savepoint.rollback()

with db.transaction() as conn:
    print([conn.root.x, conn.root.y]) # prints 1 0





If we executed this code, it would print 1 and 0, because while the
initial changes were committed, the changes in the savepoint were
rolled back.

A secondary benefit of savepoints is that they save any changes made
before the savepoint to a file, so that memory of changed objects can
be freed if they aren’t used later in the transaction.






Concurrency, threads and processes

ZODB supports concurrency through transactions.  Multiple programs
8 can operate independently in separate transactions.
They synchronize at transaction boundaries.

The most common way to run ZODB is with each program running in its
own thread.  Usually the thread-local transaction manager is used.

You can use multiple threads per transaction and you can run multiple
transactions in a single thread. To do this, you need to instantiate
and use your own transaction manager, as described in Explicit
transaction managers.  To run multiple transaction managers
simultaneously in a thread, you need to use a separate transaction
manager for each transaction.

To spread a transaction over multiple threads, you need to keep in
mind that database connections, transaction managers and transactions
are not thread-safe.  You have to prevent simultaneous access from
multiple threads.  For this reason, using multiple threads with a
single transaction is not recommended, but it is possible with care.


Using multiple processes

Using multiple Python processes is a good way to scale an application
horizontally, especially given Python’s global interpreter lock [https://wiki.python.org/moin/GlobalInterpreterLock].

Some things to keep in mind when utilizing multiple processes:


	If using the multiprocessing module, you can’t
9 share databases or connections between
processes. When you launch a subprocess, you’ll need to
re-instantiate your storage and database.


	You’ll need to use a storage such as ZEO [https://github.com/zopefoundation/ZEO], RelStorage [http://relstorage.readthedocs.io/en/latest/], or NEO [http://www.neoppod.org/], that supports multiple processes.  None
of the included storages do.





	1

	But also a bit obscure.  The Python context-manager
mechanism isn’t a great fit for the transaction-retry use case.



	2

	Web Server Gateway Interface [http://wsgi.readthedocs.io/en/latest/]



	3

	Conflicts can still occur when buckets
split due to added objects causing them to exceed their maximum size.



	4

	Transactions can’t be rolled back, but they may be undone
in some cases, especially if subsequent transactions
haven’t modified the same objects.



	5

	While it’s
possible to spread transaction work over multiple threads, it’s
not a good idea. See Concurrency, threads and processes



	6

	Transactions are implicitly
created when needed, such as when data are first modified.



	7

	ZODB and the transaction package
predate context managers and the Python with statement.



	8

	We’re using program here in a fairly general
sense, meaning some logic that we want to run to
perform some function, as opposed to an operating system program.



	9

	at least not now.
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ZODB module functions


	
DB(storage, *args, **kw)

	Create a database. See ZODB.DB.






	
ZODB.connection(*args, **kw)

	Create a database connection.

A database is created using the given arguments and opened to
create the returned connection. The database will be closed when
the connection is closed.  This is a convenience function to avoid
managing a separate database object.








Databases


	
class ZODB.DB(storage, pool_size=7, pool_timeout=2147483648, cache_size=400, cache_size_bytes=0, historical_pool_size=3, historical_cache_size=1000, historical_cache_size_bytes=0, historical_timeout=300, database_name='unnamed', databases=None, xrefs=True, large_record_size=16777216, **storage_args)

	The Object Database

The DB class coordinates the activities of multiple database
Connection instances.  Most of the work is done by the
Connections created via the open method.

The DB instance manages a pool of connections.  If a connection is
closed, it is returned to the pool and its object cache is
preserved.  A subsequent call to open() will reuse the connection.
There is no hard limit on the pool size.  If more than pool_size
connections are opened, a warning is logged, and if more than twice
that many, a critical problem is logged.

The database provides a few methods intended for application code
– open, close, undo, and pack – and a large collection of
methods for inspecting the database and its connections’ caches.


	
__init__(storage, pool_size=7, pool_timeout=2147483648, cache_size=400, cache_size_bytes=0, historical_pool_size=3, historical_cache_size=1000, historical_cache_size_bytes=0, historical_timeout=300, database_name='unnamed', databases=None, xrefs=True, large_record_size=16777216, **storage_args)

	Create an object database.


	Parameters

	
	storage – the storage used by the database, such as a
FileStorage.
This can be a string path name to use a constructed
FileStorage
storage or None to use a constructed
MappingStorage.


	pool_size (int) – expected maximum number of open connections.
Warnings are logged when this is exceeded and critical
messages are logged if twice the pool size is exceeded.


	pool_timeout (seconds) – Maximum age of inactive connections
When a connection has remained unused in a connection
pool for more than pool_timeout seconds, it will be
discarded and it’s resources released.


	cache_size (objects) – target maximum number of non-ghost
objects in each connection object cache.


	cache_size_bytes (int) – target total memory usage of non-ghost
objects in each connection object cache.


	historical_pool_size (int) – expected maximum number of total
historical connections


	historical_cache_size (objects) – target maximum number
of non-ghost objects in each historical connection object
cache.


	historical_cache_size_bytes (int) – target total memory
usage of non-ghost objects in each historical connection
object cache.


	historical_timeout (seconds) – Maximum age of inactive
historical connections.  When a connection has remained
unused in a historical connection pool for more than pool_timeout
seconds, it will be discarded and it’s resources
released.


	database_name (str) – The name of this database in a
multi-database configuration.  The name is used when
constructing cross-database references ans when accessing
database connections fron other databases.


	databases (dict) – dictionary of database name to
databases in a multi-database configuration. The new
database will add itself to this dictionary. The
dictionary is used when getting connections in other databases.


	xrefs (boolean) – Flag indicating whether cross-database
references are allowed from this database to other
databases in a multi-database configuration.


	large_record_size (int) – When object records are saved
that are larger than this, a warning is issued,
suggesting that blobs should be used instead.


	storage_args – Extra keywork arguments passed to a
storage constructor if a path name or None is passed as
the storage argument.













	
cacheDetail()

	Return object counts by class accross all connections.






	
cacheDetailSize()

	Return non-ghost counts sizes for all connections.






	
cacheExtremeDetail()

	Return information about all of the objects in the object caches.

Information includes a connection number, class, object id,
reference count and state.  The reference count returned
excludes references help by ZODB itself.






	
cacheMinimize()

	Minimize cache sizes for all connections






	
cacheSize()

	Return the total count of non-ghost objects in all object caches






	
close()

	Close the database and its underlying storage.

It is important to close the database, because the storage may
flush in-memory data structures to disk when it is closed.
Leaving the storage open with the process exits can cause the
next open to be slow.

What effect does closing the database have on existing
connections?  Technically, they remain open, but their storage
is closed, so they stop behaving usefully.  Perhaps close()
should also close all the Connections.






	
connectionDebugInfo()

	Get debugging information about connections

This is especially useful to debug connections that seem to be
leaking or open too long.  Information includes connection
info, the connection before setting, and, if a connection is
open, the time it was opened.  The info is the result of
calling getDebugInfo() on
the connection, and the connection’s cache size.






	
getCacheSize()

	Get the configured cache size (objects).






	
getCacheSizeBytes()

	Get the configured cache size in bytes.






	
getHistoricalCacheSize()

	Get the configured historical cache size (objects).






	
getHistoricalCacheSizeBytes()

	Get the configured historical cache size in bytes.






	
getHistoricalPoolSize()

	Get the configured historical pool size






	
getHistoricalTimeout()

	Get the configured historical pool timeout






	
getName()

	Get the storage name






	
getPoolSize()

	Get the configured pool size






	
getSize()

	Get the approximate database size, in bytes






	
history(oid, size=1)

	Get revision history information for an object.

See ZODB.interfaces.IStorage.history().






	
lastTransaction()

	Get the storage last transaction id.






	
objectCount()

	Get the approximate object count






	
open(transaction_manager=None, at=None, before=None)

	Return a database Connection for use by application code.

Note that the connection pool is managed as a stack, to
increase the likelihood that the connection’s stack will
include useful objects.


	Parameters

	
	transaction_manager: transaction manager to use.  None means
use the default transaction manager.


	at: a datetime.datetime or 8 character transaction id of the
time to open the database with a read-only connection.  Passing
both at and before raises a ValueError, and passing neither
opens a standard writable transaction of the newest state.
A timezone-naive datetime.datetime is treated as a UTC value.


	before: like at, but opens the readonly state before the
tid or datetime.













	
pack(t=None, days=0)

	Pack the storage, deleting unused object revisions.

A pack is always performed relative to a particular time, by
default the current time.  All object revisions that are not
reachable as of the pack time are deleted from the storage.

The cost of this operation varies by storage, but it is
usually an expensive operation.

There are two optional arguments that can be used to set the
pack time: t, pack time in seconds since the epcoh, and days,
the number of days to subtract from t or from the current
time if t is not specified.






	
setCacheSize(size)

	Reconfigure the cache size (non-ghost object count)






	
setCacheSizeBytes(size)

	Reconfigure the cache total size in bytes






	
setHistoricalCacheSize(size)

	Reconfigure the historical cache size (non-ghost object count)






	
setHistoricalCacheSizeBytes(size)

	Reconfigure the historical cache total size in bytes






	
setHistoricalPoolSize(size)

	Reconfigure the connection historical pool size






	
setHistoricalTimeout(timeout)

	Reconfigure the connection historical pool timeout






	
setPoolSize(size)

	Reconfigure the connection pool size






	
storage = storage object

	Database storage, implementing IStorage






	
supportsUndo()

	Return whether the database supports undo.






	
transaction(note=None)

	Execute a block of code as a transaction.

If a note is given, it will be added to the transaction’s
description.

The transaction method returns a context manager that can
be used with the with statement.






	
undo(id, txn=None)

	Undo a transaction identified by id.

A transaction can be undone if all of the objects involved in
the transaction were not modified subsequently, if any
modifications can be resolved by conflict resolution, or if
subsequent changes resulted in the same object state.

The value of id should be generated by calling undoLog()
or undoInfo().  The value of id is not the same as a
transaction id used by other methods; it is unique to undo().


	Parameters

	
	id: a transaction identifier


	txn: transaction context to use for undo().
By default, uses the current transaction.













	
undoInfo(*args, **kw)

	Return a sequence of descriptions for transactions.

See ZODB.interfaces.IStorageUndoable.undoInfo().






	
undoLog(*args, **kw)

	Return a sequence of descriptions for transactions.

See ZODB.interfaces.IStorageUndoable.undoLog().






	
undoMultiple(ids, txn=None)

	Undo multiple transactions identified by ids.

A transaction can be undone if all of the objects involved in
the transaction were not modified subsequently, if any
modifications can be resolved by conflict resolution, or if
subsequent changes resulted in the same object state.

The values in ids should be generated by calling undoLog()
or undoInfo().  The value of ids are not the same as a
transaction ids used by other methods; they are unique to undo().


	Parameters

	
	ids: a sequence of storage-specific transaction identifiers


	txn: transaction context to use for undo().
By default, uses the current transaction.

















Database text configuration

Databases are configured with zodb sections:

<zodb>
  cache-size-bytes 100MB
  <mappingstorage>
  </mappingstorage>
</zodb>





A zodb section must have a storage sub-section specifying a
storage and any of the following options:


	allow-implicit-cross-references (boolean)

	If set to false, implicit cross references (the only kind
currently possible) are disallowed.



	cache-size (integer, default: 5000)

	Target size, in number of objects, of each connection’s
object cache.



	cache-size-bytes (byte-size, default: 0)

	Target size, in total estimated size for objects, of each connection’s
object cache.
“0” means no limit.



	database-name (string)

	When multi-databases are in use, this is the name given to this
database in the collection.  The name must be unique across all
databases in the collection.  The collection must also be given
a mapping from its databases’ names to their databases, but that
cannot be specified in a ZODB config file.  Applications using
multi-databases typical supply a way to configure the mapping in
their own config files, using the “databases” parameter of a DB
constructor.



	historical-cache-size (integer, default: 1000)

	Target size, in number of objects, of each historical connection’s
object cache.



	historical-cache-size-bytes (byte-size, default: 0)

	Target size, in total estimated size of objects, of each historical connection’s
object cache.



	historical-pool-size (integer, default: 3)

	The expected maximum total number of historical connections
simultaneously open.



	historical-timeout (time-interval, default: 5m)

	The minimum interval that an unused historical connection should be
kept.



	large-record-size (byte-size, default: 16MB)

	When object records are saved
that are larger than this, a warning is issued,
suggesting that blobs should be used instead.



	pool-size (integer, default: 7)

	The expected maximum number of simultaneously open connections.
There is no hard limit (as many connections as are requested
will be opened, until system resources are exhausted).  Exceeding
pool-size connections causes a warning message to be logged,
and exceeding twice pool-size connections causes a critical
message to be logged.



	pool-timeout (time-interval)

	The minimum interval that an unused (non-historical)
connection should be kept.





For a multi-database configuration, use multiple zodb sections and
give the sections names:

<zodb first>
  cache-size-bytes 100MB
  <mappingstorage>
  </mappingstorage>
</zodb>

<zodb second>
  <mappingstorage>
  </mappingstorage>
</zodb>





When the configuration is loaded, a single database will be returned,
but all of the databases will be available through the returned
database’s databases attribute.






Connections


	
class ZODB.Connection.Connection(db, cache_size=400, before=None, cache_size_bytes=0)

	Connection to ZODB for loading and storing objects.

Connections manage object state in collaboration with transaction
managers.  They’re created by calling the
open() method on database objects.


	
add(obj)

	Add a new object ‘obj’ to the database and assign it an oid.






	
cacheGC()

	Reduce cache size to target size.






	
cacheMinimize()

	Deactivate all unmodified objects in the cache.






	
close(primary=True)

	Close the Connection.






	
db()

	Returns a handle to the database this connection belongs to.






	
get(oid)

	Return the persistent object with oid ‘oid’.






	
getDebugInfo()

	Returns a tuple with different items for debugging the
connection.






	
get_connection(database_name)

	Return a Connection for the named database.






	
isReadOnly()

	Returns True if this connection is read only.






	
oldstate(obj, tid)

	Return copy of ‘obj’ that was written by transaction ‘tid’.






	
onCloseCallback(f)

	Register a callable, f, to be called by close().






	
root

	Return the database root object.






	
setDebugInfo(*args)

	Add the given items to the debug information of this connection.






	
sync()

	Manually update the view on the database.






	
transaction_manager = current transaction manager

	Transaction manager associated with the connection when it was opened.












TimeStamp (transaction ids)


	
class ZODB.TimeStamp.TimeStamp(year, month, day, hour, minute, seconds)

	Create a time-stamp object. Time stamps facilitate the computation
of transaction ids, which are based on times. The arguments are
integers, except for seconds, which may be a floating-point
number. Time stamps have microsecond precision. Time stamps are
implicitly UTC based.

Time stamps are orderable and hashable.


	
day()

	Return the time stamp’s day.






	
hour()

	Return the time stamp’s hour.






	
laterThan(other)

	Return a timestamp instance which is later than ‘other’.

If self already qualifies, return self.

Otherwise, return a new instance one moment later than ‘other’.






	
minute()

	Return the time stamp’s minute.






	
month()

	Return the time stamp’s month.






	
raw()

	Get an 8-byte representation of the time stamp for use in APIs
that require a time stamp.






	
second()

	Return the time stamp’s second.






	
timeTime()

	Return the time stamp as seconds since the epoc, as used by the
time module.






	
year()

	Return the time stamp’s year.












Loading configuration

Open database and storage from a configuration.


	
ZODB.config.databaseFromString(s)

	Create a database from a database-configuration string.

The string must contain one or more zodb sections.

The database defined by the first section is returned.

If more than one zodb section is provided, a multi-database
configuration will be created and all of the databases will be
available in the returned database’s databases attribute.






	
ZODB.config.databaseFromFile(f)

	Create a database from a file object that provides configuration.

See databaseFromString().






	
ZODB.config.databaseFromURL(url)

	Load a database from URL (or file name) that provides configuration.

See databaseFromString().






	
ZODB.config.storageFromString(s)

	Create a storage from a storage-configuration string.






	
ZODB.config.storageFromFile(f)

	Create a storage from a file object providing storage-configuration.






	
ZODB.config.storageFromURL(url)

	Create a storage from a URL (or file name) providing storage-configuration.
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Storage interfaces

There are various storage implementations that implement standard
storage interfaces. They differ primarily in their constructors.

Application code rarely calls storage methods, and those it calls are
generally called indirectly through databases.  There are
interface-defined methods that are called internally by ZODB. These
aren’t shown below.


IStorage


	
interface ZODB.interfaces.IStorage

	A storage is responsible for storing and retrieving data of objects.

