

Zircon Documentation

Zircon is a lightweight framework to intercept, store, analyze, and visualize
high-speed signals in real-time using modern technologies. High-speed means
thousands of messages per second and real-time means a latency of milliseconds
to tens of milliseconds.

Table of Contents

	Introduction to Zircon
	Purpose

	Application Example

	Getting Started
	Installation

	Reporter Process

	Injector Process

	Real-time Dashboard

	Onward

	Overview of Components

	Transceivers
	Transceiver Interface

	Transformers
	Transformer Interface

	Pass-through Transformer

	Common Transformers

	Publishers and Subscribers
	Publisher Interface

	Subscriber Interface

	Datastores
	Datastore Interface

	Reporters and Injectors
	Reporter

	Injector

	Socket.IO Server

	Client Applications

Index

	Index

Introduction to Zircon

Zircon is a lightweight framework to intercept, store, analyze, and visualize
high-speed signals in real-time using modern technologies. High-speed means
thousands of messages per second and real-time means a latency of milliseconds
to tens of milliseconds.

[image: _images/dash_screenshot1.png]

Purpose

Zircon is designed to capture rapid streams of data in large communication
networks like CAN busses and wireless meshes. This usually means sensor and
actuator signals, but can be anything that boils down to events or time series.
Zircon consists of pluggable components useful individually or as a full stack
for decoding and logging, structured querying and analysis, real-time
visualization, and integration into custom applications. Written in Python,
with a small and elegant code base.

Zircon is free and open-source, fast, platform-independent, fully extensible,
and easy to integrate with your system. By default, InfluxDB is used for
blazing-fast storage, ZeroMQ for local or remote reporting, and Socket.IO for
real-time data streaming. It provides base classes and examples that can be
extended to support any protocol or encoding.

Application Example

Steve is the lead engineer for a new hovercraft, which contains ECUs for
propulsion, steering, sensing, power, and safety systems on a CAN bus. Every
day, Steve’s engineers test and debug their respective systems through the
messages they send and receive. The team has various expensive, bulky, archaic,
and/or proprietary software options to filter and log messages, but they still
spend a lot of time watching the stream and manually decoding bytes. Or worse,
they pull raw data from log files and hunt for something meaningful.

Steve installs Zircon on his laptop, writes a little code, and fires it up.
What he instantly gets is a slick web interface to visualize all communications
inside his hovercraft, in real-time. What he also gets is a powerful API to
query, filter, downsample, aggregate, and export all signals for the past days
or weeks. Excited, Steve sets up Zircon on a dedicated machine. His engineers
start using the Zircon interface to wirelessly debug their firmware, tune the
control gains, and check for voltage spikes. Soon, they create custom
diagnostic dashboards, an interactive driver display, and a mobile app that
can start the hovercraft by sending messages back to the bus. Productivity
soars, and profit is made.

Getting Started

Zircon is a flexible tool that adapts well to individual use cases. Before you
start using it, look through the System Overview and get a
sense of what the component classes do and how they are connected together to make
a complete data pipeline from source to database to client application.

Zircon’s built-in components will fit many needs out of the box, but with customization
can be adapted for nearly any scenario. The default datastore (InfluxDB), messaging
protocol (ZeroMQ), and client-side API (Socket.IO) used by Zircon’s components provide
excellent speed and robustness.

Make sure to have a picture of what the following components should
be for your application:

	Transceivers (interfaces to your sources of data)

	Transformers (tasks - batching, formatting, [de]compression, [de]serialization, etc.)

	Client (end goal - just visualization, or integration into some system?)

The guide below outlines how to install Zircon and use it to store some programatically-generated
timeseries data at 2kHz and visualize it in real-time with the web dashboard. From there, it
is a simple matter to create a Transceiver for your own data source, run complex queries, and
build custom applications.

Installation

Note

Instructions are for Debian-based distributions. Many commands require root privileges.

	Clone the repository.

git clone https://github.com/hmartiro/zircon.git

	Install required Python packages using pip. I highly recommended using virtualenv and
virtualenvwrapper to isolate the Python environment.

cd zircon
pip install -r requirements.txt

	Install and start InfluxDB [http://influxdb.com/download/], the default datastore. It should start automatically from now on.

service influxdb start

	Install bower for managing the frontend JavaScript libraries.

apt-get install nodejs npm
ln -s /usr/bin/nodejs /usr/bin/node # Quirk on ubuntu, node package was already taken
npm -g install bower

	Configure the PYTHONPATH and DJANGO_SETTINGS_MODULE environment variables. If using
a virtualenv, do this in your activate or postactivate script. Otherwise, source
it from your ~/.bashrc or similar.

