
zipnish Documentation
Release latest

August 02, 2016

Contents

1 Prerequisites 3

2 Installation 5

3 Configuration 7

4 Run Zipnish 9

i

ii

zipnish Documentation, Release latest

Microservice monitoring tool based on Varnish-Cache. Currently it only supports Varnish 4. Zipnish piggybacks the
VSL and stores a bunch of data in a similar way as Zipkin does.

There is a log-reader component responsible for fetching data from VSL and having it stored into a MySql database,
furthermore there is an available UI that will display in a hierachical manner all requests going through varnish to your
services. Both of these components share the same MySql instance.

Contents 1

https://varnish-cache.org/
https://www.varnish-cache.org/docs/4.0/reference/vsl.html
http://zipkin.io/
https://www.varnish-cache.org/docs/4.0/reference/vsl.html

zipnish Documentation, Release latest

2 Contents

CHAPTER 1

Prerequisites

Following packages are required for running Zipnish:

• simplemysql

• flask

• sqlalchemy

• flask_sqlalchemy

• mysql-python

3

zipnish Documentation, Release latest

4 Chapter 1. Prerequisites

CHAPTER 2

Installation

Install with pip:

$ sudo pip install zipnish

5

zipnish Documentation, Release latest

6 Chapter 2. Installation

CHAPTER 3

Configuration

A configuration file found at /etc/zipnish/zipnish.cfg is required with a structure as described below:

[Database]
Db settings for the MySql connection.

MySql host
host = 192.168.59.103

Database name
db_name = microservice

User name
user = zipnish

Password
pass = secret

Connection keep-alive
keep_alive = true

[Cache]
Defines which cache to fetch logs from.
Name of the cache (same value sent via the -n argument)
name = demo

[Log]
Path to the daemon logfile.
log_file = /var/log/zipnish/zipnish.log

Valid log_levels are: DEBUG, INFO, WARNING, ERROR
log_level = DEBUG

For convenience purposes, there is a docker image available which handles setting up Mariadb database along with a
test user.

7

zipnish Documentation, Release latest

8 Chapter 3. Configuration

CHAPTER 4

Run Zipnish

Considering that your Varnish instance is properly configured in relation to your services, after installing Zipnish there
are two commands available:

Run the logreader:

$ zipnish-logreader

Run the ui (by default port 5000):

$ zipnish-ui

Contents:

4.1 Zipnish UI

Zipnish UI is a Flask based app meant to give an overview of the timestamps handled by the logreader.

Screenshots:

Lookup

Search Results

9

zipnish Documentation, Release latest

Annotations

4.2 VCL how to’s

In order for Zipnish to grab its required headers there are a few changes that are required in your VCL. There are two
main scenarios to be handled here:

1. Caching disabled:

vcl 4.0;

backend DemoMicroservice {
.host = "127.0.0.1";
.port = "9999";

}

disable caching - see further down for another example with caching enabled
sub vcl_recv {

if (req.url ~ "^/DemoService") {
set req.backend_hint = DemoMicroservice;
return (pass);

}
}

2. Caching enabled:

vcl 4.0;

backend DemoMicroservice {

10 Chapter 4. Run Zipnish

http://www.varnish-cache.org/docs/4.0/reference/vcl.html

zipnish Documentation, Release latest

.host = "127.0.0.1";

.port = "9999";
}

disable caching - see further down for another example with caching enabled
sub vcl_recv {

if (req.url ~ "^/DemoService") {
set req.backend_hint = DemoMicroservice;

}
}

sub vcl_deliver {
add the response headers if this is a cache hit
if (obj.hits > 0) {

if (req.http.x-varnish-trace) {
set resp.http.x-varnish-trace = req.http.x-varnish-trace;

} else {
set resp.http.x-varnish-trace = req.http.x-varnish;

}
set resp.http.x-varnish-parent = req.http.x-varnish;

}
}

4.3 Docker

Unless you have a MySql instance at hand, this Ubuntu based image will spawn a Mariadb instance. This instance
will be the one used by both the logreader and the ui. Check the IP of your docker setup and update the zipnish.cfg
accordingly.