Consistency and locking

When transactions are committed, a storage assigns monotonically
increasing transaction identifiers (tids) to the transactions and
to the object versions written by the transactions.  ZODB relies
on this to decide if data in object caches are up to date and to
implement multi-version concurrency control.

There are methods in IStorage and in derived interfaces that
provide information about the current revisions (tids) for objects
or for the database as a whole.  It is critical for the proper
working of ZODB that the resulting tids are increasing with
respect to the object identifier given or to the databases.  That
is, if there are 2 results for an object or for the database, R1
and R2, such that R1 is returned before R2, then the tid returned
by R2 must be greater than or equal to the tid returned by R1.
(When thinking about results for the database, think of these as
results for all objects in the database.)

This implies some sort of locking strategy.  The key method is
tcp_finish, which causes new tids to be generated and also,
through the callback passed to it, returns new current tids for
the objects stored in a transaction and for the database as a whole.

The IStorage methods affected are lastTransaction, load, store,
and tpc_finish.  Derived interfaces may introduce additional
methods.


	
__len__()

	The approximate number of objects in the storage

This is used soley for informational purposes.






	
close()

	Close the storage.

Finalize the storage, releasing any external resources.  The
storage should not be used after this method is called.

Note that databases close their storages when they’re closed, so
this method isn’t generally called from application code.






	
getName()

	The name of the storage

The format and interpretation of this name is storage
dependent. It could be a file name, a database name, etc..

This is used soley for informational purposes.






	
getSize()

	An approximate size of the database, in bytes.

This is used soley for informational purposes.






	
history(oid, size=1)

	Return a sequence of history information dictionaries.

Up to size objects (including no objects) may be returned.

The information provides a log of the changes made to the
object. Data are reported in reverse chronological order.

Each dictionary has the following keys:


	time

	UTC seconds since the epoch (as in time.time) that the
object revision was committed.



	tid

	The transaction identifier of the transaction that
committed the version.



	serial

	An alias for tid, which expected by older clients.



	user_name

	The bytes user identifier, if any (or an empty string) of the
user on whos behalf the revision was committed.



	description

	The bytes transaction description for the transaction that
committed the revision.



	size

	The size of the revision data record.





If the transaction had extension items, then these items are
also included if they don’t conflict with the keys above.






	
isReadOnly()

	Test whether a storage allows committing new transactions

For a given storage instance, this method always returns the
same value.  Read-only-ness is a static property of a storage.






	
lastTransaction()

	Return the id of the last committed transaction.

If no transactions have been committed, return a string of 8
null (0) characters.






	
pack(pack_time, referencesf)

	Pack the storage

It is up to the storage to interpret this call, however, the
general idea is that the storage free space by:


	discarding object revisions that were old and not current as of the
given pack time.


	garbage collecting objects that aren’t reachable from the
root object via revisions remaining after discarding
revisions that were not current as of the pack time.




The pack time is given as a UTC time in seconds since the
epoch.

The second argument is a function that should be used to
extract object references from database records.  This is
needed to determine which objects are referenced from object
revisions.






	
sortKey()

	Sort key used to order distributed transactions

When a transaction involved multiple storages, 2-phase commit
operations are applied in sort-key order.  This must be unique
among storages used in a transaction. Obviously, the storage
can’t assure this, but it should construct the sort key so it
has a reasonable chance of being unique.

The result must be a string.












IStorageIteration


	
interface ZODB.interfaces.IStorageIteration

	API for iterating over the contents of a storage.


	
iterator(start=None, stop=None)

	Return an IStorageTransactionInformation iterator.

If the start argument is not None, then iteration will start
with the first transaction whose identifier is greater than or
equal to start.

If the stop argument is not None, then iteration will end with
the last transaction whose identifier is less than or equal to
stop.

The iterator provides access to the data as available at the time when
the iterator was retrieved.












IStorageUndoable


	
interface ZODB.interfaces.IStorageUndoable

	A storage supporting transactional undo.


	
undoInfo(first=0, last=-20, specification=None)

	Return a sequence of descriptions for undoable transactions.

This is like undoLog(), except for the specification argument.
If given, specification is a dictionary, and undoInfo()
synthesizes a filter function f for undoLog() such that
f(desc) returns true for a transaction description mapping
desc if and only if desc maps each key in specification to
the same value specification maps that key to.  In other words,
only extensions (or supersets) of specification match.

ZEO note:  undoInfo() passes the specification argument from a
ZEO client to its ZEO server (while a ZEO client ignores any filter
argument passed to undoLog()).






	
undoLog(first, last, filter=None)

	Return a sequence of descriptions for undoable transactions.

Application code should call undoLog() on a DB instance instead of on
the storage directly.

A transaction description is a mapping with at least these keys:



	“time”:  The time, as float seconds since the epoch, when

	the transaction committed.



	“user_name”:  The bytes value of the .user attribute on that

	transaction.



	“description”:  The bytes value of the .description attribute on

	that transaction.



	“id`”  A bytes uniquely identifying the transaction to the

	storage.  If it’s desired to undo this transaction,
this is the transaction_id to pass to undo().








In addition, if any name+value pairs were added to the transaction
by setExtendedInfo(), those may be added to the transaction
description mapping too (for example, FileStorage’s undoLog() does
this).

filter is a callable, taking one argument.  A transaction
description mapping is passed to filter for each potentially
undoable transaction.  The sequence returned by undoLog() excludes
descriptions for which filter returns a false value.  By default,
filter always returns a true value.

ZEO note:  Arbitrary callables cannot be passed from a ZEO client
to a ZEO server, and a ZEO client’s implementation of undoLog()
ignores any filter argument that may be passed.  ZEO clients
should use the related undoInfo() method instead (if they want
to do filtering).

Now picture a list containing descriptions of all undoable
transactions that pass the filter, most recent transaction first (at
index 0).  The first and last arguments specify the slice of this
(conceptual) list to be returned:



	first:  This is the index of the first transaction description

	in the slice.  It must be >= 0.



	last:  If >= 0, first:last acts like a Python slice, selecting

	the descriptions at indices first, first+1, …, up to
but not including index last.  At most last-first
descriptions are in the slice, and last should be at
least as large as first in this case.  If last is
less than 0, then abs(last) is taken to be the maximum
number of descriptions in the slice (which still begins
at index first).  When last < 0, the same effect
could be gotten by passing the positive first-last for
last instead.



















IStorageCurrentRecordIteration


	
interface ZODB.interfaces.IStorageCurrentRecordIteration

	
	
record_iternext(next=None)

	Iterate over the records in a storage

Use like this:

>>> next = None
>>> while 1:
...     oid, tid, data, next = storage.record_iternext(next)
...     # do things with oid, tid, and data
...     if next is None:
...         break
















IBlobStorage


	
interface ZODB.interfaces.IBlobStorage

	A storage supporting BLOBs.


	
temporaryDirectory()

	Return a directory that should be used for uncommitted blob data.

If Blobs use this, then commits can be performed with a simple rename.












IStorageRecordInformation


	
interface ZODB.interfaces.IStorageRecordInformation

	Provide information about a single storage record


	
data = <zope.interface.interface.Attribute object>

	The data record, bytes






	
data_txn = <zope.interface.interface.Attribute object>

	The previous transaction id, bytes






	
oid = <zope.interface.interface.Attribute object>

	The object id, bytes






	
tid = <zope.interface.interface.Attribute object>

	The transaction id, bytes












IStorageTransactionInformation


	
interface ZODB.interfaces.IStorageTransactionInformation

	Provide information about a storage transaction.

Can be iterated over to retrieve the records modified in the transaction.

Note that this may contain a status field used by FileStorage to
support packing. At some point, this will go away when FileStorage
has a better pack algoritm.


	
__iter__()

	Iterate over the transaction’s records given as
IStorageRecordInformation objects.






	
tid = <zope.interface.interface.Attribute object>

	Transaction id














Included storages


FileStorage


	
class ZODB.FileStorage.FileStorage.FileStorage(file_name, create=False, read_only=False, stop=None, quota=None, pack_gc=True, pack_keep_old=True, packer=None, blob_dir=None)

	Storage that saves data in a file


	
__init__(file_name, create=False, read_only=False, stop=None, quota=None, pack_gc=True, pack_keep_old=True, packer=None, blob_dir=None)

	Create a file storage


	Parameters

	
	file_name (str) – Path to store data file


	create (bool) – Flag indicating whether a file should be
created even if it already exists.


	read_only (bool) – Flag indicating whether the file is
read only. Only one process is able to open the file
non-read-only.


	stop (bytes) – Time-travel transaction id
When the file is opened, data will be read up to the given
transaction id.  Transaction ids correspond to times and
you can compute transaction ids for a given time using
TimeStamp.


	quota (int) – File-size quota


	pack_gc (bool) – Flag indicating whether garbage
collection should be performed when packing.


	pack_keep_old (bool) – flag indicating whether old data
files should be retained after packing as a .old file.


	packer (callable) – An alternative
packer.


	blob_dir (str) – A blob-directory path name.
Blobs will be supported if this option is provided.








A file storage stores data in a single file that behaves like
a traditional transaction log. New data records are appended
to the end of the file.  Periodically, the file is packed to
free up space.  When this is done, current records as of the
pack time or later are copied to a new file, which replaces
the old file.

FileStorages keep in-memory indexes mapping object oids to the
location of their current records in the file. Back pointers to
previous records allow access to non-current records from the
current records.

In addition to the data file, some ancillary files are
created. These can be lost without affecting data
integrity, however losing the index file may cause extremely
slow startup. Each has a name that’s a concatenation of the
original file and a suffix. The files are listed below by
suffix:


	.index

	Snapshot of the in-memory index.  This are created on
shutdown, packing, and after rebuilding an index when one
was not found.  For large databases, creating a
file-storage object without an index file can take very
long because it’s necessary to scan the data file to build
the index.



	.lock

	A lock file preventing multiple processes from opening a
file storage on non-read-only mode.



	.tmp

	A file used to store data being committed in the first phase
of 2-phase commit



	.index_tmp

	A temporary file used when saving the in-memory index to
avoid overwriting an existing index until a new index has
been fully saved.



	.pack

	A temporary file written while packing containing current
records as of and after the pack time.



	.old

	The previous database file after a pack.





When the database is packed, current records as of the pack
time and later are written to the .pack file. At the end
of packing, the .old file is removed, if it exists, and
the data file is renamed to the .old file and finally the
.pack file is rewritten to the data file.










	
interface ZODB.FileStorage.interfaces.IFileStoragePacker

	
	
__call__(storage, referencesf, stop, gc)

	Pack the file storage into a new file


	Parameters

	
	storage (FileStorage) – The storage object to be packed


	referencesf (callable) – A function that extracts object
references from a pickle bytes string.  This is usually
ZODB.serialize.referencesf.


	stop (bytes) – A transaction id representing the time at
which to stop packing.


	gc (bool) – A flag indicating whether garbage collection
should be performed.








The new file will have the same name as the old file with
.pack appended. (The packer can get the old file name via
storage._file.name.) If blobs are supported, if the storages
blob_dir attribute is not None or empty, then a .removed file
must be created in the blob directory. This file contains records of
the form:

(oid+serial).encode('hex')+'\n'





or, of the form:

oid.encode('hex')+'\n'





If packing is unnecessary, or would not change the file, then
no pack or removed files are created None is returned,
otherwise a tuple is returned with:


	the size of the packed file, and


	the packed index




If and only if packing was necessary (non-None) and there was
no error, then the commit lock must be acquired.  In addition,
it is up to FileStorage to:


	Rename the .pack file, and


	process the blob_dir/.removed file by removing the blobs
corresponding to the file records.













FileStorage text configuration

File storages are configured using the filestorage section:

<filestorage>
  path Data.fs
</filestorage>





which accepts the following options:


	blob-dir (existing-dirpath)

	If supplied, the file storage will provide blob support and this
is the name of a directory to hold blob data.  The directory will
be created if it doesn’t exist.  If no value (or an empty value)
is provided, then no blob support will be provided. (You can still
use a BlobStorage to provide blob support.)



	create (boolean)

	Flag that indicates whether the storage should be truncated if
it already exists.



	pack-gc (boolean, default: true)

	If false, then no garbage collection will be performed when
packing.  This can make packing go much faster and can avoid
problems when objects are referenced only from other
databases.



	pack-keep-old (boolean, default: true)

	If true, a copy of the database before packing is kept in a
“.old” file.



	packer (string)

	The dotted name (dotted module name and object name) of a
packer object.  This is used to provide an alternative pack
implementation.



	path (existing-dirpath, required)

	Path name to the main storage file.  The names for
supplemental files, including index and lock files, will be
computed from this.



	quota (byte-size)

	Maximum allowed size of the storage file.  Operations which
would cause the size of the storage to exceed the quota will
result in a ZODB.FileStorage.FileStorageQuotaError being
raised.



	read-only (boolean)

	If true, only reads may be executed against the storage.  Note
that the “pack” operation is not considered a write operation
and is still allowed on a read-only filestorage.










MappingStorage


	
class ZODB.MappingStorage.MappingStorage(name='MappingStorage')

	In-memory storage implementation

Note that this implementation is somewhat naive and inefficient
with regard to locking.  Its implementation is primarily meant to
be a simple illustration of storage implementation. It’s also
useful for testing and exploration where scalability and efficiency
are unimportant.


	
__init__(name='MappingStorage')

	Create a mapping storage

The name parameter is used by the
getName() and
sortKey() methods.












MappingStorage text configuration

File storages are configured using the mappingstorage section:

<mappingstorage>
</mappingstorage>





Options:


	name (string, default: Mapping Storage)

	The storage name, used by the
getName() and
sortKey() methods.








DemoStorage


	
class ZODB.DemoStorage.DemoStorage(name=None, base=None, changes=None, close_base_on_close=None, close_changes_on_close=None)

	A storage that stores changes against a read-only base database

This storage was originally meant to support distribution of
application demonstrations with populated read-only databases (on
CDROM) and writable in-memory databases.

Demo storages are extemely convenient for testing where setup of a
base database can be shared by many tests.

Demo storages are also handy for staging appplications where a
read-only snapshot of a production database (often accomplished
using a beforestorage [https://pypi.python.org/pypi/zc.beforestorage]) is combined
with a changes database implemented with a
FileStorage.


	
__init__(name=None, base=None, changes=None, close_base_on_close=None, close_changes_on_close=None)

	Create a demo storage


	Parameters

	
	name (str) – The storage name used by the
getName() and
sortKey() methods.


	base (object) – base storage


	changes (object) – changes storage


	close_base_on_close (bool) – A Flag indicating whether the base
database should be closed when the demo storage is closed.


	close_changes_on_close (bool) – A Flag indicating whether the
changes database should be closed when the demo storage is closed.








If a base database isn’t provided, a
MappingStorage will be
constructed and used.

If close_base_on_close isn’t specified, it will be True if
a base database was provided and False otherwise.

If a changes database isn’t provided, a
MappingStorage will be
constructed and used and blob support will be provided using a
temporary blob directory.

If close_changes_on_close isn’t specified, it will be True if
a changes database was provided and False otherwise.






	
pop()

	Close the changes database and return the base.






	
push(changes=None)

	Create a new demo storage using the storage as a base.

The given changes are used as the changes for the returned
storage and False is passed as close_base_on_close.












DemoStorage text configuration

Demo storages are configured using the demostorage section:

<demostorage>
  <filestorage base>
    path base.fs
  </filestorage>
  <mappingstorage changes>
    name Changes
  </mappingstorage>
</demostorage>





demostorage sections can contain up to 2 storage subsections,
named base and changes, specifying the demo storage’s base and
changes storages.  See ZODB.DemoStorage.DemoStorage.__init__()
for more on the base and changes storages.

Options:


	name (string)

	The storage name, used by the
getName() and
sortKey() methods.










Noteworthy non-included storages

A number of important ZODB storages are distributed separately.


Base storages

Unlike the included storages, all the implementations listed in this section
allow multiple processes to share the same database.


	NEO

	NEO [https://lab.nexedi.com/nexedi/neoppod] can spread data among several
computers for load-balancing and multi-master replication. It also supports
asynchronous replication to off-site NEO databases for further disaster
resistance without affecting local operation latency.

For more information, see https://lab.nexedi.com/nexedi/neoppod.



	RelStorage

	RelStorage [http://relstorage.readthedocs.io/en/latest/]
stores data in relational databases.  This is especially
useful when you have requirements or existing infrastructure for
storing data in relational databases.

For more information, see http://relstorage.readthedocs.io/en/latest/.