PYTHONPATH=$PYTHONPATH:/path/to/zircon
DJANGO_SETTINGS_MODULE=zircon.frontend.settings

Note

You should now be able to access Zircon from Python. Make sure import zircon works. Also,
python -m zircon.frontend.manage is the entry point to Zircon’s built-in Django application.
You can interface with it on the command line.

	Initialize the real-time web dashboard

python -m zircon.frontend.manage syncdb
python -m zircon.frontend.manage bower install

That’s it for installation. You are ready to dive into Zircon!

Reporter Process

Copy the file zircon/tests/sample_reporter.py and open it up. This script
initializes and runs a
Reporter. A Reporter is a class that collects data from a
Transceiver, processes it using a chain of
Transformers, and broadcasts the processed data using a
Publisher.

To create a Reporter, we simply initialize it with a Transceiver, a list of
Transformers, and a Publisher. Then, we call run().

reporter = Reporter(
 transceiver=..,
 transformers=[.., .., ..],
 publisher=..
)
reporter.run()

For this demo, we are using a
DummyTransceiver,
which generates a single
signal by sampling a given function. In our case, it invokes sine_wave(t)
at the specified frequency of 1 kHz. We name this signal ‘MY_SIGNAL’. The
output of the Transceiver is a tuple of the form (timestamp, name, value).

transceiver=DummyTransceiver(
 signal_name='MY_SIGNAL',
 data_gen=sine_wave,
 dt=1.0/freq
)

Next, we specify three Transformers. The return value of the transceiver’s
read method is fed into each Transformer’s push method, in a chain.

The first is a
TimedCombiner
, which batches
up the signals for more efficient transmission and database insertion. It reads
in all messages, and outputs them chunked up into a list on a given interval. Every
individual point at 1kHz is saved, but we save each set of 100 points as a group
at a rate of 10 Hz. Batching is not necessary, but it dramatically raises the
ceiling on achievable throughput. By default, the web dashboard downsamples the
data to 10 Hz, so there is no reason to transmit or insert at a faster rate. You
can tweak this based on your needs - if you need 20ms of latency, set the dt
of TimedCombiner to 0.02.

The next Transformers are a
Pickler
and a
Compressor.
The Pickler serializes the
output of the TimedCombiner using Python’s pickle, and the Compressor uses zlib
to shrink the message and save on network bandwidth. If processing power is your
bottleneck rather than network bandwidth, you can skip the Compressor. These classes
are essentially one-liners, but having them as a Transformer interface makes them
awesome to plug and play. You can use any method of serialization, but the output
of the last Transformer must be a bufferable object (a string, usually).

transformers=[
 TimedCombiner(dt=0.1),
 Pickler(),
 Compressor()
],

Finally, the serialized data is broadcast by a Publisher to any processes that want
to listen. Zircon’s default Publisher is the
ZMQPublisher, which writes the data to
any subscribed entities, local or remote, using the ZeroMQ [http://zeromq.org/] messaging protocol.

Okay, enough talk. Are you ready to run the reporter process? Here it is:

python sample_reporter.py

When you start it, you might see some output from the Publisher of how many messages
it is sending. Nothing else is happening, because nobody is listening yet. We need to
start another process, an Injector.

Injector Process

Copy the file
zircon/tests/sample_injector.py and take a look at it. Like a Reporter, an Injector
has three components.

First, a Subscriber receives serialized messages from a Publisher. The Subscriber should
specify the network address of the Publisher (localhost is default). The default subscriber
is the
ZMQSubscriber, which connects to the
ZMQPublisher.

Next, a series of Transformers are applied to the data, just like with the Reporter. Here,
we simply use a Decompressor to reverse the Compressor, and an Unpickler to reverse the Pickler.
The output of the Unpickler is a list of (timestamp, name, value) tuples as outputted by the
TimedCombiner.

injector = Injector(
 subscriber=ZMQSubscriber(),
 transformers=[
 Decompressor(),
 Unpickler(),
],
 datastore=InfluxDatastore()
)
injector.run()

Finally, our data is fed to a Datastore. Datastores implement methods
to insert and query signal data. Each message outputted by the Unpickler is fed into the
insert method of the Datastore.