The image relies on two extra files: database.sql and init-db.sh. Both these files are available in the
/docker folder within the zipnish source code. The two extra files are responsible for the creation and initiali-
sation of an user and db tables that Zipnish will use further down the line. Browse to this folder and run the following
commands:

$ docker pull mariusm/ubuntu-mariadb
$ docker run -d -p 3306:3306 mariusm/ubuntu-mariadb

A database and db user with the following credentials will be available, if you’re going to use this db instance, make
sure that zipnish.cfg reflects these settings:

user = zipnish

pass = secret

db_name = microservice

To quickly check that the container is up and running, you can connect to it directly with a Mysql client. Retrieve the
IP of your docker setup and connect to the mariadb instance as follows:

$ mysql -u zipnish -h "your docker ip" --paswword=secret

On a MacOs machine you can simply run the following command:

$ mysql -u zipnish -h $(boot2docker ip) --password=secret

4.3. Docker 11

https://hub.docker.com/r/mariusm/ubuntu-mariadb/

zipnish Documentation, Release latest

4.4 Examples

This section will provide a short example on how to extend an endpoint in order for Zipnish to be aware of it.

Full example code found here: https://github.com/varnish/zipnish/blob/master/logreader/test/server.py

Zipnish requires three headers to be available per request basis:

• X-Varnish - Request id assigned by Varnish.

• X-Varnish-Trace - The id that has been assigned by Varnish to the first incoming request.

• X-Varnish-Parent - The id of the parent request which has triggered the current request.

def do_GET(self):
x_varnish_header = self.headers['x-varnish']
trace_header = x_varnish_header

if 'x-varnish-trace' in self.headers:
trace_header = self.headers['x-varnish-trace']

headers = {'x-varnish-trace': trace_header,
'x-varnish-parent': x_varnish_header}

...

In this specific example there is a very simple web server that handles basic GET requests based on a configuration
found in server.yaml:

traces:

- trace:
- url: /api/articles
- span: /api/auth
- span: /api/titles
- span: /api/images
- span: /api/correct
- span: /api/compose

The test server is exposed through port 9999, our vcl configuration has a backend the points to this server:

vcl 4.0;

backend default {
.host = "127.0.0.1";
.port = "9999";

}

For simplicity reason disable caching, see vcl how to's for enabled caching.
sub vcl_recv {

return (pass);
}

Given that Varnish has its default settings, the request below:

$ curl -is http://localhost:6081/api/articles

wil have the following output:

HTTP/1.1 200 OK
Server: BaseHTTP/0.3 Python/2.7.9
Date: Tue, 10 May 2016 08:43:44 GMT

12 Chapter 4. Run Zipnish

https://github.com/varnish/zipnish/blob/master/logreader/test/server.py
https://www.varnish-cache.org/docs/2.1/faq/http.html

zipnish Documentation, Release latest

Content-type: text/html
X-Varnish: 11
Age: 0
Via: 1.1 varnish-v4
Transfer-Encoding: chunked
Connection: keep-alive
Accept-Ranges: bytes

and server output:

127.0.0.1 - - [10/May/2016 08:43:43] "GET /api/auth HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 08:43:43] "GET /api/titles HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 08:43:44] "GET /api/images HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 08:43:44] "GET /api/correct HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 08:43:44] "GET /api/compose HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 08:43:44] "GET /api/articles HTTP/1.1" 200 -

The scenario is as follows:

1. A client does a request to the test server asking for /articles

2. In order to serve /articles, subsequent calls are required to other endpoints such as /auth, /titles ...etc. For
demo purposes these subsequent calls are handled by the same server, what is important to notice is that all sub-
requests go through Varnish as well. A random sleep time has been added for each request in order to simulate
some “hard work”.