	ZEO

	ZEO [https://github.com/zopefoundation/ZEO] is a client-server
database implementation for ZODB.  To use ZEO, you run a ZEO server,
and use ZEO clients in your application.

For more information, see https://github.com/zopefoundation/ZEO.








Optional layers


	ZRS

	ZRS [https://github.com/zc/zrs]
provides replication from one database to another.  It’s most
commonly used with ZEO.  With ZRS, you create a ZRS primary database
around a FileStorage and in a
separate process, you create a ZRS secondary storage around any
storage. As transactions are
committed on the primary, they’re copied asynchronously to
secondaries.

For more information, see https://github.com/zc/zrs.



	zlibstorage

	zlibstorage [https://pypi.python.org/pypi/zc.zlibstorage]
compresses database records using the compression
algorithm used by gzip [http://www.gzip.org/].

For more information, see https://pypi.python.org/pypi/zc.zlibstorage.



	beforestorage

	beforestorage [https://pypi.python.org/pypi/zc.beforestorage]
provides a point-in-time view of a database that might
be changing.  This can be useful to provide a non-changing view of a
production database for use with a DemoStorage.

For more information, see https://pypi.python.org/pypi/zc.beforestorage.



	cipher.encryptingstorage

	cipher.encryptingstorage [https://pypi.python.org/pypi/cipher.encryptingstorage/] provided
compression and encryption of database records.

For more information, see
https://pypi.python.org/pypi/cipher.encryptingstorage/.













          

      

      

    

  

    
      
          
            
  
Transactions

Transaction support is provided by the transaction [http://transaction.readthedocs.io/en/latest/] package
1, which is installed
automatically when you install ZODB.  There are two important APIs
provided by the transaction package, ITransactionManager and
ITransaction, described below.


ITransactionManager


	
interface transaction.interfaces.ITransactionManager

	An object that manages a sequence of transactions.

Applications use transaction managers to establish transaction boundaries.


	
abort()

	Abort the current transaction.

In explicit mode, if a transaction hasn’t begun, a
NoTransaction exception will be raised.






	
begin()

	Explicitly begin and return a new transaction.

If an existing transaction is in progress and the transaction
manager not in explicit mode, the previous transaction will be
aborted.  If an existing transaction is in progress and the
transaction manager is in explicit mode, an
AlreadyInTransaction exception will be raised..

The newTransaction method of registered synchronizers is called,
passing the new transaction object.

Note that when not in explicit mode, transactions may be
started implicitly without calling begin. In that case,
newTransaction isn’t called because the transaction
manager doesn’t know when to call it.  The transaction is
likely to have begun long before the transaction manager is
involved. (Conceivably the commit and abort methods
could call begin, but they don’t.)






	
commit()

	Commit the current transaction.

In explicit mode, if a transaction hasn’t begun, a
NoTransaction exception will be raised.






	
doom()

	Doom the current transaction.

In explicit mode, if a transaction hasn’t begun, a
NoTransaction exception will be raised.






	
get()

	Get the current transaction.

In explicit mode, if a transaction hasn’t begun, a
NoTransaction exception will be raised.






	
isDoomed()

	Returns True if the current transaction is doomed, otherwise False.

In explicit mode, if a transaction hasn’t begun, a
NoTransaction exception will be raised.






	
savepoint(optimistic=False)

	Create a savepoint from the current transaction.

If the optimistic argument is true, then data managers that
don’t support savepoints can be used, but an error will be
raised if the savepoint is rolled back.

An ISavepoint object is returned.

In explicit mode, if a transaction hasn’t begun, a
NoTransaction exception will be raised.












ITransaction


	
interface transaction.interfaces.ITransaction

	Object representing a running transaction.

Objects with this interface may represent different transactions
during their lifetime (.begin() can be called to start a new
transaction using the same instance, although that example is
deprecated and will go away in ZODB 3.6).


	
abort()

	Abort the transaction.

This is called from the application.  This can only be called
before the two-phase commit protocol has been started.






	
addAfterCommitHook(hook, args=(), kws=None)

	Register a hook to call after a transaction commit attempt.

The specified hook function will be called after the transaction
commit succeeds or aborts.  The first argument passed to the hook
is a Boolean value, true if the commit succeeded, or false if the
commit aborted.  args specifies additional positional, and kws
keyword, arguments to pass to the hook.  args is a sequence of
positional arguments to be passed, defaulting to an empty tuple
(only the true/false success argument is passed).  kws is a
dictionary of keyword argument names and values to be passed, or
the default None (no keyword arguments are passed).

Multiple hooks can be registered and will be called in the order they
were registered (first registered, first called).  This method can
also be called from a hook:  an executing hook can register more
hooks.  Applications should take care to avoid creating infinite loops
by recursively registering hooks.

Hooks are called only for a top-level commit.  A
savepoint creation does not call any hooks.  Calling a
hook “consumes” its registration:  hook registrations do not
persist across transactions.  If it’s desired to call the same
hook on every transaction commit, then addAfterCommitHook() must be
called with that hook during every transaction; in such a case
consider registering a synchronizer object via a TransactionManager’s
registerSynch() method instead.






	
addBeforeCommitHook(hook, args=(), kws=None)

	Register a hook to call before the transaction is committed.

The specified hook function will be called after the transaction’s
commit method has been called, but before the commit process has been
started.  The hook will be passed the specified positional (args)
and keyword (kws) arguments.  args is a sequence of positional
arguments to be passed, defaulting to an empty tuple (no positional
arguments are passed).  kws is a dictionary of keyword argument
names and values to be passed, or the default None (no keyword
arguments are passed).

Multiple hooks can be registered and will be called in the order they
were registered (first registered, first called).  This method can
also be called from a hook:  an executing hook can register more
hooks.  Applications should take care to avoid creating infinite loops
by recursively registering hooks.

Hooks are called only for a top-level commit.  A
savepoint creation does not call any hooks.  If the
transaction is aborted, hooks are not called, and are discarded.
Calling a hook “consumes” its registration too:  hook registrations
do not persist across transactions.  If it’s desired to call the same
hook on every transaction commit, then addBeforeCommitHook() must be
called with that hook during every transaction; in such a case
consider registering a synchronizer object via a TransactionManager’s
registerSynch() method instead.






	
commit()

	Finalize the transaction.

This executes the two-phase commit algorithm for all
IDataManager objects associated with the transaction.






	
description = <zope.interface.interface.Attribute object>

	A textual description of the transaction.

The value is text (unicode).  Method note() is the intended
way to set the value.  Storages record the description, as meta-data,
when a transaction commits.

A storage may impose a limit on the size of the description; behavior
is undefined if such a limit is exceeded (for example, a storage may
raise an exception, or truncate the value).






	
doom()

	Doom the transaction.

Dooms the current transaction. This will cause
DoomedTransactionException to be raised on any attempt to commit the
transaction.

Otherwise the transaction will behave as if it was active.






	
getAfterCommitHooks()

	Return iterable producing the registered addAfterCommit hooks.

A triple (hook, args, kws) is produced for each registered hook.
The hooks are produced in the order in which they would be invoked
by a top-level transaction commit.






	
getBeforeCommitHooks()

	Return iterable producing the registered addBeforeCommit hooks.

A triple (hook, args, kws) is produced for each registered hook.
The hooks are produced in the order in which they would be invoked
by a top-level transaction commit.






	
note(text)

	Add text (unicode) to the transaction description.

This modifies the .description attribute; see its docs for more
detail.  First surrounding whitespace is stripped from text.  If
.description is currently an empty string, then the stripped text
becomes its value, else two newlines and the stripped text are
appended to .description.






	
savepoint(optimistic=False)

	Create a savepoint.

If the optimistic argument is true, then data managers that don’t
support savepoints can be used, but an error will be raised if the
savepoint is rolled back.

An ISavepoint object is returned.






	
setExtendedInfo(name, value)

	Add extension data to the transaction.


	name

	is the text (unicode) name of the extension property to set



	value

	must be picklable and json serializable (not an instance).





Multiple calls may be made to set multiple extension
properties, provided the names are distinct.

Storages record the extension data, as meta-data, when a transaction
commits.

A storage may impose a limit on the size of extension data; behavior
is undefined if such a limit is exceeded (for example, a storage may
raise an exception, or remove <name, value> pairs).






	
user = <zope.interface.interface.Attribute object>

	A user name associated with the transaction.

The format of the user name is defined by the application.  The value
is text (unicode).  Storages record the user value, as meta-data,
when a transaction commits.

A storage may impose a limit on the size of the value; behavior is
undefined if such a limit is exceeded (for example, a storage may
raise an exception, or truncate the value).










	1

	The :mod:transaction
package is a general purpose package for managing distributed
transactions [https://en.wikipedia.org/wiki/Distributed_transaction] with a
two-phase commit protocol [https://en.wikipedia.org/wiki/Two-phase_commit_protocol].  It
can and occasionally is used with packages other than ZODB.
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An overview of the ZODB (by Laurence Rowe)

ZODB in comparison to relational databases, transactions, scalability and best
practice. Originally delivered to the Plone Conference 2007, Naples.


Comparison to other database types

Relational Databases are great at handling large quantities of homogenous
data. If you’re building a ledger system a Relational Database is a great fit.
But Relational Databases only support hierarchical data structures to a
limited degree. Using foreign-key relationships must refer to a single table,
so only a single type can be contained.

Hierarchical databases (such as LDAP or a filesystem) are much more
suitable for modelling the flexible containment hierarchies required for
content management applications. But most of these systems do not support
transactional semantics. ORMs such as SQLAlchemy [http://www.sqlalchemy.org]. make working with Relational Databases in an
object orientated manner much more pleasant. But they don’t overcome the
restrictions inherent in a relational model.

The ZODB is an (almost) transparent python object persistence system,
heavily influenced by Smalltalk. As an Object-Orientated Database it gives you
the flexibility to build a data model fit your application. For the most part
you don’t have to worry about persistency - you only work with python objects
and it just happens in the background.

Of course this power comes at a price. While changing the methods your classes
provide is not a problem, changing attributes can necessitate writing a
migration script, as you would with a relational schema change. With ZODB
obejcts though explicit schema migrations are not enforced, which can bite you
later.




Transactions

The ZODB has a transactional support at its core. Transactions provide
concurrency control and atomicity. Transactions are executed as if they have
exclusive access to the data, so as an application developer you don’t have to
worry about threading. Of course there is nothing to prevent two simultaneous
conflicting requests, So checks are made at transaction commit time to ensure
consistency.

Since Zope 2.8 ZODB has implemented Multi Version Concurrency Control.
This means no more ReadConflictErrors, each transaction is guaranteed to be
able to load any object as it was when the transaction begun.

You may still see (Write) ConflictErrors. These can be minimised using
data structures that support conflict resolution, primarily B-Trees in the
BTrees library. These scalable data structures are used in Large Plone Folders
and many parts of Zope. One downside is that they don’t support user definable
ordering.

The hot points for ConflictErrors are the catalogue indexes. Some of the
indexes do not support conflict resolution and you will see ConflictErrors
under write-intensive loads. On solution is to defer catalogue updates using
QueueCatalog [http://pypi.python.org/pypi/Products.QueueCatalog]
(PloneQueueCatalog [http://pypi.python.org/pypi/Products.PloneQueueCatalog]), which allows
indexing operations to be serialized using a seperate ZEO client. This can
bring big performance benefits as request retries are reduced, but the
downside is that index updates are no longer reflected immediately in the
application. Another alternative is to offload text indexing to a dedicated
search engine using collective.solr [http://pypi.python.org/pypi/collective.solr].

This brings us to Atomicity, the other key feature of ZODB transactions. A
transaction will either succeed or fail, your data is never left in an
inconsistent state if an error occurs. This makes Zope a forgiving system to
work with.

You must though be careful with interactions with external systems. If a
ConflictError occurs Zope will attempt to replay a transaction up to three
times. Interactions with an external system should be made through a Data
Manager that participates in the transaction. If you’re talking to a database
use a Zope DA or a SQLAlchemy wrapper like zope.sqlalchemy [http://pypi.python.org/pypi/zope.sqlalchemy].

Unfortunately the default MailHost implementation used by Plone is not
transaction aware. With it you can see duplicate emails sent. If this is a
problem use TransactionalMailHost.

Scalability Python is limited to a single CPU by the Global Interpreter Lock,
but that’s ok, ZEO lets us run multiple Zope Application servers sharing a
single database. You should run one Zope client for each processor on your
server. ZEO also lets you connect a debug session to your database at the same
time as your Zope web server, invaluable for debugging.

ZEO tends to be IO bound, so the GIL is not an issue.

ZODB also supports partitioning, allowing you to spread data over multiple
storages. However you should be careful about cross database references
(especially when copying and pasting between two databases) as they can be
problematic.

Another common reason to use partitioning is because the ZODB in memory cache
settings are made per database. Separating the catalogue into another storage
lets you set a higher target cache size for catalogue objects than for your
content objects. As much of the Plone interface is catalogue driven this can
have a significant performance benefit, especially on a large site.

[image: ../_images/zeo-diagram.png]



Storage Options

FileStorage is the default. Everything in one big Data.fs file, which is
essentially a transaction log. Use this unless you have a very good reason not
to.

DirectoryStorage (site [http://dirstorage.sourceforge.net]) stores one
file per object revision. Does not require the Data.fs.index to be rebuilt on
an unclean shutdown (which can take a significant time for a large database).
Small number of users.

RelStorage (pypi [http://pypi.python.org/pypi/RelStorage]) stores
pickles in a relational database. PostgreSQL, MySQL and Oracle are supported
and no ZEO server is required. You benefit from the faster network layers of
these database adapters. However, conflict resolution is moved to the
application server, which can be bad for worst case performance when you have
high network latency.

BDBStorage, OracleStorage, PGStorage and APE have now fallen by the wayside.




Other features

Savepoints (previously sub-transactions) allow fine grained error control
and objects to be garbage collected during a transaction, saving memory.

Versions are deprecated (and will be removed in ZODB 3.9). The application
layer is responsible for versioning, e.g. CMFEditions / ZopeVersionControl.

Undo, don’t rely on it! If your object is indexed it may prove impossible
to undo the transaction (independently) if a later transaction has changed the
same index. Undo is only performed on a single database, so if you have
separated out your catalogue it will get out of sync. Fine for undoing in
portal_skins/custom though.

BLOBs are new in ZODB 3.8 / Zope 2.11, bringing efficient large file
support. Great for document management applications.

Packing removes old revisions of objects. Similar to Routine Vacuuming [http://www.postgresql.org/docs/8.3/static/routine-vacuuming.html] in
PostgreSQL.




Some best practice

Don’t write on read. Your Data.fs should not grow on a read. Beware of
setDefault and avoid inplace migration.

Keep your code on the filesystem. Too much stuff in the custom folder will
just lead to pain further down the track. Though this can be very convenient
for getting things done when they are needed yesterday…

Use scalable data structures such as BTrees. Keep your content objects
simple, add functionality with adapters and views.







          

      

      

    

  

    
      
          
            
  
Introduction to the ZODB (by Michel Pelletier)

In this article, we cover the very basics of the Zope Object
Database (ZODB) for Python programmers.  This short article
documents almost everything you need to know about using this
powerful object database in Python. In a later article, I will
cover some of the more advanced features of ZODB for Python
programmers.

ZODB is a database for Python objects that comes with
Zope [http://www.zope.org].  If you’ve ever worked with a
relational database, like PostgreSQL, MySQL, or Oracle, than you
should be familiar with the role of a database.  It’s a long term
or short term storage for your application data.

For many tasks, relational databases are clearly a good solution,
but sometimes relational databases don’t fit well with your object
model.  If you have lots of different kinds of interconnected
objects with complex relationships, and changing schemas then ZODB
might be worth giving a try.

A major feature of ZODB is transparency.  You do not need to write
any code to explicitly read or write your objects to or from a
database.  You just put your persistent objects into a container
that works just like a Python dictionary.  Everything inside this
dictionary is saved in the database.  This dictionary is said to
be the “root” of the database. It’s like a magic bag; any Python
object that you put inside it becomes persistent.

Actually there are a few restrictions on what you can store in the
ZODB. You can store any objects that can be “pickled” into a
standard, cross-platform serial format.  Objects like lists,
dictionaries, and numbers can be pickled.  Objects like files,
sockets, and Python code objects, cannot be stored in the database
because they cannot be pickled.  For more information on
“pickling”, see the Python pickle module documentation at
http://www.python.org/doc/current/lib/module-pickle.html


A Simple Example

The first thing you need to do to start working with ZODB is to
create a “root object”.  This process involves first opening a
connection to a “storage”, which is the actual back-end that stores
your data.