Zircon’s built-in Datastore is the
InfluxDatastore,
which uses InfluxDB, an extremely fast timeseries database with powerful
query capabilities. Our client applications interface with the Datatstore.

Now, start the Injector:

python sample_injector.py

Start the Reporter up as well, and the Injector should output that it is saving around
90-95 points every 0.1 seconds, whatever the DummyTransceiver actually outputs at. Your
signal is now being saved into an InfluxDB database instance. If you like, you can explore
it directly using InfluxDB’s
web UI [http://influxdb.com/docs/v0.8/introduction/getting_started.html]. However, we
will be focusing on Zircon’s dashboard.

Real-time Dashboard

With your Reporter and Injector processes running, your sine wave is flowing into the Datastore.
We can visualize this signal using Zircon’s web interface. The web interface provides a
general purpose solution for viewing signal data, and more importantly acts as an example
for how to build custom applications using Zircon.

Start the web interface using Django:

python -m zircon.frontend.manage runserver_socketio 0.0.0.0:8000

Navigate to http://localhost:8000/. You should see a blank page with a header bar. Click the
‘+’ button in the upper-right corner to add a scope, and name it ‘my_scope’. Now, click the ‘+’
in the scope to add a signal, ‘MY_SIGNAL’.

You should now see your glorious sine wave! It is being dynamically sampled at 100ms by default,
from the Datastore. You can play around with the plot controls, mouse-over to see the values, and
pause/play the scope from the top bar. Note, the scope configuration is encoded in the URL, so
you can copy and paste it to save configurations.

[image: _images/getting_started_scope.png]
There are two Django apps running here - the datasocket and the dashboard. The datasocket
provides a Socket.IO API directly to the Datastore. The dashboard acts as a client to the
datasocket. The client-side JavaScript in dashboard opens up a connection to the Socket.IO
API and requests data for the signals the user has selected.

You can browse the code at zircon/zircon/frontend.

Onward

Hopefully, you now understand how the Zircon stack works! Here are some things you can try:

	Run your Reporter and Injector processes on different machines. Just specify the IP address
to the ZMQSubscriber, like ZMQSubscriber(host='192.168.1.45').

	Query the Datastore programatically, just by initializing an instance of
InfluxDatastore. You can take a look at
zircon/zircon/utils/export.py for an example. You can query for something like the
mean of a signal value, for a given hour, in 1 second buckets.

	Monitor six signals at once, using zircon/tests/noisy_imu_reporter.py.

	Take a look at some common Transformers in zircon/zircon/transformers/common.py.

	See how high of a throughput you can get, or how low of a latency. You can play around with
the dashboard code at zircon/zircon/frontend/dashboard/static/dashboard/js/dash.js. In
particular, play with the data_frametime and view_frametime variables.

Create a Transceiver that reads from your sensor! Just extend BaseTransceiver and implement
the read() method. Zircon can be useful for anything from Arduino signals to events in
a distributed network.

Overview of Components

Zircon consists of pluggable components useful individually or as a full stack
for decoding and logging, structured querying and analysis, real-time
visualization, and integration into custom applications. Components are connected
together to achieve a flexible data pipeline in centralized and distributed
scenarios.

[image: ../_images/zircon-architecture.png]

	Transceivers

	A Transceiver reads and/or writes to some source. It is the lowest-level
component in zircon, which would for example interface with a CAN bus, serial
port, or XBee.

	Transformers

	A Transformer takes in messages, applies some transformation, and spits them
back out. It is a general piece of middleware in a data stream that can be
used to compress/decompress, encode/decode, or split/combine messages in a
data pipeline.

	Publishers

	A Publisher broadcasts data in some form, to be picked up by one or more
Subscribers. It is used by Reporters to communicate with Injectors.

	Subscribers

	A Subscriber receives data from a Publisher. It is used by Injectors to
listen to Reporters.

	Datastores

	A Datastore is a connector to something that can store timeseries data. It
provides an interface to add, remove, and access timeseries data efficiently.
A single piece of information consists of a signal name, a timestamp in
microseconds, and some associated data.

	Reporter

	A Reporter continuously reads data from a Transceiver, feeds it through a
row of Transformers, and broadcasts the result using a Publisher.

	Injector

	An Injector listens for data from a Reporter, feeds it through a row of
Transformers, and inserts the result into a Datastore.