3. The application server decorates the subsequent requests with the required headers, as shown in the code above.

4. Zipnish-logreader picks up its required data from VSL as these requests go through.

5. While data gets written in the MySql database, Zipnish-UI will be able to represent how requests have been
issued and how much time each of them has taken.

4.5 Give Zipnish a try

This section aggregates all other chapters in the documentation and will provide a guide for setting up a working
environment with Zipnish. As a side-note, all steps below have been run on a Centos7 machine.

A fresh Centos7 VM requires the following packages:

$ sudo yum -y install mariadb-devel
$ sudo yum -y install python-devel
$ sudo yum -y install python-pip

1. Start an application server

Clone the git repo:

$ git clone https://github.com/varnish/zipnish.git

Start the application server:

$ cd zipnish/logreader/test
$ python server.py &

This will spawn a lite web server listening on port 9999, the endpoints available in this server are as defined in
the server.yaml file located in the same folder.

4.5. Give Zipnish a try 13

zipnish Documentation, Release latest

2. Install, configure and start Varnish

Zipnish requires Varnish 4, earlier versions are not supported.

$ sudo yum install -y varnish

Update /etc/varnish/default.vcl file with the following content:

vcl 4.0;

Default backend definition. Set this to point to your content server.
backend default {

.host = "127.0.0.1";

.port = "9999";
}

sub vcl_recv {
return(pass);

}

Start Varnish:

$ sudo service varnish start

Or reload, if Varnish has already been installed:

$ sudo service varnish reload

Unless otherwise specified, Varnish will listen on port 6081. For simplicity reasons vcl_recv() will pass
all requests, refer to the VCL section in order to have caching enabled. Notice that the default backend points to
the server that has just been spawned previously.

3. Check that Varnish and the backend are set correctly

Issue the following request against Varnish:

$ curl -is http://localhost:6081/api/articles

Expected output:

127.0.0.1 - - [10/May/2016 11:26:54] "GET /api/auth HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 11:26:54] "GET /api/titles HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 11:26:54] "GET /api/images HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 11:26:55] "GET /api/correct HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 11:26:55] "GET /api/compose HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 11:26:55] "GET /api/articles HTTP/1.1" 200 -

HTTP/1.1 200 OK
Server: BaseHTTP/0.3 Python/2.7.9
Date: Tue, 10 May 2016 11:26:55 GMT
Content-type: text/html
X-Varnish: 32803
Age: 0
Via: 1.1 varnish-v4
Transfer-Encoding: chunked
Connection: keep-alive
Accept-Ranges: bytes

4. Configure a MariaDb instance

Install docker:

14 Chapter 4. Run Zipnish

http://www.varnish-cache.org/
http://zipnish.readthedocs.io/en/latest/vcl.html

zipnish Documentation, Release latest

$ sudo yum -y install docker

Pull and run the following container for setting up a MariaDb instance:

$ docker pull mariusm/ubuntu-mariadb
$ docker run -d -p 3306:3306 mariusm/ubuntu-mariadb

Once created, the container will host a mariadb instance with a microservice database and a user with the
following credentials:

user = zipnish

pass = secret

5. Install and configure Zipnish

Zipnish is available in Pypi, thus run the following command to install it:

$ sudo pip install zipnish

Create a /etc/zipnish/zipnish.cfg with a content similar as described in configuration. Retrieve the
docker container IP and update the mysql host accordingly in the .cfg file.

Create the log folder:

$ sudo mkdir -p /var/log/zipnish
$ sudo chown -R $(whoami): /var/log/zipnish

6. Run

Start the log-reader:

$ zipnish-logreader &

Start the zipnish UI:

$ zipnish-ui &

Issue a test request to generate tracking data:

$ curl -is http://localhost:6081/api/articles

7. Browse the UI

Open a browser and navigate to http://127.0.0.1:5000

4.6 Changes

4.6. Changes 15

https://hub.docker.com/r/mariusm/ubuntu-mariadb/
http://zipnish.readthedocs.io/en/latest/index.html
http://127.0.0.1:5000

	Prerequisites
	Installation
	Configuration
	Run Zipnish