ZODB supports many pluggable storage back-ends, but for the
purposes of this article I’m going to show you how to use the
‘FileStorage’ back-end storage, which stores your object data in a
file.  Other storages include storing objects in relational
databases, Berkeley databases, and a client to server storage that
stores objects on a remote storage server.

To set up a ZODB, you must first install it.  ZODB comes with
Zope, so the easiest way to install ZODB is to install Zope and
use the ZODB that comes with your Zope installation.  For those of
you who don’t want all of Zope, but just ZODB, see the
instructions for downloading StandaloneZODB from the ZODB web
page [http://www.zope.org/Wikis/ZODB/FrontPage].

StandaloneZODB can be installed into your system’s Python
libraries using the standard ‘distutils’ Python module.

After installing ZODB, you can start to experiment with it right
from the Python command line interpreter.  For example, try the
following python code in your interpreter:

>>> from ZODB import FileStorage, DB
>>> storage = FileStorage.FileStorage('mydatabase.fs')
>>> db = DB(storage)
>>> connection = db.open()
>>> root = connection.root()





Here, you create storage and use the ‘mydatabse.fs’ file to store
the object information.  Then, you create a database that uses
that storage.

Next, the database needs to be “opened” by calling the ‘open()’
method.  This will return a connection object to the database.
The connection object then gives you access to the ‘root’ of the
database with the ‘root()’ method.

The ‘root’ object is the dictionary that holds all of your
persistent objects.  For example, you can store a simple list of
strings in the root object:

>>> root['employees'] = ['Mary', 'Jo', 'Bob']





Now, you have changed the persistent database by adding a new
object, but this change is so far only temporary.  In order to
make the change permanent, you must commit the current
transaction:

>>> import transaction
>>> transaction.commit()





Transactions group of lots of changes in one atomic operation.  In
a later article, I’ll show you how this is a very powerful
feature.  For now, you can think of committing transactions as
“checkpoints” where you save the changes you’ve made to your
objects so far.  Later on, I’ll show you how to abort those
changes, and how to undo them after they are committed.

Now let’s find out if our data was actually saved. First close the
database connection:

>>> connection.close()





Then quit Python. Now start the Python interpreter up again, and
connect to the database you just created:

>>> from ZODB import FileStorage, DB
>>> storage = FileStorage.FileStorage('mydatabase.fs')
>>> db = DB(storage)
>>> connection = db.open()
>>> root = connection.root()





Now, let’s see what’s in the root:

>>> root.items()
[('employees', ['Mary', 'Jo', 'Bob'])]





There’s your list.  If you had used a relational database, you
would have had to issue a SQL query to save even a simple Python
list like the above example.  You would have also needed some code
to convert a SQL query back into the list when you wanted to use
it again.  You don’t have to do any of this work when using ZODB.
Using ZODB is almost completely transparent, in fact, ZODB based
programs often look suspiciously simple!

Keep in mind that ZODB’s persistent dictionary is just the tip of
the persistent iceberg.  Persistent objects can have attributes
that are themselves persistent.  In other words, even though you
may have only one or two “top level” persistent objects as values
in the persistent dictionary, you can still have thousands of
sub-objects below them.  This is, in fact, how Zope does it.  In
Zope, there is only one top level object that is the root
“application” object for all other objects in Zope.




Detecting Changes

One thing that makes ZODB so easy to use is that it doesn’t
require you to keep track of your changes. All you have to do is
to make changes to persistent objects and then commit a
transaction. Anything that has changed will be stored in the
database.

There is one exception to this rule when it comes to simple
mutable Python types like lists and dictionaries.  If you change a
list or dictionary that is already stored in the database, then
the change will not take effect.  Consider this example:

>>> root['employees'].append('Bill')
>>> transaction.commit()





You would expect this to work, but it doesn’t.  The reason for
this is that ZODB cannot detect that the ‘employees’ list
changed. The ‘employees’ list is a mutable object that does not
notify ZODB when it changes.

There are a couple of very simple ways around this problem.  The
simplest is to re-assign the changed object:

>>> employees = root['employees']
>>> employees.append('Bill')
>>> root['employees'] = employees
>>> transaction.commit()





Here, you move the employees list to a local variable, change the
list, and then reassign the list back into the database and
commit the transaction.  This reassignment notifies the database
that the list changed and needs to be saved to the database.

Later in this article, we’ll show you another technique for
notifying the ZODB that your objects have changed.  Also, in a
later article, we’ll show you how to use simple, ZODB-aware list
and dictionary classes that come pre-packaged with ZODB for your
convenience.




Persistent Classes

The easiest way to create mutable objects that notify the ZODB of
changes is to create a persistent class.  Persistent classes let
you store your own kinds of objects in the database.  For example,
consider a class that represents a employee:

import ZODB
from Persistence import Persistent

class Employee(Persistent):

    def setName(self, name):
        self.name = name





To create a persistent class, simply subclass from
‘Persistent.Persistent’. Because of some special magic that ZODB
does, you must first import ZODB before you can import Persistent.
The ‘Persistent’ module is actually created when you import
‘ZODB’.

Now, you can put Employee objects in your database:

>>> employees=[]
>>> for name in ['Mary', 'Joe', 'Bob']:
...     employee = Employee()
...     employee.setName(name)
...     employees.append(employee)
>>> root['employees']=employees
>>> transaction.commit()





Don’t forget to call ‘commit()’, so that the changes you have made
so far are committed to the database, and a new transaction is
begun.

Now you can change your employees and they will be saved in the
database. For example you can change Bob’s name to “Robert”:

>>> bob=root['employees'][2]
>>> bob.setName('Robert')
>>> transaction.commit()





You can even change attributes of persistent instaces without
calling methods:

>>> bob=root['employees'][2]
>>> bob._coffee_prefs=('Cream', 'Sugar')
>>> transaction.commit()





It doesn’t matter whether you change an attribute directly, or
whether it’s changed by a method.  As you can tell, all of the
normal Python language rules still work as you’d expect.




Mutable Attributes

Earlier you saw how ZODB can’t detect changes to normal mutable
objects like Python lists. This issue still affects you when using
persistent instances. This is because persistent instances can
have attributes which are normal mutable objects. For example,
consider this class:

class Employee(Persistent):

    def __init__(self):
        self.tasks = []

    def setName(self, name):
        self.name = name

    def addTask(self, task):
        self.task.append(task)





When you call ‘addTask’, the ZODB won’t know that the mutable
attribute ‘self.tasks’ has changed.  As you saw earlier, you can
reassign ‘self.tasks’ after you change it to get around this
problem. However, when you’re using persistent instances, you have
another choice. You can signal the ZODB that your instance has
changed with the ‘_p_changed’ attribute:

class Employee(Persistent):
    ...

    def addTask(self, task):
        self.task.append(task)
        self._p_changed = 1





To signal that this object has change, set the ‘_p_changed’
attribute to 1. You only need to signal ZODB once, even if you
change many mutable attributes.

The ‘_p_changed’ flag leads us to one of the few rules of you must
follow when creating persistent classes: your instances cannot
have attributes that begin with ‘_p_’, those names are reserved
for use by the ZODB.




A Complete Example

Here’s a complete example program. It builds on the employee
examples used so far:

from ZODB import DB
from ZODB.FileStorage import FileStorage
from ZODB.PersistentMapping import PersistentMapping
from Persistence import Persistent
import transaction

class Employee(Persistent):
    """An employee"""

    def __init__(self, name, manager=None):
        self.name=name
        self.manager=manager

# setup the database
storage=FileStorage("employees.fs")
db=DB(storage)
connection=db.open()
root=connection.root()

# get the employees mapping, creating an empty mapping if
# necessary
if not root.has_key("employees"):
    root["employees"] = {}
employees=root["employees"]


def listEmployees():
    if len(employees.values())==0:
        print "There are no employees."
        print
        return
    for employee in employees.values():
        print "Name: %s" % employee.name
        if employee.manager is not None:
            print "Manager's name: %s" % employee.manager.name
        print

def addEmployee(name, manager_name=None):
    if employees.has_key(name):
        print "There is already an employee with this name."
        return
    if manager_name:
        try:
            manager=employees[manager_name]
        except KeyError:
            print
            print "No such manager"
            print
            return
        employees[name]=Employee(name, manager)
    else:
        employees[name]=Employee(name)

    root['employees'] = employees  # reassign to change
    transaction.commit()
    print "Employee %s added." % name
    print


if __name__=="__main__":
    while 1:
        choice=raw_input("Press 'L' to list employees, 'A' to add"
                         "an employee, or 'Q' to quit:")
        choice=choice.lower()
        if choice=="l":
            listEmployees()
        elif choice=="a":
            name=raw_input("Employee name:")
            manager_name=raw_input("Manager name:")
            addEmployee(name, manager_name)
        elif choice=="q":
            break

    # close database
    connection.close()





This program demonstrates a couple interesting things. First, this
program shows how persistent objects can refer to each other. The
‘self.manager’ attribute of ‘Employee’ instances can refer to other
‘Employee’ instances. Unlike a relational database, there is no
need to use indirection such as object ids when referring from one
persistent object to another. You can just use normal Python
references. In fact, you can even use circular references.

A final trick used by this program is to look for a persistent
object and create it if it is not present. This allows you to just
run this program without having to run a setup script to build the
database first. If there is not database present, the program will
create one and initialize it.




Conclusion

ZODB is a very simple, transparent object database for Python that
is a freely available component of the Zope application server.
As these examples illustrate, only a few lines of code are needed
to start storing Python objects in ZODB, with no need to write SQL
queries.  In the next article on ZODB, we’ll show you some more
advanced techniques for using ZODB, like using ZODB’s distributed
object protocol to distribute your persistent objects across many
machines.

ZODB Resources


	Andrew Kuchling’s “ZODB pages” [http://web.archive.org/web/20030606003753/http://amk.ca/zodb/] (archived)


	Zope.org “ZODB Wiki” [http://www.zope.org/Wikis/ZODB/FrontPage]


	Jim Fulton’s “Introduction to the Zope Object Database” [http://www.python.org/workshops/2000-01/proceedings/papers/fulton/zodb3.html]










          

      

      

    

  

    
      
          
            
  
Advanced ZODB for Python Programmers

In the first article in this series, “ZODB for Python
Programmers”:ZODB1 I covered some of the simpler aspects of Python
object persistence.  In this article, I’ll go over some of the more
advanced features of ZODB.

In addition to simple persistence, ZODB offers some very useful
extras for the advanced Python application.  Specificly, we’ll cover
the following advanced features in this article:


	Persistent-Aware Types – ZODB comes with some special,
“persistent-aware” data types for storing data in a ZODB.  The
most useful of these is the “BTree”, which is a fast, efficient
storage object for lots of data.


	Voalitile Data – Not all your data is meant to be stored in the
database, ZODB let’s you have volatile data on your objects that
does not get saved.


	Pluggable Storages – ZODB offers you the ability to use many
different storage back-ends to store your object data, including
files, relational databases and a special client-server storage
that stores objects on a remote server.


	Conflict Resolution – When many threads try to write to the same
object at the same time, you can get conflicts.  ZODB offers a
conflict resolution protocol that allows you to mitigate most
conflicting writes to your data.


	Transactions – When you want your changes to be “all or nothing”
transactions come to the rescue.





Persistent-Aware Types

You can also get around the mutable attribute problem discussed in
the first article by using special types that are “persistent
aware”.  ZODB comes with the following persistent aware mutable
object types:


	PersistentList – This type works just like a list, except that
changing it does not require setting _p_changed or explicitly
re-assigning the attribute.


	PersistentMapping – A persistent aware dictionary, much like
PersistentList.


	BTree – A dictionary-like object that can hold large
collections of objects in an ordered, fast, efficient way.




BTrees offer a very powerful facility to the Python programmer:


	BTrees can hold a large collection of information in an
efficient way; more objects than your computer has enough
memory to hold at one time.


	BTrees are integrated into the persistence machinery to work
effectively with ZODB’s object cache.  Recently, or heavily
used objects are kept in a memory cache for speed.


	BTrees can be searched very quickly, because they are stored
in an fast, balanced tree data structure.


	BTrees come in three flavors, OOBTrees, IOBTrees, OIBTrees, and
IIBTrees.  The last three are optimized for integer keys, values,
and key-value pairs, respectively.  This means that, for example,
an IOBTree is meant to map an integer to an object, and is
optimized for having integers keys.







Using BTrees

Suppose you track the movement of all your employees with
heat-seeking cameras hidden in the ceiling tiles.  Since your
employees tend to frequently congregate against you, all of the
tracking information could end up to be a lot of data, possibly
thousands of coordinates per day per employee.  Further, you want
to key the coordinate on the time that it was taken, so that you
can only look at where your employees were during certain times:

from BTrees import IOBTree
from time import time

class Employee(Persistent):

    def __init__(self):
        self.movements = IOBTree()

    def fix(self, coords):
        "get a fix on the employee"
        self.movements[int(time())] = coords

    def trackToday(self):
        "return all the movements of the
        employee in the last 24 hours"
        current_time = int(time())
        return self.movements.items(current_time - 86400,
                                    current_time)





In this example, the ‘fix’ method is called every time one of your
cameras sees that employee.  This information is then stored in a
BTree, with the current ‘time()’ as the key and the ‘coordinates’
as the value.

Because BTrees store their information is a ordered structure,
they can be quickly searched for a range of key values.  The
‘trackToday’ method uses this feature to return a sequence of
coordinates from 24 hours hence to the present.

This example shows how BTrees can be quickly searched for a range
of values from a minimum to a maximum, and how you can use this
technique to oppress your workforce.  BTrees have a very rich API,
including doing unions and intersections of result sets.




Not All Objects are Persistent

You don’t have to make all of your objects persistent.
Non-persistent objects are often useful to represent either
“canned” behavior (classes that define methods but no state), or
objects that are useful only as a “cache” that can be thrown away
when your persistent object is deactivated (removed from memory
when not used).

ZODB provides you with the ability to have volatile attributes.
Volatile attributes are attributes of persistent objects that are
never saved in the database, even if they are capable of being
persistent.  Volatile attributes begin with ‘_v_’ are good for
keeping cached information around for optimization.  ZODB also
provides you with access to special pickling hooks that allow you
to set volatile information when an object is activated.

Imagine you had a class that stored a complex image that you
needed to calculate.  This calculation is expensive.  Instead of
calculating the image every time you called a method, it would be
better to calculate it once and then cache the result in a
volatile attribute:

def image(self):
    "a large and complex image of the terrain"
    if hasattr(self, '_v_image'):
        return self._v_image
    image=expensive_calculation()
    self._v_image=image
    return image





Here, calling ‘image’ the first time the object is activated will
cause the method to do the expensive calculation.  After the first
call, the image will be cached in a volatile attribute.  If the
object is removed from memory, the ‘_v_image’ attribute is not
saved, so the cached image is thrown away, only to be recalculated
the next time you call ‘image’.




ZODB and Concurrency

Different, threads, processes, and computers on a network can open
connections to a single ZODB object database.  Each of these
different processes keeps its own copy of the objects that it uses
in memory.

The problem with allowing concurrent access is that conflicts can
occur.  If different threads try to commit changes to the same
objects at the same time, one of the threads will raise a
ConflictError.  If you want, you can write your application to
either resolve or retry conflicts a reasonable number of times.

Zope will retry a conflicting ZODB operation three times.  This is
usually pretty reasonable behavior.  Because conflicts only happen
when two threads write to the same object, retrying a conflict
means that one thread will win the conflict and write itself, and
the other thread will retry a few seconds later.




Pluggable Storages

Different processes and computers can connection to the same
database using a special kind of storage called a ‘ClientStorage’.
A ‘ClientStorage’ connects to a ‘StorageServer’ over a network.

In the very beginning, you created a connection to the database by
first creating a storage.  This was of the type ‘FileStorage’.
Zope comes with several different back end storage objects, but
one of the most interesting is the ‘ClientStorage’ from the Zope
Enterprise Objects product (ZEO).

The ‘ClientStorage’ storage makes a TCP/IP connection to a
‘StorageServer’ (also provided with ZEO).  This allows many
different processes on one or machines to work with the same
object database and, hence, the same objects.  Each process gets a
cached “copy” of a particular object for speed.  All of the
‘ClientStorages’ connected to a ‘StorageServer’ speak a special
object transport and cache invalidation protocol to keep all of
your computers synchronized.

Opening a ‘ClientStorage’ connection is simple.  The following
code creates a database connection and gets the root object for a
‘StorageServer’ listening on “localhost:12345”:

from ZODB import DB
from ZEO import ClientStorage
storage = ClientStorage.ClientStorage('localhost', 12345)
db = DB( storage )
connection = db.open()
root = connection.root()





In the rare event that two processes (or threads) modify the same
object at the same time, ZODB provides you with the ability to
retry or resolve these conflicts yourself.