	Server

	Zircon’s backend server provides a Socket.IO interface to query information
from a Datastore. It allows real-time bidirectional event-based communication
between a client application that receives data and the Datastore. Works for
web or native applications, on any platform. Allows powerful querying of
every recorded data point, by default for the past week.

	Client

	A client is anyone who wants to access the data coming from Transceivers. It is
the end goal of Zircon to provide a fast, robust, and easy way for clients to
monitor the signals they are interested in. Clients can be web apps, mobile
apps, native apps, or hardware systems. Zircon’s default client is a web dashboard
that allows real-time visualization of arbitrary signals. It is a Django application
with a JavaScript interface to the Socket.IO connection.

Transceivers

Transceiver Interface

	
class zircon.transceivers.base.BaseTransceiver

	Abstract base class defining the Transceiver interface.

A Transceiver reads and/or writes to some source. It is the lowest-level
component in zircon, which would for example interface with a CAN bus,
serial port, or XBee.

Usage:

t = MyTransceiver()
t.open()

while not done:
 data = t.read()
 process(data)

t.close()

	
open()

	Open the connection.

	
close()

	Close the connection.

	
read()

	Return data read from the connection, or None.

	
write(data)

	Write data to the connection.

Transformers

Transformer Interface

	
class zircon.transformers.base.BaseTransformer

	Abstract base class defining the Transformer interface.

A Transformer takes in messages, applies some transformation, and spits
them back out. It is a general piece of middleware in a data stream that
can be used to compress/decompress, encode/decode, or split/combine
messages in a data pipeline.

Usage:

def process(msg):
 do_something(msg)

t = MyTransformer()
t.set_callback(process)

for msg in messages:
 t.push(msg)

	
set_callback(callback)

	Set a function to be invoked for each outputted message.

	
push(msg)

	Feed in a message.

Pass-through Transformer

	
class zircon.transformers.base.Transformer

	Bases: zircon.transformers.base.BaseTransformer

Transformer that acts as a pass-through, invoking the callback for
each message received with no alterations.

Extend this and override push() to implement a Transformer.

	
set_callback(callback)

	

	
output(msg)

	If I have a callback, invoke it.

	
push(msg)

	Output exactly what I receive.

Common Transformers

	
class zircon.transformers.common.Combiner(limit)

	Bases: zircon.transformers.base.Transformer

Combine messages into a list, then send them out.

	
__init__(limit)

	

	Parameters:	limit – How many messages to combine.

	
push(msg)

	

	
class zircon.transformers.common.Doubler

	Bases: zircon.transformers.base.Transformer

Output each message twice.

	
push(msg)

	

	
class zircon.transformers.common.Splitter

	Bases: zircon.transformers.base.Transformer

Split messages into parts by iterating through them.

	
push(msg)

	

	
class zircon.transformers.common.Uppercaser

	Bases: zircon.transformers.base.Transformer

Capitalize string-like messages.

	
push(msg)

	

	
class zircon.transformers.common.Lowercaser

	Bases: zircon.transformers.base.Transformer

Lowercase string-like messages.

	
push(msg)

	

	
class zircon.transformers.common.Pickler

	Bases: zircon.transformers.base.Transformer

Pickle messages with the latest protocol.

	
push(msg)

	

	
class zircon.transformers.common.Unpickler

	Bases: zircon.transformers.base.Transformer

Unpickle messages with the latest protocol.

	
push(msg)

	

	
class zircon.transformers.common.Compressor

	Bases: zircon.transformers.base.Transformer

Compress messages using zlib.

	
push(msg)

	

	
class zircon.transformers.common.Decompressor

	Bases: zircon.transformers.base.Transformer

Decompress messages using zlib.

	
push(compressed_msg)

	

	
class zircon.transformers.common.TimedCombiner(dt=0.1)

	Bases: zircon.transformers.base.Transformer

Convert individual data points into a dictionary
of signal names to time series, outputted at a regular
interval.

Input: (12345, ‘MYSIGNAL’, -5.2), (12346, ‘MYSIGNAL’, 1.3), ...
Output: {‘MYSIGNAL’: ((12345, -5.2), (12346, 1.3))}

	
__init__(dt=0.1)

	

	
push(msg)

	

	
class zircon.transformers.common.Printer(prefix=None)

	Bases: zircon.transformers.base.Transformer

Prints messages and passes them on unaltered.

	
__init__(prefix=None)

	

	
push(msg)

	

	
class zircon.transformers.common.Timer

	Bases: zircon.transformers.base.Transformer

Prints the time between messages, and passes them on unaltered.

	
__init__()

	

	
push(msg)

	

Publishers and Subscribers

Publisher Interface

	
class zircon.publishers.base.BasePublisher

	Abstract base class defining the Publisher interface.

A Publisher broadcasts data in some form, to be picked up by one or more
Subscribers. It is used by Reporters to communicate with Injectors.

Usage:

p = MyPublisher()
p.open()

while not done:
 msg = get_data()
 p.send(msg)

p.close()

	
open()

	Open the connection.

	
close()

	Close the connection.

	
send(msg)

	Broadcast a message.

Subscriber Interface

	
class zircon.subscribers.base.BaseSubscriber

	Abstract base class defining the Subscriber interface.

A Subscriber receives data from a Publisher. It is used by Injectors
to listen to Reporters.

Usage:

s = MySubscriber()
s.open()

while not done:
 msg = s.receive()
 process(msg)

p.close()

	
open()

	Open the connection.

	
close()

	Close the connection.

	
receive()

	Receive a message.

Datastores

Datastore Interface

	
class zircon.datastores.base.BaseDatastore

	Abstract base class defining the Datastore interface.

A Datastore is a connector to something that can store timeseries data.
It provides an interface to add, remove, and access timeseries data
efficiently. A single piece of information consists of a signal name,
a timestamp in microseconds, and some associated data.

To be efficient, a Datastore should keep information sorted by timestamp
and separated by signal name. The most important ingredient is that the
most recent N points for a given signal can be retrieved in constant time.

What kind of data can be stored depends on the implementation. For
example, a Datastore may accept integers, floats, strings, or any
combination of them.

	
create_database(db_name)

	Create a database.

	Returns:	True if successful, False otherwise.

	
delete_database(db_name)

	Delete a database.

	Returns:	True if successful, False otherwise.

	
switch_database(db_name)

	Switch the current database.

	Returns:	True if successful, False otherwise.

	
list_databases()

	Return a list of databases.

	
list_signals()

	Return a list of signals in this database.

>>> datastore.list_signals()
['SIGNAL_A', 'SIGNAL_B', 'SIGNAL_C']

	
delete_signal(data)

	Delete this signal and all associated data.

	Returns:	True if successful, False otherwise.

	
insert(data)

	Insert data.

	Parameters:	data – Dictionary mapping signal names to timeseries.

	Returns:	True if successful, False otherwise.

Timeseries consist of an epoch timestamp in microseconds followed
by some data.

>>> datastore.insert({
... 'SIGNAL_A': (
... (1409481110001000, 1.2),
... (1409481110002000, 1.5)
...),
... 'SIGNAL_B': (
... (1409481110001500, -2.1)
...)
... })
True

	
get_last_points(signals, num)

	Return the last N points for the given signals.

	Parameters:	
	signals – A list of signals.

	num – The number of points to fetch.

	Returns:	A dictionary mapping signals to points.

>>> signal = datastore.get_last_points(['SIGNAL_A'], 10)
{'SIGNAL_A': [[1409481110001000, 1.2], [1409481110002000, 1.5], ...]}

	
get_timeseries(signals, t0, t1, dt, aggregate, limit)

	Return a uniformly sampled time series in a given time interval.
Can downsample, aggregate, and limit the result.

Aggregate functions depend on the implementation, but should at least
include ‘mean’, ‘first’, ‘last’, ‘min’, and ‘max’.

	Parameters:	
	signals – A list of signals.

	t0 – Start time in microseconds.

	t1 – End time in microseconds.

	dt – Sample time in microseconds

	aggregate – Aggregate function to apply.

	limit – Maximum number of points per signal to return.

	Returns:	A dictionary mapping signals to points.

Reporters and Injectors

Reporter

	
class zircon.reporters.base.Reporter(transceiver, transformers=None, publisher=None)

	A Reporter continuously reads data from a Transceiver, feeds it through
a row of Transformers, and broadcasts the result using a Publisher.

When creating a Reporter, you supply instances of a Transceiver,
one or more Transformers, and a Publisher. If not specified,
a pickling Transformer and the default Publisher are used.