Resolving Conflicts

If a conflict happens, you have two choices. The first choice is
that you live with the error and you try again.  Statistically,
conflicts are going to happen, but only in situations where objects
are “hot-spots”.  Most problems like this can be “designed away”;
if you can redesign your application so that the changes get
spread around to many different objects then you can usually get
rid of the hot spot.

Your second choice is to try and resolve the conflict. In many
situations, this can be done. For example, consider the following
persistent object:

class Counter(Persistent):

    self.count = 0

    def hit(self):
        self.count = self.count + 1





This is a simple counter.  If you hit this counter with a lot of
requests though, it will cause conflict errors as different threads
try to change the count attribute simultaneously.

But resolving the conflict between conflicting threads in this
case is easy.  Both threads want to increment the self.count
attribute by a value, so the resolution is to increment the
attribute by the sum of the two values and make both commits
happy.

To resolve a conflict, a class should define an
‘_p_resolveConflict’ method. This method takes three arguments:


	‘oldState’ – The state of the object that the changes made by
the current transaction were based on. The method is permitted
to modify this value.


	‘savedState’ – The state of the object that is currently
stored in the database. This state was written after ‘oldState’
and reflects changes made by a transaction that committed
before the current transaction. The method is permitted to
modify this value.


	‘newState’ – The state after changes made by the current
transaction.  The method is not permitted to modify this
value. This method should compute a new state by merging
changes reflected in ‘savedState’ and ‘newState’, relative to
‘oldState’.




The method should return the state of the object after resolving
the differences.

Here is an example of a ‘_p_resolveConflict’ in the ‘Counter’
class:

class Counter(Persistent):

    self.count = 0

    def hit(self):
        self.count = self.count + 1

    def _p_resolveConflict(self, oldState, savedState, newState):

        # Figure out how each state is different:
        savedDiff= savedState['count'] - oldState['count']
        newDiff= newState['count']- oldState['count']

        # Apply both sets of changes to old state:
        return oldState['count'] + savedDiff + newDiff





In the above example, ‘_p_resolveConflict’ resolves the difference
between the two conflicting transactions.




Transactions and Subtransactions

Transactions are a very powerful concept in databases.
Transactions let you make many changes to your information as if
they were all one big change.  Imagine software that did online
banking and allowed you to transfer money from one account to
another.  You would do this by deducting the amount of the
transfer from one account, and adding  that amount onto the
other.

If an error happened while you were adding the money to the
receiving account (say, the bank’s computers were unavailable),
then you would want to abort the transaction so that the state of
the accounts went back to the way they were before you changed
anything.

To abort a transaction, you need to call the ‘abort’ method of the
transactions object:

>>> import transaction
>>> transaction.abort()

This will throw away all the currently changed objects and start a
new, empty transaction.





Subtransactions, sometimes called “inner transactions”, are
transactions that happen inside another transaction.
Subtransactions can be commited and aborted like regular “outer”
transactions.  Subtransactions mostly provide you with an
optimization technique.

Subtransactions can be commited and aborted.  Commiting or
aborting a subtransaction does not commit or abort its outer
transaction, just the subtransaction.  This lets you use many,
fine-grained transactions within one big transaction.

Why is this important?  Well, in order for a transaction to be
“rolled back” the changes in the transaction must be stored in
memory until commit time.  By commiting a subtransaction, you are
telling Zope that “I’m pretty sure what I’ve done so far is
permenant, you can store this subtransaction somewhere other than
in memory”.  For very, very large transactions, this can be a big
memory win for you.

If you abort an outer transaction, then all of its inner
subtransactions will also be aborted and not saved.  If you abort
an inner subtransaction, then only the changes made during that
subtransaction are aborted, and the outer transaction is not
aborted and more changes can be made and commited, including more
subtransactions.

You can commit or abort a subtransaction by calling either
commit() or abort() with an argument of 1:

transaction.commit(1) # or
transaction.abort(1)





Subtransactions offer you a nice way to “batch” all of your “all
or none” actions into smaller “all or none” actions while still
keeping the outer level “all or none” transaction intact.  As a
bonus, they also give you much better memory resource performance.




Conclusion

ZODB offers many advanced features to help you develop simple, but
powerful python programs.  In this article, you used some of the
more advanced features of ZODB to handle different application
needs, like storing information in large sets, using the database
concurrently, and maintaining transactional integrity.  For more
information on ZODB, join the discussion list at zodb-dev@zope.org
where you can find out more about this powerful component of Zope.







          

      

      

    

  

    
      
          
            
  
Very old ZODB programming guide


This guide is based heavily on the work of A. M. Kuchling who wrote the
original guide back in 2002 and which was published under the GNU Free
Documentation License, Version 1.1. See the appendix entitled “GNU Free
Documentation License” for more information.
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Introduction

This guide explains how to write Python programs that use the Z Object Database
(ZODB) and Zope Enterprise Objects (ZEO).  The latest version of the guide is
always available at http://www.zope.org/Wikis/ZODB/guide/index.html.


What is the ZODB?

The ZODB is a persistence system for Python objects.  Persistent programming
languages provide facilities that automatically write objects to disk and read
them in again when they’re required by a running program.  By installing the
ZODB, you add such facilities to Python.

It’s certainly possible to build your own system for making Python objects
persistent.  The usual starting points are the pickle module, for
converting objects into a string representation, and various database modules,
such as the gdbm or bsddb modules, that provide ways to write
strings to disk and read them back.  It’s straightforward to combine the
pickle module and a database module to store and retrieve objects, and in
fact the shelve module, included in Python’s standard library, does this.

The downside is that the programmer has to explicitly manage objects, reading an
object when it’s needed and writing it out to disk when the object is no longer
required.  The ZODB manages objects for you, keeping them in a cache, writing
them out to disk when they are modified, and dropping them from the cache if
they haven’t been used in a while.




OODBs vs. Relational DBs

Another way to look at it is that the ZODB is a Python-specific object-oriented
database (OODB).  Commercial object databases for C++ or Java often require that
you jump through some hoops, such as using a special preprocessor or avoiding
certain data types.  As we’ll see, the ZODB has some hoops of its own to jump
through, but in comparison the naturalness of the ZODB is astonishing.

Relational databases (RDBs) are far more common than OODBs. Relational databases
store information in tables; a table consists of any number of rows, each row
containing several columns of information.  (Rows are more formally called
relations, which is where the term “relational database” originates.)

Let’s look at a concrete example.  The example comes from my day job working for
the MEMS Exchange, in a greatly simplified version.  The job is to track process
runs, which are lists of manufacturing steps to be performed in a semiconductor
fab.  A run is owned by a particular user, and has a name and assigned ID
number.  Runs consist of a number of operations; an operation is a single step
to be performed, such as depositing something on a wafer or etching something
off it.

Operations may have parameters, which are additional information required to
perform an operation.  For example, if you’re depositing something on a wafer,
you need to know two things: 1) what you’re depositing, and 2) how much should
be deposited.  You might deposit 100 microns of silicon oxide, or 1 micron of
copper.

Mapping these structures to a relational database is straightforward:

CREATE TABLE runs (
  int      run_id,
  varchar  owner,
  varchar  title,
  int      acct_num,
  primary key(run_id)
);

CREATE TABLE operations (
  int      run_id,
  int      step_num,
  varchar  process_id,
  PRIMARY KEY(run_id, step_num),
  FOREIGN KEY(run_id) REFERENCES runs(run_id),
);

CREATE TABLE parameters (
  int      run_id,
  int      step_num,
  varchar  param_name,
  varchar  param_value,
  PRIMARY KEY(run_id, step_num, param_name)
  FOREIGN KEY(run_id, step_num)
     REFERENCES operations(run_id, step_num),
);





In Python, you would write three classes named Run, Operation,
and Parameter.  I won’t present code for defining these classes, since
that code is uninteresting at this point. Each class would contain a single
method to begin with, an __init__() method that assigns default values,
such as 0 or None, to each attribute of the class.

It’s not difficult to write Python code that will create a Run instance
and populate it with the data from the relational tables; with a little more
effort, you can build a straightforward tool, usually called an object-
relational mapper, to do this automatically. (See
http://www.amk.ca/python/unmaintained/ordb.html for a quick hack at a
Python object-relational mapper, and
http://www.python.org/workshops/1997-10/proceedings/shprentz.html for Joel
Shprentz’s more successful implementation of the same idea; Unlike mine,
Shprentz’s system has been used for actual work.)

However, it is difficult to make an object-relational mapper reasonably quick; a
simple-minded implementation like mine is quite slow because it has to do
several queries to access all of an object’s data.  Higher performance object-
relational mappers cache objects to improve performance, only performing SQL
queries when they actually need to.

That helps if you want to access run number 123 all of a sudden.  But what if
you want to find all runs where a step has a parameter named ‘thickness’ with a
value of 2.0?  In the relational version, you have two unappealing choices:


	Write a specialized SQL query for this case: SELECT run_id FROM operations
WHERE param_name = 'thickness' AND param_value = 2.0

If such queries are common, you can end up with lots of specialized queries.
When the database tables get rearranged, all these queries will need to be
modified.



	An object-relational mapper doesn’t help much.  Scanning through the runs
means that the the mapper will perform the required SQL queries to read run #1,
and then a simple Python loop can check whether any of its steps have the
parameter you’re looking for. Repeat for run #2, 3, and so forth.  This does a
vast number of SQL queries, and therefore is incredibly slow.




An object database such as ZODB simply stores internal pointers from object to
object, so reading in a single object is much faster than doing a bunch of SQL
queries and assembling the results. Scanning all runs, therefore, is still
inefficient, but not grossly inefficient.




What is ZEO?

The ZODB comes with a few different classes that implement the Storage
interface.  Such classes handle the job of writing out Python objects to a
physical storage medium, which can be a disk file (the FileStorage
class), a BerkeleyDB file (BDBFullStorage), a relational database
(DCOracleStorage), or some other medium.  ZEO adds
ClientStorage, a new Storage that doesn’t write to physical
media but just forwards all requests across a network to a server.  The server,
which is running an instance of the StorageServer class, simply acts as
a front-end for some physical Storage class.  It’s a fairly simple
idea, but as we’ll see later on in this document, it opens up many
possibilities.




About this guide

The primary author of this guide works on a project which uses the ZODB and ZEO
as its primary storage technology.  We use the ZODB to store process runs and
operations, a catalog of available processes, user information, accounting
information, and other data.  Part of the goal of writing this document is to
make our experience more widely available.  A few times we’ve spent hours or
even days trying to figure out a problem, and this guide is an attempt to gather
up the knowledge we’ve gained so that others don’t have to make the same
mistakes we did while learning.

The author’s ZODB project is described in a paper available here,
http://www.amk.ca/python/writing/mx-architecture/

This document will always be a work in progress.  If you wish to suggest
clarifications or additional topics, please send your comments to the
ZODB-dev mailing list [https://groups.google.com/forum/#!forum/zodb].
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ZODB Programming


Installing ZODB

ZODB is packaged using the standard distutils tools.


Requirements

You will need Python 2.3 or higher.  Since the code is packaged using distutils,
it is simply a matter of untarring or unzipping the release package, and then
running python setup.py install.

You’ll need a C compiler to build the packages, because there are various C
extension modules.  Binary installers are provided for Windows users.




Installing the Packages

Download the ZODB tarball containing all the packages for both ZODB and ZEO from
http://www.zope.org/Products/ZODB3.3.  See the README.txt file in
the top level of the release directory for details on building, testing, and
installing.

You can find information about ZODB and the most current releases in the ZODB
Wiki at http://www.zope.org/Wikis/ZODB.






How ZODB Works

The ZODB is conceptually simple.  Python classes subclass a
persistent.Persistent class to become ZODB-aware.  Instances of
persistent objects are brought in from a permanent storage medium, such as a
disk file, when the program needs them, and remain cached in RAM.  The ZODB
traps modifications to objects, so that when a statement such as obj.size =
1 is executed, the modified object is marked as “dirty.”  On request, any
dirty objects are written out to permanent storage; this is called committing a
transaction.  Transactions can also be aborted or rolled back, which results in
any changes being discarded, dirty objects reverting to their initial state
before the transaction began.

The term “transaction” has a specific technical meaning in computer science.
It’s extremely important that the contents of a database don’t get corrupted by
software or hardware crashes, and most database software offers protection
against such corruption by supporting four useful properties, Atomicity,
Consistency, Isolation, and Durability. In computer science jargon these four
terms are collectively dubbed the ACID properties, forming an acronym from their
names.

The ZODB provides all of the ACID properties.  Definitions of the ACID
properties are:


	Atomicity

	means that any changes to data made during a transaction  are all-or-nothing.
Either all the changes are applied, or none of them are.  If a program makes a
bunch of modifications and then crashes, the database won’t be partially
modified, potentially leaving the data in an inconsistent state; instead all the
changes will be forgotten.  That’s bad, but it’s better than having a partially-
applied modification put the database into an inconsistent state.



	Consistency

	means that each transaction executes a valid transformation of the database
state.  Some databases, but not ZODB, provide a variety of consistency checks in
the database or language; for example, a relational database constraint columns
to be of particular types and can enforce relations across tables.  Viewed more
generally, atomicity and isolation make it possible for applications to provide
consistency.



	Isolation

	means that two programs or threads running in two different transactions cannot
see each other’s changes until they commit their transactions.



	Durability

	means that once a transaction has been committed, a subsequent crash will not
cause any data to be lost or corrupted.








Opening a ZODB

There are 3 main interfaces supplied by the ZODB: Storage, DB,
and Connection classes. The DB and Connection
interfaces both have single implementations, but there are several different
classes that implement the Storage interface.


	Storage classes are the lowest layer, and handle storing and
retrieving objects from some form of long-term storage. A few different types of
Storage have been written, such as FileStorage, which uses regular disk
files, and BDBFullStorage, which uses Sleepycat Software’s BerkeleyDB
database.  You could write a new Storage that stored objects in a relational
database, for example, if that would better suit your application.  Two example
storages, DemoStorage and MappingStorage, are available to use
as models if you want to write a new Storage.


	The DB class sits on top of a storage, and mediates the interaction
between several connections.  One DB instance is created per process.


	Finally, the Connection class caches objects, and moves them into and
out of object storage.  A multi-threaded program should open a separate
Connection instance for each thread. Different threads can then modify
objects and commit their modifications independently.




Preparing to use a ZODB requires 3 steps: you have to open the Storage,
then create a DB instance that uses the Storage, and then get
a Connection from the DB instance.  All this is only a few
lines of code:

from ZODB import FileStorage, DB

storage = FileStorage.FileStorage('/tmp/test-filestorage.fs')
db = DB(storage)
conn = db.open()





Note that you can use a completely different data storage mechanism by changing
the first line that opens a Storage; the above example uses a
FileStorage.  In section ZEO, “How ZEO Works”, you’ll see how
ZEO uses this flexibility to good effect.




Using a ZODB Configuration File

ZODB also supports configuration files written in the ZConfig format. A
configuration file can be used to separate the configuration logic from the
application logic.  The storages classes and the DB class support a
variety of keyword arguments; all these options can be specified in a config
file.

The configuration file is simple.  The example in the previous section could use
the following example:

<zodb>
  <filestorage>
  path /tmp/test-filestorage.fs
  </filestorage>
</zodb>





The ZODB.config module includes several functions for opening database
and storages from configuration files.

import ZODB.config

db = ZODB.config.databaseFromURL('/tmp/test.conf')
conn = db.open()





The ZConfig documentation, included in the ZODB3 release, explains the format in
detail.  Each configuration file is described by a schema, by convention stored
in a component.xml file.  ZODB, ZEO, zLOG, and zdaemon all have schemas.




Writing a Persistent Class

Making a Python class persistent is quite simple; it simply needs to subclass
from the Persistent class, as shown in this example:

from persistent import Persistent

class User(Persistent):
    pass





The Persistent base class is a new-style class implemented in C.

For simplicity, in the examples the User class will simply be used as a
holder for a bunch of attributes.  Normally the class would define various
methods that add functionality, but that has no impact on the ZODB’s treatment
of the class.

The ZODB uses persistence by reachability; starting from a set of root objects,
all the attributes of those objects are made persistent, whether they’re simple
Python data types or class instances.  There’s no method to explicitly store
objects in a ZODB database; simply assign them as an attribute of an object, or
store them in a mapping, that’s already in the database.  This chain of
containment must eventually reach back to the root object of the database.