Usage:

reporter = Reporter(
 transceiver=MyTransceiver(),
 transformers=[MyDecoder(), MyCompressor(), ...],
 publisher=MyPublisher()
)

A Reporter can be run as its own process:

reporter.run()

Or stepped through by an external engine:

reporter.open()
while not done:
 reporter.step()

	
open()

	Initialize the Transceiver and Publisher.

	
step()

	Read data and feed it into the first Transformer.

	
run()

	Initialize components and start broadcasting.

Injector

	
class zircon.injectors.base.Injector(subscriber=None, transformers=None, datastore=None)

	An Injector listens for data from a Reporter, feeds it through a row of
Transformers, and inserts the result into a Datastore.

When creating an Injector, you supply instances of a Subscriber,
one or more Transformers, and a Datastore. If not specified,
an unpickling Transformer and the default Subscriber and Datastore are
used.

Usage:

injector = Injector(
 subscriber=MySubscriber(),
 transformers=[MyDecompressor(), MyFormatter(), ...],
 datastore=MyDatastore()
)

An Injector can be run as its own process:

injector.run()

Or stepped through by an external engine:

injector.open()
while not done:
 injector.step()

	
open()

	Initialize the Subscriber.

	
step()

	Receive data and feed it into the first Transformer.

	
run()

	Initialize components and start listening.

Socket.IO Server

Note

This documentation is a work in progress. Browse the code in zircon/zircon/frontend.

Zircon’s backend server provides a Socket.IO interface to query information
from a Datastore. It allows real-time bidirectional event-based communication
between a client application that receives data and the Datastore. Works for
web or native applications, on any platform. Allows powerful querying of
every recorded data point, by default for the past week.

Client Applications

Note

This documentation is a work in progress. Browse the code in zircon/zircon/frontend.

A client is anyone who wants to access the data coming from Transceivers. It is
the end goal of Zircon to provide a fast, robust, and easy way for clients to
monitor the signals they are interested in. Clients can be web apps, mobile
apps, native apps, or hardware systems. Zircon’s default client is a web dashboard
that allows real-time visualization of arbitrary signals. It is a Django application
with a JavaScript interface to the Socket.IO connection.

[image: ../_images/dash_screenshot.png]

 Python Module Index

 z

 		 	

 		
 z	

 	[image: -]
 	
 zircon	

 	
 	
 zircon.transformers.common	

Index

 _
 | B
 | C
 | D
 | G
 | I
 | L
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | Z

_

 	
 	__init__() (zircon.transformers.common.Combiner method)

 	(zircon.transformers.common.Printer method)

 	(zircon.transformers.common.TimedCombiner method)

 	(zircon.transformers.common.Timer method)

B

 	
 	BaseDatastore (class in zircon.datastores.base)

 	BasePublisher (class in zircon.publishers.base)

 	
 	BaseSubscriber (class in zircon.subscribers.base)

 	BaseTransceiver (class in zircon.transceivers.base)

 	BaseTransformer (class in zircon.transformers.base)

C

 	
 	close() (zircon.publishers.base.BasePublisher method)

 	(zircon.subscribers.base.BaseSubscriber method)

 	(zircon.transceivers.base.BaseTransceiver method)

 	
 	Combiner (class in zircon.transformers.common)

 	Compressor (class in zircon.transformers.common)

 	create_database() (zircon.datastores.base.BaseDatastore method)

D

 	
 	Decompressor (class in zircon.transformers.common)

 	delete_database() (zircon.datastores.base.BaseDatastore method)

 	
 	delete_signal() (zircon.datastores.base.BaseDatastore method)

 	Doubler (class in zircon.transformers.common)

G

 	
 	get_last_points() (zircon.datastores.base.BaseDatastore method)

 	
 	get_timeseries() (zircon.datastores.base.BaseDatastore method)

I

 	
 	Injector (class in zircon.injectors.base)

 	
 	insert() (zircon.datastores.base.BaseDatastore method)

L

 	
 	list_databases() (zircon.datastores.base.BaseDatastore method)

 	
 	list_signals() (zircon.datastores.base.BaseDatastore method)

 	Lowercaser (class in zircon.transformers.common)

O

 	
 	open() (zircon.injectors.base.Injector method)

 	(zircon.publishers.base.BasePublisher method)

 	(zircon.reporters.base.Reporter method)

 	(zircon.subscribers.base.BaseSubscriber method)

 	(zircon.transceivers.base.BaseTransceiver method)

 	
 	output() (zircon.transformers.base.Transformer method)