As an example, we’ll create a simple database of users that allows retrieving a
User object given the user’s ID.  First, we retrieve the primary root
object of the ZODB using the root() method of the Connection
instance.  The root object behaves like a Python dictionary, so you can just add
a new key/value pair for your application’s root object.  We’ll insert an
OOBTree object that will contain all the User objects.  (The
BTree module is also included as part of Zope.)

dbroot = conn.root()

# Ensure that a 'userdb' key is present
# in the root
if not dbroot.has_key('userdb'):
    from BTrees.OOBTree import OOBTree
    dbroot['userdb'] = OOBTree()

userdb = dbroot['userdb']





Inserting a new user is simple: create the User object, fill it with
data, insert it into the BTree instance, and commit this transaction.

# Create new User instance
import transaction

newuser = User()

# Add whatever attributes you want to track
newuser.id = 'amk'
newuser.first_name = 'Andrew' ; newuser.last_name = 'Kuchling'
...

# Add object to the BTree, keyed on the ID
userdb[newuser.id] = newuser

# Commit the change
transaction.commit()





The transaction module defines a few top-level functions for working with
transactions.  commit() writes any modified objects to disk, making the
changes permanent.  abort() rolls back any changes that have been made,
restoring the original state of the objects.  If you’re familiar with database
transactional semantics, this is all what you’d expect.  get() returns a
Transaction object that has additional methods like note(), to
add a note to the transaction metadata.

More precisely, the transaction module exposes an instance of the
ThreadTransactionManager transaction manager class as
transaction.manager, and the transaction functions get() and
begin() redirect to the same-named methods of transaction.manager.
The commit() and abort() functions apply the methods of the same
names to the Transaction object returned by
transaction.manager.get(). This is for convenience.  It’s also possible to
create your own transaction manager instances, and to tell DB.open() to use
your transaction manager instead.

Because the integration with Python is so complete, it’s a lot like having
transactional semantics for your program’s variables, and you can experiment
with transactions at the Python interpreter’s prompt:

>>> newuser
<User instance at 81b1f40>
>>> newuser.first_name           # Print initial value
'Andrew'
>>> newuser.first_name = 'Bob'   # Change first name
>>> newuser.first_name           # Verify the change
'Bob'
>>> transaction.abort()          # Abort transaction
>>> newuser.first_name           # The value has changed back
'Andrew'








Rules for Writing Persistent Classes

Practically all persistent languages impose some restrictions on programming
style, warning against constructs they can’t handle or adding subtle semantic
changes, and the ZODB is no exception. Happily, the ZODB’s restrictions are
fairly simple to understand, and in practice it isn’t too painful to work around
them.

The summary of rules is as follows:


	If you modify a mutable object that’s the value of an object’s attribute, the
ZODB can’t catch that, and won’t mark the object as dirty.  The solution is to
either set the dirty bit yourself when you modify mutable objects, or use a
wrapper for Python’s lists and dictionaries (PersistentList,
PersistentMapping) that will set the dirty bit properly.


	Recent versions of the ZODB allow writing a class with  __setattr__() ,
__getattr__(), or __delattr__() methods.  (Older versions didn’t
support this at all.)  If you write such a __setattr__() or
__delattr__() method, its code has to set the dirty bit manually.


	A persistent class should not have a __del__() method. The database
moves objects freely between memory and storage.  If an object has not been used
in a while, it may be released and its contents loaded from storage the next
time it is used.  Since the Python interpreter is unaware of persistence, it
would call __del__() each time the object was freed.




Let’s look at each of these rules in detail.


Modifying Mutable Objects

The ZODB uses various Python hooks to catch attribute accesses, and can trap
most of the ways of modifying an object, but not all of them. If you modify a
User object by assigning to one of its attributes, as in
userobj.first_name = 'Andrew', the ZODB will mark the object as having been
changed, and it’ll be written out on the following commit().

The most common idiom that isn’t caught by the ZODB is mutating a list or
dictionary.  If User objects have a attribute named friends
containing a list, calling userobj.friends.append(otherUser) doesn’t mark
userobj as modified; from the ZODB’s point of view, userobj.friends was
only read, and its value, which happened to be an ordinary Python list, was
returned.  The ZODB isn’t aware that the object returned was subsequently
modified.

This is one of the few quirks you’ll have to remember when using the ZODB; if
you modify a mutable attribute of an object in place, you have to manually mark
the object as having been modified by setting its dirty bit to true.  This is
done by setting the _p_changed attribute of the object to true:

userobj.friends.append(otherUser)
userobj._p_changed = True





You can hide the implementation detail of having to mark objects as dirty by
designing your class’s API to not use direct attribute access; instead, you can
use the Java-style approach of accessor methods for everything, and then set the
dirty bit within the accessor method.  For example, you might forbid accessing
the friends attribute directly, and add a get_friend_list() accessor
and an add_friend() modifier method to the class.  add_friend()
would then look like this:

def add_friend(self, friend):
    self.friends.append(otherUser)
    self._p_changed = True





Alternatively, you could use a ZODB-aware list or mapping type that handles the
dirty bit for you.  The ZODB comes with a PersistentMapping class, and
I’ve contributed a PersistentList class that’s included in my ZODB
distribution,  and may make it into a future upstream release of Zope.




__getattr__(), __delattr__(), and __setattr__()

ZODB allows persistent classes to have hook methods like __getattr__() and
__setattr__().  There are four special methods that control attribute
access; the rules for each are a little different.

The __getattr__() method works pretty much the same for persistent classes
as it does for other classes.  No special handling is needed.  If an object is a
ghost, then it will be activated before __getattr__() is called.

The other methods are more delicate.  They will override the hooks provided by
Persistent, so user code must call special methods to invoke those
hooks anyway.

The __getattribute__() method will be called for all attribute access; it
overrides the attribute access support inherited from Persistent.  A
user-defined __getattribute__() must always give the Persistent
base class a chance to handle special attribute, as well as __dict__ or
__class__.  The user code should call _p_getattr(), passing the
name of the attribute as the only argument.  If it returns True, the user code
should call Persistent’s __getattribute__() to get the value.  If
not, the custom user code can run.

A __setattr__() hook will also override the Persistent
__setattr__() hook.  User code must treat it much like
__getattribute__().  The user-defined code must call _p_setattr()
first to all Persistent to handle special attributes;
_p_setattr() takes the attribute name and value. If it returns True,
Persistent handled the attribute.  If not, the user code can run.  If
the user code modifies the object’s state, it must assigned to
_p_changed.

A __delattr__() hooks must be implemented the same was as a the last two
hooks.  The user code must call _p_delattr(), passing the name of the
attribute as an argument.  If the call returns True, Persistent handled
the attribute; if not, the user code can run.




__del__() methods

A __del__() method is invoked just before the memory occupied by an
unreferenced Python object is freed.  Because ZODB may materialize, and
dematerialize, a given persistent object in memory any number of times, there
isn’t a meaningful relationship between when a persistent object’s
__del__() method gets invoked and any natural aspect of a persistent
object’s life cycle.  For example, it is emphatically not the case that a
persistent object’s __del__() method gets invoked only when the object is
no longer referenced by other objects in the database. __del__() is only
concerned with reachability from objects in memory.

Worse, a __del__() method can interfere with the persistence machinery’s
goals.  For example, some number of persistent objects reside in a
Connection’s memory cache.  At various times, to reduce memory burden,
objects that haven’t been referenced recently are removed from the cache.  If a
persistent object with a __del___() method is so removed, and the cache
was holding the last memory reference to the object, the object’s
__del__() method will be invoked.  If the __del__() method then
references any attribute of the object, ZODB needs to load the object from the
database again, in order to satisfy the attribute reference.  This puts the
object back into the cache again:  such an object is effectively immortal,
occupying space in the memory cache forever, as every attempt to remove it from
cache puts it back into the cache.  In ZODB versions prior to 3.2.2, this could
even cause the cache reduction code to fall into an infinite loop.  The infinite
loop no longer occurs, but such objects continue to live in the memory cache
forever.

Because __del__() methods don’t make good sense for persistent objects,
and can create problems, persistent classes should not define __del__()
methods.






Writing Persistent Classes

Now that we’ve looked at the basics of programming using the ZODB, we’ll turn to
some more subtle tasks that are likely to come up for anyone using the ZODB in a
production system.


Changing Instance Attributes

Ideally, before making a class persistent you would get its interface right the
first time, so that no attributes would ever need to be added, removed, or have
their interpretation change over time.  It’s a worthy goal, but also an
impractical one unless you’re gifted with perfect knowledge of the future.  Such
unnatural foresight can’t be required of any person, so you therefore have to be
prepared to handle such structural changes gracefully.  In object-oriented
database terminology, this is a schema update.  The ZODB doesn’t have an actual
schema specification, but you’re changing the software’s expectations of the
data contained by an object, so you’re implicitly changing the schema.

One way to handle such a change is to write a one-time conversion program that
will loop over every single object in the database and update them to match the
new schema.  This can be easy if your network of object references is quite
structured, making it easy to find all the instances of the class being
modified.  For example, if all User objects can be found inside a
single dictionary or BTree, then it would be a simple matter to loop over every
User instance with a for statement. This is more difficult
if your object graph is less structured; if User objects can be found
as attributes of any number of different class instances, then there’s no longer
any easy way to find them all, short of writing a generalized object traversal
function that would walk over every single object in a ZODB, checking each one
to see if it’s an instance of User.

Some OODBs support a feature called extents, which allow quickly finding all the
instances of a given class, no matter where they are in the object graph;
unfortunately the ZODB doesn’t offer extents as a feature.









          

      

      

    

  

    
      
          
            
  
ZEO


How ZEO Works

The ZODB, as I’ve described it so far, can only be used within a single Python
process (though perhaps with multiple threads).  ZEO, Zope Enterprise Objects,
extends the ZODB machinery to provide access to objects over a network.  The
name “Zope Enterprise Objects” is a bit misleading; ZEO can be used to store
Python objects and access them in a distributed fashion without Zope ever
entering the picture. The combination of ZEO and ZODB is essentially a Python-
specific object database.

ZEO consists of about 12,000 lines of Python code, excluding tests.  The code is
relatively small because it contains only code for a TCP/IP server, and for a
new type of Storage, ClientStorage. ClientStorage simply makes
remote procedure calls to the server, which then passes them on a regular
Storage class such as FileStorage.  The following diagram lays
out the system:

XXX insert diagram here later

Any number of processes can create a ClientStorage instance, and any
number of threads in each process can be using that instance.
ClientStorage aggressively caches objects locally, so in order to avoid
using stale data the ZEO server sends an invalidation message to all the
connected ClientStorage instances on every write operation.  The
invalidation message contains the object ID for each object that’s been
modified, letting the ClientStorage instances delete the old data for
the given object from their caches.

This design decision has some consequences you should be aware of. First, while
ZEO isn’t tied to Zope, it was first written for use with Zope, which stores
HTML, images, and program code in the database.  As a result, reads from the
database are far more frequent than writes, and ZEO is therefore better suited
for read-intensive applications.  If every ClientStorage is writing to
the database all the time, this will result in a storm of invalidate messages
being sent, and this might take up more processing time than the actual database
operations themselves. These messages are small and sent in batches, so there
would need to be a lot of writes before it became a problem.

On the other hand, for applications that have few writes in comparison to the
number of read accesses, this aggressive caching can be a major win.  Consider a
Slashdot-like discussion forum that divides the load among several Web servers.
If news items and postings are represented by objects and accessed through ZEO,
then the most heavily accessed objects – the most recent or most popular
postings – will very quickly wind up in the caches of the
ClientStorage instances on the front-end servers.  The back-end ZEO
server will do relatively little work, only being called upon to return the
occasional older posting that’s requested, and to send the occasional invalidate
message when a new posting is added. The ZEO server isn’t going to be contacted
for every single request, so its workload will remain manageable.




Installing ZEO

This section covers how to install the ZEO package, and how to  configure and
run a ZEO Storage Server on a machine.


Requirements

The ZEO server software is included in ZODB3.  As with the rest of ZODB3, you’ll
need Python 2.3 or higher.




Running a server

The runzeo.py script in the ZEO directory can be used to start a server.  Run it
with the -h option to see the various values.  If you’re just experimenting, a
good choise is to use  python ZEO/runzeo.py -a /tmp/zeosocket -f
/tmp/test.fs to run ZEO with a Unix domain socket and a FileStorage.






Testing the ZEO Installation

Once a ZEO server is up and running, using it is just like using ZODB with a
more conventional disk-based storage; no new programming details are introduced
by using a remote server.  The only difference is that programs must create a
ClientStorage instance instead of a FileStorage instance.
From that point onward, ZODB-based code is happily unaware that objects are
being retrieved from a ZEO server, and not from the local disk.

As an example, and to test whether ZEO is working correctly, try running the
following lines of code, which will connect to the server, add some bits of data
to the root of the ZODB, and commits the transaction:

from ZEO import ClientStorage
from ZODB import DB
import transaction

# Change next line to connect to your ZEO server
addr = 'kronos.example.com', 1975
storage = ClientStorage.ClientStorage(addr)
db = DB(storage)
conn = db.open()
root = conn.root()

# Store some things in the root
root['list'] = ['a', 'b', 1.0, 3]
root['dict'] = {'a':1, 'b':4}

# Commit the transaction
transaction.commit()





If this code runs properly, then your ZEO server is working correctly.

You can also use a configuration file.

<zodb>
    <zeoclient>
    server localhost:9100
    </zeoclient>
</zodb>





One nice feature of the configuration file is that you don’t need to specify
imports for a specific storage.  That makes the code a little shorter and allows
you to change storages without changing the code.

import ZODB.config

db = ZODB.config.databaseFromURL('/tmp/zeo.conf')








ZEO Programming Notes

ZEO is written using asyncore, from the Python standard library.  It
assumes that some part of the user application is running an asyncore
mainloop.  For example, Zope run the loop in a separate thread and ZEO uses
that.  If your application does not have a mainloop, ZEO will not process
incoming invalidation messages until you make some call into ZEO.  The
Connection.sync() method can be used to process pending invalidation
messages.  You can call it when you want to make sure the Connection
has the most recent version of every object, but you don’t have any other work
for ZEO to do.




Sample Application: chatter.py

For an example application, we’ll build a little chat application. What’s
interesting is that none of the application’s code deals with network
programming at all; instead, an object will hold chat messages, and be
magically shared between all the clients through ZEO. I won’t present the
complete script here; you can download it from chatter.py. Only the interesting portions of the code will be covered here.

The basic data structure is the ChatSession object, which provides an
add_message() method that adds a message, and a new_messages()
method that returns a list of new messages that have accumulated since the last
call to new_messages().  Internally, ChatSession maintains a
B-tree that uses the time as the key, and stores the message as the
corresponding value.

The constructor for ChatSession is pretty simple; it simply creates an
attribute containing a B-tree:

class ChatSession(Persistent):
    def __init__(self, name):
        self.name = name
        # Internal attribute: _messages holds all the chat messages.
        self._messages = BTrees.OOBTree.OOBTree()





add_message() has to add a message to the _messages B-tree.  A
complication is that it’s possible that some other client is trying to add a
message at the same time; when this happens, the client that commits first wins,
and the second client will get a ConflictError exception when it tries to
commit.  For this application, ConflictError isn’t serious but simply
means that the operation has to be retried; other applications might treat it as
a fatal error.  The code uses try...except...else inside a while loop,
breaking out of the loop when the commit works without raising an exception.

def add_message(self, message):
    """Add a message to the channel.
    message -- text of the message to be added
    """

    while 1:
        try:
            now = time.time()
            self._messages[now] = message
            get_transaction().commit()
        except ConflictError:
            # Conflict occurred; this process should abort,
            # wait for a little bit, then try again.
            transaction.abort()
            time.sleep(.2)
        else:
            # No ConflictError exception raised, so break
            # out of the enclosing while loop.
            break
    # end while





new_messages() introduces the use of volatile attributes.  Attributes of
a persistent object that begin with _v_ are considered volatile and are
never stored in the database.  new_messages() needs to store the last time
the method was called, but if the time was stored as a regular attribute, its
value would be committed to the database and shared with all the other clients.
new_messages() would then return the new messages accumulated since any
other client called new_messages(), which isn’t what we want.

def new_messages(self):
    "Return new messages."

    # self._v_last_time is the time of the most recent message
    # returned to the user of this class.
    if not hasattr(self, '_v_last_time'):
        self._v_last_time = 0

    new = []
    T = self._v_last_time

    for T2, message in self._messages.items():
        if T2 > T:
            new.append(message)
            self._v_last_time = T2

    return new





This application is interesting because it uses ZEO to easily share a data
structure; ZEO and ZODB are being used for their networking ability, not
primarily for their data storage ability.  I can foresee many interesting
applications using ZEO in this way:


	With a Tkinter front-end, and a cleverer, more scalable data structure, you
could build a shared whiteboard using the same technique.