P

 	
 	Pickler (class in zircon.transformers.common)

 	Printer (class in zircon.transformers.common)

 	push() (zircon.transformers.base.BaseTransformer method)

 	(zircon.transformers.base.Transformer method)

 	(zircon.transformers.common.Combiner method)

 	(zircon.transformers.common.Compressor method)

 	(zircon.transformers.common.Decompressor method)

 	(zircon.transformers.common.Doubler method)

 	(zircon.transformers.common.Lowercaser method)

 	(zircon.transformers.common.Pickler method)

 	(zircon.transformers.common.Printer method)

 	(zircon.transformers.common.Splitter method)

 	(zircon.transformers.common.TimedCombiner method)

 	(zircon.transformers.common.Timer method)

 	(zircon.transformers.common.Unpickler method)

 	(zircon.transformers.common.Uppercaser method)

R

 	
 	read() (zircon.transceivers.base.BaseTransceiver method)

 	receive() (zircon.subscribers.base.BaseSubscriber method)

 	
 	Reporter (class in zircon.reporters.base)

 	run() (zircon.injectors.base.Injector method)

 	(zircon.reporters.base.Reporter method)

S

 	
 	send() (zircon.publishers.base.BasePublisher method)

 	set_callback() (zircon.transformers.base.BaseTransformer method)

 	(zircon.transformers.base.Transformer method)

 	
 	Splitter (class in zircon.transformers.common)

 	step() (zircon.injectors.base.Injector method)

 	(zircon.reporters.base.Reporter method)

 	switch_database() (zircon.datastores.base.BaseDatastore method)

T

 	
 	TimedCombiner (class in zircon.transformers.common)

 	
 	Timer (class in zircon.transformers.common)

 	Transformer (class in zircon.transformers.base)

U

 	
 	Unpickler (class in zircon.transformers.common)

 	
 	Uppercaser (class in zircon.transformers.common)

W

 	
 	write() (zircon.transceivers.base.BaseTransceiver method)

Z

 	
 	zircon.transformers.common (module)

 _static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/down-pressed.png

_images/zircon-architecture.png
System

RX

Reporter

Tranceiver

Raw Data

Transformers

Message

Publisher

Bytes.

U

By

))) ((A’)J

Messaging Queue

Injector’

Message

Transformers

Structured Data

Storage

_images/dash_screenshot1.png
Zircon - Real-time Dashbosrd - Chromium x

Z Zircon - Real-time D x

& 9 @ [D tocalhost:8000/7Raw=MU_X IMU_YMU_ » ERED,MU_Z_FIL
al-time Dashboa
+ - 1 % Scope Raw + - 1 % Scope Filtered
onmux cny ewuz O FUTERED LY. FUTERED @iz FLTERED
e 1300
oo 1000
oo ol
0 vzt
Py P = M FLTERED 0904
Fhen mwwen wer user e e s e 12009

IMUY_FILTERED 0606

me) "™ & Mz FLTERED -1.288

_images/dash_screenshot.png
Zircon - Real-time Dashbosrd - Chromium x

Z Zircon - Real-time D x

& 9 @ [D tocalhost:8000/7Raw=MU_X IMU_YMU_ » ERED,MU_Z_FIL
al-time Dashboa
+ - 1 % Scope Raw + - 1 % Scope Filtered
onmux cny ewuz O FUTERED LY. FUTERED @iz FLTERED
e 1300
oo 1000
oo ol
0 vzt
Py P = M FLTERED 0904
Fhen mwwen wer user e e s e 12009

IMUY_FILTERED 0606

me) "™ & Mz FLTERED -1.288

_images/getting_started_scope.png
+ -1 % Scope Test

T

_static/minus.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Zircon Documentation

 		Introduction to Zircon

 		Purpose

 		Application Example

 		Getting Started

 		Installation

 		Reporter Process

 		Injector Process

 		Real-time Dashboard

 		Onward

 		Overview of Components

 		Transceivers

 		Transceiver Interface

 		Transformers

 		Transformer Interface

 		Pass-through Transformer

 		Common Transformers

 		Publishers and Subscribers

 		Publisher Interface

 		Subscriber Interface

 		Datastores

 		Datastore Interface

 		Reporters and Injectors

 		Reporter

 		Injector

 		Socket.IO Server

 		Client Applications

_static/plus.png