	A shared chessboard object would make writing a networked chess game easy.


	You could create a Python class containing a CD’s title and track information.
To make a CD database, a read-only ZEO server could be opened to the world, or
an HTTP or XML-RPC interface could be written on top of the ZODB.


	A program like Quicken could use a ZODB on the local disk to store its data.
This avoids the need to write and maintain specialized I/O code that reads in
your objects and writes them out; instead you can concentrate on the problem
domain, writing objects that represent cheques, stock portfolios, or whatever.










          

      

      

    

  

    
      
          
            
  
Transactions and Versioning


Committing and Aborting

Changes made during a transaction don’t appear in the database until the
transaction commits.  This is done by calling the commit() method of the
current Transaction object, where the latter is obtained from the
get() method of the current transaction manager.  If the default thread
transaction manager is being used, then transaction.commit() suffices.

Similarly, a transaction can be explicitly aborted (all changes within the
transaction thrown away) by invoking the abort() method of the current
Transaction object, or simply transaction.abort() if using the
default thread transaction manager.

Prior to ZODB 3.3, if a commit failed (meaning the commit() call raised an
exception), the transaction was implicitly aborted and a new transaction was
implicitly started.  This could be very surprising if the exception was
suppressed, and especially if the failing commit was one in a sequence of
subtransaction commits.

So, starting with ZODB 3.3, if a commit fails, all further attempts to commit,
join, or register with the transaction raise
ZODB.POSException.TransactionFailedError.  You must explicitly start a
new transaction then, either by calling the abort() method of the current
transaction, or by calling the begin() method of the current transaction’s
transaction manager.




Subtransactions

Subtransactions can be created within a transaction.  Each subtransaction can be
individually committed and aborted, but the changes within a subtransaction are
not truly committed until the containing transaction is committed.

The primary purpose of subtransactions is to decrease the memory usage of
transactions that touch a very large number of objects.  Consider a transaction
during which 200,000 objects are modified.  All the objects that are modified in
a single transaction have to remain in memory until the transaction is
committed, because the ZODB can’t discard them from the object cache.  This can
potentially make the memory usage quite large.  With subtransactions, a commit
can be be performed at intervals, say, every 10,000 objects.  Those 10,000
objects are then written to permanent storage and can be purged from the cache
to free more space.

To commit a subtransaction instead of a full transaction, pass a true value to
the commit() or abort() method of the Transaction object.

# Commit a subtransaction
transaction.commit(True)

# Abort a subtransaction
transaction.abort(True)





A new subtransaction is automatically started upon successful committing or
aborting the previous subtransaction.




Undoing Changes

Some types of Storage support undoing a transaction even after it’s
been committed.  You can tell if this is the case by calling the
supportsUndo() method of the DB instance, which returns true if
the underlying storage supports undo.  Alternatively you can call the
supportsUndo() method on the underlying storage instance.

If a database supports undo, then the undoLog(start, end[, func])() method
on the DB instance returns the log of past transactions, returning
transactions between the times start and end, measured in seconds from the
epoch. If present, func is a function that acts as a filter on the
transactions to be returned; it’s passed a dictionary representing each
transaction, and only transactions for which func returns true will be
included in the list of transactions returned to the caller of undoLog().
The dictionary contains keys for various properties of the transaction.  The
most important keys are id, for the transaction ID, and time, for the
time at which the transaction was committed.

>>> print storage.undoLog(0, sys.maxint)
[{'description': '',
  'id': 'AzpGEGqU/0QAAAAAAAAGMA',
  'time': 981126744.98,
  'user_name': ''},
 {'description': '',
  'id': 'AzpGC/hUOKoAAAAAAAAFDQ',
  'time': 981126478.202,
  'user_name': ''}
  ...





To store a description and a user name on a commit, get the current transaction
and call the note(text)() method to store a description, and the
setUser(user_name)() method to store the user name. While setUser()
overwrites the current user name and replaces it with the new value, the
note() method always adds the text to the transaction’s description, so it
can be called several times to log several different changes made in the course
of a single transaction.

transaction.get().setUser('amk')
transaction.get().note('Change ownership')





To undo a transaction, call the DB.undo(id)() method, passing it the ID of
the transaction to undo.  If the transaction can’t be undone, a
ZODB.POSException.UndoError exception will be raised, with the message
“non-undoable transaction”.  Usually this will happen because later transactions
modified the objects affected by the transaction you’re trying to undo.

After you call undo() you must commit the transaction for the undo to
actually be applied.  1  There is one glitch in the undo process.  The thread
that calls undo may not see the changes to the object until it calls
Connection.sync() or commits another transaction.




Versions


Warning

Versions should be avoided.  They’re going to be deprecated, replaced by better
approaches to long-running transactions.



While many subtransactions can be contained within a single regular transaction,
it’s also possible to contain many regular transactions within a long-running
transaction, called a version in ZODB terminology.  Inside a version, any number
of transactions can be created and committed or rolled back, but the changes
within a version are not made visible to other connections to the same ZODB.

Not all storages support versions, but you can test for versioning ability by
calling supportsVersions() method of the DB instance, which
returns true if the underlying storage supports versioning.

A version can be selected when creating the Connection instance using
the DB.open([*version*])() method. The version argument must be a string
that will be used as the name of the version.

vers_conn = db.open(version='Working version')





Transactions can then be committed and aborted using this versioned connection.
Other connections that don’t specify a version, or provide a different version
name, will not see changes committed within the version named Working
version.  To commit or abort a version, which will either make the changes
visible to all clients or roll them back, call the DB.commitVersion() or
DB.abortVersion() methods. XXX what are the source and dest arguments for?

The ZODB makes no attempt to reconcile changes between different versions.
Instead, the first version which modifies an object will gain a lock on that
object.  Attempting to modify the object from a different version or from an
unversioned connection will cause a ZODB.POSException.VersionLockError to
be raised:

from ZODB.POSException import VersionLockError

try:
    transaction.commit()
except VersionLockError, (obj_id, version):
    print ('Cannot commit; object %s '
           'locked by version %s' % (obj_id, version))





The exception provides the ID of the locked object, and the name of the version
having a lock on it.




Multithreaded ZODB Programs

ZODB databases can be accessed from multithreaded Python programs. The
Storage and DB instances can be shared among several threads,
as long as individual Connection instances are created for each thread.

Footnotes


	1

	There are actually two different ways a storage can implement the undo feature.
Most of the storages that ship with ZODB use the transactional form of undo
described in the main text.  Some storages may use a non-transactional undo
makes changes visible immediately.











          

      

      

    

  

    
      
          
            
  
Related Modules

The ZODB package includes a number of related modules that provide useful data
types such as BTrees.


persistent.mapping.PersistentMapping

The PersistentMapping class is a wrapper for mapping objects that will
set the dirty bit when the mapping is modified by setting or deleting a key.


	
PersistentMapping(container = {})

	Create a PersistentMapping object that wraps the mapping object
container.  If you don’t specify a value for container, a regular Python
dictionary is used.





PersistentMapping objects support all the same methods as Python
dictionaries do.




persistent.list.PersistentList

The PersistentList class is a wrapper for mutable sequence objects,
much as PersistentMapping is a wrapper for mappings.


	
PersistentList(initlist = [])

	Create a PersistentList object that wraps the mutable sequence object
initlist.  If you don’t specify a value for initlist, a regular Python list
is used.





PersistentList objects support all the same methods as Python lists do.




BTrees Package

When programming with the ZODB, Python dictionaries aren’t always what you need.
The most important case is where you want to store a very large mapping.  When a
Python dictionary is accessed in a ZODB, the whole dictionary has to be
unpickled and brought into memory.  If you’re storing something very large, such
as a 100,000-entry user database, unpickling such a large object will be slow.
BTrees are a balanced tree data structure that behave like a mapping but
distribute keys throughout a number of tree nodes.  The nodes are stored in
sorted order (this has important consequences – see below).  Nodes are then
only unpickled and brought into memory as they’re accessed, so the entire tree
doesn’t have to occupy memory (unless you really are touching every single key).

The BTrees package provides a large collection of related data structures.
There are variants of the data structures specialized to integers, which are
faster and use less memory.  There are five modules that handle the different
variants.  The first two letters of the module name specify the types of the
keys and values in mappings – O for any object, I for 32-bit signed integer,
and (new in ZODB 3.4) F for 32-bit C float.  For example, the
BTrees.IOBTree module provides a mapping with integer keys and arbitrary
objects as values.

The four data structures provide by each module are a BTree, a Bucket, a
TreeSet, and a Set.  The BTree and Bucket types are mappings and support all the
usual mapping methods, e.g. update() and keys().  The TreeSet and
Set types are similar to mappings but they have no values; they support the
methods that make sense for a mapping with no keys, e.g. keys() but not
items().  The Bucket and Set types are the individual building blocks for
BTrees and TreeSets, respectively.  A Bucket or Set can be used when you are
sure that it will have few elements.  If the data structure will grow large, you
should use a BTree or TreeSet. Like Python lists, Buckets and Sets are allocated
in one contiguous piece, and insertions and deletions can take time proportional
to the number of existing elements.  Also like Python lists, a Bucket or Set is
a single object, and is pickled and unpickled in its entirety.  BTrees and
TreeSets are multi-level tree structures with much better (logarithmic) worst-
case time bounds, and the tree structure is built out of multiple objects, which
ZODB can load individually as needed.

The five modules are named OOBTree, IOBTree, OIBTree,
IIBTree, and (new in ZODB 3.4) IFBTree.  The two letter prefixes
are repeated in the data types names.  The BTrees.OOBTree module defines
the following types: OOBTree, OOBucket, OOSet, and
OOTreeSet. Similarly, the other four modules each define their own
variants of those four types.

The keys(), values(), and items() methods on BTree and TreeSet
types do not materialize a list with all of the data.  Instead, they return lazy
sequences that fetch data from the BTree as needed.  They also support optional
arguments to specify the minimum and maximum values to return, often called
“range searching”.  Because all these types are stored in sorted order, range
searching is very efficient.

The keys(), values(), and items() methods on Bucket and Set
types do return lists with all the data. Starting in ZODB 3.3, there are also
iterkeys(), itervalues(), and iteritems() methods that return
iterators (in the Python 2.2 sense).  Those methods also apply to BTree and
TreeSet objects.

A BTree object supports all the methods you would expect of a mapping, with a
few extensions that exploit the fact that the keys are sorted. The example below
demonstrates how some of the methods work.  The extra methods are minKey()
and maxKey(), which find the minimum and maximum key value subject to an
optional bound argument, and byValue(), which should probably be ignored
(it’s hard to explain exactly what it does, and as a result it’s almost never
used – best to consider it deprecated).  The various methods for enumerating
keys, values and items also accept minimum and maximum key arguments (“range
search”), and (new in ZODB 3.3) optional Boolean arguments to control whether a
range search is inclusive or exclusive of the range’s endpoints.

>>> from BTrees.OOBTree import OOBTree
>>> t = OOBTree()
>>> t.update({1: "red", 2: "green", 3: "blue", 4: "spades"})
>>> len(t)
4
>>> t[2]
'green'
>>> s = t.keys() # this is a "lazy" sequence object
>>> s
<OOBTreeItems object at 0x0088AD20>
>>> len(s)  # it acts like a Python list
4
>>> s[-2]
3
>>> list(s) # materialize the full list
[1, 2, 3, 4]
>>> list(t.values())
['red', 'green', 'blue', 'spades']
>>> list(t.values(1, 2)) # values at keys in 1 to 2 inclusive
['red', 'green']
>>> list(t.values(2))    # values at keys >= 2
['green', 'blue', 'spades']
>>> list(t.values(min=1, max=4))  # keyword args new in ZODB 3.3
['red', 'green', 'blue', 'spades']
>>> list(t.values(min=1, max=4, excludemin=True, excludemax=True))
['green', 'blue']
>>> t.minKey()     # smallest key
1
>>> t.minKey(1.5)  # smallest key >= 1.5
2
>>> for k in t.keys():
...     print k,
1 2 3 4
>>> for k in t:    # new in ZODB 3.3
...     print k,
1 2 3 4
>>> for pair in t.iteritems():  # new in ZODB 3.3
...     print pair,
...
(1, 'red') (2, 'green') (3, 'blue') (4, 'spades')
>>> t.has_key(4)  # returns a true value, but exactly what undefined
2
>>> t.has_key(5)
0
>>> 4 in t  # new in ZODB 3.3
True
>>> 5 in t  # new in ZODB 3.3
False
>>>





Each of the modules also defines some functions that operate on BTrees –
difference(), union(), and intersection().  The
difference() function returns a Bucket, while the other two methods return
a Set. If the keys are integers, then the module also defines
multiunion().  If the values are integers or floats, then the module also
defines weightedIntersection() and weightedUnion().  The function
doc strings describe each function briefly.

BTrees/Interfaces.py defines the operations, and is the official
documentation.  Note that the interfaces don’t define the concrete types
returned by most operations, and you shouldn’t rely on the concrete types that
happen to be returned:  stick to operations guaranteed by the interface.  In
particular, note that the interfaces don’t specify anything about comparison
behavior, and so nothing about it is guaranteed.  In ZODB 3.3, for example, two
BTrees happen to use Python’s default object comparison, which amounts to
comparing the (arbitrary but fixed) memory addresses of the BTrees. This may or
may not be true in future releases. If the interfaces don’t specify a behavior,
then whether that behavior appears to work, and exactly happens if it does
appear to work, are undefined and should not be relied on.


Total Ordering and Persistence

The BTree-based data structures differ from Python dicts in several fundamental
ways.  One of the most important is that while dicts require that keys support
hash codes and equality comparison, the BTree-based structures don’t use hash
codes and require a total ordering on keys.

Total ordering means three things:


	Reflexive.  For each x, x == x is true.


	Trichotomy.  For each x and y, exactly one of x < y, x == y, and
x > y is true.


	Transitivity.  Whenever x <= y and y <= z, it’s also true that x <=
z.




The default comparison functions for most objects that come with Python satisfy
these rules, with some crucial cautions explained later.  Complex numbers are an
example of an object whose default comparison function does not satisfy these
rules:  complex numbers only support == and != comparisons, and raise an
exception if you try to compare them in any other way.  They don’t satisfy the
trichotomy rule, and must not be used as keys in BTree-based data structures
(although note that complex numbers can be used as keys in Python dicts, which
do not require a total ordering).

Examples of objects that are wholly safe to use as keys in BTree-based
structures include ints, longs, floats, 8-bit strings, Unicode strings, and
tuples composed (possibly recursively) of objects of wholly safe types.

It’s important to realize that even if two types satisfy the rules on their own,
mixing objects of those types may not.  For example, 8-bit strings and Unicode
strings both supply total orderings, but mixing the two loses trichotomy; e.g.,
'x' < chr(255) and u'x' == 'x', but trying to compare chr(255) to
u'x' raises an exception.  Partly for this reason (another is given later),
it can be dangerous to use keys with multiple types in a single BTree-based
structure.  Don’t try to do that, and you don’t have to worry about it.

Another potential problem is mutability:  when a key is inserted in a BTree-
based structure, it must retain the same order relative to the other keys over
time.  This is easy to run afoul of if you use mutable objects as keys.  For
example, lists supply a total ordering, and then

>>> L1, L2, L3 = [1], [2], [3]
>>> from BTrees.OOBTree import OOSet
>>> s = OOSet((L2, L3, L1))  # this is fine, so far
>>> list(s.keys())           # note that the lists are in sorted order
[[1], [2], [3]]
>>> s.has_key([3])           # and [3] is in the set
1
>>> L2[0] = 5                # horrible -- the set is insane now
>>> s.has_key([3])           # for example, it's insane this way
0
>>> s
OOSet([[1], [5], [3]])
>>>





Key lookup relies on that the keys remain in sorted order (an efficient form of
binary search is used).  By mutating key L2 after inserting it, we destroyed the
invariant that the OOSet is sorted.  As a result, all future operations on this
set are unpredictable.

A subtler variant of this problem arises due to persistence:  by default, Python
does several kinds of comparison by comparing the memory addresses of two
objects.  Because Python never moves an object in memory, this does supply a
usable (albeit arbitrary) total ordering across the life of a program run (an
object’s memory address doesn’t change).  But if objects compared in this way
are used as keys of a BTree-based structure that’s stored in a database, when
the objects are loaded from the database again they will almost certainly wind
up at different memory addresses.  There’s no guarantee then that if key K1 had
a memory address smaller than the memory address of key K2 at the time K1 and K2
were inserted in a BTree, K1’s address will also be smaller than K2’s when that
BTree is loaded from a database later.  The result will be an insane BTree,
where various operations do and don’t work as expected, seemingly at random.

Now each of the types identified above as “wholly safe to use” never compares
two instances of that type by memory address, so there’s nothing to worry about
here if you use keys of those types.  The most common mistake is to use keys
that are instances of a user-defined class that doesn’t supply its own
__cmp__() method.  Python compares such instances by memory address.  This
is fine if such instances are used as keys in temporary BTree-based structures
used only in a single program run.  It can be disastrous if that BTree-based
structure is stored to a database, though.

>>> class C:
...     pass
...
>>> a, b = C(), C()
>>> print a < b   # this may print 0 if you try it
1
>>> del a, b
>>> a, b = C(), C()
>>> print a < b   # and this may print 0 or 1
0
>>>





That example illustrates that comparison of instances of classes that don’t
define __cmp__() yields arbitrary results (but consistent results within a
single program run).

Another problem occurs with instances of classes that do define __cmp__(),
but define it incorrectly.  It’s possible but rare for a custom __cmp__()
implementation to violate one of the three required formal properties directly.
It’s more common for it to “fall back” to address-based comparison by mistake.
For example:

class Mine:
    def __cmp__(self, other):
        if other.__class__ is Mine:
            return cmp(self.data, other.data)
        else:
            return cmp(self.data, other)





It’s quite possible there that the else clause allows a result to be
computed based on memory address.  The bug won’t show up until a BTree-based
structure uses objects of class Mine as keys, and also objects of other
types as keys, and the structure is loaded from a database, and a sequence of
comparisons happens to execute the else clause in a case where the
relative order of object memory addresses happened to change.

This is as difficult to track down as it sounds, so best to stay far away from
the possibility.

You’ll stay out of trouble by follwing these rules, violating them only with
great care:


	Use objects of simple immutable types as keys in BTree-based data structures.


	Within a single BTree-based data structure, use objects of a single type as
keys.  Don’t use multiple key types in a single structure.


	If you want to use class instances as keys, and there’s any possibility that
the structure may be stored in a database, it’s crucial that the class define a
__cmp__() method, and that the method is carefully implemented.

Any part of a comparison implementation that relies (explicitly or implicitly)
on an address-based comparison result will eventually cause serious failure.



	Do not use Persistent objects as keys, or objects of a subclass of
Persistent.




That last item may be surprising.  It stems from details of how conflict
resolution is implemented:  the states passed to conflict resolution do not
materialize persistent subobjects (if a persistent object P is a key in a BTree,
then P is a subobject of the bucket containing P).  Instead, if an object O
references a persistent subobject P directly, and O is involved in a conflict,
the states passed to conflict resolution contain an instance of an internal
PersistentReference stub class everywhere O references P. Two
PersistentReference instances compare equal if and only if they
“represent” the same persistent object; when they’re not equal, they compare by
memory address, and, as explained before, memory-based comparison must never
happen in a sane persistent BTree.  Note that it doesn’t help in this case if
your Persistent subclass defines a sane __cmp__() method:
conflict resolution doesn’t know about your class, and so also doesn’t know
about its __cmp__() method.  It only sees instances of the internal
PersistentReference stub class.




Iteration and Mutation

As with a Python dictionary or list, you should not mutate a BTree-based data
structure while iterating over it, except that it’s fine to replace the value
associated with an existing key while iterating.  You won’t create internal
damage in the structure if you try to remove, or add new keys, while iterating,
but the results are undefined and unpredictable.  A weak attempt is made to
raise RuntimeError if the size of a BTree-based structure changes while
iterating, but it doesn’t catch most such cases, and is also unreliable.
Example:

>>> from BTrees.IIBTree import *
>>> s = IISet(range(10))
>>> list(s)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> for i in s:  # the output is undefined
...     print i,
...     s.remove(i)
0 2 4 6 8
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
RuntimeError: the bucket being iterated changed size
>>> list(s)      # this output is also undefined
[1, 3, 5, 7, 9]
>>>





Also as with Python dictionaries and lists, the safe and predictable way to
mutate a BTree-based structure while iterating over it is to iterate over a copy
of the keys.  Example:

>>> from BTrees.IIBTree import *
>>> s = IISet(range(10))
>>> for i in list(s.keys()):  # this is well defined
...     print i,
...     s.remove(i)
0 1 2 3 4 5 6 7 8 9
>>> list(s)
[]
>>>








BTree Diagnostic Tools

A BTree (or TreeSet) is a complex data structure, really a graph of variable-
size nodes, connected in multiple ways via three distinct kinds of C pointers.
There are some tools available to help check internal consistency of a BTree as
a whole.

Most generally useful is the BTrees.check module.  The
check.check() function examines a BTree (or Bucket, Set, or TreeSet) for
value-based consistency, such as that the keys are in strictly increasing order.
See the function docstring for details. The check.display() function
displays the internal structure of a BTree.

BTrees and TreeSets also have a _check() method.  This verifies that the
(possibly many) internal pointers in a BTree or TreeSet are mutually consistent,
and raises AssertionError if they’re not.

If a check.check() or _check() call fails, it may point to a bug in
the implementation of BTrees or conflict resolution, or may point to database
corruption.

Repairing a damaged BTree is usually best done by making a copy of it. For
example, if self.data is bound to a corrupted IOBTree,

self.data = IOBTree(self.data)





usually suffices.  If object identity needs to be preserved,

acopy = IOBTree(self.data)
self.data.clear()
self.data.update(acopy)





does the same, but leaves self.data bound to the same object.









          

      

      

    

  

    
      
          
            
  
Resources

Introduction to the Zope Object Database, by Jim Fulton:  —  Goes into much
greater detail, explaining advanced uses of the ZODB and  how it’s actually
implemented.  A definitive reference, and highly recommended.  —
http://www.python.org/workshops/2000-01/proceedings/papers/fulton/zodb3.html

Persistent Programing with ZODB, by Jeremy Hylton and Barry Warsaw:  —  Slides
for a tutorial presented at the 10th Python conference.  Covers much of the same
ground as this guide, with more details in some areas and less in others.  —
http://www.zope.org/Members/bwarsaw/ipc10-slides





          

      

      

    

  

    
      
          
            
  
GNU Free Documentation License

Version 1.1, March 2000 —

Copyright 2000  Free Software Foundation, Inc. —  59 Temple
Place, Suite 330, Boston, MA  02111-1307  USA —  Everyone is permitted to copy
and distribute verbatim copies of this license document, but changing it is not
allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written
document “free” in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially.  Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense.  It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does.  But this License is
not limited to software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book.  We recommend
this License principally for works whose purpose is instruction or reference.


Applicability and Definitions

This License applies to any manual or other work that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this
License.  The “Document”, below, refers to any such manual or work.  Any member
of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated
into another language.

A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject.  (For example, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.)  The relationship could be a
matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose
contents can be viewed and edited directly and straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters.  A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent.  A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human
modification.  Opaque formats include PostScript, PDF, proprietary formats that
can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the
machine-generated HTML produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License
requires to appear in the title page.  For works in formats which do not have
any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the text.




Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this
License.  You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute.  However, you may
accept compensation in exchange for copies.  If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.




Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in
covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover.  Both covers must
also clearly and legibly identify you as the publisher of these copies.  The
front cover must present the full title with all words of the title equally
prominent and visible.  You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as verbatim copying
in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a publicly-accessible
computer-network location containing a complete Transparent copy of the
Document, free of added material, which the general network-using public has
access to download anonymously at no charge using public-standard network
protocols.  If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.




Modifications

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it.  In addition, you must do these
things in the Modified Version:


	Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document).  You may use the
same title as a previous version if the original publisher of that version gives
permission.


	List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all of its
principal authors, if it has less than five).


	State on the Title page the name of the publisher of the Modified Version, as
the publisher.


	Preserve all the copyright notices of the Document.


	Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.


	Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.


	Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.


	Include an unaltered copy of this License.


	Preserve the section entitled “History”, and its title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page.  If there is no section entitled “History”
in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.


	Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on.  These may be placed in
the “History” section. You may omit a network location for a work that was
published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.


	In any section entitled “Acknowledgements” or “Dedications”, preserve the
section’s title, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.


	Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles.  Section numbers or the equivalent are not considered part
of the section titles.


	Delete any section entitled “Endorsements”.  Such a section may not be
included in the Modified Version.


	Do not retitle any existing section as “Endorsements” or to conflict in title
with any Invariant Section.




If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant.  To
do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section
titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties – for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in
the Modified Version.  Only one passage of Front-Cover Text and one of Back-
Cover Text may be added by (or through arrangements made by) any one entity.  If
the Document already includes a cover text for the same cover, previously added
by you or by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.




Combining Documents

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that
you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy.  If there are
multiple Invariant Sections with the same name but different contents, make the
title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the
various original documents, forming one section entitled “History”; likewise
combine any sections entitled “Acknowledgements”, and any sections entitled
“Dedications”.  You must delete all sections entitled “Endorsements.”




Collections of Documents

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.




Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation.  Such a
compilation is called an “aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document, on account of their
being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one quarter of the entire aggregate,
the Document’s Cover Texts may be placed on covers that surround only the
Document within the aggregate. Otherwise they must appear on covers around the
whole aggregate.




Translation

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections.  You may include
a translation of this License provided that you also include the original
English version of this License.  In case of a disagreement between the
translation and the original English version of this License, the original
English version will prevail.




Termination

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License.  Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License.  However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.




Future Revisions of This Licence

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time.  Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems
or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any
later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation.  If the
Document does not specify a version number of this License, you may choose any
version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just
after the title page:


Copyright YEAR  YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free
Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A
copy of the license is included in the section entitled “GNU Free Documentation
License”.




If you have no Invariant Sections, write “with no Invariant Sections” instead of
saying which ones are invariant.  If you have no Front-Cover Texts, write “no
Front-Cover Texts” instead of “Front-Cover Texts being LIST”; likewise for Back-
Cover Texts.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license,
such as the GNU General Public License, to permit their use in free software.







          

      

      

    

  

    
      
          
            
  
Using zc.zodbdgc (fix PosKeyError’s)

This article was written by Hanno Schlichting

The zc.zodbdgc [http://pypi.python.org/pypi/zc.zodbdgc] library contains two
useful features. On the one hand it supports advanced ZODB packing and garbage
collection approaches and on the other hand it includes the ability to create a
database of all persistent references.

The second feature allows us to debug and repair PosKeyErrors by finding the
persistent object(s) that point to the lost object.


Note

This documentation applies to ZODB 3.9 and later. Earlier versions of the
ZODB are not supported, as they lack the fast storage iteration API’s required
by zc.zodbdgc.




Note

Unless you’re using multi-databases, this documentation does not apply to
RelStorage [http://pypi.python.org/pypi/RelStorage] which has the same
features built-in, but accessible in different ways. Look at the options for
the zodbpack script. The --prepack option creates a table containing the
same information as we are creating in the reference database.

If you are using multi-databases, be aware that RelStorage 2.0 is needed to
perform packing and garbage collection with zc.zodbdgc, and those features only
work in history-free databases.

It’s important to realize that there is currently no way to perform garbage collection
in a history-preserving multi-database RelStorage.




Setup

We’ll assume you are familiar with a buildout setup. A typical config might
look like this:

[buildout]
parts =
  zeo
  zeopy
  zeo-conf
  zodbdgc
  refdb-conf

[zeo]
recipe = plone.recipe.zeoserver
zeo-address = 127.0.0.1:8100
blob-storage = ${buildout:directory}/var/blobstorage
pack-gc = false
pack-keep-old = false

[zeopy]
recipe = zc.recipe.egg
eggs =
    ZODB3
    zc.zodbdgc
interpreter = zeopy
scripts = zeopy

[zeo-conf]
recipe = collective.recipe.template
input = inline:
  <zodb main>
    <zeoclient>
      blob-dir ${buildout:directory}/var/blobstorage
      shared-blob-dir yes
      server ${zeo:zeo-address}
      storage 1
      name zeostorage
      var ${buildout:directory}/var
    </zeoclient>
  </zodb>
output = ${buildout:directory}/etc/zeo.conf

[zodbdgc]
recipe = zc.recipe.egg
eggs = zc.zodbdgc

[refdb-conf]
recipe = collective.recipe.template
input = inline:
  <zodb main>
    <filestorage 1>
      path ${buildout:directory}/var/refdb.fs
    </filestorage>
  </zodb>
output = ${buildout:directory}/etc/refdb.conf








Garbage collection

We configured the ZEO server to skip garbage collection as part of the normal
pack in the above config (pack-gc = false). Instead we use explicit garbage
collection via a different job:

bin/multi-zodb-gc etc/zeo.conf





On larger databases garbage collection can take a couple hours. We can run this
only once a week or even less frequent. All explicitly deleted objects will
still be packed away by the normal pack, so the database doesn’t grow
out-of-bound. We can also run the analysis against a database copy, taking away
load from the live database and only write the resulting deletions to the
production database.




Packing

We can do regular packing every day while the ZEO server is running, via:

bin/zeopack





Packing without garbage collection is much faster.




Reference analysis and POSKeyErrors

If our database has any POSKeyErrors, we can find and repair those.

Either we already have the oids of lost objects, or we can check the entire
database for any errors. To check everything we run the following command:

$ bin/multi-zodb-check-refs etc/zeo.conf





This can take about 15 to 30 minutes on moderately sized databases of up to
10gb, dependent on disk speed. We’ll write down the reported errors, as we’ll
need them later on to analyze them.

If there are any lost objects, we can create a reference database to make it
easier to debug and find those lost objects:

$ bin/multi-zodb-check-refs -r var/refdb.fs etc/zeo.conf





This is significantly slower and can take several hours to complete. Once this
is complete we can open the generated database via our interpreter:

$ bin/zeopy

>>> import ZODB.config
>>> db = ZODB.config.databaseFromFile(open('./etc/refdb.conf'))
>>> conn = db.open()
>>> refs = conn.root()['references']





If we’ve gotten this error report:

!!! main 13184375 ?
POSKeyError: 0xc92d77





We can look up the persistent oid it was referenced from via:

>>> parent = list(refs['main'][13184375])
>>> parent
[13178389]





We can also get the hex representation:

>>> from ZODB.utils import p64
>>> p64(parent[0])
'\x00\x00\x00\x00\x00\xc9\x16\x15'





With this information, we should get back to our actual database and look
up this object. We’ll leave the ref db open, as we might need to recursively
look up some more objects, until we get one we can identify and work on.

We could load the parent. In a debug prompt we could do something like:

>>> app._p_jar.get('\x00\x00\x00\x00\x00\xc9\x16\x15')
2010-04-28 14:28:28 ERROR ZODB.Connection Couldn't load state for 0xc91615
Traceback (most recent call last):
...
ZODB.POSException.POSKeyError: 0xc92d77





Gah, this gives us the POSKeyError of course. But we can load the actual data
of the parent, to get an idea of what this is:

>>> app._p_jar.db()._storage.load('\x00\x00\x00\x00\x00\xc9\x16\x15', '')
('cBTrees.IOBTree
IOBucket
q\x01.((J$KT\x02ccopy_reg
_reconstructor
q\x02(cfive.intid.keyreference
KeyReferenceToPersistent
...





Now we can be real evil and create a new fake object in place of the missing
one:

>>> import transaction
>>> transaction.begin()





The persistent oid that was reported missing was 13184375:

>>> from ZODB.utils import p64
>>> p64(13184375)
'\x00\x00\x00\x00\x00\xc9-w'

>>> from persistent import Persistent
>>> a = Persistent()
>>> a._p_oid = '\x00\x00\x00\x00\x00\xc9-w'





We cannot use the add method of the connection, as this would assign the
object a new persistent oid. So we replicate its internals here:

>>> a._p_jar = app._p_jar
>>> app._p_jar._register(a)
>>> app._p_jar._added[a._p_oid] = a

>>> transaction.commit()





Both getting the object as well as its parent will work now:

>>> app._p_jar.get('\x00\x00\x00\x00\x00\xc9-w')
<persistent.Persistent object at 0xa3e348c>

>>> app._p_jar.get('\x00\x00\x00\x00\x00\xc9\x16\x15')
BTrees.IOBTree.IOBucket([(39078692, <five.intid.keyreference...





Once we are finished we should be nice and close all databases:

>>> conn.close()
>>> db.close()





Depending on the class of object that went missing, we might need to use a
different persistent class, like a persistent mapping or a BTree bucket.

In general it’s best to remove the parent object and thus our fake object from
the database and rebuild the data structure again via the proper application
level API’s.
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